prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
# -*- coding: utf-8 -*- import io import sqlite3 import pickle from collections import Mapping try: from collections.abc import MutableMapping except: from collections import MutableMapping import numpy as np from . import util class Tensor(object): """``numpy.array`` with attr and id. :param data: ``numpy.array`` or ``Mapping`` :param attr: ``dict`` object or ``None`` :param id: ``str`` """ def __init__(self, data, attr=None, id=None, **kwargs): super(Tensor, self).__init__() super(Tensor, self).__setattr__('_data', data) super(Tensor, self).__setattr__( '_id', str(id) if id is not None else util.gen_id() ) super(Tensor, self).__setattr__( '_attr', None if attr is None and len(kwargs) == 0 else dict(attr if attr is not None else {}, **kwargs) ) @property def id(self): """get id of this object """ return self._id @property def data(self): """get data of this object """ return self._data @property def attr(self): """get attr of this object. If ``_attr`` is None, this method creates\ an empty dict. """ if self._attr is None: self._attr = {} return self._attr def __getattr__(self, name): """direct access to ``numpy.array``\'s attributes :param name: ``str`` """ return getattr(self._data, name) def __getitem__(self, key): """direct access to ``numpy.array``\'s indexing :param key: any objects acceptable for ``numpy.array``\'s\ ``__getitem__`` """ return self._data.__getitem__(key) def __setitem__(self, key, value): """direct access to ``numpy.array``\'s index assignation :param key: any objects acceptable for ``numpy.array``\'s\ ``__setitem__`` """ return self._data.__setitem__(key, value) class Database(MutableMapping): @property def schema_version(self): return '0' def __init__(self, connection): super(Database, self).__init__() if isinstance(connection, sqlite3.Connection): self.connection = connection else: self.connection = sqlite3.Connection(connection) if not self.is_init(): self.__init_tables() def __init_tables(self): cur = self.connection.cursor() cur.execute( 'CREATE TABLE metadata (key TEXT, value TEXT)' ) cur.execute( 'CREATE TABLE tensor (' + 'id TEXT(22) PRIMARY KEY, ' + 'data BLOB, ' + 'attr BLOB)' ) cur.executemany( 'INSERT INTO metadata (key, value) VALUES (?, ?)', (('schema_version', self.schema_version), ('initialized_at', util.now())) ) self.connection.commit() def is_init(self): """return ``True`` if this object is initialized with current schema\ and return ``False`` otherwise. """ cur = self.connection.cursor() masterdata = list(cur.execute( 'SELECT * FROM sqlite_master WHERE name="metadata"' )) if len(masterdata) == 0: return False schema_version = list(cur.execute( 'SELECT value FROM metadata ' + 'WHERE key="schema_version"' )) if len(schema_version) > 0 and \ schema_version[0][0] == self.schema_version: return True return False def save(self, tensor, commit=True): """update or insert ``tensor`` into the table. :param tensor: ``Tensor`` object """ cur = self.connection.cursor() rec = list(cur.execute( 'SELECT id FROM ' + 'tensor WHERE id=?', (tensor.id, ) )) if len(rec) != 0: cur.execute( 'UPDATE tensor SET data=?, attr=? WHERE id=?', self.serialize(tensor) ) else: cur.execute( 'INSERT INTO tensor (data, attr, id) VALUES (?, ?, ?)', self.serialize(tensor) ) if commit: self.connection.commit() def erase(self, tensor_id, commit=True): """delete tensor whose id is ``tensor_id`` from the table. :param tensor_id: ``str`` or ``Tensor`` object """ if isinstance(tensor_id, Tensor): return self.erase(tensor_id.id, commit) cur = self.connection.cursor() cur.execute('DELETE FROM tensor WHERE id=?', (tensor_id, )) if commit: self.connection.commit() def __getitem__(self, key): if not isinstance(key, (str, bytes)): return self.__getitem__(str(key)) d = self.connection.cursor().execute( 'SELECT data, attr, id FROM tensor WHERE id=?', (key, ) ).fetchone() if d is None: raise KeyError(key) return self.deserialize(d) def __setitem__(self, key, value): if isinstance(value, Tensor): return self.save(Tensor(data=value.data, attr=value.attr, id=key)) return self.save(Tensor(data=np.array(value), attr=None, id=key)) def __delitem__(self, key): return self.erase(key) def __iter__(self): for x in self.connection.cursor().execute( 'SELECT id FROM tensor'): yield x[0] def __len__(self): return self.connection.cursor().execute( 'SELECT COUNT(*) FROM tensor' ).fetchone()[0] @classmethod def serialize(cls, tensor): return (cls.serialize_array(tensor._data), cls.serialize_attr(tensor._attr), tensor._id) @classmethod def deserialize(cls, record): return Tensor( data=cls.deserialize_array(record[0]), attr=cls.deserialize_attr(record[1]), id=record[2] ) @classmethod def serialize_array(cls, data): s = io.BytesIO() if isinstance(data, Mapping):
np.savez(s, **data)
numpy.savez
#!/usr/bin/env python # encoding=utf-8 from inspect import getblock import json import os from os import read from numpy.core.fromnumeric import mean import numpy as np import paddlehub as hub import six import math import random import sys from util import read_file from config import Config # 配置文件 conf = Config() class Vocabulary(object): def __init__(self, meta_file, max_len, allow_unk=0, unk="$UNK$", pad="$PAD$",): self.voc2id = {} self.id2voc = {} self.unk = unk self.pad = pad self.max_len = max_len self.allow_unk = allow_unk with open(meta_file, encoding='utf-8') as f: for i, line in enumerate(f): line = convert_to_unicode(line.strip("\n")) self.voc2id[line] = i self.id2voc[i] = line self.size = len(self.voc2id) self.oov_num = self.size + 1 def fit(self, words_list): """ :param words_list: [[w11, w12, ...], [w21, w22, ...], ...] :return: """ word_lst = [] word_lst_append = word_lst.append for words in words_list: if not isinstance(words, list): print(words) continue for word in words: word = convert_to_unicode(word) word_lst_append(word) word_counts = Counter(word_lst) if self.max_num_word < 0: self.max_num_word = len(word_counts) sorted_voc = [w for w, c in word_counts.most_common(self.max_num_word)] self.max_num_word = len(sorted_voc) self.oov_index = self.max_num_word + 1 self.voc2id = dict(zip(sorted_voc, range(1, self.max_num_word + 1))) return self def _transform2id(self, word): word = convert_to_unicode(word) if word in self.voc2id: return self.voc2id[word] elif self.allow_unk: return self.voc2id[self.unk] else: print(word) raise ValueError("word:{} Not in voc2id, please check".format(word)) def _transform_seq2id(self, words, padding=0): out_ids = [] words = convert_to_unicode(words) if self.max_len: words = words[:self.max_len] for w in words: out_ids.append(self._transform2id(w)) if padding and self.max_len: while len(out_ids) < self.max_len: out_ids.append(0) return out_ids def _transform_intent2ont_hot(self, words, padding=0): # 将多标签意图转为 one_hot out_ids = np.zeros(self.size, dtype=np.float32) words = convert_to_unicode(words) for w in words: out_ids[self._transform2id(w)] = 1.0 return out_ids def _transform_seq2bert_id(self, words, padding=0): out_ids, seq_len = [], 0 words = convert_to_unicode(words) if self.max_len: words = words[:self.max_len] seq_len = len(words) # 插入 [CLS], [SEP] out_ids.append(self._transform2id("[CLS]")) for w in words: out_ids.append(self._transform2id(w)) mask_ids = [1 for _ in out_ids] if padding and self.max_len: while len(out_ids) < self.max_len + 1: out_ids.append(0) mask_ids.append(0) seg_ids = [0 for _ in out_ids] return out_ids, mask_ids, seg_ids, seq_len @staticmethod def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def _transform_2seq2bert_id(self, seq1, seq2, padding=0): out_ids, seg_ids, seq_len = [], [1], 0 seq1 = [x for x in convert_to_unicode(seq1)] seq2 = [x for x in convert_to_unicode(seq2)] # 截断 self._truncate_seq_pair(seq1, seq2, self.max_len - 2) # 插入 [CLS], [SEP] out_ids.append(self._transform2id("[CLS]")) for w in seq1: out_ids.append(self._transform2id(w)) seg_ids.append(0) out_ids.append(self._transform2id("[SEP]")) seg_ids.append(0) for w in seq2: out_ids.append(self._transform2id(w)) seg_ids.append(1) mask_ids = [1 for _ in out_ids] if padding and self.max_len: while len(out_ids) < self.max_len + 1: out_ids.append(0) mask_ids.append(0) seg_ids.append(0) return out_ids, mask_ids, seg_ids, seq_len def transform(self, seq_list, is_bert=0): if is_bert: return [self._transform_seq2bert_id(seq) for seq in seq_list] else: return [self._transform_seq2id(seq) for seq in seq_list] def __len__(self): return len(self.voc2id) def convert_to_unicode(text): """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" if six.PY3: if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode("utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) elif six.PY2: if isinstance(text, str): return text.decode("utf-8", "ignore") elif isinstance(text, unicode): return text else: raise ValueError("Unsupported string type: %s" % (type(text))) else: raise ValueError("Not running on Python2 or Python 3?") def gen_word_set(file_path, out_path='./data/words.txt'): word_set = set() with open(file_path, encoding='utf-8') as f: for line in f.readlines(): spline = line.strip().split('\t') if len(spline) < 4: continue prefix, query_pred, title, tag, label = spline if label == '0': continue cur_arr = [prefix, title] query_pred = json.loads(query_pred) for w in prefix: word_set.add(w) for each in query_pred: for w in each: word_set.add(w) with open(word_set, 'w', encoding='utf-8') as o: for w in word_set: o.write(w + '\n') pass def convert_word2id(query, vocab_map): ids = [] for w in query: if w in vocab_map: ids.append(vocab_map[w]) else: ids.append(vocab_map[conf.unk]) while len(ids) < conf.max_seq_len: ids.append(vocab_map[conf.pad]) return ids[:conf.max_seq_len] def convert_seq2bow(query, vocab_map): bow_ids = np.zeros(conf.nwords) for w in query: if w in vocab_map: bow_ids[vocab_map[w]] += 1 else: bow_ids[vocab_map[conf.unk]] += 1 return bow_ids def get_data(file_path): """ gen datasets, convert word into word ids. :param file_path: :return: [[query, pos sample, 4 neg sample]], shape = [n, 6] """ data_map = {'query': [], 'query_len': [], 'doc_pos': [], 'doc_pos_len': [], 'doc_neg': [], 'doc_neg_len': []} with open(file_path, encoding='utf8') as f: for line in f.readlines(): spline = line.strip().split('\t') if len(spline) < 4: continue prefix, query_pred, title, tag, label = spline if label == '0': continue cur_arr, cur_len = [], [] query_pred = json.loads(query_pred) # only 4 negative sample for each in query_pred: if each == title: continue cur_arr.append(convert_word2id(each, conf.vocab_map)) each_len = len(each) if len(each) < conf.max_seq_len else conf.max_seq_len cur_len.append(each_len) if len(cur_arr) >= 4: data_map['query'].append(convert_word2id(prefix, conf.vocab_map)) data_map['query_len'].append(len(prefix) if len(prefix) < conf.max_seq_len else conf.max_seq_len) data_map['doc_pos'].append(convert_word2id(title, conf.vocab_map)) data_map['doc_pos_len'].append(len(title) if len(title) < conf.max_seq_len else conf.max_seq_len) data_map['doc_neg'].extend(cur_arr[:4]) data_map['doc_neg_len'].extend(cur_len[:4]) pass return data_map def get_data_siamese_rnn(file_path): """ gen datasets, convert word into word ids. :param file_path: :return: [[query, pos sample, 4 neg sample]], shape = [n, 6] """ data_arr = [] with open(file_path, encoding='utf8') as f: for line in f.readlines(): spline = line.strip().split('\t') if len(spline) < 4: continue prefix, _, title, tag, label = spline prefix_seq = convert_word2id(prefix, conf.vocab_map) title_seq = convert_word2id(title, conf.vocab_map) data_arr.append([prefix_seq, title_seq, int(label)]) return data_arr def get_data_bow(file_path): """ gen datasets, convert word into word ids. :param file_path: :return: [[query, prefix, label]], shape = [n, 3] """ data_arr = [] with open(file_path, encoding='utf8') as f: for line in f.readlines(): spline = line.strip().split('\t') if len(spline) < 4: continue prefix, _, title, tag, label = spline prefix_ids = convert_seq2bow(prefix, conf.vocab_map) title_ids = convert_seq2bow(title, conf.vocab_map) data_arr.append([prefix_ids, title_ids, int(label)]) return data_arr def trans_lcqmc(dataset): """ 最大长度 """ out_arr, text_len = [], [] for each in dataset: t1, t2, label = each.text_a, each.text_b, int(each.label) t1_ids = convert_word2id(t1, conf.vocab_map) t1_len = conf.max_seq_len if len(t1) > conf.max_seq_len else len(t1) t2_ids = convert_word2id(t2, conf.vocab_map) t2_len = conf.max_seq_len if len(t2) > conf.max_seq_len else len(t2) # t2_len = len(t2) out_arr.append([t1_ids, t1_len, t2_ids, t2_len, label]) # out_arr.append([t1_ids, t1_len, t2_ids, t2_len, label, t1, t2]) text_len.extend([len(t1), len(t2)]) pass print("max len", max(text_len), "avg len",
mean(text_len)
numpy.core.fromnumeric.mean
import sys from typing import Tuple import numpy as np import matplotlib.pyplot as plt from matplotlib import ticker, cm from scipy import optimize import multiprocessing as mp import time #------------------------------------------------------------------------------------------------------------------ #------------------------------------------------------------------------------------------------------------------ # FUNCTIONS AND VARS #------------------------------------------------------------------------------------------------------------------ #------------------------------------------------------------------------------------------------------------------ # Display additional info for debugging DEBUG_MODE = False # File with all the data fileName = "SMBH/Data/OrbitData2017.txt" # Output file for MCD outputFile = "SMBH/Data/Output.txt" # store last orbit data in file OrbitFileForewrd = "SMBH/Orbit/foreward.txt" OrbitFileBackwrd = "SMBH/Orbit/backward.txt" # Gravitational Constant in astronomy Units GLOB_G = 4.30091E-3 # pc/yr to km/s conversion factor GLOB_PcYrKmS = 997813.106 # mas to radians conversion factor GLOB_masToRad = 4.8481368110954E-9 # 1 second to year conversion factor GLOB_SecToYr = 3.17098E-8 # pc to km conversion factor GLOB_PcToKm = 3.086E13 # speed of light in km/s GLOB_c = 299792.458 #counter GLOB_counter = 0 # Global Bounds of SGR A* Position in mas -- (del x, del y , del z) GLOB_SGRA_Pos = np.array([0.2, 0.2, 0.2]) # IMPORT AND DATA HANDLING class FitContainer(): ''' Container for all the Data needed for a Fit ''' success = False Mass = -1 Distance = -1 initR = None initV = None PosPath = None VPath = None ErrRA = None ErrDE = None ErrVR = None OrbitNumber = 0 OrbElem = None PositionArray = None VelocityArray = None def __init__(self, ParVec, _oN = 1, success = True, _orb=None, _PosArr = None, _VelArr = None): Pars = ParVecToParams(ParVec) self.Mass = Pars[0] self.Distance = Pars[3] self.initR = Pars[1] self.initV = Pars[2] self.OrbitNumber = _oN # number of orbits infront of index data self.success = success self.OrbElem = _orb self.PositionArray = _PosArr self.VelocityArray = _VelArr if type(_PosArr) == np.ndarray: _tmp = PosRealToRad(self.PositionArray, self.Distance) self.PosPath = np.array( [ _tmp[:,0], _tmp[:,1] ] ) self.VPath = np.array( self.VelocityArray[:,2] ) def initErrorData(self, _RA, _DE, _VR): self.ErrRA = _RA self.ErrDE = _DE self.ErrVR = _VR def getChi2(self, bReduced:bool=False) -> float: if type(self.ErrRA) == list: lenPos = len(self.ErrRA[3]) lenVel = len(self.ErrVR[3]) NPos = lenPos / (lenPos + lenVel) NVel = lenVel / (lenPos + lenVel) if bReduced: _t = (NPos*self.ErrRA[2] + NPos*self.ErrDE[2] + NVel*self.ErrVR[2]) #_t = (self.ErrRA[2] + self.ErrDE[2] + self.ErrVR[2]) return _t / (2*lenPos + lenVel) else: return (NPos*self.ErrRA[2] + NPos*self.ErrDE[2] + NVel*self.ErrVR[2]) #return (self.ErrRA[2] + self.ErrDE[2] + self.ErrVR[2]) else: return 1E10 def returnParVec(self) -> list: return [self.Mass, *self.initR, *self.initV, self.Distance] class DataContainer(): ''' Stores the Data from a Star ''' TimeP = None TimeV = None RA = None eRA = None DE = None eDE = None VR = None eVR = None def __init__(self, _stNr, _SData): ''' _stNr -- Star Number _SData -- Star Data, already extracted from Total Data (see readTable) ''' if _SData: self.StarNr = _stNr scale = np.sqrt(5)/2.60335 # for weighted #scale = np.sqrt(5)/2.192 # for unweighted #positional data self.TimeP = np.array([x["time"] for x in _SData["pos"]] ) self.RA = np.array([x["RA"] for x in _SData["pos"]] ) self.DE = np.array([x["DE"] for x in _SData["pos"]] ) self.eRA = np.array([x["e_RA"] * scale for x in _SData["pos"]] ) self.eDE = np.array([x["e_DE"] * scale for x in _SData["pos"]] ) #RVel data self.VR = np.array([x["RVel"] for x in _SData["rad"]] ) self.eVR = np.array([x["e_RVel"] * scale for x in _SData["rad"]] ) self.TimeV = np.array([x["time"] for x in _SData["rad"]] ) #print("len of Data N = ", len(self.RA) + len(self.DE) + len(self.VR)) # create and return a copy of this object def copy(self): _t = DataContainer(self.StarNr, None) _t.TimeP = self.TimeP _t.RA = self.RA _t.DE = self.DE _t.eRA = self.eRA _t.eDE = self.eDE _t.VR = self.VR _t.eVR = self.eVR _t.TimeV = self.TimeV return _t class OrbitElem(): def __init__(self, _a, _e, _omega, _LAN, _i, _M, _T, _nu): """ Container for saving orbital Elements Parameters ---------- _a : semi mayor axis _e : eccentricity _omega : argument of periapsis _LAN : longitude of ascending node _i : inclination _M : Mean anomaly _T : Period """ self.MayAxis = _a self.Ecc = _e self.ArgPeri = _omega self.LAN = _LAN self.Incl = _i self.MeanM = _M self.Period = _T self.TAnom = _nu def readTable(_fName:str) -> tuple: ''' reads the file. Returns (Data in rows, Header in the form [1st data, 2nd data,...]) Format: (Data[row][point], Header[point][more info]) ''' _file = open(_fName, 'r') _data = _file.readlines() _file.close() # this is where the header starts _index = 10 _data_header = [] #------------------------------------------------ # read the header #------------------------------------------------ while True: if _data[_index][0] == "-": break #this is a dataline _line = _data[_index] _byte = int(_line[0:4].strip()) _byte_end = int(_line[5:8].strip()) _format = _line[9:15].strip() _unit = _line[16:23].strip() _label = _line[24:33].strip() _desc = _line[34:].strip() _data_header.append([]) _data_header[_index - 10].append(_byte) _data_header[_index - 10].append(_byte_end) _data_header[_index - 10].append(_format) _data_header[_index - 10].append(_unit) _data_header[_index - 10].append(_label) _data_header[_index - 10].append(_desc) _index += 1 # this is where the data starts _index = 134 _acData = [] #------------------------------------------------ # read the data #------------------------------------------------ while True: #file end if not _data[_index]: break _line = _data[_index] _acData.append([]) for i in range(len(_data_header)): _acData[_index-134].append(_line[ _data_header[i][0] - 1: _data_header[i][1] ].strip() ) if _index+1 < len(_data): _index += 1 else: break return (_acData, _data_header) def EmptyCheck(_data:list, _index:int, _indexList:list) -> bool: """ check if any element (index given by indexList) in Data is non zero return True if any element is non zero; used for return_StarExistingData """ for i in _indexList: if ( _data[0][_index][i] != '' ): return True return False def return_StarExistingData(_data:list, StarNr:int) -> dict: """ return data for specific Star IN: (raw_data, (int) Star Number) OUT: StarData FORMAT: [ Data["pos"], Data["rad"] ] Data["pos"]..."time", "RA", "e_RA", "DE", "e_DE" Data["rad"]..."time", "RVel", "e_RVel" """ _header = _data[1] firstStarElem = "oRA-S" + str(StarNr) _index = -1 for i in range(len(_header)): #is label the same if _header[i][4] == firstStarElem: _index = i break #wrong label => wrong star number if _index < 0: return [] #_StarData = [] #dictionary containing positional data and radial data seperately _StarData = dict( [ ("pos", []), ("rad", []) ] ) #form a dict from the data #FORMAT: time, RA, e_RA, DE, e_DE // RVel, e_RVel for i in range(len(_data[0])): #_data[0][i] is the i-th row of data; [1] is the flag position #check flag; a = position if (_data[0][i][1] == "a"): #is the star data not empty; _index is starting index of star data #check for all positional data if (EmptyCheck(_data, i, [ _index, _index+1, _index+2,_index+3 ] ) ): _StarData["pos"].append( dict( [ ("time", float(_data[0][i][0])), #date ("RA", float(_data[0][i][_index])), #Right ascention ("e_RA", float(_data[0][i][_index+1])), #Error RA ("DE", float(_data[0][i][_index+2])), #Declination ("e_DE", float(_data[0][i][_index+3])) #Error DE ] ) ) #check if rad flag elif (_data[0][i][1] == "rv"): if (EmptyCheck(_data, i, [_index+4,_index+5] ) ): _StarData["rad"].append( dict( [ ("time", float(_data[0][i][0])), #date ("RVel", float(_data[0][i][_index+4])), #radial velocity ("e_RVel", float(_data[0][i][_index+5])) #Error RVel ])) return _StarData # ORBITAL ELEMENTS def getT(r0:np.ndarray, v0:np.ndarray, _M:float) -> float: ''' returns the Period of one orbit for given state vector and Mass ''' _a = 1/( 2/np.linalg.norm(r0) - np.linalg.norm(v0)**2/(GLOB_G * _M) ) # a in pc _t = 2*np.pi * np.sqrt( (_a**3)/(GLOB_G*_M) ) # Units = sec * pc / km return _t * GLOB_SecToYr * GLOB_PcToKm # convert to year plus additional length factor def getOrbitalElements(_parVec:list) -> OrbitElem: """ Returns all Orbital Elements and the Period, packed into a data class Parameters ---------- _parVec : Parameter Vector for current orbit Returns ------- OrbitalElem Object """ Pars = ParVecToParams(_parVec) M = Pars[0] r0 = Pars[1] v0 = Pars[2] # momentum vector h = np.cross(r0, v0) # eccentricity vector e = np.cross(v0, h) / (GLOB_G*M) - r0/np.linalg.norm(r0) # eccentricity e_norm = np.linalg.norm(e) n = np.array( [-h[0], h[1], 0] ) # true anomaly nu = np.arccos( np.dot(e, r0) / (e_norm * np.linalg.norm(r0)) ) if np.dot(r0, v0) < 0: nu = 2*np.pi - nu # inclination i = np.arccos(h[2] / np.linalg.norm(h)) # eccentric Anomaly E = 2* np.arctan( np.tan(nu/2) / ( np.sqrt( (1+e_norm)/(1-e_norm) ) ) ) # LAN LAN = np.arccos( n[0] / np.linalg.norm(n) ) if n[1] < 0: LAN = 2*np.pi - LAN # argument of periapsis omega = np.arccos( np.dot(n, e)/ (np.linalg.norm(n) * e_norm) ) if e[2] < 0: omega = 2*np.pi - omega # mean anomaly MeanM = E - e_norm*np.sin(E) # semi mayor axis a = 1/( 2/np.linalg.norm(r0) - np.linalg.norm(v0)**2/(GLOB_G * M) ) _t = 2*np.pi * np.sqrt( (np.clip(a, 0, a)**3)/(GLOB_G*M) ) # Units = sec * pc / km T = _t * GLOB_SecToYr * GLOB_PcToKm _OE = OrbitElem(a, e_norm, omega * 180 / np.pi, LAN * 180 / np.pi, i * 180 / np.pi, MeanM * 180 / np.pi, T, nu) return _OE def OE_Essentials(_parVec:list) -> OrbitElem: """ Only calculate e and T to be bounds checked for fit Parameters ---------- _parVec : Parameter Vector for current orbit Returns ------- OrbitalElem Object """ Pars = ParVecToParams(_parVec) M = Pars[0] r0 = Pars[1] v0 = Pars[2] # momentum vector h = np.cross(r0, v0) # eccentricity vector e = np.cross(v0, h) / (GLOB_G*M) - r0/np.linalg.norm(r0) # eccentricity e_norm = np.linalg.norm(e) # semi mayor axis a = 1/( 2/np.linalg.norm(r0) - np.linalg.norm(v0)**2/(GLOB_G * M) ) _t = 2*np.pi * np.sqrt( (np.clip(a, 0, a)**3)/(GLOB_G*M) ) # Units = sec * pc / km T = _t * GLOB_SecToYr * GLOB_PcToKm _OE = OrbitElem(a, e_norm, 0, 0, 0, 0, T, 0) return _OE # UTILITY def PosRadToReal(_r:np.ndarray, _dist:float) -> np.ndarray: ''' converts the first 2 radial elements to real distance, given the distance returns position vector in pc ''' return _r*_dist*GLOB_masToRad def RadToReal(_x:float, _dist:float) -> float: ''' return distance in pc for one coordinate ''' return _x*_dist*GLOB_masToRad def PosRealToRad(_r:np.ndarray, _dist:float) -> np.ndarray: ''' converts the real position to radial position in the first 2 elements. Used for plotting only returns postion vector with units ('','',pc) ''' _t = np.array([ _dist*GLOB_masToRad, _dist*GLOB_masToRad, 1 ]) return _r/_t def potential(r:np.ndarray,v:np.ndarray,_M:float, r_SGRA:np.ndarray=np.array([0,0,0])) -> np.ndarray: """ return Kepler acceleration Parameters ---------- r : [vector] position of particle to evaluate potential at _M : [scalar] Mass of central object Returns ------- Potential Strength """ # true distance from star to srg a* dist = r - r_SGRA return -(GLOB_G*_M*dist) / (np.linalg.norm(dist)**3) def potentialSchwarz(r:np.ndarray,v:np.ndarray,_M:float, r_SGRA:np.ndarray=np.array([0,0,0])) -> np.ndarray: """ return the Schwarzschild acceleration Parameters ---------- r : [vector] position of particle to evaluate potential at v : [vector] velocity of particle _M : [scalar] Mass of central object Returns ------- Schwarzschild Potential Strength: Kepler Potential + a/r^3 """ h = np.cross(r,v) # specific angular momentum kepl = potential(r,v,_M) Schw = (3 * GLOB_G * _M * np.dot(h,h) * r) / (GLOB_c**2 * np.linalg.norm(r)**5) return kepl + Schw def VerletStep(h:float,r0:np.ndarray,v0:np.ndarray,f0:np.ndarray,_M:float, r_SGRA:np.ndarray=np.array([0,0,0])) -> np.ndarray: """ Orbital Integration using the Verlet Algorithm Parameters ---------- h : [scalar] stepsize -> delta t r0 : [vector] position of particle from last evaluation v0 : [vector] velocity of particle from last evaluation f0 : [scalar] potential strength from last evaluation step _M : [scalar] Mass of central object func : [function] Potential function to evaluate Returns ------- [r1, v1, f1] position, velocity and potential of new step """ pp = np.add(v0, h/2*f0) # 1/2 Delta velocity r1 = np.add(r0, h*pp) # new position = r0 + del v*del t f1 = potential(r1,v0,_M, r_SGRA) # new potential at new position v1 = np.add(pp, h/2*f1) # new velocity = v0 + 1/2 del a0*del t + 1/2 del a1*del t return np.array([r1,v1,f1]) def VerletStepSchwarz(h:float,r0:np.ndarray,v0:np.ndarray,f0:np.ndarray,_M:float, r_SGRA:np.ndarray=np.array([0,0,0])) -> np.ndarray: """ Orbital Integration using the Verlet Algorithm Parameters ---------- h : [scalar] stepsize -> delta t r0 : [vector] position of particle from last evaluation v0 : [vector] velocity of particle from last evaluation f0 : [scalar] potential strength from last evaluation step _M : [scalar] Mass of central object func : [function] Potential function to evaluate Returns ------- [r1, v1, f1] position, velocity and potential of new step """ pp = np.add(v0, h/2*f0) # 1/2 Delta velocity r1 = np.add(r0, h*pp) # new position = r0 + del v*del t f1 = potentialSchwarz(r1,pp,_M) # new potential at new position v1 = np.add(pp, h/2*f1) # new velocity = v0 + 1/2 del a0*del t + 1/2 del a1*del t return np.array([r1,v1,f1]) def returnDataError(rData:np.ndarray, rDataErr:np.ndarray, rTime:np.ndarray, Fake:np.ndarray, fTimeEnd:float) -> list: """ evaluates how much fake deviates from data data and fake must begin at the same point, for this to work Parameters ---------- rData : np.ndarray real Data to compare Fake Data against rDataErr : np.ndarray Error for real Data, used in chi calculation rTime : np.ndarray Timestamps for all real Data points Fake : np.ndarray Fake Data points that will be compared to real Data fTimeEnd : float Total End Time of Fake Data, this function will create its own time array based on this value Returns ------- [ x_time, y_UsedData, chi^2 value] """ # create timing for fake data fakeTimeline = np.linspace(0,fTimeEnd, len(Fake)) newTimeOfFake = np.empty(len(rTime)) newValues = np.empty(len(rTime)) j = 0 # determine closest fakeTime for every measured timestamp # if fake orbit shorter than measured time => last measured points get ignored # if fake orbit longer than measured time => last fake points get ignored for i in range(len(rTime)): for k in range(j, len(fakeTimeline)): if (fakeTimeline[k] >= rTime[i]): newTimeOfFake[i] = fakeTimeline[k] newValues[i] = Fake[k] j = k break chi2 = ((rData - newValues)/rDataErr)**2 return [newTimeOfFake, newValues, np.sum( chi2 ), chi2] def returnCombinedError(StarData:DataContainer, FitData:FitContainer, _in, redshiftCorr:bool = False) -> float: """ combines all measurement errors Parameters ---------- StarData : DataContainer The Star Data FitData : FitContainer The Fit Data, prior to any Error Calculation, Error will be overwritten _in : [_index_R, _index_V] Index point of starting data redshiftCorr : bool use redshift correction in error calculation? Only for Schwarzschild potential Returns ------- chi^2 value for current parameters """ if FitData.success: # create timing for fake data _eT = StarData.TimeP[_in[0]] - StarData.TimeP[0] + FitData.OrbitNumber * FitData.OrbElem.Period # error on every measurement Err_RA = returnDataError(StarData.RA, StarData.eRA, StarData.TimeP - StarData.TimeP[0], FitData.PosPath[0], _eT) Err_DE = returnDataError(StarData.DE, StarData.eDE, StarData.TimeP - StarData.TimeP[0], FitData.PosPath[1], _eT) # rad vel points need to be shifted by the same amount as the position data for consistency if redshiftCorr: fakeTimeline = np.linspace(0,_eT, len(FitData.VPath)) j = 0 rTime = StarData.TimeV - StarData.TimeP[0] #newVR_Timeline = np.empty(len(rTime)) LengthAtVR = np.empty(len(rTime)) newFakeVR = np.empty(len(rTime)) for i in range(len(rTime)): for k in range(j, len(fakeTimeline)): if (fakeTimeline[k] >= rTime[i]): #newVR_Timeline[i] = fakeTimeline[k] LengthAtVR[i] = np.linalg.norm(FitData.PositionArray[k]) #FitData.PositionArray[k][2] # newFakeVR[i] = FitData.VPath[k] j = k break PN_VR = StarData.VR - getGravRedshift(FitData.Mass, LengthAtVR) _chi2 = ((PN_VR - newFakeVR)/StarData.eVR)**2 Err_Vz = [StarData.TimeV - StarData.TimeP[0], PN_VR, np.sum( _chi2 ), _chi2] else: Err_Vz = returnDataError(StarData.VR, StarData.eVR, StarData.TimeV - StarData.TimeP[0], FitData.VPath, _eT) lenPos = len(StarData.RA) lenVel = len(StarData.VR) NPos = lenPos / (lenPos + lenVel) NVel = lenVel / (lenPos + lenVel) #print("len: ", len(Err_RA[3]) + len(Err_DE[3]) + len(Err_Vz[3])) FitData.initErrorData(Err_RA, Err_DE, Err_Vz) # save individual errors in FitData # chi^2 value #chi2 = (Err_RA[2] + Err_DE[2] + Err_Vz[2]) chi2 = (NPos * Err_RA[2] + NPos * Err_DE[2] + NVel * Err_Vz[2]) #Nlen = len(Err_RA[3]) + len(Err_DE[3]) + len(Err_Vz[3]) #chi2 = chi2/Nlen return chi2 else: return 1E10 def returnCombinedErrorFromFile(SD:DataContainer, FitData:FitContainer, _in) -> float: _OFile = open(OrbitFileForewrd, 'r') _line = _OFile.readline() NumberLines = -2 StartBackwards = -1 while _line: NumberLines += 1 if _line[0] == '#' and NumberLines > 0: StartBackwards = NumberLines _line = _OFile.readline() _OFile.close() _OFile = open(OrbitFileForewrd, 'r') _line = _OFile.readline() chi2RA = 0 chi2DE = 0 chi2VR = 0 fCount = -1 PositionRealTime = SD.TimeP - SD.TimeP[0] VelocityRealTime = SD.TimeV - SD.TimeP[0] # end of time _eT = SD.TimeP[_in[0]] - SD.TimeP[0] + FitData.OrbitNumber * FitData.OrbElem.Period # time from index point to ent of time fakeTimeline = np.linspace(SD.TimeP[_in[0]] - SD.TimeP[0], _eT, StartBackwards - 1) fakeTimelineBack = np.linspace(0, SD.TimeP[_in[0]] - SD.TimeP[0], NumberLines - StartBackwards) fakeTimelineBack = np.flip(fakeTimelineBack) rUsedF = [] vUsedF = [] RAIndex = 0 VRIndex = 0 count = 1 # forward while _line: if count > StartBackwards: break count += 1 _t = _line.strip() _line = _OFile.readline() if _t[0] != '#': _t = _t.split(" ") _t = [float(x) for x in _t] r = np.array(_t[:3]) v = np.array(_t[3:]) if fakeTimeline[count-1] >= PositionRealTime[RAIndex]: rUsedF.append(r) RAIndex = count - 1 if fakeTimeline[count - 1] >= VelocityRealTime[VRIndex]: vUsedF.append(v) VRIndex = count - 1 _OFile.close() _OFile = open(OrbitFileForewrd, 'r') _line = _OFile.readline() count = 1 rUsedB = [] vUsedB = [] while _line: if count < StartBackwards: _line = _OFile.readline() else: _t = _line.strip() _line = _OFile.readline() _t = _t.split(" ") _t = [float(x) for x in _t] r = np.array(_t[:3]) v = np.array(_t[3:]) if fakeTimeline[count-1] >= PositionRealTime[RAIndex]: rUsedB.append(r) RAIndex = count - 1 if fakeTimeline[count - 1] >= VelocityRealTime[VRIndex]: vUsedB.append(v) VRIndex = count - 1 if FitData.success: # create timing for fake data _eT = SD.TimeP[_in[0]] - SD.TimeP[0] + FitData.OrbitNumber * FitData.OrbElem.Period # error on every measurement Err_RA = returnDataError(SD.RA, SD.eRA, SD.TimeP - SD.TimeP[0], FitData.PosPath[0], _eT) Err_DE = returnDataError(SD.DE, SD.eDE, SD.TimeP - SD.TimeP[0], FitData.PosPath[1], _eT) Err_Vz = returnDataError(SD.VR, SD.eVR, SD.TimeV - SD.TimeP[0], FitData.VPath, _eT) FitData.initErrorData(Err_RA, Err_DE, Err_Vz) # save individual errors in FitData # chi^2 value chi2 = (Err_RA[2] + Err_DE[2] + Err_Vz[2]) return chi2 else: return 1E10 def returnSpecificChi2Point(SD:DataContainer, ParVec:list, _in:list, kwargs:dict={}) -> float: OrbEl = getOrbitalElements(ParVec) NewFitData = getOrbit(SD=SD, Orb=OrbEl, ParamVec=ParVec, index=_in[0], max_iter=10E6, stepsize=kwargs['Stepsize'], kwargs=kwargs) x = returnCombinedError(SD, NewFitData, _in, kwargs['grav-red']) return x def ParVecToParams(_list:list) -> list: """ Returns parameter list for use in orbit parsing Parameters ---------- _list : ParVec Returns ------- [Mass, R vec, V vec, Distance] """ _M = _list[0] _r = np.array( [_list[1], _list[2], _list[3]] ) _v = np.array( [_list[4], _list[5], _list[6]] ) _d = _list[7] return [_M, _r, _v, _d] def generateMCData(OldData:np.ndarray, Error:np.ndarray) -> np.ndarray: """ Generate a new set of points given the old data and the error bars. All points are within 1 sigma scaled with error Parameters ---------- OldData : list Data points in given Coorinate Error : list coresponding errors Returns ------- list new set of datapoints (of same length) """ sig = np.random.normal(0,1,len(OldData)) newData = OldData + sig * Error return newData def ProgressBar(count:int, total:int, status:str=''): ''' a simple progressbar to keep output clean ''' barLen = 60 fillLen = int(round(barLen*count/float(total))) percent = round(100*count/float(total),1) bar = '='*fillLen + '-'*(barLen-fillLen) sys.stdout.write('[%s] %s%s (%s) ... %s\r' % (bar, percent, '%', count, status)) sys.stdout.flush() def NoProgressBar(count:int, status:str=''): ''' Display clean Message without progressbar ''' sys.stdout.write('(%s) ... %s\r' % (count, status)) sys.stdout.flush() def getGravRedshift(M:float, r:np.ndarray) -> np.ndarray: """ returns the velocity change due to gravitational redshift Parameters ---------- M : float Mass of Black hole r : np.ndarray current position of star Returns ------- Delta RVel : float radialvelocity correction """ # Schwarzschild radius rs = 2 * GLOB_G * M / GLOB_c**2 # redshift z = ( 1 / np.sqrt( 1 - rs/r ) ) - 1 return GLOB_c * z # PLOT FUNCTIONS def plot4Ways(_fig, SD:DataContainer, FD:FitContainer = None, _in:list = [-1,-1], _fName:str = None): """ plot 4 diagrams showing position and time dependency of data, plus FitData, if available Parameters ---------- SD : DataContainer StarData FD : FitContainer FitData, can be None _fig : Reference to main Figure _fName : str, optional save plot as file, by default "frame0001" showGraph : bool, optional Show Figure, by default True _in: [_index_R, _index_V] if set, draw a point around the Index point """ showFit = True if not FD: showFit = False #------------------------------------------------------------- # CONFIG StarColor = 'black' StarErr = 'blue' _ms=3 # marker size chi2Color = 'tab:orange' _fig.clf() F = [] for i in range(4): _tf = _fig.add_subplot(2,2,i+1) _tf.set_axisbelow(True) _tf.grid(True) plt.xticks(fontsize=12) plt.yticks(fontsize=12) F.append(_tf) F[0].set_aspect('equal', 'box') plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1) #------------------------------------------------------------- #x-y F[0].set_xlabel(r'RA [mas]', {'size':14}) F[0].set_ylabel(r'DE [mas]', {'size':14}) #vR-time F[1].set_xlabel(r'time - ' + str(SD.TimeP[0]) + ' [yr]', {'size':14}) F[1].set_ylabel(r'RVel [km/s]', {'size':14}) #x-time (RA) F[2].set_xlabel(r'time - ' + str(SD.TimeP[0]) + ' [yr]', {'size':14}) F[2].set_ylabel(r'RA [mas]', {'size':14}) #y-time (DE) F[3].set_xlabel(r'time - ' + str(SD.TimeP[0]) + ' [yr]', {'size':14}) F[3].set_ylabel(r'DE [mas]', {'size':14}) #------------------------------------------------------------- #Real Data #center F[0].scatter(0,0,c="red", marker='+', label='center', s=50) #position x-y F[0].errorbar(SD.RA, SD.DE, xerr=SD.eRA, yerr=SD.eDE, fmt='o', ecolor=StarErr, color=StarColor, label='S'+str(SD.StarNr) + ' Orbit', ms=_ms) #vR-time F[1].errorbar(SD.TimeV - SD.TimeP[0], SD.VR, yerr=SD.eVR, fmt='o', ecolor=StarErr, color=StarColor, label='S'+str(SD.StarNr) +' RVel', ms=_ms, zorder=2) #x-time F[2].errorbar(SD.TimeP - SD.TimeP[0], SD.RA, yerr=SD.eRA, fmt='o', ecolor=StarErr, color=StarColor, label='S'+str(SD.StarNr) + ' RA',ms=_ms, zorder=2) #y-time F[3].errorbar(SD.TimeP - SD.TimeP[0], SD.DE, yerr=SD.eDE, fmt='o', ecolor=StarErr, color=StarColor, label='S'+str(SD.StarNr) + ' DE',ms=_ms, zorder=2) #------------------------------------------------------------- #fake Data if showFit: # This is the length of the fake data. From Index point it extends some integer amount orbit to front # and backwards it extends to 0, because of float orbit number for back direction # subtract first time measure for relative data DataLenFromIndex = SD.TimeP[_in[0]] - SD.TimeP[0] + FD.OrbitNumber * FD.OrbElem.Period fake_time = np.linspace(0,DataLenFromIndex, len(FD.PosPath[0])) # end of real data, in relative units END_Data = SD.TimeP[-1] - SD.TimeP[0] # update time to only display relevant data fake_time = [x for x in fake_time if x < END_Data] #length of relevant data, used for truncating fake data FI = len(fake_time) # init points used for chi^2 and remove duplicates # 0 - time; 1 - values chi2RA = FD.ErrRA chi2DE = FD.ErrDE chi2RVel = FD.ErrVR SimRA = [x for x in FD.PosPath[0][:FI] if x not in chi2RA[1]] SimRA_Time = [x for x in fake_time if x not in chi2RA[0]] SimDE = [x for x in FD.PosPath[1][:FI] if x not in chi2DE[1]] SimDE_Time = [x for x in fake_time if x not in chi2DE[0]] SimRV = [x for x in FD.VPath[:FI] if x not in chi2RVel[1]] SimRV_Time = [x for x in fake_time if x not in chi2RVel[0]] #------------------------------------------------------------- # Simulation data points #position x-y F[0].plot(FD.PosPath[0], FD.PosPath[1], c='tab:blue', label='Fit') #vR-time F[1].plot(fake_time, FD.VPath[:FI], label='sim RVel', zorder=1) #x-time F[2].plot(SimRA_Time, SimRA, label='sim RA', zorder=1) #y-time F[3].plot(SimDE_Time, SimDE, label='sim DE', zorder=1) #------------------------------------------------------------- # simulation points used in chi^2 #F[1].scatter(FD.ErrVR[0], FD.ErrVR[1], label=r'$\chi^2$ points', c=chi2Color, s=_ms, zorder=3) #vR - vz #F[2].scatter(FD.ErrRA[0], FD.ErrRA[1], label=r'$\chi^2$ points', c=chi2Color, s=_ms, zorder=3) #RA - x #F[3].scatter(FD.ErrDE[0], FD.ErrDE[1], label=r'$\chi^2$ points', c=chi2Color, s=_ms, zorder=3) #DE - y #------------------------------------------------------------- # draw index point if (_in[0] > 0 and _in[1] > 0): F[1].scatter(SD.TimeV[_in[1]] - SD.TimeP[0], SD.VR[_in[1]], label=r'Index', s=20, color='red', zorder=99) #vR - vz F[2].scatter(SD.TimeP[_in[0]] - SD.TimeP[0], SD.RA[_in[0]], label=r'Index', s=20, color='red', zorder=99) #RA - x F[3].scatter(SD.TimeP[_in[0]] - SD.TimeP[0], SD.DE[_in[0]], label=r'Index', s=20, color='red', zorder=99) #DE - y #------------------------------------------------------------- # Print Orbit Elements left of screen OrbElem = FD.OrbElem RoundTo = 3 # Mass plt.figtext(0.01,0.7, r"M [$10^6 M_\odot$] =" + str( np.round(FD.Mass/1E6, RoundTo) ) ) print("M = ", FD.Mass/1E6) # Distance plt.figtext(0.01,0.65, "R [kpc] =" + str( np.round(FD.Distance/1E3, RoundTo) ) ) print("D = ", FD.Distance/1E3) # Period plt.figtext(0.01,0.6, "T [yr] =" + str( np.round(OrbElem.Period, RoundTo) ) ) print("T = ", OrbElem.Period) # Eccentricity plt.figtext(0.01,0.55, "e [1] =" + str( np.round(OrbElem.Ecc, RoundTo) ) ) print("e = ", OrbElem.Ecc) # Semi Mayor Axis plt.figtext(0.01,0.45, "a [pc] =" + str( np.round(OrbElem.MayAxis, RoundTo) ) ) print("a = ", OrbElem.MayAxis) # Inclination plt.figtext(0.01,0.4, r"i [$^\circ$] =" + str( np.round(OrbElem.Incl, RoundTo) ) ) print("i = ", OrbElem.Incl) # Longitude of ascending node plt.figtext(0.01,0.35, r"$\Omega$ [$^\circ$] =" + str( np.round(OrbElem.LAN, RoundTo) ) ) print("LAN = ", OrbElem.LAN) # argument of periapsis plt.figtext(0.01,0.3, r"$\omega$ [$^\circ$] =" + str( np.round(OrbElem.ArgPeri, RoundTo) ) ) print("omega = ", OrbElem.ArgPeri) for i in range(len(F)): F[i].legend(loc='best', fontsize=12) if _fName: plt.savefig("SMBH/Data/dump/" + _fName) def plot2Ways(_fig, SD:DataContainer, FD:FitContainer = None, _in:list = [-1,-1], _fName:str = None): """ plot 2 diagrams showing position and Radial Velocity over Time Parameters ---------- SD : DataContainer StarData FD : FitContainer FitData, can be None _fig : Reference to main Figure _fName : str, optional save plot as file, by default "frame0001" showGraph : bool, optional Show Figure, by default True _in: [_index_R, _index_V] if set, draw a point around the Index point """ showFit = True if not FD: showFit = False #------------------------------------------------------------- # CONFIG StarColor = 'black' StarErr = 'gray' _ms=3 # marker size chi2Color = 'tab:orange' _fig.clf() F = [] for i in range(2): _tf = _fig.add_subplot(1,2,i+1) _tf.set_axisbelow(True) _tf.grid(True) plt.xticks(fontsize=12) plt.yticks(fontsize=12) F.append(_tf) F[0].set_aspect('equal', 'box') #------------------------------------------------------------- #x-y F[0].set_xlabel(r'RA [mas]', {'size':14}) F[0].set_ylabel(r'DE [mas]', {'size':14}) #vR-time F[1].set_xlabel(r'time - ' + str(SD.TimeP[0]) + ' [yr]', {'size':14}) F[1].set_ylabel(r'RVel [km/s]', {'size':14}) #------------------------------------------------------------- #Real Data #center F[0].scatter(0,0,c="red", marker='+', label='center', s=50) #position x-y F[0].errorbar(SD.RA, SD.DE, xerr=SD.eRA, yerr=SD.eDE, fmt='o', ecolor=StarErr, color=StarColor, label='S'+str(SD.StarNr) + ' Orbit', ms=_ms) #vR-time F[1].errorbar(SD.TimeV - SD.TimeP[0], SD.VR, yerr=SD.eVR, fmt='o', ecolor=StarErr, color=StarColor, label='S'+str(SD.StarNr) +' RVel', ms=_ms, zorder=2) #------------------------------------------------------------- #fake Data if showFit: # This is the length of the fake data. From Index point it extends some integer amount orbit to front # and backwards it extends to 0, because of float orbit number for back direction # subtract first time measure for relative data DataLenFromIndex = SD.TimeP[_in[0]] - SD.TimeP[0] + FD.OrbitNumber * FD.OrbElem.Period fake_time = np.linspace(0,DataLenFromIndex, len(FD.PosPath[0])) # end of real data, in relative units END_Data = SD.TimeP[-1] - SD.TimeP[0] # update time to only display relevant data fake_time = [x for x in fake_time if x < END_Data] #length of relevant data, used for truncating fake data FI = len(fake_time) # init points used for chi^2 and remove duplicates # 0 - time; 1 - values chi2RVel = FD.ErrVR SimRV = [x for x in FD.VPath[:FI] if x not in chi2RVel[1]] SimRV_Time = [x for x in fake_time if x not in chi2RVel[0]] #------------------------------------------------------------- # Simulation data points #position x-y F[0].plot(FD.PosPath[0], FD.PosPath[1], c='tab:blue', label='Fit') #vR-time F[1].plot(fake_time, FD.VPath[:FI], label='sim RVel', zorder=1) #------------------------------------------------------------- # simulation points used in chi^2 #F[1].scatter(FD.ErrVR[0], FD.ErrVR[1], label=r'$\chi^2$ points', c=chi2Color, s=_ms, zorder=3) #vR - vz #------------------------------------------------------------- # draw index point if (_in[0] > 0 and _in[1] > 0): F[1].scatter(SD.TimeV[_in[1]] - SD.TimeP[0], SD.VR[_in[1]], label=r'Index', s=20, color='red', zorder=99) #vR - vz #------------------------------------------------------------- # Print Orbit Elements left of screen OrbElem = FD.OrbElem RoundTo = 3 # Mass plt.figtext(0.01,0.7, r"M [$10^6 M_\odot$] =" + str( np.round(FD.Mass/1E6, RoundTo) ), {'size':16} ) print("M = ", FD.Mass/1E6) # Distance plt.figtext(0.01,0.65, "R [kpc] =" + str( np.round(FD.Distance/1E3, RoundTo) ), {'size':16} ) print("D = ", FD.Distance/1E3) # Period plt.figtext(0.01,0.6, "T [yr] =" + str( np.round(OrbElem.Period, RoundTo) ), {'size':16} ) print("T = ", OrbElem.Period) # Eccentricity plt.figtext(0.01,0.55, "e [1] =" + str( np.round(OrbElem.Ecc, RoundTo) ), {'size':16} ) print("e = ", OrbElem.Ecc) # Semi Mayor Axis plt.figtext(0.01,0.45, "a [pc] =" + str( np.round(OrbElem.MayAxis, RoundTo) ), {'size':16} ) print("a = ", OrbElem.MayAxis) # Inclination plt.figtext(0.01,0.4, r"i [$^\circ$] =" + str( np.round(OrbElem.Incl, RoundTo) ), {'size':16} ) print("i = ", OrbElem.Incl) # Longitude of ascending node plt.figtext(0.01,0.35, r"$\Omega$ [$^\circ$] =" + str( np.round(OrbElem.LAN, RoundTo) ), {'size':16} ) print("LAN = ", OrbElem.LAN) # argument of periapsis plt.figtext(0.01,0.3, r"$\omega$ [$^\circ$] =" + str( np.round(OrbElem.ArgPeri, RoundTo) ), {'size':16} ) print("omega = ", OrbElem.ArgPeri) for i in range(len(F)): F[i].legend(loc='best', fontsize=12) if _fName: plt.savefig("SMBH/Data/dump/" + _fName) def plotDataAndFit(_fig, SD:DataContainer, FD:FitContainer, _fName:str = None): ''' plots only the Positions of the Star with the Fit ''' #------------------------------------------------------------- # CONFIG StarColor = 'black' StarErr = 'gray' _ms=3 # marker size _fig.clf() _tf = _fig.add_subplot(1,1,1) _tf.set_aspect('equal', 'box') _tf.set_axisbelow(True) _tf.grid(True) plt.xticks(fontsize=12) plt.yticks(fontsize=12) _tf.set_xlabel(r'RA [mas]', {'size':14}) _tf.set_ylabel(r'DE [mas]', {'size':14}) #------------------------------------------------------------- # center _tf.scatter(0,0,c="red", marker='+', label='center', s=50) # actual data _tf.errorbar(SD.RA, SD.DE, xerr=SD.eRA, yerr=SD.eDE, fmt='o', ecolor=StarErr, color=StarColor, label='S'+str(SD.StarNr) + ' Orbit', ms=_ms) # fake data _tf.plot(FD.PosPath[0], FD.PosPath[1], c='tab:blue', label='Fit') #------------------------------------------------------------- OrbElem = FD.OrbElem RoundTo = 3 # Mass plt.figtext(0.01,0.7, r"M [$10^6 M_\odot$] =" + str( np.round(FD.Mass/1E6, RoundTo) ), {'size':16}) print("M = ", FD.Mass/1E6) # Distance plt.figtext(0.01,0.65, "D [kpc] =" + str( np.round(FD.Distance/1E3, RoundTo) ), {'size':16} ) print("R = ", FD.Distance/1E3) # Period plt.figtext(0.01,0.6, "T [yr] =" + str( np.round(OrbElem.Period, RoundTo) ), {'size':16} ) print("T = ", OrbElem.Period) # Eccentricity plt.figtext(0.01,0.55, "e [1] =" + str( np.round(OrbElem.Ecc, RoundTo) ), {'size':16} ) print("e = ", OrbElem.Ecc) # Semi Mayor Axis plt.figtext(0.01,0.45, "a [pc] =" + str( np.round(OrbElem.MayAxis, RoundTo) ), {'size':16} ) print("a = ", OrbElem.MayAxis) # Inclination plt.figtext(0.01,0.4, r"i [$^\circ$] =" + str( np.round(OrbElem.Incl, RoundTo) ), {'size':16} ) print("i = ", OrbElem.Incl) # Longitude of ascending node plt.figtext(0.01,0.35, r"$\Omega$ [$^\circ$] =" + str( np.round(OrbElem.LAN, RoundTo) ), {'size':16} ) print("LAN = ", OrbElem.LAN) # argument of periapsis plt.figtext(0.01,0.3, r"$\omega$ [$^\circ$] =" + str( np.round(OrbElem.ArgPeri, RoundTo) ), {'size':16} ) print("omega = ", OrbElem.ArgPeri) _tf.legend(loc='best', fontsize=12) if _fName: plt.savefig("SMBH/Data/dump/" + _fName) #------------------------------------------------------------------------------------------------------------------ #------------------------------------------------------------------------------------------------------------------ # ROUTINE #------------------------------------------------------------------------------------------------------------------ #------------------------------------------------------------------------------------------------------------------ def getOrbit(SD:DataContainer, Orb:OrbitElem, ParamVec:list, index:int, max_iter:float, stepsize:float, kwargs:dict={}) -> FitContainer: """ Calculates the orbit for given parameters Parameters ---------- SD : DataContainer Star Data imported from file Orb : OrbitElem Orbital Elements for initial state potential : function function that returns the strength of the potential. must take r,v,M as params in order ParamVec : list Parameter Vector (8 dim) index : int Index point from which the Algorithm starts to integrate in both directions max_iter : float Max Integration steps in either direction from index stepsize : float delta t Returns ------- FitContainer Resulting Fit Data """ # convert parameter vector to parameters _M, _r, _v, _d = ParVecToParams(ParamVec) # switch the Integrator method if 'method' in kwargs.keys(): if kwargs['method'] == 'Schwarz': IntegratorToUse = VerletStepSchwarz PotFunc = potentialSchwarz else: IntegratorToUse = VerletStep PotFunc = potential else: IntegratorToUse = VerletStep PotFunc = potential # try different positions of sgr a* if 'varSGRA' in kwargs.keys(): # convert to pc using the current distance while fitting SGRA_Pos = PosRadToReal(kwargs['varSGRA'], _d) else: # default to (0,0,0) SGRA_Pos = np.array([0,0,0]) #------------------------------------------------------------------------ # CURRENT VALUES PeriodFront = SD.TimeP[-1] - SD.TimeP[index] # Time to render from index point to end PeriodBack = SD.TimeP[index] - SD.TimeP[0] # Time to render from beginning to index point r_cur = _r # Position v_cur = _v # Velocity f_cur = PotFunc(_r,_v,_M, SGRA_Pos) # init the potential init_Er = _r / np.linalg.norm(_r) # Unit vector of initial position #------------------------------------------------------------------------ # TRANSIENT DATA cur_timer = 0 # current iteration step in orbit integration last_err = 1 # unit vector of last position cutoff_timer = max_iter # max iteration step in orbit integration PastOneMinus = False # checking if integration is over the point where dot(now, init) = -1 stopDotProd = False # once true, the orbit end point will be calculated and no dot() will be executed OrbitPeriod = Orb.Period # Period of this orbit. used to determine total length of fake data OneOrbitSteps = 0 # used in backward rendering. represents how many steps one orbit is if (OrbitPeriod > 0): QuotientFront = np.ceil(PeriodFront / OrbitPeriod) # number of orbits to compute in front direction QuotientBack = PeriodBack / OrbitPeriod # number of orbits to compute in back direction, CAN BE FLOAT since steps for one orbit have been determined # if Period is not defined, return high error else: FD_Fail = FitContainer(ParamVec, success=False, _orb=Orb) return FD_Fail if DEBUG_MODE: print("orbit time: ", OrbitPeriod) print("quotient front: ", QuotientFront) print("quotient back: ", QuotientBack) # Overwrite integration length if needed if 'front' in kwargs.keys(): QuotientFront = kwargs['front'] if 'back' in kwargs.keys(): QuotientBack = kwargs['back'] #save steps for plot and error handling. start with init point PosTracker = [_r] PosTrackerBack = [] VelTracker = [_v] VelTrackerBack = [] if 'useFile' in kwargs.keys(): useExtFile = kwargs['useFile'] else: useExtFile = False if useExtFile: _OFile = open(OrbitFileForewrd, "w") #------------------------------------------------------------------------ # ORBIT INTEGRATION # Integrate from Index Point to End point, forward time while cur_timer < cutoff_timer: cur_timer += 1 #get the next infinitesimal step in position and velocity _dat = IntegratorToUse(stepsize, r_cur, v_cur, f_cur, _M, r_SGRA=SGRA_Pos) #new position in real space r_cur = _dat[0] #new velocity v_cur = _dat[1] #new potential for next step f_cur = _dat[2] #position in radial space if useExtFile: _OFile.write(str(r_cur[0]) + " " + str(r_cur[1]) + " " + str(r_cur[2]) + " " + str(v_cur[0]) + " " + str(v_cur[1]) + " " + str(v_cur[2]) + "\n") else: PosTracker.append(r_cur) VelTracker.append(v_cur) # determine end of orbit integration if (not stopDotProd): temp = np.dot( init_Er, r_cur/np.linalg.norm(r_cur) ) if (not PastOneMinus): if (temp - last_err < 0 ): last_err = temp else: PastOneMinus = True last_err = temp # orbit is past the dot() = -1 point => dot() increases again else: # dot() is still increasing if (temp > last_err): last_err = temp # dot() has decreased or is equal to prev step => one orbit complete. calculate cutoff timer for end of Measurement data else: # calculate multiple orbits based on data end cutoff_timer = cur_timer * QuotientFront # steps for one orbit OneOrbitSteps = cur_timer stopDotProd = True if DEBUG_MODE: print("forward cutoff = ", cutoff_timer) # reset some data cur_timer = 0 r_cur = _r v_cur = _v f_cur = PotFunc(_r,_v,_M) if useExtFile: _OFile.close() _OFile = open(OrbitFileBackwrd, "w") # Integrate multiple orbits backwards depending on data beginning while cur_timer < np.ceil(OneOrbitSteps * QuotientBack) : cur_timer += 1 # reverse time _dat = IntegratorToUse(-stepsize, r_cur, v_cur, f_cur, _M, r_SGRA=SGRA_Pos) #new position in real space r_cur = _dat[0] #new velocity v_cur = _dat[1] #new potential for next step f_cur = _dat[2] if useExtFile: _OFile.write(str(r_cur[0]) + " " + str(r_cur[1]) + " " + str(r_cur[2]) + " " + str(v_cur[0]) + " " + str(v_cur[1]) + " " + str(v_cur[2]) + "\n") else: PosTrackerBack.append(r_cur) VelTrackerBack.append(v_cur) if useExtFile: _OFile.close() if DEBUG_MODE: print("backward cutoff = ", cur_timer) #------------------------------------------------------------------------ # CONCAT DATA if not useExtFile: # reverse backward time points PosTrackerBack.reverse() VelTrackerBack.reverse() # append data PosTracker = np.array(PosTrackerBack + PosTracker) VelTracker = np.array(VelTrackerBack + VelTracker) #------------------------------------------------------------------------ # RETURN FIT DATA FD = FitContainer(ParamVec, _oN = QuotientFront, _orb=Orb, _PosArr=PosTracker, _VelArr = VelTracker) return FD def FitDataInner(SD:DataContainer, kwargs:dict={}) -> Tuple[FitContainer, list]: """ Inner Routine for fitting the orbit of a specified star. Only needs the Star Data Object to work. Can plot data in multiple ways Parameters ---------- SD : DataContainer Star Data Object Returns ------- [FitData Container, [index_R, index_V] ] """ #------------------------------------------------------------------------ # CONSTRAINTS #Mass constraints in solar mass CSRT_M_min = 1E5 CSRT_M_max = 1E7 #Distance in pc CSRT_R_min = 7000 CSRT_R_max = 9000 #------------------------------------------------------------------------ # INIT VALUES # First Mass estimate -- random val in range Mass_0 = 4E6 #np.random.uniform(CSRT_M_min, CSRT_M_max) if DEBUG_MODE: print("Init Mass [10^6 Msun] = ", Mass_0/1E6) #Fist Distance Reference Point Distance_0 = 8000 #np.random.uniform(CSRT_R_min, CSRT_R_max) if DEBUG_MODE: print("Init Distance [pc] = ", Distance_0) # index for beginning point of data, IMPORTANT _index_R = 61 # 2007.55 _index_V = 24 # 2007.55 if DEBUG_MODE: print("Index Point Pos: ", SD.TimeP[_index_R], SD.TimeP[_index_R-1]) print("Index Point RV : ", SD.TimeV[_index_V]) # Position Vector, use random data point for start, convert to pc r0 = PosRadToReal( np.array( [ SD.RA[_index_R], SD.DE[_index_R], 0 ] ), Distance_0 ) if DEBUG_MODE: print("Init Position [pc] = ", r0) #Velocity Vector, use same random point + point prior to calculate first estimate of v, in km/s v0 = np.array( [ (SD.RA[_index_R]-SD.RA[_index_R-1])*Distance_0*GLOB_PcYrKmS*GLOB_masToRad / (SD.TimeP[_index_R]-SD.TimeP[_index_R-1]), (SD.DE[_index_R]-SD.DE[_index_R-1])*Distance_0*GLOB_PcYrKmS*GLOB_masToRad / (SD.TimeP[_index_R]-SD.TimeP[_index_R-1]), SD.VR[_index_V] ]) if DEBUG_MODE: print("Init Velocity [km/s] = ", v0) stepsize = 1E-8 # orbit integration delta t # Algorithm breaks when max_iteration is smaller than the needed steps to complete the simulation max_iteration = 1E6 # orbit integration max steps; max for 1E-10 approx 600.000 # stepsize overwrite if 'Stepsize' in kwargs.keys(): stepsize = kwargs['Stepsize'] global GLOB_counter GLOB_counter = 0 if 'grav-red' in kwargs.keys(): useGravRedCorr = kwargs['grav-red'] else: useGravRedCorr = False if 'Pbar' in kwargs.keys(): usePbar = kwargs['Pbar'] else: usePbar = True #------------------------------------------------------------------------ # Parameter Vector parVec = np.array([ Mass_0, r0[0], r0[1], r0[2], v0[0], v0[1], v0[2], Distance_0 ]) # [ (min, max) ] BOUNDS = [ (1E6, 7E6), # in msun, M (RadToReal( SD.RA[_index_R] - 15, 8000 ), RadToReal( SD.RA[_index_R] + 15, 8000 )), # in pc, x (RadToReal( SD.DE[_index_R] - 15, 8000 ), RadToReal( SD.DE[_index_R] + 15, 8000 )), # in pc, y (-0.2, 0.2), # in pc, z (v0[0] - 1500,v0[0] + 1500), # in km/s, vx (v0[1] - 1500,v0[1] + 1500), # in km/s, vy (v0[2] - 500,v0[2] + 500), # in km/s, vz (7800, 8800) # in pc, d ] #------------------------------------------------------------------------ # MAIN LOOP # function to be minimized def _tFitFunction(_parVec, *args): OrbEl = getOrbitalElements(_parVec) if usePbar: global GLOB_counter GLOB_counter += 1 # everything with ecc> 1 or T<0, T>17 is wrong if (OrbEl.Period > 12 and OrbEl.Ecc < 1 and OrbEl.Period <= 20): _FD = getOrbit(SD=SD, Orb=OrbEl, ParamVec=_parVec, index=_index_R, max_iter=max_iteration, stepsize=stepsize, kwargs=kwargs) x = returnCombinedError(SD, _FD, [_index_R, _index_V], redshiftCorr=useGravRedCorr) if usePbar: if args[0]: ProgressBar(GLOB_counter, 8000, "chi2= " + str(x)) else: NoProgressBar(GLOB_counter, "chi2= " + str(x)) return x # dont calculate orbit, return constant error else: if usePbar: if args[0]: ProgressBar(GLOB_counter, 8000, "chi2= 1E10") else: NoProgressBar(GLOB_counter, "chi2= 1E10") return 1E10 # Kepler solution, global, 1E-8 -- chosen if no parameters are set #parVec = np.array([ 4.26060187e+06, -2.98146568e-04, 7.21594511e-03, -5.38160820e-03, -4.51226416e+02, 1.62323029e+02, -4.23509314e+02, 8.38337634e+03]) # use first guess parameter vector if kwargs['method'] == 'None': pass # use random parameter vector if kwargs['method'] == 'Random': Mass_0 = np.random.uniform(CSRT_M_min, CSRT_M_max) Distance_0 = np.random.uniform(CSRT_R_min, CSRT_R_max) r0 = PosRadToReal( np.array( [ SD.RA[_index_R], SD.DE[_index_R], 0 ] ), Distance_0 ) v0 = np.array( [ (SD.RA[_index_R]-SD.RA[_index_R-1])*Distance_0*GLOB_PcYrKmS*GLOB_masToRad / (SD.TimeP[_index_R]-SD.TimeP[_index_R-1]), (SD.DE[_index_R]-SD.DE[_index_R-1])*Distance_0*GLOB_PcYrKmS*GLOB_masToRad / (SD.TimeP[_index_R]-SD.TimeP[_index_R-1]), SD.VR[_index_V] ] ) parVec = np.array([ Mass_0, *r0, *v0, Distance_0 ]) # Kepler solution, 1E-8 if stepsize == 1E-8 and kwargs['method'] == 'Newton': parVec = np.array([ 4.26175122e+06, -2.95254493e-04, 7.21524671e-03, -5.38486006e-03, -4.51353063e+02, 1.63648795e+02, -4.21806411e+02, 8.38370406e+03]) #Kepler solution, 1E-9 if stepsize == 1E-9 and kwargs['method'] == 'Newton': parVec = np.array( [4.26180655e+06, -2.96184228e-04, 7.19338917e-03, -5.38020387e-03, -4.51561607e+02, 1.62968775e+02, -4.24584527e+02, 8.35915945e+03] ) # Schwarzschild solution, with grav red, 1E-9 if stepsize == 1E-9 and kwargs['method'] == 'Schwarz': parVec = np.array([ 4.42965827e+06, -3.01141313e-04, 7.29306129e-03, -5.48739705e-03, -4.55624852e+02, 1.64210719e+02, -4.28133758e+02, 8.47566930e+03]) #------------------------------------------------------------------------ # Fit Options shouldFit = 0 if 'Fit' in kwargs.keys(): if kwargs['Fit'] == 'Local': shouldFit = 1 if kwargs['Fit'] == 'Full': shouldFit = 2 t0 = time.process_time() # local fit only if shouldFit == 1: if usePbar: print("Start Local Fit\n") RESULT = optimize.minimize(_tFitFunction, x0=parVec, args=(True,), method='Powell', options={'disp':False}) if usePbar: print("\n") print("[%s] - Message: %s\nResult: %s\ncurrent function val: %s" % (RESULT.success, RESULT.message, RESULT.x, RESULT.fun)) t0 = time.process_time() - t0 print("Done in %ss, nit = %s, delT = %ss" % (round(t0, 3), RESULT.nfev, round(t0/RESULT.nfev,3))) parVec = RESULT.x.tolist() # Global Fit if shouldFit == 2: if usePbar: print("Start Global Fit\n") RESULT = optimize.dual_annealing(_tFitFunction, args=(False,), bounds=BOUNDS, initial_temp=5230, maxfun=1E5, maxiter=250, local_search_options={"method": "Powell"}) if usePbar: print("\n") print(RESULT) parVec = RESULT.x.tolist() # reset counter GLOB_counter = 0 RESULT = optimize.minimize(_tFitFunction, x0=parVec, args=(True,), method='Powell', options={'disp':False}) if usePbar: print("\n") print("[%s] - Message: %s\nResult: %s\ncurrent function val: %s" % (RESULT.success, RESULT.message, RESULT.x, RESULT.fun)) t0 = time.process_time() - t0 print("Done in %ss, nit = %s, delT = %ss" % (round(t0, 3), RESULT.nfev, round(t0/RESULT.nfev,3))) parVec = RESULT.x.tolist() #------------------------------------------------------------------------ # Return OrbEl = getOrbitalElements(parVec) NewFitData = getOrbit(SD=SD, Orb=OrbEl, ParamVec=parVec, index=_index_R, max_iter=max_iteration, stepsize=stepsize, kwargs=kwargs) _Err = returnCombinedError(SD, NewFitData, [_index_R, _index_V], redshiftCorr=useGravRedCorr) return NewFitData, [_index_R, _index_V] def FitDataStandalone(_starNr:int, kwargs:dict={}) -> Tuple[FitContainer, DataContainer, list]: """ Standalone Routine for fitting the orbit of a specified star. can display plot, intended for fitting and plotting from beginning Parameters ---------- _starNr : [int] Number of the Star to be fitted _fig : Reference to plt figure for plotting Options ------- method : Newton, Schwarz -> Potential to use grav-red : bool -> use Gravitational Redshift correction Fit : None, Local, Full -> Fit Options Stepsize : float -> overwrite default stepsize of 1E-8 """ #read complete data from file Data = readTable(fileName) #return Data for Star S-NUMBER S_Data = return_StarExistingData(Data, _starNr) #Star Data Container SD = DataContainer(_starNr, S_Data) FD, selIndex = FitDataInner(SD, kwargs=kwargs) # when using gravitational redshift correction, update star data radial velocity data if 'grav-red' in kwargs.keys() and 'Fit' in kwargs.keys(): if kwargs['grav-red']: # and (kwargs['Fit'] == 'Local' or kwargs['Fit'] == 'Full'): _eT = SD.TimeP[selIndex[0]] - SD.TimeP[0] + FD.OrbitNumber * FD.OrbElem.Period fakeTimeline = np.linspace(0,_eT, len(FD.VPath)) j = 0 rTime = SD.TimeV - SD.TimeP[0] LengthAtVR = np.empty(len(rTime)) for i in range(len(SD.TimeV)): for k in range(j, len(fakeTimeline)): if (fakeTimeline[k] >= (rTime)[i]): #newVR_Timeline[i] = fakeTimeline[k] LengthAtVR[i] = np.linalg.norm(FD.PositionArray[k])# FD.PositionArray[k][2] # j = k break PN_VR = SD.VR - getGravRedshift(FD.Mass, LengthAtVR) SD.VR = PN_VR return FD, SD, selIndex def genMCD(SD:DataContainer, iter:int, kwargs:dict={}): """ Calculates new Parameters after variating Star Data adn writes them to file Parameters ---------- SD : DataContainer Star Data in question iter : int Total Fits to compute and use for Errorbar calculation """ FileToWriteTo = outputFile if 'File' in kwargs.keys(): FileToWriteTo = kwargs['File'] if 'UseSGRA_Pos' in kwargs.keys(): useSGRA_Pos = kwargs['UseSGRA_Pos'] else: useSGRA_Pos = False #------------------------------------------------------------------------ # MAIN LOOP # main loop, generating new data and fitting to get a list for every parameter for curIt in range(iter): # generate new points within 1 sigma of error newRA = generateMCData(SD.RA, SD.eRA) newDE = generateMCData(SD.DE, SD.eDE) newVR = generateMCData(SD.VR, SD.eVR) print(SD.RA) print(newRA) print(SD.DE) print(newDE) # create copy of Star Data and overrite the points NewSD = SD.copy() NewSD.RA = newRA NewSD.DE = newDE NewSD.VR = newVR # generate new position of sgr a* if needed, use global bounds if useSGRA_Pos: #local best fit NewSGRA_Pos = np.random.normal(0,1,3) * GLOB_SGRA_Pos else: NewSGRA_Pos = np.array([0,0,0]) # change the position of sgr a* kwargs['varSGRA'] = NewSGRA_Pos if DEBUG_MODE: print("New Position of SGR A*: ", NewSGRA_Pos) # Fit the new Star Data print("\n") print('-'*25 + "Starting new Fit (%s/%s)" % (curIt+1, iter)) newFD, _ = FitDataInner(NewSD, kwargs=kwargs) _tParVec = newFD.returnParVec() # write data to file f = open(FileToWriteTo, "a") for j in range(len(_tParVec)): f.write(str(_tParVec[j]) + " ") f.write("\n") f.close() print("\nDone!\n") def genMCD_MP(SD:DataContainer, pid:int, kwargs:dict={}): """ Calculates new Parameters after variating Star Data adn writes them to file Parameters ---------- SD : DataContainer Star Data in question iter : int Total Fits to compute and use for Errorbar calculation """ FileToWriteTo = outputFile if 'File' in kwargs.keys(): FileToWriteTo = kwargs['File'] if 'UseSGRA_Pos' in kwargs.keys(): useSGRA_Pos = kwargs['UseSGRA_Pos'] else: useSGRA_Pos = False #------------------------------------------------------------------------ # MAIN LOOP # generate new points within 1 sigma of error newRA = generateMCData(SD.RA, SD.eRA) newDE = generateMCData(SD.DE, SD.eDE) newVR = generateMCData(SD.VR, SD.eVR) # create copy of Star Data and overrite the points NewSD = SD.copy() NewSD.RA = newRA NewSD.DE = newDE NewSD.VR = newVR if useSGRA_Pos: NewSGRA_Pos = np.random.normal(0, 1, 3) * GLOB_SGRA_Pos #NewSGRA_Pos = PosRadToReal(NewSGRA_Pos, _tDist) else: NewSGRA_Pos = np.array([0,0,0]) # still in mas kwargs['varSGRA'] = NewSGRA_Pos # Fit the new Star Data print('-'*25 + "Starting new Fit (%s)" % (pid)) newFD, _ = FitDataInner(NewSD, kwargs=kwargs) _tParVec = newFD.returnParVec() # write data to file f = open(FileToWriteTo, "a") for j in range(len(_tParVec)): f.write(str(_tParVec[j]) + " ") f.write("\n") f.close() print("%s, Done!" % (pid)) def evaMCD(_fig, file:str): """ Evaluates Parameters written to file and calculates mean and std values for every parameter and prints them out """ print(file) f = open(file, 'r') lines = f.readlines() h= [] for i in range(len(lines)): _t = lines[i].strip() _t = _t.split(" ") _t = [float(x) for x in _t] h.append(_t) mean = [] std = [] g = [] histData = [] histName = [r'$M$ [$10^6 M_\odot$]', r'$R$ [kpc]', r'$e$ [1]', r'$a$ [$10^{-3}$pc]', r'$i$ [$^\circ$]', r'$T$ [yr]'] kartPos = [] N = ["Mass", "R", "e", "a", "i", "LAN", "argPeri", "MeanM", "T", "True Anomaly"] print("-"*75) for i in range(len(h)): OE = getOrbitalElements(h[i]) # Mass, Distance, e, a, i, Omega, omega, M, T, True Anomaly g.append( [ h[i][0], h[i][7], OE.Ecc, OE.MayAxis, OE.Incl, OE.LAN, OE.ArgPeri, OE.MeanM, OE.Period, OE.TAnom ] ) histData.append([ h[i][0]/1E6, h[i][7]/1E3, OE.Ecc, OE.MayAxis, OE.Incl, OE.Period ]) # position kartPos.append( [ h[i][1], h[i][2], h[i][3], h[i][4], h[i][5], h[i][6] ] ) for j in range(len(g[0])): ParDat = [g[i][j] for i in range(len(g))] mean.append( np.mean( ParDat ) ) std.append( np.std( ParDat ) ) print("MCD: ", N[j], ", mean= ", mean[j], "; std= ", std[j]) print("Length of data: ", len(g)) ''' mean = [] std = [] N = ["x", "y", "z", "vx", "vy", "vz"] for j in range(len(kartPos[0])): ParDat = [kartPos[i][j] for i in range(len(kartPos))] mean.append( np.mean( ParDat ) ) std.append( np.std( ParDat ) ) print("MCD: ", N[j], ", mean= ", mean[j], "; std= ", std[j]) ''' print("-"*75) _fig.clf() mean = [] std = [] for j in range(len(histData[0])): ParDat = [histData[i][j] for i in range(len(histData))] mean.append( np.mean( ParDat ) ) std.append( np.std( ParDat ) ) mean[3] *= 1E3 std[3] *= 1E3 for l in range(len(histData)): histData[l][3] *= 1E3 for x in range(6): for y in range(6): if y <= x: _tf = _fig.add_subplot(6,6, 6*x + y + 1) _tf.grid(False) _tf.set_aspect('auto') #_tf.set_xlabel(histName[y]) #_tf.set_ylabel(histName[x]) if y != 0 or x == 0: plt.yticks([]) else: pass plt.yticks( [4.23,4.275,8.35,8.40,0.881,0.884,4.993,5.013,44.3,44.8,16.03,16.11], [4.23,4.275,8.35,8.40,0.881,0.884,4.993,5.013,44.3,44.8,16.03,16.11], size=8) plt.yticks(size=8) if x != 5 or y == 5: plt.xticks([]) else: pass plt.xticks( [4.23,4.275,8.35,8.40,0.881,0.884,4.993,5.013,44.3,44.8,16.03,16.11], [4.23,4.275,8.35,8.40,0.881,0.884,4.993,5.013,44.3,44.8,16.03,16.11], rotation=90, size=8) #plt.xticks(rotation=90, size=8) if y == x: _t = [histData[i][x] for i in range(len(histData))] plt.xlim(mean[x]-3*std[x],mean[x]+3*std[x]) _tf.hist(_t, bins=50) plt.axvline(mean[x], color='black', linestyle='dashed') plt.figtext(0.165 + 0.8/6 * x, 0.91 - 0.8/6 * x, round(mean[x], 3), ha='center', size=11 ) else: _x = [histData[i][y] for i in range(len(histData))] _y = [histData[i][x] for i in range(len(histData))] _t = _tf.hist2d(_x, _y, bins=(20,20), cmap=cm.jet) #_fig.tight_layout() plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1, wspace=0, hspace=0) for i in range(len(histName)): # horizontal at bottom plt.figtext(0.15 + 0.825/6 * i, 0.02, histName[i], {'ha':'center', 'size':9}) # vertical at left plt.figtext(0.01, 0.15 + 0.825/6 * (5-i), histName[i], {'ha':'left', 'size':9}) def DrawChi2Slice(_fig, SD:DataContainer, parVec:list, bounds:list, IndexList:list, _dim:int=50, kwargs:dict={}): """ Draws chi2 distribution for M and R Parameters ---------- SD : DataContainer Star Data parVec : list Current parameter vecotr, preferably from minimum varyIndex : list index of parameter to be varied, needs to be length 2 bounds : list bounds for both variables """ dim = _dim chi2 = np.zeros((dim, dim)) Mvar = np.linspace(bounds[0][0], bounds[0][1], dim) Rvar = np.linspace(bounds[1][0], bounds[1][1], dim) iter = 0 _chi2File = open("SMBH/Data/dump/chi2Slice.txt", 'r') lines = _chi2File.readlines() h= [] for i in range(len(lines)): _t = lines[i].strip() _t = _t.split(" ") _t = [float(x) for x in _t] h.append(_t) chi2 = np.array(h) miny_i = [] for i in range(100): _l = np.amin(chi2[i]) _m = np.argwhere(chi2[i] == _l).flatten() miny_i.append(Mvar[_m]) minx_i = [] for j in range(100): _m = np.amin(chi2[:,j]) _n = np.argwhere(chi2[:,j] == _m).flatten() minx_i.append(Rvar[_n]) midy_i = [] for i in range(100): _l = np.amin(chi2[i]) _m = np.argwhere(chi2[i] <= _l+1).flatten()[0] midy_i.append(Mvar[_m]) midx_i = [] for j in range(100): _m = np.amin(chi2[:,j]) _n = np.argwhere(chi2[:,j] <= _m+1).flatten()[0] midx_i.append(Rvar[_n]) ''' # Distance for i in range(dim): # Mass for j in range(dim): iter += 1 newPar = parVec.copy() newPar[0] = Mvar[j]*1E6 # mass newPar[-1] = Rvar[i]*1E3 # distance OrbEl = getOrbitalElements(newPar) if (OrbEl.Period > 0 and OrbEl.Ecc < 1 and OrbEl.Period <= 20): _FD = getOrbit(SD=SD, Orb=OrbEl, ParamVec=newPar, index=IndexList[0], max_iter=500000, stepsize=1E-8, kwargs=kwargs) x = returnCombinedError(SD, _FD, IndexList) chi2[i][j] = x ProgressBar(iter, dim**2, "chi2= " + str(x)) else: ProgressBar(iter, dim**2, "chi2= 1E10") chi2[i][j] = 1E10 print("\nDone!") ''' ''' _chi2File = open("SMBH/Data/dump/chi2Slice.txt", "w") for i in range(dim): for j in range(dim): _chi2File.write( str(chi2[i][j]) + " " ) _chi2File.write("\n") _chi2File.close() ''' _min = np.argwhere(chi2 == np.amin(chi2)).flatten() _minValue = [ Mvar[_min[1]], Rvar[_min[0]] ] maxval = np.amax(chi2) minval = np.amin(chi2) levels = np.geomspace(minval,maxval, 25) _fig.clf() _tf = _fig.add_subplot(1,1,1) _tf.grid(False) _tf.set_aspect('auto') _tf.set_xlabel(r'$R_0$ [kpc]', fontdict={'size':13}) _tf.set_ylabel(r'$M$ [$10^6 M_\odot$]', fontdict={'size':13}) xgit,ygit = np.meshgrid(Rvar, Mvar) ax = _tf.contourf(xgit.T, ygit.T, chi2, cmap=cm.get_cmap('viridis'), levels=levels) _fig.colorbar(ax) _label = r"Min: $M$ [$10^6 M_\odot$]="+str(np.round(_minValue[0],2)) + r", $R_0$ [kpc]=" + str(np.round(_minValue[1],2)) _tf.scatter(_minValue[1], _minValue[0], label=_label, color='red', s=5) _tf.plot(Rvar,miny_i,color='blue', label='min line') print(_minValue) _tf.legend(loc='best') def determineDeltaOmega(FD:FitContainer) -> list: startPos = ParVecToParams(FD.returnParVec())[1] StartEr = startPos / np.linalg.norm(startPos) #dotList = np.abs( np.dot( FD.PositionArray / np.linalg.norm(FD.PositionArray), StartEr ) ) dotList = np.empty(len(FD.PositionArray)) for i in range(len(FD.PositionArray)): dot = FD.PositionArray[i] / np.linalg.norm(FD.PositionArray[i]) dotList[i] = ( np.abs( np.dot(dot, StartEr) ) ) xmin =
np.argwhere(dotList <= 1E-2)
numpy.argwhere
#!/usr/bin/env python """ Some math for calculating PSFs from pupil functions. All units are in microns. Important note - The default for the simulator, and what is also used in the diagnostics, is a pupil function with a pixel size of 1/2 the actual pixel size. This was done as it has a more realistic width. If you use the correct pixel size the PSF will be too narrow. This can also be handled using OTF scaling as described in the Hanser paper, but as this is more complicated. Also the pupil function localization software would need to be updated to include OTF scaling, which it currently does not. This is based on code provided by the Huang Lab at UCSF. McGorty et al. "Correction of depth-dependent aberrations in 3D single-molecule localization and super-resolution microscopy", Optics Letters, 2014. Another reference for pupil functions is: Hanser et al. "Phase-retrieved pupil functions in wide-field fluorescence microscopy", Journal of Microscopy, 2004. Reference for sample index mismatch aberration: Liu et al., "Three dimensional single molecule localization using a phase retrieved pupil function", Optics Express, 2013 Also, thanks to <NAME> for providing his MATLAB code for calculating vectorial PSFs. <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>, "High precision wavefront control in point spread function engineering for single emitter localization", Optics Express, 26, pp. 8397-8416, 2018. Hazen 05/19 """ import math import numpy import scipy import scipy.fftpack import tifffile import storm_analysis import storm_analysis.pupilfn.otf_scaling_c as otfSC import storm_analysis.pupilfn.pupil_function_c as pfFnC import storm_analysis.simulator.pf_math_c as pfMathC class PupilMathException(storm_analysis.SAException): pass class Geometry(object): def __init__(self, size, pixel_size, wavelength, imm_index, NA): """ size - The number of pixels in the PSF image, assumed square and a multiple of 2. pixel_size - The size of the camera pixel in um. wavelength - The wavelength of the flourescence in um. imm_index - The index of the immersion media. NA - The numerical aperature of the objective. """ super(Geometry, self).__init__() if not ((size%2)==0): raise PupilMathException("PF size must be a multiple of 2!") # imm_index must be larger than the objective NA. if (imm_index <= NA): raise PupilMathException("Immersion media index must be larger than objective NA!") self.imm_index = float(imm_index) self.NA = float(NA) self.pixel_size = float(pixel_size) self.size = int(size) self.wavelength = float(wavelength) # Hanser, 2004, page 35. self.k_max = NA/wavelength dk = 1.0/(size * pixel_size) self.r_max = self.k_max/dk [x,y] = numpy.mgrid[ -self.size/2.0 : self.size/2.0, -self.size/2.0 : self.size/2.0] # Vectors to use for X/Y translation. self.kx = x/size self.ky = y/size kx = dk * x ky = dk * y self.k = numpy.sqrt(kx * kx + ky * ky) # Hanser, 2004, page 34. tmp = imm_index/wavelength # Vector to use for Z translation. self.kz = numpy.lib.scimath.sqrt(tmp * tmp - self.k * self.k) self.r = self.k/self.k_max self.kz[(self.r > 1.0)] = 0.0 self.n_pixels = numpy.sum(self.r <= 1) self.norm = math.sqrt(self.r.size) if False: with tifffile.TiffWriter("kz.tif") as tf: tf.save(numpy.abs(self.kz).astype(numpy.float32)) tf.save(numpy.angle(self.kz).astype(numpy.float32)) def aberration(self, depth, smp_index): """ Models the effect of a refractive index difference between the sample and the immersion media. See Hanser 2004, equations 4-9. depth - Point source depth in microns. smp_index - Refractive index of the sample media. Returns total aberration function (Hanser 2004, equation 8). Multiply the PF by this numpy array to include this aberration. This approach appears to have the problem that at the d = 0 limit it does not converge to the no aberration PF. """ # Use complex numbers to include super critical angle (near field) fluorescence # effects. # sin_theta_1 = (self.wavelength/self.imm_index)*self.k + 0j # Special handling of the center point where self.k = 0.0, this # will cause problems because then theta_1 will also be 0.0 and # we'll end up with 0.0/0.0 when we calculate amp_comp. So instead # we just use a really small number. # cp = int(sin_theta_1.shape[0]/2) sin_theta_1[cp,cp] = 1.0e-6 sin_theta_2 = (self.imm_index/smp_index)*sin_theta_1 + 0j theta_1 = numpy.arcsin(sin_theta_1) theta_2 = numpy.arcsin(sin_theta_2) amp_trans = (sin_theta_1 *
numpy.cos(theta_2)
numpy.cos
from math import radians from numpy.lib.arraysetops import isin from numpy.lib.polynomial import poly import topojson as tp import pickle, random from PIL import Image, ImageDraw, ImageFont import cv2 import numpy as np # from imantics import Polygons, Mask, Annotation from geojson import Feature, Polygon, FeatureCollection, LineString, MultiLineString, MultiPolygon from skimage import measure from skimage.feature import canny import skimage.morphology as sm from collections import defaultdict from tqdm import tqdm from math import sin, cos, atan, pi from imantics import Mask import topojson as tp from shapely import geometry import topojson as tp # import geopandas as gpd # world = gpd.read_file(gpd.datasets.get_path("naturalearth_lowres")) # data = world.query('continent == "Africa"') # r = tp.Topology(data, topology=True).toposimplify(4).to_alt().properties(title='WITH Topology') palette = eval(open('data/parkinglot/color.json', 'r').read()) CLASSES = ('road', 'curb', 'obstacle', 'chock', 'parking_line', 'road_line', 'vehicle') PALETTE = [(0, 0, 0), (0, 255, 255), (0, 255, 0), (255, 0, 0), (0, 0, 255), (0, 128, 255), (128, 128, 128)] tolerance = 1 draw_img = True img_path = 'temp/test.jpg' save_svg = False def polygonize(result, tolerance=1, draw_img=None): # convert bitmap to polygon polygons_data = extractPolygons(result) # sort by area from large to small polygons_data.sort(key=lambda p: p['area'], reverse=True) # join vertex of polygons snapPolygonPoints(polygons_data, result) # snap points #simplify polygons using topo topo_data = [Feature( geometry=Polygon([p['polygon']]), properties={"name": p['label']} ) for p in polygons_data] fc = FeatureCollection(topo_data) topo = tp.Topology(fc, prequantize=True, topology=True, shared_coords=True) topo_s = topo.toposimplify( epsilon=tolerance, simplify_algorithm='dp', ) # convert to desired structure polygons_strctured = get_polygon_dict(topo_s) return polygons_strctured def applyMorph(result): ## Image morphic operation # The morphological opening on an image is defined as an erosion followed by a dilation. # Opening can remove small bright spots (i.e. “salt”) and connect small dark cracks. # This tends to “open” up (dark) gaps between (bright) features. result = sm.opening(result, sm.disk(2)) #用边长为2的圆形滤波器进行膨胀滤波 result = sm.dilation(result,sm.disk(tolerance)) #用边长为5的正方形滤波器进行膨胀滤波 result = sm.closing(result, sm.disk(2)) return result #util def getBoxAreaAndCenter(points): center = (points[:,0].mean(), points[:,1].mean()) area = cv2.contourArea(points.astype(np.float32)) return area, center def extractPolygons(result): # find polygon temp_polygons = [] polygons_data = [] for label in palette: i = CLASSES.index(label) mask = np.where(result==i, 1, 0).astype(np.uint8) # using imantics # polygons = Mask(mask).polygons().points # Using CV2 mask = cv2.copyMakeBorder(mask, 1, 1, 1, 1, cv2.BORDER_CONSTANT, value=0) polygons = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE, offset=(-1, -1)) polygons = polygons[0] if len(polygons) == 2 else polygons[1] polygons = [polygon.squeeze() for polygon in polygons] # using skimage # mask = cv2.copyMakeBorder(mask, 1, 1, 1, 1, cv2.BORDER_CONSTANT, value=0) # polygons = measure.find_contours(mask, 0.8) # polygons = [np.vstack([p[:,1]-1, p[:,0]-1]).T for p in polygons]#reverse for skimage print(f'{label}:{len(polygons)}') for j, polygon in enumerate(polygons): # remove duplicated polygon if not any([polygon.shape == p.shape and polygon.sum() == p.sum() for p in temp_polygons]): temp_polygons.append(polygon) else: print(f'find duplicated polygon: {label}({j})') continue if polygon.shape[0] <= 2: continue area, center = getBoxAreaAndCenter(polygon) polygon_approximated = measure.approximate_polygon(polygon, tolerance) label2 = label+str(j) if area >= 100: polygons_data.append({ 'label': label, 'polygon': polygon.tolist(), # 'topo': polygon_feat, 'approximated': polygon_approximated, 'area': area, 'center': center, 'label2': label2 }) else: print(f'---> Small region {label} with area:{area} and length:{polygon.shape[0]}') return polygons_data def snapPolygonPoints(polygons_data:list, mask:np.ndarray): ''' create a lookup table to register polygon vertices with value on [x, y, 1]-> i'th polygon and with value on [x, y, 2]-> j'th coordinates of i'th polygon ''' vertices_lookup = np.full(list(mask.shape[::-1])+[2], fill_value=-1) polygons = [i['polygon'] for i in polygons_data] labels = [i['label'] for i in polygons_data] label_indices = [CLASSES.index(l) for l in labels] #check polygon joint checkJointFromPolygon(polygons, mask) # utils radius = 1 x_upper, y_upper = mask.shape[::-1] _validate_coord = lambda x,y: x >= 0 and y >= 0 and x < x_upper and y < y_upper _lookup = lambda x,y,i=0: vertices_lookup[x, y, i] if _validate_coord(x,y) else None _lookup_check_pair = lambda x,y,label: _lookup(x, y) is not None and _lookup(x, y) != -1 and _lookup(x, y) != label # _lookup_range = lambda x0, x1, y0, y1: np.array([[_lookup(x, y) for x in range(x0,x1)] for y in range(y0, y1)]) _lookup_scope = lambda x, y: np.array([[_lookup(x, y) for x in range(x-3, x+4)] for y in range(y-3, y+4)]) _lookup_mask = lambda x,y: mask[y,x] if _validate_coord(x,y) else None # need to reverse x,y from OpenCV to NumPy _mask_scope = lambda x,y: np.array([[_lookup_mask(x_,y_) for x_ in range(x-3, x+4)] for y_ in range(y-3, y+4)]) _point_distance = lambda x1, y1, x2, y2: abs(x2-x1) + abs(y2-y1) def _get_valid_points(x, y, label_index, radius = 1): valid_points = set() # search valid points from offsets offsetss = [[(i,j) for i in range(-radius, radius+1)] for j in range(-radius, radius+1)] for offsets in offsetss: for offset in offsets: x_i, y_i = x+offset[0], y+offset[1] if _point_distance(x,y, x_i, y_i) > radius or (x,y)==(x_i,y_i): continue if _lookup_check_pair(x_i, y_i, label_index): valid_points.add((x_i, y_i)) return valid_points # create lookup table for i, polygon in enumerate(polygons): for j, (x, y) in enumerate(polygon): x, y = round(x), round(y) assert _validate_coord(x, y) if _lookup(x, y) != -1: vertices_lookup[x, y] = -1 continue vertices_lookup[x, y, :] = [i,j] points_snaped = [] points_missed = [] # search for vertices to merge for i, polygon in tqdm(enumerate(polygons)): label_index = label_indices[i] for j, (x, y) in enumerate(polygon): x, y = round(x), round(y) if _lookup(x, y) == -1: continue #snapped assert _lookup(x, y) == i x2, y2 = polygon[(j+1)%len(polygon)]#next point x2, y2 = round(x2), round(y2) # get target coordinate # check whether mask is outside and # check whether candidate coordinates next another polygon's vertex x_t, y_t = None, None valid_points = _get_valid_points(x, y, i) # check for valid points if len(valid_points) >=2: valid_points2 = _get_valid_points(x2, y2, i) vp1 = valid_points - valid_points2 # vp2 = valid_points2 - valid_points vp3 = valid_points & valid_points2 if len(vp1)>=1 and len(valid_points2)>=1: valid_points = vp1 elif len(vp3) == 2: valid_points = {vp3.pop()} else: valid_points = set() # exception if len(valid_points) == 0: # print(f'No adjacent vertice found at [{i}]({x},{y}):\n{_lookup_scope(x, y)}') points_missed.append((i, j, (x, y))) continue #snap points valid_points.add((x,y)) vertices = np.array(list(valid_points)) x_a, y_a = vertices.mean(axis = 0).tolist() for x_t, y_t in valid_points: j_t = _lookup(x_t, y_t) #find j'th polygon and n'th coordinates n_t = _lookup(x_t, y_t, 1) #find n'th point # if (x,y) != (x_t, y_t): # print(f'Found adjacent vertice [{i}]({x},{y})<->[{j_t}]({x_t},{y_t})') polygons[j_t][n_t] = [x_a, y_a] # remove from lookup table vertices_lookup[x_t, y_t, 0] = -1 points_snaped.append((j_t, n_t, (x, y))) #make sure all points are cleared print(f'{len(points_snaped)} points snapped and {len(points_missed)} points left ({len(points_snaped)/(len(points_missed)+len(points_snaped))*100:.1f}%)') def get_polygon_dict(topo): polygons_strctured = defaultdict(list) topo_json = eval(topo.to_geojson()) for geo in topo_json['features']: label = geo['properties']['name'] polygon = geo['geometry']['coordinates'][0] polygons_strctured[label].append(polygon) return polygons_strctured def checkJointFromPolygon(polygons, mask, draw_single_points=False): point_count = np.zeros(mask.shape[::-1]) for i, polygon in enumerate(polygons): polygon_np = np.zeros_like(point_count) for (x,y) in polygon: _x, _y = round(x), round(y) point_count[_x, _y] += 1 polygon_np[_x, _y] = 1 # Image.fromarray(np.where(polygon_np==1, 255, 0).astype(np.uint8)).save(f'tmp/{i}.png') singles = (point_count == 1).sum() point_o = point_count.sum() - singles # single_p_np = np.zeros_like(point_count) # single_p_np[point_count == 1] = 255 if draw_single_points: draw_np = np.where(point_count>1, 128, 0) draw_np[point_count == 1] = 255 Image.fromarray(draw_np.astype(np.uint8), mode='P').save('temp/single_points.png') print(f'There are {point_o} points joined({point_o/(singles+point_o)*100:.1f}%)') # draw image for debugging def draw_polygon(label, color, polygon, draw): # fnt = ImageFont.truetype("Arial.ttf", 20) p = [tuple(i) for i in polygon] polygon = np.array(polygon) center = [polygon[:,0].mean(), polygon[:,1].mean()] center[0] -= 5*len(label) center[1] -= 10 color2 = tuple(list(color)+[128]) #transparent color3 = tuple([150-c for c in color]) #invert # draw.point(polygon3, fill=color3) # draw.line(polygon3, width=1, fill=color, joint='curve') draw.polygon(p, fill=color2, outline=color) draw.point(p, fill=color3) draw.text(center, label, fill=color) def drawResults(polygons_data, img_path, mode=None): img = Image.open(img_path) # im = img.convert(mode='RGBA') draw = ImageDraw.Draw(img, mode='RGBA') # im2 = img.convert(mode='RGBA') img2 = img.copy() draw2 = ImageDraw.Draw(img2, mode='RGBA') # draw approximated polygon (inferior) img_path = img_path + f'_result_mode{mode}.png' if mode == 1: # draw original prediction for data in polygons_data: label = data['label'] label2 = data['label2'] polygon1 = data['polygon'] color = PALETTE[CLASSES.index(label)] draw_polygon(label2, color, polygon1, draw) img.save(img_path) #mask -> polygon elif mode == 2: # draw prediction using approximation for data in polygons_data: label = data['label'] label2 = data['label2'] polygon2 = data['approximated'] color = PALETTE[CLASSES.index(label)] draw_polygon(label2, color, polygon2, draw2) img2.save() #mask -> approximate polygon # draw image: mask -> topo -> simplified polygon elif mode == 3: img3 = img.copy() draw3 = ImageDraw.Draw(img3, mode='RGBA') for label, polygons in polygons_data.items(): for polygon in polygons: color = PALETTE[CLASSES.index(label)] draw_polygon(label, color, polygon, draw3) img3.save(img_path) #mask -> topo -> simplified polygon # draw original topo graph elif mode == 4: # img4 = Image.fromarray(np.zeros_like(result.astype(np.uint8))).convert(mode='RGB') img4 = img.copy() draw4 = ImageDraw.Draw(img4, mode='RGBA') for label, polygons in polygons_data.items(): for polygon in polygons: color = PALETTE[CLASSES.index(label)] draw_polygon(label, color, polygon, draw4) img4.save(img_path) #mask -> topo polygon else: raise Exception(f'Unexpected mode: {mode}') return img_path if __name__ == '__main__': ## Load data # load from topo_data # data = pickle.load(open('topo_data', 'rb')) # load from mask polygons_data = [] img = Image.open('temp/mask.png') result =
np.asarray(img)
numpy.asarray
#!/usr/bin/env python from __future__ import print_function from __future__ import division from past.utils import old_div import unittest from anuga.structures.boyd_box_operator import Boyd_box_operator from anuga.structures.boyd_box_operator import boyd_box_function from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross from anuga.shallow_water.shallow_water_domain import Domain import numpy verbose = False class Test_boyd_box_operator(unittest.TestCase): """ Test the boyd box operator, in particular the discharge_routine! """ def setUp(self): pass def tearDown(self): pass def _create_domain(self,d_length, d_width, dx, dy, elevation_0, elevation_1, stage_0, stage_1, xvelocity_0 = 0.0, xvelocity_1 = 0.0, yvelocity_0 = 0.0, yvelocity_1 = 0.0): points, vertices, boundary = rectangular_cross(int(old_div(d_length,dx)), int(old_div(d_width,dy)), len1=d_length, len2=d_width) domain = Domain(points, vertices, boundary) domain.set_name('Test_Outlet_Inlet') # Output name domain.set_store() domain.set_default_order(2) domain.H0 = 0.01 domain.tight_slope_limiters = 1 #print 'Size', len(domain) #------------------------------------------------------------------------------ # Setup initial conditions #------------------------------------------------------------------------------ def elevation(x, y): """Set up a elevation """ z =
numpy.zeros(x.shape,dtype='d')
numpy.zeros
#!/usr/bin/env python3 # # TImestream DAta Storage (TIDAS). # # Copyright (c) 2015-2019 by the parties listed in the AUTHORS file. All rights # reserved. Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # WARNING: Running this script will generate a several GB of data... # This is just a toy exercise. We assume continuous data collection with # no gaps. We use very simple types of detector and housekeeping data. # In a "real" dataset, we would be unpacking raw frame data from a data # acquisition system and would know how many samples we have for a given # observation. Here we just make these numbers up. # THIS IS JUST AN EXAMPLE. import os import sys import shutil import numpy as np import datetime import calendar import tidas from tidas import DataType as tdt # The name of the volume path = "demo_telescope" # Create the schemas for the data groups that we will have for each day # ---- Data from a weather station ---- wfields = list() wfields.append(tidas.Field("windspeed", tdt.float32, "Meters / second")) wfields.append(tidas.Field("windangle", tdt.float32, "Degrees")) wfields.append(tidas.Field("temperature", tdt.float32, "Degrees Celsius")) wfields.append(tidas.Field("pressure", tdt.float32, "Millibars")) wfields.append(tidas.Field("humidity", tdt.float32, "Percent")) wfields.append(tidas.Field("PWV", tdt.float32, "mm")) weather_schema = tidas.Schema(wfields) # sampled every 10 seconds weather_rate = 1.0 / 10.0 weather_daysamples = int(24.0 * 3600.0 * weather_rate) # ---- Housekeeping data ---- hfields = list() hfields.append(tidas.Field("thermo1", tdt.float32, "Degrees Kelvin")) hfields.append(tidas.Field("thermo2", tdt.float32, "Degrees Kelvin")) hk_schema = tidas.Schema(hfields) # sampled once per minute hk_rate = 1.0 / 60.0 hk_daysamples = int(24.0 * 3600.0 * hk_rate) # ---- Pointing data ---- pfields = list() pfields.append(tidas.Field("az", tdt.float32, "Radians")) pfields.append(tidas.Field("el", tdt.float32, "Radians")) pfields.append(tidas.Field("psi", tdt.float32, "Radians")) pointing_schema = tidas.Schema(pfields) # sampled at 20 Hz pointing_rate = 20.0 pointing_daysamples = int(24.0 * 3600.0 * pointing_rate) # ---- Detector data ---- ndet = 50 dfields = list() for d in range(ndet): detname = "det_{:04d}".format(d) dfields.append(tidas.Field(detname, tdt.int16, "ADU")) det_schema = tidas.Schema(dfields) # sampled at 100Hz det_rate = 100.0 det_daysamples = int(24.0 * 3600.0 * det_rate) day_seconds = 24 * 3600 # Remove the volume if it exists if os.path.isdir(path): shutil.rmtree(path) # Create the volume all at once. To keep the size of the volume # reasonable for this demo, only write 3 days of data. vol = tidas.Volume(path, tidas.BackendType.hdf5, tidas.CompressionType.none, dict()) # Get the root block of the volume root = vol.root() volstart = datetime.datetime(2018, 1, 1) volstartsec = volstart.timestamp() for year in ["2018"]: # Add a block for this year yb = root.block_add(year, tidas.Block()) for monthnum in range(1, 2): # Add a block for the month month = calendar.month_abbr[monthnum] mb = yb.block_add(month, tidas.Block()) weekday, nday = calendar.monthrange(int(year), monthnum) for dy in range(1, 4): daystart = datetime.datetime(int(year), monthnum, dy) daystartsec = (daystart - volstart).total_seconds() + volstartsec # Add a block for the day day = "{:02d}".format(dy) db = mb.block_add(day, tidas.Block()) # Just fake some seed for now seed = int(year) * 1000000 + monthnum * 10000 + dy * 100 np.random.seed(seed) # Now we are going to add the data groups for this day. print("{}-{}-{:02d}:".format(year, month, dy)) print(" writing weather data") weather = tidas.Group( weather_schema, tidas.Dictionary(), weather_daysamples ) weather = db.group_add("weather", weather) weather.write_times( 0, np.linspace( daystartsec, daystartsec + day_seconds, num=weather_daysamples ), ) data = np.absolute( np.random.normal(loc=0.0, scale=5.0, size=weather_daysamples) ).astype(np.float32) weather.write("windspeed", 0, data) data = 360.0 * np.absolute( np.random.random(size=weather_daysamples) ).astype(np.float32) weather.write("windangle", 0, data) data = np.absolute( np.random.normal(loc=25.0, scale=5.0, size=weather_daysamples) ).astype(np.float32) weather.write("temperature", 0, data) data = np.absolute( np.random.normal(loc=1013.25, scale=30.0, size=weather_daysamples) ).astype(np.float32) weather.write("pressure", 0, data) data = np.absolute( np.random.normal(loc=30.0, scale=10.0, size=weather_daysamples) ).astype(np.float32) weather.write("humidity", 0, data) data = np.absolute( np.random.normal(loc=10.0, scale=5.0, size=weather_daysamples) ).astype(np.float32) weather.write("PWV", 0, data) print(" writing housekeeping data") hk = tidas.Group(hk_schema, tidas.Dictionary(), hk_daysamples) hk = db.group_add("hk", hk) hk.write_times( 0, np.linspace(daystartsec, daystartsec + day_seconds, num=hk_daysamples), ) data = np.random.normal(loc=273.0, scale=5.0, size=hk_daysamples).astype( np.float32 ) hk.write("thermo1", 0, data) data =
np.random.normal(loc=77.0, scale=5.0, size=hk_daysamples)
numpy.random.normal
''' Particle filter class ''' from math import sqrt import matplotlib.pyplot as plt import numpy as np from numba import jit, njit, prange from numpy import pi from numpy.linalg import norm from numpy.random import randn, uniform from scipy.stats import norm as statsnorm from .stats import percentile def _weightedMean(particles, weights): ''' Weighted mean of particles ''' temp = 0.0 temp2 = 0.0 for i in prange(particles.shape[0]): temp += particles[i]*weights[i] temp2 += weights[i] temp2 += 1.e-300 # avoid round-off to zero if temp2 >= 1e-300: return temp/temp2 else: return 0.0 @njit(cache=True) def _weightedVar(mean, particles, weights): ''' Weighted variance of particles ''' temp = 0.0 temp2 = 0.0 for i in prange(particles.shape[0]): temp += (particles[i] - mean)**2*weights[i] temp2 += weights[i] temp2 += 1.e-300 # avoid round-off to zero if temp2 >= 1e-300: return temp/temp2 else: return 0.0 @njit(cache=True) def _systematicResample(weights, indexes, randomnumber): ''' Performs the systemic resampling algorithm used by particle filters. This algorithm separates the sample space into N divisions. A single random offset is used to to choose where to sample from for all divisions. This guarantees that every sample is exactly 1/N apart. Parameters ---------- weights : list-like of float list of weights as floats ''' N = weights.shape[0] # make N subdivisions, and choose positions with a consistent random offset positions = (randomnumber + np.arange(N)) / N cumulative_sum = np.cumsum(weights) i, j = 0, 0 while i < N: if positions[i] < cumulative_sum[j]: indexes[i] = j i += 1 else: j += 1 def _normPdf(mu, var, z): ''' Gaussian normal PDF ''' return 1.0/((2*np.pi*var)**0.5)*np.exp(-(z - mu)**2/(2*var)) class ParticleFilter(): ''' A particle filter class Parameters ---------- N : int Number of particles R : float or array_like Variance of measured states len(R) == len(measuredStates) Q : float or array_like Variance of actuation error Part of model model : function(u, states, parameters, Q) Model that generates next step of states using previous states, parameters and Q statesDerivative can be used as a placeholder for the derivative Example: def model(u, states, parameters, statesDerivative, Q): m = parameters[:, 0] k = parameters[:, 1] c = parameters[:, 2] dt = 1.0 statesDerivative[:, 0] = states[:, 1] statesDerivative[:, 1] = 1.0/m*(-k*states[:, 0] - c*states[:, 1] + (u + randn(states.shape[0])*np.sqrt(Q)) states[:, 0] += statesDerivative[:, 0]*dt states[:, 1] += statesDerivative[:, 1]*dt nStates : int Number of states in the system nParameters : int Number of parameters in the system measuredStates : int or array_like Which state number are measured Could be a single number or multiple in a list. Observation (z) must have the same length. ''' def __init__(self, N, R, Q, model, nStates, nParameters, measuredStates, resampleAlways=False, resampleDebug=False): self.N = N if not type(R) == list and not type(R) == np.ndarray: self.R = [R] else: self.R = R if not type(Q) == list and not type(Q) == np.ndarray: self.Q = [Q] else: self.Q = Q self.model = model self.nStates = nStates self.nParameters = nParameters self.particles =
np.empty((self.N, self.nParameters + self.nStates))
numpy.empty
""" Functionalities related to time-domain modelling using a frequency-domain code. """ # Copyright 2018-2021 The emsig community. # # This file is part of emg3d. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy # of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. import warnings import numpy as np from scipy.interpolate import PchipInterpolator as Pchip from scipy.interpolate import InterpolatedUnivariateSpline as Spline try: import empymod except ImportError: empymod = None from emg3d import utils __all__ = ['Fourier', ] @utils._requires('empymod') class Fourier: r"""Time-domain CSEM computation. Class to carry out time-domain modelling with the frequency-domain code ``emg3d`` following [WeMS21]_. Instances of the class take care of computing the required frequencies, the interpolation from coarse, limited-band frequencies to the required frequencies, and carrying out the actual transform. Everything related to the Fourier transform is done by utilising the capabilities of the 1D modeller :mod:`empymod`. The input parameters ``time``, ``signal``, ``ft``, and ``ftarg`` are passed to the function :func:`empymod.utils.check_time` to obtain the required frequencies. The actual transform is subsequently carried out by calling :func:`empymod.model.tem`. See these functions for more details about the exact implementations of the Fourier transforms and its parameters. Note that also the ``verb``-argument follows the definition in ``empymod``. The mapping from computed frequencies to the frequencies required for the Fourier transform is done in three steps: - Data for :math:`f>f_\mathrm{max}` is set to 0+0j. - Data for :math:`f<f_\mathrm{min}` is interpolated by adding an additional data point at a frequency of 1e-100 Hz. The data for this point is ``data.real[0]+0j``, hence the real part of the lowest computed frequency and zero imaginary part. Interpolation is carried out using PCHIP from :func:`scipy.interpolate.pchip_interpolate`. - Data for :math:`f_\mathrm{min}\le f \le f_\mathrm{max}` is computed with cubic spline interpolation (on a log-scale) using :class:`scipy.interpolate.InterpolatedUnivariateSpline`. .. note:: The package ``empymod`` has to be installed in order to use ``Fourier``: ``pip install empymod`` or ``conda install -c conda-forge empymod``. Parameters ---------- time : ndarray Desired times (s). fmin, fmax : float Minimum and maximum frequencies (Hz) to compute: - Data for freq > fmax is set to 0+0j. - Data for freq < fmin is interpolated, using an extra data-point at f = 1e-100 Hz, with value data.real[0]+0j. (Hence zero imaginary part, and the lowest computed real value.) signal : {-1, 0, 1}, default: 0 Source signal: - -1 : Switch-off time-domain response - 0 : Impulse time-domain response - +1 : Switch-on time-domain response ft : {'sin', 'cos', 'fftlog'}, default: 'sin' Flag to choose either the Digital Linear Filter method (Sine- or Cosine-Filter) or the FFTLog for the Fourier transform. ftarg : dict, default depends on ``ft`` Fourier transform arguments. - If ``ft='dlf'``: - ``dlf``: string of filter name in :mod:`empymod.filters` or the filter method itself; default: ``'key_201_CosSin_2012'``. - ``pts_per_dec``: points per decade; default: -1. - If 0: Standard DLF; - If < 0: Lagged Convolution DLF; - If > 0: Splined DLF. - If ``ft='fftlog'``: - ``pts_per_dec``: samples per decade; default: 10. - ``add_dec``: additional decades [left, right]; default: [-2, 1]. - ``q``: exponent of power law bias, -1 <= q <= 1 ; default: 0. input_freq : ndarray, default: None Frequencies to use for computation. Mutually exclusive with ``every_x_freq``. every_x_freq : int, default: None Every ``every_x_freq``-th frequency of the required frequency-range is used for computation. Mutually exclusive with ``input_freq``. """ def __init__(self, time, fmin, fmax, signal=0, ft='dlf', ftarg=None, **kwargs): """Initialize a Fourier instance.""" # Store the input parameters. self._time = time self._fmin = fmin self._fmax = fmax self._signal = signal self._ft = ft self._ftarg = {} if ftarg is None else ftarg self._input_freq = kwargs.pop('input_freq', None) self._every_x_freq = kwargs.pop('every_x_freq', None) self.verb = kwargs.pop('verb', 3) # Ensure no kwargs left. if kwargs: raise TypeError(f"Unexpected **kwargs: {list(kwargs.keys())}.") # Ensure input_freq and every_x_freq are not both set. self._check_coarse_inputs(keep_inp_freq=True) # Get required frequencies. self._check_time() def __repr__(self): """Simple representation.""" return (f"{self.__class__.__name__}: {self._ft}; " f"{self.time.min()}-{self.time.max()} s; " f"{self.fmin}-{self.fmax} Hz") # PURE PROPERTIES @property def freq_required(self): """Frequencies required to carry out the Fourier transform.""" return self._freq_req @property def freq_coarse(self): """Coarse frequency range, can be different from `freq_required`.""" # If none of {every_x_freq, input_freq} given, then # freq_coarse = freq_required. if self.every_x_freq is None and self.input_freq is None: return self.freq_required # If input_freq given, then freq_coarse = input_freq. elif self.every_x_freq is None: return self.input_freq # If every_x_freq given, get subset of freq_required. else: return self.freq_required[::self.every_x_freq] @property def ifreq_compute(self): """Indices of `freq_coarse` which have to be computed.""" return ((self.freq_coarse >= self.fmin) & (self.freq_coarse <= self.fmax)) @property def freq_compute(self): """Frequencies at which the model has to be computed.""" return self.freq_coarse[self.ifreq_compute] @property def ifreq_extrapolate(self): """Indices of the frequencies to extrapolate.""" return self.freq_required < self.fmin @property def freq_extrapolate(self): """These are the frequencies to extrapolate. In the end it is done via interpolation, using an extra data-point at f = 1e-100 Hz, with value data.real[0]+0j. (Hence zero imaginary part, and the lowest computed real value.) """ return self.freq_required[self.ifreq_extrapolate] @property def ifreq_interpolate(self): """Indices of the frequencies to interpolate.""" return ((self.freq_required >= self.fmin) & (self.freq_required <= self.fmax)) @property def freq_interpolate(self): """These are the frequencies to interpolate. If ``freq_required`` is equal ``freq_coarse``, then this is equal to ``freq_compute``. """ return self.freq_required[self.ifreq_interpolate] @property def ft(self): """Type of Fourier transform. Set via ``fourier_arguments(ft, ftarg)``. """ return self._ft @property def ftarg(self): """Fourier transform arguments. Set via ``fourier_arguments(ft, ftarg)``. """ return self._ftarg # PROPERTIES WITH SETTERS @property def time(self): """Desired times (s).""" return self._time @time.setter def time(self, time): """Update desired times (s).""" self._time = time self._check_time() @property def fmax(self): """Maximum frequency (Hz) to compute.""" return self._fmax @fmax.setter def fmax(self, fmax): """Update maximum frequency (Hz) to compute.""" self._fmax = fmax self._print_freq_calc() @property def fmin(self): """Minimum frequency (Hz) to compute.""" return self._fmin @fmin.setter def fmin(self, fmin): """Update minimum frequency (Hz) to compute.""" self._fmin = fmin self._print_freq_calc() @property def signal(self): """Signal in time domain {-1, 0, 1}.""" return self._signal @signal.setter def signal(self, signal): """Update signal in time domain {-1, 0, 1}.""" self._signal = signal @property def input_freq(self): """If set, freq_coarse is set to input_freq.""" return self._input_freq @input_freq.setter def input_freq(self, input_freq): """Update input_freq. Erases every_x_freq if set.""" self._input_freq = input_freq self._check_coarse_inputs(keep_inp_freq=True) @property def every_x_freq(self): """If set, freq_coarse is every_x_freq-frequency of freq_required.""" return self._every_x_freq @every_x_freq.setter def every_x_freq(self, every_x_freq): """Update every_x_freq. Erases input_freq if set.""" self._every_x_freq = every_x_freq self._check_coarse_inputs(keep_inp_freq=False) # OTHER STUFF def fourier_arguments(self, ft, ftarg): """Set Fourier type and its arguments.""" self._ft = ft self._ftarg = ftarg self._check_time() def interpolate(self, fdata): """Interpolate from computed data to required data. Parameters ---------- fdata : ndarray Frequency-domain data corresponding to ``freq_compute``. Returns ------- full_data : ndarray Frequency-domain data corresponding to ``freq_required``. """ # Pre-allocate result. out = np.zeros(self.freq_required.size, dtype=np.complex128) # 1. Interpolate between fmin and fmax. # If freq_coarse is not exactly freq_required, we use cubic spline to # interpolate from fmin to fmax. if self.freq_coarse.size != self.freq_required.size: int_real = Spline(np.log(self.freq_compute), fdata.real)(np.log(self.freq_interpolate)) int_imag = Spline(
np.log(self.freq_compute)
numpy.log
#!/usr/bin/env python # coding: utf-8 import math import random import warnings import matplotlib import numpy as np import pandas as pd from tqdm import tqdm import matplotlib.pyplot as plt from scipy.stats import norm, uniform, poisson from statsmodels.distributions.empirical_distribution import ECDF def discrete_weibull(shape, scale, N2): x_pre_scale = np.random.weibull(shape, int(5e6)) x = scale * x_pre_scale f = ECDF(x) h = np.zeros(N2) h[0] = f(1.5) - f(0) for i in range(1, N2): h[i] = (f(i+1.5) - f(i+0.5)) / (1-f(i+0.5)) s =
np.zeros(N2)
numpy.zeros
# !/usr/bin/env python # -*- coding: utf-8 -*- # Author: # - <NAME> # <<EMAIL>>, <<EMAIL>> # - <NAME> # <<EMAIL>>, <<EMAIL>> # Language: python2.7 import numpy as np np.random.seed(1337) # make the results reproductible from math import floor ''' Synthetic dataset for classification rules x = (x1, x2, x3, x4) x1, x2 ~ U[0, 1] x3 = {0, 1} x4 = {blue -1, white 0, red 1} y = 0, 1 ou 2 y = 0 <= r01 = {x4: red, x3: 1}; r02 = {x4: red, x3: 0, x2 <= 0.5}; r03 = {x4: blue or white, x1 >= 0.7, x3: 0, x2 > 0.2}; r04 = {x4: white, x1: ]0.5, 0.7[} y = 1 <= r11 = {x4: red, x3: 0, x2 > 0.5}; r12 = {x4: blue ou white, x1 >= 0.7, x3: 0, x2 <= 0.2}; r13 = {x4: white, x1 <= 0.5} y = 2 <= r21 = {x4: blue ou white, x1 >= 0.7, x3: 1} [x4-red] | | [x1>=0.7] [x3=0] | | | | [x1-blue] [x3=1] [y=0] [x2<=0.5] | | | | | | [x1<=0.5] [y=2] [x2<=2][y=2] [y=1] [y=0] | | | | [y=0] [y=1] [y=0][y=1] ''' class DecisionTreeSamples(): def __init__(self, n, e=None): ''' Initialize the synthetic dataset (X, y) based on the synthetic decision tree. Parameters: - n: number of samples to generate - e: noisy or impurity degree to integrate in the rules under the form of classification error expressed in percentage, None by default. The same or a different amount of noise can be introduced for each rule: *To introduce different amount of noise for each rule, e must be as a dictionary with {'r01': e1, 'r02': e2, 'r03': e3, 'r04': e04, 'r11': e11, 'r12': e12, 'r13': e13, 'r21': e21} where 'r01', 'r02', etc. correspond to the name of the rules (see above) and e1, e2, etc. the noise specific to each one of these rules. *To introfuce the same amount of noise, e must be a int or a float. ''' # Generate synthetic dataset (X, y) X =
np.zeros((n, 4))
