prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import argparse import bpy import gin import numpy as np import os import sys import time import paths, util C = bpy.context D = bpy.data MAX_OBJS = 20 color_ref = None obj_ref = [None for _ in range(MAX_OBJS)] obj_classes = None cached_obj_scale = [None for _ in range(MAX_OBJS)] @gin.configurable('rendering') def config_rendering(resolution=128, renderer='cycles', render_samples=32, use_gpu=False, render_exr=False): """Adjust rendering settings. Args: resolution: Integer for image resolution (always square) renderer: Either 'cycles' or 'eevee' render_samples: Integer that determines sample quality, rendering time use_gpu: Whether to use the GPU for rendering (never tested) render_exr: Set true to output segmentation and depth ground truth """ if renderer == 'eevee': C.scene.eevee.taa_render_samples = render_samples elif renderer == 'cycles': C.scene.render.engine = 'CYCLES' C.scene.cycles.device = 'GPU' if use_gpu else 'CPU' C.scene.cycles.samples = render_samples C.window.view_layer.cycles.use_denoising = True C.scene.render.resolution_x = resolution C.scene.render.resolution_y = resolution if render_exr: C.scene.render.image_settings.file_format = 'OPEN_EXR_MULTILAYER' C.scene.render.image_settings.color_mode = 'RGBA' C.scene.render.image_settings.color_depth = '32' C.window.view_layer.use_pass_object_index = True C.window.view_layer.use_pass_material_index = True else: C.scene.render.image_settings.color_mode = 'RGB' @gin.configurable('scene') def init_scene(): """Clear and reset scene.""" camera_pos = (1, 0, .4) camera_angle = (np.pi * .36, 0, np.pi / 2) light_pos = (0, -.75, 1.35) # Delete everything bpy.ops.object.select_all(action='SELECT') bpy.ops.object.delete(confirm=False) # Initialize empty materials while len(D.materials) < (MAX_OBJS + 1): bpy.ops.material.new() # Camera bpy.ops.object.camera_add(location=camera_pos, rotation=camera_angle) C.scene.camera = D.objects[0] # Lights bpy.ops.object.light_add(type='POINT', location=light_pos) fg_light = C.selected_objects[0] fg_light.data.energy = 100 fg_light.data.shadow_soft_size = 1 bpy.ops.object.light_add(type='SUN', location=[-2*v for v in camera_pos]) bg_light = C.selected_objects[0] bg_light.data.energy = 1 # Background plane bpy.ops.mesh.primitive_plane_add(size=20, location=[-3*v for v in camera_pos], rotation=camera_angle) bg_plane = C.selected_objects[0] bg_plane.pass_index = 0 bg_plane.active_material = D.materials[0] def get_tex_node(material_idx): """Returns Image Texture node, creates one if it doesn't exist.""" nt = D.materials[material_idx].node_tree # Check whether the Image Texture node has been added img_node = nt.nodes.get('Image Texture') mix_node = nt.nodes.get('Mix Shader') aux_node = nt.nodes.get('Principled BSDF.001') if img_node is None: # Create new node for linking image nt.nodes.new('ShaderNodeTexImage') img_node = nt.nodes.get('Image Texture') # Link to main node main_node = nt.nodes.get('Principled BSDF') nt.links.new(img_node.outputs.get('Color'), main_node.inputs.get('Base Color')) # Set up nodes for mixing in color nt.nodes.new('ShaderNodeBsdfPrincipled') nt.nodes.new('ShaderNodeMixShader') aux_node = nt.nodes.get('Principled BSDF.001') mix_node = nt.nodes.get('Mix Shader') out_node = nt.nodes.get('Material Output') # Link everything appropriately nt.links.new(main_node.outputs.get('BSDF'), mix_node.inputs[1]) nt.links.new(aux_node.outputs.get('BSDF'), mix_node.inputs[2]) nt.links.new(mix_node.outputs.get('Shader'), out_node.inputs.get('Surface')) # For now set fraction to 0 to default to texture mix_node.inputs[0].default_value = 0 return img_node, mix_node, aux_node def get_emission_node(material_idx): """Returns Emission node, creates one if it doesn't exist.""" nt = D.materials[material_idx].node_tree # Check whether the Emission node has been added img_node = nt.nodes.get('Emission') if img_node is None: # Create new node for linking image nt.nodes.new('ShaderNodeEmission') img_node = nt.nodes.get('Emission') # Link to main node main_node = nt.nodes.get('Material Output') nt.links.new(img_node.outputs.get('Emission'), main_node.inputs.get('Surface')) return img_node def initialize_color_ref(): global color_ref out_dir = gin.query_parameter('sample.out_dir') # Set up color reference color_ref_path = f'{paths.DATA_DIR}/{out_dir}/color_reference.npy' while color_ref is None: try: color_ref = np.load(color_ref_path) except: if not os.path.exists(color_ref_path): try: os.makedirs(f'{paths.DATA_DIR}/{out_dir}') except FileExistsError: pass np.save(color_ref_path, np.random.rand(10,10,3)) @gin.configurable('material') def setup_materials(class_idxs, use_texture=True, use_emission=False, use_color_ref=True, color_variation=.2, color_intensity=.4, num_modes=1): """Set up materials. Args: class_idxs: Reference for number of objects and their class use_texture: Whether or not to apply a texture image use_emission: For a completely flat, shadowless image use_color_ref: Decides whether to class-condition color choice color_variation: Spread from hue value provided in color_ref color_intensity: Trade-off between color and texture image num_modes: Support for multiple hues associated with each class """ if isinstance(class_idxs, int): class_idxs = [class_idxs] n_txts = len(class_idxs) + 1 fg_colors = [] for class_idx in class_idxs: if use_color_ref: c = color_ref[class_idx, np.random.randint(num_modes)] fg_color = np.array([c[0], c[1]*.8 + .2, c[2]*.4 + .6]) rnd_offset = np.random.randn(3) * color_variation rnd_offset[0] *= .3 fg_color += rnd_offset fg_color[0] = fg_color[0] % 1 fg_color = np.array(list(util.hsv2rgb(fg_color.clip(0,1))) + [1]) else: fg_color = np.random.rand(4) fg_color[3] = 1 fg_color[1:3] = fg_color[0] fg_colors += [fg_color] if use_texture: # Choose random textures tex_img_paths = np.random.choice(util.dtd_files, n_txts, replace=False) tex_img_paths = [util.dtd_img_dir + t for t in tex_img_paths] for i in range(n_txts): # Load texture images D.images.load(tex_img_paths[i]) img_choice = tex_img_paths[i].split('/')[-1] # Update material node tex_node, mix_node, aux_node = get_tex_node(i) tex_node.image = D.images.get(img_choice) if i > 0 and use_color_ref: # Only update foreground objects aux_node.inputs[0].default_value = fg_colors[i-1] mix_node.inputs[0].default_value = color_intensity else: for i in range(n_txts): # Choose colors if i > 0: new_color = fg_colors[i-1] else: new_color = np.random.rand(4) new_color[1:3] = new_color[0] new_color[3] = 1 if use_emission: node = get_emission_node(i) else: nt = D.materials[i].node_tree node = nt.nodes.get('Principled BSDF') node.inputs[0].default_value = new_color for i in range(n_txts): if i == 0: D.materials[i].pass_index = 99 else: D.materials[i].pass_index = class_idxs[i-1] @gin.configurable('lighting') def setup_lighting(r=0): """Position light (possibly randomly).""" random_light_ang = -.5 + np.random.randn() * r for i in range(len(D.objects)): if 'Point' in D.objects[i].name: light_pos = (0, 1.5 * np.sin(random_light_ang), 1.5 * np.cos(random_light_ang)) D.objects[i].location = light_pos return light_pos @gin.configurable('object', blacklist=['obj_idx', 'class_idx', 'sample_idx', 'reset_obj']) def setup_object(obj_idx, class_idx, sample_idx, reset_obj=True, total_num_samples=60000, n_buckets=12, random_scaling=0, random_viewpoint=0, random_warp=.1): """Load object model, update its material, and place appropriately.""" global cached_obj_scale, obj_ref if reset_obj: # Distribute models across sample indices (for clean train/valid splits) per_bucket = util.n_models[class_idx] // n_buckets bucket_choice = sample_idx // (total_num_samples // n_buckets) min_idx = bucket_choice * per_bucket # Load object obj_path = None while obj_path is None: try: model_idx =
np.random.randint(per_bucket)
numpy.random.randint
from __future__ import print_function import matplotlib.pyplot as plt import numpy as np import random import csv import json from scipy.misc import imresize import os CLASS_FILE = '/Users/Joshua.Newnham/Documents/Data/quickdraw_dataset/sketch_classes.csv' SOURCE_DIR = '/Users/Joshua.Newnham/Documents/Data/quickdraw_dataset/full/simplified/' DEST_DIR = '/Users/Joshua.Newnham/Documents/Data/quickdraw_dataset/sketchrnn_training_data/' STAGING_DIR = '/Users/Joshua.Newnham/Documents/Data/quickdraw_dataset/staging/' def parse_line(ndjson_line): """ Method taken from: https://www.tensorflow.org/versions/master/tutorials/recurrent_quickdraw """ # convert string to a JSON object sample = json.loads(ndjson_line) label = sample['word'] strokes = sample['drawing'] stroke_lengths = [len(stroke[0]) for stroke in strokes] total_points = sum(stroke_lengths) np_strokes = np.zeros((total_points, 3), dtype=np.float32) current_t = 0 for stroke in strokes: for i in [0,1]: np_strokes[current_t:(current_t + len(stroke[0])), i] = stroke[i] current_t += len(stroke[0]) np_strokes[current_t - 1, 2] = 1 # stroke end # preprocessing # 1. size normalisation lower_point = np.min(np_strokes[:, 0:2], axis=0) upper_point = np.max(np_strokes[:, 0:2], axis=0) scale = upper_point - lower_point scale[scale == 0] = 1 np_strokes[:, 0:2] = (np_strokes[:, 0:2] - lower_point) / scale # 2. compute deltas np_strokes = np.hstack(( np_strokes[1:, 0:2] - np_strokes[0:-1, 0:2], np_strokes[1:,2].reshape(np_strokes.shape[0]-1, 1))) return np_strokes, label def load_and_preprocess_data(class_filter_file, source_dir, dest_dir, num_training_samples=10000, num_validation_samples=1000, parts=1, # how many files to distribute the data across show_progress_bar=True): # load classes label_filters = [] with open(class_filter_file, 'r') as f: csv_reader = csv.reader(f) for row in csv_reader: label_filters.append(row[1]) # find matching files matching_files = [] for filename in sorted(os.listdir(source_dir)): full_filepath = os.path.join(source_dir, filename).lower() if os.path.isfile(full_filepath) and ".ndjson" in full_filepath.lower(): for label_filter in label_filters: if label_filter in full_filepath: matching_files.append((label_filter, filename)) break print("Found {} matches".format(len(matching_files))) label2idx = {label[0]:idx for idx, label in enumerate(matching_files)} training_stroke_lengths = [] validation_stroke_lengths = [] part_num_training_samples = int(num_training_samples / parts) part_num_validation_samples = int(num_validation_samples / parts) print("Breaking data into {} parts; each with {} training samples and {} validation samples".format( parts, part_num_training_samples, part_num_validation_samples)) progress_counter = 0 progress_count = len(matching_files) * parts for part_num in range(parts): training_x = [] validation_x = [] training_y = np.zeros((0,len(matching_files)), dtype=np.int16) validation_y = np.zeros((0,len(matching_files)), dtype=np.int16) line_number = int(part_num * (part_num_training_samples + part_num_validation_samples)) print("Processing part {} of {} - current line number {}".format( part_num, parts, line_number)) for matching_file in matching_files: progress_counter += 1 if show_progress_bar: print("Progress {}".format(int((float(progress_counter)/float(progress_count)) * 100))) matching_label = matching_file[0] matching_filename = matching_file[1] with open(os.path.join(source_dir, matching_filename), 'r') as f: for _ in range(line_number): f.readline() for i in range(part_num_training_samples): line = f.readline() strokes, label = parse_line(line) training_stroke_lengths.append(len(strokes)) training_x.append(strokes) y = np.zeros(len(matching_files), dtype=np.int16) y[label2idx[matching_label]] = 1 training_y = np.vstack((training_y, y)) for i in range(part_num_validation_samples): line = f.readline() strokes, label = parse_line(line) validation_stroke_lengths.append(len(strokes)) validation_x.append(strokes) y = np.zeros(len(matching_files), dtype=np.int16) y[label2idx[matching_label]] = 1 validation_y = np.vstack((validation_y, y)) training_x = np.array(training_x) validation_x = np.array(validation_x) # save .npy np.save(os.path.join(dest_dir, "train_{}_x.npy".format(part_num)), training_x) np.save(os.path.join(dest_dir, "train_{}_y.npy".format(part_num)), training_y) np.save(os.path.join(dest_dir, "validation_{}_x.npy".format(part_num)), validation_x) np.save(os.path.join(dest_dir, "validation_{}_y.npy".format(part_num)), validation_y) training_stroke_lengths =
np.array(training_stroke_lengths)
numpy.array
import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib import skimage import skimage.io as sio from skimage.feature import blob_dog import cv2 import os def gray_scaler(path): """Converts videofile to greyscale. Input: path to videofile Output: Greyscale video""" img = sio.imread(path) # Read image file with skimage.io. if len(img) > 1: # If the image file is multiple page, treat the first column as page. graylist = [] # Empty list to store output. # Iterate through the length of the file. for i in range(len(img)): # Append the grayscale result into empty list. graylist.append(skimage.color.rgb2gray(img[i, :])) # Turn the output into numpy array. gray = np.asarray(graylist) # If the image file is single page, directly use the skimage # built-in rgb2gray function. else: gray = skimage.color.rgb2gray(img) return gray def img_normalizer(img): """Normalizes pixel brightness within an image to 255. Input: Image or frame of video Output: Normalized array, mean of normalized array and standard deviation, and integer list of the normalized array.""" # Set empty lists to store output. maxlist = [] minlist = [] # Iterate through the file length to find the # maximum and minimum within the file. for i in range(len(img)): gmax = np.amax(img[i, :]) gmin = np.amin(img[i, :]) maxlist.append(gmax) minlist.append(gmin) graymax = np.asarray(maxlist).max() graymin = np.asarray(minlist).min() # Set up zero function to create a zero array to store output # and maintain the shape. norm_gray = np.zeros(img.shape) # Iterate through the file length to normalize the pixel value # from 0 to 255. for i in range(len(img)): norm_gray[i, :] = ((img[i, :] - graymin) / (graymax - graymin)) * 255 # Find and output the mean value and standard deviation of normalized # images as a parameter in ROI locator function. norm_gray_mean = [] norm_gray_std = [] for i in range(len(norm_gray)): norm_gray_mean.append(
np.asarray(norm_gray[i])
numpy.asarray
#! /usr/bin/env python import argparse def process_image(args): import os from scipy.ndimage.filters import rank_filter import numpy as np from PIL import Image, ImageEnhance, ImageFilter, ImageDraw #import matplotlib.pyplot as plt import cv2 path = args.input out_path = args.output def deskew(im, save_directory, direct, max_skew=10): if direct == "Y": height, width = im.shape[:2] print(height) print(width) # Create a grayscale image and denoise it if channels != 0: im_gs = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) im_gs = cv2.fastNlMeansDenoising(im_gs, h=3) else: im_gs = cv2.fastNlMeansDenoising(im, h=3) # print("De-noise ok.") # Create an inverted B&W copy using Otsu (automatic) thresholding im_bw = cv2.threshold(im_gs, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1] # print("Otsu ok.") # Detect lines in this image. Parameters here mostly arrived at by trial and error. # If the initial threshold is too high, then settle for a lower threshold value try: lines = cv2.HoughLinesP(im_bw, 1, np.pi / 180, 200, minLineLength=width / 12, maxLineGap=width / 150) # Collect the angles of these lines (in radians) angles = [] for line in lines: x1, y1, x2, y2 = line[0] geom = np.arctan2(y2 - y1, x2 - x1) print(np.rad2deg(geom)) angles.append(geom) except: lines = cv2.HoughLinesP(im_bw, 1, np.pi / 180, 150, minLineLength=width / 12, maxLineGap=width / 150) # Collect the angles of these lines (in radians) angles = [] for line in lines: x1, y1, x2, y2 = line[0] geom = np.arctan2(y2 - y1, x2 - x1) print(np.rad2deg(geom)) angles.append(geom) angles = [angle for angle in angles if abs(angle) < np.deg2rad(max_skew)] if len(angles) < 5: # Insufficient data to deskew print("Insufficient data to deskew. Cropped image might already be straight. Cropped image saved.") cv2.imwrite(img=im, filename=save_directory + cropped_jpeg_list[pg_count]) #im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) #im_pil = Image.fromarray(im) #im_pil.save(save_directory + cropped_jpeg_list[pg_count]) print("Cropped image saved.") return im else: # Average the angles to a degree offset angle_deg = np.rad2deg(np.median(angles)) # Rotate the image by the residual offset M = cv2.getRotationMatrix2D((width / 2, height / 2), angle_deg, 1) im = cv2.warpAffine(im, M, (width, height), borderMode=cv2.BORDER_REPLICATE) # Plot if a full run # Always save deskewed image if args.type == "full": plt.subplot(111),plt.imshow(im) plt.title('Deskewed Image'), plt.xticks([]), plt.yticks([]) plt.show() cropped_jpeg = cropped_jpeg_list[pg_count] cv2.imwrite(img = im, filename = save_directory + cropped_jpeg[:-5] + "_rotated.jpeg") print("Only de-skewed cropped image saved.") return im else: height, width = im.shape[:2] print(height) print(width) # Create a grayscale image and denoise it im_gs = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) im_gs = cv2.fastNlMeansDenoising(im_gs, h=3) # Create an inverted B&W copy using Otsu (automatic) thresholding im_bw = cv2.threshold(im_gs, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1] # Detect lines in this image. Parameters here mostly arrived at by trial and error. # If the initial threshold is too high, then settle for a lower threshold value try: lines = cv2.HoughLinesP(im_bw, 1, np.pi / 180, 200, minLineLength=width / 12, maxLineGap=width / 150) # Collect the angles of these lines (in radians) angles = [] for line in lines: x1, y1, x2, y2 = line[0] geom = np.arctan2(y2 - y1, x2 - x1) print(np.rad2deg(geom)) angles.append(geom) except TypeError: lines = cv2.HoughLinesP(im_bw, 1, np.pi / 180, 150, minLineLength=width / 12, maxLineGap=width / 150) # Collect the angles of these lines (in radians) angles = [] for line in lines: x1, y1, x2, y2 = line[0] geom = np.arctan2(y2 - y1, x2 - x1) print(np.rad2deg(geom)) angles.append(geom) except: print ("TypeError encountered with HoughLines. Check cropped image output. Only cropped image saved.") return angles = [angle for angle in angles if abs(angle) < np.deg2rad(max_skew)] if len(angles) < 5: # Insufficient data to deskew print("Insufficient data to deskew. Cropped image might already be straight.") return im else: # Average the angles to a degree offset angle_deg = np.rad2deg(np.median(angles)) # Rotate the image by the residual offset M = cv2.getRotationMatrix2D((width / 2, height / 2), angle_deg, 1) im = cv2.warpAffine(im, M, (width, height), borderMode=cv2.BORDER_REPLICATE) # Plot if a full run # Always save deskewed image if args.type == "full": plt.subplot(111), plt.imshow(im) plt.title('Deskewed Image'), plt.xticks([]), plt.yticks([]) plt.show() cropped_jpeg = cropped_jpeg_list[pg_count] cv2.imwrite(img=im, filename=save_directory + cropped_jpeg[:-5] + "_rotated.jpeg") print("Rotated cropped image saved") return im def dilate(ary, N, iterations): """Dilate using an NxN '+' sign shape. ary is np.uint8.""" kernel =
np.zeros((N,N), dtype=np.uint8)
numpy.zeros
import tensorflow as tf from tensorflow.keras import layers import scipy import numpy as np from Unet_util import Unet from my_utils import * class upsqueeze(layers.Layer): def __init__(self, factor=2): super(upsqueeze, self).__init__() self.f = factor def call(self, x, reverse=False): f = self.f # upsampling via squeeze b, N1, N2, nch = x.get_shape().as_list() if not reverse: x = tf.reshape( tf.transpose( tf.reshape(x, shape=[b, N1//f, f, N2//f, f, nch]), [0, 1, 3, 2, 4, 5]), [b, N1//f, N2//f, nch*f*f]) else: x = tf.reshape(tf.transpose( tf.reshape(x, shape=[b, N1, N2, f, f, nch//f**2]), [0, 1, 3, 2, 4, 5]), [b, N1*f, N2*f, nch//f**2]) return x, 0.0 class actnorm(layers.Layer): """Activation normalization layers that initialized via data""" def __init__(self, **kwargs): super(actnorm, self).__init__() # assign checks for first call self.assigned = False def build(self, input_shape): if len(input_shape) == 2: self.b = self.add_weight(name='bias', shape=(1, input_shape[1]), trainable= True) self.scale = self.add_weight(name='scale', shape=(1, input_shape[1]), trainable= True) else: self.b = self.add_weight(name='bias', shape=(1, 1, 1, input_shape[3]), trainable= True) self.scale = self.add_weight(name='scale', shape=(1, 1, 1, input_shape[3]), trainable= True) def call(self, x, reverse=False): if len(x.shape) == 2: red_axes = [0] else: red_axes = [0, 1, 2] if not self.assigned: """https://github.com/tensorflow/tensor2tensor/blob/21dba2c1bdcc7ab582a2bfd8c0885c217963bb4f/tensor2tensor/models/research/glow_ops.py#L317""" self.b.assign(-tf.reduce_mean(x, red_axes, keepdims=True)) x_var = tf.reduce_mean((x+self.b)**2, red_axes, keepdims=True) init_value = tf.math.log(1.0/(tf.math.sqrt(x_var) + 1e-6)) self.scale.assign(init_value) self.assigned = True _, height, width, channels = x.get_shape().as_list() if not reverse: x += self.b x *= tf.math.exp(self.scale) else: x *= tf.math.exp(-self.scale) x -= self.b log_s = self.scale dlogdet = tf.reduce_sum(log_s)* \ tf.cast(height * width, log_s.dtype) if reverse: dlogdet *= -1 return x, dlogdet class invertible_1x1_conv(layers.Layer): """Invertible 1x1 convolutional layers""" def __init__(self, **kwargs): super(invertible_1x1_conv, self).__init__() self.type = kwargs.get('op_type', 'bijective') self.gamma = kwargs.get('gamma', 0.0) self.activation = kwargs.get('activation', 'linear') def build(self, input_shape): _, height, width, channels = input_shape if self.type=='bijective': random_matrix = np.random.randn(channels, channels).astype("float32") np_w = scipy.linalg.qr(random_matrix)[0].astype("float32") self.activation = 'linear' self.LU = True if self.LU: np_p, np_l, np_u = scipy.linalg.lu(np_w) np_s = np.diag(np_u) np_sign_s = np.sign(np_s) np_log_s = np.log(np.abs(np_s)) np_u = np.triu(np_u, k=1) self.p = tf.Variable(np_p, name='P', trainable=False) self.l = tf.Variable(np_l, name='L', trainable=True) self.sign_s = tf.Variable(np_sign_s, name='sign_S', trainable=False) self.log_s = tf.Variable(np_log_s, name='log_S', trainable=True) self.u = tf.Variable(np_u, name='U', trainable=True) else: self.w = tf.Variable(np_w, name='W', trainable=True) else: self.LU = False if self.activation == 'linear': random_matrix_1 = np.random.randn(channels//2, channels//2).astype("float32") random_matrix_2 = np.random.randn(channels//2, channels//2).astype("float32") np_w_1 = scipy.linalg.qr(random_matrix_1)[0].astype("float32") np_w_2 = scipy.linalg.qr(random_matrix_2)[0].astype("float32") np_w = np.concatenate([np_w_1, np_w_2], axis=0)/(np.sqrt(2.0)) elif self.activation == 'relu': random_matrix_1 = np.random.randn(channels//2, channels//2).astype("float32") np_w = scipy.linalg.qr(random_matrix_1)[0].astype("float32") self.w = tf.Variable(np_w, name='W', trainable=True) def call(self, x, reverse=False): # If height or width cannot be statically determined then they end up as # tf.int32 tensors, which cannot be directly multiplied with a floating # point tensor without a cast. _, height, width, channels = x.get_shape().as_list() if self.type=='bijective': if self.LU: l_mask = tf.convert_to_tensor(np.tril(
np.ones([channels, channels], dtype=np.float32)
numpy.ones
# emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the NiBabel package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## ''' Utilities for testing ''' from __future__ import division, print_function import re import os import sys import warnings from os.path import dirname, abspath, join as pjoin import numpy as np from numpy.testing import assert_array_equal from numpy.testing.decorators import skipif # Allow failed import of nose if not now running tests try: from nose.tools import (assert_equal, assert_not_equal, assert_true, assert_false, assert_raises) except ImportError: pass from six.moves import zip_longest # set path to example data data_path = abspath(pjoin(dirname(__file__), '..', 'tests', 'data')) from .np_features import memmap_after_ufunc def assert_dt_equal(a, b): """ Assert two numpy dtype specifiers are equal Avoids failed comparison between int32 / int64 and intp """ assert_equal(np.dtype(a).str, np.dtype(b).str) def assert_allclose_safely(a, b, match_nans=True, rtol=1e-5, atol=1e-8): """ Allclose in integers go all wrong for large integers """ a = np.atleast_1d(a) # 0d arrays cannot be indexed a, b = np.broadcast_arrays(a, b) if match_nans: nans = np.isnan(a) np.testing.assert_array_equal(nans,
np.isnan(b)
numpy.isnan
import numpy as np import pytest from scipy.stats import (bootstrap, BootstrapDegenerateDistributionWarning, monte_carlo_test, permutation_test) from numpy.testing import assert_allclose, assert_equal, suppress_warnings from scipy import stats from scipy import special from .. import _resampling as _resampling from scipy._lib._util import rng_integers from scipy.optimize import root def test_bootstrap_iv(): message = "`data` must be a sequence of samples." with pytest.raises(ValueError, match=message): bootstrap(1, np.mean) message = "`data` must contain at least one sample." with pytest.raises(ValueError, match=message): bootstrap(tuple(), np.mean) message = "each sample in `data` must contain two or more observations..." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3], [1]), np.mean) message = ("When `paired is True`, all samples must have the same length ") with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3], [1, 2, 3, 4]), np.mean, paired=True) message = "`vectorized` must be `True` or `False`." with pytest.raises(ValueError, match=message): bootstrap(1, np.mean, vectorized='ekki') message = "`axis` must be an integer." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, axis=1.5) message = "could not convert string to float" with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, confidence_level='ni') message = "`n_resamples` must be a positive integer." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, n_resamples=-1000) message = "`n_resamples` must be a positive integer." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, n_resamples=1000.5) message = "`batch` must be a positive integer or None." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, batch=-1000) message = "`batch` must be a positive integer or None." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, batch=1000.5) message = "`method` must be in" with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, method='ekki') message = "`method = 'BCa' is only available for one-sample statistics" def statistic(x, y, axis): mean1 = np.mean(x, axis) mean2 = np.mean(y, axis) return mean1 - mean2 with pytest.raises(ValueError, match=message): bootstrap(([.1, .2, .3], [.1, .2, .3]), statistic, method='BCa') message = "'herring' cannot be used to seed a" with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, random_state='herring') @pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa']) @pytest.mark.parametrize("axis", [0, 1, 2]) def test_bootstrap_batch(method, axis): # for one-sample statistics, batch size shouldn't affect the result np.random.seed(0) x = np.random.rand(10, 11, 12) res1 = bootstrap((x,), np.mean, batch=None, method=method, random_state=0, axis=axis, n_resamples=100) res2 = bootstrap((x,), np.mean, batch=10, method=method, random_state=0, axis=axis, n_resamples=100) assert_equal(res2.confidence_interval.low, res1.confidence_interval.low) assert_equal(res2.confidence_interval.high, res1.confidence_interval.high) assert_equal(res2.standard_error, res1.standard_error) @pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa']) def test_bootstrap_paired(method): # test that `paired` works as expected np.random.seed(0) n = 100 x = np.random.rand(n) y = np.random.rand(n) def my_statistic(x, y, axis=-1): return ((x-y)**2).mean(axis=axis) def my_paired_statistic(i, axis=-1): a = x[i] b = y[i] res = my_statistic(a, b) return res i = np.arange(len(x)) res1 = bootstrap((i,), my_paired_statistic, random_state=0) res2 = bootstrap((x, y), my_statistic, paired=True, random_state=0) assert_allclose(res1.confidence_interval, res2.confidence_interval) assert_allclose(res1.standard_error, res2.standard_error) @pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa']) @pytest.mark.parametrize("axis", [0, 1, 2]) @pytest.mark.parametrize("paired", [True, False]) def test_bootstrap_vectorized(method, axis, paired): # test that paired is vectorized as expected: when samples are tiled, # CI and standard_error of each axis-slice is the same as those of the # original 1d sample if not paired and method == 'BCa': # should re-assess when BCa is extended pytest.xfail(reason="BCa currently for 1-sample statistics only") np.random.seed(0) def my_statistic(x, y, z, axis=-1): return x.mean(axis=axis) + y.mean(axis=axis) + z.mean(axis=axis) shape = 10, 11, 12 n_samples = shape[axis] x = np.random.rand(n_samples) y = np.random.rand(n_samples) z = np.random.rand(n_samples) res1 = bootstrap((x, y, z), my_statistic, paired=paired, method=method, random_state=0, axis=0, n_resamples=100) reshape = [1, 1, 1] reshape[axis] = n_samples x = np.broadcast_to(x.reshape(reshape), shape) y = np.broadcast_to(y.reshape(reshape), shape) z = np.broadcast_to(z.reshape(reshape), shape) res2 = bootstrap((x, y, z), my_statistic, paired=paired, method=method, random_state=0, axis=axis, n_resamples=100) assert_allclose(res2.confidence_interval.low, res1.confidence_interval.low) assert_allclose(res2.confidence_interval.high, res1.confidence_interval.high) assert_allclose(res2.standard_error, res1.standard_error) result_shape = list(shape) result_shape.pop(axis) assert_equal(res2.confidence_interval.low.shape, result_shape) assert_equal(res2.confidence_interval.high.shape, result_shape) assert_equal(res2.standard_error.shape, result_shape) @pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa']) def test_bootstrap_against_theory(method): # based on https://www.statology.org/confidence-intervals-python/ data = stats.norm.rvs(loc=5, scale=2, size=5000, random_state=0) alpha = 0.95 dist = stats.t(df=len(data)-1, loc=np.mean(data), scale=stats.sem(data)) expected_interval = dist.interval(confidence=alpha) expected_se = dist.std() res = bootstrap((data,), np.mean, n_resamples=5000, confidence_level=alpha, method=method, random_state=0) assert_allclose(res.confidence_interval, expected_interval, rtol=5e-4) assert_allclose(res.standard_error, expected_se, atol=3e-4) tests_R = {"basic": (23.77, 79.12), "percentile": (28.86, 84.21), "BCa": (32.31, 91.43)} @pytest.mark.parametrize("method, expected", tests_R.items()) def test_bootstrap_against_R(method, expected): # Compare against R's "boot" library # library(boot) # stat <- function (x, a) { # mean(x[a]) # } # x <- c(10, 12, 12.5, 12.5, 13.9, 15, 21, 22, # 23, 34, 50, 81, 89, 121, 134, 213) # # Use a large value so we get a few significant digits for the CI. # n = 1000000 # bootresult = boot(x, stat, n) # result <- boot.ci(bootresult) # print(result) x = np.array([10, 12, 12.5, 12.5, 13.9, 15, 21, 22, 23, 34, 50, 81, 89, 121, 134, 213]) res = bootstrap((x,), np.mean, n_resamples=1000000, method=method, random_state=0) assert_allclose(res.confidence_interval, expected, rtol=0.005) tests_against_itself_1samp = {"basic": 1780, "percentile": 1784, "BCa": 1784} @pytest.mark.parametrize("method, expected", tests_against_itself_1samp.items()) def test_bootstrap_against_itself_1samp(method, expected): # The expected values in this test were generated using bootstrap # to check for unintended changes in behavior. The test also makes sure # that bootstrap works with multi-sample statistics and that the # `axis` argument works as expected / function is vectorized. np.random.seed(0) n = 100 # size of sample n_resamples = 999 # number of bootstrap resamples used to form each CI confidence_level = 0.9 # The true mean is 5 dist = stats.norm(loc=5, scale=1) stat_true = dist.mean() # Do the same thing 2000 times. (The code is fully vectorized.) n_replications = 2000 data = dist.rvs(size=(n_replications, n)) res = bootstrap((data,), statistic=np.mean, confidence_level=confidence_level, n_resamples=n_resamples, batch=50, method=method, axis=-1) ci = res.confidence_interval # ci contains vectors of lower and upper confidence interval bounds ci_contains_true = np.sum((ci[0] < stat_true) & (stat_true < ci[1])) assert ci_contains_true == expected # ci_contains_true is not inconsistent with confidence_level pvalue = stats.binomtest(ci_contains_true, n_replications, confidence_level).pvalue assert pvalue > 0.1 tests_against_itself_2samp = {"basic": 892, "percentile": 890} @pytest.mark.parametrize("method, expected", tests_against_itself_2samp.items()) def test_bootstrap_against_itself_2samp(method, expected): # The expected values in this test were generated using bootstrap # to check for unintended changes in behavior. The test also makes sure # that bootstrap works with multi-sample statistics and that the # `axis` argument works as expected / function is vectorized. np.random.seed(0) n1 = 100 # size of sample 1 n2 = 120 # size of sample 2 n_resamples = 999 # number of bootstrap resamples used to form each CI confidence_level = 0.9 # The statistic we're interested in is the difference in means def my_stat(data1, data2, axis=-1): mean1 = np.mean(data1, axis=axis) mean2 = np.mean(data2, axis=axis) return mean1 - mean2 # The true difference in the means is -0.1 dist1 = stats.norm(loc=0, scale=1) dist2 = stats.norm(loc=0.1, scale=1) stat_true = dist1.mean() - dist2.mean() # Do the same thing 1000 times. (The code is fully vectorized.) n_replications = 1000 data1 = dist1.rvs(size=(n_replications, n1)) data2 = dist2.rvs(size=(n_replications, n2)) res = bootstrap((data1, data2), statistic=my_stat, confidence_level=confidence_level, n_resamples=n_resamples, batch=50, method=method, axis=-1) ci = res.confidence_interval # ci contains vectors of lower and upper confidence interval bounds ci_contains_true = np.sum((ci[0] < stat_true) & (stat_true < ci[1])) assert ci_contains_true == expected # ci_contains_true is not inconsistent with confidence_level pvalue = stats.binomtest(ci_contains_true, n_replications, confidence_level).pvalue assert pvalue > 0.1 @pytest.mark.parametrize("method", ["basic", "percentile"]) @pytest.mark.parametrize("axis", [0, 1]) def test_bootstrap_vectorized_3samp(method, axis): def statistic(*data, axis=0): # an arbitrary, vectorized statistic return sum((sample.mean(axis) for sample in data)) def statistic_1d(*data): # the same statistic, not vectorized for sample in data: assert sample.ndim == 1 return statistic(*data, axis=0)
np.random.seed(0)
numpy.random.seed
#!/usr/bin/env python # Copyright 2014-2018 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy import copy from functools import reduce from pyscf import gto, scf, lib, symm from pyscf import cc from pyscf.cc import uccsd_t from pyscf.cc import gccsd_t def setUpModule(): global mol, mol1, mf, myucc, mygcc mol = gto.Mole() mol.verbose = 5 mol.output = '/dev/null' mol.atom = [ [8 , (0. , 0. , 0.)], [1 , (0. , -.757 , .587)], [1 , (0. , .757 , .587)]] mol.spin = 2 mol.basis = '3-21g' mol.symmetry = 'C2v' mol.build() mol1 = copy.copy(mol) mol1.symmetry = False mf = scf.UHF(mol1).run(conv_tol=1e-14) myucc = cc.UCCSD(mf).run() mygcc = cc.GCCSD(mf).run() def tearDownModule(): global mol, mol1, mf, myucc, mygcc mol.stdout.close() del mol, mol1, mf, myucc, mygcc class KnownValues(unittest.TestCase): def test_gccsd_t_compare_uccsd_t(self): self.assertAlmostEqual(myucc.ccsd_t(), mygcc.ccsd_t(t1=None), 7) def test_gccsd_t(self): mf1 = copy.copy(mf) nao, nmo = mf.mo_coeff[0].shape numpy.random.seed(10) mf1.mo_coeff = numpy.random.random((2,nao,nmo)) numpy.random.seed(12) nocca, noccb = mol.nelec nmo = mf1.mo_occ[0].size nvira = nmo - nocca nvirb = nmo - noccb t1a = .1 * numpy.random.random((nocca,nvira)) t1b = .1 * numpy.random.random((noccb,nvirb)) t2aa = .1 * numpy.random.random((nocca,nocca,nvira,nvira)) t2aa = t2aa - t2aa.transpose(0,1,3,2) t2aa = t2aa - t2aa.transpose(1,0,2,3) t2bb = .1 * numpy.random.random((noccb,noccb,nvirb,nvirb)) t2bb = t2bb - t2bb.transpose(0,1,3,2) t2bb = t2bb - t2bb.transpose(1,0,2,3) t2ab = .1 *
numpy.random.random((nocca,noccb,nvira,nvirb))
numpy.random.random
# -*- coding: utf-8 -*- """ Created on Thu Mar 1 13:37:29 2018 Class for implementing the scores for the composition UI and also the display image with all the scores@author: <NAME> """ import cv2 import numpy as np import itertools from scipy.spatial import distance as dist from skimage.measure import compare_ssim as ssim from skimage.segmentation import slic from skimage.segmentation import mark_boundaries from skimage.util import img_as_float import pandas as pd from SaliencyMap import Saliency class AutoScoreML (): def __init__(self, extractedFeatures ): self.df = pd.DataFrame(np.array(extractedFeatures)) def autoScoreML(self): filepath_01 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoringApril30.csv' filepath_02 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoringApril30_B.csv' # ============================================================================= # filepath_03 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring20apr2018_c.csv' # filepath_04 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring20apr2018_d.csv' # filepath_05 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring20apr2018_e.csv' # filepath_06 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring21apr2018_a.csv' # filepath_07 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring21apr2018_b.csv' # filepath_08 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring21apr2018_c.csv' # filepath_09 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring22apr2018_a.csv' # # ============================================================================= df_01 = pd.read_csv(filepath_01) df_02 = pd.read_csv(filepath_02) # ============================================================================= # df_03 = pd.read_csv(filepath_03) # df_04 = pd.read_csv(filepath_04) # df_05 = pd.read_csv(filepath_05) # df_06 = pd.read_csv(filepath_06) # df_07 = pd.read_csv(filepath_07) # df_08 = pd.read_csv(filepath_08) # df_09 = pd.read_csv(filepath_09) # ============================================================================= frames= [df_01, df_02 #,df_03, df_04, df_05, df_06, df_07, df_08, df_09 ] df = pd.concat(frames) df.reset_index(drop = True, inplace = True) # drop the Null Value df.dropna(inplace=True) # select the features to use: df.drop(['file', 'CompositionUserChoice'], axis=1, inplace=True) X_train = df.drop('judge', axis = 1) #y = df['judge'] X_test = self.df from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test) # construct the ANN # import the Keras Library and the required packages import keras from keras.models import Sequential from keras.layers import Dense from keras.models import model_from_json import os # load json and create model json_file = open("D:\\google drive\\A PhD Project at Godlsmiths\\ArtistSupervisionProject\\code\\classifier.json", 'r') loaded_model_json = json_file.read() json_file.close() loaded_model = model_from_json(loaded_model_json) # load weights into new model loaded_model.load_weights("D:\\google drive\\A PhD Project at Godlsmiths\\ArtistSupervisionProject\\code\\classifier.h5") print("Loaded model from disk") # evaluate loaded model on test data loaded_model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # ============================================================================= # score = loaded_model.evaluate(X_test, y_test, verbose=0) # print("%s: %.2f%%" % (loaded_model.metrics_names[1], score[1]*100)) # ============================================================================= # predict the test set results # ============================================================================= y_pred = loaded_model.predict(X_test) for y in y_pred: res = np.argmax(y) return res class CompositionAnalysis (): def __init__ (self, image = None, imagepath = None, mask = None): if imagepath: self.image = cv2.imread(imagepath) self.imagepath = imagepath else: self.image = image self.totalPixels = self.image.size self.gray = cv2.cvtColor(self.image, cv2.COLOR_BGR2GRAY) # ============================================================================= # # def _borderCut(self, borderCutted): # # # borderCutted[0:2, :] = 0 # borderCutted[-2:self.image.shape[0], :] = 0 # borderCutted[:, 0:2] = 0 # borderCutted[:, -2:self.image.shape[1]] = 0 # # return borderCutted # ============================================================================= def synthesisScores (self): # return the display image for the UI rows, cols, depth = self.image.shape scoreSynthesisImg = np.zeros(self.image.shape, dtype="uint8") # make solid color for the background scoreSynthesisImg[:] = (218,218,218) cv2.line(scoreSynthesisImg, ( int(self.image.shape[1] * 0.6), 20), ( int(self.image.shape[1] * 0.6),self.image.shape[0]), (50,50,140), 1) cv2.line(scoreSynthesisImg, ( int(self.image.shape[1] * 0.75), 20), ( int(self.image.shape[1] * 0.75),self.image.shape[0]), (60,140,90), 1) # collect the balance scores: VisualBalanceScore = ( self.scoreVisualBalance + self.scoreHullBalance ) / 2 # corner balance and line lineandcornerBalance = (self.cornersBalance + self.verticalandHorizBalanceMean ) / 2 # collect the rythm scores: #asymmetry = (self.scoreFourier + self.verticalandHorizBalanceMean + self.ssimAsymmetry) / 3 asymmetry = (self.ssimAsymmetry +self.diagonalAsymmetry) / 2 scoreFourier = self.scoreFourier # collect the gold proportion scores: goldScore = self.scoreProportionAreaVsGoldenRatio #score composition scoreCompMax = max(self.diagonalasymmetryBalance, self.ScoreFourTriangleAdapted,self.ScoreBigTriangle) ruleOfThird = self.ScoreRuleOfThird # diagonal balance commposition #diagonalasymmetryBalance = self.diagonalasymmetryBalance # spiral spiralScore = self.scoreSpiralGoldenRatio # fractal fractalScoreFromTarget = self.fractalScoreFromTarget cv2.putText(scoreSynthesisImg, "Balance", (20, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[20:24, 10:int(VisualBalanceScore*cols*0.9)] = (120,60,120) cv2.putText(scoreSynthesisImg, "Rule of Third", (20, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[35:39, 10:int(ruleOfThird*cols*0.9)] = (120,60,120) cv2.putText(scoreSynthesisImg, "Composition Max", (20, 45), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[50:54, 10:int(scoreCompMax*cols*0.9)] = (120,60,120) #cv2.putText(scoreSynthesisImg, "Diagonal Comp", (20, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) #scoreSynthesisImg[65:70, 10:int(diagonalasymmetryBalance*cols*0.9)] = (120,60,120) cv2.putText(scoreSynthesisImg, "Spiral ", (20, 75), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[80:84, 10:int(spiralScore*cols*0.9)] = (120,60,120) cv2.putText(scoreSynthesisImg, "Asymmetry ", (20, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[95:99, 10:int(asymmetry*cols*0.9)] = (120,60,120) cv2.putText(scoreSynthesisImg, "Fourier ", (20, 105), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[110:114, 10:int(scoreFourier*cols*0.9)] = (120,60,120) cv2.putText(scoreSynthesisImg, "CornerLinesBalance ", (20, 120), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[125:129, 10:int(lineandcornerBalance*cols*0.9)] = (120,60,120) cv2.putText(scoreSynthesisImg, "Proportion ", (20, 135), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[140:144, 10:int(goldScore*cols*0.9)] = (120,60,120) cv2.putText(scoreSynthesisImg, "Fractal ", (20, 150), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[155:159, 10:int(fractalScoreFromTarget*cols*0.9)] = (120,60,120) #cv2.putText(scoreSynthesisImg, "Balance, asymmetry, Proportion, corner, spiral ", (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) #cv2.putText(scoreSynthesisImg, "Possible Comp: {} ".format(selectedComp), (10, 110), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) return scoreSynthesisImg def fourierOnEdgesDisplay (self): ImgImpRegionA, contours, keypoints = self._orbSegmentation ( maxKeypoints = 10000, edged = False, edgesdilateOpen = True, method = cv2.RETR_EXTERNAL) cropped_img_lf = ImgImpRegionA[0:int(ImgImpRegionA.shape[0]), 0: int(ImgImpRegionA.shape[1] / 2) ] cropped_img_rt = ImgImpRegionA[0:int(ImgImpRegionA.shape[0]), int(ImgImpRegionA.shape[1] / 2): ImgImpRegionA.shape[1] ] #imgDftGray = self._returnDFT(ImgImpRegionA) imgDftGraylf = self._returnDFT(cropped_img_lf) imgDftGrayRt = self._returnDFT(cropped_img_rt) # number of pixels in left and number of pixels in right numberOfWhite_lf = (imgDftGraylf>0).sum() numberOfWhite_Rt = (imgDftGrayRt > 0).sum() # create the stiched picture stichedDft = self.image.copy() stichedDft = np.concatenate((imgDftGraylf,imgDftGrayRt ), axis = 1) score = (abs(numberOfWhite_lf - numberOfWhite_Rt)) / (numberOfWhite_lf + numberOfWhite_Rt) # to penalise the change in rithm scoreFourier = np.exp(-score * self.image.shape[0]/2) #cv2.putText(stichedDft, "diff: {:.3f}".format(score), (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 0, 0), 1) self.scoreFourier = scoreFourier return stichedDft, scoreFourier def _returnDFT (self, imageForDft): ImgImpRegionA = imageForDft ImgImpRegionA = cv2.cvtColor(ImgImpRegionA, cv2.COLOR_BGR2GRAY) #dft = cv2.dft(np.float32(self.gray),flags = cv2.DFT_COMPLEX_OUTPUT) dft = cv2.dft(np.float32(ImgImpRegionA),flags = cv2.DFT_COMPLEX_OUTPUT) dft_shift = np.fft.fftshift(dft) magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1])) cv2.normalize( magnitude_spectrum, magnitude_spectrum, alpha = 0 , beta = 1 , norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) imgDftGray = np.array(magnitude_spectrum * 255, dtype = np.uint8) meanThres = np.mean(imgDftGray) _, imgDftGray = cv2.threshold(imgDftGray,meanThres, 255, cv2.THRESH_BINARY) imgDftGray = cv2.cvtColor(imgDftGray, cv2.COLOR_GRAY2BGR) return imgDftGray def HOGcompute (self): gray = self.gray.copy() # h x w in pixels cell_size = (8, 8) # h x w in cells block_size = (2, 2) # number of orientation bins nbins = 9 # Using OpenCV's HOG Descriptor # winSize is the size of the image cropped to a multiple of the cell size hog = cv2.HOGDescriptor(_winSize=(gray.shape[1] // cell_size[1] * cell_size[1], gray.shape[0] // cell_size[0] * cell_size[0]), _blockSize=(block_size[1] * cell_size[1], block_size[0] * cell_size[0]), _blockStride=(cell_size[1], cell_size[0]), _cellSize=(cell_size[1], cell_size[0]), _nbins=nbins) # Create numpy array shape which we use to create hog_feats n_cells = (gray.shape[0] // cell_size[0], gray.shape[1] // cell_size[1]) # We index blocks by rows first. # hog_feats now contains the gradient amplitudes for each direction, # for each cell of its group for each group. Indexing is by rows then columns. hog_feats = hog.compute(gray).reshape(n_cells[1] - block_size[1] + 1, n_cells[0] - block_size[0] + 1, block_size[0], block_size[1], nbins).transpose((1, 0, 2, 3, 4)) # Create our gradients array with nbin dimensions to store gradient orientations gradients = np.zeros((n_cells[0], n_cells[1], nbins)) # Create array of dimensions cell_count = np.full((n_cells[0], n_cells[1], 1), 0, dtype=int) # Block Normalization for off_y in range(block_size[0]): for off_x in range(block_size[1]): gradients[off_y:n_cells[0] - block_size[0] + off_y + 1, off_x:n_cells[1] - block_size[1] + off_x + 1] += \ hog_feats[:, :, off_y, off_x, :] cell_count[off_y:n_cells[0] - block_size[0] + off_y + 1, off_x:n_cells[1] - block_size[1] + off_x + 1] += 1 # Average gradients gradients /= cell_count # ============================================================================= # # Plot HOGs using Matplotlib # # angle is 360 / nbins * direction # print (gradients.shape) # # color_bins = 5 # plt.pcolor(gradients[:, :, color_bins]) # plt.gca().invert_yaxis() # plt.gca().set_aspect('equal', adjustable='box') # plt.colorbar() # plt.show() # cv2.destroyAllWindows() # ============================================================================= return def goldenProportionOnCnts(self, numberOfCnts = 25, method = cv2.RETR_CCOMP, minArea = 2): edgedForProp = self._edgeDetection( scalarFactor = 1, meanShift = 0, edgesdilateOpen = True, kernel = 3) goldenPropImg = self.image.copy() # create the contours from the segmented image ing2, contours, hierarchy = cv2.findContours(edgedForProp, method, cv2.CHAIN_APPROX_SIMPLE) innerCnts = [] for cnt, h in zip (contours, hierarchy[0]): if h[2] == -1 : innerCnts.append(cnt) sortedContours = sorted(innerCnts, key = cv2.contourArea, reverse = True) selectedContours = [cnt for cnt in sortedContours if cv2.contourArea(cnt) > minArea] for cnt in selectedContours[0: numberOfCnts]: cv2.drawContours(goldenPropImg, [cnt], -1, (255, 0, 255), 1) # get all the ratio to check ratioAreas = [] for index, cnt in enumerate(selectedContours[0: numberOfCnts]): if index < len(selectedContours[0: numberOfCnts]) -1: areaGoldenToCheck_previous = cv2.contourArea(selectedContours[index]) areaGoldenToCheck_next = cv2.contourArea(selectedContours[index + 1]) ratioArea = areaGoldenToCheck_previous / areaGoldenToCheck_next ratioAreas.append(ratioArea) meanAreaRatio = (np.mean(ratioAreas)) diffFromGoldenRatio = abs(1.618 - meanAreaRatio) scoreProportionAreaVsGoldenRatio = np.exp(-diffFromGoldenRatio) cv2.putText(goldenPropImg, "GoldPr: {:.3f}".format(scoreProportionAreaVsGoldenRatio), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) self.scoreProportionAreaVsGoldenRatio = scoreProportionAreaVsGoldenRatio return goldenPropImg, scoreProportionAreaVsGoldenRatio def cornerDetectionVisualBalance (self, maxCorners = 40 , minDistance = 6, midlineOnCornersCnt = True): # based on the idea that there is a balance in balanced distribution of corner # the mid axis is the mid of the extremes corners detected corners = cv2.goodFeaturesToTrack(self.gray, maxCorners, 0.01, minDistance ) cornerimg = self.image.copy() cornersOntheLeft = 0 cornersOntheRight = 0 cornersOnTop = 0 cornersOnBottom = 0 # find the limit x and y of the detected corners listX = [corner[0][0] for corner in corners] listY = [corner[0][1] for corner in corners] minX = min(listX) maxX = max (listX) minY = min(listY) maxY = max (listY) for corner in corners: x, y = corner[0] x = int(x) y = int(y) if midlineOnCornersCnt: # find the middle x and middle y midx = minX + int((maxX - minX)/2) midy = minY + int((maxY - minY)/2) pass else: midx = int(self.image.shape[1] / 2) midy = int(self.image.shape[0] / 2) cv2.rectangle(cornerimg,(x-2,y-2),(x+2,y+2),(0,255,0), 1) if x < midx: cornersOntheLeft += 1 if x > midx: cornersOntheRight += 1 if y < midy: cornersOnTop += 1 if y > midy: cornersOnBottom += 1 scoreHorizzontalCorners = np.exp(-(abs(cornersOntheLeft - cornersOntheRight )/(maxCorners/3.14))) scoreVerticalCorners = np.exp(-(abs(cornersOnTop - cornersOnBottom )/(maxCorners/3.14))) cv2.putText(cornerimg, "Corn H: {:.3f} V: {:.3f}".format(scoreHorizzontalCorners, scoreVerticalCorners), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) self.cornersBalance = (scoreHorizzontalCorners + scoreVerticalCorners) / 2 return cornerimg, scoreHorizzontalCorners, scoreVerticalCorners def goldenSpiralAdaptedDetection (self, displayall = False , displayKeypoints = True, maxKeypoints = 100, edged = True): goldenImgDisplay = self.image.copy() # segmentation with orb and edges ImgImpRegion, contours, keypoints = self._orbSegmentation ( maxKeypoints = maxKeypoints, edged = edged, edgesdilateOpen = False, method = cv2.RETR_EXTERNAL) # find the center zig zag orb silhoutte copyZigZag, ratioGoldenRectangleZigZagOrb , sorted_contoursZigZag, zigzagPerimeterScore= self._zigzagCntsArea() #draw the bounding box c = max(sorted_contoursZigZag, key=cv2.contourArea) x,y,w,h = cv2.boundingRect(c) if x==0 or x+w == self.image.shape[1] or y==0 or y+w == self.image.shape[0]: cv2.rectangle(goldenImgDisplay, (0,0), (self.image.shape[1], self.image.shape[0]), (0,255,0), 1) else: cv2.rectangle(goldenImgDisplay,(x,y),(x+w,y+h),(0,255,0),1) # create the guidelines im, im2,im3, im4 = self._drawGoldenSpiral(drawRectangle=False, drawEllipses = True, x = w, y = h) transX = x transY = y T = np.float32([[1,0,transX], [0,1, transY]]) imTranslated = cv2.warpAffine(im, T, (self.image.shape[1], self.image.shape[0])) T2 = np.float32([[1,0, -self.image.shape[1] + transX + w], [0,1, -self.image.shape[0] + transY + h]]) imTranslated2 = cv2.warpAffine(im2, T2, (self.image.shape[1], self.image.shape[0])) T3 = np.float32([[1,0, transX], [0,1, -self.image.shape[0] + transY + h]]) imTranslated3 = cv2.warpAffine(im3, T3, (self.image.shape[1], self.image.shape[0])) T4 = np.float32([[1,0, -self.image.shape[1] + transX + w], [0,1, transY ]]) imTranslated4 = cv2.warpAffine(im4, T4, (self.image.shape[1], self.image.shape[0])) # bitwise the guidlines for one display img goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated) goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated2) if displayall: goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated3) goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated4) if displayKeypoints: goldenImgDisplay = cv2.drawKeypoints(goldenImgDisplay, keypoints,goldenImgDisplay, flags = cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS) # dilate the spirals kernel = np.ones((5,5),np.uint8) imTranslated = cv2.dilate(imTranslated,kernel,iterations = 3) imTranslated2 = cv2.dilate(imTranslated2,kernel,iterations = 3) imTranslated3 = cv2.dilate(imTranslated3,kernel,iterations = 3) imTranslated4 = cv2.dilate(imTranslated4,kernel,iterations = 3) # loop to collect the intersection intersection = cv2.bitwise_and(ImgImpRegion,imTranslated) intersection2 = cv2.bitwise_and(ImgImpRegion,imTranslated2) intersection3 = cv2.bitwise_and(ImgImpRegion,imTranslated3) intersection4 = cv2.bitwise_and(ImgImpRegion,imTranslated4) # sum of imgImpRegion sumOfAllPixelInImgImpRegion = (ImgImpRegion>0).sum() # sum of all intersections sum1 = (intersection>0).sum() sum2 = (intersection2>0).sum() sum3 = (intersection3>0).sum() sum4 = (intersection4>0).sum() maxSumIntersection = max(sum1, sum2, sum3, sum4) # calculate the ratio of the max vs whole scoreSpiralGoldenRatio = maxSumIntersection / sumOfAllPixelInImgImpRegion cv2.putText(goldenImgDisplay, "Gold: {:.3f}".format(scoreSpiralGoldenRatio), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) self.scoreSpiralGoldenRatio = scoreSpiralGoldenRatio # ============================================================================= # cv2.imshow('ImgImpRegion', ImgImpRegion) # cv2.imshow('imTranslated', imTranslated) # cv2.imshow('inter', intersection) # cv2.waitKey() # cv2.destroyAllWindows() # ============================================================================= return goldenImgDisplay, scoreSpiralGoldenRatio def goldenSpiralFixDetection (self, displayall = False , displayKeypoints = True, maxKeypoints = 100, edged = True, numberOfCnts = 40, scaleFactor = 0.5, bonus = 10): #goldenImgDisplay = self.image.copy() # segmentation with orb and edges ImgImpRegion, contours, keypoints = self._orbSegmentation ( maxKeypoints = maxKeypoints, edged = edged, edgesdilateOpen = False, method = cv2.RETR_EXTERNAL) # implement the segmentation including the edges edgedImg = self._edgeDetection(scalarFactor = 1, meanShift = 0, edgesdilateOpen = False, kernel = 5) edgedImg = cv2.cvtColor(edgedImg, cv2.COLOR_GRAY2BGR) # give a weight to the edges detection smaller than the orb #edgedImg[np.where((edgedImg ==[255,255,255]).all(axis=2))] = [255,255,255] # implement with inner shape segmentationOnInnerCnts, contours = self._innerCntsSegmentation(numberOfCnts = numberOfCnts, method = cv2.RETR_CCOMP, minArea = 5) segmentationOnInnerCnts[np.where((segmentationOnInnerCnts ==[255,255,255]).all(axis=2))] = [40,40,40] # merge the masks ImgImpRegion = cv2.bitwise_or(ImgImpRegion,edgedImg) ImgImpRegion = cv2.bitwise_or(ImgImpRegion,segmentationOnInnerCnts) goldenImgDisplay = ImgImpRegion.copy() # ============================================================================= # # find the center zig zag orb silhoutte # copyZigZag, ratioGoldenRectangleZigZagOrb , sorted_contoursZigZag, zigzagPerimeterScore= self._zigzagCntsArea() # # #draw the bounding box # c = max(sorted_contoursZigZag, key=cv2.contourArea) # x,y,w,h = cv2.boundingRect(c) # ============================================================================= # set this way to make the boundig box the size of the frame.. for adaptive unmask above and adjust x=0 y=0 w = self.image.shape[1] h = self.image.shape[0] if x==0 or x+w == self.image.shape[1] or y==0 or y+h == self.image.shape[0]: cv2.rectangle(goldenImgDisplay, (0,0), (self.image.shape[1], self.image.shape[0]), (0,255,0), 1) else: cv2.rectangle(goldenImgDisplay,(x,y),(x+w,y+h),(0,255,0),1) # create the guidelines im, im2,im3, im4 = self._drawGoldenSpiral(drawRectangle=False, drawEllipses = True, x = w, y = h) transX = x transY = y T = np.float32([[1,0,transX], [0,1, transY]]) imTranslated = cv2.warpAffine(im, T, (self.image.shape[1], self.image.shape[0])) T2 = np.float32([[1,0, -self.image.shape[1] + transX + w], [0,1, -self.image.shape[0] + transY + h]]) imTranslated2 = cv2.warpAffine(im2, T2, (self.image.shape[1], self.image.shape[0])) T3 = np.float32([[1,0, transX], [0,1, -self.image.shape[0] + transY + h]]) imTranslated3 = cv2.warpAffine(im3, T3, (self.image.shape[1], self.image.shape[0])) T4 = np.float32([[1,0, -self.image.shape[1] + transX + w], [0,1, transY ]]) imTranslated4 = cv2.warpAffine(im4, T4, (self.image.shape[1], self.image.shape[0])) # dilate the spirals kernel = np.ones((5,5),np.uint8) AimTranslated = cv2.dilate(imTranslated,kernel,iterations = 3) AimTranslated2 = cv2.dilate(imTranslated2,kernel,iterations = 3) AimTranslated3 = cv2.dilate(imTranslated3,kernel,iterations = 3) AimTranslated4 = cv2.dilate(imTranslated4,kernel,iterations = 3) # loop to collect the intersection intersection = cv2.bitwise_and(ImgImpRegion,AimTranslated) intersection2 = cv2.bitwise_and(ImgImpRegion,AimTranslated2) intersection3 = cv2.bitwise_and(ImgImpRegion,AimTranslated3) intersection4 = cv2.bitwise_and(ImgImpRegion,AimTranslated4) # sum of imgImpRegion sumOfAllPixelInSilhoutte = (ImgImpRegion > 0).sum() sumofAlledgedandorb = (ImgImpRegion==255).sum() sumofAllInnerCnts = (ImgImpRegion==40).sum() sumOfAllPixelInImgImpRegion = sumofAlledgedandorb + (scaleFactor* sumofAllInnerCnts) # sum of all intersections sum1_orb = (intersection==255).sum() sum2_orb = (intersection2==255).sum() sum3_orb = (intersection3==255).sum() sum4_orb = (intersection4==255).sum() # for the inner shape sum1_inn = (intersection==40).sum() sum2_inn = (intersection2==40).sum() sum3_inn = (intersection3==40).sum() sum4_inn = (intersection4==40).sum() # weight sum1 = sum1_orb * bonus + (scaleFactor * sum1_inn) sum2 = sum2_orb * bonus + (scaleFactor * sum2_inn) sum3 = sum3_orb * bonus + (scaleFactor * sum3_inn) sum4 = sum4_orb * bonus + (scaleFactor * sum4_inn) maxSumIntersection = max(sum1, sum2, sum3, sum4) # calculate the ratio of the max vs whole and weighted with the overall area of te silhoutte compare to the size of the frame scoreSpiralGoldenRatio = maxSumIntersection / sumOfAllPixelInImgImpRegion * (sumOfAllPixelInSilhoutte / self.gray.size) cv2.putText(goldenImgDisplay, "Gold: {:.3f}".format(scoreSpiralGoldenRatio), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) self.scoreSpiralGoldenRatio = scoreSpiralGoldenRatio # bitwise the guidlines for one display img if displayall == False: if sum1 == max(sum1, sum2, sum3, sum4): goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated) if sum2 == max(sum1, sum2, sum3, sum4): goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated2) if sum3 == max(sum1, sum2, sum3, sum4): goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated3) if sum4 == max(sum1, sum2, sum3, sum4): goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated4) if displayall: goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated) goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated2) goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated3) goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated4) if displayKeypoints: goldenImgDisplay = cv2.drawKeypoints(goldenImgDisplay, keypoints,goldenImgDisplay, flags = cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS) return goldenImgDisplay, scoreSpiralGoldenRatio def displayandScoreExtremePoints(self, numberOfCnts = 20): blur = cv2.GaussianBlur(self.gray, (5, 5), 0) mean = np.mean(blur) # threshold the image, then perform a series of erosions + # dilations to remove any small regions of noise thresh = cv2.threshold(blur, mean, 255, cv2.THRESH_BINARY)[1] thresh = cv2.erode(thresh, None, iterations=2) thresh = cv2.dilate(thresh, None, iterations=2) # cut the border for more precision thresh[0:2, :] = 0 thresh[-2:self.image.shape[0], :] = 0 thresh[:, 0:2] = 0 thresh[:, -2:self.image.shape[1]] = 0 # find contours in thresholded image, then grab the largest # one cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = cnts[1] sorted_contours = sorted(cnts, key=cv2.contourArea, reverse = True) # ============================================================================= # c = max(cnts, key=cv2.contourArea) # # # determine the most extreme points along the contour # extLeft = tuple(c[c[:, :, 0].argmin()][0]) # extRight = tuple(c[c[:, :, 0].argmax()][0]) # extTop = tuple(c[c[:, :, 1].argmin()][0]) # extBot = tuple(c[c[:, :, 1].argmax()][0]) # ============================================================================= extLeftList=[] extRightList = [] extTopList = [] extBotList =[] for c in sorted_contours[0:numberOfCnts]: # determine the most extreme points along the contour extLeft = tuple(c[c[:, :, 0].argmin()][0]) extRight = tuple(c[c[:, :, 0].argmax()][0]) extTop = tuple(c[c[:, :, 1].argmin()][0]) extBot = tuple(c[c[:, :, 1].argmax()][0]) extLeftList.append(extLeft) extRightList.append(extRight) extTopList.append(extTop) extBotList.append(extBot) # sort the list of tuple by x extLeftListSorted = sorted(extLeftList, key=lambda x: x[0]) extRightListSorted = sorted(extRightList, key=lambda x: x[0], reverse = True) extTopListSorted = sorted(extTopList, key=lambda x: x[1]) extBotListSorted = sorted(extBotList, key=lambda x: x[1], reverse = True) extLeft = extLeftListSorted[0] extRight = extRightListSorted[0] extTop = extTopListSorted[0] extBot = extBotListSorted[0] # draw the outline of the object, then draw each of the # extreme points, where the left-most is red, right-most # is green, top-most is blue, and bottom-most is teal image = self.image.copy() for c in sorted_contours[0:numberOfCnts]: cv2.drawContours(image, [c], -1, (0, 255, 255), 2) cv2.circle(image, extLeft, 5, (0, 0, 255), -1) cv2.circle(image, extRight, 5, (0, 255, 0), -1) cv2.circle(image, extTop, 5, (255, 0, 0), -1) cv2.circle(image, extBot, 5, (255, 255, 0), -1) #calculate Manhattan distance from half side point leftHalfSidePoint = (0, int(self.image.shape[0]/2)) rightHalfSidePoint =(self.image.shape[1], int(self.image.shape[0]/2)) topHalfSidePoint = (int(self.image.shape[1] /2), 0) bottomHalfSidePoint = (int(self.image.shape[1] /2), self.image.shape[0]) cv2.circle(image, leftHalfSidePoint, 3, (0, 0, 255), -1) cv2.circle(image, rightHalfSidePoint, 3, (0, 0, 255), -1) cv2.circle(image, topHalfSidePoint, 3, (0, 0, 255), -1) cv2.circle(image, bottomHalfSidePoint, 3, (0, 0, 255), -1) #halfHight = int(self.image.shape[0]/2) dist01 = dist.euclidean(extLeft, leftHalfSidePoint) dist02 = dist.euclidean(extRight, rightHalfSidePoint) #meanDistA = int((dist01 + dist02)/2 ) #scoreA = meanDistA / halfHight #halfwidth = int(self.image.shape[1]/2) dist03 = dist.euclidean(extTop, topHalfSidePoint) dist04 = dist.euclidean(extBot, bottomHalfSidePoint) #meanDistB = int((dist03 + dist04)/2 ) #scoreB = meanDistB / halfwidth #meanScore = (scoreA + scoreB)/2 #scoreMeanDistanceOppositeToHalfSide = np.exp(-meanScore*1.9) # used with mean on negative if extLeft[1] < (self.image.shape[0] / 2): DistExtLeft = - dist01 else: DistExtLeft = dist01 if extRight[1] < (self.image.shape[0] / 2): DistExtRight = - dist02 else: DistExtRight = dist02 if extTop[0] < (self.image.shape[1] / 2): DistExtTop = - dist03 else: DistExtTop = dist03 if extBot[0] < (self.image.shape[1] / 2): DistExtBot = - dist04 else: DistExtBot = dist04 # make the script indipendent from the size of the image if self.image.shape[1]> self.image.shape[0]: ratio = self.image.shape[1] else: ratio = self.image.shape[0] DistExtLeftToHalf = DistExtLeft / ratio DistExtRightToHalf = DistExtRight / ratio DistExtTopToHalf = DistExtTop / ratio DistExtBotToHalf = DistExtBot / ratio # ============================================================================= # if self.image.shape[1]> self.image.shape[0]: # ratio = self.image.shape[1] / self.image.shape[0] # else: # ratio = self.image.shape[0] / self.image.shape[1] # # meanNeg = (DistExtLeft + DistExtRight + DistExtTop + DistExtBot) / 4 # scoreMeanDistanceOppositeToHalfSideadapted = np.exp(-meanNeg / (ratio * 10)) # ============================================================================= #cv2.putText(image, "Epts: {:.3f}".format(scoreMeanDistanceOppositeToHalfSideadapted), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) # ============================================================================= # # self.scoreMeanDistanceOppositeToHalfSide = scoreMeanDistanceOppositeToHalfSideadapted # ============================================================================= # distances from borders: DistLeftBorder = abs(extLeft[0] - 0) DistRightBorder = abs(extRight[0] - self.image.shape[1]) DistTopBorder = abs(extTop[1] - 0) DistBotBorder = abs(extBot[1] - self.image.shape[0]) # make it indipendent from the size of the image by normalised by the lenght of the related side frame DistLeftBorder = DistLeftBorder / (self.image.shape[1]) DistRightBorder = DistRightBorder / (self.image.shape[1]) DistTopBorder = DistTopBorder / (self.image.shape[0]) DistBotBorder = DistBotBorder / (self.image.shape[0]) return image, DistExtLeftToHalf,DistExtRightToHalf,DistExtTopToHalf, DistExtBotToHalf, DistLeftBorder, DistRightBorder, DistTopBorder, DistBotBorder def vertAndHorizLinesBalance (self): edges = self._edgeDetection(scalarFactor = 1, meanShift = 0, edgesdilateOpen = False) lines = cv2.HoughLinesP(edges, 1, np.pi/180, 15, 100, 1) copyImg = self.image.copy() verticalLines = 0 horizontalLines = 0 verticalLinesLeft = 0 verticalLinesRight = 0 horizontalLinesLeft = 0 horizontalLinesRight = 0 allX = [] for line in lines: x1, y1, x2, y2 = line[0] allX.append(x1) allX.append(x2) # only horizzontal counts along the middle detection relevance midX = int((max(allX) - min(allX))/2) + min(allX) for line in lines: x1, y1, x2, y2 = line[0] angle = np.arctan2(y2 - y1, x2-x1) *180 / np.pi # horizzontal lines if angle == 0: cv2.line(copyImg, (x1, y1), (x2, y2), (0,0,255), 1) horizontalLines += 1 if x1 < midX and x2 < midX: horizontalLinesLeft += 1 if x1 > midX and x2 > midX: horizontalLinesRight += 1 # vertical lines if angle == 90 or angle == -90 : cv2.line(copyImg, (x1, y1), (x2, y2), (0,255,0), 1) verticalLines += 1 if x1 < midX and x2 < midX: verticalLinesLeft += 1 if x1 > midX and x2 > midX: verticalLinesRight += 1 diffVerticals = abs(verticalLinesLeft - verticalLinesRight) diffHorizontal = abs(horizontalLinesLeft -horizontalLinesRight ) if verticalLines == 0 or horizontalLines == 0: verticalLinesBalanceScore = 0 horizontalLinesBalanceScore = 0 cv2.putText(copyImg, "Lines V: {:.3f} H: {:.3f}".format(verticalLinesBalanceScore,horizontalLinesBalanceScore), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) self.verticalandHorizBalanceMean = (verticalLinesBalanceScore + horizontalLinesBalanceScore) / 2 return copyImg, verticalLinesBalanceScore, horizontalLinesBalanceScore else: verticalLinesBalanceScore = (1 - (diffVerticals/verticalLines)) horizontalLinesBalanceScore = (1 - (diffHorizontal / horizontalLines)) cv2.putText(copyImg, "Lines V: {:.3f} H: {:.3f}".format(verticalLinesBalanceScore,horizontalLinesBalanceScore), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) self.verticalandHorizBalanceMean = (verticalLinesBalanceScore + horizontalLinesBalanceScore) / 2 return copyImg, verticalLinesBalanceScore, horizontalLinesBalanceScore def numOfTangentandBalance (self): edges = self._edgeDetection(scalarFactor = 1, meanShift = 0, edgesdilateOpen = False) # first template template = np.zeros((16,16), np.uint8) template[7:9,0:16] = 255 template[0:16, 7:9] = 255 # w and h to also use later to draw the rectagles w, h = template.shape[::-1] # rotated template M = cv2.getRotationMatrix2D((w/2,h/2),15,1) template15 = cv2.warpAffine(template,M,(w,h)) template30 = cv2.warpAffine(template15,M,(w,h)) template45 = cv2.warpAffine(template30,M,(w,h)) template60 = cv2.warpAffine(template45,M,(w,h)) template75 = cv2.warpAffine(template60,M,(w,h)) # run the matchtemplate result = cv2.matchTemplate(edges, template, cv2.TM_CCOEFF) result15 = cv2.matchTemplate(edges, template15, cv2.TM_CCOEFF) result30 = cv2.matchTemplate(edges, template30, cv2.TM_CCOEFF) result45 = cv2.matchTemplate(edges, template45, cv2.TM_CCOEFF) result60 = cv2.matchTemplate(edges, template60, cv2.TM_CCOEFF) result75 = cv2.matchTemplate(edges, template75, cv2.TM_CCOEFF) #find the points of match min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result) threshold = max_val * 0.96 loc = np.where(result >= threshold) loc90 = np.where(result15 >= threshold) loc180 = np.where(result30 >= threshold) loc270 = np.where(result45 >= threshold) loc180a = np.where(result60 >= threshold) loc270a = np.where(result75 >= threshold) #convert edges for display edges = cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR) points = [] for pt in zip (*loc[::-1]): cv2.rectangle(edges, pt, (pt[0] + w, pt[1] + h), (255,0,255), 1) points.append(pt) for pt in zip (*loc90[::-1]): cv2.rectangle(edges, pt, (pt[0] + w, pt[1] + h), (255,0,255), 1) points.append(pt) for pt in zip (*loc180[::-1]): cv2.rectangle(edges, pt, (pt[0] + w, pt[1] + h), (255,0,255), 1) points.append(pt) for pt in zip (*loc270[::-1]): cv2.rectangle(edges, pt, (pt[0] + w, pt[1] + h), (255,0,255), 1) points.append(pt) for pt in zip (*loc180a[::-1]): cv2.rectangle(edges, pt, (pt[0] + w, pt[1] + h), (255,0,255), 1) points.append(pt) for pt in zip (*loc270a[::-1]): cv2.rectangle(edges, pt, (pt[0] + w, pt[1] + h), (255,0,255), 1) points.append(pt) score = np.exp(- len(points) ) # ============================================================================= # leftCount = 0 # rightCount = 0 # for p in points: # if p[0] < self.image.shape[0]: # leftCount += 1 # else: # rightCount += 1 # ============================================================================= cv2.putText(edges, "Cross: {:.3f}".format(score), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) #self.crossDetectionbalance = score return edges , score def numberEdgesConvexCnt (self, minArea = True, numberOfCnts = 8, areascalefactor = 1000 ): HullimgCopy = self.image.copy() gray = cv2.cvtColor(HullimgCopy,cv2.COLOR_BGR2GRAY) meanThresh = np.mean(gray) ret,thresh = cv2.threshold(gray, meanThresh, 255, cv2.THRESH_BINARY) ing2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # cut the border for more precision thresh[0:2, :] = 0 thresh[-2:self.image.shape[0], :] = 0 thresh[:, 0:2] = 0 thresh[:, -2:self.image.shape[1]] = 0 # sort contours by area if minArea == False: sorted_contours = sorted(contours, key=cv2.contourArea, reverse = True) # sorted and selected list of areas in contours if minArea is True if minArea: selected_contours = [] minArea = self.gray.size / areascalefactor for cnt in contours: area = cv2.contourArea(cnt) if area > minArea: selected_contours.append(cnt) sorted_contours = sorted(selected_contours, key = cv2.contourArea, reverse = True) # select only the bigger contours contoursSelection = sorted_contours[0:numberOfCnts] # mask creation blankHull = np.zeros((self.image.shape[0], self.image.shape[1], 3), np.uint8) listofHullsPoints = [] for cnt in contoursSelection: hull = cv2.convexHull(cnt) cv2.drawContours(HullimgCopy, [hull], -1, (0,255,0),1) cv2.drawContours(blankHull, [hull], -1, (255,255,255),-1) for coord in hull: listofHullsPoints.append(coord[0]) # sort the points on the hull by the x coordinates listofHullsPointsSorted = sorted(listofHullsPoints, key=lambda x: x[0]) #extRightListSorted = sorted(extRightList, key=lambda x: x[0], reverse = True) firstPointLeft = (listofHullsPointsSorted[0][0], listofHullsPointsSorted[0][1]) secondtPointLeft = (listofHullsPointsSorted[1][0], listofHullsPointsSorted[1][1]) thirdPointLeft = (listofHullsPointsSorted[2][0], listofHullsPointsSorted[2][1]) firstPointRight = (listofHullsPointsSorted[-1][0], listofHullsPointsSorted[-1][1]) secondtPointRight = (listofHullsPointsSorted[-2][0], listofHullsPointsSorted[-2][1]) thirdPointRight = (listofHullsPointsSorted[-3][0], listofHullsPointsSorted[-3][1]) # draw the point on the image for visualisaton purpose cv2.circle(HullimgCopy, firstPointLeft, 5, (0, 0, 255), -1) cv2.circle(HullimgCopy, secondtPointLeft, 5, (0, 255, 0), -1) cv2.circle(HullimgCopy, thirdPointLeft, 5, (0, 255, 0), -1) cv2.circle(HullimgCopy, firstPointRight, 5, (0, 0, 255), -1) cv2.circle(HullimgCopy, secondtPointRight, 5, (0, 255, 0), -1) cv2.circle(HullimgCopy, thirdPointRight, 5, (0, 255, 0), -1) # we only need the y coordinate since the column will tell the one is come first second and third (we focus on the slope here) # and normalised to the height to make it indipendent from the size of the image firstPointLeftY = firstPointLeft[1] / self.image.shape[0] secondtPointLeftY = secondtPointLeft[1] / self.image.shape[0] thirdPointLeftY = thirdPointLeft[1] / self.image.shape[0] firstPointRightY = firstPointRight[1] / self.image.shape[0] secondtPointRightY = secondtPointRight[1] / self.image.shape[0] thirdPointRightY = thirdPointRight[1] / self.image.shape[0] #left mask and right mask x = self.gray.shape[1] blankHullLeft = blankHull.copy() blankHullRight = blankHull.copy() blankHullLeft[ : , 0: int(x/2)] = 0 blankHullRight[ : , int(x/2): x ] = 0 totalWhiteinHull = (blankHull > 0).sum() totalWhiteinLeft = (blankHullLeft > 0).sum() totalWhiteInRight = (blankHullRight > 0).sum() #calculate the score for negative space balance alpha = 3.14 scoreHullBalance = np.exp(-(abs(totalWhiteinLeft - totalWhiteInRight ) / totalWhiteinHull) * 1.618 * alpha ) self.scoreHullBalance = scoreHullBalance cv2.putText(HullimgCopy, "NegBal: {:.3f}".format(scoreHullBalance), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) return HullimgCopy, scoreHullBalance , firstPointLeftY,secondtPointLeftY,thirdPointLeftY,firstPointRightY,secondtPointRightY,thirdPointRightY def rectangularComposition (self, segmentation = 'ORB'): # calculate the area of the template triangle based on the golden ratio h, w, s = self.image.shape upLeftX = int((w - (w*0.618)) / 2) upLeftY = int((h - (h*0.618)) / 2) baseRightX = upLeftX + int(w* 0.618) baseRightY = upLeftY + int(h * 0.618) # draw the rect mask blankForMasking = np.zeros(self.image.shape, dtype = "uint8") rectangularMask = cv2.rectangle(blankForMasking,(upLeftX,upLeftY),(baseRightX,baseRightY), (255, 255, 255), 2) # segmentation using if segmentation == 'ORB' : ImgImpRegion, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = True, edgesdilateOpen = True, method = cv2.RETR_EXTERNAL) if segmentation == 'saliency': contours, ImgImpRegion = self._saliencySegmentation(method = cv2.RETR_EXTERNAL ) ImgImpRegion = cv2.cvtColor(ImgImpRegion, cv2.COLOR_GRAY2BGR) # create the segmentations of the images using threshold if segmentation == 'thresh': contours, ImgImpRegion = self._thresholdSegmentation(method = cv2.RETR_LIST ) if segmentation == 'both': ImgImpRegionA, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = True, edgesdilateOpen = True, method = cv2.RETR_EXTERNAL) contours, ImgImpRegionB = self._saliencySegmentation(method = cv2.RETR_EXTERNAL ) ImgImpRegionB = cv2.cvtColor(ImgImpRegionB, cv2.COLOR_GRAY2BGR) # create the both mask ImgImpRegion = cv2.bitwise_or(ImgImpRegionA,ImgImpRegionB) # dilate the mask to capture more relevant pixels kernel = np.ones((5,5),np.uint8) rectangularMask = cv2.dilate(rectangularMask,kernel,iterations = 3) # count the total number of segmentation pixel bigger than 0 maskedImage = cv2.bitwise_and(ImgImpRegion, rectangularMask) sumOfrelevantPixels = (maskedImage > 0).sum() totalRelevantPixels = (ImgImpRegion > 0).sum() # ratio of the number counted in and out of the triangle rectCompScore = sumOfrelevantPixels/totalRelevantPixels # draw the image for display cv2.putText(ImgImpRegion, "RectComp: {:.3f}".format(rectCompScore), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) rectangularMask = cv2.rectangle(ImgImpRegion,(upLeftX,upLeftY),(baseRightX,baseRightY), (255, 255, 255), 2) self.rectCompScore = rectCompScore return ImgImpRegion, rectCompScore def circleComposition (self, segmentation = 'ORB'): # calculate the area of the template triangle based on the golden ratio h, w, s = self.image.shape # draw the ellipse mask blankForMasking = np.zeros(self.image.shape, dtype = "uint8") ellipseMask = cv2.ellipse(blankForMasking, (int(w/2),int(h/2)), (int(w*0.618/2), int(h*0.618/2)),0,0,360,(255, 255, 255), 2) # segmentation using if segmentation == 'ORB' : ImgImpRegion, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = True, edgesdilateOpen = True, method = cv2.RETR_EXTERNAL) if segmentation == 'saliency': contours, ImgImpRegion = self._saliencySegmentation(method = cv2.RETR_EXTERNAL ) ImgImpRegion = cv2.cvtColor(ImgImpRegion, cv2.COLOR_GRAY2BGR) # create the segmentations of the images using threshold if segmentation == 'thresh': contours, ImgImpRegion = self._thresholdSegmentation(method = cv2.RETR_LIST ) if segmentation == 'both': ImgImpRegionA, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = True, edgesdilateOpen = True, method = cv2.RETR_EXTERNAL) contours, ImgImpRegionB = self._saliencySegmentation(method = cv2.RETR_EXTERNAL ) ImgImpRegionB = cv2.cvtColor(ImgImpRegionB, cv2.COLOR_GRAY2BGR) # create the both mask ImgImpRegion = cv2.bitwise_or(ImgImpRegionA,ImgImpRegionB) # dilate the mask to capture more relevant pixels kernel = np.ones((5,5),np.uint8) ellipseMask = cv2.dilate(ellipseMask,kernel,iterations = 2) # count the total number of segmentation pixel bigger than 0 maskedImage = cv2.bitwise_and(ImgImpRegion, ellipseMask) sumOfrelevantPixels = (maskedImage > 0).sum() totalRelevantPixels = (ImgImpRegion > 0).sum() # ratio of the number counted in and out of the triangle circleCompScore = sumOfrelevantPixels/totalRelevantPixels # draw the image for display cv2.putText(ImgImpRegion, "circleComp: {:.3f}".format(circleCompScore), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) cv2.ellipse(ImgImpRegion, (int(w/2),int(h/2)), (int(w*0.618/2), int(h*0.618/2)),0,0,360,(255, 255, 255), 2) self.circleCompScore = circleCompScore return ImgImpRegion, circleCompScore def fourTriangleCompositionAdapted(self, segmentation = 'inner', minArea = True, numberOfCnts = 100, areascalefactor = 2000, distanceMethod = 'segment'): FourTriangleImg = self.image.copy() # draw the lines of the diagonal topLeft = (0,0) lowerRight = (self.image.shape[1], self.image.shape[0]) lowerLeft = (0, self.image.shape[0]) topright = (self.image.shape[1],0) #blankFourTriangle = np.array(blankFourTriangle) cv2.line(FourTriangleImg, topright , lowerLeft, (255,255,255), 1) # topright - lowerleft cv2.line(FourTriangleImg, topLeft , lowerRight, (255,0,255), 1) # topleft - lowerright # draw the two perpendicular lines leftIntersectionX, leftIntersectionY = self._find_perpendicular_through_point_to_line(lowerLeft[0], lowerLeft[1],topright[0],topright[1], topLeft[0], topLeft[1] ) cv2.line(FourTriangleImg, topLeft , (int(leftIntersectionX), int(leftIntersectionY) ), (255,255,255), 1) rightIntersectionX, righttIntersectionY = self._find_perpendicular_through_point_to_line(lowerLeft[0], lowerLeft[1],topright[0],topright[1], lowerRight[0], lowerRight[1] ) cv2.line(FourTriangleImg, lowerRight , (int(rightIntersectionX), int(righttIntersectionY) ), (255,255,255), 1) # second leftIntersectionXB, leftIntersectionYB = self._find_perpendicular_through_point_to_line(topLeft[0], topLeft[1],lowerRight[0],lowerRight[1], lowerLeft[0], lowerLeft[1] ) cv2.line(FourTriangleImg, lowerLeft , (int(leftIntersectionXB), int(leftIntersectionYB) ), (255,0,255), 1) rightIntersectionXB, righttIntersectionYB = self._find_perpendicular_through_point_to_line(topLeft[0], topLeft[1],lowerRight[0],lowerRight[1], topright[0], topright[1] ) cv2.line(FourTriangleImg, topright , (int(rightIntersectionXB), int(righttIntersectionYB) ), (255,0,255), 1) # calculate the segmentation if segmentation == 'ORB' : blank, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = False, edgesdilateOpen = False, method = cv2.RETR_EXTERNAL) if segmentation == 'saliency': contours, SaliencyMask = self._saliencySegmentation(method = cv2.RETR_EXTERNAL ) # create the segmentations of the images using threshold if segmentation == 'thresh': contours, threshImg = self._thresholdSegmentation(method = cv2.RETR_LIST ) if segmentation == 'inner': segmentationOnInnerCnts, contours = self._innerCntsSegmentation(numberOfCnts = numberOfCnts, method = cv2.RETR_CCOMP, minArea = 2) # sort contours sorted_contours = sorted(contours, key = cv2.contourArea, reverse = True) # sorted and selected list of areas in contours if minArea is True if minArea: selected_contours = [] minArea = self.gray.size / areascalefactor for cnt in sorted_contours[0:numberOfCnts]: area = cv2.contourArea(cnt) if area > minArea: selected_contours.append(cnt) sorted_contours = sorted(selected_contours, key = cv2.contourArea, reverse = True) # select only the bigger contours contoursSelection = sorted_contours[0:numberOfCnts] # find the center of each contours and draw cnts, not using approx contours imageDisplay, listOfCenterPoints = self._findCentreOfMass(image = FourTriangleImg, contours = contoursSelection, approxCnt = False) # calculate the distance from the center points and the rule of third point(as in the paper) # min distance of each center to the 4 points distances_option_1 = [] distances_option_2 = [] if distanceMethod == 'segment': for point in listOfCenterPoints: centerPoint = np.asarray(point) topLeftA = np.asarray((topLeft[0], topLeft[1])) lowerRightA = np.asarray((lowerRight[0], lowerRight[1])) lowerLeftA = np.asarray((lowerLeft[0], lowerLeft[1])) toprightA = np.asarray((topright[0], topright[1])) leftIntersectionPointA = np.asarray((leftIntersectionX, leftIntersectionY)) rightIntersectionPointA = np.asarray((rightIntersectionX,righttIntersectionY)) leftIntersectionPointB = np.asarray((leftIntersectionXB, leftIntersectionYB)) rightIntersectionPointB = np.asarray((rightIntersectionXB,righttIntersectionYB)) dist_01 = self._point_to_line_dist(centerPoint, [topLeftA,lowerRightA]) dist_02 = self._point_to_line_dist(centerPoint, [lowerLeftA,leftIntersectionPointA]) dist_03 = self._point_to_line_dist(centerPoint, [toprightA,rightIntersectionPointA]) dist_04 = self._point_to_line_dist(centerPoint, [lowerLeftA,toprightA]) dist_05 = self._point_to_line_dist(centerPoint, [topLeftA,leftIntersectionPointB]) dist_06 = self._point_to_line_dist(centerPoint, [lowerRightA,rightIntersectionPointB]) minDistance_option_1 = min(dist_01, dist_02, dist_03) minDistance_option_2 = min(dist_04, dist_05, dist_06) distances_option_1.append(minDistance_option_1) distances_option_2.append(minDistance_option_2) # initialise the result and set a paramenter that is linked to the size of the image res_option_1 = 0 res_option_2 = 0 parameter = self.gray.size / ((self.gray.shape[0]+self.gray.shape[1]) * 1.618) for distance in distances_option_1: res_option_1 += distance * (np.exp((-distance/parameter))) for distance in distances_option_2: res_option_2 += distance * (np.exp((-distance/parameter))) if len(distances_option_1) == 0: cv2.putText(imageDisplay, "Nan: 0 ", (5, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) self.ScoreFourTriangleAdapted = 0 return imageDisplay, 0 elif len(distances_option_2) == 0: cv2.putText(imageDisplay, "Nan: 0 ", (5, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) self.ScoreFourTriangleAdapted = 0 return imageDisplay, 0 else: score_option_1 = res_option_1 / sum(distances_option_1) score_option_2 = res_option_2 / sum(distances_option_2) ScoreFourTriangleAdapted = max(score_option_1,score_option_2) if distanceMethod == 'segment': cv2.putText(imageDisplay, "TriangSeg: {:.3f}".format(ScoreFourTriangleAdapted), (5, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) if segmentation == 'saliency': cv2.putText(imageDisplay, "RTS: {:.3f}".format(ScoreFourTriangleAdapted), (5, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) if segmentation == 'ORB': cv2.putText(imageDisplay, "RTorb: {:.3f}".format(ScoreFourTriangleAdapted), (5, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) self.ScoreFourTriangleAdapted = ScoreFourTriangleAdapted return imageDisplay, ScoreFourTriangleAdapted def bigTriangleCompositionAdapted(self, segmentation = 'inner', minArea = True, numberOfCnts = 100, areascalefactor = 2000, distanceMethod = 'segment'): # calculate the area of the template triangle based on the golden ratio h, w, s = self.image.shape baseLeftX = int((w - (w*0.618)) / 2) baseLeftY = int(h - ((h*0.618) / 2)) baseRightX = baseLeftX + int(w* 0.618) baseRightY = baseLeftY vertexX = int( w / 2) vertexY = h - baseLeftY centerImgX = int(self.image.shape[1]/2) centerImgY = int(self.image.shape[0]/2) listOfPotins = [[baseLeftX, baseLeftY], [vertexX, vertexY], [baseRightX, baseRightY]] ctr = np.array(listOfPotins).reshape((-1,1,2)).astype(np.int32) bigTriangeImg = self.image.copy() # fill the triangle for the mask blankForMasking = np.zeros(self.image.shape, dtype = "uint8") cv2.drawContours(blankForMasking, [ctr], -1, (255, 255, 255), 2) if segmentation == 'ORB' : blank, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = False, edgesdilateOpen = False, method = cv2.RETR_EXTERNAL) if segmentation == 'saliency': contours, SaliencyMask = self._saliencySegmentation(method = cv2.RETR_EXTERNAL ) # create the segmentations of the images using threshold if segmentation == 'thresh': contours, threshImg = self._thresholdSegmentation(method = cv2.RETR_LIST ) if segmentation == 'inner': segmentationOnInnerCnts, contours = self._innerCntsSegmentation(numberOfCnts = numberOfCnts, method = cv2.RETR_CCOMP, minArea = 2) # sort contours sorted_contours = sorted(contours, key = cv2.contourArea, reverse = True) # sorted and selected list of areas in contours if minArea is True if minArea: selected_contours = [] minArea = self.gray.size / areascalefactor for cnt in sorted_contours[0:numberOfCnts]: area = cv2.contourArea(cnt) if area > minArea: selected_contours.append(cnt) sorted_contours = sorted(selected_contours, key = cv2.contourArea, reverse = True) # select only the bigger contours contoursSelection = sorted_contours[0:numberOfCnts] # find the center of each contours and draw cnts, not using approx contours imageDisplay, listOfCenterPoints = self._findCentreOfMass(image = bigTriangeImg, contours = contoursSelection, approxCnt = False) # calculate the distance from the center points and the rule of third point(as in the paper) # min distance of each center to the 4 points distancePoints = [] if distanceMethod == 'point': for point in listOfCenterPoints: cX = point[0] cY = point[1] ManhattanDistanceNormalised_01 = abs(baseLeftX - cX) / self.image.shape[1] + abs(baseLeftY - cY) / self.image.shape[0] ManhattanDistanceNormalised_02 = abs(baseRightX - cX) / self.image.shape[1] + abs(baseRightY - cY) / self.image.shape[0] ManhattanDistanceNormalised_03 = abs(vertexX - cX) / self.image.shape[1] + abs(vertexY- cY) / self.image.shape[0] ManhattanDistanceNormalised_04 = abs(centerImgX - cX) / self.image.shape[1] + abs(centerImgY - cY) / self.image.shape[0] minDistance = min(ManhattanDistanceNormalised_01,ManhattanDistanceNormalised_02,ManhattanDistanceNormalised_03,ManhattanDistanceNormalised_04) distancePoints.append(minDistance) if distanceMethod == 'segment': for point in listOfCenterPoints: centerPoint = np.asarray(point) baseLeftPoint = np.asarray((baseLeftX, baseLeftY)) baseRigthPoint = np.asarray((baseRightX, baseRightY)) vertexPoint = np.asarray((vertexX, vertexY)) centerOfImgPoint = np.asarray((centerImgX,centerImgY)) dist_01 = self._point_to_line_dist(centerPoint, [baseLeftPoint,baseRigthPoint]) dist_02 = self._point_to_line_dist(centerPoint, [baseLeftPoint,vertexPoint]) dist_03 = self._point_to_line_dist(centerPoint, [baseRigthPoint,vertexPoint]) dist_04 = self._point_to_line_dist(centerPoint, [centerOfImgPoint,vertexPoint]) minDistance = min(dist_01, dist_02, dist_03, dist_04) distancePoints.append(minDistance) # initialise the result and set a paramenter that is linked to the size of the image res = 0 parameter = self.gray.size / ((self.gray.shape[0]+self.gray.shape[1]) * 1.618) if len(distancePoints) == 0: ScoreBigTriangle = 0 self.ScoreBigTriangle = ScoreBigTriangle return imageDisplay, ScoreBigTriangle else: for distance in distancePoints: res += distance * (np.exp((-distance/parameter))) ScoreBigTriangle = res / sum(distancePoints) # draw the guides rules and saliency on panel cv2.line(imageDisplay,(baseLeftX,baseLeftY), (baseRightX,baseRightY), (255,0,255), 1) cv2.line(imageDisplay,(baseLeftX,baseLeftY), (vertexX, vertexY), (255,0,255), 1) cv2.line(imageDisplay,(baseRightX,baseRightY), (vertexX, vertexY), (255,0,255), 1) cv2.line(imageDisplay,(centerImgX,centerImgY), (vertexX, vertexY), (255,0,255), 1) if distanceMethod == 'segment': cv2.putText(imageDisplay, "TriangSeg: {:.3f}".format(ScoreBigTriangle), (5, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) if segmentation == 'saliency': cv2.putText(imageDisplay, "RTS: {:.3f}".format(ScoreBigTriangle), (5, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) if segmentation == 'ORB': cv2.putText(imageDisplay, "RTorb: {:.3f}".format(ScoreBigTriangle), (5, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) self.ScoreBigTriangle = ScoreBigTriangle return imageDisplay, ScoreBigTriangle def bigTriangleComposition (self, segmentation = 'ORB'): # calculate the area of the template triangle based on the golden ratio h, w, s = self.image.shape baseLeftX = int((w - (w*0.618)) / 2) baseLeftY = int(h - ((h*0.618) / 2)) baseRightX = baseLeftX + int(w* 0.618) baseRightY = baseLeftY vertexX = int( w / 2) vertexY = h - baseLeftY listOfPotins = [[baseLeftX, baseLeftY], [vertexX, vertexY], [baseRightX, baseRightY]] ctr = np.array(listOfPotins).reshape((-1,1,2)).astype(np.int32) # fill the triangle for the mask blankForMasking = np.zeros(self.image.shape, dtype = "uint8") cv2.drawContours(blankForMasking, [ctr], -1, (255, 255, 255), 2) # dilate the mask to capture more relevant pixels kernel = np.ones((5,5),np.uint8) blankForMasking = cv2.dilate(blankForMasking,kernel,iterations = 2) # flip to make the triangle with the base to the lower base #blankForMasking = cv2.flip(blankForMasking, -1) # segmentation using if segmentation == 'ORB' : ImgImpRegion, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = True, edgesdilateOpen = True, method = cv2.RETR_EXTERNAL) if segmentation == 'saliency': contours, ImgImpRegion = self._saliencySegmentation(method = cv2.RETR_EXTERNAL ) ImgImpRegion = cv2.cvtColor(ImgImpRegion, cv2.COLOR_GRAY2BGR) # create the segmentations of the images using threshold if segmentation == 'thresh': contours, ImgImpRegion = self._thresholdSegmentation(method = cv2.RETR_LIST ) if segmentation == 'both': ImgImpRegionA, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = True, edgesdilateOpen = True, method = cv2.RETR_EXTERNAL) contours, ImgImpRegionB = self._saliencySegmentation(method = cv2.RETR_EXTERNAL ) ImgImpRegionB = cv2.cvtColor(ImgImpRegionB, cv2.COLOR_GRAY2BGR) # create the both mask ImgImpRegion = cv2.bitwise_or(ImgImpRegionA,ImgImpRegionB) # count the total number of segmentation pixel bigger than 0 maskedImage = cv2.bitwise_and(ImgImpRegion, blankForMasking) sumOfrelevantPixels = (maskedImage > 0).sum() totalRelevantPixels = (ImgImpRegion > 0).sum() # ratio of the number counted in and out of the triangle bigTriangleCompScore = sumOfrelevantPixels/totalRelevantPixels # draw the image for display cv2.drawContours(ImgImpRegion, [ctr], -1, (255, 0, 0), 2) cv2.putText(ImgImpRegion, "TriComp: {:.3f}".format(bigTriangleCompScore), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) self.bigTriangleCompScore = bigTriangleCompScore return ImgImpRegion, bigTriangleCompScore def fourTriangleDistance (self, segmentation = 'ORB', edged = True, edgesdilateOpen = True, method = cv2.RETR_EXTERNAL): # draw the guidelines of the images guideLinesA = self._fourTriangleGuidelines(flip = False) guideLinesB = self._fourTriangleGuidelines(flip = True) # dilate theguidelines kernel = np.ones((5,5),np.uint8) maskA = cv2.dilate(guideLinesA,kernel,iterations = 3) maskB = cv2.dilate(guideLinesB,kernel,iterations = 3) # segmentation using ORB or Saliency or Thresh or Edges expanded if segmentation == 'ORB' : ImgImpRegion, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = edged, edgesdilateOpen = edgesdilateOpen, method = method) if segmentation == 'saliency': contours, ImgImpRegion = self._saliencySegmentation(method = cv2.RETR_EXTERNAL ) ImgImpRegion = cv2.cvtColor(ImgImpRegion, cv2.COLOR_GRAY2BGR) # create the segmentations of the images using threshold if segmentation == 'thresh': contours, ImgImpRegion = self._thresholdSegmentation(imageToTresh = None, method = cv2.RETR_LIST ) if segmentation == 'both': ImgImpRegionA, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = edged, edgesdilateOpen = edgesdilateOpen, method = method) contours, ImgImpRegionB = self._saliencySegmentation(method = cv2.RETR_EXTERNAL ) ImgImpRegionB = cv2.cvtColor(ImgImpRegionB, cv2.COLOR_GRAY2BGR) # create the both mask ImgImpRegion = cv2.bitwise_or(ImgImpRegionA,ImgImpRegionB) intersectionA = cv2.bitwise_and(maskA, ImgImpRegion) intersectionB = cv2.bitwise_and(maskB, ImgImpRegion) # count the number of white pixels remained validPointInA = ((intersectionA > 0).sum()) validPointInB = ((intersectionB > 0).sum()) # ============================================================================= # cv2.imshow('imp', ImgImpRegion) # cv2.imshow ('maskA',intersectionA) # cv2.waitKey() # cv2.destroyAllWindows() # ============================================================================= validPoints = max(validPointInA, validPointInB) totalPossiblePoints = ((ImgImpRegion > 0).sum()) scoreFourTriangleDistance = validPoints / totalPossiblePoints displayImg = cv2.bitwise_or(guideLinesA, ImgImpRegion) cv2.putText(displayImg, "4TC: {:.3f}".format(scoreFourTriangleDistance), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) self.scoreFourTriangleDistance = scoreFourTriangleDistance return displayImg, scoreFourTriangleDistance def triangleAreaGoldenRatio (self, segmentation = 'ORB', minArea = False, numberOfCnts = 10, areascalefactor = 3000): triangleDisplay = self.image.copy() # from paper 41 # calculate the area of the template triangle h, w, s = self.image.shape areaGoldenFittedTriangle = ((w * 0.618) * (h * 0.618)) / 2 # segmentation of the image #TODO put other possible segmentation modes #TODO also add the bitwise operation of saliency + orb if segmentation == 'ORB' : blank, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = True, edgesdilateOpen = True, method = cv2.RETR_EXTERNAL) if segmentation == 'saliency': contours, SaliencyMask = self._saliencySegmentation(method = cv2.RETR_EXTERNAL ) # create the segmentations of the images using threshold if segmentation == 'thresh': contours, threshImg = self._thresholdSegmentation(method = cv2.RETR_LIST ) # narrow the contorus to the most relevant # sort contours sorted_contours = sorted(contours, key = cv2.contourArea, reverse = True) # sorted and selected list of areas in contours if minArea is True if minArea: selected_contours = [] MinArea = self.gray.size / areascalefactor for cnt in sorted_contours[0:numberOfCnts]: area = cv2.contourArea(cnt) if area > MinArea: selected_contours.append(cnt) sorted_contours = sorted(selected_contours, key = cv2.contourArea, reverse = True) # select only the biggest contours contoursSelection = sorted_contours[0:numberOfCnts] # find the center points of the contours triangleDisplay, listOfCenterPoints = self._findCentreOfMass(image = triangleDisplay, contours = contoursSelection, approxCnt = False) # calculate the area of the detected traingle using iteration over 6 points # Return r length subsequences of elements from the input iterable. listOfCenterPoints = [list(elem) for elem in listOfCenterPoints] candidates = list(itertools.combinations(listOfCenterPoints, 3)) candidates = [list(elem) for elem in candidates] areaCntDict = {} for cnt in candidates: cnt = np.array(cnt, dtype = np.int32) cv2.drawContours(triangleDisplay, [cnt], -1, (0, 255, 0), 1) areaCnt = cv2.contourArea(cnt) areaCntDict[areaCnt] = cnt # use the dictionary to find the bigger triangle sortedKeys = sorted(areaCntDict, reverse = True) if sortedKeys == []: scoreGoldenTriangle = 0 return triangleDisplay, blank, scoreGoldenTriangle # draw the bigger triangle in red in most cases is the same of the golden triangle #biggerTriangle = (areaCntDict[sortedKeys[0]]) #cv2.drawContours(triangleDisplay, [biggerTriangle], -1, (0, 0, 255), 2) # select the element value closest to the areaGolden closestAreaTriangleToGoldeRation = min(enumerate(sortedKeys), key=lambda x: abs(x[1]-areaGoldenFittedTriangle)) #print (closestAreaTriangleToGoldeRation, areaGoldenFittedTriangle ) ClosestTriangle = (areaCntDict[closestAreaTriangleToGoldeRation[1]]) cv2.drawContours(triangleDisplay, [ClosestTriangle], -1, (255, 0, 0), 2) # calculate the score as the minimum distance of the area scoreGoldenTriangle = (closestAreaTriangleToGoldeRation[1] / areaGoldenFittedTriangle) #TODO return also the mask in case is ORB or create separate PANEL in UI for the mask calling a dedicated funtion cv2.putText(triangleDisplay, "Torb: {:.3f}".format(scoreGoldenTriangle), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) self.scoreGoldenTriangle = scoreGoldenTriangle return triangleDisplay, blank, scoreGoldenTriangle def diagonalDistanceBalance(self, segmentation = 'inner', minArea = True, numberOfCnts = 100, areascalefactor = 3000, distanceMethod = 'lines'): # https://stackoverflow.com/questions/45766534/finding-cross-product-to-find-points-above-below-a-line-in-matplotlib diagonalImg = self.image.copy() # draw the lines of the diagonal topLeft = (0,0) lowerRight = (self.image.shape[1], self.image.shape[0]) lowerLeft = (0, self.image.shape[0]) topright = (self.image.shape[1],0) #blankFourTriangle = np.array(blankFourTriangle) cv2.line(diagonalImg, topright , lowerLeft, (255,255,255), 1) # topright - lowerleft cv2.line(diagonalImg, topLeft , lowerRight, (255,0,255), 1) # topleft - lowerright # calculate the segmentation if segmentation == 'ORB' : blank, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = False, edgesdilateOpen = False, method = cv2.RETR_EXTERNAL) if segmentation == 'saliency': contours, SaliencyMask = self._saliencySegmentation(method = cv2.RETR_EXTERNAL ) # create the segmentations of the images using threshold if segmentation == 'thresh': contours, threshImg = self._thresholdSegmentation(method = cv2.RETR_LIST ) if segmentation == 'inner': segmentationOnInnerCnts, contours = self._innerCntsSegmentation(numberOfCnts = numberOfCnts, method = cv2.RETR_CCOMP, minArea = 2) # sort contours sorted_contours = sorted(contours, key = cv2.contourArea, reverse = True) # sorted and selected list of areas in contours if minArea is True if minArea: selected_contours = [] minArea = self.gray.size / areascalefactor for cnt in sorted_contours[0:numberOfCnts]: area = cv2.contourArea(cnt) if area > minArea: selected_contours.append(cnt) sorted_contours = sorted(selected_contours, key = cv2.contourArea, reverse = True) # select only the bigger contours contoursSelection = sorted_contours[0:numberOfCnts] # find the center of each contours and draw cnts, not using approx contours imageDisplay, listOfCenterPoints = self._findCentreOfMass(image = diagonalImg, contours = contoursSelection, approxCnt = False) # calculate how many points are below and above each diagonals and take the best result aboveA = 0 belowA = 0 aboveB = 0 belowB = 0 if distanceMethod == 'segment': for point in listOfCenterPoints: centerPoint = np.asarray(point) topLeftA = np.asarray((topLeft[0], topLeft[1])) lowerRightA = np.asarray((lowerRight[0], lowerRight[1])) lowerLeftA = np.asarray((lowerLeft[0], lowerLeft[1])) toprightA = np.asarray((topright[0], topright[1])) isabove = lambda p, a, b : np.cross (p-a, b-a) > 0 if isabove(centerPoint,topLeftA,lowerRightA): aboveA += 1 else: belowA += 1 if isabove(centerPoint,lowerLeftA,toprightA): aboveB += 1 else: belowB += 1 if len(contoursSelection) == 0: diagonalasymmetryBalance = 0 self.diagonalasymmetryBalance = diagonalasymmetryBalance return imageDisplay, diagonalasymmetryBalance else: ratio_A = max (aboveA, belowA) resultA = ratio_A / len(contoursSelection) ratio_B = max (aboveB, belowB) resultB = ratio_B / len(contoursSelection) # ============================================================================= # # resultA = abs(aboveA-belowA) / len(contoursSelection) # resultB = abs(aboveB - belowB) / len(contoursSelection) # ============================================================================= diagonalasymmetryBalance = max(resultA,resultB) # draw label cv2.putText(imageDisplay, "Dcomp: {:.3f}".format(diagonalasymmetryBalance), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) self.diagonalasymmetryBalance = diagonalasymmetryBalance return imageDisplay, diagonalasymmetryBalance def diagonalsDistance (self, saliencySegmentation = True, minArea = True, numberOfCnts = 4, areascalefactor = 3500): # using adapted version of the paper 'Autonomous Viepoint Selection of Robots..' diagonal = self.image.copy() # take the 4 points of the two diagonal lines topLeft = (0,0) lowerRight = (self.image.shape[1], self.image.shape[0]) topright = (0, self.image.shape[0]) lowerLeft = (self.image.shape[1],0) # extract the center points using saliency segmentation or threshold # create the segmentation of the image using Saliency Segmentation if saliencySegmentation == True: contours, SaliencyMask = self._saliencySegmentation(method = cv2.RETR_EXTERNAL ) # create the segmentations of the images using threshold if saliencySegmentation == False: contours, threshImg = self._thresholdSegmentation(method = cv2.RETR_LIST ) # narrow the contorus to the most relevant # sort contours sorted_contours = sorted(contours, key = cv2.contourArea, reverse = True) # sorted and selected list of areas in contours if minArea is True if minArea: selected_contours = [] MinArea = self.gray.size / areascalefactor for cnt in sorted_contours[0:numberOfCnts]: area = cv2.contourArea(cnt) if area > MinArea: selected_contours.append(cnt) sorted_contours = sorted(selected_contours, key = cv2.contourArea, reverse = True) # select only the biggest contours contoursSelection = sorted_contours[0:numberOfCnts] # find the center of cnts diagonal, listOfCenterPoints = self._findCentreOfMass(image = diagonal, contours = contoursSelection, approxCnt = False) # create the function to calculate the distance # descending diagonal distanceFromDescendingDiagonalList = [] for point in listOfCenterPoints: x,y = point p1 = topLeft p2 = lowerRight distanceFromDescendingDiagonal = self._distance_to_line( p1, p2, x, y) distanceFromDescendingDiagonalList.append(distanceFromDescendingDiagonal) meandistanceFromDescendingDiagonalList = np.mean(distanceFromDescendingDiagonalList) # ascending diagonal distanceFromAscendingDiagonalList = [] for point in listOfCenterPoints: x,y = point p1 = lowerLeft p2 = topright distanceFromAscendingDiagonal = self._distance_to_line( p1, p2, x, y) distanceFromAscendingDiagonalList.append(distanceFromAscendingDiagonal) meanddistanceFromAscendingDiagonalList = np.mean(distanceFromAscendingDiagonalList) # extract the min distances minDistancefromDiagonals = min(meandistanceFromDescendingDiagonalList,meanddistanceFromAscendingDiagonalList) # use exponential formula to score the results pointA = (int(self.image.shape[0]/2), 0) maxDistanceA = self._distance_to_line( topLeft, lowerRight, pointA[0], pointA[1]) pointB = (0, int(self.image.shape[1]/2)) maxDistanceB = self._distance_to_line( topLeft, lowerRight, pointB[0], pointB[1]) maxdistance = max(maxDistanceA,maxDistanceB) ScoreMinDistancefromDiagonals = 1 - (minDistancefromDiagonals / maxdistance) # draw the 2 diagonals cv2.line(diagonal, topLeft,lowerRight , (255,255,255), 1) # topleft - lowerright cv2.line(diagonal, topright , lowerLeft, (255,255,255), 1) # topright - lowerleft # draw label cv2.putText(diagonal, "Ddist: {:.3f}".format(ScoreMinDistancefromDiagonals), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) self.ScoreMinDistancefromDiagonals = ScoreMinDistancefromDiagonals return diagonal, ScoreMinDistancefromDiagonals def ruleOfThirdOnThreshPixelsCount(self): meanThresh =
np.mean(self.gray)
numpy.mean
import numpy as np import netCDF4 as nc import geokit as gk from geokit import Location, LocationSet, Extent import ogr import osr import pandas as pd from collections import namedtuple, OrderedDict from scipy.interpolate import splrep, splev from scipy.stats import norm from glob import glob import re from os.path import join, dirname, basename, splitext import types from types import FunctionType from datetime import datetime as dt # making an error class ResError(Exception): pass # this just creates an error that we can use # Add paths _test_data_ = gk._test_data_ DATADIR = join(dirname(__file__), "..", "data") _data_ = dict([(basename(f), f) for f in glob(join(DATADIR, "*"))]) # Make easy access to latlon projection system LATLONSRS = gk.srs.EPSG4326 LATLONSRS.__doc__ = "Spatial reference system for latitue and longitude coordinates" # STAN def storeTimeseriesAsNc(output, timedata, varmeta={}, keydata=None, keydatameta={}, timeunit="minutes since 1900-01-01 00:00:00"): """Create a netCDF4 file from a set of time series arrays. Parameters ---------- output : str The path to write the netCDF4 file to timedata : DataFrame or { <varname>:DataFrame, ... } Two dimensional data which will be written to the netCDF4 file * All dataframes must share a time-index and columns names * If only a single DataFrame is given, a variable name of "var" is assumed varmeta : dict or { <varname>:dict, ... }, optional Meta data to apply to the time-series variables * If timedata is a DataFrame, the varmeta dictionary will be applied directly to the "var" variable * Variable names must match names given in timedata * Dict keys must be strings, and values must be strings or numerics * Example: varmeta={ "power_output": { "name":"The power output of each wind turbine", "units":"kWh", }, } keydata : DataFrame, optional Column-wise data to save for each key * Indexes must match the columns in the timedata DataFrames keydatameta : { <keyname>:dict, ... }, optional Meta data to apply to the keydata variables * Dict keys must be strings, and values must be strings or numerics timeunit : str, optional The time unit to use when compressing the time index * Example: "Minutes since 01-01-1970" Returns ------- None """ # correct the time data if isinstance(timedata, pd.DataFrame): timedata = {"var": timedata, } varmeta = {"var": varmeta, } # Check the input data, just in case cols = list(timedata.keys()) if len(cols) > 1: for i in range(1, len(cols)): if not (timedata[cols[i]].columns == timedata[cols[0]].columns).all(): raise RuntimeError("timedata columns do not match eachother") if not (timedata[cols[i]].index == timedata[cols[0]].index).all(): raise RuntimeError("timedata indicies do not match eachother") # Make an output file ds = nc.Dataset(output, mode="w") try: # Make the dimensions ds.createDimension("time", size=timedata[cols[0]].shape[0]) ds.createDimension("key", size=timedata[cols[0]].shape[1]) # Make the time variable timeV = ds.createVariable( "time", "u4", dimensions=("time",), contiguous=True) timeV.units = timeunit times = timedata[cols[0]].index if timedata[cols[0]].index[0].tz is None: timeV.tz = "unknown" else: timeV.tz = timedata[cols[0]].index[0].tzname() times = times.tz_localize(None) timeV[:] = nc.date2num(times.to_pydatetime(), timeunit) # Make the data variables for varN, tab in timedata.items(): var = ds.createVariable(varN, tab.iloc[0, 0].dtype, dimensions=( "time", "key",), contiguous=True) if varN in varmeta and len(varmeta[varN]) > 0: var.setncatts(varmeta[varN]) var[:] = tab.values # Make some key variables, maybe if not keydata is None: # test if the keys are in the right order if not (timedata[cols[0]].columns == keydata.index).all(): raise RuntimeError( "timedata columns do not match keydata indecies") for col in keydata.columns: dtype = str if keydata[col].dtype == np.dtype( "O") else keydata[col].dtype var = ds.createVariable( col, dtype, dimensions=("key",), contiguous=True) if col in keydatameta and len(keydatameta[col]) > 0: var.setncatts(keydatameta[col]) var[:] = keydata[col].values if not dtype is str else keydata[col].values.astype( np.str) ds.close() except Exception as e: ds.close() # make sure the ds is closed! raise e # All done! return # Make basic helper functions def removeLeapDay(timeseries): """Removes leap days from a given timeseries Parameters ---------- timeseries : array_like The time series data to remove leap days from * If something array_like is given, the length must be 8784 * If a pandas DataFrame or Series is given, time indexes will be used directly Returns ------- Array """ if isinstance(timeseries, np.ndarray): if timeseries.shape[0] == 8760: return timeseries elif timeseries.shape[0] == 8784: times = pd.date_range("01-01-2000 00:00:00", "12-31-2000 23:00:00", freq="H") sel = np.logical_and((times.day == 29), (times.month == 2)) if len(timeseries.shape) == 1: return timeseries[~sel] else: return timeseries[~sel, :] else: raise ResError('Cannot handle array shape '+str(timeseries.shape)) elif isinstance(timeseries, pd.Series) or isinstance(timeseries, pd.DataFrame): times = timeseries.index sel = np.logical_and((times.day == 29), (times.month == 2)) if isinstance(timeseries, pd.Series): return timeseries[~sel] else: return timeseries.loc[~sel] else: return removeLeapDay(np.array(timeseries)) def linearTransition(x, start, stop, invert=False): """Apply a linear transition function to the given data array * All values less than 'start' are mapped to 0 (or 1, if 'invert' is True) * All values greather than 'stop' are mapped to 1 (or 0, if 'invert' is True) * Values between 'start' and 'stop' are mapped to a linearly increasing output (or decreasing, if 'invert' is True) Parameters ---------- x : array_like The data to be mapped start : numeric The starting value of the linear transition stop : numeric The ending value of the linear transition invert : bool, optional Instructs the transition to go from 1->0 if True, or 0->1 if False Returns ------- Array """ tmp = np.zeros(x.shape) s = x <= start tmp[s] = 0 s = (x > start) & (x <= stop) tmp[s] = (x[s]-start)/(stop-start) s = x > stop tmp[s] = 1 if invert: return 1-tmp else: return tmp # Parse Generation File _Data = namedtuple("Data", "gen capex") def parseRESGenerationFile(f, capacity, extrapolateOverCapacity=False, keepLeapDay=True): """Parse one of Sev's RES Generation files * These files are each created for one regional context * Each one contains the time series production values of one RES technology at many capacity levels * Sometimes cost data is also included Parameters ---------- f : str A path to the file to be parsed capacity : numeric or array_like The capacity levels to extract Returns ------- namedtuple """ ds = nc.Dataset(f) try: capUnit = ds['installed_capacity'].unit.lower() except AttributeError: capUnit = ds['installed_capacity'].units.lower() if capUnit == "w": capScaling = 1e9 elif capUnit == "kw": capScaling = 1e6 elif capUnit == "mw": capScaling = 1e3 elif capUnit == "gwh": # SEV MADE A STUPID MISTAKE WITH THE PV FILES, WHICH SHOULD BE FIXED LATER!!!!! # THIS IS HERE AS A BANDAID FIX FOR NOW capScaling = 1e6 else: capScaling = 1.0 try: timeIndex = nc.num2date(ds["time"][:], ds["time"].units) CAP = ds["installed_capacity"][:]/capScaling if "capex" in ds.variables.keys(): hasCapex = True TrueCOST = ds["capex"][:] else: hasCapex = False try: capacity = list(capacity) except: capacity = [capacity, ] def atCapacity(cap): s = np.argmin(np.abs(CAP-cap)) if CAP[s] == cap: gen = ds["capfac"][:, s] if hasCapex: capex = ds["capex"][s] elif cap > CAP[-1]: if extrapolateOverCapacity: gen = ds["capfac"][:, -1] if hasCapex: capex = ds["capex"][s]/CAP[-1]*cap else: raise ResError( "The given capacity (%f) exceeds the maximum capacity(%f)" % (cap, CAP[-1])) else: if CAP[s] > cap: low, high = s-1, s else: low, high = s, s+1 raw = ds["capfac"][:, [low, high]] factor = (cap-CAP[low])/(CAP[high]-CAP[low]) gen = raw[:, 0]*(1-factor) + raw[:, 1]*factor if hasCapex: lowCost, highCost = ds["capex"][[low, high]] capex = lowCost*(1-factor) + highCost*factor if hasCapex: return gen, capex else: return gen, None generations = pd.DataFrame(index=timeIndex,) if hasCapex: capexes = [] for cap in capacity: gen, capex = atCapacity(cap) generations[cap] = gen*cap if hasCapex: capexes.append(capex) if len(capacity) == 1: generations = generations[capacity[0]] if not keepLeapDay: generations = removeLeapDay(generations) except Exception as e: ds.close() raise e # return _SGF(capacity=np.array(capacity), capex=np.array(capexes), generation=generations, # regionName=ds["generation"].region, variable=ds["generation"].technology, # capacityUnit=ds["total_capacity"].unit, capexUnit=ds["total_cost"].unit, # generationUnit=ds["generation"].unit) if hasCapex: return _Data(generations, np.array(capexes)) else: return _Data(generations, None) def rotateFromLatLon(lons, lats, lonSouthPole=18, latSouthPole=-39.25): """This function applies a spherical rotation to a set of given latitude and longitude coordinates, yielding coordinates in the rotated system. Parameters ---------- lons : list, numpy.ndarray A one-dimensional list of longitude coordinates lats : list, numpy.ndarray A one-dimensional list of latitude coordinates lonSouthPole : float The longitude of the rotated system's south pole latSouthPole : float The latitude of the rotated system's south pole """ lons = np.radians(lons) lats = np.radians(lats) theta = np.radians(90+latSouthPole) # south pole is at 18 deg longitude phi = np.radians(lonSouthPole) # south pole is at -39.25 deg latitude x = np.cos(lons) * np.cos(lats) y = np.sin(lons) * np.cos(lats) z = np.sin(lats) x_new = np.cos(theta) * np.cos(phi) * x + np.cos(theta) * \ np.sin(phi) * y + np.sin(theta) * z y_new = -np.sin(phi) * x + np.cos(phi) * y z_new = -np.sin(theta) * np.cos(phi) * x - np.sin(theta) * \ np.sin(phi) * y + np.cos(theta) * z rlonCoords = np.degrees(np.arctan2(y_new, x_new)) rlatCoords = np.degrees(np.arcsin(z_new)) return rlonCoords, rlatCoords def rotateToLatLon(rlons, rlats, lonSouthPole=18, latSouthPole=-39.25): """This function un-does a spherical rotation to a set of given latitude and longitude coordinates (in the rotated), yielding coordinates in the regular longitude and latitude system. Parameters ---------- rlons : list, numpy.ndarray A one-dimensional list of longitude coordinates in the rotated system rlats : list, numpy.ndarray A one-dimensional list of latitude coordinates in the rotated system lonSouthPole : float The longitude of the rotated system's south pole latSouthPole : float The latitude of the rotated system's south pole """ rlons = np.radians(rlons) rlats = np.radians(rlats) theta = -np.radians(90+latSouthPole) # south pole is at 18 deg longitude phi = -np.radians(lonSouthPole) # south pole is at -39.25 deg latitude x = np.cos(rlons) * np.cos(rlats) y = np.sin(rlons) * np.cos(rlats) z = np.sin(rlats) x_new = np.cos(theta) * np.cos(phi) * x + np.sin(phi) * \ y + np.sin(theta) * np.cos(phi) * z y_new = -np.cos(theta) * np.sin(phi) * x + np.cos(phi) * \ y - np.sin(theta) * np.sin(phi) * z z_new = -
np.sin(theta)
numpy.sin
""" Plots Arctic sea ice extent from June 2002-present using JAXA metadata Website : https://ads.nipr.ac.jp/vishop/vishop-extent.html Author : <NAME> Date : 4 August 2016 """ ### Import modules import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation import matplotlib import datetime import urllib.request import urllib as UL ### Directory and time directory = './Figures/' source = 'twitter' now = datetime.datetime.now() currentmn = str(now.month) currentdy = str(now.day-1) currentyr = str(now.year) currenttime = currentmn + '_' + currentdy + '_' + currentyr ### Load url url = 'https://ads.nipr.ac.jp/vishop.ver1/data/graph/plot_extent_n_v2.csv' ### Read file raw_data = UL.request.urlopen(url) dataset =
np.genfromtxt(raw_data, skip_header=0,delimiter=",",)
numpy.genfromtxt
