prompt
stringlengths 19
879k
| completion
stringlengths 3
53.8k
| api
stringlengths 8
59
|
---|---|---|
import argparse
import bpy
import gin
import numpy as np
import os
import sys
import time
import paths, util
C = bpy.context
D = bpy.data
MAX_OBJS = 20
color_ref = None
obj_ref = [None for _ in range(MAX_OBJS)]
obj_classes = None
cached_obj_scale = [None for _ in range(MAX_OBJS)]
@gin.configurable('rendering')
def config_rendering(resolution=128, renderer='cycles', render_samples=32,
use_gpu=False, render_exr=False):
"""Adjust rendering settings.
Args:
resolution: Integer for image resolution (always square)
renderer: Either 'cycles' or 'eevee'
render_samples: Integer that determines sample quality, rendering time
use_gpu: Whether to use the GPU for rendering (never tested)
render_exr: Set true to output segmentation and depth ground truth
"""
if renderer == 'eevee':
C.scene.eevee.taa_render_samples = render_samples
elif renderer == 'cycles':
C.scene.render.engine = 'CYCLES'
C.scene.cycles.device = 'GPU' if use_gpu else 'CPU'
C.scene.cycles.samples = render_samples
C.window.view_layer.cycles.use_denoising = True
C.scene.render.resolution_x = resolution
C.scene.render.resolution_y = resolution
if render_exr:
C.scene.render.image_settings.file_format = 'OPEN_EXR_MULTILAYER'
C.scene.render.image_settings.color_mode = 'RGBA'
C.scene.render.image_settings.color_depth = '32'
C.window.view_layer.use_pass_object_index = True
C.window.view_layer.use_pass_material_index = True
else:
C.scene.render.image_settings.color_mode = 'RGB'
@gin.configurable('scene')
def init_scene():
"""Clear and reset scene."""
camera_pos = (1, 0, .4)
camera_angle = (np.pi * .36, 0, np.pi / 2)
light_pos = (0, -.75, 1.35)
# Delete everything
bpy.ops.object.select_all(action='SELECT')
bpy.ops.object.delete(confirm=False)
# Initialize empty materials
while len(D.materials) < (MAX_OBJS + 1):
bpy.ops.material.new()
# Camera
bpy.ops.object.camera_add(location=camera_pos,
rotation=camera_angle)
C.scene.camera = D.objects[0]
# Lights
bpy.ops.object.light_add(type='POINT', location=light_pos)
fg_light = C.selected_objects[0]
fg_light.data.energy = 100
fg_light.data.shadow_soft_size = 1
bpy.ops.object.light_add(type='SUN', location=[-2*v for v in camera_pos])
bg_light = C.selected_objects[0]
bg_light.data.energy = 1
# Background plane
bpy.ops.mesh.primitive_plane_add(size=20,
location=[-3*v for v in camera_pos],
rotation=camera_angle)
bg_plane = C.selected_objects[0]
bg_plane.pass_index = 0
bg_plane.active_material = D.materials[0]
def get_tex_node(material_idx):
"""Returns Image Texture node, creates one if it doesn't exist."""
nt = D.materials[material_idx].node_tree
# Check whether the Image Texture node has been added
img_node = nt.nodes.get('Image Texture')
mix_node = nt.nodes.get('Mix Shader')
aux_node = nt.nodes.get('Principled BSDF.001')
if img_node is None:
# Create new node for linking image
nt.nodes.new('ShaderNodeTexImage')
img_node = nt.nodes.get('Image Texture')
# Link to main node
main_node = nt.nodes.get('Principled BSDF')
nt.links.new(img_node.outputs.get('Color'),
main_node.inputs.get('Base Color'))
# Set up nodes for mixing in color
nt.nodes.new('ShaderNodeBsdfPrincipled')
nt.nodes.new('ShaderNodeMixShader')
aux_node = nt.nodes.get('Principled BSDF.001')
mix_node = nt.nodes.get('Mix Shader')
out_node = nt.nodes.get('Material Output')
# Link everything appropriately
nt.links.new(main_node.outputs.get('BSDF'),
mix_node.inputs[1])
nt.links.new(aux_node.outputs.get('BSDF'),
mix_node.inputs[2])
nt.links.new(mix_node.outputs.get('Shader'),
out_node.inputs.get('Surface'))
# For now set fraction to 0 to default to texture
mix_node.inputs[0].default_value = 0
return img_node, mix_node, aux_node
def get_emission_node(material_idx):
"""Returns Emission node, creates one if it doesn't exist."""
nt = D.materials[material_idx].node_tree
# Check whether the Emission node has been added
img_node = nt.nodes.get('Emission')
if img_node is None:
# Create new node for linking image
nt.nodes.new('ShaderNodeEmission')
img_node = nt.nodes.get('Emission')
# Link to main node
main_node = nt.nodes.get('Material Output')
nt.links.new(img_node.outputs.get('Emission'),
main_node.inputs.get('Surface'))
return img_node
def initialize_color_ref():
global color_ref
out_dir = gin.query_parameter('sample.out_dir')
# Set up color reference
color_ref_path = f'{paths.DATA_DIR}/{out_dir}/color_reference.npy'
while color_ref is None:
try:
color_ref = np.load(color_ref_path)
except:
if not os.path.exists(color_ref_path):
try: os.makedirs(f'{paths.DATA_DIR}/{out_dir}')
except FileExistsError: pass
np.save(color_ref_path, np.random.rand(10,10,3))
@gin.configurable('material')
def setup_materials(class_idxs, use_texture=True, use_emission=False,
use_color_ref=True, color_variation=.2,
color_intensity=.4, num_modes=1):
"""Set up materials.
Args:
class_idxs: Reference for number of objects and their class
use_texture: Whether or not to apply a texture image
use_emission: For a completely flat, shadowless image
use_color_ref: Decides whether to class-condition color choice
color_variation: Spread from hue value provided in color_ref
color_intensity: Trade-off between color and texture image
num_modes: Support for multiple hues associated with each class
"""
if isinstance(class_idxs, int):
class_idxs = [class_idxs]
n_txts = len(class_idxs) + 1
fg_colors = []
for class_idx in class_idxs:
if use_color_ref:
c = color_ref[class_idx, np.random.randint(num_modes)]
fg_color = np.array([c[0], c[1]*.8 + .2, c[2]*.4 + .6])
rnd_offset = np.random.randn(3) * color_variation
rnd_offset[0] *= .3
fg_color += rnd_offset
fg_color[0] = fg_color[0] % 1
fg_color = np.array(list(util.hsv2rgb(fg_color.clip(0,1))) + [1])
else:
fg_color = np.random.rand(4)
fg_color[3] = 1
fg_color[1:3] = fg_color[0]
fg_colors += [fg_color]
if use_texture:
# Choose random textures
tex_img_paths = np.random.choice(util.dtd_files, n_txts, replace=False)
tex_img_paths = [util.dtd_img_dir + t for t in tex_img_paths]
for i in range(n_txts):
# Load texture images
D.images.load(tex_img_paths[i])
img_choice = tex_img_paths[i].split('/')[-1]
# Update material node
tex_node, mix_node, aux_node = get_tex_node(i)
tex_node.image = D.images.get(img_choice)
if i > 0 and use_color_ref:
# Only update foreground objects
aux_node.inputs[0].default_value = fg_colors[i-1]
mix_node.inputs[0].default_value = color_intensity
else:
for i in range(n_txts):
# Choose colors
if i > 0:
new_color = fg_colors[i-1]
else:
new_color = np.random.rand(4)
new_color[1:3] = new_color[0]
new_color[3] = 1
if use_emission:
node = get_emission_node(i)
else:
nt = D.materials[i].node_tree
node = nt.nodes.get('Principled BSDF')
node.inputs[0].default_value = new_color
for i in range(n_txts):
if i == 0:
D.materials[i].pass_index = 99
else:
D.materials[i].pass_index = class_idxs[i-1]
@gin.configurable('lighting')
def setup_lighting(r=0):
"""Position light (possibly randomly)."""
random_light_ang = -.5 + np.random.randn() * r
for i in range(len(D.objects)):
if 'Point' in D.objects[i].name:
light_pos = (0, 1.5 * np.sin(random_light_ang), 1.5 * np.cos(random_light_ang))
D.objects[i].location = light_pos
return light_pos
@gin.configurable('object', blacklist=['obj_idx', 'class_idx', 'sample_idx', 'reset_obj'])
def setup_object(obj_idx, class_idx, sample_idx,
reset_obj=True, total_num_samples=60000, n_buckets=12,
random_scaling=0, random_viewpoint=0, random_warp=.1):
"""Load object model, update its material, and place appropriately."""