numpy.zeros
#!/usr/bin/env python2.7 from numpy import (zeros, empty, multiply, copyto, asarray) from numexpr import evaluate import pylab as py import urllib grid_shape = (512, 512) def roll_add(rollee, shift, axis, out): if shift == 1 and axis == 0: out[1:, :] += rollee[:-1,:] out[0, :] += rollee[-1,:] elif shift == -1 and axis == 0: out[:-1, :] += rollee[1:,:] out[-1, :] += rollee[0,:] elif shift == 1 and axis == 1: out[:, 1:] += rollee[:, :-1] out[:, 0] += rollee[:, -1] elif shift == -1 and axis == 1: out[:, :-1] += rollee[:, 1:] out[:, -1] += rollee[:, 0] def laplacian(grid, out):
copyto(out, grid)
numpy.copyto
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ description: Estimate local time version: 0.0.3 created: 2018-04-30 author: <NAME> dependencies: * tidepool-data-env (install using anaconda, see readme for details) * wikipedia-timezone-aliases-2018-04-28.csv license: BSD-2-Clause TODO: * [] see readme file """ # %% REQUIRED LIBRARIES import pandas as pd import numpy as np import os import sys from pytz import timezone from datetime import timedelta import datetime as dt import argparse # %% USER INPUTS codeDescription = "Estimate local time for each data point in the dataset" codeVersion = "0.0.3" parser = argparse.ArgumentParser(description=codeDescription) parser.add_argument("-i", "--input-data-file", dest="inputFilePathAndName", default="example-csv.csv", help="csv, xlsx, or json file that contains Tidepool data") parser.add_argument("--deprecated-timezone-list", dest="timezoneAliasesFilePathAndName", default="wikipedia-timezone-aliases-2018-04-28.csv", help="a .csv file that contains a list of deprecated " + "timezones and their alias") parser.add_argument("-o", "--output-data-path", dest="outputPath", default=os.path.join("output", "dataWithLocalTimeEstimates"), help="the output where the data is stored") parser.add_argument("--day-series-output-path", dest="daySeriesOutputPath", default=os.path.join("output", "daySeriesData"), help="optional path to store the contiguous day series" + "data. If no path is specified, then data is not saved") args = parser.parse_args() # %% FUNCTIONS def filterByDates(df, startDate, endDate): # filter by qualified start & end date, and sort df = \ df[(df.time >= startDate) & (df.time <= (endDate + "T23:59:59"))] return df def convertDeprecatedTimezoneToAlias(df, tzAlias): if "timezone" in df: uniqueTimezones = df.timezone.unique() uniqueTimezones = uniqueTimezones[pd.notnull(df.timezone.unique())] for uniqueTimezone in uniqueTimezones: alias = tzAlias.loc[tzAlias.tz.str.endswith(uniqueTimezone), ["alias"]].values if len(alias) == 1: df.loc[df.timezone == uniqueTimezone, ["timezone"]] = alias return df def largeTimezoneOffsetCorrection(df): while ((df.timezoneOffset > 840).sum() > 0): df.loc[df.timezoneOffset > 840, ["conversionOffset"]] = \ df.loc[df.timezoneOffset > 840, ["conversionOffset"]] - \ (1440 * 60 * 1000) df.loc[df.timezoneOffset > 840, ["timezoneOffset"]] = \ df.loc[df.timezoneOffset > 840, ["timezoneOffset"]] - 1440 while ((df.timezoneOffset < -720).sum() > 0): df.loc[df.timezoneOffset < -720, ["conversionOffset"]] = \ df.loc[df.timezoneOffset < -720, ["conversionOffset"]] + \ (1440 * 60 * 1000) df.loc[df.timezoneOffset < -720, ["timezoneOffset"]] = \ df.loc[df.timezoneOffset < -720, ["timezoneOffset"]] + 1440 return df def createContiguousDaySeries(df): firstDay = df.date.min() lastDay = df.date.max() rng = pd.date_range(firstDay, lastDay).date contiguousDaySeries = \ pd.DataFrame(rng, columns=["date"]).sort_values( "date", ascending=False).reset_index(drop=True) return contiguousDaySeries def getAndPreprocessUploadRecords(df): # first make sure deviceTag is in string format df["deviceTags"] = df.deviceTags.astype(str) # filter by type upload ud = df[df.type == "upload"].copy() # define a device type (e.g., pump, cgm, or healthkit) ud["deviceType"] = np.nan ud.loc[ud.deviceTags.str.contains("pump"), ["deviceType"]] = "pump" # this is for non-healthkit cgm records only ud.loc[((ud.deviceTags.str.contains("cgm")) & (ud.timeProcessing != "none")), ["deviceType"]] = "cgm" ud.loc[((ud.deviceTags.str.contains("cgm")) & (ud.timeProcessing == "none")), ["deviceType"]] = "healthkit" return ud def getAndPreprocessNonDexApiCgmRecords(df): # non-healthkit cgm and exclude dexcom-api data if "payload" in df: # convert payloads to strings df["isDexcomAPI"] = df.payload.astype(str).str.contains("systemTime") cd = df[(df.type == "cbg") & (df.timezoneOffset.notnull()) & (~df.isDexcomAPI.fillna(False))].copy() else: cd = df[(df.type == "cbg") & (df.timezoneOffset.notnull())] return cd def getTimezoneOffset(currentDate, currentTimezone): tz = timezone(currentTimezone) # here we add 1 day to the current date to account for changes to/from DST tzoNum = int(tz.localize(currentDate + timedelta(days=1)).strftime("%z")) tzoHours = np.floor(tzoNum / 100) tzoMinutes = round((tzoNum / 100 - tzoHours) * 100, 0) tzoSign = np.sign(tzoHours) tzo = int((tzoHours * 60) + (tzoMinutes * tzoSign)) return tzo def getTzoForDateTime(currentDateTime, currentTimezone): tz = timezone(currentTimezone) tzoNum = int(tz.localize(pd.to_datetime(currentDateTime)).strftime("%z")) tzoHours = np.floor(tzoNum / 100) tzoMinutes = round((tzoNum / 100 - tzoHours) * 100, 0) tzoSign = np.sign(tzoHours) tzo = int((tzoHours * 60) + (tzoMinutes * tzoSign)) return tzo def isDSTChangeDay(currentDate, currentTimezone): tzoCurrentDay = getTimezoneOffset(pd.to_datetime(currentDate), currentTimezone) tzoPreviousDay = getTimezoneOffset(pd.to_datetime(currentDate) + timedelta(days=-1), currentTimezone) return (tzoCurrentDay != tzoPreviousDay) def addAnnotation(df, idx, annotationMessage): if pd.notnull(df.loc[idx, "est.annotations"]): df.loc[idx, ["est.annotations"]] = df.loc[idx, "est.annotations"] + \ ", " + annotationMessage else: df.loc[idx, ["est.annotations"]] = annotationMessage return df def addDeviceDaySeries(df, dfContDays, deviceTypeName): if len(df) > 0: dfDayGroups = df.groupby("date") dfDaySeries = pd.DataFrame(dfDayGroups.timezoneOffset.median()) if "upload" in deviceTypeName: if "timezone" in df: if dfDayGroups.timezone.count().values[0] > 0: dfDaySeries["timezone"] = \ dfDayGroups.timezone.describe()["top"] # get the timezone offset for the timezone for i in dfDaySeries.index: if pd.notnull(dfDaySeries.loc[i, "timezone"]): tzo = getTimezoneOffset( pd.to_datetime(i), dfDaySeries.loc[i, "timezone"]) dfDaySeries.loc[i, ["timezoneOffset"]] = tzo dfDaySeries["timeProcessing"] = \ dfDayGroups.timeProcessing.describe()["top"] dfDaySeries = dfDaySeries.add_prefix(deviceTypeName + "."). \ rename(columns={deviceTypeName + ".date": "date"}) dfContDays = pd.merge(dfContDays, dfDaySeries.reset_index(), on="date", how="left") else: dfContDays[deviceTypeName + ".timezoneOffset"] = np.nan return dfContDays def imputeUploadRecords(df, contDays, deviceTypeName): daySeries = \ addDeviceDaySeries(df, contDays, deviceTypeName) if ((len(df) > 0) & (deviceTypeName + ".timezone" in daySeries)): for i in daySeries.index[1:]: if pd.isnull(daySeries[deviceTypeName + ".timezone"][i]): daySeries.loc[i, [deviceTypeName + ".timezone"]] = \ daySeries.loc[i-1, deviceTypeName + ".timezone"] if pd.notnull(daySeries[deviceTypeName + ".timezone"][i]): tz = daySeries.loc[i, deviceTypeName + ".timezone"] tzo = \ getTimezoneOffset(pd.to_datetime(daySeries.loc[i, "date"]), tz) daySeries.loc[i, deviceTypeName + ".timezoneOffset"] = tzo if pd.notnull(daySeries[deviceTypeName + ".timeProcessing"][i-1]): daySeries.loc[i, deviceTypeName + ".timeProcessing"] = \ daySeries.loc[i-1, deviceTypeName + ".timeProcessing"] else: daySeries[deviceTypeName + ".timezone"] = np.nan daySeries[deviceTypeName + ".timeProcessing"] = np.nan return daySeries def estimateTzAndTzoWithUploadRecords(cDF): cDF["est.type"] = np.nan cDF["est.gapSize"] = np.nan cDF["est.timezoneOffset"] = cDF["upload.timezoneOffset"] cDF["est.annotations"] = np.nan if "upload.timezone" in cDF: cDF.loc[cDF["upload.timezone"].notnull(), ["est.type"]] = "UPLOAD" cDF["est.timezone"] = cDF["upload.timezone"] cDF["est.timeProcessing"] = cDF["upload.timeProcessing"] else: cDF["est.timezone"] = np.nan cDF["est.timeProcessing"] = np.nan cDF.loc[((cDF["est.timezoneOffset"] != cDF["home.imputed.timezoneOffset"]) & (pd.notnull(cDF["est.timezoneOffset"]))), "est.annotations"] = "travel" return cDF def estimateTzAndTzoWithDeviceRecords(cDF): # 2A. use the TZO of the pump or cgm device if it exists on a given day. In # addition, compare the TZO to one of the imputed day series (i.e., the # upload and home series to see if the TZ can be inferred) for deviceType in ["pump", "cgm"]: # find the indices of days where a TZO estimate has not been made AND # where the device (e.g., pump or cgm) TZO has data sIndices = cDF[((cDF["est.timezoneOffset"].isnull()) & (cDF[deviceType + ".timezoneOffset"].notnull()))].index # compare the device TZO to the imputed series to infer time zone cDF = compareDeviceTzoToImputedSeries(cDF, sIndices, deviceType) # 2B. if the TZ cannot be inferred with 2A, then see if the TZ can be # inferred from the previous day's TZO. If the device TZO is equal to the # previous day's TZO, AND if the previous day has a TZ estimate, use the # previous day's TZ estimate for the current day's TZ estimate for deviceType in ["pump", "cgm"]: sIndices = cDF[((cDF["est.timezoneOffset"].isnull()) & (cDF[deviceType + ".timezoneOffset"].notnull()))].index cDF = compareDeviceTzoToPrevDayTzo(cDF, sIndices, deviceType) # 2C. after 2A and 2B, check the DEVICE estimates to make sure that the # pump and cgm tzo do not differ by more than 60 minutes. If they differ # by more that 60 minutes, then mark the estimate as UNCERTAIN. Also, we # allow the estimates to be off by 60 minutes as there are a lot of cases # where the devices are off because the user changes the time for DST, # at different times sIndices = cDF[((cDF["est.type"] == "DEVICE") & (cDF["pump.timezoneOffset"].notnull()) & (cDF["cgm.timezoneOffset"].notnull()) & (cDF["pump.timezoneOffset"] != cDF["cgm.timezoneOffset"]) )].index tzoDiffGT60 = abs(cDF.loc[sIndices, "cgm.timezoneOffset"] - cDF.loc[sIndices, "pump.timezoneOffset"]) > 60 idx = tzoDiffGT60.index[tzoDiffGT60] cDF.loc[idx, ["est.type"]] = "UNCERTAIN" for i in idx: cDF = addAnnotation(cDF, i, "pump-cgm-tzo-mismatch") return cDF def addHomeTimezone(df, contDays): if "timezone" in df: homeTimezone = df["timezone"].describe()["top"] tzo = contDays.date.apply( lambda x: getTimezoneOffset(pd.to_datetime(x), homeTimezone)) contDays["home.imputed.timezoneOffset"] = tzo contDays["home.imputed.timezone"] = homeTimezone else: contDays["home.imputed.timezoneOffset"] = np.nan contDays["home.imputed.timezone"] = np.nan contDays["home.imputed.timeProcessing"] = np.nan return contDays def getRangeOfTZOsForTimezone(tz): minMaxTzo = [getTimezoneOffset(pd.to_datetime("1/1/2017"), tz), getTimezoneOffset(pd.to_datetime("5/1/2017"), tz)] rangeOfTzo = np.arange(int(min(minMaxTzo)), int(max(minMaxTzo))+1, 15) return rangeOfTzo def tzoRangeWithComparisonTz(df, i, comparisonTz): # if we have a previous timezone estimate, then calcuate the range of # timezone offset values for that time zone if pd.notnull(comparisonTz): rangeTzos = getRangeOfTZOsForTimezone(comparisonTz) else: comparisonTz = np.nan rangeTzos = np.array([]) return rangeTzos def tzAndTzoRangePreviousDay(df, i): # if we have a previous timezone estimate, then calcuate the range of # timezone offset values for that time zone comparisonTz = df.loc[i-1, "est.timezone"] rangeTzos = tzoRangeWithComparisonTz(df, i, comparisonTz) return comparisonTz, rangeTzos def tzAndTzoRangeWithHomeTz(df, i): # if we have a previous timezone estimate, then calcuate the range of # timezone offset values for that time zone comparisonTz = df.loc[i, "home.imputed.timezone"] rangeTzos = tzoRangeWithComparisonTz(df, i, comparisonTz) return comparisonTz, rangeTzos def assignTzoFromImputedSeries(df, i, imputedSeries): df.loc[i, ["est.type"]] = "DEVICE" df.loc[i, ["est.timezoneOffset"]] = \ df.loc[i, imputedSeries + ".timezoneOffset"] df.loc[i, ["est.timezone"]] = \ df.loc[i, imputedSeries + ".timezone"] df.loc[i, ["est.timeProcessing"]] = \ df.loc[i, imputedSeries + ".timeProcessing"] return df def compareDeviceTzoToImputedSeries(df, sIdx, device): for i in sIdx: # if the device tzo = imputed tzo, then chose the imputed tz and tzo # note, dst is accounted for in the imputed tzo for imputedSeries in ["pump.upload.imputed", "cgm.upload.imputed", "healthkit.upload.imputed", "home.imputed"]: # if the estimate has not already been made if pd.isnull(df.loc[i, "est.timezone"]): if df.loc[i, device + ".timezoneOffset"] == \ df.loc[i, imputedSeries + ".timezoneOffset"]: assignTzoFromImputedSeries(df, i, imputedSeries) df = addAnnotation(df, i, "tz-inferred-from-" + imputedSeries) # if the imputed series has a timezone estimate, then see if # the current day is a dst change day elif (pd.notnull(df.loc[i, imputedSeries + ".timezone"])): imputedTimezone = df.loc[i, imputedSeries + ".timezone"] if isDSTChangeDay(df.loc[i, "date"], imputedTimezone): dstRange = getRangeOfTZOsForTimezone(imputedTimezone) if ((df.loc[i, device + ".timezoneOffset"] in dstRange) & (df.loc[i, imputedSeries + ".timezoneOffset"] in dstRange)): assignTzoFromImputedSeries(df, i, imputedSeries) df = addAnnotation(df, i, "dst-change-day") df = addAnnotation( df, i, "tz-inferred-from-" + imputedSeries) return df def assignTzoFromPreviousDay(df, i, previousDayTz): df.loc[i, ["est.type"]] = "DEVICE" df.loc[i, ["est.timezone"]] = previousDayTz df.loc[i, ["est.timezoneOffset"]] = \ getTimezoneOffset(pd.to_datetime(df.loc[i, "date"]), previousDayTz) df.loc[i, ["est.timeProcessing"]] = df.loc[i-1, "est.timeProcessing"] df = addAnnotation(df, i, "tz-inferred-from-prev-day") return df def assignTzoFromDeviceTzo(df, i, device): df.loc[i, ["est.type"]] = "DEVICE" df.loc[i, ["est.timezoneOffset"]] = \ df.loc[i, device + ".timezoneOffset"] df.loc[i, ["est.timeProcessing"]] = \ df.loc[i, device + ".upload.imputed.timeProcessing"] df = addAnnotation(df, i, "likely-travel") df = addAnnotation(df, i, "tzo-from-" + device) return df def compareDeviceTzoToPrevDayTzo(df, sIdx, device): for i in sIdx[sIdx > 0]: # first see if the previous record has a tzo if (pd.notnull(df.loc[i-1, "est.timezoneOffset"])): previousDayTz, dstRange = tzAndTzoRangePreviousDay(df, i) timeDiff = abs((df.loc[i, device + ".timezoneOffset"]) - df.loc[i-1, "est.timezoneOffset"]) # next see if the previous record has a tz if (pd.notnull(df.loc[i-1, "est.timezone"])): if timeDiff == 0: assignTzoFromPreviousDay(df, i, previousDayTz) # see if the previous day's tzo and device tzo are within the # dst range (as that is a common problem with this data) elif ((df.loc[i, device + ".timezoneOffset"] in dstRange) & (df.loc[i-1, "est.timezoneOffset"] in dstRange)): # then see if it is DST change day if isDSTChangeDay(df.loc[i, "date"], previousDayTz): df = addAnnotation(df, i, "dst-change-day") assignTzoFromPreviousDay(df, i, previousDayTz) # if it is not DST change day, then mark this as uncertain else: # also, check to see if the difference between device. # tzo and prev.tzo is less than the expected dst # difference. There is a known issue where the BtUTC # procedure puts clock drift into the device.tzo, # and as a result the tzo can be off by 15, 30, # or 45 minutes. if (((df.loc[i, device + ".timezoneOffset"] == min(dstRange)) | (df.loc[i, device + ".timezoneOffset"] == max(dstRange))) & ((df.loc[i-1, "est.timezoneOffset"] == min(dstRange)) | (df.loc[i-1, "est.timezoneOffset"] == max(dstRange)))): df.loc[i, ["est.type"]] = "UNCERTAIN" df = addAnnotation(df, i, "likely-dst-error-OR-travel") else: df.loc[i, ["est.type"]] = "UNCERTAIN" df = addAnnotation(df, i, "likely-15-min-dst-error") # next see if time difference between device.tzo and prev.tzo # is off by 720 minutes, which is indicative of a common # user AM/PM error elif timeDiff == 720: df.loc[i, ["est.type"]] = "UNCERTAIN" df = addAnnotation(df, i, "likely-AM-PM-error") # if it doesn't fall into any of these cases, then the # tzo difference is likely due to travel else: df = assignTzoFromDeviceTzo(df, i, device) elif timeDiff == 0: df = assignTzoFromDeviceTzo(df, i, device) # if there is no previous record to compare with check for dst errors, # and if there are no errors, it is likely a travel day else: comparisonTz, dstRange = tzAndTzoRangeWithHomeTz(df, i) timeDiff = abs((df.loc[i, device + ".timezoneOffset"]) - df.loc[i, "home.imputed.timezoneOffset"]) if ((df.loc[i, device + ".timezoneOffset"] in dstRange) & (df.loc[i, "home.imputed.timezoneOffset"] in dstRange)): # see if it is DST change day if isDSTChangeDay(df.loc[i, "date"], comparisonTz): df = addAnnotation(df, i, "dst-change-day") df.loc[i, ["est.type"]] = "DEVICE" df.loc[i, ["est.timezoneOffset"]] = \ df.loc[i, device + ".timezoneOffset"] df.loc[i, ["est.timezone"]] = \ df.loc[i, "home.imputed.timezone"] df.loc[i, ["est.timeProcessing"]] = \ df.loc[i, device + ".upload.imputed.timeProcessing"] # if it is not DST change day, then mark this as uncertain else: # also, check to see if the difference between device. # tzo and prev.tzo is less than the expected dst # difference. There is a known issue where the BtUTC # procedure puts clock drift into the device.tzo, # and as a result the tzo can be off by 15, 30, # or 45 minutes. if (((df.loc[i, device + ".timezoneOffset"] == min(dstRange)) | (df.loc[i, device + ".timezoneOffset"] == max(dstRange))) & ((df.loc[i, "home.imputed.timezoneOffset"] == min(dstRange)) | (df.loc[i, "home.imputed.timezoneOffset"] == max(dstRange)))): df.loc[i, ["est.type"]] = "UNCERTAIN" df = addAnnotation(df, i, "likely-dst-error-OR-travel") else: df.loc[i, ["est.type"]] = "UNCERTAIN" df = addAnnotation(df, i, "likely-15-min-dst-error") # next see if time difference between device.tzo and prev.tzo # is off by 720 minutes, which is indicative of a common # user AM/PM error elif timeDiff == 720: df.loc[i, ["est.type"]] = "UNCERTAIN" df = addAnnotation(df, i, "likely-AM-PM-error") # if it doesn't fall into any of these cases, then the # tzo difference is likely due to travel else: df = assignTzoFromDeviceTzo(df, i, device) return df def getImputIndices(df, sIdx, hIdx): lastDayIdx = len(df) - 1 currentDayIdx = sIdx.min() tempList = pd.Series(hIdx) - currentDayIdx prevDayIdx = currentDayIdx - 1 nextDayIdx = \ min(currentDayIdx + min(tempList[tempList >= 0]), lastDayIdx) return currentDayIdx, prevDayIdx, nextDayIdx def imputeByTimezone(df, currentDay, prevDaywData, nextDaywData): gapSize = (nextDaywData - currentDay) if prevDaywData >= 0: if df.loc[prevDaywData, "est.timezone"] == \ df.loc[nextDaywData, "est.timezone"]: tz = df.loc[prevDaywData, "est.timezone"] for i in range(currentDay, nextDaywData): df.loc[i, ["est.timezone"]] = tz df.loc[i, ["est.timezoneOffset"]] = \ getTimezoneOffset(pd.to_datetime(df.loc[i, "date"]), tz) df.loc[i, ["est.type"]] = "IMPUTE" df = addAnnotation(df, i, "gap=" + str(gapSize)) df.loc[i, ["est.gapSize"]] = gapSize # TODO: this logic should be updated to handle the edge case # where the day before and after the gap have differing TZ, but # the same TZO. In that case the gap should be marked as UNCERTAIN elif df.loc[prevDaywData, "est.timezoneOffset"] == \ df.loc[nextDaywData, "est.timezoneOffset"]: for i in range(currentDay, nextDaywData): df.loc[i, ["est.timezoneOffset"]] = \ df.loc[prevDaywData, "est.timezoneOffset"] df.loc[i, ["est.type"]] = "IMPUTE" df = addAnnotation(df, i, "gap=" + str(gapSize)) df.loc[i, ["est.gapSize"]] = gapSize else: for i in range(currentDay, nextDaywData): df.loc[i, ["est.type"]] = "UNCERTAIN" df = addAnnotation(df, i, "unable-to-impute-tzo") else: for i in range(currentDay, nextDaywData): df.loc[i, ["est.type"]] = "UNCERTAIN" df = addAnnotation(df, i, "unable-to-impute-tzo") return df def imputeTzAndTzo(cDF): sIndices = cDF[cDF["est.timezoneOffset"].isnull()].index hasTzoIndices = cDF[cDF["est.timezoneOffset"].notnull()].index if len(hasTzoIndices) > 0: if len(sIndices) > 0: lastDay = max(sIndices) while ((sIndices.min() < max(hasTzoIndices)) & (len(sIndices) > 0)): currentDay, prevDayWithDay, nextDayIdx = \ getImputIndices(cDF, sIndices, hasTzoIndices) cDF = imputeByTimezone(cDF, currentDay, prevDayWithDay, nextDayIdx) sIndices = cDF[((cDF["est.timezoneOffset"].isnull()) & (~cDF["est.annotations"].str.contains( "unable-to-impute-tzo").fillna(False)))].index hasTzoIndices = cDF[cDF["est.timezoneOffset"].notnull()].index # try to impute to the last day (earliest day) in the dataset # if the last record has a timezone that is the home record, then # impute using the home timezone if len(sIndices) > 0: currentDay = min(sIndices) prevDayWithDay = currentDay - 1 gapSize = lastDay - currentDay for i in range(currentDay, lastDay + 1): if cDF.loc[prevDayWithDay, "est.timezoneOffset"] == \ cDF.loc[prevDayWithDay, "home.imputed.timezoneOffset"]: cDF.loc[i, ["est.type"]] = "IMPUTE" cDF.loc[i, ["est.timezoneOffset"]] = \ cDF.loc[i, "home.imputed.timezoneOffset"] cDF.loc[i, ["est.timezone"]] = \ cDF.loc[i, "home.imputed.timezone"] cDF = addAnnotation(cDF, i, "gap=" + str(gapSize)) cDF.loc[i, ["est.gapSize"]] = gapSize else: cDF.loc[i, ["est.type"]] = "UNCERTAIN" cDF = addAnnotation(cDF, i, "unable-to-impute-tzo") else: cDF["est.type"] = "UNCERTAIN" cDF["est.annotations"] = "unable-to-impute-tzo" return cDF def reorderColumns(cDF): cDF = cDF[["pump.upload.imputed.timezoneOffset", "pump.upload.imputed.timezone", "pump.upload.imputed.timeProcessing", "cgm.upload.imputed.timezoneOffset", "cgm.upload.imputed.timezone", "cgm.upload.imputed.timeProcessing", "healthkit.upload.imputed.timezoneOffset", "healthkit.upload.imputed.timezone", "healthkit.upload.imputed.timeProcessing", "home.imputed.timezoneOffset", "home.imputed.timezone", "home.imputed.timeProcessing", "upload.timezoneOffset", "upload.timezone", "upload.timeProcessing", "cgm.timezoneOffset", "pump.timezoneOffset", "date", "est.type", "est.timezoneOffset", "est.timezone", "est.timeProcessing", "est.annotations", "est.gapSize", "est.version"]] return cDF def readXlsxData(xlsxPathAndFileName): # load xlsx df = pd.read_excel(xlsxPathAndFileName, sheet_name=None, ignore_index=True) cdf = pd.concat(df.values(), ignore_index=True) cdf = cdf.set_index('jsonRowIndex') return cdf def checkInputFile(inputFile): if os.path.isfile(inputFile): if os.stat(inputFile).st_size > 1000: if inputFile[-4:] == "json": inputData = pd.read_json(inputFile, orient="records") fileName = os.path.split(inputFile)[-1][:-5] elif inputFile[-4:] == "xlsx": inputData = readXlsxData(inputFile) fileName = os.path.split(inputFile)[-1][:-5] elif inputFile[-3:] == "csv": inputData = pd.read_csv(inputFile, low_memory=False) fileName = os.path.split(inputFile)[-1][:-4] else: sys.exit("{0} is not a json, xlsx, or csv".format(inputFile)) else: sys.exit("{0} contains too little data".format(inputFile)) else: sys.exit("{0} does not exist".format(inputFile)) return inputData, fileName def getListOfDSTChangeDays(cDF): # get a list of DST change days for the home time zone dstChangeDays = \ cDF[abs(cDF["home.imputed.timezoneOffset"] - cDF["home.imputed.timezoneOffset"].shift(-1)) > 0].date return dstChangeDays def correctEstimatesAroundDst(df, cDF): # get a list of DST change days for the home time zone dstChangeDays = getListOfDSTChangeDays(cDF) # loop through the df within 2 days of a daylight savings time change for d in dstChangeDays: dstIndex = df[(df.date > (d + timedelta(days=-2))) & (df.date < (d + timedelta(days=2)))].index for dIdx in dstIndex: if pd.notnull(df.loc[dIdx, "est.timezone"]): tz = timezone(df.loc[dIdx, "est.timezone"]) tzRange = getRangeOfTZOsForTimezone(str(tz)) minHoursToLocal = min(tzRange)/60 tzoNum = int(tz.localize(df.loc[dIdx, "utcTime"] + timedelta(hours=minHoursToLocal)).strftime("%z")) tzoHours =
np.floor(tzoNum / 100)
numpy.floor
# Library of routines for working with ASKAPsoft Self Calibration data, e.g. cont_gains_cal_SB10944_GASKAP_M344-11B_T0-0A.beam00.tab. # These are mostly focussed around plotting the phase solutions and identifying jumps or failures in these solutions. Note that this module requires CASA support. # The code is based on work by <NAME> and <NAME>. # Author <NAME> # Date 18 Oct 2020 import glob import os import sys import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np from casacore.tables import * import seaborn as sns class SelfCalSolutions: # phase is [time, beam, ant, pol] def __init__(self): """Initialises parameters for reading a selfcal table """ self.nsol = None self.nant = None self.nbeam = 36 self.npol = None # selfcal is an array in order [time, beam, ant, pol] of phase angle and amplitude value self.selfcal = None self.selfcal_times = None self.selfcal_flags = None self.field = None def load(self, base_dir): flist = glob.glob(base_dir + "/cont_gains*tab") flist.sort() filename = flist[0] print (filename) pos = filename.find("beam") if pos == -1: raise Exception("Can't find beam information in " + filename) wildcard = filename[:pos+4] + "??" + filename[pos+6:] flist = glob.glob(wildcard) flist.sort() first_beam = flist[0] tb = table(first_beam, readonly=True, ack=False) t_vals = tb.getcol("TIME") sc_vals = tb.getcol("GAIN",1,1) self.selfcal_times = t_vals[1:] self.nsol = t_vals.shape[0] - 1 gain_shape = sc_vals.shape self.npol = gain_shape[3] self.nant = gain_shape[2] tb.close() self.selfcal = np.zeros((self.nsol, 36, self.nant, self.npol), dtype=np.complex) self.selfcal_flags = np.zeros((self.nsol, 36, self.nant, self.npol), dtype=np.bool) for beam in range(self.nbeam): fname = wildcard.replace("??", "%02d" %(beam)) if os.path.exists(fname) == False: continue tb = table(fname, readonly=True, ack=False) t_vals = tb.getcol("TIME", 1, self.nsol) sc_vals = tb.getcol("GAIN", 1, self.nsol) flag_vals = tb.getcol("GAIN_VALID", 1, self.nsol) for index in range(self.nsol): self.selfcal[index, beam] = sc_vals[index, 0, :, :] self.selfcal_flags[index, beam] = np.invert(flag_vals[index, 0, :, :]) self.selfcal[np.where(self.selfcal_flags)] = np.nan self.field = os.path.basename(base_dir) print("Read %d solutions, %d antennas, %d beams, %d polarisations" %(self.nsol, self.nant, self.nbeam, self.npol)) def plotGains(self, ant, outFile = None): fig = plt.figure(figsize=(14, 14)) amplitudes = np.abs(self.selfcal) phases = np.angle(self.selfcal, deg=True) times = np.array(range(self.nsol)) plt.subplot(1, 1, 1) if self.nant == 36: plt.title("ak%02d" %(ant+1), fontsize=8) else: plt.title("ant%02d" %(ant), fontsize=8) for beam in range(self.nbeam): plt.plot(times, phases[:,beam,ant,0], marker=None, label="beam %d" %(beam)) # plt.plot(times, phases[:,ant,beam,1], marker=None, color="red") plt.ylim(-200.0, 200.0) #rms = np.sqrt(np.mean(np.square(phases[:,beam,ant,0]))) #print ("ant ak{:02d} beam {:02d} rms={:.2f}".format(ant+1, beam, rms)) plt.legend() plt.tight_layout() if outFile == None: plt.show() else: plt.savefig(outFile) plt.close() def _plot_ant_phase(sc, ant, outFile = None): fig = plt.figure(figsize=(14, 14)) amplitudes = np.abs(sc.selfcal) phases = np.angle(sc.selfcal, deg=True) times = np.array(range(sc.nsol)) ax = plt.subplot(1, 1, 1) if sc.nant == 36: plt.title("ak%02d" %(ant+1), fontsize=8) else: plt.title("ant%02d" %(ant), fontsize=8) low = np.nanpercentile(phases[:,:,ant,0], 2.5, axis=(1)) high = np.nanpercentile(phases[:,:,ant,0], 97.5, axis=(1)) colours = sns.color_palette() ax.plot(np.nanmedian(phases[:,:,ant,0], axis=(1)), color=colours[0], label='median') ax.fill_between(range(phases.shape[0]), low, high, color=colours[0], alpha= .2, label=r'95\% range') ax.plot(np.nanmax(phases[:,:,ant,0], axis=(1)), color=colours[1], ls=':', label='maximum') ax.plot(np.nanmin(phases[:,:,ant,0], axis=(1)), color=colours[1], ls=':', label='minimum') plt.ylim(-200.0, 200.0) plt.legend() plt.tight_layout() if outFile == None: plt.show() else: plt.savefig(outFile) plt.close() def _plot_rms_map(sc, field, outFile = None): phases = np.angle(sc.selfcal, deg=True) times = np.array(range(sc.nsol)) #rms = np.sqrt(np.nanmean(np.square(phases[:,:,:,:]), axis=0)) rms = np.std(phases[:,:,:,:], axis=0) print (np.nanmin(rms), np.nanmedian(rms), np.nanmax(rms)) ant_list = ['ak{:02}'.format(i+1) for i in range(36)] beam_list = ['b{:02}'.format(i) for i in range(36)] sns.set() fig, axs = plt.subplots(1, 2, figsize=(20,8)) pol = ['XX', 'YY'] for i, ax in enumerate(axs): sns.heatmap(rms[:,:,i].transpose(), ax=ax, cmap='GnBu', square=True, xticklabels=beam_list, yticklabels=ant_list, vmin=0, vmax=40, linewidths=.5, cbar_kws={"shrink": .9, "label": 'Phase Standard Deviation (deg)'}) ax.set_title('Self-cal phase for %s pol %s' % (field, pol[i])) ax.set_xlabel(r'Beam') axs[0].set_ylabel(r'Antenna') if outFile == None: plt.show() else: plt.savefig(outFile, bbox_inches='tight') plt.close() def _plot_summary_phases(sc, field, outFile = None): phases = np.angle(sc.selfcal, deg=True) times = np.array(range(sc.nsol)) sns.set() fig, axs = plt.subplots(1, 2, figsize=(20,8)) pol = ['XX', 'YY'] colours = sns.color_palette() for i, ax in enumerate(axs): low = np.nanpercentile(phases[:,:,:,i], 2.5, axis=(1,2)) high = np.nanpercentile(phases[:,:,:,i], 97.5, axis=(1,2)) low_ant = np.nanmin(np.nanpercentile(phases[:,:,:,i], 2.5, axis=(1)), axis=1) high_ant = np.nanmax(np.nanpercentile(phases[:,:,:,i], 97.5, axis=(1)), axis=1) low_med = np.nanmin(np.nanmedian(phases[:,:,:,i], axis=(1)), axis=1) high_med = np.nanmax(np.nanmedian(phases[:,:,:,i], axis=(1)), axis=1) print (low.shape, low_ant.shape) ax.fill_between(range(phases.shape[0]), low_ant, high_ant, color=colours[2], alpha= .2, label="95 percentile range") ax.plot(np.nanmedian(phases[:,:,:,i], axis=(1,2)), color=colours[0], label="median") ax.fill_between(range(phases.shape[0]), low_med, high_med, color=colours[0], alpha= .4, label="median range") ax.plot(np.nanmax(phases[:,:,:,i], axis=(1,2)), color=colours[1], ls=':', alpha=.6, label="maximum") ax.plot(np.nanmin(phases[:,:,:,i], axis=(1,2)), color=colours[1], ls=':', alpha=.6, label="minimum") ax.set_title('Self-cal phase for %s pol %s' % (field, pol[i])) ax.set_xlabel(r'Time (Integration number)') ax.set_ylim(-200.0, 200.0) ax.legend() axs[0].set_ylabel(r'Phase (deg)') if outFile == None: plt.show() else: plt.savefig(outFile, bbox_inches='tight') plt.close() def _plot_median_phases(sc, field, outFile = None): phases = np.angle(sc.selfcal, deg=True) times = np.array(range(sc.nsol)) sns.set() fig, axs = plt.subplots(1, 2, figsize=(20,8)) pol = ['XX', 'YY'] colours = sns.color_palette() for i, ax in enumerate(axs): means = np.nanmedian(phases[:,:,:,i], axis=1) for ant in range(36): if ant > 30: ax.plot(means[:,ant], label="ak%02d" %(ant+1), lw=2, zorder=2) else: ax.plot(means[:,ant], color='grey', lw=1, zorder=1) ax.set_title('Median self-cal phase for %s pol %s' % (field, pol[i])) ax.set_xlabel(r'Time (Integration number)') axs[0].legend() axs[0].set_ylabel(r'Phase (deg)') if outFile == None: plt.show() else: plt.savefig(outFile, bbox_inches='tight') plt.close() def _plot_ant_phases(sc, field, outFile = None): phases = np.angle(sc.selfcal, deg=True) times = np.array(range(sc.nsol)) sns.set() fig, axs = plt.subplots(1, 2, figsize=(20,8)) pol = ['XX', 'YY'] colours = sns.color_palette() for i, ax in enumerate(axs): means = np.nanmedian(phases[:,:,:,i], axis=1) for ant in range(36): if ant > 30: ax.plot(means[:,ant], label="ak%02d" %(ant+1), lw=2, zorder=2) else: ax.plot(means[:,ant], color='grey', lw=1, zorder=1) ax.set_title('Median self-cal phase for %s pol %s' % (field, pol[i])) ax.set_xlabel(r'Time (Integration number)') axs[0].legend() axs[0].set_ylabel(r'Phase (deg)') if outFile == None: plt.show() else: plt.savefig(outFile, bbox_inches='tight') plt.close() def _plot_all_phases(sc, field, outFile = None): phases = np.angle(sc.selfcal, deg=True) times = np.array(range(sc.nsol)) sns.set() fig, axs = plt.subplots(6, 12, figsize=(40,16)) pols = ['XX', 'YY'] colours = sns.color_palette() for i, pol in enumerate(pols): for ant in range(36): ax = axs[ant // 6, i*6+ant%6] for beam in range(sc.nbeam): ax.plot(times, phases[:,beam,ant,i], marker=None, label="beam %d" %(beam)) ax.set_ylim(-200.0, 200.0) ax.set_title('Phases for ak%02d pol %s' % (ant+1, pol[i])) #ax.set_xlabel(r'Time (Integration number)') #axs[0].legend() axs[0,0].set_ylabel(r'Phase (deg)') if outFile == None: plt.show() else: plt.savefig(outFile, bbox_inches='tight', dpi=300) plt.close() def _plot_amp_rms_map(sc, field, outFile = None): amplitudes = np.absolute(sc.selfcal) times = np.array(range(sc.nsol)) rms = np.std(amplitudes[:,:,:,:], axis=0) print (np.nanmin(rms), np.nanmedian(rms), np.nanmax(rms)) ant_list = ['ak{:02}'.format(i+1) for i in range(36)] beam_list = ['b{:02}'.format(i) for i in range(36)] sns.set() fig, axs = plt.subplots(1, 2, figsize=(20,8)) pol = ['XX', 'YY'] for i, ax in enumerate(axs): sns.heatmap(rms[:,:,i].transpose(), ax=ax, cmap='GnBu', square=True, xticklabels=beam_list, yticklabels=ant_list, vmin=0, vmax=0.1, linewidths=.5, cbar_kws={"shrink": .9, "label": 'Bandpass Standard Deviation (Jy)'}) ax.set_title('Bandpass stability for %s pol %s' % (field, pol[i])) ax.set_xlabel(r'Beam') axs[0].set_ylabel(r'Antenna') #plt.tight_layout() if outFile == None: plt.show() else: plt.savefig(outFile, bbox_inches='tight') plt.close() def prepare_self_cal_set(folder): """ Prepare a set of self cal solutions for analysis. Parameters ---------- folder: path Path to the folder containing the self cal solution files. Normally named after the field/interleave. Returns ------- The SelfCalSolutions object for use by other calls. """ sc = SelfCalSolutions() sc.load(folder) return sc def plot_self_cal_set(sc, fig_folder): """ Produce plots for a set of self calibration solutions for a field. Parameters ---------- sc: SelfCalSolutions The loaded self cal solutions object for the field/interleave. fig_folder: string Path to the folder we should put any plots or reports in. Returns ------- The paths to the RMS map plot and the summary plot produced for this field. """ rms_map_plot = fig_folder + '/sc_heatmap_{}.png'.format(sc.field) summary_plot = fig_folder + '/sc_summary_{}.png'.format(sc.field) all_phases_plot = fig_folder + '/sc_phases_{}.png'.format(sc.field) _plot_rms_map(sc, sc.field, rms_map_plot) _plot_summary_phases(sc, sc.field, summary_plot) _plot_all_phases(sc, sc.field, all_phases_plot) return rms_map_plot, summary_plot, all_phases_plot def calc_phase_stability(sc, phase_rms_max=40): """ Calculate summary statistics of the phase stability as recorded in the self-cal solution. Parameters ---------- sc: SelfCalSolutions The loaded self cal solutions object for the field/interleave. phase_rms_max: double The maximum allowed median rms before a beam or antenna is classified as bad. Returns ------- The number of bad beams and bad antennas. """ phases = np.angle(sc.selfcal, deg=True) times = np.array(range(sc.nsol)) rms = np.std(phases[:,:,:,:], axis=0) # phase is [time, beam, ant, pol] bad_beams = [] bad_ant = [] for i in range(2): # polarisations XX and YY bad_ant.append(np.median(rms[:,:,i], axis=0) >= phase_rms_max) bad_beams.append(np.median(rms[:,:,i], axis=1) >= phase_rms_max) bad_ant_either = bad_ant[0] | bad_ant[1] bad_beam_either = bad_beams[0] | bad_beams[1] print('ants', bad_ant_either) print('beams', bad_beam_either) return np.sum(bad_beam_either),
np.sum(bad_ant_either)
numpy.sum
# Copyright (c) 2020. <NAME>. hk2699 at caa dot columbia dot edu. import matplotlib as mpl import numpy as np import numpy_groupies as npg import statsmodels.api as sm from matplotlib import pyplot as plt from data_2d import consts, load_data from lib.pylabyk import plt2, np2 def get_coefs( dim, dif_other, dur, ch, cond, t_RDK_dur, correct_only=True ): """ :param dim: :param dif_other: :param dur: [tr] :param ch: [tr, dim] :param cond: [tr, dim] :param t_RDK_dur: :param correct_only: :return: glmres.params, glmres.bse, glmres, glmmodel """ id_dif = np.empty_like(cond) for dim1 in range(consts.N_DIM): out = np.unique(np.abs(cond[:,dim1]), return_inverse=True) _, id_dif[:, dim1] = out odim = consts.N_DIM - 1 - dim incl = ( (t_RDK_dur == dur) & (np.isin(id_dif[:, odim], dif_other)) ) if correct_only: incl = ( incl & (np.sign(ch[:, odim] - 0.5) == np.sign(cond[:, odim])) ) ch1 = ch[incl, dim] coh1 = cond[incl, dim] cohs, id_cohs = np.unique(coh1, return_inverse=True) if np.issubdtype(ch1.dtype, np.floating): # p_ch=1 is given ch11 = np.stack([ npg.aggregate(id_cohs, ch1), npg.aggregate(id_cohs, 1 - ch1) ], -1) else: ch11 = npg.aggregate(np.vstack((id_cohs, 1 - ch1)), 1) glmmodel = sm.GLM( ch11, sm.add_constant(cohs), family=sm.families.Binomial()) glmres = glmmodel.fit() return glmres.params, glmres.bse, glmres, glmmodel def get_coefs_mesh(cond, ch, t_RDK_dur, dif_irrs=(2, (0, 1)), correct_only=False ) -> (np.ndarray, np.ndarray, np.ndarray, np.ndarray): """ :param cond: :param ch: :param t_RDK_dur: :param dif_irrs: :param correct_only: :return: (coef, se_coef, glmres, glmmodel) coef[(bias, slope), dim, dif, dur] """ dims = [0, 1] t_RDK_durs, id_durs = np.unique(t_RDK_dur, return_inverse=True) coef, se_coef, glmres, glmmodel = np2.meshfun( lambda *args: get_coefs( *args, ch=ch, cond=cond, t_RDK_dur=t_RDK_dur, correct_only=correct_only), [dims, dif_irrs, t_RDK_durs], n_out=4, outshape_first=True ) return coef, se_coef, glmres, glmmodel def get_coefs_from_histogram(cond, p_cond_ch): glmmodel = sm.GLM(p_cond_ch, sm.add_constant(cond), family=sm.families.Binomial()) glmres = glmmodel.fit() return glmres.params, glmres.bse, glmres, glmmodel def get_coefs_mesh_from_histogram( p_cond_dur_ch: np.ndarray, ev_cond_dim: np.ndarray, dif_irrs=((2,), (0, 1)) ) -> (np.ndarray, np.ndarray, np.ndarray, np.ndarray): """ :param p_cond_dur_ch: :param ev_cond_dim: [cond, dim] :param dif_irrs: return: (coef, se_coef, glmres, glmmodel) coef[(bias, slope), dim, dif, dur] """ n_dim = ev_cond_dim.shape[1] n_dif = len(dif_irrs) n_dur = p_cond_dur_ch.shape[1] siz = [n_dim, n_dif, n_dur] n_coef = 4 coef = np.zeros([n_coef] + siz) + np.nan se_coef = np.zeros([n_coef] + siz) + np.nan glmress = np.empty(siz, dtype=np.object) glmmodels = np.empty(siz, dtype=np.object) p_cond_dur_ch = p_cond_dur_ch.reshape([-1] + [n_dur] + [consts.N_CH] * 2) for dim_rel in range(n_dim): for idif, dif_irr in enumerate(dif_irrs): for idur in range(n_dur): dim_irr = consts.get_odim(dim_rel) cond_irr = ev_cond_dim[:, dim_irr] adcond_irr = np.unique(np.abs(cond_irr), return_inverse=True)[1] incl = np.isin(adcond_irr, dif_irr) ev_cond_dim1 = ev_cond_dim[incl] reg = [ev_cond_dim1[:, dim_rel]] reg += [ ev_cond_dim1[:, dim_irr], ] if len(dif_irr) > 1: # otherwise np.abs(cond_irr) would be constant reg.append(np.abs(ev_cond_dim1[:, dim_irr])) reg = np.stack(reg, -1) reg = sm.add_constant(reg) n_coef1 = reg.shape[1] if dim_rel == 0: p_cond_ch = p_cond_dur_ch[incl, idur, :, :].sum(-1) else: p_cond_ch = p_cond_dur_ch[incl, idur, :, :].sum(-2) glmmodel = sm.GLM(np.flip(p_cond_ch, -1), reg, family=sm.families.Binomial()) glmres = glmmodel.fit() coef[:n_coef1, dim_rel, idif, idur] = glmres.params se_coef[:n_coef1, dim_rel, idif, idur] = glmres.bse glmress[dim_rel, idif, idur] = glmres glmmodels[dim_rel, idif, idur] = glmmodel return coef, se_coef, glmress, glmmodels def get_coefs_irr_ixn_from_histogram( p_cond_dur_ch: np.ndarray, ev_cond_dim: np.ndarray ) -> (np.ndarray, np.ndarray, np.ndarray, np.ndarray): """ :param p_cond_dur_ch: :param ev_cond_dim: [cond, dim] :param dif_irrs: return: (coef, se_coef, glmres, glmmodel) coef[(bias, slope), dim, dif, dur] """ n_dim = ev_cond_dim.shape[1] n_dur = p_cond_dur_ch.shape[1] siz = [n_dim, n_dur] n_coef = 6 # constant, rel, rel x abs(irr), rel x irr, abs(irr), irr, coef =
np.zeros([n_coef] + siz)
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Mon Sep 26 11:16:49 2016 @author: tsz """ from __future__ import division import os import numpy as np import pycity_base.classes.timer import pycity_base.classes.sun import pycity_base.classes.weather import pycity_base.classes.prices import pycity_base.classes.environment import pycity_base.classes.demand.occupancy import pycity_base.classes.demand.electrical_demand as ED import pycity_base.classes.demand.domestic_hot_water as DomesticHotWater import pycity_base.classes.demand.space_heating as sh import pycity_base.classes.demand.zone_parameters as zp # Location: Denver (weather inputs from ASHRAE 140 verification) location = (39.76, -104.86) altitude = 1609 # m time_zone = -7 timer = pycity_base.classes.timer.Timer(time_discretization=3600, timesteps_horizon=8760, timesteps_used_horizon=8760, timesteps_total=8760) prices = pycity_base.classes.prices.Prices() # Define src path ashrae_path = os.path.dirname(os.path.abspath(__file__)) weather_temp_path = os.path.join(ashrae_path, 'weather_temperature.csv') weather_beam_path = os.path.join(ashrae_path, 'weather_beam.csv') weather_diffuse_path = os.path.join(ashrae_path, 'weather_diffuse.csv') weather = pycity_base.classes.weather.Weather(timer, path_temperature=weather_temp_path, path_direct_radiation=weather_beam_path, path_diffuse_radiation=weather_diffuse_path, time_discretization=3600, delimiter="\t", use_TRY=False, location=location, altitude=altitude, time_zone=time_zone) prices = pycity_base.classes.prices.Prices() environment = pycity_base.classes.environment.Environment(timer, weather, prices) # Occupancy and electrical demand occupancy = pycity_base.classes.demand.occupancy.Occupancy(environment, number_occupants=3) energy_input = 3000 el_dem_stochastic = ED.ElectricalDemand(environment, method=2, annual_demand=energy_input, total_nb_occupants=3, randomize_appliances=True, light_configuration=10, occupancy=occupancy.occupancy, do_normalization=True) demand_electricity = el_dem_stochastic.loadcurve # Domestic hot water demand dhw_stochastical = DomesticHotWater.DomesticHotWater(environment, t_flow=60, thermal=True, method=2, supply_temperature=20, occupancy=occupancy.occupancy) demand_hot_water = dhw_stochastical.loadcurve # Building model # beta: slope angle, gamma: surface azimuth angle # S, W, N, E, Roof beta = [90, 90, 90, 90, 0] gamma = [0, 90, 180, 270, 0] albedo = 0.2 internalGains = 0.3 * demand_electricity # Heated floor area A_f = 150 # m^2 heightWalls = 3.0 # m volume = A_f * heightWalls # Material properties # Opaque surfaces solarAbsorptance = 0.7 # alpha infraredEmittance = 0.9 # epsilon # Index-Orientation: South, West, North, East, Roof, Floor A_windows = np.array([7.5, 7.5, 7.5, 7.5, 0, 0]) A_walls_ext = np.array([42.25, 42.25, 42.25, 42.25, 99.75, 99.75]) A_walls = A_walls_ext - A_windows A_walls_int = [375, 75, 75] #m²; [intWall, intCeiling, intFloor] A_walls =
np.append(A_walls_ext, A_walls_int)
numpy.append
""" A method that computes the constraint violations, where its considered a violation if P(General|x) < P(Specific|x) """ from typing import Dict, List from box_mlc.dataset_readers.hierarchy_readers.hierarchy_reader import ( HierarchyReader, ) from torch.nn.parameter import Parameter from allennlp.common import Registrable import logging import torch import numpy as np logger = logging.getLogger(__name__) # TODO: Remove the parent class Module # TODO: remove the extra useless parameter adjacency_matrix_param class ConstraintViolation(torch.nn.Module,Registrable): """ Given a hierarchy in the form of an adjacency matrix or cooccurence statistic in the adjacency matrix format, compute the average constraint violation. """ def __init__( self, hierarchy_reader: HierarchyReader, cooccurence_threshold: float = 1, ) -> None: """ Args: hierarchy_reader: Creates the adjacency_matrix and the mask. cooccurence_threshold: If adjecency matrix captures the cooc stats, threshold determines if an edge exixst b/w labels. Row->general.Column->Specific. """ super().__init__() # type:ignore #self.adjacency_matrix_param = torch.nn.Parameter(hierarchy_reader.adjacency_matrix, requires_grad=False) # This is useless but present only so that we can load old models. self.adjacency_matrix = ( hierarchy_reader.adjacency_matrix.detach().cpu().numpy() ) self.threshold = cooccurence_threshold def get_true_mask(self, true_labels: np.ndarray) -> np.ndarray: true_mask = true_labels.copy() true_mask[true_mask == 1] = -100000 true_mask[true_mask == 0] = 1 return true_mask def __call__( self, positive_probabilities: torch.Tensor, true_labels: torch.Tensor ) -> Dict: """ true_labels: (examples, labels). True labels for the given example. Should follow same label indexing as the adj. matrix. positive_probabilities: (examples, labels). Predicted probabilities by the model. """ positive_probabilities = positive_probabilities.detach().cpu().numpy() true_labels = true_labels.detach().cpu().numpy() edges_idx = np.argwhere(self.adjacency_matrix >= self.threshold) true_mask = self.get_true_mask(true_labels) # logger.info(f"Processing {len(edges_idx)} edges") avg_number_of_violations: List = [] number_of_violations: List = [] extent_of_violations: List = [] frequency: List = [] distances: List = [] no_examples_edges_count: int = 0 for edge in edges_idx: ind = np.logical_and( true_labels[:, edge[0]], true_labels[:, edge[1]] ) # examples where the edge is present true_subset = true_labels.copy()[ind] if true_subset.shape[0] > 0: frequency.append(true_subset.shape[0]) true_mask_subset = true_mask.copy()[ind] true_mask_subset[:, edge[0]] = 1 true_mask_subset[:, edge[1]] = 1 positive_subset = positive_probabilities.copy()[ ind ] # (#subset_ex, num_labels) extent_of_violations.append( np.mean( positive_subset[:, edge[0]] - positive_subset[:, edge[1]] ) ) sorted_ind = np.argsort( -1 * positive_subset * true_mask_subset, axis=1 ) distance_g_s = ( np.argwhere(sorted_ind == edge[0])[:, -1] -
np.argwhere(sorted_ind == edge[1])
numpy.argwhere
""" Module for customising opensim segmented muscle points """ import os import re import math import json import shutil import numpy as np import copy from gias3.musculoskeletal.bonemodels import bonemodels from gias3.musculoskeletal import osim from mapclientplugins.gait2392somsomusclestep.muscleVolumeCalculator import muscleVolumeCalculator from numpy import pi from scipy.interpolate import interp1d SELF_DIR = os.path.split(__file__)[0] DATA_DIR = os.path.join(SELF_DIR, 'data/node_numbers/') TEMPLATE_OSIM_PATH = os.path.join(SELF_DIR, 'data', 'gait2392_simbody_wrap.osim') VALID_SEGS = {'pelvis', 'femur-l', 'femur-r', 'tibia-l', 'tibia-r'} OSIM_FILENAME = 'gait2392_simbody.osim' VALID_UNITS = ('nm', 'um', 'mm', 'cm', 'm', 'km') TIBFIB_SUBMESHES = ('tibia', 'fibula') TIBFIB_SUBMESH_ELEMS = {'tibia': range(0, 46), 'fibula': range(46, 88), } TIBFIB_BASISTYPES = {'tri10': 'simplex_L3_L3', 'quad44': 'quad_L3_L3'} def dim_unit_scaling(in_unit, out_unit): """ Calculate the scaling factor to convert from the input unit (in_unit) to the output unit (out_unit). in_unit and out_unit must be a string and one of ['nm', 'um', 'mm', 'cm', 'm', 'km']. inputs ====== in_unit : str Input unit out_unit :str Output unit returns ======= scaling_factor : float """ unit_vals = { 'nm': 1e-9, 'um': 1e-6, 'mm': 1e-3, 'cm': 1e-2, 'm': 1.0, 'km': 1e3, } if in_unit not in unit_vals: raise ValueError( 'Invalid input unit {}. Must be one of {}'.format( in_unit, list(unit_vals.keys()) ) ) if out_unit not in unit_vals: raise ValueError( 'Invalid input unit {}. Must be one of {}'.format( in_unit, list(unit_vals.keys()) ) ) return unit_vals[in_unit] / unit_vals[out_unit] def update_femur_opensim_acs(femur_model): femur_model.acs.update( *bonemodels.model_alignment.createFemurACSOpenSim( femur_model.landmarks['femur-HC'], femur_model.landmarks['femur-MEC'], femur_model.landmarks['femur-LEC'], side=femur_model.side ) ) def update_tibiafibula_opensim_acs(tibiafibula_model): tibiafibula_model.acs.update( *bonemodels.model_alignment.createTibiaFibulaACSOpenSim( tibiafibula_model.landmarks['tibiafibula-MM'], tibiafibula_model.landmarks['tibiafibula-LM'], tibiafibula_model.landmarks['tibiafibula-MC'], tibiafibula_model.landmarks['tibiafibula-LC'], side=tibiafibula_model.side ) ) def split_tibia_fibula_gfs(tib_fib_gf): tib = tib_fib_gf.makeGFFromElements( 'tibia', TIBFIB_SUBMESH_ELEMS['tibia'], TIBFIB_BASISTYPES, ) fib = tib_fib_gf.makeGFFromElements( 'fibula', TIBFIB_SUBMESH_ELEMS['fibula'], TIBFIB_BASISTYPES, ) return tib, fib def local_osim_2_global(body, model): # find the knee angle knee = model.joints['knee_l'] kneeAngle = model.joints['knee_l'].coordSets['knee_angle_l'].defaultValue knee_lTrans = np.zeros(3) # get the spline values trans1X = knee.getSimmSplineParams('translation1')[0] trans1Y = knee.getSimmSplineParams('translation1')[1] f = interp1d(trans1X, trans1Y, kind='cubic') knee_lTrans[0] = f(kneeAngle) trans2X = knee.getSimmSplineParams('translation2')[0] trans2Y = knee.getSimmSplineParams('translation2')[1] f2 = interp1d(trans2X, trans2Y, kind='cubic') knee_lTrans[1] = f2(kneeAngle) # find the knee angle knee = model.joints['knee_r'] kneeAngle = model.joints['knee_r'].coordSets['knee_angle_r'].defaultValue knee_rTrans = np.zeros(3) # get the spline values trans1X = knee.getSimmSplineParams('translation1')[0] trans1Y = knee.getSimmSplineParams('translation1')[1] f = interp1d(trans1X, trans1Y, kind='cubic') knee_rTrans[0] = f(kneeAngle) trans2X = knee.getSimmSplineParams('translation2')[0] trans2Y = knee.getSimmSplineParams('translation2')[1] f2 = interp1d(trans2X, trans2Y, kind='cubic') knee_rTrans[1] = f2(kneeAngle) trans = None if body == 'pelvis': trans = np.zeros(3) elif body == 'femur_l': trans = model.joints['hip_l'].locationInParent elif body == 'femur_r': trans = model.joints['hip_r'].locationInParent elif body == 'tibia_l': trans = (model.joints['hip_l'].locationInParent + knee_lTrans) elif body == 'tibia_r': trans = (model.joints['hip_r'].locationInParent + knee_rTrans) elif body == 'talus_l': trans = (model.joints['hip_l'].locationInParent + knee_lTrans + model.joints['ankle_l'].locationInParent) elif body == 'talus_r': trans = (model.joints['hip_r'].locationInParent + knee_rTrans + model.joints['ankle_r'].locationInParent) elif body == 'calcn_l': trans = (model.joints['hip_l'].locationInParent + knee_lTrans + model.joints['ankle_l'].locationInParent + model.joints['subtalar_l'].locationInParent) elif body == 'calcn_r': trans = (model.joints['hip_r'].locationInParent + knee_rTrans + model.joints['ankle_r'].locationInParent + model.joints['subtalar_r'].locationInParent) elif body == 'toes_l': trans = (model.joints['hip_l'].locationInParent + knee_lTrans + model.joints['ankle_l'].locationInParent + model.joints['subtalar_l'].locationInParent + model.joints['mtp_l'].locationInParent) elif body == 'toes_r': trans = (model.joints['hip_r'].locationInParent + knee_rTrans + model.joints['ankle_r'].locationInParent + model.joints['subtalar_r'].locationInParent + model.joints['mtp_r'].locationInParent) return trans class Gait2392MuscleCustomiser(object): def __init__(self, config, ll=None, osimmodel=None, landmarks=None): """ Class for customising gait2392 muscle points using host-mesh fitting inputs ====== config : dict Dictionary of option. (work in progress) Example: { 'osim_output_dir': '/path/to/output/model.osim', 'in_unit': 'mm', 'out_unit': 'm', 'write_osim_file': True, 'update_knee_splines': False, 'static_vas': False, } ll : LowerLimbAtlas instance Model of lower limb bone geometry and pose osimmodel : opensim.Model instance The opensim model instance to customise """ self.config = config self.ll = ll self.trcdata = landmarks self.gias_osimmodel = None self._workflow_location = None if osimmodel is not None: self.set_osim_model(osimmodel) self._unit_scaling = dim_unit_scaling( self.config['in_unit'], self.config['out_unit'] ) def set_osim_model(self, model): self.gias_osimmodel = osim.Model(model=model) def cust_pelvis(self): pelvis = self.ll.models['pelvis'] # load the pelvis muscle attachment node numbers with open(DATA_DIR + 'pelvisNodeNumbers.txt') as infile: pelvisData = json.load(infile) pelvisAttachmentNodeNums = list(pelvisData.values()) pelvisMuscleNames = list(pelvisData.keys()) pelvisMuscleNames = [str(item) for item in pelvisMuscleNames] # This method appears to be taking quite a while to complete (like 5 # minutes), is this expected? This wasn't being used in musclecusthfm. # the muscle attachments were selected an a 24x24 mesh pelvisPoints, lhF = pelvis.gf.triangulate([24, 24]) # Align the discretised pelvis points and the muscle attachments to the # opensims pelvis local coordinate system. localPelvisPoints = pelvis.acs.map_local(pelvisPoints) / 1000 pelvisAttachments = localPelvisPoints[pelvisAttachmentNodeNums] for i in range(len(pelvisMuscleNames)): muscle = self.gias_osimmodel.muscles[str(pelvisMuscleNames[i])] pathPoints = muscle.path_points s = sorted(muscle.path_points.keys()) aSite = None # aSite will be 0 if attachment is an origin and -1 if insertion if pathPoints[s[0]].body.name == 'pelvis': aSite = 0 elif pathPoints[s[-1]].body.name == 'pelvis': aSite = -1 # update the location of the pathpoint pp = pathPoints[s[aSite]] pp.location = pelvisAttachments[i] def cust_femur_l(self): leftFemur = self.ll.models['femur-l'] # load in the femur muscle attachment node numbers with open(DATA_DIR + 'leftFemurNodeNumbers.txt') as infile: leftFemurData = json.load(infile) leftFemurAttachmentNodeNums = list(leftFemurData.values()) leftFemurMuscleNames = list(leftFemurData.keys()) leftFemurMuscleNames = [str(item) for item in leftFemurMuscleNames] # update the geometric field coordinate system to match opensims update_femur_opensim_acs(leftFemur) # the muscle attachments were selected an a 24x24 mesh leftFemurPoints, lhF = leftFemur.gf.triangulate([24, 24]) # align the discretised femur points and the muscle attachments to the # opensims femur local coordinate system localLeftFemurPoints = leftFemur.acs.map_local(leftFemurPoints) / 1000 leftFemurAttachments = localLeftFemurPoints[ leftFemurAttachmentNodeNums] for i in range(len(leftFemurMuscleNames)): muscleLeft = self.gias_osimmodel.muscles[ str(leftFemurMuscleNames[i])] pathPointsLeft = muscleLeft.path_points sL = sorted(muscleLeft.path_points.keys()) aSite = None # aSite will be 0 if attachment is an origin and -1 if insertion if pathPointsLeft[sL[0]].body.name == 'femur_l': aSite = 0 elif pathPointsLeft[sL[-1]].body.name == 'femur_l': aSite = -1 # update the location of the pathpoint ppL = pathPointsLeft[sL[aSite]] ppL.location = leftFemurAttachments[i] def cust_femur_r(self): rightFemur = self.ll.models['femur-r'] rightFemur.side = 'right' with open(DATA_DIR + 'rightFemurNodeNumbers.txt') as infile: rightFemurData = json.load(infile) rightFemurAttachmentNodeNums = list(rightFemurData.values()) rightFemurMuscleNames = list(rightFemurData.keys()) rightFemurMuscleNames = [str(item) for item in rightFemurMuscleNames] # update the geometric field coordinate system to match opensims update_femur_opensim_acs(rightFemur) rightFemurPoints, rhF = rightFemur.gf.triangulate([24, 24]) localRightFemurPoints = rightFemur.acs.map_local( rightFemurPoints) / 1000 rightFemurAttachments = localRightFemurPoints[ rightFemurAttachmentNodeNums] # update attachments for i in range(len(rightFemurMuscleNames)): muscleRight = self.gias_osimmodel.muscles[ str(rightFemurMuscleNames[i])] pathPointsRight = muscleRight.path_points sR = sorted(muscleRight.path_points.keys()) aSite = None # aSite will be 0 if attachment is an origin and -1 if insertion if pathPointsRight[sR[0]].body.name == 'femur_r': aSite = 0 elif pathPointsRight[sR[-1]].body.name == 'femur_r': aSite = -1 ppR = pathPointsRight[sR[aSite]] ppR.location = rightFemurAttachments[i] def cust_tibia_l(self): # The tibia, patella and fibula all use the same fieldwork model to # align with opensim leftTibFib = self.ll.models['tibiafibula-l'] leftPatella = self.ll.models['patella-l'] update_tibiafibula_opensim_acs(leftTibFib) leftTib, leftFib = split_tibia_fibula_gfs(leftTibFib.gf) # load in the tibia muscle attachment node numbers with open(DATA_DIR + 'leftTibiaNodeNumbers.txt') as infile: leftTibiaData = json.load(infile) leftTibiaAttachmentNodeNums = list(leftTibiaData.values()) leftTibiaMuscleNames = list(leftTibiaData.keys()) leftTibiaMuscleNames = [str(item) for item in leftTibiaMuscleNames] # load in the fibula muscle attachment node numbers with open(DATA_DIR + 'leftFibulaNodeNumbers.txt') as infile: leftFibulaData = json.load(infile) leftFibulaAttachmentNodeNums = list(leftFibulaData.values()) leftFibulaMuscleNames = list(leftFibulaData.keys()) leftFibulaMuscleNames = [str(item) for item in leftFibulaMuscleNames] # load in the patella muscle attachment node numbers with open(DATA_DIR + 'leftPatellaNodeNumbers.txt') as infile: leftPatellaData = json.load(infile) leftPatellaAttachmentNodeNums = list(leftPatellaData.values()) leftPatellaMuscleNames = list(leftPatellaData.keys()) leftPatellaMuscleNames = [str(item) for item in leftPatellaMuscleNames] leftTibiaPoints, lhF = leftTib.triangulate([24, 24]) leftFibulaPoints, lhF = leftFib.triangulate([24, 24]) leftPatellaPoints, lhf = leftPatella.gf.triangulate([24, 24]) localLeftTibiaPoints = leftTibFib.acs.map_local(leftTibiaPoints) / 1000 leftTibiaAttachments = localLeftTibiaPoints[ leftTibiaAttachmentNodeNums] localLeftFibulaPoints = leftTibFib.acs.map_local( leftFibulaPoints) / 1000 leftFibulaAttachments = localLeftFibulaPoints[ leftFibulaAttachmentNodeNums] localLeftPatellaPoints = leftTibFib.acs.map_local( leftPatellaPoints) / 1000 leftPatellaAttachments = localLeftPatellaPoints[ leftPatellaAttachmentNodeNums] # update the tibia attachments for i in range(len(leftTibiaMuscleNames)): muscleLeft = self.gias_osimmodel.muscles[ str(leftTibiaMuscleNames[i])] pathPointsLeft = muscleLeft.path_points sL = sorted(muscleLeft.path_points.keys()) aSite = None # aSite will be 0 if attachment is an origin and -1 if insertion if pathPointsLeft[sL[0]].body.name == 'tibia_l': aSite = 0 elif pathPointsLeft[sL[-1]].body.name == 'tibia_l': aSite = -1 ppL = pathPointsLeft[sL[aSite]] ppL.location = leftTibiaAttachments[i] # update the fibula attachments for i in range(len(leftFibulaMuscleNames)): muscleLeft = self.gias_osimmodel.muscles[ str(leftFibulaMuscleNames[i])] pathPointsLeft = muscleLeft.path_points sL = sorted(muscleLeft.path_points.keys()) aSite = None # aSite will be 0 if attachment is an origin and -1 if insertion if pathPointsLeft[sL[0]].body.name == 'tibia_l': aSite = 0 elif pathPointsLeft[sL[-1]].body.name == 'tibia_l': aSite = -1 ppL = pathPointsLeft[sL[aSite]] ppL.location = leftFibulaAttachments[i] # update the patella attachments for i in range(len(leftPatellaMuscleNames)): muscleLeft = self.gias_osimmodel.muscles[ str(leftPatellaMuscleNames[i])] pathPointsLeft = muscleLeft.path_points sL = sorted(muscleLeft.path_points.keys()) aSite = None # aSite will be 0 if attachment is an origin and -1 if insertion if pathPointsLeft[sL[0]].body.name == 'tibia_l': aSite = 0 elif pathPointsLeft[sL[-1]].body.name == 'tibia_l': aSite = -1 ppL = pathPointsLeft[sL[aSite]] ppL.location = leftPatellaAttachments[i] def cust_tibia_r(self): rightTibFib = self.ll.models['tibiafibula-r'] rightPatella = self.ll.models['patella-r'] update_tibiafibula_opensim_acs(rightTibFib) rightTib, rightFib = split_tibia_fibula_gfs(rightTibFib.gf) # load in the tibia attachment node numbers with open(DATA_DIR + 'rightTibiaNodeNumbers.txt') as infile: rightTibiaData = json.load(infile) rightTibiaAttachmentNodeNums = list(rightTibiaData.values()) rightTibiaMuscleNames = list(rightTibiaData.keys()) rightTibiaMuscleNames = [str(item) for item in rightTibiaMuscleNames] # load in the fibula attachment node numbers with open(DATA_DIR + 'rightFibulaNodeNumbers.txt') as infile: rightFibulaData = json.load(infile) rightFibulaAttachmentNodeNums = list(rightFibulaData.values()) rightFibulaMuscleNames = list(rightFibulaData.keys()) rightFibulaMuscleNames = [str(item) for item in rightFibulaMuscleNames] # load in the patella attachment node numbers with open(DATA_DIR + 'rightPatellaNodeNumbers.txt') as infile: rightPatellaData = json.load(infile) rightPatellaAttachmentNodeNums = list(rightPatellaData.values()) rightPatellaMuscleNames = list(rightPatellaData.keys()) rightPatellaMuscleNames = [ str(item) for item in rightPatellaMuscleNames] rightTibiaPoints, lhF = rightTib.triangulate([24, 24]) rightFibulaPoints, lhF = rightFib.triangulate([24, 24]) rightPatellaPoints, lhf = rightPatella.gf.triangulate([24, 24]) localRightTibiaPoints = rightTibFib.acs.map_local( rightTibiaPoints) / 1000 rightTibiaAttachments = localRightTibiaPoints[ rightTibiaAttachmentNodeNums] localRightFibulaPoints = rightTibFib.acs.map_local( rightFibulaPoints) / 1000 rightFibulaAttachments = localRightFibulaPoints[ rightFibulaAttachmentNodeNums] localRightPatellaPoints = rightTibFib.acs.map_local( rightPatellaPoints) / 1000 rightPatellaAttachments = localRightPatellaPoints[ rightPatellaAttachmentNodeNums] for i in range(len(rightTibiaMuscleNames)): muscleRight = self.gias_osimmodel.muscles[ str(rightTibiaMuscleNames[i])] pathPointsRight = muscleRight.path_points sR = sorted(muscleRight.path_points.keys()) aSite = None # aSite will be 0 if attachment is an origin and -1 if insertion if pathPointsRight[sR[0]].body.name == 'tibia_r': aSite = 0 elif pathPointsRight[sR[-1]].body.name == 'tibia_r': aSite = -1 ppR = pathPointsRight[sR[aSite]] ppR.location = rightTibiaAttachments[i] for i in range(len(rightFibulaMuscleNames)): muscleRight = self.gias_osimmodel.muscles[ str(rightFibulaMuscleNames[i])] pathPointsRight = muscleRight.path_points sR = sorted(muscleRight.path_points.keys()) aSite = None # aSite will be 0 if attachment is an origin and -1 if insertion if pathPointsRight[sR[0]].body.name == 'tibia_r': aSite = 0 elif pathPointsRight[sR[-1]].body.name == 'tibia_r': aSite = -1 ppR = pathPointsRight[sR[aSite]] ppR.location = rightFibulaAttachments[i] for i in range(len(rightPatellaMuscleNames)): muscleRight = self.gias_osimmodel.muscles[ str(rightPatellaMuscleNames[i])] pathPointsRight = muscleRight.path_points sR = sorted(muscleRight.path_points.keys()) aSite = None # aSite will be 0 if attachment is an origin and -1 if insertion if pathPointsRight[sR[0]].body.name == 'tibia_r': aSite = 0 elif pathPointsRight[sR[-1]].body.name == 'tibia_r': aSite = -1 ppR = pathPointsRight[sR[aSite]] ppR.location = rightPatellaAttachments[i] def set_workflow_location(self, location): self._workflow_location = location def write_cust_osim_model(self): self.gias_osimmodel.save( os.path.join(self._workflow_location, self.config['osim_output_dir'], OSIM_FILENAME) ) def customise(self): # Note: a number of PathPoints that were scaled in the previous plugin # are also being scaled here. Are both of these necessary? self.cust_pelvis() self.cust_femur_l() self.cust_tibia_l() self.cust_femur_r() self.cust_tibia_r() # What is being done in the following methods that wasn't in the # previous plugin or one of the cust (^) methods? They seem to be # updating the same values that were updated earlier. self.update_hip_muscles() self.update_knee_muscles() self.update_foot_muscles() self.update_wrap_points() # The gait2392 default marker set was comprehensively updated in the # previous plugin. Many of the markers being added here appear to be # duplicates of gait2392 markers. If we need to add any additional # markers to the Model we should use this method. # self.update_marker_set() if self.config['update_max_iso_forces']: self.update_max_iso_forces() # Currently, none of the OFL and TSL values are being re-calculated # after updating the PathPoints. They have been scaled in the previous # plugin but could be done more accurately here. if self.config['write_osim_file']: self.write_cust_osim_model() self.move_mesh_files() def move_mesh_files(self): output_directory = os.path.join(self._workflow_location, self.config['osim_output_dir']) source_dir = os.path.join(self._workflow_location, '../output/Geometry') target_dir = os.path.join(output_directory, './Geometry') if os.path.exists(target_dir): shutil.rmtree(target_dir) shutil.move(source_dir, target_dir) # This method assumes the current max iso force is in mm and multiplies it # to get the value in cm. I'm not sure it should be doing this (or not like # this at least). It should depend on the plugin configuration, right? def update_max_iso_forces(self): osimModel = self.gias_osimmodel subjectHeight = float(self.config['subject_height']) subjectMass = float(self.config['subject_mass']) # calculate muscle volumes using Handsfield (2014) osimAbbr, muscleVolume = muscleVolumeCalculator( subjectHeight, subjectMass) # load Opensim model muscle set allMuscles = osimModel.get_muscles() allMusclesNames = list(range(allMuscles.getSize())) oldValue = np.zeros([allMuscles.getSize(), 1]) optimalFibreLength = np.zeros([allMuscles.getSize(), 1]) penAngleAtOptFibLength = np.zeros([allMuscles.getSize(), 1]) for i in range(allMuscles.getSize()): allMusclesNames[i] = allMuscles.get(i).getName() oldValue[i] = allMuscles.get(i).getMaxIsometricForce() optimalFibreLength[i] = allMuscles.get(i).getOptimalFiberLength() penAngleAtOptFibLength[i] = np.rad2deg( allMuscles.get(i).getPennationAngleAtOptimalFiberLength()) # convert opt. fibre length from [m] to [cm] to match volume units # [cm^3] # Shouldn't this (and the volume units) depend on the plugin config? optimalFibreLength *= 100 allMusclesNamesCut = list(range(allMuscles.getSize())) for i in range(len(allMusclesNames)): # delete trailing '_r' or '_l' currMuscleName = allMusclesNames[i][0:-2] # split the name from any digit in its name and only keep the first # string. currMuscleName = re.split(r'(\d+)', currMuscleName) currMuscleName = currMuscleName[0] # store in cell allMusclesNamesCut[i] = currMuscleName # calculate ratio of old max isometric forces for # multiple-lines-of-action muscles. newAbsVolume = np.zeros([allMuscles.getSize(), 1]) fracOfGroup = np.zeros([allMuscles.getSize(), 1]) for i in range(allMuscles.getSize()): currMuscleName = allMusclesNamesCut[i] currIndex = [ j for j, x in enumerate(osimAbbr) if x == currMuscleName] # currIndex = osimAbbr.index(currMuscleName) if currIndex: currValue = muscleVolume[currIndex] newAbsVolume[i] = currValue # The peroneus longus/brevis and the extensors (EDL, EHL) have to # be treated seperatly as they are represented as a combined muscle # group in Handsfield, 2014. The following method may not be the # best! if currMuscleName == 'per_brev' or currMuscleName == 'per_long': currMuscleNameIndex = np.array([0, 0]) tmpIndex = [j for j, x in enumerate( allMusclesNamesCut) if x == 'per_brev'] currMuscleNameIndex[0] = tmpIndex[0] tmpIndex = [j for j, x in enumerate( allMusclesNamesCut) if x == 'per_long'] currMuscleNameIndex[1] = tmpIndex[0] currIndex = [j for j, x in enumerate(osimAbbr) if x == 'per_'] currValue = muscleVolume[currIndex] newAbsVolume[i] = currValue elif currMuscleName == 'ext_dig' or currMuscleName == 'ext_hal': currMuscleNameIndex = np.array([0, 0]) tmpIndex = [j for j, x in enumerate( allMusclesNamesCut) if x == 'ext_dig'] currMuscleNameIndex[0] = tmpIndex[0] tmpIndex = [j for j, x in enumerate( allMusclesNamesCut) if x == 'ext_hal'] currMuscleNameIndex[1] = tmpIndex[0] currIndex = [j for j, x in enumerate(osimAbbr) if x == 'ext_'] currValue = muscleVolume[currIndex] newAbsVolume[i] = currValue else: # find all instances of each muscle currMuscleNameIndex = [j for j, x in enumerate( allMusclesNamesCut) if x == currMuscleName] # only require half of the results as we only need muscles from # one side currMuscleNameIndex = currMuscleNameIndex[0:int(len( currMuscleNameIndex) / 2)] # find how much of the total muscle volume this muscle contributes fracOfGroup[i] = oldValue[i] / sum(oldValue[currMuscleNameIndex]) # calculate new maximal isometric muscle forces specificTension = 61 # N/cm^2 from Zajac 1989 newVolume = fracOfGroup * newAbsVolume # maxIsoMuscleForce = specificTension * (newVolume/optimalFibreLength) # * np.cos(math.degrees(penAngleAtOptFibLength)) # Update muscles of loaded model (in workspace only!), change model # name and print new osim file. maxIsoMuscleForce = np.zeros([allMuscles.getSize(), 1]) for i in range(allMuscles.getSize()): maxIsoMuscleForce[i] = specificTension * ( newVolume[i] / optimalFibreLength[i]) * np.cos( math.radians(penAngleAtOptFibLength[i])) # only update, if new value is not zero. Else do not override the # original value. if maxIsoMuscleForce[i] != 0: allMuscles.get(i).setMaxIsometricForce(maxIsoMuscleForce[i][0]) def update_hip_muscles(self): muscleNames = ['glut_max1_l', 'glut_max2_l', 'glut_max3_l', 'peri_l', 'iliacus_l', 'psoas_l', 'glut_max1_r', 'glut_max2_r', 'glut_max3_r', 'peri_r', 'psoas_r', 'iliacus_r'] joint = 'hip' body = 'pelvis' # joint - the joint that the muscles cross (currently only works for # muscles that cross a single joint) # body - the body that the origins of the muscles are attached to # this has only been tested for muscles that cross the hip # load in the original model mO = osim.Model(TEMPLATE_OSIM_PATH) mO.init_system() # for each muscle for i in range(len(muscleNames)): # display the pathpoints for both muscles muscleO = mO.muscles[muscleNames[i]] muscle = self.gias_osimmodel.muscles[muscleNames[i]] side = muscle.name[-2:] # find the transformation between the two bodies the muscles are # attached to transO = mO.joints[joint + side].locationInParent trans = self.gias_osimmodel.joints[joint + side].locationInParent pathPointsO = copy.copy(muscleO.path_points) pathPoints = copy.copy(muscle.path_points) for j in range(len(pathPointsO)): if list(pathPointsO.values())[j].body.name == body: list(pathPointsO.values())[j].location -= transO list(pathPoints.values())[j].location -= trans # ################################################## # # ###############Transform Points################### # # ################################################## # # find the path point names for the origin and the insertion sortedKeys = sorted(muscle.path_points.keys()) # the origin will be the first sorted key and the insertion last orig = sortedKeys[0] ins = sortedKeys[-1] # find vector between origins and insertions v1 = pathPoints[orig].location - pathPointsO[orig].location v2 = pathPoints[ins].location - pathPointsO[ins].location # the new points are going to be found by translating the points # based on a weighting mulitplied by these two vectors # the weighting will be how far along the muscle the point it # find the total muscle length segments = np.zeros([len(pathPointsO) - 1, 3]) lengths = np.zeros(len(pathPointsO) - 1) for j in range(len(pathPointsO) - 1): segments[j] = pathPointsO[muscle.name + '-P' + str( j + 2)].location - pathPointsO[ muscle.name + '-P' + str(j + 1)].location lengths[j] = np.linalg.norm(segments[j]) Tl = np.sum(lengths) # Define the weighting function # for the points calculate the magnitude of the new vector and at # what angle for j in range(len(pathPointsO) - 2): # the second pathpoint will be the first via point p = pathPointsO[muscle.name + '-P' + str(j + 2)].location # find how far along the muscle the point is dl = np.sum(lengths[:j + 1]) # create the new points by finding adding a weighted vector pNew = ((dl / Tl) * v2) + ((1 - dl / Tl) * v1) + p # update the opensim model muscle.path_points[muscle.name + '-P' + str( j + 2)].location = pNew # tranform the points back to the main body local coordinate system for j in range(len(pathPoints)): if list(pathPoints.values())[j].body.name == body: list(pathPoints.values())[j].location += trans def update_knee_muscles(self): muscleNames = ['bifemlh_l', 'semimem_l', 'semiten_l', 'sar_l', 'tfl_l', 'grac_l', 'rect_fem_l', 'bifemlh_r', 'semimem_r', 'semiten_r', 'sar_r', 'tfl_r', 'grac_r', 'rect_fem_r', 'bifemsh_l', 'vas_med_l', 'vas_int_l', 'vas_lat_l', 'bifemsh_r', 'vas_med_r', 'vas_int_r', 'vas_lat_r', 'med_gas_l', 'lat_gas_l', 'med_gas_r', 'lat_gas_r'] # This is being done multiple times. Should move outside this method. # load in the original model mO = osim.Model(TEMPLATE_OSIM_PATH) mO.init_system() for i in range(len(muscleNames)): # display the pathpoints for both muscles muscleO = mO.muscles[muscleNames[i]] muscle = self.gias_osimmodel.muscles[muscleNames[i]] pathPointsO = copy.copy(muscleO.path_points) pathPoints = copy.copy(muscle.path_points) for j in range(len(pathPointsO)): list(pathPointsO.values())[j].location += local_osim_2_global( list(pathPointsO.values())[j].body.name, mO) list(pathPoints.values())[j].location += local_osim_2_global( list(pathPoints.values())[j].body.name, self.gias_osimmodel) # find the path point names for the origin and the insertion sortedKeys = sorted(muscle.path_points.keys()) # the origin will be the first sorted key and the insertion last orig = sortedKeys[0] ins = sortedKeys[-1] # find vector between origins and insertions v1 = pathPoints[orig].location - pathPointsO[orig].location v2 = pathPoints[ins].location - pathPointsO[ins].location # the new points are going to be found by translating the points # based on a weighting mulitplied by these two vectors # the weighting will be how far along the muscle the point it # find the total muscle length segments = np.zeros([len(pathPointsO) - 1, 3]) lengths = np.zeros(len(pathPointsO) - 1) for j in range(len(pathPointsO) - 1): segments[j] = pathPointsO[muscle.name + '-P' + str( j + 2)].location - pathPointsO[ muscle.name + '-P' + str(j + 1)].location lengths[j] = np.linalg.norm(segments[j]) Tl = np.sum(lengths) # Define the weighting function for the points calculate the # magnitude of the new vector and at what angle for j in range(len(pathPointsO) - 2): # the second pathpoint will be the first via point p = pathPointsO[muscle.name + '-P' + str(j + 2)].location # find how far along the muscle the point is dl = np.sum(lengths[:j + 1]) # create the new points by finding adding a weighted vector pNew = ((dl / Tl) * v2) + ((1 - dl / Tl) * v1) + p # update the opensim model muscle.path_points[muscle.name + '-P' + str( j + 2)].location = pNew # tranform the pelvis points back to the pelvis region for j in range(len(pathPoints)): list(pathPoints.values())[j].location -= local_osim_2_global( list(pathPoints.values())[j].body.name, self.gias_osimmodel) def update_foot_muscles(self): muscleNames = ['ext_dig_l', 'ext_hal_l', 'flex_dig_l', 'flex_hal_l', 'per_brev_l', 'per_long_l', 'per_tert_l', 'tib_ant_l', 'tib_post_l', 'ext_dig_r', 'ext_hal_r', 'flex_dig_r', 'flex_hal_r', 'per_brev_r', 'per_long_r', 'per_tert_r', 'tib_ant_r', 'tib_post_r'] # load in the original model mO = osim.Model(TEMPLATE_OSIM_PATH) mO.init_system() for i in range(len(muscleNames)): # get the pathPoints for the old and new muscle muscleO = mO.muscles[muscleNames[i]] muscle = self.gias_osimmodel.muscles[muscleNames[i]] side = muscle.name[-1] # find the transformation between the two bodies the muscles are # attached to transO = mO.joints['ankle_' + side].locationInParent + mO.joints[ 'subtalar_' + side].locationInParent trans = self.gias_osimmodel.joints['ankle_' + side]\ .locationInParent + self.gias_osimmodel.joints[ 'subtalar_' + side].locationInParent pathPointsO = copy.copy(muscleO.path_points) pathPoints = copy.copy(muscle.path_points) # ################################################## # # ###############Transform Points################### # # ################################################## # # find the path point names for the origin and the insertion sortedKeys = sorted(muscle.path_points.keys()) # the origin will be the first sorted key orig = sortedKeys[0] ins = None # find the first point on the calcn for j in sortedKeys: if pathPoints[j].body.name == 'calcn_' + side: ins = j break endPP = sortedKeys.index(ins) for j in range(endPP + 1): if pathPointsO[sortedKeys[j]].body.name == 'calcn_' + side: pathPointsO[sortedKeys[j]].location += transO pathPoints[sortedKeys[j]].location += trans # find vector between origins and insertions v1 = pathPoints[orig].location - pathPointsO[orig].location v2 = pathPoints[ins].location - pathPointsO[ins].location # the new points are going to be found by translating the points # based on a weighting mulitplied by these two vectors # the weighting will be how far along the muscle the point it # find the total muscle length segments = np.zeros([endPP, 3]) lengths = np.zeros(endPP) for j in range(endPP): segments[j] = pathPointsO[muscle.name + '-P' + str( j + 2)].location - pathPointsO[ muscle.name + '-P' + str(j + 1)].location lengths[j] = np.linalg.norm(segments[j]) Tl =
np.sum(lengths)
numpy.sum
####################################### # load mnist # import mnist import numpy as np def normalize(img): fac = 0.99 / 255 return img * fac + 0.01 def digit_to_layer(digit): return (np.arange(10) == digit).astype(np.float) train_images = np.array([normalize(img) for img in mnist.train_images()]) train_labels = np.array([digit_to_layer(digit) for digit in mnist.train_labels()]) test_images = np.array([normalize(img) for img in mnist.test_images()]) test_labels = np.array([digit_to_layer(digit) for digit in mnist.test_labels()]) ### import math from functools import reduce padding = 'valid' padding = 'same' padding = 'full' # I x I x C # O x O x K def init_tuple_counter(count_to: tuple) -> tuple: return tuple(np.zeros(len(count_to.shape), dtype=int)) def adder(counter: tuple, max: tuple) -> tuple: if counter == max: return counter counter_array = np.array(counter) length = len(counter_array) carry = True for i in range(length - 1, -1, -1): counter_array[i] = counter_array[i] + 1 carry = False if counter_array[i] > max[i]: counter_array[i] = 0 carry = True if not carry: break counted = [max[:-1] == counter_array[:-1]] if carry and counted: counter_array = max return tuple(counter_array) def conv2d(input: np.array, output: np.array, filters: np.array, stride: tuple([int, int]) = (1, 1)) \ -> np.array: ## padding needs to be implemented ## proper strides kernel_y = len(filters) kernel_x = len(filters[0]) kernel_channels = len(filters[0][0]) num_filters = len(filters[0][0][0]) batch_shape = input.shape[:-3] layer_shape = input.shape[-3:] layer_height = layer_shape[0] layer_width = layer_shape[1] layer_channel = layer_shape[2] stride_x = stride[0] stride_y = stride[1] padding = 0 ## assert padding is valid I x I x K conv_out_height = int(((layer_height - kernel_y + 2 * padding) / stride_y)) \ + 1 conv_out_width = int(((layer_width - kernel_x + 2 * padding) / stride_x)) \ + 1 conv_shape = batch_shape + (conv_out_height, conv_out_width, num_filters) # conv_out = np.ndarray(shape=conv_shape) batch_idx = np.zeros(len(batch_shape), dtype=int) while batch_idx != batch_shape: ## probably needs to be changed layer = input[tuple(batch_idx)] for y_idx in range(0, conv_out_height): y_start = y_idx * stride_y y_end = (y_idx * stride_y + kernel_y) for x_idx in range(0, conv_out_width): x_start = x_idx * stride_x x_end = (x_idx * stride_x + kernel_x) kernel = layer[y_start:y_end, x_start:x_end] for filter_idx in range(num_filters): filter = filters[:, :, :, filter_idx] multi = np.multiply(kernel, filter) product_idx = (y_idx, x_idx, filter_idx) output[tuple(batch_idx) + product_idx] = np.sum(multi) batch_idx = adder(batch_idx, batch_shape) return output def conv_output_size(layer_dimensions: tuple, kernel_dimensions: tuple, stride_dimensionsensions: tuple, padding: int): return (int(((layer_dimensions[0] - kernel_dimensions[0] + 2 * padding) \ / stride_dimensionsensions[0])) + 1, int(((layer_dimensions[1] - kernel_dimensions[1] + 2 * padding) \ / stride_dimensionsensions[1])) + 1, kernel_dimensions[3]) def generate_conv2d_filters(kernel_dimensions: tuple, k: float = 2.0) -> np.array: kernel_y = kernel_dimensions[0] kernel_x = kernel_dimensions[1] kernel_channels = kernel_dimensions[2] num_filters = kernel_dimensions[3] filters = np.ndarray(shape=kernel_dimensions) filter_shape = tuple([kernel_y, kernel_x, kernel_channels]) nl = kernel_x * kernel_y * kernel_channels std = math.sqrt(k / nl) for filter_idx in range(num_filters): filter = np.random.normal(scale=std, size=nl) filter = filter.reshape(filter_shape) filters[:, :, :, filter_idx] = filter return filters def lif_neuron(Vm: float, V_reset: float, V_th: float, tau_m: float, fire=True, leaky=True) -> np.array: if Vm >= V_th and fire: spike = 1 Vm = V_reset else: spike = 0 if leaky: Vm = Vm * math.exp(-1 / tau_m) return [Vm, spike] def flatten(input: np.array, output: np.array, flatten_dim: int): self.input_shape batch_dimensions = input.shape[:flatten_dim] flattened_dimension = tuple([math.prod(input.shape[flatten_dim:])]) output = np.reshape(input, batch_dimensions + flattened_dimension) return output def lif_neuron_pool(Vin: np.array, Vout: np.array, spike_out: np.array, Vreset: float = 0, Vth: float = 0.75, tau_m: int = 100, fire: bool = True, leaky: bool = True, time_index: int = 0) -> np.array: # [batch][time][spike_train] # [batch][ Vin ] # adequate dimensions to process # a dimensions to # assert (len(Vin.shape[-4]) > 2) #if (Vin != NULL): # s = 1 # TODO: implement smth here # generate output arrays # Vout = np.zero(shape=(Vin.shape)) # spike_out = np.zero(shape=(Vin.shape)) assert(Vin.shape == Vout.shape) # process batches batch_dimensions = Vin.shape[:max(time_index-1,0)] spike_train_length = Vin.shape[time_index] membrane_dimensions = Vin.shape[time_index+1:] for batch_idx in np.ndindex(batch_dimensions): for neuron_idx in np.ndindex(membrane_dimensions): for t_idx in range(1, spike_train_length): # membrane voltage for this step t_current = batch_idx + tuple([t_idx]) + neuron_idx t_previous = batch_idx + tuple([t_idx - 1]) + neuron_idx Vm = Vin[t_current] + Vout[t_previous] # simulate lif-neuron [Vout[t_current], spike_out[t_current]] = lif_neuron(Vm, Vreset, Vth, tau_m, fire, leaky) return [Vout, spike_out] def generate_spike_train(p: float, t: int) -> np.array: dist = np.random.uniform(1, 0, t) return np.array([int(item < p) for item in dist]) def generate_layer_spike_train(layer: np.array, train_length: int): layer_height = len(layer) layer_width = len(layer[0]) spike_layer = np.ndarray(shape=(train_length, layer_height, layer_width, 1)) for y in range(0, layer_height): for x in range(0, layer_width): train = np.array(generate_spike_train(layer[y][x], train_length)) for t in range(0, train_length): spike_layer[t, y, x, 0] = train[t] return spike_layer def avg_pool(input: np.array, output:np.array, kernel_size: tuple([int, int]) = (2, 2), stride: tuple([int, int]) = (1, 1)) -> np.array: pool = output ## padding needs to be implemented ## proper strides kernel_y = kernel_size[1] kernel_x = kernel_size[0] batch_shape = input.shape[:-3] layer_shape = input.shape[-3:] layer_height = layer_shape[0] layer_width = layer_shape[1] layer_channel = layer_shape[2] stride_x = stride[0] stride_y = stride[1] padding = 0 pool_height = int(((layer_height - kernel_y + 2 * padding) / stride_y)) + 1 pool_width = int(((layer_width - kernel_x + 2 * padding) / stride_x)) + 1 pool_shape = batch_shape + (pool_height, pool_width, layer_channel) # pool = np.ndarray(shape=pool_shape) # TODO: Update this code batch_idx = np.zeros(len(batch_shape), dtype=int) while batch_idx != batch_shape: layer = input[tuple(batch_idx)] for y_idx in range(0, pool_height): y_start = y_idx * stride_y y_end = (y_idx * stride_y + kernel_y) for x_idx in range(0, pool_width): x_start = x_idx * stride_x x_end = (x_idx * stride_x + kernel_x) for channel_idx in range(0, layer_channel): kernel = layer[y_start:y_end, x_start:x_end, channel_idx] product = np.sum(kernel) / kernel.size product_idx = (y_idx, x_idx, channel_idx) pool[tuple(batch_idx) + product_idx] = product batch_idx = adder(batch_idx, batch_shape) return pool def generate_dense_layer_weights(input_dimensions: tuple, num_neuron_output: int, k: float = 2.0) -> np.array: axons_per_neuron = math.prod(input_dimensions) synapses = np.ndarray(shape=(num_neuron_output, axons_per_neuron)) nl = axons_per_neuron std = math.sqrt(k / nl) for i in range(num_neuron_output): synapses[i] = np.random.normal(scale=std, size=nl) return synapses def dense_forward(input_neurons: np.array, output_neurons: np.array, weights: np.array) -> np.array: ins = input_neurons.shape ons = output_neurons.shape ws = weights.shape # [batch][spike time] batch_dimensions = input_neurons.shape[:-1] # [][] num_input_neurons = weights.shape[1] num_output_neurons = weights.shape[0] #[neuron y][neuron x][channel] for batch_idx in np.ndindex(batch_dimensions): for output_neuron_idx in range(num_output_neurons): # action_potential = 0 # dot product # for input_neuron_idx in range(num_input_neurons): # ax = input_neurons[batch_idx][input_neuron_idx] # wx = weights[output_neuron_idx][input_neuron_idx] # action_potential = action_potential + ax*wx output_neurons[batch_idx][output_neuron_idx] = np.dot(input_neurons[batch_idx], weights[output_neuron_idx]) return output_neurons def generate_membrane(membrane_dimensions: tuple, value: float = 0.0): membrane = np.ndarray(shape=membrane_dimensions) membrane.fill(value) return membrane # This gains the term da_lif / d_net def differentiate_spike_train(spike_train, Vth = 1): # sum of decay over time gamma = sum(spike_train) if gamma == 0: return 0 tau_m = len(spike_train) total_decay = 0 t = tk = 1 for activation in spike_train: if activation: if t != tk: decay = math.exp(-(t - tk) / tau_m) total_decay = total_decay - (1 / tau_m) * decay tk = t + 1 t = t + 1 return (1/Vth) * (1 + (1/gamma) * total_decay) class Layer: def __init__(self): self.trainable = True self.input_shape = None self.output_shape = None def count_parameters(self): raise NotImplementedError() def compute_output_shape(self, input_shape): raise NotImplementedError() def forward_propagate(self, A): raise NotImplementedError() def backward_propagate(self, dZ, cache): raise NotImplementedError() def get_weights(self): raise NotImplementedError() def set_weights(self, weights): raise NotImplementedError() def build(self, input_shape): self.input_shape = input_shape class Dropout(Layer): def __init__(self, probability): super().__init__() self.probability = probability self.mask = None def build(self, input_shape): self.input_shape = input_shape self.output_shape = input_shape self.reset() def reset(self): self.mask = np.random.binomial(1, 1-self.probability, size=self.output_shape) def forward_propagate(self, A): masked = np.multiply(self.mask, A) cache = [{"mask" : self.mask, "output" : masked}] return masked, cache def backward_propagate(self, dZ, cache): assert(dZ.shape == self.mask.shape) return np.multiply(self.mask * dZ) def compute_output_shape(self, input_shape): return input_shape class AveragePool2D(Layer): def __init__(self, kernel_size, strides): super().__init__() assert (len(kernel_size) == 2) assert (len(strides) == 2) self.kernel_size = kernel_size self.strides = strides def build(self, input_shape): self.input_shape = input_shape self.output_shape = self.compute_output_shape(input_shape) def compute_output_shape(self, input_shape): # incorrect input dimensions assert(len(input_shape) >= 3) # dimensions for sample / instance in the input sample_shape = input_shape[-3:] sample_y = sample_shape[0] sample_x = sample_shape[1] sample_channels = sample_shape[2] kernel_x = self.kernel_size[1] kernel_y = self.kernel_size[0] stride_x = self.strides[0] stride_y = self.strides[1] padding = 0 return (int(((sample_y - kernel_y + 2 * padding) / stride_y)) + 1, int(((sample_x - kernel_x + 2 * padding) / stride_x)) + 1, sample_channels) def forward_propagate(self, A): # padding needs to be implemented # separate batches batch_shape = A.shape[:-3] # unpack sample shape sample_shape = A.shape[-3:] sample_y = sample_shape[0] sample_x = sample_shape[1] sample_channels = sample_shape[2] # unpack kernel kernel_y = self.kernel_size[0] kernel_x = self.kernel_size[1] # unpack stride shape stride_y = self.strides[0] stride_x = self.strides[1] # unpack pooling layer shape pool_shape = self.compute_output_shape(A.shape) pool_y = pool_shape[0] pool_x = pool_shape[1] # initialize the output convolution Z_shape = batch_shape + pool_shape Z = np.zeros(shape=Z_shape) Z.fill(-9e99) # begin pooling for batch_idx in np.ndindex(batch_shape): layer = A[batch_idx] for y_idx in range(0, pool_y): y_start = y_idx * stride_y y_end = (y_idx * stride_y + kernel_y) for x_idx in range(0, pool_x): x_start = x_idx * stride_x x_end = (x_idx * stride_x + kernel_x) for channel_idx in range(0, sample_channels): kernel = layer[y_start:y_end, x_start:x_end, channel_idx] product = np.sum(kernel) / kernel.size product_idx = (y_idx, x_idx, channel_idx) Z[batch_idx + product_idx] = product return Z, None class Convolution2D(Layer): def __init__(self, number_of_filters, kernel_size, strides): super().__init__() self.number_of_filters = number_of_filters self.kernel_size = kernel_size self.strides = strides self.filters = [] self.kernel_shape = [] self.padding = 0 def build(self, input_shape): k = 2 sample_shape = input_shape[-3:] sample_y = sample_shape[0] sample_x = sample_shape[1] sample_channels = sample_shape[2] self.input_shape = sample_shape kernel_y = self.kernel_size[0] kernel_x = self.kernel_size[1] kernel_channels = sample_channels kernel_filters = self.number_of_filters self.kernel_shape = tuple([kernel_y, kernel_x, kernel_channels, kernel_filters]) self.output_shape = self.compute_output_shape(sample_shape) self.filters = np.ndarray(shape=self.kernel_shape) filter_shape = tuple([kernel_y, kernel_x, kernel_channels]) nl = kernel_x * kernel_y * kernel_channels std = math.sqrt(k / nl) for filter_idx in range(self.number_of_filters): filter = np.random.normal(scale=std, size=nl) filter = filter.reshape(filter_shape) self.filters[:, :, :, filter_idx] = filter def compute_output_shape(self, input_shape): sample_shape = input_shape[-3:] batch_shape = input_shape[:-3] input_x = sample_shape[1] input_y = sample_shape[0] kernel_x = self.kernel_size[1] kernel_y = self.kernel_size[0] stride_x = self.strides[1] stride_y = self.strides[0] padding = 0 return (int(((input_y - kernel_y + 2 * padding) / stride_y)) + 1, int(((input_x - kernel_x + 2 * padding) / stride_x)) + 1, self.number_of_filters) def forward_propagate(self, A): # padding needs to be implemented # separate batches batch_shape = A.shape[:-3] # unpack sample shape sample_shape = A.shape[-3:] sample_y = sample_shape[0] sample_x = sample_shape[1] sample_channels = sample_shape[2] assert(sample_shape == self.input_shape) # unpack kernel kernel_y = self.kernel_size[0] kernel_x = self.kernel_size[1] # unpack stride shape stride_y = self.strides[0] stride_x = self.strides[1] # unpack convolution conv_shape = self.compute_output_shape(A.shape) conv_y = conv_shape[0] conv_x = conv_shape[1] # initialize the output convolution output_shape = batch_shape + conv_shape output = np.zeros(shape= output_shape) output.fill(-9e99) # begin convolution for batch_idx in np.ndindex(batch_shape): layer = A[batch_idx] for y_idx in range(0, conv_y): y_start = y_idx * stride_y y_end = (y_idx * stride_y + kernel_y) for x_idx in range(0, conv_x): x_start = x_idx * stride_x x_end = (x_idx * stride_x + kernel_x) kernel = layer[y_start:y_end, x_start:x_end] for filter_idx in range(self.number_of_filters): filter = self.filters[:, :, :, filter_idx] multi = np.multiply(kernel, filter) product_idx = (y_idx, x_idx, filter_idx) output[batch_idx + product_idx] = np.sum(multi) return output, None def backward_propagate(self, dZ, cache): raise NotImplementedError() def get_weights(self): return self.filters def set_weights(self, weights): self.filters = weights class Flatten(Layer): def __init__(self): super().__init__() self.input_shape = None self.output_shape = None def compute_output_shape(self, sample_shape): return tuple([math.prod(sample_shape)]) def build(self, input_shape): self.input_shape = input_shape self.output_shape = self.compute_output_shape(input_shape) def forward_propagate(self, A): sample_dimensions = len(self.input_shape) sample_shape = A.shape[-sample_dimensions:] flattened_shape = tuple([math.prod(sample_shape)]) batch_shape = A.shape[:-sample_dimensions] return np.reshape(A, batch_shape + flattened_shape), None def backward_propagate(self, dZ, cache): batch_shape = input_shape[:-3] return np.reshape(dZ, batch_shape + self.input_shape) def get_weights(self): return [] def set_weights(self, weights): pass class Dense(Layer): def __init__(self, num_outputs): super().__init__() self.num_outputs = num_outputs self.num_inputs = 0 self.weights = np.zeros(0) self.output_shape = tuple([num_outputs]) def build(self, input_shape, k = 2): self.input_shape = input_shape sample_shape = input_shape[-3:] self.num_inputs = math.prod(sample_shape) self.weights = np.ndarray(shape=(self.num_outputs, self.num_inputs)) nl = self.num_inputs std = math.sqrt(k / nl) for i in range(self.num_outputs): self.weights[i] = np.random.normal(scale=std, size=nl) def set_weights(self, weights): assert(len(weights.shape) == 2) self.num_inputs = weights.shape[1] self.num_outputs = weights.shape[0] return self.weights def get_weights(self): return self.weights def compute_output_shape(self, input_shape): return tuple([self.num_outputs]) def forward_propagate(self, A): print(A.shape) print(self.weights.shape) num_input_dimensions = len(self.input_shape) sample_shape = A.shape[-num_input_dimensions:] assert(self.input_shape == sample_shape) batch_shape = A.shape[:-num_input_dimensions] output_shape = batch_shape + self.output_shape Z = np.zeros(shape=output_shape) Z.fill(-9e99) for batch_idx in np.ndindex(batch_shape): Z[batch_idx] = self.weights @ A[batch_idx] cache = { 'A' : A } return Z, cache def backward_propagate(self, dZ, cache): A_prev = cache['A'] batch_shape = dZ.shape[:-1] dW = np.ndarray(shape=batch_shape + self.weights.shape) db = None dA = np.ndarray(shape=batch_shape + A_prev.shape) for batch_idx in np.ndindex(batch_shape): DW = np.dot(self.weights.T, dZ[batch_idx]) DA = np.dot(dZ[batch_idx], A_prev[batch_idx].T) dW[batch_idx] = np.dot(self.weights.T, dZ[batch_idx]) db = None dA[batch_idx] = np.dot(dZ[batch_idx], A.T) assert (dA.shape == A.shape) assert (dW.shape == self.weights.shape) return dZ, dW, db class Membrane: def __init__(self): pass def reset(self): pass def activate(self, Z): return 0 def differentiate(self, dA, cache): return 0 class LeakyIntegrateAndFire(Membrane): def __init__(self, Vreset: float, Vth: float, tau_m: float, fire=True, leaky=True): super().__init__() self.Vreset = Vreset self.Vth = Vth self.tau_m = tau_m self.fire = fire self.leaky = leaky self.input_shape = None self.__num_input_dimensions = None self.output_shape = None def build(self, input_shape): self.input_shape = input_shape self.__num_input_dimensions = len(self.input_shape) self.output_shape = input_shape def neuron_activation(self, Vm): spike = None if Vm >= self.Vth and self.fire: spike = 1 self.Vm = self.Vreset else: spike = 0 if self.leaky: Vm = Vm * math.exp(-1 / self.tau_m) # TODO: 1 / t needs to be implemented return [Vm, spike] def activate(self, Vin): # this function can be optimised given that only the final Vm is required # assert (Vin.shape == Vout.shape) batch_shape = Vin.shape[:-self.__num_input_dimensions-1] spike_train_length = Vin.shape[-self.__num_input_dimensions-1] membrane_shape = Vin.shape[-self.__num_input_dimensions:] activation = batch_shape + tuple([spike_train_length]) + membrane_shape activation_shape = activation Vout = np.ndarray(shape=(activation_shape)) Vout.fill(self.Vreset) Vp = np.ndarray(shape=(batch_shape + membrane_shape)) Vp.fill(-9e99) spike_train = np.ndarray(shape=(activation_shape)) spike_train.fill(0) t_current = None t_previous = None for batch_idx in np.ndindex(batch_shape): for neuron_idx in np.ndindex(membrane_shape): for t_idx in range(1, spike_train_length): # membrane voltage for this step t_current = batch_idx + tuple([t_idx]) + neuron_idx t_previous = batch_idx + tuple([t_idx - 1]) + neuron_idx Vm = Vin[t_current] + Vout[t_previous] # simulate lif-neuron [Vout[t_current], spike_train[t_current]] = self.neuron_activation(Vm) # store the final membrane voltage Vp_idx = batch_idx + neuron_idx Vp[Vp_idx] = Vout[t_current] cache = { 'Vp' : Vp, 'Vout' : Vout, 'spike_train' : spike_train, 'tau_m' : tau_m } return spike_train, cache @staticmethod def __compute_spike_train_decay(spike_train): # sum of decay over time total_decay = 0 gamma = sum(spike_train) if gamma == 0: return [total_decay, gamma] total_decay = 0 t = tk = 1 for activation in spike_train: if activation: if t != tk: decay = math.exp(-(t - tk) / tau_m) total_decay = total_decay - (1 / tau_m) * decay tk = t + 1 t = t + 1 return [total_decay, gamma] def __diff_LIF(self, dA, cache): Vp = cache['Vp'] spike_trains = cache['spike_train'] tau_m = cache['tau_m'] batch_shape = Vp.shape[:-self.__num_input_dimensions] membrane_shape = Vp.shape[-self.__num_input_dimensions:] dZ_shape = batch_shape + membrane_shape dZ = np.ndarray(shape=dZ_shape) dZ.fill(-9e99) for batch_idx in np.ndindex(batch_shape): for neuron_idx in np.ndindex(membrane_shape): idx = batch_idx + neuron_idx spike_train = spike_trains[idx] [total_decay, gamma] = LeakyIntegrateAndFire.__compute_spike_train_decay(spike_train) dZ[idx] = dA[idx] * (1 / self.Vth) * (1 + (1 / gamma) * total_decay) return dZ def __diff_LI(self, dA, cache): Vp = cache['Vp'] spike_trains = cache['spike_train'] tau_m = cache['tau_m'] batch_shape = Vp.shape[:-self.__num_input_dimensions] membrane_shape = Vp.shape[-self.__num_input_dimensions:] dZ_shape = batch_shape + membrane_shape dZ = np.ndarray(shape=dZ_shape, dtype=np.float64) dZ.fill(-9e99) for batch_idx in np.ndindex(batch_shape): for neuron_idx in np.ndindex(membrane_shape): idx = batch_idx + neuron_idx dZ[idx] = (1/tau_m) * (Vp[idx]) * dA[idx] return dZ def __diff_IF(self, dA, cache): return None def __diff_I(self, dA, cache): return None def differentiate(self, dA, cache): if self.leaky: if self.fire: return self.__diff_LIF(dA, cache) else: return self.__diff_LI(dA, cache) else: if self.fire: return self.__diff_IF(dA, cache) else: return self.__diff_I(dA, cache) def get_output_shape(self): return self.output_shape # the idea of this model is to process everything LIF class SpikingNeuralNetwork: @staticmethod def __traverse_batch(start, end, step): i = start while i < end: yield i i += step yield end def __init__(self): self.__layers = [] self.__membrane = [] pass def build(self, input_shape): # set input shape for model self.input_shape = input_shape self.tau_m = input_shape[0] for layer_idx in range(0, len(self.__layers)): layer = self.__layers[layer_idx] membrane = self.__membrane[layer_idx] print(str(layer_idx) + ":" + str(layer)) layer.build(input_shape=input_shape) input_shape = layer.compute_output_shape(input_shape) if membrane is not None: membrane.build(input_shape) # last layers output shape to models output shape self.output_shape = input_shape def add_layer(self, layer: Layer, activation: Membrane = None): self.__layers.append(layer) self.__membrane.append(activation) def forward_propagation(self, X): caches = [] A = X for layer_idx in range(0, len(self.__layers)): layer = self.__layers[layer_idx] membrane = self.__membrane[layer_idx] print(layer) Z, linear_cache = layer.forward_propagate(A) print("Z: " + str(np.amax(Z))) if membrane is not None: print(membrane) A, activation_cache = membrane.activate(Z) print("A: " + str(np.amax(A))) cache = { 'linear_cache' : linear_cache, 'activation_cache' : activation_cache } caches.append({ 'A': A, 'Z': Z, 'cache': cache}) else: print("Z: " + str(np.amax(Z))) A = Z cache = { 'linear_cache' : linear_cache, 'activation_cache' : None } caches.append({ 'A': None, 'Z': Z, 'cache': cache}) return A, caches def compute_cost(self, A, Y): return 0.5 * np.sum(np.power((A - Y), 2)) def compute_loss(self, A, Y): # np.mean(np.square(Y - A), axis=-2) <- MSE loss return Y - A def backward_propagation(self, AL, caches, Y): grads = [] L = len(self.__layers) m = AL.shape[1] ## figure this out # gradients dZ, dW, db = (None, None, None) # derivative of activation in final layer dAL = self.compute_loss(AL, Y) grad = [ { "dZ": None, "dA": dAL, "dW": None, "db": None } ] grads.insert(0, grad) # backwards propagating the loss for layer_idx in range(L-1, 0, -1): layer = self.__layers[layer_idx] A, Z, cache = (caches[layer_idx]['A'], caches[layer_idx]['Z'], caches[layer_idx]['cache']) linear_cache, activation_cache = (cache['linear_cache'], cache['activation_cache']) membrane = self.__membrane[layer_idx] if membrane is not None: dZ = membrane.differentiate(dAL, activation_cache) dAL, dW, db = layer.backward_propagate(dZ, linear_cache) else: dAL, dW, db = layer.backward_propagate(dAL, linear_cache) grad = [ { "dZ":dZ, "dA":dAL, "dW":dW, "db":db } ] grads.insert(0, grad) return grads def fit(self, X=None, Y=None, epochs=1, batch_size=None, learning_rate=0.002): # batch_size + (time, height, width, channel) num_input_dimensions = len(self.input_shape) num_output_dimensions = len(self.output_shape) batch_shape = X.shape[:-num_input_dimensions] batch_ndim = len(batch_shape) num_samples = math.prod(batch_shape) sample_shape = X.shape[-num_input_dimensions:] sample_label_shape = Y.shape[-batch_ndim:] assert(sample_label_shape == self.output_shape) batch_samples = np.zeros(shape=tuple([batch_size]) + sample_shape) batch_samples_labels = np.zeros(shape=tuple([batch_size]) + sample_label_shape) # output from the opperation output = np.zeros(shape=batch_shape+Y.shape) # run the training data an epochs number of times for epoch in range(epochs): # start processing and updating the network according to the batch size for train_start in SpikingNeuralNetwork.__traverse_batch(0, num_samples-batch_size, batch_size): # get the end index train_end = min(train_start+batch_size, num_samples) # prevent over indexing at the end of the array number_of_training_samples = train_end - train_start # can this be optimized batch_indices = [] for train in range(number_of_training_samples): batch_idx = np.unravel_index(train_start + train, batch_shape) print(batch_idx) batch_samples[batch_idx] = X[batch_idx] batch_samples_labels[batch_idx] = Y[batch_idx] batch_outputs, batch_cache = self.forward_propagation(batch_samples) final_cache = batch_cache[len(batch_cache)-1] cache = final_cache['cache'] activation_cache = cache['activation_cache'] Vp = activation_cache['Vp'] costs = self.compute_cost(Vp, batch_samples_labels) loss = self.compute_loss(Vp, batch_samples_labels) # this needs to be fixed AL = Vp grads = self.backward_propagation(AL, batch_cache, batch_samples_labels) parameters = self.update_parameters(batch_cache, grads, learning_rate) # select batch images batch_labels = np.take(Y, batch_indices) # batch_spike_train = Model.__generate_model_spike_train(batch_size, train_labels[0]) # generate batch activation outputs # batch_outputs = self.__generate_batch_outputs(batch_size, train_labels[0]) # generate batch cache # batch_cache = self.__generate_batch_cache(batch_size) # generate batch gradients # batch_gradients = self.__generate_batch_gradients(batch_size) # costs # costs = np.zeros(batch_size) # run batch # potentially multi threaded # for i in range(0, batch_size): # select sample from batch #train_image = batch_images[i] # train_label = batch_labels[i] # convert to input to spike train # layer_spike_train = generate_layer_spike_train(train_image, self.spike_train_length) # propagate through network # batch_outputs[i], batch_cache[i] = self.forward_propagation(train_image) # dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) # dA_prev_temp, dW_temp, db_temp # calculate the cost # costs[i] = self.compute_cost(Y, train_label) # backwards propagate to calculate the gradients in the network # grads = Model.backward_propagation(model, batch_outputs[i], Y, batch_cache[i]) # batch_end_idx = batch_start_idx # update the network using the gradients from the batch # parameters = Model.update_parameters(model, batch_cache, batch_gradients, learning_rate) def predict(self, X): pass def test_case_dropout(): probability = 0.2 layer = Dropout(probability) dim = 10000 test_shape = (dim,dim) layer.build(input_shape=test_shape) test_input = np.ones(test_shape) expected = math.prod(test_shape) * (1 - probability) print("expected: " + str(expected)) received_output, cache = layer.forward_propagate(test_input) sum_received_output = np.sum(received_output) print("actual: " + str(sum_received_output)) test_case_dropout() tau_m = 10 dropout_rate = 0.2 LeNet5 = SpikingNeuralNetwork() LeNet5.add_layer(Convolution2D(kernel_size=(5,5), strides=(1,1), number_of_filters=20), LeakyIntegrateAndFire(0, 1, tau_m, fire=True, leaky=True)) LeNet5.add_layer(Dropout(probability=dropout_rate)) LeNet5.add_layer(AveragePool2D(kernel_size=(2,2),strides=(2,2)), LeakyIntegrateAndFire(0, 0.75, tau_m, fire=True, leaky=True)) LeNet5.add_layer(Dropout(probability=dropout_rate)) LeNet5.add_layer(Convolution2D(kernel_size=(5,5), strides=(1,1), number_of_filters=50), LeakyIntegrateAndFire(0, 1, tau_m, fire=True, leaky=True)) LeNet5.add_layer(Dropout(probability=dropout_rate)) LeNet5.add_layer(AveragePool2D(kernel_size=(2,2),strides=(2,2)), LeakyIntegrateAndFire(0, 1, tau_m, fire=True, leaky=True)) LeNet5.add_layer(Dropout(probability=dropout_rate)) LeNet5.add_layer(Flatten()) LeNet5.add_layer(Dense(num_outputs=200), LeakyIntegrateAndFire(0, 1, tau_m, fire=True, leaky=True)) LeNet5.add_layer(Dense(num_outputs=10), LeakyIntegrateAndFire(0, 1, tau_m, fire=False, leaky=True)) input_shape = train_images[0].shape input_images = np.array([generate_layer_spike_train(train_images[0], tau_m), generate_layer_spike_train(train_images[1], tau_m), generate_layer_spike_train(train_images[2], tau_m), generate_layer_spike_train(train_images[3], tau_m), generate_layer_spike_train(train_images[4], tau_m)]) LeNet5.build(input_images[0].shape) lbl = train_labels[0:5,:] LeNet5.fit(input_images, train_labels[0:5,:], batch_size=2,learning_rate=0.002) LeNet5.predict(test_images, test_labels) class Model: @staticmethod def __generate_batch_outputs(batch_size, train_label): return np.zeros(shape=(tuple([batch_size]) + train_label.shape)) @staticmethod def __generate_batch_cache(model, batch_size): cache = [] time = tuple([model.spike_train_length]) for batch_idx in range(0, batch_size): cache.extend([{ "l1_activation" : np.zeros(shape= time + model.__l1_output_dimensions), "l1_membrane": np.zeros(shape=time + model.__l1_output_dimensions), "l1_spike": np.zeros(shape=time + model.__l1_output_dimensions), "l2_activation": np.zeros(shape=time + model.__l2_output_dimensions), "l2_membrane": np.zeros(shape=time + model.__l2_output_dimensions), "l2_spike": np.zeros(shape=time + model.__l2_output_dimensions), "l3_activation": np.zeros(shape=time + model.__l3_output_dimensions), "l3_membrane": np.zeros(shape=time + model.__l3_output_dimensions), "l3_spike": np.zeros(shape=time + model.__l3_output_dimensions), "l4_activation": np.zeros(shape=time + model.__l4_output_dimensions), "l4_membrane": np.zeros(shape=time + model.__l4_output_dimensions), "l4_spike": np.zeros(shape=time + model.__l4_output_dimensions), "l5_output": np.zeros(shape=time + model.__l5_output_dimensions), "l6_activation": np.zeros(shape=time + model.__l6_output_dimensions), "l6_membrane": np.zeros(shape=time + model.__l6_output_dimensions), "l6_spike": np.zeros(shape=time + model.__l6_output_dimensions), "l7_activation": np.zeros(shape=time + model.__l7_output_dimensions), "l7_membrane": np.zeros(shape=time + model.__l7_output_dimensions), "l7_spike": np.zeros(shape=time + model.__l7_output_dimensions), }]) return cache @staticmethod def __generate_batch_gradients(model, batch_size): gradients = [] for i in range(batch_size): gradients.extend([{ "l1_gradients": np.zeros(shape=model.__l1_filters.shape), "l3_gradients": np.zeros(shape=model.__l1_filters.shape), "l6_gradients":