""" It contains the functions to compute the cases that presents an analytical solutions. All functions output the analytical solution in kcal/mol """ import numpy from numpy import pi from scipy import special, linalg from scipy.misc import factorial from math import gamma def an_spherical(q, xq, E_1, E_2, E_0, R, N): """ It computes the analytical solution of the potential of a sphere with Nq charges inside. Took from Kirkwood (1934). Arguments ---------- q : array, charges. xq : array, positions of the charges. E_1: float, dielectric constant inside the sphere. E_2: float, dielectric constant outside the sphere. E_0: float, dielectric constant of vacuum. R : float, radius of the sphere. N : int, number of terms desired in the spherical harmonic expansion. Returns -------- PHI: array, reaction potential. """ PHI = numpy.zeros(len(q)) for K in range(len(q)): rho = numpy.sqrt(numpy.sum(xq[K]**2)) zenit = numpy.arccos(xq[K, 2] / rho) azim = numpy.arctan2(xq[K, 1], xq[K, 0]) phi = 0. + 0. * 1j for n in range(N): for m in range(-n, n + 1): sph1 = special.sph_harm(m, n, zenit, azim) cons1 = rho**n / (E_1 * E_0 * R**(2 * n + 1)) * (E_1 - E_2) * ( n + 1) / (E_1 * n + E_2 * (n + 1)) cons2 = 4 * pi / (2 * n + 1) for k in range(len(q)): rho_k = numpy.sqrt(numpy.sum(xq[k]**2)) zenit_k = numpy.arccos(xq[k, 2] / rho_k) azim_k = numpy.arctan2(xq[k, 1], xq[k, 0]) sph2 = numpy.conj(special.sph_harm(m, n, zenit_k, azim_k)) phi += cons1 * cons2 * q[K] * rho_k**n * sph1 * sph2 PHI[K] = numpy.real(phi) / (4 * pi) return PHI def get_K(x, n): """ It computes the polinomials K needed for Kirkwood-1934 solutions. K_n(x) in Equation 4 in Kirkwood 1934. Arguments ---------- x: float, evaluation point of K. n: int, number of terms desired in the expansion. Returns -------- K: float, polinomials K. """ K = 0. n_fact = factorial(n) n_fact2 = factorial(2 * n) for s in range(n + 1): K += 2**s * n_fact * factorial(2 * n - s) / (factorial(s) * n_fact2 * factorial(n - s)) * x**s return K def an_P(q, xq, E_1, E_2, R, kappa, a, N): """ It computes the solvation energy according to Kirkwood-1934. Arguments ---------- q : array, charges. xq : array, positions of the charges. E_1 : float, dielectric constant inside the sphere. E_2 : float, dielectric constant outside the sphere. R : float, radius of the sphere. kappa: float, reciprocal of Debye length. a : float, radius of the Stern Layer. N : int, number of terms desired in the polinomial expansion. Returns -------- E_P : float, solvation energy. """ qe = 1.60217646e-19 Na = 6.0221415e23 E_0 = 8.854187818e-12 cal2J = 4.184 PHI = numpy.zeros(len(q)) for K in range(len(q)): rho = numpy.sqrt(numpy.sum(xq[K]**2)) zenit = numpy.arccos(xq[K, 2] / rho) azim = numpy.arctan2(xq[K, 1], xq[K, 0]) phi = 0. + 0. * 1j for n in range(N): for m in range(-n, n + 1): P1 = special.lpmv(numpy.abs(m), n, numpy.cos(zenit)) Enm = 0. for k in range(len(q)): rho_k = numpy.sqrt(numpy.sum(xq[k]**2)) zenit_k = numpy.arccos(xq[k, 2] / rho_k) azim_k = numpy.arctan2(xq[k, 1], xq[k, 0]) P2 = special.lpmv(numpy.abs(m), n, numpy.cos(zenit_k)) Enm += q[k] * rho_k**n * factorial(n - numpy.abs( m)) / factorial(n + numpy.abs(m)) * P2 * numpy.exp( -1j * m * azim_k) C2 = (kappa * a)**2 * get_K(kappa * a, n - 1) / ( get_K(kappa * a, n + 1) + n * (E_2 - E_1) / ( (n + 1) * E_2 + n * E_1) * (R / a)**(2 * n + 1) * (kappa * a)**2 * get_K(kappa * a, n - 1) / ((2 * n - 1) * (2 * n + 1))) C1 = Enm / (E_2 * E_0 * a** (2 * n + 1)) * (2 * n + 1) / (2 * n - 1) * (E_2 / ( (n + 1) * E_2 + n * E_1))**2 if n == 0 and m == 0: Bnm = Enm / (E_0 * R) * ( 1 / E_2 - 1 / E_1) - Enm * kappa * a / ( E_0 * E_2 * a * (1 + kappa * a)) else: Bnm = 1. / (E_1 * E_0 * R**(2 * n + 1)) * (E_1 - E_2) * ( n + 1) / (E_1 * n + E_2 * (n + 1)) * Enm - C1 * C2 phi += Bnm * rho**n * P1 * numpy.exp(1j * m * azim) PHI[K] = numpy.real(phi) / (4 * pi) C0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J) E_P = 0.5 * C0 * numpy.sum(q * PHI) return E_P def two_sphere(a, R, kappa, E_1, E_2, q): """ It computes the analytical solution of a spherical surface and a spherical molecule with a center charge, both of radius R. Follows Cooper&Barba 2016 Arguments ---------- a : float, center to center distance. R : float, radius of surface and molecule. kappa: float, reciprocal of Debye length. E_1 : float, dielectric constant inside the sphere. E_2 : float, dielectric constant outside the sphere. q : float, number of qe to be asigned to the charge. Returns -------- Einter : float, interaction energy. E1sphere: float, solvation energy of one sphere. E2sphere: float, solvation energy of two spheres together. Note: Einter should match (E2sphere - 2xE1sphere) """ N = 20 # Number of terms in expansion. qe = 1.60217646e-19 Na = 6.0221415e23 E_0 = 8.854187818e-12 cal2J = 4.184 index2 = numpy.arange(N + 1, dtype=float) + 0.5 index = index2[0:-1] K1 = special.kv(index2, kappa * a) K1p = index / (kappa * a) * K1[0:-1] - K1[1:] k1 = special.kv(index, kappa * a) * numpy.sqrt(pi / (2 * kappa * a)) k1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * a)**(3 / 2.)) * special.kv( index, kappa * a) + numpy.sqrt(pi / (2 * kappa * a)) * K1p I1 = special.iv(index2, kappa * a) I1p = index / (kappa * a) * I1[0:-1] + I1[1:] i1 = special.iv(index, kappa * a) * numpy.sqrt(pi / (2 * kappa * a)) i1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * a)**(3 / 2.)) * special.iv( index, kappa * a) + numpy.sqrt(pi / (2 * kappa * a)) * I1p B = numpy.zeros((N, N), dtype=float) for n in range(N): for m in range(N): for nu in range(N): if n >= nu and m >= nu: g1 = gamma(n - nu + 0.5) g2 = gamma(m - nu + 0.5) g3 = gamma(nu + 0.5) g4 = gamma(m + n - nu + 1.5) f1 = factorial(n + m - nu) f2 = factorial(n - nu) f3 = factorial(m - nu) f4 = factorial(nu) Anm = g1 * g2 * g3 * f1 * (n + m - 2 * nu + 0.5) / ( pi * g4 * f2 * f3 * f4) kB = special.kv(n + m - 2 * nu + 0.5, kappa * R) * numpy.sqrt(pi / (2 * kappa * R)) B[n, m] += Anm * kB M = numpy.zeros((N, N), float) E_hat = E_1 / E_2 for i in range(N): for j in range(N): M[i, j] = (2 * i + 1) * B[i, j] * ( kappa * i1p[i] - E_hat * i * i1[i] / a) if i == j: M[i, j] += kappa * k1p[i] - E_hat * i * k1[i] / a RHS = numpy.zeros(N) RHS[0] = -E_hat * q / (4 * pi * E_1 * a * a) a_coeff = linalg.solve(M, RHS) a0 = a_coeff[0] a0_inf = -E_hat * q / (4 * pi * E_1 * a * a) * 1 / (kappa * k1p[0]) phi_2 = a0 * k1[0] + i1[0] * numpy.sum(a_coeff * B[:, 0]) - q / (4 * pi * E_1 * a) phi_1 = a0_inf * k1[0] - q / (4 * pi * E_1 * a) phi_inter = phi_2 - phi_1 CC0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0) Einter = 0.5 * CC0 * q * phi_inter E1sphere = 0.5 * CC0 * q * phi_1 E2sphere = 0.5 * CC0 * q * phi_2 return Einter, E1sphere, E2sphere def constant_potential_single_point(phi0, a, r, kappa): """ It computes the potential in a point 'r' due to a spherical surface with constant potential phi0, immersed in water. Solution to the Poisson-Boltzmann problem. Arguments ---------- phi0 : float, constant potential on the surface of the sphere. a : float, radius of the sphere. r : float, distance from the center of the sphere to the evaluation point. kappa: float, reciprocal of Debye length. Returns -------- phi : float, potential. """ phi = a / r * phi0 * numpy.exp(kappa * (a - r)) return phi def constant_charge_single_point(sigma0, a, r, kappa, epsilon): """ It computes the potential in a point 'r' due to a spherical surface with constant charge sigma0 immersed in water. Solution to the Poisson-Boltzmann problem. . Arguments ---------- sigma0 : float, constant charge on the surface of the sphere. a : float, radius of the sphere. r : float, distance from the center of the sphere to the evaluation point. kappa : float, reciprocal of Debye length. epsilon: float, water dielectric constant. Returns -------- phi : float, potential. """ dphi0 = -sigma0 / epsilon phi = -dphi0 * a * a / (1 + kappa * a) * numpy.exp(kappa * (a - r)) / r return phi def constant_potential_single_charge(phi0, radius, kappa, epsilon): """ It computes the surface charge of a sphere at constant potential, immersed in water. Arguments ---------- phi0 : float, constant potential on the surface of the sphere. radius : float, radius of the sphere. kappa : float, reciprocal of Debye length. epsilon: float, water dielectric constant . Returns -------- sigma : float, surface charge. """ dphi = -phi0 * ((1. + kappa * radius) / radius) sigma = -epsilon * dphi # Surface charge return sigma def constant_charge_single_potential(sigma0, radius, kappa, epsilon): """ It computes the surface potential on a sphere at constant charged, immersed in water. Arguments ---------- sigma0 : float, constant charge on the surface of the sphere. radius : float, radius of the sphere. kappa : float, reciprocal of Debye length. epsilon: float, water dielectric constant. Returns -------- phi : float, potential. """ dphi = -sigma0 / epsilon phi = -dphi * radius / (1. + kappa * radius) # Surface potential return phi def constant_potential_twosphere(phi01, phi02, r1, r2, R, kappa, epsilon): """ It computes the solvation energy of two spheres at constant potential, immersed in water. Arguments ---------- phi01 : float, constant potential on the surface of the sphere 1. phi02 : float, constant potential on the surface of the sphere 2. r1 : float, radius of sphere 1. r2 : float, radius of sphere 2. R : float, distance center to center. kappa : float, reciprocal of Debye length. epsilon: float, water dielectric constant. Returns -------- E_solv : float, solvation energy. """ kT = 4.1419464e-21 # at 300K qe = 1.60217646e-19 Na = 6.0221415e23 E_0 = 8.854187818e-12 cal2J = 4.184 C0 = kT / qe phi01 /= C0 phi02 /= C0 k1 = special.kv(0.5, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) k2 = special.kv(0.5, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2)) B00 = special.kv(0.5, kappa * R) * numpy.sqrt(pi / (2 * kappa * R)) # k1 = special.kv(0.5,kappa*r1)*numpy.sqrt(2/(pi*kappa*r1)) # k2 = special.kv(0.5,kappa*r2)*numpy.sqrt(2/(pi*kappa*r2)) # B00 = special.kv(0.5,kappa*R)*numpy.sqrt(2/(pi*kappa*R)) i1 = special.iv(0.5, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) i2 = special.iv(0.5, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2)) a0 = (phi02 * B00 * i1 - phi01 * k2) / (B00 * B00 * i2 * i1 - k1 * k2) b0 = (phi02 * k1 - phi01 * B00 * i2) / (k2 * k1 - B00 * B00 * i1 * i2) U1 = 2 * pi * phi01 * (phi01 * numpy.exp(kappa * r1) * (kappa * r1) * (kappa * r1) / numpy.sinh(kappa * r1) - pi * a0 / (2 * i1)) U2 = 2 * pi * phi02 * (phi02 * numpy.exp(kappa * r2) * (kappa * r2) * (kappa * r2) / numpy.sinh(kappa * r2) - pi * b0 / (2 * i2)) print('U1: {}'.format(U1)) print('U2: {}'.format(U2)) print('E: {}'.format(U1 + U2)) C1 = C0 * C0 * epsilon / kappa u1 = U1 * C1 u2 = U2 * C1 CC0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0) E_solv = CC0 * (u1 + u2) return E_solv def constant_potential_twosphere_2(phi01, phi02, r1, r2, R, kappa, epsilon): """ It computes the solvation energy of two spheres at constant potential, immersed in water. Arguments ---------- phi01 : float, constant potential on the surface of the sphere 1. phi02 : float, constant potential on the surface of the sphere 2. r1 : float, radius of sphere 1. r2 : float, radius of sphere 2. R : float, distance center to center. kappa : float, reciprocal of Debye length. epsilon: float, water dielectric constant. Returns -------- E_solv : float, solvation energy. """ kT = 4.1419464e-21 # at 300K qe = 1.60217646e-19 Na = 6.0221415e23 E_0 = 8.854187818e-12 cal2J = 4.184 h = R - r1 - r2 # E_inter = r1*r2*epsilon/(4*R) * ( (phi01+phi02)**2 * log(1+numpy.exp(-kappa*h)) + (phi01-phi02)**2*log(1-numpy.exp(-kappa*h)) ) # E_inter = epsilon*r1*phi01**2/2 * log(1+numpy.exp(-kappa*h)) E_solv = epsilon * r1 * r2 * (phi01**2 + phi02**2) / (4 * (r1 + r2)) * ( (2 * phi01 * phi02) / (phi01**2 + phi02**2) * log( (1 + numpy.exp(-kappa * h)) / (1 - numpy.exp(-kappa * h))) + log(1 - numpy.exp(-2 * kappa * h))) CC0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0) E_solv *= CC0 return E_solv def constant_potential_single_energy(phi0, r1, kappa, epsilon): """ It computes the total energy of a single sphere at constant potential, inmmersed in water. Arguments ---------- phi0 : float, constant potential on the surface of the sphere. r1 : float, radius of sphere. kappa : float, reciprocal of Debye length. epsilon: float, water dielectric constant. Returns -------- E : float, total energy. """ N = 1 # Number of terms in expansion qe = 1.60217646e-19 Na = 6.0221415e23 E_0 = 8.854187818e-12 cal2J = 4.184 index2 = numpy.arange(N + 1, dtype=float) + 0.5 index = index2[0:-1] K1 = special.kv(index2, kappa * r1) K1p = index / (kappa * r1) * K1[0:-1] - K1[1:] k1 = special.kv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) k1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.kv( index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * K1p a0_inf = phi0 / k1[0] U1_inf = a0_inf * k1p[0] C1 = 2 * pi * kappa * phi0 * r1 * r1 * epsilon C0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0) E = C0 * C1 * U1_inf return E def constant_charge_single_energy(sigma0, r1, kappa, epsilon): """ It computes the total energy of a single sphere at constant charge, inmmersed in water. Arguments ---------- sigma0 : float, constant charge on the surface of the sphere. r1 : float, radius of sphere. kappa : float, reciprocal of Debye length. epsilon: float, water dielectric constant. Returns -------- E : float, total energy. """ N = 20 # Number of terms in expansion qe = 1.60217646e-19 Na = 6.0221415e23 E_0 = 8.854187818e-12 cal2J = 4.184 index2 = numpy.arange(N + 1, dtype=float) + 0.5 index = index2[0:-1] K1 = special.kv(index2, kappa * r1) K1p = index / (kappa * r1) * K1[0:-1] - K1[1:] k1 = special.kv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) k1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.kv( index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * K1p a0_inf = -sigma0 / (epsilon * kappa * k1p[0]) U1_inf = a0_inf * k1[0] C1 = 2 * pi * sigma0 * r1 * r1 C0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0) E = C0 * C1 * U1_inf return E def constant_potential_twosphere_dissimilar(phi01, phi02, r1, r2, R, kappa, epsilon): """ It computes the interaction energy for dissimilar spheres at constant potential, immersed in water. Arguments ---------- phi01 : float, constant potential on the surface of the sphere 1. phi02 : float, constant potential on the surface of the sphere 2. r1 : float, radius of sphere 1. r2 : float, radius of sphere 2. R : float, distance center to center. kappa : float, reciprocal of Debye length. epsilon: float, water dielectric constant. Returns -------- E_inter: float, interaction energy. """ N = 20 # Number of terms in expansion qe = 1.60217646e-19 Na = 6.0221415e23 E_0 = 8.854187818e-12 cal2J = 4.184 index2 = numpy.arange(N + 1, dtype=float) + 0.5 index = index2[0:-1] K1 = special.kv(index2, kappa * r1) K1p = index / (kappa * r1) * K1[0:-1] - K1[1:] k1 = special.kv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) k1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.kv( index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * K1p K2 = special.kv(index2, kappa * r2) K2p = index / (kappa * r2) * K2[0:-1] - K2[1:] k2 = special.kv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2)) k2p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r2)**(3 / 2.)) * special.kv( index, kappa * r2) + numpy.sqrt(pi / (2 * kappa * r2)) * K2p I1 = special.iv(index2, kappa * r1) I1p = index / (kappa * r1) * I1[0:-1] + I1[1:] i1 = special.iv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) i1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.iv( index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * I1p I2 = special.iv(index2, kappa * r2) I2p = index / (kappa * r2) * I2[0:-1] + I2[1:] i2 = special.iv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2)) i2p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r2)**(3 / 2.)) * special.iv( index, kappa * r2) + numpy.sqrt(pi / (2 * kappa * r2)) * I2p B = numpy.zeros((N, N), dtype=float) for n in range(N): for m in range(N): for nu in range(N): if n >= nu and m >= nu: g1 = gamma(n - nu + 0.5) g2 = gamma(m - nu + 0.5) g3 = gamma(nu + 0.5) g4 = gamma(m + n - nu + 1.5) f1 = factorial(n + m - nu) f2 = factorial(n - nu) f3 = factorial(m - nu) f4 = factorial(nu) Anm = g1 * g2 * g3 * f1 * (n + m - 2 * nu + 0.5) / ( pi * g4 * f2 * f3 * f4) kB = special.kv(n + m - 2 * nu + 0.5, kappa * R) * numpy.sqrt(pi / (2 * kappa * R)) B[n, m] += Anm * kB M = numpy.zeros((2 * N, 2 * N), float) for j in range(N): for n in range(N): M[j, n + N] = (2 * j + 1) * B[j, n] * i1[j] / k2[n] M[j + N, n] = (2 * j + 1) * B[j, n] * i2[j] / k1[n] if n == j: M[j, n] = 1 M[j + N, n + N] = 1 RHS = numpy.zeros(2 * N) RHS[0] = phi01 RHS[N] = phi02 coeff = linalg.solve(M, RHS) a = coeff[0:N] / k1 b = coeff[N:2 * N] / k2 a0 = a[0] a0_inf = phi01 / k1[0] b0 = b[0] b0_inf = phi02 / k2[0] U1_inf = a0_inf * k1p[0] U1_h = a0 * k1p[0] + i1p[0] * numpy.sum(b * B[:, 0]) U2_inf = b0_inf * k2p[0] U2_h = b0 * k2p[0] + i2p[0] * numpy.sum(a * B[:, 0]) C1 = 2 * pi * kappa * phi01 * r1 * r1 * epsilon C2 = 2 * pi * kappa * phi02 * r2 * r2 * epsilon C0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0) E_inter = C0 * (C1 * (U1_h - U1_inf) + C2 * (U2_h - U2_inf)) return E_inter def constant_charge_twosphere_dissimilar(sigma01, sigma02, r1, r2, R, kappa, epsilon): """ It computes the interaction energy between two dissimilar spheres at constant charge, immersed in water. Arguments ---------- sigma01: float, constant charge on the surface of the sphere 1. sigma02: float, constant charge on the surface of the sphere 2. r1 : float, radius of sphere 1. r2 : float, radius of sphere 2. R : float, distance center to center. kappa : float, reciprocal of Debye length. epsilon: float, water dielectric constant. Returns -------- E_inter: float, interaction energy. """ N = 20 # Number of terms in expansion qe = 1.60217646e-19 Na = 6.0221415e23 E_0 = 8.854187818e-12 cal2J = 4.184 index2 = numpy.arange(N + 1, dtype=float) + 0.5 index = index2[0:-1] K1 = special.kv(index2, kappa * r1) K1p = index / (kappa * r1) * K1[0:-1] - K1[1:] k1 = special.kv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) k1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.kv( index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * K1p K2 = special.kv(index2, kappa * r2) K2p = index / (kappa * r2) * K2[0:-1] - K2[1:] k2 = special.kv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2)) k2p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r2)**(3 / 2.)) * special.kv( index, kappa * r2) + numpy.sqrt(pi / (2 * kappa * r2)) * K2p I1 = special.iv(index2, kappa * r1) I1p = index / (kappa * r1) * I1[0:-1] + I1[1:] i1 = special.iv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) i1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.iv( index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * I1p I2 = special.iv(index2, kappa * r2) I2p = index / (kappa * r2) * I2[0:-1] + I2[1:] i2 = special.iv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2)) i2p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r2)**(3 / 2.)) * special.iv( index, kappa * r2) + numpy.sqrt(pi / (2 * kappa * r2)) * I2p B = numpy.zeros((N, N), dtype=float) for n in range(N): for m in range(N): for nu in range(N): if n >= nu and m >= nu: g1 = gamma(n - nu + 0.5) g2 = gamma(m - nu + 0.5) g3 = gamma(nu + 0.5) g4 = gamma(m + n - nu + 1.5) f1 = factorial(n + m - nu) f2 = factorial(n - nu) f3 = factorial(m - nu) f4 = factorial(nu) Anm = g1 * g2 * g3 * f1 * (n + m - 2 * nu + 0.5) / ( pi * g4 * f2 * f3 * f4) kB = special.kv(n + m - 2 * nu + 0.5, kappa * R) * numpy.sqrt(pi / (2 * kappa * R)) B[n, m] += Anm * kB M = numpy.zeros((2 * N, 2 * N), float) for j in range(N): for n in range(N): M[j, n + N] = (2 * j + 1) * B[j, n] * r1 * i1p[j] / (r2 * k2p[n]) M[j + N, n] = (2 * j + 1) * B[j, n] * r2 * i2p[j] / (r1 * k1p[n]) if n == j: M[j, n] = 1 M[j + N, n + N] = 1 RHS = numpy.zeros(2 * N) RHS[0] = sigma01 * r1 / epsilon RHS[N] = sigma02 * r2 / epsilon coeff = linalg.solve(M, RHS) a = coeff[0:N] / (-r1 * kappa * k1p) b = coeff[N:2 * N] / (-r2 * kappa * k2p) a0 = a[0] a0_inf = -sigma01 / (epsilon * kappa * k1p[0]) b0 = b[0] b0_inf = -sigma02 / (epsilon * kappa * k2p[0]) U1_inf = a0_inf * k1[0] U1_h = a0 * k1[0] + i1[0] * numpy.sum(b * B[:, 0]) U2_inf = b0_inf * k2[0] U2_h = b0 * k2[0] + i2[0] * numpy.sum(a * B[:, 0]) C1 = 2 * pi * sigma01 * r1 * r1 C2 = 2 * pi * sigma02 * r2 * r2 C0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0) E_inter = C0 * (C1 * (U1_h - U1_inf) + C2 * (U2_h - U2_inf)) return E_inter def molecule_constant_potential(q, phi02, r1, r2, R, kappa, E_1, E_2): """ It computes the interaction energy between a molecule (sphere with point-charge in the center) and a sphere at constant potential, immersed in water. Arguments ---------- q : float, number of qe to be asigned to the charge. phi02 : float, constant potential on the surface of the sphere 2. r1 : float, radius of sphere 1, i.e the molecule. r2 : float, radius of sphere 2. R : float, distance center to center. kappa : float, reciprocal of Debye length. E_1 : float, dielectric constant inside the sphere/molecule. E_2 : float, dielectric constant outside the sphere/molecule. Returns -------- E_inter: float, interaction energy. """ N = 20 # Number of terms in expansion qe = 1.60217646e-19 Na = 6.0221415e23 E_0 = 8.854187818e-12 cal2J = 4.184 index2 = numpy.arange(N + 1, dtype=float) + 0.5 index = index2[0:-1] K1 = special.kv(index2, kappa * r1) K1p = index / (kappa * r1) * K1[0:-1] - K1[1:] k1 = special.kv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) k1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.kv( index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * K1p K2 = special.kv(index2, kappa * r2) K2p = index / (kappa * r2) * K2[0:-1] - K2[1:] k2 = special.kv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2)) k2p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r2)**(3 / 2.)) * special.kv( index, kappa * r2) + numpy.sqrt(pi / (2 * kappa * r2)) * K2p I1 = special.iv(index2, kappa * r1) I1p = index / (kappa * r1) * I1[0:-1] + I1[1:] i1 = special.iv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) i1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.iv( index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * I1p I2 = special.iv(index2, kappa * r2) I2p = index / (kappa * r2) * I2[0:-1] + I2[1:] i2 = special.iv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2)) i2p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r2)**(3 / 2.)) * special.iv( index, kappa * r2) + numpy.sqrt(pi / (2 * kappa * r2)) * I2p B = numpy.zeros((N, N), dtype=float) for n in range(N): for m in range(N): for nu in range(N): if n >= nu and m >= nu: g1 = gamma(n - nu + 0.5) g2 = gamma(m - nu + 0.5) g3 = gamma(nu + 0.5) g4 = gamma(m + n - nu + 1.5) f1 = factorial(n + m - nu) f2 = factorial(n - nu) f3 = factorial(m - nu) f4 = factorial(nu) Anm = g1 * g2 * g3 * f1 * (n + m - 2 * nu + 0.5) / ( pi * g4 * f2 * f3 * f4) kB = special.kv(n + m - 2 * nu + 0.5, kappa * R) * numpy.sqrt(pi / (2 * kappa * R)) B[n, m] += Anm * kB E_hat = E_1 / E_2 M = numpy.zeros((2 * N, 2 * N), float) for j in range(N): for n in range(N): M[j, n + N] = (2 * j + 1) * B[j, n] * ( kappa * i1p[j] / k2[n] - E_hat * j / r1 * i1[j] / k2[n]) M[j + N, n] = (2 * j + 1) * B[j, n] * i2[j] * 1 / ( kappa * k1p[n] - E_hat * n / r1 * k1[n]) if n == j: M[j, n] = 1 M[j + N, n + N] = 1 RHS = numpy.zeros(2 * N) RHS[0] = -E_hat * q / (4 * pi * E_1 * r1 * r1) RHS[N] = phi02 coeff = linalg.solve(M, RHS) a = coeff[0:N] / (kappa * k1p - E_hat * numpy.arange(N) / r1 * k1) b = coeff[N:2 * N] / k2 a0 = a[0] a0_inf = -E_hat * q / (4 * pi * E_1 * r1 * r1) * 1 / (kappa * k1p[0]) b0 = b[0] b0_inf = phi02 / k2[0] phi_inf = a0_inf * k1[0] - q / (4 * pi * E_1 * r1) phi_h = a0 * k1[0] + i1[0] * numpy.sum(b * B[:, 0]) - q / (4 * pi * E_1 * r1) phi_inter = phi_h - phi_inf U_inf = b0_inf * k2p[0] U_h = b0 * k2p[0] + i2p[0] * numpy.sum(a * B[:, 0]) U_inter = U_h - U_inf C0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0) C1 = q * 0.5 C2 = 2 * pi * kappa * phi02 * r2 * r2 * E_2 E_inter = C0 * (C1 * phi_inter + C2 * U_inter) return E_inter def molecule_constant_charge(q, sigma02, r1, r2, R, kappa, E_1, E_2): """ It computes the interaction energy between a molecule (sphere with point-charge in the center) and a sphere at constant charge, immersed in water. Arguments ---------- q : float, number of qe to be asigned to the charge. sigma02: float, constant charge on the surface of the sphere 2. r1 : float, radius of sphere 1, i.e the molecule. r2 : float, radius of sphere 2. R : float, distance center to center. kappa : float, reciprocal of Debye length. E_1 : float, dielectric constant inside the sphere/molecule. E_2 : float, dielectric constant outside the sphere/molecule. Returns -------- E_inter: float, interaction energy. """ N = 20 # Number of terms in expansion qe = 1.60217646e-19 Na = 6.0221415e23 E_0 = 8.854187818e-12 cal2J = 4.184 index2 = numpy.arange(N + 1, dtype=float) + 0.5 index = index2[0:-1] K1 = special.kv(index2, kappa * r1) K1p = index / (kappa * r1) * K1[0:-1] - K1[1:] k1 = special.kv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) k1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.kv( index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * K1p K2 = special.kv(index2, kappa * r2) K2p = index / (kappa * r2) * K2[0:-1] - K2[1:] k2 = special.kv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2)) k2p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r2)**(3 / 2.)) * special.kv( index, kappa * r2) + numpy.sqrt(pi / (2 * kappa * r2)) * K2p I1 = special.iv(index2, kappa * r1) I1p = index / (kappa * r1) * I1[0:-1] + I1[1:] i1 = special.iv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) i1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.iv( index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * I1p I2 = special.iv(index2, kappa * r2) I2p = index / (kappa * r2) * I2[0:-1] + I2[1:] i2 = special.iv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2)) i2p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r2)**(3 / 2.)) * special.iv( index, kappa * r2) + numpy.sqrt(pi / (2 * kappa * r2)) * I2p B = numpy.zeros((N, N), dtype=float) for n in range(N): for m in range(N): for nu in range(N): if n >= nu and m >= nu: g1 = gamma(n - nu + 0.5) g2 = gamma(m - nu + 0.5) g3 = gamma(nu + 0.5) g4 = gamma(m + n - nu + 1.5) f1 = factorial(n + m - nu) f2 = factorial(n - nu) f3 = factorial(m - nu) f4 = factorial(nu) Anm = g1 * g2 * g3 * f1 * (n + m - 2 * nu + 0.5) / ( pi * g4 * f2 * f3 * f4) kB = special.kv(n + m - 2 * nu + 0.5, kappa * R) * numpy.sqrt(pi / (2 * kappa * R)) B[n, m] += Anm * kB E_hat = E_1 / E_2 M = numpy.zeros((2 * N, 2 * N), float) for j in range(N): for n in range(N): M[j, n + N] = (2 * j + 1) * B[j, n] * ( i1p[j] / k2p[n] - E_hat * j / r1 * i1[j] / (kappa * k2p[n])) M[j + N, n] = (2 * j + 1) * B[j, n] * i2p[j] * kappa * 1 / ( kappa * k1p[n] - E_hat * n / r1 * k1[n]) if n == j: M[j, n] = 1 M[j + N, n + N] = 1 RHS = numpy.zeros(2 * N) RHS[0] = -E_hat * q / (4 * pi * E_1 * r1 * r1) RHS[N] = -sigma02 / E_2 coeff = linalg.solve(M, RHS) a = coeff[0:N] / (kappa * k1p - E_hat * numpy.arange(N) / r1 * k1) b = coeff[N:2 * N] / (kappa * k2p) a0 = a[0] a0_inf = -E_hat * q / (4 * pi * E_1 * r1 * r1) * 1 / (kappa * k1p[0]) b0 = b[0] b0_inf = -sigma02 / (E_2 * kappa * k2p[0]) phi_inf = a0_inf * k1[0] - q / (4 * pi * E_1 * r1) phi_h = a0 * k1[0] + i1[0] * numpy.sum(b * B[:, 0]) - q / (4 * pi * E_1 * r1) phi_inter = phi_h - phi_inf U_inf = b0_inf * k2[0] U_h = b0 * k2[0] + i2[0] * numpy.sum(a * B[:, 0]) U_inter = U_h - U_inf C0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0) C1 = q * 0.5 C2 = 2 * pi * sigma02 * r2 * r2 E_inter = C0 * (C1 * phi_inter + C2 * U_inter) return E_inter def constant_potential_twosphere_identical(phi01, phi02, r1, r2, R, kappa, epsilon): """ It computes the interaction energy for two spheres at constants surface potential, according to Carnie&Chan-1993. Arguments ---------- phi01 : float, constant potential on the surface of the sphere 1. phi02 : float, constant potential on the surface of the sphere 2. r1 : float, radius of sphere 1. r2 : float, radius of sphere 2. R : float, distance center to center. kappa : float, reciprocal of Debye length. epsilon: float, water dielectric constant. Note: Even though it admits phi01 and phi02, they should be identical; and the same is applicable to r1 and r2. Returns -------- E_inter: float, interaction energy. """ # From Carnie+Chan 1993 N = 20 # Number of terms in expansion qe = 1.60217646e-19 Na = 6.0221415e23 E_0 = 8.854187818e-12 cal2J = 4.184 index = numpy.arange(N, dtype=float) + 0.5 k1 = special.kv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) k2 = special.kv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2)) i1 = special.iv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1)) i2 = special.iv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2)) B = numpy.zeros((N, N), dtype=float) for n in range(N): for m in range(N): for nu in range(N): if n >= nu and m >= nu: g1 = gamma(n - nu + 0.5) g2 = gamma(m - nu + 0.5) g3 = gamma(nu + 0.5) g4 = gamma(m + n - nu + 1.5) f1 = factorial(n + m - nu) f2 = factorial(n - nu) f3 = factorial(m - nu) f4 = factorial(nu) Anm = g1 * g2 * g3 * f1 * (n + m - 2 * nu + 0.5) / ( pi * g4 * f2 * f3 * f4) kB = special.kv(n + m - 2 * nu + 0.5, kappa * R) * numpy.sqrt(pi / (2 * kappa * R)) B[n, m] += Anm * kB M = numpy.zeros((N, N), float) for i in range(N): for j in range(N): M[i, j] = (2 * i + 1) * B[i, j] * i1[i] if i == j: M[i, j] += k1[i] RHS = numpy.zeros(N) RHS[0] = phi01 a = linalg.solve(M, RHS) a0 = a[0] U = 4 * pi * (-pi / 2 * a0 / phi01 * 1 / numpy.sinh(kappa * r1) + kappa * r1 + kappa * r1 / numpy.tanh(kappa * r1)) C0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0) C1 = r1 * epsilon * phi01 * phi01 E_inter = U * C1 * C0 return E_inter def constant_charge_twosphere_identical(sigma, a, R, kappa, epsilon): """ It computes the interaction energy for two spheres at constants surface charge, according to Carnie&Chan-1993. Arguments ---------- sigma : float, constant charge on the surface of the spheres. a : float, radius of spheres. R : float, distance center to center. kappa : float, reciprocal of Debye length. epsilon: float, water dielectric constant. Returns -------- E_inter: float, interaction energy. """ # From Carnie+Chan 1993 N = 10 # Number of terms in expansion E_p = 0 # Permitivitty inside sphere qe = 1.60217646e-19 Na = 6.0221415e23 E_0 = 8.854187818e-12 cal2J = 4.184 index2 = numpy.arange(N + 1, dtype=float) + 0.5 index = index2[0:-1] K1 = special.kv(index2, kappa * a) K1p = index / (kappa * a) * K1[0:-1] - K1[1:] k1 = special.kv(index, kappa * a) * numpy.sqrt(pi / (2 * kappa * a)) k1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * a)**(3 / 2.)) * special.kv( index, kappa * a) + numpy.sqrt(pi / (2 * kappa * a)) * K1p I1 = special.iv(index2, kappa * a) I1p = index / (kappa * a) * I1[0:-1] + I1[1:] i1 = special.iv(index, kappa * a) * numpy.sqrt(pi / (2 * kappa * a)) i1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * a)**(3 / 2.)) * special.iv( index, kappa * a) + numpy.sqrt(pi / (2 * kappa * a)) * I1p B = numpy.zeros((N, N), dtype=float) for n in range(N): for m in range(N): for nu in range(N): if n >= nu and m >= nu: g1 = gamma(n - nu + 0.5) g2 = gamma(m - nu + 0.5) g3 = gamma(nu + 0.5) g4 = gamma(m + n - nu + 1.5) f1 = factorial(n + m - nu) f2 = factorial(n - nu) f3 = factorial(m - nu) f4 = factorial(nu) Anm = g1 * g2 * g3 * f1 * (n + m - 2 * nu + 0.5) / ( pi * g4 * f2 * f3 * f4) kB = special.kv(n + m - 2 * nu + 0.5, kappa * R) * numpy.sqrt(pi / (2 * kappa * R)) B[n, m] += Anm * kB M =
numpy.zeros((N, N), float)
numpy.zeros
import folium import itertools import math import numpy as np def _degree_to_zoom_level(l1, l2, margin = 0.0): degree = abs(l1 - l2) * (1 + margin) zoom_level_int = 0 if degree != 0: zoom_level_float = math.log(360/degree)/math.log(2) zoom_level_int = int(zoom_level_float) else: zoom_level_int = 18 return zoom_level_int def display_map(latitude = None, longitude = None, resolution = None): """ Generates a folium map with a lat-lon bounded rectangle drawn on it. Folium maps can be Args: latitude (float,float): a tuple of latitude bounds in (min,max) format longitude ((float, float)): a tuple of longitude bounds in (min,max) format resolution ((float, float)): tuple in (lat,lon) format used to draw a grid on your map. Values denote spacing of latitude and longitude lines. Gridding starts at top left corner. Default displays no grid at all. Returns: folium.Map: A map centered on the lat lon bounds. A rectangle is drawn on this map detailing the perimeter of the lat,lon bounds. A zoom level is calculated such that the resulting viewport is the closest it can possibly get to the centered bounding rectangle without clipping it. An optional grid can be overlaid with primitive interpolation. .. _Folium https://github.com/python-visualization/folium """ assert latitude is not None assert longitude is not None ###### ###### ###### CALC ZOOM LEVEL ###### ###### ###### margin = -0.5 zoom_bias = 0 lat_zoom_level = _degree_to_zoom_level(*latitude, margin = margin) + zoom_bias lon_zoom_level = _degree_to_zoom_level(*longitude, margin = margin) + zoom_bias zoom_level = min(lat_zoom_level, lon_zoom_level) ###### ###### ###### CENTER POINT ###### ###### ###### center = [
np.mean(latitude)
numpy.mean
""" MINOR MODIFICATION FOR ClassySORT: In the original implementation of SORT, it threw away the object classification category information For example, (0: person, 1: bike, etc.) I needed to keep that information for use in `Watchout`, so I added a `detclass` attribute to the `KalmanBoxTracker` object which stores YOLO detection object class information. With this modification, SORT returns data in the format: `[x_left_top, y_left_top, x_right_bottom, y_right_bottom, object_category, object_identification]` ========================================================================== SORT: A Simple, Online and Realtime Tracker Copyright (C) 2016-2020 <NAME> <EMAIL> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ from __future__ import print_function import os import numpy as np import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt import matplotlib.patches as patches from skimage import io import glob import time import argparse from filterpy.kalman import KalmanFilter np.random.seed(0) def linear_assignment(cost_matrix): try: import lap #linear assignment problem solver _, x, y = lap.lapjv(cost_matrix, extend_cost = True) return np.array([[y[i],i] for i in x if i>=0]) except ImportError: from scipy.optimize import linear_sum_assignment x,y = linear_sum_assignment(cost_matrix) return np.array(list(zip(x,y))) def iou_batch(bb_test, bb_gt): """ From SORT: Computes IOU between two boxes in the form [x1,y1,x2,y2] """ bb_gt =
np.expand_dims(bb_gt, 0)
numpy.expand_dims
"""GNSS utility functions, mostly based on satellite ephemerides. Author: <NAME> """ try: import autograd.numpy as np except(ImportError): print("""Package 'autograd' not found. 'autograd.numpy' is necessary for coarse-time navigation via maximum-likelihood estimation. Falling back to 'numpy'.""") import numpy as np import pymap3d as pm try: import mkl_fft as fft_lib except(ImportError): print("""Package 'mkl_fft' not found. Consider installing 'mkl_fft' with 'conda install -c intel mkl_fft' for faster FFT and IFFT. Falling back to 'numpy.fft'.""") import numpy.fft as fft_lib def get_sat_pos_vel_acc(t, eph): """Calculate positions, velocities, and accelerations of satellites. Accepts arrays for t / eph, i.e., can calculate multiple points in time / multiple satellites at once. Does not interpolate GLONASS. Implemented according to <NAME>., et al. “Computing GPS Satellite Velocity and Acceleration from the Broadcast Navigation Message.” Annual of Navigation, vol. 66, no. 4, 2019, pp. 769–779. https://www.gps.gov/technical/icwg/meetings/2019/09/GPS-SV-velocity-and-acceleration.pdf Inputs: t - GPS time(s) [s] (ignored for SBAS) eph - Ephemeris as array(s) Outputs: positions - Satellite position(s) in ECEF XYZ as array(s) [m] velocities - Satellite velocity/ies in ECEF XYZ as array(s) [m/s] accelerations - Sat. acceleration(s) in ECEF XYZ as array(s) [m/s^2] Author: <NAME> """ if not np.isnan(eph[2]).any(): # No SBAS / GLONASS t = np.mod(t, 7 * 24 * 60 * 60) cic = eph[13] # "cic"] crs = eph[10] # "crs"] Omega0 = eph[15] # "Omega0"] Deltan = eph[4] # "Deltan"] cis = eph[14] # "cis"] M0 = eph[2] # "M0"] i0 = eph[11] # "i0"] cuc = eph[7] # "cuc"] crc = eph[9] # "crc"] e = eph[5] # "e"] Omega = eph[6] # "Omega"] cus = eph[8] # "cus"] OmegaDot = eph[16] # "OmegaDot"] sqrtA = eph[3] # "sqrtA"] IDOT = eph[12] # "IDOT"] toe = eph[20] # "toe"] # Broadcast Navigation User Equations # WGS 84 value of the earth’s gravitational constant for GPS user [m^3/s^2] mu = 3.986005e14 # WGS 84 value of the earth’s rotation rate [rad/s] OmegaeDot = 7.2921151467e-5 # Semi-major axis A = sqrtA ** 2 # Computed mean motion [rad/s] n0 = np.sqrt(mu / A ** 3) # Time from ephemeris reference epoch tk = np.array(t - toe) # t is GPS system time at time of transmission, i.e., GPS time corrected # for transit time (range/speed of light). Furthermore, tk shall be the # actual total time difference between the time t and the epoch time toe, # and must account for beginning or end of week crossovers. That is, if tk # is greater than 302,400 seconds, subtract 604,800 seconds from tk. If tk # is less than -302,400 seconds, add 604,800 seconds to tk. with np.nditer(tk, op_flags=["readwrite"]) as it: for tk_i in it: if tk_i > 302400: tk_i[...] = tk_i - 604800 elif tk_i < -302400: tk_i[...] = tk_i + 604800 # Corrected mean motion n = n0 + Deltan # Mean anomaly Mk = M0 + n * tk # Kepler’s equation (Mk = Ek - e*np.sin(Ek)) solved for eccentric anomaly # (Ek) by iteration: # Initial value [rad] Ek = Mk # Refined value, three iterations, (j = 0,1,2) for j in range(3): Ek = Ek + (Mk - Ek + e * np.sin(Ek)) / (1 - e * np.cos(Ek)) # True anomaly (unambiguous quadrant) nuk = 2 * np.arctan(np.sqrt((1 + e) / (1 - e)) * np.tan(Ek / 2)) # Argument of Latitude Phik = nuk + Omega # Argument of Latitude Correction deltauk = cus * np.sin(2 * Phik) + cuc * np.cos(2 * Phik) # Radius Correction deltark = crs * np.sin(2 * Phik) + crc * np.cos(2 * Phik) # Inclination Correction deltaik = cis * np.sin(2 * Phik) + cic * np.cos(2 * Phik) # Corrected Argument of Latitude uk = Phik + deltauk # Corrected Radius rk = A * (1 - e * np.cos(Ek)) + deltark # Corrected Inclination ik = i0 + deltaik + IDOT * tk # Positions in Orbital Plane xkDash = rk *
np.cos(uk)
numpy.cos
import numpy as np import pytest from psyneulink.core.components.component import ComponentError from psyneulink.core.components.mechanisms.processing.transfermechanism import TransferMechanism from psyneulink.core.components.mechanisms.modulatory.control.controlmechanism import ControlMechanism from psyneulink.core.components.projections.pathway.mappingprojection import MappingProjection from psyneulink.core.components.ports.modulatorysignals.controlsignal import ControlSignal from psyneulink.core.compositions.composition import Composition from psyneulink.core.scheduling.condition import AfterTrial, Any, AtTrial, Never from psyneulink.core.globals.keywords import CONTROL_PROJECTION_PARAMS, INPUT_PORT_PARAMS, FUNCTION_PARAMS, \ OUTPUT_PORT_PARAMS, OVERRIDE, PARAMETER_PORT_PARAMS, MAPPING_PROJECTION_PARAMS, SAMPLE, TARGET from psyneulink.library.components.mechanisms.processing.objective.comparatormechanism import ComparatorMechanism class TestMechanismRuntimeParams: def test_mechanism_runtime_param(self): T = TransferMechanism() assert T.noise.base == 0.0 assert T.parameter_ports['noise'].value == 0.0 # runtime param used for noise T.execute(runtime_params={"noise": 10.0}, input=2.0) assert T.value == 12.0 # defalut values are restored assert T.noise.base == 0.0 assert T.parameter_ports['noise'].value == 0.0 T.execute(input=2.0) assert T.noise.base == 0.0 assert T.parameter_ports['noise'].value == 0.0 assert T.value == 2.0 def test_function_runtime_param(self): T = TransferMechanism() assert T.function.slope.base == 1.0 assert T.parameter_ports['slope'].value == 1.0 # runtime param used for slope T.execute(runtime_params={"slope": 10.0}, input=2.0) assert T.value == 20.0 # defalut values are restored assert T.function.slope.base == 1.0 assert T.parameter_ports['slope'].value == 1.0 T.execute(input=2.0) assert T.function.slope.base == 1.0 assert T.parameter_ports['slope'].value == 1.0 assert T.value == 2.0 def test_use_and_reset_not_affect_other_assigned_vals(self): T = TransferMechanism() # Intercept attr assigned T.function.intercept.base = 2.0 assert T.function.intercept.base == 2.0 # runtime param used for slope T.execute(runtime_params={"slope": 10.0}, input=2.0) # Assigned intercept and runtime_param for slope are used: assert T.value == 22.0 # slope restored to default, but intercept retains assigned value assert T.function.slope.base == 1.0 assert T.parameter_ports['slope'].value == 1.0 assert T.function.intercept.base == 2.0 # previous runtime_param for slope not used again T.execute(input=2.0) assert T.value == 4.0 assert T.function.slope.base == 1.0 assert T.parameter_ports['slope'].value == 1.0 def test_reset_to_previously_assigned_val(self): T = TransferMechanism() assert T.function.slope.base == 1.0 assert T.parameter_ports['slope'].value == 1.0 # set slope directly T.function.slope.base = 2.0 assert T.function.slope.base == 2.0 # runtime param used for slope T.execute(runtime_params={"slope": 10.0}, input=2.0) assert T.value == 20.0 # slope restored to previously assigned value assert T.function.slope.base == 2.0 assert T.parameter_ports['slope'].value == 2.0 T.execute(input=2.0) assert T.value == 4.0 assert T.function.slope.base == 2.0 def test_runtime_param_error(self): T = TransferMechanism() with pytest.raises(ComponentError) as error_text: T.execute(runtime_params={"glunfump": 10.0}, input=2.0) assert ("Invalid specification in runtime_params arg for TransferMechanism" in str(error_text.value) and "'glunfump'" in str(error_text.value)) # FIX 5/8/20 [JDC]: ADDD TEST FOR INVALID FUNCTION PARAM # def test_mechanism_execute_mechanism_fuction_runtime_param_errors(self): # # FIX 5/8/20 [JDC]: SHOULD FAIL BUT DOESN'T: # T = TransferMechanism() # with pytest.raises(ComponentError) as error_text: # T.function.execute(runtime_params={"spranit": 23}) # assert ("Invalid specification in runtime_params arg for TransferMechanism" in str(error_text.value) and # "'spranit'" in str(error_text.value)) class TestCompositionRuntimeParams: def test_mechanism_param_no_condition(self): T = TransferMechanism() C = Composition() C.add_node(T) assert T.noise.base == 0.0 assert T.parameter_ports['noise'].value == 0.0 # runtime param used for noise C.run(inputs={T: 2.0}, runtime_params={T: {"noise": 10.0}}) assert T.parameters.value.get(C.default_execution_id) == 12.0 # noise restored to default assert T.noise.base == 0.0 assert T.parameter_ports['noise'].parameters.value.get(C) == 0.0 # previous runtime_param for noise not used again C.run(inputs={T: 2.0}, ) assert T.noise.base == 0.0 assert T.parameter_ports['noise'].parameters.value.get(C) == 0.0 assert T.parameters.value.get(C.default_execution_id) == 2.0 def test_function_param_no_condition(self): T = TransferMechanism() C = Composition() C.add_node(T) assert T.function.slope.base == 1.0 assert T.parameter_ports['slope'].value == 1.0 C.run(inputs={T: 2.0}, runtime_params={T: {"slope": 10.0}}) # runtime param used for slope assert T.parameters.value.get(C.default_execution_id) == 20.0 # slope restored to default assert T.function.slope.base == 1.0 assert T.parameter_ports['slope'].parameters.value.get(C) == 1.0 # previous runtime_param for slope not used again C.run(inputs={T: 2.0}) assert T.parameters.value.get(C.default_execution_id) == 2.0 assert T.function.slope.base == 1.0 assert T.parameter_ports['slope'].parameters.value.get(C) == 1.0 def test_input_port_param_no_condition(self): T1 = TransferMechanism() T2 = TransferMechanism() C = Composition(pathways=[T1,T2]) T1.function.slope.base = 5 T2.input_port.function.scale = 4 C.run(inputs={T1: 2.0}, runtime_params={ T1: {'slope': 3}, # Mechanism's function (Linear) parameter T2: { 'noise': 0.5, # Mechanism's parameter 'intercept': 1, # Mechanism's function parameter INPUT_PORT_PARAMS: { 'weight':5, # InputPort's parameter (NOT USED) 'scale':20, # InputPort's function (LinearCombination) parameter FUNCTION_PARAMS:{'weights':10, # InputPort's function (LinearCombination) parameter }} } }) assert T2.parameters.value.get(C.default_execution_id) == [1201.5] # all parameters restored to previous values (assigned or defaults) assert T1.function.parameters.slope.get(C) == 5.0 assert T1.parameter_ports['slope'].parameters.value.get(C) == 5.0 assert T2.parameters.noise.get(C) == 0.0 assert T2.parameter_ports['noise'].parameters.value.get(C) == 0.0 assert T2.function.intercept.base == 0.0 assert T2.function.parameters.intercept.get(C) == 0.0 assert T2.input_port.weight is None assert T2.input_port.function.scale == 4.0 assert T2.input_port.function.parameters.scale.get(C) == 4.0 assert T2.input_port.function.weights is None assert T2.input_port.function.parameters.weights.get(C) is None C.run(inputs={T1: 2.0}, ) assert C.results == [[[1201.5]], # (2*3*20*10)+1+0.5 [[40.]]] # 2*5*4 assert T1.function.slope.base == 5.0 assert T1.parameter_ports['slope'].parameters.value.get(C) == 5.0 assert T2.input_port.function.parameters.scale.get(C.default_execution_id) == 4.0 # FIX 5/8/20 [JDC]: ADD TESTS FOR PARAMETERPORTS AND OUTPUTPORTS def test_mechanism_param_with_AtTrial_condition(self): T = TransferMechanism() C = Composition() C.add_node(T) assert T.noise.base == 0.0 assert T.parameter_ports['noise'].value == 0.0 # run with runtime param used for noise only on trial 1 C.run(inputs={T: 2.0}, runtime_params={T: {"noise": (10.0, AtTrial(1))}}, # scheduler=S, num_trials=4) # noise restored to default assert T.noise.base == 0.0 assert T.parameter_ports['noise'].parameters.value.get(C) == 0.0 # run again to insure restored default for noise after last run C.run(inputs={T: 2.0}) # results reflect runtime_param used for noise only on trial 1 assert np.allclose(C.results, [np.array([[2.]]), # Trial 0 - condition not satisfied yet np.array([[12.]]), # Trial 1 - condition satisfied np.array([[2.]]), # Trial 2 - condition no longer satisfied (not sticky) np.array([[2.]]), # Trial 3 - condition no longer satisfied (not sticky) np.array([[2.]])]) # New run (runtime param no longer applies) def test_mechanism_param_with_AfterTrial_condition(self): T = TransferMechanism() C = Composition() C.add_node(T) assert T.noise.base == 0.0 assert T.parameter_ports['noise'].value == 0.0 # run with runtime param used for noise after trial 1 (i.e., trials 2 and 3) C.run(inputs={T: 2.0}, runtime_params={T: {"noise": (10.0, AfterTrial(1))}}, num_trials=4) # noise restored to default assert T.noise.base == 0.0 assert T.parameter_ports['noise'].parameters.value.get(C) == 0.0 # run again to insure restored default for noise after last run C.run(inputs={T: 2.0}) # results reflect runtime_param used for noise only on trials 2 and 3 assert np.allclose(C.results, [np.array([[2.]]), # Trial 0 - condition not satisfied yet np.array([[2.]]), # Trial 1 - condition not satisfied yet np.array([[12.]]), # Trial 2 - condition satisfied np.array([[12.]]), # Trial 3 - condition satisfied (sticky) np.array([[2.]])]) # New run (runtime param no longer applies) def test_mechanism_param_with_combined_condition(self): T = TransferMechanism() C = Composition() C.add_node(T) # run with runtime param used for noise only on trial 1 and after 2 (i.e., 3 and 4) C.run(inputs={T: 2.0}, runtime_params={T: {"noise": (10.0, Any(AtTrial(1), AfterTrial(2)))}}, num_trials=5) # noise restored to default assert T.noise.base == 0.0 assert T.parameter_ports['noise'].parameters.value.get(C) == 0.0 # run again to insure restored default for noise after last run C.run(inputs={T: 2.0}) # results reflect runtime_param used for noise only on trials 1, 3 and 4 assert np.allclose(C.results,[np.array([[2.]]), # Trial 0 - NOT condition 0, NOT condition 1 np.array([[12.]]), # Trial 1 - condition 0, NOT condition 1 np.array([[2.]]), # Trial 2 - NOT condition 0, NOT condition 1 np.array([[12.]]), # Trial 3 - NOT condition 0, condition 1 np.array([[12.]]), # Trial 4 - NOT condition 0, condition 1 np.array([[2.]])]) # New run (runtime param no longer applies) def test_function_param_with_combined_condition(self): T = TransferMechanism() C = Composition() C.add_node(T) assert T.function.slope.base == 1.0 assert T.parameter_ports['slope'].value == 1.0 # run with runtime param used for slope only on trial 1 and after 2 (i.e., 3 and 4) C.run(inputs={T: 2.0}, runtime_params={T: {"slope": (10.0, Any(AtTrial(1), AfterTrial(2)))}}, num_trials=5) # slope restored to default assert T.function.slope.base == 1.0 assert T.parameter_ports['slope'].value == 1.0 # run again to insure restored default for slope after last run C.run(inputs={T: 2.0}) # results reflect runtime_param used for slope only on trials 1, 3 and 4 assert np.allclose(C.results,[np.array([[2.]]), # Trial 0 - NOT condition 0, NOT condition 1 np.array([[20.]]), # Trial 1 - condition 0, NOT condition 1 np.array([[2.]]), # Trial 2 - NOT condition 0, NOT condition 1 np.array([[20.]]), # Trial 3 - NOT condition 0, condition 1 np.array([[20.]]), # Trial 4 - NOT condition 0, condition 1 np.array([[2.]])]) # New run (runtime param no longer applies) def test_function_params_with_different_but_overlapping_conditions(self): T = TransferMechanism() C = Composition() C.add_node(T) assert T.function.slope.base == 1.0 assert T.parameter_ports['slope'].value == 1.0 # run with runtime param used for slope only on trial 1 and after 2 (i.e., 3 and 4) C.run(inputs={T: 2.0}, runtime_params={T: {"slope": (10.0, Any(AtTrial(1), AfterTrial(2))), "intercept": (1.0, AfterTrial(1))}}, num_trials=4) # slope restored to default assert T.function.slope.base == 1.0 assert T.parameter_ports['slope'].value == 1.0 assert T.function.intercept.base == 0.0 assert T.parameter_ports['intercept'].value == 0.0 # run again to insure restored default for slope after last run C.run(inputs={T: 2.0}) # results reflect runtime_param used for slope only on trials 1, 3 and 4 assert np.allclose(C.results,[np.array([[2.]]), # Trial 0 - neither condition met np.array([[20.]]), # Trial 1 - slope condition met, intercept not met np.array([[3.]]), # Trial 2 - slope condition not met, intercept met np.array([[21.]]), # Trial 3 - both conditions met np.array([[2.]])]) # New run (runtime param no longer applies) def test_mechanism_params_with_combined_conditions_for_all_INPUT_PORT_PARAMS(self): T1 = TransferMechanism() T2 = TransferMechanism() C = Composition(pathways=[T1,T2]) T1.function.slope.base = 5 T2.input_port.function.scale = 4 C.run(inputs={T1: 2.0}, runtime_params={ T1: {'slope': (3, AtTrial(1))}, # Condition on Mechanism's function (Linear) parameter T2: { 'noise': 0.5, 'intercept': (1, AtTrial(2)), # Condition on Mechanism's function parameter # FIX 5/8/20 [JDC]: WHAT ABOUT PROJECTION PARAMS? INPUT_PORT_PARAMS: ({ 'weight':5, 'scale':20, FUNCTION_PARAMS:{'weights':10, }}, AtTrial(3)) # Condition on INPUT_PORT_PARAMS } }, num_trials=4 ) # all parameters restored to previous values (assigned or defaults) assert T1.function.parameters.slope.get(C) == 5.0 assert T1.parameter_ports['slope'].parameters.value.get(C) == 5.0 assert T2.parameters.noise.get(C) == 0.0 assert T2.parameter_ports['noise'].parameters.value.get(C) == 0.0 assert T2.function.intercept.base == 0.0 assert T2.function.parameters.intercept.get(C) == 0.0 assert T2.input_port.weight is None assert T2.input_port.function.scale == 4.0 assert T2.input_port.function.parameters.scale.get(C) == 4.0 assert T2.input_port.function.weights is None assert T2.input_port.function.parameters.weights.get(C) is None # run again to insure restored default for noise after last run C.run(inputs={T1: 2.0}, ) assert np.allclose(C.results,[np.array([[40.5]]), # Trial 0 - no conditions met (2*5*4)+0.5 np.array([[24.5]]), # Trial 1 - only T1.slope condition met (2*3*4)+0.5 np.array([[41.5]]), # Trial 2 - only T2.intercept condition met (2*5*4)+1+0.5 np.array([[2000.5]]), # Trial 3 - only T2 INPUT_PORT_PARAMS conditions met # (2*5*20*10) + 0.5 np.array([[40.]])]) # New run - revert to assignments before previous run (2*5*4) def test_mechanism_params_with_combined_conditions_for_individual_INPUT_PORT_PARAMS(self): T1 = TransferMechanism() T2 = TransferMechanism() P = MappingProjection(sender=T1, receiver=T2, name='MY PROJECTION') C = Composition(pathways=[[T1,P,T2]]) T1.function.slope.base = 5 T2.input_port.function.scale = 4 # Run 0: Test INPUT_PORT_PARAMS for InputPort function directly (scale) and in FUNCTION_PARAMS dict (weights) C.run(inputs={T1: 2.0}, runtime_params={ T1: {'slope': (3, AtTrial(1))}, # Condition on Mechanism's function (Linear) parameter T2: { 'noise': 0.5, 'intercept': (1, AtTrial(2)), # Condition on Mechanism's function parameter INPUT_PORT_PARAMS: { 'weight':5, # FIX 5/8/20 [JDC] ADD TEST FOR THIS ERROR: # 'scale': (20, AtTrial(3), 3 ), 'scale': (20, AtTrial(3)), FUNCTION_PARAMS:{'weights':(10, AtTrial(4))}, } }, }, num_trials=5 ) # Run 1: Test INPUT_PORT_PARAMS override by Never() Condition C.run(inputs={T1: 2.0}, runtime_params={ T2: { 'noise': 0.5, INPUT_PORT_PARAMS: ({ 'scale': (20, AtTrial(0)), FUNCTION_PARAMS:{'weights':(10, AtTrial(1))} }, Never()) }, }, num_trials=2 ) # Run 2: Test INPUT_PORT_PARAMS constraint to Trial 1 assignements C.run(inputs={T1: 2.0}, runtime_params={ T2: { 'noise': 0.5, 'intercept': (1, AtTrial(0)), INPUT_PORT_PARAMS: ({ 'scale': (20, AtTrial(0)), FUNCTION_PARAMS:{'weights':(10, AtTrial(1))}, }, AtTrial(1)) }, }, num_trials=2 ) # Run 3: Test Projection params C.run(inputs={T1: 2.0}, runtime_params={ T2: { 'noise': 0.5, INPUT_PORT_PARAMS: { MAPPING_PROJECTION_PARAMS:{ 'variable':(1000, AtTrial(0)), 'value':(2000, AtTrial(1)), }, P:{'value':(3000, AtTrial(2))}, 'MY PROJECTION':{'value':(4000, AtTrial(3))} } } }, num_trials=4 ) # all parameters restored to previous values (assigned or defaults) assert T1.function.parameters.slope.get(C) == 5.0 assert T1.parameter_ports['slope'].parameters.value.get(C) == 5.0 assert T2.parameters.noise.get(C) == 0.0 assert T2.parameter_ports['noise'].parameters.value.get(C) == 0.0 assert T2.function.intercept.base == 0.0 assert T2.function.parameters.intercept.get(C) == 0.0 assert T2.input_port.weight is None assert T2.input_port.function.parameters.scale.get(C) == 4.0 assert T2.input_port.function.parameters.weights.get(C) is None # Final Run: insure restored default for noise after last run C.run(inputs={T1: 2.0}, ) assert np.allclose(C.results,[ # Conditions satisfied: np.array([[40.5]]), # Run 0 Trial 0: no conditions (2*5*4)+0.5 np.array([[24.5]]), # Run 0 Trial 1: only T1.slope condition (2*3*4)+0.5 np.array([[41.5]]), # Run 0 Trial 2: only T2.intercept condition (2*5*4)+1+0.5 np.array([[200.5]]), # Run 0 Trial 3: only T2 scale condition (2*5*20) + 0.5 np.array([[400.5]]), # Run 0 Trial 4: only T2.function.weights condition (2*5*4*10)+0.5
np.array([[40.5]])
numpy.array
# encoding: utf-8 # # @Author: <NAME>, <NAME> # @Date: Nov 15, 2021 # @Filename: ism.py # @License: BSD 3-Clause # @Copyright: <NAME>, <NAME> import os.path from astropy import units as u from astropy import constants as c import numpy as np from astropy.io import fits, ascii from astropy.table import Table from scipy.special import sph_harm from astropy.wcs import WCS from astropy.wcs.utils import proj_plane_pixel_scales from astropy.coordinates import SkyCoord from astropy.modeling.models import Sersic2D from dataclasses import dataclass import sys if (sys.version_info[0]+sys.version_info[1]/10.) < 3.8: from backports.cached_property import cached_property else: from functools import cached_property from scipy.ndimage.interpolation import map_coordinates from scipy.interpolate import interp1d, interp2d import lvmdatasimulator from lvmdatasimulator import log import progressbar from joblib import Parallel, delayed from astropy.convolution import convolve_fft, kernels from lvmdatasimulator.utils import calc_circular_mask, convolve_array, set_default_dict_values, \ ism_extinction, check_overlap, assign_units fluxunit = u.erg / (u.cm ** 2 * u.s * u.arcsec ** 2) velunit = u.km / u.s def brightness_inhomogeneities_sphere(harm_amplitudes, ll, phi_cur, theta_cur, rho, med, radius, thickness): """ Auxiliary function producing the inhomogeneities on the brightness distribution for the Cloud of Bubble objects using the spherical harmonics. """ brt = theta_cur * 0 for m in np.arange(-ll, ll + 1): brt += (harm_amplitudes[m + ll * (ll + 1) - 1] * sph_harm(m, ll, phi_cur, theta_cur).real * med * (1 - np.sqrt(abs(rho.value ** 2 / radius.value ** 2 - (1 - thickness / 2) ** 2)))) return brt def sphere_brt_in_line(brt_3d, rad_3d, rad_model, flux_model): """ Auxiliary function computing the brightness of the Cloud or Bubble at given radii and in given line according to the Cloudy models """ p = interp1d(rad_model, flux_model, fill_value='extrapolate', assume_sorted=True) return p(rad_3d) * brt_3d def interpolate_sphere_to_cartesian(spherical_array, x_grid=None, y_grid=None, z_grid=None, rad_grid=None, theta_grid=None, phi_grid=None, pxscale=1. * u.pc): """ Auxiliary function to project the brightness or velocities from the spherical to cartesian coordinates """ x, y, z = np.meshgrid(x_grid, y_grid, z_grid, indexing='ij') phi_c, theta_c, rad_c = xyz_to_sphere(x, y, z, pxscale=pxscale) ir = interp1d(rad_grid, np.arange(len(rad_grid)), bounds_error=False) ith = interp1d(theta_grid, np.arange(len(theta_grid))) iphi = interp1d(phi_grid, np.arange(len(phi_grid))) new_ir = ir(rad_c.ravel()) new_ith = ith(theta_c.ravel()) new_iphi = iphi(phi_c.ravel()) cart_data = map_coordinates(spherical_array, np.vstack([new_ir, new_ith, new_iphi]), order=1, mode='constant', cval=0) return cart_data.reshape([len(x_grid), len(y_grid), len(z_grid)]).T def limit_angle(value, bottom_limit=0, top_limit=np.pi): """ Auxiliary function to limit the angle values to the range of [0, pi] """ value[value < bottom_limit] += (top_limit - bottom_limit) value[value > top_limit] -= (top_limit - bottom_limit) return value def xyz_to_sphere(x, y, z, pxscale=1. * u.pc): """ Auxiliary function to map the coordinates from cartesian to spherical system """ phi_c = np.arctan2(y, x) rad_c = (np.sqrt(x ** 2 + y ** 2 + z ** 2)) rad_c[rad_c == 0 * u.pc] = 1e-3 * pxscale theta_c = (np.arccos(z / rad_c)) phi_c = limit_angle(phi_c, 0 * u.radian, 2 * np.pi * u.radian) theta_c = limit_angle(theta_c, 0 * u.radian, np.pi * u.radian) return phi_c, theta_c, rad_c def find_model_id(file=lvmdatasimulator.CLOUDY_MODELS, check_id=None, params=lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id']): """ Checks the input parameters of the pre-computed Cloudy model and return corresponding index in the grid """ with fits.open(file) as hdu: if check_id is None: if params is None: check_id = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'] log.warning(f'Default Cloudy model will be used (id = {check_id})') else: summary_table = Table(hdu['Summary'].data) indexes = np.arange(len(summary_table)).astype(int) rec_table = np.ones(shape=len(summary_table), dtype=bool) def closest(rec, prop, val): unique_col = np.unique(summary_table[prop][rec]) if isinstance(val, str): res = unique_col[unique_col == val] if len(res) == 0: return "" return res else: return unique_col[np.argsort(np.abs(unique_col - val))[0]] for p in params: if p not in summary_table.colnames or params[p] is None or \ ((isinstance(params[p], float) or isinstance(params[p], int)) and ~np.isfinite(params[p])): continue rec_table = rec_table & (summary_table[p] == closest(indexes, p, params[p])) indexes = np.flatnonzero(rec_table) if len(indexes) == 0: break if len(indexes) == 0 or len(indexes) == len(summary_table): check_id = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'] log.warning('Input parameters do not correspond to any pre-computed Cloudy model.' 'Default Cloudy model will be used (id = {0})'.format(check_id)) elif len(indexes) == 1: check_id = summary_table['Model_ID'][indexes[0]] for p in params: if p not in summary_table.colnames or params[p] is None or \ ((isinstance(params[p], float) or isinstance(params[p], int)) and ~np.isfinite(params[p])): continue if params[p] != summary_table[p][indexes[0]]: log.warning(f'Use the closest pre-computed Cloudy model with id = {check_id}') break else: check_id = summary_table['Model_ID'][indexes[0]] log.warning(f'Select one of the closest pre-computed Cloudy model with id = {check_id}') # # for cur_ext in range(len(hdu)): # if cur_ext == 0: # continue # found = False # for p in params: # if p == 'id': # continue # precision = 1 # if p == 'Z': # precision = 2 # if np.round(params[p], precision) != np.round(hdu[cur_ext].header[p], precision): # break # else: # found = True # if found: # return cur_ext, check_id # check_id = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'] # log.warning('Input parameters do not correspond to any pre-computed Cloudy model.' # 'Default Cloudy model will be used (id = {0})'.format(check_id)) extension_index = None while extension_index is None: extension_index = [cur_ext for cur_ext in range(len(hdu)) if ( check_id == hdu[cur_ext].header.get('MODEL_ID'))] if len(extension_index) == 0: if check_id == lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id']: log.warning('Model_ID = {0} is not found in the Cloudy models grid. ' 'Use the first one in the grid instead'.format(check_id)) extension_index = 1 else: log.warning('Model_ID = {0} is not found in the Cloudy models grid. ' 'Use default ({1}) instead'.format(check_id, lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'])) check_id = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'] extension_index = None else: extension_index = extension_index[0] return extension_index, check_id @dataclass class Nebula: """ Base class defining properties of every nebula type. By itself it describes the rectangular nebula (e.g. DIG) Constructed nebula has 4 dimensions, where 4th derive its appearance in different lines (if spectrum_id is None, or if it is dark nebula => only one line) """ xc: int = None # Center of the region in the field of view, pix yc: int = None # Center of the region in the field of view, pix x0: int = 0 # Coordinates of the bottom-left corner in the field of view, pix y0: int = 0 # Coordinates of the bottom-left corner in the field of view, pix pix_width: int = None # full width of cartesian grid, pix (should be odd) pix_height: int = None # full height of cartesian grid, pix (should be odd) width: u.pc = 0 * u.pc # width of the nebula in pc (not used if pix_width is set up) height: u.pc = 0 * u.pc # height of the nebula in pc (not used if pix_height is set up) pxscale: u.pc = 0.01 * u.pc # pixel size in pc spectrum_id: int = None # ID of a template Cloudy emission spectrum for this nebula n_brightest_lines: int = None # limit the number of the lines to the first N brightest sys_velocity: velunit = 0 * velunit # Systemic velocity turbulent_sigma: velunit = 10 * velunit # Velocity dispersion due to turbulence; included in calculations of LSF max_brightness: fluxunit = 1e-15 * fluxunit max_extinction: u.mag = 0 * u.mag perturb_scale: int = 0 * u.pc # Spatial scale of correlated perturbations perturb_amplitude: float = 0.1 # Maximal amplitude of perturbations _npix_los: int = 1 # full size along line of sight in pixels nchunks: int = -1 # number of chuncks to use for the convolution. If negative, select automatically vel_gradient: (velunit / u.pc) = 0 # velocity gradient along the nebula vel_pa: u.degree = 0 # Position angle of the kinematical axis (for the velocity gradient or rotation velocity) def __post_init__(self): self._assign_all_units() self._assign_position_params() self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula def _assign_all_units(self): whole_list_properties = ['pxscale', 'sys_velocity', 'turbulent_sigma', 'max_brightness', 'max_extinction', 'perturb_scale', 'radius', 'PA', 'length', 'width', 'vel_gradient', 'r_eff', 'vel_rot', 'expansion_velocity', 'spectral_axis', 'vel_pa'] whole_list_units = [u.pc, velunit, velunit, fluxunit, u.mag, u.pc, u.pc, u.degree, u.pc, u.pc, (velunit / u.pc), u.kpc, velunit, velunit, velunit, u.degree] cur_list_properties = [] cur_list_units = [] for prp, unit in zip(whole_list_properties, whole_list_units): if hasattr(self, prp): cur_list_properties.append(prp) cur_list_units.append(unit) assign_units(self, cur_list_properties, cur_list_units) def _assign_position_params(self, conversion_type='rect'): if conversion_type == 'rect': for v in ['height', 'width']: if self.__getattribute__(f'pix_{v}') is None: val = np.round((self.__getattribute__(v) / self.pxscale).value / 2.).astype(int) * 2 + 1 else: val = np.round(self.__getattribute__(f'pix_{v}') / 2.).astype(int) * 2 + 1 setattr(self, f'pix_{v}', val) elif conversion_type == 'ellipse': self.pix_width = (np.round(np.abs(self.radius / self.pxscale * np.sin(self.PA)) + np.abs(self.radius / self.pxscale * self.ax_ratio * np.cos(self.PA))).astype(int) * 2 + 1).value self.pix_height = (np.round(np.abs(self.radius / self.pxscale * np.cos(self.PA)) + np.abs(self.radius / self.pxscale * self.ax_ratio * np.sin(self.PA))).astype(int) * 2 + 1).value elif conversion_type == 'galaxy': self.pix_width = (np.round(np.abs(self.r_max * np.sin(self.PA)) + np.abs(self.r_max * self.ax_ratio * np.cos(self.PA))).astype(int) * 2 + 1).value self.pix_height = (np.round(np.abs(self.r_max * np.cos(self.PA)) + np.abs(self.r_max * self.ax_ratio * np.sin(self.PA))).astype(int) * 2 + 1).value elif conversion_type == 'cylinder': self.pix_width = (np.ceil((self.length * np.abs(np.sin(self.PA)) + self.width * np.abs(np.cos(self.PA))) / self.pxscale / 2. ).astype(int) * 2 + 1).value self.pix_height = (np.ceil((self.length * np.abs(np.cos(self.PA)) + self.width * np.abs(np.sin(self.PA))) / self.pxscale / 2. ).astype(int) * 2 + 1).value if (self.xc is not None) and (self.yc is not None): self.x0 = self.xc - np.round((self.pix_width - 1) / 2).astype(int) self.y0 = self.yc - np.round((self.pix_height - 1) / 2).astype(int) elif (self.x0 is not None) and (self.y0 is not None): self.xc = self.x0 + np.round((self.pix_width - 1) / 2).astype(int) self.yc = self.y0 + np.round((self.pix_height - 1) / 2).astype(int) @cached_property def _cartesian_x_grid(self): return np.arange(self.pix_width) * self.pxscale @cached_property def _cartesian_y_grid(self): return np.arange(self.pix_height) * self.pxscale @cached_property def _cartesian_z_grid(self): return np.arange(self._npix_los) * self.pxscale @cached_property def _max_density(self): return self.max_extinction * (1.8e21 / (u.cm ** 2 * u.mag)) @cached_property def _brightness_3d_cartesian(self): """ Method to obtain the brightness (or density) distribution of the nebula in cartesian coordinates """ brt = np.ones(shape=(self.pix_height, self.pix_width, self._npix_los), dtype=float) / self._npix_los if (self.perturb_scale > 0) and (self.perturb_amplitude > 0): pertscale = (self.perturb_scale / self.pxscale).value perturb = np.random.uniform(-1, 1, (self.pix_height, self.pix_width) ) * self.perturb_amplitude / self._npix_los xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) f = np.exp(-2 * (xx ** 2 + yy ** 2) / pertscale) perturb = 4 / np.sqrt(np.pi) / pertscale * np.fft.ifft2(np.fft.fft2(perturb) * np.fft.fft2(f)).real brt += (perturb[:, :, None] - np.median(perturb)) return brt @cached_property def _brightness_4d_cartesian(self): """ Derive the brightness (or density) distribution of the nebula for each emission line in cartesian coordinates """ if self.spectrum_id is None or self.linerat_constant: flux_ratios = np.array([1.]) else: with fits.open(lvmdatasimulator.CLOUDY_MODELS) as hdu: flux_ratios = hdu[self.spectrum_id].data[1:, 1] index_ha = np.flatnonzero(hdu[self.spectrum_id].data[1:, 0] == 6562.81) if self.n_brightest_lines is not None and \ (self.n_brightest_lines > 0) and (self.n_brightest_lines < len(flux_ratios)): indexes_sorted = np.argsort(flux_ratios)[::-1] flux_ratios = flux_ratios[indexes_sorted[: self.n_brightest_lines]] index_ha = np.flatnonzero(hdu[self.spectrum_id].data[1:, 0][indexes_sorted] == 6562.81) if len(index_ha) == 1: self._ref_line_id = index_ha[0] return self._brightness_3d_cartesian[None, :, :, :] * flux_ratios[:, None, None, None] @cached_property def brightness_skyplane(self): """ Project the 3D nebula onto sky plane (for emission or continuum sources) """ if self.max_brightness > 0: norm_max = self.max_brightness else: norm_max = 1 map2d = np.nansum(self._brightness_3d_cartesian, 2) return map2d / np.nanmax(map2d) * norm_max @cached_property def brightness_skyplane_lines(self): """ Project the 3D emission nebula line onto sky plane (return images in each emission line) """ if self.max_brightness > 0: map2d = np.nansum(self._brightness_4d_cartesian, 3) return map2d / np.nanmax(map2d[self._ref_line_id, :, :]) * self.max_brightness else: return None @cached_property def extinction_skyplane(self): """ Project the 3D nebula onto sky plane (for dark clouds) """ if self.max_extinction > 0: map2d = np.nansum(self._brightness_3d_cartesian, 2) return map2d / np.nanmax(map2d) * self._max_density / (1.8e21 / (u.cm ** 2 * u.mag)) else: return None @cached_property def vel_field(self): return self._get_2d_velocity() # if vel_field is None: # return np.atleast_1d(self.sys_velocity) # else: # return vel_field + self.sys_velocity def _get_2d_velocity(self): if hasattr(self, 'vel_gradient') and (self.vel_gradient is not None) and (self.vel_gradient != 0): xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) vel_field = (- (xx - (self.pix_width - 1) / 2) * np.sin(self.vel_pa) + (yy - (self.pix_height - 1) / 2) * np.cos(self.vel_pa)) * self.pxscale * self.vel_gradient return vel_field else: return None # @cached_property # def line_profile(self): # lprf = np.zeros(shape=len(self.los_velocity), dtype=float) # lprf[np.floor(len(lprf) / 2.).astype(int)] = 1. # return lprf @dataclass class Rectangle(Nebula): """ Class defining a simple rectangular component. This is equal to Nebula, but no perturbations and turbulence by default """ perturb_amplitude: float = 0.0 # Maximal amplitude of perturbations turbulent_sigma: velunit = 0 * velunit # Velocity dispersion due to turbulence; included in calculations of LSF def __post_init__(self): self._assign_all_units() self._assign_position_params() self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @dataclass class Ellipse(Nebula): """ Class defining a simple elliptical component. No perturbations and turbulence by default """ perturb_amplitude: float = 0.0 # Maximal amplitude of perturbations turbulent_sigma: velunit = 0 * velunit # Velocity dispersion due to turbulence; included in calculations of LSF radius: u.pc = 1.0 * u.pc # Radius along the major axis of the ellipse (or radius of the circle) PA: u.degree = 90 * u.degree # position angle of the major axis ax_ratio: float = 1. # ratio of minor/major axes def __post_init__(self): self._assign_all_units() self._npix_los = 1 self._assign_position_params(conversion_type='ellipse') self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @cached_property def _brightness_3d_cartesian(self): """ Method to obtain the brightness (or density) distribution of the nebula in cartesian coordinates """ xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) brt = np.ones(shape=(self.pix_height, self.pix_width), dtype=np.float32) angle = (self.PA + 90 * u.degree).to(u.radian).value xct = (xx - (self.pix_width - 1) / 2) * np.cos(angle) + \ (yy - (self.pix_height - 1) / 2) * np.sin(angle) yct = (xx - (self.pix_width - 1) / 2) * np.sin(angle) - \ (yy - (self.pix_height - 1) / 2) * np.cos(angle) rmaj = (self.radius.to(u.pc) / self.pxscale.to(u.pc)).value rmin = (self.radius.to(u.pc) / self.pxscale.to(u.pc)).value * self.ax_ratio rec = (xct ** 2 / rmaj ** 2) + (yct ** 2 / rmin ** 2) >= 1 brt[rec] = 0 brt = brt.reshape((self.pix_height, self.pix_width, 1)) return brt @dataclass class Circle(Ellipse): """ Class defining a simple circular component. """ def __post_init__(self): self._assign_all_units() self.ax_ratio = 1. self._npix_los = 1 self._assign_position_params(conversion_type='ellipse') self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @dataclass class Filament(Nebula): """ Class of an isotropic cylindrical shape filament. Defined by its position, length, PA, radius, maximal optical depth. If it is emission-type filament, then also maximal brightness is required. Velocity gradient also can be set up """ PA: u.degree = 90 * u.degree # position angle of the filament length: u.pc = 10 * u.pc # full length of the filament width: u.pc = 0.1 * u.pc # full width (diameter) of the filament def __post_init__(self): self._assign_all_units() self._assign_position_params(conversion_type='cylinder') self._npix_los = 1 self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @cached_property def _brightness_3d_cartesian(self): """ Method to obtain the brightness (or density) distribution of the nebula in cartesian coordinates """ xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) brt = np.zeros_like(xx, dtype=np.float32) xct = (xx - (self.pix_width - 1) / 2) * np.cos(self.PA + 90 * u.degree) + \ (yy - (self.pix_height - 1) / 2) * np.sin(self.PA + 90 * u.degree) yct = (xx - (self.pix_width - 1) / 2) * np.sin(self.PA + 90 * u.degree) - \ (yy - (self.pix_height - 1) / 2) * np.cos(self.PA + 90 * u.degree) rad = ((self.width / self.pxscale).value / 2.) len_px = ((self.length / self.pxscale).value / 2.) rec = (np.abs(yct) <= rad) & (np.abs(xct) <= len_px) brt[rec] = np.sqrt(1. - (yct[rec] / rad) ** 2) brt = brt.reshape((self.pix_height, self.pix_width, 1)) return brt @dataclass class _ObsoleteFilament(Nebula): """ Class of an isotropic cylindrical shape filament. Defined by its position, length, PA, radius, maximal optical depth if it is emission-type filament, then maximal brightness NB: this class is obsolete, but might be considered later in case of implementation of varying line ratios """ PA: u.degree = 90 * u.degree # position angle of the filament length: u.pc = 10 * u.pc # full length of the filament width: u.pc = 0.1 * u.pc # full width (diameter) of the filament vel_gradient: (velunit / u.pc) = 0 # velocity gradient along the filament (to be added) _theta_bins: int = 50 _rad_bins: int = 0 _h_bins: int = 2 _npix_los: int = 101 def __post_init__(self): self._assign_all_units() if self._rad_bins == 0: self._rad_bins = np.ceil(self.width.to(u.pc).value / self.pxscale.to(u.pc).value * 5).astype(int) if (self.xc is not None) and (self.yc is not None): self.x0 = self.xc - np.round((len(self._cartesian_y_grid) - 1) / 2).astype(int) self.y0 = self.yc - np.round((len(self._cartesian_z_grid) - 1) / 2).astype(int) elif (self.x0 is not None) and (self.y0 is not None): self.xc = self.x0 + np.round((len(self._cartesian_y_grid) - 1) / 2).astype(int) self.yc = self.y0 + np.round((len(self._cartesian_z_grid) - 1) / 2).astype(int) self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @cached_property def _theta_grid(self): return np.linspace(0, 2 * np.pi, self._theta_bins) @cached_property def _h_grid(self): return np.linspace(0, self.length, self._h_bins) @cached_property def _rad_grid(self): return np.linspace(0, self.width / 2, self._rad_bins) @cached_property def _cartesian_y_grid(self): npix = np.ceil(1.01 * (self.length * np.abs(np.sin(self.PA)) + self.width * np.abs(np.cos(self.PA))) / self.pxscale).astype(int) npix_l = npix / 2 - np.ceil(self.length / 2 * np.sin(-self.PA) / self.pxscale).astype(int) return (np.linspace(0, npix, npix + 1) - npix_l) * self.pxscale @cached_property def _cartesian_z_grid(self): npix = np.ceil(1.01 * (self.length * np.abs(np.cos(self.PA)) + self.width * np.abs(np.sin(self.PA))) / self.pxscale).astype(int) npix_l = npix / 2 - np.ceil(self.length / 2 * np.cos(-self.PA) / self.pxscale).astype(int) return (np.linspace(0, npix, npix + 1) - npix_l) * self.pxscale @cached_property def _cartesian_x_grid(self): return np.linspace(-1.01, 1.01, self._npix_los) * self.width / 2 @cached_property def _brightness_3d_cylindrical(self): """ Method to calculate brightness (or opacity) of the cloud at given theta, phi and radii theta: float -- azimuthal angle [0, 2 * np.pi] rad: float -- radius [0, self.width / 2] h: float -- height [0, self.length] Returns: 3D cube of normalized brightness in theta-rad-h grid; total brightness = 1 """ rho, theta, h = np.meshgrid(self._rad_grid, self._theta_grid, self._h_grid, indexing='ij') brt = np.ones_like(theta) brt[rho > (self.width / 2)] = 0 norm = np.sum(brt) if norm > 0: brt = brt / np.sum(brt) return brt @cached_property def _brightness_3d_cartesian(self): x, y, z = np.meshgrid(self._cartesian_x_grid, self._cartesian_y_grid, self._cartesian_z_grid, indexing='ij') h_c = -y * np.sin(self.PA) + z * np.cos(self.PA) theta_c = np.arctan2(y * np.cos(self.PA) + z * np.sin(self.PA), x) rad_c = np.sqrt(x ** 2 + (y * np.cos(self.PA) + z * np.sin(self.PA)) ** 2) rad_c[rad_c == 0 * u.pc] = 1e-3 * self.pxscale theta_c = limit_angle(theta_c, 0 * u.radian, 2 * np.pi * u.radian) ir = interp1d(self._rad_grid, np.arange(self._rad_bins), bounds_error=False) ith = interp1d(self._theta_grid, np.arange(self._theta_bins)) ih = interp1d(self._h_grid, np.arange(self._h_bins), bounds_error=False) new_ir = ir(rad_c.ravel()) new_ith = ith(theta_c.ravel()) new_ih = ih(h_c.ravel()) cart_data = map_coordinates(self._brightness_3d_cylindrical, np.vstack([new_ir, new_ith, new_ih]), order=1, mode='constant', cval=0) return cart_data.reshape([len(self._cartesian_x_grid), len(self._cartesian_y_grid), len(self._cartesian_z_grid)]).T @dataclass class Galaxy(Nebula): """ Class defining the galaxy object (set up it as Sersic2D profile assuming it has continuum and emission components) """ PA: u.degree = 90 * u.degree # position angle of the major axis ax_ratio: float = 0.7 # ratio of minor/major axes r_eff: u.kpc = 1 * u.kpc # Effective radius in kpc rad_lim: float = 3. # Maximum radius for calculations (in R_eff) n: float = 1. # Sersic index vel_rot: velunit = 0 * velunit # Rotational velocity (not implemented yet) def __post_init__(self): self._assign_all_units() self._npix_los = 1 self.r_max = self.r_eff.to(u.pc).value / self.pxscale.to(u.pc).value * self.rad_lim self._assign_position_params(conversion_type='galaxy') self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @cached_property def _brightness_3d_cartesian(self): """ Method to obtain the brightness (or density) distribution of the nebula in cartesian coordinates """ xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) angle = (self.PA + 90 * u.degree).to(u.radian).value mod = Sersic2D(amplitude=1, r_eff=(self.r_eff.to(u.pc) / self.pxscale.to(u.pc)).value, n=self.n, x_0=(self.pix_width - 1) / 2, y_0=(self.pix_height - 1) / 2, ellip=1 - self.ax_ratio, theta=angle) brt = mod(xx, yy) xct = (xx - (self.pix_width - 1) / 2) * np.cos(angle) + \ (yy - (self.pix_height - 1) / 2) * np.sin(angle) yct = (xx - (self.pix_width - 1) / 2) * np.sin(angle) - \ (yy - (self.pix_height - 1) / 2) * np.cos(angle) rmaj = self.rad_lim * (self.r_eff.to(u.pc) / self.pxscale.to(u.pc)).value rmin = self.rad_lim * (self.r_eff.to(u.pc) / self.pxscale.to(u.pc)).value * self.ax_ratio mask = np.ones_like(brt, dtype=np.float32) rec = (xct ** 2 / rmaj ** 2) + (yct ** 2 / rmin ** 2) >= 1 mask[rec] = 0 mask = convolve_fft(mask, kernels.Gaussian2DKernel(3.), fill_value=0, allow_huge=True) brt = brt * mask brt = brt.reshape(self.pix_height, self.pix_width, 1) return brt def _get_2d_velocity(self): if hasattr(self, 'vel_rot') and (self.vel_rot is not None) and (self.vel_rot != 0): xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) angle = (self.PA + 90 * u.degree).to(u.radian).value xct = (xx - (self.pix_width - 1) / 2) * np.cos(angle) + \ (yy - (self.pix_height - 1) / 2) * np.sin(angle) yct = (xx - (self.pix_width - 1) / 2) * np.sin(angle) - \ (yy - (self.pix_height - 1) / 2) * np.cos(angle) rad = np.sqrt(xct ** 2 + yct ** 2) vel_field = np.zeros_like(xx, dtype=np.float32) * velunit rec = rad > 0 vel_field[rec] = self.vel_rot * np.sqrt(1 - self.ax_ratio ** 2) * xct[rec] / rad[rec] return vel_field else: return None @dataclass class DIG(Nebula): """ Class defining the DIG component. For now it is defined just by its brightness (constant) """ max_brightness: fluxunit = 1e-17 * fluxunit vel_gradient: (velunit / u.pc) = 0 @dataclass class Cloud(Nebula): """Class of an isotropic spherical gas cloud without any ionization source. Defined by its position, radius, density, maximal optical depth""" radius: u.pc = 1.0 * u.pc max_brightness: fluxunit = 0 * fluxunit max_extinction: u.mag = 2.0 * u.mag thickness: float = 1.0 perturb_degree: int = 0 # Degree of perturbations (max. degree of spherical harmonics for cloud) linerat_constant: bool = False # True if the ratio of line fluxes shouldn't change across the nebula _phi_bins: int = 90 _theta_bins: int = 90 _rad_bins: int = 0 _npix_los: int = 100 def __post_init__(self): self._assign_all_units() if self._rad_bins == 0: self._rad_bins = np.ceil(self.radius.to(u.pc).value / self.pxscale.to(u.pc).value * 3).astype(int) delta = np.round((len(self._cartesian_y_grid) - 1) / 2).astype(int) if (self.xc is not None) and (self.yc is not None): self.x0 = self.xc - delta self.y0 = self.yc - delta elif (self.x0 is not None) and (self.y0 is not None): self.xc = self.x0 + delta self.yc = self.y0 + delta self._ref_line_id = 0 @cached_property def _theta_grid(self): return np.linspace(0, np.pi, self._theta_bins) @cached_property def _phi_grid(self): return np.linspace(0, 2 * np.pi, self._phi_bins) @cached_property def _rad_grid(self): return np.linspace(0, self.radius, self._rad_bins) @cached_property def _cartesian_z_grid(self): npix =
np.ceil(1.02 * self.radius / self.pxscale)
numpy.ceil
# Copyright (c) 2021 <NAME>. # Distributed under the terms of the BSD 3-Clause License. """Tests for dparcel.parcel.""" import pytest import pandas as pd import numpy as np from metpy.testing import assert_almost_equal, assert_array_equal from metpy.units import units from dparcel.parcel import Parcel, FastParcel data = pd.read_csv('tests/test_soundings/sydney_20210716_00Z.csv', header=0) p_sydney, z_sydney, t_sydney, td_sydney = data.to_numpy().T p_sydney *= units.mbar z_sydney *= units.meter t_sydney *= units.kelvin td_sydney *= units.kelvin sydney = Parcel(p_sydney[4:], z_sydney[4:], t_sydney[4:], td_sydney[4:]) sydneyfast = FastParcel( p_sydney[4:], z_sydney[4:], t_sydney[4:], td_sydney[4:]) def test_parcel_profile_height_above_reference(): """Test Parcel.profile for final height above the reference height.""" height = [4000, 2000, 1000]*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 1e-4*units.dimensionless l_initial = 0*units.dimensionless rate = 0.5/units.km with pytest.raises(ValueError): _, _, _ = sydney.profile( height, t_initial, q_initial, l_initial, rate, reference_height=z_init) def test_parcel_profile_no_descent(): """Test Parcel.profile when no descent is needed.""" height = 3000*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 1e-4*units.dimensionless l_initial = 0*units.dimensionless rate = 0.5/units.km actual_t, actual_q, actual_l = sydney.profile( height, t_initial, q_initial, l_initial, rate, reference_height=z_init) assert_almost_equal(actual_t, t_initial, 3) assert_almost_equal(actual_q, q_initial, 6) assert_array_equal(actual_l, l_initial) def test_parcel_profile_no_reference(): """Test Parcel.profile without a reference height.""" height = [3000, 2000, 1000]*units.meter t_initial = -2*units.celsius q_initial = 1e-4*units.dimensionless l_initial = 0*units.dimensionless rate = 0.5/units.km truth_t = [-2., 7.59522877, 14.32321658]*units.celsius truth_q = [0.0001, 0.00045977, 0.00213945]*units.dimensionless truth_l = [0., 0., 0.]*units.dimensionless actual_t, actual_q, actual_l = sydney.profile( height, t_initial, q_initial, l_initial, rate) assert_almost_equal(actual_t, truth_t, 3) assert_almost_equal(actual_q, truth_q, 6) assert_array_equal(actual_l, truth_l) def test_parcel_profile_reference_equals_first_height(): """Test Parcel.profile when reference height equals first final height.""" height = [3000, 2000, 1000]*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 1e-4*units.dimensionless l_initial = 0*units.dimensionless rate = 0.5/units.km truth_t = [-2., 7.59522877, 14.32321658]*units.celsius truth_q = [0.0001, 0.00045977, 0.00213945]*units.dimensionless truth_l = [0., 0., 0.]*units.dimensionless actual_t, actual_q, actual_l = sydney.profile( height, t_initial, q_initial, l_initial, rate, reference_height=z_init) assert_almost_equal(actual_t, truth_t, 3) assert_almost_equal(actual_q, truth_q, 6) assert_array_equal(actual_l, truth_l) def test_parcel_profile_scalar_height(): """Test Parcel.profile when the final height is a scalar.""" height = 1000*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 1e-4*units.dimensionless l_initial = 0*units.dimensionless rate = 0.5/units.km truth_t = 14.32321658*units.celsius truth_q = 0.00213945*units.dimensionless truth_l = 0.*units.dimensionless actual_t, actual_q, actual_l = sydney.profile( height, t_initial, q_initial, l_initial, rate, reference_height=z_init) assert_almost_equal(actual_t, truth_t, 3) assert_almost_equal(actual_q, truth_q, 6) assert_array_equal(actual_l, truth_l) assert not hasattr(actual_t, 'size') assert not hasattr(actual_q, 'size') assert not hasattr(actual_l, 'size') def test_parcel_profile_initially_subsaturated(): """Test Parcel.profile for a subsaturated parcel.""" height = [2000, 1000, 0]*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 1e-4*units.dimensionless l_initial = 0*units.dimensionless rate = 0.5/units.km truth_t = [7.59522877, 14.32321658, 20.96021533]*units.celsius truth_q = [0.00045977, 0.00213945, 0.00387132]*units.dimensionless truth_l = [0., 0., 0.]*units.dimensionless actual_t, actual_q, actual_l = sydney.profile( height, t_initial, q_initial, l_initial, rate, reference_height=z_init) assert_almost_equal(actual_t, truth_t, 3) assert_almost_equal(actual_q, truth_q, 6) assert_array_equal(actual_l, truth_l) def test_parcel_profile_pseudoadiabatic_initially_saturated(): """Test Parcel.profile for a saturated parcel, pseudoadiabatic descent.""" height = [2000, 1000, 0]*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 0.004751707262581661*units.dimensionless l_initial = 5e-3*units.dimensionless rate = 0.5/units.km truth_t = [1.80559804, 9.55493141, 17.98658756]*units.celsius truth_q = [0.0055382, 0.00564526, 0.00598423]*units.dimensionless truth_l = [0.00073854, 0., 0.]*units.dimensionless actual_t, actual_q, actual_l = sydney.profile( height, t_initial, q_initial, l_initial, rate, reference_height=z_init) assert_almost_equal(actual_t, truth_t, 3) assert_almost_equal(actual_q, truth_q, 6) assert_almost_equal(actual_l, truth_l, 6) def test_parcel_profile_reversible_initially_saturated(): """Test Parcel.profile, saturated parcel, reversible adiabatic descent.""" height = [2000, 1000, 0]*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 0.004751707262581661*units.dimensionless l_initial = 5e-3*units.dimensionless rate = 0.5/units.km truth_t = [1.78019707, 9.52454163, 17.96763569]*units.celsius truth_q = [0.00552812, 0.00564526, 0.00598423]*units.dimensionless truth_l = [0.00074862, 0., 0.]*units.dimensionless actual_t, actual_q, actual_l = sydney.profile( height, t_initial, q_initial, l_initial, rate, reference_height=z_init, kind='reversible') assert_almost_equal(actual_t, truth_t, 3) assert_almost_equal(actual_q, truth_q, 6) assert_almost_equal(actual_l, truth_l, 6) def test_parcel_parcel_density_initially_subsaturated(): """Test Parcel.parcel_density for a subsaturated parcel.""" height = [2000, 1000, 0]*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 1e-4*units.dimensionless l_initial = 0*units.dimensionless rate = 0.5/units.km truth = [0.97304305, 1.07284677, 1.18054049]*units('kg/m^3') actual = sydney.parcel_density( height, z_init, t_initial, q_initial, l_initial, rate) assert_almost_equal(actual, truth, 6) def test_parcel_parcel_density_pseudoadiabatic_initially_saturated(): """Test Parcel.parcel_density, saturated parcel, pseudoadiabatic.""" height = [2000, 1000, 0]*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 0.004751707262581661*units.dimensionless l_initial = 5e-3*units.dimensionless rate = 0.5/units.km truth = [0.99120751, 1.08862533, 1.19107227]*units('kg/m^3') actual = sydney.parcel_density( height, z_init, t_initial, q_initial, l_initial, rate) assert_almost_equal(actual, truth, 6) def test_parcel_parcel_density_reversible_initially_saturated(): """Test Parcel.parcel_density, saturated parcel, reversible descent.""" height = [2000, 1000, 0]*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 0.004751707262581661*units.dimensionless l_initial = 5e-3*units.dimensionless rate = 0.5/units.km truth = [0.99131515, 1.08874236, 1.19114981]*units('kg/m^3') actual = sydney.parcel_density( height, z_init, t_initial, q_initial, l_initial, rate, kind='reversible') assert_almost_equal(actual, truth, 6) def test_parcel_parcel_density_no_liquid_correction(): """Test Parcel.parcel_density with liquid_correction=False.""" height = [2000, 1000, 0]*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 0.004751707262581661*units.dimensionless l_initial = 5e-3*units.dimensionless rate = 0.5/units.km truth = [0.99047547, 1.08862533, 1.19107227]*units('kg/m^3') actual = sydney.parcel_density( height, z_init, t_initial, q_initial, l_initial, rate, liquid_correction=False) assert_almost_equal(actual, truth, 6) def test_parcel_buoyancy_initially_subsaturated(): """Test Parcel.buoyancy for a subsaturated parcel.""" height = [2000, 1000, 0]*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 1e-4*units.dimensionless l_initial = 0*units.dimensionless rate = 0.5/units.km truth = [0.07574004, 0.24243366, 0.18312808]*units('m/s^2') actual = sydney.buoyancy( height, z_init, t_initial, q_initial, l_initial, rate) assert_almost_equal(actual, truth, 6) def test_parcel_buoyancy_pseudoadiabatic_initially_saturated(): """Test Parcel.buoyancy for a saturated parcel, pseudoadiabatic descent.""" height = [2000, 1000, 0]*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 0.004751707262581661*units.dimensionless l_initial = 5e-3*units.dimensionless rate = 0.5/units.km truth = [-0.10536063, 0.09678205, 0.09479574]*units('m/s^2') actual = sydney.buoyancy( height, z_init, t_initial, q_initial, l_initial, rate) assert_almost_equal(actual, truth, 6) def test_parcel_buoyancy_reversible_initially_saturated(): """Test Parcel.buoyancy for a saturated parcel, reversible descent.""" height = [2000, 1000, 0]*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 0.004751707262581661*units.dimensionless l_initial = 5e-3*units.dimensionless rate = 0.5/units.km truth = [-0.10641401, 0.09571746, 0.0941512]*units('m/s^2') actual = sydney.buoyancy( height, z_init, t_initial, q_initial, l_initial, rate, kind='reversible') assert_almost_equal(actual, truth, 6) def test_parcel_buoyancy_no_liquid_correction(): """Test Parcel.buoyancy with liquid_correction=False.""" height = [2000, 1000, 0]*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 0.004751707262581661*units.dimensionless l_initial = 5e-3*units.dimensionless rate = 0.5/units.km truth = [-0.09819057, 0.09678205, 0.09479574]*units('m/s^2') actual = sydney.buoyancy( height, z_init, t_initial, q_initial, l_initial, rate, liquid_correction=False) assert_almost_equal(actual, truth, 6) def test_parcel_motion_hit_ground(): """Test Parcel.motion for a parcel reaching the ground.""" time = np.arange(0, 6*60, 60)*units.second z_init = 3000*units.meter w_init = 0*units('m/s') t_initial = -3*units.celsius q_initial = 0.004411511498126446*units.dimensionless l_initial = 5e-3*units.dimensionless rate = 0.5/units.km truth = { 'height': [3000., 2779.40740568, 2111.85174618, 1126.13930493, 345.60577653, np.nan]*units.meter, 'velocity': [0, -7.40141405, -14.86871612, -15.51565616, -10.59514798, np.nan]*units('m/s'), 'temperature': [-3., -2.07444998, 0.76303326, 8.09248224, 14.78024907, np.nan]*units.celsius, 'specific_humidity': [0.00441151, 0.004598, 0.00520855, 0.00546518, 0.00578415, np.nan]*units(''), 'liquid_ratio': [0.005, 0.0038962, 0.00114186, 0., 0., np.nan]*units(''), 'density': [0.89587838, 0.91641684, 0.98204805, 1.0777025, 1.15644317, np.nan]*units('kg/m^3'), 'buoyancy': [-0.12107617, -0.12425642, -0.12584922, 0.08259816, 0.07495148, np.nan]*units('m/s^2'), 'neutral_buoyancy_time': 146.72595790038056*units.second, 'hit_ground_time': 277.523717064885*units.second, 'min_height_time': np.nan*units.second, 'neutral_buoyancy_height': 1676.8165192484294*units.meter, 'neutral_buoyancy_velocity': -17.071598366562046*units('m/s'), 'hit_ground_velocity': -7.773893588250036*units('m/s'), 'min_height': np.nan*units.meter } actual = sydney.motion( time, z_init, w_init, t_initial, q_initial, l_initial, rate) for truth_var, actual_var in zip(truth.values(), actual.__dict__.values()): assert_almost_equal(actual_var, truth_var, 4) def test_parcel_motion_not_hit_ground(): """Test Parcel.motion for a parcel not reaching the ground.""" time = np.arange(0, 6*60, 60)*units.second z_init = 3000*units.meter w_init = 0*units('m/s') t_initial = -1*units.celsius q_initial = 1e-3*units.dimensionless l_initial = 0*units.dimensionless rate = 0.5/units.km truth = { 'height': [3000., 2963.91427237, 2867.7678195, 2754.49703165, 2682.19699647, np.nan]*units.meter, 'velocity': [0., -1.16946209, -1.91033584, -1.69044915, -0.61770804, np.nan]*units('m/s'), 'temperature': [-1., -0.65261826, 0.29346522, 1.41235842, 2.10568038, np.nan]*units.celsius, 'specific_humidity': [0.001, 0.00099383, 0.00098031, 0.00096887, 0.00096388, np.nan]*units(''), 'liquid_ratio': [0., 0., 0., 0., 0., np.nan]*units(''), 'density': [0.88668191, 0.88938961, 0.89688489, 0.90606089, 0.91194679, np.nan]*units('kg/m^3'), 'buoyancy': [-0.02061958, -0.0172448, -0.00513284, 0.01194682, 0.0220604, np.nan]*units('m/s^2'), 'neutral_buoyancy_time': 136.97895522269684*units.second, 'hit_ground_time': np.nan*units.second, 'min_height_time': 267.06600918022554*units.second, 'neutral_buoyancy_height': 2834.7941061947395*units.meter, 'neutral_buoyancy_velocity': -1.9540112264154348*units('m/s'), 'hit_ground_velocity': np.nan*units('m/s'), 'min_height': 2673.7559561309704*units.meter } actual = sydney.motion( time, z_init, w_init, t_initial, q_initial, l_initial, rate) for truth_var, actual_var in zip(truth.values(), actual.__dict__.values()): assert_almost_equal(actual_var, truth_var, 4) def test_fastparcel_parcel_equivalent_potential_temperature(): """Test FastParcel.parcel_equivalent_potential_temperature.""" height = [2000, 1000, 0]*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 0.004751707262581661*units.dimensionless rate = 0.5/units.km actual = sydneyfast.parcel_equivalent_potential_temperature( z_init, t_initial, q_initial, rate)(height) truth = [311.18426538, 309.50915144, 308.95267974]*units.kelvin assert_almost_equal(actual, truth, 3) def test_fastparcel_parcel_equivalent_potential_temperature_scalar(): """Test FastParcel.parcel_equivalent_potential_temperature for scalars.""" height = 2000*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 0.004751707262581661*units.dimensionless rate = 0.5/units.km actual = sydneyfast.parcel_equivalent_potential_temperature( z_init, t_initial, q_initial, rate)(height) truth = 311.18426538*units.kelvin assert_almost_equal(actual, truth, 3) assert not hasattr(actual, 'size') def test_fastparcel_parcel_equivalent_potential_temperature_rate_func(): """ Test FastParcel.parcel_equivalent_potential_temperature. Check the case where entrainment rate is callable. """ height = [2000, 1000, 0]*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 0.004751707262581661*units.dimensionless rate = lambda z: 0.5/units.km + z/(1*units.km)*(0.1/units.km) actual = sydneyfast.parcel_equivalent_potential_temperature( z_init, t_initial, q_initial, rate)(height) truth = [309.46813541, 306.84084219, 307.32459864]*units.kelvin assert_almost_equal(actual, truth, 3) def test_fastparcel_water_content(): """Test FastParcel.water_content.""" height = [2000, 1000, 0]*units.meter z_init = 3000*units.meter q_initial = 0.004751707262581661*units.dimensionless l_initial = 2e-3*units.dimensionless rate = 0.5/units.km actual = sydneyfast.water_content( z_init, q_initial, l_initial, rate)(height) truth = [0.00450332, 0.00462289, 0.00537897]*units.dimensionless assert_almost_equal(actual, truth, 6) def test_fastparcel_water_content_scalar(): """Test FastParcel.water_content for scalar input.""" height = 2000*units.meter z_init = 3000*units.meter q_initial = 0.004751707262581661*units.dimensionless l_initial = 2e-3*units.dimensionless rate = 0.5/units.km actual = sydneyfast.water_content( z_init, q_initial, l_initial, rate)(height) truth = 0.00450332*units.dimensionless assert_almost_equal(actual, truth, 6) assert not hasattr(actual, 'size') def test_fastparcel_water_content_rate_func(): """Test FastParcel.water_content for callable entrainment rate.""" height = [2000, 1000, 0]*units.meter z_init = 3000*units.meter q_initial = 0.004751707262581661*units.dimensionless l_initial = 2e-3*units.dimensionless rate = lambda z: 0.5/units.km + z/(1*units.km)*(0.1/units.km) actual = sydneyfast.water_content( z_init, q_initial, l_initial, rate)(height) truth = [0.0037374, 0.00424625, 0.00521945]*units.dimensionless assert_almost_equal(actual, truth, 6) def test_fastparcel_properties_moist(): """Test FastParcel._properties_moist.""" height = [2000, 1000, 0]*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 0.004751707262581661*units.dimensionless l_initial = 2e-3*units.dimensionless rate = 0.5/units.km theta_e = sydneyfast.parcel_equivalent_potential_temperature( z_init, t_initial, q_initial, rate) total_water = sydneyfast.water_content( z_init, q_initial, l_initial, rate) actual_t, actual_q, actual_l = sydneyfast._properties_moist( height, z_init, t_initial, theta_e, total_water) truth_t = [274.97291915, 279.82475884, 284.81223373]*units.kelvin truth_q = [0.00554509, 0.00690006, 0.00857783]*units.dimensionless truth_l = [-0.00104177, -0.00227717, -0.00319885]*units.dimensionless assert_almost_equal(actual_t, truth_t, 3) assert_almost_equal(actual_q, truth_q, 6) assert_almost_equal(actual_l, truth_l, 6) def test_fastparcel_properties_moist_scalar(): """Test FastParcel._properties_moist for scalar input.""" height = 2000*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 0.004751707262581661*units.dimensionless l_initial = 2e-3*units.dimensionless rate = 0.5/units.km theta_e = sydneyfast.parcel_equivalent_potential_temperature( z_init, t_initial, q_initial, rate) total_water = sydneyfast.water_content( z_init, q_initial, l_initial, rate) actual_t, actual_q, actual_l = sydneyfast._properties_moist( height, z_init, t_initial, theta_e, total_water) truth_t = 274.97291915*units.kelvin truth_q = 0.00554509*units.dimensionless truth_l = -0.00104177*units.dimensionless assert_almost_equal(actual_t, truth_t, 3) assert_almost_equal(actual_q, truth_q, 6) assert_almost_equal(actual_l, truth_l, 6) assert not hasattr(actual_t, 'size') assert not hasattr(actual_q, 'size') assert not hasattr(actual_l, 'size') def test_fastparcel_properties_dry(): """Test FastParcel._properties_dry.""" height = [2000, 1000, 0]*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 1e-3*units.dimensionless l_initial = 0*units.dimensionless rate = 0.5/units.km theta_e = sydneyfast.parcel_equivalent_potential_temperature( z_init, t_initial, q_initial, rate) total_water = sydneyfast.water_content( z_init, q_initial, l_initial, rate) actual_t, actual_q, actual_l = sydneyfast._properties_dry( height, z_init, t_initial, theta_e, total_water) truth_t = [280.5449438, 286.3411977, 293.36942736]*units.kelvin truth_q = [0.00101066, 0.00250059, 0.00409071]*units.dimensionless truth_l = [0., 0., 0.]*units.dimensionless assert_almost_equal(actual_t, truth_t, 3) assert_almost_equal(actual_q, truth_q, 6) assert_array_equal(actual_l, truth_l) def test_fastparcel_properties_dry_scalar(): """Test FastParcel._properties_dry for scalar input.""" height = 2000*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 1e-3*units.dimensionless l_initial = 0*units.dimensionless rate = 0.5/units.km theta_e = sydneyfast.parcel_equivalent_potential_temperature( z_init, t_initial, q_initial, rate) total_water = sydneyfast.water_content( z_init, q_initial, l_initial, rate) actual_t, actual_q, actual_l = sydneyfast._properties_dry( height, z_init, t_initial, theta_e, total_water) truth_t = 280.5449438*units.kelvin truth_q = 0.00101066*units.dimensionless truth_l = 0.*units.dimensionless assert_almost_equal(actual_t, truth_t, 3) assert_almost_equal(actual_q, truth_q, 6) assert_array_equal(actual_l, truth_l) assert not hasattr(actual_t, 'size') assert not hasattr(actual_q, 'size') assert not hasattr(actual_l, 'size') def test_fastparcel_transition_point_dry(): """Test FastParcel._transition_point for dry descent.""" z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 1e-3*units.dimensionless l_initial = 0*units.dimensionless rate = 0.5/units.km theta_e = sydneyfast.parcel_equivalent_potential_temperature( z_init, t_initial, q_initial, rate) total_water = sydneyfast.water_content( z_init, q_initial, l_initial, rate) actual_z, actual_t = sydneyfast._transition_point( z_init, t_initial, l_initial, theta_e, total_water) assert_almost_equal(actual_z, z_init) assert_almost_equal(actual_t, t_initial) assert not hasattr(actual_z, 'size') assert not hasattr(actual_t, 'size') def test_fastparcel_transition_point_mixed(): """Test FastParcel._transition_point for mixed moist/dry descent.""" z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 0.004751707262581661*units.dimensionless l_initial = 2e-3*units.dimensionless rate = 0.5/units.km theta_e = sydneyfast.parcel_equivalent_potential_temperature( z_init, t_initial, q_initial, rate) total_water = sydneyfast.water_content( z_init, q_initial, l_initial, rate) actual_z, actual_t = sydneyfast._transition_point( z_init, t_initial, l_initial, theta_e, total_water) truth_z = 2391.6137533395254*units.meter truth_t = 273.44171068846475*units.kelvin assert_almost_equal(actual_z, truth_z, 3) assert_almost_equal(actual_t, truth_t, 3) assert not hasattr(actual_z, 'size') assert not hasattr(actual_t, 'size') def test_fastparcel_transition_point_moist(): """Test FastParcel._transition_point for only moist descent.""" z_init = 500*units.meter t_initial = 10*units.celsius q_initial = 0.008146560796663203*units.dimensionless l_initial = 2e-3*units.dimensionless rate = 0.5/units.km theta_e = sydneyfast.parcel_equivalent_potential_temperature( z_init, t_initial, q_initial, rate) total_water = sydneyfast.water_content( z_init, q_initial, l_initial, rate) actual_z, actual_t = sydneyfast._transition_point( z_init, t_initial, l_initial, theta_e, total_water) truth_z = 0*units.meter truth_t = 285.41367938613286*units.kelvin assert_almost_equal(actual_z, truth_z) assert_almost_equal(actual_t, truth_t, 3) assert not hasattr(actual_z, 'size') assert not hasattr(actual_t, 'size') def test_fastparcel_properties_all_dry(): """Test FastParcel.properties for only dry descent.""" height = [2000, 1000, 0]*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 1e-3*units.dimensionless l_initial = 0*units.dimensionless rate = 0.5/units.km theta_e = sydneyfast.parcel_equivalent_potential_temperature( z_init, t_initial, q_initial, rate) total_water = sydneyfast.water_content( z_init, q_initial, l_initial, rate) z_switch, t_switch = z_init, t_initial actual_t, actual_q, actual_l = sydneyfast.properties( height, z_init, t_initial, z_switch, t_switch, theta_e, total_water) actual_t_dry, actual_q_dry, actual_l_dry = sydneyfast._properties_dry( height, z_init, t_initial, theta_e, total_water) truth_t = [280.5449438, 286.3411977, 293.36942736]*units.kelvin truth_q = [0.00101066, 0.00250059, 0.00409071]*units.dimensionless truth_l = [0., 0., 0.]*units.dimensionless assert_almost_equal(actual_t, truth_t, 3) assert_almost_equal(actual_q, truth_q, 6) assert_array_equal(actual_l, truth_l) assert_array_equal(actual_t, actual_t_dry) assert_array_equal(actual_q, actual_q_dry) assert_array_equal(actual_l, actual_l_dry) def test_fastparcel_properties_all_moist(): """Test FastParcel.properties for only moist descent.""" height = [400, 200, 0]*units.meter z_init = 500*units.meter t_initial = 10*units.celsius q_initial = 0.008146560796663203*units.dimensionless l_initial = 2e-3*units.dimensionless rate = 0.5/units.km theta_e = sydneyfast.parcel_equivalent_potential_temperature( z_init, t_initial, q_initial, rate) total_water = sydneyfast.water_content( z_init, q_initial, l_initial, rate) z_switch, t_switch = sydneyfast._transition_point( z_init, t_initial, l_initial, theta_e, total_water) actual_t, actual_q, actual_l = sydneyfast.properties( height, z_init, t_initial, z_switch, t_switch, theta_e, total_water) truth_t = [283.6021255, 284.50188453, 284.26175698]*units.kelvin truth_q = [0.00829667, 0.00860362, 0.00939808]*units.dimensionless truth_l = [0.00167194, 0.00105108, 0.]*units.dimensionless assert_almost_equal(actual_t, truth_t, 3) assert_almost_equal(actual_q, truth_q, 6) assert_almost_equal(actual_l, truth_l, 6) def test_fastparcel_properties_mixed(): """Test FastParcel.properties for mixed moist/dry descent.""" height = [2000, 1000, 0]*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 0.004751707262581661*units.dimensionless l_initial = 2e-3*units.dimensionless rate = 0.5/units.km theta_e = sydneyfast.parcel_equivalent_potential_temperature( z_init, t_initial, q_initial, rate) total_water = sydneyfast.water_content( z_init, q_initial, l_initial, rate) z_switch, t_switch = sydneyfast._transition_point( z_init, t_initial, l_initial, theta_e, total_water) actual_t, actual_q, actual_l = sydneyfast.properties( height, z_init, t_initial, z_switch, t_switch, theta_e, total_water) truth_t = [277.59502539, 285.61272634, 292.96804134]*units.kelvin truth_q = [0.00450332, 0.00462289, 0.00537897]*units.dimensionless truth_l = [0., 0., 0.]*units.dimensionless assert_almost_equal(actual_t, truth_t, 3) assert_almost_equal(actual_q, truth_q, 6) assert_array_equal(actual_l, truth_l) def test_fastparcel_properties_scalar(): """Test FastParcel.properties for scalar input.""" height = 2000*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 0.004751707262581661*units.dimensionless l_initial = 2e-3*units.dimensionless rate = 0.5/units.km theta_e = sydneyfast.parcel_equivalent_potential_temperature( z_init, t_initial, q_initial, rate) total_water = sydneyfast.water_content( z_init, q_initial, l_initial, rate) z_switch, t_switch = sydneyfast._transition_point( z_init, t_initial, l_initial, theta_e, total_water) actual_t, actual_q, actual_l = sydneyfast.properties( height, z_init, t_initial, z_switch, t_switch, theta_e, total_water) truth_t = 277.59502539*units.kelvin truth_q = 0.00450332*units.dimensionless truth_l = 0*units.dimensionless assert_almost_equal(actual_t, truth_t, 3) assert_almost_equal(actual_q, truth_q, 6) assert_array_equal(actual_l, truth_l) assert not hasattr(actual_t, 'size') assert not hasattr(actual_q, 'size') assert not hasattr(actual_l, 'size') def test_fastparcel_buoyancy(): """Test FastParcel.buoyancy.""" height = [2000, 1000, 0]*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 0.004751707262581661*units.dimensionless l_initial = 5e-3*units.dimensionless rate = 0.5/units.km theta_e = sydneyfast.parcel_equivalent_potential_temperature( z_init, t_initial, q_initial, rate) total_water = sydneyfast.water_content( z_init, q_initial, l_initial, rate) z_switch, t_switch = sydneyfast._transition_point( z_init, t_initial, l_initial, theta_e, total_water) actual = sydneyfast.buoyancy( height, z_init, t_initial, z_switch, t_switch, theta_e, total_water) truth = [-0.10509032, 0.09942803, 0.0981763]*units('m/s^2') assert_almost_equal(actual, truth, 6) def test_fastparcel_buoyancy_no_liquid_correction(): """Test FastParcel.buoyancy with liquid_correction=False.""" height = [2000, 1000, 0]*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 0.004751707262581661*units.dimensionless l_initial = 5e-3*units.dimensionless rate = 0.5/units.km theta_e = sydneyfast.parcel_equivalent_potential_temperature( z_init, t_initial, q_initial, rate) total_water = sydneyfast.water_content( z_init, q_initial, l_initial, rate) z_switch, t_switch = sydneyfast._transition_point( z_init, t_initial, l_initial, theta_e, total_water) actual = sydneyfast.buoyancy( height, z_init, t_initial, z_switch, t_switch, theta_e, total_water, liquid_correction=False) truth = [-0.09753847, 0.09942803, 0.0981763]*units('m/s^2') assert_almost_equal(actual, truth, 6) def test_fastparcel_buoyancy_scalar(): """Test FastParcel.buoyancy for scalar input.""" height = 2000*units.meter z_init = 3000*units.meter t_initial = -2*units.celsius q_initial = 0.004751707262581661*units.dimensionless l_initial = 5e-3*units.dimensionless rate = 0.5/units.km theta_e = sydneyfast.parcel_equivalent_potential_temperature( z_init, t_initial, q_initial, rate) total_water = sydneyfast.water_content( z_init, q_initial, l_initial, rate) z_switch, t_switch = sydneyfast._transition_point( z_init, t_initial, l_initial, theta_e, total_water) actual = sydneyfast.buoyancy( height, z_init, t_initial, z_switch, t_switch, theta_e, total_water) truth = -0.10509032*units('m/s^2') assert_almost_equal(actual, truth, 6) assert not hasattr(actual, 'size') def test_fastparcel_motion_hit_ground(): """Test FastParcel.motion for a parcel reaching the ground.""" time =
np.arange(0, 6*60, 60)
numpy.arange
import numpy as np from scipy.spatial.distance import pdist, squareform def scalar_dpp_diversity(x, max_distance=1.): x = np.array(x)[:,None] K = max_distance - squareform(pdist(x)) K /= max_distance return np.linalg.det(K) def scalar_mean_pdist_diversity(x): x =
np.array(x)
numpy.array
""" legacyhalos.ellipse =================== Code to do ellipse fitting on the residual coadds. """ import os, pdb import time, warnings import numpy as np import matplotlib.pyplot as plt import astropy.modeling from photutils.isophote import (EllipseGeometry, Ellipse, EllipseSample, Isophote, IsophoteList) from photutils.isophote.sample import CentralEllipseSample from photutils.isophote.fitter import CentralEllipseFitter import legacyhalos.io REF_SBTHRESH = [22, 22.5, 23, 23.5, 24, 24.5, 25, 25.5, 26] # surface brightness thresholds class CogModel(astropy.modeling.Fittable1DModel): """Class to empirically model the curve of growth. radius in arcsec r0 - constant scale factor (10) m(r) = mtot + mcen * (1-exp**(-alpha1*(radius/r0)**(-alpha2)) """ mtot = astropy.modeling.Parameter(default=20.0, bounds=(1, 30)) # integrated magnitude (r-->infty) m0 = astropy.modeling.Parameter(default=10.0, bounds=(1, 30)) # central magnitude (r=0) alpha1 = astropy.modeling.Parameter(default=0.3, bounds=(1e-3, 5)) # scale factor 1 alpha2 = astropy.modeling.Parameter(default=0.5, bounds=(1e-3, 5)) # scale factor 2 def __init__(self, mtot=mtot.default, m0=m0.default, alpha1=alpha1.default, alpha2=alpha2.default): super(CogModel, self).__init__(mtot, m0, alpha1, alpha2) self.r0 = 10 # scale factor [arcsec] def evaluate(self, radius, mtot, m0, alpha1, alpha2): """Evaluate the COG model.""" model = mtot + m0 * (1 - np.exp(-alpha1*(radius/self.r0)**(-alpha2))) return model def _apphot_one(args): """Wrapper function for the multiprocessing.""" return apphot_one(*args) def apphot_one(img, mask, theta, x0, y0, aa, bb, pixscale, variance=False, iscircle=False): """Perform aperture photometry in a single elliptical annulus. """ from photutils import EllipticalAperture, CircularAperture, aperture_photometry if iscircle: aperture = CircularAperture((x0, y0), aa) else: aperture = EllipticalAperture((x0, y0), aa, bb, theta) # Integrate the data to get the total surface brightness (in # nanomaggies/arcsec2) and the mask to get the fractional area. #area = (aperture_photometry(~mask*1, aperture, mask=mask, method='exact'))['aperture_sum'].data * pixscale**2 # [arcsec**2] mu_flux = (aperture_photometry(img, aperture, mask=mask, method='exact'))['aperture_sum'].data # [nanomaggies/arcsec2] if variance: apphot = np.sqrt(mu_flux) * pixscale**2 # [nanomaggies] else: apphot = mu_flux * pixscale**2 # [nanomaggies] return apphot def ellipse_cog(bands, data, refellipsefit, pixscalefactor, pixscale, centralindx=0, pool=None, seed=1, sbthresh=REF_SBTHRESH): """Measure the curve of growth (CoG) by performing elliptical aperture photometry. maxsma in pixels pixscalefactor - assumed to be constant for all bandpasses! """ import numpy.ma as ma import astropy.table from astropy.utils.exceptions import AstropyUserWarning from scipy import integrate from scipy.interpolate import interp1d rand = np.random.RandomState(seed) deltaa = 0.5 # pixel spacing #theta, eps = refellipsefit['geometry'].pa, refellipsefit['geometry'].eps theta, eps = np.radians(refellipsefit['pa']-90), refellipsefit['eps'] refband = refellipsefit['refband'] #maxsma = refellipsefit['maxsma'] results = {} # Build the SB profile and measure the radius (in arcsec) at which mu # crosses a few different thresholds like 25 mag/arcsec, etc. sbprofile = ellipse_sbprofile(refellipsefit) #print('We should measure these radii from the extinction-corrected photometry!') for sbcut in sbthresh: if sbprofile['mu_r'].max() < sbcut or sbprofile['mu_r'].min() > sbcut: print('Insufficient profile to measure the radius at {:.1f} mag/arcsec2!'.format(sbcut)) results['radius_sb{:0g}'.format(sbcut)] = np.float32(-1.0) results['radius_sb{:0g}_err'.format(sbcut)] = np.float32(-1.0) continue rr = (sbprofile['sma_r'] * pixscale)**0.25 # [arcsec] sb = sbprofile['mu_r'] - sbcut sberr = sbprofile['muerr_r'] keep = np.where((sb > -1) * (sb < 1))[0] if len(keep) < 5: keep = np.where((sb > -2) * (sb < 2))[0] if len(keep) < 5: print('Insufficient profile to measure the radius at {:.1f} mag/arcsec2!'.format(sbcut)) results['radius_sb{:0g}'.format(sbcut)] = np.float32(-1.0) results['radius_sb{:0g}_err'.format(sbcut)] = np.float32(-1.0) continue # Monte Carlo to get the radius rcut = [] for ii in np.arange(20): sbfit = rand.normal(sb[keep], sberr[keep]) coeff = np.polyfit(sbfit, rr[keep], 1) rcut.append((np.polyval(coeff, 0))**4) meanrcut, sigrcut = np.mean(rcut), np.std(rcut) #print(rcut, meanrcut, sigrcut) #plt.clf() ; plt.plot((rr[keep])**4, sb[keep]) ; plt.axvline(x=meanrcut) ; plt.savefig('junk.png') #plt.clf() ; plt.plot(rr, sb+sbcut) ; plt.axvline(x=meanrcut**0.25) ; plt.axhline(y=sbcut) ; plt.xlim(2, 2.6) ; plt.savefig('junk.png') #pdb.set_trace() #try: # rcut = interp1d()(sbcut) # [arcsec] #except: # print('Warning: extrapolating r({:0g})!'.format(sbcut)) # rcut = interp1d(sbprofile['mu_r'], sbprofile['sma_r'] * pixscale, fill_value='extrapolate')(sbcut) # [arcsec] results['radius_sb{:0g}'.format(sbcut)] = np.float32(meanrcut) results['radius_sb{:0g}_err'.format(sbcut)] = np.float32(sigrcut) for filt in bands: img = ma.getdata(data['{}_masked'.format(filt)][centralindx]) # [nanomaggies/arcsec2] mask = ma.getmask(data['{}_masked'.format(filt)][centralindx]) deltaa_filt = deltaa * pixscalefactor if filt in refellipsefit['bands']: if len(sbprofile['sma_{}'.format(filt)]) == 0: # can happen with partial coverage in other bands maxsma = sbprofile['sma_{}'.format(refband)].max() else: maxsma = sbprofile['sma_{}'.format(filt)].max() # [pixels] #minsma = 3 * refellipsefit['psfsigma_{}'.format(filt)] # [pixels] else: maxsma = sbprofile['sma_{}'.format(refband)].max() # [pixels] #minsma = 3 * refellipsefit['psfsigma_{}'.format(refband)] # [pixels] sma = np.arange(deltaa_filt, maxsma * pixscalefactor, deltaa_filt) smb = sma * eps if eps == 0: iscircle = True else: iscircle = False x0 = refellipsefit['x0'] * pixscalefactor y0 = refellipsefit['y0'] * pixscalefactor #im = np.log10(img) ; im[mask] = 0 ; plt.clf() ; plt.imshow(im, origin='lower') ; plt.scatter(y0, x0, s=50, color='red') ; plt.savefig('junk.png') #pdb.set_trace() with np.errstate(all='ignore'): with warnings.catch_warnings(): warnings.simplefilter('ignore', category=AstropyUserWarning) cogflux = pool.map(_apphot_one, [(img, mask, theta, x0, y0, aa, bb, pixscale, False, iscircle) for aa, bb in zip(sma, smb)]) if len(cogflux) > 0: cogflux = np.hstack(cogflux) else: cogflux = np.array([0.0]) if '{}_var'.format(filt) in data.keys(): var = data['{}_var'.format(filt)][centralindx] # [nanomaggies**2/arcsec**4] cogferr = pool.map(_apphot_one, [(var, mask, theta, x0, y0, aa, bb, pixscale, True, iscircle) for aa, bb in zip(sma, smb)]) if len(cogferr) > 0: cogferr = np.hstack(cogferr) else: cogferr = np.array([0.0]) else: cogferr = None # Aperture fluxes can be negative (or nan?) sometimes-- with warnings.catch_warnings(): if cogferr is not None: ok = (cogflux > 0) * (cogferr > 0) * np.isfinite(cogflux) * np.isfinite(cogferr) else: ok = (cogflux > 0) * np.isfinite(cogflux) cogmagerr = np.ones(len(cogmag)) #results['cog_smaunit'] = 'arcsec' if np.count_nonzero(ok) < 10: print('Warning: Too few {}-band pixels to fit the curve of growth; skipping.'.format(filt)) results['{}_cog_sma'.format(filt)] = np.float32(-1) # np.array([]) results['{}_cog_mag'.format(filt)] = np.float32(-1) # np.array([]) results['{}_cog_magerr'.format(filt)] = np.float32(-1) # np.array([]) # old data model #results['{}_cog_params'.format(filt)] = {'mtot': np.float32(-1), # 'm0': np.float32(-1), # 'alpha1': np.float32(-1), # 'alpha2': np.float32(-1), # 'chi2': np.float32(1e6)} results['{}_cog_params_mtot'.format(filt)] = np.float32(-1) results['{}_cog_params_m0'.format(filt)] = np.float32(-1) results['{}_cog_params_alpha1'.format(filt)] = np.float32(-1) results['{}_cog_params_alpha2'.format(filt)] = np.float32(-1) results['{}_cog_params_chi2'.format(filt)] = np.float32(1e6) for sbcut in sbthresh: results['{}_mag_sb{:0g}'.format(filt, sbcut)] = np.float32(-1) results['{}_mag_sb{:0g}_err'.format(filt, sbcut)] = np.float32(-1) continue sma_arcsec = sma[ok] * pixscale # [arcsec] cogmag = 22.5 - 2.5 * np.log10(cogflux[ok]) # [mag] if cogferr is not None: cogmagerr = 2.5 * cogferr[ok] / cogflux[ok] / np.log(10) results['{}_cog_sma'.format(filt)] = np.float32(sma_arcsec) results['{}_cog_mag'.format(filt)] = np.float32(cogmag) results['{}_cog_magerr'.format(filt)] = np.float32(cogmagerr) #print('Modeling the curve of growth.') def get_chi2(bestfit): sbmodel = bestfit(self.radius, self.wave) chi2 = np.sum( (self.sb - sbmodel)**2 / self.sberr**2 ) / dof cogfitter = astropy.modeling.fitting.LevMarLSQFitter() cogmodel = CogModel() nball = 10 # perturb the parameter values nparams = len(cogmodel.parameters) dof = len(cogmag) - nparams params = np.repeat(cogmodel.parameters, nball).reshape(nparams, nball) for ii, pp in enumerate(cogmodel.param_names): pinfo = getattr(cogmodel, pp) if pinfo.bounds[0] is not None: scale = 0.2 * pinfo.default params[ii, :] += rand.normal(scale=scale, size=nball) toosmall = np.where( params[ii, :] < pinfo.bounds[0] )[0] if len(toosmall) > 0: params[ii, toosmall] = pinfo.default toobig = np.where( params[ii, :] > pinfo.bounds[1] )[0] if len(toobig) > 0: params[ii, toobig] = pinfo.default else: params[ii, :] += rand.normal(scale=0.2 * pinfo.default, size=nball) # perform the fit nball times chi2fail = 1e6 with warnings.catch_warnings(): warnings.simplefilter('ignore') chi2 = np.zeros(nball) + chi2fail for jj in range(nball): cogmodel.parameters = params[:, jj] # Fit up until the curve of growth turns over, but no less than # the second moment of the light distribution! Pretty fragile.. these = np.where(np.diff(cogmag) < 0)[0] if len(these) > 5: # this is bad if we don't have at least 5 points! if sma_arcsec[these[0]] < (refellipsefit['majoraxis'] * pixscale * pixscalefactor): these = np.where(sma_arcsec < refellipsefit['majoraxis'] * pixscale * pixscalefactor)[0] if len(these) > 5: # can happen in corner cases (e.g., PGC155984) ballfit = cogfitter(cogmodel, sma_arcsec[these], cogmag[these], maxiter=100, weights=1/cogmagerr[these]) bestfit = ballfit(sma_arcsec) chi2[jj] = np.sum( (cogmag - bestfit)**2 / cogmagerr**2 ) / dof if cogfitter.fit_info['param_cov'] is None: # failed if False: print(jj, cogfitter.fit_info['message'], chi2[jj]) else: params[:, jj] = ballfit.parameters # update # if at least one fit succeeded, re-evaluate the model at the chi2 # minimum. good = chi2 < chi2fail if np.sum(good) == 0: print('{} CoG modeling failed.'.format(filt)) #result.update({'fit_message': cogfitter.fit_info['message']}) #return result mindx = np.argmin(chi2) minchi2 = chi2[mindx] cogmodel.parameters = params[:, mindx] P = cogfitter(cogmodel, sma_arcsec, cogmag, weights=1/cogmagerr, maxiter=100) print('{} CoG modeling succeeded with a chi^2 minimum of {:.2f}'.format(filt, minchi2)) #P = cogfitter(cogmodel, sma_arcsec, cogmag, weights=1/cogmagerr) #results['{}_cog_params'.format(filt)] = {'mtot': np.float32(P.mtot.value), # 'm0': np.float32(P.m0.value), # 'alpha1': np.float32(P.alpha1.value), # 'alpha2': np.float32(P.alpha2.value), # 'chi2': np.float32(minchi2)} results['{}_cog_params_mtot'.format(filt)] = np.float32(P.mtot.value) results['{}_cog_params_m0'.format(filt)] = np.float32(P.m0.value) results['{}_cog_params_alpha1'.format(filt)] = np.float32(P.alpha1.value) results['{}_cog_params_alpha2'.format(filt)] = np.float32(P.alpha2.value) results['{}_cog_params_chi2'.format(filt)] = np.float32(minchi2) #print('Measuring integrated magnitudes to different radii.') sb = ellipse_sbprofile(refellipsefit, linear=True) radkeys = ['radius_sb{:0g}'.format(sbcut) for sbcut in sbthresh] for radkey in radkeys: magkey = radkey.replace('radius_', '{}_mag_'.format(filt)) magerrkey = '{}_err'.format(magkey) smamax = results[radkey] # semi-major axis if smamax > 0 and smamax < np.max(sma_arcsec): rmax = smamax * np.sqrt(1 - refellipsefit['eps']) # [circularized radius, arcsec] rr = sb['radius_{}'.format(filt)] # [circularized radius, arcsec] yy = sb['mu_{}'.format(filt)] # [surface brightness, nanomaggies/arcsec**2] yyerr = sb['muerr_{}'.format(filt)] # [surface brightness, nanomaggies/arcsec**2] try: #print(filt, rr.max(), rmax) yy_rmax = interp1d(rr, yy)(rmax) # can fail if rmax < np.min(sma_arcsec) yyerr_rmax = interp1d(rr, yyerr)(rmax) # append the maximum radius to the end of the array keep = np.where(rr < rmax)[0] _rr = np.hstack((rr[keep], rmax)) _yy = np.hstack((yy[keep], yy_rmax)) _yyerr = np.hstack((yyerr[keep], yyerr_rmax)) flux = 2 * np.pi * integrate.simps(x=_rr, y=_rr*_yy) fvar = integrate.simps(x=_rr, y=_rr*_yyerr**2) if fvar <= 0: ferr = -1.0 else: ferr = 2 * np.pi * np.sqrt(fvar) results[magkey] = np.float32(22.5 - 2.5 * np.log10(flux)) results[magerrkey] = np.float32(2.5 * ferr / flux / np.log(10)) except: results[magkey] = np.float32(-1.0) results[magerrkey] = np.float32(-1.0) else: results[magkey] = np.float32(-1.0) results[magerrkey] = np.float32(-1.0) #pdb.set_trace() # print(filt, P) # default_model = cogmodel.evaluate(radius, P.mtot.default, P.m0.default, P.alpha1.default, P.alpha2.default) # bestfit_model = cogmodel.evaluate(radius, P.mtot.value, P.m0.value, P.alpha1.value, P.alpha2.value) # plt.scatter(radius, cog, label='Data {}'.format(filt), s=10) # plt.plot(radius, bestfit_model, label='Best Fit {}'.format(filt), color='k', lw=1, alpha=0.5) #plt.legend(fontsize=10) #plt.ylim(15, 30) #plt.savefig('junk.png') #pdb.set_trace() #fig, ax = plt.subplots() #for filt in bands: # ax.plot(results['apphot_sma_{}'.format(filt)], # 22.5-2.5*np.log10(results['apphot_mag_{}'.format(filt)]), label=filt) #ax.set_ylim(30, 5) #ax.legend(loc='lower right') #plt.show() #pdb.set_trace() return results def _unmask_center(img): # https://stackoverflow.com/questions/8647024/how-to-apply-a-disc-shaped-mask-to-a-numpy-array import numpy.ma as ma nn = img.shape[0] x0, y0 = geometry.x0, geometry.y0 rad = geometry.sma # [pixels] yy, xx = np.ogrid[-x0:nn-x0, -y0:nn-y0] img.mask[xx**2 + yy**2 <= rad**2] = ma.nomask return img def _unpack_isofit(ellipsefit, filt, isofit, failed=False): """Unpack the IsophotList objects into a dictionary because the resulting pickle files are huge. https://photutils.readthedocs.io/en/stable/api/photutils.isophote.IsophoteList.html#photutils.isophote.IsophoteList """ if failed: ellipsefit.update({ '{}_sma'.format(filt): np.array([-1]).astype(np.int16), '{}_intens'.format(filt): np.array([-1]).astype('f4'), '{}_intens_err'.format(filt): np.array([-1]).astype('f4'), '{}_eps'.format(filt): np.array([-1]).astype('f4'), '{}_eps_err'.format(filt): np.array([-1]).astype('f4'), '{}_pa'.format(filt): np.array([-1]).astype('f4'), '{}_pa_err'.format(filt): np.array([-1]).astype('f4'), '{}_x0'.format(filt): np.array([-1]).astype('f4'), '{}_x0_err'.format(filt): np.array([-1]).astype('f4'), '{}_y0'.format(filt): np.array([-1]).astype('f4'), '{}_y0_err'.format(filt): np.array([-1]).astype('f4'), '{}_a3'.format(filt): np.array([-1]).astype('f4'), '{}_a3_err'.format(filt): np.array([-1]).astype('f4'), '{}_a4'.format(filt): np.array([-1]).astype('f4'), '{}_a4_err'.format(filt): np.array([-1]).astype('f4'), '{}_rms'.format(filt): np.array([-1]).astype('f4'), '{}_pix_stddev'.format(filt): np.array([-1]).astype('f4'), '{}_stop_code'.format(filt): np.array([-1]).astype(np.int16), '{}_ndata'.format(filt):