global cached_obj_scale, obj_ref
if reset_obj:
# Distribute models across sample indices (for clean train/valid splits)
per_bucket = util.n_models[class_idx] // n_buckets
bucket_choice = sample_idx // (total_num_samples // n_buckets)
min_idx = bucket_choice * per_bucket
# Load object
obj_path = None
while obj_path is None:
try:
model_idx = | np.random.randint(per_bucket) | numpy.random.randint |
from __future__ import print_function
import matplotlib.pyplot as plt
import numpy as np
import random
import csv
import json
from scipy.misc import imresize
import os
CLASS_FILE = '/Users/Joshua.Newnham/Documents/Data/quickdraw_dataset/sketch_classes.csv'
SOURCE_DIR = '/Users/Joshua.Newnham/Documents/Data/quickdraw_dataset/full/simplified/'
DEST_DIR = '/Users/Joshua.Newnham/Documents/Data/quickdraw_dataset/sketchrnn_training_data/'
STAGING_DIR = '/Users/Joshua.Newnham/Documents/Data/quickdraw_dataset/staging/'
def parse_line(ndjson_line):
"""
Method taken from:
https://www.tensorflow.org/versions/master/tutorials/recurrent_quickdraw
"""
# convert string to a JSON object
sample = json.loads(ndjson_line)
label = sample['word']
strokes = sample['drawing']
stroke_lengths = [len(stroke[0]) for stroke in strokes]
total_points = sum(stroke_lengths)
np_strokes = np.zeros((total_points, 3), dtype=np.float32)
current_t = 0
for stroke in strokes:
for i in [0,1]:
np_strokes[current_t:(current_t + len(stroke[0])), i] = stroke[i]
current_t += len(stroke[0])
np_strokes[current_t - 1, 2] = 1 # stroke end
# preprocessing
# 1. size normalisation
lower_point = np.min(np_strokes[:, 0:2], axis=0)
upper_point = np.max(np_strokes[:, 0:2], axis=0)
scale = upper_point - lower_point
scale[scale == 0] = 1
np_strokes[:, 0:2] = (np_strokes[:, 0:2] - lower_point) / scale
# 2. compute deltas
np_strokes = np.hstack((
np_strokes[1:, 0:2] - np_strokes[0:-1, 0:2],
np_strokes[1:,2].reshape(np_strokes.shape[0]-1, 1)))
return np_strokes, label
def load_and_preprocess_data(class_filter_file, source_dir, dest_dir,
num_training_samples=10000, num_validation_samples=1000,
parts=1, # how many files to distribute the data across
show_progress_bar=True):
# load classes
label_filters = []
with open(class_filter_file, 'r') as f:
csv_reader = csv.reader(f)
for row in csv_reader:
label_filters.append(row[1])
# find matching files
matching_files = []
for filename in sorted(os.listdir(source_dir)):
full_filepath = os.path.join(source_dir, filename).lower()
if os.path.isfile(full_filepath) and ".ndjson" in full_filepath.lower():
for label_filter in label_filters:
if label_filter in full_filepath:
matching_files.append((label_filter, filename))
break
print("Found {} matches".format(len(matching_files)))
label2idx = {label[0]:idx for idx, label in enumerate(matching_files)}
training_stroke_lengths = []
validation_stroke_lengths = []
part_num_training_samples = int(num_training_samples / parts)
part_num_validation_samples = int(num_validation_samples / parts)
print("Breaking data into {} parts; each with {} training samples and {} validation samples".format(
parts, part_num_training_samples, part_num_validation_samples))
progress_counter = 0
progress_count = len(matching_files) * parts
for part_num in range(parts):
training_x = []
validation_x = []
training_y = np.zeros((0,len(matching_files)), dtype=np.int16)
validation_y = np.zeros((0,len(matching_files)), dtype=np.int16)
line_number = int(part_num * (part_num_training_samples + part_num_validation_samples))
print("Processing part {} of {} - current line number {}".format(
part_num, parts, line_number))
for matching_file in matching_files:
progress_counter += 1
if show_progress_bar:
print("Progress {}".format(int((float(progress_counter)/float(progress_count)) * 100)))
matching_label = matching_file[0]
matching_filename = matching_file[1]
with open(os.path.join(source_dir, matching_filename), 'r') as f:
for _ in range(line_number):
f.readline()
for i in range(part_num_training_samples):
line = f.readline()
strokes, label = parse_line(line)
training_stroke_lengths.append(len(strokes))
training_x.append(strokes)
y = np.zeros(len(matching_files), dtype=np.int16)
y[label2idx[matching_label]] = 1
training_y = np.vstack((training_y, y))
for i in range(part_num_validation_samples):
line = f.readline()
strokes, label = parse_line(line)
validation_stroke_lengths.append(len(strokes))
validation_x.append(strokes)
y = np.zeros(len(matching_files), dtype=np.int16)
y[label2idx[matching_label]] = 1
validation_y = np.vstack((validation_y, y))
training_x = np.array(training_x)
validation_x = np.array(validation_x)
# save .npy
np.save(os.path.join(dest_dir, "train_{}_x.npy".format(part_num)), training_x)
np.save(os.path.join(dest_dir, "train_{}_y.npy".format(part_num)), training_y)
np.save(os.path.join(dest_dir, "validation_{}_x.npy".format(part_num)), validation_x)
np.save(os.path.join(dest_dir, "validation_{}_y.npy".format(part_num)), validation_y)
training_stroke_lengths = | np.array(training_stroke_lengths) | numpy.array |
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib
import skimage
import skimage.io as sio
from skimage.feature import blob_dog
import cv2
import os
def gray_scaler(path):
"""Converts videofile to greyscale.
Input: path to videofile
Output: Greyscale video"""
img = sio.imread(path)
# Read image file with skimage.io.
if len(img) > 1:
# If the image file is multiple page, treat the first column as page.
graylist = []
# Empty list to store output.
# Iterate through the length of the file.
for i in range(len(img)):
# Append the grayscale result into empty list.
graylist.append(skimage.color.rgb2gray(img[i, :]))
# Turn the output into numpy array.
gray = np.asarray(graylist)
# If the image file is single page, directly use the skimage
# built-in rgb2gray function.
else:
gray = skimage.color.rgb2gray(img)
return gray
def img_normalizer(img):
"""Normalizes pixel brightness within an image to 255.
Input: Image or frame of video
Output: Normalized array, mean of normalized array and standard deviation,
and integer list of the normalized array."""
# Set empty lists to store output.
maxlist = []
minlist = []
# Iterate through the file length to find the
# maximum and minimum within the file.
for i in range(len(img)):
gmax = np.amax(img[i, :])
gmin = np.amin(img[i, :])
maxlist.append(gmax)
minlist.append(gmin)
graymax = np.asarray(maxlist).max()
graymin = np.asarray(minlist).min()
# Set up zero function to create a zero array to store output
# and maintain the shape.
norm_gray = np.zeros(img.shape)
# Iterate through the file length to normalize the pixel value
# from 0 to 255.
for i in range(len(img)):
norm_gray[i, :] = ((img[i, :] - graymin) / (graymax - graymin)) * 255
# Find and output the mean value and standard deviation of normalized
# images as a parameter in ROI locator function.
norm_gray_mean = []
norm_gray_std = []
for i in range(len(norm_gray)):
norm_gray_mean.append( | np.asarray(norm_gray[i]) | numpy.asarray |
#! /usr/bin/env python
import argparse
def process_image(args):
import os
from scipy.ndimage.filters import rank_filter
import numpy as np
from PIL import Image, ImageEnhance, ImageFilter, ImageDraw
#import matplotlib.pyplot as plt
import cv2
path = args.input
out_path = args.output
def deskew(im, save_directory, direct, max_skew=10):
if direct == "Y":
height, width = im.shape[:2]
print(height)
print(width)
# Create a grayscale image and denoise it
if channels != 0:
im_gs = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
im_gs = cv2.fastNlMeansDenoising(im_gs, h=3)
else:
im_gs = cv2.fastNlMeansDenoising(im, h=3)
# print("De-noise ok.")
# Create an inverted B&W copy using Otsu (automatic) thresholding
im_bw = cv2.threshold(im_gs, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
# print("Otsu ok.")
# Detect lines in this image. Parameters here mostly arrived at by trial and error.
# If the initial threshold is too high, then settle for a lower threshold value
try:
lines = cv2.HoughLinesP(im_bw, 1, np.pi / 180, 200, minLineLength=width / 12, maxLineGap=width / 150)
# Collect the angles of these lines (in radians)
angles = []
for line in lines:
x1, y1, x2, y2 = line[0]
geom = np.arctan2(y2 - y1, x2 - x1)
print(np.rad2deg(geom))
angles.append(geom)
except:
lines = cv2.HoughLinesP(im_bw, 1, np.pi / 180, 150, minLineLength=width / 12, maxLineGap=width / 150)
# Collect the angles of these lines (in radians)
angles = []
for line in lines:
x1, y1, x2, y2 = line[0]
geom = np.arctan2(y2 - y1, x2 - x1)
print(np.rad2deg(geom))
angles.append(geom)
angles = [angle for angle in angles if abs(angle) < np.deg2rad(max_skew)]
if len(angles) < 5:
# Insufficient data to deskew
print("Insufficient data to deskew. Cropped image might already be straight. Cropped image saved.")