np.zeros(shape=model.__l6_weights.shape)
numpy.zeros
# -*- coding: utf-8 -*- import sys import struct import os, os.path from unittest import TestCase import numpy as np from numpy.testing import assert_array_equal, assert_array_almost_equal import blaze.carray as ca from blaze.carray import chunk from blaze.carray.tests import common from common import MayBeDiskTest is_64bit = (struct.calcsize("P") == 8) # Just memory tests for now class chunkTest(TestCase): def test01(self): """Testing `__getitem()__` method with scalars""" a = np.arange(1e3) b = chunk(a, atom=a.dtype, cparams=ca.cparams()) #print "b[1]->", `b[1]` self.assert_(a[1] == b[1], "Values in key 1 are not equal") def test02(self): """Testing `__getitem()__` method with ranges""" a = np.arange(1e3) b = chunk(a, atom=a.dtype, cparams=ca.cparams()) #print "b[1:3]->", `b[1:3]` assert_array_equal(a[1:3], b[1:3], "Arrays are not equal") def test03(self): """Testing `__getitem()__` method with ranges and steps""" a = np.arange(1e3) b = chunk(a, atom=a.dtype, cparams=ca.cparams()) #print "b[1:8:3]->", `b[1:8:3]` assert_array_equal(a[1:8:3], b[1:8:3], "Arrays are not equal") def test04(self): """Testing `__getitem()__` method with long ranges""" a = np.arange(1e4) b = chunk(a, atom=a.dtype, cparams=ca.cparams()) #print "b[1:8000]->", `b[1:8000]` assert_array_equal(a[1:8000], b[1:8000], "Arrays are not equal") class getitemTest(MayBeDiskTest, TestCase): def test01a(self): """Testing `__getitem()__` method with only a start""" a = np.arange(1e2) b = ca.carray(a, chunklen=10, rootdir=self.rootdir) sl = slice(1) #print "b[sl]->", `b[sl]` assert_array_equal(a[sl], b[sl], "Arrays are not equal") def test01b(self): """Testing `__getitem()__` method with only a (negative) start""" a = np.arange(1e2) b = ca.carray(a, chunklen=10, rootdir=self.rootdir) sl = slice(-1) #print "b[sl]->", `b[sl]` assert_array_equal(a[sl], b[sl], "Arrays are not equal") def test01c(self): """Testing `__getitem()__` method with only a (start,)""" a = np.arange(1e2) b = ca.carray(a, chunklen=10, rootdir=self.rootdir) #print "b[(1,)]->", `b[(1,)]` self.assert_(a[(1,)] == b[(1,)], "Values with key (1,) are not equal") def test01d(self): """Testing `__getitem()__` method with only a (large) start""" a = np.arange(1e4) b = ca.carray(a, rootdir=self.rootdir) sl = -2 # second last element #print "b[sl]->", `b[sl]` assert_array_equal(a[sl], b[sl], "Arrays are not equal") def test02a(self): """Testing `__getitem()__` method with ranges""" a = np.arange(1e2) b = ca.carray(a, chunklen=10, rootdir=self.rootdir) sl = slice(1, 3) #print "b[sl]->", `b[sl]` assert_array_equal(a[sl], b[sl], "Arrays are not equal") def test02b(self): """Testing `__getitem()__` method with ranges (negative start)""" a = np.arange(1e2) b = ca.carray(a, chunklen=10, rootdir=self.rootdir) sl = slice(-3) #print "b[sl]->", `b[sl]` assert_array_equal(a[sl], b[sl], "Arrays are not equal") def test02c(self): """Testing `__getitem()__` method with ranges (negative stop)""" a = np.arange(1e3) b = ca.carray(a, chunklen=10, rootdir=self.rootdir) sl = slice(1, -3) #print "b[sl]->", `b[sl]` assert_array_equal(a[sl], b[sl], "Arrays are not equal") def test02d(self): """Testing `__getitem()__` method with ranges (negative start, stop)""" a = np.arange(1e3) b = ca.carray(a, chunklen=10, rootdir=self.rootdir) sl = slice(-3, -1) #print "b[sl]->", `b[sl]` assert_array_equal(a[sl], b[sl], "Arrays are not equal") def test02e(self): """Testing `__getitem()__` method with start > stop""" a = np.arange(1e3) b = ca.carray(a, chunklen=10, rootdir=self.rootdir) sl = slice(4, 3, 30) #print "b[sl]->", `b[sl]` assert_array_equal(a[sl], b[sl], "Arrays are not equal") def test03a(self): """Testing `__getitem()__` method with ranges and steps (I)""" a = np.arange(1e3) b = ca.carray(a, chunklen=10, rootdir=self.rootdir) sl = slice(1, 80, 3) #print "b[sl]->", `b[sl]` assert_array_equal(a[sl], b[sl], "Arrays are not equal") def test03b(self): """Testing `__getitem()__` method with ranges and steps (II)""" a = np.arange(1e3) b = ca.carray(a, chunklen=10, rootdir=self.rootdir) sl = slice(1, 80, 30) #print "b[sl]->", `b[sl]` assert_array_equal(a[sl], b[sl], "Arrays are not equal") def test03c(self): """Testing `__getitem()__` method with ranges and steps (III)""" a = np.arange(1e3) b = ca.carray(a, chunklen=10, rootdir=self.rootdir) sl = slice(990, 998, 2) #print "b[sl]->", `b[sl]` assert_array_equal(a[sl], b[sl], "Arrays are not equal") def test03d(self): """Testing `__getitem()__` method with ranges and steps (IV)""" a = np.arange(1e3) b = ca.carray(a, chunklen=10, rootdir=self.rootdir) sl = slice(4, 80, 3000) #print "b[sl]->", `b[sl]` assert_array_equal(a[sl], b[sl], "Arrays are not equal") def test04a(self): """Testing `__getitem()__` method with long ranges""" a = np.arange(1e3) b = ca.carray(a, chunklen=100, rootdir=self.rootdir) sl = slice(1, 8000) #print "b[sl]->", `b[sl]` assert_array_equal(a[sl], b[sl], "Arrays are not equal") def test04b(self): """Testing `__getitem()__` method with no start""" a = np.arange(1e3) b = ca.carray(a, chunklen=100, rootdir=self.rootdir) sl = slice(None, 8000) #print "b[sl]->", `b[sl]` assert_array_equal(a[sl], b[sl], "Arrays are not equal") def test04c(self): """Testing `__getitem()__` method with no stop""" a = np.arange(1e3) b = ca.carray(a, chunklen=100, rootdir=self.rootdir) sl = slice(8000, None) #print "b[sl]->", `b[sl]` assert_array_equal(a[sl], b[sl], "Arrays are not equal") def test04d(self): """Testing `__getitem()__` method with no start and no stop""" a = np.arange(1e3) b = ca.carray(a, chunklen=100, rootdir=self.rootdir) sl = slice(None, None, 2) #print "b[sl]->", `b[sl]` assert_array_equal(a[sl], b[sl], "Arrays are not equal") def test05(self): """Testing `__getitem()__` method with negative steps""" a = np.arange(1e3) b = ca.carray(a, chunklen=10, rootdir=self.rootdir) sl = slice(None, None, -3) #print "b[sl]->", `b[sl]` self.assertRaises(NotImplementedError, b.__getitem__, sl) class getitemDiskTest(getitemTest): disk = True class setitemTest(MayBeDiskTest, TestCase): def test00a(self): """Testing `__setitem()__` method with only one element""" a = np.arange(1e2) b = ca.carray(a, chunklen=10, rootdir=self.rootdir) b[1] = 10. a[1] = 10. #print "b->", `b` assert_array_equal(a, b[:], "__setitem__ not working correctly") def test00b(self): """Testing `__setitem()__` method with only one element (tuple)""" a = np.arange(1e2) b = ca.carray(a, chunklen=10, rootdir=self.rootdir) b[(1,)] = 10. a[(1,)] = 10. #print "b->", `b` assert_array_equal(a, b[:], "__setitem__ not working correctly") def test01(self): """Testing `__setitem()__` method with a range""" a = np.arange(1e2) b = ca.carray(a, chunklen=10, rootdir=self.rootdir) b[10:100] = np.arange(1e2 - 10.) a[10:100] = np.arange(1e2 - 10.) #print "b->", `b` assert_array_equal(a, b[:], "__setitem__ not working correctly") def test02(self): """Testing `__setitem()__` method with broadcasting""" a = np.arange(1e2) b = ca.carray(a, chunklen=10, rootdir=self.rootdir) b[10:100] = 10. a[10:100] = 10. #print "b->", `b` assert_array_equal(a, b[:], "__setitem__ not working correctly") def test03(self): """Testing `__setitem()__` method with the complete range""" a = np.arange(1e2) b = ca.carray(a, chunklen=10, rootdir=self.rootdir) b[:] = np.arange(10., 1e2 + 10.) a[:] = np.arange(10., 1e2 + 10.) #print "b->", `b` assert_array_equal(a, b[:], "__setitem__ not working correctly") def test04a(self): """Testing `__setitem()__` method with start:stop:step""" a = np.arange(1e2) b = ca.carray(a, chunklen=1, rootdir=self.rootdir) sl = slice(10, 100, 3) b[sl] = 10. a[sl] = 10. #print "b[%s] -> %r" % (sl, b) assert_array_equal(a, b[:], "__setitem__ not working correctly") def test04b(self): """Testing `__setitem()__` method with start:stop:step (II)""" a = np.arange(1e2) b = ca.carray(a, chunklen=1, rootdir=self.rootdir) sl = slice(10, 11, 3) b[sl] = 10. a[sl] = 10. #print "b[%s] -> %r" % (sl, b) assert_array_equal(a, b[:], "__setitem__ not working correctly") def test04c(self): """Testing `__setitem()__` method with start:stop:step (III)""" a = np.arange(1e2) b = ca.carray(a, chunklen=1, rootdir=self.rootdir) sl = slice(96, 100, 3) b[sl] = 10. a[sl] = 10. #print "b[%s] -> %r" % (sl, b) assert_array_equal(a, b[:], "__setitem__ not working correctly") def test04d(self): """Testing `__setitem()__` method with start:stop:step (IV)""" a = np.arange(1e2) b = ca.carray(a, chunklen=1, rootdir=self.rootdir) sl = slice(2, 99, 30) b[sl] = 10. a[sl] = 10. #print "b[%s] -> %r" % (sl, b) assert_array_equal(a, b[:], "__setitem__ not working correctly") def test05(self): """Testing `__setitem()__` method with negative step""" a = np.arange(1e2) b = ca.carray(a, chunklen=1, rootdir=self.rootdir) sl = slice(2, 99, -30) self.assertRaises(NotImplementedError, b.__setitem__, sl, 3.) class setitemDiskTest(setitemTest): disk = True class appendTest(MayBeDiskTest, TestCase): def test00(self): """Testing `append()` method""" a = np.arange(1000) b = ca.carray(a, rootdir=self.rootdir) b.append(a) #print "b->", `b` c =
np.concatenate((a, a))
numpy.concatenate
import numpy as np import pandas as pd from scipy.interpolate import interp1d def vshale_gr(gr_curve,gr_sand,gr_shale,type='linear'): """vshale_gr [summary] Parameters ---------- gr_curve : [type] [description] gr_sand : [type] [description] gr_shale : [type] [description] type : str, optional [description], by default 'linear' Returns ------- [type] [description] Raises ------ ValueError [description] """ gr_curve=np.atleast_1d(gr_curve) gr_sand=np.atleast_1d(gr_sand) gr_shale=np.atleast_1d(gr_shale) igr=(gr_curve-gr_sand)/(gr_shale-gr_sand) igr[igr < 0.0] = 0.0 igr[igr > 1.0] = 1.0 #https://www.geoloil.com/VshModels.php if type == 'linear': vsh = igr elif type == 'clavier': vsh = 1.7 - np.sqrt(3.38 - np.power(igr+0.7,2)) elif type == 'stieber': vsh = igr/(3-2*igr) elif type == 'larionov_old': vsh = 0.33 * (np.power(2,2*igr)-1) elif type == 'larionov_tertiary': vsh = 0.083 * (np.power(2,3.7*igr)-1) else: raise ValueError(f'method especified [ {type} ] does not exist') return vsh def vshale_dn(rho_curve, ntr_curve, rho_ma=2.65, rho_f=1.0, hi_shl=0.46,rho_shl=2.43): """vshale_dn [summary] Parameters ---------- rho_curve : [type] [description] ntr_curve : [type] [description] rho_ma : float, optional [description], by default 2.65 rho_f : float, optional [description], by default 1.0 hi_shl : float, optional [description], by default 0.46 rho_shl : float, optional [description], by default 2.43 Returns ------- [type] [description] """ rho_curve= np.atleast_1d(rho_curve) ntr_curve= np.atleast_1d(ntr_curve) rho_ma = np.atleast_1d(rho_ma) rho_f = np.atleast_1d(rho_f) hi_shl = np.atleast_1d(hi_shl) rho_shl = np.atleast_1d(rho_shl) vsh = (rho_curve - rho_ma + ntr_curve*(rho_ma-rho_f))/(rho_shl - rho_ma + hi_shl*(rho_ma-rho_f)) vsh[vsh < 0.0] = 0.0 vsh[vsh > 1.0] = 1.0 return vsh def phi_rho(rho_curve,rho_ma=2.65,rho_f=1.0): """phi_rho [summary] Parameters ---------- rho_curve : [type] [description] rho_ma : float, optional [description], by default 2.65 rho_f : float, optional [description], by default 1.0 Returns ------- [type] [description] """ rho_curve=np.atleast_1d(rho_curve) rho_ma=np.atleast_1d(rho_ma) rho_f=np.atleast_1d(rho_f) phi_rho_curve=(rho_ma-rho_curve)/(rho_ma-rho_f) phi_rho_curve[phi_rho_curve < 0.0] = 0.0 phi_rho_curve[phi_rho_curve > 1.0] = 1.0 return phi_rho_curve def phie(phi_curve,vsh_curve): """phie [summary] Parameters ---------- phi_curve : [type] [description] vsh_curve : [type] [description] Returns ------- [type] [description] """ phi_curve=np.atleast_1d(phi_curve) vsh_curve=np.atleast_1d(vsh_curve) phie_curve=phi_curve*(1 -vsh_curve) phie_curve[phie_curve < 0.0] = 0.0 phie_curve[phie_curve > 0.3] = 0.3 return phie_curve def phia(phi_rho_curve, ntr_curve, method='geometric'): """phia [summary] Parameters ---------- phi_rho_curve : [type] [description] ntr_curve : [type] [description] method : str, optional [description], by default 'geometric' Returns ------- [type] [description] """ phi_rho_curve = np.atleast_1d(phi_rho_curve) ntr_curve = np.atleast_1d(ntr_curve) c = np.transpose(np.vstack((phi_rho_curve,ntr_curve))) if method == 'mean': phia_curve = np.mean(c,axis=1) elif method== 'geometric': phia_curve = np.power(((np.power(phi_rho_curve,2)+np.power(ntr_curve,2))/2),0.5) return phia_curve def facies_dnp(rho_curve, ntr_curve,pef_curve,**kw): """facies_dnp [summary] Parameters ---------- rho_curve : [type] [description] ntr_curve : [type] [description] pef_curve : [type] [description] Returns ------- [type] [description] """ rho_curve = np.atleast_1d(rho_curve) ntr_curve = np.atleast_1d(ntr_curve) pef_curve = np.atleast_1d(pef_curve) phi_rho_curve = phi_rho(rho_curve,**kw) phia_curve = phia(phi_rho_curve,ntr_curve) u = pef_curve*((rho_curve + 0.1833)/1.07) uma = (u - 0.398 * phia_curve)/(1-phia_curve) dga = (rho_curve - phia_curve)/(1-phia_curve) return uma, dga def sw(rt_curve,phi_curve,rw,vsh_curve=None,a=0.62,m=2.15,n=2,rsh=4.0,alpha=0.3,method="archie"): """sw [summary] Parameters ---------- rt_curve : [type] [description] phi_curve : [type] [description] rw : [type] [description] vsh_curve : [type], optional [description], by default None a : float, optional [description], by default 0.62 m : float, optional [description], by default 2.15 n : int, optional [description], by default 2 rsh : float, optional [description], by default 4.0 alpha : float, optional [description], by default 0.3 method : str, optional [description], by default "archie" Returns ------- [type] [description] """ a=np.atleast_1d(a) m=np.atleast_1d(m) n=np.atleast_1d(n) vsh = np.atleast_1d(vsh_curve) if vsh_curve is not None else None rsh=np.atleast_1d(rsh) alpha=np.atleast_1d(alpha) rt=np.atleast_1d(rt_curve) phi = np.atleast_1d(phi_curve) rw=np.atleast_1d(rw) if method == "archie": sw_curve=np.power(((a*rw)/(rt*np.power(phi,m))),1/n) elif method == "smdx": #https://www.spec2000.net/14-sws.htm C=((1-vsh)*a*rw)/np.power(phi,m) D=C*vsh/(2 * rsh) E=C/rt sw_curve=np.power(np.sqrt(D**2 + E) - D, 2/n) elif method == "indo": #https://geoloil.com/Indonesia_SW.php #A=np.sqrt(1 /rt) #B=(np.power(vsh,(1 -(vsh/2)))/np.sqrt(rsh)) #C=np.sqrt(np.power(phi,m)/(a*rw)) #sw_curve=np.power((A/(B+C)),2/n) #http://nafta.wiki/display/GLOSSARY/Indonesia+Model+%28Poupon-Leveaux%29+@model A_inv = 1 + np.sqrt((np.power(vsh,2-vsh)*rw)/(phi*rsh)) A = 1/A_inv sw_curve = np.power((A*rw)/(np.power(phi,m)*rt),1/n) elif method == "fertl": A=np.power(phi,-m/2) B=(a*rw)/rt C=((alpha*vsh)/2)**2 sw_curve=A*((np.sqrt(B+C))-np.sqrt(C)) sw_curve[sw_curve < 0.0] = 0.0 sw_curve[sw_curve > 1.0] = 1.0 return sw_curve def depth_temperature(depth, surface_temperature=77 ,gradient=1): """depth_temperature [summary] Parameters ---------- depth : [type] [description] surface_temperature : int, optional [description], by default 77 gradient : int, optional [description], by default 1 Returns ------- [type] [description] """ depth = np.atleast_1d(depth) t = (gradient/100) * depth + surface_temperature return t def rw_temp_convert(rw,t1,t2, temp_unit='f'): """rw_temp_convert [summary] Parameters ---------- rw : [type] [description] t1 : [type] [description] t2 : [type] [description] temp_unit : str, optional [description], by default 'f' Returns ------- [type] [description] """ rw = np.atleast_1d(rw) t1 = np.atleast_1d(t1) t2 = np.atleast_1d(t2) if temp_unit=='f': c = np.array([6.77]) else: c = np.array([21.5]) rw2 = rw*((t1 + c)/(t2 + c)) return rw2 def rw(temp, salinity,temp_unit='f'): """rw [summary] Parameters ---------- temp : [type] [description] salinity : [type] [description] temp_unit : str, optional [description], by default 'f' Returns ------- [type] [description] """ # 1) Convert from Celcius to Farenheit if temp_unit=='c': tf = 1.8*temp + 32.0 else: tf=temp # 2) Calculate Resistivity in Ohm meters rw =
np.power((400000.0/(tf*salinity)),0.88)
numpy.power
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Nov 5 12:05:57 2017 @author: manishdevana Further experiments with ray tracing after doing wave property calculations (runs calculations in internal_wave_properties) """ import numpy as np import matplotlib.pyplot as plt import data_load import gsw import oceans as oc import Internal_wave_properties_REV as iwp import pandas as pd # Testdata load def internal_wave_properties(save_only=True): ladcp, ctd, bathy = data_load.load_data() rho_neutral = np.genfromtxt('neutral_rho.csv', delimiter=',') strain = np.genfromtxt('strain.csv', delimiter=',') wl_max=350 wl_min=100 lambdaH, kh, omega, N2, dist, depths,\ U2, V2, p_ladcp, Uspec, Vspec,\ etaSpec, aspect, Ek, Ep, Etotal = iwp.frequencyEstimator(ctd, ladcp, bathy,\ rho_neutral,strain, wl_max=500, full_set=True) if not save_only: return lambdaH, kh, omega, N2, dist, depths,\ U2, V2, p_ladcp, Uspec, Vspec, etaSpec, aspect def doppler_shifts(kh, ladcp, avg=1000, bin_size = 512): """ Doppler shift the internal frequency to test for lee waves using the depth averaged floww """ U, V, p_ladcp = oc.loadLADCP(ladcp) maxDepth = 4000 idx_ladcp = p_ladcp[:,-1] <= maxDepth dz = int(np.nanmean(np.gradient(p_ladcp, axis=0))) window = int(np.ceil(avg/dz)) Ubar = [] for u, v in zip(U.T, V.T): mask = np.isfinite(u) u = u[mask] v = v[mask] u = np.nanmean(u[-window:]) v = np.nanmean(v[-window:]) Ubar.append(np.sqrt(u**2 + v**2)) Ubar = np.vstack(Ubar) dshift = [] for cast, ubar in zip(kh.T, Ubar): dshift.append(cast*ubar) dshift = np.vstack(dshift).T return dshift def horizontal_wave_vector_decomposition(Uprime, Vprime, axis=1, nfft=1024): """ Attempt to decompose horizontal wave vector Following methods used in Polzin 2007 (internal waves in eddies or something like that) """ # U'* x b' Uspec = np.fft(Uprime, axis=axis, nfft=nfft) Vspec = np.fft(Vprime, axis=axis, nfft=nfft) theta = [] for Uin, Vin in zip(Uspec, Vspec): u_conj = np.conj(Uin[:,1]) v_prime = Vin[:,1] u_prime = Uin[:,1] v_conj = np.conj(Vin[:,1]) theta.append(np.arctan(2*np.real((u_conj*v_prime)/(u_conj*u_prime - v_conj*v_prime)))/2) theta = np.vstack(theta).T k = -kh*np.cos(theta) k_wave = (2*np.pi/k)*1e-3 l = kh*np.sin(theta) l_wave = (2*np.pi/l)*1e-3 return k, l def lee_wave_tests(kh, omega, N2, ctd, ladcp, dist, depths, error_factor=2, plots=False): """ Testing whether or not the observations can be attributed to lee waves """ S, T, p_ctd, lat, lon = oc.loadCTD(ctd) # k, l = horizontal_wave_vector_decomposition(Uspec, Vspec) dshift = doppler_shifts(kh, ladcp) # Test whether K*U is between N and f f = (np.nanmean(gsw.f(lat))) dshiftTest = np.full_like(kh, np.nan) test_final = np.full_like(kh, np.nan) for i, dump in enumerate(kh.T): N2mean = np.nanmean(N2[:,i]) testA = np.abs(dshift[:,i]**2-f**2) <= f**2 testB =
np.abs(dshift[:,i]**2-f**2)
numpy.abs
#!/usr/bin/python3 """ 一些基础的类和函数 注意, import关系需要能够拓扑排序(不要相互调用). """ # 加载不应该被COPY的包 import io2 as io import deap from deap import algorithms, base, creator, gp, tools from prettytable import PrettyTable # COPY # import copy import random import warnings import sys import pdb import inspect import shutil import os import time import argparse import datetime import collections import traceback import math import subprocess import yaml import multiprocessing from itertools import repeat from functools import partial from copy import deepcopy # 禁用NumPy自带的多线程, 这样一个进程最多100% CPU占用. 这段代码必须保证在import numpy前执行. os.environ['OPENBLAS_NUM_THREADS'] = '1' os.environ['MKL_NUM_THREADS'] = '1' os.environ['NUMEXPR_NUM_THREADS'] = '1' os.environ['OMP_NUM_THREADS'] = '1' # 加载外部包 import numpy as np import pandas as pd from scipy import stats import matplotlib.pyplot as plt class EvalInfo: """currently contains shape and unit information to evaluate.""" def __init__(self, shape, unit, ret_type): """shape should be tuple, while unit should be np.ndarray.""" self.shape = shape self.unit = unit self.ret_type = ret_type class Individual: """an individual in genetic programming""" def __init__(self, expr=None, fitness=None, fitness_raw=None, pnl=None, turnover=None): self.expr = expr self.fitness = fitness self.fitness_raw = fitness_raw self.pnl = pnl self.turnover = turnover self.stats = dict() class IllegalSyntex(Exception): """illegal syntax when checking.""" pass class Array2d: """a symbolic class, only used for STGP.""" pass class Array2dNeutralise: """由于中性化参数也是需要根据输入的数据调整的, 因此必须把X_NEUTRALISE作为一个参数传入. 它由这个类代表.""" pass class Array2dValid: """同上. 表示例如UnivTOP4000.valid""" pass class Array3d: """a symbolic class, only used for STGP.""" pass class Ephemeral: """a class representing ephemeral constants.""" pass class FinalResult: """a class representing the final result, usual generated from ewma.""" pass # 修改 ################################################################### # 可以在这里添加自定义STGP类, 和需要被COPY的自定义函数. # 修改 ################################################################### def check_same_unit(unit_1, unit_2): """check whether two units are numerically similar, by calculating the chebyshev distance.""" epsilon = 0.001 if np.max(np.abs(unit_1 - unit_2)) <= epsilon: return True else: return False def replace_inf(arr): ret = arr.copy() ret[np.isinf(ret)] = np.nan return ret def mask(arr): """returns a boolean mask of an arr""" return ~np.isnan(arr) def imposter(arr): """returns an imposter of an arr""" return np.full_like(arr, np.nan) def ts_delay(arr, window=1, axis=0): """delay by window along an axis. the first/last window rows are filled with nan. """ ret = arr.copy() if window >= 0: # if window == 0, returns exactly the input slc1 = [slice(None)] * len(arr.shape) slc1[axis] = slice(window, arr.shape[axis]) slc2 = [slice(None)] * len(arr.shape) slc2[axis] = slice(0, arr.shape[axis] - window) slc3 = [slice(None)] * len(arr.shape) slc3[axis] = slice(0, window) ret[tuple(slc1)] = ret[tuple(slc2)] ret[tuple(slc3)] = np.nan else: # delay by negative, fetching future data slc1 = [slice(None)] * len(arr.shape) slc1[axis] = slice(-window, arr.shape[axis]) slc2 = [slice(None)] * len(arr.shape) slc2[axis] = slice(0, window) slc3 = [slice(None)] * len(arr.shape) slc3[axis] = slice(window, arr.shape[axis]) ret[tuple(slc2)] = ret[tuple(slc1)] ret[tuple(slc3)] = np.nan return ret def rolling(arr, window, f, axis=0): """ rolling with NumPy and for loop. Note: np.nanxxx is much slower than np.xxx :param f: a function which accepts array and axis as the first two arguments. e.g. np.nanstd """ ret = [] slc = [slice(None)] * len(arr.shape) for ti in range(arr.shape[axis]): slc[axis] = slice(max(ti - window + 1, 0), ti + 1) rolling_data = arr[tuple(slc)] ret.append(f(rolling_data, axis)) ret = np.stack(ret, axis=axis) return ret def rolling_cross(x, y, window, f, axis): """ rolling fucn of two arrays :param f: a function which accepts two arrays and axis as the first three arguments. e.g. cal_pearson_r """ ret = [] slc = [slice(None)] * len(x.shape) for ti in range(x.shape[axis]): slc[axis] = slice(max(ti - window + 1, 0), ti + 1) rolling_x = x[tuple(slc)] rolling_y = y[tuple(slc)] ret.append(f(rolling_x, rolling_y, axis=axis)) ret = np.stack(ret, axis=axis) return ret def ts_quantile_aux(arr, axis, standardize): """用于ts_quantile的辅助函数, 会作为f传入rolling中. axis参数不管设成什么都按照0来算. """ arr_rank = (arr[-1, ...][np.newaxis, ...] > arr).sum(0).astype('float') arr_rank[np.isnan(arr[-1, ...])] = np.nan if standardize: arr_rank = arr_rank / mask(arr).sum(0) return arr_rank def rank(arr, axis=1, method='average'): """rank along an axis, starting at zero. deals with nan. """ ranks = stats.rankdata(arr, method=method, axis=axis).astype('float') # nans are given largest rank ranks[np.isnan(arr)] = np.nan # mstats.rankdata assign 0 to masked values return ranks - 1 #def cal_pearson_r(x, y, axis=0): # """calculate Pearson correlation coefficient along an axis.""" # x = x.copy() # 关键的步骤, 如果不进行会导致对数据进行inplace的修改, 最终nan充满整个数组. # y = y.copy() # nanmask = (np.isnan(x) | np.isnan(y)) # make x and y have the same nan values # x[nanmask] = np.nan # y[nanmask] = np.nan # x = x - np.nanmean(x, axis=axis, keepdims=True) # y = y - np.nanmean(y, axis=axis, keepdims=True) # result = np.nansum(x * y, axis) / np.sqrt(np.nansum(x ** 2, axis) * np.nansum(y ** 2, axis)) # return result def cal_pearson_r(x, y, axis=0): #import pdb; pdb.set_trace() #raise Exception('bug') xy = np.hstack((x, y)) isnan = np.isnan(xy).any(axis=1) _x = x[np.ix_(~isnan)] _y = y[np.ix_(~isnan)] if _x.shape[0] < 2: return np.nan else: _x = _x - np.mean(_x, axis=axis, keepdims=True) _y = _y - np.mean(_y, axis=axis, keepdims=True) if np.allclose(_x, 0) or np.allclose(_y, 0): return 0.0 else: res = np.sum(_x*_y) / np.sqrt(np.sum(_x**2, axis)) / np.sqrt(np.sum(_y**2, axis)) return res[0] def cal_cov(x, y, axis=0): """calculate covariance along an axis.""" x = x.copy() # 关键的步骤, 如果不进行会导致对数据进行inplace的修改, 最终nan充满整个数组. y = y.copy() nanmask = (np.isnan(x) | np.isnan(y)) # make x and y have the same nan values x[nanmask] = np.nan y[nanmask] = np.nan x = x - np.nanmean(x, axis=axis, keepdims=True) y = y - np.nanmean(y, axis=axis, keepdims=True) result = np.nansum(x * y, axis) / (~nanmask).sum(axis, keepdims=True) return result #def load_data_2d(fields, f_load_data): # """读取数据. f_load_data中已经包含了start_date的信息. """ # data = dict() # for field in fields: # field_ = field.split('.')[-1] # data[field_] = f_load_data(field) # return data def load_data_2d(fields, f_load_data): """读取数据. f_load_data中已经包含了start_date的信息. """ data = dict() for field in fields: data[field.replace('.', '_')] = f_load_data(field).to_numpy() return data def load_tradedate(field, f_load_data): return f_load_data(field).index def alpha_to_weights(alpha): """归一化. 最终截面绝对值和为2. """ alpha = alpha - np.nanmean(alpha, axis=1, keepdims=True) mask_pos = (alpha > 0) mask_neg = (alpha < 0) alpha_pos = imposter(alpha) alpha_pos[mask_pos] = alpha[mask_pos] alpha_pos = alpha_pos / np.nansum(alpha_pos, 1, keepdims=True) alpha_neg = imposter(alpha) alpha_neg[mask_neg] = alpha[mask_neg] alpha_neg = -alpha_neg / np.nansum(alpha_neg, 1, keepdims=True) alpha[mask_pos] = alpha_pos[mask_pos] alpha[mask_neg] = alpha_neg[mask_neg] return alpha # ENDCOPY # 以下为提交时不需要的函数 # 修改 ################################################################### # 可以在这里添加不应该或不需要被COPY的自定义函数(如可能导致cython编译出现问题) # 修改 ################################################################### def get_eval_info(expr, dict_operators, dict_data_eval_info): """ tries to get EvalInfo of expr's root node. if legal, returns EvalInfo of root node; otherwise, raises IllegalSyntax exception. 原来写的check_syntax函数代码习惯比较糟糕, 导致出现了各种问题. 现在写一个更规范的版本. 我们在这里尽量规避使用eval()函数. 事实上, 任何情况下都应避免使用该函数. 此后计算阿尔法值的代码可能也要改. TODO: 可能需要更改计算阿尔法值的代码 取而代之, 利用该list深度优先遍历的特性, 采用递归的方法检查是否存在句法错误. 首先从根节点开始, 计算它的所有子节点处的EvalInfo, 随后检查该节点处的输入是否符合算子的句法. 而子节点处的EvalInfo用类似方法计算, 直到某个子节点不再有任何入度(arity, 每一个元素都有这个属性), 此时返回的是该terminal的EvalInfo(如果是数据则有显示定义, 如果是ephemeral则可以返回任何东西, 因为不参与任何运算). 至于如何检查句法, 我们通过传入的operators找到节点名字对应的算子, 直接调用该算子. 调用算子过程中可能raise IllegalSyntax错误, 则会向外不断抛出, 需要接住(如check_syntax中的处理) TODO: 这个写法涉及一些重复计算, 可能效率较低 :param expr: list, holds tree expression from DFS """ if expr[0].arity > 0: # primitive eval_info_of_subtrees = [] begin = 1 while True: # 寻找子树. 这部分代码来自gp.PrimitiveTree的searchSubtree方法 end = begin + 1 total = expr[begin].arity while total > 0: total += expr[end].arity - 1 end += 1 # 上述循环结束. 此时[begin, end)是子树的区间. end刚好停在下一个子树的开始, 或者在数组末尾. eval_info_of_subtrees.append(get_eval_info(expr[begin: end], dict_operators, dict_data_eval_info)) begin = end if end == len(expr): # 已经进行到列表的末尾 break f = dict_operators[expr[0].name][0] return f(*eval_info_of_subtrees) else: # terminal, could be data or ephemeral if expr[0].ret == Ephemeral: return expr[0].value # Ephemeral则返回它自己的值, 因为有些算子(例如SIGNED_POWER)需要用到它计算unit else: # data return dict_data_eval_info[expr[0].value] # .value returns e.g. 'OPEN', while .name returns 'ARG0' def check_syntax(expr, dict_operators, dict_data_eval_info): """检查一个输入列表expr的句法是否正确.""" try: eval_info = get_eval_info(expr, dict_operators, dict_data_eval_info) return True except IllegalSyntex: return False def compare_subtree(expr1, expr2, dict_operators, dict_data_eval_info): """ We check whether the return type, shape, and units of two subtrees are the same, before performing crossover or mutation. """ if expr1[0].ret != expr2[0].ret: # check return type return False eval_info_1 = get_eval_info(expr1, dict_operators, dict_data_eval_info) eval_info_2 = get_eval_info(expr2, dict_operators, dict_data_eval_info) # check shape and unit try: if eval_info_1.shape != eval_info_2.shape or check_same_unit(eval_info_1.unit, eval_info_2.unit) == False: return False return True except AttributeError: return False def find_primitive(pset, return_type, name): """find a primitive in pset by name""" for op in pset.primitives[return_type]: if op.name == name: return op print("Primitive not found!") return None def find_terminal(pset, return_type, value=None): """find a terminal in pset by name""" for op in pset.terminals[return_type]: # 这里用了or的short-circuiting. Ephemeral类型没有name或value属性, 故先判断是否为Ephemeral; 若不是, 再比较value. if return_type == Ephemeral or op.value == value: if inspect.isclass(op): # Ephemeral类需要实例化. 其他算子直接就是函数了. return op() else: return op print("Terminal not found!") return None def cal_pool_corr(pnl, pnl_pool): """ 计算一个阿尔法与pool的pearson最大相关系数. 下面n_days必须相同, 且为与asim一致, 必须都为500天, 且时间戳需对齐. :param pnl: shape = (n_days,)的ndarray :param pnl_pool: shape = (n_days, n_alphas)的ndarray :param axis: 沿哪个轴计算 """ # 用np.broadcast_to比用repeat快一点 maxcorr = np.max(cal_pearson_r(np.broadcast_to(pnl[:, np.newaxis], pnl_pool.shape), pnl_pool, axis=0)) return maxcorr def maxcorr_with_pool(pnl, pnl_pool): res = [] x = pnl.reshape(len(pnl), 1) if len(pnl_pool.shape) > 1: for i in range(pnl_pool.shape[1]): y = pnl_pool[:, i].reshape(len(pnl), 1) res.append(cal_pearson_r(x, y)) return max(res) else: return cal_pearson_r(x, pnl_pool.reshape(len(pnl), 1)) def expr_to_str(expr): return str(gp.PrimitiveTree(expr)) def cal_ic_series(alpha, future_returns, ranked=True): """ calculate time series of information coefficient """ if ranked: # calculate rank IC alpha = rank(alpha, axis=1) future_returns = rank(future_returns, axis=1) ic_series = cal_pearson_r(alpha, future_returns, axis=1) return ic_series def cal_pnl_series(alpha, today_returns): """ 计算pnl序列, 其实只是收益率序列, 因为只差本金(常数). :param alpha: 一个2维ndarray. 其必须满足值可以解释为权重, 例如每天的正数部分和负数部分和都为1. :param today_returns: 也是2d数组, 其与alpha对齐的时间代表当日的收益率(alpha本身是用delay的数据计算的) :return: 返回的是当日的策略收益率 """ return np.nansum(ts_delay(alpha, 1) * today_returns, 1) / 2 # 有多空, 收益率要除以2. 注意若全nan则当日为0. # basic functions used in mutation and crossover def exception_printer(k, name): pass # 测试时打印太多了, 先关掉 # if k == 0: # print(f"=====Catch exception in function {name}=====") def compare(ind1, ind2, cxpoint1, cxpoint2, dict_operators, dict_data_eval_info): tree1, tree2 = gp.PrimitiveTree(ind1), gp.PrimitiveTree(ind2) root1, root2 = ind1[cxpoint1], ind2[cxpoint2] # Eliminate the situation while leaf(terminal) is selected as "subtree". if(type(root1) == 'deap.gp.Terminal' and type(root2) == 'deap.gp.Terminal'): return (False, 0, 0) slice1, slice2 = tree1.searchSubtree(cxpoint1), tree2.searchSubtree(cxpoint2) sublst1, sublst2 = ind1[slice1], ind2[slice2] # Only consider crossover of subtree when its height is greater than 1. if compare_subtree(sublst1, sublst2, dict_operators, dict_data_eval_info) and \ gp.PrimitiveTree(sublst1).height >= 1 and gp.PrimitiveTree(sublst2).height >= 1: return (True, len(sublst1), len(sublst2)) else: return (False, 0, 0) def pw(text, log): """print and write. note that write() does not append newline automatically, and print() is adjusted accordingly.""" print(text, end='') log.write(text) def get_population_statistics(population): """获取一个种群的统计量. 注意所有个体必须都有fitness.""" fitness_list = np.sort(np.array([individual.fitness for individual in population if not (np.isinf(individual.fitness) or np.isnan(individual.fitness))])) text = f'population size: {len(population)}, valid individual size: {len(fitness_list)}\n' if len(fitness_list)==0: return text statistics = [ np.mean(fitness_list), np.std(fitness_list), stats.skew(fitness_list), stats.kurtosis(fitness_list), fitness_list[0], fitness_list[int(len(fitness_list) * 0.25)], fitness_list[int(len(fitness_list) * 0.5)], fitness_list[int(len(fitness_list) * 0.75)], fitness_list[-1] ] text += 'MEAN:{:4.2f} STD :{:4.2f} SKEW:{:4.2f} KURT:{:4.2f}\n' \ 'MIN :{:4.2f} QT25:{:4.2f} QT50:{:4.2f} QT75:{:4.2f} MAX :{:4.2f}\n'.format(*statistics) return text def table_population_statistics(population, title): """获取一个种群的统计量. 注意所有个体必须都有fitness.""" fitness_list = [(x.fitness, abs(x.fitness_raw)) for x in population if not (np.isinf(x.fitness) or np.isnan(x.fitness))] fitness_list.sort(key=lambda x:x[0]) fitness_list = np.array(fitness_list) ttc, vac = len(population), len(fitness_list) if vac > 0: q25, q50, q75 = fitness_list[int(vac*0.25), :], fitness_list[int(vac*0.5), :], fitness_list[int(vac*0.75), :] mm, ss, mi, ma = np.mean(fitness_list, axis=0), np.std(fitness_list, axis=0), fitness_list[0, :], fitness_list[-1, :] else: q25, q50, q75 = ([np.nan]*2, ) * 3 mm, ss, ma, mi= ([np.nan]*2, ) * 4 table = PrettyTable() table.title = title table.field_names = ['No.', 'Stats', 'Value1', 'Value2'] table.add_row(['0', 'mean', f'{mm[0]:.2f}', f'{mm[1]:.2f}']) table.add_row(['1', 'std', f'{ss[0]:.2f}', f'{ss[1]:.2f}']) table.add_row(['2', 'max', f'{ma[0]:.2f}', f'{ma[1]:.2f}']) table.add_row(['3', 'Q75', f'{q75[0]:.2f}', f'{q75[1]:.2f}']) table.add_row(['4', 'Q50', f'{q50[0]:.2f}', f'{q50[1]:.2f}']) table.add_row(['5', 'Q25', f'{q25[0]:.2f}', f'{q25[1]:.2f}']) table.add_row(['6', 'min', f'{mi[0]:.2f}', f'{mi[1]:.2f}']) table.add_row(['7', 'ttCount', f'{ttc:.0f}', f'{ttc:.0f}']) table.add_row(['8', 'vaCount', f'{vac:.0f}', f'{vac:.0f}']) return table def cal_frequent_subtrees(population, hof_num=10): ''' Calculate frequently appeared subtrees (with certain operations and data). The output will be used in subtreeMT function. Computationally inexpensive. ''' all_count = [] for individual in population: ind1 = individual.expr tree1 = gp.PrimitiveTree(ind1) size = len(ind1) for cxpoint1 in range(size): t1 = ind1[tree1.searchSubtree(cxpoint1)] subtree1 = gp.PrimitiveTree(t1) if subtree1.height > 1: all_count.append(t1) result = pd.value_counts(all_count) return result.index[0:hof_num] def cal_frequent_structure(population, hof_num=10): ''' Calculate frequently appeared structures (with consecutive certain primitives, but the auxiliary data could be arbitrary.) ''' all_count = [] for individual in population: this_count = [] ind1 = individual.expr size = len(ind1) for cxpoint1 in range(size): if isinstance(ind1[cxpoint1], deap.gp.Primitive): this_count.append(ind1[cxpoint1]) else: if (len(this_count) > 2): all_count.append(this_count) this_count = [] result = pd.value_counts(all_count) return result.index[0:hof_num] def f_load_data_io(field, data_folder, start_date, end_date): """用io的函数读取数据. 这个函数仅用于load_data_2d的f_load_data参数. 另一种f_load_data仅在submit时才定义, 使用self.get_data""" # 尝试读为2d, 若失败则读为1d数据 data_field = io.read2d_from_asimcache(os.path.join(data_folder, field))[1].to_dataframe() if data_field is None: data_field = io.read1d_from_asimcache(os.path.join(data_folder, field))[1].to_dataframe() if data_field is None: raise AttributeError(f'{field} not found') data_field = data_field.loc[start_date: end_date] return data_field def safe_regression(X:np.ndarray, Y:np.ndarray): y, x = Y.reshape(len(Y), 1), X.reshape(len(X), 1) yx = np.hstack((y, x)) nanspl =
np.isnan(yx)
numpy.isnan
""" .. codeauthor:: <NAME> <<EMAIL>> """ import numpy as np import pytest from pde.fields import FieldCollection, ScalarField, Tensor2Field, VectorField from pde.fields.base import FieldBase from pde.grids import CartesianGrid, CylindricalGrid, PolarGrid, SphericalGrid, UnitGrid from pde.grids.cartesian import CartesianGridBase from pde.tools.misc import skipUnlessModule from scipy import ndimage @pytest.mark.slow @pytest.mark.parametrize("field_class", [ScalarField, Tensor2Field]) def test_interpolation_natural(example_grid, field_class): """ test some interpolation for natural boundary conditions """ msg = f"grid={example_grid}, field={field_class}" f = field_class.random_uniform(example_grid) if isinstance(example_grid, CartesianGridBase): p = example_grid.get_random_point(boundary_distance=0.5) else: p = example_grid.get_random_point(boundary_distance=1, avoid_center=True) p = example_grid.point_from_cartesian(p) i1 = f.interpolate(p, method="scipy_linear") i2 = f.interpolate(p, method="numba") np.testing.assert_almost_equal(i1, i2, err_msg=msg) c = (1,) * len(example_grid.axes) # specific cell p = f.grid.cell_coords[c] np.testing.assert_allclose( f.interpolate(p, method="scipy_linear"), f.data[(Ellipsis,) + c], err_msg=msg ) np.testing.assert_allclose( f.interpolate(p, method="numba"), f.data[(Ellipsis,) + c], err_msg=msg ) @pytest.mark.parametrize("num", [1, 3]) def test_shapes_nfields(num, example_grid): """ test single component field """ fields = [ScalarField.random_uniform(example_grid) for _ in range(num)] field = FieldCollection(fields) data_shape = (num,) + example_grid.shape np.testing.assert_equal(field.data.shape, data_shape) for pf_single in field: np.testing.assert_equal(pf_single.data.shape, example_grid.shape) field_c = field.copy() np.testing.assert_allclose(field.data, field_c.data) assert field.grid == field_c.grid def test_arithmetics(): """ test simple arithmetics for fields """ grid = UnitGrid([2, 2]) for cls in (ScalarField, VectorField, Tensor2Field): f1 = cls(grid, data=1) f2 = cls(grid, data=2) assert isinstance(str(f1), str) np.testing.assert_allclose(f1.data, 1) np.testing.assert_allclose((-f1).data, -1) # test addition np.testing.assert_allclose((f1 + 1).data, 2) np.testing.assert_allclose((1 + f1).data, 2) f1 += 1 np.testing.assert_allclose(f1.data, 2) np.testing.assert_allclose((f1 + f2).data, 4) # test subtraction np.testing.assert_allclose((f1 - 1).data, 1) np.testing.assert_allclose((1 - f1).data, -1) f1 -= 1 np.testing.assert_allclose(f1.data, 1) np.testing.assert_allclose((f1 - f2).data, -1) # test multiplication np.testing.assert_allclose((f1 * 2).data, 2) np.testing.assert_allclose((2 * f1).data, 2) f1 *= 2 np.testing.assert_allclose(f1.data, 2) # test division np.testing.assert_allclose((f1 / 2).data, 1) with pytest.raises(TypeError): np.testing.assert_allclose((2 / f1).data, 1) f1 /= 2 np.testing.assert_allclose(f1.data, 1) # test power f1.data = 2 np.testing.assert_allclose((f1 ** 3).data, 8) f1 **= 3 np.testing.assert_allclose(f1.data, 8) # test applying a function f1.data = 2 np.testing.assert_allclose(f1.apply(lambda x: x ** 3).data, 8) f1.apply(lambda x: x ** 3, out=f1) np.testing.assert_allclose(f1.data, 8) def test_scalar_arithmetics(): """ test simple arithmetics involving scalar fields """ grid = UnitGrid([3, 4]) s = ScalarField(grid, data=2) v = VectorField.random_uniform(grid) for f in [v, FieldCollection([v])]: f.data = s assert f.data.shape == (2, 3, 4) np.testing.assert_allclose(f.data, 2) f += s np.testing.assert_allclose(f.data, 4) np.testing.assert_allclose((f + s).data, 6) np.testing.assert_allclose((s + f).data, 6) f -= s np.testing.assert_allclose((f - s).data, 0) np.testing.assert_allclose((s - f).data, 0) f *= s np.testing.assert_allclose(f.data, 4) np.testing.assert_allclose((f * s).data, 8) np.testing.assert_allclose((s * f).data, 8) f /= s np.testing.assert_allclose((f / s).data, 1) with pytest.raises(TypeError): s / f with pytest.raises(TypeError): s /= f with pytest.raises(TypeError): s *= f def test_data_managment(): """ test how data is set """ grid = UnitGrid([2, 2]) for cls in (ScalarField, VectorField, Tensor2Field): s1 = cls(grid, data=1) np.testing.assert_allclose(s1.data, 1) s2 = cls(grid) np.testing.assert_allclose(s2.data, 0) c = FieldCollection([s1, s2]) s1.data = 0 np.testing.assert_allclose(c.data, 0) c.data = 2 np.testing.assert_allclose(s1.data, 2) np.testing.assert_allclose(s2.data, 2) c.data += 1 np.testing.assert_allclose(s1.data, 3) np.testing.assert_allclose(s2.data, 3) c[0].data += 2 # reference to s1 c[1].data *= 2 # reference to s2 np.testing.assert_allclose(s1.data, 5) np.testing.assert_allclose(s2.data, 6) c[0] = s2 np.testing.assert_allclose(c.data, 6) # nested collections with pytest.raises(RuntimeError): FieldCollection([c]) @skipUnlessModule("h5py") def test_hdf_input_output(tmp_path): """ test writing and reading files """ grid = UnitGrid([4, 4]) s = ScalarField.random_uniform(grid, label="scalar") v = VectorField.random_uniform(grid, label="vector") t = Tensor2Field.random_uniform(grid, label="tensor") col = FieldCollection([s, v, t], label="collection") path = tmp_path / "test_hdf_input_output.hdf5" for f in [s, v, t, col]: f.to_file(path) f2 = FieldBase.from_file(path) assert f == f2 assert f.label == f2.label assert isinstance(str(f), str) assert isinstance(repr(f), str) @skipUnlessModule("matplotlib") def test_writing_images(tmp_path): """ test writing and reading files """ from matplotlib.pyplot import imread grid = UnitGrid([4, 4]) s = ScalarField.random_uniform(grid, label="scalar") v = VectorField.random_uniform(grid, label="vector") t = Tensor2Field.random_uniform(grid, label="tensor") path = tmp_path / "test_writing_images.png" for f in [s, v, t]: f.to_file(path) # try reading the file with path.open("br") as fp: imread(fp) @pytest.mark.slow def test_interpolation_to_grid_fields(): """ test whether data is interpolated correctly for different fields """ grid = CartesianGrid([[0, 2 * np.pi]] * 2, 6) grid2 = CartesianGrid([[0, 2 * np.pi]] * 2, 8) vf = VectorField.from_expression(grid, ["sin(y)", "cos(x)"]) sf = vf[0] # test extraction of fields fc = FieldCollection([sf, vf]) for f in [sf, vf, fc]: f2 = f.interpolate_to_grid(grid2, method="numba") f3 = f2.interpolate_to_grid(grid, method="numba") np.testing.assert_allclose(f.data, f3.data, atol=0.2, rtol=0.2) @pytest.mark.slow @pytest.mark.parametrize("field_cls", [ScalarField, VectorField, Tensor2Field]) def test_interpolation_values(field_cls): """ test whether data is interpolated correctly for different fields """ grid = UnitGrid([3, 4]) f = field_cls.random_uniform(grid) intp = f.make_interpolator("numba") c = f.grid.cell_coords[2, 2] np.testing.assert_allclose(intp(c), f.data[..., 2, 2]) with pytest.raises(ValueError): intp(np.array([100, -100])) res = f.make_interpolator("numba", fill=45)(np.array([100, -100])) np.testing.assert_almost_equal(res, np.full(f.data_shape, 45)) @pytest.mark.slow @pytest.mark.parametrize( "grid", [ UnitGrid((6,)), PolarGrid(6, 4), SphericalGrid(7, 4), CylindricalGrid(6, (0, 8), (7, 8)), ], ) def test_interpolation_to_cartesian(grid): """ test whether data is interpolated correctly to Cartesian grid """ dim = grid.dim vf = VectorField(grid, 2) sf = vf[0] # test extraction of fields fc = FieldCollection([sf, vf]) # subset grid_cart = UnitGrid([4] * dim) for f in [sf, fc]: res = f.interpolate_to_grid(grid_cart) np.testing.assert_allclose(res.data, 2) # superset grid_cart = UnitGrid([8] * dim) for f in [sf, fc]: res = f.interpolate_to_grid(grid_cart, fill=0) assert res.data.min() == 0 assert res.data.max() == pytest.approx(2) @pytest.mark.parametrize( "grid", [PolarGrid(6, 4), SphericalGrid(7, 4), CylindricalGrid(6, (0, 8), (7, 8))] ) def test_get_cartesian_grid(grid): """ test whether Cartesian grids can be created """ cart = grid.get_cartesian_grid(mode="valid") assert cart.volume < grid.volume cart = grid.get_cartesian_grid(mode="full") assert cart.volume > grid.volume @skipUnlessModule("matplotlib") def test_simple_plotting(example_grid): """ test simple plotting of various fields on various grids """ vf = VectorField.random_uniform(example_grid) tf = Tensor2Field.random_uniform(example_grid) sf = tf[0, 0] # test extraction of fields fc = FieldCollection([sf, vf]) for f in [sf, vf, tf, fc]: f.plot(action="close") f.plot(kind="line", action="close") if example_grid.dim >= 2: f.plot(kind="image", action="close") if isinstance(f, VectorField) and example_grid.dim == 2: f.plot(kind="quiver", action="close") f.plot(kind="streamplot", action="close") def test_random_uniform(): """ test whether random uniform fields behave correctly """ grid = UnitGrid([256, 256]) for field_cls in [ScalarField, VectorField, Tensor2Field]: a = np.random.random() b = 2 + np.random.random() f = field_cls.random_uniform(grid, a, b) assert np.mean(f.average) == pytest.approx((a + b) / 2, rel=0.02) assert np.std(f.data) == pytest.approx(0.288675 * (b - a), rel=0.1) np.testing.assert_allclose(f.real.data, f.data) np.testing.assert_allclose(f.imag.data, 0) def test_random_normal(): """ test whether random normal fields behave correctly """ grid = UnitGrid([256, 256]) for field_cls in [ScalarField, VectorField, Tensor2Field]: m = np.random.random() s = 1 + np.random.random() for scaling in ["none", "physical"]: f = field_cls.random_normal(grid, mean=m, std=s, scaling=scaling) assert np.mean(f.average) == pytest.approx(m, rel=0.1, abs=0.1) assert np.std(f.data) == pytest.approx(s, rel=0.1, abs=0.1) @pytest.mark.parametrize("field_cls", [ScalarField, VectorField, Tensor2Field]) def test_random_colored(field_cls): """ test whether random colored fields behave correctly """ grid = UnitGrid([128, 128]) exponent = np.random.uniform(-4, 4) scale = 1 + np.random.random() f = field_cls.random_colored(grid, exponent=exponent, scale=scale) assert np.allclose(f.average, 0) def test_fluctuations(): """ test the scaling of fluctuations """ for dim in [1, 2]: for size in [256, 512]: if dim == 1: size **= 2 grid = CartesianGrid([[0, 1]] * dim, [size] * dim) std = 1 + np.random.random() for field_cls in [ScalarField, VectorField, Tensor2Field]: s = field_cls.random_normal( grid, mean=np.random.random(), std=std, scaling="physical" ) expect = np.full([dim] * field_cls.rank, std) np.testing.assert_allclose(s.fluctuations, expect, rtol=0.1) def test_smoothing(): """ test smoothing on different grids """ for grid in [ CartesianGrid([[-2, 3]], 4), UnitGrid(7, periodic=False), UnitGrid(7, periodic=True), ]: f1 = ScalarField.random_uniform(grid) sigma = 0.5 + np.random.random() # this assumes that the grid periodicity is the same for all axes mode = "wrap" if grid.periodic[0] else "reflect" s = sigma / grid.typical_discretization expected = ndimage.gaussian_filter(f1.data, sigma=s, mode=mode) out = f1.smooth(sigma) np.testing.assert_allclose(out.data, expected) out.data = 0 # reset data f1.smooth(sigma, out=out).data
np.testing.assert_allclose(out.data, expected)
numpy.testing.assert_allclose
from __future__ import annotations import scipy import numpy as np from warnings import warn from .arrays import ImgArray, PropArray from .arrays.utils import _docs from .arrays.utils._corr import subpixel_pcc from .utils.axesop import * from .utils.utilcls import Progress from .utils.deco import dims_to_spatial_axes from ._cupy import xp, asnumpy, xp_ndi from ._types import Dims __all__ = ["fsc", "fourier_shell_correlation", "ncc", "zncc", "fourier_ncc", "fourier_zncc", "nmi", "pcc_maximum", "ft_pcc_maximum", "pearson_coloc", "manders_coloc"] @_docs.write_docs @dims_to_spatial_axes def fsc(img0: ImgArray, img1: ImgArray, nbin: int = 32, r_max: float = None, *, squeeze: bool = True, dims: Dims = None) -> PropArray: r""" Calculate Fourier Shell Correlation (FSC; or Fourier Ring Correlation, FRC, for 2-D images) between two images. FSC is defined as: .. math:: FSC(r) = \frac{Re(\sum_{r<r'<r+dr}[F_0(r') \cdot \bar{F_1}(r)])} {\sqrt{\sum_{r<r'<r+dr}|F_0(r')|^2 \cdot \sum_{r<r'<r+dr}|F_1(r')|^2}} Parameters ---------- {inputs_of_correlation} nbin : int, default is 32 Number of bins. r_max : float, optional Maximum radius to make profile. Region 0 <= r < r_max will be split into `nbin` rings (or shells). **Scale must be considered** because scales of each axis may vary. {squeeze} {dims} Returns ------- PropArray FSC stored in x-axis by default. If input images have tzcyx-axes, then an array with tcx-axes will be returned. Make sure x-axis no longer means length in x because images are Fourier transformed. """ img0, img1 = _check_inputs(img0, img1) spatial_shape = img0.sizesof(dims) inds = xp.indices(spatial_shape) center = [s/2 for s in spatial_shape] r = xp.sqrt(sum(((x - c)/img0.scale[a])**2 for x, c, a in zip(inds, center, dims))) r_lim = r.max() # check r_max if r_max is None: r_max = r_lim elif r_max > r_lim or r_max <= 0: raise ValueError(f"`r_max` must be in range of 0 < r_max <= {r_lim} with this image.") with Progress("fsc"): # make radially separated labels r_rel = r/r_max labels = (nbin * r_rel).astype(np.uint16) labels[r_rel >= 1] = 0 c_axes = complement_axes(dims, img0.axes) nlabels = int(asnumpy(labels.max())) out = xp.empty(img0.sizesof(c_axes)+(nlabels,), dtype=xp.float32) def radial_sum(arr): arr = xp.asarray(arr) return xp_ndi.sum_labels(arr, labels=labels, index=xp.arange(1, nlabels+1)) f0 = img0.fft(dims=dims) f1 = img1.fft(dims=dims) for sl, f0_, f1_ in iter2(f0, f1, c_axes, exclude=dims): cov = f0_.real*f1_.real + f0_.imag*f1_.imag pw0 = f0_.real**2 + f0_.imag**2 pw1 = f1_.real**2 + f1_.imag**2 out[sl] = radial_sum(cov)/xp.sqrt(radial_sum(pw0)*radial_sum(pw1)) if out.ndim == 0 and squeeze: out = out[()] out = PropArray(asnumpy(out), dtype=np.float32, axes=c_axes+dims[-1], dirpath=img0.dirpath, metadata=img0.metadata, propname="fsc") return out # alias fourier_shell_correlation = fsc def _ncc(img0: ImgArray, img1: ImgArray, dims: Dims): # Basic Normalized Cross Correlation with batch processing n = np.prod(img0.sizesof(dims)) if isinstance(dims, str): dims = tuple(img0.axisof(a) for a in dims) img0 = xp.asarray(img0) img1 = xp.asarray(img1) corr = xp.sum(img0 * img1, axis=dims) / ( xp.std(img0, axis=dims)*xp.std(img1, axis=dims)) / n return asnumpy(corr) def _masked_ncc(img0: ImgArray, img1: ImgArray, dims: Dims, mask: ImgArray): if mask.ndim < img0.ndim: mask = add_axes(img0.axes, img0.shape, mask, mask.axes) n = np.prod(img0.sizesof(dims)) img0ma = np.ma.array(img0.value, mask=mask) img1ma = np.ma.array(img1.value, mask=mask) axis = tuple(img0.axisof(a) for a in dims) return np.ma.sum(img0ma * img1ma, axis=axis) / ( np.ma.std(img0ma, axis=axis)*np.ma.std(img1ma, axis=axis)) / n def _zncc(img0: ImgArray, img1: ImgArray, dims: Dims): # Basic Zero-Normalized Cross Correlation with batch processing. # Inputs must be already zero-normalized. if isinstance(dims, str): dims = tuple(img0.axisof(a) for a in dims) img0 = xp.asarray(img0) img1 = xp.asarray(img1) corr = xp.sum(img0 * img1, axis=dims) / ( xp.sqrt(xp.sum(img0**2, axis=dims)*xp.sum(img1**2, axis=dims))) return asnumpy(corr) def _masked_zncc(img0: ImgArray, img1: ImgArray, dims: Dims, mask: ImgArray): if mask.ndim < img0.ndim: mask = add_axes(img0.axes, img0.shape, mask, mask.axes) img0ma = np.ma.array(img0.value, mask=mask) img1ma = np.ma.array(img1.value, mask=mask) axis = tuple(img0.axisof(a) for a in dims) return np.sum(img0ma * img1ma, axis=axis) / ( np.sqrt(np.sum(img0ma**2, axis=axis)*np.sum(img1ma**2, axis=axis))) @_docs.write_docs @dims_to_spatial_axes def ncc(img0: ImgArray, img1: ImgArray, mask: ImgArray | None = None, squeeze: bool = True, *, dims: Dims = None) -> PropArray | float: """ Normalized Cross Correlation. Parameters ---------- {inputs_of_correlation} mask : boolean ImgArray, optional If provided, True regions will be masked and will not be taken into account when calculate correlation. {squeeze} {dims} Returns ------- PropArray or float Correlation value(s). """ with Progress("ncc"): img0, img1 = _check_inputs(img0, img1) if mask is None: corr = _ncc(img0, img1, dims) else: corr = _masked_ncc(img0, img1, dims, mask) return _make_corr_output(corr, img0, "ncc", squeeze, dims) @_docs.write_docs @dims_to_spatial_axes def zncc(img0: ImgArray, img1: ImgArray, mask: ImgArray | None = None, squeeze: bool = True, *, dims: Dims = None) -> PropArray | float: """ Zero-Normalized Cross Correlation. Parameters ---------- {inputs_of_correlation} mask : boolean ImgArray, optional If provided, True regions will be masked and will not be taken into account when calculate correlation. {squeeze} {dims} Returns ------- PropArray or float Correlation value(s). """ with Progress("zncc"): img0, img1 = _check_inputs(img0, img1) img0zn = img0 - np.mean(img0, axis=dims, keepdims=True) img1zn = img1 - np.mean(img1, axis=dims, keepdims=True) if mask is None: corr = _zncc(img0zn, img1zn, dims) else: corr = _masked_zncc(img0zn, img1zn, dims, mask) return _make_corr_output(corr, img0, "zncc", squeeze, dims) # alias pearson_coloc = zncc @_docs.write_docs @dims_to_spatial_axes def nmi(img0: ImgArray, img1: ImgArray, mask: ImgArray | None = None, bins: int = 100, squeeze: bool = True, *, dims: Dims = None) -> PropArray | float: r""" Normalized Mutual Information. :math:`Y(A, B) = \frac{H(A) + H(B)}{H(A, B)}` See "Elegant SciPy" Parameters ---------- {inputs_of_correlation} mask : boolean ImgArray, optional If provided, True regions will be masked and will not be taken into account when calculate correlation. bins : int, default is 100 Number of bins to construct histograms. {squeeze} {dims} Returns ------- PropArray or float Correlation value(s). """ from scipy.stats import entropy img0, img1 = _check_inputs(img0, img1) c_axes = complement_axes(dims, img0.axes) out = np.empty(img0.sizesof(c_axes), dtype=np.float32) if mask.ndim < img0.ndim: mask = add_axes(img0.axes, img0.shape, mask, mask.axes) for sl, img0_, img1_ in iter2(img0, img1, c_axes): mask_ = mask[sl] hist, edges = np.histogramdd([np.ravel(img0_[mask_]), np.ravel(img1_[mask_])], bins=bins) hist /= np.sum(hist) e1 = entropy(np.sum(hist, axis=0)) # Shannon entropy e2 = entropy(np.sum(hist, axis=1)) e12 = entropy(np.ravel(hist)) # mutual entropy out[sl] = (e1 + e2)/e12 return _make_corr_output(out, img0, "nmi", squeeze, dims) @_docs.write_docs @dims_to_spatial_axes def fourier_ncc(img0: ImgArray, img1: ImgArray, mask: ImgArray | None = None, squeeze: bool = True, *, dims: Dims = None) -> PropArray | float: """ Normalized Cross Correlation in Fourier space. Parameters ---------- {inputs_of_correlation} mask : boolean ImgArray, optional If provided, True regions will be masked and will not be taken into account when calculate correlation. {squeeze} {dims} Returns ------- PropArray or float Correlation value(s). """ with Progress("fourier_ncc"): img0, img1 = _check_inputs(img0, img1) f0 = np.sqrt(img0.power_spectra(dims=dims, zero_norm=True)) f1 = np.sqrt(img1.power_spectra(dims=dims, zero_norm=True)) if mask is None: corr = _ncc(f0, f1, dims) else: corr = _masked_ncc(f0, f1, dims, mask) return _make_corr_output(corr, img0, "fourier_ncc", squeeze, dims) @_docs.write_docs @dims_to_spatial_axes def fourier_zncc(img0: ImgArray, img1: ImgArray, mask: ImgArray | None = None, squeeze: bool = True, *, dims: Dims = None) -> PropArray | float: """ Zero-Normalized Cross Correlation in Fourier space. Parameters ---------- {inputs_of_correlation} mask : boolean ImgArray, optional If provided, True regions will be masked and will not be taken into account when calculate correlation. {squeeze} {dims} Returns ------- PropArray or float Correlation value(s). """ with Progress("fourier_zncc"): img0, img1 = _check_inputs(img0, img1) f0 = np.sqrt(img0.power_spectra(dims=dims, zero_norm=True)) f1 = np.sqrt(img1.power_spectra(dims=dims, zero_norm=True)) f0 -= np.mean(f0, axis=dims, keepdims=True) f1 -= np.mean(f1, axis=dims, keepdims=True) if mask is None: corr = _zncc(f0, f1, dims) else: corr = _masked_zncc(f0, f1, dims, mask) return _make_corr_output(corr, img0, "fourier_zncc", squeeze, dims) @_docs.write_docs def pcc_maximum(img0: ImgArray, img1: ImgArray, mask: ImgArray | None = None, upsample_factor: int = 10) -> np.ndarray: """ Calculate lateral shift between two images. Same as ``skimage.registration.phase_cross_correlation``. Parameters ---------- {inputs_of_correlation} upsample_factor : int, default is 10 Up-sampling factor when calculating phase cross correlation. Returns ------- np.ndarray Shift in pixel. """ if img0 is img1: return np.zeros(img0.ndim) with Progress("pcc_maximum"): img0, img1 = _check_inputs(img0, img1) ft0 = img0.fft(dims=img0.axes) ft1 = img1.fft(dims=img1.axes) if mask is not None: ft0[mask] = 0 shift = subpixel_pcc(xp.asarray(ft0.value), xp.asarray(ft1.value), upsample_factor) return asnumpy(shift) @_docs.write_docs def ft_pcc_maximum(img0: ImgArray, img1: ImgArray, mask: ImgArray | None = None, upsample_factor: int = 10) -> np.ndarray: """ Calculate lateral shift between two images. This function takes Fourier transformed images as input. If you have to repetitively use a same template image, this function is faster. Parameters ---------- {inputs_of_correlation} upsample_factor : int, default is 10 Up-sampling factor when calculating phase cross correlation. Returns ------- np.ndarray Shift in pixel. """ with Progress("ft_pcc_maximum"): _check_dimensions(img0, img1) if mask is not None: img0 = img0.copy() img0[mask] = 0 shift = subpixel_pcc(xp.asarray(img0.value), xp.asarray(img1.value), upsample_factor) return asnumpy(shift) @_docs.write_docs @dims_to_spatial_axes def manders_coloc(img0: ImgArray, img1: np.ndarray, *, squeeze: bool = True, dims: Dims = None) -> PropArray | float: r""" Manders' correlation coefficient. This is defined as following: :math:`r = \frac{\sum_{i \in I_{ref}} I_i}{\sum_{i} I_i}` This value is NOT independent of background intensity. You need to correctly subtract background from self. This value is NOT interchangable between channels. Parameters ---------- {inputs_of_correlation} {squeeze} {dims} Returns ------- PropArray or float Correlation coefficient(s). """ if img1.dtype != bool: raise TypeError("`ref` must be a binary image.") if img0.shape != img1.shape: raise ValueError(f"Shape mismatch. `img0` has shape {img0.shape} but `img1` " f"has shape {img1.shape}") if img0.axes != img1.axes: warn(f"Axes mismatch. `img0` has axes {img0.axes} but `img1` has axes {img1.axes}. " "Result may be wrong due to this mismatch.", UserWarning) img0 = img0.as_float() total = np.sum(img0, axis=dims) img0 = img0.copy() img0[~img1] = 0 coeff =
np.sum(img0, axis=dims)
numpy.sum
import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.stats import norm import statsmodels.api as sm import statsmodels.formula.api as smf from statsmodels.genmod.families import links from tabulate import tabulate from zepid.calc.utils import (risk_ci, incidence_rate_ci, risk_ratio, risk_difference, number_needed_to_treat, odds_ratio, incidence_rate_difference, incidence_rate_ratio, sensitivity, specificity) ######################################################################################################### # Measures of effect / association ######################################################################################################### class RiskRatio: r"""Estimate of Risk Ratio with a (1-alpha)*100% Confidence interval from a pandas DataFrame. Missing data is ignored. Exposure categories should be mutually exclusive Risk ratio is calculated from .. math:: RR = \frac{\Pr(Y|A=1)}{\Pr(Y|A=0)} Risk ratio standard error is .. math:: SE = \left(\frac{1}{a} - \frac{1}{a + b} + \frac{1}{c} - \frac{1}{c + d}\right)^{\frac{1}{2}} Note ---- Outcome must be coded as (1: yes, 0:no). Only works supports binary outcomes Parameters ------------ reference : integer, optional Reference category for comparisons. Default reference category is 0 alpha : float, optional Alpha value to calculate two-sided Wald confidence intervals. Default is 95% confidence interval Examples -------- Calculate the risk ratio in a data set >>> from zepid import RiskRatio, load_sample_data >>> df = load_sample_data(False) >>> rr = RiskRatio() >>> rr.fit(df, exposure='art', outcome='dead') >>> rr.summary() Calculate the risk ratio with exposure of '1' as the reference category >>> rr = RiskRatio(reference=1) >>> rr.fit(df, exposure='art', outcome='dead') >>> rr.summary() Generate a plot of the calculated risk ratio(s) >>> import matplotlib.pyplot as plt >>> rr = RiskRatio() >>> rr.fit(df, exposure='art', outcome='dead') >>> rr.plot() >>> plt.show() """ def __init__(self, reference=0, alpha=0.05): self.reference = reference self.alpha = alpha self.risks = [] self.risk_ratio = [] self.results = None self._a_list = [] self._b_list = [] self._c = None self._d = None self._labels = [] self._fit = False self._missing_e = None self._missing_d = None self._missing_ed = None def fit(self, df, exposure, outcome): """Calculates the Risk Ratio given a data set Parameters ------------ df : DataFrame Pandas dataframe containing variables of interest exposure : string Column name of exposure variable outcome : string Column name of outcome variable. Must be coded as binary (0,1) where 1 is the outcome of interest """ # Setting up holders for results risk_lcl = [] risk_ucl = [] risk_sd = [] rr_lcl = [] rr_ucl = [] rr_sd = [] # Getting unique values and dropping reference vals = set(df[exposure].dropna().unique()) vals.remove(self.reference) self._c = df.loc[(df[exposure] == self.reference) & (df[outcome] == 1)].shape[0] self._d = df.loc[(df[exposure] == self.reference) & (df[outcome] == 0)].shape[0] self._labels.append('Ref:'+str(self.reference)) ri, lr, ur, sd, *_ = risk_ci(events=self._c, total=(self._c + self._d), alpha=self.alpha) self.risks.append(ri) risk_lcl.append(lr) risk_ucl.append(ur) risk_sd.append(sd) self.risk_ratio.append(1) rr_lcl.append(None) rr_ucl.append(None) rr_sd.append(None) # Going through all the values for i in vals: self._labels.append(str(i)) a = df.loc[(df[exposure] == i) & (df[outcome] == 1)].shape[0] self._a_list.append(a) b = df.loc[(df[exposure] == i) & (df[outcome] == 0)].shape[0] self._b_list.append(b) ri, lr, ur, sd, *_ = risk_ci(events=a, total=(a+b), alpha=self.alpha) self.risks.append(ri) risk_lcl.append(lr) risk_ucl.append(ur) risk_sd.append(sd) em, lcl, ucl, sd, *_ = risk_ratio(a=a, b=b, c=self._c, d=self._d, alpha=self.alpha) self.risk_ratio.append(em) rr_lcl.append(lcl) rr_ucl.append(ucl) rr_sd.append(sd) # Getting the extent of missing data self._missing_ed = df.loc[(df[exposure].isnull()) & (df[outcome].isnull())].shape[0] self._missing_e = df.loc[df[exposure].isnull()].shape[0] - self._missing_ed self._missing_d = df.loc[df[outcome].isnull()].shape[0] - self._missing_ed # Setting up results rf = pd.DataFrame(index=self._labels) rf['Risk'] = self.risks rf['SD(Risk)'] = risk_sd rf['Risk_LCL'] = risk_lcl rf['Risk_UCL'] = risk_ucl rf['RiskRatio'] = self.risk_ratio rf['SD(RR)'] = rr_sd rf['RR_LCL'] = rr_lcl rf['RR_UCL'] = rr_ucl rf['CLR'] = rf['RR_UCL'] / rf['RR_LCL'] self.results = rf self._fit = True def summary(self, decimal=3): """Prints the summary results Parameters ------------ decimal : integer, optional Decimal points to display. Default is 3 """ if self._fit is False: raise ValueError('fit() function must be completed before results can be obtained') for a, b, l in zip(self._a_list, self._b_list, self._labels): print('Comparison:'+str(self.reference)+' to '+self._labels[self._labels.index(l)+1]) print(tabulate([['E=1', a, b], ['E=0', self._c, self._d]], headers=['', 'D=1', 'D=0'], tablefmt='grid'), '\n') print('======================================================================') print(' Risk Ratio ') print('======================================================================') print(self.results[['Risk', 'SD(Risk)', 'Risk_LCL', 'Risk_UCL']].round(decimals=decimal)) print('----------------------------------------------------------------------') print(self.results[['RiskRatio', 'SD(RR)', 'RR_LCL', 'RR_UCL']].round(decimals=decimal)) print('----------------------------------------------------------------------') print('Missing E: ', self._missing_e) print('Missing D: ', self._missing_d) print('Missing E&D: ', self._missing_ed) print('======================================================================') def plot(self, measure='risk_ratio', scale='linear', center=1, **errorbar_kwargs): """Plot the risk ratios or the risks along with their corresponding confidence intervals. This option is an alternative to `summary()`, which displays results in a table format. Parameters ---------- measure : str, optional Whether to display risk ratios or risks. Default is to display the risk ratio. Options are; * 'risk_ratio' : display risk ratios * 'risk' : display risks scale : str, optional Scale for the x-axis. Default is a linear scale. A log-scale can be requested by setting scale='log' center : str, optional Sets a reference line. For the risk ratio, the reference line defaults to 1. For risks, no reference line is displayed. errorbar_kwargs: add additional kwargs to be passed to the plotting function ``matplotlib.errorbar``. See defaults here: https://matplotlib.org/api/_as_gen/matplotlib.pyplot.errorbar.html Returns ------- matplotlib axes """ if measure == 'risk_ratio': ax = _plotter(estimate=self.results['RiskRatio'], lcl=self.results['RR_LCL'], ucl=self.results['RR_UCL'], labels=self.results.index, center=center, **errorbar_kwargs) if scale == 'log': ax.set_xscale('log') ax.set_title('Risk Ratio') elif measure == 'risk': ax = _plotter(estimate=self.results['Risk'], lcl=self.results['Risk_LCL'], ucl=self.results['Risk_UCL'], labels=self.results.index, center=np.nan, **errorbar_kwargs) ax.set_title('Risk') ax.set_xlim([0, 1]) else: raise ValueError('Must specify either "risk_ratio" or "risk" for plots') return ax class RiskDifference: r"""Estimate of Risk Difference with a (1-alpha)*100% Confidence interval from a pandas DataFrame. Missing data is ignored. Exposure categories should be mutually exclusive Risk difference is calculated as .. math:: RD = \Pr(Y|A=1) - \Pr(Y|A=0) Risk difference standard error is calculated as .. math:: SE = \left(\frac{R_1 \times (1 - R_1)}{a+b} + \frac{R_0 \times (1-R_0)}{c+d}\right)^{\frac{1}{2}} In addition to confidence intervals, the Frechet bounds are calculated as well. These probability bounds are useful for a comparison. Within these bounds, the true causal risk difference in the sample must live. The only assumptions these bounds require are no measurement error, causal consistency, no selection bias, and any missing data is MCAR. These bounds are always unit width (width of one), but they do not require any assumptions regarding confounding / conditional exchangeability. They are calculated via the following formula .. math:: Lower = \Pr(Y|A=a)\Pr(A=a) - \Pr(Y|A \ne a)\Pr(A \ne a) - \Pr(A=a)\\ Upper = \Pr(Y|A=a)\Pr(A=a) + \Pr(A \ne a) - \Pr(Y|A \ne a)\Pr(A \ne a) For further details on these bounds, see the references Note ---- Outcome must be coded as (1: yes, 0:no). Only supports binary outcomes Parameters ------------ reference : integer, optional -reference category for comparisons. Default reference category is 0 alpha : float, optional -Alpha value to calculate two-sided Wald confidence intervals. Default is 95% confidence interval References ---------- Cole SR et al. (2019) Nonparametric Bounds for the Risk Function. American Journal of Epidemiology. 188(4), 632-636 Examples -------- Calculate the risk difference in a data set >>> from zepid import RiskDifference, load_sample_data >>> df = load_sample_data(False) >>> rd = RiskDifference() >>> rd.fit(df, exposure='art', outcome='dead') >>> rd.summary() Calculate the risk difference with exposure of '1' as the reference category >>> rd = RiskDifference(reference=1) >>> rd.fit(df, exposure='art', outcome='dead') >>> rd.summary() Generate a plot of the calculated risk difference(s) >>> import matplotlib.pyplot as plt >>> rd = RiskDifference() >>> rd.fit(df, exposure='art', outcome='dead') >>> rd.plot() >>> plt.show() """ def __init__(self, reference=0, alpha=0.05): self.reference = reference self.alpha = alpha self.risks = [] self.risk_difference = [] self.results = None self._a_list = [] self._b_list = [] self._c = None self._d = None self._labels = [] self._fit = False self._missing_e = None self._missing_d = None self._missing_ed = None self.n = None def fit(self, df, exposure, outcome): """Calculates the Risk Difference Parameters ------------ df : DataFrame Pandas dataframe containing variables of interest exposure : string Column name of exposure variable outcome : string Column name of outcome variable. Must be coded as binary (0,1) where 1 is the outcome of interest """ n = df.dropna(subset=[exposure, outcome]).shape[0] # Setting up holders for results risk_lcl = [] risk_ucl = [] risk_sd = [] rd_lcl = [] rd_ucl = [] rd_sd = [] fr_lower = [] fr_upper = [] # Getting unique values and dropping reference vals = set(df[exposure].dropna().unique()) vals.remove(self.reference) self._c = df.loc[(df[exposure] == self.reference) & (df[outcome] == 1)].shape[0] self._d = df.loc[(df[exposure] == self.reference) & (df[outcome] == 0)].shape[0] self._labels.append('Ref:' + str(self.reference)) ri, lr, ur, sd, *_ = risk_ci(events=self._c, total=(self._c + self._d), alpha=self.alpha) self.risks.append(ri) risk_lcl.append(lr) risk_ucl.append(ur) risk_sd.append(sd) self.risk_difference.append(0) rd_lcl.append(None) rd_ucl.append(None) rd_sd.append(None) fr_lower.append(None) fr_upper.append(None) # Going through all the values for i in vals: self._labels.append(str(i)) a = df.loc[(df[exposure] == i) & (df[outcome] == 1)].shape[0] self._a_list.append(a) b = df.loc[(df[exposure] == i) & (df[outcome] == 0)].shape[0] self._b_list.append(b) ri, lr, ur, sd, *_ = risk_ci(events=a, total=(a + b), alpha=self.alpha) self.risks.append(ri) risk_lcl.append(lr) risk_ucl.append(ur) risk_sd.append(sd) em, lcl, ucl, sd, *_ = risk_difference(a=a, b=b, c=self._c, d=self._d, alpha=self.alpha) self.risk_difference.append(em) rd_lcl.append(lcl) rd_ucl.append(ucl) rd_sd.append(sd) fr_lower.append(ri*((a+b)/n) - (1-ri)*(1 - (a+b)/n) - ((a+b)/n)) fr_upper.append(ri*((a+b)/n) + (1 - (a+b)/n) - (1-ri)*(1 - (a+b)/n)) # Getting the extent of missing data self._missing_ed = df.loc[(df[exposure].isnull()) & (df[outcome].isnull())].shape[0] self._missing_e = df.loc[df[exposure].isnull()].shape[0] - self._missing_ed self._missing_d = df.loc[df[outcome].isnull()].shape[0] - self._missing_ed self.n = n # Setting up results rf = pd.DataFrame(index=self._labels) rf['Risk'] = self.risks rf['SD(Risk)'] = risk_sd rf['Risk_LCL'] = risk_lcl rf['Risk_UCL'] = risk_ucl rf['RiskDifference'] = self.risk_difference rf['SD(RD)'] = rd_sd rf['RD_LCL'] = rd_lcl rf['RD_UCL'] = rd_ucl rf['CLD'] = rf['RD_UCL'] - rf['RD_LCL'] rf['LowerBound'] = fr_lower rf['UpperBound'] = fr_upper self.results = rf self._fit = True def summary(self, decimal=3): """Prints the summary results Parameters ------------ decimal : integer, optional Decimal points to display. Default is 3 """ if self._fit is False: raise ValueError('fit() function must be completed before results can be obtained') for a, b, l in zip(self._a_list, self._b_list, self._labels): print('Comparison:'+str(self.reference)+' to '+self._labels[self._labels.index(l)+1]) print(tabulate([['E=1', a, b], ['E=0', self._c, self._d]], headers=['', 'D=1', 'D=0'], tablefmt='grid'), '\n') print('======================================================================') print(' Risk Difference ') print('======================================================================') print(self.results[['Risk', 'SD(Risk)', 'Risk_LCL', 'Risk_UCL']].round(decimals=decimal)) print('----------------------------------------------------------------------') print(self.results[['RiskDifference', 'SD(RD)', 'RD_LCL', 'RD_UCL']].round(decimals=decimal)) print('----------------------------------------------------------------------') print(self.results[['RiskDifference', 'CLD', 'LowerBound', 'UpperBound']].round(decimals=decimal)) print('----------------------------------------------------------------------') print('Missing E: ', self._missing_e) print('Missing D: ', self._missing_d) print('Missing E&D: ', self._missing_ed) print('======================================================================') def plot(self, measure='risk_difference', center=0, **errorbar_kwargs): """Plot the risk differences or the risks along with their corresponding confidence intervals. This option is an alternative to `summary()`, which displays results in a table format. Parameters ---------- measure : str, optional Whether to display risk differences or risks. Default is to display the risk difference. Options are; * 'risk_difference' : display risk differences * 'risk' : display risks center : str, optional Sets a reference line. For the risk difference, the reference line defaults to 0. For risks, no reference line is displayed. errorbar_kwargs: add additional kwargs to be passed to the plotting function ``matplotlib.errorbar``. See defaults here: https://matplotlib.org/api/_as_gen/matplotlib.pyplot.errorbar.html Returns ------- matplotlib axes """ if measure == 'risk_difference': ax = _plotter(estimate=self.results['RiskDifference'], lcl=self.results['RD_LCL'], ucl=self.results['RD_UCL'], labels=self.results.index, center=center, **errorbar_kwargs) ax.set_title('Risk Difference') elif measure == 'risk': ax = _plotter(estimate=self.results['Risk'], lcl=self.results['Risk_LCL'], ucl=self.results['Risk_UCL'], labels=self.results.index, center=np.nan, **errorbar_kwargs) ax.set_title('Risk') ax.set_xlim([0, 1]) else: raise ValueError('Must specify either "risk_difference" or "risk" for plots') return ax class NNT: r"""Estimates of Number Needed to Treat. NNT (1-alpha)*100% confidence interval presentation is based on Altman, DG (BMJ 1998). Missing data is ignored Number needed to treat is calculated as .. math:: NNT = \frac{1}{RD} Risk difference the corresponding confidence intervals come from .. math:: RD = \Pr(Y|A=1) - \Pr(Y|A=0) Risk difference standard error is calculated as .. math:: SE = \left(\frac{R_1 \times (1 - R_1)}{a+b} + \frac{R_0 \times (1-R_0)}{c+d}\right)^{\frac{1}{2}} Note ---- Outcome must be coded as (1: yes, 0:no). Only works for binary outcomes Parameters ------------ reference : integer, optional Reference category for comparisons. Default reference category is 0 alpha : float, optional Alpha value to calculate two-sided Wald confidence intervals. Default is 95% confidence interval Examples -------- Calculate the number needed to treat in a data set >>> from zepid import NNT, load_sample_data >>> df = load_sample_data(False) >>> nnt = NNT() >>> nnt.fit(df, exposure='art', outcome='dead') >>> nnt.summary() Calculate the number needed to treat with '1' as the reference category >>> nnt = NNT(reference=1) >>> nnt.fit(df, exposure='art', outcome='dead') >>> nnt.summary() """ def __init__(self, reference=0, alpha=0.05): self.reference = reference self.alpha = alpha self.number_needed_to_treat = [] self.results = None self._a_list = [] self._b_list = [] self._c = None self._d = None self._labels = [] self._fit = False self._missing_e = None self._missing_d = None self._missing_ed = None def fit(self, df, exposure, outcome): """Calculates the NNT Parameters ------------ df : DataFrame Pandas dataframe containing variables of interest exposure : string Column name of exposure variable outcome : string Column name of outcome variable. Must be coded as binary (0,1) where 1 is the outcome of interest """ # Setting up holders for results nnt_lcl = [] nnt_ucl = [] nnt_sd = [] # Getting unique values and dropping reference vals = set(df[exposure].dropna().unique()) vals.remove(self.reference) self._c = df.loc[(df[exposure] == self.reference) & (df[outcome] == 1)].shape[0] self._d = df.loc[(df[exposure] == self.reference) & (df[outcome] == 0)].shape[0] self._labels.append('Ref:' + str(self.reference)) self.number_needed_to_treat.append(np.inf) nnt_lcl.append(None) nnt_ucl.append(None) nnt_sd.append(None) # Going through all the values for i in vals: self._labels.append(str(i)) a = df.loc[(df[exposure] == i) & (df[outcome] == 1)].shape[0] self._a_list.append(a) b = df.loc[(df[exposure] == i) & (df[outcome] == 0)].shape[0] self._b_list.append(b) em, lcl, ucl, sd, *_ = number_needed_to_treat(a=a, b=b, c=self._c, d=self._d, alpha=self.alpha) self.number_needed_to_treat.append(em) nnt_lcl.append(lcl) nnt_ucl.append(ucl) nnt_sd.append(sd) # Getting the extent of missing data self._missing_ed = df.loc[(df[exposure].isnull()) & (df[outcome].isnull())].shape[0] self._missing_e = df.loc[df[exposure].isnull()].shape[0] - self._missing_ed self._missing_d = df.loc[df[outcome].isnull()].shape[0] - self._missing_ed # Setting up results rf = pd.DataFrame(index=self._labels) rf['NNT'] = self.number_needed_to_treat rf['SD(RD)'] = nnt_sd rf['NNT_LCL'] = nnt_lcl rf['NNT_UCL'] = nnt_ucl self.results = rf self._fit = True def summary(self, decimal=3): """Prints the summary results Parameters ------------ decimal : integer, optional Decimal points to display. Default is 3 """ if self._fit is False: raise ValueError('fit() function must be completed before results can be obtained') for i, r in self.results.iterrows(): if i == self._labels[0]: pass else: print('======================================================================') print(' Number Needed to Treat/Harm ') print('======================================================================') if r['NNT'] == np.inf: print('Number Needed to Treat = infinite') else: if r['NNT'] > 0: print('Number Needed to Harm: ', round(abs(r['NNT']), decimal)) if r['NNT'] < 0: print('Number Needed to Treat: ', round(abs(r['NNT']), decimal)) print('----------------------------------------------------------------------') print(str(round(100 * (1 - self.alpha), 1)) + '% two-sided CI: ') if r['NNT_LCL'] < 0 < r['NNT_UCL']: print('NNT ', round(abs(r['NNT_LCL']), decimal), 'to infinity to NNH ', round(abs(r['NNT_UCL']), decimal)) elif 0 < r['NNT_LCL']: print('NNT ', round(abs(r['NNT_LCL']), decimal), ' to ', round(abs(r['NNT_UCL']), decimal)) else: print('NNH ', round(abs(r['NNT_LCL']), decimal), ' to ', round(abs(r['NNT_UCL']), decimal)) print('----------------------------------------------------------------------') print('Missing E: ', self._missing_e) print('Missing D: ', self._missing_d) print('Missing E&D: ', self._missing_ed) print('======================================================================') class OddsRatio: r"""Estimates of Odds Ratio with a (1-alpha)*100% Confidence interval. Missing data is ignored Odds ratio is calculated from .. math:: OR = \frac{\Pr(Y|A=1)}{1 - \Pr(Y|A=1)} / \frac{\Pr(Y|A=0)}{1 - \Pr(Y|A=0)} Odds ratio standard error is .. math:: SE = \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right)^{\frac{1}{2}} Note ---- Outcome must be coded as (1: yes, 0:no). Only works for binary outcomes Parameters --------------- reference : integer, optional Reference category for comparisons. Default reference category is 0 alpha : float, optional Alpha value to calculate two-sided Wald confidence intervals. Default is 95% confidence interval Examples -------- Calculate the odds ratio in a data set >>> from zepid import OddsRatio, load_sample_data >>> df = load_sample_data(False) >>> ort = OddsRatio() >>> ort.fit(df, exposure='art', outcome='dead') >>> ort.summary() Calculate the odds ratio with exposure of '1' as the reference category >>> ort = OddsRatio(reference=1) >>> ort.fit(df, exposure='art', outcome='dead') >>> ort.summary() Generate a plot of the calculated odds ratio(s) >>> import matplotlib.pyplot as plt >>> ort = OddsRatio() >>> ort.fit(df, exposure='art', outcome='dead') >>> ort.plot() >>> plt.show() """ def __init__(self, reference=0, alpha=0.05): self.reference = reference self.alpha = alpha self.odds_ratio = [] self.results = None self._a_list = [] self._b_list = [] self._c = None self._d = None self._labels = [] self._fit = False self._missing_e = None self._missing_d = None self._missing_ed = None def fit(self, df, exposure, outcome): """Calculates the Odds Ratio Parameters --------------- df : DataFrame Pandas dataframe containing variables of interest exposure : string Column name of exposure variable outcome : string Column name of outcome variable. Must be coded as binary (0,1) where 1 is the outcome of interest """ # Setting up holders for results odr_lcl = [] odr_ucl = [] odr_sd = [] # Getting unique values and dropping reference vals = set(df[exposure].dropna().unique()) vals.remove(self.reference) self._c = df.loc[(df[exposure] == self.reference) & (df[outcome] == 1)].shape[0] self._d = df.loc[(df[exposure] == self.reference) & (df[outcome] == 0)].shape[0] self._labels.append('Ref:'+str(self.reference)) self.odds_ratio.append(1) odr_lcl.append(None) odr_ucl.append(None) odr_sd.append(None) # Going through all the values for i in vals: self._labels.append(str(i)) a = df.loc[(df[exposure] == i) & (df[outcome] == 1)].shape[0] self._a_list.append(a) b = df.loc[(df[exposure] == i) & (df[outcome] == 0)].shape[0] self._b_list.append(b) em, lcl, ucl, sd, *_ = odds_ratio(a=a, b=b, c=self._c, d=self._d, alpha=self.alpha) self.odds_ratio.append(em) odr_lcl.append(lcl) odr_ucl.append(ucl) odr_sd.append(sd) # Getting the extent of missing data self._missing_ed = df.loc[(df[exposure].isnull()) & (df[outcome].isnull())].shape[0] self._missing_e = df.loc[df[exposure].isnull()].shape[0] - self._missing_ed self._missing_d = df.loc[df[outcome].isnull()].shape[0] - self._missing_ed # Setting up results rf = pd.DataFrame(index=self._labels) rf['OddsRatio'] = self.odds_ratio rf['SD(OR)'] = odr_sd rf['OR_LCL'] = odr_lcl rf['OR_UCL'] = odr_ucl rf['CLR'] = rf['OR_UCL'] / rf['OR_LCL'] self.results = rf self._fit = True def summary(self, decimal=3): """Prints the summary results Parameters --------------- decimal : integer, optional Decimal points to display. Default is 3 """ if self._fit is False: raise ValueError('fit() function must be completed before results can be obtained') for a, b, l in zip(self._a_list, self._b_list, self._labels): print('Comparison:'+str(self.reference)+' to '+self._labels[self._labels.index(l)+1]) print(tabulate([['E=1', a, b], ['E=0', self._c, self._d]], headers=['', 'D=1', 'D=0'], tablefmt='grid'), '\n') print('======================================================================') print(' Odds Ratio ') print('======================================================================') print(self.results[['OddsRatio', 'SD(OR)', 'OR_LCL', 'OR_UCL']].round(decimals=decimal)) print('----------------------------------------------------------------------') print('Missing E: ', self._missing_e) print('Missing D: ', self._missing_d) print('Missing E&D: ', self._missing_ed) print('======================================================================') def plot(self, scale='linear', center=1, **errorbar_kwargs): """Plot the odds ratios along with their corresponding confidence intervals. This option is an alternative to `summary()`, which displays results in a table format. Parameters ---------- scale : str, optional Scale for the x-axis. Default is a linear scale. A log-scale can be requested by setting scale='log' center : str, optional Sets a reference line. The reference line defaults to 1. errorbar_kwargs: add additional kwargs to be passed to the plotting function ``matplotlib.errorbar``. See defaults here: https://matplotlib.org/api/_as_gen/matplotlib.pyplot.errorbar.html Returns ------- matplotlib axes """ ax = _plotter(estimate=self.results['OddsRatio'], lcl=self.results['OR_LCL'], ucl=self.results['OR_UCL'], labels=self.results.index, center=center, **errorbar_kwargs) if scale == 'log': ax.set_xscale('log') ax.set_title('Odds Ratio') return ax class IncidenceRateRatio: r"""Estimates of Incidence Rate Ratio with a (1-alpha)*100% Confidence interval. Missing data is ignored Incidence rate ratio is calculated from .. math:: IR = \frac{a}{t_1} / \frac{c}{t_0} Incidence rate ratio standard error is .. math:: SE = \left(\frac{1}{a} + \frac{1}{c}\right)^{\frac{1}{2}} Note ---- Outcome must be coded as (1: yes, 0:no). Only works for binary outcomes Parameters ------------------ reference : integer, optional Reference category for comparisons. Default reference category is 0 alpha : float, optional Alpha value to calculate two-sided Wald confidence intervals. Default is 95% confidence interval Examples -------- Calculate the incidence rate ratio in a data set >>> from zepid import IncidenceRateRatio, load_sample_data >>> df = load_sample_data(False) >>> irr = IncidenceRateRatio() >>> irr.fit(df, exposure='art', outcome='dead', time='t') >>> irr.summary() Calculate the incidence rate ratio with exposure of '1' as the reference category >>> irr = IncidenceRateRatio(reference=1) >>> irr.fit(df, exposure='art', outcome='dead', time='t') >>> irr.summary() Generate a plot of the calculated incidence rate ratio(s) >>> import matplotlib.pyplot as plt >>> irr = IncidenceRateRatio() >>> irr.fit(df, exposure='art', outcome='dead', time='t') >>> irr.plot() >>> plt.show() """ def __init__(self, reference=0, alpha=0.05): self.reference = reference self.alpha = alpha self.incidence_rate = [] self.incidence_rate_ratio = [] self.results = None self._a_list = [] self._a_time_list = [] self._c = None self._c_time = None self._labels = [] self._fit = False self._missing_e = None self._missing_d = None self._missing_ed = None self._missing_t = None def fit(self, df, exposure, outcome, time): """Calculate the Incidence Rate Ratio Parameters ------------------ df : DataFrame Pandas dataframe containing variables of interest exposure : string Column name of exposure variable outcome : string Column name of outcome variable. Must be coded as binary (0,1) where 1 is the outcome of interest time : string Column name of time contributed """ # Setting up holders for results ir_lcl = [] ir_ucl = [] ir_sd = [] irr_lcl = [] irr_ucl = [] irr_sd = [] # Getting unique values and dropping reference vals = set(df[exposure].dropna().unique()) vals.remove(self.reference) self._c = df.loc[(df[exposure] == self.reference) & (df[outcome] == 1)].shape[0] self._c_time = df.loc[df[exposure] == self.reference][time].sum() self._labels.append('Ref:'+str(self.reference)) ri, lr, ur, sd, *_ = incidence_rate_ci(events=self._c, time=self._c_time, alpha=self.alpha) self.incidence_rate.append(ri) ir_lcl.append(lr) ir_ucl.append(ur) ir_sd.append(sd) self.incidence_rate_ratio.append(1) irr_lcl.append(None) irr_ucl.append(None) irr_sd.append(None) # Going through all the values for i in vals: self._labels.append(str(i)) a = df.loc[(df[exposure] == i) & (df[outcome] == 1)].shape[0] self._a_list.append(a) a_t = df.loc[df[exposure] == i][time].sum() self._a_time_list.append(a_t) ri, lr, ur, sd, *_ = incidence_rate_ci(events=a, time=a_t, alpha=self.alpha) self.incidence_rate.append(ri) ir_lcl.append(lr) ir_ucl.append(ur) ir_sd.append(sd) em, lcl, ucl, sd, *_ = incidence_rate_ratio(a=a, t1=a_t, c=self._c, t2=self._c_time, alpha=self.alpha) self.incidence_rate_ratio.append(em) irr_lcl.append(lcl) irr_ucl.append(ucl) irr_sd.append(sd) # Getting the extent of missing data self._missing_ed = df.loc[(df[exposure].isnull()) & (df[outcome].isnull())].shape[0] self._missing_e = df.loc[df[exposure].isnull()].shape[0] - self._missing_ed self._missing_d = df.loc[df[outcome].isnull()].shape[0] - self._missing_ed self._missing_t = df.loc[df[time].isnull()].shape[0] # Setting up results rf = pd.DataFrame(index=self._labels) rf['IncRate'] = self.incidence_rate rf['SD(IncRate)'] = ir_sd rf['IncRate_LCL'] = ir_lcl rf['IncRate_UCL'] = ir_ucl rf['IncRateRatio'] = self.incidence_rate_ratio rf['SD(IRR)'] = irr_sd rf['IRR_LCL'] = irr_lcl rf['IRR_UCL'] = irr_ucl rf['CLR'] = rf['IRR_UCL'] / rf['IRR_LCL'] self.results = rf self._fit = True def summary(self, decimal=3): """Prints the summary results Parameters ------------------ decimal : integer, optional Decimal points to display. Default is 3 """ if self._fit is False: raise ValueError('fit() function must be completed before results can be obtained') for a, a_t, l in zip(self._a_list, self._a_time_list, self._labels): print('Comparison:'+str(self.reference)+' to '+self._labels[self._labels.index(l)+1]) print(tabulate([['E=1', a, a_t], ['E=0', self._c, self._c_time]], headers=['', 'D=1', 'Person-time'], tablefmt='grid'), '\n') print('======================================================================') print(' Incidence Rate Ratio ') print('======================================================================') print(self.results[['IncRate', 'SD(IncRate)', 'IncRate_LCL', 'IncRate_UCL']].round(decimals=decimal)) print('----------------------------------------------------------------------') print(self.results[['IncRateRatio', 'SD(IRR)', 'IRR_LCL', 'IRR_UCL']].round(decimals=decimal)) print('----------------------------------------------------------------------') print('Missing E: ', self._missing_e) print('Missing D: ', self._missing_d) print('Missing E&D: ', self._missing_ed) print('Missing T: ', self._missing_t) print('======================================================================') def plot(self, measure='incidence_rate_ratio', scale='linear', center=1, **errorbar_kwargs): """Plot the risk ratios or the risks along with their corresponding confidence intervals. This option is an alternative to `summary()`, which displays results in a table format. Parameters ---------- measure : str, optional Whether to display incidence rate ratios or incidence rates. Default is to display the incidence rate ratio. Options are; * 'incidence_rate_ratio' : display incidence rate ratios * 'incidence_rate' : display incidence rates scale : str, optional Scale for the x-axis. Default is a linear scale. A log-scale can be requested by setting scale='log' center : str, optional Sets a reference line. For the incidence rate ratio, the reference line defaults to 1. For incidence rates, no reference line is displayed. errorbar_kwargs: add additional kwargs to be passed to the plotting function ``matplotlib.errorbar``. See defaults here: https://matplotlib.org/api/_as_gen/matplotlib.pyplot.errorbar.html Returns ------- matplotlib axes """ if measure == 'incidence_rate_ratio': ax = _plotter(estimate=self.results['IncRateRatio'], lcl=self.results['IRR_LCL'], ucl=self.results['IRR_UCL'], labels=self.results.index, center=center, **errorbar_kwargs) if scale == 'log': ax.set_xscale('log') ax.set_title('Incidence Rate Ratio') elif measure == 'incidence_rate': ax = _plotter(estimate=self.results['IncRate'], lcl=self.results['IncRate_LCL'], ucl=self.results['IncRate_UCL'], labels=self.results.index, center=np.nan, **errorbar_kwargs) ax.set_title('Incidence Rate') ax.set_xlim([0, 1]) else: raise ValueError('Must specify either "incidence_rate_ratio" or "incidence_rate" for plots') return ax class IncidenceRateDifference: r"""Estimates of Incidence Rate Difference with a (1-alpha)*100% Confidence interval. Missing data is ignored. Incidence rate difference is calculated from .. math:: ID = \frac{a}{t_1} - \frac{c}{t_0} Incidence rate difference standard error is .. math:: SE = \left(\frac{a}{t_1^2} + \frac{c}{t_0^2}\right)^{\frac{1}{2}} Note ---- Outcome must be coded as (1: yes, 0:no). Only works for binary outcomes Parameters ---------------- reference : integer, optional Reference category for comparisons. Default reference category is 0 alpha : float, optional Alpha value to calculate two-sided Wald confidence intervals. Default is 95% confidence interval Examples -------- Calculate the incidence rate difference in a data set >>> from zepid import IncidenceRateDifference, load_sample_data >>> df = load_sample_data(False) >>> ird = IncidenceRateDifference() >>> ird.fit(df, exposure='art', outcome='dead', time='t') >>> ird.summary() Calculate the incidence rate difference with exposure of '1' as the reference category >>> ird = IncidenceRateDifference(reference=1) >>> ird.fit(df, exposure='art', outcome='dead', time='t') >>> ird.summary() Generate a plot of the calculated incidence rate difference(s) >>> import matplotlib.pyplot as plt >>> ird = IncidenceRateDifference() >>> ird.fit(df, exposure='art', outcome='dead', time='t') >>> ird.plot() >>> plt.show() """ def __init__(self, reference=0, alpha=0.05): self.reference = reference self.alpha = alpha self.incidence_rate = [] self.incidence_rate_difference = [] self.results = None self._a_list = [] self._a_time_list = [] self._c = None self._c_time = None self._labels = [] self._fit = False self._missing_e = None self._missing_d = None self._missing_ed = None self._missing_t = None def fit(self, df, exposure, outcome, time): """Calculates the Incidence Rate Difference Parameters ---------------- df : DataFrame Pandas dataframe containing variables of interest exposure : str Column name of exposure variable outcome : str Column name of outcome variable. Must be coded as binary (0,1) where 1 is the outcome of interest time : str Column name of time variable """ # Setting up holders for results ir_lcl = [] ir_ucl = [] ir_sd = [] ird_lcl = [] ird_ucl = [] ird_sd = [] # Getting unique values and dropping reference vals = set(df[exposure].dropna().unique()) vals.remove(self.reference) self._c = df.loc[(df[exposure] == self.reference) & (df[outcome] == 1)].shape[0] self._c_time = df.loc[df[exposure] == self.reference][time].sum() self._labels.append('Ref:'+str(self.reference)) ri, lr, ur, sd, *_ = incidence_rate_ci(events=self._c, time=self._c_time, alpha=self.alpha) self.incidence_rate.append(ri) ir_lcl.append(lr) ir_ucl.append(ur) ir_sd.append(sd) self.incidence_rate_difference.append(0) ird_lcl.append(None) ird_ucl.append(None) ird_sd.append(None) # Going through all the values for i in vals: self._labels.append(str(i)) a = df.loc[(df[exposure] == i) & (df[outcome] == 1)].shape[0] self._a_list.append(a) a_t = df.loc[df[exposure] == i][time].sum() self._a_time_list.append(a_t) ri, lr, ur, sd, *_ = incidence_rate_ci(events=a, time=a_t, alpha=self.alpha) self.incidence_rate.append(ri) ir_lcl.append(lr) ir_ucl.append(ur) ir_sd.append(sd) em, lcl, ucl, sd, *_ = incidence_rate_difference(a=a, t1=a_t, c=self._c, t2=self._c_time, alpha=self.alpha) self.incidence_rate_difference.append(em) ird_lcl.append(lcl) ird_ucl.append(ucl) ird_sd.append(sd) # Getting the extent of missing data self._missing_ed = df.loc[(df[exposure].isnull()) & (df[outcome].isnull())].shape[0] self._missing_e = df.loc[df[exposure].isnull()].shape[0] - self._missing_ed self._missing_d = df.loc[df[outcome].isnull()].shape[0] - self._missing_ed self._missing_t = df.loc[df[time].isnull()].shape[0] # Setting up results rf = pd.DataFrame(index=self._labels) rf['IncRate'] = self.incidence_rate rf['SD(IncRate)'] = ir_sd rf['IncRate_LCL'] = ir_lcl rf['IncRate_UCL'] = ir_ucl rf['IncRateDiff'] = self.incidence_rate_difference rf['SD(IRD)'] = ird_sd rf['IRD_LCL'] = ird_lcl rf['IRD_UCL'] = ird_ucl rf['CLD'] = rf['IRD_UCL'] - rf['IRD_LCL'] self.results = rf self._fit = True def summary(self, decimal=3): """Prints the summary results Parameters ---------------- decimal : integer, optional Decimal places to display. Default is 3 """ if self._fit is False: raise ValueError('fit() function must be completed before results can be obtained') for a, a_t, l in zip(self._a_list, self._a_time_list, self._labels): print('Comparison:'+str(self.reference)+' to '+self._labels[self._labels.index(l)+1]) print(tabulate([['E=1', a, a_t], ['E=0', self._c, self._c_time]], headers=['', 'D=1', 'Person-time'], tablefmt='grid'), '\n') print('======================================================================') print(' Incidence Rate Difference ') print('======================================================================') print(self.results[['IncRate', 'SD(IncRate)', 'IncRate_LCL', 'IncRate_UCL']].round(decimals=decimal)) print('----------------------------------------------------------------------') print(self.results[['IncRateDiff', 'SD(IRD)', 'IRD_LCL', 'IRD_UCL']].round(decimals=decimal)) print('----------------------------------------------------------------------') print('Missing E: ', self._missing_e) print('Missing D: ', self._missing_d) print('Missing E&D: ', self._missing_ed) print('Missing T: ', self._missing_t) print('======================================================================') def plot(self, measure='incidence_rate_difference', center=0, **errorbar_kwargs): """Plot the incidence rate differences or the incidence rates along with their corresponding confidence intervals. This option is an alternative to summary(), which displays results in a table format. Parameters ---------- measure : str, optional Whether to display incidence rate ratios or incidence rates. Default is to display the incidence rate differences. Options are; * 'incidence_rate_difference' : display incidence rate differences * 'incidence_rate' : display incidence rates center : str, optional Sets a reference line. For the incidence rate difference, the reference line defaults to 0. For incidence rates, no reference line is displayed. errorbar_kwargs: add additional kwargs to be passed to the plotting function ``matplotlib.errorbar``. See defaults here: https://matplotlib.org/api/_as_gen/matplotlib.pyplot.errorbar.html Returns ------- matplotlib axes """ if measure == 'incidence_rate_difference': ax = _plotter(estimate=self.results['IncRateDiff'], lcl=self.results['IRD_LCL'], ucl=self.results['IRD_UCL'], labels=self.results.index, center=center, **errorbar_kwargs) ax.set_title('Incidence Rate Difference') elif measure == 'incidence_rate': ax = _plotter(estimate=self.results['IncRate'], lcl=self.results['IncRate_LCL'], ucl=self.results['IncRate_UCL'], labels=self.results.index, center=np.nan, **errorbar_kwargs) ax.set_title('Incidence Rate') ax.set_xlim([0, 1]) else: raise ValueError('Must specify either "incidence_rate_difference" or "incidence_rate" for plots') return ax def _plotter(estimate, lcl, ucl, labels, center=0, **errorbar_kwargs): """ Plot functionality to be used by all the measure classes. Internal functional for all the other plotting functionalities. The main function is matplotlib.errorbar, see defaults here: https://matplotlib.org/api/_as_gen/matplotlib.pyplot.errorbar.html """ ypoints = np.arange(len(labels)) ax = plt.gca() errorbar_kwargs.setdefault('fmt', 'o') errorbar_kwargs.setdefault('color', 'k') absolute_errors_from_estimate = np.abs(estimate.values - np.vstack((lcl, ucl))) ax.errorbar(estimate, ypoints, xerr=absolute_errors_from_estimate, **errorbar_kwargs) if not np.isnan(center): ax.axvline(center, zorder=1, color='gray') ax.set_yticklabels(labels) ax.set_yticks(ypoints) return ax ######################################################################################################### # Testing measures ######################################################################################################### class Sensitivity: r"""Generates the sensitivity and (1-alpha)% confidence interval, comparing test results to disease status from pandas dataframe Sensitivity is calculated from .. math:: Sensitivity = \frac{TP}{P} Wald standard error is .. math:: SE_{Wald} = \left(\frac{1}{TP} - \frac{1}{P}\right)^{\frac{1}{2}} Note ---- Disease & Test must be coded as (1: yes, 0:no) Parameters -------------------- alpha : float, optional Alpha value to calculate two-sided Wald confidence intervals. Default is 95% confidence interval Examples -------- Calculate the sensitivity in a data set >>> from zepid import Sensitivity, load_sample_data >>> df = load_sample_data(False) >>> sens = Sensitivity() >>> sens.fit(df, test='art', disease='dead') # Note this example is not great... ART is a treatment not test >>> sens.summary() """ def __init__(self, alpha=0.05): self.alpha = alpha self.sensitivity = None self.results = None self._fit = False self._a = None self._b = None def fit(self, df, test, disease): """Calculates the Sensitivity Parameters ----------------- df : DataFrame Pandas dataframe containing variables of interest test : string Column name of test results to detect the outcome. Needs to be coded as binary (0,1), where 1 indicates a positive test for the individual disease : string Column name of true outcomes status. Needs to be coded as binary (0,1), where 1 indicates the individual has the outcome """ self._a = df.loc[(df[test] == 1) & (df[disease] == 1)].shape[0] self._b = df.loc[(df[test] == 1) & (df[disease] == 0)].shape[0] se, ls, us, sd = sensitivity(detected=self._a, cases=(self._a + self._b), alpha=self.alpha) self.sensitivity = se # Setting up results rf = pd.DataFrame() rf['Sensitivity'] = [se] rf['SD(Se)'] = [sd] rf['Se_LCL'] = [ls] rf['Se_UCL'] = [us] self.results = rf self._fit = True def summary(self, decimal=3): """Prints the summary results Parameters ----------------- decimal : integer, optional Decimal places to display. Default is 3 """ if self._fit is False: raise ValueError('fit() function must be completed before results can be obtained') print(tabulate([['T+', self._a, self._b]], headers=['', 'D+', 'D-'], tablefmt='grid'), '\n') print('======================================================================') print(' Sensitivity ') print('======================================================================') print(self.results[['Sensitivity', 'SD(Se)', 'Se_LCL', 'Se_UCL']].round(decimals=decimal)) print('======================================================================') class Specificity: r"""Generates the sensitivity and (1-alpha)% confidence interval, comparing test results to disease status from pandas dataframe Specificity is calculated from .. math:: Sp = \frac{FN}{N} Wald standard error is .. math:: SE_{Wald} = (\frac{1}{FN} - \frac{1}{N})^{\frac{1}{2}} Note ---- Disease & Test must be coded as (1: yes, 0:no) Parameters ----------- alpha : float, optional Alpha value to calculate two-sided Wald confidence intervals. Default is 95% confidence interval Examples -------- Calculate the specificity in a data set >>> from zepid import Specificity, load_sample_data >>> df = load_sample_data(False) >>> spec = Specificity() >>> spec.fit(df, test='art', disease='dead') # Note this example is not great... ART is a treatment not test >>> spec.summary() """ def __init__(self, alpha=0.05): self.alpha = alpha self.specificity = None self.results = None self._fit = False self._c = None self._d = None def fit(self, df, test, disease): """Calculates specificity Parameters ------------- df : DataFrame Pandas dataframe containing variables of interest test : string Column name of test results to detect the outcome. Needs to be coded as binary (0,1), where 1 indicates a positive test for the individual disease : string Column name of true outcomes status. Needs to be coded as binary (0,1), where 1 indicates the individual has the outcome """ self._c = df.loc[(df[test] == 0) & (df[disease] == 1)].shape[0] self._d = df.loc[(df[test] == 0) & (df[disease] == 0)].shape[0] sp, ls, us, sd = specificity(detected=self._c, noncases=(self._c + self._d), alpha=self.alpha) self.specificity = sp # Setting up results rf = pd.DataFrame() rf['Specificity'] = [sp] rf['SD(Sp)'] = [sd] rf['Sp_LCL'] = [ls] rf['Sp_UCL'] = [us] self.results = rf self._fit = True def summary(self, decimal=3): """Prints the summary results Parameters ------------- decimal : integer, optional Decimal places to display. Default is 3 """ if self._fit is False: raise ValueError('fit() function must be completed before results can be obtained') print(tabulate([['T-', self._c, self._d]], headers=['', 'D+', 'D-'], tablefmt='grid'), '\n') print('======================================================================') print(' Specificity ') print('======================================================================') print(self.results[['Specificity', 'SD(Sp)', 'Sp_LCL', 'Sp_UCL']].round(decimals=decimal)) print('======================================================================') class Diagnostics: r"""Generates the Sensitivity, Specificity, and the corresponding (1-alpha)% confidence intervals, comparing test results to disease status from pandas DataFrame Sensitivity is calculated from .. math:: Se = \frac{TP}{P} Wald standard error is .. math:: SE_{Wald} = \left(\frac{1}{TP} - \frac{1}{P}\right)^{\frac{1}{2}} Specificity is calculated from .. math:: Sp = \frac{FN}{N} Wald standard error is .. math:: SE_{Wald} = \left(\frac{1}{FN} - \frac{1}{N}\right)^{\frac{1}{2}} Note ---- Disease & Test must be coded as (1: yes, 0:no) Parameters ------------- alpha : float, optional Alpha value to calculate two-sided Wald confidence intervals. Default is 95% confidence interval Examples -------- Calculate the sensitivity and specificity in a data set >>> from zepid import Diagnostics, load_sample_data >>> df = load_sample_data(False) >>> diag = Diagnostics() >>> diag.fit(df, test='art', disease='dead') # Note this example is not great... ART is a treatment not test >>> diag.summary() """ def __init__(self, alpha=0.05): self.alpha = alpha self.sensitivity = None self.specificity = None self.results = None self._fit = False self._a = None self._b = None self._c = None self._d = None def fit(self, df, test, disease): """Calculates sensitivity and specificity Parameters ---------------- df : DataFrame Pandas dataframe containing variables of interest test : string Column name of test results to detect the outcome. Needs to be coded as binary (0,1), where 1 indicates a positive test for the individual disease : string Column name of true outcomes status. Needs to be coded as binary (0,1), where 1 indicates the individual has the outcome """ self.sensitivity = Sensitivity(alpha=self.alpha) self.sensitivity.fit(df=df, test=test, disease=disease) self.specificity = Specificity(alpha=self.alpha) self.specificity.fit(df=df, test=test, disease=disease) def summary(self, decimal=3): """Prints the results Parameters ------------- decimal : integer, optional Decimal points to display. Default is 3 """ print(tabulate([['T+', self.sensitivity._a, self.sensitivity._b], ['T-', self.specificity._c, self.specificity._d]], headers=['', 'D+', 'D-'], tablefmt='grid'), '\n') print('======================================================================') print(' Diagnostics ') print('======================================================================') print(self.sensitivity.results[['Sensitivity', 'SD(Se)', 'Se_LCL', 'Se_UCL']].round(decimals=decimal)) print(self.specificity.results[['Specificity', 'SD(Sp)', 'Sp_LCL', 'Sp_UCL']].round(decimals=decimal)) print('======================================================================') ######################################################################################################### # Interaction contrasts ######################################################################################################### def interaction_contrast(df, exposure, outcome, modifier, adjust=None, decimal=3, print_results=True): r"""Calculate the Interaction Contrast (IC) using a pandas dataframe and statsmodels to fit a linear binomial regression. Can ONLY be used for a 0,1 coded exposure and modifier (exposure = {0,1}, modifier = {0,1}, outcome = {0,1}). Can handle adjustment for other confounders in the regression model. Prints the fit of the linear binomial regression, the IC, and the corresponding IC 95% confidence interval. Interaction Contrast is defined as the following .. math:: IC = RD_{11} - RD_{10} - RD_{01} Note ---- statsmodels may produce a domain error in some versions. Parameters ---------------- df : DataFrame Pandas dataframe containing variables of interest exposure : string Column name of exposure variable. Must be coded as (0,1) where 1 is exposure outcome : string Column name of outcome variable. Must be coded as (0,1) where 1 is outcome of interest modifier : string Column name of modifier variable. Must be coded as (0,1) where 1 is modifier adjust : string, optional String of other variables to adjust for, in correct statsmodels format. Default is None. Variables can *NOT* be named {E1M0,E0M1,E1M1} since this function creates variables with those names. Answers will be incorrect Example of accepted input is 'C1 + C2 + C3 + Z' decimal : integer, optional Decimal places to display in result. Default is 3 print_results : bool, optional Whether to print results from interaction contrast assessment Examples -------- Setting up environment >>> from zepid import interaction_contrast, load_sample_data >>> df = load_sample_data(False) Calculating interaction contrast for ART and gender >>> interaction_contrast(df, exposure='art', outcome='dead', modifier='male') """ if adjust is None: eq = outcome + ' ~ ' + exposure + ' + ' + modifier + ' + ' + exposure + ':' + modifier else: eq = outcome + ' ~ ' + exposure + ' + ' + modifier + ' + ' + exposure + ':' + modifier + ' + ' + adjust f = sm.families.family.Binomial(sm.families.links.identity()) model = smf.glm(eq, df, family=f).fit() ic = model.params[exposure + ':' + modifier] lcl = model.conf_int().loc[exposure + ':' + modifier][0] ucl = model.conf_int().loc[exposure + ':' + modifier][1] if print_results: print(model.summary()) print('\n======================================================================') print(' Interaction Contrast ') print('======================================================================') print('IC:\t\t' + str(round(ic, decimal))) print('95% CI:\t\t(' + str(round(lcl, decimal)) + ', ' + str(round(ucl, decimal)) + ')') print('======================================================================') return ic, lcl, ucl def interaction_contrast_ratio(df, exposure, outcome, modifier, adjust=None, regression='logit', ci='delta', b_sample=200, alpha=0.05, decimal=5, print_results=True): r"""Calculate the Interaction Contrast Ratio (ICR) using a pandas dataframe, and conducts either log binomial or logistic regression through statsmodels. Can ONLY be used for a 0,1 coded exposure and modifier (exposure = {0,1}, modifier = {0,1}, outcome = {0,1}). Can handle missing data and adjustment for other confounders in the regression model. Prints the fit of the binomial regression, the ICR, and the corresponding ICR confidence interval Interaction contrast ratio is defined as .. math:: ICR = RR_{11} - RR_{10} - RR_{01} + 1 Confidence intervals can be generated either through a bootstrap procedure or using the delta method Parameters --------------- df : DataFrame Pandas dataframe containing variables of interest exposure : string Column name of exposure variable. Must be coded as (0,1) where 1 is exposure outcome : string Column name of outcome variable. Must be coded as (0,1) where 1 is outcome of interest modifier : string Column name of modifier variable. Must be coded as (0,1) where 1 is modifier adjust : string, optional String of other variables to adjust for, in correct statsmodels format. Default is None. Variables can *NOT* be named {E1M0,E0M1,E1M1} since this function creates variables with those names. Answers will be incorrect Example of accepted input is 'C1 + C2 + C3 + Z' regression : string, optional Type of regression model to fit. Default is 'log' which fits the log-binomial model. Options include: * 'log' Log-binomial model. Estimates the Risk Ratio * 'logit' Logistic model. Estimates Odds Ratio. Only valid when odds ratio approximates the risk ratio ci : string, optional Type of confidence interval to return. Default is the delta method. Options include: * 'delta': Delta method as described by <NAME> Lemeshow (1992) * 'bootstrap': bootstrap method (Assmann et al. 1996). The delta method is more time efficient than bootstrap b_sample : integer, optional Number of times to resample to generate bootstrap confidence intervals. Only used if bootstrap confidence intervals are requested. Default is 1000 alpha : float, optional Alpha level for confidence interval. Default is 0.05, which returns 95% confidence intervals decimal : integer, optional Decimal places to display in result. Default is 3 print_results : bool, optional Whether to print results from interaction contrast assessment Note ---- statsmodels may produce a domain error for log binomial models in some versions Examples -------- Setting up environment >>> from zepid import interaction_contrast_ratio, load_sample_data >>> df = load_sample_data(False) Calculating interaction contrast ratio for ART and gender >>> interaction_contrast_ratio(df, exposure='art', outcome='dead', modifier='male') Calculating interaction contrast ratio for ART and gender, confidence intervals from bootstrap >>> interaction_contrast_ratio(df, exposure='art', outcome='dead', modifier='male', ci='bootstrap') """ if regression == 'logit': f = sm.families.family.Binomial() warnings.warn('Using the Odds Ratio to calculate the ICR is only valid when the OR approximates the RR', UserWarning) elif regression == 'log': f = sm.families.family.Binomial(sm.families.links.log()) else: raise ValueError("Either 'logit' or 'log' must be specified for the regression parameter") df = df.copy() df['_'+exposure] = np.where(df[modifier] == 0, df[exposure], 0) df['_'+modifier] = np.where(df[exposure] == 0, df[modifier], 0) if adjust is None: eq = outcome + ' ~ ' + '_'+exposure + ' + ' + '_'+modifier + ' + ' + exposure + ':' + modifier else: eq = outcome + ' ~ ' + '_'+exposure + ' + ' + '_'+modifier + ' + ' + exposure + ':' + modifier + ' + ' + adjust model = smf.glm(eq, df, family=f).fit() em10 = np.exp(model.params['_'+exposure]) em01 = np.exp(model.params['_'+modifier]) em11 = np.exp(model.params[exposure + ':' + modifier]) em_expect = em10 + em01 - 1 icr = em11 - em_expect zalpha = norm.ppf((1 - alpha / 2), loc=0, scale=1) if ci == 'delta': cov_matrix = model.cov_params() vb10 = cov_matrix.loc['_'+exposure]['_'+exposure] vb01 = cov_matrix.loc['_'+modifier]['_'+modifier] vb11 = cov_matrix.loc[exposure + ':' + modifier][exposure + ':' + modifier] cvb10_01 = cov_matrix.loc['_'+exposure]['_'+modifier] cvb10_11 = cov_matrix.loc['_'+exposure][exposure + ':' + modifier] cvb01_11 = cov_matrix.loc['_'+modifier][exposure + ':' + modifier] var_icr = (((em10 ** 2) * vb10) + ((em01 ** 2) * vb01) + ((em11 ** 2) * vb11) + (em10 * em01 * 2 * cvb10_01) + (-1 * em10 * em11 * 2 * cvb10_11) + (-1 * em01 * em11 * 2 * cvb01_11)) icr_lcl = icr - zalpha * np.sqrt(var_icr) icr_ucl = icr + zalpha * np.sqrt(var_icr) elif ci == 'bootstrap': with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") bse_icr = [] ul = 1 - alpha / 2 ll = 0 + alpha / 2 for i in range(b_sample): dfs = df.sample(n=df.shape[0], replace=True) try: bmodel = smf.glm(eq, dfs, family=f).fit() em_bexpect = np.exp(bmodel.params['_'+exposure]) + np.exp(bmodel.params['_'+modifier]) - 1 bicr = np.exp(bmodel.params[exposure + ':' + modifier]) - em_bexpect sigma = bicr - icr bse_icr.append(sigma) except: bse_icr.append(np.nan) se = np.std(bse_icr) icr_lcl = icr - zalpha * se icr_ucl = icr + zalpha * se else: raise ValueError('Please specify a supported confidence interval type') if print_results: print(model.summary()) print('\n======================================================================') print(' Interaction Contrast Ratio ') print('======================================================================') if regression == 'logit': print('ICR based on Odds Ratio\t\tAlpha = ' + str(alpha)) print('Note: Using the Odds Ratio to calculate the ICR is only valid when' 'the OR approximates the RR') elif regression == 'log': print('ICR based on Risk Ratio\t\tAlpha = ' + str(alpha)) print('----------------------------------------------------------------------') print('ICR:\t\t' + str(round(icr, decimal))) print('CI:\t\t(' + str(round(icr_lcl, decimal)) + ', ' + str(round(icr_ucl, decimal)) + ')') print('======================================================================') return icr, icr_lcl, icr_ucl ######################################################################################################### # Other ######################################################################################################### def create_spline_transform(array, n_knots=3, knots=None, term=1, restricted=False): """Creates spline dummy variables based on either user specified knot locations or automatically determines knot locations based on percentiles. Options are available to set the number of knots, location of knots (value), term (linear, quadratic, etc.), and restricted/unrestricted. Parameters -------------- array: n_knots : integer, optional Number of knots requested. Options for knots include any positive integer if the location of knots are specified. If knot locations are not specified, n_knots must be an integer between 1 to 7. Default is 3 knots knots : list, optional Location of specified knots in a list. To specify the location of knots, put desired numbers for knots into a list. Be sure that the length of the list is the same as the specified number of knots. Default is None, so that the function will automatically determine knot locations without user specification term : integer, float, optional High order term for the spline terms. To calculate a quadratic spline change to 2, cubic spline change to 3, etc. Default is 1, i.e. a linear spline restricted : bool, optional Whether to return a restricted spline. Note that the restricted spline returns one less column than the number of knots. An unrestricted spline returns the same number of columns as the number of knots. Default is False, providing an unrestricted spline Returns --------- function : a lambda function that accepts a numpy array or list : a list of the knots """ if knots is None: if n_knots == 1: knots = [50] elif n_knots == 2: knots = [100 / 3, 200 / 3] elif n_knots == 3: knots = [5, 50, 95] elif n_knots == 4: knots = [5, 35, 65, 95] elif n_knots == 5: knots = [5, 27.5, 50, 72.5, 95] elif n_knots == 6: knots = [5, 23, 41, 59, 77, 95] elif n_knots == 7: knots = [2.5, 1100 / 60, 2600 / 75, 50, 7900 / 120, 4900 / 60, 97.5] else: raise ValueError( 'When the knot locations are not pre-specified, the number of specified knots must be' ' an integer between 1 and 7') pts = np.percentile(array, q=knots).tolist() else: if n_knots != len(knots): raise ValueError('The number of knots and the number of specified knots must match') else: pass pts = knots if sorted(pts) != pts: raise ValueError('Knots must be in ascending order') def _spline(x): x = np.asarray(x) V = np.empty((x.shape[0], len(pts))) for i in range(len(pts)): V[:, i] = np.where(x > pts[i], (x - pts[i]) ** term, 0) V[:, i] = np.where(pd.isnull(x), np.nan, V[:, i]) if restricted is False: return V else: for i in range(len(pts) - 1): V[:, i] =