np.array([-1])
numpy.array
import numpy as np import scipy.interpolate as scpinterp # ############################################### # ############################################### # CrystalBragg # ############################################### # ############################################### # ############################################### # sampling # ############################################### def CrystBragg_sample_outline_sphrect(dpsi, dtheta, npsi=None, ntheta=None): psi = dpsi*np.linspace(-1, 1., npsi) theta = np.pi/2. + dtheta*np.linspace(-1, 1., ntheta) psimin = np.full((ntheta,), psi[0]) psimax = np.full((ntheta,), psi[-1]) thetamin = np.full((npsi,), theta[0]) thetamax = np.full((npsi,), theta[-1]) psi = np.concatenate((psi, psimax, psi[::-1], psimin)) theta = np.concatenate((thetamin, theta, thetamax, theta[::-1])) return psi, theta def CrystBragg_get_noute1e2_from_psitheta(nout, e1, e2, psi, theta, e1e2=True): vout = ((np.cos(psi)[None, :]*nout[:, None] + np.sin(psi)[None, :]*e1[:, None])*np.sin(theta)[None, :] + np.cos(theta)[None, :]*e2[:, None]) if e1e2: ve1 = (-np.sin(psi)[None, :]*nout[:, None] + np.cos(psi)[None, :]*e1[:, None]) ve2 = np.array([vout[1, :]*ve1[2, :] - vout[2, :]*ve1[1, :], vout[2, :]*ve1[0, :] - vout[0, :]*ve1[2, :], vout[0, :]*ve1[1, :] - vout[1, :]*ve1[0, :]]) return vout, ve1, ve2 else: return vout def CrystBragg_sample_outline_plot_sphrect(center, nout, e1, e2, rcurve, extenthalf, res=None): dpsi, dtheta = extenthalf if res is None: res = np.min(extenthalf)/5. npsi = 2*int(np.ceil(dpsi / res)) + 1 ntheta = 2*int(np.ceil(dtheta / res)) + 1 psi, theta = CrystBragg_sample_outline_sphrect(dpsi, dtheta, npsi=npsi, ntheta=ntheta) vout = CrystBragg_get_noute1e2_from_psitheta(nout, e1, e2, psi, theta, e1e2=False) return center[:, None] + rcurve*vout def CrystBragg_sample_outline_Rays(center, nout, e1, e2, rcurve, extenthalf, bragg, phi): dpsi, dtheta = extenthalf psi, theta = CrystBragg_sample_outline_sphrect(dpsi, dtheta, npsi=3, ntheta=3) psi = np.append(psi, [0]) theta = np.append(theta, [np.pi/2.]) npts = psi.size # add repetitions for rays nrays = phi.size psi = np.repeat(psi, nrays) theta = np.repeat(theta, nrays) # add tiling for pts bragg = np.tile(bragg, npts) phi = np.tile(phi, npts) # Compute local vectors vout, ve1, ve2 = CrystBragg_get_noute1e2_from_psitheta(nout, e1, e2, psi, theta) # Deduce D, u D = center[:, None] + rcurve*vout u = (-np.sin(bragg)*vect + np.cos(bragg)*(np.cos(phi)*ve1 + np.sin(phi)*ve2)) return D, u # ############################################### # lamb <=> bragg # ############################################### def get_bragg_from_lamb(lamb, d, n=None): """ n*lamb = 2d*sin(bragg) """ if n is None: n = 1 bragg= np.full(lamb.shape, np.nan) sin = n*lamb/(2.*d) indok = np.abs(sin) <= 1. bragg[indok] = np.arcsin(sin[indok]) return bragg def get_lamb_from_bragg(bragg, d, n=None): """ n*lamb = 2d*sin(bragg) """ if n is None: n = 1 return 2*d*np.sin(bragg) / n # ############################################### # Approximate solution # ############################################### def get_approx_detector_rel(rcurve, bragg, tangent_to_rowland=None): if tangent_to_rowland is None: tangent_to_rowland = True # distance crystal - det_center det_dist = rcurve*np.sin(bragg) # det_nout and det_e1 in (nout, e1, e2) (det_e2 = e2) n_crystdet_rel = np.r_[-np.sin(bragg), np.cos(bragg), 0.] if tangent_to_rowland: bragg2 = 2.*bragg det_nout_rel = np.r_[-np.cos(bragg2), -np.sin(bragg2), 0.] det_ei_rel = np.r_[np.sin(bragg2), -np.cos(bragg2), 0.] else: det_nout_rel = -n_crystdet_rel det_ei_rel = np.r_[np.cos(bragg), np.sin(bragg), 0] return det_dist, n_crystdet_rel, det_nout_rel, det_ei_rel def get_det_abs_from_rel(det_dist, n_crystdet_rel, det_nout_rel, det_ei_rel, summit, nout, e1, e2, ddist=None, di=None, dj=None, dtheta=None, dpsi=None, tilt=None): # Reference det_nout = (det_nout_rel[0]*nout + det_nout_rel[1]*e1 + det_nout_rel[2]*e2) det_ei = (det_ei_rel[0]*nout + det_ei_rel[1]*e1 + det_ei_rel[2]*e2) det_ej = np.cross(det_nout, det_ei) # Apply translation of center (ddist, di, dj) if ddist is None: ddist = 0. if di is None: di = 0. if dj is None: dj = 0. det_dist += ddist n_crystdet = (n_crystdet_rel[0]*nout + n_crystdet_rel[1]*e1 + n_crystdet_rel[2]*e2) det_cent = summit + det_dist*n_crystdet + di*det_ei + dj*det_ej # Apply angles on unit vectors with respect to themselves if dtheta is None: dtheta = 0. if dpsi is None: dpsi = 0. if tilt is None: tilt = 0. # dtheta and dpsi det_nout2 = ((np.cos(dpsi)*det_nout + np.sin(dpsi)*det_ei)*np.cos(dtheta) + np.sin(dtheta)*det_ej) det_ei2 = (np.cos(dpsi)*det_ei - np.sin(dpsi)*det_nout) det_ej2 = np.cross(det_nout2, det_ei2) # tilt det_ei3 = np.cos(tilt)*det_ei2 + np.sin(tilt)*det_ej2 det_ej3 = np.cross(det_nout2, det_ei3) return det_cent, det_nout2, det_ei3, det_ej3 # ############################################### # Coordinates transforms # ############################################### def checkformat_vectang(Z, nn, frame_cent, frame_ang): # Check / format inputs nn = np.atleast_1d(nn).ravel() assert nn.size == 3 nn = nn / np.linalg.norm(nn) Z = float(Z) frame_cent = np.atleast_1d(frame_cent).ravel() assert frame_cent.size == 2 frame_ang = float(frame_ang) return Z, nn, frame_cent, frame_ang def get_e1e2_detectorplane(nn, nIn): e1 = np.cross(nn, nIn) e1n = np.linalg.norm(e1) if e1n < 1.e-10: e1 = np.array([nIn[2], -nIn[1], 0.]) e1n = np.linalg.norm(e1) e1 = e1 / e1n e2 = np.cross(nn, e1) e2 = e2 / np.linalg.norm(e2) return e1, e2 def calc_xixj_from_braggphi(summit, det_cent, det_nout, det_ei, det_ej, nout, e1, e2, bragg, phi): sp = (det_cent - summit) vect = (-np.sin(bragg)[None, :]*nout[:, None] + np.cos(bragg)[None, :]*(np.cos(phi)[None, :]*e1[:, None] + np.sin(phi)[None, :]*e2[:, None])) k = np.sum(sp*det_nout) / np.sum(vect*det_nout[:, None], axis=0) pts = summit[:, None] + k[None, :]*vect xi = np.sum((pts - det_cent[:, None])*det_ei[:, None], axis=0) xj = np.sum((pts - det_cent[:, None])*det_ej[:, None], axis=0) return xi, xj def calc_braggphi_from_xixjpts(det_cent, det_ei, det_ej, summit, nin, e1, e2, xi=None, xj=None, pts=None): if pts is None: xi = xi[None, ...] xj = xj[None, ...] if xi.ndim == 1: summit = summit[:, None] det_cent = det_cent[:, None] det_ei, det_ej = det_ei[:, None], det_ej[:, None] nin, e1, e2 = nin[:, None], e1[:, None], e2[:, None] else: summit = summit[:, None, None] det_cent = det_cent[:, None, None] det_ei, det_ej = det_ei[:, None, None], det_ej[:, None, None] nin, e1, e2 = (nin[:, None, None], e1[:, None, None], e2[:, None, None]) pts = det_cent + xi*det_ei + xj*det_ej else: assert pts.ndim == 2 pts = pts[:, :, None] summit = summit[:, None, None] nin, e1, e2 = nin[:, None, None], e1[:, None, None], e2[:, None, None] vect = pts - summit vect = vect / np.sqrt(np.sum(vect**2, axis=0))[None, ...] bragg = np.arcsin(np.sum(vect*nin, axis=0)) phi = np.arctan2(np.sum(vect*e2, axis=0), np.sum(vect*e1, axis=0)) return bragg, phi def get_lambphifit(lamb, phi, nxi, nxj): lambD = lamb.max()-lamb.min() lambfit = lamb.min() +lambD*np.linspace(0, 1, nxi) phiD = phi.max() - phi.min() phifit = phi.min() + phiD*np.linspace(0, 1, nxj) return lambfit, phifit # ############################################### # From plasma pts # ############################################### def calc_psidthetaphi_from_pts_lamb(pts, center, rcurve, bragg, nlamb, npts, nout, e1, e2, extenthalf, ntheta=None): if ntheta is None: ntheta = 100 scaPCem = np.full((nlamb, npts), np.nan) dtheta = np.full((nlamb, npts, ntheta), np.nan) psi = np.full((nlamb, npts, ntheta), np.nan) # Get to scalar product PC = center[:, None] - pts PCnorm2 = np.sum(PC**2, axis=0) cos2 =
np.cos(bragg)
numpy.cos
import numpy as np import pandas as pd from sklearn.preprocessing import PolynomialFeatures # TODO: implement what I need from this package class Design: """ Class Docstring. """ def __init__(self, experiments=None, levels=None): """ :param int experiments: Number of Experiments to design :param dict levels: Levels of factors Constructor Docstring. """ self.experiments = experiments self.levels = levels self.features = len(levels.keys()) self.order = None self.interactions_only = None self.bias = None self.epochs = None self.engine = None # ---------------DUNDER, GETTERS AND SETTERS FUNCTION--------------------------------------------------------------- def __repr__(self): return f"Design(experiments={self.experiments}, levels={self.levels})" def set_model(self, order, interactions_only=False, bias=True): """ :param int order: Order of the polynomial (1-main effects, 2-quadratic effects, ...) :param bool interactions_only: Include terms as x1^2 or not :param bool bias: Include a beta_0 on the design matrix or not Setter for model parameters """ self.order = order self.interactions_only = interactions_only self.bias = bias def set_algorithm(self, epochs, engine): """ :param int epochs: Number of random start to check :param str engine: What engine to use for maximization. Includes ("A", "C", "D", "E", "S", "T", "G", "I", "V") Setter for algorithm parameters """ self.epochs = epochs self.engine = engine # ------------------------------------------------------------------------------------------------------------------ def gen_random_design(self) -> pd.DataFrame: """ Generate a random starting design matrix. """ df = pd.DataFrame(np.random.random((self.experiments, self.features))) df.columns = ['x' + str(x) for x in list(range(self.features))] return df def gen_model_matrix(self, data=None) -> pd.DataFrame: """ :param pd.DataFrame data: Design matrix Generate the model matrix of a design matrix (argument) """ if any(var is None for var in [self.order, self.interactions_only, self.bias]): raise Exception('Parameters: \'order\', \'interactions_only\' and \'bias\' cannot be None') poly = PolynomialFeatures(degree=self.order, interaction_only=self.interactions_only, include_bias=self.bias) df = pd.DataFrame(poly.fit_transform(data)) df.columns = poly.get_feature_names(data.columns) return df @staticmethod def clear_histories(optimalities, designs, design_mat): """ :param list designs: Number of Experiments to design :param list optimalities: Number of random start to check :param pd.DataFrame design_mat: Should the engine be maximized (True) or minimizes (False)? Run the coordinate exchange algorithm and produce the best model matrix, according to the engine chosen, as well as a history of all other possible model matrices and the history of the selected engine used. """ hstry_designs = pd.DataFrame(designs, columns=['epoch', *list(design_mat.columns)]) hstry_opt_cr = pd.DataFrame(optimalities).rename(columns={0: 'epoch', 1: 'experiment', 2: 'feature'}) hstry_opt_cr['max'] = hstry_opt_cr.iloc[:, 3:].max(axis=1) return hstry_designs, hstry_opt_cr @staticmethod def find_best_design(histories, designs, max_bool=True): """ :param pd.DataFrame histories: Dataframe of all the histories per epoch :param pd.DataFrame designs: Dataframe of all the designs per epoch :param bool max_bool: Should the engine be maximized (True) or minimizes (False)? Group the histories per epoch and getting the max. Then, the function uses that max index (best epoch) to retrieve the design of that epoch and save it as the best design. The function also changes behaviour according to the max_bool flag which is used to tell the function if we are searching for a maximum of a minimum. """ if max_bool: per_epoch = histories.groupby('epoch')['max'].max() return designs[designs['epoch'] == per_epoch.idxmax()].reset_index().iloc[:, 2:] else: per_epoch = histories.groupby('epoch')['min'].min() return designs[designs['epoch'] == per_epoch.idxmin()].reset_index().iloc[:, 2:] @staticmethod def guards(): pass # Engines -------------------------------------------------------------------------------------------------------- @staticmethod def d_opt(matrix): # Priority: Estimation # Maximize the determinant of the information matrix X'X of the design. # This engine results in maximizing the differential Shannon information content of the parameter estimates. return np.linalg.det(matrix.T @ matrix) @staticmethod def a_opt(matrix): # Priority: Estimation # Maximizes the trace of the information matrix. # This engine results in minimizing the average variance of the estimates of the regression coefficients. return np.trace(matrix.T @ matrix) @staticmethod def e_opt(matrix): # Priority: Estimation # Maximizes the minimum eigenvalue of the information matrix. w, v = np.linalg.eig(matrix.T @ matrix) w.sort() return w[0] def fit(self): self.guards() hstry_opt_cr = [] # all optimality criteria in a dataframe hstry_designs = np.array([]).reshape((0, self.features + 1)) # all final designs in a dataframe for epoch in range(self.epochs): design_matrix = self.gen_random_design() for exp in range(self.experiments): for feat in range(self.features): coordinate_opt_cr = [] for count, level in enumerate(self.levels[feat]): # check all possible levels for the specific experiment, feature design_matrix.iat[exp, feat] = level model_matrix = self.gen_model_matrix(data=design_matrix) engine = self.d_opt(model_matrix) coordinate_opt_cr.append(engine) hstry_opt_cr.append([epoch, exp, feat, *coordinate_opt_cr]) # updated design_matrix design_matrix.iat[exp, feat] = self.levels[feat][coordinate_opt_cr.index(max(coordinate_opt_cr))] # clean results of inner loops hstry_designs = np.append(hstry_designs, np.hstack((np.array([epoch] * self.experiments).reshape(-1, 1),
np.array(design_matrix)
numpy.array
from desdeo_tools.solver.ScalarSolver import ( ScalarMethod, ScalarMinimizer, DiscreteMinimizer, DiscreteScalarizer, ScalarSolverException, ) from desdeo_tools.scalarization.ASF import PointMethodASF import pytest import numpy as np def simple_problem(xs: np.ndarray): return xs[0] * 2 - xs[1] + xs[2] def simple_constr(xs: np.ndarray): if xs[0] > 0.2: con_1 = 1 else: con_1 = -1 if xs[2] < 0.2: con_2 = 1 else: con_2 = -1 return np.array([con_1, con_2]) def dummy_minimizer(fun, x0, bounds, constraints=None): res_dict = {} if constraints is not None: con_vals = constraints(x0) if np.all(con_vals > 0): res_dict["success"] = True else: res_dict["success"] = False else: res_dict["success"] = True res_dict["x"] = x0 res_dict[ "message" ] = "I just retruned the initial guess as the optimal solution." return res_dict def test_dummy_no_cons(): method = ScalarMethod(dummy_minimizer) solver = ScalarMinimizer( simple_problem,
np.array([[0, 0, 0], [1, 1, 1]])
numpy.array
import numpy as np # Element-wise addition of three vectors def vadd3(V1, V2, V3): R = np.add(V1,
np.add(V2, V3)
numpy.add
import os import string import sys import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import multiprocessing as mp import numpy as np import pandas as pd from palettable.colorbrewer.qualitative import Paired_12 import seaborn as sns import scipy.stats as stats mpl.rcParams['text.usetex'] = True mpl.rcParams['text.latex.preamble'] = [r'\usepackage{amsmath}'] INT_MIN = 0. INT_MAX = 250. D_INT = 5. ACC = 0.99 INTS = np.arange(INT_MIN, INT_MAX, D_INT) FIGS_DIR = '/home/johnmcbride/Dropbox/phd/LaTEX/Scales/Figures/' def gaussian(x, mean, var): return np.exp( - (x - mean)**2 / (2. * var)) / (var * 2 * np.pi)**0.5 def integrate_gauss(mean, var, x1, x2, num=1000): X = np.linspace(x1, x2, num=num) P = gaussian(X, mean, var) # return X, P return np.trapz(P, X) def get_percentage_correct_from_range_of_ints(dI, prod_var, percep_var, ints=INTS): correct = [] for I0 in ints: int_cats = np.arange(0, I0*2, dI) prob_produced = [] prob_correct = [] for I1 in int_cats: prod_prob = integrate_gauss(I0, prod_var, I1-dI/2., I1+dI/2.) percep_prob = [integrate_gauss(i, percep_var, I1-dI/2., I1+dI/2.) for i in [0, I0, I0*2]] prob_produced.append(prod_prob) prob_correct.append(percep_prob[1] / sum(percep_prob)) correct.append(np.sum(np.array(prob_produced) * np.array(prob_correct)) / np.sum(prob_produced)) return np.array(correct) def get_percentage_correct_from_range_of_ints_2(dI, prod_var, percep_var, ints=INTS): correct = [] for I0 in ints: int_cats = np.arange(0, I0*2, dI) prob_produced = [] prob_correct = [] for I1 in int_cats: prod_prob = integrate_gauss(I0, prod_var, I1-dI/2., I1+dI/2.) percep_prob = [integrate_gauss(i, percep_var, I1-dI/2., I1+dI/2.) for i in [0, I0]] prob_produced.append(prod_prob) prob_correct.append(percep_prob[1] / sum(percep_prob)) correct.append(np.sum(np.array(prob_produced) * np.array(prob_correct)) / np.sum(prob_produced)) return np.array(correct) def get_interval_by_accuracy(ints, correct, acc=ACC): try: i = np.where(correct > acc)[0][0] except: i = np.argmin(np.abs(correct - acc)) if i: return ints[i-1] + (ints[i] - ints[i-1]) * (acc - correct[i-1]) / (correct[i] - correct[i-1]) else: return ints[0] def plot_distinguishability_by_grid_size(): dI = 5 dI_arr = [3, 5, 10, 20, 25, 30] prod_sdev_arr = np.arange(5., 32.5, 2.5) percep_sdev_arr = np.arange(5., 32.5, 2.5) fig1, ax1 = plt.subplots(2,3) ax1 = ax1.reshape(ax1.size) df_list = [] for i, dI in enumerate(dI_arr): xi, yi = np.meshgrid(prod_sdev_arr, percep_sdev_arr) prod_in = xi.ravel() percep_in = yi.ravel() pool = mp.Pool(24) correct = pool.starmap(get_percentage_correct_from_range_of_ints, [(dI, prod_in[i]**2, percep_in[i]**2) for i in range(len(prod_in))]) thresh_list = [get_interval_by_accuracy(INTS, c) for c in correct] df_list.append(pd.DataFrame(data={'production':prod_in, 'perception':percep_in, 'threshold':thresh_list, 'dI':[dI]*prod_in.size})) sns.heatmap(df_list[i].pivot('production', 'perception', 'threshold'), ax=ax1[i], vmin=50, vmax=180, annot=True) ax1[i].invert_yaxis() ax1[i].set_title(f"dI = {dI}") # plt.legend(loc='best') # plt.plot(np.arange(50, 550, 50), thresh_int) plt.show() def plot_distinguishability_ranges(): dI = 5 min_prod = [5., 10., 30.] min_per = [10., 20., 40.] rang = 27.5 titles = ['expert', 'good_untrained', 'bad_untrained'] fig, ax = plt.subplots(3) for i in range(3): prod_sdev_arr = np.arange(min_prod[i], min_prod[i]+rang, 2.5) percep_sdev_arr = np.arange(min_per[i], min_per[i]+rang, 2.5) xi, yi = np.meshgrid(prod_sdev_arr, percep_sdev_arr) prod_in = xi.ravel() percep_in = yi.ravel() pool = mp.Pool(28) correct = pool.starmap(get_percentage_correct_from_range_of_ints, [(dI, prod_in[j]**2, percep_in[j]**2) for j in range(len(prod_in))]) thresh_list = [get_interval_by_accuracy(INTS, c) for c in correct] annot = np.zeros(xi.shape, dtype='<U3') np.fill_diagonal(annot, [str(int(x)) for x in np.array(thresh_list).reshape(xi.shape).T.diagonal()]) df = pd.DataFrame(data={'production':prod_in, 'perception':percep_in, 'threshold':thresh_list, 'dI':[dI]*prod_in.size}) sns.heatmap(df.pivot('production', 'perception', 'threshold'), ax=ax[i], vmin=50, vmax=180, annot=annot, fmt="s") ax[i].invert_yaxis() ax[i].set_title(titles[i]) plt.show() def plot_distinguishability_ranges_one_plot(): dI = 5 min_prod = [10., 20., 40.] min_per = [10., 20., 40.] rang = 27.5 titles = ['expert', 'good_untrained', 'bad_untrained'] fig, ax = plt.subplots() prod_sdev_arr = np.arange(5, 57.5, 5) percep_sdev_arr = np.arange(5, 57.5, 5) xi, yi = np.meshgrid(prod_sdev_arr, percep_sdev_arr) prod_in = xi.ravel() percep_in = yi.ravel() pool = mp.Pool(28) correct = pool.starmap(get_percentage_correct_from_range_of_ints, [(dI, prod_in[j]**2, percep_in[j]**2) for j in range(len(prod_in))]) thresh_list = [get_interval_by_accuracy(INTS, c) for c in correct] annot = np.zeros(xi.shape, dtype='<U3') np.fill_diagonal(annot, [str(int(x)) for x in np.array(thresh_list).reshape(xi.shape).T.diagonal()]) np.save('Results/annotations', annot) df = pd.DataFrame(data={'production':prod_in, 'perception':percep_in, 'threshold':thresh_list, 'dI':[dI]*prod_in.size}) df.to_feather(f'Results/three_notes_acc{ACC}.feather') xticks = np.arange(5, 55, 5) yticks = np.arange(5, 55, 5) sns.heatmap(df.pivot('production', 'perception', 'threshold'), ax=ax, vmin=30, vmax=300, annot=annot, fmt="s", xticklabels=xticks, yticklabels=yticks) ax.invert_yaxis() ax_scale = 5.0 ax.set_xticks((np.arange(5, 55, 5)-2.5)/ax_scale) ax.set_yticks((np.arange(5, 55, 5)-2.5)/ax_scale) plt.savefig('Figs/accurate_intervals.png', dpi=1200) plt.savefig('Figs/accurate_intervals.pdf', dpi=1200) # plt.show() def plot_distinguishability_two_notes(): dI = 5 min_prod = [10., 20., 40.] min_per = [10., 20., 40.] rang = 27.5 titles = ['expert', 'good_untrained', 'bad_untrained'] fig, ax = plt.subplots() prod_sdev_arr = np.arange(2.5, 57.5, 2.5) percep_sdev_arr = np.arange(2.5, 57.5, 2.5) xi, yi = np.meshgrid(prod_sdev_arr, percep_sdev_arr) prod_in = xi.ravel() percep_in = yi.ravel() pool = mp.Pool(28) correct = pool.starmap(get_percentage_correct_from_range_of_ints_2, [(dI, prod_in[j]**2, percep_in[j]**2) for j in range(len(prod_in))]) thresh_list = [get_interval_by_accuracy(INTS, c) for c in correct] annot = np.zeros(xi.shape, dtype='<U3') np.fill_diagonal(annot, [str(int(x)) for x in np.array(thresh_list).reshape(xi.shape).T.diagonal()]) df = pd.DataFrame(data={'production':prod_in, 'perception':percep_in, 'threshold':thresh_list, 'dI':[dI]*prod_in.size}) xticks = np.arange(5, 55, 5) yticks = np.arange(5, 55, 5) sns.heatmap(df.pivot('production', 'perception', 'threshold'), ax=ax, vmin=30, vmax=300, annot=annot, fmt="s", xticklabels=xticks, yticklabels=yticks) ax.invert_yaxis() ax_scale = 2.5 ax.set_xticks((np.arange(5, 55, 5)-2.5)/ax_scale) ax.set_yticks((np.arange(5, 55, 5)-2.5)/ax_scale) plt.savefig('Figs/two_notes_accurate_intervals.png', dpi=1200) plt.savefig('Figs/two_notes_accurate_intervals.pdf', dpi=1200) # plt.show() def plot_frac_correct(): fig, ax = plt.subplots() dI = 2 for std in [5, 10, 20, 40]: correct = get_percentage_correct_from_range_of_ints(dI, std**2, std**2) ax.plot(INTS, correct, label=r"$\sigma = {0}$".format(std)) ax.legend(loc='best', frameon=False) plt.show() def plot_heatmap(): fig, ax = plt.subplots() df = pd.read_feather(f'Results/three_notes_acc{ACC}.feather') annot = np.load('Results/annotations.npy') xticks = np.arange(5, 55, 5) yticks = np.arange(5, 55, 5) sns.heatmap(df.pivot('production', 'perception', 'threshold'), ax=ax, vmin=30, vmax=300, annot=annot, fmt="s", xticklabels=xticks, yticklabels=yticks) ax.invert_yaxis() ax_scale = 5.0 ax.set_xticks((np.arange(5, 55, 5)-2.5)/ax_scale) ax.set_yticks((
np.arange(5, 55, 5)
numpy.arange
# Lint as: python2, python3 # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for breakdown_metric.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from lingvo import compat as tf from lingvo.core import py_utils from lingvo.core import test_utils from lingvo.tasks.car import breakdown_metric from lingvo.tasks.car import kitti_ap_metric from lingvo.tasks.car import kitti_metadata import numpy as np from six.moves import range FLAGS = tf.flags.FLAGS class BreakdownMetricTest(test_utils.TestCase): def _GenerateRandomBBoxes(self, num_bboxes): xyz = np.random.uniform(low=-1.0, high=1.0, size=(num_bboxes, 3)) dimension = np.random.uniform(low=-1, high=1.0, size=(num_bboxes, 3)) rotation = np.random.uniform(low=-np.pi, high=np.pi, size=(num_bboxes, 1)) bboxes = np.concatenate([xyz, dimension, rotation], axis=-1) return bboxes def _GenerateBBoxesAtDistanceAndRotation(self, num_boxes, distance, rotation): bboxes = np.zeros(shape=(num_boxes, 7)) bboxes[:, -1] = rotation bboxes[:, 0] = distance return bboxes def _GenerateMetricsWithTestData(self, num_classes): metadata = kitti_metadata.KITTIMetadata() num_bins_of_distance = int( np.rint(metadata.MaximumDistance() / metadata.DistanceBinWidth())) num_bins_of_rotation = metadata.NumberOfRotationBins() num_bins_of_points = metadata.NumberOfPointsBins() # Generate ground truth bounding boxes with prescribed labels, distances, # rotations and number of points. expected_objects_at_distance = np.random.randint( low=0, high=8, size=(num_classes, num_bins_of_distance), dtype=np.int32) expected_objects_at_rotation = np.zeros( shape=(num_classes, num_bins_of_rotation), dtype=np.int32) # Note that we need preserve the same number of objects for each label. expected_objects_at_points = np.zeros( shape=(num_classes, num_bins_of_points), dtype=np.int32) prob = 1.0 / float(num_bins_of_points) for c in range(num_classes): num_objects_for_class = np.sum(expected_objects_at_distance[c, :]) expected_objects_at_points[c, :] = np.random.multinomial( num_objects_for_class, pvals=num_bins_of_points * [prob]) # Zero out the number of boxes in the background class. expected_objects_at_distance[0, :] = 0 expected_objects_at_points[0, :] = 0 expected_objects_at_rotation[0, :] = 0 bboxes = [] labels = [] num_points = [] bin_width = ( metadata.MaximumRotation() / float(metadata.NumberOfRotationBins())) # Note that we always skip 'Background' class 0. for label in range(1, num_classes): for distance_index in range(num_bins_of_distance): distance = ( distance_index * metadata.DistanceBinWidth() + metadata.DistanceBinWidth() / 2.0) num_box = expected_objects_at_distance[label, distance_index] if num_box > 0: rotation_index = np.random.randint(num_bins_of_rotation) expected_objects_at_rotation[label, rotation_index] += num_box rotation = rotation_index * bin_width + bin_width / 2.0 bboxes.append( self._GenerateBBoxesAtDistanceAndRotation(num_box, distance, rotation)) labels.append(label * np.ones(shape=[num_box], dtype=np.int32)) point_bin_edges = np.logspace( np.log10(1.0), np.log10(metadata.MaximumNumberOfPoints()), metadata.NumberOfPointsBins() + 1) for point_index in range(num_bins_of_points): num_box = expected_objects_at_points[label, point_index] for _ in range(num_box): points = (point_bin_edges[point_index] + point_bin_edges[point_index + 1]) / 2.0 num_points.append([points]) bboxes = np.concatenate(bboxes) labels = np.concatenate(labels) num_points = np.concatenate(num_points) # Generate dummy predictions as placeholders for the API. num_predictions = 9 prediction_scores = np.random.uniform(size=[num_classes, num_predictions]) prediction_bboxes = self._GenerateRandomBBoxes( num_predictions * num_classes).reshape(num_classes, num_predictions, 7) # Update the metrics. metric_names = ['rotation', 'num_points', 'distance'] ap_params = kitti_ap_metric.KITTIAPMetrics.Params(metadata).Set( breakdown_metrics=metric_names) metrics = ap_params.Instantiate() metrics.Update( 'dummy_image1', py_utils.NestedMap( groundtruth_labels=labels, groundtruth_bboxes=bboxes, groundtruth_difficulties=np.ones(shape=(bboxes.shape[0])), groundtruth_num_points=num_points, detection_scores=prediction_scores, detection_boxes=prediction_bboxes, detection_heights_in_pixels=np.ones( shape=prediction_bboxes.shape[0:2]) * 100)) return py_utils.NestedMap( metrics=metrics, expected_objects_at_distance=expected_objects_at_distance, expected_objects_at_points=expected_objects_at_points, expected_objects_at_rotation=expected_objects_at_rotation) def testLoadBoundingBoxes(self): # Test if all of the groundtruth data loads correctly for each label # when no distance is specified. metadata = kitti_metadata.KITTIMetadata() num_classes = len(metadata.ClassNames()) test_data = self._GenerateMetricsWithTestData(num_classes) expected_num_objects = np.sum( test_data.expected_objects_at_distance, axis=1) # Note that we always skip 'Background' class 0. for label in range(1, num_classes): data = test_data.metrics._LoadBoundingBoxes( 'groundtruth', label, distance=None) if expected_num_objects[label] == 0: self.assertIsNone(data) else: self.assertEqual(expected_num_objects[label], len(data.boxes)) self.assertEqual(expected_num_objects[label], len(data.imgids)) self.assertEqual(expected_num_objects[label], len(data.scores)) self.assertEqual(expected_num_objects[label], len(data.difficulties)) self.assertAllEqual( np.ones(shape=[expected_num_objects[label]]), data.scores) self.assertAllEqual( np.zeros(shape=[expected_num_objects[label]]), data.imgids) def testLoadBoundingBoxesDifficulty(self): metadata = kitti_metadata.KITTIMetadata() num_classes = len(metadata.ClassNames()) test_data = self._GenerateMetricsWithTestData(num_classes) expected_num_objects = np.sum( test_data.expected_objects_at_distance, axis=1) difficulty_metric = test_data.metrics._breakdown_metrics['difficulty'] # Test if difficulties are properly accumulated. for d in metadata.DifficultyLevels().values(): if d == 1: self.assertAllEqual(expected_num_objects, difficulty_metric._histogram[d, :]) else: self.assertAllEqual( np.zeros_like(expected_num_objects), difficulty_metric._histogram[d, :]) def testLoadBoundingBoxesDistance(self): # Test if all of the groundtruth data loads correctly for each label # when distance is specified. metadata = kitti_metadata.KITTIMetadata() num_classes = len(metadata.ClassNames()) test_data = self._GenerateMetricsWithTestData(num_classes) num_bins_of_distance = int( np.rint(metadata.MaximumDistance() / metadata.DistanceBinWidth())) distance_metric = test_data.metrics._breakdown_metrics['distance'] # Test if all of the groundtruth data loads correctly for each label # when no distance is specified. self.assertAllEqual(test_data.expected_objects_at_distance, np.transpose(distance_metric._histogram)) # Note that we always skip 'Background' class 0. for label in range(1, num_classes): for distance in range(num_bins_of_distance): data = test_data.metrics._LoadBoundingBoxes( 'groundtruth', label, distance=distance) if test_data.expected_objects_at_distance[label, distance] == 0: self.assertIsNone(data) else: self.assertEqual( test_data.expected_objects_at_distance[label, distance], len(data.boxes)) self.assertEqual( test_data.expected_objects_at_distance[label, distance], len(data.imgids)) self.assertEqual( test_data.expected_objects_at_distance[label, distance], len(data.scores)) self.assertEqual( test_data.expected_objects_at_distance[label, distance], len(data.difficulties)) self.assertAllEqual( np.ones(shape=[ test_data.expected_objects_at_distance[label, distance] ]), data.scores) self.assertAllEqual( np.zeros(shape=[ test_data.expected_objects_at_distance[label, distance] ]), data.imgids) def testLoadBoundingBoxesNumPoints(self): # Test if all of the groundtruth data loads correctly for each label # when number of points is specified. metadata = kitti_metadata.KITTIMetadata() num_classes = len(metadata.ClassNames()) test_data = self._GenerateMetricsWithTestData(num_classes) num_bins_of_points = metadata.NumberOfPointsBins() num_points_metric = test_data.metrics._breakdown_metrics['num_points'] self.assertAllEqual(test_data.expected_objects_at_points, np.transpose(num_points_metric._histogram)) # Note that we always skip 'Background' class 0. for label in range(1, num_classes): for num_points in range(num_bins_of_points): data = test_data.metrics._LoadBoundingBoxes( 'groundtruth', label, num_points=num_points) if test_data.expected_objects_at_points[label, num_points] == 0: self.assertIsNone(data) else: # Skip the first bin because it is a special case. if num_points == 0: continue self.assertEqual( test_data.expected_objects_at_points[label, num_points], len(data.boxes)) self.assertEqual( test_data.expected_objects_at_points[label, num_points], len(data.imgids)) self.assertEqual( test_data.expected_objects_at_points[label, num_points], len(data.scores)) self.assertEqual( test_data.expected_objects_at_points[label, num_points], len(data.difficulties)) self.assertAllEqual( np.ones(shape=[ test_data.expected_objects_at_points[label, num_points] ]), data.scores) self.assertAllEqual( np.zeros(shape=[ test_data.expected_objects_at_points[label, num_points] ]), data.imgids) def testLoadBoundingBoxesRotation(self): # Test if all of the groundtruth data loads correctly for each label # when rotation is specified. metadata = kitti_metadata.KITTIMetadata() num_classes = len(metadata.ClassNames()) test_data = self._GenerateMetricsWithTestData(num_classes) num_bins_of_rotation = metadata.NumberOfRotationBins() rotation_metric = test_data.metrics._breakdown_metrics['rotation'] # Test if all of the groundtruth data loads correctly for each label # when no distance is specified. self.assertAllEqual(test_data.expected_objects_at_rotation, np.transpose(rotation_metric._histogram)) # Note that we always skip 'Background' class 0. for label in range(1, num_classes): for rotation in range(num_bins_of_rotation): data = test_data.metrics._LoadBoundingBoxes( 'groundtruth', label, rotation=rotation) if test_data.expected_objects_at_rotation[label, rotation] == 0: self.assertIsNone(data) else: self.assertEqual( test_data.expected_objects_at_rotation[label, rotation], len(data.boxes)) self.assertEqual( test_data.expected_objects_at_rotation[label, rotation], len(data.imgids)) self.assertEqual( test_data.expected_objects_at_rotation[label, rotation], len(data.scores)) self.assertEqual( test_data.expected_objects_at_rotation[label, rotation], len(data.difficulties)) self.assertAllEqual( np.ones(shape=[ test_data.expected_objects_at_rotation[label, rotation] ]), data.scores) self.assertAllEqual( np.zeros(shape=[ test_data.expected_objects_at_rotation[label, rotation] ]), data.imgids) def testAccumulateHistogram(self): metadata = kitti_metadata.KITTIMetadata() num_per_class = np.arange(metadata.NumClasses()) + 1 statistics = [ 1 * np.ones(shape=(
np.sum(num_per_class)
numpy.sum
""" ## usage: plot_raster.py COMMAND ## COMMANDS COMMAND is one of the following: dir -- `plot_dir_vts()` plots both layer voltage traces for a given dir vt -- `plot_vt()` plots a voltage trace from a file """ import os import sys from typing import * import numpy as np from nptyping import NDArray import matplotlib.pyplot as plt def load_voltage_traces(filename : str): """loads voltage traces from either a numpy or csv file if numpy, extension should be .npy or .npz csv or tsv expect csv-style format with appropriate delim ### Parameters: - `filename : str` filename ### Returns: - `NDArray` numpy array with data """ filetype = filename.split('.')[-1] data = None if filetype in ['npy', 'npz']: data = np.load(filename)['arr_0'] elif filetype == 'csv': data = np.genfromtxt(filename, delimiter=',').T elif filetype == 'tsv': data =
np.genfromtxt(filename, delimiter='\t')
numpy.genfromtxt
import numpy as np import matplotlib.pyplot as plt from scipy.io import wavfile from scipy.signal import fftconvolve from librosa.core import load from librosa.core import stft from librosa.core import istft from librosa import amplitude_to_db, db_to_amplitude from librosa.display import specshow from librosa.output import write_wav from scipy.signal import butter, lfilter, csd from scipy.linalg import svd, pinv from utils import apply_reverb, read_wav import corpus import mir_eval from pypesq import pypesq import pyroomacoustics as pra import roomsimove_single import olafilt def load_file(files): print(files[0]) print(files[1]) s1, _ = load(files[0], sr=16000) s2, _ = load(files[1], sr=16000) # s1, s2 = map(read_wav, files) if len(s1) > len(s2): pad_length = len(s1) - len(s2) s2 = np.pad(s2, (0,pad_length), 'reflect') else: pad_length = len(s2) - len(s1) s1 = np.pad(s1, (0,pad_length), 'reflect') return s1, s2 def do_reverb(s1,s2): corners = np.array([[0,0], [0,8], [8,8], [8,0]]).T # [x,y] room = pra.Room.from_corners(corners) room.extrude(5.) room.add_source([8.,4.,1.6], signal=s1) # room.add_source([2.,4.,1.6], signal=s2) #[[X],[Y],[Z]] R =
np.asarray([[4.75,5.5],[2.,2.],[1.,1]])
numpy.asarray
# Frenet PID Module. import time import numpy as np from controller import Controller class KinFrenetPIDPathFollower(Controller): ## def __init__(self, N = 10, # timesteps in MPC Horizon DT = 0.2, # discretization time between timesteps (s) L_F = 1.5213, # distance from CoG to front axle (m) L_R = 1.4987, # distance from CoG to rear axle (m) kLA = 10, # Lookahead distance (m) k_delta = 1., # Gain for lookahead error kp_acc = 1., # Proportional Gain for velocity error ki_acc = 0.1, # Integrator Gain for velocity error INT_MAX = 5., # Integrator error max value to avoid windup AY_MAX = 3., AX_MAX = 5.0, AX_MIN = -10.0, # min/max longitudinal acceleration constraint (m/s^2) DF_MAX = 30*np.pi/180, DF_MIN = -30*np.pi/180, # min/max front steer angle constraint (rad) AX_DOT_MAX = 1.5, AX_DOT_MIN = -1.5, # min/max longitudinal jerk constraint (m/s^3) DF_DOT_MAX = 30*np.pi/180, DF_DOT_MIN = -30*np.pi/180, # min/max front steer angle rate constraint (rad/s) ): for key in list(locals()): if key == 'self': pass else: setattr(self, '%s' % key, locals()[key]) self.global_state = np.array([0., 0., 0., 0.]) self.global_ref = np.zeros((N+1, 4)) self.z_curr = np.array([0., 0., 0., 0.]) # s0, ey0, epsi0, v0 self.curv_ref = np.zeros(self.N) self.v_ref = 1. self.u_prev = np.array([0., 0.]) self.int_error = 0. def _get_frenet_trajectory(self, u_mpc): z_mpc_frenet = np.ones((1 + u_mpc.shape[0], 4)) * np.nan z_mpc_frenet[0, :] = self.z_curr for ind, u in enumerate(u_mpc): s, ey, ep, v = z_mpc_frenet[ind, :] u_acc, u_df = u beta = np.arctan( self.L_R / (self.L_F + self.L_R) * np.tan(u_df) ) dyawdt = v / self.L_R * np.sin(beta) dsdt = v * np.cos(ep+beta) / (1 - ey * self.curv_ref[ind] ) sn = s + self.DT * (dsdt) eyn = ey + self.DT * (v * np.sin(ep + beta)) epn = ep + self.DT * (dyawdt - dsdt * self.curv_ref[ind]) vn = v + self.DT * (u_acc) z_mpc_frenet[ind+1, :] = [sn, eyn, epn, vn] return z_mpc_frenet def _get_global_trajectory(self, u_mpc): z_mpc = np.ones((1 + u_mpc.shape[0], 4)) * np.nan z_mpc[0, :] = self.global_state for ind, u in enumerate(u_mpc): x, y, p, v = z_mpc[ind, :] u_acc, u_df = u beta = np.arctan( self.L_R / (self.L_F + self.L_R) * np.tan(u_df) ) xn = x + self.DT * (v * np.cos(p + beta)) yn = y + self.DT * (v * np.sin(p + beta)) pn = p + self.DT * (v / self.L_R * np.sin(beta)) vn = v + self.DT * (u_acc) z_mpc[ind+1, :] = [xn, yn, pn, vn] return z_mpc def solve(self): st = time.time() _, ey, ep, v = self.z_curr # Acceleration Control. vel_error = self.v_ref - v self.int_error += vel_error * self.DT if
np.abs(self.int_error)
numpy.abs
from __future__ import print_function, division import os, sys, warnings, platform from time import time import numpy as np if "PyPy" not in platform.python_implementation(): from scipy.io import loadmat, savemat from Florence.Tensor import makezero, itemfreq, unique2d, in2d from Florence.Utils import insensitive from .vtk_writer import write_vtu try: import meshpy.triangle as triangle has_meshpy = True except ImportError: has_meshpy = False from .HigherOrderMeshing import * from .NodeArrangement import * from .GeometricPath import * from warnings import warn from copy import deepcopy """ Mesh class providing most of the pre-processing functionalities of the Core module <NAME> - 13/06/2015 """ class Mesh(object): """Mesh class provides the following functionalities: 1. Generating higher order meshes based on a linear mesh, for tris, tets, quads and hexes 2. Generating linear tri and tet meshes based on meshpy back-end 3. Generating linear tri meshes based on distmesh back-end 4. Finding bounary edges and faces for tris and tets, in case they are not provided by the mesh generator 5. Reading Salome meshes in binary (.dat/.txt/etc) format 6. Reading gmsh files .msh 7. Checking for node numbering order of elements and fixing it if desired 8. Writing meshes to unstructured vtk file format (.vtu) in xml and binary formats, including high order elements """ def __init__(self, element_type=None): super(Mesh, self).__init__() # self.faces and self.edges ARE BOUNDARY FACES # AND BOUNDARY EDGES, RESPECTIVELY self.degree = None self.ndim = None self.edim = None self.nelem = None self.nnode = None self.elements = None self.points = None self.corners = None self.edges = None self.faces = None self.element_type = element_type self.face_to_element = None self.edge_to_element = None self.boundary_edge_to_element = None self.boundary_face_to_element = None self.all_faces = None self.all_edges = None self.interior_faces = None self.interior_edges = None # TYPE OF BOUNDARY FACES/EDGES self.boundary_element_type = None # FOR GEOMETRICAL CURVES/SURFACES self.edge_to_curve = None self.face_to_surface = None self.spatial_dimension = None self.reader_type = None self.reader_type_format = None self.reader_type_version = None self.writer_type = None self.filename = None # self.has_meshpy = has_meshpy def SetElements(self,arr): self.elements = arr def SetPoints(self,arr): self.points = arr def SetEdges(self,arr): self.edges = arr def SetFaces(self,arr): self.faces = arr def GetElements(self): return self.elements def GetPoints(self): return self.points def GetEdges(self): assert self.element_type is not None if self.element_type == "tri": self.GetEdgesTri() elif self.element_type == "quad": self.GetEdgesQuad() elif self.element_type == "pent": self.GetEdgesPent() elif self.element_type == "tet": self.GetEdgesTet() elif self.element_type == "hex": self.GetEdgesHex() else: raise ValueError('Type of element not understood') return self.all_edges def GetBoundaryEdges(self): assert self.element_type is not None if self.element_type == "tri": self.GetBoundaryEdgesTri() elif self.element_type == "quad": self.GetBoundaryEdgesQuad() elif self.element_type == "pent": self.GetBoundaryEdgesPent() elif self.element_type == "tet": self.GetBoundaryEdgesTet() elif self.element_type == "hex": self.GetBoundaryEdgesHex() else: raise ValueError('Type of element not understood') return self.edges def GetInteriorEdges(self): assert self.element_type is not None if self.element_type == "tri": self.GetInteriorEdgesTri() elif self.element_type == "quad": self.GetInteriorEdgesQuad() elif self.element_type == "pent": self.GetInteriorEdgesPent() elif self.element_type == "tet": self.GetInteriorEdgesTet() elif self.element_type == "hex": self.GetInteriorEdgesHex() else: raise ValueError('Type of element not understood') return self.interior_edges def GetFaces(self): assert self.element_type is not None if self.element_type == "tet": self.GetFacesTet() elif self.element_type == "hex": self.GetFacesHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.all_faces def GetBoundaryFaces(self): assert self.element_type is not None if self.element_type == "tet": self.GetBoundaryFacesTet() elif self.element_type == "hex": self.GetBoundaryFacesHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.faces def GetInteriorFaces(self): assert self.element_type is not None if self.element_type == "tet": self.GetInteriorFacesTet() elif self.element_type == "hex": self.GetInteriorFacesHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.interior_faces def GetElementsEdgeNumbering(self): assert self.element_type is not None if self.element_type == "tri": return self.GetElementsEdgeNumberingTri() elif self.element_type == "quad": return self.GetElementsEdgeNumberingQuad() else: raise ValueError('Type of element not understood') return self.edge_to_element def GetElementsWithBoundaryEdges(self): assert self.element_type is not None if self.element_type == "tri": return self.GetElementsWithBoundaryEdgesTri() elif self.element_type == "quad": return self.GetElementsWithBoundaryEdgesQuad() else: raise ValueError('Type of element not understood') return self.boundary_edge_to_element def GetElementsFaceNumbering(self): assert self.element_type is not None if self.element_type == "tet": return self.GetElementsFaceNumberingTet() elif self.element_type == "hex": return self.GetElementsFaceNumberingHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.face_to_element def GetElementsWithBoundaryFaces(self): assert self.element_type is not None if self.element_type == "tet": return self.GetElementsWithBoundaryFacesTet() elif self.element_type == "hex": return self.GetElementsWithBoundaryFacesHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.boundary_face_to_element @property def Bounds(self): """Returns bounds of a mesh i.e. the minimum and maximum coordinate values in every direction """ assert self.points is not None if self.points.shape[1] == 3: bounds = np.array([[np.min(self.points[:,0]), np.min(self.points[:,1]), np.min(self.points[:,2])], [np.max(self.points[:,0]), np.max(self.points[:,1]), np.max(self.points[:,2])]]) makezero(bounds) return bounds elif self.points.shape[1] == 2: bounds = np.array([[np.min(self.points[:,0]), np.min(self.points[:,1])], [np.max(self.points[:,0]), np.max(self.points[:,1])]]) makezero(bounds) return bounds elif self.points.shape[1] == 1: bounds = np.array([[np.min(self.points[:,0])], [np.max(self.points[:,0])]]) makezero(bounds) return bounds else: raise ValueError("Invalid dimension for mesh coordinates") def GetEdgesTri(self): """Find all edges of a triangular mesh. Sets all_edges property and returns it returns: arr: numpy ndarray of all edges""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_edges,np.ndarray): if self.all_edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_edges.shape[1]==2 and p > 1: pass else: return self.all_edges node_arranger = NodeArrangementTri(p-1)[0] # CHECK IF FACES ARE ALREADY AVAILABLE if isinstance(self.all_edges,np.ndarray): if self.all_edges.shape[0] > 1 and self.all_edges.shape[1] == p+1: warn("Mesh edges seem to be already computed. I am going to recompute them") # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY edges = np.zeros((3*self.elements.shape[0],p+1),dtype=np.uint64) edges[:self.elements.shape[0],:] = self.elements[:,node_arranger[0,:]] edges[self.elements.shape[0]:2*self.elements.shape[0],:] = self.elements[:,node_arranger[1,:]] edges[2*self.elements.shape[0]:,:] = self.elements[:,node_arranger[2,:]] # REMOVE DUPLICATES edges, idx = unique2d(edges,consider_sort=True,order=False,return_index=True) edge_to_element = np.zeros((edges.shape[0],2),np.int64) edge_to_element[:,0] = idx % self.elements.shape[0] edge_to_element[:,1] = idx // self.elements.shape[0] self.edge_to_element = edge_to_element # DO NOT SET all_edges IF THE CALLER FUNCTION IS GetBoundaryEdgesTet import inspect curframe = inspect.currentframe() calframe = inspect.getouterframes(curframe, 2)[1][3] if calframe != "GetBoundaryEdgesTet": self.all_edges = edges return edges def GetBoundaryEdgesTri(self): """Find boundary edges (lines) of triangular mesh""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.edges,np.ndarray): if self.edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.edges.shape[1] == 2 and p > 1: pass else: return node_arranger = NodeArrangementTri(p-1)[0] # CONCATENATE ALL THE EDGES MADE FROM ELEMENTS all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]]),axis=0) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_edges,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY EDGES freqs_inv = itemfreq(inv) edges_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED self.edges = uniques[edges_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_edge_to_element = np.zeros((edges_ext_flags.shape[0],2),dtype=np.int64) # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF EDGES all_edges_in_edges = in2d(all_edges,self.edges,consider_sort=True) all_edges_in_edges = np.where(all_edges_in_edges==True)[0] boundary_edge_to_element[:,0] = all_edges_in_edges % self.elements.shape[0] boundary_edge_to_element[:,1] = all_edges_in_edges // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.edges = self.elements[boundary_edge_to_element[:,0][:,None],node_arranger[boundary_edge_to_element[:,1],:]] self.edges = self.edges.astype(np.uint64) self.boundary_edge_to_element = boundary_edge_to_element return self.edges def GetInteriorEdgesTri(self): """Computes interior edges of a triangular mesh returns: interior_edges ndarray of interior edges edge_flags ndarray of edge flags: 0 for interior and 1 for boundary """ if not isinstance(self.all_edges,np.ndarray): self.GetEdgesTri() if not isinstance(self.edges,np.ndarray): self.GetBoundaryEdgesTri() sorted_all_edges = np.sort(self.all_edges,axis=1) sorted_boundary_edges = np.sort(self.edges,axis=1) x = [] for i in range(self.edges.shape[0]): current_sorted_boundary_edge = np.tile(sorted_boundary_edges[i,:], self.all_edges.shape[0]).reshape(self.all_edges.shape[0],self.all_edges.shape[1]) interior_edges = np.linalg.norm(current_sorted_boundary_edge - sorted_all_edges,axis=1) pos_interior_edges = np.where(interior_edges==0)[0] if pos_interior_edges.shape[0] != 0: x.append(pos_interior_edges) edge_aranger = np.arange(self.all_edges.shape[0]) edge_aranger = np.setdiff1d(edge_aranger,np.array(x)[:,0]) interior_edges = self.all_edges[edge_aranger,:] # GET FLAGS FOR BOUNDRAY AND INTERIOR edge_flags = np.ones(self.all_edges.shape[0],dtype=np.int64) edge_flags[edge_aranger] = 0 self.interior_edges = interior_edges return interior_edges, edge_flags def GetFacesTet(self): """Find all faces (surfaces) in the tetrahedral mesh (boundary & interior). Sets all_faces property and returns it returns: arr: numpy ndarray of all faces """ # DETERMINE DEGREE p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_faces,np.ndarray): if self.all_faces.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_faces.shape[1] == 3 and p > 1: pass else: return self.all_faces node_arranger = NodeArrangementTet(p-1)[0] fsize = int((p+1.)*(p+2.)/2.) # GET ALL FACES FROM THE ELEMENT CONNECTIVITY faces = np.zeros((4*self.elements.shape[0],fsize),dtype=np.uint64) faces[:self.elements.shape[0],:] = self.elements[:,node_arranger[0,:]] faces[self.elements.shape[0]:2*self.elements.shape[0],:] = self.elements[:,node_arranger[1,:]] faces[2*self.elements.shape[0]:3*self.elements.shape[0],:] = self.elements[:,node_arranger[2,:]] faces[3*self.elements.shape[0]:,:] = self.elements[:,node_arranger[3,:]] # REMOVE DUPLICATES self.all_faces, idx = unique2d(faces,consider_sort=True,order=False,return_index=True) face_to_element = np.zeros((self.all_faces.shape[0],2),np.int64) face_to_element[:,0] = idx % self.elements.shape[0] face_to_element[:,1] = idx // self.elements.shape[0] self.face_to_element = face_to_element return self.all_faces def GetEdgesTet(self): """Find all edges (lines) of tetrahedral mesh (boundary & interior)""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_edges,np.ndarray): if self.all_edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_edges.shape[1] == 2 and p > 1: pass else: return self.all_edges # FIRST GET BOUNDARY FACES if isinstance(self.all_faces,np.ndarray): if self.all_faces.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_faces.shape[1] == 3 and p > 1: self.GetFacesTet() else: self.GetFacesTet() # BUILD A 2D MESH tmesh = Mesh() # tmesh = deepcopy(self) tmesh.element_type = "tri" tmesh.elements = self.all_faces tmesh.nelem = tmesh.elements.shape[0] del tmesh.faces del tmesh.points # COMPUTE ALL EDGES self.all_edges = tmesh.GetEdgesTri() return self.all_edges def GetBoundaryFacesTet(self): """Find boundary faces (surfaces) of a tetrahedral mesh""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.faces,np.ndarray): if self.faces.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.faces.shape[1] == 3 and p > 1: pass else: return node_arranger = NodeArrangementTet(p-1)[0] # CONCATENATE ALL THE FACES MADE FROM ELEMENTS all_faces = np.concatenate((self.elements[:,:3],self.elements[:,[0,1,3]], self.elements[:,[0,2,3]],self.elements[:,[1,2,3]]),axis=0) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_faces,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY FACES freqs_inv = itemfreq(inv) faces_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED self.faces = uniques[faces_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_face_to_element = np.zeros((faces_ext_flags.shape[0],2),dtype=np.int64) # THE FOLLOWING WILL COMPUTE FACES BASED ON SORTING AND NOT TAKING INTO ACCOUNT # THE ELEMENT CONNECTIVITY # boundary_face_to_element[:,0] = np.remainder(idx[faces_ext_flags],self.elements.shape[0]) # boundary_face_to_element[:,1] = np.floor_divide(idx[faces_ext_flags],self.elements.shape[0]) # OR EQUIVALENTLY # boundary_face_to_element[:,0] = idx[faces_ext_flags] % self.elements.shape[0] # boundary_face_to_element[:,1] = idx[faces_ext_flags] // self.elements.shape[0] # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF FACES all_faces_in_faces = in2d(all_faces,self.faces,consider_sort=True) all_faces_in_faces = np.where(all_faces_in_faces==True)[0] # boundary_face_to_element = np.zeros((all_faces_in_faces.shape[0],2),dtype=np.int64) boundary_face_to_element[:,0] = all_faces_in_faces % self.elements.shape[0] boundary_face_to_element[:,1] = all_faces_in_faces // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.faces = self.elements[boundary_face_to_element[:,0][:,None],node_arranger[boundary_face_to_element[:,1],:]] self.faces = self.faces.astype(np.uint64) self.boundary_face_to_element = boundary_face_to_element def GetBoundaryEdgesTet(self): """Find boundary edges (lines) of tetrahedral mesh. Note that for tetrahedrals this function is more robust than Salome's default edge generator """ p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.edges,np.ndarray): if self.edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.edges.shape[1] == 2 and p > 1: pass else: return # FIRST GET BOUNDARY FACES if not isinstance(self.faces,np.ndarray): self.GetBoundaryFacesTet() # BUILD A 2D MESH tmesh = Mesh() tmesh.element_type = "tri" tmesh.elements = self.faces tmesh.nelem = tmesh.elements.shape[0] del tmesh.faces del tmesh.points # ALL THE EDGES CORRESPONDING TO THESE BOUNDARY FACES ARE BOUNDARY EDGES self.edges = tmesh.GetEdgesTri() def GetInteriorFacesTet(self): """Computes interior faces of a tetrahedral mesh returns: interior_faces ndarray of interior faces face_flags 1D array of face flags: 0 for interior and 1 for boundary """ if not isinstance(self.all_faces,np.ndarray): self.GetFacesTet() if not isinstance(self.faces,np.ndarray): self.GetBoundaryFacesTet() face_flags = in2d(self.all_faces.astype(self.faces.dtype),self.faces,consider_sort=True) face_flags[face_flags==True] = 1 face_flags[face_flags==False] = 0 interior_faces = self.all_faces[face_flags==False,:] return interior_faces, face_flags def GetInteriorEdgesTet(self): """Computes interior faces of a tetrahedral mesh returns: interior_edges ndarray of interior edges edge_flags 1D array of edge flags: 0 for interior and 1 for boundary """ if not isinstance(self.all_edges,np.ndarray): self.GetEdgesTet() if not isinstance(self.edges,np.ndarray): self.GetBoundaryEdgesTet() edge_flags = in2d(self.all_edges.astype(self.edges.dtype),self.edges,consider_sort=True) edge_flags[edge_flags==True] = 1 edge_flags[edge_flags==False] = 0 interior_edges = self.all_edges[edge_flags==False,:] self.interior_edges = interior_edges return interior_edges, edge_flags def GetEdgesQuad(self): """Find the all edges of a quadrilateral mesh. Sets all_edges property and returns it returns: arr: numpy ndarray of all edges""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_edges,np.ndarray): if self.all_edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_edges.shape[1]==2 and p > 1: pass else: return self.all_edges node_arranger = NodeArrangementQuad(p-1)[0] # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(np.uint64) # REMOVE DUPLICATES edges, idx = unique2d(edges,consider_sort=True,order=False,return_index=True) edge_to_element = np.zeros((edges.shape[0],2),np.int64) edge_to_element[:,0] = idx % self.elements.shape[0] edge_to_element[:,1] = idx // self.elements.shape[0] self.edge_to_element = edge_to_element # DO NOT SET all_edges IF THE CALLER FUNCTION IS GetBoundaryEdgesHex import inspect curframe = inspect.currentframe() calframe = inspect.getouterframes(curframe, 2)[1][3] if calframe != "GetBoundaryEdgesHex": self.all_edges = edges return edges def GetBoundaryEdgesQuad(self): """Find boundary edges (lines) of a quadrilateral mesh""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.edges,np.ndarray): if self.edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.edges.shape[1] == 2 and p > 1: pass else: return node_arranger = NodeArrangementQuad(p-1)[0] # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(np.uint64) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_edges,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY EDGES freqs_inv = itemfreq(inv) edges_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED self.edges = uniques[edges_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_edge_to_element = np.zeros((edges_ext_flags.shape[0],2),dtype=np.int64) # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF EDGES all_edges_in_edges = in2d(all_edges,self.edges,consider_sort=True) all_edges_in_edges = np.where(all_edges_in_edges==True)[0] boundary_edge_to_element[:,0] = all_edges_in_edges % self.elements.shape[0] boundary_edge_to_element[:,1] = all_edges_in_edges // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.edges = self.elements[boundary_edge_to_element[:,0][:,None],node_arranger[boundary_edge_to_element[:,1],:]] self.edges = self.edges.astype(np.uint64) self.boundary_edge_to_element = boundary_edge_to_element return self.edges def GetInteriorEdgesQuad(self): """Computes interior edges of a quadrilateral mesh returns: interior_faces ndarray of interior edges edge_flags ndarray of edge flags: 0 for interior and 1 for boundary """ if not isinstance(self.all_edges,np.ndarray): self.GetEdgesQuad() if not isinstance(self.edges,np.ndarray): self.GetBoundaryEdgesQuad() sorted_all_edges = np.sort(self.all_edges,axis=1) sorted_boundary_edges = np.sort(self.edges,axis=1) x = [] for i in range(self.edges.shape[0]): current_sorted_boundary_edge = np.tile(sorted_boundary_edges[i,:], self.all_edges.shape[0]).reshape(self.all_edges.shape[0],self.all_edges.shape[1]) interior_edges = np.linalg.norm(current_sorted_boundary_edge - sorted_all_edges,axis=1) pos_interior_edges = np.where(interior_edges==0)[0] if pos_interior_edges.shape[0] != 0: x.append(pos_interior_edges) edge_aranger = np.arange(self.all_edges.shape[0]) edge_aranger = np.setdiff1d(edge_aranger,np.array(x)[:,0]) interior_edges = self.all_edges[edge_aranger,:] # GET FLAGS FOR BOUNDRAY AND INTERIOR edge_flags = np.ones(self.all_edges.shape[0],dtype=np.int64) edge_flags[edge_aranger] = 0 self.interior_edges = interior_edges return interior_edges, edge_flags def GetFacesHex(self): """Find all faces (surfaces) in the hexahedral mesh (boundary & interior). Sets all_faces property and returns it returns: arr: numpy ndarray of all faces """ # DETERMINE DEGREE p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_faces,np.ndarray): if self.all_faces.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_faces.shape[1] == 4 and p > 1: pass else: return self.all_faces node_arranger = NodeArrangementHex(p-1)[0] fsize = int((p+1)**3) # GET ALL FACES FROM THE ELEMENT CONNECTIVITY faces = np.concatenate((np.concatenate(( np.concatenate((np.concatenate((np.concatenate((self.elements[:,node_arranger[0,:]], self.elements[:,node_arranger[1,:]]),axis=0),self.elements[:,node_arranger[2,:]]),axis=0), self.elements[:,node_arranger[3,:]]),axis=0),self.elements[:,node_arranger[4,:]]),axis=0), self.elements[:,node_arranger[5,:]]),axis=0).astype(np.int64) # REMOVE DUPLICATES self.all_faces, idx = unique2d(faces,consider_sort=True,order=False,return_index=True) face_to_element = np.zeros((self.all_faces.shape[0],2),np.int64) face_to_element[:,0] = idx % self.elements.shape[0] face_to_element[:,1] = idx // self.elements.shape[0] self.face_to_element = face_to_element return self.all_faces def GetEdgesHex(self): """Find all edges (lines) of tetrahedral mesh (boundary & interior)""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_edges,np.ndarray): if self.all_edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_edges.shape[1] == 2 and p > 1: pass else: return self.all_edges # FIRST GET BOUNDARY FACES if not isinstance(self.all_faces,np.ndarray): self.GetFacesHex() # BUILD A 2D MESH tmesh = Mesh() # tmesh = deepcopy(self) tmesh.element_type = "quad" tmesh.elements = self.all_faces tmesh.nelem = tmesh.elements.shape[0] del tmesh.faces del tmesh.points # COMPUTE ALL EDGES self.all_edges = tmesh.GetEdgesQuad() return self.all_edges def GetBoundaryFacesHex(self): """Find boundary faces (surfaces) of a hexahedral mesh""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.faces,np.ndarray): if self.faces.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.faces.shape[1] == 4 and p > 1: pass else: return node_arranger = NodeArrangementHex(p-1)[0] # CONCATENATE ALL THE FACES MADE FROM ELEMENTS all_faces = np.concatenate((np.concatenate(( np.concatenate((np.concatenate((np.concatenate((self.elements[:,node_arranger[0,:]], self.elements[:,node_arranger[1,:]]),axis=0),self.elements[:,node_arranger[2,:]]),axis=0), self.elements[:,node_arranger[3,:]]),axis=0),self.elements[:,node_arranger[4,:]]),axis=0), self.elements[:,node_arranger[5,:]]),axis=0).astype(np.int64) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_faces,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY FACES freqs_inv = itemfreq(inv) faces_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED self.faces = uniques[faces_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_face_to_element = np.zeros((faces_ext_flags.shape[0],2),dtype=np.int64) # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF FACES all_faces_in_faces = in2d(all_faces,self.faces,consider_sort=True) all_faces_in_faces = np.where(all_faces_in_faces==True)[0] # boundary_face_to_element = np.zeros((all_faces_in_faces.shape[0],2),dtype=np.int64) boundary_face_to_element[:,0] = all_faces_in_faces % self.elements.shape[0] boundary_face_to_element[:,1] = all_faces_in_faces // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.faces = self.elements[boundary_face_to_element[:,0][:,None],node_arranger[boundary_face_to_element[:,1],:]] self.faces = self.faces.astype(np.uint64) self.boundary_face_to_element = boundary_face_to_element def GetBoundaryEdgesHex(self): """Find boundary edges (lines) of hexahedral mesh. """ p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.edges,np.ndarray): if self.edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.edges.shape[1] == 2 and p > 1: pass else: return # FIRST GET BOUNDARY FACES if not isinstance(self.faces,np.ndarray): self.GetBoundaryFacesHex() # BUILD A 2D MESH tmesh = Mesh() tmesh.element_type = "quad" tmesh.elements = self.faces tmesh.nelem = tmesh.elements.shape[0] del tmesh.faces del tmesh.points # ALL THE EDGES CORRESPONDING TO THESE BOUNDARY FACES ARE BOUNDARY EDGES self.edges = tmesh.GetEdgesQuad() def GetInteriorFacesHex(self): """Computes interior faces of a hexahedral mesh returns: interior_faces ndarray of interior faces face_flags 1D array of face flags: 0 for interior and 1 for boundary """ if not isinstance(self.all_faces,np.ndarray): self.GetFacesHex() if not isinstance(self.faces,np.ndarray): self.GetBoundaryFacesHex() face_flags = in2d(self.all_faces.astype(self.faces.dtype),self.faces,consider_sort=True) face_flags[face_flags==True] = 1 face_flags[face_flags==False] = 0 interior_faces = self.all_faces[face_flags==False,:] return interior_faces, face_flags def GetInteriorEdgesHex(self): """Computes interior faces of a hexahedral mesh returns: interior_edges ndarray of interior edges edge_flags 1D array of edge flags: 0 for interior and 1 for boundary """ if not isinstance(self.all_edges,np.ndarray): self.GetEdgesHex() if not isinstance(self.edges,np.ndarray): self.GetBoundaryEdgesHex() edge_flags = in2d(self.all_edges.astype(self.edges.dtype),self.edges,consider_sort=True) edge_flags[edge_flags==True] = 1 edge_flags[edge_flags==False] = 0 interior_edges = self.all_edges[edge_flags==False,:] self.interior_edges = interior_edges return interior_edges, edge_flags def GetEdgesPent(self): """Find the all edges of a pentagonal mesh. Sets all_edges property and returns it returns: arr: numpy ndarray of all edges""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_edges,np.ndarray): if self.all_edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_edges.shape[1]==2 and p > 1: pass else: return self.all_edges node_arranger = np.array([ [0,1], [1,2], [2,3], [3,4], [4,0], ]) # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]], self.elements[:,node_arranger[4,:]]),axis=0).astype(np.uint64) # REMOVE DUPLICATES edges, idx = unique2d(edges,consider_sort=True,order=False,return_index=True) edge_to_element = np.zeros((edges.shape[0],2),np.int64) edge_to_element[:,0] = idx % self.elements.shape[0] edge_to_element[:,1] = idx // self.elements.shape[0] self.edge_to_element = edge_to_element self.all_edges = edges return edges def GetBoundaryEdgesPent(self): """Find boundary edges (lines) of a pentagonal mesh""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.edges,np.ndarray): if self.edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.edges.shape[1] == 2 and p > 1: pass else: return node_arranger = np.array([ [0,1], [1,2], [2,3], [3,4], [4,0], ]) # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]], self.elements[:,node_arranger[4,:]]),axis=0).astype(np.uint64) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_edges,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY EDGES freqs_inv = itemfreq(inv) edges_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED self.edges = uniques[edges_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_edge_to_element = np.zeros((edges_ext_flags.shape[0],2),dtype=np.int64) # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF EDGES all_edges_in_edges = in2d(all_edges,self.edges,consider_sort=True) all_edges_in_edges = np.where(all_edges_in_edges==True)[0] boundary_edge_to_element[:,0] = all_edges_in_edges % self.elements.shape[0] boundary_edge_to_element[:,1] = all_edges_in_edges // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.edges = self.elements[boundary_edge_to_element[:,0][:,None],node_arranger[boundary_edge_to_element[:,1],:]] self.edges = self.edges.astype(np.uint64) self.boundary_edge_to_element = boundary_edge_to_element return self.edges def GetInteriorEdgesPent(self): """Computes interior edges of a pentagonal mesh returns: interior_faces ndarray of interior edges edge_flags ndarray of edge flags: 0 for interior and 1 for boundary """ if not isinstance(self.all_edges,np.ndarray): self.GetEdgesPent() if not isinstance(self.edges,np.ndarray): self.GetBoundaryEdgesPent() sorted_all_edges = np.sort(self.all_edges,axis=1) sorted_boundary_edges = np.sort(self.edges,axis=1) x = [] for i in range(self.edges.shape[0]): current_sorted_boundary_edge = np.tile(sorted_boundary_edges[i,:], self.all_edges.shape[0]).reshape(self.all_edges.shape[0],self.all_edges.shape[1]) interior_edges = np.linalg.norm(current_sorted_boundary_edge - sorted_all_edges,axis=1) pos_interior_edges = np.where(interior_edges==0)[0] if pos_interior_edges.shape[0] != 0: x.append(pos_interior_edges) edge_aranger = np.arange(self.all_edges.shape[0]) edge_aranger = np.setdiff1d(edge_aranger,np.array(x)[:,0]) interior_edges = self.all_edges[edge_aranger,:] # GET FLAGS FOR BOUNDRAY AND INTERIOR edge_flags = np.ones(self.all_edges.shape[0],dtype=np.int64) edge_flags[edge_aranger] = 0 self.interior_edges = interior_edges return interior_edges, edge_flags def GetHighOrderMesh(self,p=1, silent=True, **kwargs): """Given a linear tri, tet, quad or hex mesh compute high order mesh based on it. This is a static method linked to the HigherOrderMeshing module""" if not isinstance(p,int): raise ValueError("p must be an integer") else: if p < 1: raise ValueError("Value of p={} is not acceptable. Provide p>=1.".format(p)) if self.degree is None: self.InferPolynomialDegree() C = p-1 if 'C' in kwargs.keys(): if kwargs['C'] != p - 1: raise ValueError("Did not understand the specified interpolation degree of the mesh") del kwargs['C'] # DO NOT COMPUTE IF ALREADY COMPUTED FOR THE SAME ORDER if self.degree == None: self.degree = self.InferPolynomialDegree() if self.degree == p: return # SITUATIONS WHEN ANOTHER HIGH ORDER MESH IS REQUIRED, WITH ONE HIGH # ORDER MESH ALREADY AVAILABLE if self.degree != 1 and self.degree - 1 != C: dum = self.GetLinearMesh(remap=True) self.__dict__.update(dum.__dict__) if not silent: print('Generating p = '+str(C+1)+' mesh based on the linear mesh...') t_mesh = time() # BUILD A NEW MESH BASED ON THE LINEAR MESH if self.element_type == 'line': nmesh = HighOrderMeshLine(C,self,**kwargs) if self.element_type == 'tri': if self.edges is None: self.GetBoundaryEdgesTri() # nmesh = HighOrderMeshTri(C,self,**kwargs) nmesh = HighOrderMeshTri_SEMISTABLE(C,self,**kwargs) elif self.element_type == 'tet': # nmesh = HighOrderMeshTet(C,self,**kwargs) nmesh = HighOrderMeshTet_SEMISTABLE(C,self,**kwargs) elif self.element_type == 'quad': if self.edges is None: self.GetBoundaryEdgesQuad() nmesh = HighOrderMeshQuad(C,self,**kwargs) elif self.element_type == 'hex': nmesh = HighOrderMeshHex(C,self,**kwargs) self.points = nmesh.points self.elements = nmesh.elements.astype(np.uint64) if isinstance(self.corners,np.ndarray): # NOT NECESSARY BUT GENERIC self.corners = nmesh.corners.astype(np.uint64) if isinstance(self.edges,np.ndarray): self.edges = nmesh.edges.astype(np.uint64) if isinstance(self.faces,np.ndarray): if isinstance(nmesh.faces,np.ndarray): self.faces = nmesh.faces.astype(np.uint64) self.nelem = nmesh.nelem self.nnode = self.points.shape[0] self.element_type = nmesh.info self.degree = C+1 self.ChangeType() if not silent: print('Finished generating the high order mesh. Time taken', time()-t_mesh,'sec') def EdgeLengths(self,which_edges='boundary'): """Computes length of edges, for 2D and 3D meshes which_edges: [str] 'boundary' for boundary edges only and 'all' for all edges """ assert self.points is not None assert self.element_type is not None lengths = None if which_edges == 'boundary': if self.edges is None: self.GetBoundaryEdges() edge_coords = self.points[self.edges[:,:2],:] lengths = np.linalg.norm(edge_coords[:,1,:] - edge_coords[:,0,:],axis=1) elif which_edges == 'all': if self.all_edges is None: self.GetEdges() edge_coords = self.points[self.all_edges[:,:2],:] lengths = np.linalg.norm(edge_coords[:,1,:] - edge_coords[:,0,:],axis=1) return lengths def Lengths(self,): """Computes length of all types of elements """ self.__do_essential_memebers_exist__() if self.element_type == "line": coords = self.points[self.elements[:,:2],:] lengths = np.linalg.norm(coords[:,1,:] - coords[:,0,:],axis=1) else: self.GetEdges() coord = self.all_edges coords = self.points[self.elements[:,:2],:] lengths = np.linalg.norm(coords[:,1,:] - coords[:,0,:],axis=1) return lengths def Areas(self, with_sign=False, gpoints=None): """Find areas of all 2D elements [tris, quads]. For 3D elements returns surface areas of all faces input: with_sign: [str] compute with/without sign gpoints: [ndarray] given coordinates to use instead of self.points returns: 1D array of nelem x 1 containing areas """ assert self.elements is not None assert self.element_type is not None if gpoints is None: assert self.points is not None gpoints = self.points if self.element_type == "tri": points = np.ones((gpoints.shape[0],3),dtype=np.float64) points[:,:2] = gpoints # FIND AREAS OF ALL THE ELEMENTS area = 0.5*np.linalg.det(points[self.elements[:,:3],:]) elif self.element_type == "quad": # NODE ORDERING IS IRRELEVANT, AS IT IS THESE AREAS # WHICH DETERMINE NODE ORDERING # AREA OF QUAD ABCD = AREA OF ABC + AREA OF ACD points = np.ones((gpoints.shape[0],3),dtype=np.float64) points[:,:2] = gpoints # FIND AREAS ABC area0 = np.linalg.det(points[self.elements[:,:3],:]) # FIND AREAS ACD area1 = np.linalg.det(points[self.elements[:,[0,2,3]],:]) # FIND AREAS OF ALL THE ELEMENTS area = 0.5*(area0+area1) elif self.element_type == "tet": # GET ALL THE FACES faces = self.GetFacesTet() points = np.ones((gpoints.shape[0],3),dtype=np.float64) points[:,:2]=gpoints[:,:2] area0 = np.linalg.det(points[faces[:,:3],:]) points[:,:2]=gpoints[:,[2,0]] area1 = np.linalg.det(points[faces[:,:3],:]) points[:,:2]=gpoints[:,[1,2]] area2 = np.linalg.det(points[faces[:,:3],:]) area = 0.5*np.linalg.norm(area0+area1+area2) elif self.element_type == "hex": from Florence.Tensor import unique2d C = self.InferPolynomialDegree() - 1 area = 0 node_arranger = NodeArrangementHex(C)[0] for i in range(node_arranger.shape[0]): # print node_arranger[i,:] # AREA OF FACES points = np.ones((gpoints.shape[0],3),dtype=np.float64) if i==0 or i==1: points[:,:2] = gpoints[:,:2] elif i==2 or i==3: points[:,:2] = gpoints[:,[0,2]] elif i==4 or i==5: points[:,:2] = gpoints[:,1:] # FIND AREAS ABC area0 = np.linalg.det(points[self.elements[:,node_arranger[i,:3]],:]) # FIND AREAS ACD area1 = np.linalg.det(points[self.elements[:,node_arranger[i,1:]],:]) # FIND AREAS OF ALL THE ELEMENTS area += 0.5*np.linalg.norm(area0+area1) # print area raise ValueError('Hex areas implementation requires further checks') else: raise NotImplementedError("Computing areas for", self.element_type, "elements not implemented yet") if with_sign is False: if self.element_type == "tri" or self.element_type == "quad": area = np.abs(area) elif self.element_type == "tet": raise NotImplementedError('Numbering order of tetrahedral faces could not be determined') return area def Volumes(self, with_sign=False, gpoints=None): """Find Volumes of all 3D elements [tets, hexes] input: with_sign: [str] compute with/without sign gpoints: [ndarray] given coordinates to use instead of self.points returns: 1D array of nelem x 1 containing volumes """ assert self.elements is not None assert self.element_type is not None if self.points.shape[1] == 2: raise ValueError("2D mesh does not have volume") if gpoints is None: assert self.points is not None gpoints = self.points if self.element_type == "tet": a = gpoints[self.elements[:,0],:] b = gpoints[self.elements[:,1],:] c = gpoints[self.elements[:,2],:] d = gpoints[self.elements[:,3],:] det_array = np.dstack((a-d,b-d,c-d)) # FIND VOLUME OF ALL THE ELEMENTS volume = 1./6.*np.linalg.det(det_array) elif self.element_type == "hex": # Refer: https://en.wikipedia.org/wiki/Parallelepiped a = gpoints[self.elements[:,0],:] b = gpoints[self.elements[:,1],:] c = gpoints[self.elements[:,3],:] d = gpoints[self.elements[:,4],:] det_array = np.dstack((b-a,c-a,d-a)) # FIND VOLUME OF ALL THE ELEMENTS volume = np.linalg.det(det_array) else: raise NotImplementedError("Computing volumes for", self.element_type, "elements not implemented yet") if with_sign is False: volume = np.abs(volume) return volume def Sizes(self, with_sign=False): """Computes the size of elements for all element types. This is a generic method that for 1D=lengths, for 2D=areas and for 3D=volumes. It works for planar and curved elements """ self.__do_essential_memebers_exist__() try: from Florence import DisplacementFormulation except ImportError: raise ValueError("This functionality requires Florence's support") if self.element_type != "line": # FOR LINE ELEMENTS THIS APPROACH DOES NOT WORK AS JACOBIAN IS NOT WELL DEFINED formulation = DisplacementFormulation(self) sizes = np.zeros(self.nelem) if not with_sign: for elem in range(self.nelem): LagrangeElemCoords = self.points[self.elements[elem,:],:] sizes[elem] = formulation.GetVolume(formulation.function_spaces[0], LagrangeElemCoords, LagrangeElemCoords, False, elem=elem) else: for elem in range(self.nelem): LagrangeElemCoords = self.points[self.elements[elem,:],:] sizes[elem] = formulation.GetSignedVolume(formulation.function_spaces[0], LagrangeElemCoords, LagrangeElemCoords, False, elem=elem) return sizes else: warn("Sizes of line elements could be incorrect if the mesh is curvilinear") return self.Lengths() def AspectRatios(self,algorithm='edge_based'): """Compute aspect ratio of the mesh element-by-element. For 2D meshes aspect ratio is aspect ratio is defined as the ratio of maximum edge length to minimum edge length. For 3D meshes aspect ratio can be either length or area based. input: algorithm: [str] 'edge_based' or 'face_based' returns: aspect_ratio: [1D array] of size (self.nelem) containing aspect ratio of elements """ assert self.points is not None assert self.element_type is not None aspect_ratio = None if algorithm == 'edge_based': if self.element_type == "tri": edge_coords = self.points[self.elements[:,:3],:] AB = np.linalg.norm(edge_coords[:,1,:] - edge_coords[:,0,:],axis=1) AC = np.linalg.norm(edge_coords[:,2,:] - edge_coords[:,0,:],axis=1) BC = np.linalg.norm(edge_coords[:,2,:] - edge_coords[:,1,:],axis=1) minimum = np.minimum(np.minimum(AB,AC),BC) maximum = np.maximum(np.maximum(AB,AC),BC) aspect_ratio = 1.0*maximum/minimum elif self.element_type == "quad": edge_coords = self.points[self.elements[:,:4],:] AB = np.linalg.norm(edge_coords[:,1,:] - edge_coords[:,0,:],axis=1) BC = np.linalg.norm(edge_coords[:,2,:] - edge_coords[:,1,:],axis=1) CD = np.linalg.norm(edge_coords[:,3,:] - edge_coords[:,2,:],axis=1) DA = np.linalg.norm(edge_coords[:,0,:] - edge_coords[:,3,:],axis=1) minimum = np.minimum(np.minimum(np.minimum(AB,BC),CD),DA) maximum = np.maximum(np.maximum(np.maximum(AB,BC),CD),DA) aspect_ratio = 1.0*maximum/minimum elif self.element_type == "tet": edge_coords = self.points[self.elements[:,:4],:] AB = np.linalg.norm(edge_coords[:,1,:] - edge_coords[:,0,:],axis=1) AC = np.linalg.norm(edge_coords[:,2,:] - edge_coords[:,0,:],axis=1) AD = np.linalg.norm(edge_coords[:,3,:] - edge_coords[:,0,:],axis=1) BC = np.linalg.norm(edge_coords[:,2,:] - edge_coords[:,1,:],axis=1) BD = np.linalg.norm(edge_coords[:,3,:] - edge_coords[:,1,:],axis=1) CD = np.linalg.norm(edge_coords[:,3,:] - edge_coords[:,2,:],axis=1) minimum = np.minimum(np.minimum(np.minimum(np.minimum(np.minimum(AB,AC),AD),BC),BD),CD) maximum = np.maximum(np.maximum(np.maximum(np.maximum(np.maximum(AB,AC),AD),BC),BD),CD) aspect_ratio = 1.0*maximum/minimum elif self.element_type == "hex": edge_coords = self.points[self.elements[:,:8],:] AB = np.linalg.norm(edge_coords[:,1,:] - edge_coords[:,0,:],axis=1) BC = np.linalg.norm(edge_coords[:,2,:] - edge_coords[:,1,:],axis=1) CD = np.linalg.norm(edge_coords[:,3,:] - edge_coords[:,2,:],axis=1) DA = np.linalg.norm(edge_coords[:,0,:] - edge_coords[:,3,:],axis=1) minimum0 = np.minimum(np.minimum(np.minimum(AB,BC),CD),DA) maximum0 = np.maximum(np.maximum(np.maximum(AB,BC),CD),DA) AB = np.linalg.norm(edge_coords[:,5,:] - edge_coords[:,4,:],axis=1) BC = np.linalg.norm(edge_coords[:,6,:] - edge_coords[:,5,:],axis=1) CD = np.linalg.norm(edge_coords[:,7,:] - edge_coords[:,6,:],axis=1) DA = np.linalg.norm(edge_coords[:,4,:] - edge_coords[:,7,:],axis=1) minimum1 = np.minimum(np.minimum(np.minimum(AB,BC),CD),DA) maximum1 = np.maximum(np.maximum(np.maximum(AB,BC),CD),DA) AB = np.linalg.norm(edge_coords[:,4,:] - edge_coords[:,0,:],axis=1) BC = np.linalg.norm(edge_coords[:,5,:] - edge_coords[:,1,:],axis=1) CD = np.linalg.norm(edge_coords[:,6,:] - edge_coords[:,2,:],axis=1) DA = np.linalg.norm(edge_coords[:,7,:] - edge_coords[:,3,:],axis=1) minimum2 = np.minimum(np.minimum(np.minimum(AB,BC),CD),DA) maximum2 = np.maximum(np.maximum(np.maximum(AB,BC),CD),DA) minimum = np.minimum(minimum0,np.minimum(minimum1,minimum2)) maximum = np.maximum(maximum0,np.maximum(maximum1,maximum2)) aspect_ratio = 1.0*maximum/minimum elif self.element_type == "line": raise ValueError("Line elments do no have aspect ratio") elif algorithm == 'face_based': raise NotImplementedError("Face/area based aspect ratio is not implemented yet") return aspect_ratio def FaceNormals(self): """Computes outward unit normals on faces. This is a generic method for all element types apart from lines. If the mesh is in 2D plane then the unit outward normals will point in Z direction. If the mesh is quad or tri type but in 3D plane, this will still compute the correct unit outward normals. outwardness can only be guaranteed for volume meshes. This method is different from the method self.Normals() as the latter can compute normals for 1D/2D elements in-plane """ self.__do_memebers_exist__() points = np.copy(self.points) if points.shape[1] < 3: dum = np.zeros((points.shape[0],3)) dum[:,:points.shape[1]] = points points = dum if self.element_type == "tet" or self.element_type == "hex": faces = self.faces elif self.element_type == "tri" or self.element_type == "quad": faces = self.elements else: raise ValueError("Cannot compute face normals on {}".format(self.element_type)) face_coords = self.points[faces[:,:3],:] p1p0 = face_coords[:,1,:] - face_coords[:,0,:] p2p0 = face_coords[:,2,:] - face_coords[:,0,:] normals = np.cross(p1p0,p2p0) norm_normals = np.linalg.norm(normals,axis=1) normals[:,0] /= norm_normals normals[:,1] /= norm_normals normals[:,2] /= norm_normals # CHECK IF THE NORMAL IS OUTWARD - FOR LINES DIRECTIONALITY DOES NOT MATTER if self.element_type == "tet" or self.element_type == "hex": self.GetElementsWithBoundaryFaces() meds = self.Medians() face_element_meds = meds[self.boundary_face_to_element[:,0],:] p1pm = face_coords[:,1,:] - face_element_meds # IF THE DOT PROUCT OF NORMALS AND EDGE-MED NODE VECTOR IS NEGATIVE THEN FLIP _check = np.einsum("ij,ij->i",normals,p1pm) normals[np.less(_check,0.)] = -normals[np.less(_check,0.)] return normals def Normals(self, show_plot=False): """Computes unit outward normals to the boundary for all element types. Unity and outwardness are guaranteed """ self.__do_memebers_exist__() ndim = self.InferSpatialDimension() if self.element_type == "tet" or self.element_type == "hex": normals = self.FaceNormals() elif self.element_type == "tri" or self.element_type == "quad" or self.element_type == "line": if self.points.shape[1] == 3: normals = self.FaceNormals() else: if self.element_type == "tri" or self.element_type == "quad": edges = self.edges elif self.element_type == "line": edges = self.elements edge_coords = self.points[edges[:,:2],:] p1p0 = edge_coords[:,1,:] - edge_coords[:,0,:] normals = np.zeros_like(p1p0) normals[:,0] = -p1p0[:,1] normals[:,1] = p1p0[:,0] norm_normals = np.linalg.norm(normals,axis=1) normals[:,0] /= norm_normals normals[:,1] /= norm_normals # CHECK IF THE NORMAL IS OUTWARD - FOR LINES DIRECTIONALITY DOES NOT MATTER if self.element_type == "tri" or self.element_type == "quad": self.GetElementsWithBoundaryEdges() meds = self.Medians() edge_element_meds = meds[self.boundary_edge_to_element[:,0],:] p1pm = edge_coords[:,1,:] - edge_element_meds # IF THE DOT PROUCT OF NORMALS AND EDGE-MED NODE VECTOR IS NEGATIVE THEN FLIP _check = np.einsum("ij,ij->i",normals,p1pm) normals[np.less(_check,0.)] = -normals[np.less(_check,0.)] if show_plot: if ndim == 2: mid_edge_coords = 0.5*(edge_coords[:,1,:] + edge_coords[:,0,:]) import matplotlib.pyplot as plt figure = plt.figure() self.SimplePlot(figure=figure, show_plot=False) q = plt.quiver(mid_edge_coords[:,0], mid_edge_coords[:,1], normals[:,0], normals[:,1], color='Teal', headlength=5, width=0.004) plt.axis('equal') plt.axis('off') plt.tight_layout() plt.show() elif ndim == 3: mid_face_coords = np.sum(self.points[self.faces,:3],axis=1)/self.faces.shape[1] import os os.environ['ETS_TOOLKIT'] = 'qt4' from mayavi import mlab figure = mlab.figure(bgcolor=(1,1,1),fgcolor=(1,1,1),size=(1000,800)) self.SimplePlot(figure=figure, show_plot=False) mlab.quiver3d(mid_face_coords[:,0], mid_face_coords[:,1], mid_face_coords[:,2], normals[:,0], normals[:,1], normals[:,2], color=(0.,128./255,128./255),line_width=2) mlab.show() return normals def Angles(self, degrees=True): """Compute angles of 2D meshes. Strictly 2D meshes and linear elements. If the mesh is curved the angles would be inaccurate input: degrees [bool] if True returns angles in degrees otherwise in radians returns: angles [2D array] of angles per element. Angles are computed per element so every element will have as many angles as it's nodes """ self.__do_essential_memebers_exist__() if self.InferElementalDimension() != 2: raise ValueError("Angles can be computed only for 2D elements") if self.InferSpatialDimension() != 2: raise ValueError("Angles can be computed only in 2-dimensional plane") nodeperelem = self.InferNumberOfNodesPerLinearElement() angles = np.zeros((self.nelem, nodeperelem)) norm = lambda x: np.linalg.norm(x,axis=1) edge_coords = self.points[self.elements[:,:],:] if self.element_type == "tri": AB = edge_coords[:,1,:] - edge_coords[:,0,:] AC = edge_coords[:,2,:] - edge_coords[:,0,:] BC = edge_coords[:,2,:] - edge_coords[:,1,:] angles[:,0] = np.einsum("ij,ij->i",AB,AC) / (norm(AB)*norm(AC)) angles[:,1] = np.einsum("ij,ij->i",AC,BC) / (norm(AC)*norm(BC)) angles[:,2] = np.einsum("ij,ij->i",BC,-AB)/ (norm(BC)*norm(AB)) angles = np.arccos(angles) elif self.element_type == "quad": AB = edge_coords[:,1,:] - edge_coords[:,0,:] BC = edge_coords[:,2,:] - edge_coords[:,1,:] CD = edge_coords[:,3,:] - edge_coords[:,2,:] DA = edge_coords[:,0,:] - edge_coords[:,3,:] angles[:,0] = np.einsum("ij,ij->i",AB,BC) / (norm(AB)*norm(BC)) angles[:,1] = np.einsum("ij,ij->i",BC,CD) / (norm(BC)*norm(CD)) angles[:,2] = np.einsum("ij,ij->i",CD,DA) / (norm(CD)*norm(DA)) angles[:,3] = np.einsum("ij,ij->i",DA,-AB)/ (norm(DA)*norm(AB)) angles = np.arccos(angles) if degrees: angles *= 180/np.pi return angles def BoundingBoxes(self, show_plot=False, figure=None): """Computes a bounding box for every element. This method complements the Bounds method/property in that it computes the bounds for every individual element returns: bboxes [3D array] of nelem x ndim x ndim of bounding boxes for every element """ self.__do_essential_memebers_exist__() ndim = self.InferSpatialDimension() all_elem_coords = self.points[self.elements] mins = all_elem_coords.min(axis=1) maxs = all_elem_coords.max(axis=1) bboxes = np.zeros((2*self.nelem,self.points.shape[1])) bboxes[::2] = mins bboxes[1::2] = maxs bboxes = bboxes.reshape(self.nelem,2,self.points.shape[1]) if show_plot: if ndim == 3: point_generator = lambda bbox: np.array([ [ bbox[0,0], bbox[0,1], bbox[0,2] ], [ bbox[1,0], bbox[0,1], bbox[0,2] ], [ bbox[1,0], bbox[1,1], bbox[0,2] ], [ bbox[0,0], bbox[1,1], bbox[0,2] ], [ bbox[0,0], bbox[0,1], bbox[1,2] ], [ bbox[1,0], bbox[0,1], bbox[1,2] ], [ bbox[1,0], bbox[1,1], bbox[1,2] ], [ bbox[0,0], bbox[1,1], bbox[1,2] ] ]) elif ndim == 2: point_generator = lambda bbox: np.array([ [ bbox[0,0], bbox[0,1] ], [ bbox[1,0], bbox[0,1] ], [ bbox[1,0], bbox[1,1] ], [ bbox[0,0], bbox[1,1] ] ]) nsize = 4 if ndim ==2 else 8 ranger = np.arange(nsize) bmesh = Mesh() bmesh.element_type = "quad" if ndim ==2 else "hex" bmesh.elements = np.arange(self.nelem*nsize).reshape(self.nelem,nsize) bmesh.points = np.zeros((self.nelem*nsize,ndim)) bmesh.nelem = self.nelem bmesh.nnode = bmesh.points.shape[0] for i in range(0,self.nelem): bmesh.points[i*nsize:(i+1)*nsize,:] = point_generator(bboxes[i]) if ndim == 2: import matplotlib.pyplot as plt if figure is None: figure = plt.figure() self.SimplePlot(figure=figure, show_plot=False) bmesh.SimplePlot(figure=figure, show_plot=False, edge_color='r') plt.show() else: import os os.environ['ETS_TOOLKIT'] = 'qt4' from mayavi import mlab if figure is None: figure = mlab.figure(bgcolor=(1,1,1),fgcolor=(1,1,1),size=(1000,800)) self.SimplePlot(figure=figure, show_plot=False) bmesh.SimplePlot(figure=figure, show_plot=False, plot_faces=False, edge_color='r') mlab.show() return bboxes def Medians(self, geometric=True): """Computes median of the elements tri, tet, quad, hex based on the interpolation function input: geometric [Bool] geometrically computes median without relying on FEM bases retruns: median: [ndarray] of median of elements bases_at_median: [1D array] of (p=1) bases at median """ self.__do_essential_memebers_exist__() median = None if geometric == True: median = np.sum(self.points[self.elements,:],axis=1)/self.elements.shape[1] return median else: try: from Florence.FunctionSpace import Tri, Tet from Florence.QuadratureRules import FeketePointsTri, FeketePointsTet except ImportError: raise ImportError("This functionality requires florence's support") if self.element_type == "tri": eps = FeketePointsTri(2) middle_point_isoparametric = eps[6,:] if not np.isclose(sum(middle_point_isoparametric),-0.6666666): raise ValueError("Median of triangle does not match [-0.3333,-0.3333]. " "Did you change your nodal spacing or interpolation functions?") hpBases = Tri.hpNodal.hpBases bases_for_middle_point = hpBases(0,middle_point_isoparametric[0], middle_point_isoparametric[1])[0] median = np.einsum('ijk,j',self.points[self.elements[:,:3],:],bases_for_middle_point) elif self.element_type == "tet": middle_point_isoparametric = FeketePointsTet(3)[21] if not np.isclose(sum(middle_point_isoparametric),-1.5): raise ValueError("Median of tetrahedral does not match [-0.5,-0.5,-0.5]. " "Did you change your nodal spacing or interpolation functions?") # C = self.InferPolynomialDegree() - 1 hpBases = Tet.hpNodal.hpBases bases_for_middle_point = hpBases(0,middle_point_isoparametric[0], middle_point_isoparametric[1],middle_point_isoparametric[2])[0] median = np.einsum('ijk,j',self.points[self.elements[:,:4],:],bases_for_middle_point) else: raise NotImplementedError('Median for {} elements not implemented yet'.format(self.element_type)) return median, bases_for_middle_point def FindElementContainingPoint(self, point, algorithm="fem", find_parametric_coordinate=True, scaling_factor=5., tolerance=1.0e-7, maxiter=20, use_simple_bases=False, return_on_geometric_finds=False, initial_guess=None, initial_guesses=None, restart=False): """Find which element does a point lie in using specificed algorithm. The FEM isoparametric coordinate of the point is returned as well. If the isoparametric coordinate of the point is not required, issue find_parametric_coordinate=False input: point: [tuple] XYZ of enquiry point algorithm: [str] either 'fem' or 'geometric'. The 'fem' algorithm uses k-d tree search to get the right bounding box around as few elements as possible. The size of the box can be specified by the user through the keyword scaling_factor. The geometric algorithm is a lot more stable and converges much quicker. The geomtric algorithm first identifies the right element using volume check, then tries all possible combination of initial guesses to get the FEM isoparametric point. Trying all possible combination with FEM can be potentially more costly since bounding box size can be large. return_on_geometric_finds: [bool] if geometric algorithm is chosen and this option is on, then it returns the indices of elements as soon as the volume check and no further checks are done. This is useful for situations when searching for points that are meant to be in the interior of the elements rather than at the boundaries or nodes otherwise the number of elements returned by geometric algorithm is going to be more than one return: element_index [int/1D array of ints] element(s) containing the point. If the point is shared between many elements a 1D array is returned iso_parametric_point [1D array] the parametric coordinate of the point within the element. return only if find_parametric_coordinate=True """ if restart: if initial_guesses is None: if self.element_type == "pent": initial_guesses = np.array([ [0.,0.], [1.,0.], [1.,0.5], [0.5,1.], [0.,1.], ]) else: raise ValueError("restart option for this element type is only supported if initial_guesses are available") for i in range(initial_guesses.shape[0]): ret_val = self.FindElementContainingPoint(point, algorithm=algorithm, find_parametric_coordinate=find_parametric_coordinate, scaling_factor=scaling_factor, tolerance=tolerance, maxiter=maxiter, use_simple_bases=use_simple_bases, return_on_geometric_finds=return_on_geometric_finds, initial_guess=initial_guesses[i,:], restart=False) if ret_val[1] is not None: break return ret_val self.__do_essential_memebers_exist__() C = self.InferPolynomialDegree() - 1 if C > 0: warn("Note that finding a point within higher order curved mesh is not supported yet") if C > 0 and algorithm == "geometric": warn("High order meshes are not supported using geometric algorithim. I am going to operate on linear mesh") if use_simple_bases: raise ValueError("Simple bases for high order elements are not available") return ndim = self.InferSpatialDimension() assert len(point) == ndim from Florence.FunctionSpace import PointInversionIsoparametricFEM candidate_element, candidate_piso = None, None if self.element_type == "tet" and algorithm == "fem": algorithm = "geometric" if algorithm == "fem": scaling_factor = float(scaling_factor) max_h = self.EdgeLengths().max() # max_h=1. # FOR CURVED ELEMENTS # max_h = self.LargestSegment().max() # GET A BOUNDING BOX AROUND THE POINT, n TIMES LARGER THAN MAXIMUM h, WHERE n is the SCALING FACTOR if ndim==3: bounding_box = (point[0]-scaling_factor*max_h, point[1]-scaling_factor*max_h, point[2]-scaling_factor*max_h, point[0]+scaling_factor*max_h, point[1]+scaling_factor*max_h, point[2]+scaling_factor*max_h) elif ndim==2: bounding_box = (point[0]-scaling_factor*max_h, point[1]-scaling_factor*max_h, point[0]+scaling_factor*max_h, point[1]+scaling_factor*max_h) # SELECT ELEMENTS ONLY WITHIN THE BOUNDING BOX mesh = deepcopy(self) idx_kept_element = self.RemoveElements(bounding_box)[1] if ndim==3: for i in range(self.nelem): coord = self.points[self.elements[i,:],:] p_iso, converged = PointInversionIsoparametricFEM(self.element_type, C, coord, point, tolerance=tolerance, maxiter=maxiter, verbose=True, use_simple_bases=use_simple_bases, initial_guess=initial_guess) if converged: # if p_iso[0] >= -1. and p_iso[0] <=1. and \ # p_iso[1] >= -1. and p_iso[1] <=1. and \ # p_iso[2] >= -1. and p_iso[2] <=1. : if (p_iso[0] > -1. or np.isclose(p_iso[0],-1.,rtol=tolerance)) and \ (p_iso[0] < 1. or np.isclose(p_iso[0], 1.,rtol=tolerance)) and \ (p_iso[1] > -1. or np.isclose(p_iso[1],-1.,rtol=tolerance)) and \ (p_iso[1] < 1. or np.isclose(p_iso[1],-1.,rtol=tolerance)) and \ (p_iso[2] > -1. or np.isclose(p_iso[2],-1.,rtol=tolerance)) and \ (p_iso[2] < 1. or np.isclose(p_iso[2], 1.,rtol=tolerance)) : candidate_element, candidate_piso = i, p_iso break elif ndim==2: for i in range(self.nelem): coord = self.points[self.elements[i,:],:] p_iso, converged = PointInversionIsoparametricFEM(self.element_type, C, coord, point, tolerance=tolerance, maxiter=maxiter, verbose=True, use_simple_bases=use_simple_bases, initial_guess=initial_guess) # if p_iso[0] >= -1. and p_iso[0] <=1. and \ # p_iso[1] >= -1. and p_iso[1] <=1.: # candidate_element, candidate_piso = i, p_iso # break if (p_iso[0] > -1. or np.isclose(p_iso[0],-1.,rtol=tolerance)) and \ (p_iso[0] < 1. or np.isclose(p_iso[0], 1.,rtol=tolerance)) and \ (p_iso[1] > -1. or np.isclose(p_iso[1],-1.,rtol=tolerance)) and \ (p_iso[1] < 1. or np.isclose(p_iso[1],-1.,rtol=tolerance)) : candidate_element, candidate_piso = i, p_iso break self.__update__(mesh) # print(candidate_element) if candidate_element is not None: candidate_element = idx_kept_element[candidate_element] if find_parametric_coordinate: return candidate_element, candidate_piso else: return candidate_element else: if self.element_type == "tet": from Florence.QuadratureRules.FeketePointsTet import FeketePointsTet initial_guesses = FeketePointsTet(C) def GetVolTet(a0,b0,c0,d0): det_array = np.dstack((a0-d0,b0-d0,c0-d0)) # FIND VOLUME OF ALL THE ELEMENTS volume = 1./6.*np.abs(np.linalg.det(det_array)) return volume a = self.points[self.elements[:,0],:] b = self.points[self.elements[:,1],:] c = self.points[self.elements[:,2],:] d = self.points[self.elements[:,3],:] o = np.tile(point,self.nelem).reshape(self.nelem,a.shape[1]) # TOTAL VOLUME vol = self.Volumes() # PARTS' VOLUMES vol0 = GetVolTet(a,b,c,o) vol1 = GetVolTet(a,b,o,d) vol2 = GetVolTet(a,o,c,d) vol3 = GetVolTet(o,b,c,d) criterion_check = vol0+vol1+vol2+vol3-vol elems = np.isclose(criterion_check,0.,rtol=tolerance) elems_idx = np.where(elems==True)[0] elif self.element_type == "quad": from Florence.QuadratureRules.GaussLobattoPoints import GaussLobattoPointsQuad initial_guesses = GaussLobattoPointsQuad(C) def GetAreaQuad(a0,b0,c0,d0): # AREA OF QUAD ABCD = AREA OF ABC + AREA OF ACD a00 = np.ones((a0.shape[0],3),dtype=np.float64); a00[:,:2] = a0 b00 = np.ones((b0.shape[0],3),dtype=np.float64); b00[:,:2] = b0 c00 = np.ones((c0.shape[0],3),dtype=np.float64); c00[:,:2] = c0 d00 = np.ones((d0.shape[0],3),dtype=np.float64); d00[:,:2] = d0 # FIND AREAS ABC area0 = np.abs(np.linalg.det(np.dstack((a00,b00,c00)))) # FIND AREAS ACD area1 = np.abs(np.linalg.det(np.dstack((a00,c00,d00)))) # FIND AREAS OF ALL THE ELEMENTS area = 0.5*(area0+area1) return area a = self.points[self.elements[:,0],:] b = self.points[self.elements[:,1],:] c = self.points[self.elements[:,2],:] d = self.points[self.elements[:,3],:] o = np.tile(point,self.nelem).reshape(self.nelem,a.shape[1]) # TOTAL VOLUME vol = self.Areas() # PARTS' VOLUMES - DONT CHANGE THE ORDERING OF SPECIALLY vol1 vol0 = GetAreaQuad(o,c,b,a) vol1 = GetAreaQuad(o,a,d,c) criterion_check = vol0+vol1-vol elems = np.isclose(criterion_check,0.,rtol=tolerance) elems_idx = np.where(elems==True)[0] else: raise NotImplementedError("Geometric algorithm for {} elements not implemented yet".format(self.element_type)) if return_on_geometric_finds: return elems_idx for i in range(len(elems_idx)): coord = self.points[self.elements[elems_idx[i],:],:] # TRY ALL POSSIBLE INITIAL GUESSES - THIS IS CHEAP AS THE SEARCH SPACE CONTAINS ONLY A # FEW ELEMENTS for guess in initial_guesses: p_iso, converged = PointInversionIsoparametricFEM(self.element_type, C, coord, point, tolerance=tolerance, maxiter=maxiter, verbose=True, use_simple_bases=use_simple_bases, initial_guess=guess) if converged: break if converged: candidate_element, candidate_piso = elems_idx[i], p_iso break if find_parametric_coordinate: return candidate_element, candidate_piso else: return candidate_element def AverageJacobian(self): """Computes average Jacobian of elements for all element types over a mesh This is a generic method that for 1D=lengths, for 2D=areas and for 3D=volumes. It works for planar and curved elements """ self.__do_essential_memebers_exist__() try: from Florence import DisplacementFormulation except ImportError: raise ValueError("This functionality requires Florence's support") if self.element_type != "line": # FOR LINE ELEMENTS THIS APPROACH DOES NOT WORK AS JACOBIAN IS NOT WELL DEFINED formulation = DisplacementFormulation(self) sizes = np.zeros(self.nelem) for elem in range(self.nelem): LagrangeElemCoords = self.points[self.elements[elem,:],:] sizes[elem] = formulation.GetAverageJacobian(formulation.function_spaces[0], LagrangeElemCoords, LagrangeElemCoords, False, elem=elem) return sizes.mean() else: raise ValueError("Not implemented for 1D elements") def LargestSegment(self, smallest_element=True, nsamples=30, plot_segment=False, plot_element=False, figure=None, save=False, filename=None): """Finds the largest segment that can fit in an element. For curvilinear elements this measure can be used as (h) for h-refinement studies input: smallest_element [bool] if the largest segment size is to be computed in the smallest element (i.e. element with the smallest area in 2D or smallest volume in 3D). Default is True. If False, then the largest segment in the largest element will be computed. nsample: [int] number of sample points along the curved edges of the elements. The maximum distance between all combinations of these points is the largest segment plot_segment: [bool] plots segment on tope of [curved/straight] mesh plot_element: [bool] plots the straight/curved element to which the segment belongs figure: [an instance of matplotlib/mayavi.mlab figure for 2D/3D] save: [bool] wether to save the figure or not filename: [str] file name for the figure to be save returns: largest_segment_length [float] maximum segment length that could be fit within either the """ self.__do_memebers_exist__() if self.element_type == "hex" or self.element_type == "tet": quantity = self.Volumes() elif self.element_type == "quad" or self.element_type == "tri": quantity = self.Areas() if smallest_element: omesh = self.GetLocalisedMesh(quantity.argmin()) else: omesh = self.GetLocalisedMesh(quantity.argmax()) try: from Florence.PostProcessing import PostProcess except: raise ImportError('This function requires florence PostProcessing module') return if save: if filename is None: raise ValueError("No file name provided. I am going to write one the current directory") filename = PWD(__file__) + "/output.png" if self.element_type == "tri": tmesh = PostProcess.TessellateTris(omesh,np.zeros_like(omesh.points), plot_edges=True, interpolation_degree=nsamples) elif self.element_type == "quad": tmesh = PostProcess.TessellateQuads(omesh,np.zeros_like(omesh.points), plot_edges=True, interpolation_degree=nsamples) elif self.element_type == "tet": tmesh = PostProcess.TessellateTets(omesh,np.zeros_like(omesh.points), plot_edges=True, interpolation_degree=nsamples) elif self.element_type == "hex": tmesh = PostProcess.TessellateHexes(omesh,np.zeros_like(omesh.points), plot_edges=True, interpolation_degree=nsamples) ndim = omesh.InferSpatialDimension() nnode = tmesh.points.shape[0] largest_segment_lengths = [] nodes = np.array((1,ndim)) for i in range(nnode): tiled_points = np.tile(tmesh.points[i,:][:,None],nnode).T segment_lengths = np.linalg.norm(tmesh.points - tiled_points, axis=1) largest_segment_lengths.append(segment_lengths.max()) nodes = np.vstack((nodes, np.array([i,segment_lengths.argmax()])[None,:])) largest_segment_lengths = np.array(largest_segment_lengths) nodes = nodes[1:,:] largest_segment_length = largest_segment_lengths.max() corresponding_nodes = nodes[largest_segment_lengths.argmax(),:] if plot_segment: segment_coords = tmesh.points[corresponding_nodes,:] if ndim==2: import matplotlib.pyplot as plt if figure == None: figure = plt.figure() if plot_element: if omesh.element_type == "tri": PostProcess.CurvilinearPlotTri(omesh, np.zeros_like(omesh.points),plot_points=True, figure=figure, interpolation_degree=nsamples, show_plot=False) elif omesh.element_type == "quad": PostProcess.CurvilinearPlotQuad(omesh, np.zeros_like(omesh.points),plot_points=True, figure=figure, interpolation_degree=nsamples, show_plot=False) tmesh.SimplePlot(figure=figure,show_plot=False) if save: plt.savefig(filename,bbox_inches="tight",dpi=300) plt.show() elif ndim==3: import os os.environ['ETS_TOOLKIT'] = 'qt4' from mayavi import mlab if figure is None: figure = mlab.figure(bgcolor=(1,1,1),fgcolor=(1,1,1),size=(1000,800)) if plot_element: if omesh.element_type == "tet": PostProcess.CurvilinearPlotTet(omesh, np.zeros_like(omesh.points),plot_points=True, point_radius=0.13, figure=figure, interpolation_degree=nsamples, show_plot=False) elif omesh.element_type == "hex": PostProcess.CurvilinearPlotHex(omesh, np.zeros_like(omesh.points),plot_points=True, figure=figure, interpolation_degree=nsamples, show_plot=False) tmesh.GetEdges() edge_coords = tmesh.points[np.unique(tmesh.all_edges),:] mlab.triangular_mesh(tmesh.points[:,0],tmesh.points[:,1],tmesh.points[:,2], tmesh.elements, representation='wireframe', color=(0,0,0)) # # mlab.points3d(edge_coords[:,0],edge_coords[:,1],edge_coords[:,2],color=(1., 99/255., 71./255), scale_factor=0.03) # # mlab.plot3d(segment_coords[:,0],segment_coords[:,1],segment_coords[:,2], color=(227./255, 66./255, 52./255)) mlab.points3d(edge_coords[:,0],edge_coords[:,1],edge_coords[:,2],color=(1., 99/255., 71./255), scale_factor=0.17) mlab.plot3d(segment_coords[:,0],segment_coords[:,1],segment_coords[:,2], color=(227./255, 66./255, 52./255), line_width=10., representation="wireframe") if save: mlab.savefig(filename,dpi=300) mlab.show() return largest_segment_length def CheckNodeNumbering(self,change_order_to='retain', verbose=True): """Checks for node numbering order of the imported mesh. Mesh can be tri or tet input: change_order_to: [str] {'clockwise','anti-clockwise','retain'} changes the order to clockwise, anti-clockwise or retains the numbering order - default is 'retain' output: original_order: [str] {'clockwise','anti-clockwise','retain'} returns the original numbering order""" self.__do_essential_memebers_exist__() # CHECK IF IT IS LINEAR MESH nodeperelem = self.InferNumberOfNodesPerLinearElement() assert self.elements.shape[1] == nodeperelem quantity = np.array([]) if self.element_type == "tri": quantity = self.Areas(with_sign=True) elif self.element_type == "quad": quantity = self.Areas(with_sign=True) elif self.element_type == "tet": quantity = self.Volumes(with_sign=True) elif self.element_type == "hex": quantity = self.Volumes(with_sign=True) original_order = '' # CHECK NUMBERING if (quantity > 0).all(): original_order = 'anti-clockwise' if change_order_to == 'clockwise': self.elements = np.fliplr(self.elements) elif (quantity < 0).all(): original_order = 'clockwise' if change_order_to == 'anti-clockwise': self.elements = np.fliplr(self.elements) else: original_order = 'mixed' if change_order_to == 'clockwise': self.elements[quantity>0,:] = np.fliplr(self.elements[quantity>0,:]) elif change_order_to == 'anti-clockwise': self.elements[quantity<0,:] = np.fliplr(self.elements[quantity<0,:]) if original_order == 'anti-clockwise': print(u'\u2713'.encode('utf8')+b' : ','Imported mesh has',original_order,'node ordering') else: print(u'\u2717'.encode('utf8')+b' : ','Imported mesh has',original_order,'node ordering') return original_order def GetElementsEdgeNumberingTri(self): """Finds edges of elements and their flags saying which edge they are [0,1,2]. At most a triangle can have all its three edges on the boundary. output: edge_elements: [1D array] array containing elements which have edges on the boundary Note that this method sets the self.edge_to_element to edge_elements, so the return value is not strictly necessary """ if isinstance(self.edge_to_element,np.ndarray): if self.edge_to_element.shape[0] > 1: return self.edge_to_element # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY if self.all_edges is None: self.GetEdgesTri() all_edges = np.concatenate((self.elements[:,:2],self.elements[:,[1,2]], self.elements[:,[2,0]]),axis=0).astype(np.int64) all_edges, idx = unique2d(all_edges,consider_sort=True,order=False, return_index=True) edge_elements = np.zeros((all_edges.shape[0],2),dtype=np.int64) edge_elements[:,0] = idx % self.elements.shape[0] edge_elements[:,1] = idx // self.elements.shape[0] self.edge_to_element = edge_elements return self.edge_to_element def GetElementsWithBoundaryEdgesTri(self): """Finds elements which have edges on the boundary. At most an element can have all its three edges on the boundary. output: edge_elements: [2D array] array containing elements which have edge on the boundary [cloumn 0] and a flag stating which edges they are [column 1] """ if isinstance(self.boundary_edge_to_element,np.ndarray): if self.boundary_edge_to_element.shape[1] > 1 and self.boundary_edge_to_element.shape[0] > 1: return self.boundary_edge_to_element # DO NOT COMPUTE EDGES AND RAISE BECAUSE OF CYCLIC DEPENDENCIES assert self.elements is not None assert self.edges is not None edge_elements = np.zeros((self.edges.shape[0],2),dtype=np.int64) # FIND WHICH FACE NODES ARE IN WHICH ELEMENT for i in range(self.edges.shape[0]): x = [] for j in range(2): x.append(np.where(self.elements[:,:3]==self.edges[i,j])[0]) # FIND WHICH ELEMENTS CONTAIN ALL FACE NODES - FOR INTERIOR ELEMENTS # THEIR CAN BE MORE THAN ONE ELEMENT CONTAINING ALL FACE NODES z = x[0] for k in range(1,len(x)): z = np.intersect1d(x[k],z) # CHOOSE ONLY ONE OF THESE ELEMENTS edge_elements[i,0] = z[0] # WHICH COLUMNS IN THAT ELEMENT ARE THE FACE NODES LOCATED cols = np.array([np.where(self.elements[z[0],:]==self.edges[i,0])[0], np.where(self.elements[z[0],:]==self.edges[i,1])[0] ]) cols = np.sort(cols.flatten()) if cols[0] == 0 and cols[1] == 1: edge_elements[i,1] = 0 elif cols[0] == 1 and cols[1] == 2: edge_elements[i,1] = 1 elif cols[0] == 0 and cols[1] == 2: edge_elements[i,1] = 2 self.boundary_edge_to_element = edge_elements return edge_elements def GetElementsWithBoundaryFacesTet(self): """Finds elements which have faces on the boundary. At most a tetrahedral element can have all its four faces on the boundary. output: boundary_face_to_element: [2D array] array containing elements which have face on the boundary [column 0] and a flag stating which faces they are [column 1] """ if self.boundary_face_to_element is not None: return self.boundary_face_to_element # DO NOT COMPUTE FACES AND RAISE BECAUSE OF CYCLIC DEPENDENCIES assert self.elements is not None assert self.faces is not None # THIS METHOD ALWAYS RETURNS THE FACE TO ELEMENT ARRAY, AND DOES NOT CHECK # IF THIS HAS BEEN COMPUTED BEFORE, THE REASON BEING THAT THE FACES CAN COME # EXTERNALLY WHOSE ARRANGEMENT WOULD NOT CORRESPOND TO THE ONE USED INTERNALLY # HENCE THIS MAPPING BECOMES NECESSARY all_faces = np.concatenate((self.elements[:,:3],self.elements[:,[0,1,3]], self.elements[:,[0,2,3]],self.elements[:,[1,2,3]]),axis=0).astype(self.faces.dtype) all_faces_in_faces = in2d(all_faces,self.faces[:,:3],consider_sort=True) all_faces_in_faces = np.where(all_faces_in_faces==True)[0] boundary_face_to_element = np.zeros((all_faces_in_faces.shape[0],2),dtype=np.int64) boundary_face_to_element[:,0] = all_faces_in_faces % self.elements.shape[0] boundary_face_to_element[:,1] = all_faces_in_faces // self.elements.shape[0] # SO FAR WE HAVE COMPUTED THE ELEMENTS THAT CONTAIN FACES, HOWEVER # NOTE THAT WE STILL HAVE NOT COMPUTED A MAPPING BETWEEN ELEMENTS AND # FACES. WE ONLY KNOW WHICH ELEMENTS CONTAIN FACES FROM in2d. # WE NEED TO FIND THIS MAPPING NOW C = self.InferPolynomialDegree() - 1 node_arranger = NodeArrangementTet(C)[0] # WE NEED TO DO THIS DUMMY RECONSTRUCTION OF FACES BASED ON ELEMENTS faces = self.elements[boundary_face_to_element[:,0][:,None], node_arranger[boundary_face_to_element[:,1],:]].astype(self.faces.dtype) # CHECK FOR THIS CONDITION AS ARRANGEMENT IS NO LONGER MAINTAINED assert np.sum(faces[:,:3].astype(np.int64) - self.faces[:,:3].astype(np.int64)) == 0 # NOW GET THE ROW MAPPING BETWEEN OLD FACES AND NEW FACES from Florence.Tensor import shuffle_along_axis row_mapper = shuffle_along_axis(faces[:,:3],self.faces[:,:3],consider_sort=True) # UPDATE THE MAP boundary_face_to_element[:,:] = boundary_face_to_element[row_mapper,:] self.boundary_face_to_element = boundary_face_to_element return self.boundary_face_to_element def GetElementsFaceNumberingTet(self): """Finds which faces belong to which elements and which faces of the elements they are e.g. 0, 1, 2 or 3. output: face_elements: [2D array] nfaces x 2 array containing elements which have face on the boundary with their flags Note that this method also sets the self.face_to_element to face_elements, so the return value is not strictly necessary """ if isinstance(self.face_to_element,np.ndarray): if self.face_to_element.shape[0] > 1: return self.face_to_element assert self.elements is not None # GET ALL FACES FROM ELEMENT CONNECTIVITY if self.all_faces is None: self.GetFacesTet() all_faces = np.concatenate((self.elements[:,:3],self.elements[:,[0,1,3]], self.elements[:,[0,2,3]],self.elements[:,[1,2,3]]),axis=0).astype(np.int64) _,idx = unique2d(all_faces,consider_sort=True,order=False, return_index=True) face_elements = np.zeros((self.all_faces.shape[0],2),dtype=np.int64) face_elements[:,0] = idx % self.elements.shape[0] face_elements[:,1] = idx // self.elements.shape[0] self.face_to_element = face_elements return self.face_to_element def ArrangeFacesTet(self): """Arranges all the faces of tetrahedral elements with triangular type node ordering """ if self.all_faces is None: self.all_faces = self.GetFacesTet() if self.face_to_element is None: self.GetElementsFaceNumberingTet() # DETERMINE DEGREE p = self.InferPolynomialDegree() node_arranger = NodeArrangementTet(p-1)[0] # for i in range(self.face_to_element.shape[0]): # self.all_faces = self.elements[self.face_to_element[i,0],node_arranger[self.face_to_element[i,1],:]] self.all_faces = self.elements[self.face_to_element[:,0][:,None],node_arranger[self.face_to_element[:,1],:]] def GetElementsEdgeNumberingQuad(self): """Finds edges of elements and their flags saying which edge they are [0,1,2,3]. At most a quad can have all its four edges on the boundary. output: edge_elements: [1D array] array containing elements which have edges on the boundary Note that this method sets the self.edge_to_element to edge_elements, so the return value is not strictly necessary """ if isinstance(self.edge_to_element,np.ndarray): if self.edge_to_element.shape[0] > 1: return self.edge_to_element # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY if self.all_edges is None: self.GetEdgesQuad() p = self.InferPolynomialDegree() # FIND WHICH FACE NODES ARE IN WHICH ELEMENT node_arranger = NodeArrangementQuad(p-1)[0] # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(np.int64) all_edges, idx = unique2d(all_edges,consider_sort=True,order=False, return_index=True) edge_elements = np.zeros((all_edges.shape[0],2),dtype=np.int64) # edge_elements = np.zeros((self.edges.shape[0],2),dtype=np.int64) edge_elements[:,0] = idx % self.elements.shape[0] edge_elements[:,1] = idx // self.elements.shape[0] self.edge_to_element = edge_elements return self.edge_to_element def GetElementsWithBoundaryEdgesQuad(self): """Finds elements which have edges on the boundary. At most a quad can have all its four edges on the boundary. output: boundary_edge_to_element: [2D array] array containing elements which have face on the boundary [cloumn 0] and a flag stating which edges they are [column 1] """ if isinstance(self.boundary_edge_to_element,np.ndarray): if self.boundary_edge_to_element.shape[1] > 1 and self.boundary_edge_to_element.shape[0] > 1: return self.boundary_edge_to_element # DO NOT COMPUTE EDGES AND RAISE BECAUSE OF CYCLIC DEPENDENCIES assert self.elements is not None assert self.edges is not None p = self.InferPolynomialDegree() # FIND WHICH FACE NODES ARE IN WHICH ELEMENT node_arranger = NodeArrangementQuad(p-1)[0] # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(self.edges.dtype) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_edges,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY EDGES freqs_inv = itemfreq(inv) edges_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED edges = uniques[edges_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_edge_to_element = np.zeros((edges_ext_flags.shape[0],2),dtype=np.int64) # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF EDGES all_edges_in_edges = in2d(all_edges,self.edges,consider_sort=True) all_edges_in_edges = np.where(all_edges_in_edges==True)[0] boundary_edge_to_element[:,0] = all_edges_in_edges % self.elements.shape[0] boundary_edge_to_element[:,1] = all_edges_in_edges // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.boundary_edge_to_element = boundary_edge_to_element return self.boundary_edge_to_element def GetElementsWithBoundaryFacesHex(self): """Finds elements which have faces on the boundary. At most a hexahedral can have all its 8 faces on the boundary. output: boundary_face_to_element: [2D array] array containing elements which have face on the boundary [column 0] and a flag stating which faces they are [column 1] """ # DO NOT COMPUTE FACES AND RAISE BECAUSE OF CYCLIC DEPENDENCIES assert self.elements is not None assert self.faces is not None if self.boundary_face_to_element is not None: return self.boundary_face_to_element # THIS METHOD ALWAYS RETURNS THE FACE TO ELEMENT ARRAY, AND DOES NOT CHECK # IF THIS HAS BEEN COMPUTED BEFORE, THE REASON BEING THAT THE FACES CAN COME # EXTERNALLY WHOSE ARRANGEMENT WOULD NOT CORRESPOND TO THE ONE USED INTERNALLY # HENCE THIS MAPPING BECOMES NECESSARY C = self.InferPolynomialDegree() - 1 node_arranger = NodeArrangementHex(C)[0] all_faces = np.concatenate((np.concatenate(( np.concatenate((np.concatenate((np.concatenate((self.elements[:,node_arranger[0,:]], self.elements[:,node_arranger[1,:]]),axis=0),self.elements[:,node_arranger[2,:]]),axis=0), self.elements[:,node_arranger[3,:]]),axis=0),self.elements[:,node_arranger[4,:]]),axis=0), self.elements[:,node_arranger[5,:]]),axis=0).astype(self.faces.dtype) all_faces_in_faces = in2d(all_faces,self.faces[:,:4],consider_sort=True) all_faces_in_faces = np.where(all_faces_in_faces==True)[0] boundary_face_to_element = np.zeros((all_faces_in_faces.shape[0],2),dtype=np.int64) boundary_face_to_element[:,0] = all_faces_in_faces % self.elements.shape[0] boundary_face_to_element[:,1] = all_faces_in_faces // self.elements.shape[0] # SO FAR WE HAVE COMPUTED THE ELEMENTS THAT CONTAIN FACES, HOWEVER # NOTE THAT WE STILL HAVE NOT COMPUTED A MAPPING BETWEEN ELEMENTS AND # FACES. WE ONLY KNOW WHICH ELEMENTS CONTAIN FACES FROM in2d. # WE NEED TO FIND THIS MAPPING NOW # WE NEED TO DO THIS DUMMY RECONSTRUCTION OF FACES BASED ON ELEMENTS faces = self.elements[boundary_face_to_element[:,0][:,None], node_arranger[boundary_face_to_element[:,1],:]].astype(self.faces.dtype) # CHECK FOR THIS CONDITION AS ARRANGEMENT IS NO LONGER MAINTAINED assert np.sum(faces[:,:4].astype(np.int64) - self.faces[:,:4].astype(np.int64)) == 0 # NOW GET THE ROW MAPPING BETWEEN OLD FACES AND NEW FACES from Florence.Tensor import shuffle_along_axis row_mapper = shuffle_along_axis(faces[:,:4],self.faces[:,:4],consider_sort=True) # UPDATE THE MAP boundary_face_to_element[:,:] = boundary_face_to_element[row_mapper,:] self.boundary_face_to_element = boundary_face_to_element return self.boundary_face_to_element def GetElementsFaceNumberingHex(self): """Finds which faces belong to which elements and which faces of the elements they are e.g. 0, 1, 2 or 3. output: face_elements: [2D array] nfaces x 2 array containing elements which have face on the boundary with their flags Note that this method also sets the self.face_to_element to face_elements, so the return value is not strictly necessary """ if isinstance(self.face_to_element,np.ndarray): if self.face_to_element.shape[0] > 1: return self.face_to_element assert self.elements is not None # GET ALL FACES FROM ELEMENT CONNECTIVITY if self.all_faces is None: self.GetFacesHex() C = self.InferPolynomialDegree() - 1 node_arranger = NodeArrangementHex(C)[0] all_faces = np.concatenate((np.concatenate(( np.concatenate((np.concatenate((np.concatenate((self.elements[:,node_arranger[0,:]], self.elements[:,node_arranger[1,:]]),axis=0),self.elements[:,node_arranger[2,:]]),axis=0), self.elements[:,node_arranger[3,:]]),axis=0),self.elements[:,node_arranger[4,:]]),axis=0), self.elements[:,node_arranger[5,:]]),axis=0).astype(self.all_faces.dtype) _,idx = unique2d(all_faces,consider_sort=True,order=False, return_index=True) face_elements = np.zeros((self.all_faces.shape[0],2),dtype=np.int64) face_elements[:,0] = idx % self.elements.shape[0] face_elements[:,1] = idx // self.elements.shape[0] self.face_to_element = face_elements return self.face_to_element def ArrangeFacesHex(self): """Arranges all the faces of hexahedral elements with quadrilateral type node ordering """ if self.all_faces is None: self.all_faces = self.GetFacesHex() if self.face_to_element is None: self.GetElementsFaceNumberingHex() # DETERMINE DEGREE p = self.InferPolynomialDegree() node_arranger = NodeArrangementHex(p-1)[0] self.all_faces = self.elements[self.face_to_element[:,0][:,None],node_arranger[self.face_to_element[:,1],:]] def GetNodeCommonality(self): """Finds the elements sharing a node. The return values are linked lists [list of numpy of arrays]. Each numpy array within the list gives the elements that contain a given node. As a result the size of the linked list is nnode outputs: els: [list of numpy arrays] element numbers containing nodes pos: [list of numpy arrays] elemental positions of the nodes res_flat: [list of numpy arrays] position of nodes in the flattened element connectivity. """ self.