cv2.imwrite(img=im,
filename=save_directory + cropped_jpeg_list[pg_count])
#im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
#im_pil = Image.fromarray(im)
#im_pil.save(save_directory + cropped_jpeg_list[pg_count])
print("Cropped image saved.")
return im
else:
# Average the angles to a degree offset
angle_deg = np.rad2deg(np.median(angles))
# Rotate the image by the residual offset
M = cv2.getRotationMatrix2D((width / 2, height / 2), angle_deg, 1)
im = cv2.warpAffine(im, M, (width, height), borderMode=cv2.BORDER_REPLICATE)
# Plot if a full run
# Always save deskewed image
if args.type == "full":
plt.subplot(111),plt.imshow(im)
plt.title('Deskewed Image'), plt.xticks([]), plt.yticks([])
plt.show()
cropped_jpeg = cropped_jpeg_list[pg_count]
cv2.imwrite(img = im,
filename = save_directory + cropped_jpeg[:-5] + "_rotated.jpeg")
print("Only de-skewed cropped image saved.")
return im
else:
height, width = im.shape[:2]
print(height)
print(width)
# Create a grayscale image and denoise it
im_gs = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
im_gs = cv2.fastNlMeansDenoising(im_gs, h=3)
# Create an inverted B&W copy using Otsu (automatic) thresholding
im_bw = cv2.threshold(im_gs, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
# Detect lines in this image. Parameters here mostly arrived at by trial and error.
# If the initial threshold is too high, then settle for a lower threshold value
try:
lines = cv2.HoughLinesP(im_bw, 1, np.pi / 180, 200, minLineLength=width / 12, maxLineGap=width / 150)
# Collect the angles of these lines (in radians)
angles = []
for line in lines:
x1, y1, x2, y2 = line[0]
geom = np.arctan2(y2 - y1, x2 - x1)
print(np.rad2deg(geom))
angles.append(geom)
except TypeError:
lines = cv2.HoughLinesP(im_bw, 1, np.pi / 180, 150, minLineLength=width / 12, maxLineGap=width / 150)
# Collect the angles of these lines (in radians)
angles = []
for line in lines:
x1, y1, x2, y2 = line[0]
geom = np.arctan2(y2 - y1, x2 - x1)
print(np.rad2deg(geom))
angles.append(geom)
except:
print ("TypeError encountered with HoughLines. Check cropped image output. Only cropped image saved.")
return
angles = [angle for angle in angles if abs(angle) < np.deg2rad(max_skew)]
if len(angles) < 5:
# Insufficient data to deskew
print("Insufficient data to deskew. Cropped image might already be straight.")
return im
else:
# Average the angles to a degree offset
angle_deg = np.rad2deg(np.median(angles))
# Rotate the image by the residual offset
M = cv2.getRotationMatrix2D((width / 2, height / 2), angle_deg, 1)
im = cv2.warpAffine(im, M, (width, height), borderMode=cv2.BORDER_REPLICATE)
# Plot if a full run
# Always save deskewed image
if args.type == "full":
plt.subplot(111), plt.imshow(im)
plt.title('Deskewed Image'), plt.xticks([]), plt.yticks([])
plt.show()
cropped_jpeg = cropped_jpeg_list[pg_count]
cv2.imwrite(img=im,
filename=save_directory + cropped_jpeg[:-5] + "_rotated.jpeg")
print("Rotated cropped image saved")
return im
def dilate(ary, N, iterations):
"""Dilate using an NxN '+' sign shape. ary is np.uint8."""
kernel = | np.zeros((N,N), dtype=np.uint8) | numpy.zeros |
import tensorflow as tf
from tensorflow.keras import layers
import scipy
import numpy as np
from Unet_util import Unet
from my_utils import *
class upsqueeze(layers.Layer):
def __init__(self, factor=2):
super(upsqueeze, self).__init__()
self.f = factor
def call(self, x, reverse=False):
f = self.f
# upsampling via squeeze
b, N1, N2, nch = x.get_shape().as_list()
if not reverse:
x = tf.reshape(
tf.transpose(
tf.reshape(x, shape=[b, N1//f, f, N2//f, f, nch]),
[0, 1, 3, 2, 4, 5]),
[b, N1//f, N2//f, nch*f*f])
else:
x = tf.reshape(tf.transpose(
tf.reshape(x, shape=[b, N1, N2, f, f, nch//f**2]),
[0, 1, 3, 2, 4, 5]), [b, N1*f, N2*f, nch//f**2])
return x, 0.0
class actnorm(layers.Layer):
"""Activation normalization layers that
initialized via data"""
def __init__(self, **kwargs):
super(actnorm, self).__init__()
# assign checks for first call
self.assigned = False
def build(self, input_shape):
if len(input_shape) == 2:
self.b = self.add_weight(name='bias',
shape=(1, input_shape[1]),
trainable= True)
self.scale = self.add_weight(name='scale',
shape=(1, input_shape[1]),
trainable= True)
else:
self.b = self.add_weight(name='bias',
shape=(1, 1, 1, input_shape[3]),
trainable= True)
self.scale = self.add_weight(name='scale',
shape=(1, 1, 1, input_shape[3]),
trainable= True)
def call(self, x, reverse=False):
if len(x.shape) == 2:
red_axes = [0]
else:
red_axes = [0, 1, 2]
if not self.assigned:
"""https://github.com/tensorflow/tensor2tensor/blob/21dba2c1bdcc7ab582a2bfd8c0885c217963bb4f/tensor2tensor/models/research/glow_ops.py#L317"""
self.b.assign(-tf.reduce_mean(x, red_axes, keepdims=True))
x_var = tf.reduce_mean((x+self.b)**2, red_axes, keepdims=True)
init_value = tf.math.log(1.0/(tf.math.sqrt(x_var) + 1e-6))
self.scale.assign(init_value)
self.assigned = True
_, height, width, channels = x.get_shape().as_list()
if not reverse:
x += self.b
x *= tf.math.exp(self.scale)
else:
x *= tf.math.exp(-self.scale)
x -= self.b
log_s = self.scale
dlogdet = tf.reduce_sum(log_s)* \
tf.cast(height * width, log_s.dtype)
if reverse:
dlogdet *= -1
return x, dlogdet
class invertible_1x1_conv(layers.Layer):
"""Invertible 1x1 convolutional layers"""
def __init__(self, **kwargs):
super(invertible_1x1_conv, self).__init__()
self.type = kwargs.get('op_type', 'bijective')
self.gamma = kwargs.get('gamma', 0.0)
self.activation = kwargs.get('activation', 'linear')
def build(self, input_shape):
_, height, width, channels = input_shape
if self.type=='bijective':
random_matrix = np.random.randn(channels, channels).astype("float32")
np_w = scipy.linalg.qr(random_matrix)[0].astype("float32")
self.activation = 'linear'
self.LU = True
if self.LU:
np_p, np_l, np_u = scipy.linalg.lu(np_w)
np_s = np.diag(np_u)
np_sign_s = np.sign(np_s)
np_log_s = np.log(np.abs(np_s))
np_u = np.triu(np_u, k=1)
self.p = tf.Variable(np_p, name='P', trainable=False)
self.l = tf.Variable(np_l, name='L', trainable=True)
self.sign_s = tf.Variable(np_sign_s, name='sign_S',
trainable=False)
self.log_s = tf.Variable(np_log_s, name='log_S',
trainable=True)
self.u = tf.Variable(np_u, name='U',
trainable=True)
else:
self.w = tf.Variable(np_w, name='W', trainable=True)
else:
self.LU = False
if self.activation == 'linear':
random_matrix_1 = np.random.randn(channels//2, channels//2).astype("float32")
random_matrix_2 = np.random.randn(channels//2, channels//2).astype("float32")
np_w_1 = scipy.linalg.qr(random_matrix_1)[0].astype("float32")
np_w_2 = scipy.linalg.qr(random_matrix_2)[0].astype("float32")
np_w = np.concatenate([np_w_1, np_w_2], axis=0)/(np.sqrt(2.0))
elif self.activation == 'relu':
random_matrix_1 = np.random.randn(channels//2, channels//2).astype("float32")
np_w = scipy.linalg.qr(random_matrix_1)[0].astype("float32")
self.w = tf.Variable(np_w, name='W', trainable=True)
def call(self, x, reverse=False):