np.where(x > pts[i], V[:, i] - V[:, -1], 0)
numpy.where
# Copyright 2015 <NAME> Carnegie Mellon University # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED # WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, # MERCHANTABLITY OR NON-INFRINGEMENT. # See the Apache 2 License for the specific language governing permissions and # limitations under the License. import os.path import numpy # Prepare readers for compressed files readers = {} try: import gzip readers['.gz'] = gzip.GzipFile except ImportError: pass try: import bz2 readers['.bz2'] = bz2.BZ2File except ImportError: pass def smart_open(filename, mode = 'rb', *args, **kwargs): ''' Opens a file "smartly": * If the filename has a ".gz" or ".bz2" extension, compression is handled automatically; * If the file is to be read and does not exist, corresponding files with a ".gz" or ".bz2" extension will be attempted. (The Python packages "gzip" and "bz2" must be installed to deal with the corresponding extensions) ''' if 'r' in mode and not os.path.exists(filename): for ext in readers: if os.path.exists(filename + ext): filename += ext break extension = os.path.splitext(filename)[1] return readers.get(extension, open)(filename, mode, *args, **kwargs) def make_context(feature, left, right): ''' Takes a 2-D numpy feature array, and pads each frame with a specified number of frames on either side. ''' feature = [feature] for i in range(left): feature.append(numpy.vstack((feature[-1][0], feature[-1][:-1]))) feature.reverse() for i in range(right): feature.append(numpy.vstack((feature[-1][1:], feature[-1][-1]))) return numpy.hstack(feature) def preprocess_feature_and_label(feature, label, opts): ''' Apply the options 'context', 'ignore-label', 'map-label' to the feature matrix and label vector. ''' feature = make_context(feature, opts['lcxt'], opts['rcxt']) if label is not None: if opts.has_key('ignore-label'): ignore = opts['ignore-label'] mask = numpy.array([x not in ignore for x in label]) feature = feature[mask] label = label[mask] if opts.has_key('map-label'): map = opts['map-label'] label = numpy.array([map.get(x, x) for x in label]) return feature, label def shuffle_feature_and_label(feature, label): ''' Randomly shuffles features and labels in the *same* order. ''' seed = 18877 numpy.random.seed(seed) numpy.random.shuffle(feature) numpy.random.seed(seed) numpy.random.shuffle(label) def shuffle_across_partitions(feature_list, label_list): ''' Randomly shuffles features and labels in the same order across partitions. ''' total = sum(len(x) for x in feature_list) n = len(feature_list[0]) # Partition size buffer =
numpy.empty_like(feature_list[0][0])
numpy.empty_like
import numpy as np import pytest from chainer_chemistry.dataset.preprocessors import wle as WLE # NOQA from chainer_chemistry.datasets.numpy_tuple_dataset import NumpyTupleDataset @pytest.fixture def small_datasets(): N_1 = 3 N_2 = 5 # one-hot atom labels: 1 tp N atom_array_1 = np.arange(N_1) atom_array_2 = np.arange(N_2) # adj-array, manually # all connectes. expanded labels is a permutaion of 0,1,2 adj_array_1 = np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]]).astype(np.int32) # node 0 --> 0-1.2 # node 1 --> 1-0.2 # node 2 --> 2-0.1 adj_array_2 = np.array([[1, 1, 0, 0, 1], [1, 1, 0, 0, 1], [0, 0, 1, 1, 0], [0, 0, 1, 1, 0], [1, 1, 0, 0, 1]]).astype(np.float32) # node 0 --> 0-1.4 # node 1 --> 1-0.4 # node 2 --> 2-3 # node 3 --> 3-2 # node 4 --> 4-0.1 # supervised labels, dummy teach_signal_1 =
np.array(1)
numpy.array
# -*- coding:utf-8 -*- # ''' landsat时间序列数据分析子窗口:主要是进行时间序列数据的分析和处理 具体:1)landsat数据时间序列曲线获取 ''' from PyQt5 import QtCore, QtWidgets from scipy.optimize import leastsq import numpy as np import data_manager as dm import argrithms as ag import scipy.io import matplotlib.pyplot as plt import matplotlib import gdal matplotlib.use("Qt5Agg") # 声明使用QT5 from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas class landsatPIFsUI(QtWidgets.QWidget): ''' 目的:选则伪不变特征点--这里我选用的是基于标准差的伪不变特征点选取 输入:*.Mat(裁剪后的数据源) 输出:点 ''' def __init__(self): super().__init__() self.doys = ['20171023', '20171108', '20171124', '20171210', '20171226', '20180111', '20180212', '20180316', '20180417', '20180503', '20180519', '20180604', '20180620', '20180823', '20180908', '20180924', '20181010', '20181026', '20181213', '20181229', '20190114'] # 时间点 # 获取时间点 # self.initUI() # # 重要变量 self.clipValues = [] # 裁剪区域的波段反射率 self.clipStds = [] # 裁剪区域的标准差 self.clipSlopes = [] # 裁剪区域的斜率 self.pifValues = [] # PIFS的所有点的时序曲线 self.pifDetermine = [] # PIFS判断,全是0 OR 1 def initUI(self): # # 初始化窗口 self.setWindowTitle('PIFs Select') self.setWindowFlags(QtCore.Qt.Dialog) self.setWindowModality(QtCore.Qt.ApplicationModal) # # 设置控件 self.groupbox_FeatureCal = QtWidgets.QGroupBox('Feature Calculation', self) self.button_inputMatDir = QtWidgets.QPushButton('Input_MatDir', self) self.lineEdit_inputMatDir = QtWidgets.QLineEdit(self) self.button_stds = QtWidgets.QPushButton('stds', self) self.button_slopes = QtWidgets.QPushButton('slopes', self) # self.groupbox_pifsExtract = QtWidgets.QGroupBox('PIFs Extraction', self) self.button_pifs = QtWidgets.QPushButton('PIFs Extract', self) self.botton_pifsMethods = QtWidgets.QPushButton('PIFs-Methods', self) self.cmobox_pifsMethod = QtWidgets.QComboBox(self) self.button_lower = QtWidgets.QPushButton('Lower', self) self.button_upper = QtWidgets.QPushButton('Upper', self) self.lineEdit_lower = QtWidgets.QLineEdit(self) self.lineEdit_upper = QtWidgets.QLineEdit(self) self.button_export = QtWidgets.QPushButton('Export', self) self.button_saveMatDir = QtWidgets.QPushButton('Save_MatDir', self) self.lineEdit_saveMatDir = QtWidgets.QLineEdit(self) self.view = myView(self) self.scene = QtWidgets.QGraphicsScene() # self.cmobox_mode = QtWidgets.QComboBox(self) self.button_showImg = QtWidgets.QPushButton('Show', self) # self.groupbox_pifsOtherBands = QtWidgets.QGroupBox('PIFs-Other Bands', self) self.button_inputOtherBandMat = QtWidgets.QPushButton('Input-OB', self) self.lineEdit_inputOtherBandMat = QtWidgets.QLineEdit(self) self.button_pifsImport = QtWidgets.QPushButton('PIFs-Import', self) self.button_exportOtherBand = QtWidgets.QPushButton('Export-Values', self) self.lineEdit_exportOtherBand = QtWidgets.QLineEdit(self) # Layout grid = QtWidgets.QGridLayout(self) grid_FeatureCal = QtWidgets.QGridLayout(self.groupbox_FeatureCal) grid_pifsExtract = QtWidgets.QGridLayout(self.groupbox_pifsExtract) grid_pifsOtherBands = QtWidgets.QGridLayout(self.groupbox_pifsOtherBands) # grid.addWidget(self.groupbox_FeatureCal, 0, 0, 2, 4) grid.addWidget(self.groupbox_pifsExtract, 2, 0, 6, 4) grid.addWidget(self.view, 0, 4, 10, 8) grid.addWidget(self.groupbox_pifsOtherBands, 8, 0, 2, 4) self.view.setFixedWidth(500) # grid_FeatureCal.addWidget(self.button_inputMatDir, 0, 0, 1, 1) grid_FeatureCal.addWidget(self.lineEdit_inputMatDir, 0, 1, 1, 3) grid_FeatureCal.addWidget(self.button_stds, 1, 2, 1, 1) grid_FeatureCal.addWidget(self.button_slopes, 1, 3, 1, 1) # grid_pifsExtract.addWidget(self.botton_pifsMethods, 0, 0, 1, 1) grid_pifsExtract.addWidget(self.cmobox_pifsMethod, 0, 1, 1, 3) grid_pifsExtract.addWidget(self.button_lower, 1, 0, 1, 1) grid_pifsExtract.addWidget(self.lineEdit_lower, 1, 1, 1, 3) grid_pifsExtract.addWidget(self.button_upper, 2, 0, 1, 1) grid_pifsExtract.addWidget(self.lineEdit_upper, 2, 1, 1, 3) grid_pifsExtract.addWidget(self.button_pifs, 3, 2, 1, 2) grid_pifsExtract.addWidget(self.button_saveMatDir, 4, 0, 1, 1) grid_pifsExtract.addWidget(self.lineEdit_saveMatDir, 4, 1, 1, 3) grid_pifsExtract.addWidget(self.cmobox_mode, 5, 0, 1, 1) grid_pifsExtract.addWidget(self.button_showImg, 5, 1, 1, 1) grid_pifsExtract.addWidget(self.button_export, 5, 2, 1, 2) # grid_pifsOtherBands.addWidget(self.button_inputOtherBandMat, 0, 0, 1, 1) grid_pifsOtherBands.addWidget(self.lineEdit_inputOtherBandMat, 0, 1, 1, 3) grid_pifsOtherBands.addWidget(self.button_pifsImport, 1, 0, 1, 1) grid_pifsOtherBands.addWidget(self.button_exportOtherBand, 1, 1, 1, 1) grid_pifsOtherBands.addWidget(self.lineEdit_exportOtherBand, 1, 2, 1, 2) # # 初始化 self.cmobox_pifsMethod.addItems(['std', 'slope']) self.cmobox_mode.addItems(['img-stds', 'img-pifsDerterMined', 'img-slopes']) self.botton_pifsMethods.setDisabled(True) self.button_lower.setDisabled(True) self.button_upper.setDisabled(True) self.button_pifs.setDisabled(True) self.button_exportOtherBand.setDisabled(True) self.button_pifs.setStyleSheet("background-color: blue") self.button_export.setStyleSheet("background-color: blue") self.button_pifsImport.setStyleSheet("background-color: blue") # 槽和函数 self.button_inputMatDir.clicked.connect(self.slot_buttonInputMatDir) # 输入Mat路径 self.button_slopes.clicked.connect(self.slot_buttonSlope) # 对比PIF选择方法 self.button_stds.clicked.connect(self.slot_buttonStd) # 计算研究区域的标准差 self.button_pifs.clicked.connect(self.slot_buttonPifs) # 计算研究区域的PIFs,0 OR 1 self.button_showImg.clicked.connect(self.slot_buttonShowImg) # 显示图像 self.button_export.clicked.connect(self.slot_buttonExport) # 输出图像代表的数据 self.button_saveMatDir.clicked.connect(self.slot_buttonSaveMatDir) # 输入保存mat路径 # self.button_inputOtherBandMat.clicked.connect(self.slot_buttonInputOtherBandMat) # 输入其他波段的反射率数据 self.button_pifsImport.clicked.connect(self.slot_buttonPIFsImport) # PIFs提取 self.button_exportOtherBand.clicked.connect(self.slot_buttonExportOtherBandsValues) # PIFs提取波段数据 def slot_buttonInputMatDir(self): # # 添加路径 open_filename = QtWidgets.QFileDialog.getOpenFileName(filter='*.mat')[0] self.lineEdit_inputMatDir.setText(open_filename) if 'S1000' in self.lineEdit_inputMatDir.text(): self.clipValues = scipy.io.loadmat(self.lineEdit_inputMatDir.text())['ref_Values'] # eg[21,1001,1001] print(np.shape(np.array(self.clipValues))) self.button_pifs.setDisabled(False) def slot_buttonSlope(self): # self.cmobox_mode.setCurrentIndex(2) self.cmobox_pifsMethod.setCurrentIndex(1) if 'slope' in self.lineEdit_inputMatDir.text(): self.clipSlopes = scipy.io.loadmat(self.lineEdit_inputMatDir.text())['slopes'] else: self.clipValues = scipy.io.loadmat(self.lineEdit_inputMatDir.text())['ref_Values'] # eg[21,1001,1001] print(np.shape(np.array(self.clipValues))) # # 排序后最小二乘法估算斜率 arrays_clip = np.array(self.clipValues).astype(float) for i in range(
np.shape(arrays_clip)
numpy.shape
import os import shutil import json from typing import Tuple from matplotlib.pyplot import isinteractive from numpy.lib.arraysetops import isin import torch import numpy as np from scipy.spatial.distance import cdist from scipy.optimize import linear_sum_assignment from networkx import to_numpy_array as nx_to_numpy_array import dgl as dgl import torch.backends.cudnn as cudnn # create directory if it does not exist def check_dir(dir_path): dir_path = dir_path.replace('//','/') os.makedirs(dir_path, exist_ok=True) def check_file(file_path): file_path = file_path.replace('//','/') dir_path = os.path.dirname(file_path) check_dir(dir_path) if not os.path.exists(file_path): with open(file_path,'w') as f: pass def setup_env(cpu): # Randomness is already controlled by Sacred # See https://sacred.readthedocs.io/en/stable/randomness.html if not cpu: cudnn.benchmark = True def save_checkpoint(state, is_best, log_dir, filename='checkpoint.pth.tar'): #check_dir(log_dir) filename = os.path.join(log_dir, filename) torch.save(state, filename) if is_best: shutil.copyfile(filename, os.path.join(log_dir, 'model_best.pth.tar')) #shutil.copyfile(filename, model_path) print(f"Best Model yet : saving at {log_dir+'/model_best.pth.tar'}") fn = os.path.join(log_dir, 'checkpoint_epoch{}.pth.tar') torch.save(state, fn.format(state['epoch'])) if (state['epoch'] - 1 ) % 5 != 0: #remove intermediate saved models, e.g. non-modulo 5 ones if os.path.exists(fn.format(state['epoch'] - 1 )): os.remove(fn.format(state['epoch'] - 1 )) state['exp_logger'].to_json(log_dir=log_dir,filename='logger.json') # move in utils def load_model(model, device, model_path): """ Load model. Note that the model_path argument is captured """ if os.path.exists(model_path): print("Reading model from ", model_path) checkpoint = torch.load(model_path, map_location=torch.device(device)) model.load_state_dict(checkpoint['state_dict']) return model else: raise RuntimeError('Model does not exist!') def save_to_json(jsonkey, loss, relevant_metric_dict, filename): if os.path.exists(filename): with open(filename, "r") as jsonFile: data = json.load(jsonFile) else: data = {} data[jsonkey] = {'loss':loss} for dkey, value in relevant_metric_dict.items(): data[jsonkey][dkey] = value with open(filename, 'w') as jsonFile: json.dump(data, jsonFile) # from https://stackoverflow.com/questions/50916422/python-typeerror-object-of-type-int64-is-not-json-serializable/50916741 class NpEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.integer): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.ndarray): return obj.tolist() else: return super(NpEncoder, self).default(obj) def get_lr(optimizer): for param_group in optimizer.param_groups: return param_group['lr'] def get_device(t): if t.is_cuda: return t.get_device() return 'cpu' #Matrix operation def symmetrize_matrix(A): """ Symmetrizes a matrix : If shape is (a,b,c) will symmetrize by considering a is batch size """ Af = A.triu(0) + A.triu(1).transpose(-2,-1) return Af def list_to_tensor(liste) -> torch.Tensor: """Transforms a list of same shaped tensors""" if isinstance(liste,torch.Tensor): return liste bs = len(liste) shape = liste[0].shape final_shape = (bs,*shape) tensor_eq = torch.empty(final_shape) for k in range(bs): tensor_eq[k] = liste[k] return tensor_eq #Graph operations def edge_features_to_dense_tensor(graph, features, device='cpu'): N = graph.number_of_nodes() resqueeze = False if len(features.shape)==1: features.unsqueeze(-1) resqueeze = True n_feats = features.shape[1] t = torch.zeros((N,N,n_feats)).to(device) #adj = torch.tensor(nx_to_numpy_array(graph.to_networkx())).to(device)#edges = np.array(graph.edges().cpu()).T #Transpose for the right shape (2,n_edges) adj = graph.adj(ctx=device).to_dense() ix,iy = torch.where(adj==1) t[ix,iy] = features if resqueeze: t.squeeze(-1) return t def edge_features_to_dense_sym_tensor(graph,features,device='cpu'): t = edge_features_to_dense_tensor(graph,features,device) if torch.all(t.transpose(0,1)+t==2*t): #Matrix already symmetric return t N = graph.number_of_nodes() tril = torch.tril(torch.ones((N,N)),-1) tril = tril.unsqueeze(-1).to(device) #For the multiplication, we need to add the dimension if torch.all(t*tril==0): #Only zeros in the lower triangle features return t + t.transpose(0,1) * tril #Here we remove the diagonal with '* tril' tbool = (t!=0) tbool = tbool.sum(-1)!=0 #Here we have True where the feature vectors are not 0 ix,iy = torch.where(tbool!=0) for i,j in zip(ix,iy): if i==j or torch.all(t[j,i]==t[i,j]): continue elif torch.all(t[j,i]==0): t[j,i] = t[i,j] else: raise AssertionError(f"Feature values are asymmetric, should not have used the symetric function.") return t def edge_features_to_dense_features(graph, features, device='cpu'): t = edge_features_to_dense_tensor(graph, features, device) if len(features.shape)==1: return t.flatten() n_features = features.shape[1] N = graph.number_of_nodes() t_features = t.reshape((N**2,n_features)) return t_features def edge_features_to_dense_sym_features(graph, features, device='cpu'): t = edge_features_to_dense_sym_tensor(graph, features, device) if len(features.shape)==1: return t.flatten() n_features = features.shape[1] N = graph.number_of_nodes() t_features = t.reshape((N**2,n_features)) return t_features def edge_tensor_to_features(graph: dgl.DGLGraph, features: torch.Tensor, device='cpu'): n_edges = graph.number_of_edges() resqueeze = False if len(features.shape)==3: resqueeze=True features = features.unsqueeze(-1) bs,N,_,n_features = features.shape ix,iy = graph.edges() bsx,bsy = ix//N,iy//N Nx,Ny = ix%N,iy%N assert torch.all(bsx==bsy), "Edges between graphs, should not be allowed !" #Sanity check final_features = features[(bsx,Nx,Ny)] #Here, shape will be (n_edges,n_features) if resqueeze: final_features = final_features.squeeze(-1) return final_features def temp_sym(t): if torch.all(t.transpose(0,1)+t==2*t): return t elif torch.all(torch.tril(t,-1)==0): return t + torch.triu(t,1).transpose(0,1) else: ix,iy = torch.where(t!=0) for i,j in zip(ix,iy): if t[j,i]==0: t[j,i] = t[i,j] elif t[j,i]==t[i,j]: continue else: raise AssertionError(f"Feature values are asymmetric, should not have used the symetric function.") return t #QAP def perm_matrix(row,preds): n = len(row) permutation_matrix =
np.zeros((n, n))
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Feb 20 11:20:30 2020 @author: yuhanyao """ ##### radioactivity: Arnett model import os import sys sys.path.append("/scratch/yyao/AT2019dge/playground/") sys.path.append("/Users/yuhanyao/Documents/GitHub/AT2019dge/playground/") import time import numpy as np import scipy.integrate as integrate from helper import phys from helper.mcmcfit import planck_lambda from multiprocessing import Pool import emcee import scipy.optimize as op import matplotlib.pyplot as plt import corner fs = 14 def get_int_A(x, y, s): r = integrate.quad(lambda z: 2*z*np.exp(-2*z*y+z**2), 0, x) int_A = r[0] return int_A def get_int_B(x, y, s): r = integrate.quad(lambda z: 2*z*np.exp(-2*z*y+2*z*s+z**2), 0, x) int_B = r[0] return int_B def model_arnett_Ltph(ts_, taum_ = 3, Mni_ = 0.05): ''' Calculate the flux of a radioactivity powered SN at photospheric phase ts is in the unit of day Mni_ is in the unit of Msun The euqation is from Valenti 2008 MNRAS 383 1485V, Appendix A ''' ts = ts_ * 24*3600 # in seconds Mni = Mni_ * phys.sm tau_m = taum_ * 24 * 3600. epsilon_ni = 3.9e+10 # erg / s / g epsilon_co = 6.78e+9 # erg / s / g tau_ni = 8.8 * 24 * 3600 # s tau_co = 111.3 * 24 * 3600 # s Ls = np.zeros(len(ts)) for i in range(len(ts)): t = ts[i] x = t / tau_m y = tau_m / (2 * tau_ni) s = tau_m * (tau_co - tau_ni) / (2 * tau_co * tau_ni) int_A = get_int_A(x, y, s) int_B = get_int_B(x, y, s) L = Mni * np.exp(-x**2) * ( (epsilon_ni - epsilon_co) * int_A + epsilon_co * int_B ) Ls[i] = L # plt.loglog(ts/24/3600, Ls) return Ls def model_arnett_modified(ts_, taum_ = 3, Mni_ = 0.05, t0_ = 30, texp = 0): ''' Calculate the flux of a radioactivity powered SN at photospheric phase ts is in the unit of day Mni_ is in the unit of Msun The euqation is from Valenti 2008 MNRAS 383 1485V, Appendix A ''' ts_ = ts_ - texp ts = ts_ * 24*3600 # in seconds Mni = Mni_ * phys.sm tau_m = taum_ * 24 * 3600. t0 = t0_ * 24 * 3600. epsilon_ni = 3.9e+10 # erg / s / g epsilon_co = 6.78e+9 # erg / s / g tau_ni = 8.8 * 24 * 3600 # s tau_co = 111.3 * 24 * 3600 # s Ls = np.zeros(len(ts)) for i in range(len(ts)): t = ts[i] if t<=0: Ls[i] = 0 else: x = t / tau_m y = tau_m / (2 * tau_ni) s = tau_m * (tau_co - tau_ni) / (2 * tau_co * tau_ni) int_A = get_int_A(x, y, s) int_B = get_int_B(x, y, s) L = Mni * np.exp(-x**2) * ( (epsilon_ni - epsilon_co) * int_A + epsilon_co * int_B ) Ls[i] = L # plt.loglog(ts/24/3600, Ls) Ls_modified = np.zeros(len(Ls)) ix = ts > 0 Ls_modified[ix] = Ls[ix]* (1. - np.exp(-1*(t0/ts[ix])**2) ) return Ls_modified def arnett_lnlike(theta, t, Ldata, Ldata_unc): """ taum_, Mni_, texp_ are in the unit of day, Msun, day """ taum_, lgMni_, t0_, texp_ = theta Mni_ = 10**lgMni_ model = model_arnett_modified(t, taum_, Mni_, t0_, texp_) lgmodel = np.log10(model) # not sure what is the reason why # ValueError: Probability function returned NaN chi2_term = -1/2*np.sum((Ldata - lgmodel)**2/Ldata_unc**2) error_term = np.sum(np.log(1/np.sqrt(2*np.pi*Ldata_unc**2))) ln_l = chi2_term + error_term return ln_l arnett_nll = lambda *args: -arnett_lnlike(*args) def arnett_lnprior(theta): taum_, lgMni_, t0_, texp_ = theta if ((1 < taum_ < 20) and (-4 < lgMni_ < 0) and (20 < t0_ < 100) and (-2.931 < texp_ < -2.891)): return 0. return -np.inf def arnett_lnprob(theta, x, y, yerr): lp = arnett_lnprior(theta) if not np.isfinite(lp): return -np.inf return lp + arnett_lnlike(theta, x, y, yerr) def plotChains(sampler, nburn, paramsNames, nplot): Nparams = len(paramsNames) fig, ax = plt.subplots(Nparams+1, 1, figsize = (8,2*(Nparams+1)), sharex = True) fig.subplots_adjust(hspace = 0) ax[0].set_title('Chains', fontsize=fs) xplot = np.arange(sampler.get_chain().shape[0]) selected_walkers = np.random.choice(range(sampler.get_chain().shape[1]), nplot, replace=False) for i,p in enumerate(paramsNames): for w in selected_walkers: burn = ax[i].plot(xplot[:nburn], sampler.get_chain()[:nburn,w,i], alpha = 0.4, lw = 0.7, zorder = 1) ax[i].plot(xplot[nburn:], sampler.get_chain(discard=nburn)[:,w,i], color=burn[0].get_color(), alpha = 0.8, lw = 0.7, zorder = 1) ax[i].set_ylabel(p) if i==Nparams-1: ax[i+1].plot(xplot[:nburn], sampler.get_log_prob()[:nburn,w], color=burn[0].get_color(), alpha = 0.4, lw = 0.7, zorder = 1) ax[i+1].plot(xplot[nburn:], sampler.get_log_prob(discard=nburn)[:,w], color=burn[0].get_color(), alpha = 0.8, lw = 0.7, zorder = 1) ax[i+1].set_ylabel('ln P') return ax def makeCornerArnett(sampler, nburn, paramsNames, quantiles=[0.16, 0.5, 0.84]): samples = sampler.get_chain(discard=nburn, flat=True) corner.corner(samples, labels = paramsNames, quantiles = quantiles, range = [0.999, 0.999, 0.999, 0.999], show_titles=True, plot_datapoints=False, title_kwargs = {"fontsize": fs}) if __name__ == "__main__": xyey = np.loadtxt('./Lbb_p20subtracted.txt') tt = xyey[0] lgL = xyey[1] lgL_unc = xyey[2] tgrid = np.linspace(1, 65) taum_ = 6.35 Mni_ = 0.0162 t0_ = 24 texp = -2.9112151494264173 Lmodel2 = model_arnett_modified(tgrid, taum_ = taum_, Mni_ = Mni_, t0_ = t0_, texp = texp) lgLmodel2 = np.log10(Lmodel2) # """ plt.figure() plt.errorbar(tt, lgL, lgL_unc, fmt=".k") plt.plot(tgrid, lgLmodel2) """ nwalkers = 100 lgMni_ = np.log10(Mni_) ml_guess = np.array([taum_, lgMni_, t0_, texp]) #initial position of walkers ndim = len(ml_guess) nfac = [1e-3]*ndim pos = [ml_guess + nfac * np.random.randn(ndim) for i in range(nwalkers)] max_samples = 10000 check_tau = 200 dirpath = "./arnettmodel/" filename = dirpath + "sampler.h5" if os.path.isfile(filename): os.remove(filename) backend = emcee.backends.HDFBackend(filename) backend.reset(nwalkers, ndim) with Pool(20) as pool: sampler = emcee.EnsembleSampler(nwalkers, ndim, arnett_lnprob, args=(tt, lgL, lgL_unc), pool=pool, backend=backend) index = 0 autocorr = np.empty(max_samples) old_tau = np.inf for sample in sampler.sample(pos, iterations=max_samples, progress=True): # Only check convergence every 30 steps if sampler.iteration % check_tau: continue tau = sampler.get_autocorr_time(tol=0) autocorr[index] = np.mean(tau[:3]) # only expect the first three parameters to converge index += 1 # Check convergence converged =
np.all(tau * 100 < sampler.iteration)
numpy.all
from dateutil.parser import parse as parse_datetime from datetime import timezone from datetime import timedelta from datetime import datetime import time import pandas as pd import numpy as np import math import csv import sys import os import random from sklearn.metrics import accuracy_score # import tensorflow as tf import tensorflow.compat.v1 as tf tf.disable_eager_execution() tf_major_version = int(tf.__version__.split('.')[0]) # import tensorflow_addons as tfa import smalltrain as st import smalltrain.image from smalltrain.data_set.img_data_set import IMGDataSet from smalltrain.model.nn_model import NNModel from smalltrain.model.one_dim_cnn_model import OneDimCNNModel import ggutils.gif_util as gif_util import ggutils.s3_access as s3_access # MODEL_ID_4NN = '4NN_20180808' # 4 nn model 2019/09/10 # MODEL_ID_DNN = 'DNN' # 4 nn model 2019/09/10 # MODEL_ID_1D_CNN = '1D_CNN' # MODEL_ID_CC = 'CC' # Carbon Copy # MODEL_ID_LIST = [MODEL_ID_4NN, MODEL_ID_DNN, MODEL_ID_1D_CNN, MODEL_ID_CC] from tensorflow.python.framework import ops from tensorflow.python.ops import math_ops class TwoDimCNNModel(OneDimCNNModel): MODEL_ID_2D_CNN = '2D_CNN' MODEL_ID = MODEL_ID_2D_CNN def __init__(self): return # set class variables with hparams # about ResNet def set_hparams_on_res_net(self, hparams): self.has_res_net = False if hparams and 'has_res_net' in hparams.keys(): print('Use has_res_net in hparams:{}'.format(hparams['has_res_net'])) self.has_res_net = hparams['has_res_net'] else: print('Use has_res_net with default value:{}'.format(self.has_res_net)) self.set_num_cnn_layers_in_res_block(hparams) def set_num_cnn_layers_in_res_block(self, hparams): DEFAULT_NUM_CNN_LAYERS_IN_RES_BLOCK = 2 MIN_NUM_CNN_LAYERS_IN_RES_BLOCK = 2 self.num_cnn_layers_in_res_block = DEFAULT_NUM_CNN_LAYERS_IN_RES_BLOCK try: if hparams and 'num_cnn_layers_in_res_block' in hparams.keys(): print('Use num_cnn_layers_in_res_block in hparams:{}'.format(hparams['num_cnn_layers_in_res_block'])) self.num_cnn_layers_in_res_block = int(hparams['num_cnn_layers_in_res_block']) assert (self.num_cnn_layers_in_res_block >= MIN_NUM_CNN_LAYERS_IN_RES_BLOCK) except (AssertionError, TypeError) as e: self.num_cnn_layers_in_res_block = DEFAULT_NUM_CNN_LAYERS_IN_RES_BLOCK print('Use num_cnn_layers_in_res_block with default value:{} because of error:{}'.format( self.num_cnn_layers_in_res_block, e)) # about data augmentation def set_flip_randomly_left_right(self, hparams): self.flip_randomly_left_right = False if hparams and 'flip_randomly_left_right' in hparams.keys(): print('Use flip_randomly_left_right in hparams:{}'.format(hparams['flip_randomly_left_right'])) self.flip_randomly_left_right = hparams['flip_randomly_left_right'] self.flip_randomly_left_right = bool(self.flip_randomly_left_right) def set_crop_randomly_and_size(self, hparams): self.crop_randomly = False if hparams and 'crop_randomly' in hparams.keys(): print('Use crop_randomly in hparams:{}'.format(hparams['crop_randomly'])) self.crop_randomly = hparams['crop_randomly'] self.crop_randomly = bool(self.crop_randomly) self.size_random_crop_from = None if self.crop_randomly: try: if hparams and 'size_random_crop_from' in hparams.keys(): print('Use size_random_crop_from in hparams:{}'.format(hparams['size_random_crop_from'])) self.size_random_crop_from = float(hparams['size_random_crop_from']) assert (self.size_random_crop_from >= self.input_img_width) except (AssertionError, TypeError) as e: self.size_random_crop_from = int(self.input_img_width * 1.25) print('Use size_random_crop_from with default value:{} because of error:{}'.format( self.size_random_crop_from, e)) def set_rotate(self, hparams): self.rounding_angle = 90 if hparams and 'rounding_angle' in hparams.keys(): print('Use rounding_angle in hparams:{}'.format(hparams['rounding_angle'])) self.rounding_angle = hparams['rounding_angle'] self.rounding_angle = int(self.rounding_angle) self.angle_rotate_randomly = None if hparams and 'angle_rotate_randomly' in hparams.keys(): print('Use angle_rotate_randomly in hparams:{}'.format(hparams['angle_rotate_randomly'])) self.angle_rotate_randomly = hparams['angle_rotate_randomly'] self.angle_rotate_randomly = float(self.angle_rotate_randomly) def set_resize_to_crop_with(self, hparams): self.resize_to_crop_with = 'scaling_or_padding' if hparams and 'resize_to_crop_with' in hparams.keys(): print('Use resize_to_crop_with in hparams:{}'.format(hparams['resize_to_crop_with'])) self.resize_to_crop_with = hparams['resize_to_crop_with'] def set_params(self, log_dir_path, model_id=None, train_data=None, debug_mode=True, prediction_mode=False, hparams=None): PREFIX = '[TwoDimCNNModel]set_params' print('{}__init__'.format(PREFIX)) self.debug_mode = debug_mode # update by hparams self.hparams = hparams self.trainable_variables = None self.model_type = 'CLASSIFICATION' if hparams and 'model_type' in hparams.keys(): print('{}Use model_type in hparams:{}'.format(PREFIX, hparams['model_type'])) self.model_type = hparams['model_type'] else: print('{}TODO Use ts_start with default value:{}'.format(PREFIX, self.model_type)) self.prediction_mode = prediction_mode # about optimizer self.optimizer = 'AdamOptimizer' # Default Optimizer if hparams and 'optimizer' in hparams.keys(): print('{}Use optimizer in hparams:{}'.format(PREFIX, hparams['optimizer'])) self.optimizer = hparams['optimizer'] if self.optimizer is None or self.optimizer not in NNModel.AVAILABLE_OPTIMIZER_LIST: self.optimizer = NNModel.DEFAULT_OPTIMIZER print('{}Use optimizer with default value:{}'.format(PREFIX, self.optimizer)) self.l1_norm = 0 # whether add l1_norm_reg or not self.add_l1_norm_reg = False if hparams and 'add_l1_norm_reg' in hparams.keys(): print('{}Use add_l1_norm_reg in hparams:{}'.format(PREFIX, hparams['add_l1_norm_reg'])) self.add_l1_norm_reg = hparams['add_l1_norm_reg'] if self.add_l1_norm_reg is None: self.add_l1_norm_reg = False # preactivation regularization self.preactivation_regularization_value = 0.0 self.add_preactivation_regularization = False if hparams and 'add_preactivation_regularization' in hparams.keys(): print('{}Use add_preactivation_regularization in hparams:{}'.format(PREFIX, hparams['add_preactivation_regularization'])) self.add_preactivation_regularization = hparams['add_preactivation_regularization'] if self.add_preactivation_regularization is None: self.add_preactivation_regularization = False self.preactivation_regularization_value_ratio = 0.0 if hparams and 'preactivation_regularization_value_ratio' in hparams.keys(): print('{}Use preactivation_regularization_value_ratio in hparams:{}'.format(PREFIX, hparams['preactivation_regularization_value_ratio'])) self.preactivation_regularization_value_ratio = hparams['preactivation_regularization_value_ratio'] try: self.preactivation_regularization_value_ratio = np.float32(self.preactivation_regularization_value_ratio) except ValueError: self.preactivation_regularization_value_ratio = 0.0 print('{}Use preactivation_regularization_value_ratio with default value:{}'.format(PREFIX, self.preactivation_regularization_value_ratio)) else: print('{}Use preactivation_regularization_value_ratio with default value:{}'.format(PREFIX, self.preactivation_regularization_value_ratio)) # self.preactivation_maxout_list = [300.0, 200.0, 54.0, 18.0, 6.0, 18.0, 54.0, 200.0, 300.0, 300.0, 300.0] self.preactivation_maxout_list = None if hparams and 'preactivation_maxout_list' in hparams.keys(): print('{}Use preactivation_maxout_list in hparams:{}'.format(PREFIX, hparams['preactivation_maxout_list'])) self.preactivation_maxout_list = hparams['preactivation_maxout_list'] try: assert len(self.preactivation_maxout_list) > 0 except (AssertionError, TypeError): self.preactivation_maxout_list = None print('{}Use preactivation_maxout_list with default value:{}'.format(PREFIX, self.preactivation_maxout_list)) else: print('{}Use preactivation_maxout_list with default value:{}'.format(PREFIX, self.preactivation_maxout_list)) self.train_data = train_data # Set col_size from # 1. hparams.get('col_size') # 2. data_set.col_size self.col_size = hparams.get('col_size') if self.col_size is None: try: self.col_size = self.data_set.col_size except AttributeError: self.col_size = None if hparams and 'monochrome_mode' in hparams.keys(): print('{}Use monochrome_mode in hparams:{}'.format(PREFIX, hparams['monochrome_mode'])) self.monochrome_mode = hparams['monochrome_mode'] else: print('{}TODO Use monochrome_mode with default value'.format(PREFIX)) self.monochrome_mode = False # Ensure that self.col_size = 1 if Monochrome mode if self.monochrome_mode: self.col_size = 1 # update by hparams self.input_img_width = 32 if hparams and 'input_img_width' in hparams.keys(): print('{}Use input_img_width in hparams:{}'.format(PREFIX, hparams['input_img_width'])) self.input_img_width = hparams['input_img_width'] else: print('{}TODO Use input_img_width with default value'.format(PREFIX)) self.input_width = self.input_img_width if hparams and 'n_layer' in hparams.keys(): print('{}Use n_layer in hparams:{}'.format(PREFIX, hparams['n_layer'])) self.n_layer = hparams['n_layer'] else: print('{}TODO Use n_layer with default value'.format(PREFIX)) self.filter_width = 5 if hparams and 'filter_width' in hparams.keys(): print('{}Use filter_width in hparams:{}'.format(PREFIX, hparams['filter_width'])) self.filter_width = hparams['filter_width'] else: print('{}Use filter_width with default value:{}'.format(PREFIX, self.filter_width)) self.cnn_channel_size = 4 if hparams and 'cnn_channel_size' in hparams.keys(): print('{}Use cnn_channel_size in hparams:{}'.format(PREFIX, hparams['cnn_channel_size'])) self.cnn_channel_size = hparams['cnn_channel_size'] else: print('{}TODO Use cnn_channel_size with default value'.format(PREFIX)) self.cnn_channel_size_list = None if hparams and 'cnn_channel_size_list' in hparams.keys(): print('{}Use cnn_channel_size_list in hparams:{}'.format(PREFIX, hparams['cnn_channel_size_list'])) self.cnn_channel_size_list = hparams['cnn_channel_size_list'] else: print('{}Use cnn_channel_size with default value:{}'.format(PREFIX, self.cnn_channel_size_list)) self.pool_size_list = None if hparams and 'pool_size_list' in hparams.keys(): print('{}Use pool_size_list in hparams:{}'.format(PREFIX, hparams['pool_size_list'])) self.pool_size_list = hparams['pool_size_list'] if self.pool_size_list is None: self.pool_size_list = np.ones([self.n_layer], dtype="int32") self.pool_size_list[0:1] = 2 print('{}Use pool_size_list with default value:{}'.format(PREFIX, self.pool_size_list)) self.act_func_list = None if hparams and 'act_func_list' in hparams.keys(): print('{}Use act_func_list in hparams:{}'.format(PREFIX, hparams['act_func_list'])) self.act_func_list = hparams['act_func_list'] if self.act_func_list is None: self.act_func_list = np.repeat(NNModel.DEFAULT_ACT_FUNC_KEY, [self.n_layer - 1]) print('{}Use act_func_list with default value:{}'.format(PREFIX, self.act_func_list)) self.act_func_ref_list = self.set_act_func_ref_list(self.act_func_list, self.n_layer) print('{}act_func_ref_list is set :{}'.format(PREFIX, self.act_func_ref_list)) self.cnn_weight_stddev_list = None default_cnn_weight_stddev_list = [NNModel.DEFAULT_WEIGHT_STDDEV] * self.n_layer if hparams and 'cnn_weight_stddev_list' in hparams.keys(): print('{}Use cnn_weight_stddev_list in hparams:{}'.format(PREFIX, hparams['cnn_weight_stddev_list'])) self.cnn_weight_stddev_list = hparams['cnn_weight_stddev_list'] try: assert len(self.cnn_weight_stddev_list) > 0 self.cnn_weight_stddev_list.extend(default_cnn_weight_stddev_list) self.cnn_weight_stddev_list = self.cnn_weight_stddev_list[:self.n_layer] except (AssertionError, ValueError, TypeError) as e: self.cnn_weight_stddev_list = default_cnn_weight_stddev_list.copy() print('{}cnn_weight_stddev_list is set: {}'.format(PREFIX, self.cnn_weight_stddev_list)) self.cnn_bias_value_list = None default_cnn_bias_value_list = [NNModel.DEFAULT_BIAS_VALUE] * self.n_layer if hparams and 'cnn_bias_value_list' in hparams.keys(): print('{}Use cnn_bias_value_list in hparams:{}'.format(PREFIX, hparams['cnn_bias_value_list'])) self.cnn_bias_value_list = hparams['cnn_bias_value_list'] try: assert len(self.cnn_bias_value_list) > 0 self.cnn_bias_value_list.extend(default_cnn_bias_value_list) self.cnn_bias_value_list = self.cnn_bias_value_list[:self.n_layer] except (AssertionError, ValueError, TypeError) as e: self.cnn_bias_value_list = default_cnn_bias_value_list.copy() print('{}cnn_bias_value_list is set: {}'.format(PREFIX, self.cnn_bias_value_list)) self.num_add_fc_layers = 0 if hparams and 'num_add_fc_layers' in hparams.keys(): print('{}Use num_add_fc_layers in hparams:{}'.format(PREFIX, hparams['num_add_fc_layers'])) self.num_add_fc_layers = hparams['num_add_fc_layers'] else: print('{}Use num_add_fc_layers with default value:{}'.format(PREFIX, self.num_add_fc_layers)) self.fc_node_size_list = None if hparams and 'fc_node_size_list' in hparams.keys(): print('{}Use fc_node_size_list in hparams:{}'.format(PREFIX, hparams['fc_node_size_list'])) self.fc_node_size_list = hparams['fc_node_size_list'] if self.num_add_fc_layers > 0: _default_list = [128] * self.num_add_fc_layers if self.fc_node_size_list is not None: self.fc_node_size_list.extend(_default_list) self.fc_node_size_list = self.fc_node_size_list[:self.num_add_fc_layers] print('{}fc_node_size_list is set: {}'.format(PREFIX, self.fc_node_size_list)) self.fc_weight_stddev_list = None if hparams and 'fc_weight_stddev_list' in hparams.keys(): print('{}Use fc_weight_stddev_list in hparams:{}'.format(PREFIX, hparams['fc_weight_stddev_list'])) self.fc_weight_stddev_list = hparams['fc_weight_stddev_list'] if self.num_add_fc_layers > 0: _default_list = [NNModel.DEFAULT_WEIGHT_STDDEV] * (1 + self.num_add_fc_layers) if self.fc_weight_stddev_list is not None: self.fc_weight_stddev_list.extend(_default_list) self.fc_weight_stddev_list = self.fc_weight_stddev_list[:(1 + self.num_add_fc_layers)] else: self.fc_weight_stddev_list = _default_list.copy() print('{}fc_weight_stddev_list is set: {}'.format(PREFIX, self.fc_weight_stddev_list)) self.fc_bias_value_list = None if hparams and 'fc_bias_value_list' in hparams.keys(): print('{}Use fc_bias_value_list in hparams:{}'.format(PREFIX, hparams['fc_bias_value_list'])) self.fc_bias_value_list = hparams['fc_bias_value_list'] if self.num_add_fc_layers > 0: _default_list = [NNModel.DEFAULT_BIAS_VALUE] * (1 + self.num_add_fc_layers) if self.fc_bias_value_list is not None: self.fc_bias_value_list.extend(_default_list) self.fc_bias_value_list = self.fc_bias_value_list[:(1 + self.num_add_fc_layers)] else: self.fc_bias_value_list = _default_list.copy() print('{}fc_bias_value_list is set: {}'.format(PREFIX, self.fc_bias_value_list)) # About minibatch operation self.set_evaluate_in_minibatch(hparams) # About sub model self.set_hparams_on_sub_model(hparams) # about ResNet self.set_hparams_on_res_net(hparams) # about data augmentation self.set_flip_randomly_left_right(hparams) self.set_crop_randomly_and_size(hparams) self.set_rotate(hparams) self.set_resize_to_crop_with(hparams) # Abount ONNX export self.set_export_to_onnx(hparams) self.test_only_mode = False if hparams and 'test_only_mode' in hparams.keys(): print('{}Use test_only_mode in hparams:{}'.format(PREFIX, hparams['test_only_mode'])) self.test_only_mode = hparams['test_only_mode'] else: print('{}TODO Use test_only_mode with default value:{}'.format(PREFIX, self.test_only_mode)) # about min-max normalization self.has_minmax_norm = False if hparams and 'has_minmax_norm' in hparams.keys(): print('{}Use has_minmax_norm in hparams:{}'.format(PREFIX, hparams['has_minmax_norm'])) self.has_minmax_norm = hparams['has_minmax_norm'] else: print('{}Use has_minmax_norm with default value:{}'.format(PREFIX, self.has_minmax_norm)) if self.has_minmax_norm: self.input_min = None try: if hparams and 'input_min' in hparams.keys(): print('{}Use input_min in hparams:{}'.format(PREFIX, hparams['input_min'])) self.input_min = float(hparams['input_min']) except (TypeError, ValueError) as e: self.input_min = None print('{}Use input_min from input data'.format(PREFIX)) self.input_max = None try: if hparams and 'input_max' in hparams.keys(): print('{}Use input_max in hparams:{}'.format(PREFIX, hparams['input_max'])) self.input_max = float(hparams['input_max']) except (TypeError, ValueError) as e: self.input_max = None print('{}Use input_max from input data'.format(PREFIX)) # about batch normalization self.has_batch_norm = True if hparams and 'has_batch_norm' in hparams.keys(): print('{}Use has_batch_norm in hparams:{}'.format(PREFIX, hparams['has_batch_norm'])) self.has_batch_norm = hparams['has_batch_norm'] else: print('{}TODO Use has_batch_norm with default value:{}'.format(PREFIX, self.has_batch_norm)) if self.has_batch_norm: self.bn_decay = NNModel.DEFAULT_BN_DECAY if hparams and 'bn_decay' in hparams.keys(): print('{}Use bn_decay in hparams:{}'.format(PREFIX, hparams['bn_decay'])) self.bn_decay = hparams['bn_decay'] else: print('{}TODO Use bn_decay with default value:{}'.format(PREFIX, self.bn_decay)) self.bn_eps = NNModel.DEFAULT_BN_ESP if hparams and 'bn_eps' in hparams.keys(): print('{}Use bn_eps in hparams:{}'.format(PREFIX, hparams['bn_eps'])) self.bn_eps = hparams['bn_eps'] else: print('{}TODO Use bn_eps with default value:{}'.format(PREFIX, self.bn_eps)) self.annotation_col_names = None if hparams and 'annotation_col_names' in hparams.keys(): print('{}Use annotation_col_names in hparams:{}'.format(PREFIX, hparams['annotation_col_names'])) self.annotation_col_names = hparams['annotation_col_names'] self.annotation_col_size = 0 if self.annotation_col_names is not None: self.annotation_col_size = len(self.annotation_col_names) # about mask_rate self.mask_rate = None if hparams and 'mask_rate' in hparams.keys(): print('{}Use mask_rate in hparams:{}'.format(PREFIX, hparams['mask_rate'])) self.mask_rate = hparams['mask_rate'] if self.mask_rate is not None: try: self.mask_rate = float(self.mask_rate) except ValueError: print('{}mask_rate is not float type. reset with None'.format(PREFIX)) self.mask_rate = None # output_data_names if hparams and 'output_data_names' in hparams.keys(): print('{}Use output_data_names in hparams:{}'.format(PREFIX, hparams['output_data_names'])) self.output_data_names = hparams['output_data_names'] if self.output_data_names is not None: try: if not isinstance(self.output_data_names, list): raise ValueError print('output_data_names size:{}'.format(len(self.output_data_names))) except ValueError: print('{}output_data_names is not list type. reset with None'.format(PREFIX)) self.output_data_names = None self.restore_var_name_list = None if hparams and 'restore_var_name_list' in hparams.keys(): print('{}Use restore_var_name_list in hparams:{}'.format(PREFIX, hparams['restore_var_name_list'])) self.restore_var_name_list = hparams['restore_var_name_list'] self.untrainable_var_name_list = None if hparams and 'untrainable_var_name_list' in hparams.keys(): print('{}Use untrainable_var_name_list in hparams:{}'.format(PREFIX, hparams['untrainable_var_name_list'])) self.untrainable_var_name_list = hparams['untrainable_var_name_list'] # plot settings self.plot_x_label = None if hparams and 'plot_x_label' in hparams.keys(): print('{}Use plot_x_label in hparams:{}'.format(PREFIX, hparams['plot_x_label'])) self.plot_x_label = hparams['plot_x_label'] self.plot_y_label = None if hparams and 'plot_y_label' in hparams.keys(): print('{}Use plot_y_label in hparams:{}'.format(PREFIX, hparams['plot_y_label'])) self.plot_y_label = hparams['plot_y_label'] self.plot_x_data_name_in_annotation = None if hparams and 'plot_x_data_name_in_annotation' in hparams.keys(): print('{}Use plot_x_data_name_in_annotation in hparams:{}'.format(PREFIX, hparams['plot_x_data_name_in_annotation'])) self.plot_x_data_name_in_annotation = hparams['plot_x_data_name_in_annotation'] self.plot_group_data_name_in_annotation = None if hparams and 'plot_group_data_name_in_annotation' in hparams.keys(): print('{}Use plot_group_data_name_in_annotation in hparams:{}'.format(PREFIX, hparams['plot_group_data_name_in_annotation'])) self.plot_group_data_name_in_annotation = hparams['plot_group_data_name_in_annotation'] self.plot_x_range = None if hparams and 'plot_x_range' in hparams.keys(): print('{}Use plot_x_range in hparams:{}'.format(PREFIX, hparams['plot_x_range'])) self.plot_x_range = hparams['plot_x_range'] self.plot_y_range = None if hparams and 'plot_y_range' in hparams.keys(): print('{}Use plot_y_range in hparams:{}'.format(PREFIX, hparams['plot_y_range'])) self.plot_y_range = hparams['plot_y_range'] self.plot_title = None if hparams and 'plot_title' in hparams.keys(): print('{}Use plot_title in hparams:{}'.format(PREFIX, hparams['plot_title'])) self.plot_title = hparams['plot_title'] self.plot_errors = None if hparams and 'plot_errors' in hparams.keys(): print('{}Use plot_errors in hparams:{}'.format(PREFIX, hparams['plot_errors'])) self.plot_errors = hparams['plot_errors'] self.plot_animation = False if hparams and 'plot_animation' in hparams.keys(): print('{}Use plot_animation in hparams:{}'.format(PREFIX, hparams['plot_animation'])) self.plot_animation = hparams['plot_animation'] if self.plot_animation is None: self.plot_animation = False print('{}Use plot_animation with default value:{}'.format(PREFIX, self.plot_animation)) self.calc_cc_errors = False if hparams and 'calc_cc_errors' in hparams.keys(): print('{}Use calc_cc_errors in hparams:{}'.format(PREFIX, hparams['calc_cc_errors'])) self.calc_cc_errors = hparams['calc_cc_errors'] if self.calc_cc_errors is None: self.calc_cc_errors = False print('{}Use calc_cc_errors with default value:{}'.format(PREFIX, self.calc_cc_errors)) self.op_errors = None if hparams and 'op_errors' in hparams.keys(): print('{}Use op_errors in hparams:{}'.format(PREFIX, hparams['op_errors'])) self.op_errors = hparams['op_errors'] # rank_boundary_list self.rank_boundary_list = None if hparams and 'rank_boundary_list' in hparams.keys(): print('{}Use rank_boundary_list in hparams:{}'.format(PREFIX, hparams['rank_boundary_list'])) self.rank_boundary_list = hparams['rank_boundary_list'] if self.rank_boundary_list is not None: # check the members of rank_boundary_list len_of_rank_boundary_list = len(self.rank_boundary_list) if len_of_rank_boundary_list < 1: self.rank_boundary_list = None for rank_boundary in self.rank_boundary_list: try: assert len(rank_boundary) > 1 lower = rank_boundary[0] upper = rank_boundary[1] print('{}rank_boundary lower:{}, func:{}'.format(PREFIX, lower, upper)) except Exception as e: print('{}No rank_boundary_list is set because of error {} on invalid parameter:{}'.format(PREFIX, e, rank_boundary)) else: print('{}No rank_boundary_list is set'.format(PREFIX)) # cloud settings self.cloud_root = None if hparams and 'cloud_root' in hparams.keys(): print('{}Use cloud_root in hparams:{}'.format(PREFIX, hparams['cloud_root'])) self.cloud_root = hparams['cloud_root'] self.prioritize_cloud = False if hparams and 'prioritize_cloud' in hparams.keys(): print('{}Use prioritize_cloud in hparams:{}'.format(PREFIX, hparams['prioritize_cloud'])) self.prioritize_cloud = hparams['prioritize_cloud'] if self.prioritize_cloud is None: self.prioritize_cloud = False print('{}Use prioritize_cloud with default value:{}'.format(PREFIX, self.prioritize_cloud)) # local setting self.save_root_dir = '/var/tensorflow/tsp/' if hparams and 'save_root_dir' in hparams.keys(): print('{}Use save_root_dir in hparams:{}'.format(PREFIX, hparams['save_root_dir'])) self.save_root_dir = hparams['save_root_dir'] else: print('{}TODO Use save_root_dir with default value'.format(PREFIX)) self.test_report_frequency = 100 if hparams and 'test_report_frequency' in hparams.keys(): print('{}Use test_report_frequency in hparams:{}'.format(PREFIX, hparams['test_report_frequency'])) self.test_report_frequency = hparams['test_report_frequency'] try: self.test_report_frequency = int(self.test_report_frequency) except (ValueError, TypeError) as e: self.test_report_frequency = 100 print('{}Use test_report_frequency with default value:{} because of error:{}'.format(PREFIX, self.test_report_frequency, e)) self.train_report_frequency = 100 if hparams and 'train_report_frequency' in hparams.keys(): print('{}Use train_report_frequency in hparams:{}'.format(PREFIX, hparams['train_report_frequency'])) self.train_report_frequency = hparams['train_report_frequency'] try: self.train_report_frequency = int(self.train_report_frequency) except (ValueError, TypeError) as e: self.train_report_frequency = 100 print('{}Use train_report_frequency with default value:{} because of error:{}'.format(PREFIX, self.train_report_frequency, e)) self.save_model_frequency = 100 if hparams and 'save_model_frequency' in hparams.keys(): print('{}Use save_model_frequency in hparams:{}'.format(PREFIX, hparams['save_model_frequency'])) self.save_model_frequency = hparams['save_model_frequency'] try: self.save_model_frequency = int(self.save_model_frequency) except (ValueError, TypeError) as e: self.save_model_frequency = 100 print('{}Use save_model_frequency with default value:{} because of error:{}'.format(PREFIX, self.save_model_frequency, e)) self.summarize_layer_frequency = 1000 if hparams and 'summarize_layer_frequency' in hparams.keys(): print('{}Use summarize_layer_frequency in hparams:{}'.format(PREFIX, hparams['summarize_layer_frequency'])) self.summarize_layer_frequency = hparams['summarize_layer_frequency'] try: self.summarize_layer_frequency = int(self.summarize_layer_frequency) except (ValueError, TypeError) as e: self.summarize_layer_frequency = 1000 print('{}Use summarize_layer_frequency with default value:{} because of error:{}'.format(PREFIX, self.summarize_layer_frequency, e)) self.summarize_layer_name_list = None if hparams and 'summarize_layer_name_list' in hparams.keys(): print('{}Use summarize_layer_name_list in hparams:{}'.format(PREFIX, hparams['summarize_layer_name_list'])) self.summarize_layer_name_list = hparams['summarize_layer_name_list'] if self.summarize_layer_name_list is not None: try: assert len(self.summarize_layer_name_list) > 0 for _summarize_layer in self.summarize_layer_name_list: assert len(_summarize_layer) > 0 except AssertionError as e: self.summarize_layer_name_list = None print('{}Use summarize_layer_name_list with default value:{} because of error:{}'.format(PREFIX, self.summarize_layer_name_list, e)) self.summarize_layer_op_obj_list = [] # check init model self.sess = tf.InteractiveSession() self.init_model_path = None if hparams and 'init_model_path' in hparams.keys(): print('{}Use init_model_path in hparams:{}'.format(PREFIX, hparams['init_model_path'])) self.init_model_path = hparams['init_model_path'] # set output_classes in CLASSIFICATION model self.output_classes = None if hparams and 'output_classes' in hparams.keys(): print('{}Use output_classes in hparams:{}'.format(PREFIX, hparams['output_classes'])) self.output_classes = hparams['output_classes'] # if output_classes is not set in CLASSIFICATION model, try to read from init_model_path if self.output_classes is None and self.init_model_path is not None and self.model_type == 'CLASSIFICATION': self.output_classes = self.get_output_classes_from_model(self.init_model_path) hparams['output_classes'] = self.output_classes self.log_dir_path = log_dir_path self.result_sum = [] return def auto_set_model_parameter(self): print('TODO auto_set_model_parameter') self.can_not_generate_input_output_data = None self.generate_data_set() self.input_width = self.data_set.input_img_width self.col_size = self.data_set.col_size # Set output_classes if not given if self.output_classes is None: self.output_classes = self.data_set.output_classes # info_dim_size_list = [] print('DONE auto_set_model_parameter') return True def generate_data_set(self): self.data_set = IMGDataSet(debug_mode=self.debug_mode, prediction_mode=self.prediction_mode, hparams=self.hparams) self.data_set.generate_input_output_data() def get_output_classes_from_model(self, init_model_path): from smalltrain.model.operation import is_s3_path, download_to_local, upload_to_cloud print('[get_output_classes_from_model]Restore from init_model_path:{}'.format(init_model_path)) local_init_model_path = init_model_path if self.prioritize_cloud: # download from S3 if the "init_model_path" is S3 path if is_s3_path(init_model_path): _paths, _global_iter_got_from_path = get_tf_model_file_paths(init_model_path) for _path in _paths: local_init_model_path = download_to_local(path=_path, work_dir_path='/var/tmp/tsp/') local_init_model_path = local_init_model_path.split('.ckpt')[0] + '.ckpt' if _global_iter_got_from_path is not None: local_init_model_path = local_init_model_path + '-' + str(_global_iter_got_from_path) else: print('[get_output_classes_from_model]Check local:{}'.format(init_model_path)) print('[get_output_classes_from_model]Check local_init_model_path:{}'.format(local_init_model_path)) if local_init_model_path is None or len(local_init_model_path) < 1 or os.path.isfile(local_init_model_path): print('[get_output_classes_from_model]local_init_model_path is empty. output_classes set None') self.output_classes = None return None meta_file_path = '{}.meta'.format(local_init_model_path) _saver = tf.train.import_meta_graph(meta_file_path) _saver.restore(self.sess, local_init_model_path) # get output_classes from last layer b_fc shape _variables = tf.get_default_graph().get_collection_ref(tf.GraphKeys.VARIABLES) print(_variables) try: bias_before_output_layer_name = 'model/fc/b_fc_last/b_fc_last:0' b_fc_last = tf.get_default_graph().get_tensor_by_name(bias_before_output_layer_name) except KeyError as e: # For compatibility with <=v0.1.1 (the only fc layer name is fixed to fc2) bias_before_output_layer_name = 'model/fc/b_fc2/b_fc2:0' b_fc_last = tf.get_default_graph().get_tensor_by_name(bias_before_output_layer_name) # Reset the graph to restore after model construction tf.reset_default_graph() self.output_classes = int(b_fc_last.shape[0]) # have to cast from string to integer return self.output_classes def train(self, iter_to=10000, learning_rate=1e-4, batch_size=128, dropout_ratio=0.5, l1_norm_reg_ratio=0.0, save_file_path=None, report_dir_path=None): from smalltrain.model.operation import is_s3_path, download_to_local, upload_to_cloud last_time = time.time() print('train with iter_to:{}, batch_size:{}, dropout_ratio:{}'.format(iter_to, batch_size, dropout_ratio)) # TODO train_index = 0 # input_data = self.data_set.input_data # output_data = self.data_set.output_data # train_index_list = self.data_set.train_index_list # test_index_list = self.data_set.test_index_list # test_size = 31 + 30 # 2015/9, 10 # test_size = int(len(output_data) * 0.1) # setup each test data # _input_data = self.data_set.input_data test_data = self.data_set.get_test_input_data() if (self.mask_rate is not None) and self.mask_rate > 0: # masked_test_data = self.data_set.masked_input_data[test_index_list].astype(np.float32) masked_test_data = self.data_set.get_masked_test_input_data() if self.monochrome_mode: print(test_data.shape) if test_data.shape[3] == 3: monochrome_test_data = np.zeros((test_data.shape[0], test_data.shape[1], test_data.shape[2], 1), dtype=np.int) # print('monochrome_test_data.shape: {}'.format(monochrome_test_data.shape)) _size = len(test_data) for i in range(test_data.shape[0]): binarized_img = self.data_set.binarize_img(test_data[i]) # print('binarized_img.shape: {}'.format(binarized_img.shape)) monochrome_test_data[i,:,:,0] = binarized_img # if i % 100 == 0: # print('DONE binarize_img {}/{}'.format(i, _size)) test_data = monochrome_test_data # test_values = np.asarray(output_data[test_index_list], dtype=np.float32) test_values = self.data_set.get_test_output_data() if self.model_type == 'CLASSIFICATION': test_values_laveled = np.argmax(test_values, axis=1) else: # test_values = test_values.reshape(-1) # TODO raise Exception('only classification model type is available.') test_labels =
np.argmax(test_values, axis=1)
numpy.argmax
#!/usr/bin/env python # coding: utf-8 # In[5]: import numpy as np import pandas as pd import matplotlib.pyplot as plt from libsvm.svmutil import * from sklearn import svm from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline from timeit import default_timer as timer #Reading files data_points_train = pd.read_csv('2019MT60763.csv', header = None, nrows = 3000) data = np.array((data_points_train.sort_values(data_points_train.columns[25])).values) dp = np.array(data) class_label = dp[:,25] # counting no of occurence of labels of each class unique, counts = np.unique(class_label, return_counts=True) dict(zip(unique, counts)) #print(counts) # for 25 features # FOR CLASSES {0,1} text_x = dp[:631,:25] text_t = dp[:631,25] # for cross_validation tp_x_1 = np.append(dp[:100,:25],dp[306:406,:25],axis=0) tp_t_1 = np.append(dp[:100,25],dp[306:406,25],axis=0) tp_x_2 = np.append(dp[101:201,:25],dp[407:507,:25],axis=0) tp_t_2 = np.append(dp[101:201,25],dp[407:507,25],axis=0) tp_x_3 = np.append(dp[202:305,:25],dp[508:631,:25],axis=0) tp_t_3 = np.append(dp[202:305,25],dp[508:631,25],axis=0) PIPE = Pipeline([('scaler', StandardScaler()), ('SVM', svm.SVC(kernel='linear'))]) parameters = {'SVM__C':np.logspace(0, 1, 10)} G = GridSearchCV(PIPE, param_grid=parameters, cv=5) G.fit(text_x, text_t) print ('Training score',G.score(text_x, text_t)) print (G.best_params_) G.fit(tp_x_1,tp_t_1) x = G.score(tp_x_2, tp_t_2) x+=G.score(tp_x_3, tp_t_3) G.fit(tp_x_2,tp_t_2) x+=G.score(tp_x_3, tp_t_3) x+=G.score(tp_x_1, tp_t_1) G.fit(tp_x_3,tp_t_3) x+=G.score(tp_x_2, tp_t_2) x+=G.score(tp_x_1, tp_t_1) print('Cross_validation score',x/6) print(((svm.SVC(kernel = 'linear', C = 1)).fit(text_x,text_t)).support_) fig = plt.figure(1) c = np.logspace(0, 1, 10) matrix = np.zeros((10,3)) for i in range (10): svc = svm.SVC(kernel='linear',C = c[i]) svc.fit(text_x, text_t) matrix[i][0] = i matrix[i][1] = svc.score(text_x, text_t) svc.fit(tp_x_1,tp_t_1) x1 = svc.score(tp_x_2, tp_t_2) x1+=svc.score(tp_x_3, tp_t_3) svc.fit(tp_x_2,tp_t_2) x1+=svc.score(tp_x_3, tp_t_3) x1+=svc.score(tp_x_1, tp_t_1) svc.fit(tp_x_3,tp_t_3) x1+=svc.score(tp_x_2, tp_t_2) x1+=svc.score(tp_x_1, tp_t_1) matrix[i][2] = x1/6 plt.plot(matrix[:,0:1],matrix[:,1:2],label = 'cross_validation score') plt.plot(matrix[:,0:1],matrix[:,2:3],label = 'Training score') plt.title('C vs Accuracy') plt.xlabel('C') plt.ylabel('Accuracy') plt.xscale('log') plt.legend() plt.show() PIPE = Pipeline([('scaler', StandardScaler()), ('SVM', svm.SVC(kernel='rbf'))]) parameters = {'SVM__C':np.logspace(0, 1, 10), 'SVM__gamma':np.logspace(0, 1, 10)} G = GridSearchCV(PIPE, param_grid=parameters, cv=5) G.fit(text_x, text_t) print ('Training score',G.score(text_x, text_t)) print (G.best_params_) G.fit(tp_x_1,tp_t_1) y = G.score(tp_x_2, tp_t_2) y+=G.score(tp_x_3, tp_t_3) G.fit(tp_x_2,tp_t_2) y+=G.score(tp_x_3, tp_t_3) y+=G.score(tp_x_1, tp_t_1) G.fit(tp_x_3,tp_t_3) y+=G.score(tp_x_2, tp_t_2) y+=G.score(tp_x_1, tp_t_1) print('Cross_validation score',y/6) print(((svm.SVC(kernel = 'rbf', C = 1.29,gamma = 1)).fit(text_x,text_t)).support_) puto = np.zeros((100,1)) luto = np.zeros((100,1)) c = np.logspace(0, 1, 10) g = np.logspace(0, 1, 10) for i in range (10): for j in range(10): svc = svm.SVC(kernel='rbf',C = c[i],gamma = g[j]) svc.fit(text_x, text_t) puto[10*i+j][0] = svc.score(text_x, text_t) svc.fit(tp_x_1,tp_t_1) y1 = svc.score(tp_x_2, tp_t_2) y1+=svc.score(tp_x_3, tp_t_3) svc.fit(tp_x_2,tp_t_2) y1+=svc.score(tp_x_3, tp_t_3) y1+=svc.score(tp_x_1, tp_t_1) svc.fit(tp_x_3,tp_t_3) y1+=svc.score(tp_x_2, tp_t_2) y1+=svc.score(tp_x_1, tp_t_1) luto[10*i+j][0] = y1/6 g, c = np.meshgrid(g, c) graph = np.ravel(puto) patrix = np.ravel(luto) patrix = patrix.reshape(c.shape) fig, p = plt.subplots() k = p.contourf(c, g, patrix) cbar = fig.colorbar(k) plt.title('Accuracy v/s C and gamma (cross-validation)') plt.xlabel('C') plt.ylabel('gamma') plt.xscale('log') plt.yscale('log') plt.show() graph = graph.reshape(c.shape) fig, p = plt.subplots() k = p.contourf(c, g, graph) cbar = fig.colorbar(k) plt.title('Accuracy v/s C and gamma (training)') plt.xlabel('C') plt.ylabel('gamma') plt.xscale('log') plt.yscale('log') plt.show() start = timer() PIPE = Pipeline([('scaler', StandardScaler()), ('SVM', svm.SVC(kernel='poly'))]) parameters = {'SVM__C':np.logspace(0, 1, 10), 'SVM__gamma':np.logspace(0, 1, 10),'SVM__degree':[1,5]} G = GridSearchCV(PIPE, param_grid=parameters, cv=5) G.fit(text_x, text_t) print ('Training score',G.score(text_x, text_t)) print (G.best_params_) G.fit(tp_x_1,tp_t_1) z = G.score(tp_x_2, tp_t_2) z+=G.score(tp_x_3, tp_t_3) G.fit(tp_x_2,tp_t_2) z+=G.score(tp_x_3, tp_t_3) z+=G.score(tp_x_1, tp_t_1) G.fit(tp_x_3,tp_t_3) z+=G.score(tp_x_2, tp_t_2) z+=G.score(tp_x_1, tp_t_1) print('Cross_validation score',z/6) end = timer() print('TIME',end - start) print(((svm.SVC(kernel = 'poly', C = 1,gamma = 1,degree = 1)).fit(text_x,text_t)).support_) suto = np.zeros((100,1)) nuto = np.zeros((100,1)) c = np.logspace(0, 1, 10) g = np.logspace(0, 1, 10) for i in range (10): for j in range(10): svc = svm.SVC(kernel='poly',C = c[i],gamma = g[j],degree = 1) svc.fit(text_x, text_t) suto[10*i+j][0] = svc.score(text_x, text_t) svc.fit(tp_x_1,tp_t_1) z1 = svc.score(tp_x_2, tp_t_2) z1+=svc.score(tp_x_3, tp_t_3) svc.fit(tp_x_2,tp_t_2) z1+=svc.score(tp_x_3, tp_t_3) z1+=svc.score(tp_x_1, tp_t_1) svc.fit(tp_x_3,tp_t_3) z1+=svc.score(tp_x_2, tp_t_2) z1+=svc.score(tp_x_1, tp_t_1) nuto[10*i+j][0] = z1/6 g, c = np.meshgrid(g, c) trix = np.ravel(suto) prix = np.ravel(nuto) prix = prix.reshape(c.shape) fig, p = plt.subplots() k = p.contourf(c, g, prix) cbar = fig.colorbar(k) plt.xlabel('C') plt.ylabel('gamma') plt.title('Contour plot for Accuracy v/s C and gamma (cross-validation)') plt.xscale('log') plt.yscale('log') plt.show() # training trix = trix.reshape(c.shape) fig, p = plt.subplots() k = p.contourf(c, g, trix) cbar = fig.colorbar(k) plt.xlabel('C') plt.ylabel('gamma') plt.title('Contour plot for Accuracy v/s C and gamma (training)') plt.xscale('log') plt.yscale('log') plt.show() PIPE = Pipeline([('scaler', StandardScaler()), ('SVM', svm.SVC(kernel='sigmoid'))]) parameters = {'SVM__C':np.logspace(0, 1, 10), 'SVM__gamma':np.logspace(0, 1, 10)} G = GridSearchCV(PIPE, param_grid=parameters, cv=5) G.fit(text_x, text_t) print ('Training score',G.score(text_x, text_t)) print (G.best_params_) G.fit(tp_x_1,tp_t_1) f = G.score(tp_x_2, tp_t_2) f+=G.score(tp_x_3, tp_t_3) G.fit(tp_x_2,tp_t_2) f+=G.score(tp_x_3, tp_t_3) f+=G.score(tp_x_1, tp_t_1) G.fit(tp_x_3,tp_t_3) f+=G.score(tp_x_2, tp_t_2) f+=G.score(tp_x_1, tp_t_1) print('Cross_validation score',f/6) print(((svm.SVC(kernel = 'sigmoid', C = 10,gamma = 1)).fit(text_x,text_t)).support_) jito = np.zeros((100,1)) kito = np.zeros((100,1)) c = np.logspace(0, 1, 10) g = np.logspace(0, 1, 10) for i in range (10): for j in range(10): svc = svm.SVC(kernel='sigmoid',C = c[i],gamma = g[j]) svc.fit(text_x, text_t) jito[10*i+j][0] = svc.score(text_x, text_t) svc.fit(tp_x_1,tp_t_1) f1 = svc.score(tp_x_2, tp_t_2) f1+=svc.score(tp_x_3, tp_t_3) svc.fit(tp_x_2,tp_t_2) f1+=svc.score(tp_x_3, tp_t_3) f1+=svc.score(tp_x_1, tp_t_1) svc.fit(tp_x_3,tp_t_3) f1+=svc.score(tp_x_2, tp_t_2) f1+=svc.score(tp_x_1, tp_t_1) kito[10*i+j][0] = f1/6 g, c = np.meshgrid(g, c) tatrix = np.ravel(jito) katrix = np.ravel(kito) katrix = katrix.reshape(c.shape) fig, p = plt.subplots() k = p.contourf(c, g, katrix) cbar = fig.colorbar(k) plt.title('Accuracy v/s C and gamma (cross-validation)') plt.xlabel('C') plt.ylabel('gamma') plt.xscale('log') plt.yscale('log') plt.show() tatrix = tatrix.reshape(c.shape) fig, p = plt.subplots() k = p.contourf(c, g, tatrix) cbar = fig.colorbar(k) plt.title('Accuracy v/s C and gamma (training)') plt.xlabel('C') plt.ylabel('gamma') plt.xscale('log') plt.yscale('log') plt.show() # In[5]: # FOR CLASSES {2,3} text_x_2 = (dp[632:1230,:25]) text_t_2 = (dp[632:1230,25]) # for cross_validation tp_x_1 = np.append(dp[632:732,:25],dp[943:1043,:25],axis=0) tp_t_1 = np.append(dp[632:732,25],dp[943:1043,25],axis=0) tp_x_2 = np.append(dp[732:832,:25],dp[1043:1143,:25],axis=0) tp_t_2 = np.append(dp[732:832,25],dp[1043:1143,25],axis=0) tp_x_3 = np.append(dp[832:942,:25],dp[1143:1230,:25],axis=0) tp_t_3 = np.append(dp[832:942,25],dp[1143:1230,25],axis=0) PIPE = Pipeline([('scaler', StandardScaler()), ('SVM', svm.SVC(kernel='linear'))]) parameters = {'SVM__C':np.logspace(0, 1, 10)} G = GridSearchCV(PIPE, param_grid=parameters, cv=5) G.fit(text_x_2, text_t_2) print ('Training score',G.score(text_x_2, text_t_2)) print (G.best_params_) G.fit(tp_x_1,tp_t_1) l1 = G.score(tp_x_2, tp_t_2) l1+=G.score(tp_x_3, tp_t_3) G.fit(tp_x_2,tp_t_2) l1+=G.score(tp_x_3, tp_t_3) l1+=G.score(tp_x_1, tp_t_1) G.fit(tp_x_3,tp_t_3) l1+=G.score(tp_x_2, tp_t_2) l1+=G.score(tp_x_1, tp_t_1) print('Cross_validation score',l1/6) print(((svm.SVC(kernel = 'linear', C = 7.74)).fit(text_x_2,text_t_2)).support_) fig = plt.figure(2) c =
np.logspace(0, 1, 10)
numpy.logspace
''' ------------------------------------------------------------------------ Functions for generating demographic objects necessary for the OG-USA model This module defines the following function(s): get_fert() get_mort() pop_rebin() get_imm_resid() immsolve() get_pop_objs() ------------------------------------------------------------------------ ''' import os import pickle import numpy as np import pandas as pd import scipy.optimize as opt import scipy.interpolate as si import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator import parameter_plots as pp # create output directory for figures CUR_PATH = os.path.split(os.path.abspath(__file__))[0] OUTPUT_DIR = os.path.join(CUR_PATH, 'OUTPUT', 'Demographics') if os.access(OUTPUT_DIR, os.F_OK) is False: os.makedirs(OUTPUT_DIR) ''' ------------------------------------------------------------------------ Define functions ------------------------------------------------------------------------ ''' def get_true_demog_data(min_age, max_age): ''' Return the true demographic data for a country. Args: min_age (int): age in years at which agents are born, >= 0 max_age (int): age in years at which agents die with certainty, >= 4 Returns: fert_data (Numpy array): fertility rates for each model period of life mort_data (Numpy array): mortality rates for each model period of life imm_data (Numpy array): immigration rates for each model period of life pop_data (Numpy array): population for each model period of life ''' # Filepaths fert_filepath = os.path.join(CUR_PATH, 'data', 'demographic', 'clean', 'fert.p') mort_filepath = os.path.join(CUR_PATH, 'data', 'demographic', 'clean', 'mort.p') pop_filepath = os.path.join(CUR_PATH, 'data', 'demographic', 'clean', 'pop.p') imm_filepath = os.path.join(CUR_PATH, 'data', 'demographic', 'clean', 'imm.p') # Load data fert_data = pickle.load(open(fert_filepath, 'rb')) mort_data = pickle.load(open(mort_filepath, 'rb')) pop_data = pickle.load(open(pop_filepath, 'rb')) imm_data = pickle.load(open(imm_filepath, 'rb')) # Take most recent population pop_2014 = pop_data[2014][max(min_age, 0): min(max_age + 1, len(pop_data[2014]))] pop_2015 = pop_data[2015][max(min_age, 0): min(max_age + 1, len(pop_data[2015]))] # Take immigration as average over last 3 years drop_immyears = sorted(imm_data.columns)[:- 3] imm_data = imm_data.drop(drop_immyears, axis=1) imm_data = imm_data.mean(axis=1) return pop_2014, pop_2015, fert_data[2014], mort_data[2014], imm_data def select_fert_data(fert, set_zeroes=False): new_fert = fert[fert['AgeDef'] == 'ARDY'] new_fert = new_fert[new_fert['Collection'] == 'HFD'] new_fert = new_fert[(new_fert['RefCode'] == 'JPN_11')] new_fert.drop(['AgeDef', 'Collection', 'RefCode'], axis=1, inplace=True) new_fert.columns = ['Year', 'Age', 'Values'] if set_zeroes: new_fert['Values'][new_fert['Age'] == 14] = 0 new_fert['Values'][new_fert['Age'] == 15] = 0 new_fert['Values'][new_fert['Age'] == 49] = 0 new_fert['Values'][new_fert['Age'] == 50] = 0 return new_fert.astype(float) # a = get_fert(100, 0, 99, 'jpn', 'dynamic_partial') def get_fert(totpers, min_age, max_age, graph=False, demog_files=[False, False, False]): ''' Generate a vector of fertility rates by model period age that corresponds to the fertility rate data by age in years. Args: totpers (int): total number of agent life periods (E+S), >= 3 min_age (int): age in years at which agents are born, >= 0 max_age (int): age in years at which agents die with certainty, >= 4 graph (bool): =True if want graphical output demog_files (Pandas dataframe): alternate demographic forecasts Returns: fert_rates (Numpy array): fertility rates for each model period of life ''' fert_all, mort_all, imm_all = demog_files # Get data curr_pop, _, curr_fert, _, _ = get_true_demog_data(min_age, max_age) # Birth ages birth_ages = np.arange(14, 51) # Population Distribution curr_pop_pct = curr_pop / curr_pop.sum() if (min_age == 1) and (max_age == 100) and (totpers == 100) and (not graph): fert_rates = np.zeros(totpers) # Births from 14-50, but age start at 0 fert_rates[15:52] = curr_fert return fert_rates ### VARIABLE PREPARATION num_bins = max_age - min_age + 1 binsize = num_bins / totpers num_sub_bins = float(10000) len_subbins = (np.float64(num_bins * num_sub_bins)) / totpers ### POPULATION CREATION ages = np.linspace(max(min_age, 0), min(max_age, 99), curr_pop_pct.shape[0]) pop_func = si.splrep(ages, curr_pop_pct) new_bins = np.linspace(max(min_age, 0), min(max_age, 99), int(num_sub_bins * (num_bins - 1)), dtype=float) curr_pop_sub = si.splev(new_bins, pop_func) curr_pop_sub = curr_pop_sub / curr_pop_sub.sum() #### AGE BIN CREATION # Calculate implied fertility rates in sub-bins of curr_fert fert_func = si.splrep(birth_ages, curr_fert) fert_rates_sub = np.zeros(curr_pop_sub.shape) age_sub = (np.linspace(np.float64(binsize) / num_sub_bins + np.float64(min_age), np.float64(max_age), int(num_sub_bins * (num_bins - 1))) - 0.5 * np.float64(binsize) / num_sub_bins) # Fill in fertility rates pred_ind = (age_sub >= birth_ages[0]) * (age_sub <= birth_ages[-1]) # Makes sure it is inside valid range age_pred = age_sub[pred_ind] # Gets age_sub in the valid range by applying pred_ind fert_rates_sub[pred_ind] = np.float64(si.splev(age_pred, fert_func)) fert_rates_sub[fert_rates_sub < 0] = 0 fert_rates = np.zeros(totpers) for i in range(totpers): beg_sub_bin = int(np.rint(i * len_subbins)) end_sub_bin = int(np.rint((i + 1) * len_subbins)) if i == totpers - 1: end_sub_bin += 1 fert_rates[i] = (( curr_pop_sub[beg_sub_bin:end_sub_bin] * fert_rates_sub[beg_sub_bin:end_sub_bin]).sum() / curr_pop_sub[beg_sub_bin:end_sub_bin].sum()) fert_rates = np.nan_to_num(fert_rates) if graph: pp.plot_fert_rates(fert_func, birth_ages, totpers, min_age, max_age, curr_fert, fert_rates, output_dir=OUTPUT_DIR) if (min_age == 1) and (max_age == 100) and (totpers == 100): fert_rates = np.zeros(totpers) # Births from 14-50, but age start at 0 fert_rates[15:52] = curr_fert return fert_rates def get_mort(totpers, min_age, max_age, graph=False, mort_file=False): ''' This function generates a vector of mortality rates by model period age. Args: totpers (int): total number of agent life periods (E+S), >= 3 min_age (int): age in years at which agents are born, >= 0 max_age (int): age in years at which agents die with certainty, >= 4 graph (bool): =True if want graphical output demog_files (Pandas dataframe): alternate demographic forecasts Returns: mort_rates (Numpy array): mortality rates that correspond to each period of life infmort_rate (scalar): infant mortality rate ''' # Get data _, _, _, curr_mort, _ = get_true_demog_data(min_age, max_age) # Mortality ages mort_ages = np.linspace(0, 99, 100).astype(int) # Infant Mortality Rate infmort_rate = curr_mort[0] if (min_age == 1) and (max_age == 100) and (totpers == 100) and (not graph): return curr_mort, 0 # infmort_rate ### VARIABLE PREPARATION num_bins = max_age - min_age + 1 binsize = num_bins / totpers num_sub_bins = int(100) len_subbins = ((np.float64(num_bins * num_sub_bins)) / totpers) #### AGE BIN CREATION # Calculate implied mortality rates in sub-bins of curr_mort mort_func = si.splrep(mort_ages, curr_mort) mort_sub = (np.linspace(np.float64(binsize) / num_sub_bins + np.float64(min_age), np.float64(max_age), int(num_sub_bins * (num_bins - 1))) - 0.5 * np.float64(binsize) / num_sub_bins) # CORRECT TO NUM_BINS NOT -1 # Fill in mortality rates mort_rates_sub_orig = 1 - si.splev(mort_sub, mort_func) mort_rates_sub_orig[mort_rates_sub_orig > 1] = 1 mort_rates_sub_orig[mort_rates_sub_orig < 0] = 0 mort_rates_sub = np.zeros(mort_rates_sub_orig.shape, dtype=float) for i in range(totpers): beg_sub_bin = int(np.rint(i * num_sub_bins)) end_sub_bin = int(np.rint((i + 1) * num_sub_bins)) if i == totpers - 1: end_sub_bin += 1 tot_period_surv = (np.log(mort_rates_sub_orig[beg_sub_bin:end_sub_bin]) ).sum() end_surv = np.log(1 - curr_mort[min_age:][i]) if tot_period_surv != 0: power = end_surv / tot_period_surv else: power = 0 mort_rates_sub[beg_sub_bin:end_sub_bin] = mort_rates_sub_orig[beg_sub_bin:end_sub_bin] ** power mort_rates = np.zeros(totpers) for i in range(totpers): beg_sub_bin = int(np.rint(i * len_subbins)) end_sub_bin = int(np.rint((i + 1) * len_subbins)) if i == totpers - 1: end_sub_bin += 1 mort_rates[i] = 1 - mort_rates_sub[beg_sub_bin:end_sub_bin].prod() mort_rates[-1] = 1 # Mortality rate in last period is set to 1 if graph: pp.plot_mort_rates_data(totpers, min_age, max_age, mort_ages[max(min_age, 0):min(max_age + 1, 100)], curr_mort[max(min_age, 0):min(max_age + 1, 100)], infmort_rate, mort_rates, output_dir=OUTPUT_DIR) if (min_age == 1) and (max_age == 100) and (totpers == 100): mort_rates = curr_mort return mort_rates, 0 # infmort_rate def pop_rebin(curr_pop_dist, totpers_new): ''' For cases in which totpers (E+S) is less than the number of periods in the population distribution data, this function calculates a new population distribution vector with totpers (E+S) elements. Args: curr_pop_dist (Numpy array): population distribution over N periods totpers_new (int): number of periods to which we are transforming the population distribution, >= 3 Returns: curr_pop_new (Numpy array): new population distribution over totpers (E+S) periods that approximates curr_pop_dist ''' # Number of periods in original data assert totpers_new >= 3 totpers_orig = len(curr_pop_dist) if int(totpers_new) == totpers_orig: curr_pop_new = curr_pop_dist elif int(totpers_new) < totpers_orig: num_sub_bins = float(10000) ages = np.linspace(0, totpers_orig - 1, totpers_orig) pop_func = si.splrep(ages, curr_pop_dist) new_bins = np.linspace(0, totpers_orig - 1,\ int(num_sub_bins * totpers_orig)) pop_ests = si.splev(new_bins, pop_func) len_subbins = ((np.float64(totpers_orig * num_sub_bins)) / totpers_new) curr_pop_new = np.zeros(totpers_new, dtype=np.float64) for i in range(totpers_new): beg_sub_bin = int(np.rint(i * len_subbins)) end_sub_bin = int(np.rint((i + 1) * len_subbins)) curr_pop_new[i] = \ np.average(pop_ests[beg_sub_bin:end_sub_bin]) # Return curr_pop_new to single precision float (float32) # datatype curr_pop_new = np.float32(curr_pop_new) * np.sum(curr_pop_dist) / np.sum(curr_pop_new) # Adjust sum return curr_pop_new def predict_population(fert_rate, mort_rate, imm_rate, pop_data): ''' Predict population as pop_{s+1,t+1} = pop_{s,t}(1 - mort_{t-1})) + pop_{s+1,t}(imm_{t-1}), and setting pop_{0,t+1} = pop_t * fert_t ''' # First, calculate births if len(fert_rate) == 100: births = fert_rate * pop_data / 2 else: # Births from 14-50, but age start at 0 births = fert_rate * pop_data[15:52] / 2 births = np.sum(births) # Second, calculate survivors survivors = (1 - mort_rate) * pop_data survivors = np.roll(survivors, 1) # Third, correct births survivors[0] = births # Third, calculate immigration imm = imm_rate * pop_data # Fourth, calculate predicted population pred_pop = survivors + imm return pred_pop def immsolve(imm_rates, *args): ''' This function generates a vector of errors representing the difference in two consecutive periods stationary population distributions. This vector of differences is the zero-function objective used to solve for the immigration rates vector, similar to the original immigration rates vector from util.calc_imm_resid(), that sets the steady-state population distribution by age equal to the population distribution in period int(1.5*S) Args: imm_rates (Numpy array):immigration rates that correspond to each period of life, length E+S args (tuple): (fert_rates, mort_rates, infmort_rate, omega_cur, g_n_SS) Returns: omega_errs (Numpy array): difference between omega_new and omega_cur_pct, length E+S ''' fert_rates, mort_rates, infmort_rate, omega_cur_lev, g_n_SS = args omega_cur_pct = omega_cur_lev / omega_cur_lev.sum() new_pop = predict_population(fert_rates, mort_rates, imm_rates, omega_cur_lev) omega_new = new_pop / new_pop.sum() omega_errs = omega_new - omega_cur_pct return omega_errs def calc_imm_resid(fert_t_minus_1, mort_t_minus_1, pop_t_minus_1, pop_t): ''' Calculate immigration rate in year t as (pop_t - pop_{t-1}(1 - mort_{t-1})) / (pop_{t-1}), and setting pop_t_0 = pop_{t-1} * fert_{t-1} ''' # First, calculate births if len(fert_t_minus_1) == 100: births = fert_t_minus_1 * pop_t_minus_1 / 2 else: # Births from 14-50, but age start at 0 births = fert_t_minus_1 * pop_t_minus_1[15:52] / 2 births =
np.sum(births)
numpy.sum
#!/usr/bin/env python """ Tools to work with data from different spectrographs: CARMENES, HARPS, HARPN. Uses functions from `harpsutils` and `carmenesutils`. """ from __future__ import division from __future__ import print_function import os import sys import numpy as np import pandas as pd from . import carmenesutils from . import harpsutils from . import expresutils ############################################################################### # Spectrograph data # ----------------- # Resolution dicres = { 'CARM_VIS': 94600, 'CARM_NIR': 80400, 'HARPS': 115000, 'HARPN': 115000, 'EXPRES': 150000, } # Number of orders dicnord = { 'CARM_VIS': 61, 'CARM_NIR': 28, 'HARPS': 72, 'HARPN': 69, 'EXPRES': 86, } def inst_nord(inst, carmnirsplit=True, notfound=None, verb=True): """Get number of orders for instrument `inst`. Parameters ---------- carmnirsplit : bool (default True) Multiply CARM_NIR orders by 2. Usually use CARM_NIR orders split by half, so have double of orders. Returns ------- nord : int """ try: nord = dicnord[inst] if inst == 'CARM_NIR' and carmnirsplit: nord += nord # double except: if verb: print('Instrument {} not available, return {}'.format(inst, notfound)) nord = notfound return nord # Reference order dicoref = { 'CARM_VIS': 36, 'CARM_NIR': 11, # This is the double already 'HARPS': 55, 'HARPN': 55, 'EXPRES': 60, # ? } def inst_oref(inst, carmnirsplit=True, notfound=None, verb=True): """Get reference order for instrument `inst`. Parameters ---------- carmnirsplit : bool (default True) Multiply CARM_NIR `oref` by 2. Usually use CARM_NIR orders split by half, so have double of orders. Returns ------- oref : int """ try: oref = dicoref[inst] if inst == 'CARM_NIR' and carmnirsplit == False: oref = int(oref / 2) # half except: if verb: print('Instrument {} not available, return {}'.format(inst, notfound)) oref = notfound return oref # RV per pixel [km/s] dicrvpixmed = { 'CARM_VIS': 1.258, 'CARM_NIR': 1.356, 'HARPS': 0.820, 'HARPN': 0.820, 'EXPRES': 0.500, } def inst_rvpixmed(inst, notfound=None, verb=True): """Get the median delta RV per pixel for instrument `inst`. Parameters ---------- Returns ------- rvpixmed : int """ try: rvpixmed = dicrvpixmed[inst] except: if verb: print('Instrument {} not available, return {}'.format(inst, notfound)) rvpixmed = notfound return rvpixmed # Spectral sampling s [pix/SE] (SE: spectral element, ~ FWHM) dictspix = { 'CARM_VIS': 2.5, 'CARM_NIR': 2.8, 'HARPS': 3.2, 'HARPN': 3.2, 'EXPRES': 3.6, # 4.0 } def inst_rvpixmed(inst, notfound=None, verb=True): """Get sampling [pix/SE] for instrument `inst`. Parameters ---------- Returns ------- rvpixmed : int """ try: rvpixmed = dictspix[inst] except: if verb: print('Instrument {} not available, return {}'.format(inst, notfound)) rvpixmed = notfound return rvpixmed ############################################################################### # Reduced spectra # --------------- # Read reduced spectrum def fitsred_read(filin, inst, # CARMENES carmnirdiv=True, # HARPS/N harpblaze=True, dirblaze=None, filblaze=None, # EXPRES expresw='bary_excalibur', ): """ Parameters ---------- carmnirdiv : bool, default True If True, divide the orders by the discontinuity at the center. If not, leave them as read from the FTIS. Only works for `inst='CARM_NIR'`. harpblaze : bool, default True If True, get the blaze function from the corresponding file (see `dirblaze` and `filblaze`). If False, the output corresponding to the blaze, `c`, is an array of ones lwith the shape of `f`. dirblaze : str, default None Directory containing the blaze file. If None (default), assume the blaze file is in the same directory as `filin`. harpfilbalze : str, default None Blaze file name. If None (default), get the file name from the header. Returns ------- """ if inst == 'CARM_VIS': w, f, sf, c, header = carmenesutils.caracal_fitsred_read(filin) dataextra = {} elif inst == 'CARM_NIR': w, f, sf, c, header = carmenesutils.caracal_fitsred_read(filin) dataextra = {} if carmnirdiv: # w, f, sf, c = carmenesutils.caracal_fitsrednir_divide_ords(w=w, f=f, sf=sf, c=c) a = carmenesutils.caracal_fitsrednir_divide_ords(w=w, f=f, sf=sf, c=c) w, f, sf, c = a['w'], a['f'], a['sf'], a['c'] elif inst == 'HARPS' or inst == 'HARPN': w, f, c, header, _ = harpsutils.drs_e2dsred_read(filin, readblaze=harpblaze, dirblaze=dirblaze, filblaze=filblaze, inst=inst) sf = np.zeros_like(w) dataextra = {} elif inst == 'EXPRES': w, wcb, we, wecb, mwecb, f, sf, c, b, mf, header, header1, header2 = expresutils.drs_fitsred_read(filin) if expresw == 'bary_excalibur': w = wecb elif expresw == 'excalibur': w = we elif expresw == 'bary_wavelength': w = w elif expresw == 'wavelength': w = wcb dataextra = {'blaze': b, 'pixel_mask': mf, 'excalibur_mask': mwecb, 'header1': header1, 'header2': header2} return w, f, sf, c, header, dataextra # ----------------------------------------------------------------------------- # Values from header # ------------------ # Get BJD from header def header_bjd_lisobs(lisobs, inst, name='bjd', notfound=np.nan, ext=0): """ Get the BJD from the header of the observations in `lisobs`. Parameters ---------- name : str or None (default 'bjd') Change the pandas dataframe column name to `name`. If `None`, keep the header keyword as the column name. """ if inst == 'CARM_VIS' or inst == 'CARM_NIR': lisbjd = carmenesutils.caracal_bjd_lisobs(lisobs, notfound=notfound, ext=ext, name=name) # # Change column names # if name is not None: # lisbjd.rename(columns={'HIERARCH CARACAL BJD': name}, inplace=True) elif inst == 'HARPS' or inst == 'HARPN': lisbjd = harpsutils.drs_bjd_lisobs(lisobs, inst, notfound=notfound, ext=ext, name=name) # # Change column names # if name is not None: # kwinst = harpsutils.headerkwinst(inst, outfail=np.nan) # lisbjd.rename(columns={kwinst + 'DRS BJD': name}, inplace=True) elif inst == 'EXPRES': lisbjd = expresutils.drs_bjd_lisobs(lisobs, notfound=notfound, ext=ext, name=name) return lisbjd # Get readout noise RON from header def header_ron_lisobs(lisobs, inst, name='ron', notfound=np.nan, ext=0): """ Get the RON from the header of the observations in `lisobs`. Parameters ---------- name : str or None (default 'ron') Change the pandas dataframe column name to `colname`. If `None`, keep the header keyword as the column name. """ if inst == 'CARM_VIS': lisron = carmenesutils.caracal_ron_lisobs_vis(lisobs, notfound=notfound, ext=ext) # Change column names if name is not None: lisron.rename(columns={'E_READN1': name}, inplace=True) elif inst == 'CARM_NIR': lisron = carmenesutils.caracal_ron_lisobs_nir(lisobs, notfound=notfound, ext=ext) # Change column names if name is not None: lisron.rename(columns={'E_READN': name}, inplace=True) elif inst == 'HARPS' or inst == 'HARPN': lisron = harpsutils.drs_ron_lisobs(lisobs, inst, notfound=notfound, ext=ext) # Change column names if name is not None: kwinst = harpsutils.headerkwinst(inst, outfail=np.nan) lisron.rename(columns={kwinst + 'DRS CCD SIGDET': name}, inplace=True) elif inst == 'EXPRES': # TODO: set to 0 for now lisron = pd.DataFrame(np.zeros_like(lisobs, dtype=float), columns=[name], index=lisobs) return lisron # Get exposure time from header def header_exptime_lisobs(lisobs, inst, name='exptime', notfound=np.nan, ext=0): if inst == 'CARM_VIS' or inst == 'CARM_NIR': lisexptime = carmenesutils.caracal_exptime_lisobs(lisobs, notfound=notfound, ext=ext) # Change column names if name is not None: lisexptime.rename(columns={'EXPTIME': name}, inplace=True) elif inst == 'HARPS' or inst == 'HARPN': lisexptime = harpsutils.drs_exptime_lisobs(lisobs, notfound=notfound, ext=ext) # Change column names if name is not None: lisexptime.rename(columns={'EXPTIME': name}, inplace=True) if inst == 'EXPRES': lisexptime = expresutils.drs_exptime_lisobs(lisobs, notfound=notfound, ext=ext, name=name) return lisexptime # Get airmass time from header def header_airmass_lisobs(lisobs, inst, name='airmass', notfound=np.nan, ext=0): if inst == 'CARM_VIS' or inst == 'CARM_NIR': lisairmass = carmenesutils.caracal_airmass_lisobs(lisobs, notfound=notfound, ext=ext) # Change column names if name is not None: lisairmass.rename(columns={'AIRMASS': name}, inplace=True) elif inst == 'HARPS' or inst == 'HARPN': lisairmass = harpsutils.drs_airmass_lisobs(lisobs, notfound=notfound, ext=ext) # Change column names if name is not None: lisairmass.rename(columns={'AIRMASS': name}, inplace=True) elif inst == 'EXPRES': lisairmass = expresutils.drs_airmass_lisobs(lisobs, notfound=notfound, ext=ext, name=name) return lisairmass # Get SNR from header def header_snr_lisobs(lisobs, inst, name='snro', ords=None, notfound=np.nan, ext=0): """ Get the SNR from the header of the orders `ords` for the observations in `lisobs`. Parameters ---------- name : {'ord', 'snro'} or None Change to pandas dataframe column name. If `ord`, change to the order number (an int, e.g. 36). If `snro`, change to e.g. `snro36`. If None, keep the header keyword as the column name. """ if inst == 'CARM_VIS' or inst == 'CARM_NIR': lissnr = carmenesutils.caracal_snr_lisobs(lisobs, ords=ords, notfound=notfound, ext=ext) # Change column names if name is not None: if name == 'ord': changecol = {i: int(i.replace('HIERARCH CARACAL FOX SNR ', '')) for i in lissnr.columns} elif name == 'snro': changecol = {i: i.replace('HIERARCH CARACAL FOX SNR ', 'snro') for i in lissnr.columns} lissnr.rename(columns=changecol, inplace=True) elif inst == 'HARPS' or inst == 'HARPN': lissnr = harpsutils.drs_snr_lisobs(lisobs, ords=ords, notfound=notfound, ext=ext) # Change column names if name is not None: kwinst = harpsutils.headerkwinst(inst, outfail=np.nan) if name == 'ord': changecol = {i: int(i.replace('{}DRS SPE EXT SN'.format(kwinst), '')) for i in lissnr.columns} elif name == 'snro': changecol = {i: i.replace('{}DRS SPE EXT SN'.format(kwinst), 'snro') for i in lissnr.columns} lissnr.rename(columns=changecol, inplace=True) elif inst == 'EXPRES': # EXPRES S/N not in FITS header, get from spectrum lissnr = expresutils.drs_snr_lisobs(lisobs, ords, name=name) return lissnr # Get RV corrections from header def header_rvcorrection_lisobs(lisobs, inst, name='shift', notfound=np.nan, ext=0): """ Get RV correction from header: BERV and drift. No secular acceleration or nightly drifts. name : str Change original header keyword to `name`. Not implemented in `carmenesutils.caracal_rvcorrection_lisobs` yet """ if inst == 'CARM_VIS' or inst == 'CARM_NIR': shift, shifterr, datashift = carmenesutils.caracal_rvcorrection_lisobs(lisobs, use_berv=True, use_drift=True, notfound=notfound) elif inst == 'HARPS' or inst == 'HARPN': shift, shifterr, datashift = harpsutils.drs_rvcorrection_lisobs(lisobs, inst, name=name, notfound=notfound, ext=ext) return shift, shifterr, datashift # Get RV corrections from SERVAL or if not, from header def serval_header_rvcorrection_lisobs(lisobs, inst, source='header', servalin=None, obj=None, notfound=np.nan, ext=0, join='outer'): """ Parameters ---------- source : {'header', 'serval', 'serval_header', 'none'} or filename Source from which to get the RV correction. - `header`: get it from FITS header. Can only get BERV and drift. - `serval`: get it from SERVAl outputs. Get BERV, drift and sa. - `serval_header`: try to get it from SERVAL, if not possible or nan, get it from header. If `serval` or `serval_header`, must provide `servalin`. - `none`: rv corrections are 0. - filename containing the RV corrections. Columns option a): 0) observation name, rest of columns: corrections with header, to be loaded with pandas dataframe. Header names have to be: 'berv', 'sa', 'drift', 'otherdrift' and optionally the errors. Not all columns are necessary. Columns option b): 0) observation name, 1) rv shift (which is considered as 'other drift') 2) rv shift error (optional). The columns not present will be 0. servalin : str or pd.DataFrame Path to directory containing SERVAL data or pandas dataframe with the necessary data (berv, drift and sa) already loaded. obj : str Tag of the SERVAL outputs, e.g. `obj.rvc.dat`. If None (default), try to get it from the files in `servalin` directly. """ # Get rv corrections from FITS header if source == 'header': shift, shifterr, datashift = header_rvcorrection_lisobs(lisobs, inst, notfound=notfound, ext=ext) # Get rv corrections SERVAL outputs elif source == 'serval': # This function should also work for HARPS print('servalin', servalin) shift, shifterr, datashift = carmenesutils.serval_rvcorrection_lisobs(servalin, obj=obj, lisfilobs=lisobs, servalnames=False, use_berv=True, use_drift=True, use_sa=True, join=join) # Change index datashift['filobs'] = lisobs datashift.set_index('filobs', inplace=True) # Get rv corrections SERVAL outputs, and if not, from FITS header elif source == 'serval_header': shift, shifterr, datashift = carmenesutils.serval_caracal_rvcorrection_lisobs(servalin, obj=obj, use_caracal=True, lisfilobs=lisobs, use_berv=True, use_drift=True, use_sa=True, notfound=notfound, ext=ext, verb=True) # Change index datashift['filobs'] = lisobs datashift.set_index('filobs', inplace=True) # RV corrections = 0 elif source == 'none': cols = ['berv', 'berverr', 'drift', 'drifterr', 'sa', 'saerr', 'shift', 'shifterr'] a = np.zeros((len(lisobs), len(cols))) datashift = pd.DataFrame(a, columns=cols, index=lisobs) shift, shifterr = datashift['shift'], datashift['shifterr'] # Get rv corrections from file elif os.path.exists(source): sys.exit('Not implemented yet!') else: sys.exit('Source {} not correct'.format(source)) # Add missing columns as nan cols = ['berv', 'berverr', 'drift', 'drifterr', 'sa', 'saerr', 'otherdrift', 'otherdrifterr'] for c in cols: if c not in datashift.columns: datashift[c] =
np.ones_like(shift, dtype=float)
numpy.ones_like
# -*- coding: utf-8 -*- """ Created on Tue May 17 20:01:37 2016 @author: felipe """ import numpy as np import scipy.linalg as sp from scipy.stats import mvn from scipy.stats import multivariate_normal def func(U, epsilon, distance): # Computes the prob any (U_i) is less than epsilon ind = np.any(U < epsilon - distance, axis = 1) return ind distance =10.0 # distance(nmi) print("Distance entre avions") print(distance) epsilon = 0.1 # Choc distance Nsim = 10**5 # number of Monte Carlo simulations npoint = 20 # numper of points in the trajectory Time = 20.0 v=500.0/60.0 # airplane speed rc=1.0/57 # param sigmac=1.0 # param t = np.linspace(0.1, Time, npoint); mean = np.zeros((npoint,), dtype = float) cov = np.zeros((npoint,npoint), dtype = float) for i in range(npoint): for j in range(npoint): cov[i,j] = 2 * sigmac**2 * (1-np.exp(-2*rc*v*min(t[i],t[j])/sigmac)) * np.exp(-rc*v*np.abs(t[i]-t[j])/sigmac) # Simulation des vecteurs gaussiens U = np.random.multivariate_normal(mean, cov, size=Nsim) # Monte Carlo method to calculate the probability ind_mc = func(U, epsilon, distance) p_emp_MC = np.mean(ind_mc) erreur_MC = 1.96*np.sqrt(p_emp_MC*(1-p_emp_MC)/Nsim) print("MC estimation") print(p_emp_MC) print("MC error") print(erreur_MC) print("MC intervalle de confiance") print([p_emp_MC - erreur_MC, p_emp_MC + erreur_MC]) ##Importance sampling C = sp.sqrtm(cov) G = multivariate_normal.rvs(np.zeros(npoint), np.eye(npoint), size = Nsim) X = [] Y = [] Si = np.linspace(-0, -distance, 20) ## Look for the best decentrage (in terms of error) for dec in Si: dec = -4 #a = dec * np.linspace(0,1,npoint/2) #b = dec * np.linspace(1,0,npoint/2) delta = dec * np.linspace(0,1,npoint) #delta = np.concatenate((a,b)) L = -np.dot(G, delta) - np.dot(delta.T, delta)/2 # likelyhood ech_IS = func(np.dot(G + delta,C), epsilon, distance) *
np.exp(L)
numpy.exp
import warnings import numpy as np import palpy from rubin_sim.utils import Site, m5_flat_sed from .baseStacker import BaseStacker __all__ = ['NormAirmassStacker', 'ParallaxFactorStacker', 'HourAngleStacker', 'FilterColorStacker', 'ZenithDistStacker', 'ParallacticAngleStacker', 'DcrStacker', 'FiveSigmaStacker', 'SaturationStacker'] class SaturationStacker(BaseStacker): """Calculate the saturation limit of a point source. Assumes Guassian PSF. Parameters ---------- pixscale : float, optional (0.2) Arcsec per pixel gain : float, optional (2.3) electrons per adu saturation_e : float, optional (150e3) The saturation level in electrons zeropoints : dict-like, optional (None) The zeropoints for the telescope. Keys should be str with filter names, values in mags. If None, will use Rubin-like zeropoints. km : dict-like, optional (None) Atmospheric extinction values. Keys should be str with filter names. If None, will use Rubin-like zeropoints. """ colsAdded = ['saturation_mag'] def __init__(self, seeingCol='seeingFwhmEff', skybrightnessCol='skyBrightness', exptimeCol='visitExposureTime', nexpCol='numExposures', filterCol='filter', airmassCol='airmass', saturation_e=150e3, zeropoints=None, km=None, pixscale=0.2, gain=1.0): self.units = ['mag'] self.colsReq = [seeingCol, skybrightnessCol, exptimeCol, nexpCol, filterCol, airmassCol] self.seeingCol = seeingCol self.skybrightnessCol = skybrightnessCol self.exptimeCol = exptimeCol self.nexpCol = nexpCol self.filterCol = filterCol self.airmassCol = airmassCol self.saturation_adu = saturation_e/gain self.pixscale = 0.2 names = ['u', 'g', 'r', 'i', 'z', 'y'] types = [float]*6 if zeropoints is None: # Note these zeropoints are calculating the number of *electrons* per second (thus gain=1) # https://github.com/lsst-pst/syseng_throughputs/blob/master/notebooks/Syseng%20Throughputs%20Repo%20Demo.ipynb self.zeropoints = np.array([27.03, 28.38, 28.15, 27.86, 27.46, 26.68]).view(list(zip(names, types))) self.saturation_adu = saturation_e else: self.zeropoints = zeropoints if km is None: # Also from notebook above self.km = np.array([0.491, 0.213, 0.126, 0.096, 0.069, 0.170]).view(list(zip(names, types))) else: self.km = km def _run(self, simData, cols_present=False): for filtername in np.unique(simData[self.filterCol]): in_filt = np.where(simData[self.filterCol] == filtername)[0] # Calculate the length of the on-sky time per EXPOSURE exptime = simData[self.exptimeCol][in_filt] / simData[self.nexpCol][in_filt] # Calculate sky counts per pixel per second from skybrightness + zeropoint (e/1s) sky_counts = 10.**(0.4*(self.zeropoints[filtername] - simData[self.skybrightnessCol][in_filt])) * self.pixscale**2 # Total sky counts in each exposure sky_counts = sky_counts * exptime # The counts available to the source (at peak) in each exposure is the # difference between saturation and sky remaining_counts_peak = (self.saturation_adu - sky_counts) # Now to figure out how many counts there would be total, if there are that many in the peak sigma = simData[self.seeingCol][in_filt]/2.354 source_counts = remaining_counts_peak * 2.*np.pi*(sigma/self.pixscale)**2 # source counts = counts per exposure (expTimeCol / nexp) # Translate to counts per second, to apply zeropoint count_rate = source_counts / exptime simData['saturation_mag'][in_filt] = -2.5*np.log10(count_rate) + self.zeropoints[filtername] # Airmass correction simData['saturation_mag'][in_filt] -= self.km[filtername]*(simData[self.airmassCol][in_filt] - 1.) return simData class FiveSigmaStacker(BaseStacker): """ Calculate the 5-sigma limiting depth for a point source in the given conditions. This is generally not needed, unless the m5 parameters have been updated or m5 was not previously calculated. """ colsAdded = ['m5_simsUtils'] def __init__(self, airmassCol='airmass', seeingCol='seeingFwhmEff', skybrightnessCol='skyBrightness', filterCol='filter', exptimeCol='visitExposureTime'): self.units = ['mag'] self.colsReq = [airmassCol, seeingCol, skybrightnessCol, filterCol, exptimeCol] self.airmassCol = airmassCol self.seeingCol = seeingCol self.skybrightnessCol = skybrightnessCol self.filterCol = filterCol self.exptimeCol = exptimeCol def _run(self, simData, cols_present=False): if cols_present: # Column already present in data; assume it needs updating and recalculate. return simData filts = np.unique(simData[self.filterCol]) for filtername in filts: infilt = np.where(simData[self.filterCol] == filtername) simData['m5_simsUtils'][infilt] = m5_flat_sed(filtername, simData[infilt][self.skybrightnessCol], simData[infilt][self.seeingCol], simData[infilt][self.exptimeCol], simData[infilt][self.airmassCol]) return simData class NormAirmassStacker(BaseStacker): """Calculate the normalized airmass for each opsim pointing. """ colsAdded = ['normairmass'] def __init__(self, airmassCol='airmass', decCol='fieldDec', degrees=True, telescope_lat = -30.2446388): self.units = ['X / Xmin'] self.colsReq = [airmassCol, decCol] self.airmassCol = airmassCol self.decCol = decCol self.telescope_lat = telescope_lat self.degrees = degrees def _run(self, simData, cols_present=False): """Calculate new column for normalized airmass.""" # Run method is required to calculate column. # Driver runs getColInfo to know what columns are needed from db & which are calculated, # then gets data from db and then calculates additional columns (via run methods here). if cols_present: # Column already present in data; assume it is correct and does not need recalculating. return simData dec = simData[self.decCol] if self.degrees: dec = np.radians(dec) min_z_possible = np.abs(dec - np.radians(self.telescope_lat)) min_airmass_possible = 1./np.cos(min_z_possible) simData['normairmass'] = simData[self.airmassCol] / min_airmass_possible return simData class ZenithDistStacker(BaseStacker): """Calculate the zenith distance for each pointing. If 'degrees' is True, then assumes altCol is in degrees and returns degrees. If 'degrees' is False, assumes altCol is in radians and returns radians. """ colsAdded = ['zenithDistance'] def __init__(self, altCol='altitude', degrees=True): self.altCol = altCol self.degrees = degrees if self.degrees: self.units = ['degrees'] else: self.unit = ['radians'] self.colsReq = [self.altCol] def _run(self, simData, cols_present=False): """Calculate new column for zenith distance.""" if cols_present: # Column already present in data; assume it is correct and does not need recalculating. return simData if self.degrees: simData['zenithDistance'] = 90.0 - simData[self.altCol] else: simData['zenithDistance'] = np.pi/2.0 - simData[self.altCol] return simData class ParallaxFactorStacker(BaseStacker): """Calculate the parallax factors for each opsim pointing. Output parallax factor in arcseconds. """ colsAdded = ['ra_pi_amp', 'dec_pi_amp'] def __init__(self, raCol='fieldRA', decCol='fieldDec', dateCol='observationStartMJD', degrees=True): self.raCol = raCol self.decCol = decCol self.dateCol = dateCol self.units = ['arcsec', 'arcsec'] self.colsReq = [raCol, decCol, dateCol] self.degrees = degrees def _gnomonic_project_toxy(self, RA1, Dec1, RAcen, Deccen): """Calculate x/y projection of RA1/Dec1 in system with center at RAcen, Deccenp. Input radians. """ # also used in Global Telescope Network website cosc = np.sin(Deccen) * np.sin(Dec1) + np.cos(Deccen) * np.cos(Dec1) * np.cos(RA1-RAcen) x = np.cos(Dec1) * np.sin(RA1-RAcen) / cosc y = (np.cos(Deccen)*np.sin(Dec1) - np.sin(Deccen)*np.cos(Dec1)*np.cos(RA1-RAcen)) / cosc return x, y def _run(self, simData, cols_present=False): if cols_present: # Column already present in data; assume it is correct and does not need recalculating. return simData ra_pi_amp = np.zeros(np.size(simData), dtype=[('ra_pi_amp', 'float')]) dec_pi_amp = np.zeros(np.size(simData), dtype=[('dec_pi_amp', 'float')]) ra_geo1 = np.zeros(np.size(simData), dtype='float') dec_geo1 = np.zeros(np.size(simData), dtype='float') ra_geo = np.zeros(np.size(simData), dtype='float') dec_geo = np.zeros(