__do_essential_memebers_exist__() elements = self.elements.ravel() idx_sort = np.argsort(elements) sorted_elements = elements[idx_sort] vals, idx_start = np.unique(sorted_elements, return_index=True) # Sets of indices flat_pos = np.split(idx_sort, idx_start[1:]) els = np.split(idx_sort // int(self.elements.shape[1]), idx_start[1:]) pos = np.split(idx_sort % int(self.elements.shape[1]), idx_start[1:]) # In case one wants to return only the duplicates i.e. filter keeping only items occurring more than once # vals, idx_start, count = np.unique(sorted_elements, return_counts=True, return_index=True) # vals = vals[count > 1] # res = filter(lambda x: x.size > 1, res) return els, pos, flat_pos def Read(self, filename=None, element_type="tri", reader_type=None, reader_type_format=None, reader_type_version=None, order=0, read_surface_info=False, **kwargs): """Convenience mesh reader method to dispatch call to subsequent apporpriate methods""" if reader_type != 'read_separate': if not isinstance(filename,str): raise ValueError("filename must be a string") return if reader_type is None: if filename.split('.')[-1] == "msh": reader_type = "gmsh" elif filename.split('.')[-1] == "obj": reader_type = "obj" elif filename.split('.')[-1] == "unv": reader_type = "unv" elif filename.split('.')[-1] == "fro": reader_type = "fro" elif filename.split('.')[-1] == "dat": for key in kwargs.keys(): inkey = insensitive(key) if "connectivity" in inkey and "delimiter" not in inkey: reader_type = "read_separate" break if reader_type is None: raise ValueError("Mesh file format was not undertood. Please specify it using reader_type keyword") self.filename = filename self.reader_type = reader_type self.reader_type_format = reader_type_format self.reader_type_version = reader_type_version if self.reader_type == 'salome': self.ReadSalome(filename, element_type=element_type, read_surface_info=read_surface_info) elif reader_type == 'GID': self.ReadGIDMesh(filename, element_type, order) elif self.reader_type == 'gmsh': self.ReadGmsh(filename, element_type=element_type, read_surface_info=read_surface_info) elif self.reader_type == 'obj': self.ReadOBJ(filename, element_type=element_type, read_surface_info=read_surface_info) elif self.reader_type == 'fenics': self.ReadFenics(filename, element_type) elif self.reader_type == 'vtu': self.ReadVTK(filename) elif self.reader_type == 'unv': self.ReadUNV(filename, element_type) elif self.reader_type == 'fro': self.ReadFRO(filename, element_type) elif self.reader_type == 'read_separate': # READ MESH FROM SEPARATE FILES FOR CONNECTIVITY AND COORDINATES from Florence.Utils import insensitive # return insensitive(kwargs.keys()) for key in kwargs.keys(): inkey = insensitive(key) if "connectivity" in inkey and "delimiter" not in inkey: connectivity_file = kwargs.get(key) if "coordinate" in insensitive(key) and "delimiter" not in inkey: coordinates_file = kwargs.get(key) self.ReadSeparate(connectivity_file,coordinates_file,element_type, delimiter_connectivity=',',delimiter_coordinates=',') elif self.reader_type == 'ReadHDF5': self.ReadHDF5(filename) self.nnode = self.points.shape[0] # MAKE SURE MESH DATA IS CONTIGUOUS self.points = np.ascontiguousarray(self.points) self.elements = np.ascontiguousarray(self.elements) return def ReadSalome(self, filename, element_type="tri", read_surface_info=False): """Salome .dat format mesh reader""" if element_type == "line": el = "102" bel = "" elif element_type == "tri": el = "203" bel = "102" elif element_type == "quad": el = "204" bel = "102" elif element_type == "tet": el = "304" bel = "203" elif element_type == "hex": el = "308" bel = "204" if read_surface_info is True and element_type == "line": warn("No surface info for lines. I am going to ignore this") read_surface_info = False with open(filename,'r') as f: lines = f.readlines() info = lines[0].rstrip().split() self.nnode = int(info[0]) all_nelem = int(info[1]) nodes = lines[1:self.nnode+1] points = [] for line in nodes: points.append([float(i) for i in line.rstrip().split()[1:4]]) self.points = np.array(points,copy=True) self.nnode = self.points.shape[0] edges, faces, elements = [], [], [] for counter in range(self.nnode+1,len(lines)): line = lines[counter].rstrip().split() if read_surface_info: if bel == line[1]: faces.append([int(i) for i in line[2:]]) if el == line[1]: elements.append([int(i) for i in line[2:]]) self.element_type = element_type self.elements = np.array(elements,dtype=np.int64,copy=True) - 1 self.nelem = self.elements.shape[0] if self.nelem == 0: raise ValueError("file does not contain {} elements".format(element_type)) ndim = self.InferSpatialDimension() if self.element_type == "tri" or self.element_type == "quad": self.GetEdges() self.GetBoundaryEdges() elif self.element_type == "tet" or self.element_type == "hex": self.GetFaces() self.GetBoundaryFaces() self.GetBoundaryEdges() def ReadSeparate(self,connectivity_file,coordinates_file,mesh_type, edges_file = None, faces_file = None, delimiter_connectivity=' ',delimiter_coordinates=' ', delimiter_edges=' ', delimiter_faces=' ', ignore_cols_connectivity=None,ignore_cols_coordinates=None,ignore_cols_edges=None, ignore_cols_faces=None,index_style='c'): """Read meshes when the element connectivity and nodal coordinates are written in separate files input: connectivity_file: [str] filename containing element connectivity coordinates_file: [str] filename containing nodal coordinates mesh_type: [str] type of mesh tri/tet/quad/hex edges_file: [str] filename containing edges of the mesh (if not given gets computed) faces_file: [str] filename containing faces of the mesh (if not given gets computed) delimiter_connectivity: [str] delimiter for connectivity_file - default is white space/tab delimiter_coordinates: [str] delimiter for coordinates_file - default is white space/tab delimiter_edges: [str] delimiter for edges_file - default is white space/tab delimiter_faces: [str] delimiter for faces_file - default is white space/tab ignore_cols_connectivity: [int] no of columns to be ignored (from the start) in the connectivity_file ignore_cols_coordinates: [int] no of columns to be ignored (from the start) in the coordinates_file ignore_cols_edges: [int] no of columns to be ignored (from the start) in the connectivity_file ignore_cols_faces: [int] no of columns to be ignored (from the start) in the coordinates_file index_style: [str] either 'c' C-based (zero based) indexing or 'f' fortran-based (one based) indexing for elements connectivity - default is 'c' """ index = 0 if index_style == 'c': index = 1 from time import time; t1=time() self.elements = np.loadtxt(connectivity_file,dtype=np.int64,delimiter=delimiter_connectivity) - index # self.elements = np.fromfile(connectivity_file,dtype=np.int64,count=-1) - index self.points = np.loadtxt(coordinates_file,dtype=np.float64,delimiter=delimiter_coordinates) if ignore_cols_connectivity != None: self.elements = self.elements[ignore_cols_connectivity:,:] if ignore_cols_coordinates != None: self.points = self.points[ignore_cols_coordinates:,:] if (mesh_type == 'tri' or mesh_type == 'quad') and self.points.shape[1]>2: self.points = self.points[:,:2] self.element_type = mesh_type self.nelem = self.elements.shape[0] # self.edges = None if edges_file is None: if mesh_type == "tri": self.GetBoundaryEdgesTri() elif mesh_type == "tet": self.GetBoundaryEdgesTet() else: self.edges = np.loadtxt(edges_file,dtype=np.int64,delimiter=delimiter_edges) - index if ignore_cols_edges !=None: self.edges = self.edges[ignore_cols_edges:,:] if faces_file is None: if mesh_type == "tet": self.GetBoundaryFacesTet() else: self.faces = np.loadtxt(faces_file,dtype=np.int64,delimiter=delimiter_edges) - index if ignore_cols_faces !=None: self.faces = self.faces[ignore_cols_faces:,:] def ReadGIDMesh(self,filename,mesh_type,polynomial_order = 0): """Read GID meshes""" if self.elements is not None and self.points is not None: self.__reset__() self.element_type = mesh_type ndim, self.nelem, nnode, nboundary = np.fromfile(filename,dtype=np.int64,count=4,sep=' ') if ndim==2 and mesh_type=="tri": content = np.fromfile(filename,dtype=np.float64,count=4+3*nnode+4*self.nelem,sep=' ') self.points = content[4:4+3*nnode].reshape(nnode,3)[:,1:] self.elements = content[4+3*nnode:4+3*nnode+4*self.nelem].reshape(self.nelem,4)[:,1:].astype(np.int64) self.elements -= 1 self.GetBoundaryEdgesTri() if ndim==3 and mesh_type=="tet": content = np.fromfile(filename,dtype=np.float64,count=4+4*nnode+5*self.nelem+9*nboundary,sep=' ') self.points = content[4:4+4*nnode].reshape(nnode,4)[:,1:] self.elements = content[4+4*nnode:4+4*nnode+5*self.nelem].reshape(self.nelem,5)[:,1:].astype(np.int64) self.elements -= 1 face_flags = content[4*nnode+5*self.nelem+4:].reshape(nboundary,9)[:,1:].astype(np.int64) self.faces = np.ascontiguousarray(face_flags[:,1:4] - 1) self.face_to_surface = np.ascontiguousarray(face_flags[:,7] - 1) # self.boundary_face_to_element = np.ascontiguousarray(face_flags[:,0]) # self.GetBoundaryFacesTet() self.GetBoundaryEdgesTet() def ReadVTK(self, filename, element_type=None): """Read mesh from a vtu file""" try: import vtkInterface as vtki except IOError: raise IOError("vtkInterface is not installed. Please install it first using 'pip install vtkInterface'") self.__reset__() vmesh = vtki.UnstructuredGrid(filename) flat_elements = np.copy(np.delete(vmesh.cells, vmesh.offset)) if not np.all(vmesh.celltypes == vmesh.celltypes[0]): raise IOError("Cannot read VTK files with hybrid elements") cellflag = vmesh.celltypes[0] if cellflag == 5: self.element_type = "tri" divider = 3 elif cellflag == 9: self.element_type = "quad" divider = 4 elif cellflag == 10: self.element_type = "tet" divider = 4 elif cellflag == 12: self.element_type = "hex" divider = 8 elif cellflag == 3: self.element_type = "line" divider = 2 else: raise IOError("VTK element type not understood") if element_type is not None: if self.element_type != element_type: raise ValueError("VTK file does not contain {} elements".format(element_type)) self.elements = np.ascontiguousarray(flat_elements.reshape(int(flat_elements.shape[0]/divider),divider), dtype=np.uint64) self.points = np.ascontiguousarray(vmesh.points, dtype=np.float64) self.nelem = self.elements.shape[0] self.nnode = self.points.shape[0] if self.points.shape[1] == 3: if np.allclose(self.points[:,2],0.): self.points = np.ascontiguousarray(self.points[:,:2]) if self.element_type == "tri" or self.element_type == "quad": self.GetEdges() self.GetBoundaryEdges() elif self.element_type == "tet" or self.element_type == "hex": self.GetFaces() self.GetBoundaryFaces() self.GetBoundaryEdges() return def ReadGmsh(self, filename, element_type, p=1, read_surface_info=False): """Read gmsh (.msh) file""" try: fid = open(filename, "r") except IOError: print("File '%s' not found." % (filename)) sys.exit() msh_version = None # CHECK MSH FILE VERSION if "MeshFormat" in fid.readline(): msh_version = int(np.floor(float(fid.readline().split(" ")[0]))) if 4 != msh_version and 2 != msh_version: raise IOError("Only ASCII version 2 and 4 (>=4.1) .msh file formats are supported") if 4 != msh_version and 2 != msh_version: raise IOError("Only ASCII version 2 and 4 (>=4.1) .msh file formats are supported") fid.close() if self.elements is not None and self.points is not None: self.__reset__() self.filename = filename bel = -1 if element_type == "line": el = 1 elif element_type == "tri": if p == 1: el = 2 bel = 1 elif p == 2: el = 9 bel = 8 elif element_type == "quad": if p == 1: el = 3 bel = 1 elif p == 2: el = 10 bel = 8 elif element_type == "tet": if p == 1: el = 4 bel = 2 elif p == 2: el = 11 bel = 9 elif element_type == "hex": if p == 1: el = 5 bel = 3 elif p == 2: el = 12 bel = 10 else: raise ValueError("Element type not understood") # NEW FAST READER var = 0 # for old gmsh versions - needs checks node_blocks, elem_blocks, face_blocks = None, None, None rem_nnode, rem_nelem, rem_faces = int(1e09), int(1e09), int(1e09) face_counter = 0 for line_counter, line in enumerate(open(filename)): item = line.rstrip() plist = item.split() if plist[0] == "Dimension": self.ndim = plist[1] elif plist[0] == "Vertices": rem_nnode = line_counter+1 continue elif plist[0] == "$Nodes": rem_nnode = line_counter+1 continue elif plist[0] == "Triangles": rem_faces = line_counter+1 continue elif plist[0] == "Tetrahedra": rem_nelem = line_counter+1 continue elif plist[0] == "$Elements": rem_nelem = line_counter+1 var = 1 continue if msh_version == 2: if rem_nnode == line_counter: self.nnode = int(plist[0]) if rem_faces == line_counter: face_counter = int(plist[0]) if rem_nelem == line_counter: self.nelem = int(plist[0]) break else: if rem_nnode == line_counter: node_blocks, self.nnode = int(plist[0]), int(plist[1]) if rem_faces == line_counter: face_blocks, face_counter = int(plist[0]), int(plist[1]) if rem_nelem == line_counter: elem_blocks, self.nelem = int(plist[0]), int(plist[1]) break points, elements, faces, face_to_surface = [],[], [], [] if msh_version == 2: # RE-READ ns = self.InferNumberOfNodesPerElement(p=p,element_type=element_type) for line_counter, line in enumerate(open(filename)): item = line.rstrip() plist = item.split() if var == 0: if line_counter > rem_nnode and line_counter < self.nnode+rem_nnode+1: points.append([float(i) for i in plist[:3]]) if line_counter > rem_nelem and line_counter < self.nelem+rem_nelem+1: elements.append([int(i) for i in plist[:4]]) elif var == 1: if line_counter > rem_nnode and line_counter < self.nnode+rem_nnode+1: points.append([float(i) for i in plist[1:]]) if line_counter > rem_nelem and line_counter < self.nelem+rem_nelem+1: if int(plist[1]) == el: elements.append([int(i) for i in plist[-ns:]]) # READ SURFACE INFO - CERTAINLY ONLY IF SURFACE ELEMENT TYPE IS QUADS/TRIS if read_surface_info: if int(plist[1]) == bel: faces.append([int(i) for i in plist[5:]]) face_to_surface.append(int(plist[4])) elif msh_version == 4: # RE-READ fid = open(filename) content = fid.readlines() # READ NODES nodes_content = content[rem_nnode+1:2*self.nnode+node_blocks+rem_nnode+1] incrementer, line_number = 0, 0 # LOOP OVER BLOCKS for i in range(node_blocks): incrementer = int(nodes_content[line_number].rstrip().split()[3]) # LOOP OVER NODES OF EACH BLOCK for j in range(line_number+1, line_number+2*incrementer+1): plist = nodes_content[j].rstrip().split() if len(plist) == 1: continue points.append([float(plist[k]) for k in range(0,len(plist))]) line_number += 2*incrementer + 1 # READ ELEMENTS elems_content = content[rem_nelem+1:self.nelem+elem_blocks+rem_nelem+1] incrementer, line_number = 0, 0 # LOOP OVER BLOCKS for i in range(elem_blocks): incrementer = int(elems_content[line_number].rstrip().split()[3]) if el == int(elems_content[line_number].rstrip().split()[2]): # LOOP OVER ELEMENTS OF EACH BLOCK for j in range(line_number+1, line_number+incrementer+1): plist = elems_content[j].rstrip().split() elements.append([int(plist[k]) for k in range(1,len(plist))]) line_number += incrementer + 1 if read_surface_info: # READ FACES incrementer, line_number = 0, 0 # LOOP OVER BLOCKS for i in range(elem_blocks): incrementer = int(elems_content[line_number].rstrip().split()[3]) surface_tag = int(elems_content[line_number].rstrip().split()[1]) if bel == int(elems_content[line_number].rstrip().split()[2]): # LOOP OVER FACES OF EACH BLOCK for j in range(line_number+1, line_number+incrementer+1): plist = elems_content[j].rstrip().split() faces.append([int(plist[k]) for k in range(1,len(plist))]) face_to_surface.append(surface_tag) line_number += incrementer + 1 self.points = np.array(points,copy=True) self.elements = np.array(elements,copy=True) - 1 # REORDER CONNECTIVITY if p == 2: # TRI6 if el == 9: self.elements = self.elements[:,[0,1,2,3,5,4]] # QUAD9 elif el == 10: self.elements = self.elements[:,[0, 1, 2, 3, 4, 7, 8, 5, 6]] # TET10 elif el == 11: self.elements = self.elements[:,[0,1,2,3,4,6,5,7,9,8]] # CORRECT self.nelem = self.elements.shape[0] self.nnode = self.points.shape[0] if self.nelem == 0: raise ValueError("msh file does not contain {} elements".format(element_type)) if read_surface_info: self.faces = np.array(faces,copy=True) - 1 self.face_to_surface = np.array(face_to_surface, dtype=np.int64, copy=True).flatten() self.face_to_surface -= 1 # CHECK IF FILLED if isinstance(self.face_to_surface,list): if not self.face_to_surface: self.face_to_surface = None elif isinstance(self.face_to_surface,np.ndarray): if self.face_to_surface.shape[0]==0: self.face_to_surface = None if self.points.shape[1] == 3: if np.allclose(self.points[:,2],0.): self.points = np.ascontiguousarray(self.points[:,:2]) self.element_type = element_type if self.element_type == "tri" or self.element_type == "quad": self.GetEdges() self.GetBoundaryEdges() elif self.element_type == "tet" or self.element_type == "hex": self.GetFaces() self.GetBoundaryFaces() self.GetBoundaryEdges() return def ReadOBJ(self, filename, element_type="tri"): try: fid = open(filename, "r") except IOError: print("File '%s' not found." % (filename)) sys.exit() if self.elements is not None and self.points is not None: self.__reset__() self.filename = filename bel = -1 if element_type == "line": el = 2 elif element_type == "tri": el = 3 bel = 2 elif element_type == "quad": el = 4 bel = 2 elif element_type == "tet": el = 4 bel = 3 elif element_type == "hex": el = 8 bel = 4 else: raise ValueError("Element type not understood") # Read points, elements, faces = [],[], [] # Normal and texture coordinates normals, textures = [], [] # Connectivity for texture telements = [] for line_counter, line in enumerate(open(filename,'r')): item = line.rstrip() plist = item.split() if not plist: continue if plist[0] == 'v': points.append([float(i) for i in plist[1:4]]) if plist[0] == 'f' and len(plist) > el: cplist = deepcopy(plist) for i in range(1,el+1): if "/" in plist[i]: plist[i] = plist[i].split("/")[0] elements.append([int(i) for i in plist[1:el+1]]) plist = cplist has_texture = False for i in range(1,el+1): if "/" in plist[i]: has_texture = True plist[i] = plist[i].split("/")[1] if has_texture: telements.append([int(i) for i in plist[1:el+1]]) if plist[0] == 'vn': normals.append([float(i) for i in plist[1:4]]) if plist[0] == 'vt': textures.append([float(i) for i in plist[1:4]]) self.points = np.array(points,copy=True) self.elements = np.array(elements,copy=True) - 1 if normals: self.normals = np.array(normals,copy=True) if textures: self.textures = np.array(textures,copy=True) if telements: self.telements = np.array(telements,copy=True) - 1 # CORRECT self.nelem = self.elements.shape[0] self.nnode = self.points.shape[0] if self.nelem == 0: raise ValueError("obj file does not contain {} elements".format(element_type)) if self.points.shape[1] == 3: if np.allclose(self.points[:,2],0.): self.points = np.ascontiguousarray(self.points[:,:2]) self.element_type = element_type ndim = self.InferSpatialDimension() if self.element_type == "tri" or self.element_type == "quad": self.GetEdges() self.GetBoundaryEdges() elif self.element_type == "tet" or self.element_type == "hex": self.GetFaces() self.GetBoundaryFaces() self.GetBoundaryEdges() def ReadFenics(self, filename, element_type): """Read ASCII fenics meshes""" if element_type == "tet": etype = "tetrahedron" elif element_type == "hex": etype = "hexahedron" elif element_type == "tri": etype = "triangle" elif element_type == "quad": etype = "quadrilateral" import xml.etree.cElementTree as ET root = ET.parse(filename).getroot() X = [] T = [] for child in root: if child.attrib['celltype'] != etype: raise ValueError("xml file does not contain {} elements".format(element_type)) for child in root: for cchild in child: if cchild.tag == "vertices": if element_type == "tet" or element_type == "hex": for child3 in cchild: x = float(child3.attrib['x']) y = float(child3.attrib['y']) z = float(child3.attrib['z']) X.append([x,y,z]) elif element_type == "tri" or element_type == "quad": for child3 in cchild: x = float(child3.attrib['x']) y = float(child3.attrib['y']) X.append([x,y]) elif cchild.tag == "cells": if element_type == "tet": for child3 in cchild: v0 = int(child3.attrib['v0']) v1 = int(child3.attrib['v1']) v2 = int(child3.attrib['v2']) v3 = int(child3.attrib['v3']) T.append([v0,v1,v2,v3]) elif element_type == "tri": for child3 in cchild: v0 = int(child3.attrib['v0']) v1 = int(child3.attrib['v1']) v2 = int(child3.attrib['v2']) T.append([v0,v1,v2]) X = np.array(X) T = np.array(T,dtype=np.int64) self.elements = T self.points = X self.element_type = element_type self.nelem = self.elements.shape[0] self.nnode = self.points.shape[0] if self.points.shape[1] == 3: if np.allclose(self.points[:,2],0.): self.points = np.ascontiguousarray(self.points[:,:2]) ndim = self.InferSpatialDimension() if self.element_type == "tri" or self.element_type == "quad": self.GetEdges() self.GetBoundaryEdges() elif self.element_type == "tet" or self.element_type == "hex": self.GetFaces() self.GetBoundaryFaces() self.GetBoundaryEdges() def ReadUNV(self, filename, element_type="tri"): """Read I-DEAS universal files """ try: fid = open(filename, "r") fid.close() except IOError: print("File '%s' not found." % (filename)) sys.exit() if self.elements is not None and self.points is not None: self.__reset__() self.filename = filename with open(filename, 'r') as fid: file_content = fid.readlines() points, elements = [], [] is_point_line, is_element_line = False, False is_point_record_line, is_element_record_line = True, True celems, cpoints = [], [] first_point_line, first_element_line = True, True read_element_type = element_type point_ids, element_ids = [], [] for counter, line in enumerate(file_content): sline = line.rstrip().split() # Read points if len(sline) == 1 and sline[0] == "2411": is_point_line = True is_element_line = False if len(sline) == 1 and sline[0] == "2412": is_point_line = False is_element_line = True if len(sline) == 1 and sline[0] == "2477": is_point_line = False is_element_line = False is_point_line = False is_element_line = False if is_point_line: if first_point_line or sline[0] == "-1": first_point_line = False continue if is_point_record_line: point_id = int(sline[0]) point_ids.append(point_id) is_point_record_line = False else: cpoints = [float(i.replace('D', 'E')) for i in sline] points.append(cpoints) is_point_record_line = True if is_element_line: if first_element_line or sline[0] == "-1": first_element_line = False continue if is_element_record_line: # Get number of nodes for this element from the record line nnode = int(sline[5]) # Read element type read_element_type = sline[1] # Set record line to False is_element_record_line = False else: # If it is not a record line then read elements for i in sline: celems.append(int(i) - 1) # If all elements are read set record line to True else False if len(celems) == nnode: is_element_record_line = True else: is_element_record_line = False if is_element_record_line: elements.append(celems) celems = [] self.points = np.copy(points) self.elements = np.copy(elements) # MAP POINTS TO GROUND point_ids = np.copy(point_ids) sorter = np.argsort(point_ids) self.points = self.points[sorter,:] # MAP TO GROUND unique_elements, inv_elements = np.unique(self.elements, return_inverse=True) aranger = np.arange(self.points.shape[0]) self.elements = aranger[inv_elements].reshape(self.elements.shape[0],self.elements.shape[1]) self.element_type = element_type if read_element_type == "92": element_type = "tri" self.elements = self.elements[:,[0,2,4,1,5,3]] self.degree = 2 elif read_element_type == "118": element_type = "tet" self.elements = self.elements[:,[0,2,4,9,1,5,3,6,7,8]] self.degree = 2 self.nelem = self.elements.shape[0] self.nnode = self.points.shape[0] while True: if np.allclose(self.elements[-1,:],0.): self.elements = self.elements[:-1, :] else: break if self.points.shape[1] == 3: if np.allclose(self.points[:,2],0.): self.points = np.ascontiguousarray(self.points[:,:2]) if self.element_type == "tri" or self.element_type == "quad": self.GetEdges() self.GetBoundaryEdges() elif self.element_type == "tet" or self.element_type == "hex": self.GetFaces() self.GetBoundaryFaces() self.GetBoundaryEdges() return def ReadFRO(self, filename, element_type): """Read fro mesh""" if self.elements is not None and self.points is not None: self.__reset__() if element_type == "tri": el = 5 else: raise NotImplementedError("Reading FRO files for {} elements not yet implemented".format(element_type)) content = np.fromfile(filename, dtype=np.float64, sep=" ") nelem = int(content[0]) nnode = int(content[1]) nsurface = int(content[3]) points = content[8:8+4*nnode].reshape(nnode,4)[:,1:] elements = content[8+4*nnode::].reshape(nelem,el)[:,1:-1].astype(np.int64) - 1 face_to_surface = content[8+4*nnode::].reshape(nelem,el)[:,-1].astype(np.int64) - 1 self.nelem = nelem self.nnode = nnode self.elements = np.ascontiguousarray(elements) self.element_type = element_type self.points = np.ascontiguousarray(points) if self.element_type == "tri" or self.element_type == "quad": self.GetEdges() self.GetBoundaryEdges() elif self.element_type == "tet" or self.element_type == "hex": self.GetFaces() self.GetBoundaryFaces() self.GetBoundaryEdges() self.face_to_surface = np.ascontiguousarray(face_to_surface) return def ReadHDF5(self,filename): """Read mesh from MATLAB HDF5 file format""" if self.elements is not None and self.points is not None: self.__reset__() DictOutput = loadmat(filename) # GENERIC READER - READS EVERYTHING FROM HDF5 AND ASSIGNS IT TO MESH OBJECT for key, value in DictOutput.items(): if isinstance(DictOutput[key],np.ndarray): if "elements" in key or "edge" in key or "face" in key: setattr(self, key, np.ascontiguousarray(value).astype(np.uint64)) else: setattr(self, key, np.ascontiguousarray(value)) else: setattr(self, key, value) if isinstance(self.element_type,np.ndarray): self.element_type = str(self.element_type[0]) if isinstance(self.nelem,np.ndarray): self.nelem = int(self.nelem[0]) for key in self.__dict__.keys(): if isinstance(self.__dict__[str(key)],np.ndarray): if self.__dict__[str(key)].size == 1: self.__dict__[str(key)] = np.asscalar(self.__dict__[str(key)]) def ReadDCM(self, filename, element_type="quad", ndim=2): """ EZ4U mesh reader """ if element_type != "quad": raise NotImplementedError("DCM/EZ4U reader for {} elements not yet implemented".format(element_type)) self.__reset__() self.element_type = element_type content = np.fromfile(filename, dtype=np.float64, sep=" ") self.nnode = int(content[0]) self.nelem = int(content[1]) if ndim==2: self.points = content[3:self.nnode*4+3].reshape(self.nnode,4)[:,[1,2]] else: self.points = content[3:self.nnode*4+3].reshape(self.nnode,4)[:,1:] self.elements = content[self.nnode*4+3:].astype(np.int64).reshape(self.nelem,11)[:,7:] - 1 if self.points.shape[1] == 3: if np.allclose(self.points[:,2],0.): self.points = np.ascontiguousarray(self.points[:,:2]) self.GetEdgesQuad() self.GetBoundaryEdgesQuad() def SimplePlot(self, to_plot='faces', color=None, edge_color=None, point_color=None, plot_points=False, plot_faces=None, plot_edges=True, point_radius=None, save=False, filename=None, figure=None, show_plot=True, show_axis=False, grid="off"): """Simple mesh plot to_plot: [str] only for 3D. 'faces' to plot only boundary faces or 'all_faces' to plot all faces grid: [str] None, "on" or "off" """ self.__do_essential_memebers_exist__() # REDIRECT FOR 3D SURFACE MESHES if self.element_type == "tri" or self.element_type == "quad": if self.points.ndim == 2 and self.points.shape[1] == 3: mesh = self.CreateDummy3DMeshfrom2DMesh() mesh.SimplePlot(to_plot=to_plot, color=color, plot_points=plot_points, plot_edges=plot_edges, point_radius=point_radius, save=save, filename=filename, figure=figure, show_plot=show_plot, show_axis=show_axis, grid=grid) return ndim = self.InferSpatialDimension() edim = self.InferElementalDimension() if color is None: color=(197/255.,241/255.,197/255.) if edge_color is None: edge_color = (0,0,0) if point_color is None: point_color = (0,0,0) if grid is None: grid = "off" if point_radius is None: if ndim == 2: point_radius = 0.75 else: point_radius = 0.1 if save: if filename is None: warn('File name not given. I am going to write one in the current directory') filename = PWD(__file__) + "/output.png" else: if filename.split(".")[-1] == filename: filename += ".png" import matplotlib as mpl if self.element_type == "tri" or self.element_type == "quad" or self.element_type == "pent": import matplotlib.pyplot as plt if figure is None: figure = plt.figure() elif self.element_type == "tet" or self.element_type == "hex": import os os.environ['ETS_TOOLKIT'] = 'qt4' # os.environ['ETS_TOOLKIT'] = 'wx' from mayavi import mlab if to_plot == 'all_faces': if self.all_faces is None: self.GetFaces() faces = self.all_faces else: if self.faces is None: self.GetBoundaryFaces() faces = self.faces if figure is None: figure = mlab.figure(bgcolor=(1,1,1),fgcolor=(1,1,1),size=(1000,800)) if color is not None: if isinstance(color,tuple): if len(color) != 3: raise ValueError("Color should be given in a rgb/RGB tuple format with 3 values i.e. (x,y,z)") if color[0] > 1.0 or color[1] > 1.0 or color[2] > 1.0: color = (color[0]/255.,color[1]/255.,color[2]/255.) elif isinstance(color,str): color = mpl.colors.hex2color(color) if edge_color is not None: if isinstance(edge_color,tuple): if len(edge_color) != 3: raise ValueError("Color should be given in a rgb/RGB tuple format with 3 values i.e. (x,y,z)") if edge_color[0] > 1.0 or edge_color[1] > 1.0 or edge_color[2] > 1.0: edge_color = (edge_color[0]/255.,edge_color[1]/255.,edge_color[2]/255.) elif isinstance(edge_color,str): edge_color = mpl.colors.hex2color(edge_color) if plot_faces is None: if edim == 3: plot_faces = True else: plot_faces = False if self.element_type == "tri": plt.triplot(self.points[:,0],self.points[:,1], self.elements[:,:3],color=edge_color) if plot_faces: plt.tricontourf(self.points[:,0], self.points[:,1], self.elements[:,:3], np.ones(self.points.shape[0]), 100, alpha=0.3) if plot_points: plt.plot(self.points[:,0],self.points[:,1], "o", color=point_color, markersize=point_radius) plt.axis("equal") if not show_axis: plt.axis('off') if grid == "on": plt.grid("on") if show_plot: plt.show() elif self.element_type == "tet": if plot_faces: mlab.triangular_mesh(self.points[:,0],self.points[:,1], self.points[:,2],faces[:,:3],color=color) radius = 1e-00 if plot_edges: mlab.triangular_mesh(self.points[:,0],self.points[:,1],self.points[:,2], faces[:,:3], line_width=radius,tube_radius=radius,color=edge_color, representation='wireframe') if plot_points: mlab.points3d(self.points[:,0],self.points[:,1],self.points[:,2], color=point_color,mode='sphere',scale_factor=point_radius) # svpoints = self.points[np.unique(self.faces),:] # mlab.points3d(svpoints[:,0],svpoints[:,1],svpoints[:,2],color=(0,0,0),mode='sphere',scale_factor=0.005) # mlab.view(azimuth=135, elevation=45, distance=7, focalpoint=None, # roll=0, reset_roll=True, figure=None) if show_plot: mlab.show() elif self.element_type=="quad": C = self.InferPolynomialDegree() - 1 pdim = self.points.shape[1] edge_elements = self.GetElementsEdgeNumberingQuad() reference_edges = NodeArrangementQuad(C)[0] reference_edges = np.concatenate((reference_edges,reference_edges[:,1,None]),axis=1) reference_edges = np.delete(reference_edges,1,1) self.GetEdgesQuad() x_edges = np.zeros((C+2,self.all_edges.shape[0])) y_edges = np.zeros((C+2,self.all_edges.shape[0])) z_edges = np.zeros((C+2,self.all_edges.shape[0])) BasesOneD = np.eye(2,2) for iedge in range(self.all_edges.shape[0]): ielem = edge_elements[iedge,0] edge = self.elements[ielem,reference_edges[edge_elements[iedge,1],:]] if pdim == 2: x_edges[:,iedge], y_edges[:,iedge] = self.points[edge,:].T elif pdim == 3: x_edges[:,iedge], y_edges[:,iedge], z_edges[:,iedge] = self.points[edge,:].T plt.plot(x_edges,y_edges,'-', color=edge_color) if plot_points: plt.plot(self.points[:,0],self.points[:,1], "o", color=point_color, markersize=point_radius) if plot_faces: plt.tricontourf(self.points[:,0], self.points[:,1], self.elements[:,:3], np.ones(self.points.shape[0]), 100, alpha=0.3) plt.tricontourf(self.points[:,0], self.points[:,1], self.elements[:,[0,2,3]], np.ones(self.points.shape[0]), 100, alpha=0.3) plt.axis('equal') if not show_axis: plt.axis('off') if grid == "on": plt.grid("on") if show_plot: plt.show() elif self.element_type == "hex": if to_plot == "all_faces": ProjectionFlags = np.ones(faces.shape[0],dtype=np.int64) else: ProjectionFlags = None from Florence.PostProcessing import PostProcess tmesh = PostProcess.TessellateHexes(self,np.zeros_like(self.points),plot_points=True, interpolation_degree=0, ProjectionFlags=ProjectionFlags) Xplot = tmesh.points Tplot = tmesh.elements # color=(197/255.,241/255.,197/255.) point_line_width = .002 if plot_faces: trimesh_h = mlab.triangular_mesh(Xplot[:,0], Xplot[:,1], Xplot[:,2], Tplot, line_width=point_line_width,color=color) if plot_edges: src = mlab.pipeline.scalar_scatter(tmesh.x_edges.T.copy().flatten(), tmesh.y_edges.T.copy().flatten(), tmesh.z_edges.T.copy().flatten()) src.mlab_source.dataset.lines = tmesh.connections h_edges = mlab.pipeline.surface(src, color = edge_color, line_width=3) # AVOID WARNINGS # lines = mlab.pipeline.stripper(src) # h_edges = mlab.pipeline.surface(lines, color = edge_color, line_width=3) # mlab.view(azimuth=135, elevation=45, distance=7, focalpoint=None, # roll=0, reset_roll=True, figure=None) if plot_points: mlab.points3d(self.points[:,0],self.points[:,1],self.points[:,2], color=point_color,mode='sphere',scale_factor=point_radius) if show_plot: mlab.show() elif self.element_type == "line": import os os.environ['ETS_TOOLKIT'] = 'qt4' from mayavi import mlab if figure is None: figure = mlab.figure(bgcolor=(1,1,1),fgcolor=(1,1,1),size=(1000,800)) if self.points.ndim == 1: self.points = self.points[:,None] points = np.zeros((self.points.shape[0],3)) if self.points.shape[1] == 1: points[:,0] = np.copy(self.points[:,0]) if self.points.shape[1] == 2: points[:,:2] = np.copy(self.points) elif self.points.shape[1] == 3: points = np.copy(self.points) if plot_edges: src = mlab.pipeline.scalar_scatter(points[:,0],points[:,1],points[:,2]) src.mlab_source.dataset.lines = self.elements[:,:2] lines = mlab.pipeline.stripper(src) h_edges = mlab.pipeline.surface(lines, color = (0,0,0), line_width=2) if plot_points: h_points = mlab.points3d(points[:,0],points[:,1],points[:,2],color=(0,0,0),mode='sphere',scale_factor=point_radius) if show_plot: mlab.show() else: raise NotImplementedError("SimplePlot for {} not implemented yet".format(self.element_type)) if save: ndim = self.InferSpatialDimension() if ndim == 2: plt.savefig(filename,format="png",dpi=300) else: mlab.savefig(filename,dpi=300) def PlotMeshNumbering(self, figure=None, show_plot=True): """Plots element and node numbers on top of the triangular mesh""" self.__do_essential_memebers_exist__() import matplotlib.pyplot as plt import matplotlib as mpl if self.element_type == "tri": if figure is None: figure = plt.figure() plt.triplot(self.points[:,0],self.points[:,1], self.elements[:,:3]) plt.tricontourf(self.points[:,0], self.points[:,1], self.elements[:,:3], np.ones(self.points.shape[0]), 100,alpha=0.3) for i in range(0,self.elements.shape[0]): coord = self.points[self.elements[i,:],:] x_avg = np.sum(coord[:,0])/self.elements.shape[1] y_avg = np.sum(coord[:,1])/self.elements.shape[1] plt.text(x_avg,y_avg,str(i),backgroundcolor='#F88379',ha='center') for i in range(0,self.points.shape[0]): plt.text(self.points[i,0],self.points[i,1],str(i),backgroundcolor='#0087BD',ha='center') plt.axis('equal') if show_plot: plt.show() elif self.element_type == "quad": if figure is None: figure = plt.figure() point_radius = 3. C = self.InferPolynomialDegree() - 1 edge_elements = self.GetElementsEdgeNumberingQuad() reference_edges = NodeArrangementQuad(C)[0] reference_edges = np.concatenate((reference_edges,reference_edges[:,1,None]),axis=1) reference_edges = np.delete(reference_edges,1,1) self.GetEdgesQuad() x_edges = np.zeros((C+2,self.all_edges.shape[0])) y_edges = np.zeros((C+2,self.all_edges.shape[0])) BasesOneD = np.eye(2,2) for iedge in range(self.all_edges.shape[0]): ielem = edge_elements[iedge,0] edge = self.elements[ielem,reference_edges[edge_elements[iedge,1],:]] x_edges[:,iedge], y_edges[:,iedge] = self.points[edge,:].T plt.plot(x_edges,y_edges,'-k') for i in range(self.elements.shape[0]): coord = self.points[self.elements[i,:],:] x_avg = np.sum(coord[:,0])/self.elements.shape[1] y_avg = np.sum(coord[:,1])/self.elements.shape[1] plt.text(x_avg,y_avg,str(i),backgroundcolor='#F88379',ha='center') for i in range(0,self.points.shape[0]): plt.text(self.points[i,0],self.points[i,1],str(i),backgroundcolor='#0087BD',ha='center') plt.axis('equal') if show_plot: plt.show() elif self.element_type == "tet" or self.element_type == "hex": import matplotlib as mpl import os os.environ['ETS_TOOLKIT'] = 'qt4' from mayavi import mlab if figure is None: figure = mlab.figure(bgcolor=(1,1,1),fgcolor=(1,1,1),size=(800,600)) view = mlab.view() figure.scene.disable_render = True color = mpl.colors.hex2color('#F88379') linewidth = 3. # trimesh_h = mlab.triangular_mesh(self.points[:,0], # self.points[:,1], self.points[:,2], self.faces[:,:3], # line_width=linewidth,tube_radius=linewidth,color=(0,0.6,0.4), # representation='wireframe') # representation='surface' # # CHANGE LIGHTING OPTION # trimesh_h.actor.property.interpolation = 'phong' # trimesh_h.actor.property.specular = 0.1 # trimesh_h.actor.property.specular_power = 5 # PLOTTING EDGES from Florence.PostProcessing import PostProcess tmesh = PostProcess(3,3).Tessellate(self, np.zeros_like(self.points), interpolation_degree=0, plot_points=True, plot_edges=True, plot_surfaces=False) x_edges = tmesh.x_edges y_edges = tmesh.y_edges z_edges = tmesh.z_edges connections = tmesh.connections src = mlab.pipeline.scalar_scatter(x_edges.T.copy().flatten(), y_edges.T.copy().flatten(), z_edges.T.copy().flatten()) src.mlab_source.dataset.lines = connections h_edges = mlab.pipeline.surface(src, color = (0,0.6,0.4), line_width=linewidth) # AVOID WARNINGS # lines = mlab.pipeline.stripper(src) # h_edges = mlab.pipeline.surface(lines, color = (0,0.6,0.4), line_width=linewidth) # ELEMENT NUMBERING # for i in range(0,self.elements.shape[0]): # coord = self.points[self.elements[i,:],:] # x_avg = np.sum(coord[:,0])/self.elements.shape[1] # y_avg = np.sum(coord[:,1])/self.elements.shape[1] # z_avg = np.sum(coord[:,2])/self.elements.shape[1] # # mlab.text3d(x_avg,y_avg,z_avg,str(i),color=color) # mlab.text3d(x_avg,y_avg,z_avg,str(i),color=(0,0,0.),scale=2) # POINT NUMBERING for i in range(self.elements.shape[0]): for j in range(self.elements.shape[1]): text_obj = mlab.text3d(self.points[self.elements[i,j],0], self.points[self.elements[i,j],1],self.points[self.elements[i,j],2],str(self.elements[i,j]), color=(0,0,0.),scale=0.05) figure.scene.disable_render = False if show_plot: # mlab.view(*view) mlab.show() def WriteVTK(self, filename=None, result=None, fmt="binary", interpolation_degree=10, ProjectionFlags=None): """Write mesh/results to vtu inputs: fmt: [str] VTK writer format either "binary" or "xml". "xml" files do not support big vtk/vtu files typically greater than 2GB whereas "binary" files can. Also "xml" writer is in-built whereas "binary" writer depends on evtk/pyevtk module interpolation_degree: [int] used only for writing high order curved meshes """ self.__do_essential_memebers_exist__() if fmt == "xml": pass elif fmt == "binary": try: from pyevtk.hl import pointsToVTK, linesToVTK, gridToVTK, unstructuredGridToVTK from pyevtk.vtk import VtkVertex, VtkLine, VtkTriangle, VtkQuad, VtkTetra, VtkPyramid, VtkHexahedron except ImportError: raise ImportError("Could not import evtk. Install it using 'pip install pyevtk'") else: raise ValueError("Writer format not understood") elements = np.copy(self.elements) cellflag = None if self.element_type =='tri': cellflag = 5 offset = 3 if self.elements.shape[1]==6: cellflag = 22 offset = 6 elif self.element_type =='quad': cellflag = 9 offset = 4 if self.elements.shape[1]==8: cellflag = 23 offset = 8 if self.element_type =='tet': cellflag = 10 offset = 4 if self.elements.shape[1]==10: cellflag = 24 offset = 10 # CHANGE NUMBERING ORDER FOR PARAVIEW para_arange = [0,4,1,6,2,5,7,8,9,3] elements = elements[:,para_arange] elif self.element_type == 'hex': cellflag = 12 offset = 8 if self.elements.shape[1] == 20: cellflag = 25 offset = 20 elif self.element_type == 'line': cellflag = 3 offset = 2 if filename is None: warn('File name not specified. I am going to write one in the current directory') filename = os.path.join(PWD(__file__), "output.vtu") if ".vtu" in filename and fmt == "binary": filename = filename.split('.')[0] if ".vtu" not in filename and fmt == "xml": filename = filename + ".vtu" if self.InferPolynomialDegree() > 1: try: from Florence.PostProcessing import PostProcess from Florence.VariationalPrinciple import DisplacementFormulation except ImportError: raise RuntimeError("Writing high order elements to VTK is not supported yet") if result is not None and result.ndim > 1: raise NotImplementedError("Writing multliple or vector/tensor valued results to binary vtk not supported yet") return else: if result is None: result = np.zeros_like(self.points)[:,:,None] if result.ndim == 1: result = result.reshape(result.shape[0],1,1) pp = PostProcess(3,3) pp.SetMesh(self) pp.SetSolution(result) pp.SetFormulation(DisplacementFormulation(self,compute_post_quadrature=False)) pp.WriteVTK(filename,quantity=0,interpolation_degree=interpolation_degree, ProjectionFlags=ProjectionFlags) return if self.InferSpatialDimension() == 2: points = np.zeros((self.points.shape[0],3)) points[:,:2] = self.points else: points = self.points if result is None: if fmt == "xml": write_vtu(Verts=self.points, Cells={cellflag:elements},fname=filename) elif fmt == "binary": unstructuredGridToVTK(filename, np.ascontiguousarray(points[:,0]),np.ascontiguousarray(points[:,1]), np.ascontiguousarray(points[:,2]), np.ascontiguousarray(elements.ravel()), np.arange(0,offset*self.nelem,offset)+offset, np.ones(self.nelem)*cellflag) else: if isinstance(result, np.ndarray): if result.ndim > 1: if result.size == result.shape[0]: result = result.flatten() if fmt == "xml": if result.ndim > 1: if result.shape[0] == self.nelem: write_vtu(Verts=self.points, Cells={cellflag:elements}, cvdata={cellflag:result.ravel()},fname=filename) elif result.shape[0] == self.points.shape[0]: write_vtu(Verts=self.points, Cells={cellflag:elements}, pvdata=result.ravel(),fname=filename) else: if result.shape[0] == self.nelem: write_vtu(Verts=self.points, Cells={cellflag:elements},cdata=result,fname=filename) elif result.shape[0] == self.points.shape[0]: write_vtu(Verts=self.points, Cells={cellflag:elements},pdata=result,fname=filename) elif fmt == "binary": if result.ndim <= 1: if result.shape[0] == self.nelem: unstructuredGridToVTK(filename, np.ascontiguousarray(points[:,0]),np.ascontiguousarray(points[:,1]), np.ascontiguousarray(points[:,2]), np.ascontiguousarray(elements.ravel()), np.arange(0,offset*self.nelem,offset)+offset, np.ones(self.nelem)*cellflag, cellData={'result':np.ascontiguousarray(result.ravel())}) elif result.shape[0] == self.points.shape[0]: unstructuredGridToVTK(filename, np.ascontiguousarray(points[:,0]),np.ascontiguousarray(points[:,1]), np.ascontiguousarray(points[:,2]), np.ascontiguousarray(elements.ravel()), np.arange(0,offset*self.nelem,offset)+offset, np.ones(self.nelem)*cellflag, pointData={'result':np.ascontiguousarray(result.ravel())}) else: raise NotImplementedError("Writing multliple or vector/tensor valued results to binary vtk not supported yet") def WriteHDF5(self, filename=None, external_fields=None): """Write to MATLAB's HDF5 format external_fields: [dict or tuple] of fields to save together with the mesh for instance desired results. If a tuple is given keys in dictionary will be named results_0, results_1 and so on""" # DO NOT WRITE IF POINTS DO NOT EXIST - THIS IS TO PREVENT ACCIDENTAL WRITING OF # POTENTIALLU EMPTY MESH OBJECT if self.points is None: warn("Nothing to write") return Dict = deepcopy(self.__dict__) if external_fields is not None: if isinstance(external_fields,dict): Dict.update(external_fields) elif isinstance(external_fields,tuple): for counter, fields in enumerate(external_fields): Dict['results_'+str(counter)] = fields else: raise AssertionError("Fields should be either tuple or a dict") if filename is None: pwd = os.path.dirname(os.path.realpath(__file__)) filename = pwd+'/output.mat' for key in list(Dict.keys()): if Dict[str(key)] is None: del Dict[str(key)] savemat(filename, Dict, do_compression=True) def WriteGmsh(self, filename, write_surface_info=False): """Write mesh to a .msh (gmsh format) file""" self.__do_essential_memebers_exist__() mesh = deepcopy(self) p = self.InferPolynomialDegree() # if p > 1: # mesh = self.GetLinearMesh(remap=True) element_type = mesh.element_type edim = mesh.InferElementalDimension() # THESE TAGS ARE DIFFERENT FROM THE GMSH READER TAGS bel = -1 if element_type == "line": el = 1 elif element_type == "tri": if p == 1: el = 2 bel = 1 else: el = 9 bel = 8 elif element_type == "quad": if p == 1: el = 3 bel = 1 elif p == 2: el = 10 bel = 8 elif element_type == "tet": if p == 1: el = 4 bel = 2 elif p == 2: el = 11 bel = 9 elif element_type == "hex": el = 5 bel = 3 else: raise ValueError("Element type not understood") elements = np.copy(mesh.elements).astype(np.int64) points = mesh.points[np.unique(elements),:] if el == 9: elements = elements[:,[0,1,2,3,5,4]] elif el == 10: elements = elements[:,[0, 1, 2, 3, 4, 7, 8, 5, 6]] elif el == 11: elements = elements[:,[0,1,2,3,4,6,5,7,9,8]] # Take care of a corner case where nnode != points.shape[0] if mesh.nnode != points.shape[0]: mesh.nnode = points.shape[0] if points.shape[1] == 2: points = np.hstack((points,np.zeros((points.shape[0],1)))) points_repr = np.zeros((points.shape[0],points.shape[1]+1), dtype=object) points_repr[:,0] =
np.arange(mesh.nnode)
numpy.arange
import unittest import numpy from become_yukarin.dataset import dataset class TestDataset(unittest.TestCase): def setUp(self): self.sample_rate = 24000 self.len_time = len_time = 100 self.fft_size = fft_size = 1024 self.order = order = 59 self.dummy_feature = dataset.AcousticFeature( f0=numpy.arange(len_time).reshape((len_time, -1)), spectrogram=numpy.arange(len_time * (fft_size // 2 + 1)).reshape((len_time, -1)), aperiodicity=numpy.arange(len_time * (fft_size // 2 + 1)).reshape((len_time, -1)), mfcc=numpy.arange(len_time * (order + 1)).reshape((len_time, -1)), voiced=(numpy.arange(len_time) % 2 == 1).reshape((len_time, -1)), ) self.feature_sizes = dataset.AcousticFeature.get_sizes( sampling_rate=self.sample_rate, order=self.order, ) def test_encode_decode_feature(self): encode_feature = dataset.EncodeFeatureProcess(['mfcc']) decode_feature = dataset.DecodeFeatureProcess(['mfcc'], self.feature_sizes) e = encode_feature(self.dummy_feature, test=True) d = decode_feature(e, test=True) self.assertTrue(
numpy.all(self.dummy_feature.mfcc == d.mfcc)
numpy.all
import numpy as np import torch import torch.nn.functional as F import skimage.measure as sk import time import pyrender import pymesh import trimesh from pyemd import emd_samples import chamfer_python import binvox_rw from glob import glob D2R = np.pi/180.0 voxsize = 32 sample_size = 2048 def RotatePhi(phi): return np.array([[1, 0, 0, 0], [0, np.cos(D2R*phi), np.sin(D2R*phi), 0], [0, -np.sin(D2R*phi), np.cos(D2R*phi), 0], [0, 0, 0, 1]]) def RotateAzimuth(phi): return np.array([[np.cos(D2R*phi), np.sin(D2R*phi), 0, 0], [-np.sin(D2R*phi), np.cos(D2R*phi), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) def RotateAlongAxis(theta, a, b, c): return np.array([[a**2*(1-np.cos(D2R*theta)) + np.cos(D2R*theta), a*b*(1-np.cos(D2R*theta)) - c*np.sin(D2R*theta), a*c*(1-np.cos(D2R*theta)) + b*np.sin(D2R*theta), 0], [a*b*(1-np.cos(D2R*theta)) + c*np.sin(D2R*theta), b**2*(1-np.cos(D2R*theta)) + np.cos(D2R*theta), b*c*(1-np.cos(D2R*theta)) - a*np.sin(D2R*theta), 0], [a*c*(1-np.cos(D2R*theta)) - b*np.sin(D2R*theta), b*c*(1-np.cos(D2R*theta)) + a*np.sin(D2R*theta), c**2*(1-np.cos(D2R*theta)) + np.cos(D2R*theta), 0], [0, 0, 0, 1]]) # generate meshgrid # [depth, height, width] def get_meshgrid(depth = voxsize, height = voxsize, width = voxsize, ratio = 1.0): x_mesh = np.repeat(np.repeat(np.linspace(-ratio, ratio, width)[np.newaxis, :], height, axis=0)[np.newaxis, :, :], depth, axis=0) y_mesh = np.repeat(np.repeat(np.linspace(-ratio, ratio, height)[:, np.newaxis], width, axis=-1)[np.newaxis, :, :], depth, axis=0) z_mesh = np.repeat(np.repeat(np.linspace(-ratio, ratio, depth)[:, np.newaxis], height, axis= -1)[:,:, np.newaxis], width, axis=-1) x_expand = np.expand_dims(x_mesh, axis = -1) y_expand = np.expand_dims(y_mesh, axis = -1) z_expand = np.expand_dims(z_mesh, axis = -1) meshgrid = np.concatenate((x_expand, np.concatenate((y_expand, z_expand), axis = -1)), axis = -1) return meshgrid # transform meshgrid given transformation matrix def get_transformed_meshgrid(meshgrid, transform_matrix, depth = voxsize, height = voxsize, width = voxsize): meshgrid_flat = meshgrid.transpose(3, 0, 1, 2).reshape(3,-1) one = np.ones((1, meshgrid_flat.shape[1])) meshgrid_expand = np.vstack((meshgrid_flat, one)) transformed_meshgrid = (transform_matrix @ meshgrid_expand) transformed_meshgrid = (transformed_meshgrid[0:3, :]/transformed_meshgrid[3, :]).reshape(3, depth, height, width).transpose(1, 2, 3, 0) return torch.tensor(transformed_meshgrid, dtype=torch.float) ###################### # single transform # ###################### # compute transformation matrix def get_transform_matrix(azimuth, elevation, scale = np.sqrt(3)): rot_base = RotateAlongAxis(90, 0, 0, 1) @ RotateAlongAxis(-90, 1, 0, 0) rot_m = RotateAlongAxis(azimuth, 0, 1, 0) @ RotateAlongAxis(-elevation, 1, 0, 0) @ rot_base sca_m = np.array([[scale, 0, 0, 0], [0, scale, 0, 0], [0, 0, scale, 0], [0, 0, 0, 1]]) return rot_m @ sca_m # group function for transform voxel in pytorch tensor def get_transformed_vox(vox_torch, azimuth, elevation, scale = np.sqrt(3)): meshgird = get_transformed_meshgrid(get_meshgrid(voxsize, voxsize, voxsize), get_transform_matrix(azimuth, elevation, scale), voxsize, voxsize, voxsize) transformedVox = F.grid_sample(vox_torch, meshgird.unsqueeze(0), mode='bilinear', padding_mode='zeros', align_corners=False) return transformedVox[0] ######################## # Relative transform # ######################## def get_relative_transform_matrix(azimuth_1, elevation_1, azimuth_2, elevation_2): rot_m = RotateAlongAxis(elevation_1, 0, 0, 1) @ RotateAlongAxis(azimuth_1, 1, 0, 0) @ RotateAlongAxis(azimuth_2, 1, 0, 0) @ RotateAlongAxis(elevation_2, 0, 0, 1) scale = 1 #scale = 1/np.sqrt(3) sca_m = np.array([[scale, 0, 0, 0], [0, scale, 0, 0], [0, 0, scale, 0], [0, 0, 0, 1]]) return rot_m @ sca_m def get_relative_transformed_vox(vox_torch, azimuth_1, elevation_1, azimuth_2, elevation_2, device, voxsize = 32, align_mode = 'zeros'): meshgird = get_transformed_meshgrid(get_meshgrid(voxsize, voxsize, voxsize), get_relative_transform_matrix(azimuth_1, elevation_1, azimuth_2, elevation_2), voxsize, voxsize, voxsize).to(device) transformedVox = F.grid_sample(vox_torch, meshgird.unsqueeze(0), mode='bilinear', padding_mode=align_mode, align_corners=False) return transformedVox ######### # SDF # ######### # transformation function to rotate sdf indice def get_transform_matrix_sdf(azimuth, elevation, scale = 1.0): rot_base = RotateAlongAxis(90, 0, 1, 0) @ RotateAlongAxis(-90, 1, 0, 0) rot_m = RotateAlongAxis(azimuth, 0, 1, 0) @ RotateAlongAxis(-elevation, 0, 0, 1) @ rot_base sca_m = np.array([[scale, 0, 0, 0], [0, scale, 0, 0], [0, 0, scale, 0], [0, 0, 0, 1]]) return rot_m @ sca_m # group function to get transformed sdf indice def get_transformed_indices(indices, azimuth, elevation, scale = 1/np.sqrt(3)): transform_matrix = get_transform_matrix_sdf(-azimuth, -elevation, scale)[0:3, 0:3] transformed_indices = indices @ transform_matrix return transformed_indices # convert sdf to voxel def sdf2Voxel(sample_pt, sample_sdf_val, fill = 0): sample_pt = ((sample_pt + np.array([0.5, 0.5, 0.5]))* voxsize).astype(int) sample_pt = np.clip(sample_pt, 0, voxsize-1) v = fill *
np.ones((voxsize, voxsize, voxsize))
numpy.ones
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for convolutional layers.""" # pylint: disable=g-direct-tensorflow-import import keras from keras import keras_parameterized from keras import testing_utils import numpy as np import tensorflow.compat.v2 as tf from tensorflow.python.framework import test_util @test_util.for_all_test_methods(test_util.disable_xla, 'align_corners=False not supported by XLA') @keras_parameterized.run_all_keras_modes class UpSamplingTest(keras_parameterized.TestCase): def test_upsampling_1d(self): with self.cached_session(): testing_utils.layer_test( keras.layers.UpSampling1D, kwargs={'size': 2}, input_shape=(3, 5, 4)) def test_upsampling_2d(self): num_samples = 2 stack_size = 2 input_num_row = 11 input_num_col = 12 for data_format in ['channels_first', 'channels_last']: if data_format == 'channels_first': inputs = np.random.rand(num_samples, stack_size, input_num_row, input_num_col) else: inputs = np.random.rand(num_samples, input_num_row, input_num_col, stack_size) # basic test with self.cached_session(): testing_utils.layer_test( keras.layers.UpSampling2D, kwargs={'size': (2, 2), 'data_format': data_format}, input_shape=inputs.shape) for length_row in [2]: for length_col in [2, 3]: layer = keras.layers.UpSampling2D( size=(length_row, length_col), data_format=data_format) layer.build(inputs.shape) output = layer(keras.backend.variable(inputs)) if tf.executing_eagerly(): np_output = output.numpy() else: np_output = keras.backend.eval(output) if data_format == 'channels_first': assert np_output.shape[2] == length_row * input_num_row assert np_output.shape[3] == length_col * input_num_col else: # tf assert np_output.shape[1] == length_row * input_num_row assert np_output.shape[2] == length_col * input_num_col # compare with numpy if data_format == 'channels_first': expected_out = np.repeat(inputs, length_row, axis=2) expected_out = np.repeat(expected_out, length_col, axis=3) else: # tf expected_out = np.repeat(inputs, length_row, axis=1) expected_out = np.repeat(expected_out, length_col, axis=2)
np.testing.assert_allclose(np_output, expected_out)
numpy.testing.assert_allclose
import cv2,os import numpy as np from keras.applications.vgg16 import decode_predictions from keras.applications import ResNet50, Xception, InceptionV3, VGG16, VGG19 from keras.preprocessing import image as Image from keras.applications.vgg16 import preprocess_input from tqdm import tqdm from skimage import feature #LBP feature class LocalBinaryPatterns: def __init__(self, numPoints, radius): # store the number of points and radius self.numPoints = numPoints self.radius = radius def describe(self, image, eps=1e-7): # compute the Local Binary Pattern representation # of the image, and then use the LBP representation # to build the histogram of patterns lbp = feature.local_binary_pattern(image, self.numPoints, self.radius, method="nri_uniform") (hist, _) = np.histogram(lbp.ravel(), bins=np.arange(0, self.numPoints*(self.numPoints-1) + 3), range=(0, self.numPoints*(self.numPoints-1) + 2)) # normalize the histogram hist = hist.astype("float") hist /= (hist.sum() + eps) # return the histogram of Local Binary Patterns return hist def embedding_load(embedding_path): embedding_vector = {} f = open(embedding_path,'r',encoding='utf8') for line in tqdm(f): value = line.split(' ') word = value[0] coef = np.array(value[1:], dtype='float32') embedding_vector[word] = coef f.close() return embedding_vector #tag embedding feature def im_tag_embedding_feature_extraction(img_path, model,embedding_vector,im_size): img = Image.load_img(img_path, target_size=(im_size, im_size)) x = Image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) yhat = model.predict(x) labels = decode_predictions(yhat,top=10) #print(labels[0]) words = [] for label in labels[0]: word = label[1] #print(word) words.append(word) tags_matrix = [] zero_array = np.zeros(300) for tag in words: if tag in embedding_vector.keys(): tag_embedding = embedding_vector[tag] tags_matrix.append(np.array(tag_embedding)) zero_array = zero_array+np.array(tag_embedding) tag_feature = zero_array / len(tags_matrix) return list(tag_feature) if __name__ == '__main__': embedding_path = '../data/GoogleNews_vectors_negative_300d.txt' embedding_vector = embedding_load(embedding_path) im_path = '../data/politifact_images/' #../data/gossipcop_images/ model_vgg16 = VGG16(weights='imagenet', include_top=True) model_vgg19 = VGG19(weights='imagenet', include_top=True) model_resnet = ResNet50(weights='imagenet', include_top=True) model_inception = InceptionV3(weights='imagenet', include_top=True) model_xception = Xception(weights='imagenet', include_top=True) lbp_feature_dict = {} vgg16_tags_embedding_feature_dict = {} vgg19_tags_embedding_feature_dict = {} resnet_tags_embedding_feature_dict = {} inception_tags_embedding_feature_dict = {} xception_tags_embedding_feature_dict = {} i=0 for im in os.listdir(im_path): try: print(im) i += 1 if i%100 == 0: print(i) #read image data image = cv2.imread(im_path+im) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # features extraction desc = LocalBinaryPatterns(8, 1.0) hist_LBP = desc.describe(gray) vgg16_tags_embedding_feature = im_tag_embedding_feature_extraction(im_path+im, model_vgg16, embedding_vector, 224) vgg19_tags_embedding_feature = im_tag_embedding_feature_extraction(im_path+im, model_vgg19, embedding_vector, 224) resnet_tags_embedding_feature = im_tag_embedding_feature_extraction(im_path+im, model_resnet, embedding_vector, 224) inception_tags_embedding_feature = im_tag_embedding_feature_extraction(im_path+im, model_inception, embedding_vector, 299) xception_tags_embedding_feature = im_tag_embedding_feature_extraction(im_path+im, model_xception, embedding_vector, 299) lbp_feature_dict[im] = list(hist_LBP) vgg16_tags_embedding_feature_dict[im] = vgg16_tags_embedding_feature vgg19_tags_embedding_feature_dict[im] = vgg19_tags_embedding_feature resnet_tags_embedding_feature_dict[im] = resnet_tags_embedding_feature inception_tags_embedding_feature_dict[im] = inception_tags_embedding_feature xception_tags_embedding_feature_dict[im] = xception_tags_embedding_feature except Exception: print('error image',im) continue # save features np.save('politifact_image_LBP_feature.npy', lbp_feature_dict)
np.save('politifact_image_tag_vgg16_feature.npy', vgg16_tags_embedding_feature_dict)
numpy.save
import numpy as np import pytest from scipy import linalg from .. import gKDR from ..DimensionReduction import median_dist, gram_matrix_sqexp, gram_matrix from .. import fitting ##### Some simple functions useful for training def fn(x): """A linear function for testing the dimension reduction""" return 10*(x[0] + x[1]) + (x[1] - x[0]) def fn2(x): """A linear function for testing the dimension reduction""" return 10*(x[0] + x[1]) + (x[1] - x[0]) + x[2] + 0.1*x[3] def fn3(x): return x[0] ##### The tests def test_DimensionReduction_basic(): """Basic check that we can create gKDR with the expected arguments""" Y =
np.array([[1],[2.1],[3.2]])
numpy.array
import copy import itertools import re import operator from datetime import datetime, timedelta from collections import defaultdict import numpy as np from pandas.core.base import PandasObject from pandas.core.common import (_possibly_downcast_to_dtype, isnull, _NS_DTYPE, _TD_DTYPE, ABCSeries, is_list_like, ABCSparseSeries, _infer_dtype_from_scalar, is_null_datelike_scalar, _maybe_promote, is_timedelta64_dtype, is_datetime64_dtype, array_equivalent, _maybe_convert_string_to_object, is_categorical, needs_i8_conversion, is_datetimelike_v_numeric) from pandas.core.index import Index, MultiIndex, _ensure_index from pandas.core.indexing import maybe_convert_indices, length_of_indexer from pandas.core.categorical import Categorical, maybe_to_categorical import pandas.core.common as com from pandas.sparse.array import _maybe_to_sparse, SparseArray import pandas.lib as lib import pandas.tslib as tslib import pandas.computation.expressions as expressions from pandas.util.decorators import cache_readonly from pandas.tslib import Timestamp, Timedelta from pandas import compat from pandas.compat import range, map, zip, u from pandas.tseries.timedeltas import _coerce_scalar_to_timedelta_type from pandas.lib import BlockPlacement class Block(PandasObject): """ Canonical n-dimensional unit of homogeneous dtype contained in a pandas data structure Index-ignorant; let the container take care of that """ __slots__ = ['_mgr_locs', 'values', 'ndim'] is_numeric = False is_float = False is_integer = False is_complex = False is_datetime = False is_timedelta = False is_bool = False is_object = False is_categorical = False is_sparse = False _can_hold_na = False _downcast_dtype = None _can_consolidate = True _verify_integrity = True _validate_ndim = True _ftype = 'dense' _holder = None def __init__(self, values, placement, ndim=None, fastpath=False): if ndim is None: ndim = values.ndim elif values.ndim != ndim: raise ValueError('Wrong number of dimensions') self.ndim = ndim self.mgr_locs = placement self.values = values if len(self.mgr_locs) != len(self.values): raise ValueError('Wrong number of items passed %d,' ' placement implies %d' % ( len(self.values), len(self.mgr_locs))) @property def _consolidate_key(self): return (self._can_consolidate, self.dtype.name) @property def _is_single_block(self): return self.ndim == 1 @property def is_view(self): """ return a boolean if I am possibly a view """ return self.values.base is not None @property def is_datelike(self): """ return True if I am a non-datelike """ return self.is_datetime or self.is_timedelta def is_categorical_astype(self, dtype): """ validate that we have a astypeable to categorical, returns a boolean if we are a categorical """ if com.is_categorical_dtype(dtype): if dtype == com.CategoricalDtype(): return True # this is a pd.Categorical, but is not # a valid type for astypeing raise TypeError("invalid type {0} for astype".format(dtype)) return False def to_dense(self): return self.values.view() @property def fill_value(self): return np.nan @property def mgr_locs(self): return self._mgr_locs @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return self.dtype def make_block_same_class(self, values, placement, copy=False, fastpath=True, **kwargs): """ Wrap given values in a block of same type as self. `kwargs` are used in SparseBlock override. """ if copy: values = values.copy() return make_block(values, placement, klass=self.__class__, fastpath=fastpath, **kwargs) @mgr_locs.setter def mgr_locs(self, new_mgr_locs): if not isinstance(new_mgr_locs, BlockPlacement): new_mgr_locs = BlockPlacement(new_mgr_locs) self._mgr_locs = new_mgr_locs def __unicode__(self): # don't want to print out all of the items here name = com.pprint_thing(self.__class__.__name__) if self._is_single_block: result = '%s: %s dtype: %s' % ( name, len(self), self.dtype) else: shape = ' x '.join([com.pprint_thing(s) for s in self.shape]) result = '%s: %s, %s, dtype: %s' % ( name, com.pprint_thing(self.mgr_locs.indexer), shape, self.dtype) return result def __len__(self): return len(self.values) def __getstate__(self): return self.mgr_locs.indexer, self.values def __setstate__(self, state): self.mgr_locs = BlockPlacement(state[0]) self.values = state[1] self.ndim = self.values.ndim def _slice(self, slicer): """ return a slice of my values """ return self.values[slicer] def reshape_nd(self, labels, shape, ref_items): """ Parameters ---------- labels : list of new axis labels shape : new shape ref_items : new ref_items return a new block that is transformed to a nd block """ return _block2d_to_blocknd( values=self.get_values().T, placement=self.mgr_locs, shape=shape, labels=labels, ref_items=ref_items) def getitem_block(self, slicer, new_mgr_locs=None): """ Perform __getitem__-like, return result as block. As of now, only supports slices that preserve dimensionality. """ if new_mgr_locs is None: if isinstance(slicer, tuple): axis0_slicer = slicer[0] else: axis0_slicer = slicer new_mgr_locs = self.mgr_locs[axis0_slicer] new_values = self._slice(slicer) if self._validate_ndim and new_values.ndim != self.ndim: raise ValueError("Only same dim slicing is allowed") return self.make_block_same_class(new_values, new_mgr_locs) @property def shape(self): return self.values.shape @property def itemsize(self): return self.values.itemsize @property def dtype(self): return self.values.dtype @property def ftype(self): return "%s:%s" % (self.dtype, self._ftype) def merge(self, other): return _merge_blocks([self, other]) def reindex_axis(self, indexer, method=None, axis=1, fill_value=None, limit=None, mask_info=None): """ Reindex using pre-computed indexer information """ if axis < 1: raise AssertionError('axis must be at least 1, got %d' % axis) if fill_value is None: fill_value = self.fill_value new_values = com.take_nd(self.values, indexer, axis, fill_value=fill_value, mask_info=mask_info) return make_block(new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs) def get(self, item): loc = self.items.get_loc(item) return self.values[loc] def iget(self, i): return self.values[i] def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ self.values[locs] = values def delete(self, loc): """ Delete given loc(-s) from block in-place. """ self.values = np.delete(self.values, loc, 0) self.mgr_locs = self.mgr_locs.delete(loc) def apply(self, func, **kwargs): """ apply the function to my values; return a block if we are not one """ result = func(self.values, **kwargs) if not isinstance(result, Block): result = make_block(values=_block_shape(result), placement=self.mgr_locs,) return result def fillna(self, value, limit=None, inplace=False, downcast=None): if not self._can_hold_na: if inplace: return [self] else: return [self.copy()] mask = isnull(self.values) if limit is not None: if self.ndim > 2: raise NotImplementedError("number of dimensions for 'fillna' " "is currently limited to 2") mask[mask.cumsum(self.ndim-1) > limit] = False value = self._try_fill(value) blocks = self.putmask(mask, value, inplace=inplace) return self._maybe_downcast(blocks, downcast) def _maybe_downcast(self, blocks, downcast=None): # no need to downcast our float # unless indicated if downcast is None and self.is_float: return blocks elif downcast is None and (self.is_timedelta or self.is_datetime): return blocks result_blocks = [] for b in blocks: result_blocks.extend(b.downcast(downcast)) return result_blocks def downcast(self, dtypes=None): """ try to downcast each item to the dict of dtypes if present """ # turn it off completely if dtypes is False: return [self] values = self.values # single block handling if self._is_single_block: # try to cast all non-floats here if dtypes is None: dtypes = 'infer' nv = _possibly_downcast_to_dtype(values, dtypes) return [make_block(nv, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] # ndim > 1 if dtypes is None: return [self] if not (dtypes == 'infer' or isinstance(dtypes, dict)): raise ValueError("downcast must have a dictionary or 'infer' as " "its argument") # item-by-item # this is expensive as it splits the blocks items-by-item blocks = [] for i, rl in enumerate(self.mgr_locs): if dtypes == 'infer': dtype = 'infer' else: raise AssertionError("dtypes as dict is not supported yet") dtype = dtypes.get(item, self._downcast_dtype) if dtype is None: nv = _block_shape(values[i], ndim=self.ndim) else: nv = _possibly_downcast_to_dtype(values[i], dtype) nv = _block_shape(nv, ndim=self.ndim) blocks.append(make_block(nv, ndim=self.ndim, fastpath=True, placement=[rl])) return blocks def astype(self, dtype, copy=False, raise_on_error=True, values=None, **kwargs): return self._astype(dtype, copy=copy, raise_on_error=raise_on_error, values=values, **kwargs) def _astype(self, dtype, copy=False, raise_on_error=True, values=None, klass=None, **kwargs): """ Coerce to the new type (if copy=True, return a new copy) raise on an except if raise == True """ # may need to convert to categorical # this is only called for non-categoricals if self.is_categorical_astype(dtype): return make_block(Categorical(self.values, **kwargs), ndim=self.ndim, placement=self.mgr_locs) # astype processing dtype = np.dtype(dtype) if self.dtype == dtype: if copy: return self.copy() return self if klass is None: if dtype == np.object_: klass = ObjectBlock try: # force the copy here if values is None: # _astype_nansafe works fine with 1-d only values = com._astype_nansafe(self.values.ravel(), dtype, copy=True) values = values.reshape(self.values.shape) newb = make_block(values, ndim=self.ndim, placement=self.mgr_locs, fastpath=True, dtype=dtype, klass=klass) except: if raise_on_error is True: raise newb = self.copy() if copy else self if newb.is_numeric and self.is_numeric: if newb.shape != self.shape: raise TypeError("cannot set astype for copy = [%s] for dtype " "(%s [%s]) with smaller itemsize that current " "(%s [%s])" % (copy, self.dtype.name, self.itemsize, newb.dtype.name, newb.itemsize)) return newb def convert(self, copy=True, **kwargs): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we are not an ObjectBlock here! """ return [self.copy()] if copy else [self] def _can_hold_element(self, value): raise NotImplementedError() def _try_cast(self, value): raise NotImplementedError() def _try_cast_result(self, result, dtype=None): """ try to cast the result to our original type, we may have roundtripped thru object in the mean-time """ if dtype is None: dtype = self.dtype if self.is_integer or self.is_bool or self.is_datetime: pass elif self.is_float and result.dtype == self.dtype: # protect against a bool/object showing up here if isinstance(dtype, compat.string_types) and dtype == 'infer': return result if not isinstance(dtype, type): dtype = dtype.type if issubclass(dtype, (np.bool_, np.object_)): if issubclass(dtype, np.bool_): if isnull(result).all(): return result.astype(np.bool_) else: result = result.astype(np.object_) result[result == 1] = True result[result == 0] = False return result else: return result.astype(np.object_) return result # may need to change the dtype here return _possibly_downcast_to_dtype(result, dtype) def _try_operate(self, values): """ return a version to operate on as the input """ return values def _try_coerce_args(self, values, other): """ provide coercion to our input arguments """ return values, other def _try_coerce_result(self, result): """ reverse of try_coerce_args """ return result def _try_coerce_and_cast_result(self, result, dtype=None): result = self._try_coerce_result(result) result = self._try_cast_result(result, dtype=dtype) return result def _try_fill(self, value): return value def to_native_types(self, slicer=None, na_rep='', quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isnull(values) if not self.is_object and not quoting: values = values.astype(str) else: values = np.array(values, dtype='object') values[mask] = na_rep return values # block actions #### def copy(self, deep=True): values = self.values if deep: values = values.copy() return make_block(values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs) def replace(self, to_replace, value, inplace=False, filter=None, regex=False): """ replace the to_replace value with value, possible to create new blocks here this is just a call to putmask. regex is not used here. It is used in ObjectBlocks. It is here for API compatibility.""" mask = com.mask_missing(self.values, to_replace) if filter is not None: filtered_out = ~self.mgr_locs.isin(filter) mask[filtered_out.nonzero()[0]] = False if not mask.any(): if inplace: return [self] return [self.copy()] return self.putmask(mask, value, inplace=inplace) def setitem(self, indexer, value): """ set the value inplace; return a new block (of a possibly different dtype) indexer is a direct slice/positional indexer; value must be a compatible shape """ # coerce None values, if appropriate if value is None: if self.is_numeric: value = np.nan # coerce args values, value = self._try_coerce_args(self.values, value) arr_value = np.array(value) # cast the values to a type that can hold nan (if necessary) if not self._can_hold_element(value): dtype, _ = com._maybe_promote(arr_value.dtype) values = values.astype(dtype) transf = (lambda x: x.T) if self.ndim == 2 else (lambda x: x) values = transf(values) l = len(values) # length checking # boolean with truth values == len of the value is ok too if isinstance(indexer, (np.ndarray, list)): if is_list_like(value) and len(indexer) != len(value): if not (isinstance(indexer, np.ndarray) and indexer.dtype == np.bool_ and len(indexer[indexer]) == len(value)): raise ValueError("cannot set using a list-like indexer " "with a different length than the value") # slice elif isinstance(indexer, slice): if is_list_like(value) and l: if len(value) != length_of_indexer(indexer, values): raise ValueError("cannot set using a slice indexer with a " "different length than the value") try: def _is_scalar_indexer(indexer): # return True if we are all scalar indexers if arr_value.ndim == 1: if not isinstance(indexer, tuple): indexer = tuple([indexer]) return all([ np.isscalar(idx) for idx in indexer ]) return False def _is_empty_indexer(indexer): # return a boolean if we have an empty indexer if arr_value.ndim == 1: if not isinstance(indexer, tuple): indexer = tuple([indexer]) return any(isinstance(idx, np.ndarray) and len(idx) == 0 for idx in indexer) return False # empty indexers # 8669 (empty) if _is_empty_indexer(indexer): pass # setting a single element for each dim and with a rhs that could be say a list # GH 6043 elif _is_scalar_indexer(indexer): values[indexer] = value # if we are an exact match (ex-broadcasting), # then use the resultant dtype elif len(arr_value.shape) and arr_value.shape[0] == values.shape[0] and np.prod(arr_value.shape) == np.prod(values.shape): values[indexer] = value values = values.astype(arr_value.dtype) # set else: values[indexer] = value # coerce and try to infer the dtypes of the result if np.isscalar(value): dtype, _ = _infer_dtype_from_scalar(value) else: dtype = 'infer' values = self._try_coerce_and_cast_result(values, dtype) block = make_block(transf(values), ndim=self.ndim, placement=self.mgr_locs, fastpath=True) # may have to soft convert_objects here if block.is_object and not self.is_object: block = block.convert(numeric=False) return block except (ValueError, TypeError) as detail: raise except Exception as detail: pass return [self] def putmask(self, mask, new, align=True, inplace=False): """ putmask the data to the block; it is possible that we may create a new dtype of block return the resulting block(s) Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block(s), the result of the putmask """ new_values = self.values if inplace else self.values.copy() # may need to align the new if hasattr(new, 'reindex_axis'): new = new.values.T # may need to align the mask if hasattr(mask, 'reindex_axis'): mask = mask.values.T # if we are passed a scalar None, convert it here if not is_list_like(new) and isnull(new) and not self.is_object: new = self.fill_value if self._can_hold_element(new): new = self._try_cast(new) # pseudo-broadcast if isinstance(new, np.ndarray) and new.ndim == self.ndim - 1: new = np.repeat(new, self.shape[-1]).reshape(self.shape) np.putmask(new_values, mask, new) # maybe upcast me elif mask.any(): # need to go column by column new_blocks = [] if self.ndim > 1: for i, ref_loc in enumerate(self.mgr_locs): m = mask[i] v = new_values[i] # need a new block if m.any(): n = new[i] if isinstance( new, np.ndarray) else np.array(new) # type of the new block dtype, _ = com._maybe_promote(n.dtype) # we need to exiplicty astype here to make a copy n = n.astype(dtype) nv = _putmask_smart(v, m, n) else: nv = v if inplace else v.copy() # Put back the dimension that was taken from it and make # a block out of the result. block = make_block(values=nv[np.newaxis], placement=[ref_loc], fastpath=True) new_blocks.append(block) else: nv = _putmask_smart(new_values, mask, new) new_blocks.append(make_block(values=nv, placement=self.mgr_locs, fastpath=True)) return new_blocks if inplace: return [self] return [make_block(new_values, placement=self.mgr_locs, fastpath=True)] def interpolate(self, method='pad', axis=0, index=None, values=None, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None, **kwargs): def check_int_bool(self, inplace): # Only FloatBlocks will contain NaNs. # timedelta subclasses IntBlock if (self.is_bool or self.is_integer) and not self.is_timedelta: if inplace: return self else: return self.copy() # a fill na type method try: m = com._clean_fill_method(method) except: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate_with_fill(method=m, axis=axis, inplace=inplace, limit=limit, fill_value=fill_value, coerce=coerce, downcast=downcast) # try an interp method try: m = com._clean_interp_method(method, **kwargs) except: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate(method=m, index=index, values=values, axis=axis, limit=limit, fill_value=fill_value, inplace=inplace, downcast=downcast, **kwargs) raise ValueError("invalid method '{0}' to interpolate.".format(method)) def _interpolate_with_fill(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None): """ fillna but using the interpolate machinery """ # if we are coercing, then don't force the conversion # if the block can't hold the type if coerce: if not self._can_hold_na: if inplace: return [self] else: return [self.copy()] fill_value = self._try_fill(fill_value) values = self.values if inplace else self.values.copy() values = self._try_operate(values) values = com.interpolate_2d(values, method=method, axis=axis, limit=limit, fill_value=fill_value, dtype=self.dtype) values = self._try_coerce_result(values) blocks = [make_block(values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs)] return self._maybe_downcast(blocks, downcast) def _interpolate(self, method=None, index=None, values=None, fill_value=None, axis=0, limit=None, inplace=False, downcast=None, **kwargs): """ interpolate using scipy wrappers """ data = self.values if inplace else self.values.copy() # only deal with floats if not self.is_float: if not self.is_integer: return self data = data.astype(np.float64) if fill_value is None: fill_value = self.fill_value if method in ('krogh', 'piecewise_polynomial', 'pchip'): if not index.is_monotonic: raise ValueError("{0} interpolation requires that the " "index be monotonic.".format(method)) # process 1-d slices in the axis direction def func(x): # process a 1-d slice, returning it # should the axis argument be handled below in apply_along_axis? # i.e. not an arg to com.interpolate_1d return com.interpolate_1d(index, x, method=method, limit=limit, fill_value=fill_value, bounds_error=False, **kwargs) # interp each column independently interp_values =
np.apply_along_axis(func, axis, data)
numpy.apply_along_axis
# <NAME>, 2019 # <EMAIL> # Essentials import os, sys, glob import pandas as pd import numpy as np import nibabel as nib # Stats import scipy as sp from scipy import stats import statsmodels.api as sm import pingouin as pg # Plotting import seaborn as sns import matplotlib.pyplot as plt plt.rcParams['svg.fonttype'] = 'none' from IPython.display import clear_output from scipy.stats import t from numpy.matlib import repmat from scipy.linalg import svd, schur from statsmodels.stats import multitest # Sklearn from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.model_selection import KFold, GridSearchCV from sklearn.linear_model import Ridge, Lasso, LinearRegression from sklearn.kernel_ridge import KernelRidge from sklearn.svm import SVR, LinearSVR from sklearn.metrics import make_scorer, r2_score, mean_squared_error, mean_absolute_error from sklearn.decomposition import PCA from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF def my_get_cmap(which_type = 'qual1', num_classes = 8): # Returns a nice set of colors to make a nice colormap using the color schemes # from http://colorbrewer2.org/ # # The online tool, colorbrewer2, is copyright <NAME>, <NAME> and # The Pennsylvania State University. if which_type == 'linden': cmap_base = np.array([[255,105,97],[97,168,255],[178,223,138],[117,112,179],[255,179,71]]) elif which_type == 'pair': cmap_base = np.array([[124,230,199],[255,169,132]]) elif which_type == 'qual1': cmap_base = np.array([[166,206,227],[31,120,180],[178,223,138],[51,160,44],[251,154,153],[227,26,28], [253,191,111],[255,127,0],[202,178,214],[106,61,154],[255,255,153],[177,89,40]]) elif which_type == 'qual2': cmap_base = np.array([[141,211,199],[255,255,179],[190,186,218],[251,128,114],[128,177,211],[253,180,98], [179,222,105],[252,205,229],[217,217,217],[188,128,189],[204,235,197],[255,237,111]]) elif which_type == 'seq_red': cmap_base = np.array([[255,245,240],[254,224,210],[252,187,161],[252,146,114],[251,106,74], [239,59,44],[203,24,29],[165,15,21],[103,0,13]]) elif which_type == 'seq_blu': cmap_base = np.array([[247,251,255],[222,235,247],[198,219,239],[158,202,225],[107,174,214], [66,146,198],[33,113,181],[8,81,156],[8,48,107]]) elif which_type == 'redblu_pair': cmap_base = np.array([[222,45,38],[49,130,189]]) elif which_type == 'yeo17': cmap_base = np.array([[97,38,107], # VisCent [194,33,39], # VisPeri [79,130,165], # SomMotA [44,181,140], # SomMotB [75,148,72], # DorsAttnA [23,116,62], # DorsAttnB [149,77,158], # SalVentAttnA [222,130,177], # SalVentAttnB [75,87,61], # LimbicA [149,166,110], # LimbicB [210,135,47], # ContA [132,48,73], # ContB [92,107,131], # ContC [218,221,50], # DefaultA [175,49,69], # DefaultB [41,38,99], # DefaultC [53,75,158] # TempPar ]) elif which_type == 'yeo17_downsampled': cmap_base = np.array([[97,38,107], # VisCent [79,130,165], # SomMotA [75,148,72], # DorsAttnA [149,77,158], # SalVentAttnA [75,87,61], # LimbicA [210,135,47], # ContA [218,221,50], # DefaultA [53,75,158] # TempPar ]) if cmap_base.shape[0] > num_classes: cmap = cmap_base[0:num_classes] else: cmap = cmap_base cmap = cmap / 255 return cmap def get_sys_prop(coef, p_vals, idx, alpha = 0.05): u_idx = np.unique(idx) sys_prop = np.zeros((len(u_idx),2)) for i in u_idx: # filter regions by system idx coef_tmp = coef[idx == i] p_tmp = p_vals[idx == i] # threshold out non-sig coef coef_tmp = coef_tmp[p_tmp < alpha] # proportion of signed significant coefs within system i sys_prop[i-1,0] = coef_tmp[coef_tmp > 0].shape[0] / np.sum(idx == i) sys_prop[i-1,1] = coef_tmp[coef_tmp < 0].shape[0] / np.sum(idx == i) return sys_prop def get_sys_summary(coef, p_vals, idx, method = 'mean', alpha = 0.05, signed = True): u_idx = np.unique(idx) if signed == True: sys_summary = np.zeros((len(u_idx),2)) else: sys_summary = np.zeros((len(u_idx),1)) for i in u_idx: # filter regions by system idx coef_tmp = coef[idx == i] p_tmp = p_vals[idx == i] # threshold out non-sig coef coef_tmp = coef_tmp[p_tmp < alpha] # proportion of signed significant coefs within system i if method == 'mean': if signed == True: if any(coef_tmp[coef_tmp > 0]): sys_summary[i-1,0] = np.mean(abs(coef_tmp[coef_tmp > 0])) if any(coef_tmp[coef_tmp < 0]): sys_summary[i-1,1] = np.mean(abs(coef_tmp[coef_tmp < 0])) else: try: sys_summary[i-1,0] = np.mean(coef_tmp[coef_tmp != 0]) except: sys_summary[i-1,0] = 0 elif method == 'median': if signed == True: if any(coef_tmp[coef_tmp > 0]): sys_summary[i-1,0] = np.median(abs(coef_tmp[coef_tmp > 0])) if any(coef_tmp[coef_tmp < 0]): sys_summary[i-1,1] = np.median(abs(coef_tmp[coef_tmp < 0])) else: try: sys_summary[i-1,0] = np.median(coef_tmp[coef_tmp != 0]) except: sys_summary[i-1,0] = 0 elif method == 'max': if signed == True: if any(coef_tmp[coef_tmp > 0]): sys_summary[i-1,0] = np.max(abs(coef_tmp[coef_tmp > 0])) if any(coef_tmp[coef_tmp < 0]): sys_summary[i-1,1] = np.max(abs(coef_tmp[coef_tmp < 0])) else: try: sys_summary[i-1,0] = np.max(coef_tmp[coef_tmp != 0]) except: sys_summary[i-1,0] = 0 if np.any(np.isnan(sys_summary)): sys_summary[np.isnan(sys_summary)] = 0 return sys_summary def prop_bar_plot(sys_prop, sys_summary, labels = '', which_colors = 'yeo17', axlim = 'auto', title_str = '', fig_size = [4,4]): f, ax = plt.subplots() f.set_figwidth(fig_size[0]) f.set_figheight(fig_size[1]) y_pos = np.arange(1,sys_prop.shape[0]+1) if which_colors == 'solid': cmap = my_get_cmap(which_type = 'redblu_pair', num_classes = 2) ax.barh(y_pos, sys_prop[:,0], color = cmap[0], edgecolor = 'k', align='center') if sys_prop.shape[1] == 2: ax.barh(y_pos, -sys_prop[:,1], color = cmap[1], edgecolor = 'k', align='center') ax.axvline(linewidth = 1, color = 'k') elif which_colors == 'opac_scaler': cmap = my_get_cmap(which_type = 'redblu_pair', num_classes = 2) for i in range(sys_prop.shape[0]): ax.barh(y_pos[i], sys_prop[i,0], facecolor = np.append(cmap[0], sys_summary[i,0]), edgecolor = 'k', align='center') if sys_prop.shape[1] == 2: ax.barh(y_pos[i], -sys_prop[i,1], facecolor = np.append(cmap[1], sys_summary[i,1]), edgecolor = 'k', align='center') ax.axvline(linewidth = 1, color = 'k') else: cmap = my_get_cmap(which_type = which_colors, num_classes = sys_prop.shape[0]) ax.barh(y_pos, sys_prop[:,0], color = cmap, linewidth = 0, align='center') if sys_prop.shape[1] == 2: ax.barh(y_pos, -sys_prop[:,1], color = cmap, linewidth = 0, align='center') ax.axvline(linewidth = 1, color = 'k') ax.set_yticks(y_pos) ax.set_yticklabels(labels) ax.invert_yaxis() # labels read top-to-bottom if axlim == 'auto': anchors = np.array([0.2, 0.4, 0.6, 0.8, 1]) the_max = np.round(np.max(sys_prop),2) ax_anchor = anchors[find_nearest_above(anchors, the_max)] ax.set_xlim([-ax_anchor-ax_anchor*.05, ax_anchor+ax_anchor*.05]) else: if axlim == 0.2: ax.set_xticks(np.arange(axlim[0], axlim[1]+0.1, 0.1)) elif axlim == 0.1: ax.set_xticks(np.arange(axlim[0], axlim[1]+0.05, 0.05)) elif axlim == 1: ax.set_xticks(np.arange(axlim[0], axlim[1]+0.5, 0.5)) else: ax.set_xlim([axlim[0], axlim[1]]) ax.xaxis.grid(True, which='major') ax.xaxis.tick_top() if sys_prop.shape[1] == 2: ax.set_xticklabels([str(abs(np.round(x,2))) for x in ax.get_xticks()]) ax.set_title(title_str) # Hide the right and top spines ax.spines['left'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_visible(False) plt.show() return f, ax def update_progress(progress, my_str = ''): bar_length = 20 if isinstance(progress, int): progress = float(progress) if not isinstance(progress, float): progress = 0 if progress < 0: progress = 0 if progress >= 1: progress = 1 block = int(round(bar_length * progress)) clear_output(wait = True) text = my_str + " Progress: [{0}] {1:.1f}%".format( "#" * block + "-" * (bar_length - block), progress * 100) print(text) def node_strength(A): s = np.sum(A, axis = 0) return s def node_degree(A): B = A > 0 k = np.sum(B, axis = 0) return k def ave_control(A, c = 1): # FUNCTION: # Returns values of AVERAGE CONTROLLABILITY for each node in a # network, given the adjacency matrix for that network. Average # controllability measures the ease by which input at that node can # steer the system into many easily-reachable states. # # INPUT: # A is the structural (NOT FUNCTIONAL) network adjacency matrix, # such that the simple linear model of dynamics outlined in the # reference is an accurate estimate of brain state fluctuations. # Assumes all values in the matrix are positive, and that the # matrix is symmetric. # # OUTPUT: # Vector of average controllability values for each node # # Bassett Lab, University of Pennsylvania, 2016. # Reference: <NAME>, Cieslak, Telesford, <NAME>, # <NAME>, Grafton & Bassett, Nature Communications # 6:8414, 2015. u, s, vt = svd(A) # singluar value decomposition A = A/(c + s[0]) # Matrix normalization T, U = schur(A,'real') # Schur stability midMat = np.multiply(U,U).transpose() v = np.matrix(np.diag(T)).transpose() N = A.shape[0] P = np.diag(1 - np.matmul(v,v.transpose())) P = repmat(P.reshape([N,1]), 1, N) values = sum(np.divide(midMat,P)) return values def ave_control_alt(A, c = 0.99): # FUNCTION: # Returns values of AVERAGE CONTROLLABILITY for each node in a # network, given the adjacency matrix for that network. Average # controllability measures the ease by which input at that node can # steer the system into many easily-reachable states. # # INPUT: # A is the structural (NOT FUNCTIONAL) network adjacency matrix, # such that the simple linear model of dynamics outlined in the # reference is an accurate estimate of brain state fluctuations. # Assumes all values in the matrix are positive, and that the # matrix is symmetric. # # OUTPUT: # Vector of average controllability values for each node # # Bassett Lab, University of Pennsylvania, 2016. # Reference: <NAME>, Cieslak, Telesford, <NAME>, # <NAME>, <NAME>, Nature Communications # 6:8414, 2015. u, s, vt = svd(A) # singluar value decomposition A = (A/s[0])*c # Matrix normalization T, U = schur(A,'real') # Schur stability midMat = np.multiply(U,U).transpose() v = np.matrix(np.diag(T)).transpose() N = A.shape[0] P = np.diag(1 - np.matmul(v,v.transpose())) P = repmat(P.reshape([N,1]), 1, N) values = sum(np.divide(midMat,P)) return values def modal_control(A, c = 1): # FUNCTION: # Returns values of MODAL CONTROLLABILITY for each node in a # network, given the adjacency matrix for that network. Modal # controllability indicates the ability of that node to steer the # system into difficult-to-reach states, given input at that node. # # INPUT: # A is the structural (NOT FUNCTIONAL) network adjacency matrix, # such that the simple linear model of dynamics outlined in the # reference is an accurate estimate of brain state fluctuations. # Assumes all values in the matrix are positive, and that the # matrix is symmetric. # # OUTPUT: # Vector of modal controllability values for each node # # Bassett Lab, University of Pennsylvania, 2016. # Reference: <NAME>, Cieslak, Telesford, Yu, Kahn, Medaglia, # Vettel, Miller, Grafton & Bassett, Nature Communications # 6:8414, 2015. u, s, vt = svd(A) # singluar value decomposition A = A/(c + s[0]) # Matrix normalization T, U = schur(A,'real') # Schur stability eigVals = np.diag(T) N = A.shape[0] phi = np.zeros(N,dtype = float) for i in range(N): Al = U[i,] * U[i,] Ar = (1.0 - np.power(eigVals,2)).transpose() phi[i] = np.matmul(Al, Ar) return phi def modal_control_alt(A, c = 0.99): # FUNCTION: # Returns values of MODAL CONTROLLABILITY for each node in a # network, given the adjacency matrix for that network. Modal # controllability indicates the ability of that node to steer the # system into difficult-to-reach states, given input at that node. # # INPUT: # A is the structural (NOT FUNCTIONAL) network adjacency matrix, # such that the simple linear model of dynamics outlined in the # reference is an accurate estimate of brain state fluctuations. # Assumes all values in the matrix are positive, and that the # matrix is symmetric. # # OUTPUT: # Vector of modal controllability values for each node # # Bassett Lab, University of Pennsylvania, 2016. # Reference: <NAME>, Cieslak, Telesford, <NAME>, Medaglia, # Vettel, Miller, Grafton & Bassett, Nature Communications # 6:8414, 2015. u, s, vt = svd(A) # singluar value decomposition A = (A/s[0])*c # Matrix normalization T, U = schur(A,'real') # Schur stability eigVals =
np.diag(T)
numpy.diag
import matplotlib import pickle from gpaw import setup_paths import numpy as np from tqdm import tqdm from ase.io import read import os import argparse from utils import * #from my_poisson_solver import solve_directly, minus_gradient, solve_with_multigrid parser = argparse.ArgumentParser(description='Process some integers.') parser.add_argument('--path', default='../data/c8/', help='path') parser.add_argument('--ef', default=0., help='fermi') args = parser.parse_args() path = os.path.abspath(args.path) + "/" ef = float(args.ef) def main(path = path): """ Calculates the current density for a molecule with different basis set. """ calc(path=path,h=0.2,basis="sz",inv="",grid_size=0,wideband=True,electrode_type="H",ef=ef) def calc(path, h=0.20, co=1e-10, basis='sz', vacuum=4, xc='PBE',\ bias=1e-3, ef=0, grid_size=0.2/2.,\ gamma=1e0, estart=-8, eend=8, es=4e-3, inv="", mode='lcao',\ wideband=True ,electrode_type="H",kpts=(1,1,1), FDwidth=0.1,\ correction=False): """ Calculate the current """ # constants eV2au = 1/27.211 au2eV = 27.211 au2A = 0.529177249 # n6 = get_nbasis_electrode(electrode_type,basis) a = 25. # Size of unit cell (Angstrom) c = a / 2 d = 0.74 # fname = "basis_{0}__xc_{1}__fdwithd_{2}__kpts_{3}__mode_{4}__vacuum_{5}__".format(basis,xc,FDwidth,kpts,mode,vacuum) fname = "basis_{0}__xc_{1}__h_{2}__fdwithd_{3}__kpts_{4}__mode_{5}__vacuum_{6}__".format(basis,xc,h,FDwidth,kpts,mode,vacuum) basename = "__basis_{0}__h_{1}__cutoff_{2}__xc_{3}__gridsize_{4:.2f}__bias_{5}__ef_{6}__gamma_{7}__e_grid_{8}_{9}_{10}__muliti_grid__type__"\ .format(basis, h, co, xc, grid_size, bias, ef, gamma, estart, eend, es) plot_basename = "plots/"+basename data_basename = "data/"+basename bias *= eV2au ef *= eV2au estart *= eV2au eend *= eV2au es *= eV2au gamma *= eV2au H_ao, S_ao = pickle.load(open(path+'scat_'+fname+'0.pckl', 'rb')) H_ao = H_ao[0, 0] S_ao = S_ao[0] n = len(H_ao) H_cen = H_ao *eV2au S_cen = S_ao GamL =
np.zeros([n,n])
numpy.zeros
import random import numpy as np import cv2 import scipy.ndimage as ndimage from scipy.interpolate import RegularGridInterpolator from scipy.ndimage.filters import gaussian_filter class RandomChoice(object): """ choose a random tranform from list an apply transforms: tranforms to apply p: probability """ def __init__(self, transforms=[], p=0.5): self.transforms = transforms self.p = p def __call__(self, sample): augment = np.random.random(1) < self.p if not augment: return sample t = random.choice(self.transforms) return t(sample) class ComposeTransforms(object): """ Composes several transforms together. """ def __init__(self, transforms=[], p=0.9): self.transforms = transforms self.p = p def __call__(self, sample): augment = np.random.random(1) < self.p if not augment: return sample for t in self.transforms: sample = t(sample) return sample from scipy.interpolate import RegularGridInterpolator from scipy.ndimage.filters import gaussian_filter def stack_seg_2_image(sample): image = sample['image'] seg = sample['segmentation'] channels = [chan for chan in image] channels.append(seg) return np.stack(channels, axis=3) def elastic_transform_3d(sample, alpha=1, sigma=20, c_val=0.0, method="linear"): """ :param sample: dict of image and seg :param alpha: scaling factor of gaussian filter :param sigma: standard deviation of random gaussian filter :param c_val: fill value :param method: interpolation method. supported methods : ("linear", "nearest") :return: deformed image and/or label """ img_numpy = sample['image'].copy() label = sample['segmentation'] if 'segmentation' in sample else None shape = img_numpy.shape # Define 3D coordinate system coords = np.arange(shape[0]), np.arange(shape[1]), np.arange(shape[2]) # Interpolated images chan_intrps = [RegularGridInterpolator(coords, img_numpy[:,:,:,chan], method=method, bounds_error=False, fill_value=c_val) for chan in range(shape[3])] #Get random elastic deformations dx = gaussian_filter((np.random.rand(shape[0],shape[1],shape[2]) * 2 - 1), sigma, mode="constant", cval=0.) * alpha dy = gaussian_filter((np.random.rand(shape[0],shape[1],shape[2]) * 2 - 1), sigma, mode="constant", cval=0.) * alpha dz = gaussian_filter((np.random.rand(shape[0],shape[1],shape[2]) * 2 - 1), sigma, mode="constant", cval=0.) * alpha # Define sample points x, y, z = np.mgrid[0:shape[0], 0:shape[1], 0:shape[2]] indices = np.reshape(x + dx, (-1, 1)), \ np.reshape(y + dy, (-1, 1)), \ np.reshape(z + dz, (-1, 1)) # Interpolate 3D image image img_numpy = np.stack([chan_intrp(indices).reshape((shape[0],shape[1],shape[2])) for chan_intrp in chan_intrps], axis=3).astype(np.float32) # Interpolate labels if label is not None: lab_intrp = RegularGridInterpolator(coords, label, method="nearest", bounds_error=False, fill_value=0) label = lab_intrp(indices).reshape(shape[0],shape[1],shape[2]).astype(label.dtype) sample['segmentation'] = label sample['image'] = img_numpy return sample class ElasticTransform(object): def __init__(self, p=0.5, alpha=1, sigma=20, c_val=0.0, method="linear"): self.p = p self.alpha = alpha self.sigma = sigma self.c_val = c_val self.method = method def __call__(self, sample): augment = np.random.random(1) < self.p if not augment: return sample return elastic_transform_3d(sample, self.alpha, self.sigma, self.c_val, self.method) def random_noise(sample, mean=0, std=0.001, eps=1e-6): im = sample['image'].copy() noise = np.random.normal(mean, std, im.shape) sample['image'] = np.where(im > eps, im + noise, im) return sample class GaussianNoise(object): def __init__(self, p=0.5, mean=0, std=0.001): self.mean = mean self.std = std self.p = p def __call__(self, sample): augment =
np.random.random(1)
numpy.random.random
import csv import random as random import numpy as np import matplotlib.pyplot as plt from scipy.special import expit, logit # Variables a usar archivos_fonts = [ "data/font1.csv", "data/font2.csv", "data/font3.csv" ] archivo_respuestas = [ "data/respuestas1.csv", "data/respuestas2.csv", "data/respuestas3.csv", ] neuronas_ocultas = 30 ep = 1 alfa = 0.001 data_entrenamiento = [] respuestas_esperadas = [] # O(n) # Carga de los datos de entrenamiento, lectura de los archivos for archivo_font in archivos_fonts: data = [] with open(archivo_font) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') for row in csv_reader: row = np.array(row) data.append(row.astype(np.float)) data_entrenamiento.append(data) # O(n) # Carga las repsuestas esperadas desde el archivo for archivo_respuesta in archivo_respuestas: data = [] with open(archivo_respuesta) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') for row in csv_reader: row = list(map(int, row)) data.append(np.array(row)) respuestas_esperadas.append(np.array(data).T) # Iniciando los valores de entrenamiento # Para cada tipo (a1,a2,a3) hay: # Teniendo p1, p2, p3, p4, p5, p6, p7 # Y t1, t2, t3, t4, t5, t6, t7 data_entrenamiento[0] = np.array(data_entrenamiento[0]).T data_entrenamiento[1] = np.array(data_entrenamiento[1]).T data_entrenamiento[2] = np.array(data_entrenamiento[2]).T data_entrenamiento = np.concatenate((data_entrenamiento[0], data_entrenamiento[1], data_entrenamiento[2])) respuestas_esperadas = np.concatenate( (respuestas_esperadas[0], respuestas_esperadas[1], respuestas_esperadas[2]) ).T # Actualizando la cantidad de ejemplos cantidad_patrones = len(data_entrenamiento[0]) cantidad_pruebas = len(data_entrenamiento) cantidad_respuestas = len(respuestas_esperadas) # Iniciando los pesos por cada patron W1 = ep * ( 2 * np.random.rand(neuronas_ocultas, cantidad_patrones) - 1 ) # 5x63 b1 = ep * ( 2 * np.random.rand(neuronas_ocultas, 1) - 1 ) # 5x1 W2 = ep * ( 2 * np.random.rand(cantidad_respuestas, neuronas_ocultas) - 1 ) # 21x5 b2 = ep * ( 2 * np.random.rand(cantidad_respuestas, 1) - 1 ) # 21x1 # Impresion de los datos de entrenamiento # print(f'Data: {np.array(data_entrenamiento).shape}') # print(f'Respuestas esperadas: {np.array(respuestas_esperadas).shape}') # print(f'Respuestas esperadas: {respuestas_esperadas}') # print(f'Cantidad de neuronas ocultas: {neuronas_ocultas}') # print(f'Cantidad de pruebas: {cantidad_pruebas}') # print(f'Cantidad de respuestas: {cantidad_respuestas}') # print(f'Cantidad patrones de prueba: {cantidad_patrones}') # print(f'Ep: {ep}') # print(f'Alfa: {alfa}') # print(f'W1: {W1}') # print(f'W2: {np.array(W2).shape}') # print(f'b1: {np.array(b1).shape}') # print(f'b2: {np.array(b2).shape}') # Funciones de activacion def sigmoid(x): return 1.0/(1.0 + np.exp(-x)) def sigmoid_derivada(x): return sigmoid(x)*(1.0-sigmoid(x)) def tanh(x): return np.tanh(x) def tanh_derivada(x): return 1.0 - x**2 def tansig(x): return (2/(1+np.exp(-2*x))-1) def sig_tanh(x): return np.divide( (expit(x) - expit(-x)), (expit(x) + expit(-x)) ) # Se usaran 5 neuronas ya que para identificar las letras necesitamos minimo 3 neuronas # y para identificar el tipo necesitamos 2 neuronas mas # Quedando las 3 primers para reconocer el tipo de letra y las otras 2 la fuente # por ejemplo: A = [1,1,1], B=[1,1,0] y el tipo de fuente asi: Fuente1: [1,1], Fuente2: [1,0] # quedando: A de la fuente uno A = [1,1,1,1,1] y B de la fuente dos B = [1,1,0,1,0] epocas = 1 error_cuadratico_medio = np.empty([epocas, 1]) for epoca in range(0, epocas): if(epoca%100 == 0): print(f'Epoca: {epoca}') error_cuadratico = np.zeros([cantidad_pruebas, 1]) a2 = np.zeros([cantidad_pruebas, cantidad_respuestas, 1]) for patron in range(0, cantidad_pruebas): patron = random.randrange(patron + 1) # Respuesta esperada para este patron respuesta = respuestas_esperadas[:,patron].reshape([cantidad_respuestas, 1]) # Rearmando vector de patron patron_columna = data_entrenamiento[patron].reshape([cantidad_patrones, 1]) # Resultante cantidad_neuronas_ocultas x 1 a1 = sig_tanh(np.dot(W1, patron_columna) + b1) # Resultante vector de cantidad_respuestas x 1 a2[patron] = sig_tanh( np.dot(W2, a1) + b2 ) # Retropropagacion de las sensibilidades cantidad_respuestas x 1 e = respuesta - a2[patron] # La matriz al cuadrado es la matri por su matriz transpuesta la multiplicamos por la retropropagacion y sacamos la sensibilidad de la capa 2 # cantidad_respuestas x 1 s2 = -2 * np.dot(( 1 - np.dot(a2[patron], np.array(a2[patron]).T) ), e) # Sensibilidad de la capa 1 # Resultante un vector de cantidad_neuronas_ocultas x 1 s1 = np.dot(np.diagflat( np.matrix(1 -
np.power(a1, 2)
numpy.power
#!/usr/bin/python3 # -*- coding: utf-8 -*- import numpy as np from scipy.stats import entropy, normaltest, mode, kurtosis, skew, pearsonr, moment import pandas as pd from collections import OrderedDict from feature_extraction.helpers import * from feature_extraction.type_detection import detect_field_type, data_type_to_general_type, data_types, general_types np.warnings.filterwarnings('ignore') field_basic_features_list = [ {'name': 'fid', 'type': 'id'}, {'name': 'field_id', 'type': 'id'}, {'name': 'exists', 'type': 'boolean'}, {'name': 'length', 'type': 'numeric'} ] for data_type in data_types: field_basic_features_list.append({ 'name': 'data_type_is_{}'.format(data_type), 'type': 'boolean' }) for general_type in general_types: field_basic_features_list.append({ 'name': 'general_type_is_{}'.format(general_type), 'type': 'boolean' }) field_existence_features_list = [ {'name': 'has_none', 'type': 'boolean'}, {'name': 'percentage_none', 'type': 'numeric'}, {'name': 'num_none', 'type': 'numeric'}, ] field_uniqueness_features_list = [ {'name': 'num_unique_elements', 'type': 'numeric'}, {'name': 'unique_percent', 'type': 'numeric'}, {'name': 'is_unique', 'type': 'boolean'} ] field_c_statistical_features_list = [ {'name': 'list_entropy', 'type': 'numeric'}, {'name': 'mean_value_length', 'type': 'numeric'}, {'name': 'median_value_length', 'type': 'numeric'}, {'name': 'min_value_length', 'type': 'numeric'}, {'name': 'max_value_length', 'type': 'numeric'}, {'name': 'std_value_length', 'type': 'numeric'}, {'name': 'percentage_of_mode', 'type': 'numeric'}, ] field_q_statistical_features_list = [ {'name': 'mean', 'type': 'numeric'}, {'name': 'normalized_mean', 'type': 'numeric'}, {'name': 'median', 'type': 'numeric'}, {'name': 'normalized_median', 'type': 'numeric'}, {'name': 'var', 'type': 'numeric'}, {'name': 'std', 'type': 'numeric'}, {'name': 'coeff_var', 'type': 'numeric'}, {'name': 'min', 'type': 'numeric'}, {'name': 'max', 'type': 'numeric'}, {'name': 'range', 'type': 'numeric'}, {'name': 'normalized_range', 'type': 'numeric'}, {'name': 'entropy', 'type': 'numeric'}, {'name': 'gini', 'type': 'numeric'}, {'name': 'q25', 'type': 'numeric'}, {'name': 'q75', 'type': 'numeric'}, {'name': 'med_abs_dev', 'type': 'numeric'}, {'name': 'avg_abs_dev', 'type': 'numeric'}, {'name': 'quant_coeff_disp', 'type': 'numeric'}, {'name': 'skewness', 'type': 'numeric'}, {'name': 'kurtosis', 'type': 'numeric'}, {'name': 'moment_5', 'type': 'numeric'}, {'name': 'moment_6', 'type': 'numeric'}, {'name': 'moment_7', 'type': 'numeric'}, {'name': 'moment_8', 'type': 'numeric'}, {'name': 'moment_9', 'type': 'numeric'}, {'name': 'moment_10', 'type': 'numeric'}, {'name': 'percent_outliers_15iqr', 'type': 'numeric'}, {'name': 'percent_outliers_3iqr', 'type': 'numeric'}, {'name': 'percent_outliers_1_99', 'type': 'numeric'}, {'name': 'percent_outliers_3std', 'type': 'numeric'}, {'name': 'has_outliers_15iqr', 'type': 'boolean'}, {'name': 'has_outliers_3iqr', 'type': 'boolean'}, {'name': 'has_outliers_1_99', 'type': 'boolean'}, {'name': 'has_outliers_3std', 'type': 'boolean'}, {'name': 'normality_statistic', 'type': 'numeric'}, {'name': 'normality_p', 'type': 'numeric'}, {'name': 'is_normal_5', 'type': 'boolean'}, {'name': 'is_normal_1', 'type': 'boolean'}, ] field_name_features_list = [ {'name': 'field_name_length', 'type': 'numeric'}, {'name': 'x_in_name', 'type': 'boolean'}, {'name': 'y_in_name', 'type': 'boolean'}, {'name': 'id_in_name', 'type': 'boolean'}, {'name': 'time_in_name', 'type': 'boolean'}, {'name': 'digit_in_name', 'type': 'boolean'}, {'name': 'dollar_in_name', 'type': 'boolean'}, {'name': 'pound_in_name', 'type': 'boolean'}, {'name': 'euro_in_name', 'type': 'boolean'}, {'name': 'yen_in_name', 'type': 'boolean'}, {'name': 'first_char_uppercase_name', 'type': 'boolean'}, {'name': 'num_uppercase_characters', 'type': 'numeric'}, {'name': 'space_in_name', 'type': 'boolean'}, {'name': 'number_of_words_in_name', 'type': 'numeric'}, ] field_sequence_features_list = [ {'name': 'is_sorted', 'type': 'boolean'}, {'name': 'is_monotonic', 'type': 'boolean'}, {'name': 'sortedness', 'type': 'numeric'}, {'name': 'lin_space_sequence_coeff', 'type': 'numeric'}, {'name': 'log_space_sequence_coeff', 'type': 'numeric'}, {'name': 'is_lin_space', 'type': 'boolean'}, {'name': 'is_log_space', 'type': 'boolean'}, ] all_field_features_list = \ field_basic_features_list + \ field_existence_features_list + \ field_uniqueness_features_list + \ field_c_statistical_features_list + \ field_q_statistical_features_list + \ field_name_features_list + \ field_sequence_features_list all_field_features_list_names = [x['name'] for x in all_field_features_list] def get_existence_features(v): r = OrderedDict([(f['name'], None) for f in field_existence_features_list]) if not len(v): return r num_none = sum(1 for e in v if e == 'None') r['num_none'] = num_none r['percentage_none'] = num_none / len(v) r['has_none'] = (num_none > 0) return r # Sequence Properties def get_uniqueness_features(v, field_type, field_general_type): r = OrderedDict([(f['name'], None) for f in field_uniqueness_features_list]) if not len(v): return r if field_general_type == 'c' or field_type == 'integer': unique_elements = get_unique(v) r = {} r['num_unique_elements'] = unique_elements.size r['unique_percent'] = (r['num_unique_elements'] / len(v)) r['is_unique'] = (r['num_unique_elements'] == len(v)) return r def get_statistical_features(v, field_type, field_general_type): r = OrderedDict([(f['name'], None) for f in field_c_statistical_features_list + field_q_statistical_features_list]) if not len(v): return r if field_general_type == 'c': r['list_entropy'] = list_entropy(v) value_lengths = [len(x) for x in v] r['mean_value_length'] = np.mean(value_lengths) r['median_value_length'] = np.median(value_lengths) r['min_value_length'] = np.min(value_lengths) r['max_value_length'] = np.max(value_lengths) r['std_value_length'] = np.std(value_lengths) r['percentage_of_mode'] = (pd.Series(v).value_counts().max() / len(v)) if field_general_type in 'q': sample_mean = np.mean(v) sample_median = np.median(v) sample_var = np.var(v) sample_min = np.min(v) sample_max = np.max(v) sample_std = np.std(v) q1, q25, q75, q99 = np.percentile(v, [0.01, 0.25, 0.75, 0.99]) iqr = q75 - q25 r['mean'] = sample_mean r['normalized_mean'] = sample_mean / sample_max r['median'] = sample_median r['normalized_median'] = sample_median / sample_max r['var'] = sample_var r['std'] = sample_std r['coeff_var'] = (sample_mean / sample_var) if sample_var else None r['min'] = sample_min r['max'] = sample_max r['range'] = r['max'] - r['min'] r['normalized_range'] = (r['max'] - r['min']) / \ sample_mean if sample_mean else None r['entropy'] = entropy(v) r['gini'] = gini(v) r['q25'] = q25 r['q75'] = q75 r['med_abs_dev'] = np.median(np.absolute(v - sample_median)) r['avg_abs_dev'] = np.mean(np.absolute(v - sample_mean)) r['quant_coeff_disp'] = (q75 - q25) / (q75 + q25) r['coeff_var'] = sample_var / sample_mean r['skewness'] = skew(v) r['kurtosis'] = kurtosis(v) r['moment_5'] = moment(v, moment=5) r['moment_6'] = moment(v, moment=6) r['moment_7'] = moment(v, moment=7) r['moment_8'] = moment(v, moment=8) r['moment_9'] = moment(v, moment=9) r['moment_10'] = moment(v, moment=10) # Outliers outliers_15iqr = np.logical_or( v < (q25 - 1.5 * iqr), v > (q75 + 1.5 * iqr)) outliers_3iqr = np.logical_or(v < (q25 - 3 * iqr), v > (q75 + 3 * iqr)) outliers_1_99 = np.logical_or(v < q1, v > q99) outliers_3std = np.logical_or( v < ( sample_mean - 3 * sample_std), v > ( sample_mean + 3 * sample_std)) r['percent_outliers_15iqr'] = np.sum(outliers_15iqr) / len(v) r['percent_outliers_3iqr'] = np.sum(outliers_3iqr) / len(v) r['percent_outliers_1_99'] = np.sum(outliers_1_99) / len(v) r['percent_outliers_3std'] = np.sum(outliers_3std) / len(v) r['has_outliers_15iqr'] = np.any(outliers_15iqr) r['has_outliers_3iqr'] =
np.any(outliers_3iqr)
numpy.any
import sys import warnings import itertools import platform import pytest from decimal import Decimal import numpy as np from numpy.core import umath from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_equal, assert_raises, assert_raises_regex, assert_array_equal, assert_almost_equal, assert_array_almost_equal, assert_warns, HAS_REFCOUNT ) class TestResize(object): def test_copies(self): A = np.array([[1, 2], [3, 4]]) Ar1 = np.array([[1, 2, 3, 4], [1, 2, 3, 4]]) assert_equal(np.resize(A, (2, 4)), Ar1) Ar2 = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) assert_equal(np.resize(A, (4, 2)), Ar2) Ar3 = np.array([[1, 2, 3], [4, 1, 2], [3, 4, 1], [2, 3, 4]]) assert_equal(np.resize(A, (4, 3)), Ar3) def test_zeroresize(self): A = np.array([[1, 2], [3, 4]]) Ar = np.resize(A, (0,)) assert_array_equal(Ar, np.array([])) assert_equal(A.dtype, Ar.dtype) Ar = np.resize(A, (0, 2)) assert_equal(Ar.shape, (0, 2)) Ar = np.resize(A, (2, 0)) assert_equal(Ar.shape, (2, 0)) def test_reshape_from_zero(self): # See also gh-6740 A = np.zeros(0, dtype=[('a', np.float32)]) Ar = np.resize(A, (2, 1)) assert_array_equal(Ar, np.zeros((2, 1), Ar.dtype)) assert_equal(A.dtype, Ar.dtype) class TestNonarrayArgs(object): # check that non-array arguments to functions wrap them in arrays def test_choose(self): choices = [[0, 1, 2], [3, 4, 5], [5, 6, 7]] tgt = [5, 1, 5] a = [2, 0, 1] out = np.choose(a, choices) assert_equal(out, tgt) def test_clip(self): arr = [-1, 5, 2, 3, 10, -4, -9] out = np.clip(arr, 2, 7) tgt = [2, 5, 2, 3, 7, 2, 2] assert_equal(out, tgt) def test_compress(self): arr = [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]] tgt = [[5, 6, 7, 8, 9]] out = np.compress([0, 1], arr, axis=0) assert_equal(out, tgt) def test_count_nonzero(self): arr = [[0, 1, 7, 0, 0], [3, 0, 0, 2, 19]] tgt = np.array([2, 3]) out = np.count_nonzero(arr, axis=1) assert_equal(out, tgt) def test_cumproduct(self): A = [[1, 2, 3], [4, 5, 6]] assert_(np.all(np.cumproduct(A) == np.array([1, 2, 6, 24, 120, 720]))) def test_diagonal(self): a = [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]] out = np.diagonal(a) tgt = [0, 5, 10] assert_equal(out, tgt) def test_mean(self): A = [[1, 2, 3], [4, 5, 6]] assert_(np.mean(A) == 3.5) assert_(np.all(np.mean(A, 0) == np.array([2.5, 3.5, 4.5]))) assert_(np.all(np.mean(A, 1) == np.array([2., 5.]))) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_(np.isnan(np.mean([]))) assert_(w[0].category is RuntimeWarning) def test_ptp(self): a = [3, 4, 5, 10, -3, -5, 6.0] assert_equal(np.ptp(a, axis=0), 15.0) def test_prod(self): arr = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] tgt = [24, 1890, 600] assert_equal(np.prod(arr, axis=-1), tgt) def test_ravel(self): a = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]] tgt = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] assert_equal(np.ravel(a), tgt) def test_repeat(self): a = [1, 2, 3] tgt = [1, 1, 2, 2, 3, 3] out = np.repeat(a, 2) assert_equal(out, tgt) def test_reshape(self): arr = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]] tgt = [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]] assert_equal(np.reshape(arr, (2, 6)), tgt) def test_round(self): arr = [1.56, 72.54, 6.35, 3.25] tgt = [1.6, 72.5, 6.4, 3.2] assert_equal(np.around(arr, decimals=1), tgt) def test_searchsorted(self): arr = [-8, -5, -1, 3, 6, 10] out = np.searchsorted(arr, 0) assert_equal(out, 3) def test_size(self): A = [[1, 2, 3], [4, 5, 6]] assert_(np.size(A) == 6) assert_(np.size(A, 0) == 2) assert_(np.size(A, 1) == 3) def test_squeeze(self): A = [[[1, 1, 1], [2, 2, 2], [3, 3, 3]]] assert_equal(np.squeeze(A).shape, (3, 3)) assert_equal(np.squeeze(np.zeros((1, 3, 1))).shape, (3,)) assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=0).shape, (3, 1)) assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=-1).shape, (1, 3)) assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=2).shape, (1, 3)) assert_equal(np.squeeze([np.zeros((3, 1))]).shape, (3,)) assert_equal(np.squeeze([np.zeros((3, 1))], axis=0).shape, (3, 1)) assert_equal(np.squeeze([np.zeros((3, 1))], axis=2).shape, (1, 3)) assert_equal(np.squeeze([np.zeros((3, 1))], axis=-1).shape, (1, 3)) def test_std(self): A = [[1, 2, 3], [4, 5, 6]] assert_almost_equal(np.std(A), 1.707825127659933) assert_almost_equal(np.std(A, 0), np.array([1.5, 1.5, 1.5])) assert_almost_equal(np.std(A, 1), np.array([0.81649658, 0.81649658])) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_(np.isnan(np.std([]))) assert_(w[0].category is RuntimeWarning) def test_swapaxes(self): tgt = [[[0, 4], [2, 6]], [[1, 5], [3, 7]]] a = [[[0, 1], [2, 3]], [[4, 5], [6, 7]]] out = np.swapaxes(a, 0, 2) assert_equal(out, tgt) def test_sum(self): m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] tgt = [[6], [15], [24]] out = np.sum(m, axis=1, keepdims=True) assert_equal(tgt, out) def test_take(self): tgt = [2, 3, 5] indices = [1, 2, 4] a = [1, 2, 3, 4, 5] out = np.take(a, indices) assert_equal(out, tgt) def test_trace(self): c = [[1, 2], [3, 4], [5, 6]] assert_equal(np.trace(c), 5) def test_transpose(self): arr = [[1, 2], [3, 4], [5, 6]] tgt = [[1, 3, 5], [2, 4, 6]] assert_equal(np.transpose(arr, (1, 0)), tgt) def test_var(self): A = [[1, 2, 3], [4, 5, 6]] assert_almost_equal(np.var(A), 2.9166666666666665) assert_almost_equal(np.var(A, 0), np.array([2.25, 2.25, 2.25])) assert_almost_equal(np.var(A, 1), np.array([0.66666667, 0.66666667])) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_(np.isnan(np.var([]))) assert_(w[0].category is RuntimeWarning) B = np.array([None, 0]) B[0] = 1j assert_almost_equal(np.var(B), 0.25) class TestIsscalar(object): def test_isscalar(self): assert_(np.isscalar(3.1)) assert_(np.isscalar(np.int16(12345))) assert_(np.isscalar(False)) assert_(np.isscalar('numpy')) assert_(not np.isscalar([3.1])) assert_(not np.isscalar(None)) # PEP 3141 from fractions import Fraction assert_(np.isscalar(Fraction(5, 17))) from numbers import Number assert_(np.isscalar(Number())) class TestBoolScalar(object): def test_logical(self): f = np.False_ t = np.True_ s = "xyz" assert_((t and s) is s) assert_((f and s) is f) def test_bitwise_or(self): f = np.False_ t = np.True_ assert_((t | t) is t) assert_((f | t) is t) assert_((t | f) is t) assert_((f | f) is f) def test_bitwise_and(self): f = np.False_ t = np.True_ assert_((t & t) is t) assert_((f & t) is f) assert_((t & f) is f) assert_((f & f) is f) def test_bitwise_xor(self): f = np.False_ t = np.True_ assert_((t ^ t) is f) assert_((f ^ t) is t) assert_((t ^ f) is t) assert_((f ^ f) is f) class TestBoolArray(object): def setup(self): # offset for simd tests self.t = np.array([True] * 41, dtype=bool)[1::] self.f = np.array([False] * 41, dtype=bool)[1::] self.o = np.array([False] * 42, dtype=bool)[2::] self.nm = self.f.copy() self.im = self.t.copy() self.nm[3] = True self.nm[-2] = True self.im[3] = False self.im[-2] = False def test_all_any(self): assert_(self.t.all()) assert_(self.t.any()) assert_(not self.f.all()) assert_(not self.f.any()) assert_(self.nm.any()) assert_(self.im.any()) assert_(not self.nm.all()) assert_(not self.im.all()) # check bad element in all positions for i in range(256 - 7): d = np.array([False] * 256, dtype=bool)[7::] d[i] = True assert_(np.any(d)) e = np.array([True] * 256, dtype=bool)[7::] e[i] = False assert_(not np.all(e)) assert_array_equal(e, ~d) # big array test for blocked libc loops for i in list(range(9, 6000, 507)) + [7764, 90021, -10]: d = np.array([False] * 100043, dtype=bool) d[i] = True assert_(np.any(d), msg="%r" % i) e = np.array([True] * 100043, dtype=bool) e[i] = False assert_(not np.all(e), msg="%r" % i) def test_logical_not_abs(self): assert_array_equal(~self.t, self.f) assert_array_equal(np.abs(~self.t), self.f) assert_array_equal(np.abs(~self.f), self.t) assert_array_equal(np.abs(self.f), self.f) assert_array_equal(~np.abs(self.f), self.t) assert_array_equal(~np.abs(self.t), self.f) assert_array_equal(np.abs(~self.nm), self.im) np.logical_not(self.t, out=self.o) assert_array_equal(self.o, self.f) np.abs(self.t, out=self.o) assert_array_equal(self.o, self.t) def test_logical_and_or_xor(self): assert_array_equal(self.t | self.t, self.t) assert_array_equal(self.f | self.f, self.f) assert_array_equal(self.t | self.f, self.t) assert_array_equal(self.f | self.t, self.t) np.logical_or(self.t, self.t, out=self.o) assert_array_equal(self.o, self.t) assert_array_equal(self.t & self.t, self.t) assert_array_equal(self.f & self.f, self.f) assert_array_equal(self.t & self.f, self.f) assert_array_equal(self.f & self.t, self.f) np.logical_and(self.t, self.t, out=self.o) assert_array_equal(self.o, self.t) assert_array_equal(self.t ^ self.t, self.f) assert_array_equal(self.f ^ self.f, self.f) assert_array_equal(self.t ^ self.f, self.t) assert_array_equal(self.f ^ self.t, self.t) np.logical_xor(self.t, self.t, out=self.o) assert_array_equal(self.o, self.f) assert_array_equal(self.nm & self.t, self.nm) assert_array_equal(self.im & self.f, False) assert_array_equal(self.nm & True, self.nm) assert_array_equal(self.im & False, self.f) assert_array_equal(self.nm | self.t, self.t) assert_array_equal(self.im | self.f, self.im) assert_array_equal(self.nm | True, self.t) assert_array_equal(self.im | False, self.im) assert_array_equal(self.nm ^ self.t, self.im) assert_array_equal(self.im ^ self.f, self.im) assert_array_equal(self.nm ^ True, self.im)