# If height or width cannot be statically determined then they end up as
# tf.int32 tensors, which cannot be directly multiplied with a floating
# point tensor without a cast.
_, height, width, channels = x.get_shape().as_list()
if self.type=='bijective':
if self.LU:
l_mask = tf.convert_to_tensor(np.tril( | np.ones([channels, channels], dtype=np.float32) | numpy.ones |
# emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the NiBabel package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
''' Utilities for testing '''
from __future__ import division, print_function
import re
import os
import sys
import warnings
from os.path import dirname, abspath, join as pjoin
import numpy as np
from numpy.testing import assert_array_equal
from numpy.testing.decorators import skipif
# Allow failed import of nose if not now running tests
try:
from nose.tools import (assert_equal, assert_not_equal,
assert_true, assert_false, assert_raises)
except ImportError:
pass
from six.moves import zip_longest
# set path to example data
data_path = abspath(pjoin(dirname(__file__), '..', 'tests', 'data'))
from .np_features import memmap_after_ufunc
def assert_dt_equal(a, b):
""" Assert two numpy dtype specifiers are equal
Avoids failed comparison between int32 / int64 and intp
"""
assert_equal(np.dtype(a).str, np.dtype(b).str)
def assert_allclose_safely(a, b, match_nans=True, rtol=1e-5, atol=1e-8):
""" Allclose in integers go all wrong for large integers
"""
a = np.atleast_1d(a) # 0d arrays cannot be indexed
a, b = np.broadcast_arrays(a, b)
if match_nans:
nans = np.isnan(a)
np.testing.assert_array_equal(nans, | np.isnan(b) | numpy.isnan |
import numpy as np
import pytest
from scipy.stats import (bootstrap, BootstrapDegenerateDistributionWarning,
monte_carlo_test, permutation_test)
from numpy.testing import assert_allclose, assert_equal, suppress_warnings
from scipy import stats
from scipy import special
from .. import _resampling as _resampling
from scipy._lib._util import rng_integers
from scipy.optimize import root
def test_bootstrap_iv():
message = "`data` must be a sequence of samples."
with pytest.raises(ValueError, match=message):
bootstrap(1, np.mean)
message = "`data` must contain at least one sample."
with pytest.raises(ValueError, match=message):
bootstrap(tuple(), np.mean)
message = "each sample in `data` must contain two or more observations..."
with pytest.raises(ValueError, match=message):
bootstrap(([1, 2, 3], [1]), np.mean)
message = ("When `paired is True`, all samples must have the same length ")
with pytest.raises(ValueError, match=message):
bootstrap(([1, 2, 3], [1, 2, 3, 4]), np.mean, paired=True)
message = "`vectorized` must be `True` or `False`."
with pytest.raises(ValueError, match=message):
bootstrap(1, np.mean, vectorized='ekki')
message = "`axis` must be an integer."
with pytest.raises(ValueError, match=message):
bootstrap(([1, 2, 3],), np.mean, axis=1.5)
message = "could not convert string to float"
with pytest.raises(ValueError, match=message):
bootstrap(([1, 2, 3],), np.mean, confidence_level='ni')
message = "`n_resamples` must be a positive integer."
with pytest.raises(ValueError, match=message):
bootstrap(([1, 2, 3],), np.mean, n_resamples=-1000)
message = "`n_resamples` must be a positive integer."
with pytest.raises(ValueError, match=message):
bootstrap(([1, 2, 3],), np.mean, n_resamples=1000.5)
message = "`batch` must be a positive integer or None."
with pytest.raises(ValueError, match=message):
bootstrap(([1, 2, 3],), np.mean, batch=-1000)
message = "`batch` must be a positive integer or None."
with pytest.raises(ValueError, match=message):
bootstrap(([1, 2, 3],), np.mean, batch=1000.5)
message = "`method` must be in"
with pytest.raises(ValueError, match=message):
bootstrap(([1, 2, 3],), np.mean, method='ekki')
message = "`method = 'BCa' is only available for one-sample statistics"
def statistic(x, y, axis):
mean1 = np.mean(x, axis)
mean2 = np.mean(y, axis)
return mean1 - mean2
with pytest.raises(ValueError, match=message):
bootstrap(([.1, .2, .3], [.1, .2, .3]), statistic, method='BCa')
message = "'herring' cannot be used to seed a"
with pytest.raises(ValueError, match=message):
bootstrap(([1, 2, 3],), np.mean, random_state='herring')
@pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa'])
@pytest.mark.parametrize("axis", [0, 1, 2])
def test_bootstrap_batch(method, axis):
# for one-sample statistics, batch size shouldn't affect the result
np.random.seed(0)
x = np.random.rand(10, 11, 12)
res1 = bootstrap((x,), np.mean, batch=None, method=method,
random_state=0, axis=axis, n_resamples=100)
res2 = bootstrap((x,), np.mean, batch=10, method=method,
random_state=0, axis=axis, n_resamples=100)
assert_equal(res2.confidence_interval.low, res1.confidence_interval.low)
assert_equal(res2.confidence_interval.high, res1.confidence_interval.high)
assert_equal(res2.standard_error, res1.standard_error)
@pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa'])
def test_bootstrap_paired(method):
# test that `paired` works as expected
np.random.seed(0)
n = 100
x = np.random.rand(n)
y = np.random.rand(n)
def my_statistic(x, y, axis=-1):
return ((x-y)**2).mean(axis=axis)
def my_paired_statistic(i, axis=-1):
a = x[i]
b = y[i]
res = my_statistic(a, b)
return res
i = np.arange(len(x))
res1 = bootstrap((i,), my_paired_statistic, random_state=0)
res2 = bootstrap((x, y), my_statistic, paired=True, random_state=0)
assert_allclose(res1.confidence_interval, res2.confidence_interval)
assert_allclose(res1.standard_error, res2.standard_error)
@pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa'])
@pytest.mark.parametrize("axis", [0, 1, 2])
@pytest.mark.parametrize("paired", [True, False])
def test_bootstrap_vectorized(method, axis, paired):
# test that paired is vectorized as expected: when samples are tiled,
# CI and standard_error of each axis-slice is the same as those of the
# original 1d sample
if not paired and method == 'BCa':
# should re-assess when BCa is extended
pytest.xfail(reason="BCa currently for 1-sample statistics only")
np.random.seed(0)
def my_statistic(x, y, z, axis=-1):
return x.mean(axis=axis) + y.mean(axis=axis) + z.mean(axis=axis)
shape = 10, 11, 12
n_samples = shape[axis]
x = np.random.rand(n_samples)
y = np.random.rand(n_samples)
z = np.random.rand(n_samples)
res1 = bootstrap((x, y, z), my_statistic, paired=paired, method=method,
random_state=0, axis=0, n_resamples=100)
reshape = [1, 1, 1]
reshape[axis] = n_samples
x = np.broadcast_to(x.reshape(reshape), shape)
y = np.broadcast_to(y.reshape(reshape), shape)
z = np.broadcast_to(z.reshape(reshape), shape)
res2 = bootstrap((x, y, z), my_statistic, paired=paired, method=method,
random_state=0, axis=axis, n_resamples=100)
assert_allclose(res2.confidence_interval.low,
res1.confidence_interval.low)
assert_allclose(res2.confidence_interval.high,
res1.confidence_interval.high)
assert_allclose(res2.standard_error, res1.standard_error)
result_shape = list(shape)
result_shape.pop(axis)
assert_equal(res2.confidence_interval.low.shape, result_shape)
assert_equal(res2.confidence_interval.high.shape, result_shape)
assert_equal(res2.standard_error.shape, result_shape)
@pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa'])
def test_bootstrap_against_theory(method):
# based on https://www.statology.org/confidence-intervals-python/
data = stats.norm.rvs(loc=5, scale=2, size=5000, random_state=0)
alpha = 0.95
dist = stats.t(df=len(data)-1, loc=np.mean(data), scale=stats.sem(data))
expected_interval = dist.interval(confidence=alpha)
expected_se = dist.std()
res = bootstrap((data,), np.mean, n_resamples=5000,
confidence_level=alpha, method=method,
random_state=0)
assert_allclose(res.confidence_interval, expected_interval, rtol=5e-4)
assert_allclose(res.standard_error, expected_se, atol=3e-4)
tests_R = {"basic": (23.77, 79.12),
"percentile": (28.86, 84.21),
"BCa": (32.31, 91.43)}
@pytest.mark.parametrize("method, expected", tests_R.items())
def test_bootstrap_against_R(method, expected):