np.size(simData)
numpy.size
# @author Metro # @time 2021/11/11 # happy to be single! # 暂时不考虑加入参数 # 先实现自己的状态空间,之后的(更多丰富的接口需要去完善一下) import gym import os import numpy as np import sys import random import copy import traci import traci.constants as tc from gym import spaces from bisect import bisect_left class FreewheelingIntersectionEnv_v1(gym.Env): """ Description: A traffic signal control simulator environment for an isolated intersection. We supposed that there is no concept of cycle in the signal control.Hence you may execute one specific phase repeatedly before the others are executed. When one particular phase is over, it's time to decide(choose action) which phase(DISCRETE) to execute and its duration(int(CONTINUOUS)). It's a RL problem with hybrid action space actually, but if you just want to train and evaluate with a NORMAL env, just add some confines in env or train.py. Observation: Type: Box(512) # 512 = 32 * 8 # 32 cells in one phase, 8 phases, 2 specific items, speed and location. # When vehicles are absent in one specific cell, pad it with 0. and 0. w.r.t position and speed. Num Observation Min Max 0 Phase_0 position 0. 1. ... 7 Phase_7 position 0. 1. Actions: Type: Discrete(8) Num Action 0 NS_straight 1 EW_straight 2 NS_left 3 EW_left 4 N_straight_left 5 E_straight_left 6 S_straight_left 7 W_straight_left -------------- PLUS ---------- Type: Box(1) Num Action Min Max 0 The duration of phase you have selected 10 30 Reward: A combination between vehicle's loss time and queue in one specific phase. Starting State: Initialization according to sumo, actually there is no vehicles at the beginning Episode Termination: Episode length is greater than SIMULATION_STEPS(3600 in default, for one hour). """ def __init__(self): self.phase_num = 8 self.cells = 32 # the edgeID is defined in FW_Inter.edg.xml # as you may have different definition in your own .edg.xml, change it in config. self.edgeIDs = ['north_in', 'east_in', 'south_in', 'west_in'] # vehicle_types will help to filter the vehicles on the same edge but have different direction. self.vehicle_types = ['NS_through', 'NE_left', 'EW_through', 'ES_left', 'SN_through', 'SW_left', 'WE_through', 'WN_left'] self.phase_transformer = np.array([ [None, 8, 8, 8, 16, 8, 17, 8], [9, None, 9, 9, 9, 18, 9, 19], [10, 10, None, 10, 20, 10, 21, 10], [11, 11, 11, None, 11, 22, 11, 23], [24, 12, 25, 12, None, 12, 12, 12], [13, 26, 13, 27, 13, None, 13, 13], [28, 14, 29, 14, 14, 14, None, 14], [15, 30, 15, 31, 15, 15, 15, None] ]) self.lane_length = 240. self.action_pre = None self.vehicle_IDs_present = None self.yellow = 3 self.max_queuing_speed = 1. self.simulation_steps = 1800 # when step() we will save last 'self.N_STEPS' states for state representation self.episode_steps = 0 self.action_space = spaces.Tuple(( spaces.Discrete(self.phase_num), spaces.Box(low=
np.array([10])
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -*- # File: segmentation.py # Author: <NAME> <<EMAIL>> import numpy as np from math import ceil import cv2,colorsys import pydensecrf.densecrf as dcrf import os, sys from tensorpack.utils import logger from tensorpack.utils.palette import PALETTE_RGB __all__ = ['update_confusion_matrix', 'predict_slider'] # Colour map. #BGR order. label_colours = [(35,142,107),(70,70,70),(128,64,128),(142,0,0),(0,0,0) # 0=vegetarian, 1=building, 2=road 3=vehicle, 4=other ,(0,0,0),(0,0,0),(0,0,0),(0,0,0),(0,0,0),(0,0,0) ,(0,0,0),(0,0,0),(0,0,0),(0,0,0),(0,0,0),(0,0,0) ,(0,0,0),(0,0,0),(0,0,0),(0,0,0),(0,0,0)] # coco # label_colours = [(0,0,0) # 0=background # ,(128,0,0),(0,128,0),(128,128,0),(0,0,128),(128,0,128) # # 1=aeroplane, 2=bicycle, 3=bird, 4=boat, 5=bottle # ,(0,128,128),(128,128,128),(64,0,0),(192,0,0),(64,128,0) # # 6=bus, 7=car, 8=cat, 9=chair, 10=cow # ,(192,128,0),(64,0,128),(192,0,128),(64,128,128),(192,128,128) # # 11=diningtable, 12=dog, 13=horse, 14=motorbike, 15=person # ,(0,64,0),(128,64,0),(0,192,0),(128,192,0),(0,64,128)] # # 16=potted plant, 17=sheep, 18=sofa, 19=train, 20=tv/monitor id_to_name = { 0:"background", 1:"aeroplane", 2:"bicycle", 3:"bird", 4:"boat", 5:"bottle", 6:"bus", 7:"car", 8:"cat", 9:"chair", 10:"cow", 11:"diningtable", 12:"dog", 13:"horse", 14:"motorbike", 15:"person", 16:"plant", 17:"sheep", 18:"sofa", 19:"train", 20:"tv/monitor" } ignore_color = (255,255,255) fuzzy_color = (64,0,128) label2_colours = [(192,128,0),(64,0,128)] def update_confusion_matrix(pred, label, conf_m, nb_classes, ignore = 255): ignore_index = label != ignore seg_gt = label[ignore_index].astype('int32') seg_pred = pred[ignore_index].astype('int32') index = (seg_gt * nb_classes + seg_pred).astype('int32') label_count = np.bincount(index) for i_label in range(nb_classes): for i_pred_label in range(nb_classes): cur_index = i_label * nb_classes + i_pred_label if cur_index < len(label_count): conf_m[i_label, i_pred_label] += label_count[cur_index] #notice here, first dimension is label,second dimension is prediction. return conf_m def imwrite_grid(image,label,prediction,uncertainty,border,prefix_dir, imageId): h,w,_ = image.shape grid_num = h/border for i in range(grid_num): for j in range(grid_num): start_i = border*i start_j = border*j end_i = border*(i+1) end_j = border*(j+1) cv2.imwrite(os.path.join(prefix_dir,"out{}_patch{}_{}.png".format(imageId,i,j)), np.concatenate((image[start_i:end_i,start_j:end_j], visualize_label(label[start_i:end_i,start_j:end_j]), visualize_label(prediction[start_i:end_i,start_j:end_j]),uncertainty[start_i:end_i,start_j:end_j]), axis=1)) def pad_image(img, target_size): """Pad an image up to the target size.""" rows_missing = max(target_size[0] - img.shape[0], 0) cols_missing = max(target_size[1] - img.shape[1], 0) try: padded_img = np.pad(img, ((0, rows_missing), (0, cols_missing), (0, 0)), 'constant') except Exception as e: print(str(e)) pass return padded_img, [0,target_size[0]-rows_missing,0,target_size[1] - cols_missing] def pad_edge(img, target_size): """Pad an image up to the target size.""" rows_missing = max(target_size[0] - img.shape[0], 0) cols_missing = max(target_size[1] - img.shape[1], 0) padded_img = np.pad(img, ((0, rows_missing), (0, cols_missing), (0, 0)), 'constant') return padded_img, [0,target_size[0]-rows_missing,0,target_size[1] - cols_missing] def apply_mask(image, mask, color, alpha=0.5): """Apply the given mask to the image. """ for c in range(3): image[:, :, c] = np.where(mask == 1, image[:, :, c] * (1 - alpha) + alpha * color[c] * 255, image[:, :, c]) return image #https://github.com/matterport/Mask_RCNN/blob/master/visualize.py def visualize_binary_mask(image, label,color, class_num, alpha=0.5): """Color classes a good distance away from each other.""" image = np.copy(image) for ii in range(1,class_num):# background no mask for c in range(3): image[:, :, c] = np.where(label == ii, image[:, :, c] * (1 - alpha) + alpha * color[c], image[:, :, c]) return image def crop_saliency(img, label): img_copy = np.copy(img) if len(label.shape) == 2: label = label[:,:,np.newaxis]*np.ones((1,1,3)) img_copy[label==0] = 255 #white return img_copy def visualize_label(label, class_num=21, ignore_label = 255): """Color classes a good distance away from each other.""" if len(label.shape) == 3: label = np.squeeze(label) h, w = label.shape img_color = np.zeros((h, w, 3)).astype('uint8') if class_num == 2:#if two class, using white-black colormap to enlarge contrast my_label_colours = [(255, 255, 255),(0, 0, 0)] else: if class_num > 21: my_label_colours = [PALETTE_RGB[i][::-1] for i in range(class_num)] else: my_label_colours = label_colours for i in range(0,class_num): img_color[label == i] = my_label_colours[i] img_color[label==ignore_label] = ignore_color#highlight ignore label return img_color def visualize_uncertainty(prob): prob = np.amax(prob,axis=2,keepdims=False)*255 return prob def visualize_strict_uncertainty(prob,label): h,w,c = prob.shape gt = np.reshape(label,(h*w)) prob = np.reshape(prob,(h*w,c)) gt_idx = np.where(gt > -1)[0] idx = np.vstack((gt_idx, gt)) tmp = prob[list(idx)] #TODO advance index in numpy, here is buggy, because 255 ignore,index 255 is out of bounds for axis 1 with size 21 tmp = tmp*255 tmp =
np.reshape(tmp,(w,h))
numpy.reshape
import pandas as pd import datetime as dt import numpy as np import matplotlib.pyplot as plt import finterstellar as fs pd.plotting.deregister_matplotlib_converters() font = 'NanumSquareRound, AppleGothic, Malgun Gothic, DejaVu Sans' class Visualize: today = '(' + pd.to_datetime('today').date().strftime("%y%m%d") + ') ' today_str = pd.to_datetime('today').date().strftime("%Y%m%d") def __init__(self): plt.style.use('fivethirtyeight') plt.rcParams['font.family'] = font plt.rcParams['axes.unicode_minus'] = False plt.rcParams['axes.grid'] = True plt.rcParams['lines.linewidth'] = 1.5 plt.rcParams['grid.linestyle'] = '--' plt.rcParams['grid.alpha'] = 0.7 plt.rcParams['lines.antialiased'] = True plt.rcParams['figure.figsize'] = [15.0, 7.0] plt.rcParams['savefig.dpi'] = 96 plt.rcParams['font.size'] = 12 plt.rcParams['legend.fontsize'] = 'medium' plt.rcParams['figure.titlesize'] = 'medium' def price_view(self, df, b_date, cd, size=(15,7), make_file=False): cds = fs.str_list(cd) fig, ax = plt.subplots(figsize=size) x = df.loc[b_date:].index for c in cds: plt.plot(x, df.loc[b_date:, c], label=c) plt.legend() if make_file: plt.savefig('./image/'+self.today+cds[0]+' price_view.png', bbox_inches='tight') def index_view(self, df, b_date, cd, size=(15,7), make_file=False): if isinstance(df.index[0], dt.date): b_date = fs.check_base_date(df, b_date) fig, ax = plt.subplots(figsize=size) x = df.loc[b_date:].index cds = fs.str_list(cd) for c in cds: plt.plot(x, df.loc[b_date:, c] / df.loc[b_date, c] * 100, label=c) plt.legend() if make_file: plt.savefig('./image/'+self.today+cds[0]+' index_view.png', bbox_inches='tight') def complex_view(self, df, b_date, cd_a, cd_b, size=(15,7), make_file=False): cds_a = fs.str_list(cd_a) cds_b = fs.str_list(cd_b) fig, ax1 = plt.subplots(figsize=size) x = df.loc[b_date:].index i = 1 for c in cds_a: if i==1: ax1.plot(x, df.loc[b_date:, c], color='C'+str(i), lw=3, label=c) else: ax1.plot(x, df.loc[b_date:, c], color='C'+str(i), label=c) i += 1 if cds_b: ax2 = ax1.twinx() i = 6 for c in cds_b: ax2.fill_between(x, df.loc[b_date:, c], 0, facecolor='C'+str(i), alpha=0.3) ax1.plot(np.nan, color='C'+str(i), label=c) i += 1 ax1.legend(loc=0) if make_file: plt.savefig('./image/'+self.today+cds_a[0]+' complex_view.png', bbox_inches='tight') def multi_line_view(self, df, b_date, cd_a, cd_b, size=(15,7), make_file=False): cds_a = fs.str_list(cd_a) cds_b = fs.str_list(cd_b) fig, ax1 = plt.subplots(figsize=size) x = df.loc[b_date:].index i = 1 for c in cds_a: if i==1: ax1.plot(x, df.loc[b_date:, c], color='C'+str(i), lw=3, label=c) pass else: ax1.plot(x, df.loc[b_date:, c], color='C'+str(i), label=c) i += 1 if cds_b: ax2 = ax1.twinx() i = 6 for c in cds_b: ax2.plot(x, df.loc[b_date:, c], color='C'+str(i), label=c, alpha=0.7) ax1.plot(np.nan, color='C'+str(i), label=c) i += 1 ax1.legend(loc=0) if make_file: plt.savefig('./image/'+self.today+cds_a[0]+' multi_line_view.png', bbox_inches='tight') def position_view(self, df, cd, size=(15,1), make_file=False, file_name=''): cds = fs.str_list(cd) fig, ax = plt.subplots(figsize=size) x = df.index for c in cds: df['ps'+c] = 0 df.loc[ df['p '+c] == 'll', ['ps'+c] ] = 1 df.loc[ df['p '+c] == 'sl', ['ps'+c] ] = 1 df.loc[ df['p '+c] == 'zl', ['ps'+c] ] = 1 df.loc[ df['p '+c] == 'ls', ['ps'+c] ] = -1 df.loc[ df['p '+c] == 'ss', ['ps'+c] ] = -1 df.loc[ df['p '+c] == 'zs', ['ps'+c] ] = -1 plt.fill_between(x, df['ps'+c], 0, label=c) plt.yticks([-1, 0, 1], ["Short", "Zero", "Long"]) plt.legend() if make_file: f_name = file_name+'_position_view.png' plt.savefig('./image/'+f_name, bbox_inches='tight') def position_view_bar(self, df, cd, size=(15,1), make_file=False): cds = fs.str_list(cd) fig, ax = plt.subplots(figsize=size) x = df.index x_ticks = self.time_serial(df) plt.xticks(x_ticks[0], x_ticks[1]) plt.autoscale(True, axis='x') for c in cds: df['ps'+c] = 0 df.loc[ df['p '+c] == 'll', ['ps'+c] ] = 1 df.loc[ df['p '+c] == 'sl', ['ps'+c] ] = 1 df.loc[ df['p '+c] == 'zl', ['ps'+c] ] = 1 df.loc[ df['p '+c] == 'ls', ['ps'+c] ] = -1 df.loc[ df['p '+c] == 'ss', ['ps'+c] ] = -1 df.loc[ df['p '+c] == 'zs', ['ps'+c] ] = -1 plt.bar(range(x.size), df['ps'+c], width=1, label=c) plt.yticks([-1, 0, 1], ["Short", "Zero", "Long"]) plt.legend() if make_file: plt.savefig('./image/'+self.today+cds[0]+' position_view.png', bbox_inches='tight') def pair_trend_index_view(self, df, trd, cd, size=(15,7), make_file=False, file_name=''): fig, ax1 = plt.subplots(figsize=size) x = df.index ax1.fill_between(x, df[cd[1]+' expected']*(1+trd), df[cd[1]+' expected']*(1-trd), facecolor='sienna', alpha=0.2) ax1.plot(x, df[cd[1]+' expected'], 'sienna', linestyle='--') ax1.plot(x, df[cd[1]], 'C1', lw=3) ax2 = ax1.twinx() ax2.plot(x, df[cd[0]], 'C0', alpha=0.7) ax1.plot(np.nan, 'C0', label=cd[0]) ax1.legend(loc=0) if make_file: f_name = file_name+'_pair_trend_view.png' plt.savefig('./image/'+f_name, bbox_inches='tight') return() def pair_trend_price_view(self, df, trd, cd, size=(15,7), make_file=False): fig, ax = plt.subplots(figsize=size) x = df.index plt.fill_between(x, df[cd[1]+' expected']*(1+trd), df[cd[1]+' expected']*(1-trd), facecolor='sienna', alpha=0.2) plt.plot(x, df[cd[1]+' expected'], 'sienna', linestyle='--') plt.plot(x, df[cd[0]], 'C0') plt.plot(x, df[cd[1]], 'C1', lw=3) plt.legend() if make_file: plt.savefig('./image/'+self.today+cd[0]+' pair_trend_price_view.png', bbox_inches='tight') def BB_trend_view(self, df, cd, size=(15,7), make_file=False): cds = fs.str_list(cd) fig, ax = plt.subplots(figsize=size) x = df.index plt.fill_between(x, df['lb'], df['ub'], facecolor='sienna', alpha=0.2) plt.plot(x, df['center'], color='sienna', linestyle='--', label='MA') plt.plot(x, df[cds[0]], color='C0', linestyle='-', lw=3) plt.legend() if make_file: plt.savefig('./image/'+self.today+cds[0]+' bb_trend_view.png', bbox_inches='tight') def futures_basis_view(self, df, threshold, cd, size=(15,7), make_file=False): cds = fs.str_list(cd) fig, ax = plt.subplots(figsize=size) x = df.index plt.autoscale(True, axis='both') plt.fill_between(x, df[cds[0]], df[cds[0]]+df['basis'], facecolor='sienna', alpha=0.2) plt.plot(x, df[cds[0]], 'sienna', linestyle='--') plt.plot(x, df[cds[1]], 'C1', lw=3) plt.legend() if make_file: plt.savefig('./image/'+self.today+cds[0]+' futures_basis_view.png', bbox_inches='tight') def value_at_expiry_view(self, x, make_file=False, size=(7,7), **y): fig, ax = plt.subplots(figsize=size) plt.axhline(y=0, color = 'k', linewidth=1) # x축 s = pd.Series(0 for _ in range(len(x))) if len(y) > 1: for key, value in y.items(): plt.plot(x, value, linestyle='--', linewidth=1, label=key) s = s + pd.Series(value) plt.plot(x, s, linewidth=3, color='red', label='Synthetic') else: for key, value in y.items(): plt.plot(x, value, linewidth=3, color='red', label=key) step = ( x.max() - x.min() + 1 ) / 4 plt.yticks(np.arange(0-step*2, 0+step*3, step)) plt.ylim(0-step*2, 0+step*2) plt.legend() if make_file: plt.savefig('./image/'+self.today+' value_at_expiry_view.png', bbox_inches='tight') def square_one_to_one_view(self, x, make_file=False, size=(7,7), **y): fig, ax = plt.subplots(figsize=size) plt.axhline(y=0, color = 'k', linewidth=1) # x축 s = pd.Series(0 for _ in range(len(x))) if len(y) > 1: for key, value in y.items(): plt.plot(x, value, linestyle='--', linewidth=1, label=key) s = s + pd.Series(value) plt.plot(x, s, linewidth=3, color='red', label='Synthetic') else: for key, value in y.items(): plt.plot(x, value, linewidth=3, color='red', label=key) step = ( x.max() - x.min() + 1 ) / 4 plt.yticks(np.arange(0-step*2, 0+step*3, step)) plt.ylim(0-step*2, 0+step*2) plt.legend() if make_file: plt.savefig('./image/'+self.today+' square_one_to_one_view.png', bbox_inches='tight') def square_free_plot_view(self, x, make_file=False, size=(7,7), **y): fig, ax = plt.subplots(figsize=size) plt.axhline(y=0, color = 'k', linewidth=1) # x축 s = pd.Series(0 for _ in range(len(x))) if len(y) > 1: for key, value in y.items(): plt.plot(x, value, linestyle='--', linewidth=1, label=key) s = s + pd.Series(value) plt.plot(x, s, linewidth=3, color='red', label='Synthetic') else: for key, value in y.items(): plt.plot(x, value, linewidth=3, color='red', label=key) plt.legend() if make_file: plt.savefig('./image/'+Visualize.today+' square_free_plot_view.png', bbox_inches='tight') def square_scatter_view(self, x, y, make_file=False, size=(7,7)): fig, ax = plt.subplots(figsize=size) plt.axhline(y=0, color = 'k', linewidth=1) # x축 plt.scatter(x, y, linewidth=3, color='red') step = ( x.max() - x.min() + 1 ) / 4 plt.legend() if make_file: plt.savefig('./image/'+Visualize.today+' square_free_plot_view.png', bbox_inches='tight') def time_serial(self, df): chart = pd.DataFrame() chart = df.copy() chart.reset_index(inplace=True) sequence = [] xlabels = [] if isinstance(chart.iloc[0, 0], dt.date): first = chart.iloc[0, 0] last = chart.iloc[-1, 0] delta = last - first if delta.days >= 730: time_series = pd.date_range(first, last, freq='YS') elif delta.days >= 365: time_series = pd.date_range(first, last, freq='QS') elif delta.days >= 180: time_series = pd.date_range(first, last, freq='2MS') elif delta.days >= 90: time_series = pd.date_range(first, last, freq='MS') elif delta.days >= 60: time_series = pd.date_range(first, last, freq='SMS') elif delta.days >= 30: time_series = pd.date_range(first, last, freq='5B') elif delta.days >= 10: time_series = pd.date_range(first, last, freq='2B') elif delta.days >= 5: time_series = pd.date_range(first, last, freq='D') else: time_series = chart.iloc[:, 0] sequence.append(first) if delta.days >= 180: xlabels.append(first.strftime('%y.%m.%d')) else: xlabels.append(first.strftime('%m.%d')) for d in time_series: d = fs.check_base_date(df, d) s = chart[chart.iloc[:, 0]==d].iloc[0].tolist() sequence.append(s[0]) l = d.strftime('%y.%m.%d') if delta.days >= 180: l = d.strftime('%y.%m.%d') else: l = d.strftime('%m.%d') xlabels.append(l) sequence.append(last) if delta.days >= 180: xlabels.append(last.strftime('%y.%m.%d')) else: xlabels.append(last.strftime('%m.%d')) if sequence[0] == sequence[1]: del sequence[0] del xlabels[0] if sequence[-1] == sequence[-2]: del sequence[-1] del xlabels[-1] return(sequence, xlabels) ''' intraday charting ''' class VisualizeIntraday: today = '(' + pd.to_datetime('today').date().strftime("%y%m%d") + ') ' def __init__(self): plt.style.use('fivethirtyeight') plt.rcParams['font.family'] = font plt.rcParams['axes.unicode_minus'] = False plt.rcParams['axes.grid'] = True plt.rcParams['lines.linewidth'] = 1.5 plt.rcParams['grid.linestyle'] = '--' plt.rcParams['grid.alpha'] = 0.7 plt.rcParams['lines.antialiased'] = True plt.rcParams['figure.figsize'] = [15.0, 7.0] plt.rcParams['savefig.dpi'] = 96 plt.rcParams['font.size'] = 12 plt.rcParams['legend.fontsize'] = 'medium' plt.rcParams['figure.titlesize'] = 'medium' def price_view(self, df, b_date, s_cd, size=(15,7), make_file=False): cds = fs.str_list(s_cd) fig, ax = plt.subplots(figsize=size) x = df.loc[b_date:].index plt.autoscale(True, axis='both') for c in cds: plt.plot(x, df.loc[b_date:, c], label=c) x_length = len(x) jump = int( x_length / 10 ) xs = list() for i in range(10): xs.append(x[jump*i]) xs.append(x[-1]) plt.xticks(np.arange(0, x_length+jump, jump), xs, rotation=45) plt.legend() if make_file: plt.savefig('./image/'+VisualizeIntraday.today+cds[0]+' price_view.png', bbox_inches='tight') def index_view(self, df, b_date, s_cd, size=(15,7), make_file=False): fig, ax = plt.subplots(figsize=size) x = df.loc[b_date:].index plt.autoscale(True, axis='both') cds = fs.str_list(s_cd) for c in cds: plt.plot(x, df.loc[b_date:, c] / df.loc[b_date, c] * 100, label=c) x_length = len(x) jump = int( x_length / 10 ) xs = list() for i in range(10): xs.append(x[jump*i]) xs.append(x[-1]) plt.xticks(np.arange(0, x_length+jump, jump), xs, rotation=45) plt.legend() if make_file: plt.savefig('./image/'+Visualize.today+s_cd[0]+' index_view.png', bbox_inches='tight') def complex_view(self, df, b_date, cd_set_a, cd_set_b=[], size=(15,7), make_file=False): cds_a = fs.str_list(cd_set_a) cds_b = fs.str_list(cd_set_b) fig, ax1 = plt.subplots(figsize=size) x = df.loc[b_date:].index plt.autoscale(True, axis='both') i = 1 for c in cds_a: if i==1: ax1.plot(x, df.loc[b_date:, c], color='C'+str(i), lw=3, label=c) else: ax1.plot(x, df.loc[b_date:, c], color='C'+str(i), label=c) i += 1 if cds_b: ax2 = ax1.twinx() i = 6 for c in cds_b: ax2.fill_between(x, df.loc[b_date:, c], 0, facecolor='C'+str(i), alpha=0.3) ax1.plot(np.nan, color='C'+str(i), label=c) i += 1 x_length = len(x) jump = int( x_length / 10 ) xs = list() for i in range(10): xs.append(x[jump*i]) xs.append(x[-1]) ax1.set_xticks(np.arange(0, x_length+jump, jump)) ax1.set_xticklabels(xs, rotation=45) ax2.set_xticks(np.arange(0, x_length+jump, jump)) ax2.set_xticklabels(xs, rotation=45) ax1.legend(loc=0) if make_file: plt.savefig('./image/'+Visualize.today+cds_a[0]+' complex_view.png', bbox_inches='tight') def multi_line_view(self, df, b_date, cd_set_a, cd_set_b=[], size=(15,7), make_file=False): cds_a = fs.str_list(cd_set_a) cds_b = fs.str_list(cd_set_b) fig, ax1 = plt.subplots(figsize=size) x = df.loc[b_date:].index plt.autoscale(True, axis='both') i = 1 for c in cds_a: if i==1: ax1.plot(x, df.loc[b_date:, c], color='C'+str(i), lw=3, label=c) pass else: ax1.plot(x, df.loc[b_date:, c], color='C'+str(i), label=c) i += 1 if cds_b: ax2 = ax1.twinx() i = 6 for c in cds_b: ax2.plot(x, df.loc[b_date:, c], color='C'+str(i), label=c, alpha=0.7) ax1.plot(np.nan, color='C'+str(i), label=c) i += 1 x_length = len(x) jump = int( x_length / 10 ) xs = list() for i in range(10): xs.append(x[jump*i]) xs.append(x[-1]) ax1.set_xticks(np.arange(0, x_length+jump, jump)) ax1.set_xticklabels(xs, rotation=45) ax2.set_xticks(np.arange(0, x_length+jump, jump)) ax2.set_xticklabels(xs, rotation=45) ax1.legend(loc=0) if make_file: plt.savefig('./image/'+Visualize.today+cds_a[0]+' multi_line_view.png', bbox_inches='tight') def position_view(self, df, s_cd, size=(15,1), make_file=False): cds = fs.str_list(s_cd) fig, ax = plt.subplots(figsize=size) x = df.index for c in cds: df['ps'+c] = 0 df.loc[ df['p '+c] == 'll', ['ps'+c] ] = 1 df.loc[ df['p '+c] == 'sl', ['ps'+c] ] = 1 df.loc[ df['p '+c] == 'zl', ['ps'+c] ] = 1 df.loc[ df['p '+c] == 'ls', ['ps'+c] ] = -1 df.loc[ df['p '+c] == 'ss', ['ps'+c] ] = -1 df.loc[ df['p '+c] == 'zs', ['ps'+c] ] = -1 plt.fill_between(x, df['ps'+c], 0, label=c) plt.yticks([-1, 0, 1], ["Short", "Zero", "Long"]) x_length = len(x) jump = int( x_length / 10 ) xs = list() for i in range(10): xs.append(x[jump*i]) xs.append(x[-1]) plt.xticks(np.arange(0, x_length+jump, jump), xs, rotation=45) plt.legend() if make_file: plt.savefig('./image/'+VisualizeIntraday.today+cds[0]+' position_view.png', bbox_inches='tight') def pair_trend_price_view(self, df, thd, s_cd, make_file=False, size=(15,7)): fig, ax = plt.subplots(figsize=size) x = df.index plt.fill_between(x, df[s_cd[1]+' expected']*(1+thd), df[s_cd[1]+' expected']*(1-thd), facecolor='sienna', alpha=0.2) plt.plot(x, df[s_cd[1]+' expected'], 'sienna', linestyle='--') plt.plot(x, df[s_cd[0]], 'C0') plt.plot(x, df[s_cd[1]], 'C1', lw=3) plt.legend() if make_file: plt.savefig('./image/'+VisualizeIntraday.today+s_cd[0]+' pairs_trend_price_view.png', bbox_inches='tight') def pair_trend_index_view(self, df, thd, s_cd, make_file=False, size=(15,7)): fig, ax1 = plt.subplots(figsize=size) x = df.index ax1.fill_between(x, df[s_cd[1]+' expected']*(1+thd), df[s_cd[1]+' expected']*(1-thd), facecolor='sienna', alpha=0.2) ax1.plot(x, df[s_cd[1]+' expected'], 'sienna', linestyle='--') ax1.plot(x, df[s_cd[1]], 'C1', lw=3) ax2 = ax1.twinx() ax2.plot(x, df[s_cd[0]], 'C0', alpha=0.7) ax1.plot(np.nan, 'C0', label=s_cd[0]) x_length = len(x) jump = int( x_length / 10 ) xs = list() for i in range(10): xs.append(x[jump*i]) xs.append(x[-1]) ax1.set_xticks(np.arange(0, x_length+jump, jump)) ax1.set_xticklabels(xs, rotation=45) ax2.set_xticks(np.arange(0, x_length+jump, jump)) ax2.set_xticklabels(xs, rotation=45) ax1.legend(loc=0) if make_file: plt.savefig('./image/'+VisualizeIntraday.today+s_cd[0]+' pairs_trend_index_view.png', bbox_inches='tight') def BB_trend_view(self, sample, sigma, s_cd, make_file=False, size=(15,7)): cds = fs.str_list(s_cd) fig, ax = plt.subplots(figsize=size) x = sample.index plt.fill_between(x, sample['lb'], sample['ub'], facecolor='sienna', alpha=0.2) plt.plot(x, sample['center'], color='sienna', linestyle='--', label='MA') plt.plot(x, sample[cds[0]], color='C0', linestyle='-', lw=3) x_length = len(x) jump = int( x_length / 10 ) xs = list() for i in range(10): xs.append(x[jump*i]) xs.append(x[-1]) plt.xticks(
np.arange(0, x_length+jump, jump)
numpy.arange
"""peca summary table and plots""" from collections import Counter from pathlib import Path from sys import stdout import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages NPROT = sum(1 for line in open("X.txt"))-1 NSAMPLES = sum(1 for line in open("s_RR")) NREPS, NTIME = (int(x) for x in open("attr.txt").readline().rstrip().split('\t')[:2]) #print(NREPS, NTIME) RR = np.zeros((NPROT, NTIME-1)) for line in (l.rstrip().split('\t') for l in open("s_RR")): RR += np.log(np.array(line, dtype=float)).reshape(NPROT, NTIME-1) RR = np.exp(RR/NSAMPLES) CPR = np.zeros((NPROT, NTIME-2)) for line in (l.rstrip().split('\t') for l in open("s_CPR")): CPR += np.array(line, dtype=int).reshape(NPROT, NTIME-2) CPR /= NSAMPLES DD = np.zeros((NPROT, NTIME-1)) for line in (l.rstrip().split('\t') for l in open("s_DD")): DD += np.log(np.array(line, dtype=float)).reshape(NPROT, NTIME-1) DD = np.exp(DD/NSAMPLES) CPD = np.zeros((NPROT, NTIME-2)) for line in (l.rstrip().split('\t') for l in open("s_CPD")): CPD += np.array(line, dtype=int).reshape(NPROT, NTIME-2) CPD /= NSAMPLES ### append the fdr columns #for syn CNT = Counter(CPR.flatten()) SORTKEY = sorted(CNT, reverse=True) FDRMAP = dict() DENOM = CNT[SORTKEY[0]] NUMER = (1-SORTKEY[0])*DENOM for key in SORTKEY: FDRMAP[key] = NUMER/DENOM NUMER += (1-key)*CNT[key] DENOM += CNT[key] #for deg CNT = Counter(CPD.flatten()) SORTKEY = sorted(CNT, reverse=True) FDRMAP_D = dict() DENOM = CNT[SORTKEY[0]] NUMER = (1-SORTKEY[0])*DENOM for key in SORTKEY: FDRMAP_D[key] = NUMER/DENOM NUMER += (1-key)*CNT[key] DENOM += CNT[key] MPATH = Path("M.txt").is_file() with open('normX.txt') as xX, \ open('normH.txt') as hH, \ (open('normM.txt') if MPATH else open('normH.txt')) as mM, \ open('data_R_CPS.txt', 'w') as cp_: #cp_.write(xX.readline().rstrip().split('\t', 1)[1] \ # +('\t'+mM.readline().rstrip().split('\t', 1)[1] if MPATH else '') \ # +'\t'+hH.readline().rstrip().split('\t', 1)[1] \ cp_.write('\t'.join(z+"_X"+str(int(n/NTIME))+"t"+str(n%NTIME) \ for n, z in enumerate(xX.readline().rstrip().split('\t')[1:])) \ +('\t'+'\t'.join(z+"_M"+str(int(n/NTIME))+"t"+str(n%NTIME) \ for n, z in enumerate(mM.readline().rstrip().split('\t')[1:])) if MPATH else '') \ +'\t'+'\t'.join(z+"_Y"+str(int(n/NTIME))+"t"+str(n%NTIME) \ for n, z in enumerate(hH.readline().rstrip().split('\t')[1:])) \ +'\t'+'\t'.join(['R'+str(i) for i in range(NTIME-1)]) \ +'\t'+'\t'.join(['D'+str(i) for i in range(NTIME-1)]) \ +'\t'+'\t'.join(['signedCPS'+str(i) for i in range(1, NTIME-1)]) \ +'\t'+'\t'.join(['signedCPD'+str(i) for i in range(1, NTIME-1)]) \ +'\t'+'\t'.join(['FDR_S'+str(i) for i in range(1, NTIME-1)]) \ +'\t'+'\t'.join(['FDR_D'+str(i) for i in range(1, NTIME-1)]) \ +'\n') for i in range(NPROT): cp_.write(xX.readline().rstrip() \ +('\t'+mM.readline().rstrip().split('\t', 1)[1] if MPATH else '') \ +'\t'+hH.readline().rstrip().split('\t', 1)[1] \ +'\t'+'\t'.join(str(x) for x in RR[i,]) \ +'\t'+'\t'.join(str(x) for x in DD[i,]) \ +'\t'+'\t'.join(str(x*(1 if RR[i, n] > RR[i, n-1] else -1)) \ for n, x in enumerate(CPR[i,], 1)) \ +'\t'+'\t'.join(str(x*(1 if DD[i, n] > DD[i, n-1] else -1)) \ for n, x in enumerate(CPD[i,], 1)) \ +'\t'+'\t'.join(str(FDRMAP[x]) for x in CPR[i,]) \ +'\t'+'\t'.join(str(FDRMAP_D[x]) for x in CPD[i,]) \ +'\n') ###loglikelihood traceplot######################## #plt.figure().set_size_inches(9, 9) plt.title('loglikelihood traceplot') plt.plot(range(1, NSAMPLES+1), [float(x) for x in open('s_loglike').readlines()]) plt.savefig('trace_loglike.pdf') ################################################## EFSH = dict() XAX = [] with open('EfsH.txt') as efsh: XAX = efsh.readline().rstrip('\n').split('\t')[3:] for line in (l.rstrip('\n').split('\t') for l in efsh): EFSH['\t'.join(line[:3])] = line[3:] EFSM = dict() if MPATH: with open('EfsM.txt') as efsm: efsm.readline() for line in (l.rstrip('\n').split('\t') for l in efsm): EFSM['\t'.join(line[:3])] = line[3:] EFSX = dict() EFSXPATH = Path("EfsX.txt").is_file() if EFSXPATH: with open('EfsX.txt') as efsx: efsx.readline() for line in (l.rstrip('\n').split('\t') for l in efsx): EFSX['\t'.join(line[:3])] = line[3:] ETAH = np.array(open('mean_etaH').readline().rstrip().split('\t'), \ dtype=float).reshape(NPROT, NTIME*NREPS) if MPATH: ETAM = np.array(open('mean_etaM').readline().rstrip().split('\t'), \ dtype=float).reshape(NPROT, NTIME*NREPS) with PdfPages('mRNAprot.pdf') as pdf, \ open('X.txt') as xx, \ open('H.txt') as hh, \ (open('M.txt') if MPATH else open('H.txt')) as mm, \ open('normX.txt') as xX, \ open('normH.txt') as hH, \ (open('normM.txt') if MPATH else open('normH.txt')) as mM: PR = 2 LOGHY = 'log(protein) ' if MPATH: PR = 3 mm.readline() mM.readline() LOGHY = 'log(H) ' xx.readline() hh.readline() xX.readline() hH.readline() for p, linex in enumerate(xx): x = [(i if i != 'NA' else np.nan) for i in linex.rstrip().split('\t')[1:]] x = np.array(x, dtype=float) X = np.array(xX.readline().rstrip().split('\t')[1:], dtype=float) h = [(i if i != 'NA' else np.nan) for i in hh.readline().rstrip().split('\t')[1:]] h = np.array(h, dtype=float) H = np.array(hH.readline().rstrip().split('\t')[1:], dtype=float) if MPATH: m = [(i if i != 'NA' else np.nan) for i in mm.readline().rstrip().split('\t')[1:]] m = np.array(m, dtype=float) M = np.array(mM.readline().rstrip().split('\t')[1:], dtype=float) #if p > 10: # break plt.figure(figsize=((NREPS+2)*4, PR*4)) plt.suptitle(linex.rstrip().split('\t', 1)[0]) print('\x08'*99, p, '/', NPROT, end=' ') stdout.flush() for j in range(NREPS): plt.subplot(PR, NREPS+2, j+1).set_title('log(mRNA) '+str(j+1)) plt.ylim(np.nanmin(x), np.nanmax(x)) plt.scatter(range(NTIME), x[NTIME*j:NTIME*(j+1)], c='k') plt.scatter(range(NTIME), X[NTIME*j:NTIME*(j+1)], \ facecolors='none', \ edgecolors=np.where(np.isnan(x[NTIME*j:NTIME*(j+1)]), 'red', 'black')) if EFSXPATH: plt.plot(XAX, EFSX[str(p)+'\t0\t'+str(j)], 'k-') plt.subplot(PR, NREPS+2, NREPS+1).set_title('Protein synthesis') plt.xlim(0, NTIME-1) plt.step(np.arange(0.5, NTIME-0.5), RR[p,], 'k-', where='mid') plt.ylim(0) plt.subplot(PR, NREPS+2, NREPS+2).set_title('Protein degradation') plt.xlim(0, NTIME-1) plt.step(np.arange(0.5, NTIME-0.5), DD[p,], 'k-', where='mid') plt.ylim(0) for j in range(NREPS): plt.subplot(PR, NREPS+2, NREPS+3+j).set_title(LOGHY+str(j+1)) plt.ylim(np.nanmin(h),
np.nanmax(h)
numpy.nanmax
#https://gitlab.com/custom_robots/spotmicroai/simulation/-/blob/master/Basic%20simulation%20by%20user%20Florian%20Wilk/Kinematics/Kinematic.ipynb from mpl_toolkits import mplot3d import numpy as np from math import * import matplotlib.pyplot as plt def setupView(limit): ax = plt.axes(projection="3d") ax.set_xlim(-limit, limit) ax.set_ylim(-limit, limit) ax.set_zlim(-limit, limit) ax.set_xlabel("X") ax.set_ylabel("Z") ax.set_zlabel("Y") return ax setupView(200).view_init(elev=12., azim=28) omega = pi/4 phi =0 psi = 0 xm = 0 ym = 0 zm = 0 L = 207.5 W = 78 l1=60.5 l2=10 l3=100.7 l4=118.5 Lp=np.array([[100,-100,100,1],[100,-100,-100,1],[-100,-100,100,1],[-100,-100,-100,1]]) sHp=np.sin(pi/2) cHp=np.cos(pi/2) Lo=np.array([0,0,0,1]) def bodyIK(omega,phi,psi,xm,ym,zm): Rx = np.array([[1,0,0,0], [0,np.cos(omega),-np.sin(omega),0], [0,np.sin(omega),
np.cos(omega)
numpy.cos
#Copyright (C) 2021 <NAME>, <NAME>, University of California, Berkeley #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), '../external')) sys.path.append(os.path.join(os.path.dirname(__file__), '../src')) import vtk from vtk.util.numpy_support import vtk_to_numpy, numpy_to_vtk import numpy as np #np.random.seed(42) from vtk_utils.vtk_utils import * from pre_process import * import argparse from datetime import datetime import scipy.sparse as sp import pickle from scipy.sparse.linalg.eigen.arpack import eigsh def build_transform_matrix(image): matrix = np.eye(4) matrix[:-1,:-1] = np.matmul(np.reshape(image.GetDirection(), (3,3)), np.diag(image.GetSpacing())) matrix[:-1,-1] = np.array(image.GetOrigin()) return matrix def map_polydata_coords(poly, displacement, transform, size): coords = vtk_to_numpy(poly.GetPoints().GetData()) coords += displacement coords = np.concatenate((coords,np.ones((coords.shape[0],1))), axis=-1) coords = np.matmul(np.linalg.inv(transform), coords.transpose()).transpose()[:,:3] coords /= np.array(size) return coords def transform_polydata(poly, displacement, transform, size): coords = map_polydata_coords(poly, displacement, transform, size) poly.GetPoints().SetData(numpy_to_vtk(coords)) return poly def get_image_patch(image_py, coords): """ return a patch of the image defined under coords, the coords should be in [0,1]R^3 """ dim_x, dim_y, dim_z = image_py.shape indices = coords * np.array([[dim_x, dim_y, dim_z]]) x1 = np.floor(indices[:,0]).astype(int) y1 = np.floor(indices[:,1]).astype(int) z1 = np.floor(indices[:,2]).astype(int) x2 = np.ceil(indices[:,0]).astype(int) y2 = np.ceil(indices[:,1]).astype(int) z2 = np.ceil(indices[:,2]).astype(int) q11 = image_py[x1, y1, z1] q21 = image_py[x2, y1, z1] q12 = image_py[x1, y2, z1] q22 = image_py[x2, y2, z1] wx = indices[:, 0] - x1 wx2 = x2 - indices[:, 0] lerp_x1 = q21 * wx + q11 * wx2 lerp_x2 = q12 * wx + q22 * wx2 wy = indices[:, 1] - y1 wy2 = y2 - indices[:, 1] lerp_y1 = lerp_x2 * wy + lerp_x1 * wy2 q112 = image_py[x1, y1, z2] q212 = image_py[x2, y1, z2] q122 = image_py[x1, y2, z2] q222 = image_py[x2, y2, z2] lerp_x12 = q212 * wx + q112 * wx2 lerp_x22 = q122 * wx + q222 * wx2 lerp_y12 = lerp_x22 * wy + lerp_x12 * wy2 wz = indices[:, 2] - z1 wz2 = z2 - indices[:,2] lerp_z = lerp_y12 * wz + lerp_y1 * wz2 return lerp_z def make_grid_vtk(ctrl_points, diagonal=True): # assume equal number of control points along each dim num_pts = int(round(len(ctrl_points)**(1/3))) # points grid = vtk.vtkPolyData() vtk_points = vtk.vtkPoints() vtk_points.SetData(numpy_to_vtk(ctrl_points)) grid.SetPoints(vtk_points) # edges lines = vtk.vtkCellArray() for i in range(num_pts): for j in range(num_pts): for k in range(num_pts-1): id1 = i*num_pts*num_pts+j*num_pts +k ids = [] ids.append(i*num_pts*num_pts+j*num_pts +k+1) if diagonal: if j<num_pts-1: ids.append(i*num_pts*num_pts+(j+1)*num_pts +k+1) if i < num_pts-1: ids.append((i+1)*num_pts*num_pts+(j+1)*num_pts +k+1) if i >0: ids.append((i-1)*num_pts*num_pts+(j+1)*num_pts +k+1) if j>0: ids.append(i*num_pts*num_pts+(j-1)*num_pts +k+1) if i < num_pts-1: ids.append((i+1)*num_pts*num_pts+(j-1)*num_pts +k+1) if i >0: ids.append((i-1)*num_pts*num_pts+(j-1)*num_pts +k+1) #if i<num_pts-1: # ids.append((i+1)*num_pts*num_pts+(j+1)*num_pts +k) for id_p in ids: line = vtk.vtkLine() line.GetPointIds().SetId(0, id1) line.GetPointIds().SetId(1, id_p) lines.InsertNextCell(line) for i in range(num_pts): for j in range(num_pts-1): for k in range(num_pts): id1 = i*num_pts*num_pts+j*num_pts +k ids = [] ids.append(i*num_pts*num_pts+(j+1)*num_pts +k) if diagonal: if i<num_pts-1: ids.append((i+1)*num_pts*num_pts+(j+1)*num_pts +k) if i>0: ids.append((i-1)*num_pts*num_pts+(j+1)*num_pts +k) for id_p in ids: line = vtk.vtkLine() line.GetPointIds().SetId(0, id1) line.GetPointIds().SetId(1, id_p) lines.InsertNextCell(line) for i in range(num_pts-1): for j in range(num_pts): for k in range(num_pts): id1 = i*num_pts*num_pts+j*num_pts +k ids = [] ids.append((i+1)*num_pts*num_pts+j*num_pts +k) if diagonal: if k<num_pts-1: ids.append((i+1)*num_pts*num_pts+j*num_pts +k+1) if k>0: ids.append((i+1)*num_pts*num_pts+j*num_pts +k-1) for id_p in ids: line = vtk.vtkLine() line.GetPointIds().SetId(0, id1) line.GetPointIds().SetId(1, id_p) lines.InsertNextCell(line) grid.SetLines(lines) return grid def make_grid(num_pts, bounds, diagonal=True): # compute bounding box of the template min_bound, max_bound = bounds # create control points x = np.linspace(min_bound[0], max_bound[0], num_pts, endpoint=True) y = np.linspace(min_bound[1], max_bound[1], num_pts, endpoint=True) z = np.linspace(min_bound[2], max_bound[2], num_pts, endpoint=True) # create vtk polydata u, v, w = np.meshgrid(x, y, z, indexing='ij') coords = np.column_stack((u.flatten(), v.flatten(), w.flatten())) grid = make_grid_vtk(coords, diagonal) #write_vtk_polydata(grid, os.path.join(os.path.dirname(__file__), 'grid_pts{}.vtk'.format(num_pts))) return grid def load_geometry_from_file(fn, target_node_num): template = load_vtk_mesh(fn) try: region_ids = np.unique(vtk_to_numpy(template.GetCellData().GetArray('Scalars_'))).astype(int) except: region_ids = np.unique(vtk_to_numpy(template.GetCellData().GetArray('RegionId'))).astype(int) print("Unique ids of template mesh: ", region_ids) struct_list = [] node_list = [0] total_node = 0 face_list = [] region_id = [] for i in region_ids: poly_i = thresholdPolyData(template, 'Scalars_', (i, i),'cell') if poly_i.GetNumberOfPoints() == 0: poly_i = thresholdPolyData(template, 'RegionId', (i, i),'cell') num_pts = poly_i.GetNumberOfPoints() rate = max(0., 1. - float(target_node_num)/num_pts) print("Target reduction rate of structure: ", i, target_node_num, num_pts, rate) poly_i = decimation(poly_i, rate) total_node += poly_i.GetNumberOfPoints() node_list.append(total_node) struct_list.append(poly_i) cells = vtk_to_numpy(poly_i.GetPolys().GetData()) cells = cells.reshape(poly_i.GetNumberOfCells(), 4) cells = cells[:,1:] region_id += list(np.ones(poly_i.GetNumberOfCells())*i) face_list.append(cells) template_deci = appendPolyData(struct_list) region_id_vtk = numpy_to_vtk(region_id) region_id_vtk.SetName('Scalars_') template_deci.GetCellData().AddArray(region_id_vtk) return template_deci, node_list, face_list def process_template(template_fn, target_node_num=None, template_im_fn=None, ref_template_fn=None): if target_node_num is None: template = load_vtk_mesh(template_fn) node_list = [template.GetNumberOfPoints()] face_list = vtk_to_numpy(template.GetPolys().GetData()).reshape(template.GetNumberOfCells(), 4)[:, 1:] else: template, node_list, face_list = load_geometry_from_file(template_fn, target_node_num) if template_im_fn is None: coords = vtk_to_numpy(template.GetPoints().GetData()) if ref_template_fn is not None: ref = load_vtk_mesh(ref_template_fn) ref_coords = vtk_to_numpy(ref.GetPoints().GetData()) ref_mean = np.mean(ref_coords, axis=0) coords -= ref_mean ref_coords -= ref_mean ref_nrm = np.max(np.linalg.norm(ref_coords, axis=1)) coords /= ref_nrm * 1.8 ref_coords /= ref_nrm * 1.8 ref_coords += np.array([0.5, 0.5, 0.5]) else: mean = np.mean(coords, axis=0) coords -= mean coords /= np.max(np.linalg.norm(coords, axis=1)) * 1.8 coords += np.array([0.5, 0.5, 0.5]) template.GetPoints().SetData(numpy_to_vtk(coords)) else: SIZE = (128, 128, 128) imgVol_o = sitk.ReadImage(template_im_fn) img_center = np.array(imgVol_o.TransformContinuousIndexToPhysicalPoint(np.array(imgVol_o.GetSize())/2.0)) imgVol = resample_spacing(imgVol_o, template_size=SIZE, order=1)[0] # numpy array img_center2 = np.array(imgVol.TransformContinuousIndexToPhysicalPoint(np.array(imgVol.GetSize())/2.0)) transform = build_transform_matrix(imgVol) template = transform_polydata(template, img_center2-img_center, transform, SIZE) coords = vtk_to_numpy(template.GetPoints().GetData()) #write_vtk_polydata(template, os.path.join(os.path.dirname(__file__), datetime.now().strftime("%m_%d_%Y_%H_%M_%S")+'_template_'+os.path.basename(template_fn))) write_vtk_polydata(template, os.path.join(os.path.dirname(__file__), '../examples/template_with_veins_normalized.vtp')) if ref_template_fn is not None: bounds = (np.min(ref_coords, axis=0), np.max(ref_coords, axis=0)) else: bounds = (np.min(coords, axis=0), np.max(coords, axis=0)) return template, node_list, face_list, bounds from math import factorial def comb(n, k): return factorial(n) / factorial(k) / factorial(n - k) def ffd(ctrl_pts, tmplt_coords, bounds): ''' Ctrl points or d_cntrl points should be in world coordinates Tmple_coords is in world coordinates and will be normalized to grid coordinates ''' min_bound, max_bound = bounds tmplt_coords = tmplt_coords - np.expand_dims(min_bound, axis=0) tmplt_coords /= np.expand_dims(max_bound - min_bound, axis=0) num_pts = int(round(len(ctrl_pts)**(1/3))) # Bernstein tensor B = [] for i in range(num_pts): for j in range(num_pts): for k in range(num_pts): coeff = comb(num_pts-1, k) * comb(num_pts-1, j) * comb(num_pts-1, i) b_list = coeff * ((1 - tmplt_coords[:,0]) ** (num_pts-1 - i)) * (tmplt_coords[:,0] ** i) \ * ((1 - tmplt_coords[:,1]) ** (num_pts-1 - j)) * (tmplt_coords[:,1] ** j)\ * ((1 - tmplt_coords[:,2]) ** (num_pts-1 - k)) * (tmplt_coords[:,2] ** k) B.append(b_list) B = np.stack(B, axis=1) B[B<1e-5] = 0. s_B = sp.csr_matrix(B, copy=True) print("Number of elements in grid matrix: ", len(sparse_to_tuple(s_B)[1])) output = s_B.dot(ctrl_pts) #output = np.matmul(B, ctrl_pts) return output, sparse_to_tuple(s_B) def construct_bspline_volume(ctrl_pts, tmplt_coords, bounds, order=3): min_bound, max_bound = bounds num_pts = int(round(len(ctrl_pts)**(1/3))) # create knot vectors u, v, w = [], [], [] for i in range(num_pts+order+1): coeff = min(max(0, i-order), num_pts-order) u.append(min_bound[0] + coeff*(max_bound[0]-min_bound[0])/(num_pts-order)) v.append(min_bound[1] + coeff*(max_bound[1]-min_bound[1])/(num_pts-order)) w.append(min_bound[2] + coeff*(max_bound[2]-min_bound[2])/(num_pts-order)) #print("knots: ", u) #print("knots: ", v) #print("knots: ", w) return construct_bspline_matrix(ctrl_pts, tmplt_coords, u, v, w, order) def construct_bspline_matrix(ctrl_pts, tmplt_coords, u, v, w, order=3): def _compute_basis(x, t, i, p): if p == 0: b = np.where((x >= t[i]-1e-5) & (x <= t[i+1]+1e-5), 1., 0.) #b = np.where((x >= t[i]) & (x <= t[i+1]), 1., 0.) return b seg_i = t[i+p] - t[i] seg_ip1 = (t[i+p+1] - t[i+1]) if np.isclose(seg_i, 0.): left = np.zeros(x.shape) else: left = (x - t[i])/seg_i * _compute_basis(x, t, i, p-1) if np.isclose(seg_ip1, 0.): right = np.zeros(x.shape) else: right = (t[i+p+1] - x)/(t[i+p+1] - t[i+1]) * _compute_basis(x, t, i+1, p-1) b = left + right return b num_pts = int(round(len(ctrl_pts)**(1/3))) B = [] B = [] for i in range(num_pts): for j in range(num_pts): for k in range(num_pts): basis_u = _compute_basis(tmplt_coords[:,0], u, i, order) basis_v = _compute_basis(tmplt_coords[:,1], v, j, order) basis_w = _compute_basis(tmplt_coords[:,2], w, k, order) b_list = basis_u * basis_v * basis_w B.append(b_list) B = np.stack(B, axis=1) if np.any(np.sum(B, axis=-1)==0): raise RuntimeError("NaN in the B spline matrix!.") #np.set_printoptions(threshold=np.inf) #print(B) B /= np.sum(B, axis=-1, keepdims=True) B[B<1e-5] = 0. B[np.isnan(B)] = 0. #print("Check NaN: ", np.any(np.isnan(B))) #print("Check Inf: ", np.any(np.isinf(B))) #print(B) s_B = sp.csr_matrix(B, copy=True) print("Number of elements in grid matrix: ", len(sparse_to_tuple(s_B)[1])) return s_B def bspline(Basis_matrix, curr_grid, order=3): if type(Basis_matrix)==tuple: Basis_matrix = sp.csr_matrix((Basis_matrix[1], (Basis_matrix[0][:,0], Basis_matrix[0][:,1])), shape=Basis_matrix[-1]) output = Basis_matrix.dot(curr_grid) return output def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx def normalize_adj(adj): """Symmetrically normalize adjacency matrix.""" adj = sp.coo_matrix(adj) rowsum = np.array(adj.sum(1)) d_inv_sqrt = np.power(rowsum, -0.5).flatten() d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0. d_mat_inv_sqrt = sp.diags(d_inv_sqrt) return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo() def preprocess_adj(adj): """Preprocessing of adjacency matrix for simple GCN model and conversion to tuple representation.""" adj_normalized = normalize_adj(adj + sp.eye(adj.shape[0])) return sparse_to_tuple(adj_normalized) def chebyshev_polynomials(adj, k): """Calculate Chebyshev polynomials up to order k. Return a list of sparse matrices (tuple representation).""" print("Calculating Chebyshev polynomials up to order {}...".format(k)) adj_normalized = normalize_adj(adj) laplacian = sp.eye(adj.shape[0]) - adj_normalized largest_eigval, _ = eigsh(laplacian, 1, which='LM') scaled_laplacian = (2. / largest_eigval[0]) * laplacian - sp.eye(adj.shape[0]) t_k = list() t_k.append(sp.eye(adj.shape[0])) t_k.append(scaled_laplacian) def chebyshev_recurrence(t_k_minus_one, t_k_minus_two, scaled_lap): s_lap = sp.csr_matrix(scaled_lap, copy=True) return 2 * s_lap.dot(t_k_minus_one) - t_k_minus_two for i in range(2, k+1): t_k.append(chebyshev_recurrence(t_k[-1], t_k[-2], scaled_laplacian)) return sparse_to_tuple(t_k) def transition_matrix_for_multi_level_grid(grid1, grid2, inverse=False): """ build a matrix B such that grid2 = B grid1 we assume grid2 is denser than grid1 if inverse, we can compute the left inverse (B^TB)^-1B^T """ grid1_min, grid1_max = np.min(grid1, axis=0, keepdims=True), np.max(grid1, axis=0, keepdims=True) grid2_min, grid2_max = np.min(grid2, axis=0, keepdims=True), np.max(grid2, axis=0, keepdims=True) grid2_nrmed = (grid2 - grid2_min)/grid2_max grid1_nrmed = (grid1 - grid1_min)/grid1_max # find steps x_step = np.unique(grid1_nrmed[:, 0]) y_step = np.unique(grid1_nrmed[:, 1]) z_step = np.unique(grid1_nrmed[:, 2]) num_x, num_y, num_z = len(x_step), len(y_step), len(z_step) steps = [x_step[1]-x_step[0], y_step[1]-y_step[0], z_step[1]-z_step[0]] indices = np.round(grid2_nrmed/np.array(steps), decimals=5) B = np.zeros((grid2_nrmed.shape[0], grid1_nrmed.shape[0])) ind_f = np.floor(indices) ind_c = np.ceil(indices) ind_f = np.where(ind_f==ind_c, ind_f-1., ind_f) mask = ind_f<0 ind_f[mask] = 0. ind_c[mask] =1. ind_corners = [ind_f, ind_c] w_f = ind_c - indices w_c = indices - ind_f weight_corners = [w_f, w_c] for i in range(len(ind_corners)): x_comp = ind_corners[i][:,0]*num_y*num_z for j in range(len(ind_corners)): y_comp = ind_corners[j][:,1]*num_z for k in range(len(ind_corners)): z_comp = ind_corners[k][:,2] ind = x_comp + y_comp + z_comp weight = weight_corners[i][:,0]*weight_corners[j][:,1]*weight_corners[k][:,2] B[range(grid2_nrmed.shape[0]), ind.astype(int)] = weight # debug: test = np.sum(np.matmul(B, grid1) - grid2) print("Test error: ", test) if inverse: inv = np.linalg.inv(np.matmul(B.transpose(), B)) B = np.matmul(inv, B.transpose()) test = np.sum(np.matmul(B, grid2) - grid1) print("Inverse test error: ", test) return B else: s_B = sp.csr_matrix(B, copy=True) print("Number of elements in upsample matrix: ", len(sparse_to_tuple(s_B)[1])) return sparse_to_tuple(s_B) def transition_matrix_for_multi_level_grid_gaussion(grid1, grid2): """ build a matrix B such that grid2 = B grid1 we assume grid2 is denser than grid1 if inverse, we can compute the left inverse (B^TB)^-1B^T """ grid1_min, grid1_max = np.min(grid1, axis=0, keepdims=True), np.max(grid1, axis=0, keepdims=True) grid2_min, grid2_max = np.min(grid2, axis=0, keepdims=True), np.max(grid2, axis=0, keepdims=True) grid2_nrmed = (grid2 - grid2_min)/grid2_max grid1_nrmed = (grid1 - grid1_min)/grid1_max # find steps x_step = np.unique(grid2_nrmed[:, 0]) y_step = np.unique(grid2_nrmed[:, 1]) z_step = np.unique(grid2_nrmed[:, 2]) num_x, num_y, num_z = len(x_step), len(y_step), len(z_step) B = np.zeros((grid2.shape[0], grid1.shape[0])) #assum the grid distribution is uniform x_space = np.mean(x_step[1:] - x_step[:-1])/3. y_space = np.mean(y_step[1:] - y_step[:-1])/3. z_space = np.mean(z_step[1:] - z_step[:-1])/3. co_var = np.diag([x_space, y_space, z_space]) inv_co_var = np.linalg.inv(co_var) for i in range(grid2.shape[0]): curr_pt = np.expand_dims(grid2[i, :], axis=0) prob = np.sum(np.matmul(grid1-curr_pt, inv_co_var)*(grid1-curr_pt), axis=-1) B[i,:] = np.squeeze(prob) B = np.exp(-0.5*B)/np.sqrt((2*np.pi)**3*np.linalg.det(co_var)) B = B/np.max(B, axis=-1, keepdims=True) rej = B *
np.random.rand(*B.shape)
numpy.random.rand
import numpy as np import time def timemeasure(func): def wrapper(*args, **kargs): start_time = time.perf_counter() result = func(*args, **kargs) end_time = time.perf_counter() execution_time = end_time - start_time print(f'Proc-time: {execution_time}') return result return wrapper class NMF2D(): def __init__(self, n_basis, n_frames, n_pitches, n_iter, init_W=None, H_sparsity=0.0): self.n_basis = n_basis self.n_frames = n_frames self.n_pitches = n_pitches self.n_iter = n_iter self.init_W = init_W self.err = [0.0 for k in range(0, n_iter)] self.eps = np.spacing(1) self.H_penalty = H_sparsity self.H_norm_order = 0.5 def __init_WH(self, V): self.Vmax = np.max(V) self.Ones = np.ones(V.shape) self.n_row, self.n_col = V.shape init_H = 0.5 + 0.5*np.random.random((self.n_basis, self.n_pitches, self.n_col)) init_W = 0.5*np.random.random((self.n_row, self.n_basis, self.n_frames)) init_W[:,:,0] = 0.5*np.ones((self.n_row, self.n_basis)) return init_W, init_H def __W_regularization(self, W, order=2): return 0.0#np.tile(self.W_penalty*np.linspace(0, 1.0, self.n_frames)**order, (self.n_row, self.n_basis, 1)) def __H_regularization(self, H): return self.H_penalty * self.__norm(H, (self.H_norm_order-2)) def __update_W(self, V, W, H, order=2.0): VL, _ = self.__compute_VL(V, W, H) W_num, W_denom = np.zeros(W.shape), np.zeros(W.shape) W_penalty = self.__W_regularization(W) for t in range(0, self.n_frames): for p in range(0, self.n_pitches): VLp = self.__shift(VL, p, "up") HtpT = self.__shift(H[:,p,:], t, "right").T W_num[:,:,t] += np.dot(VLp, HtpT) W_denom[:,:,t] += np.dot(self.Ones, HtpT) W_new = np.clip(W*(W_num / (W_denom) + W_penalty), 0.0, self.Vmax) return W_new def __update_H(self, V, W, H): VL, _ = self.__compute_VL(V, W, H) H_num, H_denom = np.zeros(H.shape), np.zeros(H.shape) H_penalty = self.__H_regularization(H) for p in range(0, self.n_pitches): for t in range(0, self.n_frames): VLt = self.__shift(VL, t, "left") WtT = self.__shift(W[:,:,t], p, "down").T H_num[:,p,:] += np.dot(WtT, VLt) H_denom[:,p,:] += np.dot(WtT, self.Ones) H_new = np.clip(H*(H_num / (H_denom + H_penalty + self.eps)), 0.0, self.Vmax) return H_new def __norm(self, X, order): return np.sum(np.abs(X)**order)**(1.0/order) def __loss(self, V, W, H): VL, L = self.__compute_VL(V, W, H) Ckl = V * np.nan_to_num(np.log(VL)) - V + L W_reg = 0.0#self.__norm(self.__W_regularization(), 2) H_reg = self.H_penalty * self.__norm(H, (self.H_norm_order)) return Ckl.sum() + W_reg + H_reg @timemeasure def fit(self, V): W, H = self.__init_WH(V) for i in range(0, self.n_iter): W = self.__update_W(V, W, H) W, H = self.normalize_WH(W, H) H = self.__update_H(V, W, H) W, H = self.normalize_WH(W, H) self.err[i] = self.__loss(V, W, H) print(i+1, self.err[i]) self.W, self.H = W, H return W, H def __shift(self, X, n, direction): if n == 0: return X M, N = X.shape Ret = np.zeros((M,N)) if direction == "right": Ret[:,n::] = X[:,0:N-n] elif direction == "left": Ret[:,0:N-n] = X[:,n:N] elif direction == "down": Ret[n::,:] = X[0:M-n,:] elif direction == "up": #Ret[0:M-n,:] = X[n:M,:] Ret = np.r_[X[n:M,:],np.zeros((n,N))] return Ret def __convolution(self, W, H, factrize=False): V = np.zeros((self.n_row, self.n_col)) for p in range(0, self.n_pitches): for t in range(0, self.n_frames): Wtmp = self.__shift(W[:,:,t], p, "down") Htmp = self.__shift(H[:,p,:], t, "right") V += np.dot(Wtmp, Htmp) return V def get_sources(self, W, H): S = np.zeros((self.n_row, self.n_col, self.n_basis)) for p in range(0, self.n_pitches): for t in range(0, self.n_frames): Wtmp = self.__shift(W[:,:,t], p, "down") Htmp = self.__shift(H[:,p,:], t, "right") for k in range(0, self.n_basis): S[:,:,k] += np.outer(Wtmp[:,k], Htmp[k,:]) return S def __compute_VL(self, V, W, H, eps=np.spacing(1)): L = self.__convolution(W, H) VL = np.nan_to_num(V/L) return VL, L def normalize_WH(self, W, H, return_2d=False): W2d =
np.reshape(W, (self.n_row, self.n_basis*self.n_frames))
numpy.reshape
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2 import numpy as np import time import argparse from scipy.special import softmax from openvino.runtime import Core def image_preprocess(img_path, re_shape): img = cv2.imread(img_path) img = cv2.resize( img, (re_shape, re_shape), interpolation=cv2.INTER_LANCZOS4) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = np.transpose(img, [2, 0, 1]) / 255 img = np.expand_dims(img, 0) img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) img -= img_mean img /= img_std return img.astype(np.float32) def draw_box(img, results, class_label, scale_x, scale_y): label_list = list( map(lambda x: x.strip(), open(class_label, 'r').readlines())) for i in range(len(results)): print(label_list[int(results[i][0])], ':', results[i][1]) bbox = results[i, 2:] label_id = int(results[i, 0]) score = results[i, 1] if (score > 0.20): xmin, ymin, xmax, ymax = [ int(bbox[0] * scale_x), int(bbox[1] * scale_y), int(bbox[2] * scale_x), int(bbox[3] * scale_y) ] cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 255, 0), 3) font = cv2.FONT_HERSHEY_SIMPLEX label_text = label_list[label_id] cv2.rectangle(img, (xmin, ymin), (xmax, ymin - 60), (0, 255, 0), -1) cv2.putText(img, "#" + label_text, (xmin, ymin - 10), font, 1, (255, 255, 255), 2, cv2.LINE_AA) cv2.putText(img, str(round(score, 3)), (xmin, ymin - 40), font, 0.8, (255, 255, 255), 2, cv2.LINE_AA) return img def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200): """ Args: box_scores (N, 5): boxes in corner-form and probabilities. iou_threshold: intersection over union threshold. top_k: keep top_k results. If k <= 0, keep all the results. candidate_size: only consider the candidates with the highest scores. Returns: picked: a list of indexes of the kept boxes """ scores = box_scores[:, -1] boxes = box_scores[:, :-1] picked = [] indexes = np.argsort(scores) indexes = indexes[-candidate_size:] while len(indexes) > 0: current = indexes[-1] picked.append(current) if 0 < top_k == len(picked) or len(indexes) == 1: break current_box = boxes[current, :] indexes = indexes[:-1] rest_boxes = boxes[indexes, :] iou = iou_of( rest_boxes, np.expand_dims( current_box, axis=0), ) indexes = indexes[iou <= iou_threshold] return box_scores[picked, :] def iou_of(boxes0, boxes1, eps=1e-5): """Return intersection-over-union (Jaccard index) of boxes. Args: boxes0 (N, 4): ground truth boxes. boxes1 (N or 1, 4): predicted boxes. eps: a small number to avoid 0 as denominator. Returns: iou (N): IoU values. """ overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2]) overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:]) overlap_area = area_of(overlap_left_top, overlap_right_bottom) area0 = area_of(boxes0[..., :2], boxes0[..., 2:]) area1 = area_of(boxes1[..., :2], boxes1[..., 2:]) return overlap_area / (area0 + area1 - overlap_area + eps) def area_of(left_top, right_bottom): """Compute the areas of rectangles given two corners. Args: left_top (N, 2): left top corner. right_bottom (N, 2): right bottom corner. Returns: area (N): return the area. """ hw = np.clip(right_bottom - left_top, 0.0, None) return hw[..., 0] * hw[..., 1] class PicoDetPostProcess(object): """ Args: input_shape (int): network input image size ori_shape (int): ori image shape of before padding scale_factor (float): scale factor of ori image enable_mkldnn (bool): whether to open MKLDNN """ def __init__(self, input_shape, ori_shape, scale_factor, strides=[8, 16, 32, 64], score_threshold=0.4, nms_threshold=0.5, nms_top_k=1000, keep_top_k=100): self.ori_shape = ori_shape self.input_shape = input_shape self.scale_factor = scale_factor self.strides = strides self.score_threshold = score_threshold self.nms_threshold = nms_threshold self.nms_top_k = nms_top_k self.keep_top_k = keep_top_k def warp_boxes(self, boxes, ori_shape): """Apply transform to boxes """ width, height = ori_shape[1], ori_shape[0] n = len(boxes) if n: # warp points xy = np.ones((n * 4, 3)) xy[:, :2] = boxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape( n * 4, 2) # x1y1, x2y2, x1y2, x2y1 # xy = xy @ M.T # transform xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale # create new boxes x = xy[:, [0, 2, 4, 6]] y = xy[:, [1, 3, 5, 7]] xy = np.concatenate( (x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T # clip boxes xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width) xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height) return xy.astype(np.float32) else: return boxes def __call__(self, scores, raw_boxes): batch_size = raw_boxes[0].shape[0] reg_max = int(raw_boxes[0].shape[-1] / 4 - 1) out_boxes_num = [] out_boxes_list = [] for batch_id in range(batch_size): # generate centers decode_boxes = [] select_scores = [] for stride, box_distribute, score in zip(self.strides, raw_boxes, scores): box_distribute = box_distribute[batch_id] score = score[batch_id] # centers fm_h = self.input_shape[0] / stride fm_w = self.input_shape[1] / stride h_range = np.arange(fm_h) w_range = np.arange(fm_w) ww, hh = np.meshgrid(w_range, h_range) ct_row = (hh.flatten() + 0.5) * stride ct_col = (ww.flatten() + 0.5) * stride center = np.stack((ct_col, ct_row, ct_col, ct_row), axis=1) # box distribution to distance reg_range = np.arange(reg_max + 1) box_distance = box_distribute.reshape((-1, reg_max + 1)) box_distance = softmax(box_distance, axis=1) box_distance = box_distance * np.expand_dims(reg_range, axis=0) box_distance = np.sum(box_distance, axis=1).reshape((-1, 4)) box_distance = box_distance * stride # top K candidate topk_idx = np.argsort(score.max(axis=1))[::-1] topk_idx = topk_idx[:self.nms_top_k] center = center[topk_idx] score = score[topk_idx] box_distance = box_distance[topk_idx] # decode box decode_box = center + [-1, -1, 1, 1] * box_distance select_scores.append(score) decode_boxes.append(decode_box) # nms bboxes = np.concatenate(decode_boxes, axis=0) confidences =
np.concatenate(select_scores, axis=0)
numpy.concatenate
################################## # PROGRAM FOR NUMERICALLY SOLVING SCHRODINGER'S EQUATION # <NAME>, <NAME>, and <NAME> ################################## import sys ver=sys.version_info.major if ver==2: from utils2 import * elif ver==3: from utils3 import * else: print("Python version not recognized. Python 2.5 or greater required.") import numpy as np ################################## #FUNCTIONS ################################## ######## # PARTICLE IN AN INFINITE POTENTIAL WELL ######## def infinite_well(steps=2000): # atomic units hbar=1.0 m=1.0 # get well width and number of wave function desired W,n=infinite_well_input() # divide by two so a well from -W to W is of input width W=W/2.0 # create x-vector from -W to W xvec=np.linspace(-W,W,steps) # get step size h=xvec[1]-xvec[0] # create Laplacian via 3 point finite-difference method Laplacian=(-2.0*np.diag(
np.ones(steps)
numpy.ones
from enum import Enum from pathlib import Path import json import numpy as np from api.storage import Dataset ############################################################################### # Classes ############################################################################### class EvaluationMode(Enum): """ Enum for Evaluation mode. """ AROUSAL = 0 VALENCE = 1 MEAN = 2 class PresentationMode(Enum): """ Enum for Presentation mode. """ AL = 0 ML = 1 DS = 2 # dataset class LearningProfileDescription: """ Used when reading data from an .npy file to create a learning profile with getter functions for different parameters. Based on Evaluation/Presentation mode some paramters are set accordingly. """ def __init__(self, id, profile, eval=None, pres=None): """ Init function for LearningProfileDescription. Args: id (String): id for the learning profile. profile (list): list of objects containing the data for the learning profile read from disk. eval (EvaluationMode): Enum for Evaluation mode. Defaults to None. pres (PresentationMode): Enum for Presentation mode. Defaults to None. """ self._id = id self._batch_size = profile[10] self._hyper_parameters = profile[11] # If needed: self._score_arousal = profile[4] self._score_valence = profile[5] self._score_mean = profile[6] self._MSE_arousal = profile[7] self._MSE_valence = profile[8] self._MSE_mean = profile[9] self._train_dataset_name = profile[0] self._test_dataset_name = profile[1] self._al_func_name = profile[2] self._ml_func_name = profile[3] # Evaluation mode self._eval = eval if self._eval is not None: self.set_eval_mode(self._eval) else: self._score = None self._MSE = None # Presentation mode self._pres = pres if self._pres is not None: self.set_pres_mode(self._pres) else: self._attr = None def set_eval_mode(self, eval): """ Set the evaluation mode. Updates the score and MSE parameters for the given evalution. Args: eval (EvaluationMode): Enum for evaluation mode. """ self._eval = eval if eval == EvaluationMode.AROUSAL: self._score = self._score_arousal self._MSE = self._MSE_arousal elif eval == EvaluationMode.VALENCE: self._score = self._score_valence self._MSE = self._MSE_valence elif eval == EvaluationMode.MEAN: self._score = self._score_mean self._MSE = self._MSE_mean def set_pres_mode(self, pres): """ Set the presentation mode. Updates the attribute parameter for the given presentation mode. Args: pres (PresentationMode): Enum for presentation mode. """ self._pres = pres if pres == PresentationMode.AL: self._attr = self._al_func_name elif pres == PresentationMode.ML: self._attr = self._ml_func_name elif pres == PresentationMode.DS: self._attr = self._train_dataset_name def get_id(self): return self._id def get_batch_size(self): return self._batch_size def get_score_arousal(self): return self._score_arousal def get_score_valence(self): return self._score_valence def get_score_mean(self): return self._score_mean def get_MSE_arousal(self): return self._MSE_arousal def get_MSE_valence(self): return self._MSE_valence def get_MSE_mean(self): return self._MSE_mean def get_train_dataset_name(self): return self._train_dataset_name def get_test_dataset_name(self): return self._test_dataset_name def get_al_func_name(self): return self._al_func_name def get_ml_func_name(self): return self._ml_func_name def get_name(self, align=False, include_batch_size=False): """ Returns the concatinated string of the learning profile, containing training_dataset_name, test_dataset_name, al_func_name, ml_func_name and an optional batch_size. Decent alignment can be achieved by setting align to True. Args: align (bool): align text. Defaults to False. include_batch_size (bool): include batch size information. Defaults to False. Returns: String: A concatinated string of the learning profile. """ if align: return f"{self._train_dataset_name : <10} " + \ f"{self._test_dataset_name : <10} " + \ f"{self._al_func_name : <35} " + \ f"{self._ml_func_name : <30}" + \ ("" if not include_batch_size else f"{f'(Batch Size: {self._batch_size})' : >10}") return self._train_dataset_name + " " + \ self._test_dataset_name + " " + \ self._al_func_name + " " + \ self._ml_func_name + " " + \ ("" if not include_batch_size else f"(Batch Size: {self._batch_size})") def get_score(self): if self._eval is not None: return self._score else: raise ValueError("Evaluation mode not set.") def get_MSE(self): if self._eval is not None: return self._MSE else: raise ValueError("Evaluation mode not set.") def get_attr(self): if self._pres is not None: return self._attr else: raise ValueError("Presentation mode not set.") def get_hyper_parameters(self): return self._hyper_parameters def __str__(self): return f"lp-{self._id}" class AnnotationStation: """ Used for saving label annotations for songs. Reducing the need for annotating the same song more than once. Annotations will be saved as a dictionsary in following format for song ids 1 and 2:: {'1': [[arousal1], [valence1]], '2': [[arousal2], [valence2]]} """ def __init__(self, path: Path): """ AnnotationStation constructor. Args: path (Path): Path to dictionary in json format. (Note: include `.json` tag.) Raises: FileNotFoundError: When path is not correct. """ self.path = path if path.exists(): if path.is_file(): with open(path, "r") as f: self.annotations = json.loads(f.read()) else: raise FileNotFoundError(f"{path} not a file!") else: self.annotations = dict() def is_song_id_in_annotations(self, song_id: int): """ Checks if `song_id` is already saved in annotations and thus already annotated. Args: song_id (int): The song id to check for. Returns: bool: True if song id is in annotations. """ return str(song_id) in self.annotations def add_annotation(self, song_id: int, arousal: np.ndarray, valence: np.ndarray): """ Add annotation of `song_id` to annotations dictionary, followed by saving it to file using `save_annotations()`. Args: song_id (int): The song id to add. arousal (np.ndarray): Dynamic arousal annotations, as a column vector. valence (np.ndarray): Dynamic valence annotations, as a column vector. """ ar_dim = arousal.ndim va_dim = valence.ndim if ar_dim == 1 and va_dim == 1: res =
np.array([arousal, valence])
numpy.array
# MIT License # # Copyright (c) 2016-2018 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # import numpy as np import alib import vnep_approx import os try: import pickle as pickle except ImportError: import pickle import matplotlib matplotlib.use('TkAgg') from matplotlib import pyplot as plt import logging logger = logging.getLogger(__name__) def extract_parameter_range(scenario_parameter_space_dict, key): if not isinstance(scenario_parameter_space_dict, dict): return None for generator_name, value in scenario_parameter_space_dict.items(): if generator_name == key: return [key], value if isinstance(value, list): if len(value) != 1: continue value = value[0] result = extract_parameter_range(value, key) if result is not None: path, values = result return [generator_name, 0] + path, values elif isinstance(value, dict): result = extract_parameter_range(value, key) if result is not None: path, values = result return [generator_name] + path, values return None def lookup_scenarios_having_specific_values(scenario_parameter_space_dict, path, value): current_path = path[:] current_dict = scenario_parameter_space_dict while len(current_path) > 0: if isinstance(current_path[0], str): current_dict = current_dict[current_path[0]] current_path.pop(0) elif current_path[0] == 0: current_path.pop(0) # print current_dict return current_dict[value] def lookup_scenario_parameter_room_dicts_on_path(scenario_parameter_space_dict, path): current_path = path[:] current_dict_or_list = scenario_parameter_space_dict dicts_on_path = [] while len(current_path) > 0: dicts_on_path.append(current_dict_or_list) if isinstance(current_path[0], str): current_dict_or_list = current_dict_or_list[current_path[0]] current_path.pop(0) elif isinstance(current_path[0], int): current_dict_or_list = current_dict_or_list[int(current_path[0])] current_path.pop(0) else: raise RuntimeError("Could not lookup dicts.") return dicts_on_path def evaluate_baseline_and_randround(dc_seplp_dynvmp, seplp_dynvmp_algorithm_id, seplp_dynvmp_execution_config, dc_randround, randround_algorithm_id, randround_execution_config, exclude_generation_parameters=None, parameter_filter_keys=None, show_plot=False, save_plot=True, forbidden_scenario_ids=None, output_path="./", output_filetype="png", request_sets=[[40,60],[80,100]]): """ Main function for evaluation, creating plots and saving them in a specific directory hierarchy. A large variety of plots is created. For heatmaps, a generic plotter is used while for general comparison plots (ECDF and scatter) an own class is used. The plots that shall be generated cannot be controlled at the moment but the respective plotters can be easily adjusted. :param dc_seplp_dynvmp: unpickled datacontainer of baseline experiments (e.g. MIP) :param seplp_dynvmp_algorithm_id: algorithm id of the baseline algorithm :param seplp_dynvmp_execution_config: execution config (numeric) of the baseline algorithm execution :param dc_randround: unpickled datacontainer of randomized rounding experiments :param randround_algorithm_id: algorithm id of the randround algorithm :param randround_execution_config: execution config (numeric) of the randround algorithm execution :param exclude_generation_parameters: specific generation parameters that shall be excluded from the evaluation. These won't show in the plots and will also not be shown on axis labels etc. :param parameter_filter_keys: name of parameters according to which the results shall be filtered :param show_plot: Boolean: shall plots be shown :param save_plot: Boolean: shall the plots be saved :param forbidden_scenario_ids: list / set of scenario ids that shall not be considered in the evaluation :param output_path: path to which the results shall be written :param output_filetype: filetype supported by matplotlib to export figures :return: None """ if forbidden_scenario_ids is None: forbidden_scenario_ids = set() if exclude_generation_parameters is not None: for key, values_to_exclude in exclude_generation_parameters.items(): parameter_filter_path, parameter_values = extract_parameter_range( dc_seplp_dynvmp.scenario_parameter_container.scenarioparameter_room, key) parameter_dicts_baseline = lookup_scenario_parameter_room_dicts_on_path( dc_seplp_dynvmp.scenario_parameter_container.scenarioparameter_room, parameter_filter_path) parameter_dicts_seplpdynvmp = lookup_scenario_parameter_room_dicts_on_path( dc_randround.scenario_parameter_container.scenarioparameter_room, parameter_filter_path) for value_to_exclude in values_to_exclude: if value_to_exclude not in parameter_values: raise RuntimeError("The value {} is not contained in the list of parameter values {} for key {}".format( value_to_exclude, parameter_values, key )) #add respective scenario ids to the set of forbidden scenario ids forbidden_scenario_ids.update(set(lookup_scenarios_having_specific_values( dc_seplp_dynvmp.scenario_parameter_container.scenario_parameter_dict, parameter_filter_path, value_to_exclude))) #remove the respective values from the scenario parameter room such that these are not considered when #constructing e.g. axes parameter_dicts_baseline[-1][key] = [value for value in parameter_dicts_baseline[-1][key] if value not in values_to_exclude] parameter_dicts_seplpdynvmp[-1][key] = [value for value in parameter_dicts_seplpdynvmp[-1][key] if value not in values_to_exclude] sep_lp_dynvmp_data_set = {scenario_index: dc_seplp_dynvmp.algorithm_scenario_solution_dictionary[seplp_dynvmp_algorithm_id][ scenario_index][seplp_dynvmp_execution_config] for scenario_index in list(dc_seplp_dynvmp.algorithm_scenario_solution_dictionary[ seplp_dynvmp_algorithm_id].keys()) if scenario_index not in forbidden_scenario_ids} randround_data_set = {scenario_index: dc_randround.algorithm_scenario_solution_dictionary[randround_algorithm_id][ scenario_index][randround_execution_config] for scenario_index in list(dc_randround.algorithm_scenario_solution_dictionary[ randround_algorithm_id].keys()) if scenario_index not in forbidden_scenario_ids} plot_comparison_separation_dynvmp_vs_lp(sep_lp_dynvmp_data_set=sep_lp_dynvmp_data_set, randround_data_set=randround_data_set, dc_seplp_dynvmp=dc_seplp_dynvmp, request_sets=request_sets, output_path=output_path, output_filetype=output_filetype) def plot_comparison_separation_dynvmp_vs_lp(sep_lp_dynvmp_data_set, randround_data_set, dc_seplp_dynvmp, request_sets, output_path, output_filetype): logger.info(sep_lp_dynvmp_data_set) scenarioparameter_room = dc_seplp_dynvmp.scenario_parameter_container.scenarioparameter_room scenario_parameter_dict = dc_seplp_dynvmp.scenario_parameter_container.scenario_parameter_dict filter_path_number_of_requests, list_number_of_requests = extract_parameter_range(scenarioparameter_room, "number_of_requests") logger.info(list_number_of_requests) fix, ax = plt.subplots(figsize=(5, 3.5)) def get_color(value): return plt.cm.inferno(value) colors = [get_color(0.5),get_color(0.0), get_color(0.75), get_color(0.25)] #get_color(0.7), #colors = [get_color(0.75), get_color(0.55), get_color(0.35), get_color(0.0)] linestyles = ['-', ':'] with_td = matplotlib.lines.Line2D([], [], color='#333333', linestyle=linestyles[0], label=r"incl. $\mathcal{T}_r$ comp.", linewidth=2) wo_td = matplotlib.lines.Line2D([], [], color='#333333', linestyle=linestyles[1], label=r"excl. $\mathcal{T}_r$ comp.", linewidth=2.75) second_legend_handlers = [] max_observed_value = 0 for request_number_index, number_of_requests_ in enumerate(request_sets): scenario_ids_to_consider = set() for number_of_requests in number_of_requests_: #do the code! scenario_ids_of_requests = lookup_scenarios_having_specific_values(scenario_parameter_dict, filter_path_number_of_requests, number_of_requests) scenario_ids_to_consider = scenario_ids_to_consider.union(scenario_ids_of_requests) speedups_real = [] speedups_wotd = [] # without tree decomposition relative_speedup_sep_lp_wo_td = [] for scenario_id in scenario_ids_to_consider: seplp_with_decomposition = sep_lp_dynvmp_data_set[scenario_id].lp_time_preprocess + sep_lp_dynvmp_data_set[scenario_id].lp_time_optimization seplp_without_decomposition = seplp_with_decomposition - (sep_lp_dynvmp_data_set[scenario_id].lp_time_tree_decomposition.mean * sep_lp_dynvmp_data_set[scenario_id].lp_time_tree_decomposition.value_count) randround_lp_runtime = randround_data_set[scenario_id].meta_data.time_preprocessing + \ randround_data_set[scenario_id].meta_data.time_optimization + \ randround_data_set[scenario_id].meta_data.time_postprocessing relative_speedup_sep_lp_wo_td.append(seplp_with_decomposition / seplp_without_decomposition) speedups_real.append(randround_lp_runtime / seplp_with_decomposition) speedups_wotd.append(randround_lp_runtime / seplp_without_decomposition) speedup_real = sorted(speedups_real) speedup_wotd = sorted(speedups_wotd) logger.info("Relative when excluding tree decomposition computation {} requests:\n" "mean: {}\n".format(number_of_requests, np.mean(relative_speedup_sep_lp_wo_td))) logger.info("Relative speedup compared to cactus LP for {} requests:\n" "with tree decomposition (mean): {}\n" "without tree decomposition (mean): {}".format(number_of_requests, np.mean(speedups_real), np.mean(speedups_wotd))) max_observed_value = np.maximum(max_observed_value, speedup_real[-1]) yvals = np.arange(1, len(speedup_real) + 1) / float(len(speedup_real)) yvals = np.insert(yvals, 0, 0.0, axis=0) yvals = np.append(yvals, [1.0]) speedup_real.append(max_observed_value) speedup_real.insert(0, 0.5) ax.semilogx(speedup_real, yvals, color=colors[request_number_index], linestyle=linestyles[0], linewidth=2.75, alpha=1) max_observed_value = np.maximum(max_observed_value, speedup_wotd[-1]) yvals = np.arange(1, len(speedup_wotd) + 1) / float(len(speedup_wotd)) yvals = np.insert(yvals, 0, 0.0, axis=0) yvals = np.append(yvals, [1.0]) speedup_wotd.append(max_observed_value) speedup_wotd.insert(0, 0.5) ax.semilogx(speedup_wotd, yvals, color=colors[request_number_index], linestyle=linestyles[1], linewidth=2.75, alpha=1) if len(number_of_requests_) == 2: second_legend_handlers.append(matplotlib.lines.Line2D([], [], color=colors[request_number_index], alpha=1, linestyle="-", label=("{} & {}".format(number_of_requests_[0], number_of_requests_[1])).ljust(3), linewidth=2.5)) else: second_legend_handlers.append( matplotlib.lines.Line2D([], [], color=colors[request_number_index], alpha=1, linestyle="-", label=("{}".format(number_of_requests_[0])).ljust( 3), linewidth=2.5)) first_legend = plt.legend(handles=[with_td, wo_td], loc=4, fontsize=14, title="", handletextpad=.35, borderaxespad=0.1, borderpad=0.2, handlelength=1) first_legend.get_frame().set_alpha(1.0) first_legend.get_frame().set_facecolor("#FFFFFF") plt.setp(first_legend.get_title(), fontsize=15) plt.gca().add_artist(first_legend) # ax.tick_params(labelright=True) # print second_legend_handlers second_legend = plt.legend(handles=second_legend_handlers, loc=2, fontsize=14, title="#requests", handletextpad=.35, borderaxespad=0.175, borderpad=0.2, handlelength=2) #plt.gca().add_artist(second_legend) plt.setp(second_legend.get_title(), fontsize=15) second_legend.get_frame().set_alpha(1.0) second_legend.get_frame().set_facecolor("#FFFFFF") # first_legend = plt.legend(title="Bound($\mathrm{MIP}_{\mathrm{MCF}})$", handles=root_legend_handlers, loc=(0.225,0.0125), fontsize=14, handletextpad=0.35, borderaxespad=0.175, borderpad=0.2) # plt.setp(first_legend.get_title(), fontsize='15') # plt.gca().add_artist(first_legend) # plt.setp("TITLE", fontsize='15') ax.set_title("Cactus LP Runtime Comparison", fontsize=17) ax.set_xlabel(r"Speedup: time($\mathsf{LP}_{\mathsf{Cactus}}$) / time($\mathsf{LP}_{\mathsf{DynVMP}}$)", fontsize=16) ax.set_ylabel("ECDF", fontsize=16) ax.set_xlim(0.4, max_observed_value * 1.15) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(14) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) ax.set_xticks([0.5, 1, 5, 20, 60, ], minor=False) ax.set_xticks([2, 3, 4, 10, 30, 40], minor=True) ax.set_yticks([0.0, 0.2, 0.4, 0.6, 0.8, 1.0], minor=False) ax.set_yticks([0.1, 0.3, 0.5, 0.7, 0.9], minor=True) # ax.set_yticks([x*0.1 for x in range(1,10)], minor=True) ax.get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter()) ax.set_xticklabels([], minor=True) ax.grid(True, which="both", linestyle=":", color='k', alpha=0.7, linewidth=0.33) plt.tight_layout() file_to_write = os.path.join(output_path, "ecdf_speedup_cactus_lp_vs_separation_dynvmp." + output_filetype) plt.savefig(file_to_write) def plot_comparison_separation_dynvmp_vs_lp_orig(sep_lp_dynvmp_data_set, randround_data_set, dc_seplp_dynvmp): logger.info(sep_lp_dynvmp_data_set) scenarioparameter_room = dc_seplp_dynvmp.scenario_parameter_container.scenarioparameter_room scenario_parameter_dict = dc_seplp_dynvmp.scenario_parameter_container.scenario_parameter_dict filter_path_number_of_requests, list_number_of_requests = extract_parameter_range(scenarioparameter_room, "number_of_requests") logger.info(list_number_of_requests) fix, ax = plt.subplots(figsize=(5, 3.5)) def get_color(value): return plt.cm.inferno(value) colors = [get_color(0.75), get_color(0.55),get_color(0.35),get_color(0.0)] linestyles = ['-', ':'] with_td = matplotlib.lines.Line2D([], [], color='#333333', linestyle=linestyles[0], label=r"incl. $\mathcal{T}_r$ comp.", linewidth=2) wo_td = matplotlib.lines.Line2D([], [], color='#333333', linestyle=linestyles[1], label=r"excl. $\mathcal{T}_r$ comp.", linewidth=2.75) second_legend_handlers = [] max_observed_value = 0 for request_number_index, number_of_requests in enumerate(list_number_of_requests): #do the code! scenario_ids_of_requests = lookup_scenarios_having_specific_values(scenario_parameter_dict, filter_path_number_of_requests, number_of_requests) speedups_real = [] speedups_wotd = [] # without tree decomposition relative_speedup_sep_lp_wo_td = [] for scenario_id in scenario_ids_of_requests: seplp_with_decomposition = sep_lp_dynvmp_data_set[scenario_id].lp_time_preprocess + sep_lp_dynvmp_data_set[scenario_id].lp_time_optimization seplp_without_decomposition = seplp_with_decomposition - (sep_lp_dynvmp_data_set[scenario_id].lp_time_tree_decomposition.mean * sep_lp_dynvmp_data_set[scenario_id].lp_time_tree_decomposition.value_count) randround_lp_runtime = randround_data_set[scenario_id].meta_data.time_preprocessing + \ randround_data_set[scenario_id].meta_data.time_optimization + \ randround_data_set[scenario_id].meta_data.time_postprocessing relative_speedup_sep_lp_wo_td.append(seplp_with_decomposition / seplp_without_decomposition) speedups_real.append(randround_lp_runtime / seplp_with_decomposition) speedups_wotd.append(randround_lp_runtime / seplp_without_decomposition) speedup_real = sorted(speedups_real) speedup_wotd = sorted(speedups_wotd) logger.info("Relative when excluding tree decomposition computation {} requests:\n" "mean: {}\n".format(number_of_requests, np.mean(relative_speedup_sep_lp_wo_td))) logger.info("Relative speedup compared to cactus LP for {} requests:\n" "with tree decomposition (mean): {}\n" "without tree decomposition (mean): {}".format(number_of_requests, np.mean(speedups_real), np.mean(speedups_wotd))) max_observed_value = np.maximum(max_observed_value, speedup_real[-1]) yvals = np.arange(1, len(speedup_real) + 1) / float(len(speedup_real)) yvals = np.insert(yvals, 0, 0.0, axis=0) yvals = np.append(yvals, [1.0]) speedup_real.append(max_observed_value) speedup_real.insert(0, 0.5) ax.semilogx(speedup_real, yvals, color=colors[request_number_index], linestyle=linestyles[0], linewidth=2.75, alpha=1) max_observed_value = np.maximum(max_observed_value, speedup_wotd[-1]) yvals = np.arange(1, len(speedup_wotd) + 1) / float(len(speedup_wotd)) yvals = np.insert(yvals, 0, 0.0, axis=0) yvals =
np.append(yvals, [1.0])
numpy.append
# Copyright 2016, 2017 California Institute of Technology # Users must agree to abide by the restrictions listed in the # file "LegalStuff.txt" in the PROPER library directory. # # PROPER developed at Jet Propulsion Laboratory/California Inst. Technology # Original IDL version by <NAME> # Python translation by <NAME>, with <NAME> and <NAME> import proper import numpy as np def prop_get_amplitude(wf): """Function returns amplitude of current wavefront Parameters ---------- wf : obj Wavefront class object Returns ------- amplitude : numpy ndarray A 2D image corresponding to the amplitude of the current wavefront """ return proper.prop_shift_center(
np.abs(wf.wfarr)
numpy.abs
import sys import os import numpy as np import openpnm as op import porespy as ps import re current_path = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.join(current_path, '../')) from computations.calculate_flows import calculate_flows from max_radius.calculate_max_radius import calculate_max_radius # This function allows to flip void/rock phases if needed def flip_values(data, val1, val2): data =
np.where(data == val1, -999.25, data)
numpy.where
import cv2 import json import numpy as np from cv2 import aruco import matplotlib.pyplot as plt def extract_frame(vid_name, frame, frame_name): vid = cv2.VideoCapture(vid_name) vid.set(cv2.CAP_PROP_POS_FRAMES, frame) ret, frame = vid.read() if ret: cv2.imwrite(frame_name, frame) else: print("Failed reading frame %d in %s" % (frame, vid_name)) def axis_equal_3d(ax): extents = np.array([getattr(ax, 'get_{}lim'.format(dim))() for dim in 'xyz']) sz = extents[:,1] - extents[:,0] centers = np.mean(extents, axis=1) maxsize = max(abs(sz)) r = maxsize/2 for ctr, dim in zip(centers, 'xyz'): R = r * 3 / 4 if dim == 'z' else r getattr(ax, 'set_{}lim'.format(dim))(ctr - R, ctr + R) def line(ax, p1, p2, *args, **kwargs): ax.plot([p1[0], p2[0]], [p1[2], p2[2]], [-p1[1], -p2[1]], *args, **kwargs) def basis(ax, T, R, *args, length=1, **kwargs): line(ax, T, T + length * R[:, 0], "r") line(ax, T, T + length * R[:, 1], "g") line(ax, T, T + length * R[:, 2], "b") def board(ax, T, R, *args, label="", **kwargs): line(ax, T, T + 375 * R[:, 0], "orange", linestyle="--", label=label) line(ax, T, T + 270 * R[:, 1], "orange", linestyle="--") line(ax, T + 375 * R[:, 0], T + 375 * R[:, 0] + 270 * R[:, 1], "orange", linestyle="--") line(ax, T + 270 * R[:, 1], T + 375 * R[:, 0] + 270 * R[:, 1], "orange", linestyle="--") basis(ax, T, R, length=15) def sensor(ax, *args, width=146, height=222, depth=56, up=12, behind=13, radius=54, from_top=74, **kwargs): ex, ey, ez = np.array([width/2, 0, 0]), np.array([0, height/2, 0]), np.array([0, 0, depth/2]) o =
np.array([0, -up, -behind])
numpy.array
# coding=utf-8 # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pretrain BERT""" from comet_ml import Experiment #from apex import amp import os import random import numpy as np import psutil import torch from olfmlm.arguments import get_args from olfmlm.configure_data import configure_data from olfmlm.learning_rates import AnnealingLR from olfmlm.model import BertModel from olfmlm.model import get_params_for_weight_decay_optimization from olfmlm.model import DistributedDataParallel as DDP from olfmlm.optim import Adam from olfmlm.utils import Timers from olfmlm.utils import save_checkpoint from olfmlm.utils import load_checkpoint batch_step = 0 def get_model(tokenizer, args): """Build the model.""" print('building BERT model ...') model = BertModel(tokenizer, args) print(' > number of parameters: {}'.format( sum([p.nelement() for p in model.parameters()])), flush=True) # GPU allocation. model.cuda(torch.cuda.current_device()) # Wrap model for distributed training. if args.world_size > 1: model = DDP(model) return model def get_optimizer(model, args): """Set up the optimizer.""" # Build parameter groups (weight decay and non-decay). while isinstance(model, DDP): model = model.module param_groups = model.get_params() # Use Adam. optimizer = Adam(param_groups, lr=args.lr, weight_decay=args.weight_decay) return optimizer def get_learning_rate_scheduler(optimizer, args): """Build the learning rate scheduler.""" # Add linear learning rate scheduler. if args.lr_decay_iters is not None: num_iters = args.lr_decay_iters else: num_iters = args.train_tokens * args.epochs init_step = -1 warmup_iter = args.warmup * num_iters lr_scheduler = AnnealingLR(optimizer, start_lr=args.lr, warmup_iter=warmup_iter, num_iters=num_iters, decay_style=args.lr_decay_style, last_iter=init_step) return lr_scheduler def setup_model_and_optimizer(args, tokenizer): """Setup model and optimizer.""" model = get_model(tokenizer, args) optimizer = get_optimizer(model, args) lr_scheduler = get_learning_rate_scheduler(optimizer, args) criterion_cls = torch.nn.CrossEntropyLoss(reduce=False, ignore_index=-1) criterion_reg = torch.nn.MSELoss(reduce=False) criterion = (criterion_cls, criterion_reg) if args.load is not None: args.epoch = load_checkpoint(model, optimizer, lr_scheduler, args) args.resume_dataloader = True return model, optimizer, lr_scheduler, criterion def get_batch(data): """ Get a batch of data from the data loader, which automatically batches the individual examples Concatenates necessary data (lm_labels, loss_mask, tgs_mask), which is required for FS/QT variant tasks Puts data into tensors, and places them onto CUDA """ # TODO Add trigram mask aux_labels = {} for mode, label in data['aux_labels'].items(): if label.shape[1] == 2: label = torch.cat([label[:, 0], label[:, 1]]) else: label = label.squeeze() aux_labels[mode] = torch.autograd.Variable(label.long()).cuda() num_sentences = data['n'] num_tokens = torch.tensor(sum(data['num_tokens']).item()).long().cuda() tokens = [] types = [] tasks = [] loss_mask = [] tgs_mask = [] lm_labels = [] att_mask = [] for i in range(min(num_sentences)): suffix = "_" + str(i) tokens.append(torch.autograd.Variable(data['text' + suffix].long()).cuda()) types.append(torch.autograd.Variable(data['types' + suffix].long()).cuda()) tasks.append(torch.autograd.Variable(data['task' + suffix].long()).cuda()) att_mask.append(1 - torch.autograd.Variable(data['pad_mask' + suffix].byte()).cuda()) lm_labels.append((data['mask_labels' + suffix]).long()) loss_mask.append((data['mask' + suffix]).float()) tgs_mask.append((data['tgs_mask' + suffix]).float()) lm_labels = torch.autograd.Variable(torch.cat(lm_labels, dim=0).long()).cuda() loss_mask = torch.autograd.Variable(torch.cat(loss_mask, dim=0).float()).cuda() tgs_mask = torch.autograd.Variable(torch.cat(tgs_mask, dim=0).float()).cuda() return (tokens, types, tasks, aux_labels, loss_mask, tgs_mask, lm_labels, att_mask, num_tokens) def forward_step(data, model, criterion, modes, args): """Forward step.""" criterion_cls, criterion_reg = criterion # Get the batch. batch = get_batch(data) tokens, types, tasks, aux_labels, loss_mask, tgs_mask, lm_labels, att_mask, num_tokens = batch # Create self-supervised labels which required batch size if "rg" in modes: aux_labels['rg'] = torch.autograd.Variable(torch.arange(tokens[0].shape[0]).long()).cuda() if "fs" in modes: aux_labels['fs'] = torch.autograd.Variable(torch.ones(tokens[0].shape[0] * 2 * args.seq_length).long()).cuda() # Forward model. scores = model(modes, tokens, types, tasks, att_mask, checkpoint_activations=args.checkpoint_activations) assert sorted(list(scores.keys())) == sorted(modes) # Calculate losses based on required criterion losses = {} for mode, score in scores.items(): if mode in ["mlm", "sbo"]: mlm_loss = criterion_cls(score.view(-1, args.data_size).contiguous().float(), lm_labels.view(-1).contiguous()) loss_mask = loss_mask.view(-1).contiguous() losses[mode] = torch.sum(mlm_loss * loss_mask.view(-1).float()) / loss_mask.sum() elif mode == "tgs": tgs_loss = criterion_cls(score.view(-1, 6).contiguous().float(), aux_labels[mode].view(-1).contiguous()) tgs_loss = tgs_loss.view(-1).contiguous() losses[mode] = torch.sum(tgs_loss * tgs_mask.view(-1).float() / tgs_mask.sum()) elif mode in ["fs", "wlen", "tf", "tf_idf"]: # use regression losses[mode] = criterion_reg(score.view(-1).contiguous().float(), aux_labels[mode].view(-1).contiguous().float()).mean() else: score = score.view(-1, 2) if mode in ["tc", "cap"] else score losses[mode] = criterion_cls(score.contiguous().float(), aux_labels[mode].view(-1).contiguous()).mean() #print(losses) return losses, num_tokens def backward_step(optimizer, model, losses, num_tokens, args): """Backward step.""" # Backward pass. #optimizer.zero_grad() # For testing purposes, should always be False if args.no_aux: total_loss = losses['mlm'] else: total_loss = sum(losses.values()) total_loss/=2 total_loss.backward() # Reduce across processes. losses_reduced = losses if args.world_size > 1: losses_reduced = [[k,v] for k,v in losses_reduced.items()] reduced_losses = torch.cat([x[1].view(1) for x in losses_reduced]) torch.distributed.all_reduce(reduced_losses.data) torch.distributed.all_reduce(num_tokens) reduced_losses.data = reduced_losses.data / args.world_size model.allreduce_params(reduce_after=False, fp32_allreduce=False)#args.fp32_allreduce) losses_reduced = {losses_reduced[i][0]: reduced_losses[i] for i in range(len(losses_reduced))} # Clipping gradients helps prevent the exploding gradient. if args.clip_grad > 0: torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_grad) return losses_reduced, num_tokens def train_step(input_data, model, criterion, optimizer, lr_scheduler, modes, args): """Single training step.""" # Forward model for one step. losses, num_tokens = forward_step(input_data, model, criterion, modes, args) # Calculate gradients, reduce across processes, and clip. losses_reduced, num_tokens = backward_step(optimizer, model, losses, num_tokens, args) # Update parameters. global batch_step batch_step = batch_step+1 if batch_step % 2 ==0: optimizer.step() optimizer.zero_grad() #optimizer.step() return losses_reduced, num_tokens def get_stage_info(total_tokens, num_tasks): """ Get number of tokens for each task during each stage. Based on ERNIE 2.0's continual multi-task learning Number of stages is equal to the number of tasks (each stage is larger than the previous one) :param total_tokens: total number of tokens to train on :param num_tasks: number of tasks :return: Number of tokens for each task at each stage """ tokens_per_task = total_tokens / num_tasks tokens_subunit = tokens_per_task / (num_tasks + 1) tokens_per_task_per_stage = [] for i in range(num_tasks): stage_tokens = [] for j in range(num_tasks): if i < j: stage_tokens.append(0) elif i > j: stage_tokens.append(tokens_subunit) else: stage_tokens.append(tokens_subunit * (i + 2)) tokens_per_task_per_stage.append(stage_tokens) return tokens_per_task_per_stage def set_up_stages(args): """ Set up stage information and functions to use for ERNIE 2.0's continual multi-task learning Closure that returns a function that will return next stages token requirements as requested :param args: arguments :return: a function that will return next stages token requirements as requested """ assert not args.incremental total_tokens = args.epochs * args.train_tokens modes = args.modes.split(',') if args.always_mlm: modes = modes[1:] stage_splits = get_stage_info(total_tokens, len(modes)) stage_idx = 0 def next_stage(): nonlocal stage_idx if stage_idx >= len(stage_splits): print("Finished all training, shouldn't reach this unless it's the very final iteration") return {k: float(total_tokens) for k in modes} assert len(modes) == len(stage_splits[stage_idx]) current_stage = {k: v for k, v in zip(modes, stage_splits[stage_idx])} print("Starting stage {} of {}, with task distribution: ".format(stage_idx, len(stage_splits))) print(current_stage) stage_idx += 1 return current_stage return next_stage def get_mode_from_stage(current_stage, args): """ Get the mode to use given the current stage :param current_stage: number of tokens left for each task for this stage :param args: arguments :return: selected mode """ modes = args.modes.split(',') if args.always_mlm: modes = modes[1:] p = np.array([current_stage[m] for m in modes]) p /=
np.sum(p)
numpy.sum
import numpy as np from copy import deepcopy def sigmoid(x): return 1/(1 + np.exp(-x)) def backward_tanh(x): return 1 - x*x def tanh(x): return np.tanh(x) def backward_sigmoid(x): return x*(1 - x) def cross_entropy_loss(probs, target_index): ''' Computes cross-entropy loss Arguments: probs, np array, shape is either (N) or (batch_size, N) - probabilities for every class target_index: np array of int, shape is (1) or (batch_size) - index of the true class for given sample(s) Returns: loss: single value ''' probs_left = np.choose(target_index, probs.reshape(probs.shape[0], probs.shape[1]).T) return np.sum(-np.log(probs_left)) def softmax(predictions): ''' Computes probabilities from scores Arguments: predictions, np array, shape is either (N) or (batch_size, N) - classifier output Returns: probs, np array of the same shape as predictions - probability for every class, 0..1 ''' pred = predictions.copy() pred_temp = np.swapaxes(pred, 0, 1) pred = np.swapaxes(pred_temp - np.max(pred, axis=1), 1, 0) exps = np.exp(pred) downs = np.sum(exps, axis=1) probs = exps/downs[:, None] return probs def softmax_with_cross_entropy(preds, target_index): """ Computes softmax and cross-entropy loss for model predictions, including the gradient Arguments: predictions, np array, shape is either (N) or (N, batch_size) - classifier output target_index: np array of int, shape is (1) or (batch_size) - index of the true class for given sample(s) Returns: loss, single value - cross-entropy loss dprediction, np array same shape as predictions - gradient of predictions by loss value """ probs = softmax(preds) loss = cross_entropy_loss(probs, target_index) d_out = np.copy(probs) for idx, row in enumerate(d_out): row[target_index[idx]] -= 1 return loss, d_out class Param: ''' Trainable parameter of the model Captures both parameter value and the gradient ''' def __init__(self, value): self.value = value self.grad = np.zeros_like(value) class Seq2SeqLSTM: def __init__(self, hid_layer_size, num_dict, w_std): self.hid_layer_size = hid_layer_size self.num_dict = num_dict conc_size = hid_layer_size + num_dict self.W_f = Param(w_std * np.random.randn(hid_layer_size, conc_size)) self.b_f = Param(np.zeros((hid_layer_size, 1))) self.W_i = Param(w_std * np.random.randn(hid_layer_size, conc_size)) self.b_i = Param(np.zeros((hid_layer_size, 1))) self.W_c = Param(w_std * np.random.randn(hid_layer_size, conc_size)) self.b_c = Param(np.zeros((hid_layer_size, 1))) self.W_o = Param(w_std * np.random.randn(hid_layer_size, conc_size)) self.b_o = Param(np.zeros((hid_layer_size, 1))) self.W_y = Param(w_std * np.random.randn(num_dict, hid_layer_size)) self.b_y = Param(np.zeros((num_dict, 1))) self.h = Param(np.zeros((hid_layer_size, 1))) self.C = Param(np.zeros((hid_layer_size, 1))) self.ft = Param(np.zeros((hid_layer_size, 1))) self.it = Param(np.zeros((hid_layer_size, 1))) self.C_hat = Param(np.zeros((hid_layer_size, 1))) self.out = Param(np.zeros((hid_layer_size, 1))) self.cache = {} def params(self): return {'W_f': self.W_f, 'W_i': self.W_i, 'W_c': self.W_c, 'W_o': self.W_o, 'W_y': self.W_y, 'b_f': self.b_f, 'b_i': self.b_i, 'b_c': self.b_c, 'b_o': self.b_o, 'b_y': self.b_y, 'h': self.h, 'C': self.C, 'ft': self.ft, 'it': self.it, 'C_hat': self.C_hat, 'out': self.out} def forward(self, X_train): outputs = [] for idx, x in enumerate(X_train): x_one_hot = np.zeros(self.num_dict) x_one_hot[x] = 1 x_one_hot = x_one_hot.reshape(1, -1) X = Param(np.row_stack((self.h.value, x_one_hot.T))) if -1 not in self.cache: self.cache[-1] = (X, self.ft, self.it, self.C_hat, self.out, self.h, self.C) self.ft.value = sigmoid(np.dot(self.W_f.value, X.value) + self.b_f.value) self.it.value = sigmoid(np.dot(self.W_i.value, X.value) + self.b_i.value) self.C_hat.value = tanh(np.dot(self.W_c.value, X.value) + self.b_c.value) self.C.value = self.ft.value*self.C.value + self.it.value*self.C_hat.value self.out.value = sigmoid(
np.dot(self.W_o.value, X.value)
numpy.dot