assert_array_equal(self.im ^ False, self.im)
numpy.testing.assert_array_equal
__author__ = "<NAME> <<EMAIL>>" __date__ = "2020/05/25 18:54:04" import numpy as np import matplotlib as mpl mpl.use('Agg') mpl.rc('font', size = 16) mpl.rc('axes', titlesize = 'large', labelsize = 'large') mpl.rc('xtick', labelsize = 'large') mpl.rc('ytick', labelsize = 'large') import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from matplotlib.legend_handler import HandlerLine2D, HandlerTuple import pickle import argparse from matplotlib import cm from scipy.stats import multivariate_normal import scipy.integrate as integrate from sys import exit import sys sys.path.append("./script") from functions import * import torch torch.set_default_dtype(torch.double) from FastMBAR import * argparser = argparse.ArgumentParser() argparser.add_argument("--alpha", type = float) args = argparser.parse_args() alpha = args.alpha with open("./output/F_numeric_integration_alpha_{:.3f}.pkl".format(alpha), 'rb') as file_handle: data = pickle.load(file_handle) Fp = data['F'] ## read range with open("./output/range.pkl", 'rb') as file_handle: data = pickle.load(file_handle) x1_min, x1_max = data['x1_min'], data['x1_max'] x2_min, x2_max = data['x2_min'], data['x2_max'] U = data['U'] with open("./output/TREMC/x_record_alpha_{:.3f}.pkl".format(alpha), 'rb') as file_handle: data = pickle.load(file_handle) x_record = data['x_record'] alphas = data['alphas'] x = x_record[::, -1, :] exit() plots_samples = PdfPages("./output/mixture_of_normal/samples_alpha_{:.3f}.pdf".format(alpha)) #### normal distribution with one component #### ################################################ x_mean = np.mean(x, 0) x_cov = np.cov(x.T) dist = multivariate_normal(x_mean, x_cov) def compute_density(x2, x1, dist): return dist.pdf((x1, x2)) Z, Z_error = integrate.dblquad(compute_density, x1_min, x1_max, x2_min, x2_max, [dist], epsabs = 1e-12, epsrel = 1e-12) Fq = -np.log(Z) Fp_DKL_pq_one_repeats = [] Fp_DKL_qp_one_repeats = [] Fp_BAR_one_repeats = [] for idx_rep in range(5): num_samples = x.shape[0]*20 samples = dist.rvs(num_samples) flag = (samples[:,0] >= x1_min) & (samples[:,0] <= x1_max) &\ (samples[:,1] >= x2_min) & (samples[:,1] <= x2_max) samples = samples[flag] idx = np.random.choice(range(x.shape[0]), size = (x.shape[0],)) x_resample = x[idx,:] p_logp = -compute_Muller_potential(alpha, torch.from_numpy(x_resample)).numpy() p_logq = dist.logpdf(x_resample) q_logp = -compute_Muller_potential(alpha, torch.from_numpy(samples)).numpy() q_logq = dist.logpdf(samples) Fp_DKL_pq_one = -np.mean(p_logp - p_logq) + Fq Fp_DKL_qp_one = np.mean(q_logq - q_logp) + Fq energy_matrix = (-1)*np.stack([np.concatenate([q_logq, p_logq]), np.concatenate([q_logp, p_logp])], 0) num_conf = np.array([q_logq.shape[0], p_logq.shape[0]]) fastmbar = FastMBAR(energy_matrix, num_conf, verbose = False) Fp_BAR_one = fastmbar.F[-1] + Fq Fp_DKL_pq_one_repeats.append(Fp_DKL_pq_one) Fp_DKL_qp_one_repeats.append(Fp_DKL_qp_one) Fp_BAR_one_repeats.append(Fp_BAR_one) fig = plt.figure(0) fig.clf() plt.contourf(U, levels = 30, extent = (x1_min, x1_max, x2_min, x2_max), cmap = cm.viridis_r) idx = np.random.choice(range(samples.shape[0]), size = 1000) plt.plot(samples[:,0][idx], samples[:,1][idx], '.') plt.xlabel(r"$x_1$") plt.ylabel(r"$x_2$") plt.colorbar() plots_samples.savefig() #### normal distribution with two components #### ################################################# x_mean_0 = np.copy(x_mean) x_mean_1 = np.copy(x_mean) x_cov_0 = np.copy(x_cov) x_cov_1 = np.copy(x_cov) alpha_0 = 0.55 alpha_1 = 1 - alpha_0 ## EM algorithm curren_log_prob = -np.inf stop_criteria = 1e-8 idx_step = 0 parameters = [{'x_mean_0': x_mean_0, 'x_mean_1': x_mean_1, 'x_cov_0': x_cov_0, 'x_cov_1': x_cov_1, 'alpha_0': alpha_0, 'alpha_1': alpha_1}] while True: ## EM algorithm dist_0 = multivariate_normal(x_mean_0, x_cov_0) dist_1 = multivariate_normal(x_mean_1, x_cov_1) Z_0, _ = integrate.dblquad(compute_density, x1_min, x1_max, x2_min, x2_max, [dist_0], epsabs = 1e-12, epsrel = 1e-12) Z_1, _ = integrate.dblquad(compute_density, x1_min, x1_max, x2_min, x2_max, [dist_1], epsabs = 1e-12, epsrel = 1e-12) logp_0 = dist_0.logpdf(x) - np.log(Z_0) + np.log(alpha_0) logp_1 = dist_1.logpdf(x) - np.log(Z_1) + np.log(alpha_1) p_0 = np.exp(logp_0) p_1 = np.exp(logp_1) w_0 = p_0 / (p_0 + p_1) w_1 = 1 - w_0 x_mean_0 = np.sum(x * w_0[:,np.newaxis], 0)/np.sum(w_0) x_mean_1 = np.sum(x * w_1[:,np.newaxis], 0)/np.sum(w_1) x_cov_0 = np.matmul(((x - x_mean_0)*w_0[:, np.newaxis]).T, (x - x_mean_0)*w_0[:, np.newaxis])/np.sum(w_0) x_cov_1 = np.matmul(((x - x_mean_1)*w_1[:, np.newaxis]).T, (x - x_mean_1)*w_1[:, np.newaxis])/np.sum(w_1) alpha_0 = np.sum(w_0)/(np.sum(w_0) + np.sum(w_1)) alpha_1 = 1 - alpha_0 log_prob = np.mean(np.log(p_0 + p_1)) print("idx_step: {}, log_prob: {:2f}".format(idx_step, log_prob)) parameters.append({'x_mean_0': x_mean_0, 'x_mean_1': x_mean_1, 'x_cov_0': x_cov_0, 'x_cov_1': x_cov_1, 'alpha_0': alpha_0, 'alpha_1': alpha_1}) if log_prob - curren_log_prob < stop_criteria and idx_step > 10: break else: idx_step += 1 curren_log_prob = log_prob Fp_DKL_pq_two_repeats = [] Fp_DKL_qp_two_repeats = [] Fp_BAR_two_repeats = [] for idx_step in range(len(parameters)): print(idx_step) x_mean_0 = parameters[idx_step]['x_mean_0'] x_mean_1 = parameters[idx_step]['x_mean_1'] x_cov_0 = parameters[idx_step]['x_cov_0'] x_cov_1 = parameters[idx_step]['x_cov_1'] alpha_0 = parameters[idx_step]['alpha_0'] alpha_1 = parameters[idx_step]['alpha_1'] dist_0 = multivariate_normal(x_mean_0, x_cov_0) dist_1 = multivariate_normal(x_mean_1, x_cov_1) Z_0, _ = integrate.dblquad(compute_density, x1_min, x1_max, x2_min, x2_max, [dist_0], epsabs = 1e-12, epsrel = 1e-12) Z_1, _ = integrate.dblquad(compute_density, x1_min, x1_max, x2_min, x2_max, [dist_1], epsabs = 1e-12, epsrel = 1e-12) Fp_DKL_pq_two = [] Fp_DKL_qp_two = [] Fp_BAR_two = [] for idx_repeat in range(5): print("idx_repeat:", idx_repeat) idx = np.random.choice(range(x.shape[0]), size = (x.shape[0],)) x_resample = x[idx,:] logp_0 = dist_0.logpdf(x_resample) - np.log(Z_0) + np.log(alpha_0) logp_1 = dist_1.logpdf(x_resample) - np.log(Z_1) + np.log(alpha_1) p_0 = np.exp(logp_0) p_1 = np.exp(logp_1) p_logq = np.log(p_0 + p_1) p_logp = -compute_Muller_potential(alpha, torch.from_numpy(x_resample)).numpy() num_samples = x.shape[0] * 20 samples_0 = dist_0.rvs(num_samples) samples_1 = dist_1.rvs(num_samples) flag = (samples_0[:,0] >= x1_min) & (samples_0[:,0] <= x1_max) &\ (samples_0[:,1] >= x2_min) & (samples_0[:,1] <= x2_max) samples_0 = samples_0[flag] flag = (samples_1[:,0] >= x1_min) & (samples_1[:,0] <= x1_max) &\ (samples_1[:,1] >= x2_min) & (samples_1[:,1] <= x2_max) samples_1 = samples_1[flag] num_samples_0 = int(num_samples*alpha_0) num_samples_1 = int(num_samples*alpha_1) samples_0 = samples_0[0:num_samples_0] samples_1 = samples_1[0:num_samples_1] samples = np.concatenate([samples_0, samples_1]) logp_0 = dist_0.logpdf(samples) - np.log(Z_0) + np.log(alpha_0) logp_1 = dist_1.logpdf(samples) - np.log(Z_1) + np.log(alpha_1) p_0 = np.exp(logp_0) p_1 = np.exp(logp_1) q_logq = np.log(p_0 + p_1) q_logp = -compute_Muller_potential(alpha, torch.from_numpy(samples)).numpy() Fq = -np.log(alpha_0*Z_0 + alpha_1*Z_1) Fp_DKL_pq = -
np.mean(p_logp - p_logq)
numpy.mean
from copy import deepcopy from astropy.io.fits import hdu import numpy as np import multiprocessing as mp import six import scipy from scipy import fftpack from scipy.ndimage import fourier_shift from scipy.ndimage.interpolation import rotate from astropy.convolution import convolve, convolve_fft from astropy.io import fits from poppy.utils import krebin from .utils import S # Program bar from tqdm.auto import trange, tqdm import logging _log = logging.getLogger('webbpsf_ext') ########################################################################### # Image manipulation ########################################################################### def fshift(inarr, delx=0, dely=0, pad=False, cval=0.0, interp='linear', **kwargs): """ Fractional image shift Ported from IDL function fshift.pro. Routine to shift an image by non-integer values. Parameters ---------- inarr: ndarray 1D, or 2D array to be shifted. Can also be an image cube assume with shape [nz,ny,nx]. delx : float shift in x (same direction as IDL SHIFT function) dely: float shift in y pad : bool Should we pad the array before shifting, then truncate? Otherwise, the image is wrapped. cval : sequence or float, optional The values to set the padded values for each axis. Default is 0. ((before_1, after_1), ... (before_N, after_N)) unique pad constants for each axis. ((before, after),) yields same before and after constants for each axis. (constant,) or int is a shortcut for before = after = constant for all axes. interp : str Type of interpolation to use during the sub-pixel shift. Valid values are 'linear', 'cubic', and 'quintic'. Returns ------- ndarray Shifted image """ from scipy.interpolate import interp1d, interp2d shape = inarr.shape ndim = len(shape) if ndim == 1: # Return if delx is 0 if np.isclose(delx, 0, atol=1e-5): return inarr # separate shift into an integer and fraction shift intx = np.int(delx) fracx = delx - intx if fracx < 0: fracx += 1 intx -= 1 # Pad ends with constant value if pad: padx = np.abs(intx) + 5 out = np.pad(inarr,np.abs(intx),'constant',constant_values=cval) else: padx = 0 out = inarr.copy() # shift by integer portion out = np.roll(out, intx) # if significant fractional shift... if not np.isclose(fracx, 0, atol=1e-5): if interp=='linear': out = out * (1.-fracx) + np.roll(out,1) * fracx elif interp=='cubic': xvals = np.arange(len(out)) fint = interp1d(xvals, out, kind=interp, bounds_error=False, fill_value='extrapolate') out = fint(xvals+fracx) elif interp=='quintic': xvals = np.arange(len(out)) fint = interp1d(xvals, out, kind=5, bounds_error=False, fill_value='extrapolate') out = fint(xvals+fracx) else: raise ValueError(f'interp={interp} not recognized.') out = out[padx:padx+inarr.size] elif ndim == 2: # Return if both delx and dely are 0 if np.isclose(delx, 0, atol=1e-5) and np.isclose(dely, 0, atol=1e-5): return inarr ny, nx = shape # separate shift into an integer and fraction shift intx = np.int(delx) inty = np.int(dely) fracx = delx - intx fracy = dely - inty if fracx < 0: fracx += 1 intx -= 1 if fracy < 0: fracy += 1 inty -= 1 # Pad ends with constant value if pad: padx = np.abs(intx) + 5 pady = np.abs(inty) + 5 pad_vals = ([pady]*2,[padx]*2) out = np.pad(inarr,pad_vals,'constant',constant_values=cval) else: padx = 0; pady = 0 out = inarr.copy() # shift by integer portion out = np.roll(np.roll(out, intx, axis=1), inty, axis=0) # Check if fracx and fracy are effectively 0 fxis0 = np.isclose(fracx,0, atol=1e-5) fyis0 = np.isclose(fracy,0, atol=1e-5) # If fractional shifts are significant # use bi-linear interpolation between four pixels if interp=='linear': if not (fxis0 and fyis0): # Break bi-linear interpolation into four parts # to avoid NaNs unnecessarily affecting integer shifted dimensions part1 = out * ((1-fracx)*(1-fracy)) part2 = 0 if fyis0 else np.roll(out,1,axis=0)*((1-fracx)*fracy) part3 = 0 if fxis0 else np.roll(out,1,axis=1)*((1-fracy)*fracx) part4 = 0 if (fxis0 or fyis0) else np.roll(np.roll(out, 1, axis=1), 1, axis=0) * fracx*fracy out = part1 + part2 + part3 + part4 elif interp=='cubic' or interp=='quintic': fracx = 0 if fxis0 else fracx fracy = 0 if fxis0 else fracy y = np.arange(out.shape[0]) x = np.arange(out.shape[1]) fint = interp2d(x, y, out, kind=interp) out = fint(x-fracx, y-fracy) else: raise ValueError(f'interp={interp} not recognized.') out = out[pady:pady+ny, padx:padx+nx] elif ndim == 3: # Perform shift on each image in succession kwargs['delx'] = delx kwargs['dely'] = dely kwargs['pad'] = pad kwargs['cval'] = cval kwargs['interp'] = interp out = np.array([fshift(im, **kwargs) for im in inarr]) else: raise ValueError(f'Found {ndim} dimensions {shape}. Only up to 3 dimensions allowed.') return out def fourier_imshift(image, xshift, yshift, pad=False, cval=0.0, **kwargs): """Fourier shift image Shift an image by use of Fourier shift theorem Parameters ---------- image : ndarray 2D image or 3D image cube [nz,ny,nx]. xshift : float Number of pixels to shift image in the x direction yshift : float Number of pixels to shift image in the y direction pad : bool Should we pad the array before shifting, then truncate? Otherwise, the image is wrapped. cval : sequence or float, optional The values to set the padded values for each axis. Default is 0. ((before_1, after_1), ... (before_N, after_N)) unique pad constants for each axis. ((before, after),) yields same before and after constants for each axis. (constant,) or int is a shortcut for before = after = constant for all axes. Returns ------- ndarray Shifted image """ shape = image.shape ndim = len(shape) if ndim==2: ny, nx = shape # Pad ends with zeros if pad: padx = np.abs(np.int(xshift)) + 5 pady = np.abs(np.int(yshift)) + 5 pad_vals = ([pady]*2,[padx]*2) im = np.pad(image,pad_vals,'constant',constant_values=cval) else: padx = 0; pady = 0 im = image offset = fourier_shift( np.fft.fft2(im), (yshift,xshift) ) offset = np.fft.ifft2(offset).real offset = offset[pady:pady+ny, padx:padx+nx] elif ndim==3: kwargs['pad'] = pad kwargs['cval'] = cval offset = np.array([fourier_imshift(im, xshift, yshift, **kwargs) for im in image]) else: raise ValueError(f'Found {ndim} dimensions {shape}. Only up 2 or 3 dimensions allowed.') return offset def pad_or_cut_to_size(array, new_shape, fill_val=0.0, offset_vals=None, shift_func=fshift, **kwargs): """ Resize an array to a new shape by either padding with zeros or trimming off rows and/or columns. The output shape can be of any arbitrary amount. Parameters ---------- array : ndarray A 1D, 2D, or 3D array. If 3D, then taken to be a stack of images that are cropped or expanded in the same fashion. new_shape : tuple Desired size for the output array. For 2D case, if a single value, then will create a 2-element tuple of the same value. fill_val : scalar, optional Value to pad borders. Default is 0.0 offset_vals : tuple Option to perform image shift in the (xpix) direction for 1D, or (ypix,xpix) direction for 2D/3D prior to cropping or expansion. shift_func : function Function to use for shifting. Usually either `fshift` or `fourier_imshift`. Returns ------- output : ndarray An array of size new_shape that preserves the central information of the input array. """ shape_orig = array.shape ndim = len(shape_orig) if ndim == 1: # is_1d = True # Reshape array to a 2D array with nx=1 array = array.reshape((1,1,-1)) nz, ny, nx = array.shape if isinstance(new_shape, (float,int,np.int,np.int64)): nx_new = int(new_shape+0.5) ny_new = 1 new_shape = (ny_new, nx_new) elif len(new_shape) < 2: nx_new = new_shape[0] ny_new = 1 new_shape = (ny_new, nx_new) else: ny_new, nx_new = new_shape output = np.zeros(shape=(nz,ny_new,nx_new), dtype=array.dtype) elif (ndim == 2) or (ndim == 3): if ndim==2: nz = 1 ny, nx = array.shape array = array.reshape([nz,ny,nx]) else: nz, ny, nx = array.shape if isinstance(new_shape, (float,int,np.int,np.int64)): ny_new = nx_new = int(new_shape+0.5) new_shape = (ny_new, nx_new) elif len(new_shape) < 2: ny_new = nx_new = new_shape[0] new_shape = (ny_new, nx_new) else: ny_new, nx_new = new_shape output = np.zeros(shape=(nz,ny_new,nx_new), dtype=array.dtype) else: raise ValueError(f'Found {ndim} dimensions {shape_orig}. Only up to 3 dimensions allowed.') # Return if no difference in shapes # This needs to occur after the above so that new_shape is verified to be a tuple # If offset_vals is set, then continue to perform shift function if (array.shape == new_shape) and (offset_vals is None): return array # Input the fill values if fill_val != 0: output += fill_val # Pixel shift values if offset_vals is not None: if ndim == 1: ny_off = 0 if isinstance(offset_vals, (float,int,np.int,np.int64)): nx_off = offset_vals elif len(offset_vals) < 2: nx_off = offset_vals[0] else: raise ValueError('offset_vals should be a single value.') else: if len(offset_vals) == 2: ny_off, nx_off = offset_vals else: raise ValueError('offset_vals should have two values.') else: nx_off = ny_off = 0 if nx_new>nx: n0 = (nx_new - nx) / 2 n1 = n0 + nx elif nx>nx_new: n0 = (nx - nx_new) / 2 n1 = n0 + nx_new else: n0, n1 = (0, nx) n0 = int(n0+0.5) n1 = int(n1+0.5) if ny_new>ny: m0 = (ny_new - ny) / 2 m1 = m0 + ny elif ny>ny_new: m0 = (ny - ny_new) / 2 m1 = m0 + ny_new else: m0, m1 = (0, ny) m0 = int(m0+0.5) m1 = int(m1+0.5) if (nx_new>=nx) and (ny_new>=ny): #print('Case 1') output[:,m0:m1,n0:n1] = array.copy() for i, im in enumerate(output): output[i] = shift_func(im, nx_off, ny_off, pad=True, cval=fill_val, **kwargs) elif (nx_new<=nx) and (ny_new<=ny): #print('Case 2') if (nx_off!=0) or (ny_off!=0): array_temp = array.copy() for i, im in enumerate(array_temp): array_temp[i] = shift_func(im, nx_off, ny_off, pad=True, cval=fill_val, **kwargs) output = array_temp[:,m0:m1,n0:n1] else: output = array[:,m0:m1,n0:n1] elif (nx_new<=nx) and (ny_new>=ny): #print('Case 3') if nx_off!=0: array_temp = array.copy() for i, im in enumerate(array_temp): array_temp[i] = shift_func(im, nx_off, 0, pad=True, cval=fill_val, **kwargs) output[:,m0:m1,:] = array_temp[:,:,n0:n1] else: output[:,m0:m1,:] = array[:,:,n0:n1] for i, im in enumerate(output): output[i] = shift_func(im, 0, ny_off, pad=True, cval=fill_val, **kwargs) elif (nx_new>=nx) and (ny_new<=ny): #print('Case 4') if ny_off!=0: array_temp = array.copy() for i, im in enumerate(array_temp): array_temp[i] = shift_func(im, 0, ny_off, pad=True, cval=fill_val, **kwargs) output[:,:,n0:n1] = array_temp[:,m0:m1,:] else: output[:,:,n0:n1] = array[:,m0:m1,:] for i, im in enumerate(output): output[i] = shift_func(im, nx_off, 0, pad=True, cval=fill_val, **kwargs) # Flatten if input and output arrays are 1D if (ndim==1) and (ny_new==1): output = output.flatten() elif ndim==2: output = output[0] return output def rotate_offset(data, angle, cen=None, cval=0.0, order=1, reshape=True, recenter=True, shift_func=fshift, **kwargs): """Rotate and offset an array. Same as `rotate` in `scipy.ndimage.interpolation` except that it rotates around a center point given by `cen` keyword. The array is rotated in the plane defined by the two axes given by the `axes` parameter using spline interpolation of the requested order. Default rotation is clockwise direction. Parameters ---------- data : ndarray The input array. angle : float The rotation angle in degrees (rotates in clockwise direction). cen : tuple Center location around which to rotate image. Values are expected to be `(xcen, ycen)`. recenter : bool Do we want to reposition so that `cen` is the image center? shift_func : function Function to use for shifting. Usually either `fshift` or `fourier_imshift`. Keyword Args ------------ axes : tuple of 2 ints, optional The two axes that define the plane of rotation. Default is the first two axes. reshape : bool, optional If `reshape` is True, the output shape is adapted so that the input array is contained completely in the output. Default is True. order : int, optional The order of the spline interpolation, default is 1. The order has to be in the range 0-5. mode : str, optional Points outside the boundaries of the input are filled according to the given mode ('constant', 'nearest', 'reflect', 'mirror' or 'wrap'). Default is 'constant'. cval : scalar, optional Value used for points outside the boundaries of the input if ``mode='constant'``. Default is 0.0 prefilter : bool, optional The parameter prefilter determines if the input is pre-filtered with `spline_filter` before interpolation (necessary for spline interpolation of order > 1). If False, it is assumed that the input is already filtered. Default is True. Returns ------- rotate : ndarray or None The rotated data. """ # Return input data if angle is set to None or 0 # and if if ((angle is None) or (angle==0)) and (cen is None): return data shape_orig = data.shape ndim = len(shape_orig) if ndim==2: ny, nx = shape_orig nz = 1 elif ndim==3: nz, ny, nx = shape_orig else: raise ValueError(f'Found {ndim} dimensions {shape_orig}. Only 2 or 3 dimensions allowed.') if 'axes' not in kwargs.keys(): kwargs['axes'] = (2,1) kwargs['order'] = order kwargs['cval'] = cval xcen, ycen = (nx/2, ny/2) if cen is None: cen = (xcen, ycen) xcen_new, ycen_new = cen delx, dely = (xcen-xcen_new, ycen-ycen_new) # Reshape into a 3D array if nz=1 data = data.reshape([nz,ny,nx]) # Return rotate function if rotating about center if np.allclose((delx, dely), 0, atol=1e-5): return rotate(data, angle, reshape=reshape, **kwargs).squeeze() # fshift interp type if order <=1: interp='linear' elif order <=3: interp='cubic' else: interp='quintic' # Pad and then shift array new_shape = (int(ny+2*abs(dely)), int(nx+2*abs(delx))) images_shift = [] for im in data: im_pad = pad_or_cut_to_size(im, new_shape, fill_val=cval) im_new = shift_func(im_pad, delx, dely, cval=cval, interp=interp) images_shift.append(im_new) images_shift = np.asarray(images_shift) # Remove additional dimension in the case of single image #images_shift = images_shift.squeeze() # Rotate images # TODO: Should reshape=True or reshape=reshape? images_shrot = rotate(images_shift, angle, reshape=True, **kwargs) if reshape: return images_shrot.squeeze() else: # Shift back to it's location if recenter: images_rot = images_shrot else: images_rot = [] for im in images_shrot: im_new = shift_func(im, -1*delx, -1*dely, pad=True, cval=cval, interp=interp) images_rot.append(im_new) images_rot = np.asarray(images_rot) images_fin = [] for im in images_rot: im_new = pad_or_cut_to_size(im, (ny,nx)) images_fin.append(im_new) images_fin = np.asarray(images_fin) return images_fin.squeeze() def frebin(image, dimensions=None, scale=None, total=True): """Fractional rebin Python port from the IDL frebin.pro Shrink or expand the size of a 1D or 2D array by an arbitary amount using bilinear interpolation. Conserves flux by ensuring that each input pixel is equally represented in the output array. Can also input an image cube. Parameters ---------- image : ndarray Input image ndarray (1D, 2D). Can also be an image cube assumed to have shape [nz,ny,nx]. dimensions : tuple or None Desired size of output array (take priority over scale). scale : tuple or None Factor to scale output array size. A scale of 2 will increase the number of pixels by 2 (ie., finer pixel scale). total : bool Conserves the surface flux. If True, the output pixels will be the sum of pixels within the appropriate box of the input image. Otherwise, they will be the average. Returns ------- ndarray The binned ndarray """ shape = image.shape ndim = len(shape) if ndim>2: ndim_temp = 2 sh_temp = shape[-2:] else: ndim_temp = ndim sh_temp = shape if dimensions is not None: if isinstance(dimensions, float): dimensions = [int(dimensions)] * ndim_temp elif isinstance(dimensions, int): dimensions = [dimensions] * ndim_temp elif len(dimensions) != ndim_temp: raise RuntimeError("The number of input dimensions don't match the image shape.") elif scale is not None: if isinstance(scale, float) or isinstance(scale, int): dimensions = list(map(int, map(lambda x: x+0.5, map(lambda x: x*scale, sh_temp)))) elif len(scale) != ndim_temp: raise RuntimeError("The number of input dimensions don't match the image shape.") else: dimensions = [scale[i]*sh_temp[i] for i in range(len(scale))] else: raise RuntimeError('Incorrect parameters to rebin.\n\frebin(image, dimensions=(x,y))\n\frebin(image, scale=a') #print(dimensions) if ndim==1: nlout = 1 nsout = dimensions[0] nsout = int(nsout+0.5) dimensions = [nsout] elif ndim==2: nlout, nsout = dimensions nlout = int(nlout+0.5) nsout = int(nsout+0.5) dimensions = [nlout, nsout] elif ndim==3: kwargs = {'dimensions': dimensions, 'scale': scale, 'total': total} result = np.array([frebin(im, **kwargs) for im in image]) return result elif ndim > 3: raise ValueError(f'Found {ndim} dimensions {shape}. Only up to 3 dimensions allowed.') if nlout != 1: nl = shape[0] ns = shape[1] else: nl = nlout ns = shape[0] sbox = ns / float(nsout) lbox = nl / float(nlout) #print(sbox,lbox) # Contract by integer amount if (sbox.is_integer()) and (lbox.is_integer()): image = image.reshape((nl,ns)) result = krebin(image, (nlout,nsout)) if not total: result /= (sbox*lbox) if nl == 1: return result[0,:] else: return result ns1 = ns - 1 nl1 = nl - 1 if nl == 1: #1D case _log.debug("Rebinning to Dimension: %s" % nsout) result = np.zeros(nsout) for i in range(nsout): rstart = i * sbox istart = int(rstart) rstop = rstart + sbox if int(rstop) < ns1: istop = int(rstop) else: istop = ns1 frac1 = float(rstart) - istart frac2 = 1.0 - (rstop - istop) #add pixel values from istart to istop and subtract fraction pixel #from istart to rstart and fraction pixel from rstop to istop result[i] = np.sum(image[istart:istop + 1]) - frac1 * image[istart] - frac2 * image[istop] if total: return result else: return result / (float(sbox) * lbox) else: _log.debug("Rebinning to Dimensions: %s, %s" % tuple(dimensions)) #2D case, first bin in second dimension temp = np.zeros((nlout, ns)) result = np.zeros((nsout, nlout)) #first lines for i in range(nlout): rstart = i * lbox istart = int(rstart) rstop = rstart + lbox if int(rstop) < nl1: istop = int(rstop) else: istop = nl1 frac1 = float(rstart) - istart frac2 = 1.0 - (rstop - istop) if istart == istop: temp[i, :] = (1.0 - frac1 - frac2) * image[istart, :] else: temp[i, :] = np.sum(image[istart:istop + 1, :], axis=0) -\ frac1 * image[istart, :] - frac2 * image[istop, :] temp = np.transpose(temp) #then samples for i in range(nsout): rstart = i * sbox istart = int(rstart) rstop = rstart + sbox if int(rstop) < ns1: istop = int(rstop) else: istop = ns1 frac1 = float(rstart) - istart frac2 = 1.0 - (rstop - istop) if istart == istop: result[i, :] = (1. - frac1 - frac2) * temp[istart, :] else: result[i, :] = np.sum(temp[istart:istop + 1, :], axis=0) -\ frac1 * temp[istart, :] - frac2 * temp[istop, :] if total: return np.transpose(result) else: return np.transpose(result) / (sbox * lbox) def image_rescale(HDUlist_or_filename, pixscale_out, pixscale_in=None, dist_in=None, dist_out=None, cen_star=True, shape_out=None): """ Rescale image flux Scale the flux and rebin an image to some new pixel scale and distance. The object's physical units (AU) are assumed to be constant, so the total angular size changes if the distance to the object changes. IT IS RECOMMENDED THAT UNITS BE IN PHOTONS/SEC/PIXEL (not mJy/arcsec) Parameters ========== HDUlist_or_filename : HDUList or str Input either an HDUList or file name. pixscale_out : float Desired pixel scale (asec/pix) of returned image. Will be saved in header info. Keyword Args ============ pixscale_in : float or None Input image pixel scale. If None, then tries to grab info from the header. dist_in : float Input distance (parsec) of original object. If not set, then we look for the header keywords 'DISTANCE' or 'DIST'. dist_out : float Output distance (parsec) of object in image. Will be saved in header info. If not set, then assumed to be same as input distance. cen_star : bool Is the star placed in the central pixel? If so, then the stellar flux is assumed to be a single pixel that is equal to the maximum flux in the image. Rather than rebinning that pixel, the total flux is pulled out and re-added to the central pixel of the final image. shape_out : tuple, int, or None Desired size for the output array (ny,nx). If a single value, then will create a 2-element tuple of the same value. Returns ======= HDUlist of the new image. """ if isinstance(HDUlist_or_filename, six.string_types): hdulist = fits.open(HDUlist_or_filename) elif isinstance(HDUlist_or_filename, fits.HDUList): hdulist = HDUlist_or_filename else: raise ValueError("Input must be a filename or HDUlist") header = hdulist[0].header # Try to update input pixel scale if it exists in header if pixscale_in is None: key_test = ['PIXELSCL','PIXSCALE'] for k in key_test: if k in header: pixscale_in = header[k] if pixscale_in is None: raise KeyError("Cannot determine input image pixel scale.") # Try to update input distance if it exists in header if dist_in is None: key_test = ['DISTANCE','DIST'] for k in key_test: if k in header: dist_in = header[k] # If output distance is not set, set to input distance if dist_out is None: dist_out = 'None' if dist_in is None else dist_in fratio = 1 elif dist_in is None: raise ValueError('Input distance should not be None if output distance is specified.') else: fratio = dist_in / dist_out # Scale the input flux by inverse square law image = (hdulist[0].data) * fratio**2 # If we move the image closer while assuming same number of pixels with # the same AU/pixel, then this implies we've increased the angle that # the image subtends. So, each pixel would have a larger angular size. # New image scale in arcsec/pixel imscale_new = pixscale_in * fratio # Before rebinning, we want the flux in the central pixel to # always be in the central pixel (the star). So, let's save # and remove that flux then add back after the rebinning. if cen_star: mask_max = image==image.max() star_flux = image[mask_max][0] image[mask_max] = 0 # Rebin the image to get a pixel scale that oversamples the detector pixels fact = imscale_new / pixscale_out image_new = frebin(image, scale=fact) # Restore stellar flux to the central pixel. ny, nx = image_new.shape if cen_star: image_new[ny//2, nx//2] += star_flux if shape_out is not None: image_new = pad_or_cut_to_size(image_new, shape_out) hdu_new = fits.PrimaryHDU(image_new) hdu_new.header = hdulist[0].header.copy() hdulist_new = fits.HDUList([hdu_new]) hdulist_new[0].header['PIXELSCL'] = (pixscale_out, 'arcsec/pixel') hdulist_new[0].header['PIXSCALE'] = (pixscale_out, 'arcsec/pixel') hdulist_new[0].header['DISTANCE'] = (dist_out, 'parsecs') return hdulist_new def model_to_hdulist(args_model, sp_star, bandpass): """HDUList from model FITS file. Convert disk model to an HDUList with units of photons/sec/pixel. If observed filter is different than input filter, we assume that the disk has a flat scattering, meaning it scales with stellar continuum. Pixel sizes and distances are left unchanged, and stored in header. Parameters ---------- args_model - tuple Arguments describing the necessary model information: - fname : Name of model file or an HDUList - scale0 : Pixel scale (in arcsec/pixel) - dist0 : Assumed model distance - wave_um : Wavelength of observation - units0 : Assumed flux units (e.g., MJy/arcsec^2 or muJy/pixel) sp_star : :mod:`pysynphot.spectrum` A pysynphot spectrum of central star. Used to adjust observed photon flux if filter differs from model input bandpass : :mod:`pysynphot.obsbandpass` Output `Pysynphot` bandpass from instrument class. This corresponds to the flux at the entrance pupil for the particular filter. """ #filt, mask, pupil = args_inst fname, scale0, dist0, wave_um, units0 = args_model wave0 = wave_um * 1e4 #### Read in the image, then convert from mJy/arcsec^2 to photons/sec/pixel if isinstance(fname, fits.HDUList): hdulist = fname else: # Open file hdulist = fits.open(fname) # Get rid of any non-standard header keywords hdu = fits.PrimaryHDU(hdulist[0].data) for k in hdulist[0].header.keys(): try: hdu.header[k] = hdulist[0].header[k] except ValueError: pass hdulist = fits.HDUList(hdu) # Break apart units0 units_list = units0.split('/') if 'mJy' in units_list[0]: units_pysyn = S.units.mJy() elif 'uJy' in units_list[0]: units_pysyn = S.units.muJy() elif 'nJy' in units_list[0]: units_pysyn = S.units.nJy() elif 'MJy' in units_list[0]: hdulist[0].data *= 1000 # Convert to Jy units_pysyn = S.units.Jy() elif 'Jy' in units_list[0]: # Jy should be last units_pysyn = S.units.Jy() else: errstr = "Do not recognize units0='{}'".format(units0) raise ValueError(errstr) # Convert from input units to photlam (photons/sec/cm^2/A/angular size) im = units_pysyn.ToPhotlam(wave0, hdulist[0].data) # We assume scattering is flat in photons/sec/A # This means everything scales with stellar continuum sp_star.convert('photlam') wstar, fstar = (sp_star.wave/1e4, sp_star.flux) # Compare observed wavelength to image wavelength wobs_um = bandpass.avgwave() / 1e4 # Current bandpass wavelength wdel = np.linspace(-0.1,0.1) f_obs =
np.interp(wobs_um+wdel, wstar, fstar)
numpy.interp
import os import matplotlib.pyplot as plt from hyperparams import MAX_STEPS import pdb import numpy as np steps, rewards = [], [] def mean(lst): return sum(lst)/len(lst) def std(lst): mn = mean(lst) return sum([(elem - mn)**2 for elem in lst])**.5 def plot(step, reward, title): steps.append(step) rewards.append(reward) plt.plot(steps, rewards, 'b-') plt.title(title) plt.xlabel('Steps') plt.ylabel('Rewards') plt.xlim((0, MAX_STEPS)) plt.ylim((-2000, 1000)) plt.savefig(os.path.join('results', title + '.png')) # def plot_with_error_bars(steps, rewards, title, label='Rewards', finished=True, color = 'g'): # samples = len(rewards) # rewards = np.array(rewards) # means = np.mean(rewards, axis=0) # stds = np.std(rewards, axis=0) # steps = np.array(steps) # conf_ints = 2*stds*samples**(-1/2) # # pdb.set_trace() # plt.plot(np.array(steps), np.array(means), color=color, label=label) # plt.fill_between(np.array(steps), np.array(means+conf_ints), np.array(means-conf_ints), color=color, alpha=.7) # plt.xlabel('Steps') # plt.ylabel('Rewards') # min_steps = steps.min() # max_steps = steps.max() # plt.xlim((min_steps, max_steps)) # min_reward = (means-conf_ints*1.5).min() # max_reward = (means+conf_ints*1.5).max() # plt.ylim((min_reward, max_reward)) # if finished: # def multiplot(steps_list, rewards_list, label_list, title): # finished = False # color_cycle = ['b', 'r', 'c', 'g'] # plt.figure(1) # plt.title(title) # for i in range(len(rewards_list)): # if i == len(rewards_list)-1: # finished = True # # break # plot_with_error_bars(steps_list[i], rewards_list[i], title, label_list[i], finished=finished, color=color_cycle[i]) # plt.legend() # plt.savefig(os.path.join('results', title + '.png')) # plt.close() def multiplot(steps_list, rewards_list, label_list, title): finished = False color_cycle = ['b', 'r', 'c', 'g'] plt.figure(1) plt.title(title) rewards_list =
np.array(rewards_list)
numpy.array
""" Module containing various functions I have found useful in assembling the feature vector. """ import numpy as np def combine_as_max(vector1, vector2): """ Combine two vectors and return a vector that has the maximum values from each vector compared pairwise. :param vector1: First list to compare :param vector2: Second list to compare :return: a list containing the max of each element of vector1 and vector2 compared pairwise. """ combined_vector = [] if len(vector1) != len(vector2): raise RuntimeError("Vectors must be of equal length!") for index in range(0, len(vector1)): if vector1[index] > vector2[index]: combined_vector.append(vector1[index]) else: combined_vector.append(vector2[index]) return combined_vector def combine_by_append(vector1, vector2): """ Combines two lists by appending them. :param vector1: list of values :param vector2: list of values :return: a list created by appending vector1 to vector2 """ return vector1 + vector2 def combine_as_average(vector1, vector2, include_zeros=True): """ Takes the average of two vectors. It can include zeros when computing the average or drop them. :param vector1: list of values :param vector2: list of values :param include_zeros: boolean, if True zeros will be included in the average, if False they will be dropped. :return: list containing each element is the average of the elements from the two vectors """ if len(vector1) != len(vector2): raise RuntimeError("Vectors must be of equal length!") empty_sentiment_vector = [0.0] * len(vector1) if vector1 == empty_sentiment_vector and vector2 == empty_sentiment_vector: # We received two zero vectors, don't need to compute an average for that return empty_sentiment_vector if vector1 == empty_sentiment_vector and not include_zeros: # If vector1 is empty, and we are not including zeros, then the average is vector2 return vector2 if vector2 == empty_sentiment_vector and not include_zeros: # If vector2 is empty, and we are not including zeros, then the average is vector1 return vector1 nv1 = np.array(vector1) nv2 = np.array(vector2) avg = np.divide(np.sum([nv1, nv2], axis=0), 2.0) return list(avg) def combine_as_average_np(vector1, vector2, include_zeros=True): """ Combine two numpy vectors (numpy array of values) by averaging them. :param vector1: first numpy array :param vector2: second numpy array :param include_zeros: include_zeros: boolean, if True zeros will be included in the average, if False they will be dropped. :return: a numpy array, each element is the average of the elements from the two vectors """ if len(vector1) != len(vector2): raise RuntimeError("Vectors must be of equal length!") empty_sentiment_vector = np.array([0.0] * len(vector1)) if np.array_equal(vector1, empty_sentiment_vector) and
np.array_equal(vector2, empty_sentiment_vector)
numpy.array_equal
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(220, 'I -4 3 d', transformations) space_groups[220] = sg space_groups['I -4 3 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(221, 'P m -3 m', transformations) space_groups[221] = sg space_groups['P m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(222, 'P n -3 n :2', transformations) space_groups[222] = sg space_groups['P n -3 n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(223, 'P m -3 n', transformations) space_groups[223] = sg space_groups['P m -3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(224, 'P n -3 m :2', transformations) space_groups[224] = sg space_groups['P n -3 m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot =
N.array([0,1,0,1,0,0,0,0,1])
numpy.array
""" This code is for plotting real size output image. For high resolution images for demonstration and paper, please refer to demonstration_viewer.py """ import os import sys import shutil import numpy as np from PIL import Image from tqdm import tqdm test_results_folder = './test_results' test_results_img_folder = './test_results/images' test_results_files = os.listdir(test_results_folder) if os.path.exists(test_results_img_folder): shutil.rmtree(test_results_img_folder) os.makedirs(test_results_img_folder) height = 64 width = 192 test_results_files = ['test_resutls_90.npy'] for p_file in tqdm(test_results_files): p_file_path = os.path.join(test_results_folder, p_file) p_epoch_res = np.load(p_file_path) epoch_idx = p_file.split('.')[0].split('_')[2] epoch_folder = 'epoch_' + epoch_idx epoch_folder = os.path.join(test_results_img_folder, epoch_folder) os.makedirs(epoch_folder) index = 0 num_batch = p_epoch_res.shape[0] for p_batch in tqdm(range(num_batch)): data = p_epoch_res[p_batch][0] tar = p_epoch_res[p_batch][1] res = p_epoch_res[p_batch][2] batch_size = tar.shape[0] for p_data in range(batch_size): # get output image out_img = res[p_data] out_img = np.transpose(out_img, (1, 2, 0)) # out_img = out_img * 128 + 128 out_img = out_img * 255 # import IPython # IPython.embed() # assert False out_img = Image.fromarray(out_img.astype('uint8')) # get target image tar_out_img = tar[p_data] tar_out_img = np.transpose(tar_out_img, (1, 2, 0)) # tar_out_img = tar_out_img * 128 + 128 tar_out_img = tar_out_img * 255 tar_out_img = Image.fromarray(tar_out_img.astype('uint8')) # get data image data_out_img = data[p_data] data_out_img =
np.transpose(data_out_img, (1, 2, 0))
numpy.transpose
import cv2 import json import os import csv import numpy as np import matplotlib.pyplot as plt from PIL import Image, ImageDraw from pathlib import Path from PIL import Image from matplotlib import cm, colors import crispy as csp import tensorflow as tf from tensorflow import keras import tifffile import pandas as pd import shutil from multiprocessing import Pool, cpu_count from functools import partial import tensorflow_addons as tfa from tensorflow.train import BytesList, FloatList, Int64List from tensorflow.train import Feature, Features, Example Image.MAX_IMAGE_PIXELS = None ### def load_tiff(path): image = tifffile.imread(path) if image.shape[-1] != 3: print("The shape of loaded image will be reshaped, current shape = {}".format(image.shape)) image = np.squeeze(image) image = np.transpose(image, axes = (1, 2, 0)) print("Sample id: {}, image shape = {}".format(Path(path).stem, image.shape)) return image ### def make_mask(json_path, image): json_data = json.load(open(json_path, "r")) ## Make polygons polys = [] for index in range(json_data.__len__()): geom = np.array(json_data[index]['geometry']['coordinates']) polys.append(geom) mask = np.zeros(image.shape[:-1]) mask = np.expand_dims(mask, axis = -1) for i in range(len(polys)): cv2.fillPoly( mask, polys[i], 1 ) mask = mask.astype(bool) print("Mask shape: {}".format(mask.shape)) return mask ### def get_tile(baseimage, tile_size, tile_row_pos, tile_col_pos, stride): start_col = tile_col_pos * stride end_col = start_col + tile_size start_row = tile_row_pos * stride end_row = start_row + tile_size tile_image = baseimage[start_row:end_row, start_col:end_col, :] ## For truncated tiles, pad zeros to the tiles in order to get the same shape as normal tiles. if tile_image.shape != (tile_size, tile_size, baseimage.shape[-1]): zero_array = np.zeros((tile_size, tile_size, baseimage.shape[-1])) row, col, ch = tile_image.shape zero_array[:row, :col, :ch] = tile_image tile_image = zero_array orig_tile_shape = (row, col, ch) else: orig_tile_shape = "no" tile_image = tile_image.astype(np.uint8) return tile_image, orig_tile_shape ### def show_tile_and_mask(tile_image, tile_mask): fig, ax = plt.subplots(1,2,figsize=(20,3)) ax[0].imshow(tile_image) ax[1].imshow(tile_mask) # Utilities serialize data into a TFRecord def _bytes_feature(value): """Returns a bytes_list from a string / byte.""" if isinstance(value, type(tf.constant(0))): value = value.numpy() # BytesList won't unpack a string from an EagerTensor. return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def _float_feature(value): """Returns a float_list from a float / double.""" return tf.train.Feature(float_list=tf.train.FloatList(value=[value])) def _int64_feature(value): """Returns an int64_list from a bool / enum / int / uint.""" return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) ### def image_example(image_index, image, mask, tile_id, tile_col_pos, tile_row_pos): image_shape = image.shape img_bytes = image.tobytes() mask_bytes = mask.tobytes() feature = { 'img_index': _int64_feature(image_index), 'height': _int64_feature(image_shape[0]), 'width': _int64_feature(image_shape[1]), 'num_channels': _int64_feature(image_shape[2]), 'img_bytes': _bytes_feature(img_bytes), 'img_dtype': _bytes_feature(str(image.dtype).encode()), 'mask' : _bytes_feature(mask_bytes), 'mask_dtype' : _bytes_feature(str(mask.dtype).encode()), 'tile_id': _int64_feature(tile_id), 'tile_col_pos': _int64_feature(tile_col_pos), 'tile_row_pos': _int64_feature(tile_row_pos), } return tf.train.Example(features=tf.train.Features(feature=feature)) ### def create_tfrecord(image_index, image, mask, tile_id, tile_col_pos, tile_row_pos, output_path): opts = tf.io.TFRecordOptions(compression_type="GZIP") with tf.io.TFRecordWriter(str(output_path), opts) as writer: tf_example = image_example(image_index, image, mask, tile_id, tile_col_pos, tile_row_pos) writer.write(tf_example.SerializeToString()) writer.close() ### def write_tfrecord_tiles(image_index, image_id, image, mask, tile_size, stride, output_path): output_dir = Path(output_path) / image_id # if output_dir.exists(): # shutil.rmtree(output_dir) output_dir.mkdir(exist_ok = True) image_rows = image.shape[0] image_cols = image.shape[1] tile_rows = (image_rows-1) // stride + 1 tile_cols = (image_cols-1) // stride + 1 tileID = 0 pb = csp.Progressbar(total = tile_rows * tile_cols) # create a pandas dataframe to store metadata for each tile tile_df = pd.DataFrame(columns = ['img_index', 'img_id', 'tile_id', 'tile_rel_path', 'tile_row_num', 'tile_col_num', 'lowband_density', 'mask_density', "zero_padded"]) # create one directory for each row of images for row_number in range(tile_rows): # print('row_offset{} '.format(row_number),end='') # dir_path = output_dir / 'row{}'.format(row_number) # # create directory # if dir_path.exists(): # shutil.rmtree(dir_path) # dir_path.mkdir() for col_number in range(tile_cols): #print("row{}".format(col_number),end='') # dataset_file_path = dir_path+'/col{}_row{}.tfrecords'.format(row_number,col_number) dataset_file_path = dir_path / 'row{}_col{}.tfrecords'.format(row_number, col_number) relative_path = image_id + "/row{}_col{}.tfrecords".format(row_number, col_number) # if dataset_file_path.exists(): # shutil.rmtree(dataset_file_path) # dataset_file_path.mkdir(parents = True, exist_ok = True) lower_col_range = col_number * stride image_tile, orig_image_shape = get_tile(image, tile_size, row_number, col_number, stride) tile_mask, _ = get_tile(image, tile_size, row_number, col_number, stride) num_records = create_tfrecord(image_index, image_tile, tile_mask, tileID, row_number, col_number, dataset_file_path) # populate the metadata for this tile img_hist = np.histogram(image_tile) lowband_density = np.sum(img_hist[0][0:4]) mask_density = np.count_nonzero(tile_mask) tile_df = tile_df.append({'img_index':image_index, 'img_id':image_id, 'tile_id': tileID, 'tile_rel_path':relative_path, 'tile_col_num':col_number, 'tile_row_num':row_number,'lowband_density':lowband_density, 'mask_density':mask_density, "zero_padded":orig_image_shape},ignore_index=True) pb.show(tileID, details = "Current sample id = {}, row_offset = {}, col_offset = {}".format(image_id, row_number, col_number)) tileID += 1 return tile_df ### def write_tfrecord_tiles_mp(image_index, image_id, image, mask, tile_size, stride, output_path): output_dir = Path(output_path) / image_id # if output_dir.exists(): # shutil.rmtree(output_dir) output_dir.mkdir(exist_ok = True) image_rows = image.shape[0] image_cols = image.shape[1] tile_rows = (image_rows-1) // stride + 1 tile_cols = (image_cols-1) // stride + 1 write_tfrecord_tiles_mp_main_partial = partial(write_tfrecord_tiles_mp_main, image_index = image_index, image_id = image_id, output_dir = output_dir, tile_size = tile_size, stride = stride, tile_cols = tile_cols ) v.map(os.chdir, [os.getcwd()] * len(v)) r = v.map_async(write_tfrecord_tiles_mp_main_partial, list(range(tile_rows))) print(dir(r)) # csp.track_job(r, tile_rows) r.wait() ipc_result = r.get() print("Multiprocessing job done.") # with Pool(cpu_count()) as p: # r = p.map_async(write_tfrecord_tiles_mp_main_partial, list(range(tile_rows))) # csp.track_job(r, tile_rows) # r.wait() # pool_result = r.get() # print("Multiprocessing job done.") ### def write_tfrecord_tiles_mp_main(row_number, image, mask, image_index, image_id, output_dir, tile_cols, tile_size, stride): # print("write_tfrecord_tiles_mp_main: starting...") tile_df = pd.DataFrame(columns = ['img_index', 'img_id', 'tile_id', 'tile_rel_path', 'tile_row_num', 'tile_col_num', 'lowband_density', 'mask_density', "zero_padded"]) tileID = 0 dir_path = Path(output_dir) / "row{}".format(row_number) dir_path.mkdir(exist_ok = True) # print("write_tfrecord_tiles_mp_main: Entering for loop ...") for col_number in range(tile_cols): print("Starting to write tfrecords... {}-row{}-col{}".format(image_id, row_number, col_number)) #print("row{}".format(col_number),end='') dataset_file_path = dir_path / 'row{}_col{}.tfrecord'.format(row_number, col_number) relative_path = image_id + "/row{0}/row{0}_col{1}.tfrecord".format(row_number, col_number) lower_col_range = col_number * stride image_tile, orig_image_shape = get_tile(image, tile_size, row_number, col_number, stride) tile_mask, _ = get_tile(mask, tile_size, row_number, col_number, stride) num_records = create_tfrecord(image_index, image_tile, tile_mask, tileID, row_number, col_number, dataset_file_path) # populate the metadata for this tile img_hist =
np.histogram(image_tile)
numpy.histogram
# -*- coding: utf-8 -*- # # This file is part of pyfesom2 # Original code by <NAME>, <NAME>, <NAME>, # <NAME>, <NAME> and <NAME> # import json import math as mt from collections import OrderedDict import matplotlib as mpl import matplotlib.pylab as plt import numpy as np import pkg_resources import shapely import xarray as xr from cmocean import cm as cmo try: import cartopy.feature as cfeature except ImportError: print("Cartopy is not installed, plotting is not available.") def scalar_r2g(al, be, ga, rlon, rlat): """ Converts rotated coordinates to geographical coordinates. Parameters ---------- al : float alpha Euler angle be : float beta Euler angle ga : float gamma Euler angle rlon : array 1d array of longitudes in rotated coordinates rlat : array 1d araay of latitudes in rotated coordinates Returns ------- lon : array 1d array of longitudes in geographical coordinates lat : array 1d array of latitudes in geographical coordinates """ rad = mt.pi / 180 al = al * rad be = be * rad ga = ga * rad rotate_matrix = np.zeros(shape=(3, 3)) rotate_matrix[0, 0] = np.cos(ga) * np.cos(al) - np.sin(ga) * np.cos(be) * np.sin(al) rotate_matrix[0, 1] = np.cos(ga) * np.sin(al) + np.sin(ga) * np.cos(be) * np.cos(al) rotate_matrix[0, 2] = np.sin(ga) * np.sin(be) rotate_matrix[1, 0] = -np.sin(ga) * np.cos(al) - np.cos(ga) * np.cos(be) * np.sin( al ) rotate_matrix[1, 1] = -np.sin(ga) * np.sin(al) + np.cos(ga) * np.cos(be) * np.cos( al ) rotate_matrix[1, 2] = np.cos(ga) * np.sin(be) rotate_matrix[2, 0] = np.sin(be) * np.sin(al) rotate_matrix[2, 1] = -np.sin(be) * np.cos(al) rotate_matrix[2, 2] = np.cos(be) rotate_matrix = np.linalg.pinv(rotate_matrix) rlat = rlat * rad rlon = rlon * rad # Rotated Cartesian coordinates: xr = np.cos(rlat) * np.cos(rlon) yr = np.cos(rlat) * np.sin(rlon) zr = np.sin(rlat) # Geographical Cartesian coordinates: xg = rotate_matrix[0, 0] * xr + rotate_matrix[0, 1] * yr + rotate_matrix[0, 2] * zr yg = rotate_matrix[1, 0] * xr + rotate_matrix[1, 1] * yr + rotate_matrix[1, 2] * zr zg = ( rotate_matrix[2, 0] * xr + rotate_matrix[2, 1] * yr + rotate_matrix[2, 2] * zr ) # Geographical coordinates: lat = np.arcsin(zg) lon = np.arctan2(yg, xg) a = np.where((np.abs(xg) + np.abs(yg)) == 0) if a: lon[a] = 0 lat = lat / rad lon = lon / rad return (lon, lat) def scalar_g2r(al, be, ga, lon, lat): """ Converts geographical coordinates to rotated coordinates. Parameters ---------- al : float alpha Euler angle be : float beta Euler angle ga : float gamma Euler angle lon : array 1d array of longitudes in geographical coordinates lat : array 1d array of latitudes in geographical coordinates Returns ------- rlon : array 1d array of longitudes in rotated coordinates rlat : array 1d araay of latitudes in rotated coordinates """ rad = mt.pi / 180 al = al * rad be = be * rad ga = ga * rad rotate_matrix = np.zeros(shape=(3, 3)) rotate_matrix[0, 0] = np.cos(ga) * np.cos(al) - np.sin(ga) * np.cos(be) * np.sin(al) rotate_matrix[0, 1] = np.cos(ga) * np.sin(al) + np.sin(ga) * np.cos(be) * np.cos(al) rotate_matrix[0, 2] = np.sin(ga) * np.sin(be) rotate_matrix[1, 0] = -np.sin(ga) * np.cos(al) - np.cos(ga) * np.cos(be) * np.sin( al ) rotate_matrix[1, 1] = -np.sin(ga) * np.sin(al) + np.cos(ga) * np.cos(be) * np.cos( al ) rotate_matrix[1, 2] = np.cos(ga) * np.sin(be) rotate_matrix[2, 0] = np.sin(be) * np.sin(al) rotate_matrix[2, 1] = -np.sin(be) * np.cos(al) rotate_matrix[2, 2] = np.cos(be) lat = lat * rad lon = lon * rad # geographical Cartesian coordinates: xr = np.cos(lat) * np.cos(lon) yr = np.cos(lat) * np.sin(lon) zr = np.sin(lat) # rotated Cartesian coordinates: xg = rotate_matrix[0, 0] * xr + rotate_matrix[0, 1] * yr + rotate_matrix[0, 2] * zr yg = rotate_matrix[1, 0] * xr + rotate_matrix[1, 1] * yr + rotate_matrix[1, 2] * zr zg = rotate_matrix[2, 0] * xr + rotate_matrix[2, 1] * yr + rotate_matrix[2, 2] * zr # rotated coordinates: rlat = np.arcsin(zg) rlon = np.arctan2(yg, xg) a = np.where((np.abs(xg) + np.abs(yg)) == 0) if a: lon[a] = 0 rlat = rlat / rad rlon = rlon / rad return (rlon, rlat) def vec_rotate_r2g(al, be, ga, lon, lat, urot, vrot, flag): """ Rotate vectors from rotated coordinates to geographical coordinates. Parameters ---------- al : float alpha Euler angle be : float beta Euler angle ga : float gamma Euler angle lon : array 1d array of longitudes in rotated or geographical coordinates (see flag parameter) lat : array 1d array of latitudes in rotated or geographical coordinates (see flag parameter) urot : array 1d array of u component of the vector in rotated coordinates vrot : array 1d array of v component of the vector in rotated coordinates flag : 1 or 0 flag=1 - lon,lat are in geographical coordinate flag=0 - lon,lat are in rotated coordinate Returns ------- u : array 1d array of u component of the vector in geographical coordinates v : array 1d array of v component of the vector in geographical coordinates """ # first get another coordinate if flag == 1: (rlon, rlat) = scalar_g2r(al, be, ga, lon, lat) else: rlon = lon rlat = lat (lon, lat) = scalar_r2g(al, be, ga, rlon, rlat) # then proceed... rad = mt.pi / 180 al = al * rad be = be * rad ga = ga * rad rotate_matrix = np.zeros(shape=(3, 3)) rotate_matrix[0, 0] = np.cos(ga) * np.cos(al) - np.sin(ga) * np.cos(be) * np.sin(al) rotate_matrix[0, 1] = np.cos(ga) * np.sin(al) + np.sin(ga) * np.cos(be) * np.cos(al) rotate_matrix[0, 2] = np.sin(ga) * np.sin(be) rotate_matrix[1, 0] = -np.sin(ga) * np.cos(al) - np.cos(ga) * np.cos(be) * np.sin( al ) rotate_matrix[1, 1] = -np.sin(ga) * np.sin(al) + np.cos(ga) * np.cos(be) * np.cos( al ) rotate_matrix[1, 2] = np.cos(ga) * np.sin(be) rotate_matrix[2, 0] =
np.sin(be)
numpy.sin
''' Author: Dr. <NAME> Required packages: scikit-learn, scipy, numpy This library contains a class for individual pointclouds ( ProcessPC() ), and classes for lists of pointclouds ( iterator_points_pointlabels() , iterator_points() , iterator_binaryVoxels() , iterator_binaryVoxels_pointlabels() ). ProcessPC() is useful for various applications where you want a single pointcloud to be an object, and you wish you to mutate that object in different ways (e.g. voxelise, rasterise, normalise, rotate, etc.) The iterator classes are designed for machine learning applications. They are useful as iterators when you want to use several pointclouds to train (or predict with) a machine learning model (e.g. return the next batch of pointclouds to train on). ''' import numpy as np import copy import random from scipy import signal #only for bev vertical density from scipy import ndimage #only for bev max height from sklearn.neighbors import KDTree # only for ground normalisation # Insert another class which, given a list of pointclouds, splits data into training and val upon init. # Contains get batch, when called it, pulls random batch of pointclouds as list, loops through list using ProcessPC def gaussian_kernel(size,mu=0.0,sigma=1.0): x, y = np.meshgrid(np.linspace(-1, 1, size), np.linspace(-1, 1, size)) d = np.sqrt(x * x + y * y) g = np.exp(-((d - mu) ** 2 / (2.0 * sigma ** 2))) return g class iterator_points_pointlabels(): def __init__(self, xyz_list=None,labels=None,returns=None, numClasses=None, batchsize=None ): self.data_num = len(xyz_list) if numClasses is None: self.nb_class = np.size(np.unique(labels[0])) # only counts number of classes in first pcd else: self.nb_class = numClasses self.pc_list = [] for i in range(len(xyz_list)): if (labels is None) & (returns is None): self.pc_list.append(ProcessPC(xyz_data=xyz_list[i])) elif (labels is None) & (returns is not None): self.pc_list.append(ProcessPC(xyz_data=xyz_list[i], pc_returns=returns[i])) elif (labels is not None) & (returns is None): self.pc_list.append(ProcessPC(xyz_data=xyz_list[i], pc_labels=labels[i])) else: self.pc_list.append(ProcessPC(xyz_data=xyz_list[i],pc_labels=labels[i],pc_returns=returns[i])) if labels is None: self.flag_label = 0 else: self.flag_label = 1 if returns is None: self.flag_return = 0 else: self.flag_return = 1 if batchsize is not None: self.batchsize = batchsize else: self.batchsize = self.data_num self.current_batch = np.arange(self.batchsize) def next_batch( self, augment=False, pre_process=False, addAxis=False ): # augments the current batch once # use with network_pointnet_bs1 (only works for batchsize of 1) pc_temp = copy.deepcopy(self.pc_list[self.current_batch[0]]) if augment==True: pc_temp.augmentation_Rotation() pc_temp.augmentation_Flipping() pc_batch = pc_temp.pc.copy() if addAxis: # if using bsK, want output to be K x 1 x N x 3, where k=1 pc_batch = pc_batch[np.newaxis,...] pc_batch = pc_batch[np.newaxis, ...] if pre_process: pc_batch[0, ...] -= np.min(pc_batch[i, ...], axis=0) pc_batch[0, ...] /= np.max(pc_batch[i, ...]) if self.flag_label == 1: labels = np.array(pc_temp.pc_labels) labels_onehot = np.zeros((len(labels), self.nb_class)) labels_onehot[np.arange(len(labels)), labels] = 1 if self.flag_return == 1: pc_returns_batch = np.array(pc_temp.pc_returns) # update current batch self.current_batch += self.batchsize self.current_batch[self.current_batch >= self.data_num] = \ self.current_batch[self.current_batch >= self.data_num] - self.data_num if (self.flag_label == 1) & (self.flag_return == 0): return pc_batch, labels_onehot, labels elif (self.flag_label == 0) & (self.flag_return == 1): return pc_batch, pc_returns_batch elif (self.flag_label == 1) & (self.flag_return == 1): return pc_batch, labels_onehot, labels, pc_returns_batch else: return pc_batch def next_batch2( self, augment=False, numAugs=0, pre_process=False, angle_x_randLim=0, angle_y_randLim=0, normalise=False, newAxis_loc=1 ): # appends numAugs different augmentations to the current batch n_points = self.pc_list[self.current_batch[0]].pc.shape[0] pc_batch = np.empty( ( [self.batchsize*(numAugs+1),n_points,3] ) ) labels = np.empty( ( [self.batchsize*(numAugs+1),n_points] ) ) returns_batch = np.empty( ( [self.batchsize*(numAugs+1),n_points] ) ) for j in range(numAugs+1): for i in range(self.batchsize): pc_temp = copy.deepcopy(self.pc_list[self.current_batch[i]]) if (augment==True)&(j>0): # leave one set un-augmented pc_temp.augmentation_Rotation(angle_x_randLim=angle_x_randLim, angle_y_randLim=angle_y_randLim) pc_temp.augmentation_Flipping() if normalise: pc_temp.normalisation() pc_batch[(j*self.batchsize)+i,...] = pc_temp.pc.copy() labels[(j*self.batchsize)+i,...] = pc_temp.pc_labels.copy() if self.flag_return == 1: returns_batch[(j * self.batchsize) + i, ...] = pc_temp.pc_returns.copy() # pre-process if pre_process: pc_batch[0, ...] -= np.min(pc_batch[i, ...], axis=0) pc_batch[0, ...] /= np.max(pc_batch[i, ...]) if newAxis_loc == 1: pc_batch = pc_batch[:, np.newaxis, ...] elif newAxis_loc == 0: pc_batch = pc_batch[np.newaxis, ...] #labels = np.array(pc_temp.pc_labels) #labels = np.tile(labels[:,np.newaxis],(1,numAugs+1)) labels_onehot = np.zeros((self.batchsize*(numAugs+1) , n_points , self.nb_class)) #labels_onehot[:,np.arange(n_points), labels.astype(np.int).T] = 1 xv, yv = np.meshgrid(np.arange(0, (self.batchsize*(numAugs+1))), np.arange(0, n_points)) labels_onehot[np.ravel(xv), np.ravel(yv), np.ravel( labels.astype(np.int).T )] = 1 #labels = np.tile(labels[np.newaxis,:],[numAugs+1,1]) # update current batch self.current_batch += self.batchsize self.current_batch[self.current_batch >= self.data_num] = \ self.current_batch[self.current_batch >= self.data_num] - self.data_num if self.flag_return == 1: return pc_batch, labels_onehot,labels, returns_batch else: return pc_batch, labels_onehot,labels def get_pc(self, idx=[1], augment=False, angle_x=0, angle_y=0, angle_z=30, pre_process=False, addAxis=False, normalise=False, newAxis_loc=1 ): # default not to augment, but if so you can specify the rotations. Default rotation only about z n_points = self.pc_list[idx[0]].pc.shape[0] pc_batch = np.empty(([len(idx), n_points, 3])) if self.flag_label==1: labels = np.empty(([len(idx), n_points])) if self.flag_return == 1: returns_batch = np.empty(([len(idx), n_points])) for i in range(len(idx)): pc_temp = copy.deepcopy(self.pc_list[idx[i]]) if augment==True: pc_temp.augmentation_Rotation(angle_x=angle_x, angle_y=angle_y, angle_z=angle_z) #pc_temp.augmentation_Flipping() if normalise: pc_temp.normalisation() pc_batch[i,...] = pc_temp.pc.copy() if self.flag_label == 1: labels[i,:] = np.array(pc_temp.pc_labels) if self.flag_return == 1: returns_batch[i,:] = np.array(pc_temp.pc_returns) if addAxis: if newAxis_loc == 1: pc_batch = pc_batch[:, np.newaxis, ...] elif newAxis_loc == 0: pc_batch = pc_batch[np.newaxis, ...] if self.flag_label == 1: labels_onehot = np.zeros((len(idx), n_points, self.nb_class)) xv, yv = np.meshgrid(np.arange(0, (len(idx))), np.arange(0, n_points)) labels_onehot[np.ravel(xv), np.ravel(yv), np.ravel(labels.astype(np.int).T)] = 1 if (self.flag_label == 1) & (self.flag_return == 0): return pc_batch, labels_onehot, labels elif (self.flag_label == 0) & (self.flag_return == 1): return pc_batch, returns_batch elif (self.flag_label == 1) & (self.flag_return == 1): return pc_batch, labels_onehot, labels, returns_batch else: return pc_batch def indexed_batch( self, idx=[1], augment=False, numAugs=0, pre_process=False, angle_x_randLim=0, angle_y_randLim=0, normalise=False, newAxis_loc=1, adapt_num_classes=False ): # appends numAugs different augmentations to the current batch n_points = self.pc_list[idx[0]].pc.shape[0] pc_batch = np.empty( ( [len(idx)*(numAugs+1),n_points,3] ) ) labels = np.empty( ( [len(idx)*(numAugs+1),n_points] ) ) returns_batch = np.empty(([len(idx)*(numAugs+1),n_points])) for j in range(numAugs+1): for i in range(len(idx)): pc_temp = copy.deepcopy(self.pc_list[idx[i]]) if (augment==True)&(j>0): # leave one set un-augmented pc_temp.augmentation_Rotation(angle_x_randLim=angle_x_randLim, angle_y_randLim=angle_y_randLim) pc_temp.augmentation_Flipping() #pc_temp.augmentation_Shuffle() if normalise: pc_temp.normalisation() pc_batch[(j*len(idx))+i,...] = pc_temp.pc.copy() labels[(j*len(idx))+i,...] = pc_temp.pc_labels.copy() if self.flag_return == 1: returns_batch[(j*len(idx))+i,...] = pc_temp.pc_returns.copy() # pre-process if pre_process: pc_batch[0, ...] -= np.min(pc_batch[i, ...], axis=0) pc_batch[0, ...] /= np.max(pc_batch[i, ...]) if newAxis_loc == 1: pc_batch = pc_batch[:,np.newaxis, ...] elif newAxis_loc == 0: pc_batch = pc_batch[np.newaxis, ...] #labels = np.array(pc_temp.pc_labels) #labels = np.tile(labels[:,np.newaxis],(1,numAugs+1)) if adapt_num_classes: # allows number of classes (and hence size of onehot) to be modified each batch self.nb_class = len(np.unique(labels)) labels_onehot = np.zeros((len(idx)*(numAugs+1) , n_points , self.nb_class)) #labels_onehot[:,np.arange(n_points), labels.astype(np.int).T] = 1 xv, yv = np.meshgrid(np.arange(0, (len(idx)*(numAugs+1))), np.arange(0, n_points)) labels_onehot[np.ravel(xv), np.ravel(yv), np.ravel( labels.astype(np.int).T )] = 1 #labels = np.tile(labels[np.newaxis,:],[numAugs+1,1]) if self.flag_return == 1: return pc_batch, labels_onehot,labels, returns_batch else: return pc_batch, labels_onehot,labels def reset_batch(self): """ Resets the current batch to the beginning. """ self.current_batch = np.arange(self.batchsize) def shuffle(self): """ Randomly permutes all dataSamples (and corresponding targets). """ random.shuffle(self.pc_list) class iterator_points(): def __init__(self, xyz_list=None,labels=None, batchsize=None ): self.data_num = len(xyz_list) self.nb_class = np.max(labels)+1 self.first_batch = 1 self.current_batch = [] self.labels = labels self.pc_list = [] for i in range(len(xyz_list)): self.pc_list.append(ProcessPC(xyz_list[i])) if batchsize is not None: self.batchsize = batchsize else: self.batchsize = self.data_num self.current_batch = np.arange(self.batchsize) def next_batch( self, augment=False, pre_process=False ): # augments the current batch once if self.first_batch: self.current_batch = (np.arange(self.batchsize)).tolist() self.first_batch = 0 else: self.current_batch = (np.array(self.current_batch) + self.batchsize).tolist() if self.current_batch[-1] > (self.data_num - self.batchsize): self.first_batch = 1 pc_temp = copy.deepcopy(self.pc_list[self.current_batch[0]]) if augment==True: pc_temp.augmentation_Rotation() pc_temp.augmentation_Flipping() pc_batch = pc_temp.pc.copy() pc_batch = pc_batch[np.newaxis,...] # pre-process - scale between [-1,1] #if pre_process: #og_batch = 2*(og_batch-0.5) labels = np.array(self.labels) labels = labels[self.current_batch] labels_onehot = np.zeros((len(labels), self.nb_class)) labels_onehot[np.arange(len(labels)), labels] = 1 # update current batch self.current_batch += self.batchsize self.current_batch[self.current_batch >= self.data_num] = \ self.current_batch[self.current_batch >= self.data_num] - self.data_num return pc_batch, labels_onehot, labels def next_batch2( self, augment=False, numAugs=0, pre_process=False ): # appends numAugs different augmentations to the current batch if self.first_batch: self.current_batch = (np.arange(self.batchsize)).tolist() self.first_batch = 0 else: self.current_batch = (np.array(self.current_batch) + self.batchsize).tolist() if self.current_batch[-1] > (self.data_num - self.batchsize): self.first_batch = 1 n_points = self.pc_list[self.current_batch[0]].pc.shape[0] pc_batch = np.empty( ( [self.batchsize*(numAugs+1),n_points,3] ) ) for j in range(numAugs+1): pc_temp = copy.deepcopy(self.pc_list[self.current_batch[0]]) if (augment==True)&(j>1): # leave one set un-augmented pc_temp.augmentation_Rotation() pc_temp.augmentation_Flipping() pc_batch[j,...] = pc_temp.pc.copy() # pre-process - scale between [-1,1] #if pre_process: #og_batch = 2*(og_batch-0.5) labels = np.array(self.labels) labels = labels[self.current_batch] labels = np.tile(labels,(numAugs+1)) labels_onehot = np.zeros((len(labels), self.nb_class)) labels_onehot[np.arange(len(labels)), labels] = 1 # update current batch self.current_batch += self.batchsize self.current_batch[self.current_batch >= self.data_num] = \ self.current_batch[self.current_batch >= self.data_num] - self.data_num return pc_batch, labels_onehot, labels def get_pc(self, idx=[1], augment=False, angle_x=0, angle_y=0, angle_z=30): # default not to augment, but if so you can specify the rotations. Default rotation only about z pc_temp = copy.deepcopy(self.pc_list[idx[0]]) if augment==True: pc_temp.augmentation_Rotation(angle_x=angle_x, angle_y=angle_y, angle_z=angle_z) #pc_temp.augmentation_Flipping() pc_batch = pc_temp.pc.copy() pc_batch = pc_batch[np.newaxis, ...] labels =
np.array(self.labels)
numpy.array
import logging import os import numpy as np from skimage.measure import block_reduce import utils.data_utils import utils.image_utils log = logging.getLogger('data') class Data(object): def __init__(self, images, masks, index, downsample=1): """ Data constructor. :param images: a 4-D numpy array of images. Expected shape: (N, H, W, 1) :param masks: a 4-D numpy array of segmentation masks. Expected shape: (N, H, W, L) :param index: a 1-D numpy array indicating the volume each image/mask belongs to. Used for data selection. :param downsample: factor to downsample images. """ assert images.shape[:-1] == masks.shape[:-1] assert images.shape[0] == index.shape[0] self.image_shape = images.shape[1:] self.mask_shape = masks.shape[1:] self.images = images self.masks = masks self.index = index self.num_volumes = len(self.volumes()) self.downsample(downsample) log.info( 'Creating Data object with images of shape %s and %d volumes' % (str(self.images.shape), self.num_volumes)) log.info('Images value range [%.1f, %.1f]' % (images.min(), images.max())) log.info('Masks value range [%.1f, %.1f]' % (masks.min(), masks.max())) def copy(self): return Data(np.copy(self.images), np.copy(self.masks), np.copy(self.index)) def merge(self, other): assert self.images.shape[1:] == other.images.shape[1:], str(self.images.shape) + ' vs ' + str( other.images.shape) assert self.masks.shape[1:] == other.masks.shape[1:], str(self.masks.shape) + ' vs ' + str(other.masks.shape) log.info('Merging Data object of %d to this Data object of size %d' % (other.size(), self.size())) self.images = np.concatenate([self.images, other.images], axis=0) self.masks = np.concatenate([self.masks, other.masks], axis=0) self.index = np.concatenate([self.index, other.index], axis=0) self.num_volumes = len(self.volumes()) def shuffle(self): idx = np.array(range(self.images.shape[0])) np.random.shuffle(idx) self.images = self.images[idx] self.masks = self.masks[idx] self.index = self.index[idx] def crop(self, shape): log.debug('Cropping images and masks to shape ' + str(shape)) [images], [masks] = utils.data_utils.crop_same([self.images], [self.masks], size=shape, pad_mode='constant') self.images = images self.masks = masks assert self.images.shape[1:-1] == self.masks.shape[1:-1] == tuple(shape), \ 'Invalid shapes: ' + str(self.images.shape[1:-1]) + ' ' + str(self.masks.shape[1:-1]) + ' ' + str(shape) def volumes(self): return sorted(set(self.index)) def get_images(self, vol): return self.images[self.index == vol] def get_masks(self, vol): return self.masks[self.index == vol] def size(self): return len(self.images) def sample_per_volume(self, num, seed=-1): log.info('Sampling %d from each volume' % num) if seed > -1:
np.random.seed(seed)
numpy.random.seed
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ aerodynamics.py includes the functions used to calculate the aerodynamic moments and forces experienced by an object entering the atmosphere which are required for uvw_trajectory function Created on Mon Jan 23 10:18:06 2017 @author: tr1010 (<NAME>) """ import numpy as np import math def aero_calc(Vinf, areas, normals, centroids, Ma, Kn, R, T, q_inf, p_inf, Tw, aero_params): """ aero_calc calculates the aerodynamic forces and moments acting on the spacecraft (in the spacecraft body frame of reference). In the case of hypersonic continuum flow, aero_calc uses Newtonian impact theory to calculate the pressure distribution over the body. In the free-molecular flow regime aero_calc usesSchaaf & Chambre's formulation. For the transitional regime, the bridging function of Wilmoth et al. is used. Inputs: Vinf: a 3-vector describing the oncoming free-stream flow velocity in the body frame of reference areas: a n-element array of the areas of each of the shape's surfaces. centroids: a 3xn numpy array of reals describing the position of each surface's centroid Ma: Mach number of the free stream flow Kn: Knudsen number of the free stream flow R: Gas constant of the free stream flow T: Free-stream temperature of the flow q_inf: dynamic pressure of the free stream flow p_inf: atmospheric pressure (static pressure of the free stream) Tw: Wall temperature (currently fixed to default 287 K) aero_params: python tuple describing a number of parameters for the aerodynamics solver in the following order: KnFM, KnCont, a1, a2, SigN, SigT = aero_params Outputs: AeroF: a 3 vector describing the aerodynamic forces acting on the body in the body frame of reference AeroM: a 3 vector describing the aerodynamic moments acting on the body in the body frame of reference """ numpans = np.size(normals,1) AeroF = np.zeros(3) AeroM = np.zeros(3) KnFM, KnCont, a1, a2, SigN, SigT = aero_params #calculate aerodynamic forces or moments # for continuum or transitional flow if Kn < KnFM: if Kn < KnCont: # Calculate continuum pressure distribution Cp = newton_solver(normals,Vinf,Ma,1) Ct =
np.zeros(numpans)
numpy.zeros
import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib.pyplot import rc as rc import argparse import torch import torch.nn as nn import torch.optim as optim import seaborn as sns parser = argparse.ArgumentParser() parser.add_argument('--npoints', type=int, default=5000) args = parser.parse_args() data = pd.read_csv('F16Data_FullMSine_Level1.csv', header=0, nrows=args.npoints) data = data.values.tolist() data = np.asarray(data) data = np.transpose(data) acc1_data = data[2] acc2_data = data[3] acc1_data = acc1_data - np.full_like(acc1_data, np.mean(acc1_data)) acc2_data = acc2_data - np.full_like(acc2_data, np.mean(acc2_data)) rescaling = 1 acc1_data = rescaling*acc1_data acc2_data = rescaling*acc2_data acc2_tensor = torch.tensor(acc2_data).float() acc2_tensor = acc2_tensor.reshape(args.npoints, 1) samp_ts_array = np.arange(args.npoints) samp_ts = torch.tensor(samp_ts_array).float() samp_ts = samp_ts.reshape(args.npoints, 1) fig = plt.figure(figsize=[15, 4]) fig.subplots_adjust(hspace=0., wspace=0) #################################################### sns.set_style('darkgrid') rc('font', family='serif') rc('text', usetex=True) ax1 = plt.subplot(1,3,1) names = ['sonode', 'anode(1)'] labels =['SONODE', 'ANODE(1)'] colors = ['#004488', '#BB5566'] def add_bit(x): iters = np.load(names[x]+'./1./itr_arr.npy') loss_1 = np.load(names[x]+'./1./loss_arr.npy') loss_2 = np.load(names[x]+'./2./loss_arr.npy') loss_3 = np.load(names[x]+'./3./loss_arr.npy') loss = np.empty((len(loss_1),3)) for i in range(len(loss_1)): loss[i][0] = loss_1[i] loss[i][1] = loss_2[i] loss[i][2] = loss_3[i] loss_mean = np.empty(len(loss_1)) for i in range(len(loss_1)): loss_mean[i] = np.mean(loss[i]) loss_std = np.empty(len(loss_1)) for i in range(len(loss_1)): loss_std[i] = np.std(loss[i]) loss_p = loss_mean + loss_std loss_m = loss_mean - loss_std plt.plot(iters, loss_mean, color=colors[x], label=labels[x]) ax1.fill_between(x=iters, y1=loss_p, y2=loss_m, alpha=0.2, color=colors[x]) add_bit(0) add_bit(1) rc('font', family='serif') rc('text', usetex=True) plt.legend(fontsize=12) plt.xlabel('Iterations', fontsize=16) plt.ylabel('MSE', fontsize=16) plt.ylim(0, 2) plt.title('Airplane Training MSE', fontsize=22) ################################################# sns.set_style('dark') ax2 = plt.subplot(1,3,2) sonode_to_plot_acc2 = np.load('sonode./1./acc2_test.npy') anode_to_plot_acc2 = np.load('anode(1)./2./acc2_test.npy') rc('font', family='serif') rc('text', usetex=True) plt.plot(samp_ts_array, acc2_data, label='True $a_{2}$', color='#DDAA33') plt.plot(samp_ts_array, anode_to_plot_acc2, label='ANODE(1)', color='#BB5566') plt.plot(samp_ts_array, sonode_to_plot_acc2, label='SONODE', color='#004488') plt.xlabel('t', fontsize=16) plt.ylabel('$a_{2}$', fontsize=16) handles, labels = plt.gca().get_legend_handles_labels() order = [0,2,1] plt.legend([handles[idx] for idx in order],[labels[idx] for idx in order],\ loc='lower right', fontsize=12, framealpha=1) plt.axvline(x=1000, linestyle='--', color='k') plt.title('Airplane $a_{2}$', fontsize=22) ################################################### sns.set_style('darkgrid') ax3 = plt.subplot(1,3,3) names = ['sonode', 'anode(1)'] labels =['SONODE', 'ANODE(1)'] colors = ['#004488', '#BB5566'] def add_bit(x): iters = np.load(names[x]+'./1./running_error_times.npy') loss_1 = np.load(names[x]+'./1./running_error.npy') loss_2 = np.load(names[x]+'./2./running_error.npy') loss_3 =
np.load(names[x]+'./3./running_error.npy')
numpy.load
import cv2 import glob import math import os import sys import tempfile import numpy as np from PIL import Image from scipy import ndimage from cnn import get_num, get_name BUF = 5 def gap_left(hist, x, th, K=10): """ Checks if this x-coordinate marks the start of a new word/block. :param hist: distribution of pixels. :param x: x-coordinate. :param th: threshold value. :param K: number of columns of empty pixels to consider as new word/block. :return: whether this x-coordinate marks the start of a new word/block. """ gap = hist[x+1] > th for i in range(K): if x - i < 0: break gap = gap and (i > x or hist[x-i] <= th) return gap def gap_right(hist, x, th, W, K=10): """ Checks if this x-coordinate marks the end of a word/block. :param hist: distribution of pixels. :param x: x-coordinate. :param th: threshold value. :param K: number of columns of empty pixels to consider as new word/block. :return: whether this x-coordinate marks the end of a word/block. """ gap = hist[x-1] > th for i in range(K): if x + i > W: break gap = gap and (x+i >= len(hist) or hist[x+i] <= th) return gap def straighten(img): """ Deskews the input image based on the largest contour. :param img: input image. :return: deskewed image. """ contours, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) max_area = 0 max_contour = None for contour in contours: area = cv2.contourArea(contour) if area > max_area: max_area = area max_contour = contour rect = cv2.minAreaRect(max_contour) angle = rect[2] if angle < -45: angle = (90 + angle) # rotate the image to deskew it (h, w) = img.shape[:2] center = (w // 2, h // 2) M = cv2.getRotationMatrix2D(center, angle, 1.0) rotated = cv2.warpAffine(threshed, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE) return rotated def sort_contours(cnts): """ Sorts the contours in left-to-right order (based on x coordinate). :param cnts: list of contours. :return: sorted contours. """ # construct the list of bounding boxes and sort them from top to bottom bounding_boxes = [cv2.boundingRect(c) for c in cnts] (cnts, bounding_boxes) = zip(*sorted(zip(cnts, bounding_boxes), key=lambda b: b[1][0])) return (cnts, bounding_boxes) def get_best_shift(img): """ Finds x and y units to shift the image by so it is centered. :param img: input image. :return: best x and y units to shift by. """ cy,cx = ndimage.measurements.center_of_mass(img) rows,cols = img.shape shiftx = np.round(cols/2.0-cx).astype(int) shifty = np.round(rows/2.0-cy).astype(int) return shiftx, shifty def shift(img,sx,sy): """ Shifts the image by the given x and y units. :param img: input image. :param sx: x units to shift by. :param sy: y units to shift by. :return: shifted image. """ rows, cols = img.shape M = np.float32([[1, 0, sx], [0, 1, sy]]) shifted = cv2.warpAffine(img, M, (cols, rows)) return shifted def process_num(gray): """ Process an input image of a handwritten number in the same way the MNIST dataset was processed. :param gray: the input grayscaled image. :return: the processed image. """ gray = cv2.resize(gray, (28, 28)) # strip away empty rows and columns from all sides while np.sum(gray[0]) == 0: gray = gray[1:] while np.sum(gray[:, 0]) == 0: gray = np.delete(gray, 0, 1) while np.sum(gray[-1]) == 0: gray = gray[:-1] while np.sum(gray[:, -1]) == 0: gray =
np.delete(gray, -1, 1)
numpy.delete
#!/usr/bin/python ''' Distance calculation substitute for cosmolopy All formula used are from https://arxiv.org/pdf/astro-ph/9905116.pdf ''' import numpy as np from scipy.integrate import quad class cosmo_distance(object): def __init__(self, **cosmology): ''' To initiate, cosmological parameters must be supplied in the form of a dictionary with the following keys {'omega_M_0', 'omega_lambda_0', 'h'} Input: **kwargs = {'omega_M_0', 'omega_lambda_0', 'h'} ''' self.c = 299792458 # speed of light in ms^-1 # initialize class for k in ['omega_M_0', 'omega_lambda_0', 'h']: if k not in cosmology.keys(): raise Exception('Cosmological parameter {} must be supplied'.format(k)) self.load_param(**cosmology) def load_param(self, **cosmology): ''' set up the cosmological parameters density of curvature is defined as 1-om0-ode unless otherwise specified. ''' self.om0 = cosmology.get('omega_M_0') self.ode = cosmology.get('omega_lambda_0') self.ok0 = cosmology.get('omega_k_0', 1-self.om0-self.ode) self.h = cosmology.get('h') # Hubble distance D_h (unit=Mpc) self.D_h = self.c/1000./100./self.h def E(self, z): ''' time derivative of the logarithm of the scale factor E(z) = \frac{\dot{a}(t)}{a(t)} Input: z : float or array of float, redshift kwargs: 'omega_M_0' 'omega_lambda_0' 'omega_k_0' density parameters output: E : float or array of float ''' EE = np.sqrt(self.om0*(1.+z)**3.+self.ok0*(1.+z)**2.+self.ode) return EE def comoving_distance(self, z, z_0=0): ''' line-of-sight comoving distance D_c = D_h \int^z_0 \frac{dz'}{E(z')} unit = Mpc Input: z : float or array of float, redshift z0 : float, default is 0, where integration begins kwargs: 'omega_M_0' 'omega_lambda_0' 'omega_k_0' density parameters output: D_c : float or array of float ''' z = np.atleast_1d(z) # epsabs can be tweaked to achieve higher precision D_c = np.array([self.D_h*quad(lambda x:1./self.E(x), z_0, lim, epsabs=1.e-5)[0] for lim in z]) # return a float if only one redshift if np.size(D_c) > 1: return D_c else: return D_c[0] def transverse_comoving_distance(self, z): ''' The comoving distance between two events at the same redshift or distance but separated on the sky by some angle is D_m * d\theta D_m is the transverse comoving distance if omega_R > 0: D_m = D_h /\sqrt(Omega_R) \sinh(\sqrt(Omega_R)*D_c/D_h) if omega_R = 0: D_m = D_c if omega_R < 0: D_m = D_h /\sqrt(\abs(Omega_R)) \sin(\sqrt(\abs(Omega_R))*D_c/D_h) unit = Mpc Input: z : float or array of float, redshift kwargs: 'omega_M_0' 'omega_lambda_0' 'omega_k_0' density parameters output: D_m : float or array of float ''' if self.ok0==0: return self.comoving_distance(z) elif self.ok0>0: return self.D_h/np.sqrt(self.ok0)*np.sinh(np.sqrt(self.ok0)\ *self.comoving_distance(z)/self.D_h) else: return self.D_h/np.sqrt(np.abs(self.ok0))*np.sin(np.sqrt(np.abs(self.ok0))\ *self.comoving_distance(z)/self.D_h) def angular_diameter_distance(self, z): ''' ratio of an object’s physical transverse size to its angular size D_A = \frac{D_M}{1+z} Input: z : float or array of float, redshift kwargs: 'omega_M_0' 'omega_lambda_0' 'omega_k_0' density parameters output: D_A : float or array of float ''' return self.transverse_comoving_distance(z)/(1.+z) def luminosity_distance(self, z): ''' for a flat universe D_L = (1+z)*D_M unit = Mpc Input: z : float or array of float, redshift kwargs: 'omega_M_0' 'omega_lambda_0' 'omega_k_0' density parameters output: D_L : float or array of float ''' return (1.+z)*self.transverse_comoving_distance(z) def comoving_volume(self, z): ''' comoving volume up to redshift z for flat universe V_c = \frac{4\pi}{3}D_M^3 = \frac{4\pi}{3}D_c^3 other definitions please refer to the reference unit = Mpc^3 Input: z : float or array of float, redshift kwargs: 'omega_M_0' 'omega_lambda_0' 'omega_k_0' density parameters output: V_c : float or array of float ''' if self.ok0 == 0: return 4*np.pi/3 * self.comoving_distance(z)**3. elif ok0>0: D_m = self.transverse_comoving_distance(z) D_ratio = D_m/self.D_h prefactor = 4.*np.pi*self.D_h**3./2./self.ok0 return prefactor*(D_ratio*np.sqrt(1+self.ok0*D_ratio**2.)\ -np.arcsinh(np.sqrt(
np.abs(self.ok0)
numpy.abs
import numpy as np import numpy.ma as ma from numpy.testing import assert_array_equal import pytest from cloudnetpy.categorize import melting @pytest.mark.parametrize("model, result", [ ('some_ecmwf_model', (-4, 3)), ('some_other_model', (-8, 6)), ]) def test_find_model_temperature_range(model, result): assert melting._find_model_temperature_range(model) == result @pytest.mark.parametrize("t_prof, t_range, result", [ (np.array([300, 290, 280, 270, 260, 250, 240]), (-10, 10), [2, 3]), (np.array([300, 290, 280, 270, 260, 250, 240]), (-5, 5), [3]), (np.array([290, 280, 270, 275, 260, 250, 240]), (-10, 10), [1, 2, 3]), (np.array([270, 275, 260, 250, 240]), (-10, 10), [0, 1]), (np.array([220, 210, 200]), (-10, 10), [0]), (np.array([280, 270, 260]), (-5, 2), [1]), (np.linspace(275, 270, 10), (-4, -3), range(10)) ]) def test_get_temp_indices(t_prof, t_range, result): indices = melting._get_temp_indices(t_prof, t_range) assert_array_equal(indices, result) @pytest.mark.parametrize("ldr, v, indices, result", [ ([0, 1, 20, 100, 30, 2, 1], [-1, -2, -4, -1, 0, 0, 0], (1, 3, 6), True) ]) def test__is_good_ldr_peak(ldr, v, indices, result): assert melting._is_good_ldr_peak(ldr, v, indices) is result @pytest.mark.parametrize("v, indices, result", [ ([-1, -2.1, -1, 0], (1, 2), True), ([-1, -1.9, -1, 0], (1, 2), False), ]) def test__is_good_ldr_peak(v, indices, result): assert melting._is_good_v_peak(v, indices) is result class Obs: def __init__(self): self.tw = np.tile(np.linspace(275, 270, 10), (2, 1)) self.tw[:, -1] = 250 self.ldr = ma.array([[1, 1, 1, 3, 150, 3, 1, 1, 1, 1], [1, 1, 1, 3, 150, 3, 1, 1, 1, 1]]) self.v = ma.array([[-1, -1, -4, -2, -2, -1, 0, 0, 0, 0], [-1, -1, -4, -2, -2, -1, 0, 0, 0, 0]]) self.model_type = 'ecmwf' def test_find_melting_layer(): obs = Obs() layer = melting.find_melting_layer(obs, smooth=False) result = np.array([[0, 0, 0, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 0, 0, 0, 0]])
assert_array_equal(layer, result)
numpy.testing.assert_array_equal
""" Run SSN-Moment Matching """ from __future__ import print_function import theano import theano.tensor as T import lasagne import numpy as np from .. import utils from ..gradient_expressions.utils import subsample_neurons, \ sample_sites_from_stim_space from ..gradient_expressions import make_w_batch as make_w from ..gradient_expressions import SS_grad as SSgrad from .. import ssnode as SSsolve from .gan import add_learning_options, do_learning import time from .. import stimuli def learn( seed, gen_learn_rate, loss, n_samples, lam, rate_cost, rate_penalty_threshold, rate_penalty_no_I, n_sites, IO_type, rate_hard_bound, rate_soft_bound, dt, max_iter, true_IO_type, truth_size, truth_seed, bandwidths, sample_sites, track_offset_identity, init_disturbance, contrast, offsets, datastore, J0, D0, S0, timetest, convtest, testDW, DRtest, truth_size_per_batch, use_inhibitory, # ignore: gan, driver): iterations = driver.iterations quiet = driver.quiet print(datastore) sample_sites = sample_sites_from_stim_space(sample_sites, n_sites) print(sample_sites) def make_functions(**kwds): return make_MOMENT_functions(lam=lam, **kwds) train_update = MOMENT_update rate_cost = float(rate_cost) np.random.seed(seed) smoothness = 0.03125 coe_value = .01 #k exp_value = 2.2 #n ssn_params = dict( dt=dt, max_iter=max_iter, rate_soft_bound=rate_soft_bound, rate_hard_bound=rate_hard_bound, io_type=IO_type, k=coe_value, n=exp_value, r0=np.zeros(2 * n_sites), ) #specifying the shape of model/input n = theano.shared(n_sites,name = "n_sites") nz = theano.shared(n_samples,name = 'n_samples') nb = theano.shared(len(bandwidths)*len(contrast),name = 'n_stim') ##getting regular nums## N = int(n.get_value()) NZ = int(nz.get_value()) NB = int(nb.get_value()) ### #array that computes the positions X = theano.shared(np.linspace(-.5,.5,n.get_value()).astype("float32"),name = "positions") pos_num = X.get_value() BAND_IN = stimuli.input(bandwidths, X.get_value(), smoothness, contrast) data = [] if not true_IO_type: true_IO_type = IO_type print("Generating the truth...") data, _ = SSsolve.sample_tuning_curves( sample_sites=sample_sites, NZ=truth_size, seed=truth_seed, bandwidths=bandwidths, smoothness=smoothness, contrast = contrast, offset = offsets, N=n_sites, rate_stop_at=200, track_offset_identity=track_offset_identity, include_inhibitory_neurons = use_inhibitory, **dict(ssn_params, io_type=true_IO_type)) print("DONE") data = data.T # shape: (ncondition,N_data, nb) print(data.shape) # Check for sanity: n_stim = len(bandwidths) * len(contrast) # number of stimulus conditions if track_offset_identity: assert n_stim * len(sample_sites) * (2 if use_inhibitory else 1) == data.shape[-1] else: assert n_stim == data.shape[-1] #defining all the parameters that we might want to train print(n_sites) exp = theano.shared(exp_value,name = "exp") coe = theano.shared(coe_value,name = "coe") #these are parameters we will use to test the GAN J2 = theano.shared(np.log(np.array(J0)).astype("float32"), name="j") D2 = theano.shared(np.log(np.array(D0)).astype("float32"), name="d") S2 = theano.shared(np.log(np.array(S0)).astype("float32"), name="s") Jp2 = T.exp(J2) Dp2 = T.exp(D2) Sp2 = T.exp(S2) #these are the parameters to be fit dp = init_disturbance if isinstance(dp, tuple): J_dis, D_dis, S_dis = dp else: J_dis = D_dis = S_dis = dp J_dis = np.array(J_dis) * np.ones((2, 2)) D_dis =
np.array(D_dis)
numpy.array
import numpy import sounddevice import time import math fs = 48000 sounddevice.default.samplerate=fs G = numpy.zeros(int(0.125*fs)) hz=783 #G for x in range(len(G)): G[x]= round(math.sin(2*math.pi*x*hz/fs)) Ab = numpy.zeros(int(.125*fs)) hz=415 #G for x in range(len(Ab)): Ab[x]= round(math.sin(2*math.pi*x*hz/fs)) A = numpy.zeros(int(.125*fs)) hz=459 #G for x in range(len(A)): A[x]= round(math.sin(2*math.pi*x*hz/fs)) Bb = numpy.zeros(int(.125*fs)) hz=466 #G for x in range(len(Bb)): Bb[x]= round(math.sin(2*math.pi*x*hz/fs)) B = numpy.zeros(int(.125*fs)) hz=493 #G for x in range(len(B)): B[x]= round(math.sin(2*math.pi*x*hz/fs)) C = numpy.zeros(int(.125*fs)) hz=523 #G for x in range(len(C)): C[x]= round(math.sin(2*math.pi*x*hz/fs)) Db = numpy.zeros(int(.125*fs)) hz=554 #G for x in range(len(Db)): Db[x]= round(math.sin(2*math.pi*x*hz/fs)) D = numpy.zeros(int(.125*fs)) hz=587 #G for x in range(len(D)): D[x]= round(math.sin(2*math.pi*x*hz/fs)) Eb = numpy.zeros(int(.125*fs)) hz=622 #G for x in range(len(Eb)): Eb[x]= round(math.sin(2*math.pi*x*hz/fs)) E = numpy.zeros(int(.125*fs)) hz=659 #G for x in range(len(E)): E[x]= round(math.sin(2*math.pi*x*hz/fs)) F = numpy.zeros(int(.125*fs)) hz=698 #G for x in range(len(F)): F[x]= round(math.sin(2*math.pi*x*hz/fs)) Gb = numpy.zeros(int(.125*fs)) hz=739 #G for x in range(len(Gb)): Gb[x]= round(math.sin(*math.pi*x*hz/fs)) song = (Ab,A,Bb,B,C,Db,D,Eb,E,F,Gb,G,Gb,F,E,Eb,D,Db,C,B,Bb,A,) data =
numpy.concatenate(song)
numpy.concatenate
import numpy as np from test_utils import single_test, multiple_test def initialize_parameters_test(target): n_x, n_h, n_y = 3, 2, 1 expected_W1 = np.array([[ 0.01624345, -0.00611756, -0.00528172], [-0.01072969, 0.00865408, -0.02301539]]) expected_b1 = np.array([[0.], [0.]]) expected_W2 = np.array([[ 0.01744812, -0.00761207]]) expected_b2 = np.array([[0.]]) expected_output = {"W1": expected_W1, "b1": expected_b1, "W2": expected_W2, "b2": expected_b2} test_cases = [ { "name":"datatype_check", "input": [n_x, n_h, n_y], "expected": expected_output, "error":"Datatype mismatch." }, { "name": "equation_output_check", "input": [n_x, n_h, n_y], "expected": expected_output, "error": "Wrong output" } ] multiple_test(test_cases, target) def initialize_parameters_deep_test(target): layer_dims = [5,4,3] expected_W1 = np.array([[ 0.01788628, 0.0043651 , 0.00096497, -0.01863493, -0.00277388], [-0.00354759, -0.00082741, -0.00627001, -0.00043818, -0.00477218], [-0.01313865, 0.00884622, 0.00881318, 0.01709573, 0.00050034], [-0.00404677, -0.0054536 , -0.01546477, 0.00982367, -0.01101068]]) expected_b1 = np.array([[0.], [0.], [0.], [0.]]) expected_W2 = np.array([[-0.01185047, -0.0020565 , 0.01486148, 0.00236716], [-0.01023785, -0.00712993, 0.00625245, -0.00160513], [-0.00768836, -0.00230031, 0.00745056, 0.01976111]]) expected_b2 = np.array([[0.], [0.], [0.]]) expected_output = {"W1": expected_W1, "b1": expected_b1, "W2": expected_W2, "b2": expected_b2} test_cases = [ { "name":"datatype_check", "input": [layer_dims], "expected": expected_output, "error":"Datatype mismatch" }, { "name": "shape_check", "input": [layer_dims], "expected": expected_output, "error": "Wrong shape" }, { "name": "equation_output_check", "input": [layer_dims], "expected": expected_output, "error": "Wrong output" } ] multiple_test(test_cases, target) def linear_forward_test(target): np.random.seed(1) A_prev = np.random.randn(3,2) W = np.random.randn(1,3) b = np.random.randn(1,1) expected_cache = (A_prev, W, b) expected_Z = np.array([[ 3.26295337, -1.23429987]]) expected_output = (expected_Z, expected_cache) test_cases = [ { "name":"datatype_check", "input": [A_prev, W, b], "expected": expected_output, "error":"Datatype mismatch" }, { "name": "shape_check", "input": [A_prev, W, b], "expected": expected_output, "error": "Wrong shape" }, { "name": "equation_output_check", "input": [A_prev, W, b], "expected": expected_output, "error": "Wrong output" }, ] multiple_test(test_cases, target) def linear_activation_forward_test(target): np.random.seed(2) A_prev = np.random.randn(3,2) W = np.random.randn(1,3) b = np.random.randn(1,1) expected_linear_cache = (A_prev, W, b) expected_Z = np.array([[ 3.43896131, -2.08938436]]) expected_cache = (expected_linear_cache, expected_Z) expected_A_sigmoid = np.array([[0.96890023, 0.11013289]]) expected_A_relu = np.array([[3.43896131, 0.]]) expected_output_sigmoid = (expected_A_sigmoid, expected_cache) expected_output_relu = (expected_A_relu, expected_cache) test_cases = [ { "name":"datatype_check", "input": [A_prev, W, b, 'sigmoid'], "expected": expected_output_sigmoid, "error":"Datatype mismatch with sigmoid activation" }, { "name": "shape_check", "input": [A_prev, W, b, 'sigmoid'], "expected": expected_output_sigmoid, "error": "Wrong shape with sigmoid activation" }, { "name": "equation_output_check", "input": [A_prev, W, b, 'sigmoid'], "expected": expected_output_sigmoid, "error": "Wrong output with sigmoid activation" }, { "name":"datatype_check", "input": [A_prev, W, b, 'relu'], "expected": expected_output_relu, "error":"Datatype mismatch with relu activation" }, { "name": "shape_check", "input": [A_prev, W, b, 'relu'], "expected": expected_output_relu, "error": "Wrong shape with relu activation" }, { "name": "equation_output_check", "input": [A_prev, W, b, 'relu'], "expected": expected_output_relu, "error": "Wrong output with relu activation" } ] multiple_test(test_cases, target) def L_model_forward_test(target): np.random.seed(6) X = np.random.randn(5,4) W1 = np.random.randn(4,5) b1 = np.random.randn(4,1) W2 = np.random.randn(3,4) b2 = np.random.randn(3,1) W3 = np.random.randn(1,3) b3 = np.random.randn(1,1) parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2, "W3": W3, "b3": b3} expected_cache = [((np.array([[-0.31178367, 0.72900392, 0.21782079, -0.8990918 ], [-2.48678065, 0.91325152, 1.12706373, -1.51409323], [ 1.63929108, -0.4298936 , 2.63128056, 0.60182225], [-0.33588161, 1.23773784, 0.11112817, 0.12915125], [ 0.07612761, -0.15512816, 0.63422534, 0.810655 ]]), np.array([[ 0.35480861, 1.81259031, -1.3564758 , -0.46363197, 0.82465384], [-1.17643148, 1.56448966, 0.71270509, -0.1810066 , 0.53419953], [-0.58661296, -1.48185327, 0.85724762, 0.94309899, 0.11444143], [-0.02195668, -2.12714455, -0.83440747, -0.46550831, 0.23371059]]), np.array([[ 1.38503523], [-0.51962709], [-0.78015214], [ 0.95560959]])), np.array([[-5.23825714, 3.18040136, 0.4074501 , -1.88612721], [-2.77358234, -0.56177316, 3.18141623, -0.99209432], [ 4.18500916, -1.78006909, -0.14502619, 2.72141638], [ 5.05850802, -1.25674082, -3.54566654, 3.82321852]])), ((np.array([[0. , 3.18040136, 0.4074501 , 0. ], [0. , 0. , 3.18141623, 0. ], [4.18500916, 0. , 0. , 2.72141638], [5.05850802, 0. , 0. , 3.82321852]]), np.array([[-0.12673638, -1.36861282, 1.21848065, -0.85750144], [-0.56147088, -1.0335199 , 0.35877096, 1.07368134], [-0.37550472, 0.39636757, -0.47144628, 2.33660781]]), np.array([[ 1.50278553], [-0.59545972], [ 0.52834106]])), np.array([[ 2.2644603 , 1.09971298, -2.90298027, 1.54036335], [ 6.33722569, -2.38116246, -4.11228806, 4.48582383], [10.37508342, -0.66591468, 1.63635185, 8.17870169]])), ((np.array([[ 2.2644603 , 1.09971298, 0. , 1.54036335], [ 6.33722569, 0. , 0. , 4.48582383], [10.37508342, 0. , 1.63635185, 8.17870169]]), np.array([[ 0.9398248 , 0.42628539, -0.75815703]]), np.array([[-0.16236698]])), np.array([[-3.19864676, 0.87117055, -1.40297864, -3.00319435]]))] expected_AL = np.array([[0.03921668, 0.70498921, 0.19734387, 0.04728177]]) expected_output = (expected_AL, expected_cache) test_cases = [ { "name":"datatype_check", "input": [X, parameters], "expected": expected_output, "error":"The function should return a numpy array." }, { "name": "shape_check", "input": [X, parameters], "expected": expected_output, "error": "Wrong shape" }, { "name": "equation_output_check", "input": [X, parameters], "expected": expected_output, "error": "Wrong output" } ] multiple_test(test_cases, target) ''' { "name":"datatype_check", "input": [AL, Y], "expected": expected_output, "error":"Data type mismatch" }, { "name": "shape_check", "input": [AL, Y], "expected": expected_output, "error": "Wrong shape" },''' def compute_cost_test(target): Y = np.asarray([[1, 1, 0]]) AL = np.array([[.8,.9,0.4]]) expected_output = np.array(0.27977656) test_cases = [ { "name": "equation_output_check", "input": [AL, Y], "expected": expected_output, "error": "Wrong output" } ] single_test(test_cases, target) def linear_backward_test(target): np.random.seed(1) dZ = np.random.randn(3,4) A =
np.random.randn(5,4)
numpy.random.randn
# ---------------------------------------------------------------------------- # Title: Scientific Visualisation - Python & Matplotlib # Author: <NAME> # License: BSD # ---------------------------------------------------------------------------- import numpy as np import matplotlib.pyplot as plt import matplotlib.path as mpath from matplotlib.collections import LineCollection from matplotlib.collections import PathCollection from matplotlib.collections import CircleCollection from matplotlib.collections import PolyCollection from matplotlib.collections import EllipseCollection from matplotlib.collections import RegularPolyCollection from matplotlib.collections import StarPolygonCollection from matplotlib.collections import AsteriskPolygonCollection fig = plt.figure(figsize=(4.25, 8 * 0.4)) ax = fig.add_axes( [0, 0, 1, 1], xlim=[0, 11], ylim=[0.5, 8.5], frameon=False, xticks=[], yticks=[], aspect=1, ) y = 8 # Line collection # ---------------------------------------------------------------------------- n = 50 segments = np.zeros((n, 2, 2)) segments[:, 0, 0] =
np.linspace(1, 10.25, n)
numpy.linspace
if '__file__' in globals(): import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), '..')) is_simple_core = True if is_simple_core: from dezero.core_simple import Variable from dezero.core_simple import Variable from dezero.core_simple import Variable from dezero.core_simple import Function from dezero.core_simple import using_config from dezero.core_simple import no_grad from dezero.core_simple import as_array from dezero.core_simple import as_variable from dezero.core_simple import setup_variable from dezero.core_simple import Config, add, mul, neg, sub, rsub, div, rdiv, pow import numpy as np import pytest setup_variable() class TestVariable: def test_name(self): x = Variable(np.array(1), "test") assert x.name == "test" @pytest.mark.parametrize("input, expected", [(Variable(np.array(1)), 'int32'), (Variable(np.array([1.0, 2.0, 3.0])), 'float64'), (Variable(np.array([[1.0, 2.0], [2.0, 3.0]])), 'float64')]) def test_dtype(self, input, expected): assert input.dtype == expected @pytest.mark.parametrize("input, expected", [(Variable(np.array(1.0)), 0), (Variable(np.array([1.0, 2.0, 3.0])), 1), (Variable(np.array([[1.0, 2.0], [2.0, 3.0]])), 2)]) def test_ndim(self, input, expected): assert input.ndim == expected @pytest.mark.parametrize("input, expected", [(Variable(np.array(1.0)), 1), (Variable(np.array([1.0, 2.0, 3.0])), 3), (Variable(np.array([[1.0, 2.0], [2.0, 3.0]])), 4)]) def test_size(self, input, expected): assert input.size == expected @pytest.mark.parametrize("input, expected", [(Variable(np.array(1.0)), 1), (Variable(np.array([1.0, 2.0, 3.0])), 3), (Variable(np.array([[1.0, 2.0], [2.0, 3.0]])), 2)]) def test_len(self, input, expected): assert len(input) == expected @pytest.mark.parametrize("input, expected", [(Variable(np.array(1.0)), ()), (Variable(np.array([1.0, 2.0, 3.0])), (3,)), (Variable(np.array([[1.0, 2.0], [2.0, 3.0]])), (2, 2))]) def test_shape(self, input, expected): assert input.shape == expected @pytest.mark.parametrize("input, expected", [(Variable(np.array(1.0)), "variable(1.0)\n"), (Variable(np.array([1.0, 2.0, 3.0])), "variable([1. 2. 3.])\n"), (Variable(np.array([[1.0, 2.0], [2.0, 3.0]])), "variable([[1. 2.]\n [2. 3.]])\n")]) def test_shape(self, input, expected, capsys): print(input) captured = capsys.readouterr() assert captured.out == expected @pytest.mark.parametrize("input, expected", [(np.array(1.0), Variable(np.array(1.0))), (Variable(np.array(1.0)), Variable(np.array(1.0)))]) def test_as_variable(self, input, expected): assert type(as_variable(input)) == type(expected) @pytest.fixture(scope="function", autouse=True) def culc_object(): yield Variable(np.array(2)), Variable(np.array(3)) class TestNeg: def test_neg(self): x = Variable(np.array(2.0)) assert neg(x).data == -2.0 def test_neg_backward(self): x = Variable(np.array(2.0)) y = -x y.backward() assert x.grad == -1 def test_neg_overload(self): x = Variable(np.array(2.0)) assert (-x).data == -2.0 class TestAdd: def test_add(self, culc_object): assert add(culc_object[0], culc_object[1]).data == 5 def test_add_backward(self, culc_object): x0 = culc_object[0] x1 = culc_object[1] y = add(x0, x1) y.backward() assert x0.grad == 1 and x1.grad == 1 def test_add_overload(self, culc_object): x0 = culc_object[0] x1 = culc_object[1] assert (x0 + x1).data == 5 def test_add_backward_overload(self, culc_object): x0 = culc_object[0] x1 = culc_object[1] y = x0 + x1 y.backward() assert x0.grad == 1 and x1.grad == 1 def test_calc_multi_type(self): x = Variable(np.array(2.0)) y = x + np.array(3.0) assert y.data == Variable(np.array(5.0)).data def test_calc_multi_type_left(self): x = Variable(np.array(2.0)) y = x + 3 assert y.data == Variable(np.array(5.0)).data def test_calc_multi_type_right(self): x = Variable(np.array(2.0)) y = 3.0 + x assert y.data == Variable(np.array(5.0)).data def test_calc_multi_type_ndarray_right(self): x = Variable(np.array(2.0)) y =
np.array(3.0)
numpy.array
"""Unit test suite for falco.setup.falco_set_spectral_properties()""" import numpy as np import falco def test_1subband_1wavelength(): mp = falco.config.ModelParameters() mp.full = falco.config.Object() mp.lambda0 = 1e-6 mp.flagSim = False mp.Nsbp = 1 mp.Nwpsbp = 1 mp.fracBW = 0.20 falco.setup.falco_set_spectral_properties(mp) assert np.array_equal(mp.sbp_weights, np.ones((1, 1))) assert np.array_equal(mp.sbp_centers,
np.array((1e-6, ))
numpy.array
# -*- coding: utf-8 -*- """ author: <NAME> email: <EMAIL> license: MIT Please feel free to use and modify this, but keep the above information. Thanks! """ # Position and Velocity Control based on https://github.com/PX4/Firmware/blob/master/src/modules/mc_pos_control/PositionControl.cpp # Desired Thrust to Desired Attitude based on https://github.com/PX4/Firmware/blob/master/src/modules/mc_pos_control/Utility/ControlMath.cpp # Attitude Control based on https://github.com/PX4/Firmware/blob/master/src/modules/mc_att_control/AttitudeControl/AttitudeControl.cpp # and https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/154099/eth-7387-01.pdf # Rate Control based on https://github.com/PX4/Firmware/blob/master/src/modules/mc_att_control/mc_att_control_main.cpp import numpy as np from numpy import pi from numpy import sin, cos, tan, sqrt from numpy.linalg import norm import utils import config rad2deg = 180.0/pi deg2rad = pi/180.0 # Set PID Gains and Max Values # --------------------------- params = { # Position P gains "Py" : 2.0, "Px" : 2.0, "Pz" : 1.0, # Velocity P-D gains "Pxdot" : 5.0, "Dxdot" : 0.5, "Ixdot" : 5.0, "Pydot" : 5.0, "Dydot" : 0.5, "Iydot" : 5.0, "Pzdot" : 4.0, "Dzdot" : 0.5, "Izdot" : 5.0, # Attitude P gains "Pphi" : 8.0, "Ptheta" : 8.0, "Ppsi" : 1.5, "PpsiStrong" : 8, # Rate P-D gains "Pp" : 1.5, "Dp" : 0.04, "Pq" : 1.5, "Dq" : 0.04 , "Pr" : 1.0, "Dr" : 0.1, # Max Velocities "uMax" : 5.0, "vMax" : 5.0, "wMax" : 5.0, "saturateVel_separately" : False, # Max tilt "tiltMax" : 50.0, # Max Rate "pMax" : 200.0, "qMax" : 200.0, "rMax" : 150.0 } class Control: def __init__(self, quad, yawType, params=params): self.saturateVel_separately = params["saturateVel_separately"] # Max tilt self.tiltMax = params["tiltMax"]*deg2rad # Max Rate self.pMax = params["pMax"]*deg2rad self.qMax = params["qMax"]*deg2rad self.rMax = params["rMax"]*deg2rad self.pos_P_gain = np.array([params["Px"], params["Py"], params["Pz"]]) self.vel_P_gain = np.array([params["Pxdot"], params["Pydot"], params["Pzdot"]]) self.vel_D_gain = np.array([params["Dxdot"], params["Dydot"], params["Dzdot"]]) self.vel_I_gain = np.array([params["Ixdot"], params["Iydot"], params["Izdot"]]) self.att_P_gain = np.array([params["Pphi"], params["Ptheta"], params["Ppsi"]]) self.rate_P_gain = np.array([params["Pp"], params["Pq"], params["Pr"]]) self.rate_D_gain = np.array([params["Dp"], params["Dq"], params["Dr"]]) self.velMax = np.array([params["uMax"], params["vMax"], params["wMax"]]) self.velMaxAll = self.velMax.min() self.rateMax = np.array([self.pMax, self.qMax, self.rMax]) self.sDesCalc = np.zeros(16) self.w_cmd = np.ones(4)*quad.params["w_hover"] self.thr_int = np.zeros(3) if (yawType == 0): self.att_P_gain[2] = 0 self.setYawWeight() self.pos_sp = np.zeros(3) self.vel_sp = np.zeros(3) self.acc_sp = np.zeros(3) self.thrust_sp = np.zeros(3) self.thrust_rep_sp = np.zeros(3) self.eul_sp = np.zeros(3) self.pqr_sp = np.zeros(3) self.yawFF = 0. def controller(self, traj, quad, potfld, Ts): # Desired State (Create a copy, hence the [:]) # --------------------------- self.pos_sp[:] = traj.sDes[0:3] self.vel_sp[:] = traj.sDes[3:6] self.acc_sp[:] = traj.sDes[6:9] self.thrust_sp[:] = traj.sDes[9:12] self.eul_sp[:] = traj.sDes[12:15] self.pqr_sp[:] = traj.sDes[15:18] self.yawFF = traj.sDes[18] # Select Controller # --------------------------- if (traj.ctrlType == "xyz_vel"): self.saturateVel() self.z_vel_control(quad, potfld, Ts) self.xy_vel_control(quad, potfld, Ts) self.thrustToAttitude(quad, potfld, Ts) self.attitude_control(quad, Ts) self.rate_control(quad, Ts) elif (traj.ctrlType == "xy_vel_z_pos"): self.z_pos_control(quad, potfld, Ts) self.saturateVel() self.z_vel_control(quad, potfld, Ts) self.xy_vel_control(quad, potfld, Ts) self.thrustToAttitude(quad, potfld, Ts) self.attitude_control(quad, Ts) self.rate_control(quad, Ts) elif (traj.ctrlType == "xyz_pos"): self.z_pos_control(quad, potfld, Ts) self.xy_pos_control(quad, potfld, Ts) self.saturateVel() self.addFrepToVel(potfld) self.saturateVel() self.yaw_follow(traj, Ts) self.z_vel_control(quad, potfld, Ts) self.xy_vel_control(quad, potfld, Ts) self.thrustToAttitude(quad, potfld, Ts) self.attitude_control(quad, Ts) self.rate_control(quad, Ts) # Mixer # --------------------------- self.w_cmd = utils.mixerFM(quad, norm(self.thrust_rep_sp), self.rateCtrl) # Add calculated Desired States # --------------------------- self.sDesCalc[0:3][:] = self.pos_sp self.sDesCalc[3:6][:] = self.vel_sp self.sDesCalc[6:9][:] = self.thrust_sp self.sDesCalc[9:13][:] = self.qd self.sDesCalc[13:16][:] = self.rate_sp def z_pos_control(self, quad, potfld, Ts): # Z Position Control # --------------------------- pos_z_error = self.pos_sp[2] - quad.pos[2] self.vel_sp[2] += self.pos_P_gain[2]*pos_z_error def xy_pos_control(self, quad, potfld, Ts): # XY Position Control # --------------------------- pos_xy_error = (self.pos_sp[0:2] - quad.pos[0:2]) self.vel_sp[0:2] += self.pos_P_gain[0:2]*pos_xy_error def saturateVel(self): # Saturate Velocity Setpoint # --------------------------- # Either saturate each velocity axis separately, or total velocity (prefered) if (self.saturateVel_separately): self.vel_sp = np.clip(self.vel_sp, -self.velMax, self.velMax) else: totalVel_sp = norm(self.vel_sp) if (totalVel_sp > self.velMaxAll): self.vel_sp = self.vel_sp/totalVel_sp*self.velMaxAll def addFrepToVel(self, potfld): # Add repulsive force "velocity" to velocity setpoint self.vel_sp += potfld.pfVel*potfld.F_rep def yaw_follow(self, traj, Ts): # Generate Yaw setpoint and FF # --------------------------- # If yawType == "Follow", then set Yaw setpoint and Yaw Rate Feed-Forward to follow the velocity setpoint if (traj.yawType == 4 and traj.omit_yaw_follow == 0): totalVel_sp = norm(self.vel_sp) if (totalVel_sp > 0.1): # Calculate desired Yaw self.eul_sp[2] = np.arctan2(self.vel_sp[1], self.vel_sp[0]) # Dirty hack, detect when desEul[2] switches from -pi to pi (or vice-versa) and switch manualy current_heading if (np.sign(self.eul_sp[2]) - np.sign(traj.current_heading) and abs(self.eul_sp[2]-traj.current_heading) >= 2*pi-0.1): traj.current_heading = traj.current_heading + np.sign(self.eul_sp[2])*2*pi # Angle between current vector with the next heading vector delta_psi = self.eul_sp[2] - traj.current_heading # Set Yaw rate self.yawFF = delta_psi / Ts # Prepare next iteration traj.current_heading = self.eul_sp[2] def z_vel_control(self, quad, potfld, Ts): # Z Velocity Control (Thrust in D-direction) # --------------------------- # Hover thrust (m*g) is sent as a Feed-Forward term, in order to # allow hover when the position and velocity error are nul vel_z_error = self.vel_sp[2] - quad.vel[2] if (config.orient == "NED"): thrust_z_sp = (self.vel_P_gain[2]*vel_z_error - self.vel_D_gain[2]*quad.vel_dot[2] + quad.params["mB"]*(self.acc_sp[2] - quad.params["g"]) + self.thr_int[2] + potfld.pfSatFor*potfld.F_rep[2]) elif (config.orient == "ENU"): thrust_z_sp = (self.vel_P_gain[2]*vel_z_error - self.vel_D_gain[2]*quad.vel_dot[2] + quad.params["mB"]*(self.acc_sp[2] + quad.params["g"]) + self.thr_int[2] + potfld.pfSatFor*potfld.F_rep[2]) # Get thrust limits if (config.orient == "NED"): # The Thrust limits are negated and swapped due to NED-frame uMax = -quad.params["minThr"] uMin = -quad.params["maxThr"] elif (config.orient == "ENU"): uMax = quad.params["maxThr"] uMin = quad.params["minThr"] # Apply Anti-Windup in D-direction stop_int_D = (thrust_z_sp >= uMax and vel_z_error >= 0.0) or (thrust_z_sp <= uMin and vel_z_error <= 0.0) # Calculate integral part if not (stop_int_D): self.thr_int[2] += self.vel_I_gain[2]*vel_z_error*Ts * quad.params["useIntergral"] # Limit thrust integral self.thr_int[2] = min(abs(self.thr_int[2]), quad.params["maxThr"])*np.sign(self.thr_int[2]) # Saturate thrust setpoint in D-direction self.thrust_sp[2] = np.clip(thrust_z_sp, uMin, uMax) def xy_vel_control(self, quad, potfld, Ts): # XY Velocity Control (Thrust in NE-direction) # --------------------------- vel_xy_error = self.vel_sp[0:2] - quad.vel[0:2] thrust_xy_sp = (self.vel_P_gain[0:2]*vel_xy_error - self.vel_D_gain[0:2]*quad.vel_dot[0:2] + quad.params["mB"]*(self.acc_sp[0:2]) + self.thr_int[0:2] + potfld.pfSatFor*potfld.F_rep[0:2]) # Max allowed thrust in NE based on tilt and excess thrust thrust_max_xy_tilt = abs(self.thrust_sp[2])*np.tan(self.tiltMax) thrust_max_xy = sqrt(quad.params["maxThr"]**2 - self.thrust_sp[2]**2) thrust_max_xy = min(thrust_max_xy, thrust_max_xy_tilt) # Saturate thrust in NE-direction self.thrust_sp[0:2] = thrust_xy_sp if (np.dot(self.thrust_sp[0:2].T, self.thrust_sp[0:2]) > thrust_max_xy**2): mag = norm(self.thrust_sp[0:2]) self.thrust_sp[0:2] = thrust_xy_sp/mag*thrust_max_xy # Use tracking Anti-Windup for NE-direction: during saturation, the integrator is used to unsaturate the output # see Anti-Reset Windup for PID controllers, L.Rundqwist, 1990 arw_gain = 2.0/self.vel_P_gain[0:2] vel_err_lim = vel_xy_error - (thrust_xy_sp - self.thrust_sp[0:2])*arw_gain self.thr_int[0:2] += self.vel_I_gain[0:2]*vel_err_lim*Ts * quad.params["useIntergral"] def thrustToAttitude(self, quad, potfld, Ts): # Create Full Desired Quaternion Based on Thrust Setpoint and Desired Yaw Angle # --------------------------- # Add potential field repulsive force to Thrust setpoint self.thrust_rep_sp = self.thrust_sp + potfld.pfFor*potfld.F_rep # Yaw setpoint yaw_sp = self.eul_sp[2] # Desired body_z axis direction body_z = -utils.vectNormalize(self.thrust_rep_sp) if (config.orient == "ENU"): body_z = -body_z # Vector of desired Yaw direction in XY plane, rotated by pi/2 (fake body_y axis) y_C = np.array([-sin(yaw_sp), cos(yaw_sp), 0.0]) # Desired body_x axis direction body_x = np.cross(y_C, body_z) body_x = utils.vectNormalize(body_x) # Desired body_y axis direction body_y = np.cross(body_z, body_x) # Desired rotation matrix R_sp = np.array([body_x, body_y, body_z]).T # Full desired quaternion (full because it considers the desired Yaw angle) self.qd_full = utils.RotToQuat(R_sp) def attitude_control(self, quad, Ts): # Current thrust orientation e_z and desired thrust orientation e_z_d e_z = quad.dcm[:,2] e_z_d = -utils.vectNormalize(self.thrust_rep_sp) if (config.orient == "ENU"): e_z_d = -e_z_d # Quaternion error between the 2 vectors qe_red = np.zeros(4) qe_red[0] = np.dot(e_z, e_z_d) + sqrt(norm(e_z)**2 * norm(e_z_d)**2) qe_red[1:4] = np.cross(e_z, e_z_d) qe_red = utils.vectNormalize(qe_red) # Reduced desired quaternion (reduced because it doesn't consider the desired Yaw angle) self.qd_red = utils.quatMultiply(qe_red, quad.quat) # Mixed desired quaternion (between reduced and full) and resulting desired quaternion qd q_mix = utils.quatMultiply(utils.inverse(self.qd_red), self.qd_full) q_mix = q_mix*
np.sign(q_mix[0])
numpy.sign
import dash import dash_html_components as html import dash_core_components as dcc from dash.dependencies import Input, Output import pandas_datareader.data as web import datetime as dateT import plotly.graph_objs as go from headlines import generate_headline_bar, generate_link_table from quotes import generate_top_bar_logo, generate_pick_stock from stock_graph import generate_graph, generate_graph_now, generate_sentiment_analysis_heatmap, generate_open_range_prediction from iexfinance.stocks import Stock, get_historical_intraday #from IPython.display import Image from time_handling import TimeConvert, IsMarketOpen, days_hours_mins_secs, MarketDateAdj, GetTimeToMktOpen, IsMarketOpen_pd from convert_image_to_square import make_square from bid_ask import PrintBidAsk, GetLastBidAsk # our own util functions import mkt_dt_utils as dtutils from PIL import Image import urllib.request from datetime import datetime, timedelta # import pandas_market_calendars as mcal import pytz # import pandas as pd import plotly.plotly as py import pandas as pd from scipy import stats import numpy as np from functools import reduce #import sqlite3 app = dash.Dash('SENDASH') # a config setting for run css and js in locally app.css.config.serve_locally = True app.scripts.config.serve_locally = True #conn = sqlite3.connect('stocks.db') #c = conn.cursor() # Container Div app.layout = html.Div([ # import local stylesheet html.Link( rel='stylesheet', href='/assets/materialize.min.css' ), html.Link( rel='stylesheet', href='/assets/sendash.css' ), # import local javascript html.Link( rel='javascript', href='/assets/materialize.min.js' ), # Top Bar Div html.Div([ generate_top_bar_logo(), generate_pick_stock(), # stock indicator html.Div( [ html.Div(id='output-symbol'), #dcc.Input(id='output-ticker', type='hidden'), dcc.Interval(id='input-symbol', interval=6 * 10000, n_intervals=0), ], className="col s2 top-bar-col borders" ), # QQQ indicator html.Div( [ html.Div(id="output-QQQ"), dcc.Interval(id='input-QQQ', interval=6 * 10000, n_intervals=0), ], className="col s2 top-bar-col borders" ), # SPY indicator html.Div( [ html.Div(id="output-SPY"), dcc.Interval(id='input-SPY', interval=6 * 10000, n_intervals=0), ], className="col s2 top-bar-col borders" ), # Market Clock html.Div( [ html.Div(id='output-time-clock'), dcc.Interval(id='input-time-clock', interval=2 * 1000, n_intervals=0), ], className="col s3 top-bar-col borders" ), ], className="row row-margin-reduce"), # 2nd Row Div html.Div([ # Left Panel html.Div( [ html.Div([ generate_headline_bar("Headlines"), html.Div(id='output-headline') ], className="row row-margin-reduce"), html.Div([ html.Strong("RS = Relevance Score | SS = Sentiemnt Score", style={'color':'white'}) ], className="row borders row-margin-reduce", style={'height':'30px', 'text-align':'center'}), #generate_link_table(), # generate_headline_bar("Tweets"), # generate_link_table(), #], className="col s3 row-margin-reduce borders", style={'height': '406px'} ], className="col s3 row-margin-reduce borders" ), # Right Panel html.Div( [ #dcc.Input(id='input-date', value=dateT.datetime.today(), type='datetime-local', max=dateT.datetime.today(), style={'color':'white'}), #dcc.Input(id='input-date', value=dateT.datetime.today().date(), type='date', max=dateT.date.today(), style={'color':'white'}), dcc.Input( id='input-date', value=TimeConvert(dateT.datetime.utcnow().replace(tzinfo=pytz.timezone('UTC')), 'EST').date(), type='date', max=TimeConvert(dateT.datetime.utcnow().replace(tzinfo=pytz.timezone('UTC')), 'EST').date(), min=TimeConvert(dateT.datetime.utcnow().replace(tzinfo=pytz.timezone('UTC')), 'EST').date() - timedelta(days=90), style={'color':'black', 'background-color':'white'} ), html.Div(children=[ html.Div(id='output-stock-price-graph') ]), ], className="col s9 row-margin-reduce borders" ) #], className="row row-margin-reduce", style={'height': '406px'}), ], className="row row-margin-reduce"), # 3rd Row Div html.Div([ html.Div( [ html.Div([ html.Div([ html.Div(id="output-stock-logo"), ], className="col s2", style={'max-height': '120px', 'padding-top':'5px'}), html.Div([ html.Div(id="output-key-stats"), ], className="col s10 borders", style={'min-height': '120px', 'padding':'0px'}) ], className="row borders row-margin-reduce"), html.Div([ html.Div(id='output-get-company') ], className="row borders row-margin-reduce"), ], className="col s6 borders" # 230px ), html.Div( [ #html.P('5'), html.P('5'), html.P('5'), html.P('5'), html.P('5'), html.Div([ html.Strong("Overnight Sentiment Score", className="section-title"), ], className="row row-margin-reduce left-div-header-div borders"), html.Div([ #html.P('5'), html.P('5'), html.P('5'), html.P('5'), html.P('5'),html.P('5'), html.P('5'), html.P('5'), html.P('5'), #generate_sentiment_analysis_piechart() html.Div(id='output-sentiment-score') #generate_sentiment_analysis_heatmap(a) ], className="row row-margin-reduce") ], className="col s2 borders" # 230px ), html.Div( [ html.Div([ html.Div([ html.Div([ html.Strong("Bid", className="section-title"), ], className="col s6 borders"), html.Div([ html.Strong("Ask", className="section-title"), ], className="col s6 borders") ], className="row row-margin-reduce left-div-header-div borders", style={'margin-left':'0px', 'margin-right': '0px'}), html.Div([ html.Div(id='output-bid-ask'), dcc.Interval(id='input-bid-ask', interval=10 * 1000, n_intervals=0), ], className="row row-margin-reduce"), ], className="row borders row-margin-reduce"), html.Div([ html.Div([ html.Strong("Opening Range Prediction", className="section-title"), ], className="row row-margin-reduce left-div-header-div borders", style={'margin-left':'0px', 'margin-right': '0px'}), html.Div([ html.Div(id='output-range-prediction', style={'padding-left':'10px'}) #generate_open_range_prediction(e_p, e_std) #generate_sentiment_analysis_piechart() #html.P('5'), html.P('5'), html.P('5'), html.P('5'), html.P('5'),html.P('5'), html.P('5'), html.P('5'), html.P('5'), ], className="row row-margin-reduce borders") ], className="row borders row-margin-reduce borders") ], className="col s4 borders" # 230px ), # html.Div( # [ # #html.P('5'), html.P('5'), html.P('5'), html.P('5'), html.P('5'), # html.Div([ # html.Div([ # html.Strong("Bid", className="section-title"), # ], className="col s6"), # html.Div([ # html.Strong("Ask", className="section-title"), # ], className="col s6") # ], className="row row-margin-reduce left-div-header-div borders"), # html.Div([ # html.Div([ # # html.P('5'), html.P('5'), html.P('5'), html.P('5'), html.P('5'),html.P('5'), html.P('5'), html.P('5'), html.P('5'), # html.Div(id='output-bid-ask'), # dcc.Interval(id='input-bid-ask', interval=30 * 1000, n_intervals=0), # ], className="col s6 borders"), # html.Div([ # html.P('5'), html.P('5'), html.P('5'), html.P('5'), html.P('5'),html.P('5'), html.P('5'), html.P('5'), html.P('5'), # ], className="col s6 borders") # ], className="row row-margin-reduce") # ], className="col s2 borders" # 230px # ), ], className="row row-margin-reduce"), ], className="container bg-color", style={'width': '100%', 'max-width': 50000}) def GetOpenRange(closePx, returns): ''' returns expected open price and std * closePx ''' r_mean = np.mean(returns) r_std = np.std(returns) e_px = np.exp(r_mean) * closePx e_std = (np.exp(r_mean + r_std) -1 ) * closePx return e_px, e_std def GetReturnsYHF(yhoo_data, l_symbols, overnight = False): data = yhoo_data.stack() #print(data) data.reset_index(inplace = True) l_col_to_keep = ['Date', 'Symbols', 'Adj Close','Open', 'Volume'] r_dfs = [] # 1 for sym in l_symbols: r_df = data[ data.Symbols == sym ].loc[:, l_col_to_keep] r_df = r_df.set_index('Date') r_df[f'r({sym})'] = r_df['Adj Close']/ r_df['Adj Close'].shift(1) - 1 # or just do df.pct_change() if overnight: r_df[f'r({sym})'] = r_df['Open']/ r_df['Adj Close'].shift(1) - 1 r_dfs.append( r_df.iloc[1:,:]) # 2 df = reduce( lambda x, y : pd.concat([x,y], axis =1), [ r_df.iloc[:,-1] for r_df in r_dfs ] ) #df.sort_values(by = 'Date',ascending = False).head(3) return df # def GetBeta( r_sym , r_benchmark): # slope, intercept, r_value, p_value, std_err = stats.linregress( r_sym, r_benchmark) # return slope # def GetAlpha( r_sym , r_benchmark): # beta = GetBeta( r_sym, r_benchmark) # return r_sym - beta * r_benchmark def PrintSignal(zscore): if(zscore != 0): buysell = 'Higher' if np.sign(zscore) == -1: buysell = 'Lower' conf_lvl = 'Low' if abs(zscore)> 1: conf_lvl = 'Moderate' if abs(zscore)> 2: conf_lvl = 'High' text = f'Stock should open {buysell} with {conf_lvl} confidence.' else: text = 'No signal.' return text def GetOpeningRange(TradeDate, Ticker, NumDays = 100): edate = TradeDate sdate = dtutils.MarketDateAdj(edate, -NumDays, 'NYSE') prev_td = dtutils.MarketDateAdj(edate, -1, 'NYSE') data = web.DataReader( Ticker, 'yahoo', sdate, edate) # Exclude TradeDate's data in returns r_df = data[data.index.to_pydatetime() < TradeDate ] r_df['returns'] = r_df['Adj Close']/ r_df['Adj Close'].shift(1) - 1 r_df['overnight'] = r_df['Open']/ r_df['Adj Close'].shift(1) - 1 returns = r_df['overnight'] r_mean = np.mean(returns) r_std =