# Compare against R's "boot" library
# library(boot)
# stat <- function (x, a) {
# mean(x[a])
# }
# x <- c(10, 12, 12.5, 12.5, 13.9, 15, 21, 22,
# 23, 34, 50, 81, 89, 121, 134, 213)
# # Use a large value so we get a few significant digits for the CI.
# n = 1000000
# bootresult = boot(x, stat, n)
# result <- boot.ci(bootresult)
# print(result)
x = np.array([10, 12, 12.5, 12.5, 13.9, 15, 21, 22,
23, 34, 50, 81, 89, 121, 134, 213])
res = bootstrap((x,), np.mean, n_resamples=1000000, method=method,
random_state=0)
assert_allclose(res.confidence_interval, expected, rtol=0.005)
tests_against_itself_1samp = {"basic": 1780,
"percentile": 1784,
"BCa": 1784}
@pytest.mark.parametrize("method, expected",
tests_against_itself_1samp.items())
def test_bootstrap_against_itself_1samp(method, expected):
# The expected values in this test were generated using bootstrap
# to check for unintended changes in behavior. The test also makes sure
# that bootstrap works with multi-sample statistics and that the
# `axis` argument works as expected / function is vectorized.
np.random.seed(0)
n = 100 # size of sample
n_resamples = 999 # number of bootstrap resamples used to form each CI
confidence_level = 0.9
# The true mean is 5
dist = stats.norm(loc=5, scale=1)
stat_true = dist.mean()
# Do the same thing 2000 times. (The code is fully vectorized.)
n_replications = 2000
data = dist.rvs(size=(n_replications, n))
res = bootstrap((data,),
statistic=np.mean,
confidence_level=confidence_level,
n_resamples=n_resamples,
batch=50,
method=method,
axis=-1)
ci = res.confidence_interval
# ci contains vectors of lower and upper confidence interval bounds
ci_contains_true = np.sum((ci[0] < stat_true) & (stat_true < ci[1]))
assert ci_contains_true == expected
# ci_contains_true is not inconsistent with confidence_level
pvalue = stats.binomtest(ci_contains_true, n_replications,
confidence_level).pvalue
assert pvalue > 0.1
tests_against_itself_2samp = {"basic": 892,
"percentile": 890}
@pytest.mark.parametrize("method, expected",
tests_against_itself_2samp.items())
def test_bootstrap_against_itself_2samp(method, expected):
# The expected values in this test were generated using bootstrap
# to check for unintended changes in behavior. The test also makes sure
# that bootstrap works with multi-sample statistics and that the
# `axis` argument works as expected / function is vectorized.
np.random.seed(0)
n1 = 100 # size of sample 1
n2 = 120 # size of sample 2
n_resamples = 999 # number of bootstrap resamples used to form each CI
confidence_level = 0.9
# The statistic we're interested in is the difference in means
def my_stat(data1, data2, axis=-1):
mean1 = np.mean(data1, axis=axis)
mean2 = np.mean(data2, axis=axis)
return mean1 - mean2
# The true difference in the means is -0.1
dist1 = stats.norm(loc=0, scale=1)
dist2 = stats.norm(loc=0.1, scale=1)
stat_true = dist1.mean() - dist2.mean()
# Do the same thing 1000 times. (The code is fully vectorized.)
n_replications = 1000
data1 = dist1.rvs(size=(n_replications, n1))
data2 = dist2.rvs(size=(n_replications, n2))
res = bootstrap((data1, data2),
statistic=my_stat,
confidence_level=confidence_level,
n_resamples=n_resamples,
batch=50,
method=method,
axis=-1)
ci = res.confidence_interval
# ci contains vectors of lower and upper confidence interval bounds
ci_contains_true = np.sum((ci[0] < stat_true) & (stat_true < ci[1]))
assert ci_contains_true == expected
# ci_contains_true is not inconsistent with confidence_level
pvalue = stats.binomtest(ci_contains_true, n_replications,
confidence_level).pvalue
assert pvalue > 0.1
@pytest.mark.parametrize("method", ["basic", "percentile"])
@pytest.mark.parametrize("axis", [0, 1])
def test_bootstrap_vectorized_3samp(method, axis):
def statistic(*data, axis=0):
# an arbitrary, vectorized statistic
return sum((sample.mean(axis) for sample in data))
def statistic_1d(*data):
# the same statistic, not vectorized
for sample in data:
assert sample.ndim == 1
return statistic(*data, axis=0)
| np.random.seed(0) | numpy.random.seed |
#!/usr/bin/env python
# Copyright 2014-2018 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy
import copy
from functools import reduce
from pyscf import gto, scf, lib, symm
from pyscf import cc
from pyscf.cc import uccsd_t
from pyscf.cc import gccsd_t
def setUpModule():
global mol, mol1, mf, myucc, mygcc
mol = gto.Mole()
mol.verbose = 5
mol.output = '/dev/null'
mol.atom = [
[8 , (0. , 0. , 0.)],
[1 , (0. , -.757 , .587)],
[1 , (0. , .757 , .587)]]
mol.spin = 2
mol.basis = '3-21g'
mol.symmetry = 'C2v'
mol.build()
mol1 = copy.copy(mol)
mol1.symmetry = False
mf = scf.UHF(mol1).run(conv_tol=1e-14)
myucc = cc.UCCSD(mf).run()
mygcc = cc.GCCSD(mf).run()
def tearDownModule():
global mol, mol1, mf, myucc, mygcc
mol.stdout.close()
del mol, mol1, mf, myucc, mygcc
class KnownValues(unittest.TestCase):
def test_gccsd_t_compare_uccsd_t(self):
self.assertAlmostEqual(myucc.ccsd_t(), mygcc.ccsd_t(t1=None), 7)
def test_gccsd_t(self):
mf1 = copy.copy(mf)
nao, nmo = mf.mo_coeff[0].shape
numpy.random.seed(10)
mf1.mo_coeff = numpy.random.random((2,nao,nmo))
numpy.random.seed(12)
nocca, noccb = mol.nelec
nmo = mf1.mo_occ[0].size
nvira = nmo - nocca
nvirb = nmo - noccb
t1a = .1 * numpy.random.random((nocca,nvira))
t1b = .1 * numpy.random.random((noccb,nvirb))
t2aa = .1 * numpy.random.random((nocca,nocca,nvira,nvira))
t2aa = t2aa - t2aa.transpose(0,1,3,2)
t2aa = t2aa - t2aa.transpose(1,0,2,3)
t2bb = .1 * numpy.random.random((noccb,noccb,nvirb,nvirb))
t2bb = t2bb - t2bb.transpose(0,1,3,2)
t2bb = t2bb - t2bb.transpose(1,0,2,3)
t2ab = .1 * | numpy.random.random((nocca,noccb,nvira,nvirb)) | numpy.random.random |
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 1 13:37:29 2018
Class for implementing the scores for the composition UI and also the display image
with all the scores@author: <NAME>
"""
import cv2
import numpy as np
import itertools
from scipy.spatial import distance as dist
from skimage.measure import compare_ssim as ssim
from skimage.segmentation import slic
from skimage.segmentation import mark_boundaries
from skimage.util import img_as_float
import pandas as pd
from SaliencyMap import Saliency
class AutoScoreML ():
def __init__(self, extractedFeatures ):
self.df = pd.DataFrame(np.array(extractedFeatures))
def autoScoreML(self):
filepath_01 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoringApril30.csv'
filepath_02 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoringApril30_B.csv'
# =============================================================================
# filepath_03 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring20apr2018_c.csv'
# filepath_04 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring20apr2018_d.csv'
# filepath_05 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring20apr2018_e.csv'
# filepath_06 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring21apr2018_a.csv'
# filepath_07 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring21apr2018_b.csv'
# filepath_08 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring21apr2018_c.csv'
# filepath_09 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring22apr2018_a.csv'
#
# =============================================================================
df_01 = pd.read_csv(filepath_01)
df_02 = pd.read_csv(filepath_02)
# =============================================================================
# df_03 = pd.read_csv(filepath_03)
# df_04 = pd.read_csv(filepath_04)
# df_05 = pd.read_csv(filepath_05)
# df_06 = pd.read_csv(filepath_06)
# df_07 = pd.read_csv(filepath_07)
# df_08 = pd.read_csv(filepath_08)
# df_09 = pd.read_csv(filepath_09)
# =============================================================================
frames= [df_01, df_02
#,df_03, df_04, df_05, df_06, df_07, df_08, df_09
]
df = pd.concat(frames)
df.reset_index(drop = True, inplace = True)
# drop the Null Value
df.dropna(inplace=True)
# select the features to use:
df.drop(['file', 'CompositionUserChoice'], axis=1, inplace=True)