from __future__ import absolute_import, print_function import numpy as npy from PyDSTool import Events, Variable, Pointset, Trajectory from PyDSTool.common import args, metric, metric_L2, metric_weighted_L2, \ metric_float, remain, fit_quadratic, fit_exponential, fit_diff_of_exp, \ smooth_pts, nearest_2n_indices, make_poly_interpolated_curve, simple_bisection from PyDSTool.Trajectory import numeric_to_traj from PyDSTool.ModelContext import * from PyDSTool.Toolbox.data_analysis import butter, filtfilt, rectify from PyDSTool.errors import PyDSTool_KeyError import copy # Test this on a single spike with global max at spike and minima at endpoints # Test this on a mexican hat type spike with global min and max at spike peak and trough # Test this on monotonic data for worst case scenario!! Should return None for max and min # Also test on noisy monotonic data # Return value of Nones to a feature evaluator should suggest to it to change window size for defining pts def find_internal_extrema(pts, noise_tol=0): """ Find an interior (local) maximum and minimum values of a 1D pointset, away from the endpoints. Returns a dictionary mapping 'local_max' -> (index_max, xmax), 'local_min' -> (index_min, xmin), whose values are None if the pointset is monotonic or is close enough so that the global extrema are at the endpoints. Use noise_tol > 0 to avoid getting a local extremum right next to an endpoint because of noise. Also returned in the dictionary for reference: 'first' -> (0, <start_endpoint_value>), 'last' -> (last_index, <last_endpoint_value>), 'global_max' -> (index, value), 'global_min' -> (index, value) Assumes there is only one interior (max, min) pair in pts, otherwise will return an arbitrary choice from multiple maxima and minima.""" assert pts.dimension == 1 # convert all singleton points to floats with [0] selection x0 = pts[0][0] x1 = pts[-1][0] # need last_ix explicitly for index test below last_ix = len(pts)-1 end_ixs = (0, last_ix) max_val_ix = npy.argmax(pts) min_val_ix = npy.argmin(pts) glob_xmax = pts[max_val_ix][0] glob_xmin = pts[min_val_ix][0] no_local_extrema = {'local_max': (None, None), 'local_min': (None, None), 'first': (0, x0), 'last': (last_ix, x1), 'global_max': (max_val_ix, glob_xmax), 'global_min': (min_val_ix, glob_xmin) } max_at_end = max_val_ix in end_ixs min_at_end = min_val_ix in end_ixs if max_at_end: if min_at_end: # No detectable turning points present (this is criterion for ignoring noisy data) return no_local_extrema else: # interior minimum found index_min = min_val_ix xmin = pts[index_min] # find associated interior local maximum max_val_ix1 = npy.argmax(pts[:min_val_ix]) max_val_ix2 = npy.argmax(pts[min_val_ix:])+min_val_ix if max_val_ix1 in end_ixs: if max_val_ix2 in end_ixs: index_max = None xmax = None else: index_max = max_val_ix2 xmax = pts[index_max][0] else: # assumes only one local max / min pair in interior! index_max = max_val_ix1 xmax = pts[index_max][0] else: # interior maximum found index_max = max_val_ix xmax = pts[index_max][0] # find associated interior local minimum min_val_ix1 = npy.argmin(pts[:max_val_ix]) xmin1 = pts[min_val_ix1][0] min_val_ix2 = npy.argmin(pts[max_val_ix:])+max_val_ix xmin2 = pts[min_val_ix2][0] if min_val_ix1 in end_ixs or abs(xmin1-x0)<noise_tol or abs(xmin1-x1)<noise_tol: if min_val_ix2 in end_ixs or abs(xmin1-x0)<noise_tol or abs(xmin1-x1)<noise_tol: index_min = None xmin = None else: index_min = min_val_ix2 xmin = xmin2 else: # assumes only one local max / min pair in interior! index_min = min_val_ix1 xmin = xmin1 return {'local_max': (index_max, xmax), 'local_min': (index_min, xmin), 'first': (0, x0), 'last': (last_ix, x1), 'global_max': (max_val_ix, glob_xmax), 'global_min': (min_val_ix, glob_xmin)} class get_spike_model(ql_feature_leaf): """Qualitative test for presence of spike in model trajectory data using events to identify spike times. Also records salient spike information for quantitative comparisons later.""" def evaluate(self, traj): # function of traj, not target pts = traj.sample(coords=[self.super_pars.burst_coord], tlo=self.pars.tlo, thi=self.pars.tlo+self.pars.width_tol) loc_extrema = find_internal_extrema(pts) if self.pars.verbose_level > 0: print(loc_extrema) max_val_ix, xmax = loc_extrema['local_max'] global_max_val_ix, global_xmax = loc_extrema['global_max'] min_val_ix, xmin = loc_extrema['local_min'] global_min_val_ix, global_xmin = loc_extrema['global_min'] # could split these tests into 3 further sub-features but we'll skip that here for efficiency if xmax is None: self.results.ixmax = None self.results.tmax = None test1 = test2 = test3 = False else: test1 = max_val_ix not in (loc_extrema['first'][0], loc_extrema['last'][0]) test2 = npy.linalg.norm(global_xmin-xmax) > self.pars.height_tol try: test3 = npy.linalg.norm(xmin-xmax) > self.pars.height_tol except: # fails if xmin is None, i.e. no interior minimum # allow no local minimum present, in which case use the other endpoint for test # ... we don't know which is the one alread tested in test2, so test both ends again, # knowing that they are both lower than the interior maximum found in this case xmin = max([global_xmin, loc_extrema['last'][1], loc_extrema['first'][1]]) test3 = npy.linalg.norm(xmin-xmax) > self.pars.height_tol self.results.ixmax = max_val_ix self.results.tmax = pts.indepvararray[max_val_ix] self.results.spike_pts = pts return test1 and test2 and test3 def finish(self, traj): self.results.spike_time = self.results.tmax self.results.spike_val = self.results.spike_pts[self.results.ixmax][self.super_pars.burst_coord] class get_spike_data(ql_feature_leaf): """Qualitative test for presence of spike in noisy data. Also records salient spike information for quantitative comparisons later. Criteria: ensure a maximum occurs, and that this is away from endpoints of traj "Uniqueness" of this maximum can only be determined for noisy data using a height tolerance. Assumes spikes will never bunch up too much so that more than spike occurs in the spacing_tol window. Finds maximum position using a quadratic fit. """ def _local_init(self): # avoids recreating this object for every test self.quadratic = fit_quadratic(verbose=self.pars.verbose_level>0) def evaluate(self, traj): # function of traj, not target event_args = {'name': 'spike_thresh', 'eventtol': self.pars.eventtol, 'eventdelay': self.pars.eventtol*.1, 'starttime': 0, 'active': True} if 'coord' not in self.pars: self.pars.coord = self.super_pars.burst_coord # update thi each time b/c tlo will be different self.pars.thi = self.pars.tlo+self.pars.width_tol self.pars.ev = Events.makePythonStateZeroCrossEvent(self.pars.coord, "thresh", 0, event_args, traj.variables[self.pars.coord]) pts = traj.sample(coords=[self.pars.coord], tlo=self.pars.tlo, thi=self.pars.thi) if pts.indepvararray[-1] < self.pars.thi: self.pars.thi = pts.indepvararray[-1] loc_extrema = find_internal_extrema(pts, self.pars.noise_tol) if self.pars.verbose_level > 0: print(loc_extrema) # from PyDSTool import plot, show ## plot spike and quadratic fit #plot(pts.indepvararray, pts[self.super_pars.burst_coord], 'go-') #show() max_val_ix, xmax = loc_extrema['local_max'] global_max_val_ix, global_xmax = loc_extrema['global_max'] min_val_ix, xmin = loc_extrema['local_min'] global_min_val_ix, global_xmin = loc_extrema['global_min'] # could split these tests into 3 further sub-features but we'll skip that here for efficiency test1 = max_val_ix not in (loc_extrema['first'][0], loc_extrema['last'][0]) test2 = npy.linalg.norm(global_xmin-xmax) > self.pars.height_tol try: test3 = npy.linalg.norm(xmin-xmax) > self.pars.height_tol except: # fails if xmin is None, i.e. no interior minimum # allow no local minimum present, in which case use the other endpoint for test # ... we don't know which is the one already tested in test2, so test both ends again, # knowing that they are both lower than the interior maximum found in this case xmin = max([global_xmin, loc_extrema['last'][1], loc_extrema['first'][1]]) test3 = npy.linalg.norm(xmin-xmax) > self.pars.height_tol # generate a suitable threshold from local maximum try: thresh_pc = self.pars.thresh_pc except: # default value of 15% thresh_pc = 0.15 thresh = (xmin + thresh_pc*(xmax-xmin)) if self.pars.verbose_level > 0: print("xmin used =", xmin) print("thresh = ", thresh) # Define extent of spike for purposes of quadratic fit ... evs_found = self.pars.ev.searchForEvents(trange=[self.pars.tlo, self.pars.thi], parDict={'thresh': thresh}) tlo = evs_found[0][0] thi = evs_found[1][0] tmax = pts.indepvararray[max_val_ix] symm_dist = npy.min([abs(tmax-tlo), abs(thi-tmax)]) # HACK! Ensure dt value will not cause us to hit an index directly, otherwise # have to catch case from Pointset.find method when return value is a single # integer index rather than a pair of indices if symm_dist > self.pars.fit_width_max/2.000000007: dt = self.pars.fit_width_max/2.000000007 else: dt = symm_dist*1.0000000007 tlo = tmax-dt thi = tmax+dt ixlo = pts.find(tmax-dt, end=0) ixhi = pts.find(tmax+dt, end=1) if self.pars.verbose_level > 0: print("ixlo =", ixlo, "ixhi =", ixhi) print("tlo =",tmax-dt, "thi =",tmax+dt) print(pts[ixlo], pts[ixhi]) print("\nget_spike tests:", test1, test2, test3) self.results.ixlo = ixlo self.results.ixhi = ixhi self.results.ixmax = max_val_ix self.results.tlo = tlo self.results.thi = thi self.results.tmax = tmax self.results.spike_pts = pts[ixlo:ixhi] return test1 and test2 and test3 def finish(self, traj): # function of traj, not target if self.pars.verbose_level > 0: print("Finishing spike processing...") pts = self.results.spike_pts coord = self.pars.coord xlo = pts[0][0] # xmax is just an estimate of the max value xmax = pts[self.results.ixmax-self.results.ixlo][0] estimate_quad_coeff = -(xmax-xlo)/((self.results.tmax - \ self.results.tlo)**2) estimate_intercept = xlo - \ ((xmax-xlo)/(self.results.tmax-self.results.tlo))*self.results.tlo res = self.quadratic.fit(pts.indepvararray, pts[coord], pars_ic=(estimate_quad_coeff,0,estimate_intercept), opts=args(peak_constraint=(self.results.ixmax - \ self.results.ixlo,xmax, self.pars.weight*len(pts)/(self.results.tmax - \ self.results.tlo), self.pars.weight*len(pts)/(xmax-xlo)))) tval, xval = res.results.peak self.results.spike_time = tval self.results.spike_val = xval self.results.pars_fit = res.pars_fit if self.pars.verbose_level > 0: from PyDSTool import plot, show # plot spike and quadratic fit dec = 10 plot(pts.indepvararray, pts[coord], 'go-') plot(tval, xval, 'rx') ts = [pts.indepvararray[0]] for i, t in enumerate(pts.indepvararray[:-1]): ts.extend([t+j*(pts.indepvararray[i+1]-t)/dec for j in range(1,dec)]) ts.append(pts.indepvararray[-1]) plot(ts, [res.results.f(t) for t in ts], 'k:') # temp if self.pars.verbose_level > 1: show() class get_burst_duration(qt_feature_leaf): def _local_init(self): self.metric = metric_float() self.metric_len = 1 def postprocess_ref_traj(self): on_t = self.super_pars.ref_spike_times[0] - self.pars.t_lookback self.pars.ref_burst_on_time = on_t # find associated V for ref_on_thresh pts = self.super_pars.ref_burst_coord_pts x = pts[self.super_pars.burst_coord] on_ix = pts.find(on_t, end=1) ix_lo, ix_hi = nearest_2n_indices(x, on_ix, 2) t = pts.indepvararray on_res = smooth_pts(t[ix_lo:ix_hi+1], x[ix_lo:ix_hi+1], self.super_pars.quadratic) self.pars.ref_on_thresh = on_res.results.f(on_t) # off_t = self.super_pars.ref_spike_times[-1] + self.pars.t_lookforward self.pars.ref_burst_off_time = off_t off_ix = pts.find(off_t, end=0) ix_lo, ix_hi = nearest_2n_indices(x, off_ix, 2) off_res = smooth_pts(t[ix_lo:ix_hi+1], x[ix_lo:ix_hi+1], self.super_pars.quadratic) self.pars.ref_off_thresh = off_res.results.f(off_t) self.pars.ref_burst_duration = off_t - on_t self.pars.ref_burst_prop = (off_t - on_t)/self.super_pars.ref_period def evaluate(self, target): traj = target.test_traj varname = self.super_pars.burst_coord pts = self.super_pars.burst_coord_pts on_t = self.super_results.spike_times[0] - self.pars.t_lookback self.results.burst_on_time = on_t x = pts[varname] on_ix = pts.find(on_t, end=1) ix_lo, ix_hi = nearest_2n_indices(x, on_ix, 2) pp = make_poly_interpolated_curve(pts[ix_lo:ix_hi+1], varname, target.model) thresh = pp(on_t) self.results.on_thresh = thresh # # don't find "off" based on last spike time because # when new spikes suddenly appear this value will jump # instead, use a threshold event search, assuming that # only one period is "in view" t = pts.indepvararray x_rev = x[:ix_hi:-1] t_rev = t[:ix_hi:-1] off_ix = len(x) - npy.argmin(npy.asarray(x_rev < thresh, int)) ix_lo, ix_hi = nearest_2n_indices(x, off_ix, 2) pp = make_poly_interpolated_curve(pts[ix_lo:ix_hi+1], varname, target.model) # bisect to find accurate crossing point tlo = t[ix_lo] thi = t[ix_hi] off_t = simple_bisection(tlo, thi, pp, self.pars.t_tol) self.results.burst_duration = off_t - on_t self.results.burst_prop = (off_t - on_t) / self.super_results.period return self.metric(self.results.burst_prop, self.super_pars.ref_burst_prop) < self.pars.tol class get_burst_active_phase(qt_feature_leaf): def _local_init(self): self.metric = metric_float() self.metric_len = 1 def postprocess_ref_traj(self): self.pars.ref_active_phase = self.super_pars.ref_spike_times[0] / \ self.super_pars.ref_period def evaluate(self, target): self.results.active_phase = self.super_results.spike_times[0] / \ self.super_results.period return self.metric(self.results.active_phase, self.pars.ref_active_phase) \ < self.pars.tol class get_burst_dc_offset(qt_feature_leaf): def _local_init(self): self.metric = metric_float() self.metric_len = 1 def postprocess_ref_traj(self): # 20% of burst_on_V (i.e., on_thresh) - min_V above min_V self.pars.ref_baseline_V = self.super_pars.ref_min_V + \ 0.2*(self.super_pars.ref_on_thresh - \ self.super_pars.ref_min_V) def evaluate(self, target): baseline = self.super_results.min_V + 0.2*(self.super_results.on_thresh - \ self.super_results.min_V) self.results.baseline_V = baseline - self.super_pars.ref_baseline_V return self.metric(baseline, self.super_pars.ref_baseline_V) < \ self.pars.tol class get_burst_passive_extent(qt_feature_leaf): def _local_init(self): self.metric = metric_float() self.metric_len = 1 def postprocess_ref_traj(self): self.pars.ref_passive_extent_V = self.super_pars.ref_max_V - \ self.super_pars.ref_min_V def evaluate(self, target): self.results.passive_extent_V = self.super_results.max_V - \ self.super_results.min_V return self.metric(self.results.passive_extent_V, self.super_pars.ref_passive_extent_V) < \ self.pars.tol class burst_feature(ql_feature_node): """Embed the following sub-features, if desired: get_burst_X, where X is a number of feature types defined in this module. """ def _local_init(self): self.pars.quadratic = fit_quadratic(verbose=self.pars.verbose_level>0) self.pars.filt_coeffs = butter(3, self.pars.cutoff, btype='highpass') self.pars.filt_coeffs_LP = butter(3, self.pars.cutoff/10) def postprocess_ref_traj(self): # single coord used as indicator pts = self.ref_traj.sample() burst_pts = self.ref_traj.sample(coords=[self.pars.burst_coord], dt=self.pars.dt) xrs = burst_pts[self.pars.burst_coord] trs = burst_pts.indepvararray x = pts[self.pars.burst_coord] b, a = self.pars.filt_coeffs_LP xf = filtfilt(b, a, xrs) t = pts.indepvararray min_val_ix = npy.argmin(xf) # use LPF version to avoid noise artifacts max_val_ix = npy.argmax(xf) # use LPF version to avoid spikes min_ix_lo, min_ix_hi = nearest_2n_indices(xrs, min_val_ix, 30) max_ix_lo, max_ix_hi = nearest_2n_indices(xrs, max_val_ix, 30) min_res = smooth_pts(trs[min_ix_lo:min_ix_hi+1], xf[min_ix_lo:min_ix_hi+1], self.pars.quadratic) # use LPF data for max max_res = smooth_pts(trs[max_ix_lo:max_ix_hi+1], xf[max_ix_lo:max_ix_hi+1], self.pars.quadratic) min_t, min_val = min_res.results.peak max_t, max_val = max_res.results.peak # thresh1 = float(max_val-self.pars.active_frac_height*(max_val-min_val)) # thresh2 = x[0]+3. # # don't make threshold smaller than initial value, assuming # # burst will be rising at initial condition # thresh = max((thresh1,thresh2)) self.pars.ref_burst_coord_pts = pts # self.pars.ref_on_thresh = thresh # self.pars.ref_off_thresh = thresh self.pars.ref_min_V = min_val self.pars.ref_max_V = max_val assert self.pars.on_cross_dir in (-1,1) if self.pars.on_cross_dir == 1: self.pars.off_cross_dir = -1 else: self.pars.off_cross_dir = 1 self.pars.ref_burst_est = estimate_spiking(burst_pts[self.pars.burst_coord], burst_pts.indepvararray, self.pars.filt_coeffs) self.pars.ref_burst_pts_resampled = burst_pts # spike times will be overwritten by get_spikes_data instance, if present #self.pars.ref_spike_times = self.pars.ref_burst_est.spike_ts # to establish period, find min on other side of active phase if min_t < self.pars.ref_burst_est.spike_ts[0]: # look to the right start_t = self.pars.ref_burst_est.spike_ts[-1] start_ix = pts.find(start_t, end=1) other_min_ix = npy.argmin(x[start_ix:]) other_min_t = t[start_ix+other_min_ix] else: # look to the left start_t = self.pars.ref_burst_est.spike_ts[0] start_ix = pts.find(start_t, end=0) other_min_ix = npy.argmin(x[:start_ix]) other_min_t = t[other_min_ix] self.pars.ref_period = abs(other_min_t - min_t) def prepare(self, target): # single coord used as indicator pts = target.test_traj.sample() x = pts[self.pars.burst_coord] burst_pts = target.test_traj.sample(coords=[self.pars.burst_coord], dt=self.pars.dt) xrs = burst_pts[self.pars.burst_coord] trs = burst_pts.indepvararray if max(x)-min(x) < 5: print("\n\n Not a bursting trajectory!!") raise ValueError("Not a bursting trajectory") b, a = self.pars.filt_coeffs_LP xf = filtfilt(b, a, xrs) t = pts.indepvararray min_val_ix = npy.argmin(x) # precise because of Model's events max_val_ix = npy.argmax(xf) max_ix_lo, max_ix_hi = nearest_2n_indices(xrs, max_val_ix, 4) max_res = smooth_pts(trs[max_ix_lo:max_ix_hi+1], xf[max_ix_lo:max_ix_hi+1], self.pars.quadratic) min_t = t[min_val_ix] min_val = x[min_val_ix] max_t, max_val = max_res.results.peak self.results.min_V = min_val self.results.max_V = max_val assert self.pars.on_cross_dir in (-1,1) if self.pars.on_cross_dir == 1: self.pars.off_cross_dir = -1 else: self.pars.off_cross_dir = 1 self.results.burst_est = estimate_spiking(burst_pts[self.pars.burst_coord], burst_pts.indepvararray, self.pars.filt_coeffs) # record approximate spike times - may be overwritten by # get_burst_spikes if done accurately #self.results.spike_times = self.results.burst_est.spike_ts if self.pars.verbose_level > 0: print("Spikes found at (approx) t=", self.results.burst_est.spike_ts) if self.results.burst_est.spike_ts[0] < self.pars.shrink_end_time_thresh: # kludgy way to ensure that another burst doesn't encroach if not hasattr(self.pars, 'shrunk'): # do this *one time* end_time = t[-1] - self.pars.shrink_end_time_amount target.model.set(tdata=[0,end_time]) end_pts = pts.find(end_time, end=0) end_burst_pts = burst_pts.find(end_time, end=0) pts = pts[:end_pts] burst_pts = burst_pts[:end_burst_pts] self.pars.shrunk = True elif hasattr(self.pars, 'shrunk'): # in case period grows back reset end time *one time* target.model.set(tdata=[0,t[-1]+self.pars.shrink_end_time_amount]) del self.pars.shrunk self.pars.burst_coord_pts = pts self.pars.burst_pts_resampled = burst_pts # to establish period, find min on other side of active phase if min_t < self.results.burst_est.spike_ts[0]: # look to the right start_t = self.results.burst_est.spike_ts[-1] start_ix = pts.find(start_t, end=1) other_min_ix = npy.argmin(x[start_ix:]) other_min_t = t[start_ix+other_min_ix] other_min_val = x[start_ix+other_min_ix] else: # look to the left start_t = self.results.burst_est.spike_ts[0] start_ix = pts.find(start_t, end=0) other_min_ix = npy.argmin(x[:start_ix]) other_min_t = t[other_min_ix] other_min_val = x[other_min_ix] self.results.period = abs(other_min_t - min_t) self.results.period_val_error = other_min_val - min_val class get_burst_spikes(ql_feature_node): """Requires a get_spike_data and get_spike_model instance to be the only sub-features (supplied as a dict with keys 'is_spike_data' and 'is_spike_model'). """ def _local_init(self): assert len(self.subfeatures) == 2 assert remain(self.subfeatures.keys(), ['is_spike_data', 'is_spike_model']) == [] def postprocess_ref_traj(self): # get precise spike times and record in self.results.ref_spike_times self.pars.ref_spike_times, self.pars.ref_spike_vals = \ self._eval(self.ref_traj, self.super_pars.ref_burst_est, self.subfeatures['is_spike_data']) def evaluate(self, target): self.results.spike_times, self.results.spike_vals = \ self._eval(target.test_traj, self.super_results.burst_est, self.subfeatures['is_spike_model']) # satisfied if all spikes determined correctly return len(self.results.spike_times) == \ len(self.super_results.burst_est.spike_ixs) def _eval(self, traj, burst_est, is_spike): # isn't the next line redundant? is_spike.super_pars = copy.copy(self.pars) spike_times = [] spike_vals = [] satisfied = True for spike_num, spike_ix in enumerate(burst_est.spike_ixs): if self.pars.verbose_level > 0: print("\n Starting spike", spike_num+1) is_spike.super_pars.burst_coord = self.super_pars.burst_coord # step back 20% of estimated period try: is_spike.pars.width_tol = burst_est.ISIs[spike_num]*.8 except IndexError: # one fewer ISI than spike, so just assume last one is about # the same is_spike.pars.width_tol = burst_est.ISIs[spike_num-1]*.8 is_spike.pars.tlo = burst_est.t[spike_ix] - \ is_spike.pars.width_tol #/ 2. if self.pars.verbose_level > 0: print("new tlo =", is_spike.pars.tlo) # would prefer to work this out self-consistently... #is_spike.pars.fit_width_max = ? new_sat = is_spike(traj) satisfied = satisfied and new_sat # make recorded spike time in global time coordinates if new_sat: spike_times.append(is_spike.results.spike_time) spike_vals.append(is_spike.results.spike_val) if self.pars.verbose_level > 0: print("Spike times:", spike_times) return spike_times, spike_vals class get_burst_peak_env(qt_feature_leaf): """Requires tol and num_samples parameters. """ def _local_init(self): self.metric = metric_L2() self.metric_len = self.pars.num_samples def postprocess_ref_traj(self): # should really use quadratic fit to get un-biased peaks peak_vals = self.super_pars.ref_spike_vals peak_t = self.super_pars.ref_spike_times self.ref_traj = numeric_to_traj([peak_vals], 'peak_envelope', self.super_pars.burst_coord, peak_t, self.super_pars.ref_burst_pts_resampled.indepvarname, discrete=False) # discrete option false yields error if only one spike found, but error is cryptic! if len(peak_t) > 1: ref_env_ts = npy.linspace(peak_t[0], peak_t[-1], self.pars.num_samples) else: ref_env_ts = npy.array(peak_t) self.pars.ref_peak_vals = self.ref_traj(ref_env_ts, self.super_pars.burst_coord)[0] def evaluate(self, target): # ignore target dc_offset = self.super_results.baseline_V # min and max events in model mean that these are recorded # accurately in the pointsets already peak_vals = self.super_results.spike_vals - dc_offset peak_t = self.super_results.spike_times self.results.burst_peak_env = numeric_to_traj([peak_vals], 'peak_envelope', self.super_pars.burst_coord, peak_t, self.super_pars.burst_pts_resampled.indepvarname, discrete=False) # burst_est = self.super_results.burst_est # call_args = {} # try: # call_args['noise_floor'] = is_spike.pars.noise_tol # except AttributeError: # pass # try: # call_args['depvar'] = self.super_pars.burst_coord # except AttributeError: # pass # try: # call_args['tol'] = 1.1*burst_est.std_ISI/burst_est.mean_ISI # except AttributeError: # pass # call_args['make_traj'] = False # call_args['spest'] = burst_est # env = spike_envelope(burst_est.pts, burst_est.mean_ISI, # **call_args) test_env_ts = npy.linspace(peak_t[0], peak_t[-1], self.pars.num_samples) return self.metric(self.results.burst_peak_env(test_env_ts, self.super_pars.burst_coord), self.super_pars.ref_peak_vals) < self.pars.tol class get_burst_trough_env(qt_feature_leaf): """Requires tol and num_samples parameters. """ def _local_init(self): self.metric = metric_L2() self.metric_len = self.pars.num_samples def postprocess_ref_traj(self): burst_pts = self.super_pars.ref_burst_pts_resampled burst_est = self.super_pars.ref_burst_est vals = burst_pts[self.super_pars.burst_coord] inter_spike_ixs = [(burst_est.spike_ixs[i-1], burst_est.spike_ixs[i]) \ for i in range(1, len(burst_est.spike_ixs))] # should really use quadratic fit to get an un-biased minimum trough_ixs = [npy.argmin(vals[ix_lo:ix_hi])+ix_lo for ix_lo, ix_hi in \ inter_spike_ixs] trough_vals = [vals[i] for i in trough_ixs] trough_t = [burst_pts.indepvararray[i] for i in trough_ixs] self.ref_traj = numeric_to_traj([trough_vals], 'trough_envelope', self.super_pars.burst_coord, trough_t, burst_pts.indepvarname, discrete=False) ref_env_ts = npy.linspace(trough_t[0], trough_t[-1], self.pars.num_samples) self.pars.ref_trough_vals = self.ref_traj(ref_env_ts, self.super_pars.burst_coord) def evaluate(self, target): # ignore target dc_offset = self.super_results.baseline_V burst_pts = self.super_pars.burst_coord_pts burst_est = self.super_results.burst_est vals = burst_pts[self.super_pars.burst_coord] ts = self.super_results.spike_times spike_ixs = [] for t in ts: tix = burst_pts.find(t, end=0) spike_ixs.append(tix) inter_spike_ixs = [(spike_ixs[i-1], spike_ixs[i]) \ for i in range(1, len(ts))] # min and max events in model mean that these are recorded # accurately in the pointsets already trough_ixs = [npy.argmin(vals[ix_lo:ix_hi])+ix_lo for ix_lo, ix_hi in \ inter_spike_ixs] trough_vals = [vals[i] - dc_offset for i in trough_ixs] # use self.pars.trough_t for isi mid-point times trough_t = [burst_pts.indepvararray[i] for i in trough_ixs] self.results.burst_trough_env = numeric_to_traj([trough_vals], 'trough_envelope', self.super_pars.burst_coord, trough_t, burst_pts.indepvarname, discrete=False) test_env_ts = npy.linspace(trough_t[0], trough_t[-1], self.pars.num_samples) self.results.trough_t = trough_t return self.metric(self.results.burst_trough_env(test_env_ts, self.super_pars.burst_coord), self.super_pars.ref_trough_vals) < self.pars.tol class get_burst_isi_env(qt_feature_leaf): """Requires tol and num_samples parameters. """ def _local_init(self): self.metric = metric_L2() self.metric_len = self.pars.num_samples def postprocess_ref_traj(self): burst_pts = self.super_pars.ref_burst_pts_resampled ts = burst_pts.indepvararray burst_est = self.super_pars.ref_burst_est # find approximate (integer) mid-point index between spikes mid_isi_ixs = [int(0.5*(burst_est.spike_ixs[i-1]+burst_est.spike_ixs[i])) \ for i in range(1, len(burst_est.spike_ixs))] isi_t = [ts[i] for i in mid_isi_ixs] isi_vals = [ts[burst_est.spike_ixs[i]]-ts[burst_est.spike_ixs[i-1]] for \ i in range(1, len(burst_est.spike_ixs))] self.ref_traj = numeric_to_traj([isi_vals], 'isi_envelope', self.super_pars.burst_coord, isi_t, burst_pts.indepvarname, discrete=False) ref_env_ts = npy.linspace(isi_t[0], isi_t[-1], self.pars.num_samples) self.pars.ref_isis = self.ref_traj(ref_env_ts, self.super_pars.burst_coord) def evaluate(self, target): # ignore target ts = self.super_results.spike_times tname = self.super_pars.burst_coord_pts.indepvarname isi_vals = [ts[i]-ts[i-1] for i in range(1, len(ts))] self.results.burst_isi_env = numeric_to_traj([isi_vals], 'isi_envelope', self.super_pars.burst_coord, self.super_results.trough_t, tname, discrete=False) test_env_ts = npy.linspace(self.super_results.trough_t[0], self.super_results.trough_t[-1], self.pars.num_samples) return self.metric(self.results.burst_isi_env(test_env_ts, self.super_pars.burst_coord), self.pars.ref_isis) < self.pars.tol class get_burst_upsweep(qt_feature_leaf): def _local_init(self): self.metric = metric_L2() self.metric_len = len(self.pars.t_offs) def postprocess_ref_traj(self): vname = self.super_pars.burst_coord ts = [self.super_pars.ref_spike_times[0] - toff for \ toff in self.pars.t_offs] self.pars.ref_upsweep_V = npy.array([self.ref_traj(t, vname) for \ t in ts]) def evaluate(self, target): dc_offset = self.super_results.baseline_V vname = self.super_pars.burst_coord all_pts = self.super_pars.burst_coord_pts vals = [] for toff in self.pars.t_offs: target_t = self.super_results.spike_times[0] - toff if target_t < all_pts.indepvararray[0]: # out of range - return penalty self.metric.results = 5000*npy.ones((self.metric_len,),float) return False tix = all_pts.find(target_t, end=0) new_var = make_poly_interpolated_curve(all_pts[tix-5:tix+5], vname, target.model) vals.append(new_var(target_t)) self.results.upsweep_V = npy.array(vals) - dc_offset return self.metric(self.results.upsweep_V, \ self.pars.ref_upsweep_V) < self.pars.tol class get_burst_downsweep(qt_feature_leaf): def _local_init(self): self.metric = metric_L2() self.metric_len = len(self.pars.t_offs) def postprocess_ref_traj(self): vname = self.super_pars.burst_coord ts = [self.super_pars.ref_spike_times[-1] + toff for \ toff in self.pars.t_offs] self.pars.ref_downsweep_V = npy.array([self.ref_traj(t, vname) for \ t in ts]) def evaluate(self, target): dc_offset = self.super_results.baseline_V vname = self.super_pars.burst_coord all_pts = self.super_pars.burst_coord_pts vals = [] for toff in self.pars.t_offs: target_t = self.super_results.spike_times[-1] + toff if target_t > all_pts.indepvararray[-1]: # out of range - return penalty self.metric.results = 5000*npy.ones((self.metric_len,),float) return False tix = all_pts.find(target_t, end=0) new_var = make_poly_interpolated_curve(all_pts[tix-5:tix+5], vname, target.model) vals.append(new_var(target_t)) self.results.downsweep_V = npy.array(vals) - dc_offset return self.metric(self.results.downsweep_V, self.pars.ref_downsweep_V) < self.pars.tol class get_burst_num_spikes(qt_feature_leaf): def _local_init(self): self.metric = metric_float() self.metric_len = 1 def evaluate(self, target): return self.metric(npy.array(len(self.super_results.spike_times)), npy.array(len(self.super_pars.ref_spike_times))) == 0 class get_burst_period_info(qt_feature_leaf): def _local_init(self): self.metric = metric_weighted_L2() self.metric_len = 2 # strongly penalize lack of periodicity self.metric.weights = npy.array([1., 1000.]) def evaluate(self, target): return self.metric(npy.array([self.super_results.period, self.super_results.period_val_error]), npy.array([self.super_pars.ref_period, 0.])) \ < self.pars.tol # -------------------------------------------- class spike_metric(metric): """Measures the distance between spike time and height, using an inherent weighting of height suited to neural voltage signals (0.05 of time distance).""" def __call__(self, sp1, sp2): # weight 'v' component down b/c 't' values are on a different scale self.results = npy.array(sp1-sp2).flatten()*npy.array([1,0.05]) return
npy.linalg.norm(self.results)
numpy.linalg.norm
# -*- coding: utf-8 -*- import numpy as np #import matplotlib.pyplot as plt class CF(object): def __init__(self, n_user, n_item, n_factor, lambd): self.n_user = n_user self.n_item = n_item self.n_factor = n_factor self.lambd = lambd # 初始化用户偏好矩阵和物品(电影)特征矩阵 self.U = np.random.normal(0, 0.01, (n_user, n_factor)) self.I = np.random.normal(0, 0.01, (n_factor, n_item)) self.trainloss = [] self.testloss = [] self.snapshot = [] def predict(self): # 任务1a:根据self.U 和 self.I 计算模型预测的评分 pass def mse(self, Y, W): # Y is rating matrix # W is weight(or mask) matrix # 计算预测值和实际值的均方误差 return np.sum(((self.predict() - Y) * W)**2) / W.sum() def update(self, Y, W): # Alternating Least Square for u, Wu in enumerate(W): # 更新self.U的每一行,即每个用户的特征 self.U[u] = np.linalg.solve(np.dot(self.I, np.dot(np.diag(Wu), self.I.T)) + self.lambd * np.eye(self.n_factor),\ np.dot(self.I, np.dot(
np.diag(Wu)
numpy.diag
"""Display image and 1d plot.""" import napari import numpy as np from skimage import data import napari_plot from napari_plot._qt.qt_viewer import QtViewer # create the viewer with an image viewer = napari.view_image(data.astronaut(), rgb=True) viewer1d = napari_plot.ViewerModel1D() widget = QtViewer(viewer1d, parent=viewer.window.qt_viewer.parent()) # viewer1d.add_line(np.c_[np.arange(100), np.arange(100) + 300], name="line") viewer1d.add_centroids( np.c_[np.arange(20), np.random.randint(0, 100, 20), np.random.randint(0, 100, 20)], name="centroids (y)", orientation="horizontal", ) viewer1d.add_centroids( np.c_[np.arange(20), np.random.randint(0, 100, 20), np.random.randint(0, 100, 20)], name="centroids (x)", orientation="vertical", ) viewer1d.add_centroids(np.c_[np.zeros(100),
np.arange(100)
numpy.arange
'''*-----------------------------------------------------------------------*--- Author: <NAME> Date : Feb 15 2020 SARC File Name : env.py Description: Environment module for simulation ---*-----------------------------------------------------------------------*''' import math import numpy as np import random from scipy.spatial import Voronoi, voronoi_plot_2d, KDTree import sys import time import drone import utils import vis #TODO keep track of where broadcasts are occuring #TODO radio propagation model #TODO point of interest model BANDWIDTH = 1.0 class env(): def __init__(self, n_drones, p_bounds, M, F, v_max): self.p_bounds = p_bounds self.n_drones = n_drones self.M = M self.F = F self.v_max = v_max self.drn = [] #self.poi = [] #self.poi_active = [] self.tx = {} self.bs = [] self.t = 0 def setup(self): #self.bs = [bs.base_station([0,0])] #set up for multiple base stations in future work #generate or load in situation, including drone positions, pois, freqs ''' for i in range(self.n_drones): x = random.uniform(self.p_bounds[0][0], self.p_bounds[0][1]) y = random.uniform(self.p_bounds[1][0], self.p_bounds[1][1]) self.drn.append(drone.drone(i, [x, y], 1)) #self.g.add_node(len(self.bs) + i, p=self.drn[i].pos) ''' #for i in range(N_POI): # self.poi.append(poi.poi([random.uniform(self.p_bounds[0][0], self.p_bounds[0][1]), random.uniform(self.p_bounds[1][0], self.p_bounds[1][1])], random.randint(0, 500), 500)) #sort pois by start time #self.poi.sort(key=lambda x: x.t_start) #random.seed(1) self.gt = np.zeros((self.n_drones, 2)) ''' self.gt[0][0] = -200 self.gt[0][1] = -200 self.gt[1][0] = 100 self.gt[1][1] = -100 self.gt[2][0] = -100 self.gt[2][1] = 100 self.gt[3][0] = 100 self.gt[3][1] = 100 ''' ''' for i in range(self.n_drones): #self.gt[i][0] = random.uniform(self.p_bounds[0][0], self.p_bounds[0][1]) #self.gt[i][1] = random.uniform(self.p_bounds[1][0], self.p_bounds[1][1]) self.gt[i][0] = np.clip(random.gauss(0, 150), self.p_bounds[0][0], self.p_bounds[0][1]) self.gt[i][1] = np.clip(random.gauss(0, 150), self.p_bounds[1][0], self.p_bounds[1][1]) ''' #line self.gt[0][0] = 400 self.gt[0][1] = -400 self.gt[1][0] = 400 self.gt[1][1] = -300 self.gt[2][0] = 400 self.gt[2][1] = -200 self.gt[3][0] = 400 self.gt[3][1] = 400 #square self.gt[4][0] = -400 self.gt[4][1] = 400 self.gt[5][0] = -400 self.gt[5][1] = 300 self.gt[6][0] = -300 self.gt[6][1] = 300 self.gt[7][0] = -300 self.gt[7][1] = 400 #for k in range(self.n_drones): # print("\\addplot[color=green,mark=square] coordinates{(%.2f,%.2f)};" % (self.gt[k][0], self.gt[k][1])) #''' #drone trajectory init self.init_q =
np.zeros((self.n_drones, self.M, 2))
numpy.zeros
#from __future__ import print_function import cv2 import numpy as np import os import glob import math import time #from dronekit import connect def arm_and_takeoff(vehicle): print("Basic pre-arm checks") # Don't try to arm until autopilot is ready #while not vehicle.is_armable: #print(" Waiting for vehicle to initialise...") #time.sleep(1) print("Arming motors") # Copter should arm in GUIDED mode #vehicle.mode = VehicleMode("STABILIZE") vehicle.armed = True ''' vehicle.channels.overrides = {'1':Roll} #Roll vehicle.channels.overrides = {'2':Pitch} #Pitch vehicle.channels.overrides = {'3':Throttle} #Throttle vehicle.channels.overrides = {'4':1500} #Yaw ''' #out = cv2.VideoWriter('outpy.avi',cv2.VideoWriter_fourcc('M','J','P','G'), 10, (1280,720)) cap = cv2.VideoCapture(0) dst = None def find(DIM, K, D, img_files, img_order = 0): ''' print('Connecting to vehicle on: /dev/ttyAMA0') vehicle = connect('/dev/ttyAMA0', wait_ready=True, baud=921600) arm_and_takeoff(vehicle) ''' differences = [] img = cv2.imread(img_files[img_order],-1) akaze = cv2.AKAZE_create() kp_image, desc_image = akaze.detectAndCompute(img,None) matcher = cv2.DescriptorMatcher_create(cv2.DescriptorMatcher_BRUTEFORCE_HAMMING) ''' index_params = dict(algorithm=0,trees = 5) search_params = dict() flann = cv2.FlannBasedMatcher(index_params, search_params) ''' try: while True: start = time.time() _,frame = cap.read() h,w = frame.shape[:2] map1, map2 = cv2.fisheye.initUndistortRectifyMap(K, D, np.eye(3), K, DIM, cv2.CV_16SC2) undistorted_img = cv2.remap(frame, map1, map2, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT) grayframe = cv2.cvtColor(undistorted_img, cv2.COLOR_BGR2GRAY) kp_grayframe, desc_grayframe = akaze.detectAndCompute(grayframe,None) try: matches = matcher.knnMatch(desc_image, desc_grayframe, 2) except Exception as e: print(e) matches = [] good_points=[] for m,n in matches: if m.distance < 0.8*n.distance: good_points.append(m) #homography if len(good_points) > 10: query_points = np.float32([kp_image[m.queryIdx].pt for m in good_points]).reshape(-1,1,2) train_pts = np.float32([kp_grayframe[m.trainIdx].pt for m in good_points]).reshape(-1,1,2) matrix = np.array([]) matrix, mask = cv2.findHomography(query_points, train_pts, cv2.RANSAC, 5.0) matches_mask = mask.ravel().tolist() h, w = img.shape[:-1] pts = np.float32([[0, 0], [0, h-1], [w-1, h-1], [w-1, 0]]).reshape(-1, 1, 2) try: if np.any(matrix == None): matrix = np.array([]) if not matrix.size == 0: dst = cv2.perspectiveTransform(pts, matrix) dst_1 = tuple(np.int32(dst[0])) a = dst_1[0] pt_1 = (a[0],a[1]) dst_2 = tuple(
np.int32(dst[1])
numpy.int32
import pytest import numpy as np @pytest.fixture() def diverse_repo(repo): co = repo.checkout(write=True) co.add_ndarray_column('test', prototype=np.arange(10)) co.add_str_column('test_meta') co.add_bytes_column('test_bytes') co.columns['test'][0] = np.arange(10) co.columns['test'][1] = np.arange(10) + 1 co.columns['test'][2] = np.arange(10) + 2 co.columns['test'][3] = np.arange(10) + 3 co.columns['test'][4] = np.arange(10) + 4 co['test_meta']['hi'] = 'foo' co['test_meta']['aea'] = 'eeae' co['test_bytes']['lol'] = b'foo bytes' co.commit('hello world') sample_trimg = np.arange(50).reshape(5, 10).astype(np.uint8) sample_trlabel = np.array([0], dtype=np.int64) sample_vimg = np.zeros(50).reshape(5, 10).astype(np.uint16) sample_vlabel =
np.array([1], dtype=np.int32)
numpy.array
""" Backend based on Numpy. This code is used to test the theano backend and is a possible option in the preprocessing module. It is too slow to actually train neural networks. """ #%% import numpy as np from scipy.special import expit from scipy.misc import logsumexp as scipy_logsumexp from natural_bm.backend.common import epsilon, set_epsilon, floatx, set_floatx, cast_to_floatx, intx, set_intx #%% Variables def variable(value, dtype=None, name=None): """Instantiates a variable and returns it. # Arguments value: Numpy array, initial value of the tensor. dtype: Tensor type. name: Optional name string for the tensor. # Returns A variable instance . """ if dtype is None: dtype = floatx() if hasattr(value, 'eval'): value = value.eval() return np.asarray(value, dtype=dtype) def placeholder(shape=None, ndim=None, dtype=None, sparse=False, name=None): """Instantiate an input data placeholder variable. """ raise NotImplementedError('This function is not implemented for the numpy backend.') def shape(x): """Returns the shape of a tensor. """ return x.shape def ndim(x): """Returns the dimension of a tensor. """ return x.ndim def dtype(x): """Returns the dtype of a tensor as a string. """ return x.dtype.name def eval(x): """Returns the value of a tensor. """ return x def zeros(shape, dtype=None, name=None): """Instantiates an all-zeros variable. """ if dtype is None: dtype = floatx() return variable(np.zeros(shape), dtype, name) def ones(shape, dtype=None, name=None): """Instantiates an all-ones variable. """ if dtype is None: dtype = floatx() return variable(np.ones(shape), dtype, name) def eye(size, dtype=None, name=None): """Instantiates an identity matrix. """ if dtype is None: dtype = floatx() return variable(np.eye(size), dtype, name) def ones_like(x, dtype=None, name=None): """Instantiates an all-ones variable with the same shape as x. """ return np.ones_like(x, dtype=dtype) def zeros_like(x, dtype=None, name=None): """Instantiates an all-zeros variable with the same shape as x. """ return np.zeros_like(x, dtype=dtype) def cast(x, dtype): """Casts x to dtype. """ if isinstance(x, np.ndarray): x = x.astype(dtype) else: x = np.asarray(x, dtype).item() return x #%% LINEAR ALGEBRA """ Assumed overridden: +, -, /, *, +=, -=, *=, /= """ def dot(x, y): """Dot product of x and y """ return np.dot(x, y) def transpose(x): """Tensor transpose """ return np.transpose(x) def svd(x): """Singular value decomposition (SVD) of x. Returns U, S, V. """ return np.linalg.svd(x) def diag(x): """Extracts diagonal of a tensor. """ return np.diag(x) def fill_diagonal(x, val): """Fills in the diagonal of a tensor. """ n = x.shape[0] x[range(n), range(n)] = val return x def solve(a, b): """Solves the equation ax=b for x. """ return np.linalg.solve(a, b) #%% ELEMENT-WISE OPERATIONS def _keras_axis(x, axis): """This is what keras expects axis to do for things like mean, std, etc """ if isinstance(axis, list): assert len(axis) == 2 and axis[1] == -1, 'Trying to match behavior from keras backend tests' x = np.reshape(x, (x.shape[0], -1)) axis = axis[0] return x, axis def max(x, axis=None, keepdims=False): """Max of the values in a tensor, alongside the specified axis. """ x, axis = _keras_axis(x, axis) return np.max(x, axis=axis, keepdims=keepdims) def min(x, axis=None, keepdims=False): """Min of the values in a tensor, alongside the specified axis. """ x, axis = _keras_axis(x, axis) return np.min(x, axis=axis, keepdims=keepdims) def sum(x, axis=None, keepdims=False): """Sum of the values in a tensor, alongside the specified axis. """ x, axis = _keras_axis(x, axis) return np.sum(x, axis=axis, keepdims=keepdims) def prod(x, axis=None, keepdims=False): """Multiply the values in a tensor, alongside the specified axis. """ x, axis = _keras_axis(x, axis) return np.prod(x, axis=axis, keepdims=keepdims) def cumsum(x, axis=0): """Cumulative sum of the values in a tensor, alongside the specified axis. # Arguments x: A tensor or variable. axis: An integer, the axis to compute the sum. # Returns A tensor of the cumulative sum of values of `x` along `axis`. """ return np.cumsum(x, axis=axis) def cumprod(x, axis=0): """Cumulative product of the values in a tensor, alongside the specified axis. # Arguments x: A tensor or variable. axis: An integer, the axis to compute the product. # Returns A tensor of the cumulative product of values of `x` along `axis`. """ return np.cumprod(x, axis=axis) def mean(x, axis=None, keepdims=False): """Mean of a tensor, alongside the specified axis. """ x, axis = _keras_axis(x, axis) return np.mean(x, axis=axis, keepdims=keepdims) def std(x, axis=None, keepdims=False): """Standard deviation of the values in a tensor, alongside the specified axis. """ x, axis = _keras_axis(x, axis) return np.std(x, axis=axis, keepdims=keepdims) def var(x, axis=None, keepdims=False): """Variance of the values in a tensor, alongside the specified axis. """ x, axis = _keras_axis(x, axis) return np.var(x, axis=axis, keepdims=keepdims) def any(x, axis=None, keepdims=False): """Bitwise reduction (logical OR). """ x, axis = _keras_axis(x, axis) return np.bitwise_or(x, axis=axis, keepdims=keepdims) def all(x, axis=None, keepdims=False): """Bitwise reduction (logical AND). """ x, axis = _keras_axis(x, axis) return np.bitwise_and(x, axis=axis, keepdims=keepdims) def argmax(x, axis=-1): """Index of the maximum of the values in a tensor, alongside the specified axis. """ return np.argmax(x, axis=axis) def argmin(x, axis=-1): """Index of the maximum of the values in a tensor, alongside the specified axis. """ return np.argmin(x, axis=axis) def square(x): """Elementwise square of a tensor. """ return np.square(x) def abs(x): """Absolute value of a tensor. """ return np.abs(x) def sqrt(x): """Square root of a tensor after clipping to positive definite. """ x = np.clip(x, 0., np.inf) return np.sqrt(x) def exp(x): """Exponential of a tensor. """ return np.exp(x) def log(x): """Natural logarithm of a tensor. """ return np.log(x) def logsumexp(x, axis=None, keepdims=False): """Computes log(sum(exp(elements across dimensions of a tensor))). This function is more numerically stable than log(sum(exp(x))). It avoids overflows caused by taking the exp of large inputs and underflows caused by taking the log of small inputs. # Arguments x: A tensor or variable. axis: An integer, the axis to reduce over. keepdims: A boolean, whether to keep the dimensions or not. If `keepdims` is `False`, the rank of the tensor is reduced by 1. If `keepdims` is `True`, the reduced dimension is retained with length 1. # Returns The reduced tensor. """ return scipy_logsumexp(x, axis=axis, keepdims=keepdims) def logdiffexp(x, axis=None, keepdims=False): """Computes the log(diff(exp(elements across dimensions of a tensor))). This function is more numerically stable than log(diff(exp(x))). """ assert x.shape[0] == 2 a = np.max(x) logdiff = a + np.log(np.diff(np.exp(x-a))) logdiff = logdiff.item() return logdiff def round(x): """Round tensor to nearest integer. Rounds half to even. """ return np.round(x) def sign(x): """Sign of tensor. """ return np.sign(x) def pow(x, a): """Elementwise power of a tensor. """ return np.power(x, a) def clip(x, min_value, max_value): """Clips tensor x to be between min_value and max_value """ if max_value is not None and max_value < min_value: max_value = min_value if max_value is None: max_value = np.inf return np.clip(x, min_value, max_value) def equal(x, y): """Elementwise x == y """ return np.equal(x, y) def not_equal(x, y): """Elementwise x != y """ return np.not_equal(x, y) def greater(x, y): """Elementwise x > y """ return np.greater(x, y) def greater_equal(x, y): """Elementwise x >= y """ return np.greater_equal(x, y) def less(x, y): """Elementwise x < y """ return np.less(x, y) def less_equal(x, y): """Elementwise x <= y """ return np.less_equal(x, y) def maximum(x, y): """Elementwise maximum """ return np.maximum(x, y) def minimum(x, y): """Elementwise minimum """ return np.minimum(x, y) def sin(x): """Elementwise sine """ return np.sin(x) def cos(x): """Elementwise cosine """ return np.cos(x) #%% SHAPE OPERATIONS def concatenate(tensors, axis=-1): """Concatenates list of tensors along given axis """ return np.concatenate([x for x in tensors], axis=axis) def reshape(x, shape): """Reshapes tensor x to given shape """ return
np.reshape(x, shape)
numpy.reshape
import numpy as np from openmdao.api import Group, IndepVarComp, ParallelGroup, ScipyGMRES, NLGaussSeidel from openmdao.core.mpi_wrap import MPI if MPI: from openmdao.api import PetscKSP from wakeexchange.floris import floris_wrapper, add_floris_params_IndepVarComps from wakeexchange.gauss import add_gauss_params_IndepVarComps from GeneralWindFarmComponents import WindFrame, AdjustCtCpYaw, MUX, WindFarmAEP, DeMUX, \ CPCT_Interpolate_Gradients_Smooth, WindDirectionPower, add_gen_params_IdepVarComps, \ CPCT_Interpolate_Gradients class RotorSolveGroup(Group): def __init__(self, nTurbines, direction_id=0, datasize=0, differentiable=True, use_rotor_components=False, nSamples=0, wake_model=floris_wrapper, wake_model_options=None): super(RotorSolveGroup, self).__init__() if wake_model_options is None: wake_model_options = {'differentiable': differentiable, 'use_rotor_components': use_rotor_components, 'nSamples': nSamples} from openmdao.core.mpi_wrap import MPI # set up iterative solvers epsilon = 1E-6 if MPI: self.ln_solver = PetscKSP() else: self.ln_solver = ScipyGMRES() self.nl_solver = NLGaussSeidel() self.ln_solver.options['atol'] = epsilon self.add('CtCp', CPCT_Interpolate_Gradients_Smooth(nTurbines, direction_id=direction_id, datasize=datasize), promotes=['gen_params:*', 'yaw%i' % direction_id, 'wtVelocity%i' % direction_id, 'Cp_out']) # TODO refactor the model component instance self.add('floris', wake_model(nTurbines, direction_id=direction_id, wake_model_options=wake_model_options), promotes=(['model_params:*', 'wind_speed', 'axialInduction', 'turbineXw', 'turbineYw', 'rotorDiameter', 'yaw%i' % direction_id, 'hubHeight', 'wtVelocity%i' % direction_id] if (nSamples == 0) else ['model_params:*', 'wind_speed', 'axialInduction', 'turbineXw', 'turbineYw', 'rotorDiameter', 'yaw%i' % direction_id, 'hubHeight', 'wtVelocity%i' % direction_id, 'wsPositionX', 'wsPositionY', 'wsPositionZ', 'wsArray%i' % direction_id])) self.connect('CtCp.Ct_out', 'floris.Ct') class DirectionGroup(Group): """ Group containing all necessary components for wind plant calculations in a single direction """ def __init__(self, nTurbines, direction_id=0, use_rotor_components=False, datasize=0, differentiable=True, add_IdepVarComps=True, params_IdepVar_func=add_floris_params_IndepVarComps, params_IndepVar_args=None, nSamples=0, wake_model=floris_wrapper, wake_model_options=None, cp_points=1, cp_curve_spline=None): super(DirectionGroup, self).__init__() if add_IdepVarComps: if params_IdepVar_func is not None: if (params_IndepVar_args is None) and (wake_model is floris_wrapper): params_IndepVar_args = {'use_rotor_components': False} elif params_IndepVar_args is None: params_IndepVar_args = {} params_IdepVar_func(self, **params_IndepVar_args) add_gen_params_IdepVarComps(self, datasize=datasize) self.add('directionConversion', WindFrame(nTurbines, differentiable=differentiable, nSamples=nSamples), promotes=['*']) if use_rotor_components: self.add('rotorGroup', RotorSolveGroup(nTurbines, direction_id=direction_id, datasize=datasize, differentiable=differentiable, nSamples=nSamples, use_rotor_components=use_rotor_components, wake_model=wake_model, wake_model_options=wake_model_options), promotes=(['gen_params:*', 'yaw%i' % direction_id, 'wtVelocity%i' % direction_id, 'model_params:*', 'wind_speed', 'axialInduction', 'turbineXw', 'turbineYw', 'rotorDiameter', 'hubHeight'] if (nSamples == 0) else ['gen_params:*', 'yaw%i' % direction_id, 'wtVelocity%i' % direction_id, 'model_params:*', 'wind_speed', 'axialInduction', 'turbineXw', 'turbineYw', 'rotorDiameter', 'hubHeight', 'wsPositionX', 'wsPositionY', 'wsPositionZ', 'wsArray%i' % direction_id])) else: self.add('CtCp', AdjustCtCpYaw(nTurbines, direction_id, differentiable), promotes=['Ct_in', 'Cp_in', 'gen_params:*', 'yaw%i' % direction_id]) self.add('myModel', wake_model(nTurbines, direction_id=direction_id, wake_model_options=wake_model_options), promotes=(['model_params:*', 'wind_speed', 'axialInduction', 'turbineXw', 'turbineYw', 'rotorDiameter', 'yaw%i' % direction_id, 'hubHeight', 'wtVelocity%i' % direction_id] if (nSamples == 0) else ['model_params:*', 'wind_speed', 'axialInduction', 'turbineXw', 'turbineYw', 'rotorDiameter', 'yaw%i' % direction_id, 'hubHeight', 'wtVelocity%i' % direction_id, 'wsPositionXw', 'wsPositionYw', 'wsPositionZ', 'wsArray%i' % direction_id])) self.add('powerComp', WindDirectionPower(nTurbines=nTurbines, direction_id=direction_id, differentiable=True, use_rotor_components=use_rotor_components, cp_points=cp_points, cp_curve_spline=cp_curve_spline), promotes=['air_density', 'generatorEfficiency', 'rotorDiameter', 'wtVelocity%i' % direction_id, 'rated_power', 'wtPower%i' % direction_id, 'dir_power%i' % direction_id, 'cut_in_speed', 'cp_curve_cp', 'cp_curve_vel']) if use_rotor_components: self.connect('rotorGroup.Cp_out', 'powerComp.Cp') else: self.connect('CtCp.Ct_out', 'myModel.Ct') self.connect('CtCp.Cp_out', 'powerComp.Cp') class AEPGroup(Group): """ Group containing all necessary components for wind plant AEP calculations using the FLORIS model """ def __init__(self, nTurbines, nDirections=1, use_rotor_components=False, datasize=0, differentiable=True, optimizingLayout=False, nSamples=0, wake_model=floris_wrapper, wake_model_options=None, params_IdepVar_func=add_floris_params_IndepVarComps, params_IndepVar_args=None, cp_points=1, cp_curve_spline=None, rec_func_calls=False): super(AEPGroup, self).__init__() if wake_model_options is None: wake_model_options = {'differentiable': differentiable, 'use_rotor_components': use_rotor_components, 'nSamples': nSamples, 'verbose': False} # providing default unit types for general MUX/DeMUX components power_units = 'kW' direction_units = 'deg' wind_speed_units = 'm/s' # add necessary inputs for group self.add('dv0', IndepVarComp('windDirections', np.zeros(nDirections), units=direction_units), promotes=['*']) self.add('dv1', IndepVarComp('windSpeeds', np.zeros(nDirections), units=wind_speed_units), promotes=['*']) self.add('dv2', IndepVarComp('windFrequencies', np.ones(nDirections)), promotes=['*']) self.add('dv3', IndepVarComp('turbineX', np.zeros(nTurbines), units='m'), promotes=['*']) self.add('dv4', IndepVarComp('turbineY', np.zeros(nTurbines), units='m'), promotes=['*']) self.add('dv4p5', IndepVarComp('hubHeight', np.zeros(nTurbines), units='m'), promotes=['*']) # add vars to be seen by MPI and gradient calculations self.add('dv5', IndepVarComp('rotorDiameter', np.zeros(nTurbines), units='m'), promotes=['*']) self.add('dv6', IndepVarComp('axialInduction', np.zeros(nTurbines)), promotes=['*']) self.add('dv7', IndepVarComp('generatorEfficiency', np.zeros(nTurbines)), promotes=['*']) self.add('dv8', IndepVarComp('air_density', val=1.1716, units='kg/(m*m*m)'), promotes=['*']) self.add('dv9', IndepVarComp('rated_power', np.ones(nTurbines)*5000., units='kW', desc='rated power for each turbine', pass_by_obj=True), promotes=['*']) if not use_rotor_components: self.add('dv10', IndepVarComp('Ct_in', np.zeros(nTurbines)), promotes=['*']) self.add('dv11', IndepVarComp('Cp_in', np.zeros(nTurbines)), promotes=['*']) self.add('dv12', IndepVarComp('cp_curve_cp', np.zeros(datasize), desc='cp curve cp data', pass_by_obj=True), promotes=['*']) self.add('dv13', IndepVarComp('cp_curve_vel', np.zeros(datasize), units='m/s', desc='cp curve velocity data', pass_by_obj=True), promotes=['*']) self.add('dv14', IndepVarComp('cut_in_speed',
np.zeros(nTurbines)
numpy.zeros
import os import tempfile import pytest import numpy as np from pycorr import TwoPointCounter, AnalyticTwoPointCounter, utils, setup_logging from pycorr.twopoint_counter import TwoPointCounterError def diff(position2, position1): return [p2 - p1 for p1, p2 in zip(position1, position2)] def midpoint(position1, position2): return [p2 + p1 for p1, p2 in zip(position1, position2)] def norm(position): return (sum(p**2 for p in position))**0.5 def dotproduct(position1, position2): return sum(x1 * x2 for x1, x2 in zip(position1, position2)) def dotproduct_normalized(position1, position2): return dotproduct(position1, position2) / (norm(position1) * norm(position2)) def get_weight(xyz1, xyz2, weights1, weights2, n_bitwise_weights=0, twopoint_weights=None, nrealizations=None, noffset=1, default_value=0.): if nrealizations is None: weight = 1 else: denom = noffset + sum(bin(w1 & w2).count('1') for w1, w2 in zip(weights1[:n_bitwise_weights], weights2[:n_bitwise_weights])) weight = default_value if denom == 0 else nrealizations / denom for w1, w2 in zip(weights1[n_bitwise_weights:], weights2[n_bitwise_weights:]): weight *= w1 * w2 if twopoint_weights is not None: sep_twopoint_weights = twopoint_weights.sep twopoint_weights = twopoint_weights.weight if all(x1 == x2 for x1, x2 in zip(xyz1, xyz2)): costheta = 1. else: costheta = min(dotproduct_normalized(xyz1, xyz2), 1) if (sep_twopoint_weights[0] < costheta <= sep_twopoint_weights[-1]): ind_costheta =
np.searchsorted(sep_twopoint_weights, costheta, side='left', sorter=None)
numpy.searchsorted
from __future__ import annotations import qimpy as qp import numpy as np import torch from qimpy.utils import TaskDivision, BufferView from typing import Tuple, Callable IndicesType = Tuple[torch.Tensor, torch.Tensor, torch.Tensor] MethodFFT = Callable[["qp.grid.Grid", torch.Tensor], torch.Tensor] FunctionFFT = Callable[[torch.Tensor], torch.Tensor] def _init_grid_fft(self: qp.grid.Grid) -> None: """Initialize local or parallel FFTs for class Grid.""" # Half-reciprocal space global dimensions (for rfft/irfft): self.shapeH = (self.shape[0], self.shape[1], 1 + self.shape[2] // 2) qp.log.info(f"real-fft shape: {self.shapeH}") # MPI division: self.split0 = TaskDivision( n_tot=self.shape[0], n_procs=self.n_procs, i_proc=self.i_proc ) self.split2 = TaskDivision( n_tot=self.shape[2], n_procs=self.n_procs, i_proc=self.i_proc ) self.split2H = TaskDivision( n_tot=self.shapeH[2], n_procs=self.n_procs, i_proc=self.i_proc ) # Overall local grid dimensions: self.shapeR_mine = (self.split0.n_mine, self.shape[1], self.shape[2]) self.shapeG_mine = (self.shape[0], self.shape[1], self.split2.n_mine) self.shapeH_mine = (self.shape[0], self.shape[1], self.split2H.n_mine) if self.n_procs > 1: qp.log.info(f"split over {self.n_procs} processes:") qp.log.info(f" local selected shape: {self.shapeR_mine}") qp.log.info(f" local full-fft shape: {self.shapeG_mine}") qp.log.info(f" local real-fft shape: {self.shapeH_mine}") # Create 1D grids for real and reciprocal spaces: # --- global versions first iv1D = tuple(torch.arange(s, device=qp.rc.device) for s in self.shape) iG1D = tuple( torch.where(iv <= self.shape[dim] // 2, iv, iv - self.shape[dim]) for dim, iv in enumerate(iv1D) ) # --- slice parts of Real, G-space and Half G-space for `get_mesh`: self._mesh1D = { # Global versions: "R": iv1D, "G": iG1D, "H": iG1D[:2] + (iG1D[2][: self.shapeH[2]],), } self._mesh1D_mine = { # Local versions: "R": (iv1D[0][self.split0.i_start : self.split0.i_stop],) + iv1D[1:], "G": iG1D[:2] + (iG1D[2][self.split2.i_start : self.split2.i_stop],), "H": iG1D[:2] + (iG1D[2][self.split2H.i_start : self.split2H.i_stop],), } def get_indices(in_prev: np.ndarray, n_out_mine: int) -> IndicesType: """Get index arrays for unscrambling data after MPI rearrangement. A common operation below is taking an array split along axis 'in' and doing an MPI all-to-all to split it along axis 'out'. Before the MPI transfer, the array must be rearranged to bring the out axis as dimension 0. After doing this, the array will have dimensions n_out x (batch-dims) x n_inMine x S[1]. Note that the middle spatial dimension S[1] is never split. The differing chunk-size in all-to-all scrambles the result, and this routine provides indices that put the data in the right order to then view as (batch-dims) x n_out_mine x S[1] x n_in. The results of this function should be linearly combined with 1, i_batch and n_batch to get net indexes for a given batch size. Parameters ---------- in_prev : numpy.array of ints Cumulative counts of dimension split at input n_out_mine : int Local length of dimension split at output Returns ------- index_1 : torch.Tensor of ints Coefficient of 1 in final index index_i_batch : torch.Tensor of ints Coefficient of i_batch in final index index_n_batch : torch.Tensor of ints Coefficient of n_batch in final index """ i_out_mine = np.arange(n_out_mine) # 1D index on out-split array i_in = np.arange(in_prev[-1]) # 1D index on out-unified array in_each = in_prev[1] - in_prev[0] # block size of input split in_counts =
np.diff(in_prev)
numpy.diff
""" <NAME> Date: June 16, 2021 functions for calculating Solar velocity corrections and components for derivation of SDO/HMI RVs """ import datetime import numpy as np import astropy.units as u from astropy.coordinates import SkyCoord import sunpy.map from sunpy.net import Fido from sunpy.net import attrs as a from sunpy.coordinates import frames from skimage.measure import label, regionprops from SolAster.tools.settings import Parameters def map_sequence(dates_list, time_range=datetime.timedelta(seconds=6), instrument=a.Instrument.aia, wavelength=a.Wavelength(171 * u.angstrom)): """ function to query sunpy for images within certain time range of dates in dates list user specified instrument and wavelength, otherwise default values: AIA 171A Parameters ---------- dates_list: datetime, list list of dates, either datetime or strings time_range: datetime timedelta plus/minus time range to search for images in comparison to desired timestamp instrument: astropy inst Sunpy instrument of choice (AIA, HMI, LASCO, EIT) wavelength: astropy wvlth desired wavelength of choice instrument Returns ------- maps: map Sunpy map sequence object """ if isinstance(dates_list[0][0], str): datetimes = [datetime.datetime.strptime(date[0], '%Y-%m-%dT%H:%M:%S') for date in dates_list] else: datetimes = dates_list downloaded_files = [] for ind, datetime_object in enumerate(datetimes): # pull image within specified time range result = Fido.search(a.Time(str(datetime_object - time_range), str(datetime_object + time_range)), instrument, wavelength) # add file to list downloaded_files.append(Fido.fetch(result)) # build map sequence from files maps = sunpy.map.Map(downloaded_files, sequence=True) return maps def rel_positions(wij, nij, rij, smap): """ function to calculate pixel-wise relative positions in new coordinate frame Parameters ---------- wij: float, array array of westward values for image nij: float, array array of northward values for image rij: float, array array of radius values for image smap: map Sunpy map object Returns ------- deltaw: float, array relative westward position of pixel deltan: float, array relative northward position of pixel deltar: float, array relative radial position of pixel dij: float distance between pixel ij and spacecraft """ # calculate relative positions of each pixel rsc = smap.meta['dsun_obs'] / smap.meta['rsun_ref'] deltaw = wij deltan = nij deltar = rij - rsc dij = np.sqrt(deltaw ** 2 + deltan ** 2 + deltar ** 2) return deltaw, deltan, deltar, dij def spacecraft_vel(deltaw, deltan, deltar, dij, vmap): """ function to calculate pixel-wise spacecraft velocities for Sunpy map Based on Haywood et al. (2016) and described in Ervin et al. (2021) - In Prep. Parameters ---------- deltaw: float, array relative westward position of pixel deltan: float, array relative northward position of pixel deltar: float, array relative radial position of pixel dij: float distance between pixel ij and spacecraft vmap: map Sunpy map object (Dopplergram) Returns ------- vsc: float, array array of spacecraft velocities """ # velocity of spacecraft relative to sun vscw = vmap.meta['obs_vw'] vscn = vmap.meta['obs_vn'] vscr = vmap.meta['obs_vr'] # pixel-wise magnitude of spacecraft velocity vsc = - (deltaw * vscw + deltan * vscn + deltar * vscr) / dij return vsc def solar_rot_vel(wij, nij, rij, deltaw, deltan, deltar, dij, vmap, a_parameters=[Parameters.a1, Parameters.a2, Parameters.a3]): """ function to calculate pixel-wise velocities due to solar rotation Based on Haywood et al. (2016) and described in Ervin et al. (2021) - In Prep. Parameters ---------- wij: float, array array of westward values for image nij: float, array array of northward values for image rij: float, array array of radius values for image deltaw: float, array relative westward position of pixel deltan: float, array relative northward position of pixel deltar: float, array relative radial position of pixel dij: float distance between pixel ij and spacecraft vmap: map Sunpy map object (Dopplergram) a_parameters: float, array array of solar differential rotation parameters from Snodgrass & Ulrich (1990). Returns ------- vrot: float, array array of solar rotation velocities\ """ # apply to cartesian coordinates x1 = wij y1 = nij * np.cos(np.deg2rad(vmap.meta['crlt_obs'])) + rij * np.sin(np.deg2rad(vmap.meta['crlt_obs'])) z1 = - nij * np.sin(
np.deg2rad(vmap.meta['crlt_obs'])
numpy.deg2rad
#!/usr/bin/env python # coding: utf-8 # # Multiple-Network Representation Learning # ## Aliens and Humans # Say you're a brain researcher, and you have a bunch of scans of brains - some are scans of people, and some are scans of aliens. You have some code that estimates networks from your scans, so you turn all your scans into networks. The nodes represent the brain regions which are common to both humans and aliens (isn't evolution amazing?), and the edges represent communication between these brain regions. You want to know if the human and alien networks share a common grouping of regions (your research topic is titled, "Do Alien Brains Have The Same Hemispheres That We Do?"). What do you do? How do you even deal with situations in which you have a lot of networks whose nodes all represent the same objects, but whose edges might come from totally different distributions? # # Well, if your goal is to find the shared grouping of regions between the human and alien networks, you could try embedding your networks and then seeing what those embeddings look like. This would serve the dual purpose of having less stuff to deal with and having some way to directly compare all of your networks in the same space. Finding an embedding is also simply useful in general, because embedding a network or group of networks opens the door to machine learning methods designed for tabular data. # # For example, say you have four alien networks and four human networks. Since alien brain networks aren't currently very accessible, we'll just simulate our human and alien networks with Stochastic Block Models. The communities that we're trying to group all of the brain regions into are the two hemispheres of the brain. We'll design the human brains to have strong connections within hemispheres, and we'll design the alien brains to have strong connections between hemispheres -- but the same regions still correspond to the same hemispheres. # # we'll use a relatively small number of nodes and fairly small block probabilities. You can see the specific parameters in the code below. # In[1]: import warnings import numpy as np warnings.filterwarnings("ignore") np.random.seed(42) get_ipython().run_line_magic('load_ext', 'autoreload') # In[2]: import numpy as np from graspologic.simulations import sbm # Generate networks from an SBM, given some parameters def make_sbm(*probs, n=100, return_labels=False): pa, pb, pc, pd = probs P = np.array([[pa, pb], [pc, pd]]) return sbm([n, n], P, return_labels=return_labels) # make nine human networks # and nine alien networks p1, p2, p3 = .12, .06, .03 n = 100 labels = [0]*n + [1]*n humans = [make_sbm(p1, p3, p3, p1, n=n) for i in range(4)] aliens = [make_sbm(p3, p1, p1, p3, n=n) for i in range(4)] # The human and alien networks come from very different distributions. As you can see from the Stochastic Block Model structure below, the regions in the human and the alien brains can both be separated into two communities. These communities represent the two hemispheres of the brain (who knew aliens also have bilateralized brains!). Although both humans and aliens have the same regions belonging to their respective hemispheres, as we planned, the alien networks have a strange property: their brain regions have more connections with regions in the opposite hemisphere than the same one. # In[3]: import matplotlib.pyplot as plt import matplotlib as mpl from mpl_toolkits.axes_grid1 import ImageGrid from graspologic.plot import binary_heatmap, adjplot, heatmap import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap get_ipython().run_line_magic('config', "InlineBackend.figure_format = 'retina'") def lined_heatmap(data, binary=True, lines_every_n=None, alpha=.8, *args, **kwargs): if binary: ax = binary_heatmap(data, *args, **kwargs) else: ax = heatmap(data, *args, **kwargs) if lines_every_n is None: n = len(data) // 2 else: n = lines_every_n ax.vlines(n, 0, n*2, colors="black", lw=.9, linestyle="dashed", alpha=alpha) ax.hlines(n, 0, n*2, colors="black", lw=.9, linestyle="dashed", alpha=alpha) return ax def add_legend(ax=None, legend_labels=["No Edge", "Edge"], colors=["white", "black"], bbox_to_anchor=(1.15, .5), **kwargs): fig = plt.gcf() if ax is None: ax = plt.gca() patches = [] for c, l in zip(colors, legend_labels): patches.append(mpl.patches.Patch(facecolor=c, label=l, edgecolor="black")) fig.legend( patches, legend_labels, facecolor="white", edgecolor="black", framealpha=1, fontsize="x-large", loc="center right", bbox_to_anchor=bbox_to_anchor, **kwargs ) fig = plt.figure(figsize=(14,7)) grid1 = ImageGrid(fig, 121, (2, 2), axes_pad=.1, share_all=True) grid2 = ImageGrid(fig, 122, (2, 2), axes_pad=.1, share_all=True) for i, (axi, axj) in enumerate(zip(grid1, grid2)): hmn = lined_heatmap(humans[i], ax=axi, legend=False, outline=True) hma = lined_heatmap(aliens[i], ax=axj, legend=False, outline=True) grid1.axes_all[0].set_title("Human Brain Networks", fontsize=24, y=1.05, loc="left") grid2.axes_all[0].set_title("Alien Brain Networks", fontsize=24, y=1.05, loc="left") add_legend(grid2.axes_all[2]) plt.tight_layout(w_pad=3) # ## Different ways to Embed the Networks # Remember, our goal is to find community structure common to both humans and aliens, and in our case that community structure is the brain hemispheres. We're going to try to to embed our brain networks into some lower-dimensional space - that way, we can use standard clustering methods from machine learning to figure out which regions are grouped. Try to think about how you might find a lower-dimensional embedding where the location of each node's latent positions uses information from all of the networks. # ### Averaging Separately # The first idea you might come up with is to average your networks together, and then embed the result of that averaging with Spectral Embedding. It turns out that this is actually the right idea in the very special case where all of your networks come from the same probability distribution. In our case, we'll try averaging our groups of networks separately: we'll treat the human networks as one group, and the alien networks as another group, and we'll average each independently. In the end, we'll have two separate embeddings. # In[4]: from graspologic.embed import AdjacencySpectralEmbed as ASE # Compute the average adjacency matrix for # human brains and alien brains human_mean_network = np.array(humans).mean(axis=0) alien_mean_network = np.array(aliens).mean(axis=0) # Embed both matrices ase = ASE(n_components=2) human_latents = ase.fit_transform(human_mean_network) alien_latents = ase.fit_transform(alien_mean_network) # Below, you can see what happens when we embed the averaged human and alien networks separately. Like all of our embedding plots, each dot represents the latent positions for a particular node. # In[5]: import seaborn as sns def plot_latents(latent_positions, *, title=None, labels=None, ax=None, legend=True, fontdict=None, **kwargs): if ax is None: ax = plt.gca() plot = sns.scatterplot(latent_positions[:, 0], latent_positions[:, 1], hue=labels, s=10, ax=ax, palette="Set1", color='k', **kwargs) if title is not None: plot.set_title(title, wrap=True, fontdict=fontdict, loc="left"); ax.axes.xaxis.set_visible(False) ax.axes.yaxis.set_visible(False) h, _ = plot.get_legend_handles_labels() if legend and h: ax.legend(title="Community") elif not legend and np.any(labels): ax.get_legend().remove() return plot # plot fig, axs = plt.subplots(ncols=2, figsize=(10, 5)) plot_latents(human_latents, title="Embedding when we average the human \nnetworks", ax=axs[0]); plot_latents(alien_latents, title="Embedding when we average the alien \nnetworks", ax=axs[1]); # Both of these embeddings have clear clustering: there are two communities of nodes in both the human and the alien networks. We can recover the labels for these communities fairly easily using our pick of unsupervised clustering method. We know that the latent positions in each community of an Adjacency Spectral Embedding are normally distributed under this simulation setting, and we have two communities. That means that the above embeddings are distributed according to a Gaussian Mixture. Here, "Gaussian" just means "normal", and a gaussian mixture just means that we have groups of normally distributed data clusters. As a result, it makes sense to cluster these data using scikit-learn's GaussianMixture implementation. We'll also use graspologic's `remap_labels` utility function to make sure that index of the nodes matches for both our predicted alien and human labels. # In[6]: from sklearn.mixture import GaussianMixture as GMM from graspologic.utils import remap_labels # Predict labels for the human and alien brains human_labels = GMM(n_components=2).fit_predict(human_latents) alien_labels = GMM(n_components=2).fit_predict(alien_latents) # Make corresponding communities have the same values alien_labels = remap_labels(human_labels, alien_labels) # You can see a plot that predicts our community structure below. Success! When we embed the human and the alien networks separately, averaging them clearly lets us cluster the brain regions by hemisphere. However, as you can see, the colors are flipped: the communities are in different places relative to each other. This is because the alien networks are drawn from a different distribution than the human networks. # In[7]: fig, axs = plt.subplots(ncols=2, figsize=(10, 5)) plot_latents(human_latents, title="Clustering our averaged human network \nembedding with a GMM", labels=human_labels, ax=axs[0], legend=False) plot_latents(alien_latents, title="Clustering our averaged alien network \nembedding with a GMM", labels=alien_labels, ax=axs[1], legend=False) plt.legend(loc=(1.15, .4), fontsize="x-large", title="Community", title_fontsize=16); # ### Averaging Together # But what if you wanted to embed *all* of the networks into the same space, both the human and the alien networks, so that there's only one plot? Let's try it. We'll take all of the networks and then average them together, and then do an Adjacency Spectral Embedding. This will result in a single plot, with each point representing a single brain region. Do you think we'll still find this nice community separation? # In[8]: total_mean_matrix = np.array(humans + aliens).mean(axis=0) all_latents = ase.fit_transform(total_mean_matrix) # In[9]: plot_latents(all_latents, title="Embedding when we average everything together"); # Nope, bummer. Our community separation into discrete hemispheres is gone - the human networks and the alien networks cancelled each other out. As far as anybody can tell, our latent positions have just become meaningless noise, so we can't cluster and find communities like we did before. # #### Why Did Averaging Together Fail? # Why did this happen? Well, let's go back and compare one human brain network with one alien brain network. # In[10]: fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(10, 5)) hmn = lined_heatmap(humans[0], ax=axs[0], legend=False, title="One Human Brain Network") hma = lined_heatmap(aliens[0], ax=axs[1], legend=False, title="One Alien Brain Network") add_legend(humans[0]) plt.tight_layout() # The human network has more edges in the upper-left and lower-left quadrants of the heatmap. This implies that two regions in the same hemisphere are more likely to be connected for humans than two regions in opposite hemispheres. # # The alien network tells a different story. For aliens, two regions in opposite hemispheres are more likely to be connected than two regions in the same hemisphere. # # But what happens when you average these two adjacency matrices together? # In[11]: combined = np.array([humans[0], aliens[0]]) averaged = np.mean(combined, axis=0) # In[12]: from graspologic.plot import heatmap # plot fig, ax = plt.subplots() cmap = plt.get_cmap('Greys', 3) hm = heatmap(averaged, title="Averaged Brain Network", cbar=False, cmap=cmap, center=None, ax=ax); sns.despine(ax=hm, top=False, bottom=False, left=False, right=False) hm.vlines(n, 0, n*2, colors="black", lw=.9, linestyle="dashed", alpha=.8) hm.hlines(n, 0, n*2, colors="black", lw=.9, linestyle="dashed", alpha=.8) # # colorbar add_legend(hm, legend_labels=["Edge in no networks", "Edge in one network", "Edge in both networks"], colors=["white", "grey", "black"], bbox_to_anchor=(1.3, .5)) # cax = fig.add_axes([.8, 0.25, 0.05, 0.5]) # im = ax.imshow(averaged, cmap=cmap, vmin=-0.2, vmax=1.2) # cbar = plt.colorbar(im, cax=cax, ticks=[0, .5, 1], ) # cbar.set_ticklabels(["Edge in no networks", "Edge in one network", "Edge in both networks"]) # By averaging, we've lost all of the community structure used to exist. That's why our big averaged embedding failed. # # We've just discovered that even though it's oten a great idea to simply average all of your networks together - for example, if they were drawn from the same distribution - it's often a horrible idea to average all of your networks if they might come from different distributions. This is a case of averaging networks which are "heterogeneous": Not only are your networks slightly different, but they're *expected* to be different because, again, they're drawn from different distributions. Sampling a lot of heterogenous networks and then averaging them, as you can see from our exploration above, can result in losing the community signal you might have had. # # We'd like to find a way to compare these heterogeneous networks directly, so that we can embed all of our networks into the same space and still keep that nice community structure. Figuring out the best way to do this is a topic under active research, and the set of techniques and tools that have developed as a result are together called multiple-network representation learning. # ## Different Types of Multiple-Network Representation Learning # Let's take a moment to explore some of the possible general approaches we could take in multiple-network representation learning. At some point we need to combine the many individual representations of our networks into one, and there are at least three possible places where we could do this: combining the networks together, combining the networks separately, and combining the embeddings. Each of these eventually results in a latent position representation for our networks. It's important to note that in all of these approaches, we're simply learning representations for our groups of networks. You can do whatever you want with these representations; in our case, we'll illustrate that we can use them to classify our nodes. # ### Combining the Networks Together # With this approach, you'll start with a set of networks, and then you'll combine them all into a single network prior to doing anything else. You can then embed and classify this network directly. What we did before, averaging the human and alien networks, was an example of combining our networks -- we just averaged all of our adjacency matrices, and then we embedded the result. # In[13]: from graspologic.embed import MultipleASE as MASE from graspologic.embed import OmnibusEmbed as OMNI from graspologic.embed.omni import _get_omni_matrix from graspologic.plot import heatmap fig = plt.figure(); def rm_ticks(ax, x=False, y=False, **kwargs): if x is not None: ax.axes.xaxis.set_visible(x) if y is not None: ax.axes.yaxis.set_visible(y) sns.despine(ax=ax, **kwargs) fig = plt.figure(); # add stack of heatmaps for i in range(4): ax = fig.add_axes([.02*i, -.02*i, .8, .8]) ax = binary_heatmap(humans[i], ax=ax, legend=False) if i == 0: ax.set_title("Adjacency Matrices", loc="left", fontsize=16) rm_ticks(ax, top=False, right=False) ax.vlines(n, 0, n*2, colors="black", lw=.9, linestyle="dashed", alpha=.8) ax.hlines(n, 0, n*2, colors="black", lw=.9, linestyle="dashed", alpha=.8) # add arrow arrow_ax = fig.add_axes([.8, .3, .3, .1]) rm_ticks(arrow_ax, left=True, bottom=True) plt.arrow(x=0, y=0, dx=1, dy=0, width=.1, color="black") # add joint matrix omni_ax = fig.add_axes([1, -.02*3, .8, .8]) A = human_mean_network.copy() a_hm = heatmap(A, ax=omni_ax, cbar=False) a_hm.set_title("Joint Matrix", loc="left", fontsize=16) for _, spine in a_hm.spines.items(): spine.set_visible(True) # add second arrow arrow_ax = fig.add_axes([1.75, .3, .3, .1]) rm_ticks(arrow_ax, left=True, bottom=True) plt.arrow(x=0, y=0, dx=1, dy=0, width=.1, color="black") # add averaged embedding omni_embed_ax = fig.add_axes([2.1, -.02*3, .55, .8]) plot_latents(human_latents, ax=omni_embed_ax, title="Joint Embedding", fontdict={'fontsize': 16}) rm_ticks(omni_embed_ax, top=False, right=False) # add third arrow arrow_ax = fig.add_axes([2.7, .3, .3, .1]) rm_ticks(arrow_ax, left=True, bottom=True) plt.arrow(x=0, y=0, dx=1, dy=0, width=.1, color="black") # classify mase_ax = fig.add_axes([3.05, -.02*3, .55, .8]) plot_latents(human_latents, ax=mase_ax, title="Classification", fontdict={'fontsize': 16}, labels=human_labels, legend=False); # plt.suptitle("Combining the Networks", x=2, y=1.1, fontsize=26); # ### Combining The Networks Separately # The above approach is nice for collapsing our information into a single embedding -- with each point in our final embedding representing a single node of our network. However, there are situations in which we might want to keep our embeddings separate, but make sure that they're in the same latent space -- meaning, the embeddings aren't rotations of each other. That way, we can directly compare the embeddings of our separate embeddings. # In[14]: from graspologic.embed import MultipleASE as MASE from graspologic.embed import OmnibusEmbed as OMNI from graspologic.embed.omni import _get_omni_matrix from graspologic.plot import heatmap def rm_ticks(ax, x=False, y=False, **kwargs): if x is not None: ax.axes.xaxis.set_visible(x) if y is not None: ax.axes.yaxis.set_visible(y) sns.despine(ax=ax, **kwargs) fig = plt.figure(); # add stack of heatmaps for i in range(4): ax = fig.add_axes([.02*i, -.02*i, .8, .8]) ax = binary_heatmap(humans[i], ax=ax, legend=False) if i == 0: ax.set_title("Adjacency Matrices", loc="left", fontsize=16) rm_ticks(ax, top=False, right=False) ax.vlines(n, 0, n*2, colors="black", lw=.9, linestyle="dashed", alpha=.8) ax.hlines(n, 0, n*2, colors="black", lw=.9, linestyle="dashed", alpha=.8) # add arrow arrow_ax = fig.add_axes([.8, .3, .3, .1]) rm_ticks(arrow_ax, left=True, bottom=True) plt.arrow(x=0, y=0, dx=1, dy=0, width=.1, color="black") # add joint matrix omni_ax = fig.add_axes([1, -.02*3, .8, .8]) A = _get_omni_matrix(humans[:2]+aliens[:2]) a_hm = heatmap(A, ax=omni_ax, cbar=False) a_hm.set_title("Joint Matrix", loc="left", fontsize=16) for _, spine in a_hm.spines.items(): spine.set_visible(True) # add second arrow arrow_ax = fig.add_axes([1.75, .3, .3, .1]) rm_ticks(arrow_ax, left=True, bottom=True) plt.arrow(x=0, y=0, dx=1, dy=0, width=.1, color="black") # add omni embedding latents_omni = OMNI(n_components=2).fit_transform(humans[:2]+aliens[:2]) for i, embedding in enumerate(latents_omni): ax = fig.add_axes([2.1+.02*i, -.02*i, .55, .8]) if i == 0: ax.set_title("Separate Combination", loc="left", fontsize=16) plot = sns.scatterplot(embedding[:, 0], embedding[:, 1], s=10, ax=ax, color="black") rm_ticks(ax, top=False, right=False) # ### Combining the embeddings # The final approach to multiple-network representation learning that we'll talk about is combining the embeddings themselves. With this approach, you're waiting until you've already embnedded all of your networks separately before you combine them, either with Adjacency Spectral Embedding or with some other single-network embedding method. Multiple Adjacency Spectral Embedding, which we'll be talking about soon, is an example of this approach. # In[15]: fig = plt.figure() # add stack of heatmaps for i in range(4): ax = fig.add_axes([.02*i, -.02*i, .5, .5]) ax = binary_heatmap(humans[i], ax=ax, legend=False) if i == 0: ax.set_title("Adjacency Matrices", loc="right") rm_ticks(ax, top=False, right=False) ax.vlines(n, 0, n*2, colors="black", lw=.9, linestyle="dashed", alpha=.8) ax.hlines(n, 0, n*2, colors="black", lw=.9, linestyle="dashed", alpha=.8) # add arrow arrow_ax = fig.add_axes([.5, .2, .3, .1]) rm_ticks(arrow_ax, left=True, bottom=True) plt.arrow(x=0, y=0, dx=1, dy=0, width=.1, color="black") # add stack of latent plots for i in range(4): ax = fig.add_axes([.8+.02*i, -.02*i, .35, .5]) if i == 0: ax.set_title("Separate Embeddings") latents = ase.fit_transform(humans[i]) plot = sns.scatterplot(latents[:, 0], latents[:, 1], s=10, ax=ax, color="black") rm_ticks(ax, top=False, right=False) # add second arrow arrow_ax = fig.add_axes([1.25, .2, .3, .1]) rm_ticks(arrow_ax, left=True, bottom=True) plt.arrow(x=0, y=0, dx=1, dy=0, width=.1, color="black") # add group embeddings mase = MASE(n_components=2) latents_mase = mase.fit_transform(humans + aliens) mase_ax = fig.add_axes([1.57, -.03, .35, .5]) plot_latents(latents_mase, ax=mase_ax, title="Joint Embedding") rm_ticks(mase_ax, top=False, right=False) # add third arrow arrow_ax = fig.add_axes([1.95, .2, .3, .1]) rm_ticks(arrow_ax, left=True, bottom=True) plt.arrow(x=0, y=0, dx=1, dy=0, width=.1, color="black") # classify labels_normal = GMM(n_components=2).fit_predict(human_latents) mase_ax = fig.add_axes([2.27, -.03, .35, .5]) plot_latents(latents_mase, ax=mase_ax, title="Classification", labels=labels_normal, legend=False) plt.suptitle("Combining the Embeddings", x=1.4, y=.7, fontsize=20); # For the rest of this section, we'll explore the strengths and weaknesses of different particular techniques which use these approaches. The first we'll look at is combines the embeddings, like above. It's called Multiple Adjacency Spectral Embedding, or MASE for short. # ## Multiple Adjacency Spectral Embedding # MASE is a technique which combines embeddings by concatennating and re-embedding the separate latent positions into a single space. It's nice because you don't actually need each network to be generated from the same distribution - you only need the nodes of the different networks to be aligned and for them to belong to the same communities. # # MASE is probably the easiest to understand if you know how Adjacency Spectral Embeddings work. Say you have some number of networks, and (like we said above) their nodes are aligned. The goal of MASE is to embed the networks into a single space, with each point in that space representing a single node - but, unlike simply averaging, MASE lets you combine networks which aren't necessarily drawn from the same distribution. MASE is based on the common subspace independent-edge (COSIE) model from the multi-network models section of chapter 5, so we're operating under the assumption that there *is* some low-dimensional space common to all of our networks that we can embed into in the first place. # # Let's go back to our group of human and alien brains and try using MASE to embed them rather than averaging. Then, we'll dive deeper into what's going on under the hood. First, we'll instantiate a MASE classifier and embed down to two dimensions. Then we'll create a combined list of the human and alien brains, and use MASE to find the latent positions. # In[16]: from graspologic.embed import MultipleASE as MASE # Use MASE to embed everything mase = MASE(n_components=2) latents_mase = mase.fit_transform(humans + aliens) # In[17]: plot_latents(latents_mase, title="Embedding when we use MASE on the group \nof all human and alien networks", labels=labels); # Unlike the disastrous results from simply averaging all of our networks together, MASE manages to keep the community structure that we found when we averaged our networks separately. Let's see what's under the hood. # ### How Does MASE Work? # Below, you can see how MASE works. We start with networks, drawn as nodes in space connected to each other. We turn them into adjacency matrices, and then we embed the adjacency matrices of a bunch of networks separately, using our standard Adjacency Spectral Embedding algorithm. Then, we take all of those embeddings, concatenate horizontally into a single matrix, and embed the entire concatenated matrix. The colors are the true communities each node belongs to: there's a red and an orange community. MASE is an unsupervised learning technique and so it doesn't need any information about the true communities to embed, but they're useful to see. # ```{figure} ../../Images/mase1.jpeg # --- # height: 400px # name: mase-fig # --- # The MASE algorithm # ``` # #### A Collection of Networks # We'll illustrate what's happening in the MASE algorithm by running through all of its steps ourselves, with a set of example networks. # # Suppose we have a set of networks generated from Stochastic Block Models with two communities in each network. The networks have aligned nodes -- meaning that the $i_{th}$ row of all of their adjacency matrices represent the edges for the same node $i$. The nodes also all belong to the same communities. However, edge probabilities might change depending on the network. In the first network, you might have nodes in the same community having a high chance of connecting to each other, whereas in the second network, nodes are much more likely to be connected to other nodes in different communities. You want to end up with a classification that distinctly groups the nodes into their respective communities, using the information from all of the networks. Because MASE takes approach of combining the embeddings, we start by embedding each network separately with an Adjacency Spectral Embedding. # # Below is Python code which generates four networks with Stochastic Block Models. Each of the networks is drawn from a different distribution (the block probability matrices are different), but the labels are the same across the networks (which means that nodes have a consistent community no matter which network you're looking at). If you're interested in the particular parameters used to generate these SBMs, you can see them in the code below. # In[18]: import numpy as np from graspologic.simulations import sbm n = 100 p1, p2, p3 = .12, .06, .03 A1, labels = make_sbm(p1, p3, p3, p1, return_labels=True) A2 = make_sbm(p1, p3, p3, p2) A3 = make_sbm(p3, p2, p2, p3) A4 = make_sbm(p1, p3, p3, p3) networks = [A1, A2, A3, A4] # In[19]: fig, axs = plt.subplots(2, 2, figsize=(7,7)) for i, (ax, graph) in enumerate(zip(axs.flat, networks)): hmap = binary_heatmap(graph, ax=ax, legend=False, title=f"network {i+1}") for spine in ax.spines.values(): spine.set_visible(True) hmap.vlines(n, 0, n*2, colors="black", lw=.9, linestyle="dashed", alpha=.8) hmap.hlines(n, 0, n*2, colors="black", lw=.9, linestyle="dashed", alpha=.8) plt.suptitle("Four different networks", fontsize=26, y=1) fig.subplots_adjust(hspace=.05, wspace=.05) add_legend(A1, bbox_to_anchor=(1.2, .5)) plt.tight_layout() # #### Embedding our networks # Next, we embed each of the four networks separately using Adjacency Spectral Embedding. This step is pretty straightforward, so we won't dive into it too much: remember, we're combining the embeddings, not the networks, so we're not doing anything fancy. The python code below just groups the four networks into a list, and then loops through the list, embedding each network into two dimensions and saving the resulting embeddings into a variable. # In[20]: from graspologic.embed import AdjacencySpectralEmbed as ASE networks = [A1, A2, A3, A4] latents_mase = [] for network in networks: ase = ASE(n_components=2) latent = ase.fit_transform(network) latents_mase.append(latent) # In[21]: fig, axs = plt.subplots(2, 2, figsize=(7,7), sharex=True, sharey=True) for i, ax in enumerate(axs.flat): plot_latents(latents_mase[i], title=f"Embedding for network {i+1}", labels=labels, ax=ax, legend=False) ax.yaxis.set_major_locator(plt.MaxNLocator(3)) plt.suptitle("Adjacency Spectral Embedding for our four networks", fontsize=20); h, l = ax.get_legend_handles_labels() fig.legend(h, l, loc='center right', bbox_to_anchor=(1.25, .5), prop={'size': 15}, title="Community", title_fontsize='x-large'); fig.supxlabel("Dimension 1") fig.supylabel("Dimension 2"); plt.tight_layout() # It's important to keep in mind that these embeddings don't live in the same *latent space*. What this means is that averaging these networks together would result in essentially meaningless noise. This is because of the rotational invariance of latent positions: you can only recover the latent positions of any network up to a rotation. # #### Combining our embeddings # Now comes the interesting part. Our goal is to find some way to take each of these individual embeddings and combine them. We want to find a reasonable way of doing this. # # We can visualize each of our four embeddings a different way. Instead of the using the two latent position dimensions as the x-axis and the y-axis of our plot, we can just visualize our latent position matrices directly. Each latent position now corresponds to rows in one of these matrices. The two columns are the two latent position dimensions, and the two colors in each row corresponds to the latent position value. We're essentially substituting location for color. # In[22]: import matplotlib.cm as cm from matplotlib.colors import Normalize cmap = 'rocket_r' fig, axs = plt.subplots(ncols=4, figsize=(16, 8), sharex=True, sharey=True) for i, ax in enumerate(axs.flat): hm = sns.heatmap(latents_mase[i], cmap=cmap, ax=ax, yticklabels=50, cbar=False) hm.set_title(f"Embedding for network {i+1}", fontdict={'fontsize': 10}) fig.supxlabel("Dimension", x=.42, fontsize=16) fig.supylabel("Latent Position", x=.005, fontsize=16) fig.suptitle("Latent position matrices for our four embeddings", x=.42, fontsize=20) fig.tight_layout(w_pad=2) vmin, vmax = np.array(latents_mase).min(), np.array(latents_mase).max() norm = Normalize(vmin=vmin, vmax=vmax) im = cm.ScalarMappable(cmap=cmap, norm=norm) fig.colorbar(im, ax=axs); # Because the rows of these matrices are all aligned - meaning, row 0 corresponds to node 0 for all four matrices - we can actually think of each node as having (in this case) eight latent position dimensions: two for each of our four networks. Eight is a somewhat arbitrary number here: each network contributes two dimensions simply because we originally chose to embed all of our networks down to two dimensions with ASE, and the number of networks is of course even more arbitrary. You'll usually have more than four. # # In the more general sense, we can think of each node as having $m \times d$ latent position dimensions, where $m$ is the number of networks, and $d$ is the number of dimensions we embed each network into. We don't actually need separate matrices to express this idea: the natural thing to do would be to just concatenate all of the matrices horizontally into a single $m \times d$ matrix. # In[23]: # Concatenate our four matrices horizontally into a single m by d matrix concatenated = np.hstack(latents_mase) # In[24]: fig, ax = plt.subplots(figsize=(16, 8)) hm = sns.heatmap(concatenated, cmap=cmap, ax=ax, yticklabels=50); hm.set_title(f"Combined embedding for all four networks", fontdict={'fontsize': 20}); hm.set_xlabel("Dimension", fontsize=16) hm.set_ylabel("Latent Position", fontsize=16); # #### Embedding our Combination To Create a Joint Embedding # So now we have a combined representation for our separate embeddings, but we have a new problem: our latent positions suddenly have way too many dimensions. In this example they have eight (the number of columns in our combined matrix), but remember that in general we'd have $m \times d$. This somewhat defeats the purpose of an embedding: we took a bunch of high-dimensional objects and turned them all into a single high-dimensional object. Big whoop. We can't see what our combined embedding look like in euclidean space, unless we can somehow visualize $m \times d$ dimensional space (hint: we can't). We'd like to just have `d` dimensions - that was the whole point of using `d` components for each of our Adjacency Spectral Embeddings in the first place! # # There's an obvious solution here: why don't we just embed *again*? Nothing stops us from doing a Singular Value Decomposition on a nonsquare matrix, and so we can just create a joint embedding of our combined matrix and go back down to a healthy $d$ columns. # In[25]: from graspologic.embed import selectSVD joint_embedding, *_ = selectSVD(concatenated, n_components=2) # In[26]: from matplotlib.gridspec import GridSpec # TODO: add legend fig = plt.figure(figsize=(12, 8)) gs = GridSpec(1, 3) axm = fig.add_subplot(gs[0]) axs = fig.add_subplot(gs[1:]) # Matrix representation hm = sns.heatmap(joint_embedding, cmap=cmap, ax=axm, yticklabels=50, cbar=True, cbar_kws={"shrink": .91}) hm.set_title(f"Matrix visualization of our \nJoint Embedding", fontdict={'fontsize': 14}, loc='left') hm.set_xlabel("Dimension", fontdict={"fontsize": 14}) hm.set_ylabel("Latent Positions", fontdict={"fontsize": 14}) # Euclidean representation splot = sns.scatterplot(joint_embedding[:, 0], joint_embedding[:, 1], ax=axs, hue=labels, palette="Set1", edgecolor=None, s=10) splot.set_xlabel("Dimension 0", fontdict={"fontsize": 14}) splot.set_ylabel("Dimension 1", fontdict={"fontsize": 14}) splot.set_title("Euclidean visualization of our Joint Embedding", loc="left", fontdict={"fontsize": 14}) h, l = splot.get_legend_handles_labels() splot.legend(title='Community', handles=h, labels=["a", "b"]) # fig title plt.suptitle("Two Visualizations For Our Joint Embedding", fontsize=20) plt.tight_layout() # Looks like this idea worked well - Our nodes are clearly grouped into two distinct communities, and all of our networks were drawn from the same distribution! To reiterate, what we did was: # 1. Embed each of our four networks separately into two-dimensional space # 2. Think of all of the resulting latent positions for a particular node as a single vector # 3. With the intuition from 2, horizontally concatenate our four latent position matrices into a single matrix # 4. embed that new matrix down to 2 dimensions # ### Using Graspologic # In practice, you don't actually have to implement any of this stuff yourself. Graspologic's MultipleASE class implements it all for you under the hood. You can see the embedding below - you give MultipleASE a list of networks, and it spits out a set of joint latent positions. Graspologic's implementation of MASE is doing pretty much exactly what we just did: it embeds all of the networks you pass in, concatenates them horizontally, and then re-embeds the concatenated matrix. You can see this in the figure -- MASE's embedding looks just like the one we made above. # In[27]: from graspologic.embed import MultipleASE as MASE mase = MASE(n_components=2) latents = mase.fit_transform(networks) # In[28]: plot_latents(latents, title="MASE embedding", labels=labels); # ### Score Matrices* # Exactly how is the joint embedding we created related to all of separate, original networks? Well, to understand this, we need to introduce the concept of *score matrices*. # # In MASE, each network is associated with its own score matrix. Just like the joint embedding describes how the networks are similar, the score matrices describe how each network is different. # # Suppose we have a set of networks with adjacency matrices $A^{(1)}, ..., A^{(m)}$, with each network being unweighted. In the joint embedding we made before, for instance, we had $m=4$. # # Now, we run MASE using the method described above, and we get a joint embedding $V$. Then each adjacency matrix, $A^{(i)}$, can be decomposed into $VR^{(i)} V^\top$, where $R^{(i)}$ is the score matrix corresponding to the $i_{th}$ network: # # \begin{align*} # A^{(i)} = VR^{(i)} V^\top # \end{align*} # # This is how the score matrix of a particular network $R^{(i)}$ and the single joint embedding $V$ is related to the original network $A^{(i)}$. # #### Finding Score Matrices # Any particular score matrix, $R^{(i)}$, is square and $d \times d$. The dimension, $d$, corresponds to the number of embedding dimensions -- so if we wanted to embed down to two dimensions, each $R^{(i)}$ would be a $2 \times 2$ matrix. # # Now, here's the interesting part: how do we find our score matrices? Well, there's a theorem in linear algebra about matrices which are *orthogonal*, meaning that the columns all perpendicular to each other. This theorem says that the inverse of an orthogonal matrix is its transpose. So, for an orthogonal matrix $O$, # # \begin{align*} # O^\top = O^{-1} # \end{align*} # # Interestingly, the column-vectors of our joint embedding matrix (let's call it $V$) are all perpendicular. Since definitionally, what it means for two vectors to be perpendicular is that they have a dot product of 0, we can check this below: # In[29]: V = joint_embedding.copy() # Take the dot product of the columns of our joint latent position matrix np.round(V[:, 0] @ V[:, 1]) # What this all means is that $V^\top V$ is just the identity matrix $I$. # In[30]: np.round(V.T@V) # and so, finally, we can use the above two facts to find the score matrix for a particular network. We just take our original formula $A^{(i)} = VR^{(i)} V^\top$, left-multiply by $V^\top$, and right-multiply by $V$. # # \begin{align*} # A^{(i)} &= VR^{(i)} V^\top \\ # V^{\top} A^{(i)} V &= (V^\top V) R^{(i)} (V^\top V) \\ # V^\top A^{(i)} V &= R^{(i)} # \end{align*} # # Below, we turn the list of four networks we already embedded into a 3-D numpy array, and then do the above multiplication to get a new 3D numpy array of scores matrices. Because we embedded into two dimensions, each score matrix is $2 \times 2$, and the four score matrices are "slices" along the 0th axis of the numpy array. # In[31]: networks_array = np.asarray(networks) scores = V.T @ networks_array @ V scores.shape # Now, here's something interesting: it turns out that we can estimate the edge probability matrix which generated any graph with $ P^{(i)} = V R^{(i)} V^\top$. # In[32]: P_0 = V @ scores[0] @ V.T # Below and to the left, you can see the original adjacency matrix for the first matrix. In the center, you can see the heatmap for the first network's score matrix. Next to it, you can see the recreation of the first network. Remember that we only used the score matrix to recreate it. The first network has a block probability matrix of # # \begin{align} # \begin{bmatrix} # .12 & .03 \\ # .03 & .06 \\ # \end{bmatrix} # \end{align} # # and so we should expect the edges in the top-left block of our adjacency matrix to be more connected, the edges in the two off-diagonal blocks to not be very connected, and the edges in the bottom-right block to be kind of connected. # In[33]: fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(15, 5)) lined_heatmap(networks[0], title="The original adjacency matrix \nfor the first network", ax=axs[0], legend=False) lined_heatmap(scores[0], binary=False, cbar=False, title="Score matrix for the first network", ax=axs[1]) lined_heatmap(P_0, binary=False, cbar=False, title="Estimated edge probabilities \nfor the first network", ax=axs[2]) plt.tight_layout() # So we've learned that MASE is useful when you want a joint embedding that combines all of your networks together, and when you want to estimate edge probabilities for one of your networks. What if we wanted to keep our separate embeddings, but put them all in the same space? That's what the Omnibus Embedding gives, and what we'll explore now. # ## Omnibus Embedding # The Omnibus Embedding combines networks separately to put them all into the same latent space. What this means is that the embeddings for each network after the omnibus embedding are *directly comparable*: none of the embeddings are rotations of each other, and distances between nodes across embeddings actually means something. You can use the omnibus embedding to answer a variety of questions about the interacting properties of a collection of networks. For example, you could figure out which nodes or subgraphs are responsible for similarities or differences across your networks, or you could determine whether subcommunities in your networks are statistically similar or different. You could try to figure out which underlying parameters of your network are the same, and which are different. # # In the next section, we'll explore how the Omnibus Embedding works. Sections in future chapters will explore some the things you can do with your separate embeddings to learn about your networks. # ### OMNI on our four networks # We'll begin with an example. Let's go back to the four networks we created in the MASE section and look at their embeddings. Notice that they're all *rotations* of each other - this is because of the nonidentifiability problem in spectral embeddings. # ```{admonition} Non-Identifiability # Let's take a network generated from an RDPG with $n$ nodes. Each of these $n$ nodes is associated with a latent position vector, corresponding to that node's row in the network's embedding. What it means for a node to have a latent position vector is that the probability for an edge to exist between two nodes $i$ and $j$ is the dot product of their latent position vectors. # # More specifically, if $\textbf{P}$ is a matrix of edge probabilities, and $\textbf{X}$ is our latent position matrix, then $\textbf{P} = \textbf{X} \textbf{X}^\top$. # # The nonidentifiability problem is as follows: Take any orthogonal matrix (a matrix which only rotates or flips other matrices). Call it $\textbf{W}$. By definition, the transpose of any orthogonal matrix is its inverse -- $\textbf{W} \textbf{W}^\top = \textbf{I}$, where $\textbf{I}$ is the identity matrix. So, # # \begin{align} # P &= \textbf{X} \textbf{X}^\top # &= \textbf{X} \textbf{I} \textbf{X}^\top # &= (\textbf{X} \textbf{W}) (\textbf{W}^\top \textbf{X}^\top) # &= (\textbf{X} \textbf{W}) (\textbf{X} \textbf{W})^\top # \end{align} # # What this means is that you can take any latent position matrix and rotate it, and the rotated version will still create the same matrix of edge probabilities. So, when you try to estimate latent positions, separate estimations will potentially produce rotated versions of each other. # # This is very bad in situations where you're trying to directly compare more than one embedding. You wouldn't be able to figure out the average position of a node, for instance, when you have multiple embeddings of that node. # ``` # You can see the nonidentifiability problem in action below. The embeddings for network 1 and for network 2 are particularly illustrative; community 0 is generally top in network 1, but on the right in network two. There isn't a way to compare any two nodes directly. Another way to say this is that, right now, all of our embeddings live in different *latent spaces*: direct comparison between embeddings for nodes in network 1 and nodes in network 2 isn't possible. You can also see the latent position corresponding to the first node as a big circle in each network so that you can track a single point. # In[34]: fig, axs = plt.subplots(2, 2, figsize=(7,7), sharex=True, sharey=True) for i, ax in enumerate(axs.flat): plot_latents(latents_mase[i], title=f"Embedding for network {i+1}", labels=labels, ax=ax, legend=False) _x, _y = np.array(latents_mase)[i, 0] ax.plot(_x, _y, 'ro', markersize=10, linewidth=1, markeredgecolor='k') ax.yaxis.set_major_locator(plt.MaxNLocator(3)) plt.suptitle("Adjacency Spectral Embedding for our four networks", fontsize=20); h, l = ax.get_legend_handles_labels() fig.legend(h, l, loc='center right', bbox_to_anchor=(1.25, .5), prop={'size': 15}, title="Community", title_fontsize='x-large'); fig.supxlabel("Dimension 1") fig.supylabel("Dimension 2"); plt.tight_layout() # ### OMNI on our four heterogeneous networks # Let's see what happens when, instead of embedding our networks separately as above, we find their latent positions with an Omnibus Embedding. Again, we'll plot a particular node with a circle so that we can track it across embeddings. # In[35]: from graspologic.embed import OmnibusEmbed omni = OmnibusEmbed(n_components=2) latents_omni = omni.fit_transform(networks) # In[36]: fig, axs = plt.subplots(2, 2, figsize=(7,7), sharex=True, sharey=True) for i, ax in enumerate(axs.flat): plot_latents(latents_omni[i], title=f"OMNI Embedding for network {i+1}", labels=labels, ax=ax, legend=False) _x, _y = latents_omni[i, 0] ax.plot(_x, _y, 'ro', markersize=10, linewidth=1, markeredgecolor='k') plt.suptitle("Omnibus Embedding for our four networks", fontsize=20); h, l = ax.get_legend_handles_labels() fig.legend(h, l, loc='center right', bbox_to_anchor=(1.25, .5), prop={'size': 15}, title="Community", title_fontsize='x-large'); fig.supxlabel("Dimension 1") fig.supylabel("Dimension 2"); plt.tight_layout() # As you can see, unlike when we embedded the four networks separately, the clusters created by the Omnibus Embedding *live in the same space*: you don't have to rotate or flip your points to line them up across embeddings. The cluster of blue points is always in the top left, and the cluster of red points is always in the bottom right. # ### How Does OMNI work? # At a high level, the omnibus embedding is fairly simple. It: # 1. Combines the adjacency matrices for all of our networks into a single, giant matrix (the Omnibus Matrix) # 2. Embeds that matrix using a standard Adjacency or Laplacian Spectral Embedding. # # The omnibus matrix itself just has every original adjacency or laplacian matrix along its diagonal, and the elementwise average of every pair of original matrices on the off-diagonals. This means that the Omnibus Matrix is *huge*: if you have $m$ networks, each of which has $n$ nodes, the Omnibus Matrix will be a $mn \times mn$ matrix. # # For example, say we only have two networks. Let's name their adjacency matrices $A^{(1)}$ and $A^{(2)}$. Then, the omnibus embedding looks like this: # # \begin{align} # \begin{bmatrix} # A^{(1)} & \frac{A^{(1)} + A^{(2)}}{2} \\ # \frac{A^{(2)} + A^{(1)}}{2} & A^{(2)} \\ # \end{bmatrix} # \end{align} # # where each entry on the diagonal is itself a matrix. In general, when we have $m$ networks, the $i_{th}$ diagonal entry is $A^{(i)}$ and the $(i, j)_{th}$ entry is $\frac{A^{(i)} + A^{(j)}}{2}$. What this means is that you just stick each of your adjacency matrices on the diagonal of a large matrix, and you fill in the off-diagonals with the averages of each pair of two adjacency matrices. # # You can see this in code below. Below, we just use numpy's block function to generate our simple Omnibus Matrix from two networks. # In[37]: a0, a1 = networks[0], networks[1] omni = np.block([[a0, (a0+a1)/2], [(a1+a0)/2, a1]]) # Below you can see the resulting Omnibus Matrix. The first and second networks are shown as heatmaps on the left, and their Omnibus Matrix is shown on the right. # In[38]: # fig, axs = plt.subplots(1, 3, figsize=(15, 5)) fig = plt.figure(figsize=(12, 8)) gs = GridSpec(2, 3) ax0 = fig.add_subplot(gs[0, 0]) ax1 = fig.add_subplot(gs[1, 0]) ax_omni = fig.add_subplot(gs[:, 1:]) # first two cmap = list(np.array(sns.color_palette("PuOr_r", 3, ))[[1, 2, 0]]) for i, (ax, data) in enumerate(zip([ax0, ax1], [a0, a1])): title = r"First network ($A_1$)" if i==0 else r"Second network ($A_2$)" hm = lined_heatmap(data, ax=ax, legend=False, title=title, colors=[cmap[0], cmap[2]]) # big one hm = lined_heatmap(omni, ax=ax_omni, binary=False, cmap=cmap, title="Omnibus Matrix for first \nand second network", cbar=False, center=None) # outline sns.despine(ax=ax_omni, top=False, bottom=False, left=False, right=False) # separating lines hm.vlines(len(omni)//2, 0, len(omni), colors="black", lw=.9, alpha=1) hm.hlines(len(omni)//2, 0, len(omni), colors="black", lw=.9, alpha=1) for i in [.25, .75]: hm.vlines(len(omni)*i, 0, len(omni), colors="black", lw=.9, linestyle="dashed", alpha=.6) hm.hlines(len(omni)*i, 0, len(omni), colors="black", lw=.9, linestyle="dashed", alpha=.6) # text def text(label, x, y,): ax = plt.gca() left, width, bottom, height = .25, .5, .25, .5 right = left + width top = bottom + height t = ax.text(x * (left + right), y * (bottom + top), label, horizontalalignment='center', verticalalignment='center', transform=ax.transAxes, size=32, bbox=dict(facecolor="white", edgecolor="none", alpha=.5)) text(r"$A_1$", .25, .75) text(r"$A_2$", .75, .25) text(r"$\frac{(A_2 + A_1)}{2}$", .25, .25) text(r"$\frac{(A_1 + A_2)}{2}$", .75, .75) # legend omni_labels = np.unique(omni) add_legend(legend_labels=omni_labels, colors=cmap) plt.tight_layout() # #### Creating the Omnibus Matrix For All Four Networks # Here's the Omnibus Matrix for all four of our networks. You can see adjacency matrices for the original four networks on the diagonal blocks, highlighted in blue, and all possible pairs of averages of adjacency matrices on the off-diagonal blocks, highlighted in orange. # In[39]: from graspologic.embed.omni import _get_omni_matrix omni = _get_omni_matrix(networks) cmap = list(np.array(sns.color_palette("PuOr_r", 3))[[1, 2, 0]]) hm = lined_heatmap(omni, binary=False, cmap=cmap, cbar=False, title="Full omnibus matrix for all four networks", center=None, alpha=0) sns.despine(ax=hm, top=False, bottom=False, left=False, right=False) for i in
np.arange(4)
numpy.arange
from __future__ import division from __future__ import unicode_literals from __future__ import print_function from __future__ import absolute_import from future import standard_library standard_library.install_aliases() import cv2 import numpy as np import gripit.edgelib.util as util global window_size global buffer_zone def vertical_line(line): line[11] = 1 # [y ; x-ts] return [line[0] - buffer_zone, line[1] - window_size - buffer_zone], \ [line[0] + buffer_zone, line[1] + window_size + buffer_zone], \ [line[2] - buffer_zone, line[3] - window_size - buffer_zone], \ [line[2] + buffer_zone, line[3] + window_size + buffer_zone] def horizontal_line(line): line[11] = 2 # [y-ts ; x] return [line[0] - window_size - buffer_zone, line[1] - buffer_zone], \ [line[0] + window_size + buffer_zone, line[1] + buffer_zone], \ [line[2] - window_size - buffer_zone, line[3] - buffer_zone], \ [line[2] + window_size + buffer_zone, line[3] + buffer_zone] def get_orientation(line): startpt = [line[0], line[1]] endpt = [line[2], line[3]] dy = abs(line[0] - line[2]) dx = abs(line[1] - line[3]) if dy > dx or dy == dx: pt1, pt2, pt3, pt4 = vertical_line(line) else: pt1, pt2, pt3, pt4 = horizontal_line(line) return pt1, pt2, pt3, pt4, startpt, endpt def create_windows(pt1, pt2, pt3, pt4, startpt, endpt): temp1 = np.linalg.norm(np.subtract((np.add(pt1, pt3) / 2.0), (np.add(pt2, pt4) / 2.0))) temp2 = np.linalg.norm(np.subtract((np.add(pt1, pt4) / 2.0), (np.add(pt2, pt3) / 2.0))) if temp1 > temp2: win_p = [startpt, endpt, pt4, pt2] win_n = [pt1, pt3, endpt, startpt] else: win_p = [startpt, pt4, endpt, pt2] win_n = [pt1, endpt, pt3, startpt] return win_p, win_n def roipoly(src, poly): mask =
np.zeros_like(src, dtype=np.uint8)
numpy.zeros_like