np.std(returns)
numpy.std
from __future__ import print_function, absolute_import import time from collections import OrderedDict import pdb import torch import numpy as np from .evaluation_metrics import cmc, mean_ap from .utils.meters import AverageMeter from torch.autograd import Variable from .utils import to_torch from .utils import to_numpy import pdb def extract_cnn_feature(model, inputs, output_feature=None): model.eval() inputs = to_torch(inputs) inputs = Variable(inputs, volatile=True) inputs = inputs.cuda() outputs = model(inputs) outputs = outputs.data.cpu() return outputs def extract_features(model, data_loader, print_freq=1, output_feature=None): model.eval() batch_time = AverageMeter() data_time = AverageMeter() features = OrderedDict() labels = OrderedDict() end = time.time() for i, (imgs, fnames, pids, _) in enumerate(data_loader): data_time.update(time.time() - end) outputs = extract_cnn_feature(model, imgs, output_feature) for fname, output, pid in zip(fnames, outputs, pids): features[fname] = output labels[fname] = pid batch_time.update(time.time() - end) end = time.time() '''if (i + 1) % print_freq == 0: print('Extract Features: [{}/{}]\t' 'Time {:.3f} ({:.3f})\t' 'Data {:.3f} ({:.3f})\t' .format(i + 1, len(data_loader), batch_time.val, batch_time.avg, data_time.val, data_time.avg))''' return features, labels def pairwise_distance(query_features, gallery_features, query=None, gallery=None): x = torch.cat([query_features[f].unsqueeze(0) for f, _, _ in query], 0) y = torch.cat([gallery_features[f].unsqueeze(0) for f, _, _ in gallery], 0) m, n = x.size(0), y.size(0) x = x.view(m, -1) y = y.view(n, -1) dist = torch.pow(x, 2).sum(dim=1, keepdim=True).expand(m, n) + \ torch.pow(y, 2).sum(dim=1, keepdim=True).expand(n, m).t() dist.addmm_(1, -2, x, y.t()) return dist def evaluate_all(distmat, query=None, gallery=None, query_ids=None, gallery_ids=None, query_cams=None, gallery_cams=None, cmc_topk=(1, 5, 10, 20)): if query is not None and gallery is not None: query_ids = [pid for _, pid, _ in query] gallery_ids = [pid for _, pid, _ in gallery] query_cams = [cam for _, _, cam in query] gallery_cams = [cam for _, _, cam in gallery] else: assert (query_ids is not None and gallery_ids is not None and query_cams is not None and gallery_cams is not None) # Compute mean AP mAP = mean_ap(distmat, query_ids, gallery_ids, query_cams, gallery_cams) print('Mean AP: {:4.1%}'.format(mAP)) # Compute CMC scores cmc_configs = { 'market1501': dict(separate_camera_set=False, single_gallery_shot=False, first_match_break=True)} cmc_scores = {name: cmc(distmat, query_ids, gallery_ids, query_cams, gallery_cams, **params) for name, params in cmc_configs.items()} print('CMC Scores') for k in cmc_topk: print(' top-{:<4}{:12.1%}' .format(k, cmc_scores['market1501'][k - 1])) return cmc_scores['market1501'][0] def reranking(query_features, gallery_features, query=None, gallery=None, k1=20, k2=6, lamda_value=0.3): x = torch.cat([query_features[f].unsqueeze(0) for f, _, _ in query], 0) y = torch.cat([gallery_features[f].unsqueeze(0) for f, _, _ in gallery], 0) feat = torch.cat((x, y)) query_num, all_num = x.size(0), feat.size(0) feat = feat.view(all_num, -1) dist = torch.pow(feat, 2).sum(dim=1, keepdim=True).expand(all_num, all_num) dist = dist + dist.t() dist.addmm_(1, -2, feat, feat.t()) original_dist = dist.numpy() all_num = original_dist.shape[0] original_dist = np.transpose(original_dist / np.max(original_dist, axis=0)) V = np.zeros_like(original_dist).astype(np.float16) initial_rank = np.argsort(original_dist).astype(np.int32) print('starting re_ranking') for i in range(all_num): # k-reciprocal neighbors forward_k_neigh_index = initial_rank[i, :k1 + 1] backward_k_neigh_index = initial_rank[forward_k_neigh_index, :k1 + 1] fi = np.where(backward_k_neigh_index == i)[0] k_reciprocal_index = forward_k_neigh_index[fi] k_reciprocal_expansion_index = k_reciprocal_index for j in range(len(k_reciprocal_index)): candidate = k_reciprocal_index[j] candidate_forward_k_neigh_index = initial_rank[candidate, :int(np.around(k1 / 2)) + 1] candidate_backward_k_neigh_index = initial_rank[candidate_forward_k_neigh_index, :int(np.around(k1 / 2)) + 1] fi_candidate = np.where(candidate_backward_k_neigh_index == candidate)[0] candidate_k_reciprocal_index = candidate_forward_k_neigh_index[fi_candidate] if len(np.intersect1d(candidate_k_reciprocal_index, k_reciprocal_index)) > 2 / 3 * len( candidate_k_reciprocal_index): k_reciprocal_expansion_index = np.append(k_reciprocal_expansion_index, candidate_k_reciprocal_index) k_reciprocal_expansion_index = np.unique(k_reciprocal_expansion_index) weight = np.exp(-original_dist[i, k_reciprocal_expansion_index]) V[i, k_reciprocal_expansion_index] = weight / np.sum(weight) original_dist = original_dist[:query_num, ] if k2 != 1: V_qe = np.zeros_like(V, dtype=np.float16) for i in range(all_num): V_qe[i, :] = np.mean(V[initial_rank[i, :k2], :], axis=0) V = V_qe del V_qe del initial_rank invIndex = [] for i in range(all_num): invIndex.append(np.where(V[:, i] != 0)[0]) jaccard_dist =
np.zeros_like(original_dist, dtype=np.float16)
numpy.zeros_like
# Copyright 2018 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for xmon_simulator.""" import cmath import itertools import math import time from typing import Optional, Callable import numpy as np import pytest import sympy import cirq import cirq.google as cg from cirq.circuits.insert_strategy import InsertStrategy Q1 = cirq.GridQubit(0, 0) Q2 = cirq.GridQubit(1, 0) Q3 = cirq.GridQubit(2, 0) test_device = cirq.google.XmonDevice( measurement_duration=cirq.Duration(nanos=1000), exp_w_duration=cirq.Duration(nanos=20), exp_11_duration=cirq.Duration(nanos=50), qubits=[Q1, Q2, Q3]) def basic_circuit(): sqrt_x = cirq.PhasedXPowGate(exponent=-0.5, phase_exponent=0.0) return cirq.Circuit.from_ops( sqrt_x(Q1), sqrt_x(Q2), cirq.CZ(Q1, Q2), sqrt_x(Q1), sqrt_x(Q2), cirq.Z(Q1), device=test_device) def large_circuit(): np.random.seed(0) qubits = [cirq.GridQubit(0, i) for i in range(10)] sqrt_x = cirq.PhasedXPowGate(exponent=0.5, phase_exponent=0.0) circuit = cirq.Circuit(device=cirq.google.Foxtail) for _ in range(11): circuit.append( [sqrt_x(qubit) for qubit in qubits if np.random.random() < 0.5]) circuit.append([cirq.CZ(qubits[i], qubits[i + 1]) for i in range(9)]) circuit.append([cirq.measure(*qubits, key='meas')]) return circuit def test_xmon_options_negative_num_shards(): with pytest.raises(AssertionError): cg.XmonOptions(num_shards=-1) def test_xmon_options_negative_min_qubits_before_shard(): with pytest.raises(AssertionError): cg.XmonOptions(min_qubits_before_shard=-1) def test_xmon_options(): options = cg.XmonOptions(num_shards=3, min_qubits_before_shard=0) assert options.num_prefix_qubits == 1 assert options.min_qubits_before_shard == 0 def run(simulator: cg.XmonSimulator, circuit: cirq.Circuit, scheduler: Optional[Callable], **kw): if scheduler is None: program = circuit else: program = scheduler(circuit.device, circuit) return simulator.run(program, **kw) def simulate(simulator, circuit, scheduler, **kw): if scheduler is None: program = circuit else: program = scheduler(circuit.device, circuit) return simulator.simulate(program, **kw) SCHEDULERS = [None, cirq.moment_by_moment_schedule] @pytest.mark.parametrize(('scheduler', 'use_processes'), zip(SCHEDULERS, (True, False))) def test_run_no_results(scheduler, use_processes): options = cg.XmonOptions(use_processes=use_processes) simulator = cg.XmonSimulator(options) with pytest.raises(ValueError, match="no measurements"): run(simulator, basic_circuit(), scheduler) @pytest.mark.parametrize('scheduler', SCHEDULERS) def test_run(scheduler): np.random.seed(0) circuit = basic_circuit() circuit.append( [cirq.measure(Q1, key='a'), cirq.measure(Q2, key='b')], strategy=InsertStrategy.NEW_THEN_INLINE) simulator = cg.XmonSimulator() result = run(simulator, circuit, scheduler) assert result.measurements['a'].dtype == bool assert result.measurements['b'].dtype == bool np.testing.assert_equal(result.measurements, {'a': [[False]], 'b': [[True]]}) @pytest.mark.parametrize('scheduler', SCHEDULERS) def test_run_empty_circuit(scheduler): simulator = cg.XmonSimulator() with pytest.raises(ValueError, match="no measurements"): run(simulator, cirq.Circuit(device=test_device), scheduler) @pytest.mark.parametrize('scheduler', SCHEDULERS) def test_initial_state_empty_circuit_qubits_specified(scheduler): simulator = cg.XmonSimulator() result = simulate(simulator, cirq.Circuit(device=test_device), scheduler, qubit_order=[Q1, Q2]) np.testing.assert_almost_equal(result.final_state, np.array([1, 0, 0, 0])) result = simulate(simulator, cirq.Circuit(device=test_device), scheduler, qubit_order=[Q1, Q2], initial_state=1) np.testing.assert_almost_equal(result.final_state, np.array([0, 1, 0, 0])) result = simulate(simulator, cirq.Circuit(device=test_device), scheduler, qubit_order=[Q1, Q2], initial_state=np.array([0, 1, 0, 0], dtype=np.complex64)) np.testing.assert_almost_equal(result.final_state, np.array([0, 1, 0, 0])) @pytest.mark.parametrize('scheduler', SCHEDULERS) def test_qubit_order_to_wavefunction_order_matches_np_kron(scheduler): simulator = cg.XmonSimulator() zero = [1, 0] one = [0, 1] result = simulate(simulator, cirq.Circuit.from_ops(cirq.X(Q1), device=test_device), scheduler, qubit_order=[Q1, Q2]) assert cirq.allclose_up_to_global_phase( result.final_state, np.kron(one, zero)) result = simulate(simulator, cirq.Circuit.from_ops(cirq.X(Q1), device=test_device), scheduler, qubit_order=[Q2, Q1]) assert cirq.allclose_up_to_global_phase( result.final_state, np.kron(zero, one)) result = simulate(simulator, cirq.Circuit.from_ops(cirq.X(Q1), device=test_device), scheduler, qubit_order=cirq.QubitOrder.sorted_by(repr)) assert cirq.allclose_up_to_global_phase( result.final_state, np.array(one)) result = simulate(simulator, cirq.Circuit.from_ops(cirq.X(Q1), cirq.Z(Q2), device=test_device), scheduler, qubit_order=cirq.QubitOrder.sorted_by(repr)) assert cirq.allclose_up_to_global_phase( result.final_state, np.kron(one, zero)) @pytest.mark.parametrize('scheduler', SCHEDULERS) def test_bit_flip_order_to_wavefunction_order_matches_np_kron(scheduler): simulator = cg.XmonSimulator() result = simulate(simulator, cirq.Circuit.from_ops(cirq.X(Q1), device=test_device), scheduler, qubit_order=[Q1, Q2, Q3]) assert cirq.allclose_up_to_global_phase( result.final_state, np.array([0, 0, 0, 0, 1, 0, 0, 0])) result = simulate(simulator, cirq.Circuit.from_ops(cirq.X(Q3), device=test_device), scheduler, qubit_order=[Q1, Q2, Q3]) assert cirq.allclose_up_to_global_phase( result.final_state, np.array([0, 1, 0, 0, 0, 0, 0, 0])) result = simulate(simulator, cirq.Circuit.from_ops(cirq.X(Q3), device=test_device), scheduler, qubit_order=[Q3, Q2, Q1]) assert cirq.allclose_up_to_global_phase( result.final_state,
np.array([0, 0, 0, 0, 1, 0, 0, 0])
numpy.array
''' This file contains the Deep Q Learning Neural Net (DQN) class, as well as a class containing methods used by the DQN model. ''' import pandas as pd import matplotlib.pyplot as plt import geopandas as gpd import math import networkx as nx import random import torch import torch.nn as nn import numpy as np import matplotlib.animation as animation R_EARTH = 3958.8 # Radius of Earth in miles OUTPUT_SIZE = 1 # Length of NN output NUM_FEATURES = 6 # Length of NN input (# of features) ''' This model stands as the basis of the most developed pathing learners. ''' class DQN(nn.Module): def __init__(self, input_size=NUM_FEATURES, hidden_size=2*NUM_FEATURES): super(DQN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.fc1 = torch.nn.Linear(self.input_size, self.hidden_size) self.relu = torch.nn.LeakyReLU(0.2) self.fc2 = torch.nn.Linear(self.hidden_size, OUTPUT_SIZE) self.sigmoid = torch.nn.Sigmoid() self.iter = 0 def forward(self, x): hidden = self.fc1(x) relu = self.relu(hidden) output = self.fc2(relu) output = self.sigmoid(output) return output ''' The following class stores all the necessary methods used for both training and evaluating a DQN model on a given environment (Map). ''' class METHODS: ''' The initializer method creates a reference to the environment, model, as well as other hyperparameters used later. ''' def __init__(self, Map, model, clusters, EPSILON_START=5, EPSILON_CONST=0.25, EPSILON_STATIC=False, lr=0.1, BATCH_SIZE=7, START_NODE=0): self.Map = Map # NetworkX DiGraph of the region self.model = model # DQN instance; model to be trained/evaluated self.clusters = clusters # List of clusters [C[0]: coordinates, C[1]: size of cluster] <- C: cluster self.EPSILON_START = EPSILON_START # Initial epsilon value for dynamic epsilon greedy self.EPSILON_CONST = EPSILON_CONST # Constant epsilon value for static epsilon greedy self.EPSILON_STATIC = EPSILON_STATIC # Boolean value that determines type of epsilon value self.lr = lr # Learning rate of NN self.FULL_SIZE = len(self.clusters) # Full size of cluster dataset self.BATCH_SIZE = min(BATCH_SIZE, 10, self.FULL_SIZE-1) # Batch size when training learner [MAX VALUE: 10 / number of clusters - start node] self.START_NODE = START_NODE # Index of starting cluster self.DISTANCE_TABLE = np.array([[self.total_distance(i, j) for i in range(len(self.clusters))] for j in range(len(self.clusters))]) self.memo = [] # Memoization for iterator: used to prune bad branches and speed up process # Takes in indices of clusters and returns the total distance def total_distance(self, i, j): distance = 0 path = nx.shortest_path(self.Map, self.clusters[i][0], self.clusters[j][0]) for k in range(1, len(path)): # Identifies the edge, stores the distance and adds it to the total distance distance += self.Map.edges[path[k-1], path[k]]['Distance'] return distance ''' The following method returns the normal dot product (also the cos of the angle) between two edges. If given a z coordinate, it will measure the angle of deviation the pather takes from where it originally was headed. If given a CORE coordinate, it will measure the angle between the next action and the CORE. Both values shouldn't be called simultaneously, however one value must be given. ''' def norm_dot_product(self, x, y, z=None, CORE=None): # x, y are start / end coordinates of a path (respectively) # z is called whenever an angle is formed between two edges; CORE is called whenever comparing the angle to the current average cluster point norm = lambda x, y:
np.sqrt((y[0]-x[0])**2 + (y[1]-x[1])**2)
numpy.sqrt
""" Test Surrogates Overview ======================== """ # Author: <NAME> <<EMAIL>> # License: new BSD from PIL import Image import numpy as np import scripts.surrogates_overview as exo import scripts.image_classifier as imgclf import sklearn.datasets import sklearn.linear_model SAMPLES = 10 BATCH = 50 SAMPLE_IRIS = False IRIS_SAMPLES = 50000 def test_bilmey_image(): """Tests surrogate image bLIMEy.""" # Load the image doggo_img = Image.open('surrogates_overview/img/doggo.jpg') doggo_array = np.array(doggo_img) # Load the classifier clf = imgclf.ImageClassifier() explain_classes = [('tennis ball', 852), ('golden retriever', 207), ('Labrador retriever', 208)] # Configure widgets to select occlusion colour, segmentation granularity # and explained class colour_selection = { i: i for i in ['mean', 'black', 'white', 'randomise-patch', 'green'] } granularity_selection = {'low': 13, 'medium': 30, 'high': 50} # Generate explanations blimey_image_collection = {} for gran_name, gran_number in granularity_selection.items(): blimey_image_collection[gran_name] = {} for col_name in colour_selection: blimey_image_collection[gran_name][col_name] = \ exo.build_image_blimey( doggo_array, clf.predict_proba, explain_classes, explanation_size=5, segments_number=gran_number, occlusion_colour=col_name, samples_number=SAMPLES, batch_size=BATCH, random_seed=42) exp = [] for gran_ in blimey_image_collection: for col_ in blimey_image_collection[gran_]: exp.append(blimey_image_collection[gran_][col_]['surrogates']) assert len(exp) == len(EXP_IMG) for e, E in zip(exp, EXP_IMG): assert sorted(list(e.keys())) == sorted(list(E.keys())) for key in e.keys(): assert e[key]['name'] == E[key]['name'] assert len(e[key]['explanation']) == len(E[key]['explanation']) for e_, E_ in zip(e[key]['explanation'], E[key]['explanation']): assert e_[0] == E_[0] assert np.allclose(e_[1], E_[1], atol=.001, equal_nan=True) def test_bilmey_tabular(): """Tests surrogate tabular bLIMEy.""" # Load the iris data set iris = sklearn.datasets.load_iris() iris_X = iris.data # [:, :2] # take the first two features only iris_y = iris.target iris_labels = iris.target_names iris_feature_names = iris.feature_names label2class = {lab: i for i, lab in enumerate(iris_labels)} # Fit the classifier logreg = sklearn.linear_model.LogisticRegression(C=1e5) logreg.fit(iris_X, iris_y) # explained class _dtype = iris_X.dtype explained_instances = { 'setosa': np.array([5, 3.5, 1.5, 0.25]).astype(_dtype), 'versicolor': np.array([5.5, 2.75, 4.5, 1.25]).astype(_dtype), 'virginica': np.array([7, 3, 5.5, 2.25]).astype(_dtype) } petal_length_idx = iris_feature_names.index('petal length (cm)') petal_length_bins = [1, 2, 3, 4, 5, 6, 7] petal_width_idx = iris_feature_names.index('petal width (cm)') petal_width_bins = [0, .5, 1, 1.5, 2, 2.5] discs_ = [] for i, ix in enumerate(petal_length_bins): # X-axis for iix in petal_length_bins[i + 1:]: for j, jy in enumerate(petal_width_bins): # Y-axis for jjy in petal_width_bins[j + 1:]: discs_.append({ petal_length_idx: [ix, iix], petal_width_idx: [jy, jjy] }) for inst_i in explained_instances: for cls_i in iris_labels: for disc_i, disc in enumerate(discs_): inst = explained_instances[inst_i] cls = label2class[cls_i] exp = exo.build_tabular_blimey( inst, cls, iris_X, iris_y, logreg.predict_proba, disc, IRIS_SAMPLES, SAMPLE_IRIS, 42) key = '{}&{}&{}'.format(inst_i, cls, disc_i) exp_ = EXP_TAB[key] assert exp['explanation'].shape[0] == exp_.shape[0] assert np.allclose( exp['explanation'], exp_, atol=.001, equal_nan=True) EXP_IMG = [ {207: {'explanation': [(13, -0.24406872165780585), (11, -0.20456180387430317), (9, -0.1866779131424261), (4, 0.15001224157793785), (3, 0.11589480417160983)], 'name': 'golden retriever'}, 208: {'explanation': [(13, -0.08395966359346249), (0, -0.0644986107387837), (9, 0.05845584633658977), (1, 0.04369763085720947), (11, -0.035958188394941866)], 'name': '<NAME>'}, 852: {'explanation': [(13, 0.3463529698715463), (11, 0.2678050131923326), (4, -0.10639863421417416), (6, 0.08345792378117327), (9, 0.07366945242386444)], 'name': '<NAME>'}}, {207: {'explanation': [(13, -0.0624167912596456), (7, 0.06083359545295548), (3, 0.0495953943686462), (11, -0.04819787147412231), (2, -0.03858823761391199)], 'name': '<NAME>'}, 208: {'explanation': [(13, -0.08408428146916162), (7, 0.07704235920590158), (3, 0.06646468388122273), (11, -0.0638326572126609), (2, -0.052621478002380796)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.35248212611685886), (13, 0.2516925608037859), (2, 0.13682853028454384), (9, 0.12930134856644754), (6, 0.1257747954095489)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.21351937934930917), (10, 0.16933456312772083), (11, -0.13447244552856766), (8, 0.11058919217055371), (2, -0.06269239798368743)], 'name': '<NAME>'}, 208: {'explanation': [(8, 0.05995551486884414), (9, -0.05375302972380482), (11, -0.051997353324246445), (6, 0.04213181405953071), (2, -0.039169895361928275)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.31382219776986503), (11, 0.24126214884275987), (13, 0.21075924370226598), (2, 0.11937652039885377), (8, -0.11911265319329697)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.39254403293049134), (9, 0.19357165018747347), (6, 0.16592079671652987), (0, 0.14042059731407297), (1, 0.09793027079765507)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.19351859273276703), (1, -0.15262967987262344), (3, 0.12205127112235375), (2, 0.11352141032313934), (6, -0.11164209893429898)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.17213007100844877), (0, -0.1583030948868859), (3, -0.13748574615069775), (5, 0.13273283867075436), (11, 0.12309551170070354)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.4073533182995105), (10, 0.20711667988142463), (8, 0.15360813290032324), (6, 0.1405424759832785), (1, 0.1332920685413575)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.14747910525112617), (1, -0.13977061235228924), (2, 0.10526833898161611), (6, -0.10416022118399552), (3, 0.09555992655161764)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.2232260929107954), (7, 0.21638443149433054), (5, 0.21100464215582274), (13, 0.145614853795006), (1, -0.11416523431311262)], 'name': '<NAME>'}}, {207: {'explanation': [(1, 0.14700178977744183), (0, 0.10346667279328238), (2, 0.10346667279328238), (7, 0.10346667279328238), (8, 0.10162900633690726)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.10845134816658476), (8, -0.1026920429226184), (6, -0.10238154733842847), (18, 0.10094164937411244), (16, 0.08646888450232793)], 'name': '<NAME>'}, 852: {'explanation': [(18, -0.20542297091894474), (13, 0.2012751176130666), (8, -0.19194747162742365), (20, 0.14686930696710473), (15, 0.11796990086271067)], 'name': '<NAME>'}}, {207: {'explanation': [(13, 0.12446259821701779), (17, 0.11859084421095789), (15, 0.09690553833007137), (12, -0.08869743701731962), (4, 0.08124900427893789)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.09478194981909983), (20, -0.09173392507039077), (9, 0.08768898801254493), (17, -0.07553994244536394), (4, 0.07422905503397653)], 'name': '<NAME>'}, 852: {'explanation': [(21, 0.1327882942965061), (1, 0.1238236573086363), (18, -0.10911712271717902), (19, 0.09707191051320978), (6, 0.08593672504338913)], 'name': '<NAME>'}}, {207: {'explanation': [(6, 0.14931728779865114), (14, 0.14092073957103526), (1, 0.11071480021464616), (4, 0.10655287976934531), (8, 0.08705404649152573)], 'name': '<NAME>'}, 208: {'explanation': [(8, -0.12242580400886727), (9, 0.12142729544158742), (14, -0.1148252787068248), (16, -0.09562322208795092), (4, 0.09350160975513132)], 'name': '<NAME>'}, 852: {'explanation': [(6, 0.04227675072263027), (9, -0.03107924340879173), (14, 0.028007115650713045), (13, 0.02771190348545554), (19, 0.02640441416071482)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.14313680656283245), (18, 0.12866508562342843), (8, 0.11809779264185447), (0, 0.11286255403442104), (2, 0.11286255403442104)], 'name': '<NAME>'}, 208: {'explanation': [(9, 0.2397917428082761), (14, -0.19435572812170654), (6, -0.1760894833446507), (18, -0.12243333818399058), (15, 0.10986343675377105)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.15378038774613365), (9, -0.14245940635481966), (6, 0.10213601012183973), (20, 0.1009180838986786), (3, 0.09780065767815548)], 'name': '<NAME>'}}, {207: {'explanation': [(15, 0.06525850448807077), (9, 0.06286791243851698), (19, 0.055189970374185854), (8, 0.05499197604401475), (13, 0.04748220842936177)], 'name': '<NAME>'}, 208: {'explanation': [(6, -0.31549091899770765), (5, 0.1862302670824446), (8, -0.17381478451341995), (10, -0.17353516098662508), (14, -0.13591542421754205)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.2163853942943355), (6, 0.17565046338282214), (1, 0.12446193028474549), (9, -0.11365789839746396), (10, 0.09239073691962967)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.1141207265647932), (36, -0.08861425922625768), (30, 0.07219209872026074), (9, -0.07150939547859836), (38, -0.06988288637544438)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.10531073909547647), (13, 0.08279642208039652), (34, -0.0817952443980797), (33, -0.08086848205765082), (12, 0.08086848205765082)], 'name': '<NAME>'}, 852: {'explanation': [(13, -0.1330452414595897), (4, 0.09942366413042845), (12, -0.09881995683190645), (33, 0.09881995683190645), (19, -0.09596925317560831)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08193926967758253), (35, 0.06804043021426347), (15, 0.06396269230810163), (11, 0.062255657227065296), (8, 0.05529200233091672)], 'name': '<NAME>'}, 208: {'explanation': [(19, 0.05711957286614678), (27, -0.050230108135410824), (16, -0.04743034616549999), (5, -0.046717346734255705), (9, -0.04419100026638039)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.08390967998497496), (30, -0.07037680222442452), (22, 0.07029819368543713), (8, -0.06861396187180349), (37, -0.06662511956402824)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.048418845359024805), (9, -0.0423869575883795), (30, 0.04012650790044438), (36, -0.03787242980067195), (10, 0.036557999380695635)], 'name': '<NAME>'}, 208: {'explanation': [(10, 0.12120686823129677), (17, 0.10196564232230493), (7, 0.09495133975425854), (25, -0.0759657891182803), (2, -0.07035244568286837)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.0770578003457272), (28, 0.0769372258280398), (6, -0.06044725989272927), (22, 0.05550155775286349), (31, -0.05399028046597057)], 'name': '<NAME>'}}, {207: {'explanation': [(14, 0.05371383110181226), (0, -0.04442539316084218), (18, 0.042589475382826494), (19, 0.04227647855354252), (17, 0.041685661662754295)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.14419601354489464), (17, 0.11785174500536676), (36, 0.1000501679652906), (10, 0.09679790134851017), (35, 0.08710376081189208)], 'name': '<NAME>'}, 852: {'explanation': [(8, -0.02486237985832769), (3, -0.022559886154747102), (11, -0.021878686669239856), (36, 0.021847953817988534), (19, -0.018317598300716522)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08098729255605368), (35, 0.06639102704982619), (15, 0.06033721190370432), (34, 0.05826267856117829), (28, 0.05549505160798173)], 'name': '<NAME>'}, 208: {'explanation': [(17, 0.13839012042250542), (10, 0.11312187488346881), (7, 0.10729071207480922), (25, -0.09529127965797404), (11, -0.09279834572979286)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.028385651836694076), (22, 0.023364702783498722), (8, -0.023097812578270233), (30, -0.022931236620034406), (37, -0.022040170736525342)], 'name': '<NAME>'}} ] EXP_TAB = { 'setosa&0&0': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&1': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&2': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&3': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&4': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&5': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&6': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&7': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&8': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&9': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&10': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&11': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&12': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&13': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&14': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&15': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&16': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&17': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&18': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&19': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&20': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&21': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&22': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&23': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&24': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&25': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&26': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&27': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&28': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&29': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&30': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&31': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&32': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&33': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&34': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&35': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&36': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&37': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&38': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&39': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&40': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&41': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&42': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&43': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&44': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&45': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&46': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&50': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&51': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&52': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&53': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&54': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&55': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&56': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&60': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&61': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&65': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&66': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&67': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&68': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&69': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&70': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&71': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&75': np.array([0.0, 0.95124502153736]), 'setosa&0&76': np.array([0.0, 0.9708703761803881]), 'setosa&0&77': np.array([0.0, 0.5659706098422994]), 'setosa&0&78': np.array([0.0, 0.3962828716108186]), 'setosa&0&79': np.array([0.0, 0.2538069363248767]), 'setosa&0&80': np.array([0.0, 0.95124502153736]), 'setosa&0&81': np.array([0.0, 0.95124502153736]), 'setosa&0&82': np.array([0.0, 0.95124502153736]), 'setosa&0&83': np.array([0.0, 0.95124502153736]), 'setosa&0&84': np.array([0.0, 0.9708703761803881]), 'setosa&0&85': np.array([0.0, 0.9708703761803881]), 'setosa&0&86': np.array([0.0, 0.9708703761803881]), 'setosa&0&87': np.array([0.0, 0.5659706098422994]), 'setosa&0&88': np.array([0.0, 0.5659706098422994]), 'setosa&0&89': np.array([0.0, 0.3962828716108186]), 'setosa&0&90': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&91': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&92': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&93': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&94': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&95': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&96': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&97': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&98': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&99': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&100': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&101': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&102': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&103': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&104': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&105': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&106': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&107': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&108': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&109': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&110': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&111': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&112': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&113': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&114': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&115': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&116': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&117': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&118': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&119': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&120': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&121': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&122': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&123': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&124': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&125': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&126': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&127': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&128': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&129': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&130': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&131': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&132': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&133': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&134': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&135': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&136': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&137': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&138': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&139': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&140': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&141': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&142': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&143': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&144': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&145': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&146': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&147': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&148': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&149': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&150': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&151': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&152': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&153': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&154': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&155': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&156': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&157': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&158': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&159': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&160': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&161': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&162': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&163': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&164': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&165': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&166': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&167': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&168': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&169': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&170': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&171': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&172': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&173': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&174': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&175': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&176': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&177': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&178': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&179': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&180': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&181': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&182': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&183': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&184': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&185': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&186': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&187': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&188': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&189': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&190': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&191': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&192': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&193': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&194': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&195': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&196': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&197': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&198': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&199': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&200': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&201': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&202': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&203': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&204': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&205': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&206': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&207': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&208': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&209': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&210': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&211': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&212': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&213': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&214': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&215': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&216': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&217': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&218': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&219': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&220': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&221': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&222': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&223': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&224': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&225': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&226': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&227': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&228': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&229': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&230': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&231': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&232': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&233': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&234': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&235': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&236': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&237': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&238': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&239': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&240': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&241': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&242': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&243': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&244': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&245': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&246': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&247': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&248': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&249': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&250': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&251': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&252': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&253': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&254': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&255': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&256': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&257': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&258': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&259': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&260': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&261': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&262': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&263': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&264': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&265': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&266': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&267': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&268': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&269': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&270': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&271': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&275': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&276': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&277': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&278': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&279': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&280': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&281': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&282': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&283': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&284': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&285': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&286': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&287': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&288': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&289': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&290': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&291': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&292': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&293': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&294': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&295': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&296': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&297': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&298': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&299': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&300': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&301': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&302': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&303': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&305': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&306': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&307': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&308': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&309': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&310': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&311': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&312': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&313': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&314': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&1&0': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&1': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&2': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&3': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&4': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&5': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&6': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&7': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&8': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&9': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&10': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&11': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&12': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&13': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&14': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&15': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&16': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&17': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&18': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&19': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&20': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&21': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&22': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&23': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&24': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&25': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&26': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&27': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&28': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&29': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&30': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&31': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&32': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&33': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&34': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&35': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&36': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&37': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&38': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&39': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&40': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&41': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&42': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&43': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&44': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&45': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&46': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&47': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&48': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&49': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&50': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&51': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&52': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&53': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&54': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&55': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&56': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&57': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&58': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&59': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&60': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&61': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&62': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&63': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&65': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&66': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&67': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&68': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&69': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&70': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&71': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&72': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&73': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&74': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&75': np.array([0.0, -0.4756207622944677]), 'setosa&1&76': np.array([0.0, -0.4854334805210761]), 'setosa&1&77': np.array([0.0, 0.16885577975809635]), 'setosa&1&78': np.array([0.0, 0.395805885538554]), 'setosa&1&79': np.array([0.0, 0.2538072707138344]), 'setosa&1&80': np.array([0.0, -0.4756207622944677]), 'setosa&1&81': np.array([0.0, -0.4756207622944677]), 'setosa&1&82': np.array([0.0, -0.4756207622944677]), 'setosa&1&83': np.array([0.0, -0.4756207622944677]), 'setosa&1&84': np.array([0.0, -0.4854334805210761]), 'setosa&1&85': np.array([0.0, -0.4854334805210761]), 'setosa&1&86': np.array([0.0, -0.4854334805210761]), 'setosa&1&87': np.array([0.0, 0.16885577975809635]), 'setosa&1&88': np.array([0.0, 0.16885577975809635]), 'setosa&1&89': np.array([0.0, 0.395805885538554]), 'setosa&1&90': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&91': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&92': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&93': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&94': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&95': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&96': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&97': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&98': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&99': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&100': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&101': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&102': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&103': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&104': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&105': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&106': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&107': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&108': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&109': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&110': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&111': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&112': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&113': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&114': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&115': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&116': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&117': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&118': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&119': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&120': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&121': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&122': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&123': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&124': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&125': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&126': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&127': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&128': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&129': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&130': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&131': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&132': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&133': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&134': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&135': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&136': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&137': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&138': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&139': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&140': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&141': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&142': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&143': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&144': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&145': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&146': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&147': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&148': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&149': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&150': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&151': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&152': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&153': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&154': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&155': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&156': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&157': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&158': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&159': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&160': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&161': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&162': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&163': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&164': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&165': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&166': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&167': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&168': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&169': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&170': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&171': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&172': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&173': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&174': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&175': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&176': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&177': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&178': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&179': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&180': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&181': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&182': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&183': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&184': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&185': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&186': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&187': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&188': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&189': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&190': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&191': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&192': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&193': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&194': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&195': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&196': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&197': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&198': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&199': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&200': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&201': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&202': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&203': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&204': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&205': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&206': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&207': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&208': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&209': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&210': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&211': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&212': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&213': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&214': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&215': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&216': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&217': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&218': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&219': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&220': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&221': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&222': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&223': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&224': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&225': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&226': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&227': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&228': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&229': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&230': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&231': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&232': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&233': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&234': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&235': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&236': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&237': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&238': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&239': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&240': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&241': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&242': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&243': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&244': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&245': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&246': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&247': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&248': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&249': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&250': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&251': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&252': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&253': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&254': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&255': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&256': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&257': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&258': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&259': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&260': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&261': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&262': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&263': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&264': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&265': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&266': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&267': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&268': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&269': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&270': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&271': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&272': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&273': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&274': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&275': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&276': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&277': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&278': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&279': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&280': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&281': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&282': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&283': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&284': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&285': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&286': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&287': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&288': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&289': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&290': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&291': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&292': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&293': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&294': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&295': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&296': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&297': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&298': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&299': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&300': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&301': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&302': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&303': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&305': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&306': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&307': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&308': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&309': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&310': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&311': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&312': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&313': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&314': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&2&0': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&1': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&2': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&3': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&4': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&5': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&6': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&7': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&8': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&9': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&10': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&11': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&12': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&13': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&14': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&15': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&16': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&17': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&18': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&19': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&20': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&21': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&22': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&23': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&24': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&25': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&26': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&27': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&28': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&29': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&30': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&31': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&32': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&33': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&34': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&35': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&36': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&37': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&38': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&39': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&40': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&41': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&42': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&43': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&44': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&45': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&46': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&47': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&48': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&49': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&50': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&51': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&52': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&53': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&54': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&55': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&56': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&57': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&58': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&59': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&60': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&61': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&62': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&63': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&64': np.array([-0.6188410763351541, -0.22803625884668638]), 'setosa&2&65': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&66': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&67': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&68': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&69': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&70': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&71': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&72': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&73': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&74': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&75': np.array([0.0, -0.47562425924289314]), 'setosa&2&76': np.array([0.0, -0.48543689565931186]), 'setosa&2&77': np.array([0.0, -0.7348263896003956]), 'setosa&2&78': np.array([0.0, -0.7920887571493729]), 'setosa&2&79': np.array([0.0, -0.507614207038711]), 'setosa&2&80': np.array([0.0, -0.47562425924289314]), 'setosa&2&81': np.array([0.0, -0.47562425924289314]), 'setosa&2&82': np.array([0.0, -0.47562425924289314]), 'setosa&2&83': np.array([0.0, -0.47562425924289314]), 'setosa&2&84': np.array([0.0, -0.48543689565931186]), 'setosa&2&85': np.array([0.0, -0.48543689565931186]), 'setosa&2&86': np.array([0.0, -0.48543689565931186]), 'setosa&2&87': np.array([0.0, -0.7348263896003956]), 'setosa&2&88': np.array([0.0, -0.7348263896003956]), 'setosa&2&89': np.array([0.0, -0.7920887571493729]), 'setosa&2&90': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&91': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&92': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&93': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&94': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&95': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&96': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&97': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&98': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&99': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&100': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&101': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&102': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&103': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&104': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&105': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&106': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&107': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&108': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&109': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&110': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&111': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&112': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&113': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&114': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&115': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&116': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&117': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&118': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&119': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&120': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&121': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&122': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&123': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&124': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&125': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&126': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&127': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&128': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&129': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&130': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&131': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&132': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&133': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&134': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&135': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&136': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&137': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&138': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&139': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&140': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&141': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&142': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&143': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&144': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&145': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&146': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&147': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&148': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&149': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&150': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&151': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&152': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&153': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&154': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&155': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&156': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&157': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&158': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&159': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&160': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&161': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&162': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&163': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&164': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&165': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&166': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&167': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&168': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&169': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&170': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&171': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&172': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&173': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&174': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&175': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&176': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&177': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&178': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&179': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&180': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&181': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&182': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&183': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&184': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&185': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&186': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&187': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&188': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&189': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&190': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&191': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&192': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&193': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&194': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&195': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&196': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&197': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&198': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&199': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&200': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&201': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&202': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&203': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&204': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&205': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&206': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&207': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&208': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&209': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&210': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&211': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&212': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&213': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&214': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&215': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&216': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&217': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&218': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&219': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&220': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&221': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&222': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&223': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&224': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&225': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&226': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&227': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&228': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&229': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&230': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&231': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&232': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&233': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&234': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&235': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&236': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&237': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&238': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&239': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&240': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&241': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&242': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&243': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&244': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&245': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&246': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&247': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&248': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&249': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&250': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&251': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&252': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&253': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&254': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&255': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&256': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&257': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&258': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&259': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&260': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&261': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&262': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&263': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&264': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&265': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&266': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&267': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&268': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&269': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&270': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&271': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&272': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&273': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&274': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&275': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&276': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&277': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&278': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&279': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&280': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&281': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&282': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&283': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&284': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&285': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&286': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&287': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&288': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&289': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&290': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&291': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&292': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&293': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&294': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&295': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&296': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&297': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&298': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&299': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&300': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&301': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&302': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&303': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&304': np.array([-0.6188410763351541, -0.22803625884668638]), 'setosa&2&305': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&306': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&307': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&308': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&309': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&310': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&311': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&312': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&313': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&314': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&0&0': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&1': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&2': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&3': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&4': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&5': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&6': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&7': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&8': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&9': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&10': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&11': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&12': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&13': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&14': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&15': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&16': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&17': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&18': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&19': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&20': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&21': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&22': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&23': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&24': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&25': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&26': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&27': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&28': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&29': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&30': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&31': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&32': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&33': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&34': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&35': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&36': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&37': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&38': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&39': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&40': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&41': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&42': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&43': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&44': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&45': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&46': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&50': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&51': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&52': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&53': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&54': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&55': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&56': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&60': np.array([0.029402442458921384, -0.9481684282717414]), 'versicolor&0&61': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'versicolor&0&65': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&66': np.array([0.42809266524335826, -0.40375108595117376]), 'versicolor&0&67': np.array([0.45547700380103057, -0.6083463409799501]), 'versicolor&0&68': np.array([0.19002455311770447, -0.8848597943731074]), 'versicolor&0&69': np.array([0.436966114193701, -0.4638042290788281]), 'versicolor&0&70': np.array([0.45424510803217066, -0.6425314361631614]), 'versicolor&0&71': np.array([0.1746467870122951, -0.9073062742839755]), 'versicolor&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&75': np.array([0.0, -0.95124502153736]), 'versicolor&0&76': np.array([0.0, -0.9708703761803881]), 'versicolor&0&77': np.array([0.0, 0.5659706098422994]), 'versicolor&0&78': np.array([0.0, 0.3962828716108186]), 'versicolor&0&79': np.array([0.0, 0.2538069363248767]), 'versicolor&0&80': np.array([0.0, -0.9708703761803881]), 'versicolor&0&81': np.array([0.0, -0.3631376646911367]), 'versicolor&0&82': np.array([0.0, -0.5804857652839247]), 'versicolor&0&83': np.array([0.0, -0.8943993997517804]), 'versicolor&0&84': np.array([0.0, -0.4231275527222919]), 'versicolor&0&85': np.array([0.0, -0.6164235822373675]), 'versicolor&0&86': np.array([0.0, -0.9166476163222441]), 'versicolor&0&87': np.array([0.0, 0.5659706098422994]), 'versicolor&0&88': np.array([0.0, 0.5659706098422994]), 'versicolor&0&89': np.array([0.0, 0.3962828716108186]), 'versicolor&0&90': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&91': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&92': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&93': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&94': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&95': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&96': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&97': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&98': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&99': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&100': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&101': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&102': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&103': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&104': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&105': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&106': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&107': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&108': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&109': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&110': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&111': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&112': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&113': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&114': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&115': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&116': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&117': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&118': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&119': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&120': np.array([-0.05855179950109871, -0.9211684729232403]), 'versicolor&0&121': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&122': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&123': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&124': np.array([-0.5182062652425321, 0.3958533237517639]), 'versicolor&0&125': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&126': np.array([-0.5107107533700952, 0.0075507123577884866]), 'versicolor&0&127': np.array([-0.1464063320531759, -0.4788055402156298]), 'versicolor&0&128': np.array([-0.061109248092233844, -0.8620287767000373]), 'versicolor&0&129': np.array([-0.4706137753079746, -0.057389625790424635]), 'versicolor&0&130': np.array([-0.06804620923037683, -0.5677904519730453]), 'versicolor&0&131': np.array([-0.020216773196675246, -0.9057119888626176]), 'versicolor&0&132': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&133': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&134': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&135': np.array([-0.19684482070614498, -0.7845939961595055]), 'versicolor&0&136': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&137': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&138': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&139': np.array([-0.8063011502229427, 0.4134300066735808]), 'versicolor&0&140': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&141': np.array([-0.7985789197998611, 0.0026209054759345337]), 'versicolor&0&142': np.array([-0.7182275903095532, -0.11963032135457498]), 'versicolor&0&143': np.array([-0.2798927835773098, -0.6581136857450849]), 'versicolor&0&144': np.array([-0.7920119433269182, -0.0142751249964083]), 'versicolor&0&145': np.array([-0.6943081428778407, -0.14852813120265815]), 'versicolor&0&146': np.array([-0.16106555563262584, -0.777621649099753]), 'versicolor&0&147': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&148': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&149': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&150': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&151': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&152': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&153': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&154': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&155': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&156': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&157': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&158': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&159': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&160': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&161': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&162': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&163': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&164': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&165': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&166': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&167': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&168': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&169': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&170': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&171': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&172': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&173': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&174': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&175': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&176': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&177': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&178': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&179': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&180': np.array([-0.05855179950109871, -0.9211684729232403]), 'versicolor&0&181': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&182': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&183': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&184': np.array([-0.5182062652425321, 0.3958533237517639]), 'versicolor&0&185': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&186': np.array([-0.5107107533700952, 0.0075507123577884866]), 'versicolor&0&187': np.array([-0.1464063320531759, -0.4788055402156298]), 'versicolor&0&188': np.array([-0.061109248092233844, -0.8620287767000373]), 'versicolor&0&189': np.array([-0.4706137753079746, -0.057389625790424635]), 'versicolor&0&190': np.array([-0.06804620923037683, -0.5677904519730453]), 'versicolor&0&191': np.array([-0.020216773196675246, -0.9057119888626176]), 'versicolor&0&192': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&193': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&194': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&195': np.array([-0.19684482070614498, -0.7845939961595055]), 'versicolor&0&196': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&197': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&198': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&199': np.array([-0.8063011502229427, 0.4134300066735808]), 'versicolor&0&200': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&201': np.array([-0.7985789197998611, 0.0026209054759345337]), 'versicolor&0&202': np.array([-0.7182275903095532, -0.11963032135457498]), 'versicolor&0&203': np.array([-0.2798927835773098, -0.6581136857450849]), 'versicolor&0&204': np.array([-0.7920119433269182, -0.0142751249964083]), 'versicolor&0&205': np.array([-0.6943081428778407, -0.14852813120265815]), 'versicolor&0&206': np.array([-0.16106555563262584, -0.777621649099753]), 'versicolor&0&207': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&208': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&209': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&210': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&211': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&212': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&213': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&214': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&215': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&216': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&217': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&218': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&219': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&220': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&221': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&222': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&223': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&224': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&225': np.array([-0.04777085826693217, -0.931704979630315]), 'versicolor&0&226': np.array([-0.016252316132452975, -0.9640854286687816]), 'versicolor&0&227': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&228': np.array([-0.5844994389588399, 0.5715208832363579]), 'versicolor&0&229': np.array([-0.46216647196120714, 0.35468591243823655]), 'versicolor&0&230': np.array([-0.016252316132452975, -0.9640854286687816]), 'versicolor&0&231': np.array([-0.3707180757031537, -0.1977196581472426]), 'versicolor&0&232': np.array([-0.1043459833293615, -0.5233314327065356]), 'versicolor&0&233': np.array([-0.049289647556763364, -0.8736084405111605]), 'versicolor&0&234': np.array([-0.34078174031874375, -0.25874482325965437]), 'versicolor&0&235': np.array([-0.050841051273783675, -0.5877587283589205]), 'versicolor&0&236': np.array([-0.0161720977425142, -0.9096817855236822]), 'versicolor&0&237': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&238': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&239': np.array([-0.5844994389588399, 0.5715208832363579]), 'versicolor&0&240': np.array([-0.11329659732608087, -0.8671819100849522]), 'versicolor&0&241': np.array([-0.040390637135858574, -0.9402832917474078]), 'versicolor&0&242': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&243': np.array([-0.6392402874163683, 0.24114611970435948]), 'versicolor&0&244': np.array([-0.6814868825686854, 0.35066801608083215]), 'versicolor&0&245': np.array([-0.040390637135858574, -0.9402832917474078]), 'versicolor&0&246': np.array([-0.6425009695928476, -0.24851992476830956]), 'versicolor&0&247': np.array([-0.5151243662384031, -0.3255567772442641]), 'versicolor&0&248': np.array([-0.16157511199607094, -0.7754323813403634]), 'versicolor&0&249': np.array([-0.6300442788906601, -0.28361140069713875]), 'versicolor&0&250': np.array([-0.4875864856121089, -0.3614122096616301]), 'versicolor&0&251': np.array([-0.08968204532514226, -0.8491191210330045]), 'versicolor&0&252': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&253': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&254': np.array([-0.6392402874163683, 0.24114611970435948]), 'versicolor&0&255': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&256': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&257': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&258': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&259': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&260': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&261': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&262': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&263': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&264': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&265': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&266': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&267': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&268': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&269': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&270': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&271': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&275': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&276': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&277': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&278': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&279': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&280': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&281': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&282': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&283': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&284': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&285': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&286': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&287': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&288': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&289': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&290': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&291': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&292': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&293': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&294': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&295': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&296': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&297': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&298': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&299': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&300': np.array([0.029402442458921384, -0.9481684282717414]), 'versicolor&0&301': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&302': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&303': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'versicolor&0&305': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&306': np.array([0.42809266524335826, -0.40375108595117376]), 'versicolor&0&307': np.array([0.45547700380103057, -0.6083463409799501]), 'versicolor&0&308': np.array([0.19002455311770447, -0.8848597943731074]), 'versicolor&0&309': np.array([0.436966114193701, -0.4638042290788281]), 'versicolor&0&310': np.array([0.45424510803217066, -0.6425314361631614]), 'versicolor&0&311': np.array([0.1746467870122951, -0.9073062742839755]), 'versicolor&0&312': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&313': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&314': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&1&0': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&1': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&2': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&3': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&4': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&5': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&6': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&7': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&8': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&9': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&10': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&11': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&12': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&13': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&14': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&15': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&16': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&17': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&18': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&19': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&20': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&21': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&22': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&23': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&24': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&25': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&26': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&27': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&28': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&29': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&30': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&31': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&32': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&33': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&34': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&35': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&36': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&37': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&38': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&39': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&40': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&41': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&42': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&43': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&44': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&45': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&46': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&47': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&48': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&49': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&50': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&51': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&52': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&53': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&54': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&55': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&56': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&57': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&58': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&59': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&60': np.array([0.4933316375690332, 0.5272416708629276]), 'versicolor&1&61': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&62': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&63': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'versicolor&1&65': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&66': np.array([0.1413116283690917, 0.7479856297394165]), 'versicolor&1&67': np.array([0.189773257421942, 0.6552150653012478]), 'versicolor&1&68': np.array([0.40694846236352233, 0.5109051764198169]), 'versicolor&1&69': np.array([0.1390424906594644, 0.7991613016301518]), 'versicolor&1&70': np.array([0.1945777487290197, 0.6743932844312892]), 'versicolor&1&71': np.array([0.415695226122737, 0.5230815102377903]), 'versicolor&1&72': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&73': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&74': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&75': np.array([0.0, 0.4756207622944677]), 'versicolor&1&76': np.array([0.0, 0.4854334805210761]), 'versicolor&1&77': np.array([0.0, 0.16885577975809635]), 'versicolor&1&78': np.array([0.0, 0.395805885538554]), 'versicolor&1&79': np.array([0.0, 0.2538072707138344]), 'versicolor&1&80': np.array([0.0, 0.4854334805210761]), 'versicolor&1&81': np.array([0.0, 0.7613919530844643]), 'versicolor&1&82': np.array([0.0, 0.6668230985485095]), 'versicolor&1&83': np.array([0.0, 0.4904755652105692]), 'versicolor&1&84': np.array([0.0, 0.8121046082359693]), 'versicolor&1&85': np.array([0.0, 0.6855766903749089]), 'versicolor&1&86': np.array([0.0, 0.5008471974438506]), 'versicolor&1&87': np.array([0.0, 0.16885577975809635]), 'versicolor&1&88': np.array([0.0, 0.16885577975809635]), 'versicolor&1&89': np.array([0.0, 0.395805885538554]), 'versicolor&1&90': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&91': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&92': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&93': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&94': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&95': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&96': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&97': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&98': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&99': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&100': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&101': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&102': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&103': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&104': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&105': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&106': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&107': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&108': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&109': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&110': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&111': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&112': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&113': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&114': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&115': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&116': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&117': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&118': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&119': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&120': np.array([0.8224435822504677, 0.05315271528828394]), 'versicolor&1&121': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&122': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&123': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&124': np.array([0.8476206690613984, 0.02146454924522743]), 'versicolor&1&125': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&126': np.array([0.69362517791403, 0.2579390890424607]), 'versicolor&1&127': np.array([0.7261791877801502, 0.16248655642013624]), 'versicolor&1&128': np.array([0.8190416077589757, 0.05661509439536992]), 'versicolor&1&129': np.array([0.6654762076749751, 0.2949291633432878]), 'versicolor&1&130': np.array([0.7118161070185614, 0.17683644094125878]), 'versicolor&1&131': np.array([0.8165214253946836, 0.059175619390630096]), 'versicolor&1&132': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&133': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&134': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&135': np.array([0.5188109114552927, 0.03638964581864269]), 'versicolor&1&136': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&137': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&138': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&139': np.array([0.5436097000280874, 0.1461891067488832]), 'versicolor&1&140': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&141': np.array([0.32513442685780247, 0.6124765483184536]), 'versicolor&1&142': np.array([0.1812883360919208, 0.5504982486874137]), 'versicolor&1&143': np.array([0.4788153032824012, 0.08625929936974323]), 'versicolor&1&144': np.array([0.28490718210609345, 0.6650298146522879]), 'versicolor&1&145': np.array([0.1313204067730033, 0.597079642504441]), 'versicolor&1&146': np.array([0.46583127837967303, 0.09875847161509169]), 'versicolor&1&147': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&148': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&149': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&150': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&151': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&152': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&153': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&154': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&155': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&156': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&157': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&158': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&159': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&160': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&161': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&162': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&163': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&164': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&165': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&166': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&167': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&168': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&169': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&170': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&171': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&172': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&173': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&174': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&175': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&176': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&177': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&178': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&179': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&180': np.array([0.8224435822504677, 0.05315271528828394]), 'versicolor&1&181': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&182': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&183': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&184': np.array([0.8476206690613984, 0.02146454924522743]), 'versicolor&1&185': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&186': np.array([0.69362517791403, 0.2579390890424607]), 'versicolor&1&187': np.array([0.7261791877801502, 0.16248655642013624]), 'versicolor&1&188': np.array([0.8190416077589757, 0.05661509439536992]), 'versicolor&1&189': np.array([0.6654762076749751, 0.2949291633432878]), 'versicolor&1&190': np.array([0.7118161070185614, 0.17683644094125878]), 'versicolor&1&191': np.array([0.8165214253946836, 0.059175619390630096]), 'versicolor&1&192': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&193': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&194': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&195': np.array([0.5188109114552927, 0.03638964581864269]), 'versicolor&1&196': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&197': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&198': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&199': np.array([0.5436097000280874, 0.1461891067488832]), 'versicolor&1&200': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&201': np.array([0.32513442685780247, 0.6124765483184536]), 'versicolor&1&202': np.array([0.1812883360919208, 0.5504982486874137]), 'versicolor&1&203': np.array([0.4788153032824012, 0.08625929936974323]), 'versicolor&1&204': np.array([0.28490718210609345, 0.6650298146522879]), 'versicolor&1&205': np.array([0.1313204067730033, 0.597079642504441]), 'versicolor&1&206': np.array([0.46583127837967303, 0.09875847161509169]), 'versicolor&1&207': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&208': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&209': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&210': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&211': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&212': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&213': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&214': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&215': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&216': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&217': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&218': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&219': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&220': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&221': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&222': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&223': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&224': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&225': np.array([0.6253337666017573, 0.21983620140147825]), 'versicolor&1&226': np.array([0.6178968870349187, 0.22747652768125623]), 'versicolor&1&227': np.array([0.7245803616608639, 0.18141483095066183]), 'versicolor&1&228': np.array([0.6762617119303499, 0.19305674697949574]), 'versicolor&1&229': np.array([0.7182033715159247, 0.0970420677941148]), 'versicolor&1&230': np.array([0.6178968870349187, 0.22747652768125623]), 'versicolor&1&231': np.array([0.4976586558055923, 0.5393318265947251]), 'versicolor&1&232': np.array([0.4361093214026388, 0.4279491486345008]), 'versicolor&1&233': np.array([0.613985959011319, 0.23148898930908424]), 'versicolor&1&234': np.array([0.46747697713468217, 0.586607956360002]), 'versicolor&1&235': np.array([0.41044950174869577, 0.45415985894965977]), 'versicolor&1&236': np.array([0.6057447478066579, 0.23993389556303918]), 'versicolor&1&237': np.array([0.7245803616608639, 0.18141483095066183]), 'versicolor&1&238': np.array([0.7245803616608639, 0.18141483095066183]), 'versicolor&1&239': np.array([0.6762617119303499, 0.19305674697949574]), 'versicolor&1&240': np.array([0.056623968925773045, 0.43360725859686644]), 'versicolor&1&241': np.array([0.020169511418752378, 0.47015948158260334]), 'versicolor&1&242': np.array([0.5806365328450954, 0.47262706807712623]), 'versicolor&1&243': np.array([0.4146290154471569, 0.4964318942067898]), 'versicolor&1&244': np.array([0.3351719071445682, 0.20616862401308342]), 'versicolor&1&245': np.array([0.020169511418752378, 0.47015948158260334]), 'versicolor&1&246': np.array([0.24022705822940116, 0.7185371033867092]), 'versicolor&1&247': np.array([0.010447231513465048, 0.6616528865917504]), 'versicolor&1&248': np.array([0.024556360933646205, 0.4723948285969902]), 'versicolor&1&249': np.array([0.21321406009810842, 0.7648907754638917]), 'versicolor&1&250': np.array([-0.027450681014480036, 0.6999336015080245]), 'versicolor&1&251': np.array([-0.0164329511444131, 0.5132208276383963]), 'versicolor&1&252': np.array([0.5806365328450954, 0.47262706807712623]), 'versicolor&1&253': np.array([0.5806365328450954, 0.47262706807712623]), 'versicolor&1&254': np.array([0.4146290154471569, 0.4964318942067898]), 'versicolor&1&255': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&256': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&257': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&258': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&259': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&260': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&261': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&262': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&263': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&264': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&265': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&266': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&267': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&268': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&269': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&270': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&271': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&272': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&273': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&274': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&275': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&276': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&277': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&278': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&279': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&280': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&281': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&282': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&283': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&284': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&285': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&286': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&287': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&288': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&289': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&290': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&291': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&292': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&293': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&294': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&295': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&296': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&297': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&298': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&299': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&300': np.array([0.4933316375690332, 