X_train = df.drop('judge', axis = 1)
#y = df['judge']
X_test = self.df
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
# construct the ANN
# import the Keras Library and the required packages
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.models import model_from_json
import os
# load json and create model
json_file = open("D:\\google drive\\A PhD Project at Godlsmiths\\ArtistSupervisionProject\\code\\classifier.json", 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
loaded_model.load_weights("D:\\google drive\\A PhD Project at Godlsmiths\\ArtistSupervisionProject\\code\\classifier.h5")
print("Loaded model from disk")
# evaluate loaded model on test data
loaded_model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# =============================================================================
# score = loaded_model.evaluate(X_test, y_test, verbose=0)
# print("%s: %.2f%%" % (loaded_model.metrics_names[1], score[1]*100))
# =============================================================================
# predict the test set results
# =============================================================================
y_pred = loaded_model.predict(X_test)
for y in y_pred:
res = np.argmax(y)
return res
class CompositionAnalysis ():
def __init__ (self, image = None, imagepath = None, mask = None):
if imagepath:
self.image = cv2.imread(imagepath)
self.imagepath = imagepath
else:
self.image = image
self.totalPixels = self.image.size
self.gray = cv2.cvtColor(self.image, cv2.COLOR_BGR2GRAY)
# =============================================================================
#
# def _borderCut(self, borderCutted):
#
#
# borderCutted[0:2, :] = 0
# borderCutted[-2:self.image.shape[0], :] = 0
# borderCutted[:, 0:2] = 0
# borderCutted[:, -2:self.image.shape[1]] = 0
#
# return borderCutted
# =============================================================================
def synthesisScores (self):
# return the display image for the UI
rows, cols, depth = self.image.shape
scoreSynthesisImg = np.zeros(self.image.shape, dtype="uint8")
# make solid color for the background
scoreSynthesisImg[:] = (218,218,218)
cv2.line(scoreSynthesisImg, ( int(self.image.shape[1] * 0.6), 20), ( int(self.image.shape[1] * 0.6),self.image.shape[0]), (50,50,140), 1)
cv2.line(scoreSynthesisImg, ( int(self.image.shape[1] * 0.75), 20), ( int(self.image.shape[1] * 0.75),self.image.shape[0]), (60,140,90), 1)
# collect the balance scores:
VisualBalanceScore = ( self.scoreVisualBalance + self.scoreHullBalance ) / 2
# corner balance and line
lineandcornerBalance = (self.cornersBalance + self.verticalandHorizBalanceMean ) / 2
# collect the rythm scores:
#asymmetry = (self.scoreFourier + self.verticalandHorizBalanceMean + self.ssimAsymmetry) / 3
asymmetry = (self.ssimAsymmetry +self.diagonalAsymmetry) / 2
scoreFourier = self.scoreFourier
# collect the gold proportion scores:
goldScore = self.scoreProportionAreaVsGoldenRatio
#score composition
scoreCompMax = max(self.diagonalasymmetryBalance, self.ScoreFourTriangleAdapted,self.ScoreBigTriangle)
ruleOfThird = self.ScoreRuleOfThird
# diagonal balance commposition
#diagonalasymmetryBalance = self.diagonalasymmetryBalance
# spiral
spiralScore = self.scoreSpiralGoldenRatio
# fractal
fractalScoreFromTarget = self.fractalScoreFromTarget
cv2.putText(scoreSynthesisImg, "Balance", (20, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1)
scoreSynthesisImg[20:24, 10:int(VisualBalanceScore*cols*0.9)] = (120,60,120)
cv2.putText(scoreSynthesisImg, "Rule of Third", (20, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1)
scoreSynthesisImg[35:39, 10:int(ruleOfThird*cols*0.9)] = (120,60,120)
cv2.putText(scoreSynthesisImg, "Composition Max", (20, 45), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1)
scoreSynthesisImg[50:54, 10:int(scoreCompMax*cols*0.9)] = (120,60,120)
#cv2.putText(scoreSynthesisImg, "Diagonal Comp", (20, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1)
#scoreSynthesisImg[65:70, 10:int(diagonalasymmetryBalance*cols*0.9)] = (120,60,120)
cv2.putText(scoreSynthesisImg, "Spiral ", (20, 75), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1)
scoreSynthesisImg[80:84, 10:int(spiralScore*cols*0.9)] = (120,60,120)
cv2.putText(scoreSynthesisImg, "Asymmetry ", (20, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1)
scoreSynthesisImg[95:99, 10:int(asymmetry*cols*0.9)] = (120,60,120)
cv2.putText(scoreSynthesisImg, "Fourier ", (20, 105), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1)
scoreSynthesisImg[110:114, 10:int(scoreFourier*cols*0.9)] = (120,60,120)
cv2.putText(scoreSynthesisImg, "CornerLinesBalance ", (20, 120), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1)
scoreSynthesisImg[125:129, 10:int(lineandcornerBalance*cols*0.9)] = (120,60,120)
cv2.putText(scoreSynthesisImg, "Proportion ", (20, 135), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1)
scoreSynthesisImg[140:144, 10:int(goldScore*cols*0.9)] = (120,60,120)
cv2.putText(scoreSynthesisImg, "Fractal ", (20, 150), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1)
scoreSynthesisImg[155:159, 10:int(fractalScoreFromTarget*cols*0.9)] = (120,60,120)
#cv2.putText(scoreSynthesisImg, "Balance, asymmetry, Proportion, corner, spiral ", (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1)
#cv2.putText(scoreSynthesisImg, "Possible Comp: {} ".format(selectedComp), (10, 110), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1)
return scoreSynthesisImg
def fourierOnEdgesDisplay (self):
ImgImpRegionA, contours, keypoints = self._orbSegmentation ( maxKeypoints = 10000, edged = False, edgesdilateOpen = True, method = cv2.RETR_EXTERNAL)
cropped_img_lf = ImgImpRegionA[0:int(ImgImpRegionA.shape[0]), 0: int(ImgImpRegionA.shape[1] / 2) ]
cropped_img_rt = ImgImpRegionA[0:int(ImgImpRegionA.shape[0]), int(ImgImpRegionA.shape[1] / 2): ImgImpRegionA.shape[1] ]
#imgDftGray = self._returnDFT(ImgImpRegionA)
imgDftGraylf = self._returnDFT(cropped_img_lf)
imgDftGrayRt = self._returnDFT(cropped_img_rt)
# number of pixels in left and number of pixels in right
numberOfWhite_lf = (imgDftGraylf>0).sum()
numberOfWhite_Rt = (imgDftGrayRt > 0).sum()
# create the stiched picture
stichedDft = self.image.copy()
stichedDft = np.concatenate((imgDftGraylf,imgDftGrayRt ), axis = 1)
score = (abs(numberOfWhite_lf - numberOfWhite_Rt)) / (numberOfWhite_lf + numberOfWhite_Rt)
# to penalise the change in rithm
scoreFourier = np.exp(-score * self.image.shape[0]/2)
#cv2.putText(stichedDft, "diff: {:.3f}".format(score), (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 0, 0), 1)
self.scoreFourier = scoreFourier
return stichedDft, scoreFourier
def _returnDFT (self, imageForDft):
ImgImpRegionA = imageForDft
ImgImpRegionA = cv2.cvtColor(ImgImpRegionA, cv2.COLOR_BGR2GRAY)
#dft = cv2.dft(np.float32(self.gray),flags = cv2.DFT_COMPLEX_OUTPUT)
dft = cv2.dft(np.float32(ImgImpRegionA),flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))
cv2.normalize( magnitude_spectrum, magnitude_spectrum, alpha = 0 , beta = 1 , norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)
imgDftGray = np.array(magnitude_spectrum * 255, dtype = np.uint8)
meanThres = np.mean(imgDftGray)
_, imgDftGray = cv2.threshold(imgDftGray,meanThres, 255, cv2.THRESH_BINARY)
imgDftGray = cv2.cvtColor(imgDftGray, cv2.COLOR_GRAY2BGR)
return imgDftGray
def HOGcompute (self):
gray = self.gray.copy()
# h x w in pixels
cell_size = (8, 8)
# h x w in cells
block_size = (2, 2)
# number of orientation bins
nbins = 9
# Using OpenCV's HOG Descriptor
# winSize is the size of the image cropped to a multiple of the cell size
hog = cv2.HOGDescriptor(_winSize=(gray.shape[1] // cell_size[1] * cell_size[1],
gray.shape[0] // cell_size[0] * cell_size[0]),
_blockSize=(block_size[1] * cell_size[1],
block_size[0] * cell_size[0]),
_blockStride=(cell_size[1], cell_size[0]),
_cellSize=(cell_size[1], cell_size[0]),
_nbins=nbins)
# Create numpy array shape which we use to create hog_feats
n_cells = (gray.shape[0] // cell_size[0], gray.shape[1] // cell_size[1])