"""Mobject representing curly braces.""" __all__ = ["Brace", "BraceLabel", "BraceText", "BraceBetweenPoints"] import numpy as np from ...animation.composition import AnimationGroup from ...animation.fading import FadeIn from ...animation.growing import GrowFromCenter from ...constants import * from ...mobject.geometry import Line from ...mobject.svg.svg_path import SVGPathMobject from ...mobject.svg.tex_mobject import MathTex, Tex from ...mobject.types.vectorized_mobject import VMobject from ...utils.color import BLACK class Brace(SVGPathMobject): """Takes a mobject and draws a brace adjacent to it. Passing a direction vector determines the direction from which the brace is drawn. By default it is drawn from below. Parameters ---------- mobject : :class:`~.Mobject` The mobject adjacent to which the brace is placed. direction : Optional[Union[:class:`list`, :class:`numpy.array`]] The direction from which the brace faces the mobject. See Also -------- :class:`BraceBetweenPoints` Examples -------- .. manim:: BraceExample :save_last_frame: class BraceExample(Scene): def construct(self): s = Square() self.add(s) for i in np.linspace(0.1,1.0,4): br = Brace(s, sharpness=i) t = Text(f"sharpness= {i}").next_to(br, RIGHT) self.add(t) self.add(br) VGroup(*self.mobjects).arrange(DOWN, buff=0.2) """ def __init__( self, mobject, direction=DOWN, buff=0.2, sharpness=2, stroke_width=0, fill_opacity=1.0, background_stroke_width=0, background_stroke_color=BLACK, **kwargs ): path_string_template = "m0.01216 0c-0.01152 0-0.01216 6.103e-4 -0.01216 0.01311v0.007762c0.06776 0.122 0.1799 0.1455 0.2307 0.1455h{0}c0.03046 3.899e-4 0.07964 0.00449 0.1246 0.02636 0.0537 0.02695 0.07418 0.05816 0.08648 0.07769 0.001562 0.002538 0.004539 0.002563 0.01098 0.002563 0.006444-2e-8 0.009421-2.47e-5 0.01098-0.002563 0.0123-0.01953 0.03278-0.05074 0.08648-0.07769 0.04491-0.02187 0.09409-0.02597 0.1246-0.02636h{0}c0.05077 0 0.1629-0.02346 0.2307-0.1455v-0.007762c-1.78e-6 -0.0125-6.365e-4 -0.01311-0.01216-0.01311-0.006444-3.919e-8 -0.009348 2.448e-5 -0.01091 0.002563-0.0123 0.01953-0.03278 0.05074-0.08648 0.07769-0.04491 0.02187-0.09416 0.02597-0.1246 0.02636h{1}c-0.04786 0-0.1502 0.02094-0.2185 0.1256-0.06833-0.1046-0.1706-0.1256-0.2185-0.1256h{1}c-0.03046-3.899e-4 -0.07972-0.004491-0.1246-0.02636-0.0537-0.02695-0.07418-0.05816-0.08648-0.07769-0.001562-0.002538-0.004467-0.002563-0.01091-0.002563z" default_min_width = 0.90552 self.buff = buff angle = -np.arctan2(*direction[:2]) + np.pi mobject.rotate(-angle, about_point=ORIGIN) left = mobject.get_corner(DOWN + LEFT) right = mobject.get_corner(DOWN + RIGHT) target_width = right[0] - left[0] linear_section_length = max( 0, (target_width * sharpness - default_min_width) / 2 ) path = path_string_template.format( linear_section_length, -linear_section_length ) SVGPathMobject.__init__( self, path_string=path, stroke_width=stroke_width, fill_opacity=fill_opacity, background_stroke_width=background_stroke_width, background_stroke_color=background_stroke_color, **kwargs ) self.stretch_to_fit_width(target_width) self.shift(left - self.get_corner(UP + LEFT) + self.buff * DOWN) for mob in mobject, self: mob.rotate(angle, about_point=ORIGIN) def put_at_tip(self, mob, use_next_to=True, **kwargs): if use_next_to: mob.next_to(self.get_tip(), np.round(self.get_direction()), **kwargs) else: mob.move_to(self.get_tip()) buff = kwargs.get("buff", DEFAULT_MOBJECT_TO_MOBJECT_BUFFER) shift_distance = mob.width / 2.0 + buff mob.shift(self.get_direction() * shift_distance) return self def get_text(self, *text, **kwargs): text_mob = Tex(*text) self.put_at_tip(text_mob, **kwargs) return text_mob def get_tex(self, *tex, **kwargs): tex_mob = MathTex(*tex) self.put_at_tip(tex_mob, **kwargs) return tex_mob def get_tip(self): # Returns the position of the seventh point in the path, which is the tip. return self.points[28] # = 7*4 def get_direction(self): vect = self.get_tip() - self.get_center() return vect / np.linalg.norm(vect) class BraceLabel(VMobject): def __init__( self, obj, text, brace_direction=DOWN, label_constructor=MathTex, label_scale=1, **kwargs ): self.label_constructor = label_constructor self.label_scale = label_scale VMobject.__init__(self, **kwargs) self.brace_direction = brace_direction if isinstance(obj, list): obj = VMobject(*obj) self.brace = Brace(obj, brace_direction, **kwargs) if isinstance(text, tuple) or isinstance(text, list): self.label = self.label_constructor(*text, **kwargs) else: self.label = self.label_constructor(str(text)) if self.label_scale != 1: self.label.scale(self.label_scale) self.brace.put_at_tip(self.label) self.submobjects = [self.brace, self.label] def creation_anim(self, label_anim=FadeIn, brace_anim=GrowFromCenter): return AnimationGroup(brace_anim(self.brace), label_anim(self.label)) def shift_brace(self, obj, **kwargs): if isinstance(obj, list): obj = VMobject(*obj) self.brace = Brace(obj, self.brace_direction, **kwargs) self.brace.put_at_tip(self.label) self.submobjects[0] = self.brace return self def change_label(self, *text, **kwargs): self.label = self.label_constructor(*text, **kwargs) if self.label_scale != 1: self.label.scale(self.label_scale) self.brace.put_at_tip(self.label) self.submobjects[1] = self.label return self def change_brace_label(self, obj, *text): self.shift_brace(obj) self.change_label(*text) return self class BraceText(BraceLabel): def __init__(self, obj, text, label_constructor=Tex, **kwargs): super().__init__(obj, text, label_constructor=label_constructor, **kwargs) class BraceBetweenPoints(Brace): """Similar to Brace, but instead of taking a mobject it uses 2 points to place the brace. A fitting direction for the brace is computed, but it still can be manually overridden. If the points go from left to right, the brace is drawn from below. Swapping the points places the brace on the opposite side. Parameters ---------- point_1 : Union[:class:`list`, :class:`numpy.array`] The first point. point_2 : Union[:class:`list`, :class:`numpy.array`] The second point. direction : Optional[Union[:class:`list`, :class:`numpy.array`]] The direction from which the brace faces towards the points. Examples -------- .. manim:: BraceBPExample class BraceBPExample(Scene): def construct(self): p1 = [0,0,0] p2 = [1,2,0] brace = BraceBetweenPoints(p1,p2) self.play(Create(NumberPlane())) self.play(Create(brace)) self.wait(2) """ def __init__(self, point_1, point_2, direction=ORIGIN, **kwargs): if all(direction == ORIGIN): line_vector = np.array(point_2) -
np.array(point_1)
numpy.array
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num =
N.array([0,1,0])
numpy.array
################################################################################ # # Copyright (c) 2017 University of Oxford # Authors: # <NAME> (<EMAIL>) # # This work is licensed under the Creative Commons # Attribution-NonCommercial-ShareAlike 4.0 International License. # To view a copy of this license, visit # http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. # ################################################################################ import bisect import csv import numpy as np import numpy.matlib as ml from math import sin, cos, atan2, sqrt MATRIX_MATCH_TOLERANCE = 1e-4 def build_se3_transform(xyzrpy): """Creates an SE3 transform from translation and Euler angles. Args: xyzrpy (list[float]): translation and Euler angles for transform. Must have six components. Returns: numpy.matrixlib.defmatrix.matrix: SE3 homogeneous transformation matrix Raises: ValueError: if `len(xyzrpy) != 6` """ if len(xyzrpy) != 6: raise ValueError("Must supply 6 values to build transform") se3 = ml.identity(4) se3[0:3, 0:3] = euler_to_so3(xyzrpy[3:6]) se3[0:3, 3] = np.matrix(xyzrpy[0:3]).transpose() return se3 def euler_to_so3(rpy): """Converts Euler angles to an SO3 rotation matrix. Args: rpy (list[float]): Euler angles (in radians). Must have three components. Returns: numpy.matrixlib.defmatrix.matrix: 3x3 SO3 rotation matrix Raises: ValueError: if `len(rpy) != 3`. """ if len(rpy) != 3: raise ValueError("Euler angles must have three components") R_x = np.matrix([[1, 0, 0], [0, cos(rpy[0]), -sin(rpy[0])], [0, sin(rpy[0]), cos(rpy[0])]]) R_y = np.matrix([[cos(rpy[1]), 0, sin(rpy[1])], [0, 1, 0], [-sin(rpy[1]), 0, cos(rpy[1])]]) R_z = np.matrix([[cos(rpy[2]), -sin(rpy[2]), 0], [sin(rpy[2]), cos(rpy[2]), 0], [0, 0, 1]]) R_zyx = R_z * R_y * R_x return R_zyx def so3_to_euler(so3): """Converts an SO3 rotation matrix to Euler angles Args: so3: 3x3 rotation matrix Returns: numpy.matrixlib.defmatrix.matrix: list of Euler angles (size 3) Raises: ValueError: if so3 is not 3x3 ValueError: if a valid Euler parametrisation cannot be found """ if so3.shape != (3, 3): raise ValueError("SO3 matrix must be 3x3") roll = atan2(so3[2, 1], so3[2, 2]) yaw = atan2(so3[1, 0], so3[0, 0]) denom = sqrt(so3[0, 0] ** 2 + so3[1, 0] ** 2) pitch_poss = [atan2(-so3[2, 0], denom), atan2(-so3[2, 0], -denom)] R = euler_to_so3((roll, pitch_poss[0], yaw)) if (so3 - R).sum() < MATRIX_MATCH_TOLERANCE: return np.matrix([roll, pitch_poss[0], yaw]) else: R = euler_to_so3((roll, pitch_poss[1], yaw)) if (so3 - R).sum() > MATRIX_MATCH_TOLERANCE: raise ValueError("Could not find valid pitch angle") return np.matrix([roll, pitch_poss[1], yaw]) def so3_to_quaternion(so3): """Converts an SO3 rotation matrix to a quaternion Args: so3: 3x3 rotation matrix Returns: numpy.ndarray: quaternion [w, x, y, z] Raises: ValueError: if so3 is not 3x3 """ if so3.shape != (3, 3): raise ValueError("SO3 matrix must be 3x3") R_xx = so3[0, 0] R_xy = so3[0, 1] R_xz = so3[0, 2] R_yx = so3[1, 0] R_yy = so3[1, 1] R_yz = so3[1, 2] R_zx = so3[2, 0] R_zy = so3[2, 1] R_zz = so3[2, 2] try: w = sqrt(so3.trace() + 1) / 2 except(ValueError): # w is non-real w = 0 # Due to numerical precision the value passed to `sqrt` may be a negative of the order 1e-15. # To avoid this error we clip these values to a minimum value of 0. x = sqrt(max(1 + R_xx - R_yy - R_zz, 0)) / 2 y = sqrt(max(1 + R_yy - R_xx - R_zz, 0)) / 2 z = sqrt(max(1 + R_zz - R_yy - R_xx, 0)) / 2 max_index = max(range(4), key=[w, x, y, z].__getitem__) if max_index == 0: x = (R_zy - R_yz) / (4 * w) y = (R_xz - R_zx) / (4 * w) z = (R_yx - R_xy) / (4 * w) elif max_index == 1: w = (R_zy - R_yz) / (4 * x) y = (R_xy + R_yx) / (4 * x) z = (R_zx + R_xz) / (4 * x) elif max_index == 2: w = (R_xz - R_zx) / (4 * y) x = (R_xy + R_yx) / (4 * y) z = (R_yz + R_zy) / (4 * y) elif max_index == 3: w = (R_yx - R_xy) / (4 * z) x = (R_zx + R_xz) / (4 * z) y = (R_yz + R_zy) / (4 * z) return np.array([w, x, y, z]) def interpolate_ins_poses(ins_path, pose_timestamps, origin_timestamp, use_rtk=False): """Interpolate poses from INS. Args: ins_path (str): path to file containing poses from INS. pose_timestamps (list[int]): UNIX timestamps at which interpolated poses are required. origin_timestamp (int): UNIX timestamp of origin frame. Poses will be reported relative to this frame. Returns: list[numpy.matrixlib.defmatrix.matrix]: SE3 matrix representing interpolated pose for each requested timestamp. """ with open(ins_path) as ins_file: ins_reader = csv.reader(ins_file) headers = next(ins_file) ins_timestamps = [0] abs_poses = [
ml.identity(4)
numpy.matlib.identity
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from paddle.fluid.tests.unittests.op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16 import paddle.fluid as fluid from paddle.fluid import compiler, Program, program_guard, core from paddle.fluid.framework import _test_eager_guard import paddle class TestConcatOp(OpTest): def setUp(self): self.op_type = "concat" self.python_api = paddle.concat self.dtype = self.get_dtype() self.init_test_data() self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]} self.attrs = {'axis': self.axis} if self.axis < 0: self.actual_axis = self.axis + len(self.x0.shape) self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0 else: self.actual_axis = self.axis self.outputs = { 'Out': np.concatenate((self.x0, self.x1, self.x2), axis=self.actual_axis) } def get_dtype(self): return "float64" def test_check_output(self): if self.dtype == np.uint16: place = core.CUDAPlace(0) self.check_output_with_place(place) else: self.check_output(check_eager=True) def test_check_grad(self): if self.dtype == np.uint16: place = core.CUDAPlace(0) self.check_grad_with_place(place, ['x0'], 'Out') self.check_grad_with_place(place, ['x1'], 'Out') self.check_grad_with_place(place, ['x2'], 'Out') else: self.check_grad(['x0'], 'Out', check_eager=True) self.check_grad(['x1'], 'Out', check_eager=True) self.check_grad(['x2'], 'Out', check_eager=True) def init_test_data(self): if self.dtype == np.uint16: x0 = np.random.random((5, 1, 4, 5)).astype(np.float32) self.x0 = convert_float_to_uint16(x0) x1 = np.random.random((5, 2, 4, 5)).astype(np.float32) self.x1 = convert_float_to_uint16(x1) x2 = np.random.random((5, 3, 4, 5)).astype(np.float32) self.x2 = convert_float_to_uint16(x2) else: self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype) self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype) self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype) self.axis = 1 class TestConcatOp2(TestConcatOp): def init_test_data(self): self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype) self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype) self.x2 = np.random.random((2, 3, 4, 5)).astype(self.dtype) self.axis = 1 @skip_check_grad_ci( reason="The function 'check_grad' for large inputs is too slow.") class TestConcatOp3(TestConcatOp): def init_test_data(self): self.x0 = np.random.random((1, 256, 170, 256)).astype(self.dtype) self.x1 = np.random.random((1, 128, 170, 256)).astype(self.dtype) self.x2 = np.random.random((1, 128, 170, 256)).astype(self.dtype) self.axis = 1 def test_check_grad(self): pass @skip_check_grad_ci( reason= "This test will meet fetch error when there is a null grad. The detailed information is in PR#17015." ) class TestConcatOp4(TestConcatOp): def init_test_data(self): self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype) self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype) self.x2 = np.random.random((0, 3, 4, 5)).astype(self.dtype) self.axis = 0 def test_check_grad(self): pass class TestConcatOp5(TestConcatOp): def init_test_data(self): self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype) self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype) self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype) self.axis = -3 class TestConcatOp6(TestConcatOp): def setUp(self): self.op_type = "concat" self.dtype = self.get_dtype() self.python_api = paddle.concat self.init_test_data() self.lod = [[20, 80]] self.out_lod = [[20, 80, 20, 80, 20, 80]] self.inputs = { 'X': [('x0', (self.x0, self.lod)), ('x1', (self.x1, self.lod)), ('x2', (self.x2, self.lod))] } self.attrs = {'axis': self.axis} if self.axis < 0: self.actual_axis = self.axis + len(self.x0.shape) self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0 else: self.actual_axis = self.axis out = np.concatenate((self.x0, self.x1, self.x2), axis=self.actual_axis) self.outputs = {'Out': (out, self.out_lod)} def test_check_output(self): self.check_output(check_eager=True) def test_check_grad(self): self.check_grad(['x0'], 'Out', check_eager=True) self.check_grad(['x1'], 'Out', check_eager=True) self.check_grad(['x2'], 'Out', check_eager=True) def init_test_data(self): self.x0 = np.random.random([100]).astype(self.dtype) self.x1 = np.random.random([100]).astype(self.dtype) self.x2 = np.random.random([100]).astype(self.dtype) self.axis = 0 def create_test_AxisTensor(parent): class TestConcatAxisTensor(parent): def setUp(self): self.op_type = "concat" self.python_api = paddle.concat self.dtype = self.get_dtype() self.init_test_data() self.inputs = { 'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)], 'AxisTensor': np.array([self.axis]).astype("int32") } self.attrs = {} if self.axis < 0: self.actual_axis = self.axis + len(self.x0.shape) self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0 else: self.actual_axis = self.axis self.outputs = { 'Out': np.concatenate((self.x0, self.x1, self.x2), axis=self.actual_axis) } cls_name = "{0}_{1}".format(parent.__name__, "AxisTensor") TestConcatAxisTensor.__name__ = cls_name globals()[cls_name] = TestConcatAxisTensor create_test_AxisTensor(TestConcatOp) create_test_AxisTensor(TestConcatOp2) create_test_AxisTensor(TestConcatOp3) create_test_AxisTensor(TestConcatOp4) create_test_AxisTensor(TestConcatOp5) create_test_AxisTensor(TestConcatOp6) #----------------Concat Fp16---------------- def create_test_fp16(parent): class TestConcatFp16(parent): def get_dtype(self): return np.float16 cls_name = "{0}_{1}".format(parent.__name__, "Fp16") TestConcatFp16.__name__ = cls_name globals()[cls_name] = TestConcatFp16 create_test_fp16(TestConcatOp) create_test_fp16(TestConcatOp2) create_test_fp16(TestConcatOp3) create_test_fp16(TestConcatOp4) create_test_fp16(TestConcatOp5) create_test_fp16(TestConcatOp6) #----------------Concat Bf16---------------- def create_test_bf16(parent): @unittest.skipIf(not paddle.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestConcatBf16(parent): def get_dtype(self): return np.uint16 cls_name = "{0}_{1}".format(parent.__name__, "Bf16") TestConcatBf16.__name__ = cls_name globals()[cls_name] = TestConcatBf16 create_test_bf16(TestConcatOp) class TestConcatOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): # The input type of concat_op should be list. x1 = fluid.layers.data(shape=[4], dtype='int32', name='x1') fluid.layers.concat(x1) # The item in input must be Variable. x2 = fluid.create_lod_tensor(np.array([[-1]]), [[1]], fluid.CPUPlace()) x3 = fluid.create_lod_tensor(np.array([[-1]]), [[1]], fluid.CPUPlace()) self.assertRaises(TypeError, fluid.layers.concat, [x2]) # The input dtype of concat_op must be float16, float32, float64, int32, int64. x4 = fluid.layers.data(shape=[4], dtype='uint8', name='x4') x5 = fluid.layers.data(shape=[4], dtype='uint8', name='x5') self.assertRaises(TypeError, fluid.layers.concat, [x4, x5]) x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6') x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7') x8 = fluid.layers.data(shape=[4], dtype='float32', name='x8') fluid.layers.concat([x6, x7]) # The type of axis in concat_op should be int or Variable. def test_axis_type(): fluid.layers.concat([x6, x7], 3.2) self.assertRaises(TypeError, test_axis_type) def test_input_same_dtype(): fluid.layers.concat([x7, x8]) self.assertRaises(TypeError, test_input_same_dtype) class TestConcatAPI(unittest.TestCase): def test_fluid_api(self): paddle.enable_static() x_1 = fluid.data(shape=[None, 1, 4, 5], dtype='int32', name='x_1') fluid.layers.concat([x_1, x_1], 0) input_2 = np.random.random([2, 1, 4, 5]).astype("int32") input_3 = np.random.random([2, 2, 4, 5]).astype("int32") x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2') x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3') positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1) positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1) out_1 = fluid.layers.concat(input=[x_2, x_3], axis=1) out_2 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int32) out_3 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int64) exe = fluid.Executor(place=fluid.CPUPlace()) [res_1, res_2, res_3] = exe.run(fluid.default_main_program(), feed={ "x_1": input_2, "x_2": input_2, "x_3": input_3 }, fetch_list=[out_1, out_2, out_3]) assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1)) assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1)) assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1)) def test_api(self): paddle.enable_static() x_1 = paddle.fluid.data(shape=[None, 1, 4, 5], dtype='int32', name='x_1') paddle.concat([x_1, x_1], 0) input_2 = np.random.random([2, 1, 4, 5]).astype("int32") input_3 = np.random.random([2, 2, 4, 5]).astype("int32") x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2') x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3') positive_1_int32 = paddle.fluid.layers.fill_constant([1], "int32", 1) positive_1_int64 = paddle.fluid.layers.fill_constant([1], "int64", 1) negative_int64 = paddle.fluid.layers.fill_constant([1], "int64", -3) out_1 = paddle.concat(x=[x_2, x_3], axis=1) out_2 = paddle.concat(x=[x_2, x_3], axis=positive_1_int32) out_3 = paddle.concat(x=[x_2, x_3], axis=positive_1_int64) out_4 = paddle.concat(x=[x_2, x_3], axis=negative_int64) exe = paddle.static.Executor(place=paddle.CPUPlace()) [res_1, res_2, res_3, res_4] = exe.run(paddle.static.default_main_program(), feed={ "x_1": input_2, "x_2": input_2, "x_3": input_3 }, fetch_list=[out_1, out_2, out_3, out_4]) assert np.array_equal(res_1,
np.concatenate((input_2, input_3), axis=1)
numpy.concatenate
import shutil import hashlib import json import os import logging from logging.handlers import RotatingFileHandler import numpy as np def override_config_recurs(config, config_extension): try: config_extension['name'] = config['name']+'_'+config_extension['name'] except KeyError: pass for key, value in config_extension.items(): if type(value) is dict: config[key] = override_config_recurs(config[key], config_extension[key]) else: assert key in config, "Warning, key defined in extension but not original : key is {}".format(key) config[key] = value return config def compute_epsilon_schedule(config, n_epochs): epsilon_schedule = config["epsilon_schedule"][0] epsilon_init = config["epsilon_schedule"][1] if epsilon_schedule == 'linear': eps_range = np.linspace(epsilon_init, 0., n_epochs) elif epsilon_schedule=='constant': eps_range = [epsilon_init for _ in range(n_epochs)] elif epsilon_schedule=='exp': eps_decay = n_epochs / 4. eps_range = [epsilon_init * np.exp(-1. * i / eps_decay) for i in range(n_epochs)] else: raise NotImplementedError("Wrong type of epsilon-greedy schedule") return eps_range def load_single_config(config_file): with open(config_file, 'rb') as f_config: config_str = f_config.read().decode('utf-8') config = json.loads(config_str) return config, config_str def load_config_and_logger(env_config_file, model_config_file, exp_dir, seed, args=None, env_ext_file=None, model_ext_file=None): # To have a unique id, use raw str, concatenate them and hash it config_str = '' config_str_env_ext = '' config_str_model_ext = '' # Load env file and model env_config, config_str_env = load_single_config(env_config_file) model_config, config_str_model = load_single_config(model_config_file) # Override env and model files if specified if env_ext_file is not None: env_ext_config, config_str_env_ext = load_single_config(env_ext_file) env_config = override_config_recurs(env_config, env_ext_config) if model_ext_file is not None: model_ext_config, config_str_model_ext = load_single_config(model_ext_file) model_config = override_config_recurs(model_config, model_ext_config) # Merge env and model config into one dict env_config['env_name'] = env_config['name'] env_config.update(model_config) config = env_config # set seed set_seed(seed) # Compute unique identifier based on those configs config_str = config_str_env + config_str_env_ext + config_str_model + config_str_model_ext exp_identifier = hashlib.md5(config_str.encode()).hexdigest() # Save_path is the actual experiments path # here, you save the experimental results, the rewards, the length etc ... save_path = '{}/{{}}'.format(os.path.join(exp_dir, config['env_name'], exp_identifier, "seed"+str(seed))) # General_save_path is the path of the model used (without the seed) # This way, you store the general information such as the name, the config file etc ... general_save_path = '{}/{{}}'.format(os.path.join(exp_dir, config['env_name'], exp_identifier)) if not os.path.isdir(save_path.format('')): os.makedirs(save_path.format('')) # Write which config files were used, in case the names in config are not set with open(general_save_path.format("config_files.txt"), "w") as f: f.write(env_config_file) if env_ext_file: f.write(" "+env_config_file+"\n") else: f.write("None") f.write("\n") f.write(model_config_file) if model_ext_file: f.write(" "+model_ext_file+"\n") else: f.write("None") # Create empty training file open(save_path.format('train_lengths'), 'w').close() open(save_path.format('train_rewards'), 'w').close() open(save_path.format('train.log'), 'w').close() open(general_save_path.format('model_name'), 'w').write(config['name']) # Create logger logger = create_logger(save_path.format('train.log')) logger.info("Config Hash {}".format(exp_identifier)) logger.info("Config name : {}".format(config["name"])) logger.info(config) if args is not None: for key, val in vars(args).items(): logger.info("{} : {}".format(key, val)) # copy config file with open(general_save_path.format('config.json'), 'w') as f: json.dump(config, f, indent=4, separators=(',', ': ')) return config, exp_identifier, save_path def create_logger(save_path): logger = logging.getLogger() # Debug = write everything logger.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s :: %(levelname)s :: %(message)s') file_handler = RotatingFileHandler(save_path, 'a', 1000000, 1) file_handler.setLevel(logging.INFO) file_handler.setFormatter(formatter) logger.addHandler(file_handler) stream_handler = logging.StreamHandler() stream_handler.setLevel(logging.INFO) logger.addHandler(stream_handler) return logger def set_seed(seed): import torch import random if seed > -1: print('Using seed {}'.format(seed)) np.random.seed(seed) torch.manual_seed(seed) random.seed(seed) else: raise NotImplementedError("Cannot set negative seed") def write_seed_extensions(seed_range, out_name='../config/seed_extensions/'): for seed in seed_range: with open(out_name + str(seed), 'w+', encoding="utf8") as f_extension: json.dump({"seed": seed}, f_extension) def save_stats(save_path, reward_list, length_list): reward_list = np.array(reward_list) length_list =
np.array(length_list)
numpy.array
# Copyright (c) [2021] [wlicsnju] # [HKMF-T] is licensed under Mulan PSL v2. # You can use this software according to the terms and conditions of the Mulan PSL v2. # You may obtain a copy of Mulan PSL v2 at: # http://license.coscl.org.cn/MulanPSL2 # THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. # See the Mulan PSL v2 for more details. import logging import numpy as np class TagMean(object): def __init__(self): self._data = None self._mask = None self._tag = None self._dim = 1 def put_and_reset(self, data, mask, tag): if data.shape != tag.shape: logging.error(f'\'data\'{data.shape} must be same to \'tag\'{tag.shape}.', ValueError) return if len(mask.shape) != 1: logging.error(f'\'mask\'{mask.shape} must be 1-d array.', ValueError) return if len(data.shape) == 1: self._data = data[np.newaxis, :] tag = tag[np.newaxis, :] elif len(data.shape) == 2: self._data = data elif len(data.shape) > 2: logging.error('Do not support data with dim > 2.', ValueError) return self._dim = self._data.shape[0] self._mask = mask self._tag = tag def train(self, *args): logging.warning('Tag Mean class do not train for result.') def get_result(self): all_avg = np.zeros((self._dim, )) tag_sum = {} tag_count = {} for i, m in enumerate(self._mask): tag = self._tag[0, i] if m > 0: if tag not in tag_sum: tag_sum[tag] = np.zeros((self._dim, )) tag_count[tag] = 0 all_avg += self._data[:, i] tag_sum[tag] += self._data[:, i] tag_count[tag] += 1 all_avg = all_avg / float(np.sum(self._mask != 0)) blackout_l =
np.sum(self._mask == 0)
numpy.sum
import re from typing import Sequence, Any, Union, Dict, Optional, Callable from re import split from pathlib import Path import numpy as np from sigpipes.auxtools import type_info, smart_tostring, TimeUnit import h5py import csv class DPath: def __init__(self, root, dir, stem, suffix): self.root = root self.dir = dir self.stem = stem self.suffix = suffix @staticmethod def from_path(path, dir=False): p = Path(path) parts = Path(path).parts if p.is_absolute(): root = parts[0] sind = 1 else: root = "" sind = 0 if dir: if sind < len(parts): dir = str(Path(parts[sind]).joinpath(*parts[sind+1:])) else: dir = "" stem = "" suffix = "" else: if sind < len(parts)-1: dir = str(Path(Path(parts[sind]).joinpath(*parts[sind+1:-1]))) else: dir = "" if parts: suffix = "".join(Path(parts[-1]).suffix) stem = str(Path(parts[-1]))[:-len(suffix)] if suffix else str(Path(parts[-1])) else: suffix = "" stem = "" return DPath(root, dir, stem, suffix) def extend_stem(self, extension, *, sep="_"): if extension == "": return self assert self.stem != "" return DPath(self.root, self.dir, self.stem + sep + extension, self.suffix) def resuffix(self, newsuffix): assert self.stem != "" return DPath(self.root, self.dir, self.stem, newsuffix) def restem(self, newstem): return DPath(self.root, self.dir, newstem, self.suffix) def __repr__(self): return f"root: {self.root}, dir: {self.dir}, stem: {self.stem}, suffix: {self.suffix}" def __str__(self): return str(Path(self.root).joinpath(self.dir, self.stem+self.suffix)) @property def empty(self): return self.root == "" and self.dir == "" and self.stem == "" and self.suffix == "" def prepend_path(self, prep): if prep.empty: return self if self.root: raise ValueError(f"Absolute path is not prependable {repr(prep)} < {self}") assert prep.stem == "" and prep.suffix == "" return DPath(prep.root, str(Path(prep.dir)/Path(self.dir)), self.stem, self.suffix) def base_path(self, base): if self.dir == "" and self.root == "": root = base.root dir = base.dir else: root = self.root dir = self.dir if self.stem == "": stem = base.stem suffix = base.suffix else: stem = self.stem suffix = self.suffix return DPath(root, dir, stem, suffix) def folder_copy(newdict: Dict[str, Any], olddict: Dict[str, Any], segpath: str, shared_folders: Sequence[str], empty_folders: Sequence[str]) -> None: for key, value in olddict.items(): itempath = f"{segpath}/{key}" if segpath != "" else key if isinstance(value, dict): if itempath in empty_folders: newdict[key] = {} elif itempath in shared_folders: newdict[key] = olddict[key] else: newdict[key] = {} folder_copy(newdict[key], olddict[key], itempath, shared_folders, empty_folders) else: newdict[key] = value def hdict_map(d: Dict[str, Any], function): for key, value in d.items(): if isinstance(value, dict): hdict_map(value, function) else: d[key] = function(value) class HierarchicalDict: """ Dictionary with hierarchical keys implemented by structure od nested (standard) dictionaries. Individual levels in hierarchical keys are separated by slashes (initial or final slashes are optional). """ def __init__(self, root: Dict[str, Any] = None): self.root = {} if root is None else root def _create_path(self, key: str): path = split(r"/+", key.strip("/")) adict = self.root for folder in path[:-1]: if folder not in adict: adict[folder] = {} if not isinstance(adict[folder], dict): raise KeyError(f"{folder} in {key} is leaf not folder") adict = adict[folder] return path, adict def __setitem__(self, key: str, value: Any) -> None: """ Set value with given hierarchical key (path). It creates all levels in the path. The value can have any type except "dict" (empty folders can be created by `make_folder` method) """ assert not isinstance(value, dict), "dict is invalid leaf value" path, adict = self._create_path(key) leaf = path[-1] if isinstance(adict.get(leaf, None), dict): raise KeyError(f"leaf name {leaf} in {key} is folder") adict[leaf] = value def __getitem__(self, key: str) -> Any: """ Get value with given hierarchical key (path). Empty path is invalid. """ path = split(r"/+", key.strip("/")) adict = self.root for folder in path[:-1]: if folder not in adict: raise KeyError(f"folder {folder} in key {key} does not exist") adict = adict[folder] leaf = path[-1] if leaf not in adict: raise KeyError(f"leaf {leaf} in key {key} does not exist") return adict[leaf] def __contains__(self, key: str) -> bool: """ Testing existence of given hierarchical key (in the form of leaf value or folder). """ path = split(r"/+", key.strip("/")) adict = self.root for folder in path: if folder not in adict: return False adict = adict[folder] return True def deepcopy(self, shared_folders: Sequence[str]=[], empty_folders: Sequence[str] = [], root: Optional[str] = None) -> "HierarchicalDict": """ Deep copy of folders of hierarchical tree or subtree (leaf values are not duplicated) Args: shared_folders: folders which are not duplicated but they are shared empty_folders: folders, which contents are not copied (i.e. folders are empty in duplicate] root: path to copied subtree (if None all tree is copied] Returns: duplicate or partial duplicate """ new_hdict = {} folder_copy(new_hdict, self.root if root is None else self[root], "", shared_folders, empty_folders) return HierarchicalDict(new_hdict) def make_folder(self, key: str) -> None: """ Creation of empty folder with given path (all levels of path are created) Args: key: path to new folder """ path, adict = self._create_path(key) folder_name = path[-1] if folder_name in adict: raise KeyError(f"key {folder_name} exists") adict[folder_name] = {} def __str__(self): return HierarchicalDict.rec_print(self.root, 0) def __repr__(self): return HierarchicalDict.rec_print(self.root, 0) def map(self, function: Callable[[Any], Any], root: Optional[str] = None): """ Map (unary) function on all values of given subtree. Map changes original subtree (no duplication is performed). Args: function: mapping function (it must be defined for all values in subtree) root: path to subtree (or None if the whole hierarchical is modified) """ hdict_map(self.root if root is None else self[root], function) @staticmethod def rec_print(d, level: int): return "\n".join( f"{' ' * level}{key}: {type_info(value)} {smart_tostring(value, level + len(key))}" if not isinstance(value, dict) else f"{' ' * level}{key}/\n{HierarchicalDict.rec_print(value, level + 1)}" for key, value in d.items()) def __iter__(self): yield from self.rec_iterator(self.root, "") def rec_iterator(self, d, prefix): for key, value in d.items(): path = prefix + "/" + key if isinstance(value, dict): yield from self.rec_iterator(d[key], path) else: yield path, value class SigContainer: """ Hierarchical container for physiological signal data (including annotations and auxiliary (meta)data). """ def __init__(self, data: HierarchicalDict) -> None: """ Private constructor. Use factory methods: `from_signal_array` or `from_hdf5.` """ self.d = data @staticmethod def from_signal_array(signals: np.ndarray, channels: Sequence[str], units: Sequence[str], fs: float = 1.0, basepath: str = "") -> "SigContainer": """ Creation of container from signal data (in numpy array) and basic metadata. Args: basepath: base path for filenames signals: signals as 2D array, channels in rows channels: identifiers of channels units: units of channels data fs: (common) sampling frequency basepath: path to file resource """ d = HierarchicalDict() d["signals/data"] = signals d["signals/channels"] = channels d["signals/units"] = units d["signals/fs"] = fs d["log"] = [] d["basepath"] = str(DPath.from_path(basepath)) d.make_folder("meta") return SigContainer(d) def add_annotation(self, annotator: str, samples: Sequence[int], types: Sequence[str], notes: Sequence[str]) -> "SigContainer": """ Add the set of annotations to container. See https://physionet.org/physiobank/annotations.shtml for detailed description. Args: annotator: short identifier of source of this annotations samples: list of annotated samples in signal types: list of short (one character) identification of individual annotations (one per list of samples) notes: longer description of individual annotations (one per record in list of samples) """ self.d[f"annotations/{annotator}/samples"] = samples self.d[f"annotations/{annotator}/types"] = types self.d[f"annotations/{annotator}/notes"] = notes return self def __getitem__(self, key: str) -> Any: """ Getter for container data (signals, annotations, metadata, etc-) """ return self.d[key] @property def signals(self): """ Signal data (2D numpy array) """ return self.d["signals/data"] def feature(self, name: str): return self.d[f"/meta/features/{name}"] def __str__(self): return str(self.d) def get_channel_triple(self, i): """ Auxiliary getter for signal of i-th channel with metadata. Returns: triple (data of channel, channel id, channel unit) """ return (self.d["signals/data"][i, :], self.d["signals/channels"][i], self.d["signals/units"][i]) @property def sample_count(self): """ Number of samples in signal. """ return self.d["signals/data"].shape[1] @property def channel_count(self): """ Number of channels, """ return self.d["signals/data"].shape[0] @property def basepath(self): return DPath.from_path(self.d["basepath"]) @property def id(self): """ Unique identifier of container state (sequence of modifications performed on container). This identifier can be used as unique filename for outputs. """ return "~".join(op for op in self.d["log"] if not op.startswith("#")).replace(".", ",").replace(" ", "") @property def lag(self): return self.d["/signals/lag"] if "/signals/lag" in self.d else 0 def x_index(self, index_type: TimeUnit, fs: Union[int, float]): """ Returns: X-axis array for signal data in given time units (time representation). """ if index_type == TimeUnit.SAMPLE: index = np.arange(0, self.sample_count) - self.lag else: interval = 1.0 / fs index = np.linspace(0.0, self.sample_count * interval, self.sample_count, endpoint=False) - self.lag * interval if index_type == TimeUnit.TIME_DELTA: index = np.fromiter((np.timedelta64(int(t * 1_000_000_000), "ns") for t in index), dtype="timedelta64[ns]") return index def get_annotation_positions(self, specifier: str, index_type: TimeUnit, fs: Union[int, float]): """ Positions of annotations (markers) in given time units (time representation). Args: specifier: identification of annotation source (annotator) index_type: time line representation fs: sample frequency """ annotator, achar, astring = SigContainer.annotation_parser(specifier) if annotator not in self.d["annotations"]: raise KeyError(f"""Invalid annotator {annotator} (only {','.join(self.d['annotations'].keys())} are included)""") samples = np.array(self.d[f"annotations/{annotator}/samples"]) types = np.array(self.d[f"annotations/{annotator}/types"]) notes = np.array(self.d[f"annotations/{annotator}/notes"]) if achar is not None: samples = samples[types == achar] notes = notes[types == achar] if astring is not None: r = re.compile(astring) vmatch = np.vectorize(lambda text: bool(r.fullmatch(text))) samples = samples[vmatch(notes)] return self.x_index(index_type, fs)[samples] @staticmethod def annotation_parser(aname: str) -> Sequence[str]: match = re.fullmatch(r"([.\w]+)(?:/(.))?(?:=(.+))?", aname) if match: return match.groups() else: raise KeyError(f"Invalid annotation specification `{aname}`") def get_fft_tuple(self, i: int, source: str): return self.d[f"{source}/data"][i, :], self.d[f"{source}/channels"][i] @staticmethod def from_hdf5(filename: str, *, path: str = None, use_saved_path: bool = False) -> "SigContainer": data = HierarchicalDict() with h5py.File(filename, "r") as f: f.visititems(lambda name, item : SigContainer._visitor(data, name, item)) if not use_saved_path: data["basepath"] = str(DPath.from_path(filename).prepend_path(DPath.from_path(path, dir=True))) return SigContainer(data) @staticmethod def hdf5_cache(source, operator: "SigOperator", path: str = "") -> "SigContainer": path = DPath.from_path(path).base_path(source._filepath.extend_stem("_cache").resuffix(".hdf5")) if Path(str(path)).exists(): return SigContainer.from_hdf5(str(path), use_saved_path=True) else: from sigpipes.sigoperator import Hdf5 return source.sigcontainer() | operator| Hdf5(str(path)) @staticmethod def _visitor(data: HierarchicalDict, name: str, item: Union[h5py.Group, h5py.Dataset]) -> None: if isinstance(item, h5py.Group): data.make_folder(name) elif isinstance(item, h5py.Dataset): type = item.attrs["type"] if type == "int": data[name] = int(item[0]) elif type == "float": data[name] = float(item[0]) elif type == "str": data[name] = item[0].decode(encoding="utf-8") elif type == "list": data[name] = list(item[()]) elif type == "str_list": data[name] = list(s.decode(encoding='UTF-8') for s in item[()]) elif type in ["ndarray", "str_ndarray"]: data[name] = item[()] @staticmethod def from_csv(filename: str, * , dir: str = None, dialect: str = "excel", header: bool = True, default_unit: str = "unit", fs=None, transpose: bool = False, annotation: Union[str,Sequence[str]] = None) -> "SigContainer": """ Args: filename: absolute or relative file name dir: base directory of relative file name (optional) dialect: dialect of CSV (see CSV module) header: first line is header with channels names and units (in parenthesis) default_unit: default unit (if is not defined by header) fs: sampling frequency, if smapling frequency is not provided, the frequency is derived from first column which must containts second timestamps annotation: filename of annotation file Returns: """ if dir is not None: filepath = Path(dir) / Path(filename) else: filepath = Path(filename) signals = [] times = [] units = None headers = None with open(filepath, "rt", newline='') as csvfile: reader = csv.reader(csvfile, dialect=dialect) if header: row = next(reader) headers = row[1:] if fs is None else row for row in reader: if fs is None: times.append(float(row[0])) signals.append([float(x) for x in row[1:]]) else: signals.append([float(x) for x in row]) if not transpose: data = np.array(signals).transpose() else: data =
np.array(signals)
numpy.array
import os import numpy as np from mapgwm.headobs import preprocess_headobs, get_data def test_preprocess_headobs(test_output_folder, test_data_path): # input files #data_file = os.path.join(test_data_path, 'headobs', 'GW_monthly_stats_test.txt') data_file = test_data_path / 'headobs/GW_monthly_stats1990-01-01_2019-12-31.txt' #metadata_file = os.path.join(test_data_path, 'headobs', 'GW_monthly_meta_test.txt') metadata_file = test_data_path / 'headobs/GW_monthly_meta1990-01-01_2019-12-31.txt' # output outputfile = os.path.join(test_output_folder, 'preprocessed_monthly_output.csv') start_date = '1998-04-01' # areas of interest within model to break out as separate observation groups geographic_groups = [test_data_path / 'extents/CompositeHydrographArea.shp', test_data_path / 'extents/MAP_generalized_regions.shp' ] # read the data data_orig, metadata_orig = get_data(data_file, metadata_file) data, metadata = preprocess_headobs(data_orig, metadata_orig, head_data_columns=['head', 'last_head'], data_length_units='feet', active_area=os.path.join(test_data_path, 'extents/ms_delta.shp'), source_crs=4269, dest_crs=5070, start_date=start_date, geographic_groups=geographic_groups, geographic_groups_col='obsgroup', outfile=outputfile) assert os.path.exists(os.path.join(test_output_folder, 'preprocessed_monthly_output_info.shp')) assert os.path.exists(os.path.join(test_output_folder, 'preprocessed_monthly_output_info.csv')) assert np.all(data.columns == ['site_no', 'datetime', 'head', 'last_head', 'head_std', 'n', 'obsprefix']) assert not any(set(data.obsprefix).difference(metadata.obsprefix)) assert not any({'site_no', 'x', 'y', 'screen_botm', 'screen_top', 'category', 'group'}.difference(metadata.columns)) assert metadata['n'].dtype == np.integer # unit conversion was applied evenly assert np.allclose(data['head'].values, data.last_head.values, rtol=0.1) assert np.allclose(metadata['head'].values, metadata.last_head.values, rtol=0.1) if data_orig.head_std.any() and data.head_std.any(): assert np.allclose(
np.nanmean(data_orig.head_std)
numpy.nanmean
import numpy as np from LevyVector import levy import AdaptiveStrategy as Adaption def evolve(problem, n_eval=300000, n_pop=100, diff_mode="de/curr-to-pbest/1", F=0.5, CR=0.9, p=0.05, adapt_params=[], adapt_strategy="none", params_of_adapt_strategy={}, indicator="none", n_step=1, epsilon=1e-14, seed=1000, is_print=True, file="none"): ''' Differential Evolution (DE) with Self-adaptive strategy Problem Parameters ---------- problem: object - optimization problem to be solved Running Parameters ---------- n_eval: int - maximum number of evaluations n_pop: int - population size epsilon: float - tolerance of algorithm running seed: int - seed of random number is_print: bool - whether print results on screen or not file: string - file to record history - valid input: + "none": do not record + otherwise, write to the file name Algorithm Parameters ---------- diff_mode: string - mode of differential mutation - valid input: { "de", "de/curr-to-pbest", "de/curr-to-pbest/1" } Variation Parameters ---------- F, CR, p: float OR tuple - scaling factor, crossover rate, elite rate - valid input: + for strategy type 1, input (lower, upper) + for strategy type 2, input (lower, mean, upper) + for non-adaptive, input fixed float * change { adapt_params, adapt_strategy } correspondingly Strategy Parameters ---------- adapt_params: list of string - parameters which are set to be adaptive - valid input: { ["F"], ["CR"], ["F, CR"] } * change { F, CR, adapt_strategy } correspondingly adapt_strategy: string - parameter variation method in adaptive strategy - valid input: { "none", "random", "best_levy", "ga", "cauchy", "jade" } * change { F, CR, adapt_params } correspondingly indicator: string - indicator used to assess quality of parameters automatically set to "none" if adapt_strategy == "none" or "random" - valid input: { "dfii/dfi" } !TODO - increase more indicators n_step: int - frequency to update parameters e.g. n_step=20 means to parameters every 20 generations Return ---------- X: 2D-Array - decision variables of individuals (final evaluation) F: 1D-Array - fitness variables of individuals (final evaluation) c_eval: int - number of evaluations ''' if type(seed) == int: np.random.seed(seed) # Set seed for random number generator evaluate_fitness = problem.f # Get problem information xl, xu = problem.boundaries n_var = problem.n_var ##################### # PARAMETER SETTING # ##################### strategy_type1 = ["best_levy", "ga", "random"] # Strategy with random parameter initialization strategy_type2 = ["cauchy"] # Strategy with cauchy inintialization strategy_type3 = ["jade"] # Strategy with initialization in JADE if adapt_strategy == "none": Fs = np.ones(n_pop) * F CRs = np.ones(n_pop) * CR if adapt_strategy in strategy_type1: # Initialize parameters with uniform distribution if "F" in adapt_params: Fs = np.random.uniform(F[0], F[1], n_pop) if type(CR) == float: CRs = np.ones(n_pop) * CR if "CR" in adapt_params: if type(F) == float: Fs = np.ones(n_pop) * F CRs = np.random.uniform(CR[0], CR[1], n_pop) if adapt_strategy in strategy_type2: # Initialize parameters with Cauchy distribution if "F" in adapt_params: F_mu = F[1] Fs = np.random.standard_cauchy(n_pop) * 0.1 + F_mu Fs = np.clip(Fs, F[0], F[2]) if type(CR) == float: CRs = np.ones(n_pop) * CR if "CR" in adapt_params: CR_mu = CR[1] if type(F) == float: Fs = np.ones(n_pop) * F CRs = np.random.standard_cauchy(n_pop) * 0.1 + CR_mu CRs = np.clip(CRs, CR[0], CR[2]) if adapt_strategy in strategy_type3: # Initialize F with Cauchy distribution, CR with Gaussian distribution if "F" in adapt_params: F_mu = F[1] Fs = np.random.standard_cauchy(n_pop) * 0.1 + F_mu Fs = np.clip(Fs, F[0], F[2]) if type(CR) == float: CRs = np.ones(n_pop) * CR if "CR" in adapt_params: CR_mu = CR[1] if type(F) == float: Fs = np.ones(n_pop) * F CRs = np.random.normal(CR_mu, 0.1, n_pop) CRs = np.clip(CRs, CR[0], CR[2]) ################# # START PROGRAM # ################# X = np.random.uniform(xl, xu, (n_pop, n_var)) # Initialize population Y = np.array([evaluate_fitness(x) for x in X]) # Evaluate fitness c_eval, c_gen = n_pop, 0 if adapt_strategy in ["none", "random"]: indicator = "none" else: I = np.zeros(n_pop) ############# # MAIN LOOP # ############# while True: # Enter generation loop c_gen += 1 for i in np.random.permutation(n_pop): # Traverse population xi, yi = X[i,:], Y[i] # Get current individual Fi, CRi = Fs[i], CRs[i] # Get current parameters maskbit = np.random.choice([0, 1], n_var, p=[1 - CRi, CRi]) # Get maskbit for crossover if diff_mode == "de": # Reproduce by DE xr1 = X[np.random.choice(n_pop),:] xr2 = X[np.random.choice(n_pop),:] xi_ = xi + Fi * (xr1 - xr2) * maskbit if diff_mode == "de/curr-to-pbest": # Reproduce by DE/current to pbest pbest = sorted(np.arange(n_pop), key=lambda k: Y[k])[:int(p * n_pop)] xpbest = X[np.random.choice(pbest),:] xi_ = xi + Fi * (xpbest - xi) * maskbit if diff_mode == "de/curr-to-pbest/1": # Reproduce by DE/current to pbest/1 pbest = sorted(np.arange(n_pop), key=lambda k: Y[k])[:int(p * n_pop)] xpbest = X[np.random.choice(pbest),:] xr1 = X[np.random.choice(n_pop),:] xr2 = X[np.random.choice(n_pop),:] xi_ = xi + Fi * (xpbest - xi + xr1 - xr2) * maskbit xi_ = np.clip(xi_, xl, xu) # Repair to satisfy constraint yi_ = evaluate_fitness(xi_) # Evaluate offspring c_eval += 1 if yi_ < yi: # Select better individual X[i], Y[i] = xi_, yi_ if c_eval >= n_eval or min(Y) - problem.optimalF <= epsilon:# Termination criteria if is_print == True: print("{}, {:.2e}, {:.1f}, {:.1f}". # Print results on screen format(c_eval, min(Y), np.mean(Fs), np.mean(CRs))) if file != "none": # Write results to file history = open(file, "a") history.write(f"{c_eval},{min(Y)},{np.mean(Fs)},{np.mean(CRs)}\n") history.close() return X, Y, c_eval if indicator == "dfii/fi": # Cumulate indicator I[i] += max([yi - yi_, 0]) / (yi - min(Y) + 1e-14) if indicator == "dfii": I[i] += max([yi - yi_, 0]) if is_print == True: print("{}, {:.2e}, {:.1f}, {:.1f}". # Print results on screen format(c_eval, min(Y), np.mean(Fs), np.mean(CRs))) if file != "none": # Write results to file history = open(file, "a") history.write(f"{c_eval},{min(Y)},{np.mean(Fs)},{np.mean(CRs)}\n") history.close() ############ # ADAPTION # ############ if c_gen % n_step == 0: if adapt_strategy == "none": # No adaption Fs, CRs = Fs, CRs if adapt_strategy == "random": # Random adaption Fs, CRs = Fs, CRs if "F" in adapt_params: Fs = Adaption.rand_adapt(Fs, F[0], F[1]) if "CR" in adapt_params: CRs = Adaption.rand_adapt(CRs, CR[0], CR[1]) """ !TODO - design a better variation for best_levy """ if adapt_strategy == "best_levy": # Best levy adaption Fs, CRs = Fs, CRs if "CR" in adapt_params: CRs = Adaption.best_levy_adapt(CRs, I[:], CR[0], CR[1], params_of_adapt_strategy) if "F" in adapt_params: Fs = Adaption.best_levy_adapt(Fs, I[:], F[0], F[1], params_of_adapt_strategy) if adapt_strategy == "ga" and
np.sum(I)
numpy.sum
# This file is part of GridCal. # # GridCal is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # GridCal is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GridCal. If not, see <http://www.gnu.org/licenses/>. import time import json import numpy as np import numba as nb from enum import Enum from GridCal.Engine.Core.multi_circuit import MultiCircuit from GridCal.Engine.Core.snapshot_pf_data import compile_snapshot_circuit from GridCal.Engine.Simulations.LinearFactors.linear_analysis import LinearAnalysis, make_worst_contingency_transfer_limits from GridCal.Engine.Simulations.driver_types import SimulationTypes from GridCal.Engine.Simulations.result_types import ResultTypes from GridCal.Engine.Simulations.results_table import ResultsTable from GridCal.Engine.Simulations.results_template import ResultsTemplate from GridCal.Engine.Simulations.driver_template import DriverTemplate ######################################################################################################################## # Optimal Power flow classes ######################################################################################################################## class AvailableTransferMode(Enum): Generation = 0 InstalledPower = 1 Load = 2 GenerationAndLoad = 3 @nb.njit() def compute_alpha(ptdf, P0, Pinstalled, idx1, idx2, bus_types, dT=1.0, mode=0): """ Compute all lines' ATC :param ptdf: Power transfer distribution factors (n-branch, n-bus) :param P0: all bus injections [p.u.] :param idx1: bus indices of the sending region :param idx2: bus indices of the receiving region :param bus_types: Array of bus types {1: pq, 2: pv, 3: slack} :param dT: Exchange amount :param mode: Type of power shift 0: shift generation based on the current generated power 1: shift generation based on the installed power 2: shift load 3 (or else): shift using generation and load :return: Exchange sensitivity vector for all the lines """ nbr = ptdf.shape[0] nbus = ptdf.shape[1] # declare the bus injections increment due to the transference dP =
np.zeros(nbus)
numpy.zeros
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Utilities for performing retrieval.""" import abc from concurrent import futures import time from absl import logging from language.realm import featurization from language.realm import parallel from language.realm import profile import numpy as np import tensorflow.compat.v1 as tf import tensorflow_hub as hub class Retriever(abc.ABC): """Retrieves documents for a query.""" @abc.abstractmethod def retrieve(self, query_batch): """Retrieves candidates for a batch of queries. Args: query_batch (list[Query]): a list of queries. Returns: a batch of lists, where each list is a list of Documents for the corresponding query. """ raise NotImplementedError() class DummyRetriever(Retriever): """Dummy retriever for testing.""" def __init__(self, num_neighbors): self._num_neighbors = num_neighbors self.total_candidates = 13353718 self.embed_dim = 128 with tf.device('/CPU:0'): self._doc_embeds = tf.zeros((self.total_candidates, self.embed_dim)) def retrieve(self, query_batch): # [batch_size, embed_dim] query_embeds = tf.zeros((len(query_batch), self.embed_dim)) with tf.device('/CPU:0'): # [batch_size, total_candidates] cand_scores = tf.matmul(query_embeds, self._doc_embeds, transpose_b=True) _, top_ids_batch = tf.math.top_k(cand_scores, k=self._num_neighbors) title_ids = np.zeros(10, dtype=np.int32) body_ids = np.zeros(280, dtype=np.int32) retrievals_batch = [] for top_ids in top_ids_batch: retrievals = [ featurization.Document(0, title_ids, body_ids) for i in top_ids ] retrievals_batch.append(retrievals) return retrievals_batch class BruteForceRetriever(Retriever): """Retrieves documents using brute force matrix multiplication.""" def __init__(self, query_embedder, documents, doc_embeds_or_path, num_neighbors): """Constructs BruteForceRetriever. Args: query_embedder: an instance of QueryEmbedder. documents: a list of Document objects. doc_embeds_or_path: either a [num_docs, embed_dim] TF Tensor, or a path to load it. num_neighbors: number of neighbors to retrieve. """ total_candidates = len(documents) self._query_embedder = query_embedder self._num_neighbors = num_neighbors self._documents = documents # Load embeddings. if isinstance(doc_embeds_or_path, str): with tf.device('/CPU:0'): ckpt_reader = tf.train.load_checkpoint(doc_embeds_or_path) self._doc_embeds = ckpt_reader.get_tensor('block_emb') else: self._doc_embeds = doc_embeds_or_path logging.info('Loaded document embeddings.') # Check shapes. if self._doc_embeds.shape[0] != total_candidates: raise ValueError('Did not load the right number of embeddings.') @profile.profiled_function def retrieve(self, query_batch): # [batch_size, embed_dim] query_embeds = self._query_embedder.embed(query_batch) with tf.device('/CPU:0'): # [batch_size, total_candidates] cand_scores = tf.matmul(query_embeds, self._doc_embeds, transpose_b=True) _, top_ids_batch = tf.math.top_k(cand_scores, k=self._num_neighbors) retrievals_batch = [] for top_ids in top_ids_batch: retrievals = [self._documents[i] for i in top_ids] retrievals_batch.append(retrievals) return retrievals_batch def count_tf_records(file_path): """Counts the number of records in a GZIP'd TFRecord file.""" gzip_option = tf.python_io.TFRecordOptions( tf.python_io.TFRecordCompressionType.GZIP) count = 0 for _ in tf.python_io.tf_record_iterator(file_path, gzip_option): count += 1 return count def count_tf_records_parallel_helper(args): """Just a helper function for count_tf_records_parallel.""" file_idx, file_path = args return (file_idx, count_tf_records(file_path)) def count_tf_records_parallel(file_paths, num_processes=None): """Counts number of records in TFRecord files in parallel. Args: file_paths: a list of paths, where each path points to a GZIP-ed TFRecord file. num_processes: number of Python processes to use in parallel. If None, will use all available CPUs. Returns: shard_sizes: a list of ints. """ num_files = len(file_paths) with parallel.Executor( create_worker=lambda: count_tf_records_parallel_helper, queue_size=num_files, num_workers=num_processes) as executor: for file_idx, file_path in enumerate(file_paths): executor.submit((file_idx, file_path)) counts = [None] * num_files results = executor.results(max_to_yield=num_files) for i, (file_idx, count) in enumerate(results): counts[file_idx] = count logging.info('Counted %d / %d files.', i + 1, num_files) return counts def load_documents(path): """Loads Documents from a GZIP-ed TFRecords file into a Python list.""" gzip_option = tf.python_io.TFRecordOptions( tf.python_io.TFRecordCompressionType.GZIP) def get_bytes_feature(ex, name): return list(ex.features.feature[name].bytes_list.value) def get_ints_feature(ex, name): # 32-bit Numpy arrays are more memory-efficient than Python lists. return
np.array(ex.features.feature[name].int64_list.value, dtype=np.int32)
numpy.array
import os.path import numpy as np import math from collections import namedtuple from typing import Dict, Any, Tuple, List, Optional from models.adaptive_model import AdaptiveModel from models.standard_model import StandardModel from dataset.dataset import Dataset, DataSeries from utils.file_utils import save_by_file_suffix, read_by_file_suffix from utils.sequence_model_utils import SequenceModelType from utils.constants import OUTPUT, LOGITS, SEQ_LENGTH, SKIP_GATES, PHASE_GATES, STOP_OUTPUT_NAME LOG_FILE_FMT = 'model-{0}-{1}-{2}.jsonl.gz' ModelResults = namedtuple('ModelResults', ['predictions', 'labels', 'stop_probs', 'accuracy']) BATCH_SIZE = 64 def clip(x: int, bounds: Tuple[int, int]) -> int: if x > bounds[1]: return bounds[1] elif x < bounds[0]: return bounds[0] return x def save_test_log(accuracy: float, power: float, valid_accuracy: Optional[float], budget: float, system_name: str, key: str, output_file: str): test_log: Dict[str, Dict[str, Any]] = dict() if os.path.exists(output_file): test_log = list(read_by_file_suffix(output_file))[0] if key not in test_log: test_log[key] = dict() log_value = { 'ACCURACY': accuracy, 'AVG_POWER': power, 'VALID_ACCURACY': valid_accuracy, 'BUDGET': budget, 'SYSTEM_NAME': system_name } budget_str = '{0:.4f}'.format(budget) test_log[key][budget_str] = log_value save_by_file_suffix([test_log], output_file) def get_budget_index(budget: float, valid_accuracy: np.ndarray, max_time: int, power_estimates: np.ndarray, allow_violations: bool) -> int: """ Selects the single model level which should yield the best overall accuracy. This decision is based on the validation accuracy for each level. Args: budget: The current avg power budget valid_accuracy: A [L] array containing the validation accuracy for each model level max_time: The number of timesteps power_estimates: A [L] array of power estimates for each level allow_violations: Index selected in a manner which allows for budget violations if such violations will lead to better end-to-end accuracy. Returns: The "optimal" model level. """ best_index = 0 best_acc = 0.0 if allow_violations: num_levels = valid_accuracy.shape[0] energy_budget = budget * max_time for level_idx in range(num_levels): # Estimate the number of timesteps on which we can perform inference with this level avg_power = power_estimates[level_idx] projected_timesteps = min(energy_budget / avg_power, max_time) projected_correct = valid_accuracy[level_idx] * projected_timesteps estimated_accuracy = projected_correct / max_time if estimated_accuracy > best_acc: best_acc = estimated_accuracy best_index = level_idx else: budget_comparison = power_estimates <= budget if np.any(budget_comparison): budget_mask = budget_comparison.astype(float) masked_accuracy = valid_accuracy * budget_mask best_index = np.argmax(masked_accuracy) else: best_index = np.argmin(power_estimates) return best_index def concat_model_results(model_results: List[ModelResults]) -> ModelResults: """ Stacks each field of the given results into a single array. This is useful for Skip RNN and Phased RNN systems in which each output is a separate model. """ predictions = np.concatenate([r.predictions for r in model_results], axis=1) # [N, L] labels = model_results[0].labels # [N, 1] stop_probs = [r.stop_probs for r in model_results] accuracy = [r.accuracy for r in model_results] return ModelResults(predictions=predictions, labels=labels, stop_probs=stop_probs, accuracy=accuracy) def execute_adaptive_model(model: AdaptiveModel, dataset: Dataset, series: DataSeries) -> ModelResults: """ Executes the neural network on the given data series. We do this in a separate step to avoid recomputing for multiple budgets. Executing the neural network is relatively expensive. Args: model: The adaptive model used to perform inference dataset: The dataset to perform inference on series: The data series to extract. This is usually the TEST set. Returns: A model result tuple containing the inference results. """ level_predictions: List[np.ndarray] = [] stop_probs: List[np.ndarray] = [] labels: List[np.ndarray] = [] num_outputs = model.num_outputs # Operations to execute ops = [LOGITS, STOP_OUTPUT_NAME] # Make the batch generator. Don't shuffle so we have consistent results. data_generator = dataset.minibatch_generator(series=series, batch_size=BATCH_SIZE, metadata=model.metadata, should_shuffle=False) for batch_num, batch in enumerate(data_generator): # Compute the predicted log probabilities feed_dict = model.batch_to_feed_dict(batch, is_train=False, epoch_num=0) model_results = model.execute(feed_dict, ops=ops) # Concatenate logits into a [B, L, C] array (logit_ops is already ordered by level). # For reference, L is the number of levels and C is the number of classes logits = model_results[LOGITS] stop_output = model_results[STOP_OUTPUT_NAME] # [B, L] stop_probs.append(stop_output) # Compute the predictions for each level level_pred = np.argmax(logits, axis=-1) # [B, L] level_predictions.append(level_pred) labels.append(np.array(batch[OUTPUT]).reshape(-1, 1)) # Save results as attributes level_predictions = np.concatenate(level_predictions, axis=0) labels = np.concatenate(labels, axis=0) # [N, 1] stop_probs = np.concatenate(stop_probs, axis=0) level_accuracy = np.average(np.isclose(level_predictions, labels).astype(float), axis=0) return ModelResults(predictions=level_predictions, labels=labels, stop_probs=stop_probs, accuracy=level_accuracy) def execute_standard_model(model: StandardModel, dataset: Dataset, series: DataSeries) -> ModelResults: """ Executes the neural network on the given data series. We do this in a separate step to avoid recomputing for multiple budgets. Executing the neural network is relatively expensive. Args: model: The standard model used to perform inference dataset: The dataset to perform inference on series: The data series to extract. This is usually the TEST set. Returns: A model result tuple containing the inference results. """ level_predictions: List[np.ndarray] = [] labels: List[np.ndarray] = [] # Make the batch generator. Don't shuffle so we have consistent results. data_generator = dataset.minibatch_generator(series=series, batch_size=BATCH_SIZE, metadata=model.metadata, should_shuffle=False) for batch_num, batch in enumerate(data_generator): # Compute the predicted log probabilities feed_dict = model.batch_to_feed_dict(batch, is_train=False, epoch_num=0) model_results = model.execute(feed_dict, [LOGITS]) # Compute the predictions for each level level_pred = np.argmax(model_results[LOGITS], axis=-1) # [B, L] level_predictions.append(level_pred) labels.append(
np.array(batch[OUTPUT])
numpy.array
import numpy as np import flopy import flopy.utils.binaryfile as bf import time ################################################################################# # Setting up flopy model ################################################################################# def model_confined(dt, wave, task_name = 'wave_in_aquifer_confined', task_root = './', exe_name = "mf2005", Lx = 10000, # x domain length [m] Ly = 10, # y domain length [m] ztop = 10, # Top level [m] zbot = 0.0, # Bottom level [m] nlay = 1, # Number of layers nrow = 1, # Number of rows ncol = 15000, # Number of columns hk = 25, # Horizontal conductivity ss = 5e-05, # Specific storage [m-1] dx_max = 2, **settings): modelname = '{}{}'.format(task_root,task_name) ### Start timer start = time.time() ### Calculate x series xi= np.logspace(0,np.log10(Lx),ncol+1)-1 xi[ncol] += 1 delr = np.diff(xi) # Voxel length x direction delc= Ly / nrow # Voxel length y direction ix_max = np.argmax(delr>dx_max) ### Define the Stress Periods nper = len(wave) # Number of stress periods ### Create grid mf = flopy.modflow.Modflow(modelname, exe_name=exe_name) dis = flopy.modflow.ModflowDis( mf, nlay, nrow, ncol, delr=delr, delc=delc, top=ztop, botm=np.linspace(ztop, zbot, nlay + 1)[1:], nper=nper, perlen=dt*np.ones(nper), # Stress period lengths, nstp= np.ones((nper), dtype=np.int32), # Number of timesteps for each stress period steady= np.zeros((nper), dtype=bool), ) gridx = dis.get_node_coordinates()[1] headstart = ztop - min(wave-np.mean(wave)) + 1 ### Assign boundary conditions flopy.modflow.ModflowBas( mf, ibound=np.ones((nlay, nrow, ncol), dtype=np.int32), strt=headstart * np.ones((nlay, nrow, ncol), dtype=np.float32), ) ### Assign hydraulic parameters flopy.modflow.ModflowLpf( mf, hk=hk, vka=hk, ss=ss, ipakcb=53, ) ### Load Modflow solver flopy.modflow.ModflowPcg(mf) ### Define stress period data stress_period_data = {} for i in range(nper): stageleft = wave[i] + headstart condleft = 10000 stress_period_data[i] = [0, 0, 0, stageleft, condleft] ### Load stress period data flopy.modflow.ModflowGhb( mf, stress_period_data=stress_period_data, ) ### Define output stress_period_out = {} for kper in range(nper): stress_period_out[(kper, 0)] = [ "save head", "print head", ] ### Load output file flopy.modflow.ModflowOc( mf, stress_period_data=stress_period_out, compact=True, ) ### Write model input files mf.write_input() ### Run model success, mfoutput = mf.run_model(silent=True, pause=False) if not success: raise Exception("MODFLOW did not terminate normally.") ### Create the headfile output objects headobj = bf.HeadFile(modelname + ".hds") times = headobj.get_times() # end time points of stress periods ### Create hydraulic head array head_matrix = np.ones(shape=(nper,ix_max)) ### Extract head files in a readable form for i in range(nper): head_matrix[i,:] = headobj.get_data(totim=times[i])[0][0,0:ix_max] - headstart ### stop timer end = time.time() ### total time taken print("Simulation finished successfully") print(f" Runtime [s]: {end - start}") return([times,gridx[0:ix_max],head_matrix]) def model_leakage(dt, wave, task_name = 'wave_in_aquifer_leakage', task_root = './', exe_name = "mf2005", Lx=10000, Ly=10, zbot=0.0, nlay=3, nrow=1, ncol=15000, thickness_lay1 = 10, thickness_lay2 = 1, # need to be one to be consistant with the leakage coefficient thickness_lay3 = 10, hk_unconfined = 25, hk_confining = 0.01, hk_confined = 25, ss_confined = 5e-5, ss_unconfined = 0.025, fluctuation_unconfined_aquifer=False, ### regulating BC in unconfined aquifer dx_max = 2, **settings): modelname = '{}{}'.format(task_root,task_name) ### Start timer start = time.time() ### Calculate x series xi= np.logspace(0,np.log10(Lx),ncol+1)-1 xi[ncol] += 1 delr = np.diff(xi) # Voxel length x direction delc= Ly / nrow # Voxel length y direction ix_max = np.argmax(delr>dx_max) ### Define the Stress Periods nper = len(wave) ztop = thickness_lay1 + thickness_lay2 + thickness_lay3 ### Create grid mf = flopy.modflow.Modflow(modelname, exe_name=exe_name) dis = flopy.modflow.ModflowDis( mf, nlay, nrow, ncol, delr=delr, delc=delc, top=ztop, botm=np.array([thickness_lay3+thickness_lay2,thickness_lay3,0.0]), nper=nper, perlen=dt*np.ones(nper), # Number of stress periods nstp=np.ones((nper), dtype=np.int32), # Number of timesteps for each stress period steady = np.zeros((nper), dtype=bool), # Stress period lengths ) gridx = dis.get_node_coordinates()[1] ### Assign boundary conditions ibound = np.ones((nlay, nrow, ncol), dtype=np.int32) if fluctuation_unconfined_aquifer is False: ibound[0,:,:] = -1 headstart = ztop - min(wave-np.mean(wave)) + 1 flopy.modflow.ModflowBas(mf, ibound=ibound, strt = headstart * np.ones((nlay, nrow, ncol), dtype=np.float32), ) ### Assign hydraulic conductivities hk = np.ones((nlay,nrow,ncol)) hk[0,:,:] = hk_unconfined hk[1,:,:] = hk_confining hk[2,:,:] = hk_confined vka = hk ss =
np.ones((nlay,nrow,ncol))
numpy.ones
""" Class definition for the Branch_and_Bound subdriver. This pseudo-driver can only be run when plugged into the AMIEGO driver's minlp slot. This is the branch and bound algorithm that maximizes the constrained expected improvement function and returns an integer infill point. The algorithm uses the relaxation techniques proposed by Jones et.al. on their paper on EGO,1998. This enables the algorithm to use any gradient-based approach to obtain a global solution. Also, to satisfy the integer constraints, a new branching scheme has been implemented. Developed by <NAME> School of Aeronautics & Astronautics Purdue University, West Lafayette, IN 47906 July, 2016 Implemented in OpenMDAO, Aug 2016, <NAME> """ from collections import OrderedDict import os from time import time import numpy as np from scipy.special import erf from pyDOE2 import lhs from openmdao.core.driver import Driver from openmdao.drivers.genetic_algorithm_driver import GeneticAlgorithm from openmdao.utils.concurrent import concurrent_eval, concurrent_eval_lb from openmdao.utils.general_utils import set_pyoptsparse_opt from amiego.optimize_function import snopt_opt # check that pyoptsparse is installed # if it is, try to use SNOPT but fall back to SLSQP _, OPTIMIZER = set_pyoptsparse_opt('SNOPT') class Branch_and_Bound(Driver): """ Class definition for the Branch_and_Bound driver. This pseudo-driver can only be run when plugged into the AMIEGO driver's minlp slot. This is the branch and bound algorithm that maximizes the constrained expected improvement function and returns an integer infill point. The algorithm uses the relaxation techniques proposed by Jones et.al. on their paper on EGO,1998. This enables the algorithm to use any gradient-based approach to obtain a global solution. Also, to satisfy the integer constraints, a new branching scheme has been implemented. Attributes ---------- dvs : list Cache of integer design variable names. eflag_MINLPBB : bool This is set to True when we find a local minimum. fopt : ndarray Objective value at optimal design. obj_surrogate : <AMIEGOKrigingSurrogate> Surrogate model of the objective as a function of the integer design vars. xI_lb : ndarray Lower bound of the integer design variables. xI_ub : ndarray Upper bound of the integer design variables. xopt : ndarray Optimal design. _randomstate : np.random.RandomState, int Random state (or seed-number) which controls the seed and random draws. """ def __init__(self): """ Initialize the Branch_and_Bound driver. """ super(Branch_and_Bound, self).__init__() # What we support self.supports['inequality_constraints'] = True self.supports['equality_constraints'] = False self.supports['multiple_objectives'] = False self.supports['two_sided_constraints'] = False self.supports['active_set'] = False self.supports['linear_constraints'] = False self.supports['gradients'] = False self.supports['integer_design_vars'] = True self.dvs = [] self.i_idx_cache = {} self.obj_surrogate = None # We will set this to True if we have found a minimum. self.eflag_MINLPBB = False # Amiego retrieves optimal design and optimum upon completion. self.xopt = None self.fopt = None # Experimental Options. TODO: could go into Options self.load_balance = True self.aggressive_splitting = False # Random state can be set for predictability during testing if 'SimpleGADriver_seed' in os.environ: self._randomstate = int(os.environ['SimpleGADriver_seed']) else: self._randomstate = None def _declare_options(self): """ Declare options before kwargs are processed in the init method. """ opt = self.options opt.declare('active_tol', 1.0e-6, lower=0.0, desc='Tolerance (2-norm) for triggering active set ' 'reduction.') opt.declare('atol', 0.1, lower=0.0, desc='Absolute tolerance (inf-norm) of upper minus ' 'lower bound for termination.') opt.declare('con_tol', 1.0e-6, lower=0.0, desc='Constraint thickness.') opt.declare('disp', True, desc='Set to False to prevent printing of iteration ' 'messages.') opt.declare('ftol', 1.0e-4, lower=0.0, desc='Absolute tolerance for sub-optimizations.') opt.declare('maxiter', 100000, lower=0.0, desc='Maximum number of iterations.') opt.declare('trace_iter', 5, desc='Number of generations to trace back for ubd.') opt.declare('trace_iter_max', 10, desc='Maximum number of generations to trace back for ubd.') opt.declare('maxiter_ubd', 10000, desc='Number of generations ubd stays the same') opt.declare('local_search', 0, values=[0, 1, 2], desc='Local search type. Set to 0 for GA, 1 for LHS, 2 for LHS + SQP ' '(Default = 0)') def run(self): """ Execute the Branch_and_Bound method. Returns ------- boolean Failure flag; True if failed to converge, False if successful. """ problem = self._problem() obj_surrogate = self.obj_surrogate atol = self.options['atol'] disp = self.options['disp'] maxiter = self.options['maxiter'] maxiter_ubd = self.options['maxiter_ubd'] self.iter_count = 1 self.eflag_MINLPBB = False obj_surrogate.p = 2 obj_surrogate.y_best = np.min(obj_surrogate.Y) # ---------------------------------------------------------------------- # Step 1: Initialize # ---------------------------------------------------------------------- num_des = len(self.xI_lb) node_num = 0 itercount = 0 ubd_count = 0 # Initial B&B bounds are infinite. UBD = np.inf LBD = -np.inf LBD_prev = -np.inf # Copy our desvars' user specified upper and lower bounds xL_iter = self.xI_lb.copy() xU_iter = self.xI_ub.copy() num_init_sam = num_des init_sam = lhs(num_des, samples=num_init_sam, criterion='center', random_state=self._randomstate) for ii in range(num_init_sam): xopt_ii = np.round(xL_iter + init_sam[ii] * (xU_iter - xL_iter)).reshape(num_des) fopt_ii = self.objective_callback(xopt_ii) if fopt_ii < UBD: self.eflag_MINLPBB = True UBD = fopt_ii fopt = fopt_ii xopt = xopt_ii # This stuff is just for printing. par_node = 0 # Active set fields: (Updated!) # Aset = [[NodeNumber, lb, ub, LBD, UBD, nodeHist], [], ..] active_set = [] nodeHist = NodeHist() UBD_term = UBD comm = problem.model.comm if self.load_balance: # Master/Worker config n_proc = comm.size - 1 if n_proc < 2: comm = None n_proc = 1 else: # Each proc has its own jobs n_proc = comm.size if n_proc < 2: comm = None # Initial node. This is the data structure we pass into the concurrent evaluator. if self.aggressive_splitting: # Initial number of nodes based on number of available procs args = init_nodes(n_proc, xL_iter, xU_iter, par_node, LBD_prev, LBD, UBD, fopt, xopt, nodeHist, ubd_count) else: # Start with 1 node. args = [(xL_iter, xU_iter, par_node, LBD_prev, LBD, UBD, fopt, xopt, node_num, nodeHist, ubd_count)] # Main Loop terminate = False while not terminate: # Branch and Bound evaluation of a set of nodes, starting with the initial one. # When executed in serial, only a single node is evaluted. cases = [(arg, None) for arg in args] if self.load_balance: results = concurrent_eval_lb(self.evaluate_node, cases, comm, broadcast=True) else: results = concurrent_eval(self.evaluate_node, cases, comm, allgather=True) itercount += len(args) if UBD < -1.0e-3: ubd_count += len(args) # Put all the new nodes into active set. for result in results: # Print the traceback if it fails if not result[0]: print(result[1]) new_UBD, new_fopt, new_xopt, new_nodes = result[0] # Save stats for the best case. if new_UBD < UBD: UBD = new_UBD fopt = new_fopt xopt = new_xopt # Look for substantial change in UBD to reset the counter if abs(new_UBD - UBD_term) > 0.001: ubd_count = 1 UBD_term = new_UBD # TODO: Should we extend the active set with all the cases we # ran, or just the best one. All for now. active_set.extend(new_nodes) node_num += len(new_nodes) # Update active set: Removes all nodes worse than the best new node. if len(active_set) >= 1: active_set = update_active_set(active_set, UBD) # Termination if len(active_set) >= 1: # Update LBD and select the current rectangle args = [] # Grab the best nodes, as many as we have processors. n_nodes = np.min((n_proc, len(active_set))) for j in range(n_nodes): # a. Set LBD as lowest in the active set all_LBD = [item[3] for item in active_set] LBD = min(all_LBD) ind_LBD = all_LBD.index(LBD) LBD_prev = LBD # b. Select the lowest LBD node as the current node par_node, xL_iter, xU_iter, _, _, nodeHist = active_set[ind_LBD] self.iter_count += 1 args.append((xL_iter, xU_iter, par_node, LBD_prev, LBD, UBD, fopt, xopt, node_num, nodeHist, ubd_count)) # c. Delete the selected node from the Active set of nodes del active_set[ind_LBD] # -------------------------------------------------------------- # Step 7: Check for convergence # -------------------------------------------------------------- diff = np.abs(UBD - LBD) if diff < atol: terminate = True if disp: print("=" * 85) print("Terminating! Absolute difference between the upper " + "and lower bound is below the tolerence limit.") else: terminate = True if disp: print("=" * 85) print("Terminating! No new node to explore.") print("Max Node", node_num) if itercount > maxiter or ubd_count > maxiter_ubd: terminate = True # Finalize by putting optimal value back into openMDAO self.xopt = xopt self.fopt = fopt return False def evaluate_node(self, xL_iter, xU_iter, par_node, LBD_prev, LBD, UBD, fopt, xopt, node_num, nodeHist, ubd_count): """ Perform Branch and Bound step on a single node. This function encapsulates the portion of the code that runs in parallel. Parameters ---------- xL_iter : ndarray Lower bound of design variables. xU_iter : ndarray Upper bound of design variables. par_node : int Index of parent node for this child node. LBD_prev : float Previous iteration value of LBD. LBD : float Current value of lower bound estimate. UBD : float Current value of upper bound esimate. fopt : float Current best objective value xopt : ndarray Current best design values. node_num : int Index of this current node nodeHist : <NodeHist> Data structure containing information about this node. ubd_count : int Counter for number of generations. Returns ------- float New upper bound estimate. float New best objective value. ndaray New design variables. list List of parameters for new node. """ if OPTIMIZER == 'SNOPT': options = {'Major optimality tolerance': 1.0e-5} elif OPTIMIZER == 'SLSQP': options = {'ACC': 1.0e-5} elif OPTIMIZER == 'CONMIN': options = {'DABFUN': 1.0e-5} active_tol = self.options['active_tol'] local_search = self.options['local_search'] disp = self.options['disp'] trace_iter = self.options['trace_iter'] trace_iter_max = self.options['trace_iter_max'] obj_surrogate = self.obj_surrogate num_des = len(self.xI_lb) new_nodes = [] # Keep this to 0.49 to always round towards bottom-left xloc_iter = np.round(xL_iter + 0.49 * (xU_iter - xL_iter)) floc_iter = self.objective_callback(xloc_iter) # Genetic Algorithm if local_search == 0: # -------------------------------------------------------------- # Step 2: Obtain a local solution using a GA. # -------------------------------------------------------------- ga = GeneticAlgorithm(self.obj_for_GA) bits = np.ceil(np.log2(xU_iter - xL_iter + 1)).astype(int) bits[bits <= 0] = 1 vub_vir = (2**bits - 1) + xL_iter # More important nodes get a higher population size and number of generations. if nodeHist.priority_flag == 1: max_gen = 300 mfac = 6 else: max_gen = 200 mfac = 4 L = np.sum(bits) pop_size = mfac * L t0 = time() self.xU_iter = xU_iter xloc_iter_new, floc_iter_new, nfit = \ ga.execute_ga(xL_iter, xL_iter, vub_vir, vub_vir, bits, pop_size, max_gen, self._randomstate) t_GA = time() - t0 if floc_iter_new < floc_iter: floc_iter = floc_iter_new xloc_iter = xloc_iter_new # LHS Sampling or SNOPT else: # TODO Future research on sampling here num_samples = np.round(np.max([10, np.min([50, num_des / nodeHist.priority_flag])])) init_sam_node = lhs(num_des, samples=num_samples, criterion='center', random_state=self._randomstate) t_GA = 0. for ii in range(int(num_samples)): xloc_iter_new = np.round(xL_iter + init_sam_node[ii] * (xU_iter - xL_iter)) floc_iter_new = self.objective_callback(xloc_iter_new) # SNOPT if local_search == 2: # TODO: did we lose a tol check here? # active_tol: #Perform at non-flat starting point if np.abs(floc_iter_new) > -np.inf: # -------------------------------------------------------------- # Step 2: Obtain a local solution # -------------------------------------------------------------- # Using a gradient-based method here. # TODO: Make it more pluggable. def _objcall(dv_dict): """ Compute objective for SNOPT. """ fail = 0 x = dv_dict['x'] # Objective func_dict = {} func_dict['obj'] = self.objective_callback(x)[0] return func_dict, fail xC_iter = xloc_iter_new opt_x, opt_f, succ_flag, msg = snopt_opt(_objcall, xC_iter, xL_iter, xU_iter, title='LocalSearch', options=options) xloc_iter_new = np.round(np.asarray(opt_x).flatten()) floc_iter_new = self.objective_callback(xloc_iter_new) if floc_iter_new < floc_iter: floc_iter = floc_iter_new xloc_iter = xloc_iter_new # Do some prechecks before commencing for partitioning. ubdloc_best = nodeHist.ubdloc_best if nodeHist.ubdloc_best > floc_iter + 1.0e-6: ubd_track = np.concatenate((nodeHist.ubd_track, np.array([0])), axis=0) ubdloc_best = floc_iter else: ubd_track = np.concatenate((nodeHist.ubd_track, np.array([1])), axis=0) # diff_LBD = abs(LBD_prev - LBD_NegConEI) if len(ubd_track) >= trace_iter_max or \ (len(ubd_track) >= trace_iter and np.sum(ubd_track[-trace_iter:]) == 0): # TODO : Did we lose ths? -> #and UBD<=-1.0e-3: child_info = np.array([[par_node, np.inf, floc_iter], [par_node, np.inf, floc_iter]]) # Fathomed due to no change in UBD_loc for 'trace_iter' generations dis_flag = ['Y', 'Y'] else: # -------------------------------------------------------------------------- # Step 3: Partition the current rectangle as per the new branching scheme. # -------------------------------------------------------------------------- child_info = np.zeros([2, 3]) dis_flag = [' ', ' '] # Choose l_iter = (xU_iter - xL_iter).argmax() if xloc_iter[l_iter] < xU_iter[l_iter]: delta = 0.5 # 0<delta<1 else: delta = -0.5 # -1<delta<0 for ii in range(2): lb = xL_iter.copy() ub = xU_iter.copy() if ii == 0: ub[l_iter] = np.floor(xloc_iter[l_iter] + delta) elif ii == 1: lb[l_iter] = np.ceil(xloc_iter[l_iter] + delta) if np.linalg.norm(ub - lb) > active_tol: # Not a point # -------------------------------------------------------------- # Step 4: Obtain an LBD of f in the newly created node # -------------------------------------------------------------- S4_fail = False x_comL, x_comU, Ain_hat, bin_hat = gen_coeff_bound(lb, ub, obj_surrogate) sU, eflag_sU = self.maximize_S(x_comL, x_comU, Ain_hat, bin_hat) if eflag_sU: yL, eflag_yL = self.minimize_y(x_comL, x_comU, Ain_hat, bin_hat) if eflag_yL: NegEI = calc_conEI_norm([], obj_surrogate, SSqr=sU, y_hat=yL) else: S4_fail = True else: S4_fail = True # Convex approximation failed! if S4_fail: LBD_NegConEI = LBD_prev dis_flag[ii] = 'F' else: LBD_NegConEI = max(NegEI, LBD_prev) # -------------------------------------------------------------- # Step 5: Store any new node inside the active set that has LBD # lower than the UBD. # -------------------------------------------------------------- priority_flag = 0 if LBD_NegConEI < np.inf and LBD_prev > -np.inf: if np.abs((LBD_prev - LBD_NegConEI) / LBD_prev) < 0.005: priority_flag = 1 nodeHist_new = NodeHist() nodeHist_new.ubd_track = ubd_track nodeHist_new.ubdloc_best = ubdloc_best nodeHist_new.priority_flag = priority_flag if LBD_NegConEI < UBD - 1.0e-6: node_num += 1 new_node = [node_num, lb, ub, LBD_NegConEI, floc_iter, nodeHist_new] new_nodes.append(new_node) child_info[ii] = np.array([node_num, LBD_NegConEI, floc_iter]) else: child_info[ii] = np.array([par_node, LBD_NegConEI, floc_iter]) # Flag for child created but not added to active set. (fathomed) dis_flag[ii] = 'X' else: if ii == 1: xloc_iter = ub floc_iter = self.objective_callback(xloc_iter) child_info[ii] = np.array([par_node, np.inf, floc_iter]) # Flag for No child created dis_flag[ii] = 'x' # Update the active set whenever better solution found if floc_iter < UBD: UBD = floc_iter fopt = floc_iter xopt = xloc_iter.reshape(num_des) if disp: if (self.iter_count - 1) % 25 == 0: # Display output in a tabular format print("=" * 95) print("%19s%12s%14s%21s" % ("Global", "Parent", "Child1", "Child2")) template = "%s%8s%10s%8s%9s%11s%10s%11s%11s%11s" print(template % ("Iter", "LBD", "UBD", "Node", "Node1", "LBD1", "Node2", "LBD2", "Flocal", "GA time")) print("=" * 95) template = "%3d%10.2f%10.2f%6d%8d%1s%13.2f%8d%1s%13.2f%9.2f%9.2f" print(template % (self.iter_count, LBD, UBD, par_node, child_info[0, 0], dis_flag[0], child_info[0, 1], child_info[1, 0], dis_flag[1], child_info[1, 1], child_info[1, 2], t_GA)) return UBD, fopt, xopt, new_nodes def objective_callback(self, xI): """ Evalute main problem objective at the requested point. Objective is the expected improvement function with modifications to make it concave. Parameters ---------- xI : ndarray Value of design variables. Returns ------- float Objective value """ obj_surrogate = self.obj_surrogate # Normalized as per the convention in openmdao_Alpha:Kriging. xval = (xI - obj_surrogate.X_mean) / obj_surrogate.X_std NegEI = calc_conEI_norm(xval, obj_surrogate) # print(xI, f) return NegEI def maximize_S(self, x_comL, x_comU, Ain_hat, bin_hat): """ Maximize the SigmaSqr Error. This method finds an upper bound to the SigmaSqr Error, and scales up 'r' to provide a smooth design space for gradient-based approach. Parameters ---------- x_comL : ndarray Full lower bounds vector x_comU : ndarray Full upper bounds vector. Ain_hat : ndarray Matrix Ain_hat for linear model of constraints. bin_hat : ndarray Vector bin_hat for linear model of constraints. Returns ------- float Maximized upper bound for sigma squared error. bool Success flag True if successful. """ if OPTIMIZER == 'SNOPT': options = {'Major optimality tolerance': 1.0e-5} elif OPTIMIZER == 'SLSQP': options = {'ACC': 1.0e-5} elif OPTIMIZER == 'CONMIN': options = {'DABFUN': 1.0e-5} surrogate = self.obj_surrogate R_inv = surrogate.R_inv SigmaSqr = surrogate.SigmaSqr X = surrogate.X n, k = X.shape one = np.ones([n, 1]) xhat_comL = x_comL.copy() xhat_comU = x_comU.copy() xhat_comL[k:] = 0.0 xhat_comU[k:] = 1.0 # Calculate the convexity factor alpha rL = x_comL[k:] rU = x_comU[k:] dr_drhat = np.diag(rU[:, 0] - rL[:, 0]) T2_num = np.dot(np.dot(R_inv, one), np.dot(R_inv, one).T) T2_den = np.dot(one.T, np.dot(R_inv, one)) d2S_dr2 = 2.0 * SigmaSqr * (R_inv - (T2_num / T2_den)) H_hat = np.dot(np.dot(dr_drhat, d2S_dr2), dr_drhat) # Use Gershgorin's circle theorem to find a lower bound of the # min eigen value of the hessian eig_lb = np.zeros([n, 1]) for ii in range(n): dia_ele = H_hat[ii, ii] sum_rw = 0.0 sum_col = 0.0 for jj in range(n): if ii != jj: sum_rw += np.abs(H_hat[ii, jj]) sum_col += np.abs(H_hat[jj, ii]) eig_lb[ii] = dia_ele - np.min(np.array([sum_rw, sum_col])) eig_min = np.min(eig_lb) alpha = np.max(np.array([0.0, -0.5 * eig_min])) # Maximize S x0 = 0.5 * (xhat_comL + xhat_comU) # Just storing stuff here to pull it out in the callback. surrogate._alpha = alpha self.x_comL = x_comL self.x_comU = x_comU self.xhat_comL = xhat_comL self.xhat_comU = xhat_comU self.Ain_hat = Ain_hat self.bin_hat = bin_hat opt_x, opt_f, succ_flag, msg = snopt_opt(self.calc_SSqr_convex, x0, xhat_comL, xhat_comU, ncon=len(bin_hat), title='Maximize_S', options=options, jac=Ain_hat, sens=self.calc_SSqr_convex_grad) Neg_sU = opt_f # if not succ_flag: # eflag_sU = False # else: # eflag_sU = True eflag_sU = True tol = self.options['con_tol'] for ii in range(2 * n): if np.dot(Ain_hat[ii, :], opt_x) > (bin_hat[ii] + tol): eflag_sU = False break sU = - Neg_sU return sU, eflag_sU def calc_SSqr_convex(self, dv_dict): """ Callback function for minimization of mean squared error. Parameters ---------- dv_dict : dict Dictionary of design variable values. Returns ------- func_dict : dict Dictionary of all functional variables evaluated at design point. fail : int 0 for successful function evaluation 1 for unsuccessful function evaluation """ fail = 0 x_com = dv_dict['x'] surrogate = self.obj_surrogate R_inv = surrogate.R_inv SigmaSqr = surrogate.SigmaSqr alpha = surrogate._alpha n, k = surrogate.X.shape one = np.ones([n, 1]) rL = self.x_comL[k:] rU = self.x_comU[k:] rhat = x_com[k:].reshape(n, 1) r = rL + rhat * (rU - rL) rhat_L = self.xhat_comL[k:] rhat_U = self.xhat_comU[k:] term0 = np.dot(R_inv, r) term1 = -SigmaSqr * (1.0 - r.T.dot(term0) + ((1.0 - one.T.dot(term0))**2 / (one.T.dot(np.dot(R_inv, one))))) term2 = alpha * (rhat - rhat_L).T.dot(rhat - rhat_U) S2 = term1 + term2 # Objectives func_dict = {} func_dict['obj'] = S2[0, 0] # Constraints Ain_hat = self.Ain_hat bin_hat = self.bin_hat func_dict['con'] = np.dot(Ain_hat, x_com) - bin_hat # print('x', dv_dict) # print('obj', func_dict['obj']) return func_dict, fail def calc_SSqr_convex_grad(self, dv_dict, func_dict): """ Callback function for gradient of mean squared error. Parameters ---------- dv_dict : dict Dictionary of design variable values. func_dict : dict Dictionary of all functional variables evaluated at design point. Returns ------- sens_dict : dict Dictionary of dictionaries for gradient of each dv/func pair fail : int 0 for successful function evaluation 1 for unsuccessful function evaluation """ fail = 0 x_com = dv_dict['x'] surrogate = self.obj_surrogate X = surrogate.X R_inv = surrogate.R_inv SigmaSqr = surrogate.SigmaSqr alpha = surrogate._alpha n, k = X.shape nn = len(x_com) one = np.ones([n, 1]) rL = self.x_comL[k:] rU = self.x_comU[k:] rhat = x_com[k:].reshape(n, 1) r = rL + rhat * (rU - rL) rhat_L = self.xhat_comL[k:] rhat_U = self.xhat_comU[k:] dr_drhat = np.diag((rU - rL).flat) term0 = np.dot(R_inv, r) term1 = ((1.0 - one.T.dot(term0)) / (one.T.dot(np.dot(R_inv, one)))) * np.dot(R_inv, one) term = 2.0 * SigmaSqr * (term0 + term1) dterm1 = np.dot(dr_drhat, term) dterm2 = alpha * (2.0 * rhat - rhat_L - rhat_U) dobj_dr = (dterm1 + dterm2).T # Objectives sens_dict = OrderedDict() sens_dict['obj'] = OrderedDict() sens_dict['obj']['x'] = np.zeros((1, nn)) sens_dict['obj']['x'][:, k:] = dobj_dr # Constraints Ain_hat = self.Ain_hat sens_dict['con'] = OrderedDict() sens_dict['con']['x'] = Ain_hat # print('obj deriv', sens_dict['obj']['x'] ) # print('con deriv', sens_dict['con']['x']) return sens_dict, fail def minimize_y(self, x_comL, x_comU, Ain_hat, bin_hat): """ Minimize the lower bound. Parameters ---------- x_comL : ndarray Full lower bounds vector x_comU : ndarray Full upper bounds vector. Ain_hat : ndarray Matrix Ain_hat for linear model of constraints. bin_hat : ndarray Vector bin_hat for linear model of constraints. Returns ------- float Maximized upper bound for sigma squared error. bool Success flag True if successful. """ if OPTIMIZER == 'SNOPT': options = {'Major optimality tolerance': 1.0e-8} elif OPTIMIZER == 'SLSQP': options = {'ACC': 1.0e-8} elif OPTIMIZER == 'CONMIN': options = {'DABFUN': 1.0e-8} # 1- Formulates y_hat as LP (weaker bound) # 2- Uses non-convex relaxation technique (stronger bound) [Future release] app = 1 surrogate = self.obj_surrogate X = surrogate.X n, k = X.shape xhat_comL = x_comL.copy() xhat_comU = x_comU.copy() xhat_comL[k:] = 0.0 xhat_comU[k:] = 1.0 if app == 1: x0 = 0.5 * (xhat_comL + xhat_comU) # Just storing stuff here to pull it out in the callback. self.x_comL = x_comL self.x_comU = x_comU self.Ain_hat = Ain_hat self.bin_hat = bin_hat opt_x, opt_f, succ_flag, msg = snopt_opt(self.calc_y_hat_convex, x0, xhat_comL, xhat_comU, ncon=len(bin_hat), title='minimize_y', options=options, jac=Ain_hat, sens=self.calc_y_hat_convex_grad) yL = opt_f # if not succ_flag: # eflag_yL = False # else: # eflag_yL = True eflag_yL = True tol = self.options['con_tol'] for ii in range(2 * n): if np.dot(Ain_hat[ii, :], opt_x) > (bin_hat[ii] + tol): eflag_yL = False break return yL, eflag_yL def calc_y_hat_convex(self, dv_dict): """ Callback function for objective during minimization of y_hat. Parameters ---------- dv_dict : dict Dictionary of design variable values. Returns ------- func_dict : dict Dictionary of all functional variables evaluated at design point. fail : int 0 for successful function evaluation 1 for unsuccessful function evaluation """ fail = 0 x_com = dv_dict['x'] surrogate = self.obj_surrogate X = surrogate.X c_r = surrogate.c_r mu = surrogate.mu n, k = X.shape rL = self.x_comL[k:] rU = self.x_comU[k:] rhat = np.array([x_com[k:]]).reshape(n, 1) r = rL + rhat * (rU - rL) y_hat = mu + np.dot(r.T, c_r) # Objective func_dict = {} func_dict['obj'] = y_hat[0, 0] # Constraints Ain_hat = self.Ain_hat bin_hat = self.bin_hat func_dict['con'] = np.dot(Ain_hat, x_com) - bin_hat # print('x', dv_dict) # print('obj', func_dict['obj']) return func_dict, fail def calc_y_hat_convex_grad(self, dv_dict, func_dict): """ Callback function for gradient during minimization of y_hat. Parameters ---------- dv_dict : dict Dictionary of design variable values. func_dict : dict Dictionary of all functional variables evaluated at design point. Returns ------- sens_dict : dict Dictionary of dictionaries for gradient of each dv/func pair fail : int 0 for successful function evaluation 1 for unsuccessful function evaluation """ fail = 0 x_com = dv_dict['x'] surrogate = self.obj_surrogate X = surrogate.X c_r = surrogate.c_r n, k = X.shape nn = len(x_com) rL = self.x_comL[k:] rU = self.x_comU[k:] dobj_dr = c_r * (rU - rL) # Objectives sens_dict = OrderedDict() sens_dict['obj'] = OrderedDict() sens_dict['obj']['x'] = np.zeros((1, nn)) sens_dict['obj']['x'][:, k:] = dobj_dr.T # Constraints Ain_hat = self.Ain_hat sens_dict['con'] = OrderedDict() sens_dict['con']['x'] = Ain_hat # print('obj deriv', sens_dict['obj']['x'] ) # print('con deriv', sens_dict['con']['x']) return sens_dict, fail def obj_for_GA(self, x, icase): """ Evalute main problem objective at the requested point. Objective is the expected improvement function with modifications to make it concave. Parameters ---------- x : ndarray Value of design variables. icase : int Case number, used for identification when run in parallel. Returns ------- float Objective value bool Success flag, True if successful int Case number, used for identification when run in parallel. """ surrogate = self.obj_surrogate xU_iter = self.xU_iter num_des = len(x) P = 0.0 rp = 100.0 g = x / xU_iter - 1.0 idx = np.where(g > 0.0) if len(idx) > 0: P = np.einsum('i->', g[idx]**2) xval = (x - surrogate.X_mean) / surrogate.X_std NegEI = calc_conEI_norm(xval, surrogate) f = NegEI + rp * P return f, True, icase def update_active_set(active_set, ubd): """ Update the active set. Remove variables from the active set data structure if their current upper bound exceeds the given value. Parameters ---------- active_set : list of lists of floats Active set data structure of form [[NodeNumber, lb, ub, LBD, UBD], [], ..] ubd : float Maximum for bounds test. Returns ------- list of list of floats New active_set """ return [a for a in active_set if a[3] < ubd] def gen_coeff_bound(xI_lb, xI_ub, surrogate): """ Generate upper and lower bounds for r. This function generates the upper and lower bound of the artificial variable r and the coefficients for the linearized under estimator constraints. The version accepts design bound in the original design space, converts it to normalized design space. Parameters ---------- xI_lb : ndarray Lower bound of the integer design variables. xI_ub : ndarray Upper bound of the integer design variables. surrogate : <AMIEGOKrigingSurrogate> Surrogate model of optimized objective with respect to integer design variables. Returns ------- ndarray Full lower bounds vector ndarray Full upper bounds vector. ndarray Matrix Ain_hat for linear model of constraints. ndarray Vector bin_hat for linear model of constraints. """ mean = surrogate.X_mean std = surrogate.X_std # Normalized as per Openmdao kriging model xL_hat = (xI_lb - mean) / std xU_hat = (xI_ub - mean) / std rL, rU = interval_analysis(xL_hat, xU_hat, surrogate) # Combined design variables for supbproblem num = len(xL_hat) + len(rL) x_comL = np.append(xL_hat, rL).reshape(num, 1) x_comU = np.append(xU_hat, rU).reshape(num, 1) # Coefficients of the linearized constraints of the subproblem Ain_hat, bin_hat = lin_underestimator(x_comL, x_comU, surrogate) return x_comL, x_comU, Ain_hat, bin_hat def interval_analysis(lb_x, ub_x, surrogate): """ Predict lower and upper bounds for r. The module predicts the lower and upper bound of the artificial variable 'r' from the bounds of the design variable x r is related to x by the following equation: r_i = exp(-sum(theta_h*(x_h - x_h_i)^2)) Parameters ---------- lb_x : ndarray Lower bound of the integer design variables. ub_x : ndarray Upper bound of the integer design variables. surrogate : <AMIEGOKrigingSurrogate> Surrogate model of optimized objective with respect to integer design variables. Returns ------- ndarray Predicted lower bound for r ndarray Predicted upper bound for r """ p = surrogate.p if p % 2 == 0: X = surrogate.X thetas = surrogate.thetas n, k = X.shape t3L = np.empty([n, k]) t3U = np.empty([n, k]) t1L = lb_x - X t1U = ub_x - X fac1 = t1L * t1L fac2 = t1L * t1U fac3 = t1U * t1U for i in range(n): for h in range(k): fact = np.array([fac1[i, h], fac2[i, h], fac3[i, h]]) t2L = np.max(np.array([0, np.min(fact)])) t2U = np.max(np.array([0, np.max(fact)])) fact = -thetas[h] * np.array([t2L, t2U]) t3L[i, h] = np.min(fact) t3U[i, h] = np.max(fact) lb_r = np.exp(np.sum(t3L, axis=1)) ub_r = np.exp(np.sum(t3U, axis=1)) else: print("\nWarning! Value of p should be 2. Cannot perform interval analysis") print("\nReturing global bound of the r variable") lb_r = np.zeros([n, k]) ub_r = np.zeros([n, k]) return lb_r, ub_r def lin_underestimator(lb, ub, surrogate): """ Compute the coefficients of the linearized underestimator constraints. Parameters ---------- lb : ndarray Lower bound vector. ub : ndarray Upper bound vector surrogate : <AMIEGOKrigingSurrogate> Surrogate model of optimized objective with respect to integer design variables. Returns ------- ndarray Matrix Ain_hat for linear model of constraints. ndarray Vector bin_hat for linear model of constraints. """ X = surrogate.X thetas = surrogate.thetas p = surrogate.p n, k = X.shape lb_x = lb[:k] ub_x = ub[:k] lb_r = lb[k:] ub_r = ub[k:] a1_hat = np.zeros([n, n]) a3_hat = np.zeros([n, n]) a2 = np.empty([n, k]) a4 = np.empty([n, k]) b2 = np.empty([n, k]) b4 = np.empty([n, k]) b1_hat = np.empty([n, ]) b3_hat = np.empty([n, ]) dist_r = ub_r - lb_r dist_x = ub_x - lb_x x_m = 0.5 * (ub_x + lb_x) r_m = 0.5 * (lb_r + ub_r) ub_fact = (ub_x - X.T)**p lb_fact = (lb_x - X.T)**p fact_p = (x_m - X.T)**p fact_pm1 = (x_m - X.T)**(p - 1) for i in range(n): # T1: Linearize under-estimator of ln[r_i] = a1*r[i] + b1 if ub_r[i] <= lb_r[i]: a1 = 0.0 else: a1 = (np.log(ub_r[i]) -
np.log(lb_r[i])
numpy.log
import sys import warnings import re import xml.etree.ElementTree import io import uuid import struct import pathlib import jnius_config import numpy as np import scipy.spatial.distance import scipy.fft import skimage.util import skimage.util.dtype import skimage.io import skimage.exposure import skimage.transform import sklearn.linear_model import networkx as nx import matplotlib.pyplot as plt import matplotlib.cm as mcm import matplotlib.patches as mpatches import matplotlib.patheffects as mpatheffects from . import utils from . import thumbnail from . import __version__ as _version if not jnius_config.vm_running: pkg_root = pathlib.Path(__file__).parent.resolve() bf_jar_path = pkg_root / 'jars' / 'loci_tools.jar' if not bf_jar_path.exists(): raise RuntimeError("loci_tools.jar missing from distribution" " (expected it at %s)" % bf_jar_path) jnius_config.add_classpath(str(bf_jar_path)) import jnius DebugTools = jnius.autoclass('loci.common.DebugTools') IFormatReader = jnius.autoclass('loci.formats.IFormatReader') MetadataRetrieve = jnius.autoclass('ome.xml.meta.MetadataRetrieve') ServiceFactory = jnius.autoclass('loci.common.services.ServiceFactory') OMEXMLService = jnius.autoclass('loci.formats.services.OMEXMLService') ChannelSeparator = jnius.autoclass('loci.formats.ChannelSeparator') DynamicMetadataOptions = jnius.autoclass('loci.formats.in.DynamicMetadataOptions') UNITS = jnius.autoclass('ome.units.UNITS') DebugTools.enableLogging("ERROR") # TODO: # - Write tables with summary information about alignments. class Metadata(object): @property def _num_images(self): raise NotImplementedError @property def num_channels(self): raise NotImplementedError @property def pixel_size(self): raise NotImplementedError @property def pixel_dtype(self): raise NotImplementedError def tile_position(self, i): raise NotImplementedError def tile_size(self, i): raise NotImplementedError @property def grid_dimensions(self): pos = self.positions shape = np.array([len(set(pos[:, d])) for d in range(2)]) if np.prod(shape) != self.num_images: raise ValueError("Series positions do not form a grid") return shape @property def num_images(self): return self._num_images @property def positions(self): if not hasattr(self, '_positions'): self._positions = np.vstack([ self.tile_position(i) for i in range(self._num_images) ]) return self._positions @property def size(self): if not hasattr(self, '_size'): s0 = self.tile_size(0) image_ids = range(1, self._num_images) if any(any(self.tile_size(i) != s0) for i in image_ids): raise ValueError("Image series must all have the same dimensions") self._size = s0 return self._size @property def centers(self): return self.positions + self.size / 2 @property def origin(self): return self.positions.min(axis=0) class PlateMetadata(Metadata): def __init__(self): super(PlateMetadata, self).__init__() self.set_active_plate_well(None, None) @property def num_plates(self): raise NotImplementedError @property def num_wells(self): raise NotImplementedError @property def plate_well_series(self): raise NotImplementedError def plate_name(self, i): raise NotImplementedError def well_name(self, plate, i): raise NotImplementedError def set_active_plate_well(self, plate, well): if (plate is None) ^ (well is None): raise ValueError("plate and well must be both set or both None") self.active_plate = plate self.active_well = well @property def active_series(self): if self.active_plate is None: return range(self._num_images) else: return self.plate_well_series[self.active_plate][self.active_well] @property def plate_names(self): if not hasattr(self, '_plate_names'): self._plate_names = [ self.plate_name(i) for i in range(self.num_plates) ] return self._plate_names @property def well_names(self): if not hasattr(self, '_well_names'): self._well_names = [ [self.well_name(p, i) for i in range(num_plate_wells)] for p, num_plate_wells in enumerate(self.num_wells) ] return self._well_names @Metadata.num_images.getter def num_images(self): return len(self.active_series) @Metadata.positions.getter def positions(self): return Metadata.positions.fget(self)[self.active_series] # FIXME Metadata.grid_dimensions should be overriden here or removed. class Reader(object): def read(self, series, c): raise NotImplementedError class PlateReader(Reader): # No API here, just a way to signal that a subclass's metadata class # inherits from PlateMetadata. This is probably a sign that the # architectural split between Metadata and Reader should be reconsidered. pass class BioformatsMetadata(PlateMetadata): _pixel_dtypes = { 'uint8': np.dtype(np.uint8), 'uint16': np.dtype(np.uint16), } _ome_dtypes = {v: k for k, v in _pixel_dtypes.items()} def __init__(self, path): super(BioformatsMetadata, self).__init__() self.path = path self._init_metadata() def __getstate__(self): state = self.__dict__.copy() del state['_reader'], state['_metadata'], state['_omexml_root'] return state def __setstate__(self, state): self.__dict__.update(state) self._init_metadata() def _init_metadata(self): factory = ServiceFactory() service = jnius.cast(OMEXMLService, factory.getInstance(OMEXMLService)) metadata = service.createOMEXMLMetadata() self._reader = ChannelSeparator() self._reader.setMetadataStore(metadata) # For multi-scene .CZI files, we need raw tiles instead of the # auto-stitched mosaic and we don't want labels or overview images options = DynamicMetadataOptions() options.setBoolean('zeissczi.autostitch', False) options.setBoolean('zeissczi.attachments', False) self._reader.setMetadataOptions(options) self._reader.setId(self.path) xml_content = service.getOMEXML(metadata) self._metadata = jnius.cast(MetadataRetrieve, metadata) self._omexml_root = xml.etree.ElementTree.fromstring(xml_content) self.format_name = self._reader.getFormat() @property def _num_images(self): count = self._metadata.imageCount # Skip final overview slide in Metamorph Slide Scan data if present. if (self.format_name == 'Metamorph STK' and 'overview' in self._metadata.getImageName(count - 1).lower()): count -= 1 return count @property def num_channels(self): return self._metadata.getChannelCount(0) @property def num_plates(self): return self._metadata.getPlateCount() @property def num_wells(self): return [self._metadata.getWellCount(i) for i in range(self.num_plates)] @property def plate_well_series(self): if hasattr(self, '_plate_well_series'): return self._plate_well_series # FIXME Store slice objects to save resources where possible. series = [ [ np.array([ self._metadata.getWellSampleIndex(p, w, s).value for s in range(self._metadata.getWellSampleCount(p, w)) ], dtype=int) for w in range(num_wells) ] for p, num_wells in enumerate(self.num_wells) ] return series @property def pixel_size(self): values = [] for dim in ('Y', 'X'): method = getattr(self._metadata, 'getPixelsPhysicalSize%s' % dim) v_units = method(0) if v_units is None: warn_data( "Pixel size undefined; falling back to 1.0 \u03BCm." ) value = 1.0 else: value = v_units.value(UNITS.MICROMETER).doubleValue() values.append(value) if values[0] != values[1]: raise Exception("Can't handle non-square pixels (%f, %f)" % tuple(values)) return values[0] @property def pixel_dtype(self): return self._pixel_dtypes[self._metadata.getPixelsType(0).value] def plate_name(self, i): return self._metadata.getPlateName(i) @property def well_naming(self): if not hasattr(self, '_well_naming'): _well_naming = [] for p in range(self.num_plates): row_nc = self._metadata.getPlateRowNamingConvention(p) column_nc = self._metadata.getPlateColumnNamingConvention(p) if row_nc is not None: row_nc = row_nc.value else: row_nc = 'letter' if column_nc is not None: column_nc = column_nc.value else: column_nc = 'number' if row_nc not in ('letter', 'number') or column_nc != 'number': raise RuntimeError( "Can't handle well naming convention row={} column={}" .format(row_nc, column_nc) ) _well_naming.append([row_nc, column_nc]) self._well_naming = _well_naming return self._well_naming def well_name(self, plate, i): row = self._metadata.getWellRow(plate, i).value column = self._metadata.getWellColumn(plate, i).value row_nc, column_nc = self.well_naming[plate] # FIXME Support formatting with 384/1536-well plates. assert row_nc in ('letter', 'number') assert column_nc == 'number' if row_nc == 'number': row_fmt = '{:02}'.format(row + 1) else: row_fmt = chr(ord('A') + row) column_fmt = '{:02}'.format(column + 1) return row_fmt + column_fmt def tile_position(self, i): planeCount = self._metadata.getPlaneCount(i) values = [] for dim in ('Y', 'X'): method = getattr(self._metadata, 'getPlanePosition%s' % dim) # FIXME verify all planes have the same X,Y position. if planeCount > 0: # Returns None if planePositionX/Y not defined. v_units = method(i, 0) else: # Simple file formats don't have planes at all. v_units = None if v_units is None: warn_data( "Stage coordinates undefined; falling back to (0, 0)." ) values = [0.0, 0.0] break else: v = v_units.value(UNITS.MICROMETER) if v is None: # Conversion failed, which usually happens when the unit is # "reference frame". Proceed as if it's actually microns but # emit a warning. warn_data( "Stage coordinates' measurement unit is undefined;" " assuming \u03BCm." ) v = v_units.value() value = v.doubleValue() values.append(value) position_microns = np.array(values, dtype=float) # Invert Y so that stage position coordinates and image pixel # coordinates are aligned (most formats seem to work this way). position_microns *= [-1, 1] position_pixels = position_microns / self.pixel_size return position_pixels def tile_size(self, i): values = [] for dim in ('Y', 'X'): method = getattr(self._metadata, 'getPixelsSize%s' % dim) v = method(i).value values.append(v) return np.array(values, dtype=int) class BioformatsReader(PlateReader): def __init__(self, path, plate=None, well=None): self.path = path self.metadata = BioformatsMetadata(self.path) self.metadata.set_active_plate_well(plate, well) def read(self, series, c): self.metadata._reader.setSeries(self.metadata.active_series[series]) index = self.metadata._reader.getIndex(0, c, 0) byte_array = self.metadata._reader.openBytes(index) dtype = self.metadata.pixel_dtype shape = self.metadata.tile_size(series) img = np.frombuffer(byte_array.tostring(), dtype=dtype).reshape(shape) return img class CachingReader(Reader): """Wraps a reader to provide tile image caching.""" def __init__(self, reader, channel): self.reader = reader self.channel = channel self._cache = {} @property def metadata(self): return self.reader.metadata def read(self, series, c): if c == self.channel and series in self._cache: img = self._cache[series] else: img = self.reader.read(series, c) if c == self.channel and series not in self._cache: self._cache[series] = img return img # TileStatistics = collections.namedtuple( # 'TileStatistics', # 'scan tile x_original y_original x y shift_x shift_y error' # ) @property def neighbors_graph(aligner): """Return graph of neighboring (overlapping) tiles. Tiles are considered neighbors if the 'city block' distance between them is less than the largest tile dimension. """ # FIXME: This should properly test for overlap, possibly via # intersection of bounding rectangles. if not hasattr(aligner, '_neighbors_graph'): pdist = scipy.spatial.distance.pdist(aligner.metadata.positions, metric='cityblock') sp = scipy.spatial.distance.squareform(pdist) max_distance = aligner.metadata.size.max() + 1 edges = zip(*np.nonzero((sp > 0) & (sp < max_distance))) graph = nx.from_edgelist(edges) graph.add_nodes_from(range(aligner.metadata.num_images)) aligner._neighbors_graph = graph return aligner._neighbors_graph class EdgeAligner(object): def __init__( self, reader, channel=0, max_shift=15, false_positive_ratio=0.01, randomize=False, filter_sigma=0.0, do_make_thumbnail=True, verbose=False ): self.channel = channel self.reader = CachingReader(reader, self.channel) self.verbose = verbose # Unit is micrometers. self.max_shift = max_shift self.max_shift_pixels = self.max_shift / self.metadata.pixel_size self.false_positive_ratio = false_positive_ratio self.randomize = randomize self.filter_sigma = filter_sigma self.do_make_thumbnail = do_make_thumbnail self._cache = {} neighbors_graph = neighbors_graph def run(self): self.make_thumbnail() self.check_overlaps() self.compute_threshold() self.register_all() self.build_spanning_tree() self.calculate_positions() self.fit_model() def make_thumbnail(self): if not self.do_make_thumbnail: return self.reader.thumbnail = thumbnail.make_thumbnail( self.reader, channel=self.channel ) def check_overlaps(self): # This might be better addressed by removing the +1 from the # neighbors_graph max_distance calculation and ensuring the graph is # fully connected. pos = self.metadata.positions overlaps = np.array([ self.metadata.size - abs(pos[t1] - pos[t2]) for t1, t2 in self.neighbors_graph.edges ]) failures = np.any(overlaps < 1, axis=1) if len(overlaps) else [] if len(failures) and all(failures): warn_data("No tiles overlap, attempting alignment anyway.") elif any(failures): warn_data("Some neighboring tiles have zero overlap.") def compute_threshold(self): # Compute error threshold for rejecting aligments. We generate a # distribution of error scores for many known non-overlapping image # regions and take a certain percentile as the maximum allowable error. # The percentile becomes our accepted false-positive ratio. edges = self.neighbors_graph.edges num_tiles = self.metadata.num_images # If not enough tiles overlap to matter, skip this whole thing. if len(edges) <= 1: self.errors_negative_sampled = np.empty(0) self.max_error = np.inf return widths = np.array([ self.intersection(t1, t2).shape.min() for t1, t2 in edges ]) w = widths.max() max_offset = self.metadata.size[0] - w # Number of possible pairs minus number of actual neighbor pairs. num_distant_pairs = num_tiles * (num_tiles - 1) // 2 - len(edges) # Reduce permutation count for small datasets -- there are fewer # possible truly distinct strips with fewer tiles. The calculation here # is just a heuristic, not rigorously derived. n = 1000 if num_distant_pairs > 8 else (num_distant_pairs + 1) * 10 pairs =