0.5272416708629276]), 'versicolor&1&301': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&302': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&303': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'versicolor&1&305': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&306': np.array([0.1413116283690917, 0.7479856297394165]), 'versicolor&1&307': np.array([0.189773257421942, 0.6552150653012478]), 'versicolor&1&308': np.array([0.40694846236352233, 0.5109051764198169]), 'versicolor&1&309': np.array([0.1390424906594644, 0.7991613016301518]), 'versicolor&1&310': np.array([0.1945777487290197, 0.6743932844312892]), 'versicolor&1&311': np.array([0.415695226122737, 0.5230815102377903]), 'versicolor&1&312': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&313': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&314': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&2&0': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&1': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&2': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&3': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&4': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&5': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&6': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&7': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&8': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&9': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&10': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&11': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&12': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&13': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&14': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&15': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&16': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&17': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&18': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&19': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&20': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&21': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&22': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&23': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&24': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&25': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&26': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&27': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&28': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&29': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&30': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&31': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&32': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&33': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&34': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&35': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&36': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&37': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&38': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&39': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&40': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&41': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&42': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&43': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&44': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&45': np.array([-0.8252668830593566, 0.11450866713130668]), 'versicolor&2&46': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&47': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&48': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&49': np.array([-0.8735738195653328, -0.046438180466149094]), 'versicolor&2&50': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&51': np.array([-0.8470213454017305, -0.0910504504559782]), 'versicolor&2&52': np.array([-0.8783521565540571, 0.01381094589198601]), 'versicolor&2&53': np.array([-0.8388485924434891, 0.09800790238640067]), 'versicolor&2&54': np.array([-0.8495871633670822, -0.08820642363054954]), 'versicolor&2&55': np.array([-0.8784816772224661, 0.017184907022714958]), 'versicolor&2&56': np.array([-0.835455914569297, 0.10189258327760495]), 'versicolor&2&57': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&58': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&59': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&60': np.array([-0.5227340800279543, 0.4209267574088147]), 'versicolor&2&61': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&62': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&63': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&2&64': np.array([-0.6188410763351541, -0.22803625884668638]), 'versicolor&2&65': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&66': np.array([-0.56940429361245, -0.3442345437882425]), 'versicolor&2&67': np.array([-0.6452502612229726, -0.04686872432129788]), 'versicolor&2&68': np.array([-0.596973015481227, 0.37395461795328944]), 'versicolor&2&69': np.array([-0.5760086048531655, -0.3353570725513232]), 'versicolor&2&70': np.array([-0.6488228567611906, -0.03186184826812757]), 'versicolor&2&71': np.array([-0.5903420131350324, 0.384224764046184]), 'versicolor&2&72': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&73': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&74': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&2&75': np.array([0.0, 0.47562425924289314]), 'versicolor&2&76': np.array([0.0, 0.4854368956593117]), 'versicolor&2&77': np.array([0.0, -0.7348263896003956]), 'versicolor&2&78': np.array([0.0, -0.7920887571493729]), 'versicolor&2&79': np.array([0.0, -0.507614207038711]), 'versicolor&2&80': np.array([0.0, 0.4854368956593117]), 'versicolor&2&81': np.array([0.0, -0.3982542883933272]), 'versicolor&2&82': np.array([0.0, -0.08633733326458487]), 'versicolor&2&83': np.array([0.0, 0.4039238345412103]), 'versicolor&2&84': np.array([0.0, -0.38897705551367706]), 'versicolor&2&85': np.array([0.0, -0.06915310813754129]), 'versicolor&2&86': np.array([0.0, 0.41580041887839214]), 'versicolor&2&87': np.array([0.0, -0.7348263896003956]), 'versicolor&2&88': np.array([0.0, -0.7348263896003956]), 'versicolor&2&89': np.array([0.0, -0.7920887571493729]), 'versicolor&2&90': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&91': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&92': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&93': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&94': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&95': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&96': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&97': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&98': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&99': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&100': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&101': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&102': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&103': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&104': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&105': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&106': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&107': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&108': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&109': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&110': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&111': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&112': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&113': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&114': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&115': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&116': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&117': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&118': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&119': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&120': np.array([-0.7638917827493686, 0.868015757634957]), 'versicolor&2&121': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&122': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&123': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&124': np.array([-0.32941440381886555, -0.4173178729969913]), 'versicolor&2&125': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&126': np.array([-0.18291442454393395, -0.2654898014002494]), 'versicolor&2&127': np.array([-0.5797728557269727, 0.3163189837954924]), 'versicolor&2&128': np.array([-0.7579323596667402, 0.8054136823046655]), 'versicolor&2&129': np.array([-0.1948624323669993, -0.23753953755286383]), 'versicolor&2&130': np.array([-0.6437698977881832, 0.3909540110317858]), 'versicolor&2&131': np.array([-0.7963046521980063, 0.846536369471985]), 'versicolor&2&132': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&133': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&134': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&135': np.array([-0.3219660907491514, 0.7482043503408669]), 'versicolor&2&136': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&137': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&138': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&139': np.array([0.2626914501948546, -0.5596191134224637]), 'versicolor&2&140': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&141': np.array([0.4734444929420575, -0.6150974537943872]), 'versicolor&2&142': np.array([0.5369392542176313, -0.430867927332838]), 'versicolor&2&143': np.array([-0.19892251970509112, 0.5718543863753405]), 'versicolor&2&144': np.array([0.5071047612208237, -0.6507546896558788]), 'versicolor&2&145': np.array([0.5629877361048359, -0.4485515113017818]), 'versicolor&2&146': np.array([-0.3047657227470458, 0.6788631774846587]), 'versicolor&2&147': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&148': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&149': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&150': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&151': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&152': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&153': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&154': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&155': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&156': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&157': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&158': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&159': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&160': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&161': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&162': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&163': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&164': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&165': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&166': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&167': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&168': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&169': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&170': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&171': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&172': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&173': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&174': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&175': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&176': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&177': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&178': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&179': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&180': np.array([-0.7638917827493686, 0.868015757634957]), 'versicolor&2&181': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&182': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&183': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&184': np.array([-0.32941440381886555, -0.4173178729969913]), 'versicolor&2&185': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&186': np.array([-0.18291442454393395, -0.2654898014002494]), 'versicolor&2&187': np.array([-0.5797728557269727, 0.3163189837954924]), 'versicolor&2&188': np.array([-0.7579323596667402, 0.8054136823046655]), 'versicolor&2&189': np.array([-0.1948624323669993, -0.23753953755286383]), 'versicolor&2&190': np.array([-0.6437698977881832, 0.3909540110317858]), 'versicolor&2&191': np.array([-0.7963046521980063, 0.846536369471985]), 'versicolor&2&192': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&193': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&194': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&195': np.array([-0.3219660907491514, 0.7482043503408669]), 'versicolor&2&196': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&197': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&198': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&199': np.array([0.2626914501948546, -0.5596191134224637]), 'versicolor&2&200': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&201': np.array([0.4734444929420575, -0.6150974537943872]), 'versicolor&2&202': np.array([0.5369392542176313, -0.430867927332838]), 'versicolor&2&203': np.array([-0.19892251970509112, 0.5718543863753405]), 'versicolor&2&204': np.array([0.5071047612208237, -0.6507546896558788]), 'versicolor&2&205': np.array([0.5629877361048359, -0.4485515113017818]), 'versicolor&2&206': np.array([-0.3047657227470458, 0.6788631774846587]), 'versicolor&2&207': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&208': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&209': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&210': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&211': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&212': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&213': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&214': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&215': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&216': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&217': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&218': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&219': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&220': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&221': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&222': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&223': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&224': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&225': np.array([-0.5775629083348267, 0.7118687782288384]), 'versicolor&2&226': np.array([-0.6016445709024666, 0.7366089009875252]), 'versicolor&2&227': np.array([-0.28356111726513855, -0.739741315226852]), 'versicolor&2&228': np.array([-0.0917622729715107, -0.7645776302158537]), 'versicolor&2&229': np.array([-0.25603689955471853, -0.451727980232351]), 'versicolor&2&230': np.array([-0.6016445709024666, 0.7366089009875252]), 'versicolor&2&231': np.array([-0.1269405801024398, -0.34161216844748166]), 'versicolor&2&232': np.array([-0.33176333807327857, 0.09538228407203546]), 'versicolor&2&233': np.array([-0.564696311454556, 0.6421194512020755]), 'versicolor&2&234': np.array([-0.12669523681593967, -0.32786313310034665]), 'versicolor&2&235': np.array([-0.35960845047491363, 0.1335988694092619]), 'versicolor&2&236': np.array([-0.589572650064144, 0.6697478899606418]), 'versicolor&2&237': np.array([-0.28356111726513855, -0.739741315226852]), 'versicolor&2&238': np.array([-0.28356111726513855, -0.739741315226852]), 'versicolor&2&239': np.array([-0.0917622729715107, -0.7645776302158537]), 'versicolor&2&240': np.array([0.05667262840030629, 0.4335746514880877]), 'versicolor&2&241': np.array([0.0202211257171063, 0.470123810164804]), 'versicolor&2&242': np.array([-0.052990507284891984, -0.7625494034929868]), 'versicolor&2&243': np.array([0.22461127196921116, -0.7375780139111495]), 'versicolor&2&244': np.array([0.3463149754241171, -0.5568366400939154]), 'versicolor&2&245': np.array([0.0202211257171063, 0.470123810164804]), 'versicolor&2&246': np.array([0.4022739113634462, -0.4700171786183992]), 'versicolor&2&247': np.array([0.5046771347249378, -0.33609610934748635]), 'versicolor&2&248': np.array([0.1370187510624256, 0.30303755274337163]), 'versicolor&2&249': np.array([0.41683021879255133, -0.4812793747667524]), 'versicolor&2&250': np.array([0.5150371666265885, -0.33852139184639396]), 'versicolor&2&251': np.array([0.10611499646955676, 0.33589829339460586]), 'versicolor&2&252': np.array([-0.052990507284891984, -0.7625494034929868]), 'versicolor&2&253': np.array([-0.052990507284891984, -0.7625494034929868]), 'versicolor&2&254': np.array([0.22461127196921116, -0.7375780139111495]), 'versicolor&2&255': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&256': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&257': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&258': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&259': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&260': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&261': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&262': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&263': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&264': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&265': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&266': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&267': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&268': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&269': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&270': np.array([-0.8252668830593566, 0.11450866713130668]), 'versicolor&2&271': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&272': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&273': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&274': np.array([-0.8735738195653328, -0.046438180466149094]), 'versicolor&2&275': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&276': np.array([-0.8470213454017305, -0.0910504504559782]), 'versicolor&2&277': np.array([-0.8783521565540571, 0.01381094589198601]), 'versicolor&2&278': np.array([-0.8388485924434891, 0.09800790238640067]), 'versicolor&2&279': np.array([-0.8495871633670822, -0.08820642363054954]), 'versicolor&2&280': np.array([-0.8784816772224661, 0.017184907022714958]), 'versicolor&2&281': np.array([-0.835455914569297, 0.10189258327760495]), 'versicolor&2&282': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&283': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&284': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&285': np.array([-0.8252668830593566, 0.11450866713130668]), 'versicolor&2&286': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&287': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&288': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&289': np.array([-0.8735738195653328, -0.046438180466149094]), 'versicolor&2&290': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&291': np.array([-0.8470213454017305, -0.0910504504559782]), 'versicolor&2&292': np.array([-0.8783521565540571, 0.01381094589198601]), 'versicolor&2&293': np.array([-0.8388485924434891, 0.09800790238640067]), 'versicolor&2&294': np.array([-0.8495871633670822, -0.08820642363054954]), 'versicolor&2&295': np.array([-0.8784816772224661, 0.017184907022714958]), 'versicolor&2&296': np.array([-0.835455914569297, 0.10189258327760495]), 'versicolor&2&297': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&298': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&299': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&300': np.array([-0.5227340800279543, 0.4209267574088147]), 'versicolor&2&301': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&302': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&303': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&2&304': np.array([-0.6188410763351541, -0.22803625884668638]), 'versicolor&2&305': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&306': np.array([-0.56940429361245, -0.3442345437882425]), 'versicolor&2&307': np.array([-0.6452502612229726, -0.04686872432129788]), 'versicolor&2&308': np.array([-0.596973015481227, 0.37395461795328944]), 'versicolor&2&309': np.array([-0.5760086048531655, -0.3353570725513232]), 'versicolor&2&310': np.array([-0.6488228567611906, -0.03186184826812757]), 'versicolor&2&311': np.array([-0.5903420131350324, 0.384224764046184]), 'versicolor&2&312': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&313': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&314': np.array([-0.2741128763380603, -0.7260889090887469]), 'virginica&0&0': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&1': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&2': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&3': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&4': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&5': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&6': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&7': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&8': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&9': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&10': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&11': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&12': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&13': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&14': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&15': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&16': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&17': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&18': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&19': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&20': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&21': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&22': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&23': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&24': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&25': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&26': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&27': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&28': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&29': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&30': np.array([-0.19685199412911655, -0.7845879230594393]), 'virginica&0&31': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&32': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&33': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&34': np.array([-0.7974072911132788, 0.006894018772033604]), 'virginica&0&35': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&36': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&37': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&38': np.array([-0.3355030348883163, -0.6305271339971502]), 'virginica&0&39': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&40': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&41': np.array([-0.2519677855687844, -0.7134447168661863]), 'virginica&0&42': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&43': np.array([-0.7799744386472778, -0.026476616324402506]), 'virginica&0&44': np.array([-0.7942342242967624, -0.0119572163963601]), 'virginica&0&45': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&46': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&47': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&48': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&49': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&50': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&51': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&52': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&53': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&54': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&55': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&56': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&57': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&58': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&59': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&60': np.array([0.029402442458921384, -0.9481684282717414]), 'virginica&0&61': np.array([0.009887859354111524, -0.9698143912008228]), 'virginica&0&62': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&63': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'virginica&0&65': np.array([0.009887859354111524, -0.9698143912008228]), 'virginica&0&66': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&67': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&68': np.array([0.19002455311770447, -0.8848597943731074]), 'virginica&0&69': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&70': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&71': np.array([0.1746467870122951, -0.9073062742839755]), 'virginica&0&72': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&73': np.array([0.11200181312407695, -0.5330612470996793]), 'virginica&0&74': np.array([0.19998284600732558, -0.3489062419702088]), 'virginica&0&75': np.array([0.0, -0.95124502153736]), 'virginica&0&76': np.array([0.0, -0.9708703761803881]), 'virginica&0&77': np.array([0.0, -0.5659706098422994]), 'virginica&0&78': np.array([0.0, -0.3962828716108186]), 'virginica&0&79': np.array([0.0, 0.2538069363248767]), 'virginica&0&80': np.array([0.0, -0.9708703761803881]), 'virginica&0&81': np.array([0.0, -0.5659706098422994]), 'virginica&0&82': np.array([0.0, -0.3962828716108186]), 'virginica&0&83': np.array([0.0, -0.8943993997517804]), 'virginica&0&84': np.array([0.0, -0.5659706098422994]), 'virginica&0&85': np.array([0.0, -0.3962828716108186]), 'virginica&0&86': np.array([0.0, -0.9166476163222441]), 'virginica&0&87': np.array([0.0, -0.3962828716108186]), 'virginica&0&88': np.array([0.0, -0.5466925844560601]), 'virginica&0&89': np.array([0.0, -0.38529908946531777]), 'virginica&0&90': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&91': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&92': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&93': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&94': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&95': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&96': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&97': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&98': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&99': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&100': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&101': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&102': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&103': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&104': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&105': np.array([-0.19685199412911655, -0.7845879230594393]), 'virginica&0&106': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&107': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&108': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&109': np.array([-0.7974072911132788, 0.006894018772033604]), 'virginica&0&110': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&111': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&112': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&113': np.array([-0.3355030348883163, -0.6305271339971502]), 'virginica&0&114': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&115': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&116': np.array([-0.2519677855687844, -0.7134447168661863]), 'virginica&0&117': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&118': np.array([-0.7799744386472778, -0.026476616324402506]), 'virginica&0&119': np.array([-0.7942342242967624, -0.0119572163963601]), 'virginica&0&120': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&121': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&122': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&123': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&124': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&125': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&126': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&127': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&128': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&129': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&130': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&131': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&132': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&133': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&134': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&135': np.array([-0.19684482070614498, -0.7845939961595055]), 'virginica&0&136': np.array([-0.07475231751447156, -0.9062785678426409]), 'virginica&0&137': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&138': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&139': np.array([-0.8063011502229427, 0.4134300066735808]), 'virginica&0&140': np.array([-0.07475231751447156, -0.9062785678426409]), 'virginica&0&141': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&142': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&143': np.array([-0.2798927835773098, -0.6581136857450849]), 'virginica&0&144': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&145': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&146': np.array([-0.16106555563262584, -0.777621649099753]), 'virginica&0&147': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&148': np.array([-0.6898990333725056, -0.2534947697713122]), 'virginica&0&149': np.array([-0.769491694075929, -0.22884642137519118]), 'virginica&0&150': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&151': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&152': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&153': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&154': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&155': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&156': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&157': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&158': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&159': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&160': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&161': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&162': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&163': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&164': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&165': np.array([-0.19685199412911655, -0.7845879230594393]), 'virginica&0&166': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&167': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&168': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&169': np.array([-0.7974072911132788, 0.006894018772033604]), 'virginica&0&170': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&171': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&172': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&173': np.array([-0.3355030348883163, -0.6305271339971502]), 'virginica&0&174': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&175': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&176': np.array([-0.2519677855687844, -0.7134447168661863]), 'virginica&0&177': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&178': np.array([-0.7799744386472778, -0.026476616324402506]), 'virginica&0&179': np.array([-0.7942342242967624, -0.0119572163963601]), 'virginica&0&180': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&181': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&182': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&183': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&184': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&185': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&186': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&187': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&188': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&189': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&190': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&191': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&192': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&193': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&194': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&195': np.array([-0.19684482070614498, -0.7845939961595055]), 'virginica&0&196': np.array([-0.07475231751447156, -0.9062785678426409]), 'virginica&0&197': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&198': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&199': np.array([-0.8063011502229427, 0.4134300066735808]), 'virginica&0&200': np.array([-0.07475231751447156, -0.9062785678426409]), 'virginica&0&201': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&202': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&203': np.array([-0.2798927835773098, -0.6581136857450849]), 'virginica&0&204': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&205': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&206': np.array([-0.16106555563262584, -0.777621649099753]), 'virginica&0&207': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&208': np.array([-0.6898990333725056, -0.2534947697713122]), 'virginica&0&209': np.array([-0.769491694075929, -0.22884642137519118]), 'virginica&0&210': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&211': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&212': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&213': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&214': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&215': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&216': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&217': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&218': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&219': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&220': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&221': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&222': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&223': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&224': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&225': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&226': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&227': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&228': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&229': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&230': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&231': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&232': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&233': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&234': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&235': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&236': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&237': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&238': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&239': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&240': np.array([-0.11329659732608087, -0.8671819100849522]), 'virginica&0&241': np.array([-0.040390637135858574, -0.9402832917474078]), 'virginica&0&242': np.array([-0.5276460255602035, -0.28992233541586077]), 'virginica&0&243': np.array([-0.6392402874163683, -0.24114611970435948]), 'virginica&0&244': np.array([-0.6814868825686854, 0.35066801608083215]), 'virginica&0&245': np.array([-0.040390637135858574, -0.9402832917474078]), 'virginica&0&246': np.array([-0.5276460255602035, -0.28992233541586077]), 'virginica&0&247': np.array([-0.6392402874163683, -0.24114611970435948]), 'virginica&0&248': np.array([-0.16157511199607094, -0.7754323813403634]), 'virginica&0&249': np.array([-0.5276460255602035, -0.28992233541586077]), 'virginica&0&250': np.array([-0.6392402874163683, -0.24114611970435948]), 'virginica&0&251': np.array([-0.08968204532514226, -0.8491191210330045]), 'virginica&0&252': np.array([-0.6392402874163683, -0.24114611970435948]), 'virginica&0&253': np.array([-0.544626974647221, -0.24972982107967573]), 'virginica&0&254': np.array([-0.6426355680762406, -0.20016519137103667]), 'virginica&0&255': np.array([-0.19685199412911655, -0.7845879230594393]), 'virginica&0&256': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&257': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&258': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&259': np.array([-0.7974072911132788, 0.006894018772033604]), 'virginica&0&260': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&261': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&262': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&263': np.array([-0.3355030348883163, -0.6305271339971502]), 'virginica&0&264': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&265': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&266': np.array([-0.2519677855687844, -0.7134447168661863]), 'virginica&0&267': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&268': np.array([-0.7799744386472778, -0.026476616324402506]), 'virginica&0&269': np.array([-0.7942342242967624, -0.0119572163963601]), 'virginica&0&270': np.array([-0.04201361383207032, -0.9372571358382161]), 'virginica&0&271': np.array([-0.014237661899709955, -0.9660323357290304]), 'virginica&0&272': np.array([-0.04813346258022244, -0.5416229439456887]), 'virginica&0&273': np.array([-0.3109532939139045, -0.22759134703604383]), 'virginica&0&274': np.array([-0.4167677904879879, 0.22207334821665425]), 'virginica&0&275': np.array([-0.014237661899709955, -0.9660323357290304]), 'virginica&0&276': np.array([-0.04813346258022244, -0.5416229439456887]), 'virginica&0&277': np.array([-0.3109532939139045, -0.22759134703604383]), 'virginica&0&278': np.array([-0.07857689135903215, -0.8696882596532965]), 'virginica&0&279': np.array([-0.04813346258022244, -0.5416229439456887]), 'virginica&0&280': np.array([-0.3109532939139045, -0.22759134703604383]), 'virginica&0&281': np.array([-0.05160969201296555, -0.9000166344885441]), 'virginica&0&282': np.array([-0.3109532939139045, -0.22759134703604383]), 'virginica&0&283': np.array([-0.0766197045034485, -0.5080325256323984]), 'virginica&0&284': np.array([-0.32767091750230254, -0.19689316772421933]), 'virginica&0&285': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&286': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&287': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&288': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&289': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&290': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&291': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&292': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&293': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&294': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&295': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&296': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&297': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&298': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&299': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&300': np.array([0.029402442458921384, -0.9481684282717414]), 'virginica&0&301': np.array([0.009887859354111524, -0.9698143912008228]), 'virginica&0&302': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&303': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'virginica&0&305': np.array([0.009887859354111524, -0.9698143912008228]), 'virginica&0&306': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&307': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&308': np.array([0.19002455311770447, -0.8848597943731074]), 'virginica&0&309': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&310': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&311': np.array([0.1746467870122951, -0.9073062742839755]), 'virginica&0&312': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&313': np.array([0.11200181312407695, -0.5330612470996793]), 'virginica&0&314': np.array([0.19998284600732558, -0.3489062419702088]), 'virginica&1&0': np.array([0.37157553889555184, 0.1221600832023858]), 'virginica&1&1': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&2': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&3': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&4': np.array([0.4964962439921071, 0.3798215458387346]), 'virginica&1&5': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&6': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&7': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&8': np.array([0.22125635302655813, 0.2925832702358638]), 'virginica&1&9': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&10': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&11': np.array([0.10063786451829529, 0.4085974066833644]), 'virginica&1&12': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&13': np.array([0.8441748651745272, -0.6057436494968107]), 'virginica&1&14': np.array([0.6453274192140858, -0.6334259878992301]), 'virginica&1&15': np.array([0.37157553889555184, 0.1221600832023858]), 'virginica&1&16': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&17': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&18': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&19': np.array([0.4964962439921071, 0.3798215458387346]), 'virginica&1&20': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&21': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&22': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&23': np.array([0.22125635302655813, 0.2925832702358638]), 'virginica&1&24': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&25': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&26': np.array([0.10063786451829529, 0.4085974066833644]), 'virginica&1&27': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&28': np.array([0.8441748651745272, -0.6057436494968107]), 'virginica&1&29': np.array([0.6453274192140858, -0.6334259878992301]), 'virginica&1&30': np.array([-0.32199975656257646, 0.7482293552463756]), 'virginica&1&31': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&32': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&33': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&34': np.array([0.2619265016777598, 0.33491141590339474]), 'virginica&1&35': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&36': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&37': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&38': np.array([-0.2562642052727569, 0.6920266972283227]), 'virginica&1&39': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&40': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&41': np.array([-0.34479806250338163, 0.7789143553916729]), 'virginica&1&42': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&43': np.array([0.6253066100206679, -0.5612970743228719]), 'virginica&1&44': np.array([0.4159041613345079, -0.5802838287107943]), 'virginica&1&45': np.array([-0.7749499208750119, 0.8147189440804429]), 'virginica&1&46': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&47': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&48': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&49': np.array([-0.4079256832347186, 0.038455640985860955]), 'virginica&1&50': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&51': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&52': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&53': np.array([-0.6964303997553315, 0.7444536452136676]), 'virginica&1&54': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&55': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&56': np.array([-0.7213651642695392, 0.7718874443854203]), 'virginica&1&57': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&58': np.array([-0.5538416840542331, 0.2026191723113616]), 'virginica&1&59': np.array([-0.3472412936248763, -0.1219322389673262]), 'virginica&1&60': np.array([0.4933316375690332, 0.5272416708629276]), 'virginica&1&61': np.array([0.5041830043657418, 0.5392782673950876]), 'virginica&1&62': np.array([0.25657760110071476, -0.12592645350389117]), 'virginica&1&63': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'virginica&1&65': np.array([0.5041830043657418, 0.5392782673950876]), 'virginica&1&66': np.array([0.25657760110071476, -0.12592645350389117]), 'virginica&1&67': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&68': np.array([0.40694846236352233, 0.5109051764198169]), 'virginica&1&69': np.array([0.25657760110071476, -0.12592645350389117]), 'virginica&1&70': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&71': np.array([0.415695226122737, 0.5230815102377903]), 'virginica&1&72': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&73': np.array([0.28313251310829024, -0.10978015869508362]), 'virginica&1&74': np.array([0.20013484983664692, -0.3483612449300506]), 'virginica&1&75': np.array([0.0, 0.4756207622944677]), 'virginica&1&76': np.array([0.0, 0.4854334805210761]), 'virginica&1&77': np.array([0.0, -0.16885577975809632]), 'virginica&1&78': np.array([0.0, -0.39580588553855395]), 'virginica&1&79': np.array([0.0, 0.2538072707138344]), 'virginica&1&80': np.array([0.0, 0.4854334805210761]), 'virginica&1&81': np.array([0.0, -0.16885577975809632]), 'virginica&1&82': np.array([0.0, -0.39580588553855395]), 'virginica&1&83': np.array([0.0, 0.4904755652105692]), 'virginica&1&84': np.array([0.0, -0.16885577975809632]), 'virginica&1&85': np.array([0.0, -0.39580588553855395]), 'virginica&1&86': np.array([0.0, 0.5008471974438506]), 'virginica&1&87': np.array([0.0, -0.39580588553855395]), 'virginica&1&88': np.array([0.0, -0.14423919730424817]), 'virginica&1&89': np.array([0.0, -0.3847817540585927]), 'virginica&1&90': np.array([0.37157553889555184, 0.1221600832023858]), 'virginica&1&91': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&92': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&93': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&94': np.array([0.4964962439921071, 0.3798215458387346]), 'virginica&1&95': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&96': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&97': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&98': np.array([0.22125635302655813, 0.2925832702358638]), 'virginica&1&99': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&100': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&101': np.array([0.10063786451829529, 0.4085974066833644]), 'virginica&1&102': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&103': np.array([0.8441748651745272, -0.6057436494968107]), 'virginica&1&104': np.array([0.6453274192140858, -0.6334259878992301]), 'virginica&1&105': np.array([-0.32199975656257646, 0.7482293552463756]), 'virginica&1&106': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&107': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&108': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&109': np.array([0.2619265016777598, 0.33491141590339474]), 'virginica&1&110': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&111': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&112': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&113': np.array([-0.2562642052727569, 0.6920266972283227]), 'virginica&1&114': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&115': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&116': np.array([-0.34479806250338163, 0.7789143553916729]), 'virginica&1&117': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&118': np.array([0.6253066100206679, -0.5612970743228719]), 'virginica&1&119': np.array([0.4159041613345079, -0.5802838287107943]), 'virginica&1&120': np.array([-0.7749499208750119, 0.8147189440804429]), 'virginica&1&121': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&122': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&123': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&124': np.array([-0.4079256832347186, 0.038455640985860955]), 'virginica&1&125': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&126': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&127': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&128': np.array([-0.6964303997553315, 0.7444536452136676]), 'virginica&1&129': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&130': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&131': np.array([-0.7213651642695392, 0.7718874443854203]), 'virginica&1&132': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&133': np.array([-0.5538416840542331, 0.2026191723113616]), 'virginica&1&134': np.array([-0.3472412936248763, -0.1219322389673262]), 'virginica&1&135': np.array([0.5188109114552927, 0.03638964581864269]), 'virginica&1&136': np.array([0.5131478569192371, 0.04203387599862816]), 'virginica&1&137': np.array([0.7329462736700701, -0.4610490766898857]), 'virginica&1&138': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&139': np.array([0.5436097000280874, 0.1461891067488832]), 'virginica&1&140': np.array([0.5131478569192371, 0.04203387599862816]), 'virginica&1&141': np.array([0.7329462736700701, -0.4610490766898857]), 'virginica&1&142': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&143': np.array([0.4788153032824012, 0.08625929936974323]), 'virginica&1&144': np.array([0.7329462736700701, -0.4610490766898857]), 'virginica&1&145': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&146': np.array([0.46583127837967303, 0.09875847161509169]), 'virginica&1&147': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&148': np.array([0.7419884013108898, -0.4595742931114029]), 'virginica&1&149': np.array([0.6092194175719845, -0.5086479426935605]), 'virginica&1&150': np.array([0.37157553889555184, 0.1221600832023858]), 'virginica&1&151': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&152': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&153': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&154': np.array([0.4964962439921071, 0.3798215458387346]), 'virginica&1&155': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&156': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&157': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&158': np.array([0.22125635302655813, 0.2925832702358638]), 'virginica&1&159': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&160': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&161': np.array([0.10063786451829529, 0.4085974066833644]), 'virginica&1&162': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&163': np.array([0.8441748651745272, -0.6057436494968107]), 'virginica&1&164': np.array([0.6453274192140858, -0.6334259878992301]), 'virginica&1&165': np.array([-0.32199975656257646, 0.7482293552463756]), 'virginica&1&166': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&167': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&168': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&169': np.array([0.2619265016777598, 0.33491141590339474]), 'virginica&1&170': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&171': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&172': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&173': np.array([-0.2562642052727569, 0.6920266972283227]), 'virginica&1&174': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&175': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&176': np.array([-0.34479806250338163, 0.7789143553916729]), 'virginica&1&177': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&178': np.array([0.6253066100206679, -0.5612970743228719]), 'virginica&1&179': np.array([0.4159041613345079, -0.5802838287107943]), 'virginica&1&180': np.array([-0.7749499208750119, 0.8147189440804429]), 'virginica&1&181': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&182': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&183': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&184': np.array([-0.4079256832347186, 0.038455640985860955]), 'virginica&1&185': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&186': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&187': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&188': np.array([-0.6964303997553315, 0.7444536452136676]), 'virginica&1&189': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&190': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&191': np.array([-0.7213651642695392, 0.7718874443854203]), 'virginica&1&192': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&193': np.array([-0.5538416840542331, 0.2026191723113616]), 'virginica&1&194': np.array([-0.3472412936248763, -0.1219322389673262]), 'virginica&1&195': np.array([0.5188109114552927, 0.03638964581864269]), 'virginica&1&196': np.array([0.5131478569192371, 0.04203387599862816]), 'virginica&1&197': np.array([0.7329462736700701, -0.4610490766898857]), 'virginica&1&198': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&199': np.array([0.5436097000280874, 0.1461891067488832]), 'virginica&1&200': np.array([0.5131478569192371, 0.04203387599862816]), 'virginica&1&201': np.array([0.7329462736700701, -0.4610490766898857]), 'virginica&1&202': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&203': np.array([0.4788153032824012, 0.08625929936974323]), 'virginica&1&204': np.array([0.7329462736700701, -0.4610490766898857]), 'virginica&1&205': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&206': np.array([0.46583127837967303, 0.09875847161509169]), 'virginica&1&207': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&208': np.array([0.7419884013108898, -0.4595742931114029]), 'virginica&1&209': np.array([0.6092194175719845, -0.5086479426935605]), 'virginica&1&210': np.array([0.37157553889555184, 0.1221600832023858]), 'virginica&1&211': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&212': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&213': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&214': np.array([0.4964962439921071, 0.3798215458387346]), 'virginica&1&215': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&216': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&217': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&218': np.array([0.22125635302655813, 0.2925832702358638]), 'virginica&1&219': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&220': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&221': np.array([0.10063786451829529, 0.4085974066833644]), 'virginica&1&222': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&223': np.array([0.8441748651745272, -0.6057436494968107]), 'virginica&1&224': np.array([0.6453274192140858, -0.6334259878992301]), 'virginica&1&225': np.array([-0.7749499208750119, 0.8147189440804429]), 'virginica&1&226': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&227': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&228': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&229': np.array([-0.4079256832347186, 0.038455640985860955]), 'virginica&1&230': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&231': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&232': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&233': np.array([-0.6964303997553315, 0.7444536452136676]), 'virginica&1&234': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&235': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&236': np.array([-0.7213651642695392, 0.7718874443854203]), 'virginica&1&237': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&238': np.array([-0.5538416840542331, 0.2026191723113616]), 'virginica&1&239': np.array([-0.3472412936248763, -0.1219322389673262]), 'virginica&1&240': np.array([0.056623968925773045, 0.43360725859686644]), 'virginica&1&241': np.array([0.020169511418752378, 0.47015948158260334]), 'virginica&1&242': np.array([0.5806365328450952, -0.4726270680771261]), 'virginica&1&243': np.array([0.41462901544715686, -0.4964318942067897]), 'virginica&1&244': np.array([0.3351719071445682, 0.20616862401308342]), 'virginica&1&245': np.array([0.020169511418752378, 0.47015948158260334]), 'virginica&1&246': np.array([0.5806365328450952, -0.4726270680771261]), 'virginica&1&247': np.array([0.41462901544715686, -0.4964318942067897]), 'virginica&1&248': np.array([0.024556360933646205, 0.4723948285969902]), 'virginica&1&249': np.array([0.5806365328450952, -0.4726270680771261]), 'virginica&1&250': np.array([0.41462901544715686, -0.4964318942067897]), 'virginica&1&251': np.array([-0.0164329511444131, 0.5132208276383963]), 'virginica&1&252': np.array([0.41462901544715686, -0.4964318942067897]), 'virginica&1&253': np.array([0.581569928198426, -0.46134543884925855]), 'virginica&1&254': np.array([0.42361197252581306, -0.5068181610814407]), 'virginica&1&255': np.array([-0.32199975656257646, 0.7482293552463756]), 'virginica&1&256': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&257': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&258': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&259': np.array([0.2619265016777598, 0.33491141590339474]), 'virginica&1&260': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&261': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&262': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&263': np.array([-0.2562642052727569, 0.6920266972283227]), 'virginica&1&264': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&265': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&266': np.array([-0.34479806250338163, 0.7789143553916729]), 'virginica&1&267': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&268': np.array([0.6253066100206679, -0.5612970743228719]), 'virginica&1&269': np.array([0.4159041613345079, -0.5802838287107943]), 'virginica&1&270': np.array([-0.6288817118959938, 0.6849987400957501]), 'virginica&1&271': np.array([-0.6491819158994796, 0.7060292771859485]), 'virginica&1&272': np.array([-0.36354251586275393, 0.01503732165107865]), 'virginica&1&273': np.array([-0.2224264339516076, -0.2751400010362469]), 'virginica&1&274': np.array([-0.3507937472799825, 0.22709708691079003]), 'virginica&1&275': np.array([-0.6491819158994796, 0.7060292771859485]), 'virginica&1&276': np.array([-0.36354251586275393, 0.01503732165107865]), 'virginica&1&277': np.array([-0.2224264339516076, -0.2751400010362469]), 'virginica&1&278': np.array([-0.6219129029345898, 0.6860569455333333]), 'virginica&1&279': np.array([-0.36354251586275393, 0.01503732165107865]), 'virginica&1&280': np.array([-0.2224264339516076, -0.2751400010362469]), 'virginica&1&281': np.array([-0.6423063482710314, 0.7078274136226649]), 'virginica&1&282': np.array([-0.2224264339516076, -0.2751400010362469]), 'virginica&1&283': np.array([-0.38798262782075055, 0.05152547330256509]), 'virginica&1&284': np.array([-0.23804537254556749, -0.24790919248823104]), 'virginica&1&285': np.array([-0.7749499208750119, 0.8147189440804429]), 'virginica&1&286': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&287': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&288': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&289': np.array([-0.4079256832347186, 0.038455640985860955]), 'virginica&1&290': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&291': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&292': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&293': np.array([-0.6964303997553315, 0.7444536452136676]), 'virginica&1&294': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&295': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&296': np.array([-0.7213651642695392, 0.7718874443854203]), 'virginica&1&297': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&298': np.array([-0.5538416840542331, 0.2026191723113616]), 'virginica&1&299': np.array([-0.3472412936248763, -0.1219322389673262]), 'virginica&1&300': np.array([0.4933316375690332, 0.5272416708629276]), 'virginica&1&301': np.array([0.5041830043657418, 0.5392782673950876]), 'virginica&1&302': np.array([0.25657760110071476, -0.12592645350389117]), 'virginica&1&303': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'virginica&1&305': np.array([0.5041830043657418, 0.5392782673950876]), 'virginica&1&306': np.array([0.25657760110071476, -0.12592645350389117]), 'virginica&1&307': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&308': np.array([0.40694846236352233, 0.5109051764198169]), 'virginica&1&309': np.array([0.25657760110071476, -0.12592645350389117]), 'virginica&1&310': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&311': np.array([0.415695226122737, 0.5230815102377903]), 'virginica&1&312': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&313': np.array([0.28313251310829024, -0.10978015869508362]), 'virginica&1&314': np.array([0.20013484983664692, -0.3483612449300506]), 'virginica&2&0': np.array([0.37157691321004915, 0.12216227283618836]), 'virginica&2&1': np.array([0.24630541996506908, 0.24630541996506994]), 'virginica&2&2': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&3': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&4': np.array([0.4741571944522723, -0.3872697414416878]), 'virginica&2&5': np.array([0.24630541996506908, 0.24630541996506994]), 'virginica&2&6': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&7': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&8': np.array([0.6273836195848199, -0.15720981251964872]), 'virginica&2&9': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&10': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&11': np.array([0.6863652799597699, -0.21335694415409426]), 'virginica&2&12': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&13': np.array([0.11274898124253621, 0.6292927079496371]), 'virginica&2&14': np.array([0.32240464148521225, 0.645858545382009]), 'virginica&2&15': np.array([0.37157691321004915, 0.12216227283618836]), 'virginica&2&16': np.array([0.24630541996506908, 0.24630541996506994]), 'virginica&2&17': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&18': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&19': np.array([0.4741571944522723, -0.3872697414416878]), 'virginica&2&20': np.array([0.24630541996506908, 0.24630541996506994]), 'virginica&2&21': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&22': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&23': np.array([0.6273836195848199, -0.15720981251964872]), 'virginica&2&24': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&25': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&26': np.array([0.6863652799597699, -0.21335694415409426]), 'virginica&2&27': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&28': np.array([0.11274898124253621, 0.6292927079496371]), 'virginica&2&29': np.array([0.32240464148521225, 0.645858545382009]), 'virginica&2&30': np.array([0.5188517506916897, 0.036358567813067386]), 'virginica&2&31': np.array([0.5131939273945454, 0.04199748266790813]), 'virginica&2&32': np.array([0.06285591932387397, 0.6914253444924359]), 'virginica&2&33': np.array([0.34904320225465857, 0.6233384360811872]), 'virginica&2&34': np.array([0.5354807894355184, -0.3418054346754283]), 'virginica&2&35': np.array([0.5131939273945454, 0.04199748266790813]), 'virginica&2&36': np.array([0.06285591932387397, 0.6914253444924359]), 'virginica&2&37': np.array([0.34904320225465857, 0.6233384360811872]), 'virginica&2&38': np.array([0.5917672401610737, -0.061499563231173816]), 'virginica&2&39': np.array([0.06285591932387397, 0.6914253444924359]), 'virginica&2&40': np.array([0.34904320225465857, 0.6233384360811872]), 'virginica&2&41': np.array([0.5967658480721675, -0.06546963852548916]), 'virginica&2&42': np.array([0.34904320225465857, 0.6233384360811872]), 'virginica&2&43': np.array([0.15466782862660866, 0.5877736906472755]), 'virginica&2&44': np.array([0.37833006296225374, 0.5922410451071548]), 'virginica&2&45': np.array([0.8252668830593566, 0.11450866713130668]), 'virginica&2&46': np.array([0.8211795643076095, 0.11869650771610692]), 'virginica&2&47': np.array([0.644166410268985, 0.30120464260998964]), 'virginica&2&48': np.array([0.7640280271176497, 0.19364537761420375]), 'virginica&2&49': np.array([0.8735738195653328, -0.046438180466149094]), 'virginica&2&50': np.array([0.8211795643076095, 0.11869650771610692]), 'virginica&2&51': np.array([0.644166410268985, 0.30120464260998964]), 'virginica&2&52': np.array([0.7640280271176497, 0.19364537761420375]), 'virginica&2&53': np.array([0.8388485924434891, 0.09800790238640067]), 'virginica&2&54': np.array([0.644166410268985, 0.30120464260998964]), 'virginica&2&55': np.array([0.7640280271176497, 0.19364537761420375]), 'virginica&2&56': np.array([0.835455914569297, 0.10189258327760495]), 'virginica&2&57': np.array([0.7640280271176497, 0.19364537761420375]), 'virginica&2&58': np.array([0.6958244586699014, 0.2551528503043789]), 'virginica&2&59': np.array([0.7857855057542923, 0.17526869720012267]), 'virginica&2&60': np.array([-0.5227340800279543, 0.4209267574088147]), 'virginica&2&61': np.array([-0.5140708637198534, 0.4305361238057349]), 'virginica&2&62': np.array([-0.2661726847443776, 0.6902916602462779]), 'virginica&2&63': np.array([-0.2741128763380603, 0.7260889090887469]), 'virginica&2&64': np.array([-0.6188410763351541, -0.22803625884668638]), 'virginica&2&65': np.array([-0.5140708637198534, 0.4305361238057349]), 'virginica&2&66': np.array([-0.2661726847443776, 0.6902916602462779]), 'virginica&2&67': np.array([-0.2741128763380603, 0.7260889090887469]), 'virginica&2&68': np.array([-0.596973015481227, 0.37395461795328944]), 'virginica&2&69': np.array([-0.2661726847443776, 0.6902916602462779]), 'virginica&2&70': np.array([-0.2741128763380603, 0.7260889090887469]), 'virginica&2&71': np.array([-0.5903420131350324, 0.384224764046184]), 'virginica&2&72': np.array([-0.2741128763380603, 0.7260889090887469]), 'virginica&2&73': np.array([-0.3951343262323671, 0.6428414057947632]), 'virginica&2&74': np.array([-0.4001176958439725, 0.6972674869002595]), 'virginica&2&75': np.array([0.0, 0.47562425924289314]), 'virginica&2&76': np.array([0.0, 0.4854368956593117]), 'virginica&2&77': np.array([0.0, 0.7348263896003954]), 'virginica&2&78': np.array([0.0, 0.7920887571493729]), 'virginica&2&79': np.array([0.0, -0.507614207038711]), 'virginica&2&80': np.array([0.0, 0.4854368956593117]), 'virginica&2&81': np.array([0.0, 0.7348263896003954]), 'virginica&2&82': np.array([0.0, 0.7920887571493729]), 'virginica&2&83': np.array([0.0, 0.4039238345412103]), 'virginica&2&84': np.array([0.0, 0.7348263896003954]), 'virginica&2&85': np.array([0.0, 0.7920887571493729]), 'virginica&2&86': np.array([0.0, 0.41580041887839214]), 'virginica&2&87': np.array([0.0, 0.7920887571493729]), 'virginica&2&88': np.array([0.0, 0.6909317817603084]), 'virginica&2&89': np.array([0.0, 0.7700808435239105]), 'virginica&2&90': np.array([0.37157691321004915, 0.12216227283618836]), 'virginica&2&91': np.array([0.24630541996506908, 0.24630541996506994]), 'virginica&2&92': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&93': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&94': np.array([0.4741571944522723, -0.3872697414416878]), 'virginica&2&95': np.array([0.24630541996506908, 0.24630541996506994]), 'virginica&2&96': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&97': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&98': np.array([0.6273836195848199, -0.15720981251964872]), 'virginica&2&99': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&100': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&101': np.array([0.6863652799597699, -0.21335694415409426]), 'virginica&2&102': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&103': np.array([0.11274898124253621, 0.6292927079496371]), 'virginica&2&104': np.array([0.32240464148521225, 0.645858545382009]), 'virginica&2&105': np.array([0.5188517506916897, 0.036358567813067386]), 'virginica&2&106': np.array([0.5131939273945454, 0.04199748266790813]), 'virginica&2&107': np.array([0.06285591932387397, 0.6914253444924359]), 'virginica&2&108': np.array([0.34904320225465857, 0.6233384360811872]), 'virginica&2&109': np.array([0.5354807894355184, -0.3418054346754283]), 'virginica&2&110': np.array([0.5131939273945454, 0.04199748266790813]), 'virginica&2&111': np.array([0.06285591932387397, 0.6914253444924359]), 'virginica&2&112': np.array([0.34904320225465857, 0.6233384360811872]), 'virginica&2&113': np.array([0.5917672401610737, -0.061499563231173816]), 'virginica&2&114': np.array([0.06285591932387397, 0.6914253444924359]), 'virginica&2&115': np.array([0.34904320225465857, 0.6233384360811872]), 'virginica&2&116': np.array([0.5967658480721675, -0.06546963852548916]), 'virginica&2&117': np.array([0.34904320225465857, 0.6233384360811872]), 'virginica&2&118': np.array([0.15466782862660866, 0.5877736906472755]), 'virginica&2&119': np.array([0.37833006296225374, 0.5922410451071548]), 'virginica&2&120': np.array([0.8252668830593566, 0.11450866713130668]), 'virginica&2&121': np.array([0.8211795643076095, 0.11869650771610692]), 'virginica&2&122': np.array([0.644166410268985, 0.30120464260998964]), 'virginica&2&123': np.array([0.7640280271176497, 0.19364537761420375]), 'virginica&2&124': np.array([0.8735738195653328, -0.046438180466149094]), 'virginica&2&125': np.array([0.8211795643076095, 0.11869650771610692]), 'virginica&2&126': np.array([0.644166410268985, 0.30120464260998964]), 'virginica&2&127': np.array([0.7640280271176497, 0.19364537761420375]), 'virginica&2&128': np.array([0.8388485924434891, 0.09800790238640067]), 'virginica&2&129': np.array([0.644166410268985, 0.30120464260998964]), 'virginica&2&130': np.array([0.7640280271176497, 0.19364537761420375]), 'virginica&2&131': np.array([0.835455914569297, 0.10189258327760495]), 'virginica&2&132': np.array([0.7640280271176497, 0.19364537761420375]), 'virginica&2&133': np.array([0.6958244586699014, 0.2551528503043789]), 'virginica&2&134': np.array([0.7857855057542923, 0.17526869720012267]), 'virginica&2&135': np.array([-0.3219660907491514, 0.7482043503408669]), 'virginica&2&136': np.array([-0.43839553940476644, 0.8642446918440131]), 'virginica&2&137': np.array([-0.05474251929945989, 0.756649813459784]), 'virginica&2&138': np.array([0.17291299562995102, 0.7651995812779756]), 'virginica&2&139': np.array([0.2626914501948546, -0.5596191134224637]), 'virginica&2&140': np.array([-0.43839553940476644, 0.8642446918440131]), 'virginica&2&141': np.array([-0.05474251929945989, 0.756649813459784]), 'virginica&2&142': np.array([0.17291299562995102, 0.7651995812779756]), 'virginica&2&143': np.array([-0.19892251970509112, 0.5718543863753405]), 'virginica&2&144': np.array([-0.05474251929945989, 0.756649813459784]), 'virginica&2&145': np.array([0.17291299562995102, 0.7651995812779756]), 'virginica&2&146': np.array([-0.3047657227470458, 0.6788631774846587]), 'virginica&2&147': np.array([0.17291299562995102, 0.7651995812779756]), 'virginica&2&148': np.array([-0.05208936793838525, 0.7130690628827158]), 'virginica&2&149': np.array([0.16027227650394366, 0.7374943640687518]), 'virginica&2&150': np.array([0.37157691321004915, 0.12216227283618836]), 'virginica&2&151': np.array([0.24630541996506908, 0.24630541996506994]), 'virginica&2&152': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&153': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&154': np.array([0.4741571944522723, -0.3872697414416878]), 'virginica&2&155': np.array([0.24630541996506908, 0.24630541996506994]), 'virginica&2&156': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&157': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&158': np.array([0.6273836195848199, -0.15720981251964872]), 'virginica&2&159': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&160': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&161': np.array([0.6863652799597699, -0.21335694415409426]), 'virginica&2&162': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&163': np.array([0.11274898124253621, 0.6292927079496371]), 'virginica&2&164': np.array([0.32240464148521225, 0.645858545382009]), 'virginica&2&165': np.array([0.5188517506916897, 0.036358567813067386]), 'virginica&2&166': np.array([0.5131939273945454, 0.04199748266790813]), 'virginica&2&167': np.array([0.06285591932387397, 0.6914253444924359]), 'virginica&2&168': np.array([0.34904320225465857, 0.6233384360811872]), 'virginica&2&169': np.array([0.5354807894355184, -0.3418054346754283]), 'virginica&2&170': np.array([0.5131939273945454, 0.04199748266790813]), 'virginica&2&171': np.array([0.06285591932387397, 0.6914253444924359]), 'virginica&2&172': np.array([0.34904320225465857, 0.6233384360811872]), 'virginica&2&173': np.array([0.5917672401610737, -0.061499563231173816]), 'virginica&2&174': np.array([0.06285591932387397, 0.6914253444924359]), 'virginica&2&175': np.array([0.34904320225465857, 0.6233384360811872]), 'virginica&2&176': np.array([0.5967658480721675, -0.06546963852548916]), 'virginica&2&177': np.array([0.34904320225465857, 0.6233384360811872]), 'virginica&2&178': np.array([0.15466782862660866, 0.5877736906472755]), 'virginica&2&179': np.array([0.37833006296225374, 0.5922410451071548]), 'virginica&2&180': np.array([0.8252668830593566, 0.11450866713130668]), 'virginica&2&181': np.array([0.8211795643076095, 0.11869650771610692]), 'virginica&2&182': np.array([0.644166410268985, 0.30120464260998964]), 'virginica&2&183': np.array([0.7640280271176497, 0.19364537761420375]), 'virginica&2&184': np.array([0.8735738195653328, -0.046438180466149094]), 'virginica&2&185': np.array([0.8211795643076095, 0.11869650771610692]), 'virginica&2&186': np.array([0.644166410268985, 0.30120464260998964]), 'virginica&2&187': np.array([0.7640280271176497, 0.19364537761420375]), 'virginica&2&188': np.array([0.8388485924434891, 0.09800790238640067]), 'virginica&2&189': np.array([0.644166410268985, 0.30120464260998964]), 'virginica&2&190': np.array([0.7640280271176497, 0.19364537761420375]), 'virginica&2&191': np.array([0.835455914569297, 0.10189258327760495]), 'virginica&2&192': np.array([0.7640280271176497, 0.19364537761420375]), 'virginica&2&193': np.array([0.6958244586699014, 0.2551528503043789]), 'virginica&2&194': np.array([0.7857855057542923, 0.17526869720012267]), 'virginica&2&195': np.array([-0.3219660907491514, 0.7482043503408669]), 'virginica&2&196': np.array([-0.43839553940476644, 0.8642446918440131]), 'virginica&2&197': np.array([-0.05474251929945989, 0.756649813459784]), 'virginica&2&198': np.array([0.17291299562995102, 0.7651995812779756]), 'virginica&2&199': np.array([0.2626914501948546, -0.5596191134224637]), 'virginica&2&200': np.array([-0.43839553940476644, 0.8642446918440131]), 'virginica&2&201': np.array([-0.05474251929945989, 0.756649813459784]), 'virginica&2&202': np.array([0.17291299562995102, 0.7651995812779756]), 'virginica&2&203': np.array([-0.19892251970509112, 0.5718543863753405]), 'virginica&2&204': np.array([-0.05474251929945989, 0.756649813459784]), 'virginica&2&205': np.array([0.17291299562995102, 0.7651995812779756]), 'virginica&2&206': np.array([-0.3047657227470458, 0.6788631774846587]), 'virginica&2&207': np.array([0.17291299562995102, 0.7651995812779756]), 'virginica&2&208': np.array([-0.05208936793838525, 0.7130690628827158]), 'virginica&2&209': np.array([0.16027227650394366, 0.7374943640687518]), 'virginica&2&210': np.array([0.37157691321004915, 0.12216227283618836]), 'virginica&2&211': np.array([0.24630541996506908, 0.24630541996506994]), 'virginica&2&212': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&213': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&214': np.array([0.4741571944522723, -0.3872697414416878]), 'virginica&2&215': np.array([0.24630541996506908, 0.24630541996506994]), 'virginica&2&216': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&217': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&218': np.array([0.6273836195848199, -0.15720981251964872]), 'virginica&2&219': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&220': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&221': np.array([0.6863652799597699, -0.21335694415409426]), 'virginica&2&222': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&223': np.array([0.11274898124253621, 0.6292927079496371]), 'virginica&2&224': np.array([0.32240464148521225, 0.645858545382009]), 'virginica&2&225': np.array([0.8252668830593566, 0.11450866713130668]), 'virginica&2&226': np.array([0.8211795643076095, 0.11869650771610692]), 'virginica&2&227': np.array([0.644166410268985, 0.30120464260998964]), 'virginica&2&228': np.array([0.7640280271176497, 0.19364537761420375]), 'virginica&2&229': np.array([0.8735738195653328, -0.046438180466149094]), 'virginica&2&230': np.array([0.8211795643076095, 0.11869650771610692]), 'virginica&2&231': np.array([0.644166410268985, 0.30120464260998964]), 'virginica&2&232': np.array([0.7640280271176497, 0.19364537761420375]), 'virginica&2&233': np.array([0.8388485924434891, 0.09800790238640067]), 'virginica&2&234': np.array([0.644166410268985, 0.30120464260998964]), 'virginica&2&235': np.array([0.7640280271176497, 0.19364537761420375]), 'virginica&2&236': np.array([0.835455914569297, 0.10189258327760495]), 'virginica&2&237': np.array([0.7640280271176497, 0.19364537761420375]), 'virginica&2&238': np.array([0.6958244586699014, 0.2551528503043789]), 'virginica&2&239': np.array([0.7857855057542923, 0.17526869720012267]), 'virginica&2&240': np.array([0.05667262840030629, 0.4335746514880877]), 'virginica&2&241': np.array([0.0202211257171063, 0.470123810164804]), 'virginica&2&242': np.array([-0.052990507284891915, 0.7625494034929867]), 'virginica&2&243': np.array([0.22461127196921116, 0.7375780139111495]), 'virginica&2&244': np.array([0.3463149754241171, -0.5568366400939154]), 'virginica&2&245': np.array([0.0202211257171063, 0.470123810164804]), 'virginica&2&246': np.array([-0.052990507284891915, 0.7625494034929867]), 'virginica&2&247': np.array([0.22461127196921116, 0.7375780139111495]), 'virginica&2&248': np.array([0.1370187510624256, 0.30303755274337163]), 'virginica&2&249': np.array([-0.052990507284891915, 0.7625494034929867]), 'virginica&2&250': np.array([0.22461127196921116, 0.7375780139111495]), 'virginica&2&251': np.array([0.10611499646955676, 0.33589829339460586]), 'virginica&2&252': np.array([0.22461127196921116, 0.7375780139111495]), 'virginica&2&253': np.array([-0.036942953551205526, 0.7110752599289349]), 'virginica&2&254': np.array([0.21902359555042725, 0.7069833524524777]), 'virginica&2&255': np.array([0.5188517506916897, 0.036358567813067386]), 'virginica&2&256': np.array([0.5131939273945454, 0.04199748266790813]), 'virginica&2&257': np.array([0.06285591932387397, 0.6914253444924359]), 'virginica&2&258': np.array([0.34904320225465857, 0.6233384360811872]), 'virginica&2&259': np.array([0.5354807894355184, -0.3418054346754283]), 'virginica&2&260': np.array([0.5131939273945454, 0.04199748266790813]), 'virginica&2&261': np.array([0.06285591932387397, 0.6914253444924359]), 'virginica&2&262': np.array([0.34904320225465857, 0.6233384360811872]), 'virginica&2&263': np.array([0.5917672401610737, -0.061499563231173816]), 'virginica&2&264': np.array([0.06285591932387397, 0.6914253444924359]), 'virginica&2&265': np.array([0.34904320225465857, 0.6233384360811872]), 'virginica&2&266': np.array([0.5967658480721675, -0.06546963852548916]), 'virginica&2&267': np.array([0.34904320225465857, 0.6233384360811872]), 'virginica&2&268': np.array([0.15466782862660866, 0.5877736906472755]), 'virginica&2&269': np.array([0.37833006296225374, 0.5922410451071548]), 'virginica&2&270': np.array([0.6708953257280641, 0.25225839574246695]), 'virginica&2&271': np.array([0.6634195777991901, 0.2600030585430812]), 'virginica&2&272': np.array([0.4116759784429769, 0.5265856222946096]), 'virginica&2&273': np.array([0.5333797278655124, 0.5027313480722909]), 'virginica&2&274': np.array([0.7675615377679706, -0.4491704351274441]), 'virginica&2&275':
np.array([0.6634195777991901, 0.2600030585430812])
numpy.array
import cv2 import ezdxf import numpy as np def draw_hatch(img, entity, color, mask): for poly_path in entity.paths.paths: # print(poly_path.path_type_flags) polygon = np.array([vertex[:-1] for vertex in poly_path.vertices]).astype(int) if poly_path.path_type_flags & 1 == 1: cv2.fillPoly(img, [polygon], color) cv2.fillPoly(mask, [polygon], (255, 255, 255)) else: cv2.fillPoly(img, [polygon], (255, 255, 255)) return color def draw_line(img, entity, color, mask): p1 = entity.dxf.start[:-1] p2 = entity.dxf.end[:-1] cv2.line(img, (int(p1[0]), int(p1[1])), (int(p2[0]), int(p2[1])), color, 1) cv2.line(mask, (int(p1[0]), int(p1[1])), (int(p2[0]), int(p2[1])), (255, 255, 255), 2) return color def draw_lwpolyline(img, entity, color, mask): polyline = [] a = np.array(entity.lwpoints.values).astype(int) while len(a) > 0: polyline.append((a[0], a[1])) a = a[5:] cv2.polylines(img, [
np.array(polyline)
numpy.array
import numpy as np import matplotlib.pyplot as plt # be careful with deep and shallow copies class Quat(object): def __init__(self, *args, **kwargs): self.quatCoef = np.zeros(4, dtype=float) # construt with Bunge euler angles (radians, ZXZ) if len(args) == 3: ph1 = args[0] phi = args[1] ph2 = args[2] self.quatCoef[0] = np.cos(phi / 2.0) * np.cos((ph1 + ph2) / 2.0) self.quatCoef[1] = -np.sin(phi / 2.0) * np.cos((ph1 - ph2) / 2.0) self.quatCoef[2] = -np.sin(phi / 2.0) * np.sin((ph1 - ph2) / 2.0) self.quatCoef[3] = -np.cos(phi / 2.0) * np.sin((ph1 + ph2) / 2.0) # construt with array of quat coefficients elif len(args) == 1: self.quatCoef = args[0] # construt with quat coefficients elif len(args) == 4: self.quatCoef[0] = args[0] self.quatCoef[1] = args[1] self.quatCoef[2] = args[2] self.quatCoef[3] = args[3] if (self.quatCoef[0] < 0): self.quatCoef = self.quatCoef * -1 # overload static method with instance method of same name in object self.plotIPF = self._plotIPF @classmethod def fromAxisAngle(cls, axis, angle): """Create a quat object from an axis angle pair Args: axis (np.array size 3): Axis of rotation angle (float): Rotation arround axis (radians) Returns: Quat: Initialised Quat object """ # normalise the axis vector axis = axis / np.sqrt(np.dot(axis, axis)) # calculate quat coefficients quatCoef = np.zeros(4, dtype=float) quatCoef[0] = np.cos(angle / 2) quatCoef[1:4] = np.sin(angle / 2) * axis # call constructor return cls(quatCoef) def eulerAngles(self): # See Melcher, <NAME>, <NAME>, <NAME>, B. Conversion of EBSD data by a # quaternion based algorithm to be used for grain structure simulations # or # Rowenhorst, D et al. Consistent representations of and conversions between 3D rotations # P = +1 eulers = np.empty(3, dtype=float) q = self.quatCoef q03 = q[0]**2 + q[3]**2 q12 = q[1]**2 + q[2]**2 chi = np.sqrt(q03 * q12) if (chi == 0 and q12 == 0): eulers[0] = np.arctan2(-2 * q[0] * q[3], q[0]**2 - q[3]**2) eulers[1] = 0 eulers[2] = 0 elif (chi == 0 and q03 == 0): eulers[0] = np.arctan2(2 * q[1] * q[2], q[1]**2 - q[2]**2) eulers[1] = np.pi eulers[2] = 0 else: cosPh1 = (-q[0] * q[1] - q[2] * q[3]) / chi sinPh1 = (-q[0] * q[2] + q[1] * q[3]) / chi cosPhi = q[0]**2 + q[3]**2 - q[1]**2 - q[2]**2 sinPhi = 2 * chi cosPh2 = (-q[0] * q[1] + q[2] * q[3]) / chi sinPh2 = (q[1] * q[3] + q[0] * q[2]) / chi eulers[0] = np.arctan2(sinPh1, cosPh1) eulers[1] = np.arctan2(sinPhi, cosPhi) eulers[2] = np.arctan2(sinPh2, cosPh2) if eulers[0] < 0: eulers[0] += 2 * np.pi if eulers[2] < 0: eulers[2] += 2 * np.pi return eulers def rotMatrix(self): rotMatrix = np.empty((3, 3), dtype=float) q = self.quatCoef qbar = q[0]**2 - q[1]**2 - q[2]**2 - q[3]**2 rotMatrix[0, 0] = qbar + 2 * q[1]**2 rotMatrix[0, 1] = 2 * (q[1] * q[2] - q[0] * q[3]) rotMatrix[0, 2] = 2 * (q[1] * q[3] + q[0] * q[2]) rotMatrix[1, 0] = 2 * (q[1] * q[2] + q[0] * q[3]) rotMatrix[1, 1] = qbar + 2 * q[2]**2 rotMatrix[1, 2] = 2 * (q[2] * q[3] - q[0] * q[1]) rotMatrix[2, 0] = 2 * (q[1] * q[3] - q[0] * q[2]) rotMatrix[2, 1] = 2 * (q[2] * q[3] + q[0] * q[1]) rotMatrix[2, 2] = qbar + 2 * q[3]**2 return rotMatrix # show components when the quat is printed def __repr__(self): return "[%.4f, %.4f, %.4f, %.4f]" % (self.quatCoef[0], self.quatCoef[1], self.quatCoef[2], self.quatCoef[3]) def __str__(self): return "[%.4f, %.4f, %.4f, %.4f]" % (self.quatCoef[0], self.quatCoef[1], self.quatCoef[2], self.quatCoef[3]) def _plotIPF(self, direction, symGroup, **kwargs): Quat.plotIPF([self], direction, symGroup, **kwargs) # overload * operator for quaterion product and vector product def __mul__(self, right): if isinstance(right, type(self)): # another quat newQuatCoef = np.zeros(4, dtype=float) newQuatCoef[0] = (self.quatCoef[0] * right.quatCoef[0] - np.dot(self.quatCoef[1:4], right.quatCoef[1:4])) newQuatCoef[1:4] = (self.quatCoef[0] * right.quatCoef[1:4] + right.quatCoef[0] * self.quatCoef[1:4] + np.cross(self.quatCoef[1:4], right.quatCoef[1:4])) return Quat(newQuatCoef) raise TypeError() # # overload % operator for dot product # def __mod__(self, right): def dot(self, right): if isinstance(right, type(self)): return np.dot(self.quatCoef, right.quatCoef) raise TypeError() # overload + operator def __add__(self, right): if isinstance(right, type(self)): return Quat(self.quatCoef + right.quatCoef) raise TypeError() # overload += operator def __iadd__(self, right): if isinstance(right, type(self)): self.quatCoef += right.quatCoef return self raise TypeError() # allow array like setting/getting of components def __getitem__(self, key): return self.quatCoef[key] def __setitem__(self, key, value): self.quatCoef[key] = value return def norm(self): return np.sqrt(np.dot(self.quatCoef[0:4], self.quatCoef[0:4])) def normalise(self): self.quatCoef /= self.norm() return # also the inverse if this is a unit quaterion @property def conjugate(self): return Quat(self.quatCoef[0], -self.quatCoef[1], -self.quatCoef[2], -self.quatCoef[3]) def transformVector(self, vector): """Transforms vector by the quaternion. For EBSD quaterions this is a transformation from sample space to crystal space. Perform on conjugate of quaternion for crystal to sample. Args: vector (numpy.ndarray): Vector to transform Returns: numpy.ndarray: Transformed vector """ if isinstance(vector, np.ndarray) and vector.shape == (3,): vectorQuat = Quat(0, vector[0], vector[1], vector[2]) vectorQuatTransformed = (self * vectorQuat) * self.conjugate vectorTransformed = vectorQuatTransformed.quatCoef[1:4] return vectorTransformed raise TypeError("Vector must be a size 3 numpy array.") def misOri(self, right, symGroup, returnQuat=0): """Calculate misorientation angle between 2 orientations taking into account the symmetries of the crystal structure. Angle is 2*arccos(output). Args: rigth (quat): Orientation to find misorientation to symGroup (str): Crystal type (cubic, hexagonal) returnQuat (int): What to return Returns: various: returnQuat = 0 - misorientation returnQuat = 1 - symmetric equivalent with min misorientation returnQuat = 2 - both """ if isinstance(right, type(self)): minMisOri = 0 # actually looking for max of this as it is cos of misoriention angle for sym in Quat.symEqv(symGroup): # loop over symmetrically equivelent orienations quatSym = sym * right currentMisOri = abs(self.dot(quatSym)) if currentMisOri > minMisOri: # keep if misorientation lower minMisOri = currentMisOri minQuatSym = quatSym if returnQuat == 1: return minQuatSym elif returnQuat == 2: return minMisOri, minQuatSym else: return minMisOri raise TypeError("Input must be a quaternion.") def misOriAxis(self, right): """Calculate misorientation axis between 2 orientations. This does not consider symmetries of the crystal structure. Args: rigth (quat): Orientation to find misorientation axis to Returns: numpy.ndarray: axis of misorientation """ if isinstance(right, type(self)): Dq = right * self.conjugate Dq = Dq.quatCoef misOriAxis = (2 * Dq[1:4] * np.arccos(Dq[0])) / np.sqrt(1 - np.power(Dq[0], 2)) return misOriAxis raise TypeError("Input must be a quaternion.") # Static methods @staticmethod def createManyQuats(eulerArray): """Create a an array of quats from an array of Euler angles Args: eulerArray (array): Size 3 x n x ... x m """ ph1 = eulerArray[0] phi = eulerArray[1] ph2 = eulerArray[2] oriShape = eulerArray.shape[1:] quatComps = np.zeros((4,) + oriShape, dtype=float) quatComps[0] = np.cos(phi / 2.0) * np.cos((ph1 + ph2) / 2.0) quatComps[1] = -np.sin(phi / 2.0) * np.cos((ph1 - ph2) / 2.0) quatComps[2] = -np.sin(phi / 2.0) * np.sin((ph1 - ph2) / 2.0) quatComps[3] = -np.cos(phi / 2.0) * np.sin((ph1 + ph2) / 2.0) quats = np.empty(oriShape, dtype=Quat) for idx in np.ndindex(oriShape): quats[idx] = Quat(quatComps[(slice(None),) + idx]) # quatComps[(slice(None),) + idx] is equivalent to quatComps[:, idx[0], ..., idx[n]] return quats @staticmethod def calcSymEqvs(quats, symGroup): syms = Quat.symEqv(symGroup) quatComps = np.empty((len(syms), 4, len(quats))) # store quat components in array for i, quat in enumerate(quats): quatComps[0, :, i] = quat.quatCoef # calculate symmetrical equivalents for i, sym in enumerate(syms[1:], start=1): # sym[i] * quat for all points (* is quaternion product) quatComps[i, 0, :] = (quatComps[0, 0, :] * sym[0] - quatComps[0, 1, :] * sym[1] - quatComps[0, 2, :] * sym[2] - quatComps[0, 3, :] * sym[3]) quatComps[i, 1, :] = (quatComps[0, 0, :] * sym[1] + quatComps[0, 1, :] * sym[0] - quatComps[0, 2, :] * sym[3] + quatComps[0, 3, :] * sym[2]) quatComps[i, 2, :] = (quatComps[0, 0, :] * sym[2] + quatComps[0, 2, :] * sym[0] - quatComps[0, 3, :] * sym[1] + quatComps[0, 1, :] * sym[3]) quatComps[i, 3, :] = (quatComps[0, 0, :] * sym[3] + quatComps[0, 3, :] * sym[0] - quatComps[0, 1, :] * sym[2] + quatComps[0, 2, :] * sym[1]) # swap into positve hemisphere if required quatComps[i, :, quatComps[i, 0, :] < 0] = -quatComps[i, :, quatComps[i, 0, :] < 0] return quatComps @staticmethod def calcAverageOri(quatComps): avOri = np.copy(quatComps[0, :, 0]) currMisOris = np.empty(quatComps.shape[0]) for i in range(1, quatComps.shape[2]): # calculate misorientation between current average and all symmetrical equivalents # Dot product of each symm quat in quatComps with refOri for point i currMisOris[:] = abs(np.einsum("ij,j->i", quatComps[:, :, i], avOri)) # find min misorientation with current average then add to it maxIdx = np.argmax(currMisOris[:]) avOri += quatComps[maxIdx, :, i] # Convert components back to a quat and normalise avOri = Quat(avOri) avOri.normalise() return avOri @staticmethod def calcMisOri(quatComps, refOri): misOris = np.empty((quatComps.shape[0], quatComps.shape[2])) # Dot product of each quat in quatComps with refOri misOris[:, :] = abs(np.einsum("ijk,j->ik", quatComps, refOri.quatCoef)) maxIdxs0 = np.argmax(misOris, axis=0) maxIdxs1 = np.arange(misOris.shape[1]) minMisOris = misOris[maxIdxs0, maxIdxs1] minQuatComps = quatComps[maxIdxs0, :, maxIdxs1].transpose() minMisOris[minMisOris > 1] = 1 return minMisOris, minQuatComps @staticmethod def polarAngles(x, y, z): mod = np.sqrt(x**2 + y**2 + z**2) x = x / mod y = y / mod z = z / mod # alpha - angle with z axis alpha = np.arccos(z) # beta - angle around z axis beta = np.arctan2(y, x) return alpha, beta @staticmethod def stereoProject(*args): if len(args) == 3: alpha, beta = Quat.polarAngles(args[0], args[1], args[2]) elif len(args) == 2: alpha, beta = args else: raise Exception("3 arguments for pole directions and 2 for polar angles.") alphaComp = np.tan(alpha / 2) xp = alphaComp * np.cos(beta) yp = alphaComp * np.sin(beta) return xp, yp @staticmethod def plotLine(startPoint, endPoint, plotSymmetries=False, symGroup=None, res=100, projection=None, ax=None, **kwargs): if projection is None: projection = Quat.stereoProject if ax is None: ax = plt.gca() lines = [] lines.append((startPoint, endPoint)) if plotSymmetries: if symGroup is None: raise Exception("Please provide a symGroup") for symm in Quat.symEqv(symGroup)[1:]: startPointSymm = symm.transformVector(startPoint).astype(int) endPointSymm = symm.transformVector(endPoint).astype(int) if startPointSymm[2] < 0: startPointSymm *= -1 if endPointSymm[2] < 0: endPointSymm *= -1 lines.append((startPointSymm, endPointSymm)) linePoints = np.zeros((3, res), dtype=float) for line in lines: for i in range(3): if line[0][i] == line[1][i]: linePoints[i] = np.full(res, line[0][i]) else: linePoints[i] = np.linspace(line[0][i], line[1][i], res) xp, yp = projection(linePoints[0], linePoints[1], linePoints[2]) ax.plot(xp, yp, **kwargs) @staticmethod def labelPoint(point, label, projection=None, ax=None, padX=0, padY=0, **kwargs): if projection is None: projection = Quat.stereoProject if ax is None: ax = plt.gca() xp, yp = projection(point[0], point[1], point[2]) ax.text(xp + padX, yp + padY, label, **kwargs) @staticmethod def plotPoleAxis(plotType, symGroup, ax=None): if ax is None: ax = plt.gca() if plotType == "IPF" and symGroup == "cubic": # line between [001] and [111] Quat.plotLine(np.array([0, 0, 1]), np.array([1, 1, 1]), ax=ax, c='k', lw=2) # line between [001] and [101] Quat.plotLine(np.array([0, 0, 1]), np.array([1, 0, 1]), ax=ax, c='k', lw=2) # line between [101] and [111] Quat.plotLine(np.array([1, 0, 1]), np.array([1, 1, 1]), ax=ax, c='k', lw=2) # label poles Quat.labelPoint(np.array([0, 0, 1]), '001', ax=ax, padY=-0.005, va='top', ha='center') Quat.labelPoint(np.array([1, 0, 1]), '101', ax=ax, padY=-0.005, va='top', ha='center') Quat.labelPoint(np.array([1, 1, 1]), '111', ax=ax, padY=0.005, va='bottom', ha='center') ax.axis('equal') ax.axis('off') else: print("Only works for cubic") @staticmethod def plotIPF(quats, direction, symGroup, ax=None, **kwargs): plotParams = {'marker': '+', 'c': 'r'} plotParams.update(kwargs) if ax is None: ax = plt.gca() if symGroup == "hexagonal": raise Exception("Have fun with that") # Plot IPF axis # plt.figure() Quat.plotPoleAxis("IPF", symGroup, ax=ax) # get array of symmetry operations. shape - (numSym, 4, numQuats) quatCompsSym = Quat.calcSymEqvs(quats, symGroup) # array to store crytal directions for all orientations and symmetries directionCrystal = np.empty((3, quatCompsSym.shape[0], quatCompsSym.shape[2])) # temp variables to use bleow quatDotVec = (quatCompsSym[:, 1, :] * direction[0] + quatCompsSym[:, 2, :] * direction[1] + quatCompsSym[:, 3, :] * direction[2]) temp = (np.square(quatCompsSym[:, 0, :]) - np.square(quatCompsSym[:, 1, :]) - np.square(quatCompsSym[:, 2, :]) - np.square(quatCompsSym[:, 3, :])) # transform the pole direction to crystal coords for all orientations and symmetries # (quatCompsSym * vectorQuat) * quatCompsSym.conjugate directionCrystal[0, :, :] = (2 * quatDotVec * quatCompsSym[:, 1, :] + temp * direction[0] + 2 * quatCompsSym[:, 0, :] * (quatCompsSym[:, 2, :] * direction[2] - quatCompsSym[:, 3, :] * direction[1])) directionCrystal[1, :, :] = (2 * quatDotVec * quatCompsSym[:, 2, :] + temp * direction[1] + 2 * quatCompsSym[:, 0, :] * (quatCompsSym[:, 3, :] * direction[0] - quatCompsSym[:, 1, :] * direction[2])) directionCrystal[2, :, :] = (2 * quatDotVec * quatCompsSym[:, 3, :] + temp * direction[2] + 2 * quatCompsSym[:, 0, :] * (quatCompsSym[:, 1, :] * direction[1] - quatCompsSym[:, 2, :] * direction[0])) # normalise vectors directionCrystal /= np.sqrt(np.einsum('ijk,ijk->jk', directionCrystal, directionCrystal)) # move all vectors into north hemisphere directionCrystal[:, directionCrystal[2, :, :] < 0] *= -1 # convert to spherical coordinates alpha, beta = Quat.polarAngles(directionCrystal[0], directionCrystal[1], directionCrystal[2]) # find the poles in the fundamental triangle if symGroup == "cubic": # first beta should be between 0 and 45 deg leaving 3 symmetric equivalents per orientation trialPoles =
np.logical_and(beta >= 0, beta <= np.pi / 4)
numpy.logical_and
import numpy as np import matplotlib.pyplot as plt import pandas as pd from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable import matplotlib.gridspec as gridspec from astropy.stats import mad_std NAME='astero' NAME='pande' wnoise_frac=pd.read_csv('LLR_gaia/{}_wnoise_frac.txt'.format(NAME),delimiter=' ',names=['KICID','Fraction','Radius'],skiprows=1) # idx=np.where(wnoise_frac['More']>0.01)[0] df=pd.read_csv('LLR_gaia/Gaia_Catalogue.txt',index_col=False,delimiter=';') # df=pd.read_csv('LLR_seismic_final/Astero_Catalogue.txt',index_col=False,delimiter=';') keep=np.array(df[df['Outlier']==0]['KICID']) outliers=np.array(df[df['Outlier']==1]['KICID']) true=np.array(df[df['Outlier']==0]['True_Logg']) pred=np.array(df[df['Outlier']==0]['Inferred_Logg']) trueo=np.array(df[df['Outlier']==1]['True_Logg']) predo=np.array(df[df['Outlier']==1]['Inferred_Logg']) teff=np.array(df[df['Outlier']==0]['Teff']) teffo=np.array(df[df['Outlier']==1]['Teff']) rad=np.array(df[df['Outlier']==0]['Radius']) rado=np.array(df[df['Outlier']==1]['Radius']) snr=np.array(df[df['Outlier']==0]['SNR']) snro=np.array(df[df['Outlier']==1]['SNR']) tloggp=np.array(df[df['Outlier']==0]['TLoggp']) tloggn=np.array(df[df['Outlier']==0]['TLoggn']) mass=np.array(df[df['Outlier']==0]['Inferred_Mass']) radius=
np.array(df[df['Outlier']==0]['Radius'])
numpy.array
import warnings import numba import numpy as np import pandas as pd import scipy as sp from scipy.cluster.hierarchy import fcluster, linkage from sklearn.metrics import pairwise_distances import trisicell as tsc from trisicell.external._betabinom import pmf_BetaBinomial @numba.jit(nopython=True) def _l1_ignore_na(a, b): a[a == 3] = np.nan b[b == 3] = np.nan return np.nanmean(np.abs(a - b)) def dist_l1_ignore_na(I_mtr, n_jobs=1): dist = pairwise_distances( I_mtr, metric=_l1_ignore_na, force_all_finite="allow-nan", n_jobs=n_jobs ) np.fill_diagonal(dist, 0) return dist # https://gist.github.com/FedericoV/0e7d6d8c8794a99a7a42 @numba.jit(nopython=True) def _cosine_ignore_na(u, v): m = u.shape[0] udotv = 0 u_norm = 0 v_norm = 0 for i in range(m): if (np.isnan(u[i])) or (np.isnan(v[i])): continue udotv += u[i] * v[i] u_norm += u[i] * u[i] v_norm += v[i] * v[i] u_norm = np.sqrt(u_norm) v_norm = np.sqrt(v_norm) if (u_norm == 0) or (v_norm == 0): ratio = 1.0 else: ratio = 1 - udotv / (u_norm * v_norm) if ratio < 0: return 0 return ratio def dist_cosine_ignore_na(I_mtr, n_jobs=1): dist = pairwise_distances( I_mtr, metric=_cosine_ignore_na, force_all_finite="allow-nan", n_jobs=n_jobs )
np.fill_diagonal(dist, 0)
numpy.fill_diagonal
import numpy as np import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'False' actions = ['up', 'down', 'stop'] data = np.concatenate([ np.load('dataset1/seq_down_1643621733.npy'), np.load('dataset1/seq_up_1643621733.npy'),
np.load('dataset1/seq_stop_1643621733.npy')
numpy.load
# -*- coding: utf-8 -*- """ Created on Sun Mar 22 00:39:18 2020 @author: nikbakht """ import tensorflow as tf from tensorflow.keras.layers import Layer import numpy as np class Data(Layer): def __init__(self,Nuser, **kwargs): super(Data, self).__init__(**kwargs) self.EX=100 self.EY=100 self.exponent=3.8 self.shadowing_sigma=0; self.Zuser=0; self.Zap=1; self.Nuser_drop=10*Nuser self.Nap=Nuser self.Nuser=Nuser self.grid_size=32 def call(self,batch_num,beta_open_loop=.5): Xin=np.zeros([batch_num,self.grid_size,self.grid_size,self.Nuser],dtype='float32') G=
np.zeros([batch_num,self.Nap,self.Nuser],dtype='float32')
numpy.zeros
# 导入所需模块 from cv2 import cv2 from matplotlib import pyplot as plt import os import numpy as np import util SZ = 20 # 训练图片长宽 MAX_WIDTH = 1000 # 原始图片最大宽度 Min_Area = 2000 # 车牌区域允许最大面积 PROVINCE_START = 1000 # 图像预处理 def img_preprocess(car_pic_file): """ :param car_pic_file: 图像文件 :return:已经处理好的图像文件 原图像文件 """ if type(car_pic_file) == type(""): img = util.img_read(car_pic_file) else: img = car_pic_file pic_hight, pic_width = img.shape[:2] if pic_width > MAX_WIDTH: resize_rate = MAX_WIDTH / pic_width img = cv2.resize(img, (MAX_WIDTH, int(pic_hight * resize_rate)), interpolation=cv2.INTER_AREA) # 缩小图片 blur = 5 img = cv2.GaussianBlur(img, (blur, blur), 0) oldimg = img img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # cv2.imwrite("tmp/img_gray.jpg", img) # 转化成灰度图像 util.plt_show_gray(img) Matrix = np.ones((20, 20), np.uint8) img_opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, Matrix) img_opening = cv2.addWeighted(img, 1, img_opening, -1, 0) # cv2.imwrite("tmp/img_opening.jpg", img_opening) # 创建20*20的元素为1的矩阵 开操作,并和img重合 ret, img_thresh = cv2.threshold(img_opening, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) img_edge = cv2.Canny(img_thresh, 100, 200) # cv2.imwrite("tmp/img_edge.jpg", img_edge) # Otsu’s二值化 找到图像边缘 util.plt_show_gray(img_edge) Matrix = np.ones((4, 19), np.uint8) img_edge1 = cv2.morphologyEx(img_edge, cv2.MORPH_CLOSE, Matrix) img_edge2 = cv2.morphologyEx(img_edge1, cv2.MORPH_OPEN, Matrix) util.plt_show_gray(img_edge2) return img_edge2, oldimg # 图像定位与字符分割 def img_color_contours(img_contours, oldimg): """ :param img_contours: 预处理好的图像 :param oldimg: 原图像 :return: 已经定位好的车牌 """ # if img_contours.any(): #config.set_name(img_contours) # cv2.imwrite("tmp/img_contours.jpg", img_contours) pic_hight, pic_width = img_contours.shape[:2] card_contours = util.img_findContours(img_contours) # print('card_contours',card_contours) card_imgs = util.img_Transform(card_contours, oldimg, pic_width, pic_hight) # print('card_imgs',card_imgs) colors, car_imgs = util.img_color(card_imgs) roi = None card_color = None part_cards = '' # print('card_imgs',len(card_imgs)) for i, color in enumerate(colors): if color in ("blue", "yello", "green"): card_img = card_imgs[i] # cv2.imwrite('./tmp/card_img'+str(i)+'.jpg', card_img) try: gray_img = cv2.cvtColor(card_img, cv2.COLOR_BGR2GRAY) # cv2.imwrite("tmp/card_gray_img.jpg", gray_img) # 黄、绿车牌字符比背景暗、与蓝车牌刚好相反,所以黄、绿车牌需要反向 except: raise ValueError('黄、绿车牌反向失败') if color == "green" or color == "yello": gray_img = cv2.bitwise_not(gray_img) # cv2.imwrite("tmp/card_gray_img2.jpg", gray_img) ret, gray_img = cv2.threshold(gray_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # cv2.imwrite("tmp/card_gray_img3.jpg", gray_img) x_histogram = np.sum(gray_img, axis=1) x_min =
np.min(x_histogram)
numpy.min
from ..lennard_jones import lennard_jones_forces, lennard_jones_potential, all_lennard_jones_forces, all_lennard_jones_potential, lennard_jones from ..cell_order import create_cell_order_3d, create_cell_order_2d, create_cell_order import numpy as np import numpy.testing as npt """Tests""" def test_potential_1d_0(): potential = lennard_jones_potential(0, 1, epsilon=1, sigma=1) potenital_ref = 0 npt.assert_equal(potential, potenital_ref) def test_potential_3d_0(): potential = lennard_jones_potential( np.array([1, 2, 3]), np.array([2, 2, 3]), epsilon=1, sigma=1) potenital_ref = 0 npt.assert_equal(potential, potenital_ref) def test_potential_3d(): potential = lennard_jones_potential( np.array([0, 4, 3]), np.array([0, 0, 0]), epsilon=1, sigma=1) potenital_ref = -0.00025598361 npt.assert_almost_equal(potential, potenital_ref) test_potential_1d_0() test_potential_3d_0() test_potential_3d # test forces and directions def test_force_attractive(): force = lennard_jones_forces(0, 5, epsilon=1, sigma=1) force_ref = -0.00030716067 * -1 npt.assert_almost_equal(force, force_ref) def test_force_zero(): force = lennard_jones_forces(0, 2**(1 / 6), epsilon=1, sigma=1) force_ref = 0 npt.assert_almost_equal(force, force_ref) def test_force_repulsive(): force = lennard_jones_forces(0, 1, epsilon=1, sigma=1) force_ref = 24 * -1 npt.assert_almost_equal(force, force_ref) def test_force_3d(): force = lennard_jones_forces( np.array([0, 4, 3]), np.array([0, 0, 0]), epsilon=1, sigma=1) force_ref = -0.00030716067 * np.array([0, 4, 3]) / 5 npt.assert_almost_equal(force, force_ref) test_force_repulsive() test_force_zero() test_force_attractive() test_force_3d() def test_forces_2d_1cell(): class TestNl(object): def __init__(self): self.head = np.array([1]) self.list = np.array([-1, 0]) cell_order = create_cell_order_2d(1, [1, 1]) test = TestNl() particle_position_test = np.array([[3, 4], [0, 0]]) forces = all_lennard_jones_forces( particle_position_test, test, cell_order, epsilon=1, sigma=1) forces_ref = np.array( [-0.00030716067 * np.array([3, 4]) / 5, 0.00030716067 * np.array([3, 4]) / 5]) npt.assert_almost_equal(forces, forces_ref) def test_forces_2d(): class TestNl(object): """four cells", two particles""" def __init__(self): self.head = np.array([0, -1, -1, 1]) self.list = np.array([-1, -1]) cell_order = create_cell_order_2d(2, [4, 4]) test = TestNl() particle_position_test = np.array([[0, 0], [3, 4]]) forces = all_lennard_jones_forces( particle_position_test, test, cell_order, epsilon=1, sigma=1) forces_ref = np.array( [0.00030716067 * np.array([3, 4]) / 5, - 0.00030716067 * np.array([3, 4]) / 5]) npt.assert_almost_equal(forces, forces_ref) def test_forces_3d(): """8 cells, two particles""" class TestNl(object): def __init__(self): self.head = np.array([-1, -1, -1, -1, 0, -1, 1, -1]) self.list = np.array([-1, -1, -1, -1, -1, -1, -1, -1]) cell_order = create_cell_order(2, [4, 4, 4]) test = TestNl() particle_position_test = np.array([[0, 0, 1.5], [3, 4, 1.5]]) forces = all_lennard_jones_forces( particle_position_test, test, cell_order, epsilon=1, sigma=1) forces_ref = np.array([0.00030716067 * np.array([3, 4, 0]) / 5, - 0.00030716067 * np.array([3, 4, 0]) / 5]) npt.assert_almost_equal(forces, forces_ref) def test_forces_3d_three_particles(): """8 cells, three particles, all in same octant""" class TestNl(object): def __init__(self): self.head = np.array([2, -1, -1, -1, -1, -1, -1, -1]) self.list = np.array([-1, 0, 1]) cell_order = create_cell_order(5, [10, 10, 10]) test = TestNl() particle_position_test = np.array([[0, 0, 0], [3, 4, 0], [4, 3, 0]]) forces = all_lennard_jones_forces( particle_position_test, test, cell_order, r_cut=5, epsilon=1, sigma=1) forces_ref = np.array([0.00030716067 * np.array([3, 4, 0]) / 5 + 0.00030716067 * np.array([4, 3, 0]) / 5, - 0.00030716067 * np.array([3, 4, 0]) / 5 + 1.5909902576697312 * np.array([1, -1, 0]) / np.sqrt(2), - 0.00030716067 * np.array([4, 3, 0]) / 5 - 1.5909902576697312 * np.array([1, -1, 0]) / np.sqrt(2)]) npt.assert_almost_equal(forces, forces_ref) def test_forces_3d_cutoff(): """8 cells, three particles, all in different octants and out off cuttoff radius""" class TestNl(object): def __init__(self): self.head = np.array([0, -1, 1, -1, -1, -1, -1, 2]) self.list = np.array([-1, -1, -1]) cell_order = create_cell_order(5, [10, 10, 10]) test = TestNl() particle_position_test = np.array([[0, 0, 0], [10, 10, 10], [0, 10, 0]]) forces = all_lennard_jones_forces( particle_position_test, test, cell_order, r_cut=5, epsilon=1, sigma=1) forces_ref = np.array([[0, 0, 0], [0, 0, 0], [0, 0, 0]]) npt.assert_almost_equal(forces, forces_ref) def test_forces_3d_three_particles_2(): """8 cells, three particles, all in different octants""" class TestNl(object): def __init__(self): self.head = np.array([0, 2, 1, -1, -1, -1, -1, -1]) self.list = np.array([-1, -1, -1]) cell_order = create_cell_order(5, [10, 10, 10]) test = TestNl() particle_position_test = np.array([[2, 2, 2], [5, 6, 2], [6, 5, 2]]) forces = all_lennard_jones_forces( particle_position_test, test, cell_order, r_cut=5, epsilon=1, sigma=1) forces_ref = np.array([0.00030716067 * np.array([3, 4, 0]) / 5 + 0.00030716067 * np.array([4, 3, 0]) / 5, - 0.00030716067 * np.array([3, 4, 0]) / 5 + 1.5909902576697312 * np.array([1, -1, 0]) / np.sqrt(2), - 0.00030716067 * np.array([4, 3, 0]) / 5 - 1.5909902576697312 * np.array([1, -1, 0]) / np.sqrt(2)]) npt.assert_almost_equal(forces, forces_ref) test_forces_2d_1cell() test_forces_2d() test_forces_3d() test_forces_3d_three_particles() test_forces_3d_cutoff() test_forces_3d_three_particles_2() def test_potential_3d_three_particles(): """8 cells, three particles, all in same octant""" class TestNl(object): def __init__(self): self.head = np.array([2, -1, -1, -1, -1, -1, -1, -1]) self.list = np.array([-1, 0, 1]) cell_order = create_cell_order(5, [10, 10, 10]) test = TestNl() particle_position_test =
np.array([[0, 0, 0], [3, 4, 0], [4, 3, 0]])
numpy.array
#!/usr/bin/env python # # Author: <NAME> <<EMAIL>> # import time from functools import reduce import numpy import scipy.linalg from pyscf import lib from pyscf import symm from pyscf.lib import logger from pyscf.scf import hf from pyscf.scf import hf_symm from pyscf.scf import uhf from pyscf.scf import chkfile def analyze(mf, verbose=logger.DEBUG, **kwargs): from pyscf.lo import orth from pyscf.tools import dump_mat mol = mf.mol if not mol.symmetry: return uhf.analyze(mf, verbose, **kwargs) mo_energy = mf.mo_energy mo_occ = mf.mo_occ mo_coeff = mf.mo_coeff log = logger.Logger(mf.stdout, verbose) nirrep = len(mol.irrep_id) ovlp_ao = mf.get_ovlp() orbsyma = symm.label_orb_symm(mol, mol.irrep_id, mol.symm_orb, mo_coeff[0], ovlp_ao, False) orbsymb = symm.label_orb_symm(mol, mol.irrep_id, mol.symm_orb, mo_coeff[1], ovlp_ao, False) orbsyma = numpy.array(orbsyma) orbsymb = numpy.array(orbsymb) tot_sym = 0 noccsa = [sum(orbsyma[mo_occ[0]>0]==ir) for ir in mol.irrep_id] noccsb = [sum(orbsymb[mo_occ[1]>0]==ir) for ir in mol.irrep_id] for i, ir in enumerate(mol.irrep_id): if (noccsa[i]+noccsb[i]) % 2: tot_sym ^= ir if mol.groupname in ('Dooh', 'Coov', 'SO3'): log.note('TODO: total symmetry for %s', mol.groupname) else: log.note('total symmetry = %s', symm.irrep_id2name(mol.groupname, tot_sym)) log.note('alpha occupancy for each irrep: '+(' %4s'*nirrep), *mol.irrep_name) log.note(' '+(' %4d'*nirrep), *noccsa) log.note('beta occupancy for each irrep: '+(' %4s'*nirrep), *mol.irrep_name) log.note(' '+(' %4d'*nirrep), *noccsb) ss, s = mf.spin_square((mo_coeff[0][:,mo_occ[0]>0], mo_coeff[1][:,mo_occ[1]>0]), ovlp_ao) log.note('multiplicity <S^2> = %.8g 2S+1 = %.8g', ss, s) if verbose >= logger.NOTE: log.note('**** MO energy ****') irname_full = {} for k, ir in enumerate(mol.irrep_id): irname_full[ir] = mol.irrep_name[k] irorbcnt = {} for k, j in enumerate(orbsyma): if j in irorbcnt: irorbcnt[j] += 1 else: irorbcnt[j] = 1 log.note('alpha MO #%d (%s #%d), energy= %.15g occ= %g', k+1, irname_full[j], irorbcnt[j], mo_energy[0][k], mo_occ[0][k]) irorbcnt = {} for k, j in enumerate(orbsymb): if j in irorbcnt: irorbcnt[j] += 1 else: irorbcnt[j] = 1 log.note('beta MO #%d (%s #%d), energy= %.15g occ= %g', k+1, irname_full[j], irorbcnt[j], mo_energy[1][k], mo_occ[1][k]) ovlp_ao = mf.get_ovlp() if mf.verbose >= logger.DEBUG: label = mol.spheric_labels(True) molabel = [] irorbcnt = {} for k, j in enumerate(orbsyma): if j in irorbcnt: irorbcnt[j] += 1 else: irorbcnt[j] = 1 molabel.append('#%-d(%s #%d)' % (k+1, irname_full[j], irorbcnt[j])) log.debug(' ** alpha MO coefficients (expansion on meta-Lowdin AOs) **') orth_coeff = orth.orth_ao(mol, 'meta_lowdin', s=ovlp_ao) c_inv = numpy.dot(orth_coeff.T, ovlp_ao) dump_mat.dump_rec(mol.stdout, c_inv.dot(mo_coeff[0]), label, molabel, start=1, **kwargs) molabel = [] irorbcnt = {} for k, j in enumerate(orbsymb): if j in irorbcnt: irorbcnt[j] += 1 else: irorbcnt[j] = 1 molabel.append('#%-d(%s #%d)' % (k+1, irname_full[j], irorbcnt[j])) log.debug(' ** beta MO coefficients (expansion on meta-Lowdin AOs) **') dump_mat.dump_rec(mol.stdout, c_inv.dot(mo_coeff[1]), label, molabel, start=1, **kwargs) dm = mf.make_rdm1(mo_coeff, mo_occ) return mf.mulliken_meta(mol, dm, s=ovlp_ao, verbose=log) def get_irrep_nelec(mol, mo_coeff, mo_occ, s=None): '''Alpha/beta electron numbers for each irreducible representation. Args: mol : an instance of :class:`Mole` To provide irrep_id, and spin-adapted basis mo_occ : a list of 1D ndarray Regular occupancy, without grouping for irreps mo_coeff : a list of 2D ndarray Regular orbital coefficients, without grouping for irreps Returns: irrep_nelec : dict The number of alpha/beta electrons for each irrep {'ir_name':(int,int), ...}. Examples: >>> mol = gto.M(atom='O 0 0 0; H 0 0 1; H 0 1 0', basis='ccpvdz', symmetry=True, charge=1, spin=1, verbose=0) >>> mf = scf.UHF(mol) >>> mf.scf() -75.623975516256721 >>> scf.uhf_symm.get_irrep_nelec(mol, mf.mo_coeff, mf.mo_occ) {'A1': (3, 3), 'A2': (0, 0), 'B1': (1, 1), 'B2': (1, 0)} ''' orbsyma = symm.label_orb_symm(mol, mol.irrep_id, mol.symm_orb, mo_coeff[0], s, False) orbsymb = symm.label_orb_symm(mol, mol.irrep_id, mol.symm_orb, mo_coeff[1], s, False) orbsyma = numpy.array(orbsyma) orbsymb = numpy.array(orbsymb) irrep_nelec = dict([(mol.irrep_name[k], (int(sum(mo_occ[0][orbsyma==ir])), int(sum(mo_occ[1][orbsymb==ir])))) for k, ir in enumerate(mol.irrep_id)]) return irrep_nelec map_rhf_to_uhf = uhf.map_rhf_to_uhf def canonicalize(mf, mo_coeff, mo_occ, fock=None): '''Canonicalization diagonalizes the UHF Fock matrix in occupied, virtual subspaces separatedly (without change occupancy). ''' if not mf.mol.symmetry: return uhf.canonicalize(mf, mo_coeff, mo_occ, fock) mo_occ = numpy.asarray(mo_occ) assert(mo_occ.ndim == 2) if fock is None: dm = mf.make_rdm1(mo_coeff, mo_occ) fock = mf.get_hcore() + mf.get_jk(mol, dm) occidxa = mo_occ[0] == 1 occidxb = mo_occ[1] == 1 viridxa = mo_occ[0] == 0 viridxb = mo_occ[1] == 0 s = mf.get_ovlp() def eig_(fock, mo_coeff, idx, es, cs): if
numpy.count_nonzero(idx)
numpy.count_nonzero
""" This file contains functions that are used to perform data augmentation. """ from turtle import reset import cv2 import io import torch import numpy as np import scipy.misc from PIL import Image from rembg.bg import remove import human_det from lib.pymaf.core import constants from lib.pymaf.utils.streamer import aug_matrix from lib.common.cloth_extraction import load_segmentation from torchvision import transforms def load_img(img_file): img = cv2.imread(img_file, cv2.IMREAD_UNCHANGED) if len(img.shape) == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) if not img_file.endswith("png"): img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) else: img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGR) return img def get_bbox(img, det): input = np.float32(img) input = (input / 255.0 - (0.5, 0.5, 0.5)) / (0.5, 0.5, 0.5) # TO [-1.0, 1.0] input = input.transpose(2, 0, 1) # TO [3 x H x W] bboxes, probs = det(torch.from_numpy(input).float().unsqueeze(0)) probs = probs.unsqueeze(3) bboxes = (bboxes * probs).sum(dim=1, keepdim=True) / probs.sum( dim=1, keepdim=True) bbox = bboxes[0, 0, 0].cpu().numpy() return bbox def get_transformer(input_res): image_to_tensor = transforms.Compose([ transforms.Resize(input_res), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) mask_to_tensor = transforms.Compose([ transforms.Resize(input_res), transforms.ToTensor(), transforms.Normalize((0.0, ), (1.0, )) ]) image_to_pymaf_tensor = transforms.Compose([ transforms.Resize(size=224), transforms.Normalize(mean=constants.IMG_NORM_MEAN, std=constants.IMG_NORM_STD) ]) image_to_pixie_tensor = transforms.Compose([ transforms.Resize(224) ]) def image_to_hybrik_tensor(img): # mean img[0].add_(-0.406) img[1].add_(-0.457) img[2].add_(-0.480) # std img[0].div_(0.225) img[1].div_(0.224) img[2].div_(0.229) return img return [image_to_tensor, mask_to_tensor, image_to_pymaf_tensor, image_to_pixie_tensor, image_to_hybrik_tensor] def process_image(img_file, det, hps_type, input_res=512, device=None, seg_path=None): """Read image, do preprocessing and possibly crop it according to the bounding box. If there are bounding box annotations, use them to crop the image. If no bounding box is specified but openpose detections are available, use them to get the bounding box. """ [image_to_tensor, mask_to_tensor, image_to_pymaf_tensor, image_to_pixie_tensor, image_to_hybrik_tensor] = get_transformer(input_res) img_ori = load_img(img_file) in_height, in_width, _ = img_ori.shape M = aug_matrix(in_width, in_height, input_res*2, input_res*2) # from rectangle to square img_for_crop = cv2.warpAffine(img_ori, M[0:2, :], (input_res*2, input_res*2), flags=cv2.INTER_CUBIC) if det is not None: # detection for bbox bbox = get_bbox(img_for_crop, det) width = bbox[2] - bbox[0] height = bbox[3] - bbox[1] center = np.array([(bbox[0] + bbox[2]) / 2.0, (bbox[1] + bbox[3]) / 2.0]) else: # Assume that the person is centerered in the image height = img_for_crop.shape[0] width = img_for_crop.shape[1] center = np.array([width // 2, height // 2]) scale = max(height, width) / 180 if hps_type == 'hybrik': img_np = crop_for_hybrik(img_for_crop, center, np.array([scale * 180, scale * 180])) else: img_np, cropping_parameters = crop( img_for_crop, center, scale, (input_res, input_res)) with torch.no_grad(): buf = io.BytesIO() Image.fromarray(img_np).save(buf, format='png') img_pil = Image.open( io.BytesIO(remove(buf.getvalue()))).convert("RGBA") # for icon img_rgb = image_to_tensor(img_pil.convert("RGB")) img_mask = torch.tensor(1.0) - (mask_to_tensor(img_pil.split()[-1]) < torch.tensor(0.5)).float() img_tensor = img_rgb * img_mask # for hps img_hps = img_np.astype(np.float32) / 255. img_hps = torch.from_numpy(img_hps).permute(2, 0, 1) if hps_type == 'bev': img_hps = img_np[:, :, [2, 1, 0]] elif hps_type == 'hybrik': img_hps = image_to_hybrik_tensor(img_hps).unsqueeze(0).to(device) elif hps_type != 'pixie': img_hps = image_to_pymaf_tensor(img_hps).unsqueeze(0).to(device) else: img_hps = image_to_pixie_tensor(img_hps).unsqueeze(0).to(device) # uncrop params uncrop_param = {'center': center, 'scale': scale, 'ori_shape': img_ori.shape, 'box_shape': img_np.shape, 'crop_shape': img_for_crop.shape, 'M': M} if not (seg_path is None): segmentations = load_segmentation(seg_path, (in_height, in_width)) seg_coord_normalized = [] for seg in segmentations: coord_normalized = [] for xy in seg['coordinates']: xy_h = np.vstack((xy[:, 0], xy[:, 1], np.ones(len(xy)))).T warped_indeces = M[0:2, :] @ xy_h[:, :, None] warped_indeces = np.array(warped_indeces).astype(int) warped_indeces.resize((warped_indeces.shape[:2])) # cropped_indeces = crop_segmentation(warped_indeces, center, scale, (input_res, input_res), img_np.shape) cropped_indeces = crop_segmentation( warped_indeces, (input_res, input_res), cropping_parameters) indices = np.vstack( (cropped_indeces[:, 0], cropped_indeces[:, 1])).T # Convert to NDC coordinates seg_cropped_normalized = 2*(indices / input_res) - 1 # Don't know why we need to divide by 50 but it works ¯\_(ツ)_/¯ (probably some scaling factor somewhere) # Divide only by 45 on the horizontal axis to take the curve of the human body into account seg_cropped_normalized[:, 0] = ( 1/40) * seg_cropped_normalized[:, 0] seg_cropped_normalized[:, 1] = ( 1/50) * seg_cropped_normalized[:, 1] coord_normalized.append(seg_cropped_normalized) seg['coord_normalized'] = coord_normalized seg_coord_normalized.append(seg) return img_tensor, img_hps, img_ori, img_mask, uncrop_param, seg_coord_normalized return img_tensor, img_hps, img_ori, img_mask, uncrop_param def get_transform(center, scale, res): """Generate transformation matrix.""" h = 200 * scale t = np.zeros((3, 3)) t[0, 0] = float(res[1]) / h t[1, 1] = float(res[0]) / h t[0, 2] = res[1] * (-float(center[0]) / h + .5) t[1, 2] = res[0] * (-float(center[1]) / h + .5) t[2, 2] = 1 return t def transform(pt, center, scale, res, invert=0): """Transform pixel location to different reference.""" t = get_transform(center, scale, res) if invert: t = np.linalg.inv(t) new_pt =
np.array([pt[0] - 1, pt[1] - 1, 1.])