# We index blocks by rows first.
# hog_feats now contains the gradient amplitudes for each direction,
# for each cell of its group for each group. Indexing is by rows then columns.
hog_feats = hog.compute(gray).reshape(n_cells[1] - block_size[1] + 1,
n_cells[0] - block_size[0] + 1,
block_size[0], block_size[1], nbins).transpose((1, 0, 2, 3, 4))
# Create our gradients array with nbin dimensions to store gradient orientations
gradients = np.zeros((n_cells[0], n_cells[1], nbins))
# Create array of dimensions
cell_count = np.full((n_cells[0], n_cells[1], 1), 0, dtype=int)
# Block Normalization
for off_y in range(block_size[0]):
for off_x in range(block_size[1]):
gradients[off_y:n_cells[0] - block_size[0] + off_y + 1,
off_x:n_cells[1] - block_size[1] + off_x + 1] += \
hog_feats[:, :, off_y, off_x, :]
cell_count[off_y:n_cells[0] - block_size[0] + off_y + 1,
off_x:n_cells[1] - block_size[1] + off_x + 1] += 1
# Average gradients
gradients /= cell_count
# =============================================================================
# # Plot HOGs using Matplotlib
# # angle is 360 / nbins * direction
# print (gradients.shape)
#
# color_bins = 5
# plt.pcolor(gradients[:, :, color_bins])
# plt.gca().invert_yaxis()
# plt.gca().set_aspect('equal', adjustable='box')
# plt.colorbar()
# plt.show()
# cv2.destroyAllWindows()
# =============================================================================
return
def goldenProportionOnCnts(self, numberOfCnts = 25, method = cv2.RETR_CCOMP, minArea = 2):
edgedForProp = self._edgeDetection( scalarFactor = 1, meanShift = 0, edgesdilateOpen = True, kernel = 3)
goldenPropImg = self.image.copy()
# create the contours from the segmented image
ing2, contours, hierarchy = cv2.findContours(edgedForProp, method,
cv2.CHAIN_APPROX_SIMPLE)
innerCnts = []
for cnt, h in zip (contours, hierarchy[0]):
if h[2] == -1 :
innerCnts.append(cnt)
sortedContours = sorted(innerCnts, key = cv2.contourArea, reverse = True)
selectedContours = [cnt for cnt in sortedContours if cv2.contourArea(cnt) > minArea]
for cnt in selectedContours[0: numberOfCnts]:
cv2.drawContours(goldenPropImg, [cnt], -1, (255, 0, 255), 1)
# get all the ratio to check
ratioAreas = []
for index, cnt in enumerate(selectedContours[0: numberOfCnts]):
if index < len(selectedContours[0: numberOfCnts]) -1:
areaGoldenToCheck_previous = cv2.contourArea(selectedContours[index])
areaGoldenToCheck_next = cv2.contourArea(selectedContours[index + 1])
ratioArea = areaGoldenToCheck_previous / areaGoldenToCheck_next
ratioAreas.append(ratioArea)
meanAreaRatio = (np.mean(ratioAreas))
diffFromGoldenRatio = abs(1.618 - meanAreaRatio)
scoreProportionAreaVsGoldenRatio = np.exp(-diffFromGoldenRatio)
cv2.putText(goldenPropImg, "GoldPr: {:.3f}".format(scoreProportionAreaVsGoldenRatio), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
self.scoreProportionAreaVsGoldenRatio = scoreProportionAreaVsGoldenRatio
return goldenPropImg, scoreProportionAreaVsGoldenRatio
def cornerDetectionVisualBalance (self, maxCorners = 40 , minDistance = 6, midlineOnCornersCnt = True):
# based on the idea that there is a balance in balanced distribution of corner
# the mid axis is the mid of the extremes corners detected
corners = cv2.goodFeaturesToTrack(self.gray, maxCorners, 0.01, minDistance )
cornerimg = self.image.copy()
cornersOntheLeft = 0
cornersOntheRight = 0
cornersOnTop = 0
cornersOnBottom = 0
# find the limit x and y of the detected corners
listX = [corner[0][0] for corner in corners]
listY = [corner[0][1] for corner in corners]
minX = min(listX)
maxX = max (listX)
minY = min(listY)
maxY = max (listY)
for corner in corners:
x, y = corner[0]
x = int(x)
y = int(y)
if midlineOnCornersCnt:
# find the middle x and middle y
midx = minX + int((maxX - minX)/2)
midy = minY + int((maxY - minY)/2)
pass
else:
midx = int(self.image.shape[1] / 2)
midy = int(self.image.shape[0] / 2)
cv2.rectangle(cornerimg,(x-2,y-2),(x+2,y+2),(0,255,0), 1)
if x < midx:
cornersOntheLeft += 1
if x > midx:
cornersOntheRight += 1
if y < midy:
cornersOnTop += 1
if y > midy:
cornersOnBottom += 1
scoreHorizzontalCorners = np.exp(-(abs(cornersOntheLeft - cornersOntheRight )/(maxCorners/3.14)))
scoreVerticalCorners = np.exp(-(abs(cornersOnTop - cornersOnBottom )/(maxCorners/3.14)))
cv2.putText(cornerimg, "Corn H: {:.3f} V: {:.3f}".format(scoreHorizzontalCorners, scoreVerticalCorners), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
self.cornersBalance = (scoreHorizzontalCorners + scoreVerticalCorners) / 2
return cornerimg, scoreHorizzontalCorners, scoreVerticalCorners
def goldenSpiralAdaptedDetection (self, displayall = False , displayKeypoints = True, maxKeypoints = 100, edged = True):
goldenImgDisplay = self.image.copy()
# segmentation with orb and edges
ImgImpRegion, contours, keypoints = self._orbSegmentation ( maxKeypoints = maxKeypoints, edged = edged, edgesdilateOpen = False, method = cv2.RETR_EXTERNAL)
# find the center zig zag orb silhoutte
copyZigZag, ratioGoldenRectangleZigZagOrb , sorted_contoursZigZag, zigzagPerimeterScore= self._zigzagCntsArea()
#draw the bounding box
c = max(sorted_contoursZigZag, key=cv2.contourArea)
x,y,w,h = cv2.boundingRect(c)
if x==0 or x+w == self.image.shape[1] or y==0 or y+w == self.image.shape[0]:
cv2.rectangle(goldenImgDisplay, (0,0), (self.image.shape[1], self.image.shape[0]), (0,255,0), 1)
else:
cv2.rectangle(goldenImgDisplay,(x,y),(x+w,y+h),(0,255,0),1)
# create the guidelines
im, im2,im3, im4 = self._drawGoldenSpiral(drawRectangle=False, drawEllipses = True, x = w, y = h)
transX = x
transY = y
T = np.float32([[1,0,transX], [0,1, transY]])
imTranslated = cv2.warpAffine(im, T, (self.image.shape[1], self.image.shape[0]))
T2 = np.float32([[1,0, -self.image.shape[1] + transX + w], [0,1, -self.image.shape[0] + transY + h]])
imTranslated2 = cv2.warpAffine(im2, T2, (self.image.shape[1], self.image.shape[0]))
T3 = np.float32([[1,0, transX], [0,1, -self.image.shape[0] + transY + h]])
imTranslated3 = cv2.warpAffine(im3, T3, (self.image.shape[1], self.image.shape[0]))
T4 = np.float32([[1,0, -self.image.shape[1] + transX + w], [0,1, transY ]])
imTranslated4 = cv2.warpAffine(im4, T4, (self.image.shape[1], self.image.shape[0]))
# bitwise the guidlines for one display img
goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated)
goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated2)
if displayall:
goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated3)
goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated4)
if displayKeypoints:
goldenImgDisplay = cv2.drawKeypoints(goldenImgDisplay, keypoints,goldenImgDisplay, flags =
cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS)
# dilate the spirals
kernel = np.ones((5,5),np.uint8)
imTranslated = cv2.dilate(imTranslated,kernel,iterations = 3)
imTranslated2 = cv2.dilate(imTranslated2,kernel,iterations = 3)
imTranslated3 = cv2.dilate(imTranslated3,kernel,iterations = 3)
imTranslated4 = cv2.dilate(imTranslated4,kernel,iterations = 3)
# loop to collect the intersection
intersection = cv2.bitwise_and(ImgImpRegion,imTranslated)
intersection2 = cv2.bitwise_and(ImgImpRegion,imTranslated2)
intersection3 = cv2.bitwise_and(ImgImpRegion,imTranslated3)
intersection4 = cv2.bitwise_and(ImgImpRegion,imTranslated4)
# sum of imgImpRegion
sumOfAllPixelInImgImpRegion = (ImgImpRegion>0).sum()
# sum of all intersections
sum1 = (intersection>0).sum()
sum2 = (intersection2>0).sum()
sum3 = (intersection3>0).sum()
sum4 = (intersection4>0).sum()
maxSumIntersection = max(sum1, sum2, sum3, sum4)
# calculate the ratio of the max vs whole
scoreSpiralGoldenRatio = maxSumIntersection / sumOfAllPixelInImgImpRegion
cv2.putText(goldenImgDisplay, "Gold: {:.3f}".format(scoreSpiralGoldenRatio), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
self.scoreSpiralGoldenRatio = scoreSpiralGoldenRatio