np.empty((n, 2), dtype=int)
numpy.empty
import os, sys, trimesh, matplotlib.pyplot as pyplot, numpy as np, time, random, progressbar, json from plyfile import PlyData, PlyElement from json import encoder encoder.FLOAT_REPR = lambda o: format(o, '.6f') from subprocess import call from collections import deque from imageio import imread colors = [[0, 0, 1], [1, 0, 0], [0, 1, 0], [0.5, 0.5, 0], [0.5, 0, 0.5], [0, 0.5, 0.5], [0.3, 0.6, 0], [0.6, 0, 0.3], [0.3, 0, 0.6], [0.6, 0.3, 0], [0.3, 0, 0.6], [0.6, 0, 0.3], [0.8, 0.2, 0.5]] BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) # ---------------------------------------- # Point Cloud Sampling # ---------------------------------------- def random_sampling(pc, num_sample, replace=None, return_choices=False): """ Input is NxC, output is num_samplexC """ if replace is None: replace = (pc.shape[0] < num_sample) choices = np.random.choice(pc.shape[0], num_sample, replace=replace) if return_choices: return pc[choices], choices else: return pc[choices] # ---------------------------------------- # Point Cloud/Volume Conversions # ---------------------------------------- def point_cloud_to_volume_batch(point_clouds, vsize=12, radius=1.0, flatten=True): """ Input is BxNx3 batch of point cloud Output is Bx(vsize^3) """ vol_list = [] for b in range(point_clouds.shape[0]): vol = point_cloud_to_volume(np.squeeze(point_clouds[b, :, :]), vsize, radius) if flatten: vol_list.append(vol.flatten()) else: vol_list.append(np.expand_dims(np.expand_dims(vol, -1), 0)) if flatten: return np.vstack(vol_list) else: return np.concatenate(vol_list, 0) def point_cloud_to_volume(points, vsize, radius=1.0): """ input is Nx3 points. output is vsize*vsize*vsize assumes points are in range [-radius, radius] """ vol = np.zeros((vsize, vsize, vsize)) voxel = 2 * radius / float(vsize) locations = (points + radius) / voxel locations = locations.astype(int) vol[locations[:, 0], locations[:, 1], locations[:, 2]] = 1.0 return vol def volume_to_point_cloud(vol): """ vol is occupancy grid (value = 0 or 1) of size vsize*vsize*vsize return Nx3 numpy array. """ vsize = vol.shape[0] assert (vol.shape[1] == vsize and vol.shape[1] == vsize) points = [] for a in range(vsize): for b in range(vsize): for c in range(vsize): if vol[a, b, c] == 1: points.append(np.array([a, b, c])) if len(points) == 0: return np.zeros((0, 3)) points = np.vstack(points) return points def point_cloud_to_volume_v2_batch(point_clouds, vsize=12, radius=1.0, num_sample=128): """ Input is BxNx3 a batch of point cloud Output is BxVxVxVxnum_samplex3 Added on Feb 19 """ vol_list = [] for b in range(point_clouds.shape[0]): vol = point_cloud_to_volume_v2(point_clouds[b, :, :], vsize, radius, num_sample) vol_list.append(np.expand_dims(vol, 0)) return np.concatenate(vol_list, 0) def point_cloud_to_volume_v2(points, vsize, radius=1.0, num_sample=128): """ input is Nx3 points output is vsize*vsize*vsize*num_sample*3 assumes points are in range [-radius, radius] samples num_sample points in each voxel, if there are less than num_sample points, replicate the points Added on Feb 19 """ vol = np.zeros((vsize, vsize, vsize, num_sample, 3)) voxel = 2 * radius / float(vsize) locations = (points + radius) / voxel locations = locations.astype(int) loc2pc = {} for n in range(points.shape[0]): loc = tuple(locations[n, :]) if loc not in loc2pc: loc2pc[loc] = [] loc2pc[loc].append(points[n, :]) for i in range(vsize): for j in range(vsize): for k in range(vsize): if (i, j, k) not in loc2pc: vol[i, j, k, :, :] = np.zeros((num_sample, 3)) else: pc = loc2pc[(i, j, k)] # a list of (3,) arrays pc = np.vstack(pc) # kx3 # Sample/pad to num_sample points if pc.shape[0] > num_sample: pc = random_sampling(pc, num_sample, False) elif pc.shape[0] < num_sample: pc = np.lib.pad(pc, ((0, num_sample - pc.shape[0]), (0, 0)), 'edge') # Normalize pc_center = (np.array([i, j, k]) + 0.5) * voxel - radius pc = (pc - pc_center) / voxel # shift and scale vol[i, j, k, :, :] = pc return vol def point_cloud_to_image_batch(point_clouds, imgsize, radius=1.0, num_sample=128): """ Input is BxNx3 a batch of point cloud Output is BxIxIxnum_samplex3 Added on Feb 19 """ img_list = [] for b in range(point_clouds.shape[0]): img = point_cloud_to_image(point_clouds[b, :, :], imgsize, radius, num_sample) img_list.append(np.expand_dims(img, 0)) return np.concatenate(img_list, 0) def point_cloud_to_image(points, imgsize, radius=1.0, num_sample=128): """ input is Nx3 points output is imgsize*imgsize*num_sample*3 assumes points are in range [-radius, radius] samples num_sample points in each pixel, if there are less than num_sample points, replicate the points Added on Feb 19 """ img = np.zeros((imgsize, imgsize, num_sample, 3)) pixel = 2 * radius / float(imgsize) locations = (points[:, 0:2] + radius) / pixel # Nx2 locations = locations.astype(int) loc2pc = {} for n in range(points.shape[0]): loc = tuple(locations[n, :]) if loc not in loc2pc: loc2pc[loc] = [] loc2pc[loc].append(points[n, :]) for i in range(imgsize): for j in range(imgsize): if (i, j) not in loc2pc: img[i, j, :, :] = np.zeros((num_sample, 3)) else: pc = loc2pc[(i, j)] pc = np.vstack(pc) if pc.shape[0] > num_sample: pc = random_sampling(pc, num_sample, False) elif pc.shape[0] < num_sample: pc = np.lib.pad(pc, ((0, num_sample - pc.shape[0]), (0, 0)), 'edge') pc_center = (np.array([i, j]) + 0.5) * pixel - radius pc[:, 0:2] = (pc[:, 0:2] - pc_center) / pixel img[i, j, :, :] = pc return img # ---------------------------------------- # Point cloud IO # ---------------------------------------- def read_ply(filename): """ read XYZ point cloud from filename PLY file """ plydata = PlyData.read(filename) pc = plydata['vertex'].data pc_array = np.array([[x, y, z] for x, y, z in pc]) return pc_array def write_ply(points, filename, text=True): """ input: Nx3, write points to filename as PLY format. """ points = [(points[i, 0], points[i, 1], points[i, 2]) for i in range(points.shape[0])] vertex = np.array(points, dtype=[('x', 'f4'), ('y', 'f4'), ('z', 'f4')]) el = PlyElement.describe(vertex, 'vertex', comments=['vertices']) PlyData([el], text=text).write(filename) def write_ply_color(points, labels, filename, num_classes=None, colormap=pyplot.cm.jet): """ Color (N,3) points with labels (N) within range 0 ~ num_classes-1 as OBJ file """ labels = labels.astype(int) N = points.shape[0] if num_classes is None: num_classes = np.max(labels) + 1 else: assert (num_classes > np.max(labels)) vertex = [] # colors = [pyplot.cm.jet(i / float(num_classes)) for i in range(num_classes)] colors = [colormap(i / float(num_classes)) for i in range(num_classes)] for i in range(N): c = colors[labels[i]] c = [int(x * 255) for x in c] vertex.append((points[i, 0], points[i, 1], points[i, 2], c[0], c[1], c[2])) vertex = np.array(vertex, dtype=[('x', 'f4'), ('y', 'f4'), ('z', 'f4'), ('red', 'u1'), ('green', 'u1'), ('blue', 'u1')]) el = PlyElement.describe(vertex, 'vertex', comments=['vertices']) PlyData([el], text=True).write(filename) return colors def merge_mesh_with_color(meshes): face_colors = [mesh.visual.face_colors for mesh in meshes] vertex_colors = [mesh.visual.vertex_colors for mesh in meshes] vertice_list = [mesh.vertices for mesh in meshes] faces_list = [mesh.faces for mesh in meshes] faces_offset = np.cumsum([v.shape[0] for v in vertice_list]) faces_offset = np.insert(faces_offset, 0, 0)[:-1] vertices = np.vstack(vertice_list) faces = np.vstack([face + offset for face, offset in zip(faces_list, faces_offset)]) vertex_colors = np.vstack(vertex_colors) face_colors = np.vstack(face_colors) # print(vertex_colors.shape, faces.shape, vertices.shape) # exit(0) merged_meshes = trimesh.Trimesh(vertices, faces, face_colors=face_colors, vertex_colors=vertex_colors) return merged_meshes def write_ply_bbox_color(vertices, vertex_colors, edges, edge_colors, filename, num_classes=None, colormap=pyplot.cm.jet): """ Color (N,3) points with labels (N) within range 0 ~ num_classes-1 as OBJ file """ vertex = [] for i in range(len(vertices)): vertex.append((vertices[i, 0], vertices[i, 1], vertices[i, 2], vertex_colors[i, 0], vertex_colors[i, 1], vertex_colors[i, 2])) vertex = np.array(vertex, dtype=[('x', 'f4'), ('y', 'f4'), ('z', 'f4'), ('red', 'u1'), ('green', 'u1'), ('blue', 'u1')]) edge = [] for i in range(len(edges)): edge.append((edges[i, 0], edges[i, 1], edge_colors[i, 0], edge_colors[i, 1], edge_colors[i, 2])) edge = np.array(edge, dtype=[('vertex1', 'i4'), ('vertex2', 'i4'), ('red', 'u1'), ('green', 'u1'), ('blue', 'u1')]) e1 = PlyElement.describe(vertex, 'vertex', comments=['vertices']) e2 = PlyElement.describe(edge, 'edge', comments=['edges']) PlyData([e1, e2], text=True).write(filename) def write_bbox_color_json(scene_bbox, label, out_filename, num_classes=None, colormap=pyplot.cm.jet): labels = label.astype(int) if num_classes is None: num_classes = np.max(labels) + 1 else: assert (num_classes > np.max(labels)) colors = [colormap(i / float(num_classes)) for i in range(num_classes)] used_color = {} ret = [] for i, box in enumerate(scene_bbox): c = colors[label[i]] c = (np.array(c) * 255).astype(np.uint8) item_i = [float(box[0]), float(box[1]), float(box[2]), float(box[3]), float(box[4]), float(box[5]), int(c[0]), int(c[1]), int(c[2])] used_color[label[i]] = c #item_i = [str(_) for _ in item_i] ret.append(item_i) with open(out_filename, 'w') as f: json.dump(ret, f) return used_color def write_bbox_color(scene_bbox, label, out_filename, num_classes=None, colormap=pyplot.cm.jet, edge=False): """Export scene bbox to meshes Args: scene_bbox: (N x 6 numpy array): xyz pos of center and 3 lengths out_filename: (string) filename Note: To visualize the boxes in MeshLab. 1. Select the objects (the boxes) 2. Filters -> Polygon and Quad Mesh -> Turn into Quad-Dominant Mesh 3. Select Wireframe view. """ labels = label.astype(int) if num_classes is None: num_classes = np.max(labels) + 1 else: assert (num_classes > np.max(labels)) def convert_box_to_trimesh_fmt(box, color): ctr = box[:3] lengths = box[3:] trns = np.eye(4) trns[0:3, 3] = ctr trns[3, 3] = 1.0 mesh = trimesh.creation.box(lengths, trns) color = np.array(color) * 255 face_colors = np.array([color] * mesh.faces.shape[0], np.uint8) vertex_colors = np.array([color] * mesh.vertices.shape[0], np.uint8) #print(face_colors, vertex_colors, box_trimesh_fmt.vertices, box_trimesh_fmt.faces) #exit(0) box_visual = trimesh.visual.create_visual( vertex_colors=vertex_colors, face_colors=face_colors, mesh=mesh) mesh.visual = box_visual # print(edges.shape) # exit(0) # print(box_trimesh_fmt.visual.face_colors) #print(face_colors) #print(box_visual.__dict__) #print(box_trimesh_fmt.visual.__dict__) #exit(0) #, facecolors=color, vertex_color=color) #print(box_trimesh_fmt.__dict__) #exit(0) return mesh colors = [colormap(i / float(num_classes)) for i in range(num_classes)] scene = [] ret = [] for i, box in enumerate(scene_bbox): ret.append(colors[label[i]]) scene.append(convert_box_to_trimesh_fmt(box, colors[label[i]])) mesh = merge_mesh_with_color(scene) if edge: sharp = mesh.face_adjacency_angles > np.radians(40) edges = mesh.face_adjacency_edges[sharp] assert edges.shape[0] % 12 == 0 edge_colors = mesh.visual.vertex_colors[edges[:, 0]] #print(edges.shape, edge_colors.shape) #exit(0) write_ply_bbox_color(mesh.vertices, mesh.visual.vertex_colors, edges, edge_colors, out_filename) else: trimesh.exchange.export.export_mesh(mesh, out_filename, file_type='ply') #print(mesh_list.visual.mesh.visual.__dict__) # save to ply file # ply = trimesh.exchange.ply.export_ply(mesh_list, encoding='ascii') #trimesh.exchange.export.export_mesh(mesh_list, out_filename, file_type='ply') #, encoding='ascii') # print(ply) # exit(0) # out_filename return ret def write_ply_rgb(points, colors, out_filename, num_classes=None): """ Color (N,3) points with RGB colors (N,3) within range [0,255] as OBJ file """ colors = colors.astype(int) N = points.shape[0] fout = open(out_filename, 'w') for i in range(N): c = colors[i, :] fout.write('v %f %f %f %d %d %d\n' % (points[i, 0], points[i, 1], points[i, 2], c[0], c[1], c[2])) fout.close() # ---------------------------------------- # Simple Point cloud and Volume Renderers # ---------------------------------------- def pyplot_draw_point_cloud(points, output_filename): """ points is a Nx3 numpy array """ import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(points[:, 0], points[:, 1], points[:, 2]) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') pyplot.savefig(output_filename) def pyplot_draw_volume(vol, output_filename): """ vol is of size vsize*vsize*vsize output an image to output_filename """ points = volume_to_point_cloud(vol) pyplot_draw_point_cloud(points, output_filename) # ---------------------------------------- # Simple Point manipulations # ---------------------------------------- def rotate_point_cloud(points, rotation_matrix=None): """ Input: (n,3), Output: (n,3) """ # Rotate in-place around Z axis. if rotation_matrix is None: rotation_angle = np.random.uniform() * 2 * np.pi sinval, cosval = np.sin(rotation_angle), np.cos(rotation_angle) rotation_matrix = np.array([[cosval, sinval, 0], [-sinval, cosval, 0], [0, 0, 1]]) ctr = points.mean(axis=0) rotated_data = np.dot(points - ctr, rotation_matrix) + ctr return rotated_data, rotation_matrix def rotate_pc_along_y(pc, rot_angle): ''' Input ps is NxC points with first 3 channels as XYZ z is facing forward, x is left ward, y is downward ''' cosval = np.cos(rot_angle) sinval = np.sin(rot_angle) rotmat = np.array([[cosval, -sinval], [sinval, cosval]]) pc[:, [0, 2]] = np.dot(pc[:, [0, 2]], np.transpose(rotmat)) return pc def roty(t): """Rotation about the y-axis.""" c = np.cos(t) s = np.sin(t) return np.array([[c, 0, s], [0, 1, 0], [-s, 0, c]]) def roty_batch(t): """Rotation about the y-axis. t: (x1,x2,...xn) return: (x1,x2,...,xn,3,3) """ input_shape = t.shape output = np.zeros(tuple(list(input_shape) + [3, 3])) c = np.cos(t) s = np.sin(t) output[..., 0, 0] = c output[..., 0, 2] = s output[..., 1, 1] = 1 output[..., 2, 0] = -s output[..., 2, 2] = c return output def rotz(t): """Rotation about the z-axis.""" c = np.cos(t) s = np.sin(t) return np.array([[c, -s, 0], [s, c, 0], [0, 0, 1]]) # ---------------------------------------- # BBox # ---------------------------------------- def bbox_corner_dist_measure(crnr1, crnr2): """ compute distance between box corners to replace iou Args: crnr1, crnr2: Nx3 points of box corners in camera axis (y points down) output is a scalar between 0 and 1 """ dist = sys.maxsize for y in range(4): rows = ([(x + y) % 4 for x in range(4)] + [4 + (x + y) % 4 for x in range(4)]) d_ = np.linalg.norm(crnr2[rows, :] - crnr1, axis=1).sum() / 8.0 if d_ < dist: dist = d_ u = sum([np.linalg.norm(x[0, :] - x[6, :]) for x in [crnr1, crnr2]]) / 2.0 measure = max(1.0 - dist / u, 0) print(measure) return measure def point_cloud_to_bbox(points): """ Extract the axis aligned box from a pcl or batch of pcls Args: points: Nx3 points or BxNx3 output is 6 dim: xyz pos of center and 3 lengths """ which_dim = len(points.shape) - 2 # first dim if a single cloud and second if batch mn, mx = points.min(which_dim), points.max(which_dim) lengths = mx - mn cntr = 0.5 * (mn + mx) return np.concatenate([cntr, lengths], axis=which_dim) def write_bbox(scene_bbox, out_filename): """Export scene bbox to meshes Args: scene_bbox: (N x 6 numpy array): xyz pos of center and 3 lengths out_filename: (string) filename Note: To visualize the boxes in MeshLab. 1. Select the objects (the boxes) 2. Filters -> Polygon and Quad Mesh -> Turn into Quad-Dominant Mesh 3. Select Wireframe view. """ def convert_box_to_trimesh_fmt(box): ctr = box[:3] lengths = box[3:] trns = np.eye(4) trns[0:3, 3] = ctr trns[3, 3] = 1.0 box_trimesh_fmt = trimesh.creation.box(lengths, trns) return box_trimesh_fmt scene = trimesh.scene.Scene() for box in scene_bbox: scene.add_geometry(convert_box_to_trimesh_fmt(box)) mesh_list = trimesh.util.concatenate(scene.dump()) # save to ply file trimesh.io.export.export_mesh(mesh_list, out_filename, file_type='ply') return def write_oriented_bbox(scene_bbox, out_filename): """Export oriented (around Z axis) scene bbox to meshes Args: scene_bbox: (N x 7 numpy array): xyz pos of center and 3 lengths (dx,dy,dz) and heading angle around Z axis. Y forward, X right, Z upward. heading angle of positive X is 0, heading angle of positive Y is 90 degrees. out_filename: (string) filename """ def heading2rotmat(heading_angle): pass rotmat = np.zeros((3, 3)) rotmat[2, 2] = 1 cosval = np.cos(heading_angle) sinval = np.sin(heading_angle) rotmat[0:2, 0:2] = np.array([[cosval, -sinval], [sinval, cosval]]) return rotmat def convert_oriented_box_to_trimesh_fmt(box): ctr = box[:3] lengths = box[3:6] trns = np.eye(4) trns[0:3, 3] = ctr trns[3, 3] = 1.0 trns[0:3, 0:3] = heading2rotmat(box[6]) box_trimesh_fmt = trimesh.creation.box(lengths, trns) return box_trimesh_fmt scene = trimesh.scene.Scene() for box in scene_bbox: scene.add_geometry(convert_oriented_box_to_trimesh_fmt(box)) mesh_list = trimesh.util.concatenate(scene.dump()) # save to ply file trimesh.io.export.export_mesh(mesh_list, out_filename, file_type='ply') return def write_oriented_bbox_camera_coord(scene_bbox, out_filename): """Export oriented (around Y axis) scene bbox to meshes Args: scene_bbox: (N x 7 numpy array): xyz pos of center and 3 lengths (dx,dy,dz) and heading angle around Y axis. Z forward, X rightward, Y downward. heading angle of positive X is 0, heading angle of negative Z is 90 degrees. out_filename: (string) filename """ def heading2rotmat(heading_angle): pass rotmat = np.zeros((3, 3)) rotmat[1, 1] = 1 cosval = np.cos(heading_angle) sinval = np.sin(heading_angle) rotmat[0, :] = np.array([cosval, 0, sinval]) rotmat[2, :] = np.array([-sinval, 0, cosval]) return rotmat def convert_oriented_box_to_trimesh_fmt(box): ctr = box[:3] lengths = box[3:6] trns = np.eye(4) trns[0:3, 3] = ctr trns[3, 3] = 1.0 trns[0:3, 0:3] = heading2rotmat(box[6]) box_trimesh_fmt = trimesh.creation.box(lengths, trns) return box_trimesh_fmt scene = trimesh.scene.Scene() for box in scene_bbox: scene.add_geometry(convert_oriented_box_to_trimesh_fmt(box)) mesh_list = trimesh.util.concatenate(scene.dump()) # save to ply file trimesh.io.export.export_mesh(mesh_list, out_filename, file_type='ply') return def write_lines_as_cylinders(pcl, filename, rad=0.005, res=64): """Create lines represented as cylinders connecting pairs of 3D points Args: pcl: (N x 2 x 3 numpy array): N pairs of xyz pos filename: (string) filename for the output mesh (ply) file rad: radius for the cylinder res: number of sections used to create the cylinder """ scene = trimesh.scene.Scene() for src, tgt in pcl: # compute line vec = tgt - src M = trimesh.geometry.align_vectors([0, 0, 1], vec, False) vec = tgt - src # compute again since align_vectors modifies vec in-place! M[:3, 3] = 0.5 * src + 0.5 * tgt height = np.sqrt(np.dot(vec, vec)) scene.add_geometry(trimesh.creation.cylinder(radius=rad, height=height, sections=res, transform=M)) mesh_list = trimesh.util.concatenate(scene.dump()) trimesh.io.export.export_mesh(mesh_list, '%s.ply' % (filename), file_type='ply') def normalize_pts(pts): out = np.array(pts, dtype=np.float32) center = np.mean(out, axis=0) out -= center scale = np.sqrt(np.max(np.sum(out ** 2, axis=1))) out /= scale return out def load_obj(fn, no_normal=False): fin = open(fn, 'r') lines = [line.rstrip() for line in fin] fin.close() vertices = []; normals = []; faces = []; for line in lines: if line.startswith('v '): vertices.append(np.float32(line.split()[1:4])) elif line.startswith('vn '): normals.append(np.float32(line.split()[1:4])) elif line.startswith('f '): faces.append(np.int32([item.split('/')[0] for item in line.split()[1:4]])) mesh = dict() mesh['faces'] = np.vstack(faces) mesh['vertices'] = np.vstack(vertices) if (not no_normal) and (len(normals) > 0): assert len(normals) == len(vertices), 'ERROR: #vertices != #normals' mesh['normals'] = np.vstack(normals) return mesh def export_obj_submesh_label(obj_fn, label_fn): fin = open(obj_fn, 'r') lines = [line.rstrip() for line in fin] fin.close() face_ids = []; cur_id = 0; for line in lines: if line.startswith('f '): face_ids.append(cur_id) elif line.startswith('g '): cur_id += 1 fout = open(label_fn, 'w') for i in range(len(face_ids)): fout.write('%d\n' % face_ids[i]) fout.close() def load_obj_with_submeshes(fn): fin = open(fn, 'r') lines = [line.rstrip() for line in fin] fin.close() vertices = []; submesh_id = -1; submesh_names = []; faces = dict(); for line in lines: if line.startswith('v '): vertices.append(np.float32(line.split()[1:4])) elif line.startswith('f '): faces[submesh_id].append(np.int32([item.split('/')[0] for item in line.split()[1:4]])) elif line.startswith('g '): submesh_names.append(line.split()[1]) submesh_id += 1 faces[submesh_id] = [] vertice_arr = np.vstack(vertices) mesh = dict() mesh['names'] = submesh_names mesh['tot'] = submesh_id + 1 out_vertices = dict() out_faces = dict() for i in range(submesh_id + 1): data = np.vstack(faces[i]).astype(np.int32) out_vertice_ids = np.array(list(set(data.flatten())), dtype=np.int32) - 1 vertice_map = {out_vertice_ids[x] + 1: x + 1 for x in range(len(out_vertice_ids))} out_vertices[i] = vertice_arr[out_vertice_ids, :] data = np.vstack(faces[i]) cur_out_faces = np.zeros(data.shape, dtype=np.float32) for x in range(data.shape[0]): for y in range(data.shape[1]): cur_out_faces[x, y] = vertice_map[data[x, y]] out_faces[i] = cur_out_faces mesh['vertices'] = out_vertices mesh['faces'] = out_faces return mesh def load_off(fn): fin = open(fn, 'r') line = fin.readline() line = fin.readline() num_vertices = int(line.split()[0]) num_faces = int(line.split()[1]) vertices = np.zeros((num_vertices, 3)).astype(np.float32) for i in range(num_vertices): vertices[i, :] = np.float32(fin.readline().split()) faces = np.zeros((num_faces, 3)).astype(np.int32) for i in range(num_faces): faces[i, :] = np.int32(fin.readline().split()[1:]) + 1 fin.close() mesh = dict() mesh['faces'] = faces mesh['vertices'] = vertices return mesh def rotate_pts(pts, theta=0, phi=0): rotated_data = np.zeros(pts.shape, dtype=np.float32) # rotate along y-z axis rotation_angle = phi / 90 * np.pi / 2 cosval = np.cos(rotation_angle) sinval = np.sin(rotation_angle) rotation_matrix = np.array([[1, 0, 0], [0, cosval, sinval], [0, -sinval, cosval]]) rotated_pts = np.dot(pts, rotation_matrix) # rotate along x-z axis rotation_angle = theta / 360 * 2 * np.pi cosval = np.cos(rotation_angle) sinval = np.sin(rotation_angle) rotation_matrix = np.array([[cosval, 0, sinval], [0, 1, 0], [-sinval, 0, cosval]]) rotated_pts = np.dot(rotated_pts, rotation_matrix) return rotated_pts def load_pts(fn): with open(fn, 'r') as fin: lines = [item.rstrip() for item in fin] pts = np.array([[float(line.split()[0]), float(line.split()[1]), float(line.split()[2])] for line in lines], dtype=np.float32) return pts def load_pts_nor(fn): with open(fn, 'r') as fin: lines = [item.rstrip() for item in fin] pts = np.array([[float(line.split()[0]), float(line.split()[1]), float(line.split()[2])] for line in lines], dtype=np.float32) nor = np.array([[float(line.split()[3]), float(line.split()[4]), float(line.split()[5])] for line in lines], dtype=np.float32) return pts, nor def load_label(fn): with open(fn, 'r') as fin: lines = [item.rstrip() for item in fin] label = np.array([int(line) for line in lines], dtype=np.int32) return label def export_obj(out, v, f): with open(out, 'w') as fout: for i in range(v.shape[0]): fout.write('v %f %f %f\n' % (v[i, 0], v[i, 1], v[i, 2])) for i in range(f.shape[0]): fout.write('f %d %d %d\n' % (f[i, 0], f[i, 1], f[i, 2])) def export_label(out, label): with open(out, 'w') as fout: for i in range(label.shape[0]): fout.write('%d\n' % label[i]) def export_pts(out, v): with open(out, 'w') as fout: for i in range(v.shape[0]): fout.write('%f %f %f\n' % (v[i, 0], v[i, 1], v[i, 2])) def export_pts_with_normal(out, v, n): assert v.shape[0] == n.shape[0], 'v.shape[0] != v.shape[0]' with open(out, 'w') as fout: for i in range(v.shape[0]): fout.write('%f %f %f %f %f %f\n' % (v[i, 0], v[i, 1], v[i, 2], n[i, 0], n[i, 1], n[i, 2])) def export_ply(out, v): with open(out, 'w') as fout: fout.write('ply\n'); fout.write('format ascii 1.0\n'); fout.write('element vertex ' + str(v.shape[0]) + '\n'); fout.write('property float x\n'); fout.write('property float y\n'); fout.write('property float z\n'); fout.write('end_header\n'); for i in range(v.shape[0]): fout.write('%f %f %f\n' % (v[i, 0], v[i, 1], v[i, 2])) def export_ply_with_label(out, v, l): num_colors = len(colors) with open(out, 'w') as fout: fout.write('ply\n'); fout.write('format ascii 1.0\n'); fout.write('element vertex ' + str(v.shape[0]) + '\n'); fout.write('property float x\n'); fout.write('property float y\n'); fout.write('property float z\n'); fout.write('property uchar red\n'); fout.write('property uchar green\n'); fout.write('property uchar blue\n'); fout.write('end_header\n'); for i in range(v.shape[0]): cur_color = colors[l[i] % num_colors] fout.write('%f %f %f %d %d %d\n' % (v[i, 0], v[i, 1], v[i, 2], \ int(cur_color[0] * 255), int(cur_color[1] * 255), int(cur_color[2] * 255))) def export_ply_with_normal(out, v, n): assert v.shape[0] == n.shape[0], 'v.shape[0] != v.shape[0]' with open(out, 'w') as fout: fout.write('ply\n'); fout.write('format ascii 1.0\n'); fout.write('element vertex ' + str(v.shape[0]) + '\n'); fout.write('property float x\n'); fout.write('property float y\n'); fout.write('property float z\n'); fout.write('property float nx\n'); fout.write('property float ny\n'); fout.write('property float nz\n'); fout.write('end_header\n'); for i in range(v.shape[0]): fout.write('%f %f %f %f %f %f\n' % (v[i, 0], v[i, 1], v[i, 2], n[i, 0], n[i, 1], n[i, 2])) def sample_points_from_obj(label_fn, obj_fn, pts_fn, num_points, verbose=False): cmd = 'MeshSample -n%d -s3 -l %s %s %s> /dev/null' % (num_points, label_fn, obj_fn, pts_fn) if verbose: print(cmd) call(cmd, shell=True) with open(pts_fn, 'r') as fin: lines = [line.rstrip() for line in fin] pts = np.array([[line.split()[0], line.split()[1], line.split()[2]] for line in lines], dtype=np.float32) label = np.array([int(line.split()[-1].split('"')[1]) for line in lines], dtype=np.int32) if verbose: print('get pts: ', pts.shape) return pts, label def sample_points(v, f, label=None, num_points=200, verbose=False): tmp_obj = str(time.time()).replace('.', '_') + '_' + str(random.random()).replace('.', '_') + '.obj' tmp_pts = tmp_obj.replace('.obj', '.pts') tmp_label = tmp_obj.replace('.obj', '.label') if label is None: label = np.zeros((f.shape[0]), dtype=np.int32) export_obj(tmp_obj, v, f) export_label(tmp_label, label) pts, fid = sample_points_from_obj(tmp_label, tmp_obj, tmp_pts, num_points=num_points, verbose=verbose) cmd = 'rm -rf %s %s %s' % (tmp_obj, tmp_pts, tmp_label) call(cmd, shell=True) return pts, fid def export_pts_with_color(out, pc, label): num_point = pc.shape[0] with open(out, 'w') as fout: for i in range(num_point): cur_color = label[i] fout.write('%f %f %f %d %d %d\n' % (pc[i, 0], pc[i, 1], pc[i, 2], cur_color[0], cur_color[1], cur_color[2])) def export_pts_with_label(out, pc, label, base=0): num_point = pc.shape[0] num_colors = len(colors) with open(out, 'w') as fout: for i in range(num_point): cur_color = colors[label[i] % num_colors] fout.write('%f %f %f %f %f %f\n' % (pc[i, 0], pc[i, 1], pc[i, 2], cur_color[0], cur_color[1], cur_color[2])) def export_pts_with_keypoints(out, pc, kp_list): num_point = pc.shape[0] with open(out, 'w') as fout: for i in range(num_point): if i in kp_list: color = [1.0, 0.0, 0.0] else: color = [0.0, 0.0, 1.0] fout.write('%f %f %f %f %f %f\n' % (pc[i, 0], pc[i, 1], pc[i, 2], color[0], color[1], color[2])) def compute_boundary_labels(pc, seg, radius=0.05): num_points = len(seg) assert num_points == pc.shape[0] assert pc.shape[1] == 3 bdr = np.zeros((num_points)).astype(np.int32) square_sum = np.sum(pc * pc, axis=1) A = np.tile(np.expand_dims(square_sum, axis=0), [num_points, 1]) B = np.tile(np.expand_dims(square_sum, axis=1), [1, num_points]) C = np.dot(pc, pc.T) dist = A + B - 2 * C for i in range(num_points): neighbor_seg = seg[dist[i, :] < radius ** 2] if len(set(neighbor_seg)) > 1: bdr[i] = 1 return bdr def render_obj(out, v, f, delete_img=False, flat_shading=True): tmp_obj = out.replace('.png', '.obj') export_obj(tmp_obj, v, f) if flat_shading: cmd = 'RenderShape -0 %s %s 600 600 > /dev/null' % (tmp_obj, out) else: cmd = 'RenderShape %s %s 600 600 > /dev/null' % (tmp_obj, out) call(cmd, shell=True) img = np.array(imread(out), dtype=np.float32) cmd = 'rm -rf %s' % (tmp_obj) call(cmd, shell=True) if delete_img: cmd = 'rm -rf %s' % out call(cmd, shell=True) return img def render_obj_with_label(out, v, f, label, delete_img=False, base=0): tmp_obj = out.replace('.png', '.obj') tmp_label = out.replace('.png', '.label') label += base export_obj(tmp_obj, v, f) export_label(tmp_label, label) cmd = 'RenderShape %s -l %s %s 600 600 > /dev/null' % (tmp_obj, tmp_label, out) call(cmd, shell=True) img = np.array(imread(out), dtype=np.float32) cmd = 'rm -rf %s %s' % (tmp_obj, tmp_label) call(cmd, shell=True) if delete_img: cmd = 'rm -rf %s' % out call(cmd, shell=True) return img def render_pts_with_label(out, pts, label, delete_img=False, base=0, point_size=6): tmp_pts = out.replace('.png', '.pts') tmp_label = out.replace('.png', '.label') label += base export_pts(tmp_pts, pts) export_label(tmp_label, label) cmd = 'RenderShape %s -l %s %s 600 600 -p %d > /dev/null' % (tmp_pts, tmp_label, out, point_size) call(cmd, shell=True) img = np.array(imread(out), dtype=np.float32) cmd = 'rm -rf %s %s' % (tmp_pts, tmp_label) call(cmd, shell=True) if delete_img: cmd = 'rm -rf %s' % out call(cmd, shell=True) return img def render_pts(out, pts, delete_img=False, point_size=6, point_color='FF0000FF'): tmp_pts = out.replace('.png', '.pts') export_pts(tmp_pts, pts) cmd = 'RenderShape %s %s 600 600 -p %d -c %s > /dev/null' % (tmp_pts, out, point_size, point_color) call(cmd, shell=True) img = np.array(imread(out), dtype=np.float32) cmd = 'rm -rf %s' % tmp_pts call(cmd, shell=True) if delete_img: cmd = 'rm -rf %s' % out call(cmd, shell=True) return img def render_pts_with_keypoints(out, pts, kp_list, delete_img=False, \ point_size=6, fancy_kp=False, fancy_kp_num=20, fancy_kp_radius=0.02): tmp_pts = out.replace('.png', '.pts') tmp_label = out.replace('.png', '.label') num_point = pts.shape[0] labels = np.ones((num_point), dtype=np.int32) * 14 for idx in kp_list: labels[idx] = 13 if fancy_kp: num_kp = len(kp_list) more_pts = np.zeros((num_kp * fancy_kp_num, 3), dtype=np.float32) more_labels = np.ones((num_kp * fancy_kp_num), dtype=np.int32) * 13 for i, idx in enumerate(kp_list): for j in range(fancy_kp_num): x = np.random.randn() y = np.random.randn() z = np.random.randn() l = np.sqrt(x ** 2 + y ** 2 + z ** 2) x = x / l * fancy_kp_radius + pts[idx, 0] y = y / l * fancy_kp_radius + pts[idx, 1] z = z / l * fancy_kp_radius + pts[idx, 2] more_pts[i * fancy_kp_num + j, 0] = x more_pts[i * fancy_kp_num + j, 1] = y more_pts[i * fancy_kp_num + j, 2] = z pts = np.concatenate((pts, more_pts), axis=0) labels = np.concatenate((labels, more_labels), axis=0) export_pts(tmp_pts, pts) export_label(tmp_label, labels) cmd = 'RenderShape %s -l %s %s 600 600 -p %d > /dev/null' % (tmp_pts, tmp_label, out, point_size) call(cmd, shell=True) img = np.array(imread(out), dtype=np.float32) cmd = 'rm -rf %s %s' % (tmp_pts, tmp_label) call(cmd, shell=True) if delete_img: cmd = 'rm -rf %s' % out call(cmd, shell=True) return img def compute_normal(pts, neighbor=50): l = pts.shape[0] assert (l > neighbor) t = np.sum(pts ** 2, axis=1) A = np.tile(t, (l, 1)) C = np.array(A).T B = np.dot(pts, pts.T) dist = A - 2 * B + C neigh_ids = dist.argsort(axis=1)[:, :neighbor] vec_ones = np.ones((neighbor, 1)).astype(np.float32) normals = np.zeros((l, 3)).astype(np.float32) for idx in range(l): D = pts[neigh_ids[idx, :], :] cur_normal = np.dot(np.linalg.pinv(D), vec_ones) cur_normal = np.squeeze(cur_normal) len_normal = np.sqrt(np.sum(cur_normal ** 2)) normals[idx, :] = cur_normal / len_normal if np.dot(normals[idx, :], pts[idx, :]) < 0: normals[idx, :] = -normals[idx, :] return normals def transfer_label_from_pts_to_obj(vertices, faces, pts, label): assert pts.shape[0] == label.shape[0], 'ERROR: #pts != #label' num_pts = pts.shape[0] num_faces = faces.shape[0] face_centers = [] for i in range(num_faces): face_centers.append( (vertices[faces[i, 0] - 1, :] + vertices[faces[i, 1] - 1, :] + vertices[faces[i, 2] - 1, :]) / 3) face_center_array = np.vstack(face_centers) A = np.tile(np.expand_dims(np.sum(face_center_array ** 2, axis=1), axis=0), [num_pts, 1]) B = np.tile(np.expand_dims(np.sum(pts ** 2, axis=1), axis=1), [1, num_faces]) C =
np.dot(pts, face_center_array.T)
numpy.dot
import os.path import glob import datetime import numpy as np import netCDF4 as nc4 class PInterpError(Exception): def __init__(self, msg): self.msg = msg def __str__(self): return msg class NameList: fields = ['PRES','TT','GHT','RH'] met_em_fields = [ dict(name = 'LANDUSEF', unit='category', desc = '24-category USGS landuse', order = 'XYZ'), dict(name = 'SOILCTOP', unit='category', desc = '16-category top-layer soil type', order = 'XYZ'), dict(name = 'SOIL_LAYERS', unit='cm', desc = '', order = 'XYZ'), dict(name = 'SOILHGT', unit='m', desc = 'Terrain field of source analysis', order = 'XY'), dict(name = 'PMSL', unit='Pa', desc = 'Sea-level Pressure', order = 'XY')] def __init__(self, nldict): self.__dict__ = nldict self.canonicalize() def canonicalize(self): for k, d in self.__dict__.items(): if isinstance(d, str): self.__dict__[k] = d.strip() if self.process not in ['all', 'list']: raise PInterpError('Invalide setting for process') for f in self.fields: if not f in NameList.fields: raise PInterpError('Invalide setting for fields ') if self.met_em_output: # line 324 if self.process != 'all': raise PInterpError('Process must be "all" if met_em_output==True') if self.interp_levels[0] < 950: raise PInterpError(''' ERROR: Lowest pressure level set in interp_levels in the nldict is above 950 mb. met_em needs surface data. Include a pressure level close to the surface: 1000 mb and other mandatory levels: 925, 850, 700, 500, 400, 300, 250, 200, 150, 100''') # line 334 self.extrapolate = True self.split_output = True self.unstagger_grid = False surface = self.interp_levels[0]+5 self.interp_levels = [surface] ++ self.interp_levels self.interp_levels = np.array(self.interp_levels) self.path_to_input = self.path_to_input.rstrip(os.sep) self.path_to_output = self.path_to_output.rstrip(os.sep) if self.process == 'all': self.fields = NameList.fields class Interpolator: def __init__(self, namelist): self.namelist = NameList(namelist) self.filenames = glob.glob(os.path.join(self.namelist.path_to_input, self.namelist.input_name)) if not self.filenames: # line 345 raise PInterpError('No input file specified') self.collect_mefields() # add extra fields for met_em_output # output summary if required # self.pressures = self.namelist.interp_levels * 100 for ifilename in self.filenames: print(ifilename) self.interp_file(ifilename) def collect_mefields(self): if self.namelist.process == 'all' and self.namelist.met_em_output: ncfile = nc4.Dataset(self.filenames[0]) mes = [me for me in NameList.met_em_fields if me['name'] not in ncfile.variables] self.namelist.fields.extend(me['name'] for me in NameList.met_em_fields if me['name'] not in ncfile.variables) ncfile.close() def interp_file(self, filename): ifilename = os.path.basename(filename) # num_metgrid_levels = self.namelist.interp_levels.size incfile = nc4.Dataset(filename) dimensions, variables, gattributes = incfile.dimensions, incfile.variables, incfile.__dict__ # .copy() self.debug('input file has {} dimensions, {} variables, and {} global attributes' .format(len(dimensions), len(variables), len(gattributes))) diag_processed = False met_em_processed = False timevar = incfile.variables['Times'] timestrs =
np.empty(timevar.shape, dtype='U20')
numpy.empty
import torch import os import time import numpy as np from torch.optim.lr_scheduler import LambdaLR from torchtext.legacy.data import Iterator from dataloader import load_data from model import CharCNN from inference import test PAD_TOKEN = '<pad>' # train model def train(**kwargs): training_data, validation_data = load_data(**kwargs) n_classes = len(training_data.fields['lang'].vocab) char_vocab_size = len(training_data.fields['chars'].vocab) padding_idx = training_data.fields['chars'].vocab.stoi[PAD_TOKEN] print(n_classes, char_vocab_size, padding_idx) gpu = True if torch.cuda.is_available() and kwargs['use_cuda'] else False device = torch.device(type='cuda') if gpu else torch.device(type='cpu') training_iterator = Iterator(training_data, kwargs['batch_size'], train=True, sort_within_batch=True, device=device, repeat=False) validation_iterator = Iterator(validation_data, kwargs['batch_size'], train=False, sort_within_batch=True, device=device, repeat=False) # our model model = CharCNN(char_vocab_size, padding_idx, emb_dim=kwargs['emb_dim'], dropout_p=kwargs['dropout'], n_classes=n_classes, max_seq_length=kwargs['max_chars']) model.cuda() # optimizer optimizer = torch.optim.SGD(model.parameters(), lr=kwargs['learning_rate'], momentum=0.9) scheduler = LambdaLR(optimizer, lr_lambda=lambda t: 0.8 ** (t / 3)) num_iter_per_epoch = len(training_iterator) best_accuracy = 0 batch_accuracies, epoch_accuracies = [], [] if kwargs['output_dir'] is None: output_dir = os.path.join( "./results", f"lid_model_{time.strftime('%Y%m%d_%H%M%S')}", ) os.makedirs(output_dir) output_file = open(os.path.join(output_dir, "logs.txt"), "w") model.train() # training loop for epoch in range(kwargs['num_epochs']): losses = [] scheduler.step() # changed since v1.1.0 for iter, batch in enumerate(training_iterator): # train the model; basically telling on what to train optimizer.zero_grad() # get the inputs if kwargs['level'] == 'char': sequence = batch.chars[0] lengths = batch.chars[1] target = batch.lang pad_idx = training_iterator.dataset.fields['chars'].vocab.stoi[PAD_TOKEN] criterion = torch.nn.CrossEntropyLoss(ignore_index=pad_idx) else: sequence = batch.paragraph[0] lengths = batch.paragraph[1] char_lengths = batch.paragraph[2] target = batch.lang pad_idx = training_iterator.dataset.fields['paragraph'].vocab.stoi[PAD_TOKEN] criterion = torch.nn.CrossEntropyLoss(ignore_index=pad_idx) batch_size = sequence.shape[0] # forward pass: compute predicted y by passing x to the model predictions = model.forward(sequence) # compute loss loss = criterion(predictions, target.squeeze(1)) losses.append(loss.item()) _, predicted_languages = torch.topk(predictions, 1) # print(predicted_languages) # acuracy calculation batch_accuracy = target.eq(predicted_languages).sum().item()/batch_size batch_accuracies.append(batch_accuracy) epoch_accuracies.append(batch_accuracy) # compute gradients loss.backward() optimizer.step() print("Training: Iteration: {}/{} Epoch: {}/{} Loss: {}" " Accuracy: {}, Learning rate: {}".format(iter + 1, num_iter_per_epoch, epoch + 1, kwargs['num_epochs'], round(loss.item(),4), round(batch_accuracies[-1], 3), round(scheduler.get_last_lr()[0], 5) )) # evaluation of validation data train_accuracy =
np.array(batch_accuracies)
numpy.array
#import matplotlib #matplotlib.use('TkAgg') from numpy import arange, sin, pi import sys sys.path.append("../") from appJar import gui def press(btn): if btn == "Update": t = arange(0.2, 20.0, 0.1) s = sin(int(app.getEntry("space"))*pi*t) app.updatePlot("p1", t, s) else: fig = app.getPlotWidget("p1").fig print("aaa", canvas, figure) ax = figure.add_subplot(1,1,1) ax.plot([1, 2, 3, 4]) ax.set_ylabel('example') t =
arange(0.0, 3.0, 0.01)
numpy.arange
import copy import pdb import numpy as np from scipy import signal from sklearn.preprocessing import normalize from wfdb.processing.basic import get_filter_gain from wfdb.processing.peaks import find_local_peaks from wfdb.io.record import Record class XQRS(object): """ The QRS detector class for the XQRS algorithm. The `XQRS.Conf` class is the configuration class that stores initial parameters for the detection. The `XQRS.detect` method runs the detection algorithm. The process works as follows: - Load the signal and configuration parameters. - Bandpass filter the signal between 5 and 20 Hz, to get the filtered signal. - Apply moving wave integration (MWI) with a Ricker (Mexican hat) wavelet onto the filtered signal, and save the square of the integrated signal. - Conduct learning if specified, to initialize running parameters of noise and QRS amplitudes, the QRS detection threshold, and recent R-R intervals. If learning is unspecified or fails, use default parameters. See the docstring for the `_learn_init_params` method of this class for details. - Run the main detection. Iterate through the local maxima of the MWI signal. For each local maxima: - Check if it is a QRS complex. To be classified as a QRS, it must come after the refractory period, cross the QRS detection threshold, and not be classified as a T-wave if it comes close enough to the previous QRS. If successfully classified, update running detection threshold and heart rate parameters. - If not a QRS, classify it as a noise peak and update running parameters. - Before continuing to the next local maxima, if no QRS was detected within 1.66 times the recent R-R interval, perform backsearch QRS detection. This checks previous peaks using a lower QRS detection threshold. Attributes ---------- sig : 1d ndarray The input ECG signal to apply the QRS detection on. fs : int, float The sampling frequency of the input signal. conf : XQRS.Conf object, optional The configuration object specifying signal configuration parameters. See the docstring of the XQRS.Conf class. Examples -------- >>> import wfdb >>> from wfdb import processing >>> sig, fields = wfdb.rdsamp('sample-data/100', channels=[0]) >>> xqrs = processing.XQRS(sig=sig[:,0], fs=fields['fs']) >>> xqrs.detect() >>> wfdb.plot_items(signal=sig, ann_samp=[xqrs.qrs_inds]) """ def __init__(self, sig, fs, conf=None): if sig.ndim != 1: raise ValueError('sig must be a 1d numpy array') self.sig = sig self.fs = fs self.sig_len = len(sig) self.conf = conf or XQRS.Conf() self._set_conf() class Conf(object): """ Initial signal configuration object for this QRS detector. Attributes ---------- hr_init : int, float, optional Initial heart rate in beats per minute. Used for calculating recent R-R intervals. hr_max : int, float, optional Hard maximum heart rate between two beats, in beats per minute. Used for refractory period. hr_min : int, float, optional Hard minimum heart rate between two beats, in beats per minute. Used for calculating recent R-R intervals. qrs_width : int, float, optional Expected QRS width in seconds. Used for filter widths indirect refractory period. qrs_thr_init : int, float, optional Initial QRS detection threshold in mV. Use when learning is False, or learning fails. qrs_thr_min : int, float, string, optional Hard minimum detection threshold of QRS wave. Leave as 0 for no minimum. ref_period : int, float, optional The QRS refractory period. t_inspect_period : int, float, optional The period below which a potential QRS complex is inspected to see if it is a T-wave. """ def __init__(self, hr_init=75, hr_max=200, hr_min=25, qrs_width=0.1, qrs_thr_init=0.13, qrs_thr_min=0, ref_period=0.2, t_inspect_period=0.36): if hr_min < 0: raise ValueError("'hr_min' must be >= 0") if not hr_min < hr_init < hr_max: raise ValueError("'hr_min' < 'hr_init' < 'hr_max' must be True") if qrs_thr_init < qrs_thr_min: raise ValueError("qrs_thr_min must be <= qrs_thr_init") self.hr_init = hr_init self.hr_max = hr_max self.hr_min = hr_min self.qrs_width = qrs_width self.qrs_radius = self.qrs_width / 2 self.qrs_thr_init = qrs_thr_init self.qrs_thr_min = qrs_thr_min self.ref_period = ref_period self.t_inspect_period = t_inspect_period def _set_conf(self): """ Set configuration parameters from the Conf object into the detector object. Time values are converted to samples, and amplitude values are in mV. Parameters ---------- N/A Returns ------- N/A """ self.rr_init = 60 * self.fs / self.conf.hr_init self.rr_max = 60 * self.fs / self.conf.hr_min self.rr_min = 60 * self.fs / self.conf.hr_max # Note: if qrs_width is odd, qrs_width == qrs_radius*2 + 1 self.qrs_width = int(self.conf.qrs_width * self.fs) self.qrs_radius = int(self.conf.qrs_radius * self.fs) self.qrs_thr_init = self.conf.qrs_thr_init self.qrs_thr_min = self.conf.qrs_thr_min self.ref_period = int(self.conf.ref_period * self.fs) self.t_inspect_period = int(self.conf.t_inspect_period * self.fs) def _bandpass(self, fc_low=5, fc_high=20): """ Apply a bandpass filter onto the signal, and save the filtered signal. Parameters ---------- fc_low : int, float The low frequency cutoff for the filter. fc_high : int, float The high frequency cutoff for the filter. Returns ------- N/A """ self.fc_low = fc_low self.fc_high = fc_high b, a = signal.butter(2, [float(fc_low) * 2 / self.fs, float(fc_high) * 2 / self.fs], 'pass') self.sig_f = signal.filtfilt(b, a, self.sig[self.sampfrom:self.sampto], axis=0) # Save the passband gain (x2 due to double filtering) self.filter_gain = get_filter_gain(b, a, np.mean([fc_low, fc_high]), self.fs) * 2 def _mwi(self): """ Apply moving wave integration (MWI) with a Ricker (Mexican hat) wavelet onto the filtered signal, and save the square of the integrated signal. The width of the hat is equal to the QRS width. After integration, find all local peaks in the MWI signal. Parameters ---------- N/A Returns ------- N/A """ wavelet_filter = signal.ricker(self.qrs_width, 4) self.sig_i = signal.filtfilt(wavelet_filter, [1], self.sig_f, axis=0) ** 2 # Save the MWI gain (x2 due to double filtering) and the total # gain from raw to MWI self.mwi_gain = get_filter_gain(wavelet_filter, [1],
np.mean([self.fc_low, self.fc_high])
numpy.mean
import os import numpy as np import torch from utils import MODEL_FILE_LIST, MAX_PER_DICT perDir = 'perRes' if not os.path.isdir(perDir): os.mkdir(perDir) all_res = [] for attack_name in ['L2', 'Linf']: for model_file in MODEL_FILE_LIST: task_name = model_file.split('.')[0] avg_res = np.zeros([3, 7]) max_res = np.zeros([3, 7]) delta_list = [] for attack_type in range(7): adv_file = 'adv/' + str(attack_type) + '_' + attack_name + '_' + task_name + '.adv' res = torch.load(adv_file) ori_img, adv_img = [], [] for data in res: ori_img.extend(data[0][0]) adv_img.extend(data[1][0]) ori_img = torch.stack(ori_img) adv_img = torch.stack(adv_img) delta = adv_img - ori_img delta = delta.reshape([len(delta), -1]) if attack_name == 'L2': delta = torch.norm(delta, p=2, dim=1).unsqueeze(1) else: delta = torch.norm(delta, p=np.inf, dim=1).unsqueeze(1) delta = delta.cpu().numpy().reshape([-1, 1]) delta_list.append(delta) delta_list = np.concatenate(delta_list, axis=1) final_res = np.concatenate([delta_list[:, 1:], delta_list[:, 0:1]], axis=1) file_name = os.path.join(perDir, task_name + '_' + attack_name + '.csv') np.savetxt(file_name, final_res, delimiter=',') print(file_name, 'success') all_res.append((final_res < MAX_PER_DICT[attack_name]).mean(0).reshape([-1, 1])) print() all_res =
np.concatenate(all_res, axis=1)
numpy.concatenate
import numpy as np from pyNastran.femutils.utils import unique2d from pyNastran.dev.bdf_vectorized.utils import slice_to_iter from pyNastran.dev.bdf_vectorized.cards.elements.solid.ctetra4 import volume4 from pyNastran.dev.bdf_vectorized.cards.elements.solid.chexa8 import quad_area_centroid from pyNastran.dev.bdf_vectorized.cards.elements.solid.cpenta6 import tri_area_centroid from pyNastran.dev.bdf_vectorized.cards.elements.shell.cquad4 import _cquad4_normal_A from pyNastran.dev.bdf_vectorized.cards.elements.shell.ctria3 import _ctria3_normal_A from pyNastran.dev.bdf_vectorized.cards.elements.utils import build_groups, asarray from pyNastran.dev.bdf_vectorized.cards.vectorized_card import BaseMethods class Elements(BaseMethods): def __init__(self, model): """ Defines the Elements object. Parameters ---------- model : BDF the BDF object """ self.model = model self.n = 0 self.nelements = 0 self.nproperties = 0 self.element_ids = None self.property_ids = None self.element_groups = None self.property_groups = None #: stores PSHELL, PCOMP, PCOMPG self.properties_shell = model.properties_shell #: stores CTRIA3, CTRIA6, CQUAD4, CQUAD8 self.elements_shell = model.elements_shell # shear #: stores CSHEAR self.cshear = model.cshear #: stores PSHEAR self.pshear = model.pshear # rigid #self.rbe2 = model.rbe2 #self.rbe3 = model.rbe3 # spring self.elements_spring = model.elements_spring self.pelas = model.pelas # bushings self.cbush = model.cbush self.cbush1d = model.cbush1d self.cbush2d = model.cbush2d self.pbush = model.pbush # rods self.conrod = model.conrod self.prod = model.prod self.crod = model.crod self.ctube = model.ctube self.ptube = model.ptube # mass #: stores CONM1, CONM2, CMASS1, CMASS2, CMASS3, CMASS4, CMASS5, PMASS self.mass = model.mass #self.conm1 = model.conm1 #self.conm2 = model.conm2 #self.cmass1 = self.cmass1 #self.cmass1 = self.cmass1 #self.cmass2 = self.cmass2 #self.cmass3 = self.cmass3 #self.cmass4 = self.cmass4 #self.cmass5 = self.cmass5 # bars #: stores CBAR self.cbar = model.cbar #: stores PBAR, PBARL self.properties_bar = model.properties_bar # beams #: stores CBEAM self.cbeam = model.cbeam #: stores PBEAM, PBEAML self.properties_beam = model.properties_beam # solids #: stores CTETRA4, CPENTA6, CHEXA8, CTETRA10, CPENTA15, CHEXA20 self.elements_solid = model.elements_solid #: stores PSOLID, PLSOLID self.properties_solid = model.properties_solid def validate_nodes(self, elements): validate_nodes = False if not hasattr(elements, 'node_ids'): # this element isn't finished return if not validate_nodes: # no checks return grids = self.model.grid.node_id nids = np.unique(np.ravel(elements.node_ids)) #nids.sort() diff = np.setdiff1d(nids, grids) if len(diff): eids = [] # find the bad elements for i, eid in enumerate(elements.element_id): j = np.intersect1d(diff, elements.node_ids[i, :]) if len(j): eids.append(eid) # prevents really long arrays eids = np.array(eids) msg = "Couldn't find Node ID: %s, which is required by %s %s" % ( diff, elements.type, eids) raise RuntimeError(msg) def build(self): #print('elements') self.n = 0 self._build_elements() self._build_properties() old_build = False if old_build: etypes = self._get_element_types(nlimit=False) ptypes = self._get_property_types(nlimit=False) for elems in etypes: #if elems is None: #continue if hasattr(elems, 'type'): if elems.type in self.model.card_count: self.model.log.debug('building %s' % elems.__class__.__name__) else: #if elems.n: self.model.log.debug('building %s' % elems.__class__.__name__) elems.build() self.nelements += elems.n self.validate_nodes(elems) #print(nids - grids[i]) for props in ptypes: #if props is None: #continue if hasattr(props, 'type'): if props.type in self.model.card_count: self.model.log.debug('building %s' % props.__class__.__name__) else: #if props.n: self.model.log.debug('building %s' % props.__class__.__name__) props.build() self.nproperties += props.n else: etypes = self._get_element_types(nlimit=True) ptypes = self._get_property_types(nlimit=True) self.model.log.debug('etypes = %s' % etypes) self.model.log.debug('ptypes = %s' % ptypes) for elems in etypes: #if elems.type in ['CONROD']: #self.nproperties += elems.n self.nelements += elems.n self.validate_nodes(elems) for props in ptypes: self.nproperties += props.n self.model.log.debug('finished building %s' % self.__class__.__name__) if self.nelements: eids = check_duplicate('element_id', etypes, self.model.log) self.element_ids = asarray(eids, dtype='int32') self.element_ids.sort() self.element_groups = build_groups(etypes, 'element_id', is_element=True) #self.model.log.info('self.element_groups = %s' % self.element_groups) else: self.model.log.warning('no elements...') if self.nproperties: pids = check_duplicate('property_id', ptypes, self.model.log) self.property_ids = asarray(pids, dtype='int32') self.property_ids.sort() self.property_groups = build_groups(ptypes, 'property_id') self.model.log.info('self.property_groups = %s' % self.property_groups) #print('*****self.element_ids =', self.element_ids) #print('*****self.property_ids =', self.property_ids) def get_elements(self, element_id): type_map = { 'CELAS1' : self.elements_spring.celas1, 'CELAS2' : self.elements_spring.celas2, 'CELAS3' : self.elements_spring.celas3, 'CELAS4' : self.elements_spring.celas4, #'CBUSH' : self.elements_bush.cbush, #'CBUSH1D' : self.elements_bush.cbush1d, #'CBUSH2D' : self.elements_bush.cbush2d, 'CBUSH' : self.cbush, 'CBUSH1D' : self.cbush1d, 'CBUSH2D' : self.cbush2d, 'CROD' : self.crod, 'CTUBE' : self.ctube, 'CONROD' : self.conrod, 'CSHEAR' : self.cshear, 'CTRIA3' : self.elements_shell.ctria3, 'CQUAD4' : self.elements_shell.cquad4, 'CTRIA6' : self.elements_shell.ctria6, 'CQUAD8' : self.elements_shell.cquad8, 'CTETRA4' : self.elements_solid.ctetra4, 'CPENTA6' : self.elements_solid.cpenta6, 'CHEXA8' : self.elements_solid.chexa8, 'CTETRA10' : self.elements_solid.ctetra10, 'CPENTA15' : self.elements_solid.cpenta15, 'CHEXA20' : self.elements_solid.chexa20, } out = [] for eid in element_id: obj = None for etype, eids in self.element_groups.items(): if eid in eids: i = np.where(eid == eids)[0] obj = type_map[etype][i] out.append(obj) return out def get_element_properties(self, exclude_types=None): if exclude_types is None: exclude_types = [] element_objs = [ self.elements_spring.celas1, self.elements_spring.celas2, self.elements_spring.celas3, self.elements_spring.celas4, self.cshear, self.crod, self.conrod, self.ctube, self.cbar, self.cbeam, self.cbush, self.cbush1d, self.cbush2d, self.elements_shell.ctria3, self.elements_shell.cquad4, self.elements_shell.ctria6, self.elements_shell.cquad8, self.elements_solid.ctetra4, self.elements_solid.cpenta6, self.elements_solid.chexa8, self.elements_solid.ctetra10, self.elements_solid.cpenta15, self.elements_solid.chexa20, ] if exclude_types is None: exclude_types = [] element_objs2 = [] for element_obj in element_objs: if element_obj.type not in exclude_types: element_objs2.append(element_obj) element_objs = element_objs2 del element_objs2 # this isn't working... #element_objs = [element_obj if element_obj.type not in exclude_types #for element_obj in element_objs] elements_without_properties = ['CELAS2', 'CELAS4', 'CONROD'] eids = np.hstack([element_obj.element_id for element_obj in element_objs]) pids = np.hstack([np.zeros(element_obj.n, dtype='int32') if element_obj.type in elements_without_properties else element_obj.property_id for element_obj in element_objs]) return element_objs, eids, pids def get_element_ids_by_property_type(self, element_ids, exclude_types=None): #self.model.log.debug('element_ids = %s' % element_ids) Types, eids, pids = self.get_element_properties(exclude_types) # remove undefined properties #existing_pids = setdiff1d(unique(pids), self.property_ids, assume_unique=True) #self.model.log.debug('pids = %s' % pids) #self.model.log.debug('self.property_ids = %s' % self.property_ids) #self.model.log.debug('existing_pids = %s' % existing_pids) # make sure oids is unique oids = np.hstack([Type.op2_id for Type in Types]) oids2 = np.unique(oids) assert len(oids) == len(oids2), oids oids = np.hstack([Type.op2_id * np.ones(Type.n, dtype='int32') for Type in Types]) i = np.argsort(eids) #self.model.log.debug('i = %s' % i) #self.model.log.debug('eids = %s len=%s' % (eids, len(eids))) #self.model.log.debug('pids = %s len=%s' % (pids, len(pids))) #self.model.log.debug('oids = %s len=%s' % (oids, len(oids))) assert len(eids) == len(pids), 'len(eids)=%i len(pids)=%i' % (len(eids), len(pids)) assert len(eids) == len(oids), 'len(eids)=%i len(oids)=%i' % (len(eids), len(oids)) eids = eids[i] pids = pids[i] oids = oids[i] data = np.vstack([eids, pids, oids]).T #self.model.log.debug(data) # drop extra elements # for eids greater than the max allowable eid located at data[-1,0], # we drop them i_less = np.where(data[-1, 0] >= element_ids)[0] element_ids = element_ids[i_less] # drop more extra elements # we're handling cases of skipped elements (e.g. CELASx cards) # that have a sorted location in data, but no unique value #print('++++++ %s' % element_ids) #print('++++++ %s' % data[:, 0]) ie = np.unique(np.searchsorted(data[:, 0], element_ids)) #print('ie = %s' % ie) #print('dataA \n%s' % data) return data[ie, :] #return data def get_nodes(self, node_id, xyz_cid0, msg=''): i = self.model.grid.get_node_index_by_node_id(node_id, msg=msg) return xyz_cid0[i, :] def _get_element_ids(self, element_ids_orig): if element_ids_orig is None: element_ids = self.element_ids element_ids_orig = element_ids #print('A %s' % element_ids) else: # remove elements that don't exist in the BDF #print("self.element_ids = \n%s" % str(self.element_ids)) #print("element_ids = \n%s" % str(element_ids)) element_ids_orig = asarray(element_ids_orig) element_ids =
np.intersect1d(element_ids_orig, self.element_ids)
numpy.intersect1d
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import json import collections import copy as cp import math from collections import OrderedDict import os.path import numpy as np import time import operator import sys import pickle import os import random from datetime import datetime from .Node import Node from .utils import latin_hypercube, from_unit_cube # from torch.quasirandom import SobolEngine # import torch class MCTS: ############################################# def __init__( self, space, sample_latent_bounds, dims, split_latent_converter, sample_latent_converter, split_latent_dims, sample_latent_dims, C_p=10, sample_per_inner_alg=1, split_metric: str = 'max', kernel_type="rbf", solver='cmaes', # solver_options={}, cmaes_sigma_mult=1., use_gpr=True, gamma_type="auto", treeify_freq=1, init_within_leaf='mean', leaf_size=20, splitter_type='kmeans', normalize=True, rng=np.random.RandomState(42), split_use_predict=True, verbose=False, **kwargs): ''' ::solver: type=str, default='cmaes', choices=['cmaes'], help='leaf solver' ::init_within_leaf: type=str, default='mean', choices=['mean', 'random', 'max'], help='how to choose initial value within leaf for cmaes and gradient' ::leaf_size: type=int, default=20, help='min leaf size before splitting' ::split_type: type=str, default='kmeans', choices=['kmeans', 'linreg', 'value'], help='how to split nodes for LaMCTS. value = just split in half based on value' ''' self.space = space # = args self.split_latent_converter = split_latent_converter self.sample_latent_converter = sample_latent_converter self.dims = dims self.split_metric = split_metric self.solver_type = solver # ub, lb = sample_latent_bounds.ub, sample_latent_bounds.lb self.cmaes_sigma_mult = cmaes_sigma_mult self.use_gpr = use_gpr self.treeify_freq = treeify_freq self.init_within_leaf = init_within_leaf # self.leaf_size = leaf_size # self.split_type = split_type # self.split_latent_dims = func.split_latent_converter.latent_dim if func.split_latent_converter is not None else dims # self.sample_latent_dims = func.sample_latent_converter.latent_dim if args.latent_samples else dims self.split_latent_dims = split_latent_dims self.sample_latent_dims = sample_latent_dims self.sample_latent_bounds = sample_latent_bounds self.rng = rng self.samples = [] self.f_samples = [] self.nodes = [] self.C_p = C_p self.sample_per_inner_alg = sample_per_inner_alg self.sample_per_inner_alg_count = 0 # self.lb = lb # self.ub = ub # self.ninits = ninits # self.func = func # self.curt_best_value = float("inf") # self.curt_best_sample = None self.best_value_trace = [] # self.sample_counter = 0 self.visualization = False self.LEAF_SAMPLE_SIZE = leaf_size self.kernel_type = kernel_type self.gamma_type = gamma_type # self.cmaes_sigma_mult = args.cmaes_sigma_mult # self.solver_type = args.solver #solver can be 'bo' or 'turbo' self.normalize = normalize self.splitter_type = splitter_type self.verbose = verbose if self.verbose: print("gamma_type:", gamma_type) self.kwargs = kwargs #we start the most basic form of the tree, 3 nodes and height = 1 self.split_use_predict = split_use_predict root = Node( parent=None, sample_dims=self.sample_latent_dims, split_dims=self.split_latent_dims, true_dims=self.dims, reset_id=True, kernel_type=self.kernel_type, cmaes_sigma_mult=self.cmaes_sigma_mult, leaf_size=self.LEAF_SAMPLE_SIZE, splitter_type=self.splitter_type, split_metric=self.split_metric, use_gpr=self.use_gpr, gamma_type=self.gamma_type, normalize=self.normalize, verbose=self.verbose, rng=self.rng, split_use_predict=split_use_predict, **kwargs) self.nodes.append(root) self.ROOT = root self.CURT = self.ROOT # self.init_train() self.iterations_since_treeify = 0 def populate_training_data(self): #only keep root self.ROOT.obj_counter = 0 for node in self.nodes: node.clear_data() self.nodes.clear() new_root = Node( parent=None, sample_dims=self.sample_latent_dims, split_dims=self.split_latent_dims, true_dims=self.dims, reset_id=True, kernel_type=self.kernel_type, cmaes_sigma_mult=self.cmaes_sigma_mult, leaf_size=self.LEAF_SAMPLE_SIZE, splitter_type=self.splitter_type, split_metric=self.split_metric, use_gpr=self.use_gpr, gamma_type=self.gamma_type, normalize=self.normalize, verbose=self.verbose, rng=self.rng, split_use_predict=self.split_use_predict, **self.kwargs) self.nodes.append(new_root) self.ROOT = new_root self.CURT = self.ROOT self.ROOT.update_bag(self.latent_samples, self.split_vectors, self.samples, self.f_samples) def get_leaf_status(self): status = [] for node in self.nodes: if node.is_leaf() == True and len( node.sample_X ) > self.LEAF_SAMPLE_SIZE and node.is_svm_splittable == True: status.append(True) else: status.append(False) return
np.array(status)
numpy.array
import numpy as np import json from collections import OrderedDict from scipy.spatial import distance from numpy.linalg import eigh from matplotlib import pyplot as plt import sklearn.metrics import xgboost as xgb from .. import pipeline as pipe import numpy.random as random import sys import pandas as pd np.random.seed(132) def run_xgboost(dtrain, dtest): xg_params = { "objective": "binary:logistic", "booster" : "gbtree", "eval_metric" : "logloss", "eta": random.uniform(0.01, 0.3), "max_depth": random.randint(2, 4), "subsample": random.uniform(0.5, 0.95), "colsample_bytree": random.uniform(0.5, 0.95), "silent": 1, "seed": 0, "nthread" : 5 } num_boost_round = 1000 early_stopping_rounds = 25 evallist = [(dtest, 'test')] bst = xgb.train(xg_params, dtrain, 1000, evals=evallist, early_stopping_rounds = 20) #calculating predcition not necessary, score already saved #predictions = bst.predict(dtest, ntree_limit = bst.best_ntree_limit) #uses early stopping to determine optimal epoch log_loss = bst.best_score return log_loss, xg_params, bst def logloss(prediction, label): eps = 1e-7 prediction = np.maximum(
np.minimum(prediction, 1-eps)
numpy.minimum
import numpy as np import warnings class Gaussian: def __init__(self, use_means=True, Q=None, mu=None): self.use_means = use_means self.Q = Q.copy() if Q is not None else None self.mu = mu.copy() if mu is not None else None def log_prob(self, X): n, d = X.shape if self.use_means: Z = X - self.mu else: Z = X pi_norm = - .5 * d * np.log(2 * np.pi) log_det_q = .5 * np.linalg.slogdet(self.Q)[1] zq = np.dot(Z, self.Q) zqz = np.multiply(zq, Z).sum(axis=1) m_dist = -.5 * zqz return pi_norm + log_det_q + m_dist def update_from_weights(self, X, W_j, Q_estimator, warm_start=False): S, m = self.get_sufficient_statistics(X, W_j) if Q_estimator is None: # use normal MLE self.Q = np.linalg.inv(S) if self.use_means: self.mu = m return # normalizing S to have 1's in the diag sqrt_vars = np.sqrt(np.diag(S)).reshape(-1, 1) inv_sqrt_vars = (sqrt_vars ** -1).reshape(-1, 1) normed_S = inv_sqrt_vars * S * inv_sqrt_vars.T if warm_start: normed_Q = sqrt_vars * self.Q * sqrt_vars.T else: normed_Q = np.eye(S.shape[0]) Q_est_normed = Q_estimator.fit(normed_S, normed_Q) self.Q = inv_sqrt_vars * Q_est_normed * inv_sqrt_vars.T if self.use_means: self.mu = m def get_sufficient_statistics(self, X, W): W_sum = W.sum() if np.allclose(W_sum, 0): # print("D", end="", flush=True) warnings.warn("Empty Component, randomizing", RuntimeWarning) W =
np.random.choice([0., 1.], X.shape[0], p=[.9, .1])
numpy.random.choice
import numpy as np import theano import theano.tensor as T from sfo.sfo import SFO from skimage.filter import gabor_kernel from skimage.transform import resize def generate_data(ndim, nsamples, nfeatures): """Generate data by drawing samples that are a sparse combination of gabor features """ # build features features = list() for j in range(nfeatures): theta = np.pi *
np.random.rand()
numpy.random.rand
# -*- coding: utf-8 -*- # vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 # # fluctmatch --- https://github.com/tclick/python-fluctmatch # Copyright (c) 2013-2017 The fluctmatch Development Team and contributors # (see the file AUTHORS for the full list of names) # # Released under the New BSD license. # # Please cite your use of fluctmatch in published work: # # <NAME>, <NAME>, and <NAME>. # Calculation of Enzyme Fluctuograms from All-Atom Molecular Dynamics # Simulation. Meth Enzymology. 578 (2016), 327-342, # doi:10.1016/bs.mie.2016.05.024. # from __future__ import ( absolute_import, division, print_function, unicode_literals, ) from future.builtins import ( super, ) import numpy as np from MDAnalysis.core import selection class BioIonSelection(selection.Selection): """Contains atoms commonly found in proteins. """ token = "bioion" ion_atoms = np.array(["MG", "CAL", "MN", "FE", "CU", "ZN", "AG"]) def __init__(self, parser, tokens): pass def apply(self, group): mask = np.in1d(group.names, self.ion_atoms) return group[mask].unique class WaterSelection(selection.Selection): """Contains atoms commonly found in water. """ token = "water" water_atoms = np.array(["OW", "HW1", "HW2", "MW"]) def __init__(self, parser, tokens): pass def apply(self, group): mask = np.in1d(group.names, self.water_atoms) return group[mask].unique class BackboneSelection(selection.BackboneSelection): """Contains all heavy atoms within a protein backbone including the terminal carboxyl oxygens. """ token = "backbone" oxy_atoms = ["OXT", "OT1", "OT2"] def apply(self, group): mask = np.in1d(group.names, np.concatenate([self.bb_atoms, self.oxy_atoms])) mask &= np.in1d(group.resnames, self.prot_res) return group[mask].unique class HBackboneSelection(BackboneSelection): """Includes all atoms found within a protein backbone including hydrogens. """ token = "hbackbone" hbb_atoms = np.array([ "H", "HN", "H1", "H2", "H3", "HT1", "HT2", "HT3", "HA", "HA1", "HA2", "1HA", "2HA" ]) def apply(self, group): mask = np.in1d(group.names, np.concatenate( [self.bb_atoms, self.oxy_atoms, self.hbb_atoms])) mask &= np.in1d(group.resnames, self.prot_res) return group[mask].unique class CalphaSelection(selection.ProteinSelection): """Contains only the alpha-carbon of a protein. """ token = "calpha" calpha = np.array(["CA"]) def apply(self, group): mask = np.in1d(group.names, self.calpha) mask &= np.in1d(group.resnames, self.prot_res) return group[mask].unique class HCalphaSelection(CalphaSelection): """Contains the alpha-carbon and alpha-hydrogens of a protein. """ token = "hcalpha" hcalpha =
np.array(["HA", "HA1", "HA2", "1HA", "2HA"])
numpy.array
from functools import partial import jax.numpy as jnp import matplotlib.pyplot as plt import numba as nb import numpy as np import scipy.linalg as linalg from jax import lax, jit __all__ = ["make_parameters", "get_data"] def _transition_function(x, dt): """ Deterministic transition function used in the state space model Parameters ---------- x: array_like The current state dt: float Time step between observations Returns ------- out: array_like The transitioned state """ w = x[-1] predicate = jnp.abs(w) < 1e-6 coswt = jnp.cos(w * dt) sinwt = jnp.sin(w * dt) def true_fun(_): return coswt, 0., sinwt, dt def false_fun(_): coswto = coswt - 1 return coswt, coswto / w, sinwt, sinwt / w coswt, coswtopw, sinwt, sinwtpw = lax.cond(predicate, true_fun, false_fun, None) F = jnp.array([[1, 0, sinwtpw, -coswtopw, 0], [0, 1, coswtopw, sinwtpw, 0], [0, 0, coswt, sinwt, 0], [0, 0, -sinwt, coswt, 0], [0, 0, 0, 0, 1]]) return F @ x def _observation_function(x, s1, s2): """ Returns the observed angles as function of the state and the sensors locations Parameters ---------- x: array_like The current state s1: array_like The first sensor location s2: array_like The second sensor location Returns ------- y: array_like The observed angles, the first component is the angle w.r.t. the first sensor, the second w.r.t the second. """ return jnp.array([jnp.arctan2(x[1] - s1[1], x[0] - s1[0]), jnp.arctan2(x[1] - s2[1], x[0] - s2[0])]) @partial(jnp.vectorize, excluded=(1, 2), signature="(m)->(d)") def inverse_bearings(observation, s1, s2): """ Inverse the bearings observation to the location as if there was no noise, This is only used to provide an initial point for the linearization of the IEKS and ICKS. Parameters ---------- observation: (2) array The bearings observation s1: (2) array The first sensor position s2: (2) array The second sensor position Returns ------- out: (2) array The inversed position of the state """ tan_theta = jnp.tan(observation) A = jnp.array([[tan_theta[0], -1], [tan_theta[1], -1]]) b = jnp.array([s1[0] * tan_theta[0] - s1[1], s2[0] * tan_theta[1] - s2[1]]) return jnp.linalg.solve(A, b) def make_parameters(qc, qw, r, dt, s1, s2): """ Discretizes the model with continuous transition noise qc, for step-size dt. The model is described in "Multitarget-multisensor tracking: principles and techniques" by Bar-Shalom, Yaakov and <NAME> Parameters ---------- qc: float Transition covariance of the continuous SSM qw: float Transition covariance of the continuous SSM r: float Observation error standard deviation dt: float Discretization time step s1: array_like The location of the first sensor s2: array_like The location of the second sensor Returns ------- Q: array_like The transition covariance matrix for the discrete SSM R: array_like The observation covariance matrix observation_function: callable The observation function transition_function: callable The transition function """ Q = jnp.array([[qc * dt ** 3 / 3, 0, qc * dt ** 2 / 2, 0, 0], [0, qc * dt ** 3 / 3, 0, qc * dt ** 2 / 2, 0], [qc * dt ** 2 / 2, 0, qc * dt, 0, 0], [0, qc * dt ** 2 / 2, 0, qc * dt, 0], [0, 0, 0, 0, dt * qw]]) R = r ** 2 * jnp.eye(2) observation_function = jit(partial(_observation_function, s1=s1, s2=s2)) transition_function = jit(partial(_transition_function, dt=dt)) return Q, R, observation_function, transition_function @nb.njit def _get_data(x, dt, a_s, s1, s2, r, normals, observations, true_states): for i, a in enumerate(a_s): with nb.objmode(x='float32[::1]'): F = np.array([[0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 0, a], [0, 0, -a, 0]], dtype=np.float32) x = linalg.expm(F * dt) @ x y1 = np.arctan2(x[1] - s1[1], x[0] - s1[0]) + r * normals[i, 0] y2 = np.arctan2(x[1] - s2[1], x[0] - s2[0]) + r * normals[i, 1] observations[i] = [y1, y2] observations[i] = [y1, y2] true_states[i] = np.concatenate((x, np.array([a]))) # return true_states, observations def get_data(x0, dt, r, T, s1, s2, q=10., random_state=None): """ Parameters ---------- x0: array_like true initial state dt: float time step for observations r: float observation model standard deviation T: int number of time steps s1: array_like The location of the first sensor s2: array_like The location of the second sensor q: float noise of the angular momentum random_state: np.random.RandomState or int, optional numpy random state Returns ------- ts: array_like array of time steps true_states: array_like array of true states observations: array_like array of observations """ if random_state is None or isinstance(random_state, int): random_state = np.random.RandomState(random_state) a_s = 1 + q * dt * np.cumsum(random_state.randn(T)) a_s = a_s.astype(np.float32) s1 = np.asarray(s1, dtype=np.float32) s2 = np.asarray(s2, dtype=np.float32) x = np.copy(x0).astype(np.float32) observations =
np.empty((T, 2), dtype=np.float32)
numpy.empty
import random import numpy as np import pynmmso as nmmso class Swarm: """ Represents a swarm in the NMMSO algorithm. Arguments --------- id : int Id used to refer to the swarm swarm_size : int Maximum number of particles in the swarm problem : Instance of the problem class. Must implement get_bounds and fitness functions. listener : subclass of nmmso.listeners.BaseListener Listener object to receive notification of events. Optional. Attributes ---------- id : int A unique identification number of this swarm. mode_location : numpy array The location of this mode. mode_value : float The fitness of the mode location. number_of_particles : int Number of particles in the swarm. history_locations : 2D Numpy array The current locations of each particle in the swarm. history_values : 1D Numpy array The fitness values for current locations of each particle in the swarm. velocities : 2D Numpy array Current velocity of each particle in the swarm. pbest_location : 2D Numpy array The best location discovered for each particle. pbest_value : 1D Numpy array The fitness value associated with the best location for each particle in the swarm. """ def __init__(self, id, swarm_size, problem, listener=None): self.id = id self.swarm_size = swarm_size self.problem = problem self.listener = listener self.mn = np.array(problem.get_bounds()[0]) self.mx = np.array(problem.get_bounds()[1]) self.changed = True self.converged = False self.num_dimensions = len(self.mn) self.mode_location = None # Will be populated later on self.new_location = None # Will be populated later on self.mode_value = None # Will be populated later on # Initialize locations for swarm elements # current locations of swarm self.history_locations = np.zeros((self.swarm_size, self.num_dimensions)) # current values of swarm self.history_values = np.full(self.swarm_size, -np.inf) # current best locations of swarm self.pbest_locations = np.zeros((self.swarm_size, self.num_dimensions)) # current best values of swarm self.pbest_values = np.full(self.swarm_size, -np.inf) self.velocities = np.zeros((swarm_size, self.num_dimensions)) self.number_of_particles = 1 self.shifted_loc = None # Will be populated later on self.dist = None # Will be populated later on def set_initial_location(self): """Sets the initial location of a swarm.""" self.changed = True self.new_location = (np.random.rand(self.num_dimensions) * (self.mx-self.mn)) + self.mn # random initial velocities of swarm self.velocities[0, :] = (np.random.rand(self.num_dimensions) * (self.mx-self.mn)) + self.mn def set_arbitrary_distance(self): """Set an arbitrary distance - this is done when we only have one swarm""" self.dist = np.min(self.mx-self.mn) def increment(self): """ Increments the swarm. """ new_location = self.mn - 1 d = self.dist shifted = False omega = 0.1 reject = 0 r = random.randrange(self.swarm_size) # select particle at random to move while np.sum(new_location < self.mn) > 0 or np.sum(new_location > self.mx) > 0: # if swarm is not yet at capacity, simply add a new particle if self.number_of_particles < self.swarm_size: usp = nmmso.Nmmso.uniform_sphere_points(1, self.num_dimensions)[0] new_location = self.mode_location + usp * (d/2) else: # move an existing particle shifted = True self.shifted_loc = r r1 = np.random.rand(self.num_dimensions) r2 = np.random.rand(self.num_dimensions) temp_vel = omega * self.velocities[self.shifted_loc, :] + \ 2.0 * r1 * \ (self.mode_location - self.history_locations[self.shifted_loc, :]) + \ 2.0 * r2 * \ (self.pbest_locations[self.shifted_loc, :] - self.history_locations[self.shifted_loc, :]) if reject > 20: # if we keep rejecting then put at extreme any violating design parameters i_max = np.flatnonzero( np.asarray( self.history_locations[self.shifted_loc, :] + temp_vel > self.mx)) i_min = np.flatnonzero( np.asarray( self.history_locations[self.shifted_loc, :] + temp_vel < self.mn)) if i_max.size > 0: temp_vel[i_max] = \ np.random.rand(i_max.size) * \ (self.mx[i_max] - self.history_locations[self.shifted_loc, i_max]) if i_min.size > 0: temp_vel[i_min] = \ np.random.rand(i_min.size) * \ (self.history_locations[self.shifted_loc, i_min] - self.mn[i_min]) new_location = self.history_locations[self.shifted_loc, :] + temp_vel reject = reject + 1 if shifted: self.velocities[self.shifted_loc, :] = temp_vel else: # otherwise initialise velocity in sphere based on distance from gbest to next # closest mode self.number_of_particles = self.number_of_particles + 1 self.shifted_loc = self.number_of_particles - 1 temp_vel = self.mn - 1 reject = 0 while np.sum(temp_vel < self.mn) > 0 or np.sum(temp_vel > self.mx) > 0: temp_vel = \ self.mode_location + \ nmmso.Nmmso.uniform_sphere_points(1, self.num_dimensions)[0] * (d / 2) reject = reject + 1 if reject > 20: # resolve if keep rejecting temp_vel = np.random.rand(self.num_dimensions)*(self.mx-self.mn) + self.mn self.velocities[self.shifted_loc, :] = temp_vel self.new_location = new_location if self.listener is not None: if shifted: self.listener.swarm_moved_particle(self) else: self.listener.swarm_added_particle(self) def initialise_with_uniform_crossover(self, swarm1, swarm2): """ Initialise a new swarm with the uniform crossover of the given swarms. Arguments --------- swarm1 : Swarm swarm2 : Swarm """ self.new_location, _ = Swarm.uni(swarm1.mode_location, swarm2.mode_location) self.evaluate_first() self.changed = True self.converged = False def distance_to(self, swarm): """ Euclidean distance between this swarm and the given swarm, based on their mode locations. Returns ------- float The distance between the two swarms. """ return
np.linalg.norm(self.mode_location-swarm.mode_location)
numpy.linalg.norm
__doc__ = """Helical buckling convergence study, for detailed explanation refer to Gazzola et. al. R. Soc. 2018 section 3.4.1 """ import numpy as np import sys # FIXME without appending sys.path make it more generic sys.path.append("../../") from elastica import * from examples.HelicalBucklingCase.helicalbuckling_postprocessing import ( analytical_solution, envelope, plot_helicalbuckling, ) from examples.convergence_functions import plot_convergence, calculate_error_norm class HelicalBucklingSimulator(BaseSystemCollection, Constraints, Forcing): pass # Options PLOT_FIGURE = True SAVE_FIGURE = True SAVE_RESULTS = False def simulate_helicalbucklin_beam_with( elements=10, SAVE_FIGURE=False, PLOT_FIGURE=False ): helicalbuckling_sim = HelicalBucklingSimulator() # setting up test params n_elem = elements start = np.zeros((3,)) direction = np.array([0.0, 0.0, 1.0]) normal = np.array([0.0, 1.0, 0.0]) base_length = 100.0 base_radius = 0.35 base_area = np.pi * base_radius ** 2 density = 1.0 / (base_area) nu = 0.01 E = 1e6 slack = 3 number_of_rotations = 27 # For shear modulus of 1e4, nu is 99! poisson_ratio = 99 shear_matrix = np.repeat(1e5 * np.identity((3))[:, :, np.newaxis], n_elem, axis=2) temp_bend_matrix = np.zeros((3, 3))
np.fill_diagonal(temp_bend_matrix, [1.345, 1.345, 0.789])
numpy.fill_diagonal
from scipy.spatial import ConvexHull import numpy as np from scipy.integrate import simps from scipy import signal import antropy as ant import scipy.stats import nolds from package import diffusion_stabilogram from package import recurrence_quantification_analysis from package import fractal_dimension ## NOTE: Recordings from Bertec Acquire have the following specifications: #Row 1 = Time #Row 2 = Fz #Row 3 = Mx #Row 4 = My #Row 5 = CoPx = CoP_ML #Row 6 = CoPy = CoP_AP #Note. CoPx = -My/Fz #Note. CoPy = Mx/Fz def _recenter(data): """De-means the data""" data = np.array(data) return data - data.mean() def _delta(data): """Gets the difference in data, i.e., delta[i] = x[i+1] - x[i]""" d1 = np.array(data[:-1]) d2 = np.array(data[1:]) return d2 - d1 def _eig(data): """Returns eigenvectors and eigenvalues from the x y""" def _confidence_ellipse(x,y): N = len(x) corr = np.zeros([2,2]) corr[0,0] = sum(x ** 2) corr[1,1] = sum(y ** 2) corr[0,1] = corr[1,0] = sum(x * y) w,v = np.linalg.eig(corr) major_idx = np.argmax(w) minor_idx = np.argmin(w) major_radius = np.sqrt(w[major_idx]/(N-1)) minor_radius = np.sqrt(w[minor_idx]/(N-1)) major_axis=v[:,major_idx] minor_axis=v[:,minor_idx] return major_radius,minor_radius,major_axis,minor_axis def _get_psd(data,method=None): T = data[0][1] - data[0][0] fs = 1/T if method == 'multitaper': from mne.time_frequency import psd_array_multitaper psd_ML, f_ML = psd_array_multitaper(data[4], fs, adaptive=True, normalization='full', verbose=0) psd_AP, f_AP = psd_array_multitaper(data[5], fs, adaptive=True, normalization='full', verbose=0) elif method == None: f_ML, psd_ML = signal.periodogram(data[4], fs=fs) f_AP, psd_AP = signal.periodogram(data[5], fs=fs) else: print("Please enter a valid method. Either 'multitaper' or None") return return psd_ML, psd_AP, f_ML, f_AP #################################### def get_area95(data): """following https://www1.udel.edu/biology/rosewc/kaap686/reserve/cop/center%20of%20position%20conf95.pdf """ x, y = _recenter(data[4]), _recenter(data[5]) major_radius,minor_radius,_,_ = _confidence_ellipse(x, y) area95 = 5.991 * np.pi * major_radius * minor_radius return area95 def get_swayarea(data): """Returns sway area of the stabilogram. Defined by the convex hull of all points""" cop_x = data[4] cop_y = data[5] return ConvexHull(list(zip(cop_x,cop_y))).volume #Volume = area for a 2d shape def get_area95majoraxis(data): """Returns the angle of the major axis wrt the x axis, from the area95 ellipse""" x, y = _recenter(data[4]), _recenter(data[5]) _,_,major_axis,minor_axis = _confidence_ellipse(x, y) vector_1 = [1,0] #x axis vector_2 = major_axis unit_vector_1 = vector_1 / np.linalg.norm(vector_1) unit_vector_2 = vector_2 / np.linalg.norm(vector_2) dot_product = np.dot(unit_vector_1, unit_vector_2) angle = np.degrees(np.arccos(dot_product)) return angle def get_area95_axis_length(data): """Returns the major and minor axis lengths from the area95 ellipse""" x, y = _recenter(data[4]), _recenter(data[5]) major_radius,minor_radius,_,_ = _confidence_ellipse(x, y) major_axis_length = np.sqrt(5.991)*major_radius*2 minor_axis_length = np.sqrt(5.991)*minor_radius*2 return major_axis_length, minor_axis_length def get_area95_minoraxis_tangent(data): """Is extremely poorly defined in doi: 10.1002/mds.25449. Is left blank here""" return None def get_markedarea(data): """The calculation of the surface is carried out graphically with a res- olution of 0.0025 cm 2 . Continuous triangles from the mean value of all measurement values to the last measurement point to the current measurement point are calculated. Points on the grid which overlap numerous times are not counted more than once (measured in square meters). POORLY DEFINED. Is this alpha shape or something? """ return def get_area90_length(data): """Is very poorly defined in the corresponding paper (doi: 10.1123/mcj.6.3.246). We are assuming that this is simply the 90% confidence interval in ML and AP directions""" x, y = _recenter(data[4]), _recenter(data[5]) confidence = 0.9 n = len(x) std_err_x = scipy.stats.sem(x) interval_x = std_err_x * scipy.stats.t.ppf((1 + confidence) / 2., n-1) CI_90_ML = interval_x * 2 n = len(y) std_err_y = scipy.stats.sem(y) interval_y = std_err_y * scipy.stats.t.ppf((1 + confidence) / 2., n-1) CI_90_AP = interval_y * 2 return CI_90_ML, CI_90_AP def mean_confidence_interval(data, confidence=0.95): a = 1.0 *
np.array(data)
numpy.array
############################################################################### # Reader for CINE files produced by Vision Research Phantom Software # Author: <NAME> # <EMAIL> # Modified by <NAME> (<EMAIL>) # Added to PIMS by <NAME> (<EMAIL>) # Modified by <NAME> ############################################################################### from __future__ import (absolute_import, division, print_function, unicode_literals) import six from pims.frame import Frame from pims.base_frames import FramesSequence, index_attr from pims.utils.misc import FileLocker import time import struct import numpy as np from numpy import array, frombuffer, where from threading import Lock import datetime import hashlib import sys import warnings from collections.abc import Iterable __all__ = ('Cine', ) # '<' for little endian (cine documentation) def _build_struct(dtype): return struct.Struct(str("<" + dtype)) FRACTION_MASK = (2**32-1) MAX_INT = 2**32 # Harmonized/simplified cine file data types with Python struct doc UINT8 = 'B' CHAR = 'b' UINT16 = 'H' INT16 = 'h' BOOL = 'i' UINT32 = 'I' INT32 = 'i' INT64 = 'q' FLOAT = 'f' DOUBLE = 'd' TIME64 = 'Q' RECT = '4i' WBGAIN = '2f' IMFILTER = '28i' # TODO: get correct format for TrigTC TC = '8s' CFA_NONE = 0 # gray sensor CFA_VRI = 1 # gbrg/rggb sensor CFA_VRIV6 = 2 # bggr/grbg sensor CFA_BAYER = 3 # gb/rg sensor CFA_BAYERFLIP = 4 #rg/gb sensor TAGGED_FIELDS = { 1000: ('ang_dig_sigs', ''), 1001: ('image_time_total', TIME64), 1002: ('image_time_only', TIME64), 1003: ('exposure_only', UINT32), 1004: ('range_data', ''), 1005: ('binsig', ''), 1006: ('anasig', ''), 1007: ('time_code', '')} HEADER_FIELDS = [ ('type', '2s'), ('header_size', UINT16), ('compression', UINT16), ('version', UINT16), ('first_movie_image', INT32), ('total_image_count', UINT32), ('first_image_no', INT32), ('image_count', UINT32), # Offsets of following sections ('off_image_header', UINT32), ('off_setup', UINT32), ('off_image_offsets', UINT32), ('trigger_time', TIME64), ] BITMAP_INFO_FIELDS = [ ('bi_size', UINT32), ('bi_width', INT32), ('bi_height', INT32), ('bi_planes', UINT16), ('bi_bit_count', UINT16), ('bi_compression', UINT32), ('bi_image_size', UINT32), ('bi_x_pels_per_meter', INT32), ('bi_y_pels_per_meter', INT32), ('bi_clr_used', UINT32), ('bi_clr_important', UINT32), ] SETUP_FIELDS = [ ('frame_rate_16', UINT16), ('shutter_16', UINT16), ('post_trigger_16', UINT16), ('frame_delay_16', UINT16), ('aspect_ratio', UINT16), ('contrast_16', UINT16), ('bright_16', UINT16), ('rotate_16', UINT8), ('time_annotation', UINT8), ('trig_cine', UINT8), ('trig_frame', UINT8), ('shutter_on', UINT8), ('description_old', '121s'), ('mark', '2s'), ('length', UINT16), ('binning', UINT16), ('sig_option', UINT16), ('bin_channels', INT16), ('samples_per_image', UINT8), ] + [('bin_name{:d}'.format(i), '11s') for i in range(8)] + [ ('ana_option', UINT16), ('ana_channels', INT16), ('res_6', UINT8), ('ana_board', UINT8), ] + [('ch_option{:d}'.format(i), INT16) for i in range(8)] + [ ] + [('ana_gain{:d}'.format(i), FLOAT) for i in range(8)] + [ ] + [('ana_unit{:d}'.format(i), '6s') for i in range(8)] + [ ] + [('ana_name{:d}'.format(i), '11s') for i in range(8)] + [ ('i_first_image', INT32), ('dw_image_count', UINT32), ('n_q_factor', INT16), ('w_cine_file_type', UINT16), ] + [('sz_cine_path{:d}'.format(i), '65s') for i in range(4)] + [ ('b_mains_freq', UINT16), ('b_time_code', UINT8), ('b_priority', UINT8), ('w_leap_sec_dy', UINT16), ('d_delay_tc', DOUBLE), ('d_delay_pps', DOUBLE), ('gen_bits', UINT16), ('res_1', INT32), ('res_2', INT32), ('res_3', INT32), ('im_width', UINT16), ('im_height', UINT16), ('edr_shutter_16', UINT16), ('serial', UINT32), ('saturation', INT32), ('res_5', UINT8), ('auto_exposure', UINT32), ('b_flip_h', BOOL), ('b_flip_v', BOOL), ('grid', UINT32), ('frame_rate', UINT32), ('shutter', UINT32), ('edr_shutter', UINT32), ('post_trigger', UINT32), ('frame_delay', UINT32), ('b_enable_color', BOOL), ('camera_version', UINT32), ('firmware_version', UINT32), ('software_version', UINT32), ('recording_time_zone', INT32), ('cfa', UINT32), ('bright', INT32), ('contrast', INT32), ('gamma', INT32), ('res_21', UINT32), ('auto_exp_level', UINT32), ('auto_exp_speed', UINT32), ('auto_exp_rect', RECT), ('wb_gain', '8f'), ('rotate', INT32), ('wb_view', WBGAIN), ('real_bpp', UINT32), ('conv_8_min', UINT32), ('conv_8_max', UINT32), ('filter_code', INT32), ('filter_param', INT32), ('uf', IMFILTER), ('black_cal_sver', UINT32), ('white_cal_sver', UINT32), ('gray_cal_sver', UINT32), ('b_stamp_time', BOOL), ('sound_dest', UINT32), ('frp_steps', UINT32), ] + [('frp_img_nr{:d}'.format(i), INT32) for i in range(16)] + [ ] + [('frp_rate{:d}'.format(i), UINT32) for i in range(16)] + [ ] + [('frp_exp{:d}'.format(i), UINT32) for i in range(16)] + [ ('mc_cnt', INT32), ] + [('mc_percent{:d}'.format(i), FLOAT) for i in range(64)] + [ ('ci_calib', UINT32), ('calib_width', UINT32), ('calib_height', UINT32), ('calib_rate', UINT32), ('calib_exp', UINT32), ('calib_edr', UINT32), ('calib_temp', UINT32), ] + [('header_serial{:d}'.format(i), UINT32) for i in range(4)] + [ ('range_code', UINT32), ('range_size', UINT32), ('decimation', UINT32), ('master_serial', UINT32), ('sensor', UINT32), ('shutter_ns', UINT32), ('edr_shutter_ns', UINT32), ('frame_delay_ns', UINT32), ('im_pos_xacq', UINT32), ('im_pos_yacq', UINT32), ('im_width_acq', UINT32), ('im_height_acq', UINT32), ('description', '4096s'), ('rising_edge', BOOL), ('filter_time', UINT32), ('long_ready', BOOL), ('shutter_off', BOOL), ('res_4', '16s'), ('b_meta_WB', BOOL), ('hue', INT32), ('black_level', INT32), ('white_level', INT32), ('lens_description', '256s'), ('lens_aperture', FLOAT), ('lens_focus_distance', FLOAT), ('lens_focal_length', FLOAT), ('f_offset', FLOAT), ('f_gain', FLOAT), ('f_saturation', FLOAT), ('f_hue', FLOAT), ('f_gamma', FLOAT), ('f_gamma_R', FLOAT), ('f_gamma_B', FLOAT), ('f_flare', FLOAT), ('f_pedestal_R', FLOAT), ('f_pedestal_G', FLOAT), ('f_pedestal_B', FLOAT), ('f_chroma', FLOAT), ('tone_label', '256s'), ('tone_points', INT32), ('f_tone', ''.join(32*['2f'])), ('user_matrix_label', '256s'), ('enable_matrices', BOOL), ('f_user_matrix', '9'+FLOAT), ('enable_crop', BOOL), ('crop_left_top_right_bottom', '4i'), ('enable_resample', BOOL), ('resample_width', UINT32), ('resample_height', UINT32), ('f_gain16_8', FLOAT), ('frp_shape', '16'+UINT32), ('trig_TC', TC), ('f_pb_rate', FLOAT), ('f_tc_rate', FLOAT), ('cine_name', '256s') ] #from VR doc: This field is maintained for compatibility with old versions but #a new field was added for that information. The new field can be larger or may #have a different measurement unit. UPDATED_FIELDS = { 'frame_rate_16': 'frame_rate', 'shutter_16': 'shutter_ns', 'post_trigger_16': 'post_trigger', 'frame_delay_16': 'frame_delay_ns', 'edr_shutter_16': 'edr_shutter_ns', 'saturation': 'f_saturation', 'shutter': 'shutter_ns', 'edr_shutter': 'edr_shutter_ns', 'frame_delay': 'frame_delay_ns', 'bright': 'f_offset', 'contrast': 'f_gain', 'gamma': 'f_gamma', 'conv_8_max': 'f_gain16_8', 'hue': 'f_hue', } #from VR doc: to be ignored, not used anymore TO_BE_IGNORED_FIELDS = { 'contrast_16': 'res_7', 'bright_16': 'res_8', 'rotate_16': 'res_9', 'time_annotation': 'res_10', 'trig_cine': 'res_11', 'shutter_on': 'res_12', 'binning': 'res_13', 'b_mains_freq': 'res_14', 'b_time_code': 'res_15', 'b_priority': 'res_16', 'w_leap_sec_dy': 'res_17', 'd_delay_tc': 'res_18', 'd_delay_pps': 'res_19', 'gen_bits': 'res_20', 'conv_8_min': '', } # from VR doc: last setup field appearing in software version # TODO: keep up-to-date with newer and more precise doc, if available END_OF_SETUP = { 551: 'software_version', 552: 'recording_time_zone', 578: 'rotate', 605: 'b_stamp_time', 606: 'mc_percent63', 607: 'head_serial3', 614: 'decimation', 624: 'master_serial', 625: 'sensor', 631: 'frame_delay_ns', 637: 'description', 671: 'hue', 691: 'lens_focal_length', 693: 'f_gain16_8', 701: 'f_tc_rate', 702: 'cine_name', } class Cine(FramesSequence): """Read cine files Read cine files, the out put from Vision Research high-speed phantom cameras. Support uncompressed monochrome and color files. Nominally thread-safe, but this assertion is not tested. Parameters ---------- filename : string Path to cine (or chd) file. Notes ----- For a .chd file, this class only reads the header, not the images. """ # TODO: Unit tests using a small sample cine file. @classmethod def class_exts(cls): return {'cine'} | super(Cine, cls).class_exts() propagate_attrs = ['frame_shape', 'pixel_type', 'filename', 'frame_rate', 'get_fps', 'compression', 'cfa', 'off_set'] def __init__(self, filename): py_ver = sys.version_info super(Cine, self).__init__() self.f = open(filename, 'rb') self._filename = filename ### HEADER self.header_dict = self._read_header(HEADER_FIELDS) self.bitmapinfo_dict = self._read_header(BITMAP_INFO_FIELDS, self.off_image_header) self.setup_fields_dict = self._read_header(SETUP_FIELDS, self.off_setup) self.setup_fields_dict = self.clean_setup_dict() self._width = self.bitmapinfo_dict['bi_width'] self._height = self.bitmapinfo_dict['bi_height'] self._pixel_count = self._width * self._height # Allows Cine object to be accessed from multiple threads! self.file_lock = Lock() self._hash = None self._im_sz = (self._width, self._height) # sort out the data type by reading the meta-data if self.bitmapinfo_dict['bi_bit_count'] in (8, 24): self._data_type = 'u1' else: self._data_type = 'u2' self.tagged_blocks = self._read_tagged_blocks() self.frame_time_stamps = self.tagged_blocks['image_time_only'] self.all_exposures = self.tagged_blocks['exposure_only'] self.stack_meta_data = dict() self.stack_meta_data.update(self.bitmapinfo_dict) self.stack_meta_data.update({k: self.setup_fields_dict[k] for k in set(('trig_frame', 'gamma', 'frame_rate', 'shutter_ns' ) ) }) self.stack_meta_data.update({k: self.header_dict[k] for k in set(('first_image_no', 'image_count', 'total_image_count', 'first_movie_image' ) ) }) self.stack_meta_data['trigger_time'] = self.trigger_time ### IMAGES # Move to images offset to test EOF... self.f.seek(self.off_image_offsets) if self.f.read(1) != b'': # ... If no, read images self.image_locations = self._unpack('%dQ' % self.image_count, self.off_image_offsets) if type(self.image_locations) not in (list, tuple): self.image_locations = [self.image_locations] # TODO: add support for reading sequence within the same framework, when data # has been saved in another format (.tif, image sequence, etc) def clean_setup_dict(self): r"""Clean setup dictionary by removing newer fields, when compared to the software version, and trailing null character b'\x00' in entries. Notes ----- The method is called after building the setup from the raw cine header. It can be overridden to match more specific purposes (e.g. filtering out TO_BE_IGNORED_ and UPDATED_FIELDS). See also -------- `Vision Research Phantom documentation <http://phantomhighspeed-knowledge.force.com/servlet/fileField?id=0BE1N000000kD2i>`_ """ setup = self.setup_fields_dict.copy() # End setup at correct field (according to doc) versions = sorted(END_OF_SETUP.keys()) fields = [v[0] for v in SETUP_FIELDS] v = setup['software_version'] # Get next field where setup is known to have ended, according to VR try: v_up = versions[sorted(where(array(versions) >= v)[0])[0]] last_field = END_OF_SETUP[v_up] for k in fields[fields.index(last_field)+1:]: del setup[k] except IndexError: # Or go to the end (waiting for updated documentation) pass # Remove blank characters setup = _convert_null_byte(setup) # Filter out 'res_' (reserved/obsolete) fields #k_res = [k for k in setup.keys() if k.startswith('res_')] #for k in k_res: # del setup[k] # Format f_tone properly if 'f_tone' in setup.keys(): tone = setup['f_tone'] setup['f_tone'] = tuple((tone[2*k], tone[2*k+1])\ for k in range(setup['tone_points'])) return setup @property def filename(self): return self._filename @property def frame_rate(self): """Frame rate (setting in Phantom PCC software) (Hz). May differ from computed average one. """ return self.setup_fields_dict['frame_rate'] @property def frame_rate_avg(self): """Actual frame rate, averaged on frame timestamps (Hz).""" return self.get_frame_rate_avg() # use properties for things that should not be changeable @property def cfa(self): return self.setup_fields_dict['cfa'] @property def compression(self): return self.header_dict['compression'] @property def pixel_type(self): return
np.dtype(self._data_type)
numpy.dtype
""" This module contains a set of functions for vectorized string operations and methods. .. note:: The `chararray` class exists for backwards compatibility with Numarray, it is not recommended for new development. Starting from numpy 1.4, if one needs arrays of strings, it is recommended to use arrays of `dtype` `object_`, `string_` or `unicode_`, and use the free functions in the `numpy.char` module for fast vectorized string operations. Some methods will only be available if the corresponding string method is available in your version of Python. The preferred alias for `defchararray` is `numpy.char`. """ import functools import sys from .numerictypes import ( string_, unicode_, integer, int_, object_, bool_, character) from .numeric import ndarray, compare_chararrays from .numeric import array as narray from numpy.core.multiarray import _vec_string from numpy.core.overrides import set_module from numpy.core import overrides from numpy.compat import asbytes import numpy __all__ = [ 'equal', 'not_equal', 'greater_equal', 'less_equal', 'greater', 'less', 'str_len', 'add', 'multiply', 'mod', 'capitalize', 'center', 'count', 'decode', 'encode', 'endswith', 'expandtabs', 'find', 'index', 'isalnum', 'isalpha', 'isdigit', 'islower', 'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill', 'isnumeric', 'isdecimal', 'array', 'asarray' ] _globalvar = 0 array_function_dispatch = functools.partial( overrides.array_function_dispatch, module='numpy.char') def _use_unicode(*args): """ Helper function for determining the output type of some string operations. For an operation on two ndarrays, if at least one is unicode, the result should be unicode. """ for x in args: if (isinstance(x, str) or issubclass(
numpy.asarray(x)
numpy.asarray
import numpy as np import tensorflow as tf import ants def hippmapp3r_segmentation(t1, do_preprocessing=True, antsxnet_cache_directory=None, verbose=False): """ Perform HippMapp3r (hippocampal) segmentation described in https://www.ncbi.nlm.nih.gov/pubmed/31609046 with models and architecture ported from https://github.com/mgoubran/HippMapp3r Additional documentation and attribution resources found at https://hippmapp3r.readthedocs.io/en/latest/ Preprocessing consists of: * n4 bias correction and * brain extraction The input T1 should undergo the same steps. If the input T1 is the raw T1, these steps can be performed by the internal preprocessing, i.e. set do_preprocessing = True Arguments --------- t1 : ANTsImage input image do_preprocessing : boolean See description above. antsxnet_cache_directory : string Destination directory for storing the downloaded template and model weights. Since these can be resused, if is None, these data will be downloaded to a ~/.keras/ANTsXNet/. verbose : boolean Print progress to the screen. Returns ------- ANTs labeled hippocampal image. Example ------- >>> mask = hippmapp3r_segmentation(t1) """ from ..architectures import create_hippmapp3r_unet_model_3d from ..utilities import preprocess_brain_image from ..utilities import get_pretrained_network from ..utilities import get_antsxnet_data if t1.dimension != 3: raise ValueError( "Image dimension must be 3." ) if antsxnet_cache_directory == None: antsxnet_cache_directory = "ANTsXNet" if verbose == True: print("************* Preprocessing ***************") print("") t1_preprocessed = t1 if do_preprocessing == True: t1_preprocessing = preprocess_brain_image(t1, truncate_intensity=None, do_brain_extraction=True, template=None, do_bias_correction=True, do_denoising=False, antsxnet_cache_directory=antsxnet_cache_directory, verbose=verbose) t1_preprocessed = t1_preprocessing["preprocessed_image"] * t1_preprocessing['brain_mask'] if verbose == True: print("************* Initial stage segmentation ***************") print("") # Normalize to mprage_hippmapp3r space if verbose == True: print(" HippMapp3r: template normalization.") template_file_name_path = get_antsxnet_data("mprage_hippmapp3r", antsxnet_cache_directory=antsxnet_cache_directory) template_image = ants.image_read(template_file_name_path) registration = ants.registration(fixed=template_image, moving=t1_preprocessed, type_of_transform="antsRegistrationSyNQuick[t]", verbose=verbose) image = registration['warpedmovout'] transforms = dict(fwdtransforms=registration['fwdtransforms'], invtransforms=registration['invtransforms']) # Threshold at 10th percentile of non-zero voxels in "robust range (fslmaths)" if verbose == True: print(" HippMapp3r: threshold.") image_array = image.numpy() image_robust_range = np.quantile(image_array[np.where(image_array != 0)], (0.02, 0.98)) threshold_value = 0.10 * (image_robust_range[1] - image_robust_range[0]) + image_robust_range[0] thresholded_mask = ants.threshold_image(image, -10000, threshold_value, 0, 1) thresholded_image = image * thresholded_mask # Standardize image if verbose == True: print(" HippMapp3r: standardize.") mean_image = np.mean(thresholded_image[thresholded_mask==1]) sd_image = np.std(thresholded_image[thresholded_mask==1]) image_normalized = (image - mean_image) / sd_image image_normalized = image_normalized * thresholded_mask # Trim and resample image if verbose == True: print(" HippMapp3r: trim and resample to (160, 160, 128).") image_cropped = ants.crop_image(image_normalized, thresholded_mask, 1) shape_initial_stage = (160, 160, 128) image_resampled = ants.resample_image(image_cropped, shape_initial_stage, use_voxels=True, interp_type=1) if verbose == True: print(" HippMapp3r: generate first network and download weights.") model_initial_stage = create_hippmapp3r_unet_model_3d((*shape_initial_stage, 1), do_first_network=True) initial_stage_weights_file_name = get_pretrained_network("hippMapp3rInitial", antsxnet_cache_directory=antsxnet_cache_directory) model_initial_stage.load_weights(initial_stage_weights_file_name) if verbose == True: print(" HippMapp3r: prediction.") data_initial_stage = np.expand_dims(image_resampled.numpy(), axis=0) data_initial_stage = np.expand_dims(data_initial_stage, axis=-1) mask_array = model_initial_stage.predict(data_initial_stage, verbose=verbose) mask_image_resampled = ants.copy_image_info(image_resampled, ants.from_numpy(np.squeeze(mask_array))) mask_image = ants.resample_image(mask_image_resampled, image.shape, use_voxels=True, interp_type=0) mask_image[mask_image >= 0.5] = 1 mask_image[mask_image < 0.5] = 0 ######################################### # # Perform refined (stage 2) segmentation # if verbose == True: print("") print("") print("************* Refine stage segmentation ***************") print("") mask_array = np.squeeze(mask_array) centroid_indices = np.where(mask_array == 1) centroid = np.zeros((3,)) centroid[0] = centroid_indices[0].mean() centroid[1] = centroid_indices[1].mean() centroid[2] = centroid_indices[2].mean() shape_refine_stage = (112, 112, 64) lower = (np.floor(centroid - 0.5 * np.array(shape_refine_stage)) - 1).astype(int) upper = (lower +
np.array(shape_refine_stage)
numpy.array