numpy.array
import pickle import sys import numpy as np from ...ops.iou3d_nms import iou3d_nms_utils from ...utils import box_utils, point_box_utils, coords_utils class MltBestMatchQuerier(object): def __init__(self, root_path, querier_cfg, class_names, db_infos, logger=None): self.root_path = root_path self.class_names = class_names self.querier_cfg = querier_cfg self.logger = logger self.bmatch_infos = {} self.mlt_bm_root = { "Car":self.root_path.resolve() / querier_cfg.CAR_MLT_BM_ROOT, "Cyclist":self.root_path.resolve() / querier_cfg.CYC_MLT_BM_ROOT, "Pedestrian":self.root_path.resolve() / querier_cfg.PED_MLT_BM_ROOT, } self.db_infos, self.vis = db_infos, False self.load_point_features = querier_cfg.get("LOAD_POINT_FEATURES", 3) self.add_bm_2_raw = querier_cfg.get("ADD_BM_2_RAW", False) if querier_cfg.get("ABLATION", None) is not None: self.rmv_self_occ = querier_cfg.ABLATION.get("RMV_SELF_OCC", False) self.rmv_miss = querier_cfg.ABLATION.get("RMV_MISS", False) self.num_point_features = querier_cfg.ABLATION.get("NUM_POINT_FEATURES", 4) self.vis = querier_cfg.ABLATION.get("VIS", False) # self.sphere_coords_res = np.asarray([[0.2, 0.0875*2, 0.4203125]]) self.sphere_coords_res = np.asarray([[0.32, 0.5184, 0.4203125]]) self.expand = False # self.expand = False def __getstate__(self): d = dict(self.__dict__) del d['logger'] return d def __setstate__(self, d): self.__dict__.update(d) def mirror(self, pnts, lastchannel=3): mirror_pnts = np.concatenate([pnts[..., 0:1], -pnts[..., 1:2], pnts[..., 2:lastchannel]], axis=-1) return np.concatenate([pnts, mirror_pnts], axis=0) def add_gtbox_best_match_points_to_scene(self, data_dict): obj_points_list = [] aug_boxes_num = data_dict['aug_boxes_image_idx'].shape[0] if 'aug_boxes_image_idx' in data_dict else 0 gt_boxes_num = data_dict['gt_boxes'].shape[0] - aug_boxes_num image_idx = int(data_dict['frame_id']) assert gt_boxes_num == data_dict["gt_boxes_inds"].shape[0] for idx in range(gt_boxes_num): gt_box = data_dict['gt_boxes'][idx] gt_name = data_dict['gt_names'][idx] # print("self.bmatch_infos[gt_names]", self.bmatch_infos[gt_names].keys()) # print("gt_names", gt_names, gt_boxes_num, aug_boxes_num, data_dict["gt_boxes_inds"]) if gt_name in self.class_names: gt_box_id = data_dict["gt_boxes_inds"][idx] file_path = self.mlt_bm_root[gt_name] / "{}_{}.pkl".format(image_idx, gt_box_id) with open(file_path, 'rb') as f: obj_points = pickle.load(f) obj_points = obj_points.reshape( [-1, self.load_point_features])[:,:3].astype(np.float32) gtrotation = point_box_utils.get_yaw_rotation(gt_box[6]) obj_points = np.einsum("nj,ij->ni", obj_points, gtrotation) + gt_box[:3] obj_points_list.append(obj_points) # else: # print("found ", gt_name," skip") if "bm_points" in data_dict: data_dict['bm_points'].extend(obj_points_list) else: data_dict['bm_points'] = obj_points_list return data_dict def add_sampled_boxes_best_match_points_to_scene(self, data_dict): aug_boxes_image_idx = data_dict['aug_boxes_image_idx'] aug_length = aug_boxes_image_idx.shape[0] aug_boxes_gt_idx = data_dict['aug_boxes_gt_idx'] aug_box = data_dict['gt_boxes'][-aug_length:] aug_box_names = data_dict['gt_names'][-aug_length:] obj_points_list = [] for ind in range(aug_length): gt_box = aug_box[ind] gt_name = aug_box_names[ind] file_path = self.mlt_bm_root[gt_name] / "{}_{}.pkl".format(aug_boxes_image_idx[ind], aug_boxes_gt_idx[ind]) with open(file_path, 'rb') as f: obj_points = pickle.load(f) obj_points = obj_points.reshape( [-1, self.load_point_features])[:, :3].astype(np.float32) gtrotation = point_box_utils.get_yaw_rotation(gt_box[6]) obj_points = np.einsum("nj,ij->ni", obj_points, gtrotation) + gt_box[:3] obj_points_list.append(obj_points) data_dict['bm_points'].extend(obj_points_list) return data_dict def filter_bm(self, data_dict): gt_boxes_filtered = data_dict['gt_boxes'][data_dict['gt_boxes_mask']] if 'gt_boxes_mask' in data_dict else data_dict['gt_boxes'] assert len(gt_boxes_filtered) == len(data_dict['bm_points']), "{}_{}".format(len(data_dict['gt_boxes']), len(data_dict['bm_points'])) boxes_xy_dist = np.linalg.norm(gt_boxes_filtered[:,:2], axis=-1) box_inds = np.argsort(boxes_xy_dist) gt_boxes, bm_points_lst = gt_boxes_filtered[box_inds, :], [data_dict['bm_points'][box_inds[i]] for i in range(len(box_inds))] box_labels = np.arange(len(gt_boxes_filtered), dtype=np.float32).reshape(-1, 1) + 1 boxes = np.concatenate([gt_boxes, box_labels], axis=-1) pointwise_box_label = np.round(point_box_utils.points_in_box_3d_label(data_dict["points"][:,:3], boxes, slack=1.0, shift=np.array([[0., 0., 0.15, 0., 0., 0.]]))).astype(np.int) _, raw_sphere_points, raw_sphere_coords, raw_expand_sphere_coords, voxelwise_mask, sphere_coords_min, nx, ny, nz, _ = self.get_coords(data_dict["points"], nx=None, ny=None, nz=None, sphere_coords_min=None) occ_mask = (np.cumsum(voxelwise_mask, axis=0) > 0.5).astype(np.uint8) raw_points_len = len(data_dict["points"]) other_bm_points_lst, self_bm_points_lst, miss_bm_points_lst, coverage_rate_lst = [], [], [], [] if self.vis: other_occluder_mask, miss_tot_mask, bm_tot_mask, other_tot_mask = np.zeros([nx, ny, nz], dtype=np.uint8),np.zeros([nx, ny, nz], dtype=np.uint8), np.zeros([nx, ny, nz], dtype=np.uint8), np.zeros([nx, ny, nz], dtype=np.uint8) for i in range(len(bm_points_lst)): obj_points = data_dict["points"][:raw_points_len,:][pointwise_box_label==(i+1), :] avg_feature = np.mean(obj_points[:, 3:self.num_point_features], axis=0, keepdims=True) if len(obj_points) > 0 else np.zeros([1, self.num_point_features-3]) _, obj_sphere_points, obj_sphere_coords, obj_expand_sphere_coords, obj_voxelwise_mask, _, _, _, _, num_unique_obj = self.get_coords(obj_points, nx=nx, ny=ny, nz=nz, sphere_coords_min=sphere_coords_min, expand=False, x_expand=True) bm_points = np.concatenate([bm_points_lst[i], np.tile(avg_feature, (bm_points_lst[i].shape[0], 1))], axis=-1) bm_points, bm_sphere_points, bm_sphere_coords, bm_expand_sphere_coords, bm_voxelwise_mask, _, _, _, _, num_unique_bm = self.get_coords(bm_points, nx=nx, ny=ny, nz=nz, sphere_coords_min=sphere_coords_min, expand=False) coverage_rate_lst.append(num_unique_obj / max(1, num_unique_bm)) keep_mask = 1 - obj_voxelwise_mask[bm_sphere_coords[..., 0], bm_sphere_coords[..., 1], bm_sphere_coords[..., 2]] rmv_miss_filter_mask = occ_mask[bm_sphere_coords[..., 0], bm_sphere_coords[..., 1], bm_sphere_coords[..., 2]] bm_occ_mask = (np.cumsum(bm_voxelwise_mask, axis=0) < 1.5).astype(np.uint8) rmv_self_filter_mask = bm_occ_mask[bm_sphere_coords[..., 0], bm_sphere_coords[..., 1], bm_sphere_coords[..., 2]] if self.vis: miss_mask = (keep_mask * rmv_self_filter_mask * (1 - rmv_miss_filter_mask)).astype(np.bool) self_mask = (keep_mask * (1-rmv_self_filter_mask)).astype(np.bool) other_mask = (keep_mask * rmv_miss_filter_mask * rmv_self_filter_mask).astype(np.bool) miss_sphere_coords, miss_points = self.get_nearest_points(miss_mask, bm_sphere_points, bm_sphere_coords, bm_points, axis=0) self_sphere_coords, self_points = self.get_nearest_points(self_mask, bm_sphere_points, bm_sphere_coords, bm_points, axis=0) other_sphere_coords, other_points = self.get_nearest_points(other_mask, bm_sphere_points, bm_sphere_coords, bm_points, axis=0) other_bm_points_lst.append(other_points), self_bm_points_lst.append(self_points), miss_bm_points_lst.append(miss_points) miss_tot_mask[miss_sphere_coords[..., 0], miss_sphere_coords[..., 1], miss_sphere_coords[..., 2]] = np.ones_like(miss_sphere_coords[..., 0], dtype=np.uint8) bm_tot_mask = np.maximum(bm_tot_mask, bm_voxelwise_mask) other_tot_mask[other_sphere_coords[..., 0], other_sphere_coords[..., 1], other_sphere_coords[..., 2]] = np.ones_like(other_sphere_coords[..., 0], dtype=np.uint8) if self.rmv_self_occ: keep_mask *= rmv_self_filter_mask if self.rmv_miss: keep_mask *= rmv_miss_filter_mask keep_mask = keep_mask.astype(np.bool) bm_sphere_coords, bm_points = self.get_nearest_points(keep_mask, bm_sphere_points, bm_sphere_coords, bm_points, axis=0) if self.expand: bm_expand_sphere_coords = self.expand_voxel(bm_sphere_coords, nx, ny, nz) else: bm_expand_sphere_coords = bm_sphere_coords ## update voxel mask and occ mask voxelwise_mask[bm_expand_sphere_coords[..., 0], bm_expand_sphere_coords[..., 1], bm_expand_sphere_coords[..., 2]] = np.ones_like(bm_expand_sphere_coords[..., 0], dtype=np.uint8) occ_mask = (np.cumsum(voxelwise_mask, axis=0) > 0.5).astype(np.uint8) if self.add_bm_2_raw: data_dict["points"] = np.concatenate([data_dict["points"], bm_points], axis=0) if self.vis: self_cum = np.cumsum(bm_tot_mask, axis=0) self_reverse_cum = np.flip(np.cumsum(np.flip(bm_tot_mask, axis=0), axis=0), axis=0) self_tot_occ_mask = (self_cum > 0.5).astype(np.uint8) # - bm_tot_mask.astype(np.uint8) self_limit_occ_mask = (self_reverse_cum > 0.5).astype(np.uint8) * self_tot_occ_mask other_occluder_mask[raw_sphere_coords[..., 0], raw_sphere_coords[..., 1], raw_sphere_coords[..., 2]] = np.ones_like(raw_sphere_coords[..., 0], dtype=np.uint8) other_full_tot_occ_mask = (np.cumsum(other_occluder_mask, axis=0) > 0.5).astype(np.uint8) * self.propagate_323(other_tot_mask) other_tot_occ_mask = other_full_tot_occ_mask * (1 - self_tot_occ_mask) miss_full_tot_occ_mask = self.propagate_323(miss_tot_mask) miss_tot_occ_mask = miss_full_tot_occ_mask * (1 - self_tot_occ_mask) data_dict.update({ 'miss_points': self.combine_lst(miss_bm_points_lst), 'self_points': self.combine_lst(self_bm_points_lst), 'other_points': self.combine_lst(other_bm_points_lst), 'miss_occ_points': self.get_voxel_centers(miss_tot_occ_mask, sphere_coords_min, self.sphere_coords_res), 'miss_full_occ_points': self.get_voxel_centers(miss_full_tot_occ_mask, sphere_coords_min, self.sphere_coords_res), 'self_occ_points': self.get_voxel_centers(self_tot_occ_mask, sphere_coords_min, self.sphere_coords_res), 'self_limit_occ_mask': self.get_voxel_centers(self_limit_occ_mask, sphere_coords_min, self.sphere_coords_res), 'other_occ_points': self.get_voxel_centers(other_tot_occ_mask, sphere_coords_min, self.sphere_coords_res), 'other_full_occ_points': self.get_voxel_centers(other_full_tot_occ_mask, sphere_coords_min, self.sphere_coords_res), }) # if len(coverage_rate_lst) == 0: # data_dict["coverage_rates"] = np.zeros([0,1], dtype=np.float32) # elif len(coverage_rate_lst) == 1: # data_dict["coverage_rates"] = np.asarray(coverage_rate_lst[0]).reshape(-1, 1) # else: # data_dict["coverage_rates"] = np.stack(coverage_rate_lst, axis=0) return data_dict def get_voxel_centers(self, mask, sphere_coords_min, sphere_coords_res): coords = np.stack(np.nonzero(mask), axis=-1) # print("coords", coords.shape, sphere_coords_min.shape, sphere_coords_res.shape) sphere_points = sphere_coords_min + (coords + 0.5) * sphere_coords_res return coords_utils.uvd2absxyz_np(sphere_points[..., 0], sphere_points[..., 1], sphere_points[..., 2], type="sphere") def propagate_323(self, mask_3d): mask_2d = np.max(mask_3d, axis=0, keepdims=True) mask_3d = np.tile(mask_2d, [mask_3d.shape[0], 1, 1]) return mask_3d def exclude_map(self, occ_coords, x_epansion=2): x = np.arange(-x_epansion, 1) y, z = np.zeros_like(x), np.zeros_like(x) xyz_shift = np.stack([x, y, z], axis=-1).reshape(1, len(x), 3) expand_occ_coords = (np.expand_dims(occ_coords, axis=1) + xyz_shift).reshape(-1, 3) expand_occ_coords = np.maximum(np.array([[0, 0, 0]]), expand_occ_coords) return expand_occ_coords def expand_voxel(self, occ_coords, nx, ny, nz, yz_epansion=2): y_ind = np.arange(-1, yz_epansion) z_ind = np.arange(-1, yz_epansion) y, z = np.meshgrid(y_ind, z_ind) x = np.ones_like(y) xyz_shift = np.stack([x, y, z], axis=-1).reshape(1, 9, 3) xyz_shift[0, 4, 0] = 0 # print("xyz_shift", y.shape, y, xyz_shift.shape, xyz_shift[0,0], xyz_shift[0,1], xyz_shift[0,2]) expand_occ_coords = (np.expand_dims(occ_coords, axis=1) + xyz_shift).reshape(-1, 3) expand_occ_coords = np.minimum(np.maximum(np.array([[0,0,0]]), expand_occ_coords), np.array([[nx-1, ny-1, nz-1]])) return expand_occ_coords def get_nearest_points(self, keep_mask, bm_sphere_points, bm_sphere_coords, bm_points, axis=0): bm_sphere_coords = bm_sphere_coords[keep_mask, :] bm_sphere_points = bm_sphere_points[keep_mask, :] bm_points = bm_points[keep_mask, :] closeind = np.argsort(bm_sphere_points[..., 0]) bm_points, bm_sphere_coords = bm_points[closeind, :], bm_sphere_coords[closeind, :] uniq_coords, indices = np.unique(bm_sphere_coords, axis=0, return_index=True) return bm_sphere_coords, bm_points[indices, :] def get_coords(self, points, nx=None, ny=None, nz=None, sphere_coords_min=None, expand=True, x_expand=False): raw_sphere_points = coords_utils.absxyz_2_spherexyz_np(points[..., :3]) if sphere_coords_min is None: sphere_coords_min = np.min(raw_sphere_points, axis=0, keepdims=True) - np.asarray( [[0.2 * 10, 0.0875 * 2 * 10, 0.4203125 * 10]]) raw_sphere_coords = np.floor_divide(raw_sphere_points - sphere_coords_min, self.sphere_coords_res).astype(np.int32) unique_occupied = 0 if nx is None: nx, ny, nz = list(np.max(raw_sphere_coords, axis=0)) nx, ny, nz = nx + 1 + 10, ny + 1 + 10, nz + 1 + 10 else: keep_mask = np.all(raw_sphere_coords >= 0, axis=-1) & np.all(raw_sphere_coords < np.array([[nx, ny, nz]]), axis=-1) raw_sphere_points = raw_sphere_points[keep_mask, :] raw_sphere_coords = raw_sphere_coords[keep_mask, :] points = points[keep_mask, :] unique_occupied = len(np.unique(raw_sphere_coords, axis=0)) # print("nx",nx,ny,nz) raw_expand_sphere_coords = self.expand_voxel(raw_sphere_coords, nx, ny, nz) if (expand and self.expand) else raw_sphere_coords raw_expand_sphere_coords = self.exclude_map(raw_sphere_coords) if x_expand else raw_expand_sphere_coords voxelwise_mask = np.zeros([nx, ny, nz], dtype=np.uint8) voxelwise_mask[raw_expand_sphere_coords[..., 0], raw_expand_sphere_coords[..., 1], raw_expand_sphere_coords[..., 2]] = np.ones_like(raw_expand_sphere_coords[..., 0], dtype=np.uint8) return points, raw_sphere_points, raw_sphere_coords, raw_expand_sphere_coords, voxelwise_mask, sphere_coords_min, nx, ny, nz, unique_occupied def combine_lst(self, bm_points_lst): if len(bm_points_lst) > 1: return np.concatenate(bm_points_lst, axis=0)[...,:3] elif len(bm_points_lst) == 1: return bm_points_lst[0][...,:3] else: return
np.zeros([0,3], dtype=np.float32)
numpy.zeros
import torch import torch.nn as nn import torch.nn.functional as F import torchmetrics.functional as MF import dgl import dgl.nn as dglnn import time import numpy as np from ogb.nodeproppred import DglNodePropPredDataset class SAGE(nn.Module): def __init__(self, in_feats, n_hidden, n_classes): super().__init__() self.layers = nn.ModuleList() self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, 'mean')) self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, 'mean')) self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, 'mean')) self.dropout = nn.Dropout(0.5) def forward(self, sg, x): h = x for l, layer in enumerate(self.layers): h = layer(sg, h) if l != len(self.layers) - 1: h = F.relu(h) h = self.dropout(h) return h dataset = dgl.data.AsNodePredDataset(DglNodePropPredDataset('ogbn-products')) graph = dataset[0] # already prepares ndata['label'/'train_mask'/'val_mask'/'test_mask'] model = SAGE(graph.ndata['feat'].shape[1], 256, dataset.num_classes).cuda() opt = torch.optim.Adam(model.parameters(), lr=0.001, weight_decay=5e-4) num_partitions = 1000 sampler = dgl.dataloading.ClusterGCNSampler( graph, num_partitions, prefetch_ndata=['feat', 'label', 'train_mask', 'val_mask', 'test_mask']) # DataLoader for generic dataloading with a graph, a set of indices (any indices, like # partition IDs here), and a graph sampler. dataloader = dgl.dataloading.DataLoader( graph, torch.arange(num_partitions).to('cuda'), sampler, device='cuda', batch_size=100, shuffle=True, drop_last=False, num_workers=0, use_uva=True) durations = [] for _ in range(10): t0 = time.time() model.train() for it, sg in enumerate(dataloader): x = sg.ndata['feat'] y = sg.ndata['label'] m = sg.ndata['train_mask'].bool() y_hat = model(sg, x) loss = F.cross_entropy(y_hat[m], y[m]) opt.zero_grad() loss.backward() opt.step() if it % 20 == 0: acc = MF.accuracy(y_hat[m], y[m]) mem = torch.cuda.max_memory_allocated() / 1000000 print('Loss', loss.item(), 'Acc', acc.item(), 'GPU Mem', mem, 'MB') tt = time.time() print(tt - t0) durations.append(tt - t0) model.eval() with torch.no_grad(): val_preds, test_preds = [], [] val_labels, test_labels = [], [] for it, sg in enumerate(dataloader): x = sg.ndata['feat'] y = sg.ndata['label'] m_val = sg.ndata['val_mask'].bool() m_test = sg.ndata['test_mask'].bool() y_hat = model(sg, x) val_preds.append(y_hat[m_val]) val_labels.append(y[m_val]) test_preds.append(y_hat[m_test]) test_labels.append(y[m_test]) val_preds = torch.cat(val_preds, 0) val_labels = torch.cat(val_labels, 0) test_preds = torch.cat(test_preds, 0) test_labels = torch.cat(test_labels, 0) val_acc = MF.accuracy(val_preds, val_labels) test_acc = MF.accuracy(test_preds, test_labels) print('Validation acc:', val_acc.item(), 'Test acc:', test_acc.item()) print(
np.mean(durations[4:])
numpy.mean
import os from sys import version_info import numpy as np import pandas as pd import pytest import sklearn.datasets as datasets import sklearn.preprocessing as sk_preprocessing import xgboost as xgb import yaml import clearbox_wrapper as cbw @pytest.fixture def model_path(tmpdir): return os.path.join(str(tmpdir), "model") @pytest.fixture(scope="module") def iris_data(): iris = datasets.load_iris() x = iris.data y = iris.target return x, y @pytest.fixture() def sk_function_transformer(): def simple_preprocessor(numpy_x): return numpy_x ** 2 transformer = sk_preprocessing.FunctionTransformer( simple_preprocessor, validate=True ) return transformer @pytest.fixture() def custom_transformer(): def simple_preprocessor(numpy_x): transformed_x = numpy_x + 1.0 return transformed_x return simple_preprocessor @pytest.fixture() def drop_column_transformer(): def drop_column(numpy_x): transformed_x = np.delete(numpy_x, 0, axis=1) return transformed_x return drop_column def _check_schema(pdf, input_schema): if isinstance(pdf, (list, np.ndarray, dict)): try: pdf = pd.DataFrame(pdf) except Exception as e: message = ( "This model contains a model signature, which suggests a DataFrame input." "There was an error casting the input data to a DataFrame: {0}".format( str(e) ) ) raise cbw.ClearboxWrapperException(message) if not isinstance(pdf, pd.DataFrame): message = ( "Expected input to be DataFrame or list. Found: %s" % type(pdf).__name__ ) raise cbw.ClearboxWrapperException(message) if input_schema.has_column_names(): # make sure there are no missing columns col_names = input_schema.column_names() expected_names = set(col_names) actual_names = set(pdf.columns) missing_cols = expected_names - actual_names extra_cols = actual_names - expected_names # Preserve order from the original columns, since missing/extra columns are likely to # be in same order. missing_cols = [c for c in col_names if c in missing_cols] extra_cols = [c for c in pdf.columns if c in extra_cols] if missing_cols: print( "Model input is missing columns {0}." " Note that there were extra columns: {1}".format( missing_cols, extra_cols ) ) return False else: # The model signature does not specify column names => we can only verify column count. if len(pdf.columns) != len(input_schema.columns): print( "The model signature declares " "{0} input columns but the provided input has " "{1} columns. Note: the columns were not named in the signature so we can " "only verify their count.".format( len(input_schema.columns), len(pdf.columns) ) ) return False col_names = pdf.columns[: len(input_schema.columns)] return True def test_iris_xgboost_no_preprocessing(iris_data, model_path): x, y = iris_data model = xgb.XGBClassifier(use_label_encoder=False) fitted_model = model.fit(x, y) cbw.save_model(model_path, fitted_model, zip=False) loaded_model = cbw.load_model(model_path) original_model_predictions = fitted_model.predict_proba(x) loaded_model_predictions = loaded_model.predict_proba(x) np.testing.assert_array_equal(original_model_predictions, loaded_model_predictions) @pytest.mark.parametrize( "sk_transformer", [ (sk_preprocessing.StandardScaler()), (sk_preprocessing.QuantileTransformer(random_state=0, n_quantiles=50)), (sk_preprocessing.KBinsDiscretizer(n_bins=2, encode="ordinal")), (sk_preprocessing.RobustScaler()), (sk_preprocessing.MaxAbsScaler()), ], ) def test_iris_xgboost_preprocessing(sk_transformer, iris_data, model_path): x, y = iris_data x_transformed = sk_transformer.fit_transform(x) model = xgb.XGBClassifier(use_label_encoder=False) fitted_model = model.fit(x_transformed, y) cbw.save_model(model_path, fitted_model, preprocessing=sk_transformer, zip=False) loaded_model = cbw.load_model(model_path) original_model_predictions = fitted_model.predict(x_transformed) loaded_model_predictions = loaded_model.predict(x) np.testing.assert_array_equal(original_model_predictions, loaded_model_predictions) def test_iris_xgboost_preprocessing_with_function_transformer( sk_function_transformer, iris_data, model_path ): x, y = iris_data x_transformed = sk_function_transformer.fit_transform(x) model = xgb.XGBClassifier(use_label_encoder=False) fitted_model = model.fit(x_transformed, y) cbw.save_model( model_path, fitted_model, preprocessing=sk_function_transformer, zip=False ) loaded_model = cbw.load_model(model_path) original_model_predictions = fitted_model.predict_proba(x_transformed) loaded_model_predictions = loaded_model.predict_proba(x) np.testing.assert_array_equal(original_model_predictions, loaded_model_predictions) def test_iris_xgboost_preprocessing_with_custom_transformer( custom_transformer, iris_data, model_path ): x, y = iris_data x_transformed = custom_transformer(x) model = xgb.XGBClassifier(use_label_encoder=False) fitted_model = model.fit(x_transformed, y) cbw.save_model( model_path, fitted_model, preprocessing=custom_transformer, zip=False ) loaded_model = cbw.load_model(model_path) original_model_predictions = fitted_model.predict(x_transformed) loaded_model_predictions = loaded_model.predict(x) np.testing.assert_array_equal(original_model_predictions, loaded_model_predictions) @pytest.mark.parametrize( "preprocessor", [ (sk_preprocessing.StandardScaler()), (sk_preprocessing.QuantileTransformer(random_state=0, n_quantiles=50)), (sk_preprocessing.KBinsDiscretizer(n_bins=2, encode="ordinal")), (sk_preprocessing.RobustScaler()), (sk_preprocessing.MaxAbsScaler()), ], ) def test_iris_xgboost_data_preparation_and_preprocessing( preprocessor, iris_data, drop_column_transformer, model_path ): x, y = iris_data x_prepared = drop_column_transformer(x) x_transformed = preprocessor.fit_transform(x_prepared) model = xgb.XGBClassifier(use_label_encoder=False) fitted_model = model.fit(x_transformed, y) cbw.save_model( model_path, fitted_model, preprocessing=preprocessor, data_preparation=drop_column_transformer, zip=False, ) loaded_model = cbw.load_model(model_path) original_model_predictions = fitted_model.predict_proba(x_transformed) loaded_model_predictions = loaded_model.predict_proba(x)
np.testing.assert_array_equal(original_model_predictions, loaded_model_predictions)
numpy.testing.assert_array_equal
from collections import deque, OrderedDict import numpy as np # from rlkit.core.eval_util import create_stats_ordered_dict from rlkit.data_management.path_builder import PathBuilder from rlkit.samplers.data_collector.base import DataCollector from rlkit.envs.vecenv import BaseVectorEnv class VecMdpStepCollector(DataCollector): def __init__( self, env: BaseVectorEnv, policy, max_num_epoch_paths_saved=None, render=False, render_kwargs=None, ): if render_kwargs is None: render_kwargs = {} self._env = env self._env_num = self._env.env_num self._policy = policy self._max_num_epoch_paths_saved = max_num_epoch_paths_saved self._epoch_paths = deque(maxlen=self._max_num_epoch_paths_saved) self._render = render self._render_kwargs = render_kwargs self._num_steps_total = 0 self._num_paths_total = 0 self._obs = None # cache variable def get_epoch_paths(self): return self._epoch_paths def end_epoch(self, epoch): self._epoch_paths = deque(maxlen=self._max_num_epoch_paths_saved) def reset(self): self._epoch_paths = deque(maxlen=self._max_num_epoch_paths_saved) self._obs = None def get_diagnostics(self): stats = OrderedDict([ ('num steps total', self._num_steps_total), ('num paths total', self._num_paths_total), ]) # path_lens = [len(path['actions']) for path in self._epoch_paths] # stats.update(create_stats_ordered_dict( # "path length", # path_lens, # always_show_all_stats=True, # )) return stats def get_snapshot(self): return dict( env=self._env, policy=self._policy, ) def collect_new_steps( self, max_path_length, num_steps, discard_incomplete_paths, random=False, ): steps_collector = PathBuilder() for _ in range(num_steps): self.collect_one_step( max_path_length, discard_incomplete_paths, steps_collector, random, ) return [steps_collector.get_all_stacked()] def collect_one_step( self, max_path_length, discard_incomplete_paths, steps_collector: PathBuilder = None, random=False, ): if self._obs is None: self._start_new_rollout() if random: actions = [self._env.action_space.sample() for _ in range(self._env_num)] else: actions = self._policy.get_actions(self._obs) next_obs, rewards, terminals, env_infos = self._env.step(actions) if self._render: self._env.render(**self._render_kwargs) # unzip vectorized data for env_idx, ( path_builder, next_ob, action, reward, terminal, env_info, ) in enumerate(zip( self._current_path_builders, next_obs, actions, rewards, terminals, env_infos, )): obs = self._obs[env_idx].copy() terminal = np.array([terminal]) reward =
np.array([reward])
numpy.array
from PIL import Image import numpy as np import matplotlib.pyplot as plt import cv2 """ https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_thresholding/py_thresholding.html """ # importing image img = Image.open("giraffe.jpg") img_np = np.asarray(img) print(np.shape(img_np)) # plt.imshow(img_np) # plt.show() img_gray = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY) print(img_gray.shape) # plt.imshow(img_gray, cmap='gray') # plt.show() # ret: This is the threshold limit # img_threshold: The image after applying threshold ret, img_threshold = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY) i =
np.hstack((img_gray, img_threshold))
numpy.hstack
import keras import pickle from keras.models import Sequential from keras.layers import Dense, Dropout, Activation import os import numpy as np import glob import random import math from keras.callbacks import ModelCheckpoint import time import keras.backend as K import tensorflow as tf import subprocess from collections import Counter import socket import sys HOST='127.0.0.1' PORT=12012 MAX_FILE_SIZE = 10000 MAX_BITMAP_SIZE = 2000 round_cnt=0 # Choose a seed for random initilzation #seed = int(time.time()) seed = 12 np.random.seed(seed) random.seed(seed) tf.random.set_seed(seed) seed_list = glob.glob('./seeds/*') new_seeds = glob.glob('./seeds/id_*') SPLIT_RATIO = len(seed_list) # get binary argv argvv = sys.argv[1:] # process training data from afl raw data def process_data(): global MAX_BITMAP_SIZE global MAX_FILE_SIZE global SPLIT_RATIO global seed_list global new_seeds # shuffle training samples seed_list = glob.glob('./seeds/*') seed_list.sort() SPLIT_RATIO = len(seed_list) rand_index = np.arange(SPLIT_RATIO) np.random.shuffle(seed_list) new_seeds = glob.glob('./seeds/id_*') call=subprocess.check_output # get MAX_FILE_SIZE cwd = os.getcwd() max_file_name = call(['ls','-S', cwd+'/seeds/']).split('\n')[0].rstrip('\n') MAX_FILE_SIZE = os.path.getsize(cwd+'/seeds/'+max_file_name) # create directories to save label, spliced seeds, variant length seeds, crashes and mutated seeds. if os.path.isdir("./bitmaps/") == False: os.makedirs('./bitmaps') if os.path.isdir("./splice_seeds/") == False: os.makedirs('./splice_seeds') if os.path.isdir("./vari_seeds/") == False: os.makedirs('./vari_seeds') if os.path.isdir("./crashes/") == False: os.makedirs('./crashes') # obtain raw bitmaps raw_bitmap = {} tmp_cnt = [] out = '' for f in seed_list: tmp_list = [] try: # append "-o tmp_file" to strip's arguments to avoid tampering tested binary. if argvv[0] == './strip': out = call(['./afl-showmap', '-q', '-e', '-o', '/dev/stdout', '-m', '512', '-t', '500'] + argvv + [f] + ['-o', 'tmp_file']) else: out = call(['./afl-showmap', '-q', '-e', '-o', '/dev/stdout', '-m', '512', '-t', '500'] + argvv + [f]) except subprocess.CalledProcessError: print("find a crash") for line in out.splitlines(): edge = line.split(':')[0] tmp_cnt.append(edge) tmp_list.append(edge) raw_bitmap[f] = tmp_list counter = Counter(tmp_cnt).most_common() # save bitmaps to individual numpy label label = [int(f[0]) for f in counter] bitmap = np.zeros((len(seed_list), len(label))) for idx,i in enumerate(seed_list): tmp = raw_bitmap[i] for j in tmp: if int(j) in label: bitmap[idx][label.index((int(j)))] = 1 # label dimension reduction fit_bitmap = np.unique(bitmap,axis=1) print("data dimension" + str(fit_bitmap.shape)) # save training data MAX_BITMAP_SIZE = fit_bitmap.shape[1] for idx,i in enumerate(seed_list): file_name = "./bitmaps/"+i.split('/')[-1] np.save(file_name,fit_bitmap[idx]) # training data generator def generate_training_data(lb,ub): seed = np.zeros((ub-lb,MAX_FILE_SIZE)) bitmap = np.zeros((ub-lb,MAX_BITMAP_SIZE)) for i in range(lb,ub): tmp = open(seed_list[i],'r').read() ln = len(tmp) if ln < MAX_FILE_SIZE: tmp = tmp + (MAX_FILE_SIZE - ln) * '\0' seed[i-lb] = [ord(j) for j in list(tmp)] for i in range(lb,ub): file_name = "./bitmaps/"+ seed_list[i].split('/')[-1] + ".npy" bitmap[i-lb] = np.load(file_name) return seed,bitmap #learning rate decay def step_decay(epoch): initial_lrate = 0.001 drop = 0.7 epochs_drop = 10.0 lrate = initial_lrate * math.pow(drop,math.floor((1+epoch)/epochs_drop)) return lrate class LossHistory(keras.callbacks.Callback): def on_train_begin(self, logs={}): self.losses = [] self.lr = [] def on_epoch_end(self, batch, logs={}): self.losses.append(logs.get('loss')) self.lr.append(step_decay(len(self.losses))) print(step_decay(len(self.losses))) #compute jaccard accuracy for multiple label def accur_1(y_true,y_pred): y_true = tf.round(y_true) pred = tf.round(y_pred) summ = tf.constant(MAX_BITMAP_SIZE,dtype=tf.float32) wrong_num = tf.subtract(summ,tf.reduce_sum(tf.cast(tf.equal(y_true, pred),tf.float32),axis=-1)) right_1_num = tf.reduce_sum(tf.cast(tf.logical_and(tf.cast(y_true,tf.bool), tf.cast(pred,tf.bool)),tf.float32),axis=-1) ret = K.mean(tf.divide(right_1_num,tf.add(right_1_num,wrong_num))) return ret def train_generate(batch_size): global seed_list while 1: np.random.shuffle(seed_list) # load a batch of training data for i in range(0,SPLIT_RATIO,batch_size): # load full batch if (i+batch_size) > SPLIT_RATIO: x,y=generate_training_data(i,SPLIT_RATIO) x = x.astype('float32')/255 # load remaining data for last batch else: x,y=generate_training_data(i,i+batch_size) x = x.astype('float32')/255 yield (x,y) # get vector representation of input def vectorize_file(fl): seed = np.zeros((1,MAX_FILE_SIZE)) tmp = open(fl,'r').read() ln = len(tmp) if ln < MAX_FILE_SIZE: tmp = tmp + (MAX_FILE_SIZE - ln) * '\0' seed[0] = [ord(j) for j in list(tmp)] seed = seed.astype('float32')/255 return seed # splice two seeds to a new seed def splice_seed(fl1, fl2, idxx): tmp1 = open(fl1, 'r').read() ret = 1 randd = fl2 while(ret == 1): tmp2 = open(randd, 'r').read() if len(tmp1) >= len(tmp2): lenn = len(tmp2) head = tmp2 tail = tmp1 else: lenn = len(tmp1) head = tmp1 tail = tmp2 f_diff = 0 l_diff = 0 for i in range(lenn): if tmp1[i] != tmp2[i]: f_diff = i break for i in reversed(range(lenn)): if tmp1[i] != tmp2[i]: l_diff = i break if f_diff >= 0 and l_diff >0 and (l_diff - f_diff) >= 2: splice_at = f_diff + random.randint(1,l_diff - f_diff - 1) head = list(head) tail = list(tail) tail[:splice_at] = head[:splice_at] with open ('./splice_seeds/tmp_' + str(idxx), 'w') as f: f.write("".join(tail)) ret = 0 print((f_diff,l_diff)) randd = random.choice(seed_list) # compute gradient for given input def gen_adv2(f,fl,model,layer_list,idxx,splice): adv_list = [] loss = layer_list[-2][1].output[:,f] grads = K.gradients(loss,model.input)[0] iterate = K.function([model.input], [loss, grads]) ll=2 while(fl[0] == fl[1]): fl[1] = random.choice(seed_list) for index in range(ll): x=vectorize_file(fl[index]) loss_value, grads_value = iterate([x]) idx = np.flip(np.argsort(np.absolute(grads_value),axis=1)[:, -MAX_FILE_SIZE:].reshape((MAX_FILE_SIZE,)),0) val = np.sign(grads_value[0][idx]) adv_list.append((idx,val,fl[index])) if(splice== 1): # do not generate spliced seed for the first round if(round_cnt != 0): if(round_cnt%2 == 0): splice_seed(fl[0], fl[1], idxx) x=vectorize_file('./splice_seeds/tmp_'+str(idxx)) loss_value, grads_value = iterate([x]) idx = np.flip(np.argsort(np.absolute(grads_value),axis=1)[:, -MAX_FILE_SIZE:].reshape((MAX_FILE_SIZE,)),0) val = np.sign(grads_value[0][idx]) adv_list.append((idx,val,'./splice_seeds/tmp_'+str(idxx))) else: splice_seed(fl[0], fl[1], idxx+500) x=vectorize_file('./splice_seeds/tmp_'+str(idxx+500)) loss_value, grads_value = iterate([x]) idx = np.flip(np.argsort(
np.absolute(grads_value)
numpy.absolute
import subprocess import os import numpy as np import open3d as o3d from PyQt5 import QtWidgets, uic, QtGui from PyQt5.QtCore import QRunnable, pyqtSlot, QThreadPool, pyqtSignal from PyQt5 import QtCore from sklearn.neighbors import KDTree PATH_TO_CORRESPONDENCES = "smooth_net_correspondences.txt" class WorkerSignals(QtCore.QObject): updated_console = pyqtSignal(str) parametrization_finished = pyqtSignal() inference_finished = pyqtSignal() update_button = pyqtSignal() class RunMatching(QRunnable): def __init__(self, args): super(RunMatching, self).__init__() self.signals = WorkerSignals() self.args = args @pyqtSlot() def run(self): print("Running matching") # load descriptors desc_dir = self.args["desc_dir"] src_cloud = self.args["src_cloud"] tgt_cloud = self.args["tgt_cloud"] src_desc = self.args["src_desc"] tgt_desc = self.args["tgt_desc"] src_kpoints = self.args["src_kpoints"] tgt_kpoints = self.args["tgt_kpoints"] frag1_desc_file = os.path.join( desc_dir, '32_dim', src_desc ) frag1_desc = np.load(frag1_desc_file) frag1_desc = frag1_desc["data"] frag2_desc_file = os.path.join( desc_dir, '32_dim', tgt_desc ) frag2_desc = np.load(frag2_desc_file) frag2_desc = frag2_desc["data"] # save as o3d feature frag1 = o3d.registration.Feature() frag1.data = frag1_desc.T frag2 = o3d.registration.Feature() frag2.data = frag2_desc.T # load point clouds frag1_pc = o3d.io.read_point_cloud( os.path.join(src_cloud) ) frag2_pc = o3d.io.read_point_cloud( os.path.join(tgt_cloud) ) # load keypoints frag1_indices = np.genfromtxt( os.path.join(src_kpoints) ) frag2_indices = np.genfromtxt( os.path.join(tgt_kpoints) ) frag1_pc_keypoints = np.asarray(frag1_pc.points)[frag1_indices.astype(int), :] frag2_pc_keypoints = np.asarray(frag2_pc.points)[frag2_indices.astype(int), :] # Save as open3d point clouds frag1_key = o3d.geometry.PointCloud() frag1_key.points = o3d.utility.Vector3dVector(frag1_pc_keypoints) frag2_key = o3d.geometry.PointCloud() frag2_key.points = o3d.utility.Vector3dVector(frag2_pc_keypoints) ref_matched_key, test_matched_key, idx = find_mutually_nn_keypoints( frag2_key, frag1_key, frag2, frag1 ) correspondences = np.vstack((frag1_indices[idx], frag2_indices[idx])) with open(PATH_TO_CORRESPONDENCES, 'w') as corr_file: for i in range(correspondences.shape[1]): x, y = correspondences[:, i] corr_file.write(f"{int(x)} {int(y)}\n") self.signals.update_button.emit() class RunExecutable(QRunnable): def __init__(self, args): super(RunExecutable, self).__init__() self.signals = WorkerSignals() self.args = args @pyqtSlot() def run(self): process = subprocess.Popen( self.args, stdout=subprocess.PIPE ) for line in iter(process.stdout.readline, b''): self.signals.updated_console.emit(line.decode("utf-8")) self.signals.parametrization_finished.emit() class RunCNN(QRunnable): def __init__(self, args): super(RunCNN, self).__init__() self.signals = WorkerSignals() self.args = args @pyqtSlot(str) def run(self): print("Running CNN") process = subprocess.Popen( self.args, stdout=subprocess.PIPE ) for line in iter(process.stdout.readline, b''): self.signals.updated_console.emit(line.decode("utf-8")) self.signals.updated_console.emit('\nInference completed\n') self.signals.inference_finished.emit() def find_mutually_nn_keypoints(ref_key, test_key, ref, test): """ Use kdtree to find mutually closest keypoints ref_key: reference keypoints (source) test_key: test keypoints (target) ref: reference feature (source feature) test: test feature (target feature) """ ref_features = ref.data.T test_features = test.data.T ref_keypoints =
np.asarray(ref_key.points)
numpy.asarray
import numpy as np import pytest from numpy.testing import assert_allclose from ..linalg.cholesky import ChoInv, ChoInvPivot, cholesky_factor, fixed_cholesky from ..linalg.cholesky import jit_cholesky, _check_cholesky_inputs, pivot_cholesky, _pivot_transpose from ..linalg.linalg_utils import calc_Ainv, calc_A_deriv, calc_mean_params, calc_R, logdet_deriv from ..Kernel import SquaredExponential from ..Priors import MeanPriors from scipy import linalg @pytest.fixture def A(): return np.array([[2., 1., 0.2], [1., 2., 0.4], [0.2, 0.4, 2.]]) @pytest.fixture def b(): return np.array([2., 3., 1.]) def test_ChoInv(A, b): "test the ChoInv class" L = linalg.cholesky(A, lower=True) Ainv = ChoInv(L) assert_allclose(Ainv.L, L) x = np.linalg.solve(A, b) assert_allclose(Ainv.solve(b), x) assert_allclose(np.log(np.linalg.det(A)), Ainv.logdet()) assert Ainv.solve(np.zeros((3,0))).shape == (3,0) Ainv = ChoInv(np.zeros((0,0))) assert Ainv.solve(np.ones(3)).shape == (3,) Ainv = ChoInv(2.*np.ones((1,1))) assert_allclose(Ainv.solve(np.ones((1, 3, 1))), 0.25*np.ones((1,3,1))) def test_ChoInvPivot(A, b): "test the cho_solve routine using pivoting" L = np.linalg.cholesky(A) x = linalg.cho_solve((L, True), b) L_pivot, P = pivot_cholesky(A) Ainv = ChoInvPivot(L_pivot, P) x_pivot = Ainv.solve(b) assert_allclose(x, x_pivot) with pytest.raises(AssertionError): ChoInvPivot(L_pivot, np.array([0, 2, 1, 1], dtype=np.int32)).solve(b) with pytest.raises(ValueError): ChoInvPivot(L_pivot, np.array([0, 0, 1], dtype=np.int32)).solve(b) def test_check_cholesky_inputs(): "Test function that checks inputs to cholesky decomposition routines" A = np.array([[2., 1.], [1., 2.]]) B = _check_cholesky_inputs(A) assert_allclose(A, B) A = np.array([[1., 2.], [1., 2.]]) with pytest.raises(AssertionError): _check_cholesky_inputs(A) A = np.array([1., 2.]) with pytest.raises(AssertionError): _check_cholesky_inputs(A) A = np.array([[1., 2., 3.], [4., 5., 6.]]) with pytest.raises(AssertionError): _check_cholesky_inputs(A) input_matrix = np.array([[-1., 2., 2.], [2., 3., 2.], [2., 2., -3.]]) with pytest.raises(linalg.LinAlgError): _check_cholesky_inputs(input_matrix) def test_fixed_cholesky(A): "Test the cholesky routine with fixed nugget" L_expected = np.array([[2., 0., 0.], [6., 1., 0.], [-8., 5., 3.]]) input_matrix = np.array([[4., 12., -16.], [12., 37., -43.], [-16., -43., 98.]]) L_actual = fixed_cholesky(input_matrix) assert_allclose(L_actual, L_expected) L_actual, nugget = cholesky_factor(input_matrix, 0., "fixed") assert_allclose(L_actual.L, L_expected) assert nugget == 0. L_actual, nugget = cholesky_factor(input_matrix, 0., "fit") assert_allclose(L_actual.L, L_expected) assert nugget == 0. L_expected = np.array([[1.0000004999998751e+00, 0.0000000000000000e+00, 0.0000000000000000e+00], [9.9999950000037496e-01, 1.4142132088085626e-03, 0.0000000000000000e+00], [6.7379436301144941e-03, 4.7644444411381860e-06, 9.9997779980004420e-01]]) input_matrix = np.array([[1. + 1.e-6 , 1. , 0.0067379469990855 ], [1. , 1. + 1.e-6 , 0.0067379469990855 ], [0.0067379469990855, 0.0067379469990855, 1. + 1.e-6 ]]) L_actual = fixed_cholesky(input_matrix) assert_allclose(L_expected, L_actual) def test_jit_cholesky(): "Tests the stabilized Cholesky decomposition routine" L_expected = np.array([[2., 0., 0.], [6., 1., 0.], [-8., 5., 3.]]) input_matrix = np.array([[4., 12., -16.], [12., 37., -43.], [-16., -43., 98.]]) L_actual, jitter = jit_cholesky(input_matrix) assert_allclose(L_expected, L_actual) assert_allclose(jitter, 0.) L_expected = np.array([[1.0000004999998751e+00, 0.0000000000000000e+00, 0.0000000000000000e+00], [9.9999950000037496e-01, 1.4142132088085626e-03, 0.0000000000000000e+00], [6.7379436301144941e-03, 4.7644444411381860e-06, 9.9997779980004420e-01]]) input_matrix = np.array([[1. , 1. , 0.0067379469990855], [1. , 1. , 0.0067379469990855], [0.0067379469990855, 0.0067379469990855, 1. ]]) L_actual, jitter = jit_cholesky(input_matrix) assert_allclose(L_expected, L_actual) assert_allclose(jitter, 1.e-6) L_actual, jitter = cholesky_factor(input_matrix, 0., "adaptive") assert_allclose(L_expected, L_actual.L) assert_allclose(jitter, 1.e-6) input_matrix = np.array([[1.e-6, 1., 0.], [1., 1., 1.], [0., 1., 1.e-10]]) with pytest.raises(linalg.LinAlgError): jit_cholesky(input_matrix) def test_pivot_cholesky(): "Tests pivoted cholesky decomposition routine" input_matrix = np.array([[4., 12., -16.], [12., 37., -43.], [-16., -43., 98.]]) input_matrix_copy = np.copy(input_matrix) L_expected = np.array([[ 9.899494936611665 , 0. , 0. ], [-4.3436559415745055, 4.258245303082538 , 0. ], [-1.616244071283537 , 1.1693999481734827, 0.1423336335961131]]) Piv_expected = np.array([2, 1, 0], dtype = np.int32) L_actual, Piv_actual = pivot_cholesky(input_matrix)
assert_allclose(L_actual, L_expected)
numpy.testing.assert_allclose
import numpy as np from shapreg import utils, games, stochastic_games from tqdm.auto import tqdm def default_min_variance_samples(game): '''Determine min_variance_samples.''' return 5 def default_variance_batches(game, batch_size): ''' Determine variance_batches. This value tries to ensure that enough samples are included to make A approximation non-singular. ''' if isinstance(game, games.CooperativeGame): return int(np.ceil(10 * game.players / batch_size)) else: # Require more intermediate samples for stochastic games. return int(np.ceil(25 * game.players / batch_size)) def calculate_result(A, b, total): '''Calculate the regression coefficients.''' num_players = A.shape[1] try: if len(b.shape) == 2: A_inv_one = np.linalg.solve(A, np.ones((num_players, 1))) else: A_inv_one = np.linalg.solve(A, np.ones(num_players)) A_inv_vec = np.linalg.solve(A, b) values = ( A_inv_vec - A_inv_one * (np.sum(A_inv_vec, axis=0, keepdims=True) - total) / np.sum(A_inv_one)) except np.linalg.LinAlgError: raise ValueError('singular matrix inversion. Consider using larger ' 'variance_batches') return values def ShapleyRegression(game, batch_size=512, detect_convergence=True, thresh=0.01, n_samples=None, paired_sampling=True, return_all=False, min_variance_samples=None, variance_batches=None, bar=True, verbose=False): # Verify arguments. if isinstance(game, games.CooperativeGame): stochastic = False elif isinstance(game, stochastic_games.StochasticCooperativeGame): stochastic = True else: raise ValueError('game must be CooperativeGame or ' 'StochasticCooperativeGame') if min_variance_samples is None: min_variance_samples = default_min_variance_samples(game) else: assert isinstance(min_variance_samples, int) assert min_variance_samples > 1 if variance_batches is None: variance_batches = default_variance_batches(game, batch_size) else: assert isinstance(variance_batches, int) assert variance_batches >= 1 # Possibly force convergence detection. if n_samples is None: n_samples = 1e20 if not detect_convergence: detect_convergence = True if verbose: print('Turning convergence detection on') if detect_convergence: assert 0 < thresh < 1 # Weighting kernel (probability of each subset size). num_players = game.players weights = np.arange(1, num_players) weights = 1 / (weights * (num_players - weights)) weights = weights / np.sum(weights) # Calculate null and grand coalitions for constraints. if stochastic: null = game.null(batch_size=batch_size) grand = game.grand(batch_size=batch_size) else: null = game.null() grand = game.grand() # Calculate difference between grand and null coalitions. total = grand - null # Set up bar. n_loops = int(np.ceil(n_samples / batch_size)) if bar: if detect_convergence: bar = tqdm(total=1) else: bar = tqdm(total=n_loops * batch_size) # Setup. n = 0 b = 0 A = 0 estimate_list = [] # For variance estimation. A_sample_list = [] b_sample_list = [] # For tracking progress. var = np.nan * np.ones(num_players) if return_all: N_list = [] std_list = [] val_list = [] # Begin sampling. for it in range(n_loops): # Sample subsets. S = np.zeros((batch_size, num_players), dtype=bool) num_included = np.random.choice(num_players - 1, size=batch_size, p=weights) + 1 for row, num in zip(S, num_included): inds = np.random.choice(num_players, size=num, replace=False) row[inds] = 1 # Sample exogenous (if applicable). if stochastic: U = game.sample(batch_size) # Update estimators. if paired_sampling: # Paired samples. A_sample = 0.5 * ( np.matmul(S[:, :, np.newaxis].astype(float), S[:, np.newaxis, :].astype(float)) + np.matmul(np.logical_not(S)[:, :, np.newaxis].astype(float), np.logical_not(S)[:, np.newaxis, :].astype(float))) if stochastic: game_eval = game(S, U) - null S_comp = np.logical_not(S) comp_eval = game(S_comp, U) - null b_sample = 0.5 * ( S.astype(float).T * game_eval[:, np.newaxis].T + S_comp.astype(float).T * comp_eval[:, np.newaxis].T).T else: game_eval = game(S) - null S_comp = np.logical_not(S) comp_eval = game(S_comp) - null b_sample = 0.5 * ( S.astype(float).T * game_eval[:, np.newaxis].T + S_comp.astype(float).T * comp_eval[:, np.newaxis].T).T else: # Single sample. A_sample = np.matmul(S[:, :, np.newaxis].astype(float), S[:, np.newaxis, :].astype(float)) if stochastic: b_sample = (S.astype(float).T * (game(S, U) - null)[:, np.newaxis].T).T else: b_sample = (S.astype(float).T * (game(S) - null)[:, np.newaxis].T).T # Welford's algorithm. n += batch_size b += np.sum(b_sample - b, axis=0) / n A += np.sum(A_sample - A, axis=0) / n # Calculate progress. values = calculate_result(A, b, total) A_sample_list.append(A_sample) b_sample_list.append(b_sample) if len(A_sample_list) == variance_batches: # Aggregate samples for intermediate estimate. A_sample = np.concatenate(A_sample_list, axis=0).mean(axis=0) b_sample = np.concatenate(b_sample_list, axis=0).mean(axis=0) A_sample_list = [] b_sample_list = [] # Add new estimate. estimate_list.append(calculate_result(A_sample, b_sample, total)) # Estimate current var. if len(estimate_list) >= min_variance_samples: var = np.array(estimate_list).var(axis=0) # Convergence ratio. std = np.sqrt(var * variance_batches / (it + 1)) ratio = np.max(
np.max(std, axis=0)
numpy.max
import numpy as np import trimesh import argparse def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--mesh_path', default=None, type=str, help='Path to stl file of a mesh.') args = parser.parse_args() return args class PointCloudGenerator: def load_mesh(self, path): mesh = trimesh.load(path) return mesh # Function to sample pointcloud given vertices and faces of a mesh # Copied from: https://github.com/gsp-27/mujoco_hand_exps/blob/659b2b30042680fbafea8a764a7267c8add9d8c8/trajectory_env/dataset_generator.py#L262-L314 def sample_faces(self, vertices, faces, n_samples=5000): """ Samples point cloud on the surface of the model defined as vectices and faces. This function uses vectorized operations so fast at the cost of some memory. Parameters: vertices - n x 3 matrix faces - n x 3 matrix n_samples - positive integer Return: vertices - point cloud Reference : [1] Barycentric coordinate system \begin{align} P = (1 - \sqrt{r_1})A + \sqrt{r_1} (1 - r_2) B + \sqrt{r_1} r_2 C \end{align} """ actual_n_samples = n_samples vec_cross = np.cross(vertices[faces[:, 0], :] - vertices[faces[:, 2], :], vertices[faces[:, 1], :] - vertices[faces[:, 2], :]) face_areas = np.sqrt(np.sum(vec_cross ** 2, 1)) face_areas = face_areas / np.sum(face_areas) # Sample exactly n_samples. First, oversample points and remove redundant # Error fix by Yangyan (<EMAIL>) 2017-Aug-7 n_samples_per_face = np.ceil(n_samples * face_areas).astype(int) floor_num = np.sum(n_samples_per_face) - n_samples if floor_num > 0: indices = np.where(n_samples_per_face > 0)[0] floor_indices = np.random.choice(indices, floor_num, replace=True) n_samples_per_face[floor_indices] -= 1 n_samples = np.sum(n_samples_per_face) # Create a vector that contains the face indices sample_face_idx = np.zeros((n_samples, ), dtype=int) acc = 0 for face_idx, _n_sample in enumerate(n_samples_per_face): sample_face_idx[acc: acc + _n_sample] = face_idx acc += _n_sample r =
np.random.rand(n_samples, 2)
numpy.random.rand
#!/usr/bin/env python import cv2 import numpy as np import math import matplotlib import PIL matplotlib.use('TkAgg') import matplotlib.pyplot _color = [ # BGR? (255, 255, 0), (255, 0, 255), (0, 255, 255), (0, 0, 255), (0, 255, 0), (255, 0, 0), (255, 255, 255), (0, 0, 0)] class RadarProb(): def __init__(self, num_cls, classes=None): s = 360/num_cls self.cos_offset = np.array([math.cos(x*math.pi/180) for x in range(0, 360, s)]) self.sin_offset = np.array([math.sin(x*math.pi/180) for x in range(0, 360, s)]) matplotlib.pyplot.ion() fig = matplotlib.pyplot.figure() self.ax = fig.add_subplot(111, polar=True) self.ax.grid(False) self.ax.set_ylim(0, 1) if classes is not None: classes = np.array(classes) * np.pi / 180. x = np.expand_dims(np.cos(classes[:, 1]) * np.cos(classes[:, 0]), axis=1) y = np.expand_dims(np.cos(classes[:, 1]) * np.sin(classes[:, 0]), axis=1) z = np.expand_dims(np.sin(classes[:, 1]), axis=1) self.classes_xyz = np.concatenate((x, y, z), axis=1) def plot3d(self, confidence, prob): prob = _numpy_softmax(prob) prob = prob * confidence / max(prob) vecs = self.classes_xyz *
np.expand_dims(prob, axis=1)
numpy.expand_dims
# -*- coding: utf-8 -*- # # Copyright (c) 2018 Leland Stanford Junior University # Copyright (c) 2018 The Regents of the University of California # # This file is part of the SimCenter Backend Applications # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # You should have received a copy of the BSD 3-Clause License along with # this file. If not, see <http://www.opensource.org/licenses/>. # # Contributors: # <NAME> # <NAME> """ These are unit and integration tests on the auto_HU_NJ module. """ import pytest import numpy as np from numpy.testing import assert_allclose import json import os import inspect # Importing auto_HU_NJ module from auto_HU_NJ import * # Current directory cur_dir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) # Test input directory base_input_path = 'resources' def test_parse_BIM(): """ Testing the parse_BIM function. """ # Testing the ruleset for Hurricane-Prone Region (HPR) res = [] ref = [1, 0, 1, 0] for i in range(4): BIM_dir = os.path.join(cur_dir, base_input_path, 'BIM_Data', 'parse_BIM_test_' + str(i+1) + '.json') with open(BIM_dir) as f: BIM_input = json.load(f) BIM_output = parse_BIM(BIM_input['GI']) res.append(int(BIM_output['HPR'])) # Check assert_allclose(res, ref, atol=1e-5) # Testing the ruleset for Wind Borne Debris (WBD) res = [] ref = [0, 0, 0, 0, 1, 1, 1, 1] for i in range(8): BIM_dir = os.path.join(cur_dir, base_input_path, 'BIM_Data', 'parse_BIM_test_' + str(i+1) + '.json') with open(BIM_dir) as f: BIM_input = json.load(f) BIM_output = parse_BIM(BIM_input['GI']) res.append(int(BIM_output['WBD'])) # Check assert_allclose(res, ref, atol=1e-5) # Testing the ruleset for terrain res = [] ref = [3, 15, 35, 70, 3, 15, 35, 70] for i in range(8): BIM_dir = os.path.join(cur_dir, base_input_path, 'BIM_Data', 'parse_BIM_test_' + str(i+1) + '.json') with open(BIM_dir) as f: BIM_input = json.load(f) BIM_output = parse_BIM(BIM_input['GI']) res.append(int(BIM_output['terrain'])) # Check assert_allclose(res, ref, atol=1e-5) def test_building_class(): """ Testing the building class function. """ # Testing the ruleset for classifying Hazus building class res = [] ref_class = ['WSF', 'WMUH', 'SERB', 'SECB', 'SPMB', 'CERB', 'CECB', 'MSF', 'MERB', 'MECB', 'MLRI', 'MMUH', 'MLRM'] ref = np.ones(13) for i in range(13): data_dir = os.path.join(cur_dir, base_input_path, 'BuildingClass_Data', 'building_class_test_' + str(i+1) + '.json') with open(data_dir) as f: data_input = json.load(f) tmp = parse_BIM(data_input['GI']) data_output = building_class(tmp) print(data_output) res.append(int(data_output == ref_class[i])) # Check assert_allclose(res, ref, atol=1e-5) def test_WSF_config(): """ Testing the WSF_config function. """ res = [] ref_class = ['WSF2_gab_0_8d_tnail_no', 'WSF2_gab_1_8d_tnail_no', 'WSF2_hip_1_8d_tnail_no', 'WSF2_hip_0_8d_tnail_no', '8s_strap_no', '8s_strap_no', '8s_tnail_no', '8s_strap_sup', '8d_strap_std', '8d_tnail_wkd', 'WSF1'] ref = np.ones(11) for i in range(11): data_dir = os.path.join(cur_dir, base_input_path, 'Config_Data', 'wsf_test_' + str(i+1) + '.json') with open(data_dir) as f: data_input = json.load(f) tmp = parse_BIM(data_input['GI']) data_output = WSF_config(tmp) print(data_output) res.append(int(ref_class[i] in data_output)) # Check assert_allclose(res, ref, atol=1e-5) def test_WMUH_config(): """ Testing the WMUH_config function. """ res = [] ref_class = ['WMUH2_flt_spm_god_null', 'WMUH2_flt_spm_god_null', 'WMUH2_flt_spm_god_null', 'WMUH2_gab_null_null_1', 'WMUH2_hip_null_null_1', 'WMUH2_gab_null_null_0', 'WMUH2_hip_null_null_0', 'WMUH2_flt_spm_por_null', 'WMUH2_flt_bur_por_null', 'WMUH2_flt_spm_god_null_8s', 'WMUH2_flt_spm_god_null_8d', 'WMUH2_flt_spm_god_null_8s', 'WMUH2_flt_spm_god_null_8d', 'strap', 'tnail', 'tnail', 'tnail_1', 'WMUH3'] ref = np.ones(18) for i in range(18): data_dir = os.path.join(cur_dir, base_input_path, 'Config_Data', 'wmuh_test_' + str(i+1) + '.json') with open(data_dir) as f: data_input = json.load(f) tmp = parse_BIM(data_input['GI']) data_output = WMUH_config(tmp) print(data_output) res.append(int(ref_class[i] in data_output)) # Check
assert_allclose(res, ref, atol=1e-5)
numpy.testing.assert_allclose
import matplotlib matplotlib.use('Agg') import numpy as np from matplotlib import pyplot as plt from matplotlib.ticker import FormatStrFormatter import random random.seed(0) np.random.seed(0) import os.path as osp def plot_clusters_vs_lambda(X_org,l,filename,dataset, lmbda, fairness_error): K = max(l) +1 COLORSX = np.array(['rD','gP']) plt.figure(1,figsize=(6.4,4.8)) plt.ion() plt.clf() group = ['cluster 1', 'cluster 2'] for k in range(K): idx = np.asarray(np.where(l == k)).squeeze() plt.plot(X_org[idx,0],X_org[idx,1],COLORSX[k],label = group[k]); if dataset == 'Synthetic': tmp_title = '$\lambda$ = {}, fairness Error = {: .2f}'.format(lmbda,fairness_error) else: tmp_title = '$\lambda$ = {}, fairness Error = {: .2f}'.format(lmbda,fairness_error) plt.title(tmp_title) plt.legend() plt.tight_layout() plt.savefig(filename, format='png', dpi = 800, bbox_inches='tight') plt.show() plt.close('all') def plot_fairness_vs_clusterE(cluster_option, savefile, filename, lmbdas, fairness_error_set, min_balance_set, avg_balance_set, E_cluster_set, save = True): if not osp.exists(savefile) or save == True: np.savez(savefile, lmbdas = lmbdas, min_balance_set = min_balance_set, avg_balance_set = avg_balance_set, fairness_error = fairness_error_set, E_cluster = E_cluster_set) else: data =
np.load(savefile)
numpy.load
""" This file contains classes and functions for representing, solving, and simulating agents who must allocate their resources among consumption, saving in a risk-free asset (with a low return), and saving in a risky asset (with higher average return). """ import numpy as np from copy import deepcopy from HARK import MetricObject, NullFunc # Basic HARK features from HARK.ConsumptionSaving.ConsIndShockModel import ( utility, # CRRA utility function utility_inv, # Inverse CRRA utility function utilityP, # CRRA marginal utility function utilityP_inv, # Inverse CRRA marginal utility function init_lifecycle, ) from HARK.ConsumptionSaving.ConsRiskyAssetModel import ( RiskyAssetConsumerType, risky_asset_parms, init_risky_asset, ) from HARK.distribution import calc_expectation from HARK.interpolation import ( LinearInterp, # Piecewise linear interpolation BilinearInterp, # 2D interpolator TrilinearInterp, # 3D interpolator ConstantFunction, # Interpolator-like class that returns constant value IdentityFunction, # Interpolator-like class that returns one of its arguments ValueFuncCRRA, MargValueFuncCRRA, DiscreteInterp, ) from HARK.utilities import make_grid_exp_mult class RiskyContribConsumerType(RiskyAssetConsumerType): """ A consumer type with idiosyncratic shocks to permanent and transitory income, who can save in both a risk-free and a risky asset but faces frictions to moving funds between them. The agent can only consume out of his risk-free asset. The frictions are: - A proportional tax on funds moved from the risky to the risk-free asset. - A stochastic inability to move funds between his accounts. To partially avoid the second friction, the agent can commit to have a fraction of his labor income, which is usually deposited in his risk-free account, diverted to his risky account. He can change this fraction only in periods where he is able to move funds between accounts. """ time_inv_ = deepcopy(RiskyAssetConsumerType.time_inv_) time_inv_ = time_inv_ + ["DiscreteShareBool"] # The new state variables (over those in ConsIndShock) are: # - nMrm: start-of-period risky resources. # - mNrmTilde: post-rebalancing risk-free resources. # - nNrmTilde: post-rebalancing risky resources. # - Share: income-deduction share. # For details, see # https://github.com/Mv77/RiskyContrib/blob/main/RiskyContrib.pdf state_vars = RiskyAssetConsumerType.state_vars + [ "gNrm", "nNrm", "mNrmTilde", "nNrmTilde", "Share", ] shock_vars_ = RiskyAssetConsumerType.shock_vars_ def __init__(self, verbose=False, quiet=False, **kwds): params = init_risky_contrib.copy() params.update(kwds) kwds = params # Initialize a basic consumer type RiskyAssetConsumerType.__init__(self, verbose=verbose, quiet=quiet, **kwds) # The model is solved and simulated spliting each of the agent's # decisions into its own "stage". The stages in chronological order # are # - Reb: asset-rebalancing stage. # - Sha: definition of the income contribution share. # - Cns: consumption stage. self.stages = ["Reb", "Sha", "Cns"] # Each stage has its own states and controls, and its methods # to find them. self.get_states = { "Reb": self.get_states_Reb, "Sha": self.get_states_Sha, "Cns": self.get_states_Cns, } self.get_controls = { "Reb": self.get_controls_Reb, "Sha": self.get_controls_Sha, "Cns": self.get_controls_Cns, } # Set the solver for the portfolio model, and update various constructed attributes self.solve_one_period = solveRiskyContrib self.update() def pre_solve(self): self.update_solution_terminal() def update(self): RiskyAssetConsumerType.update(self) self.update_share_grid() self.update_dfrac_grid() self.update_nNrm_grid() self.update_mNrm_grid() self.update_tau() def update_solution_terminal(self): """ Solves the terminal period. The solution is trivial. Cns: agent will consume all of his liquid resources. Sha: irrelevant as there is no "next" period. Reb: agent will shift all of his resources to the risk-free asset. Parameters ---------- None Returns ------- None """ # Construct the terminal solution backwards. # Start with the consumption stage. All liquid resources are consumed. cFunc_term = IdentityFunction(i_dim=0, n_dims=3) vFunc_Cns_term = ValueFuncCRRA(cFunc_term, CRRA=self.CRRA) # Marginal values dvdmFunc_Cns_term = MargValueFuncCRRA(cFunc_term, CRRA=self.CRRA) dvdnFunc_Cns_term = ConstantFunction(0.0) dvdsFunc_Cns_term = ConstantFunction(0.0) Cns_stage_sol = RiskyContribCnsSolution( # Consumption stage vFunc=vFunc_Cns_term, cFunc=cFunc_term, dvdmFunc=dvdmFunc_Cns_term, dvdnFunc=dvdnFunc_Cns_term, dvdsFunc=dvdsFunc_Cns_term, ) # Share stage # It's irrelevant because there is no future period. Set share to 0. # Create a dummy 2-d consumption function to get value function and marginal c2d = IdentityFunction(i_dim=0, n_dims=2) Sha_stage_sol = RiskyContribShaSolution( # Adjust vFunc_Adj=ValueFuncCRRA(c2d, CRRA=self.CRRA), ShareFunc_Adj=ConstantFunction(0.0), dvdmFunc_Adj=MargValueFuncCRRA(c2d, CRRA=self.CRRA), dvdnFunc_Adj=ConstantFunction(0.0), # Fixed vFunc_Fxd=vFunc_Cns_term, ShareFunc_Fxd=IdentityFunction(i_dim=2, n_dims=3), dvdmFunc_Fxd=dvdmFunc_Cns_term, dvdnFunc_Fxd=dvdnFunc_Cns_term, dvdsFunc_Fxd=dvdsFunc_Cns_term, ) # Rebalancing stage # Adjusting agent: # Withdraw everything from the pension fund and consume everything dfracFunc_Adj_term = ConstantFunction(-1.0) # Find the withdrawal penalty. If it is time-varying, assume it takes # the same value as in the last non-terminal period if type(self.tau) is list: tau = self.tau[-1] else: tau = self.tau # Value and marginal value function of the adjusting agent vFunc_Reb_Adj_term = ValueFuncCRRA(lambda m, n: m + n / (1 + tau), self.CRRA) dvdmFunc_Reb_Adj_term = MargValueFuncCRRA( lambda m, n: m + n / (1 + tau), self.CRRA ) # A marginal unit of n will be withdrawn and put into m. Then consumed. dvdnFunc_Reb_Adj_term = lambda m, n: dvdmFunc_Reb_Adj_term(m, n) / (1 + tau) Reb_stage_sol = RiskyContribRebSolution( # Rebalancing stage vFunc_Adj=vFunc_Reb_Adj_term, dfracFunc_Adj=dfracFunc_Adj_term, dvdmFunc_Adj=dvdmFunc_Reb_Adj_term, dvdnFunc_Adj=dvdnFunc_Reb_Adj_term, # Adjusting stage vFunc_Fxd=vFunc_Cns_term, dfracFunc_Fxd=ConstantFunction(0.0), dvdmFunc_Fxd=dvdmFunc_Cns_term, dvdnFunc_Fxd=dvdnFunc_Cns_term, dvdsFunc_Fxd=dvdsFunc_Cns_term, ) # Construct the terminal period solution self.solution_terminal = RiskyContribSolution( Reb_stage_sol, Sha_stage_sol, Cns_stage_sol ) def update_tau(self): """ Checks that the tax rate on risky-to-risk-free flows has the appropriate length adds it to time_(in)vary Returns ------- None. """ if type(self.tau) is list and (len(self.tau) == self.T_cycle): self.add_to_time_vary("tau") elif type(self.tau) is list: raise AttributeError( "If tau is time-varying, it must have length of T_cycle!" ) else: self.add_to_time_inv("tau") def update_share_grid(self): """ Creates grid for the income contribution share. Parameters ---------- None Returns ------- None """ self.ShareGrid = np.linspace(0.0, self.ShareMax, self.ShareCount) self.add_to_time_inv("ShareGrid") def update_dfrac_grid(self): """ Creates grid for the rebalancing flow between assets. This flow is normalized as a ratio. - If d > 0, d*mNrm flows towards the risky asset. - If d < 0, d*nNrm (pre-tax) flows towards the risk-free asset. Returns ------- None. """ self.dfracGrid = np.linspace(0, 1, self.dCount) self.add_to_time_inv("dfracGrid") def update_nNrm_grid(self): """ Updates the agent's iliquid assets grid by constructing a multi-exponentially spaced grid of nNrm values. Parameters ---------- None Returns ------- None. """ # Extract parameters nNrmMin = self.nNrmMin nNrmMax = self.nNrmMax nNrmCount = self.nNrmCount exp_nest = self.nNrmNestFac # Create grid nNrmGrid = make_grid_exp_mult( ming=nNrmMin, maxg=nNrmMax, ng=nNrmCount, timestonest=exp_nest ) # Assign and set it as time invariant self.nNrmGrid = nNrmGrid self.add_to_time_inv("nNrmGrid") def update_mNrm_grid(self): """ Updates the agent's liquid assets exogenous grid by constructing a multi-exponentially spaced grid of mNrm values. Parameters ---------- None Returns ------- None. """ # Extract parameters mNrmMin = self.mNrmMin mNrmMax = self.mNrmMax mNrmCount = self.mNrmCount exp_nest = self.mNrmNestFac # Create grid mNrmGrid = make_grid_exp_mult( ming=mNrmMin, maxg=mNrmMax, ng=mNrmCount, timestonest=exp_nest ) # Assign and set it as time invariant self.mNrmGrid = mNrmGrid self.add_to_time_inv("mNrmGrid") def initialize_sim(self): """ Initialize the state of simulation attributes. Parameters ---------- None Returns ------- None """ RiskyAssetConsumerType.initialize_sim(self) self.state_now["Share"] = np.zeros(self.AgentCount) def sim_birth(self, which_agents): """ Create new agents to replace ones who have recently died; takes draws of initial aNrm and pLvl, as in ConsIndShockModel, then sets Share, Adjust and post-rebalancing risky asset nNrmTilde to zero as initial values. Parameters ---------- which_agents : np.array Boolean array of size AgentCount indicating which agents should be "born". Returns ------- None """ RiskyAssetConsumerType.sim_birth(self, which_agents) self.state_now["Share"][which_agents] = 0.0 self.state_now["nNrmTilde"][which_agents] = 0.0 def sim_one_period(self): """ Simulates one period for this type. Has to be re-defined instead of using AgentType.sim_one_period() because of the "stages" structure. Parameters ---------- None Returns ------- None """ if not hasattr(self, "solution"): raise Exception( "Model instance does not have a solution stored. To simulate, it is necessary" " to run the `solve()` method of the class first." ) # Mortality adjusts the agent population self.get_mortality() # Replace some agents with "newborns" # Make state_now into state_prev, clearing state_now for var in self.state_now: self.state_prev[var] = self.state_now[var] if isinstance(self.state_now[var], np.ndarray): self.state_now[var] = np.empty(self.AgentCount) else: # Probably an aggregate variable. It may be getting set by the Market. pass if self.read_shocks: # If shock histories have been pre-specified, use those self.read_shocks_from_history() else: # Otherwise, draw shocks as usual according to subclass-specific method self.get_shocks() # Sequentially get states and controls of every stage for s in self.stages: self.get_states[s]() self.get_controls[s]() self.get_post_states() # Advance time for all agents self.t_age = self.t_age + 1 # Age all consumers by one period self.t_cycle = self.t_cycle + 1 # Age all consumers within their cycle self.t_cycle[ self.t_cycle == self.T_cycle ] = 0 # Resetting to zero for those who have reached the end def get_states_Reb(self): """ Get states for the first "stage": rebalancing. """ pLvlPrev = self.state_prev["pLvl"] aNrmPrev = self.state_prev["aNrm"] SharePrev = self.state_prev["Share"] nNrmTildePrev = self.state_prev["nNrmTilde"] Rfree = self.Rfree Rrisk = self.shocks["Risky"] # Calculate new states: # Permanent income self.state_now["pLvl"] = pLvlPrev * self.shocks["PermShk"] self.state_now["PlvlAgg"] = self.state_prev["PlvlAgg"] * self.PermShkAggNow # Assets: mNrm and nNrm # Compute the effective growth factor of each asset RfEff = Rfree / self.shocks["PermShk"] RrEff = Rrisk / self.shocks["PermShk"] self.state_now["bNrm"] = RfEff * aNrmPrev # Liquid balances before labor income self.state_now["gNrm"] = ( RrEff * nNrmTildePrev ) # Iliquid balances before labor income # Liquid balances after labor income self.state_now["mNrm"] = self.state_now["bNrm"] + self.shocks["TranShk"] * ( 1 - SharePrev ) # Iliquid balances after labor income self.state_now["nNrm"] = ( self.state_now["gNrm"] + self.shocks["TranShk"] * SharePrev ) return None def get_controls_Reb(self): """ Get controls for the first stage: rebalancing """ dfrac = np.zeros(self.AgentCount) + np.nan # Loop over each period of the cycle, getting controls separately depending on "age" for t in range(self.T_cycle): # Find agents in this period-stage these = t == self.t_cycle # Get controls for agents who *can* adjust. those = np.logical_and(these, self.shocks["Adjust"]) dfrac[those] = ( self.solution[t] .stage_sols["Reb"] .dfracFunc_Adj( self.state_now["mNrm"][those], self.state_now["nNrm"][those] ) ) # Get Controls for agents who *can't* adjust. those = np.logical_and(these, np.logical_not(self.shocks["Adjust"])) dfrac[those] = ( self.solution[t] .stage_sols["Reb"] .dfracFunc_Fxd( self.state_now["mNrm"][those], self.state_now["nNrm"][those], self.state_prev["Share"][those], ) ) # Store controls as attributes of self self.controls["dfrac"] = dfrac def get_states_Sha(self): """ Get states for the second "stage": choosing the contribution share. """ # Post-states are assets after rebalancing if not "tau" in self.time_vary: mNrmTilde, nNrmTilde = rebalance_assets( self.controls["dfrac"], self.state_now["mNrm"], self.state_now["nNrm"], self.tau, ) else: # Initialize mNrmTilde = np.zeros_like(self.state_now["mNrm"]) + np.nan nNrmTilde = np.zeros_like(self.state_now["mNrm"]) + np.nan # Loop over each period of the cycle, getting controls separately depending on "age" for t in range(self.T_cycle): # Find agents in this period-stage these = t == self.t_cycle if np.sum(these) > 0: tau = self.tau[t] mNrmTilde[these], nNrmTilde[these] = rebalance_assets( self.controls["dfrac"][these], self.state_now["mNrm"][these], self.state_now["nNrm"][these], tau, ) self.state_now["mNrmTilde"] = mNrmTilde self.state_now["nNrmTilde"] = nNrmTilde def get_controls_Sha(self): """ Get controls for the second "stage": choosing the contribution share. """ Share = np.zeros(self.AgentCount) + np.nan # Loop over each period of the cycle, getting controls separately depending on "age" for t in range(self.T_cycle): # Find agents in this period-stage these = t == self.t_cycle # Get controls for agents who *can* adjust. those = np.logical_and(these, self.shocks["Adjust"]) Share[those] = ( self.solution[t] .stage_sols["Sha"] .ShareFunc_Adj( self.state_now["mNrmTilde"][those], self.state_now["nNrmTilde"][those], ) ) # Get Controls for agents who *can't* adjust. those = np.logical_and(these, np.logical_not(self.shocks["Adjust"])) Share[those] = ( self.solution[t] .stage_sols["Sha"] .ShareFunc_Fxd( self.state_now["mNrmTilde"][those], self.state_now["nNrmTilde"][those], self.state_prev["Share"][those], ) ) # Store controls as attributes of self self.controls["Share"] = Share def get_states_Cns(self): """ Get states for the third "stage": consumption. """ # Contribution share becomes a state in the consumption problem self.state_now["Share"] = self.controls["Share"] def get_controls_Cns(self): """ Get controls for the third "stage": consumption. """ cNrm = np.zeros(self.AgentCount) + np.nan # Loop over each period of the cycle, getting controls separately depending on "age" for t in range(self.T_cycle): # Find agents in this period-stage these = t == self.t_cycle # Get consumption cNrm[these] = ( self.solution[t] .stage_sols["Cns"] .cFunc( self.state_now["mNrmTilde"][these], self.state_now["nNrmTilde"][these], self.state_now["Share"][these], ) ) # Store controls as attributes of self # Since agents might be willing to end the period with a = 0, make # sure consumption does not go over m because of some numerical error. self.controls["cNrm"] = np.minimum(cNrm, self.state_now["mNrmTilde"]) def get_post_states(self): """ Set variables that are not a state to any problem but need to be computed in order to interact with shocks and produce next period's states. """ self.state_now["aNrm"] = self.state_now["mNrmTilde"] - self.controls["cNrm"] # %% Classes for RiskyContrib type solution objects # Class for asset adjustment stage solution class RiskyContribRebSolution(MetricObject): """ A class for representing the solution to the asset-rebalancing stage of the 'RiskyContrib' model. Parameters ---------- vFunc_Adj : ValueFunc2D Stage value function over normalized liquid resources and normalized iliquid resources when the agent is able to adjust his portfolio. dfracFunc_Adj : Interp2D Deposit function over normalized liquid resources and normalized iliquid resources when the agent is able to adjust his portfolio. dvdmFunc_Adj : MargValueFunc2D Marginal value over normalized liquid resources when the agent is able to adjust his portfolio. dvdnFunc_Adj : MargValueFunc2D Marginal value over normalized liquid resources when the agent is able to adjust his portfolio. vFunc_Fxd : ValueFunc3D Stage value function over normalized liquid resources, normalized iliquid resources, and income contribution share when the agent is not able to adjust his portfolio. dfracFunc_Fxd : Interp2D Deposit function over normalized liquid resources, normalized iliquid resources, and income contribution share when the agent is not able to adjust his portfolio. Must be ConstantFunction(0.0) dvdmFunc_Fxd : MargValueFunc3D Marginal value over normalized liquid resources when the agent is not able to adjust his portfolio. dvdnFunc_Fxd : MargValueFunc3D Marginal value over normalized iliquid resources when the agent is not able to adjust his portfolio. dvdsFunc_Fxd : Interp3D Marginal value function over income contribution share when the agent is not able to ajust his portfolio. """ distance_criteria = ["dvdmFunc_Adj", "dvdnFunc_Adj"] def __init__( self, # Rebalancing stage, adjusting vFunc_Adj=None, dfracFunc_Adj=None, dvdmFunc_Adj=None, dvdnFunc_Adj=None, # Rebalancing stage, fixed vFunc_Fxd=None, dfracFunc_Fxd=None, dvdmFunc_Fxd=None, dvdnFunc_Fxd=None, dvdsFunc_Fxd=None, ): # Rebalancing stage if vFunc_Adj is None: vFunc_Adj = NullFunc() if dfracFunc_Adj is None: dfracFunc_Adj = NullFunc() if dvdmFunc_Adj is None: dvdmFunc_Adj = NullFunc() if dvdnFunc_Adj is None: dvdnFunc_Adj = NullFunc() if vFunc_Fxd is None: vFunc_Fxd = NullFunc() if dfracFunc_Fxd is None: dfracFunc_Fxd = NullFunc() if dvdmFunc_Fxd is None: dvdmFunc_Fxd = NullFunc() if dvdnFunc_Fxd is None: dvdnFunc_Fxd = NullFunc() if dvdsFunc_Fxd is None: dvdsFunc_Fxd = NullFunc() # Components of the adjusting problem self.vFunc_Adj = vFunc_Adj self.dfracFunc_Adj = dfracFunc_Adj self.dvdmFunc_Adj = dvdmFunc_Adj self.dvdnFunc_Adj = dvdnFunc_Adj # Components of the fixed problem self.vFunc_Fxd = vFunc_Fxd self.dfracFunc_Fxd = dfracFunc_Fxd self.dvdmFunc_Fxd = dvdmFunc_Fxd self.dvdnFunc_Fxd = dvdnFunc_Fxd self.dvdsFunc_Fxd = dvdsFunc_Fxd # Class for the contribution share stage solution class RiskyContribShaSolution(MetricObject): """ A class for representing the solution to the contribution-share stage of the 'RiskyContrib' model. Parameters ---------- vFunc_Adj : ValueFunc2D Stage value function over normalized liquid resources and normalized iliquid resources when the agent is able to adjust his portfolio. ShareFunc_Adj : Interp2D Income contribution share function over normalized liquid resources and normalized iliquid resources when the agent is able to adjust his portfolio. dvdmFunc_Adj : MargValueFunc2D Marginal value function over normalized liquid resources when the agent is able to adjust his portfolio. dvdnFunc_Adj : MargValueFunc2D Marginal value function over normalized iliquid resources when the agent is able to adjust his portfolio. vFunc_Fxd : ValueFunc3D Stage value function over normalized liquid resources, normalized iliquid resources, and income contribution share when the agent is not able to adjust his portfolio. ShareFunc_Fxd : Interp3D Income contribution share function over normalized liquid resources, iliquid resources, and income contribution share when the agent is not able to adjust his portfolio. Should be an IdentityFunc. dvdmFunc_Fxd : MargValueFunc3D Marginal value function over normalized liquid resources when the agent is not able to adjust his portfolio. dvdnFunc_Fxd : MargValueFunc3D Marginal value function over normalized iliquid resources when the agent is not able to adjust his portfolio. dvdsFunc_Fxd : Interp3D Marginal value function over income contribution share when the agent is not able to adjust his portfolio """ distance_criteria = ["dvdmFunc_Adj", "dvdnFunc_Adj"] def __init__( self, # Contribution stage, adjust vFunc_Adj=None, ShareFunc_Adj=None, dvdmFunc_Adj=None, dvdnFunc_Adj=None, # Contribution stage, fixed vFunc_Fxd=None, ShareFunc_Fxd=None, dvdmFunc_Fxd=None, dvdnFunc_Fxd=None, dvdsFunc_Fxd=None, ): # Contribution stage, adjust if vFunc_Adj is None: vFunc_Adj = NullFunc() if ShareFunc_Adj is None: ShareFunc_Adj = NullFunc() if dvdmFunc_Adj is None: dvdmFunc_Adj = NullFunc() if dvdnFunc_Adj is None: dvdnFunc_Adj = NullFunc() # Contribution stage, fixed if vFunc_Fxd is None: vFunc_Fxd = NullFunc() if ShareFunc_Fxd is None: ShareFunc_Fxd = NullFunc() if dvdmFunc_Fxd is None: dvdmFunc_Fxd = NullFunc() if dvdnFunc_Fxd is None: dvdnFunc_Fxd = NullFunc() if dvdsFunc_Fxd is None: dvdsFunc_Fxd = NullFunc() # Set attributes of self self.vFunc_Adj = vFunc_Adj self.ShareFunc_Adj = ShareFunc_Adj self.dvdmFunc_Adj = dvdmFunc_Adj self.dvdnFunc_Adj = dvdnFunc_Adj self.vFunc_Fxd = vFunc_Fxd self.ShareFunc_Fxd = ShareFunc_Fxd self.dvdmFunc_Fxd = dvdmFunc_Fxd self.dvdnFunc_Fxd = dvdnFunc_Fxd self.dvdsFunc_Fxd = dvdsFunc_Fxd # Class for the consumption stage solution class RiskyContribCnsSolution(MetricObject): """ A class for representing the solution to the consumption stage of the 'RiskyContrib' model. Parameters ---------- vFunc : ValueFunc3D Stage-value function over normalized liquid resources, normalized iliquid resources, and income contribution share. cFunc : Interp3D Consumption function over normalized liquid resources, normalized iliquid resources, and income contribution share. dvdmFunc : MargValueFunc3D Marginal value function over normalized liquid resources. dvdnFunc : MargValueFunc3D Marginal value function over normalized iliquid resources. dvdsFunc : Interp3D Marginal value function over income contribution share. """ distance_criteria = ["dvdmFunc", "dvdnFunc"] def __init__( self, # Consumption stage vFunc=None, cFunc=None, dvdmFunc=None, dvdnFunc=None, dvdsFunc=None, ): if vFunc is None: vFunc = NullFunc() if cFunc is None: cFunc = NullFunc() if dvdmFunc is None: dvdmFunc = NullFunc() if dvdnFunc is None: dvdmFunc = NullFunc() if dvdsFunc is None: dvdsFunc = NullFunc() self.vFunc = vFunc self.cFunc = cFunc self.dvdmFunc = dvdmFunc self.dvdnFunc = dvdnFunc self.dvdsFunc = dvdsFunc # Class for the solution of a whole period class RiskyContribSolution(MetricObject): """ A class for representing the solution to a full time-period of the 'RiskyContrib' agent type's problem. Parameters ---------- Reb : RiskyContribRebSolution Solution to the period's rebalancing stage. Sha : RiskyContribShaSolution Solution to the period's contribution-share stage. Cns : RiskyContribCnsSolution Solution to the period's consumption stage. """ # Solutions are to be compared on the basis of their sub-period solutions distance_criteria = ["stage_sols"] def __init__(self, Reb, Sha, Cns): # Dictionary of stage solutions self.stage_sols = {"Reb": Reb, "Sha": Sha, "Cns": Cns} # %% Auxiliary functions and transition equations for the RiskyContrib model. def rebalance_assets(d, m, n, tau): """ A function that produces post-rebalancing assets for given initial assets, rebalancing action, and tax rate. Parameters ---------- d : np.array Array with rebalancing decisions. d > 0 represents depositing d*m into the risky asset account. d<0 represents withdrawing |d|*n (pre-tax) from the risky account into the risky account. m : np.array Initial risk-free assets. n : np.array Initial risky assets. tau : float Tax rate on flows from the risky to the risk-free asset. Returns ------- mTil : np.array Post-rebalancing risk-free assets. nTil : np.arrat Post-rebalancing risky assets. """ # Initialize mTil = np.zeros_like(m) + np.nan nTil = np.zeros_like(m) + np.nan # Contributions inds = d >= 0 mTil[inds] = m[inds] * (1 - d[inds]) nTil[inds] = n[inds] + m[inds] * d[inds] # Withdrawals inds = d < 0 mTil[inds] = m[inds] - d[inds] * n[inds] * (1 - tau) nTil[inds] = n[inds] * (1 + d[inds]) return (mTil, nTil) # Transition equations for the consumption stage def m_nrm_next(shocks, aNrm, Share, Rfree, PermGroFac): """ Given end-of-period balances and contribution share and the start-of-next-period shocks, figure out next period's normalized riskless assets Parameters ---------- shocks : np.array Length-3 array with the stochastic shocks that get realized between the end of the current period and the start of next period. Their order is (0) permanent income shock, (1) transitory income shock, (2) risky asset return. aNrm : float End-of-period risk-free asset balances. Share : float End-of-period income deduction share. Rfree : float Risk-free return factor. PermGroFac : float Permanent income growth factor. Returns ------- m_nrm_tp1 : float Next-period normalized riskless balance. """ # Extract shocks perm_shk = shocks[0] tran_shk = shocks[1] m_nrm_tp1 = Rfree * aNrm / (perm_shk * PermGroFac) + (1.0 - Share) * tran_shk return m_nrm_tp1 def n_nrm_next(shocks, nNrm, Share, PermGroFac): """ Given end-of-period balances and contribution share and the start-of-next-period shocks, figure out next period's normalized risky assets Parameters ---------- shocks : np.array Length-3 array with the stochastic shocks that get realized between the end of the current period and the start of next period. Their order is (0) permanent income shock, (1) transitory income shock, (2) risky asset return. nNrm : float End-of-period risky asset balances. Share : float End-of-period income deduction share. PermGroFac : float Permanent income growth factor. Returns ------- n_nrm_tp1 : float Next-period normalized risky balance. """ # Extract shocks perm_shk = shocks[0] tran_shk = shocks[1] R_risky = shocks[2] n_nrm_tp1 = R_risky * nNrm / (perm_shk * PermGroFac) + Share * tran_shk return n_nrm_tp1 # %% RiskyContrib solvers # Consumption stage solver def solve_RiskyContrib_Cns( solution_next, ShockDstn, LivPrb, DiscFac, CRRA, Rfree, PermGroFac, BoroCnstArt, aXtraGrid, nNrmGrid, mNrmGrid, ShareGrid, vFuncBool, AdjustPrb, DiscreteShareBool, **unused_params ): """ Solves the consumption stage of the agent's problem Parameters ---------- solution_next : RiskyContribRebSolution Solution to the first stage of the next period in the agent's problem. ShockDstn : DiscreteDistribution Joint distribution of next period's (0) permanent income shock, (1) transitory income shock, and (2) risky asset return factor. LivPrb : float Probability of surviving until next period. DiscFac : float Time-preference discount factor. CRRA : float Coefficient of relative risk aversion. Rfree : float Risk-free return factor. PermGroFac : float Deterministic permanent income growth factor. BoroCnstArt : float Minimum allowed market resources (must be 0). aXtraGrid : numpy array Exogenous grid for end-of-period risk free resources. nNrmGrid : numpy array Exogenous grid for risky resources. mNrmGrid : numpy array Exogenous grid for risk-free resources. ShareGrid : numpt array Exogenous grid for the income contribution share. vFuncBool : bool Boolean that determines wether the value function's level needs to be computed. AdjustPrb : float Probability thet the agent will be able to adjust his portfolio next period. DiscreteShareBool : bool Boolean that determines whether only a discrete set of contribution shares (ShareGrid) is allowed. Returns ------- solution : RiskyContribCnsSolution Solution to the agent's consumption stage problem. """ # Make sure the individual is liquidity constrained. Allowing a consumer to # borrow *and* invest in an asset with unbounded (negative) returns is a bad mix. if BoroCnstArt != 0.0: raise ValueError("PortfolioConsumerType must have BoroCnstArt=0.0!") # Make sure that if risky portfolio share is optimized only discretely, then # the value function is also constructed (else this task would be impossible). if DiscreteShareBool and (not vFuncBool): raise ValueError( "PortfolioConsumerType requires vFuncBool to be True when DiscreteShareBool is True!" ) # Define temporary functions for utility and its derivative and inverse u = lambda x: utility(x, CRRA) uPinv = lambda x: utilityP_inv(x, CRRA) uInv = lambda x: utility_inv(x, CRRA) # Unpack next period's solution vFunc_Reb_Adj_next = solution_next.vFunc_Adj dvdmFunc_Reb_Adj_next = solution_next.dvdmFunc_Adj dvdnFunc_Reb_Adj_next = solution_next.dvdnFunc_Adj vFunc_Reb_Fxd_next = solution_next.vFunc_Fxd dvdmFunc_Reb_Fxd_next = solution_next.dvdmFunc_Fxd dvdnFunc_Reb_Fxd_next = solution_next.dvdnFunc_Fxd dvdsFunc_Reb_Fxd_next = solution_next.dvdsFunc_Fxd # STEP ONE # Find end-of-period (continuation) value function and its derivatives. # Start by constructing functions for next-period's pre-adjustment-shock # expected value functions if AdjustPrb < 1.0: dvdm_next = lambda m, n, s: AdjustPrb * dvdmFunc_Reb_Adj_next(m, n) + ( 1.0 - AdjustPrb ) * dvdmFunc_Reb_Fxd_next(m, n, s) dvdn_next = lambda m, n, s: AdjustPrb * dvdnFunc_Reb_Adj_next(m, n) + ( 1.0 - AdjustPrb ) * dvdnFunc_Reb_Fxd_next(m, n, s) dvds_next = lambda m, n, s: (1.0 - AdjustPrb) * dvdsFunc_Reb_Fxd_next(m, n, s) # Value function if needed if vFuncBool: v_next = lambda m, n, s: AdjustPrb * vFunc_Reb_Adj_next(m, n) + ( 1.0 - AdjustPrb ) * vFunc_Reb_Fxd_next(m, n, s) else: dvdm_next = lambda m, n, s: dvdmFunc_Reb_Adj_next(m, n) dvdn_next = lambda m, n, s: dvdnFunc_Reb_Adj_next(m, n) dvds_next = ConstantFunction(0.0) if vFuncBool: v_next = lambda m, n, s: vFunc_Reb_Adj_next(m, n) # Now construct a function that evaluates and discounts them given a # vector of return and income shocks and an end-of-period state def end_of_period_derivs(shocks, a, nTil, s): """ Computes the end-of-period derivatives (and optionally the value) of the continuation value function, conditional on shocks. This is so that the expectations can be calculated by integrating over shocks. Parameters ---------- shocks : np.array Length-3 array with the stochastic shocks that get realized between the end of the current period and the start of next period. Their order is (0) permanent income shock, (1) transitory income shock, (2) risky asset return. a : float end-of-period risk-free assets. nTil : float end-of-period risky assets. s : float end-of-period income deduction share. """ temp_fac_A = utilityP(shocks[0] * PermGroFac, CRRA) temp_fac_B = (shocks[0] * PermGroFac) ** (1.0 - CRRA) # Find next-period asset balances m_next = m_nrm_next(shocks, a, s, Rfree, PermGroFac) n_next = n_nrm_next(shocks, nTil, s, PermGroFac) # Interpolate next-period-value derivatives dvdm_tp1 = dvdm_next(m_next, n_next, s) dvdn_tp1 = dvdn_next(m_next, n_next, s) if shocks[1] == 0: dvds_tp1 = dvds_next(m_next, n_next, s) else: dvds_tp1 = shocks[1] * (dvdn_tp1 - dvdm_tp1) + dvds_next(m_next, n_next, s) # Discount next-period-value derivatives to current period # Liquid resources end_of_prd_dvda = DiscFac * Rfree * LivPrb * temp_fac_A * dvdm_tp1 # Iliquid resources end_of_prd_dvdn = DiscFac * shocks[2] * LivPrb * temp_fac_A * dvdn_tp1 # Contribution share end_of_prd_dvds = DiscFac * LivPrb * temp_fac_B * dvds_tp1 # End of period value function, i11f needed if vFuncBool: end_of_prd_v = DiscFac * LivPrb * temp_fac_B * v_next(m_next, n_next, s) return np.stack( [end_of_prd_dvda, end_of_prd_dvdn, end_of_prd_dvds, end_of_prd_v] ) else: return np.stack([end_of_prd_dvda, end_of_prd_dvdn, end_of_prd_dvds]) # Now find the expected values on a (a, nTil, s) grid # The "inversion" machinery can deal with assets of 0 even if there is a # natural borrowing constraint, so include zeros. nNrmGrid = np.concatenate([np.array([0.0]), nNrmGrid]) aNrmGrid = np.concatenate([np.array([0.0]), aXtraGrid]) # Create tiled arrays with conforming dimensions. aNrm_tiled, nNrm_tiled, Share_tiled = np.meshgrid( aNrmGrid, nNrmGrid, ShareGrid, indexing="ij" ) # Find end of period derivatives and value as expectations of (discounted) # next period's derivatives and value. eop_derivs = calc_expectation( ShockDstn, end_of_period_derivs, aNrm_tiled, nNrm_tiled, Share_tiled )[:, :, :, :, 0] # Unpack results eop_dvdaNvrs = uPinv(eop_derivs[0]) eop_dvdnNvrs = uPinv(eop_derivs[1]) eop_dvds = eop_derivs[2] if vFuncBool: eop_vNvrs = uInv(eop_derivs[3]) # Construct an interpolator for eop_V. It will be used later. eop_vFunc = ValueFuncCRRA( TrilinearInterp(eop_vNvrs, aNrmGrid, nNrmGrid, ShareGrid), CRRA ) # STEP TWO: # Solve the consumption problem and create interpolators for c, vCns, # and its derivatives. # Apply EGM over liquid resources at every (n,s) to find consumption. c_end = eop_dvdaNvrs mNrm_end = aNrm_tiled + c_end # Now construct interpolators for c and the derivatives of vCns. # The m grid is different for every (n,s). We interpolate the object of # interest on the regular m grid for every (n,s). At the end we will have # values of the functions of interest on a regular (m,n,s) grid. We use # trilinear interpolation on those points. # Expand the exogenous m grid to contain 0. mNrmGrid = np.insert(mNrmGrid, 0, 0) # Dimensions might have changed, so re-create tiled arrays mNrm_tiled, nNrm_tiled, Share_tiled = np.meshgrid( mNrmGrid, nNrmGrid, ShareGrid, indexing="ij" ) # Initialize arrays c_vals =
np.zeros_like(mNrm_tiled)
numpy.zeros_like
from bresenham import bresenham from scipy.spatial import Voronoi import numpy as np from queue import PriorityQueue import networkx as nx def closest_node(graph, current_position): ''' Compute the closest node in the graph to the current position ''' closest_node = None dist = 100000 xy_position = (current_position[0], current_position[1]) for p in graph.nodes: d = heuristic(xy_position, p) if d < dist: closest_node = p dist = d return closest_node def create_grid_and_edges(data, drone_altitude, safety_distance): ''' Create a grid representation of a 2D configuration space and a Voronoi Graph ''' # minimum and maximum north coordinates north_min = np.floor(np.min(data[:, 0] - data[:, 3])) north_max = np.ceil(np.max(data[:, 0] + data[:, 3])) # minimum and maximum east coordinates east_min = np.floor(np.min(data[:, 1] - data[:, 4])) east_max = np.ceil(np.max(data[:, 1] + data[:, 4])) # given the minimum and maximum coordinates we can # calculate the size of the grid. north_size = int(np.ceil(north_max - north_min)) east_size = int(np.ceil(east_max - east_min)) # Initialize an empty grid grid = np.zeros((north_size, east_size)) # Initialize an empty list for Voronoi points points = [] # Populate the grid with obstacles for i in range(data.shape[0]): north, east, alt, d_north, d_east, d_alt = data[i, :] if alt + d_alt + safety_distance > drone_altitude: obstacle = [ int(np.clip(north - d_north - safety_distance - north_min, 0, north_size - 1)), int(np.clip(north + d_north + safety_distance - north_min, 0, north_size - 1)), int(
np.clip(east - d_east - safety_distance - east_min, 0, east_size - 1)
numpy.clip
# Copyright 2021 Sony Group Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import numpy as np import nnabla as nn import nnabla.parametric_functions as PF import nnabla.functions as F from nnabla.core.graph_def import ProtoGraph from nnabla.utils.nnp_graph import NnpNetwork from nnabla.utils.load import load from .utils import is_proto_graph def block(x, scope_name, n_channels, kernel, pad, test): with nn.parameter_scope(scope_name): with nn.parameter_scope('conv1'): h = PF.convolution(x, n_channels, kernel=kernel, pad=pad, with_bias=True) h = PF.batch_normalization(h, batch_stat=not test) h = F.relu(h) with nn.parameter_scope('conv2'): h = PF.convolution(h, n_channels, kernel=kernel, pad=pad, with_bias=True) h = F.relu(h) h = F.max_pooling(h, kernel=(2, 2), stride=(2, 2)) return h def cifarnet(x, test=False, n_classes=10): maps = [32, 64, 128] kernel = (3, 3) pad = (1, 1) h = block(x, 'block1', maps[0], kernel, pad, test) h = block(h, 'block2', maps[1], kernel, pad, test) h = block(h, 'block3', maps[2], kernel, pad, test) h = PF.affine(h, n_classes) return h def calc_loss_reduction(loss, reduction='mean'): loss_dict = { 'mean': F.mean(loss), 'sum': F.sum(loss) } return loss_dict[reduction] def calc_acc(pred, label, method='mean'): acc_sum = (
np.argmax(pred, axis=1)
numpy.argmax
##################### IMPORT STATEMENTS ##################### # required to view plots on AWS instance - must come first from typing import List import matplotlib matplotlib.use('Agg') # dependencies import csv import cv2 import numpy as np import random import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.utils import shuffle from keras.models import Sequential from keras.layers import Flatten, Activation, Cropping2D, Dense, Lambda, Dropout from keras.layers.convolutional import Conv2D #################### SET HYPERPARAMETERS #################### nb_periods = 10 sample_rate = 1.0 p_flip = 0.3 batch_size = 30 ################# IMPORT & PRECONDITION DATA ################ # read driving log file samples = [] with open('driving_log.csv') as csvfile: reader = csv.reader(csvfile) for line in reader: samples.append(line) # function to convert array values to a moving average def moving_average(angles, width): cumsum_vec = np.cumsum(np.insert(angles, 0, 0)) mvavg_vec = (cumsum_vec[width:] - cumsum_vec[:-width]) / width return
np.array(mvavg_vec)
numpy.array
import unittest import numpy as np import tensorflow as tf from autogp import util from autogp import likelihoods SIG_FIGS = 5 class TestSoftmax(unittest.TestCase): def log_prob(self, outputs, latent): softmax = likelihoods.Softmax() return tf.Session().run(softmax.log_cond_prob(np.array(outputs, dtype=np.float32), np.array(latent, dtype=np.float32))) def predict(self, latent_means, latent_vars): softmax = likelihoods.Softmax() return tf.Session().run(softmax.predict(np.array(latent_means, dtype=np.float32), np.array(latent_vars, dtype=np.float32))) def test_single_prob(self): log_prob = self.log_prob([[1.0, 0.0]], [[[5.0, 2.0]]]) self.assertAlmostEqual(np.exp(log_prob), np.exp(5.0) / (np.exp(5.0) + np.exp(2.0)), SIG_FIGS) def test_extreme_probs(self): log_prob = self.log_prob([[1.0, 0.0], [0.0, 1.0]], [[[1e10, -1e10], [-1e10, 1e10]], [[-1e10, 1e10], [1e10, -1e10]]]) true_probs = np.array([[1.0, 1.0], [0.0, 0.0]]) np.testing.assert_approx_equal(np.exp(log_prob), true_probs, SIG_FIGS) def test_multi_probs(self): log_prob = self.log_prob([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]], [[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], [[10.0, 11.0, 12.0], [13.0, 14.0, 15.0], [16.0, 17.0, 18.0]]]) true_probs = np.array([[np.exp(1.0) / (np.exp(1.0) + np.exp(2.0) + np.exp(3.0)),
np.exp(5.0)
numpy.exp
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Utility code for converting between protein representations. Note that several methods here are no longer used in any of the training routines. However, they were quite useful to us during the course of research, so we are releasing them here in case they help others. """ import collections import os import os.path as osp import pickle import random from itertools import product from multiprocessing import Pool import numpy as np import pandas as pd import gemmi from amino_acid_config import kvs, res_atoms, res_children, res_chis, res_parents from config import MMCIF_PATH, ROTAMER_LIBRARY_PATH from constants import atom_names, residue_names from math_utils import rotate_v1_v2, rotate_v1_v2_vec def parse_dense_format(node_embed): """ In protein-ebm, we represent amino acids in two different formats. This method converts from the dense format to a sparse format. =============== ==== Dense ==== =============== The dense format represents a protein using a is a D x 6 dimensional represention. Each 6 dimensional vector represents an atom, following this scheme: [1]: amino acid identity of the amino acid the atom is part of (residue_idx) [2]: element identity of the amino acid the atom is part of (atom_idx) [3]: positional location of atom in the amino acid (atom_num) [4..6]: x,y,z coordinates The dense format is useful for feeding data into a neural network. =============== ==== Sparse === =============== The sparse format represents a data based on its topology (parent/child/etc). It follows this scheme: amino_name: amino acid to substitue par: A N x 20 encoding of the relative offset of the parent of each atom. For example, the amino acid glycine would be represented as [-18 -1 -1 -1 0, ...] child: A N x 20 encoding of the child of each atom. For example, the amino acid glycine would be represented as [1 1 18 0 0 0 ..] pos_exist: A N x 20 mask encoding of which atoms are valid for each amino acid so for example the amino acid glycine would be represented as [1 1 1 1 0 0 ...] chi_valid: A N x 5 mask encoding which chi angles are valid, so for example glycine would be represented as [0 0 0 0 0] pos: A N x 20 x 3 encoding the (x, y, z) coordinates of each atom per amino acid in a protein i: amino acid position to substitute sequence_map: map from amino acid to structure rotate_matrix: matrix of rotation to amino acid position This format is easier for manipulating the proteins, e.g changing the rotamers during negative sampling. See comments in the implementation below for more details. """ # The input is a list of atoms. We keep track of how many we have processed. start = 0 # Construct amino acid-level information from the atomic inputs # Each amino acid is described on the atomic-level by 20-dim lists pars = [] # ordinal distance of parent atoms childs = [] # ordinal distance of cildren atoms pos = [] # 3d translations of each atom pos_exists = [] # whether a position exists or not residues = [] # the name of the amino acid chis_valid = [] # a 20-dim list describing which atoms are part of the chi angle # consume all of the atoms in the input while start < node_embed.shape[0]: idx = int(node_embed[start, 0]) residue = residue_names[idx] # Get the parent and child representation (see amino_acid_config.py) par = res_parents[residue].copy() child = res_children[residue].copy() n = len(par) # 20-dim mask of which positions encode meaningful values pos_exist = [1] * n + [0] * (20 - n) # this is the mask # pad up to 20-dim with 0s par = par + [0] * (20 - n) child = child + [0] * (20 - len(child)) # x,y,z coordinates for each of the atoms in the amino acid, padded to 20-dim pos_temp = np.concatenate( [node_embed[start : start + n, -3:], np.zeros((20 - n, 3))], axis=0 ) # If we can fit these n atom in, then record the information if start + n <= node_embed.shape[0]: pars.append(par) childs.append(child) pos.append(pos_temp) pos_exists.append(pos_exist) chis = res_chis[residue] chis_valid.append([1] * len(chis) + [0] * (20 - len(chis))) residues.append(residue.lower()) # All atoms from start <-> start+n should belong to the same amino acid if not (node_embed[start : start + n, 0] == idx).all(): return None, None, None, None, None, None # keep track of number of atoms consumeed start = start + n # Don't proceess single amino acid proteins if len(pos) < 2: return None, None, None, None, None, None # Wrap the results in numpy arrays pars, childs, pos, pos_exists, chis_valid = ( np.array(pars), np.array(childs), np.stack(pos, axis=0), np.array(pos_exists), np.array(chis_valid), ) # The code above assumes that each nitrogen is connected to previous carbon # and each carbon is connected to the next nitrogen. This is not the case # for the N-terminus and C-terminus, so we need to override those cases. pars[0, 0] = 0 childs[-1, 2] = 0 # return the new encoding in amino acid form return pars, childs, pos, pos_exists, residues, chis_valid def reencode_dense_format(node_embed, pos_new, pos_exist): """Updates x,y,z positions in dense encoding with new positions""" node_embed_new = node_embed.copy() pos_mask = pos_exist.astype(np.bool) elem_num = pos_mask.sum() node_embed_new[:elem_num, -3:] = pos_new[pos_mask] return node_embed_new def cif_to_embed(cif_file, ix=None, parse_skip=False): """ Parses a CIF file into a more convenient representation. # Embedding format for nodes: # 'one hot amino acid' amino type of molecule # 'x, y, z' positional encoding # 'one hot representation of atom type', either C, CA, N, O, """ st = gemmi.read_structure(cif_file) # print(st) # for model in st: # print(model) # for chain in model: # print(chain) # for residue in chain: # print(residue) results = [] skips = [] for model in st: for i, chain in enumerate(model): if (ix is not None) and (ix != i): continue atoms = [] node_embeddings = [] for j, residue in enumerate(chain): translation = [] if residue.name not in residue_names: # Skip over any structure that contains nucleotides if residue.name in ["DA", "DC", "DG", "DT"]: return None, None else: continue residue_counter = 0 namino_elements = len(res_parents[residue.name]) amino_atoms = res_atoms[residue.name] residue_atoms = [] residue_embed = [] # reisdue object contains information about the residue, including identity # and spatial coordiantes for atoms in the residue. We parse this into a # dense encoding, for feeding into a neural network. node_embed = parse_residue_embed(residue) if len(node_embed) == 0: skips.append(j) node_embeddings.extend(node_embed) node_embeddings = np.array(node_embeddings) result = (node_embeddings,) results.append(result) if parse_skip: return st, results, skips else: return st, results def vis_cif(cif_path, im_path): import pymol from pymol import cmd cmd.load(cif_path, "mov") cmd.zoom() cmd.png(im_path, 300, 200) def compute_chi_angle_st(st, ix): angles = [] num = int(ix) chain_counter = 0 for model in st: for chain in model: if num != chain_counter: chain_counter += 1 continue else: for residue in chain: if residue.name in residue_names: chi_angles = compute_chi_angle_residue(residue) if chi_angles is not None: angles.append(chi_angles) return angles def compute_chi_angle_residue(residue): # look up the atoms that are used for computing the chi angles. chi_angles_atoms = kvs[residue.name] angles = [] try: for chi_angles_atom in chi_angles_atoms: atoms = chi_angles_atom.split("-") pos = [] for atom in atoms: # In some cases, amino acid side chains are listed with CD1 instead of CD if atom == "CD": if "CD" not in residue: atom = residue["CD1"] else: atom = residue[atom] else: atom = residue[atom] pos.append((atom.pos.x, atom.pos.y, atom.pos.z)) pos = np.array(pos) diff_vec = pos[2] - pos[1] # Compute the axis in which we are computing the dihedral angle diff_vec_normalize = diff_vec / np.linalg.norm(diff_vec) diff_bot = pos[0] - pos[1] diff_top = pos[3] - pos[2] # Now project diff_bot and diff_top to be on the plane diff_bot = diff_bot - diff_bot.dot(diff_vec_normalize) * diff_vec_normalize diff_top = diff_top - diff_top.dot(diff_vec_normalize) * diff_vec_normalize diff_bot_normalize = diff_bot / np.linalg.norm(diff_bot) diff_top_normalize = diff_top / np.linalg.norm(diff_top) # Compute the dot product for cos and cross product for sin sin = (np.cross(diff_bot_normalize, diff_top_normalize) * diff_vec_normalize).sum( axis=1 ) cos = diff_bot_normalize.dot(diff_top_normalize) # print("trig value ", sin, cos, np.linalg.norm([sin, cos])) angle = np.arctan2(sin, cos) # print("angle ", angle) angles.append(angle) except Exception as e: return None return angles def parse_cif(path): base_folder, f = osp.split(path) base_name, *junk = f.split(".") st, infos = cif_to_embed(path) if infos is not None: for i, info in enumerate(infos): pickle_file = osp.join(base_folder, "{}.{}.p".format(base_name, i)) pickle.dump(info, open(pickle_file, "wb")) return None def script_parse_cif(): mmcif_path = osp.join(MMCIF_PATH, "mmCIF") files = [] dirs = os.listdir(mmcif_path) pool = Pool() for d in dirs: directory = osp.join(mmcif_path, d) d_files = os.listdir(directory) files_tmp = [osp.join(directory, d_file) for d_file in d_files if ".cif" in d_file] files.extend(files_tmp) pool.map(parse_cif, files) def clean_cif(): mmcif_path = osp.join(MMCIF_PATH, mmCIF) dirs = os.listdir(mmcif_path) for d in dirs: directory = osp.join(mmcif_path, d) d_files = os.listdir(directory) files_tmp = [osp.join(directory, d_file) for d_file in d_files if ".p" in d_file] for f in files_tmp: os.remove(f) def recorrect_name(name): if (name[-1]).isdigit() and name[-1] == "1": return name[:-1] elif not (name[-1].isdigit()): return name + "1" else: return name def _parse_residue(residue): """Obtains a sparse representation of residue from gemmi""" # list of atoms in the residue (e.g. N-CA-C-O) atoms = res_atoms[residue.name] # ordinal encoding of how far away the parents are parents = res_parents[residue.name] # ordinal encoding of how far away the children are children = res_children[residue.name] # atoms belonging to chi anglse chis = res_chis[residue.name] # accumulate the xyz postions of the atoms, and node_embed encodings pos, node_embeds = [], [] residue_counter = 0 for atom in atoms: if atom in residue: atom = residue[atom] elif recorrect_name(atom) in residue: atom = residue[recorrect_name(atom)] else: return None #accounts for AtomGroup class atom = atom[0] if type(atom) is gemmi.AtomGroup else atom pos.append((atom.pos.x, atom.pos.y, atom.pos.z)) node_embeds.append( ( residue_names.index(residue.name), atom_names.index(atom.element.name), residue_counter, atom.pos.x, atom.pos.y, atom.pos.z, ) ) residue_counter = residue_counter + 1 # 20-dim mask for each residue for atom existence exist = [1] * len(parents) + [0] * (20 - len(parents)) # pad the parents and children to 20-dim parents = parents + [0] * (20 - len(parents)) children = children + [0] * (20 - len(children)) # place the x,y,z coordinates into a numpy array pos_fill = np.zeros((20, 3)) pos_fill[: len(pos)] = pos # pad the chi angles chis = [1] * len(chis) + [0] * (5 - len(chis)) # return the new representation return parents, children, pos_fill, exist, chis, node_embeds # shorthand methods for the above, since logic is the same def parse_residue(residue): ret = _parse_residue(residue, 0) if ret: parents, children, pos_fill, exist, chis, _, _ = ret return parents, children, pos_fill, exist, chis else: return None, None, None, None, None def parse_residue_embed(residue): ret = _parse_residue(residue) if ret: _, _, _, _, _, node_embeds = ret return node_embeds else: return [] def flatten(arr): return arr.reshape((-1, *arr.shape[2:])) def rotate_dihedral_fast(a, p, c, pos, pos_e, ch, chv, idx): """ Where as rotate_dihedral(...) rotates all amino acids in the batch by some angle, this function just rotates a single amino acid in a protein. """ pos = pos.copy() ai, pi, ci, pos_i, pos_ei, chi, chvi = ( a[idx - 1 : idx + 1], p[idx - 1 : idx + 1], c[idx - 1 : idx + 1], pos[idx - 1 : idx + 1], pos_e[idx - 1 : idx + 1], ch[idx - 1 : idx + 1], chv[idx - 1 : idx + 1], ) pnew = rotate_dihedral(ai, pi, ci, pos_i, pos_ei, chi, chvi) pos[idx - 1 : idx + 1] = pnew return pos def rotate_dihedral(angles, par, child, pos, pos_exist, chis, chi_valid): """Rotate a protein representation by a set of dihedral angles: N represents the number of amino acids in the batch, 20 is the number of atoms. angles: N x 20 set of angles to rotate each atom by par: A N x 20 encoding of the relative offset of the parent of each atom. For example, the amino acid glycine would be represented at [-18 -1 -1 -1 0, ...] child: A N x 20 encoding of the child of each atom. For example, the amino acid glycine would be represented as [1 1 18 0 0 0 ..] pos_exist: A N x 20 mask encoding of which atoms are valid for each amino acid so for example the amino acid glycine would be represented as [1 1 1 1 0 0 ...] chis: A N x 20 representation of the existing chi angles chi_valid: A N x 5 mask encoding which chi angles are valid, so for example glycine would be represented as [0 0 0 0 0] """ angles = angles / 180 * np.pi chis = chis / 180 * np.pi pos_orig = pos pos = pos.copy() for i in range(4): # There are a maximum of 5 chi angles p2 = pos[:, 4 + i] index = np.tile(4 + i, (pos.shape[0], 1)) + par[:, 4 + i : 5 + i] # print("index, pos shape ", index.shape, pos.shape) p1 = np.take_along_axis(pos, index[:, :, None], axis=1)[:, 0, :] rot_angle = chis[:, i] - angles[:, 4 + i] diff_vec = p2 - p1 diff_vec_normalize = diff_vec / (np.linalg.norm(diff_vec, axis=1, keepdims=True) + 1e-10) # Rotate all subsequent points by the rotamor angle with the defined line where normalize on the origin rot_points = pos[:, 5 + i :].copy() - p1[:, None, :] par_points = (rot_points * diff_vec_normalize[:, None, :]).sum( axis=2, keepdims=True ) * diff_vec_normalize[:, None, :] perp_points = rot_points - par_points perp_points_norm = np.linalg.norm(perp_points, axis=2, keepdims=True) + 1e-10 perp_points_normalize = perp_points / perp_points_norm a3 = np.cross(diff_vec_normalize[:, None, :], perp_points_normalize) rot_points = ( perp_points * np.cos(rot_angle)[:, None, None] + np.sin(rot_angle)[:, None, None] * a3 * perp_points_norm + par_points + p1[:, None, :] ) rot_points[np.isnan(rot_points)] = 10000 # Only set the points that vald chi angles first_term = rot_points * chi_valid[:, i : i + 1, None] second_term = pos[:, 5 + i :] * (1 - chi_valid[:, i : i + 1, None]) pos[:, 5 + i :] = first_term + second_term return pos def compute_dihedral(par, child, pos, pos_exist, reshape=True): """Compute the dihedral angles of all atoms in a structure par: A N x 20 encoding of the relative offset of the parent of each atom. For example, the amino acid glycine would be represented at [-18 -1 -1 -1 0, ...] child: A N x 20 encoding of the child of each atom. For example, the amino acid glycine would be represented as [1 1 18 0 0 0 ..] pos_exist: A N x 20 mask encoding of which atoms are valid for each amino acid so for pos: A N x 20 x 3 encoding the (x, y, z) coordinates of each atom per amino acid in a protein """ par, child, pos, pos_exist = flatten(par), flatten(child), flatten(pos), flatten(pos_exist) # pos[~pos_exist] = 0.1 idx = np.arange(par.shape[0]) child_idx = idx + child child_pos = pos[child_idx, :].copy() up_edge_idx = idx + par up_edge_pos = pos[up_edge_idx, :].copy() parent_idx = up_edge_idx + par[up_edge_idx] parent_pos = pos[parent_idx, :].copy() # The dihedral angle is given by parent_pos -> up_edge_pos -> pos -> child_pos p0, p1, p2, p3 = parent_pos, up_edge_pos, pos, child_pos p23 = p3 - p2 p12 = p2 - p1 p01 = p1 - p0 n1 = np.cross(p01, p12) n2 = np.cross(p12, p23) n1 = n1 / (np.linalg.norm(n1, axis=1, keepdims=True) + 1e-10) n2 = n2 / (np.linalg.norm(n2, axis=1, keepdims=True) + 1e-10) sin = (
np.cross(n1, n2)
numpy.cross
#!/usr/bin/env python import rospy # OpenCV2 for saving an image from cv_bridge import CvBridge, CvBridgeError import cv2 from geometry_msgs.msg import Twist from sensor_msgs.msg import LaserScan from std_msgs.msg import Empty from nav_msgs.msg import Odometry import time import sys, select, tty, os, os.path import numpy as np import commands from subprocess import call import matplotlib.pyplot as plt import matplotlib.animation as animation #-------------------------------------------------------------------------------------------------------------- # # Oracle for driving turtlebot in simulation or the real-world based on the LiDAR lazer range finder (5FPS) # Starts with start_dh topic and publishes control on dh_vel topic. # Bar plot is left out by default. # #-------------------------------------------------------------------------------------------------------------- # new # clip_distance = 2 #0.5 #3 #5 tweak for doshico (from 0.5 --> 2 10/11/19) # front_width=40 #50 # define the width of free space in before driving forward # field_of_view=80 #100 #80 # scale_yaw=0.6 #0.4 #1 # original clip_distance = 3 #1.5 #0.5 #3 #5 tweak for doshico (from 0.5 --> 2 10/11/19) front_width=40 #50 # define the width of free space in before driving forward field_of_view=100 #80 scale_yaw=0.6 #0.4 #1 turn_speed=0.0 #0.3 #0.6 #0.1 (from 0. --> 0.1 10/11/19) speed=0.3 # Instantiate CvBridge bridge = CvBridge() control_pub=None ready = False # toggle on and off with start_dh and stop_dh finished = True fig=plt.figure(figsize=(10,5)) plt.title('Depth_heuristic') barcollection=plt.bar(range(3),[clip_distance for k in range(3)],align='center',color='blue') x=np.zeros((3)) def animate(n): for i, b in enumerate(barcollection): b.set_height(x[i]) def depth_callback(data): global action_pub, x, turn_speed, speed if not ready or finished: return # Preprocess depth: ranges=[min(r,clip_distance) if r!=0 else np.nan for r in data.ranges] # clip left 45degree range from 0:45 reversed with right 45degree range from the last 45: ranges=list(reversed(ranges[:field_of_view/2]))+list(reversed(ranges[-field_of_view/2:])) # turn away from the minimum (non-zero) depth reading # discretize 3 bins (:-front_width/2:front_width/2:) # range that covers going straight. x=[np.nanmin(ranges[0:field_of_view/2-front_width/2]),np.nanmin(ranges[field_of_view/2-front_width/2:field_of_view/2+front_width/2]),
np.nanmin(ranges[field_of_view/2+front_width/2:])
numpy.nanmin
# python3 # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test of models classes in models.py.""" from absl.testing import parameterized import numpy as np from datadrivenpdes.advection import equations as advection_equations from datadrivenpdes.core import equations from datadrivenpdes.core import geometry from datadrivenpdes.core import grids from datadrivenpdes.core import models from datadrivenpdes.core import polynomials from datadrivenpdes.core import states from datadrivenpdes.core import tensor_ops import tensorflow as tf from absl.testing import absltest StateDef = states.StateDefinition NO_DERIVATIVES = (0, 0, 0) D_X = (1, 0, 0) D_Y = (0, 1, 0) D_XX = (2, 0, 0) D_YY = (0, 2, 0) NO_OFFSET = (0, 0) X_PLUS_HALF = (1, 0) Y_PLUS_HALF = (0, 1) class ConvLayersTest(parameterized.TestCase): @parameterized.parameters( (models.RescaledConv2DStack, [[-0.5, 0.5], [1.0, 1.5]], [[0.0, 0.5], [0.75, 1.0]], 1e-7), (models.ClippedConv2DStack, [[-0.5, 0.5], [1.0, 1.5]], [[0.0, 0.5], [1.0, 1.0]], 2e-3), ) def test_conv2d_variants(self, core_model_func, inputs, expected, atol): # Variable names like `core_model` follow the internal of top-level models, # such as the `PseudoLinearModel` class in `core.models` module. # Here tries to mimic the small inner loop in top-level models. # identity layer, does nothing except normalizing input core_model = core_model_func( num_inputs=1, num_outputs=1, scaled_keys={'concentration'}, num_layers=3, filters=1, kernel_size=1, kernel_initializer=tf.initializers.ones, activation=None, use_bias=False ) # (x, y) -> (batch, x, y) inputs = np.array(inputs, dtype=np.float32)[np.newaxis, ...] # (x, y) -> (batch, x, y, num_outputs) expected = np.array(expected, dtype=np.float32)[np.newaxis, ..., np.newaxis] # validate forward pass #inputs = {'concentration': tf.convert_to_tensor(inputs)} inputs=tf.convert_to_tensor(inputs)[:,:,:,None] outputs = core_model(inputs).numpy() np.testing.assert_allclose(outputs, expected, atol=atol) # sanity check for backward pass: core_model should be trainable. # We should prevent the use of a simple Python callable for `core_model`, # which can pass the forward call(), integrate() and even Keras model.fit(), # but the training will fail sliently as the weights are not tracked. assert len(core_model.trainable_weights) >= 1 class BuildStencilsTest(absltest.TestCase): def assert_sequences_allclose(self, a, b): self.assertEqual(len(a), len(b)) for a_entry, b_entry in zip(a, b): np.testing.assert_allclose(a_entry, b_entry) def test_build_stencils(self): sk00 = StateDef(name='foo', tensor_indices=(), derivative_orders=(0, 0, 0), offset=(0, 0)) sk10 = StateDef(name='foo', tensor_indices=(), derivative_orders=(0, 0, 0), offset=(1, 0)) self.assert_sequences_allclose([[-1, 0, 1], [-1, 0, 1]], models.build_stencils(sk00, sk00, 3, 1.0)) self.assert_sequences_allclose([[-2, 0, 2], [-2, 0, 2]], models.build_stencils(sk00, sk00, 3, 2.0)) self.assert_sequences_allclose([[-1, 0, 1], [-1, 0, 1]], models.build_stencils(sk00, sk00, 4, 1.0)) self.assert_sequences_allclose([[-2, -1, 0, 1, 2], [-2, -1, 0, 1, 2]], models.build_stencils(sk00, sk00, 5, 1.0)) self.assert_sequences_allclose([[-0.5, 0.5], [-1, 0, 1]], models.build_stencils(sk00, sk10, 3, 1.0)) self.assert_sequences_allclose([[-0.5, 0.5], [-1, 0, 1]], models.build_stencils(sk10, sk00, 3, 1.0)) class FiniteDifferenceModelTest(parameterized.TestCase): @parameterized.parameters( dict(model_cls=models.FiniteDifferenceModel, model_kwargs={}), dict(model_cls=models.LinearModel, model_kwargs=dict(constrained_accuracy_order=0)), dict(model_cls=models.LinearModel, model_kwargs=dict(constrained_accuracy_order=1)), dict(model_cls=models.PseudoLinearModel, model_kwargs=dict(constrained_accuracy_order=0)), dict(model_cls=models.PseudoLinearModel, model_kwargs=dict(constrained_accuracy_order=1)), ) def test_from_centered(self, model_cls, model_kwargs): class Equation(equations.Equation): METHOD = polynomials.Method.FINITE_DIFFERENCE def __init__(self): self.key_definitions = { 'c': StateDef('concentration', (), NO_DERIVATIVES, NO_OFFSET), 'c_edge_x': StateDef('concentration', (), NO_DERIVATIVES, X_PLUS_HALF), 'c_edge_y': StateDef('concentration', (), NO_DERIVATIVES, Y_PLUS_HALF), 'c_x': StateDef('concentration', (), D_X, NO_OFFSET), 'c_y': StateDef('concentration', (), D_Y, NO_OFFSET), 'c_x_edge_x': StateDef('concentration', (), D_X, X_PLUS_HALF), 'c_y_edge_y': StateDef('concentration', (), D_Y, Y_PLUS_HALF), 'c_xx': StateDef('concentration', (), D_XX, NO_OFFSET), 'c_yy': StateDef('concentration', (), D_YY, NO_OFFSET), } self.evolving_keys = {'c'} self.constant_keys = set() grid = grids.Grid.from_period(10, length=1) equation = Equation() model = model_cls(equation, grid, **model_kwargs) inputs = tf.convert_to_tensor( np.random.RandomState(0).random_sample((1,) + grid.shape), tf.float32) # create variables, then reset them all to zero model.spatial_derivatives({'c': inputs}) for variable in model.variables: variable.assign(tf.zeros_like(variable)) actual_derivatives = model.spatial_derivatives({'c': inputs}) expected_derivatives = { 'c': inputs, 'c_edge_x': (inputs + tensor_ops.roll_2d(inputs, (-1, 0))) / 2, 'c_edge_y': (inputs + tensor_ops.roll_2d(inputs, (0, -1))) / 2, 'c_x': (-tensor_ops.roll_2d(inputs, (1, 0)) + tensor_ops.roll_2d(inputs, (-1, 0))) / (2 * grid.step), 'c_y': (-tensor_ops.roll_2d(inputs, (0, 1)) + tensor_ops.roll_2d(inputs, (0, -1))) / (2 * grid.step), 'c_x_edge_x': ( -inputs + tensor_ops.roll_2d(inputs, (-1, 0))) / grid.step, 'c_y_edge_y': ( -inputs + tensor_ops.roll_2d(inputs, (0, -1))) / grid.step, 'c_xx': (tensor_ops.roll_2d(inputs, (1, 0)) - 2 * inputs + tensor_ops.roll_2d(inputs, (-1, 0))) / grid.step ** 2, 'c_yy': (tensor_ops.roll_2d(inputs, (0, 1)) - 2 * inputs + tensor_ops.roll_2d(inputs, (0, -1))) / grid.step ** 2, } for key, expected in sorted(expected_derivatives.items()): np.testing.assert_allclose( actual_derivatives[key], expected, atol=1e-5, rtol=1e-5, err_msg=repr(key)) @parameterized.parameters( dict(model_cls=models.FiniteDifferenceModel, model_kwargs={}), dict(model_cls=models.LinearModel, model_kwargs=dict(constrained_accuracy_order=0)), dict(model_cls=models.LinearModel, model_kwargs=dict(constrained_accuracy_order=1)), dict(model_cls=models.PseudoLinearModel, model_kwargs=dict(constrained_accuracy_order=0)), dict(model_cls=models.PseudoLinearModel, model_kwargs=dict(constrained_accuracy_order=1)), ) def test_from_edge(self, model_cls, model_kwargs): class Equation(equations.Equation): METHOD = polynomials.Method.FINITE_DIFFERENCE def __init__(self): self.key_definitions = { 'c': StateDef('concentration', (), NO_DERIVATIVES, NO_OFFSET), 'c_edge_x': StateDef('concentration', (), NO_DERIVATIVES, X_PLUS_HALF), 'c_edge_y': StateDef('concentration', (), NO_DERIVATIVES, Y_PLUS_HALF), 'c_x': StateDef('concentration', (), D_X, NO_OFFSET), 'c_x_edge_x': StateDef('concentration', (), D_X, X_PLUS_HALF), 'c_xx': StateDef('concentration', (), D_XX, NO_OFFSET), } self.evolving_keys = {'c_edge_x'} self.constant_keys = set() grid = grids.Grid.from_period(10, length=1) equation = Equation() model = model_cls(equation, grid, **model_kwargs) inputs = tf.convert_to_tensor(
np.random.RandomState(0)
numpy.random.RandomState