# =============================================================================
# cv2.imshow('ImgImpRegion', ImgImpRegion)
# cv2.imshow('imTranslated', imTranslated)
# cv2.imshow('inter', intersection)
# cv2.waitKey()
# cv2.destroyAllWindows()
# =============================================================================
return goldenImgDisplay, scoreSpiralGoldenRatio
def goldenSpiralFixDetection (self, displayall = False , displayKeypoints = True, maxKeypoints = 100, edged = True, numberOfCnts = 40, scaleFactor = 0.5, bonus = 10):
#goldenImgDisplay = self.image.copy()
# segmentation with orb and edges
ImgImpRegion, contours, keypoints = self._orbSegmentation ( maxKeypoints = maxKeypoints, edged = edged, edgesdilateOpen = False, method = cv2.RETR_EXTERNAL)
# implement the segmentation including the edges
edgedImg = self._edgeDetection(scalarFactor = 1, meanShift = 0, edgesdilateOpen = False, kernel = 5)
edgedImg = cv2.cvtColor(edgedImg, cv2.COLOR_GRAY2BGR)
# give a weight to the edges detection smaller than the orb
#edgedImg[np.where((edgedImg ==[255,255,255]).all(axis=2))] = [255,255,255]
# implement with inner shape
segmentationOnInnerCnts, contours = self._innerCntsSegmentation(numberOfCnts = numberOfCnts, method = cv2.RETR_CCOMP, minArea = 5)
segmentationOnInnerCnts[np.where((segmentationOnInnerCnts ==[255,255,255]).all(axis=2))] = [40,40,40]
# merge the masks
ImgImpRegion = cv2.bitwise_or(ImgImpRegion,edgedImg)
ImgImpRegion = cv2.bitwise_or(ImgImpRegion,segmentationOnInnerCnts)
goldenImgDisplay = ImgImpRegion.copy()
# =============================================================================
# # find the center zig zag orb silhoutte
# copyZigZag, ratioGoldenRectangleZigZagOrb , sorted_contoursZigZag, zigzagPerimeterScore= self._zigzagCntsArea()
#
# #draw the bounding box
# c = max(sorted_contoursZigZag, key=cv2.contourArea)
# x,y,w,h = cv2.boundingRect(c)
# =============================================================================
# set this way to make the boundig box the size of the frame.. for adaptive unmask above and adjust
x=0
y=0
w = self.image.shape[1]
h = self.image.shape[0]
if x==0 or x+w == self.image.shape[1] or y==0 or y+h == self.image.shape[0]:
cv2.rectangle(goldenImgDisplay, (0,0), (self.image.shape[1], self.image.shape[0]), (0,255,0), 1)
else:
cv2.rectangle(goldenImgDisplay,(x,y),(x+w,y+h),(0,255,0),1)
# create the guidelines
im, im2,im3, im4 = self._drawGoldenSpiral(drawRectangle=False, drawEllipses = True, x = w, y = h)
transX = x
transY = y
T = np.float32([[1,0,transX], [0,1, transY]])
imTranslated = cv2.warpAffine(im, T, (self.image.shape[1], self.image.shape[0]))
T2 = np.float32([[1,0, -self.image.shape[1] + transX + w], [0,1, -self.image.shape[0] + transY + h]])
imTranslated2 = cv2.warpAffine(im2, T2, (self.image.shape[1], self.image.shape[0]))
T3 = np.float32([[1,0, transX], [0,1, -self.image.shape[0] + transY + h]])
imTranslated3 = cv2.warpAffine(im3, T3, (self.image.shape[1], self.image.shape[0]))
T4 = np.float32([[1,0, -self.image.shape[1] + transX + w], [0,1, transY ]])
imTranslated4 = cv2.warpAffine(im4, T4, (self.image.shape[1], self.image.shape[0]))
# dilate the spirals
kernel = np.ones((5,5),np.uint8)
AimTranslated = cv2.dilate(imTranslated,kernel,iterations = 3)
AimTranslated2 = cv2.dilate(imTranslated2,kernel,iterations = 3)
AimTranslated3 = cv2.dilate(imTranslated3,kernel,iterations = 3)
AimTranslated4 = cv2.dilate(imTranslated4,kernel,iterations = 3)
# loop to collect the intersection
intersection = cv2.bitwise_and(ImgImpRegion,AimTranslated)
intersection2 = cv2.bitwise_and(ImgImpRegion,AimTranslated2)
intersection3 = cv2.bitwise_and(ImgImpRegion,AimTranslated3)
intersection4 = cv2.bitwise_and(ImgImpRegion,AimTranslated4)
# sum of imgImpRegion
sumOfAllPixelInSilhoutte = (ImgImpRegion > 0).sum()
sumofAlledgedandorb = (ImgImpRegion==255).sum()
sumofAllInnerCnts = (ImgImpRegion==40).sum()
sumOfAllPixelInImgImpRegion = sumofAlledgedandorb + (scaleFactor* sumofAllInnerCnts)
# sum of all intersections
sum1_orb = (intersection==255).sum()
sum2_orb = (intersection2==255).sum()
sum3_orb = (intersection3==255).sum()
sum4_orb = (intersection4==255).sum()
# for the inner shape
sum1_inn = (intersection==40).sum()
sum2_inn = (intersection2==40).sum()
sum3_inn = (intersection3==40).sum()
sum4_inn = (intersection4==40).sum()
# weight
sum1 = sum1_orb * bonus + (scaleFactor * sum1_inn)
sum2 = sum2_orb * bonus + (scaleFactor * sum2_inn)
sum3 = sum3_orb * bonus + (scaleFactor * sum3_inn)
sum4 = sum4_orb * bonus + (scaleFactor * sum4_inn)
maxSumIntersection = max(sum1, sum2, sum3, sum4)
# calculate the ratio of the max vs whole and weighted with the overall area of te silhoutte compare to the size of the frame
scoreSpiralGoldenRatio = maxSumIntersection / sumOfAllPixelInImgImpRegion * (sumOfAllPixelInSilhoutte / self.gray.size)
cv2.putText(goldenImgDisplay, "Gold: {:.3f}".format(scoreSpiralGoldenRatio), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
self.scoreSpiralGoldenRatio = scoreSpiralGoldenRatio
# bitwise the guidlines for one display img
if displayall == False:
if sum1 == max(sum1, sum2, sum3, sum4):
goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated)
if sum2 == max(sum1, sum2, sum3, sum4):
goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated2)
if sum3 == max(sum1, sum2, sum3, sum4):
goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated3)
if sum4 == max(sum1, sum2, sum3, sum4):
goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated4)
if displayall:
goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated)
goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated2)
goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated3)
goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated4)
if displayKeypoints:
goldenImgDisplay = cv2.drawKeypoints(goldenImgDisplay, keypoints,goldenImgDisplay, flags =
cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS)
return goldenImgDisplay, scoreSpiralGoldenRatio
def displayandScoreExtremePoints(self, numberOfCnts = 20):
blur = cv2.GaussianBlur(self.gray, (5, 5), 0)
mean = np.mean(blur)
# threshold the image, then perform a series of erosions +
# dilations to remove any small regions of noise
thresh = cv2.threshold(blur, mean, 255, cv2.THRESH_BINARY)[1]
thresh = cv2.erode(thresh, None, iterations=2)
thresh = cv2.dilate(thresh, None, iterations=2)
# cut the border for more precision
thresh[0:2, :] = 0
thresh[-2:self.image.shape[0], :] = 0
thresh[:, 0:2] = 0
thresh[:, -2:self.image.shape[1]] = 0
# find contours in thresholded image, then grab the largest
# one
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[1]
sorted_contours = sorted(cnts, key=cv2.contourArea, reverse = True)
# =============================================================================
# c = max(cnts, key=cv2.contourArea)
#
# # determine the most extreme points along the contour
# extLeft = tuple(c[c[:, :, 0].argmin()][0])
# extRight = tuple(c[c[:, :, 0].argmax()][0])
# extTop = tuple(c[c[:, :, 1].argmin()][0])
# extBot = tuple(c[c[:, :, 1].argmax()][0])
# =============================================================================
extLeftList=[]
extRightList = []
extTopList = []
extBotList =[]
for c in sorted_contours[0:numberOfCnts]:
# determine the most extreme points along the contour
extLeft = tuple(c[c[:, :, 0].argmin()][0])
extRight = tuple(c[c[:, :, 0].argmax()][0])
extTop = tuple(c[c[:, :, 1].argmin()][0])
extBot = tuple(c[c[:, :, 1].argmax()][0])
extLeftList.append(extLeft)
extRightList.append(extRight)
extTopList.append(extTop)
extBotList.append(extBot)
# sort the list of tuple by x
extLeftListSorted = sorted(extLeftList, key=lambda x: x[0])
extRightListSorted = sorted(extRightList, key=lambda x: x[0], reverse = True)
extTopListSorted = sorted(extTopList, key=lambda x: x[1])
extBotListSorted = sorted(extBotList, key=lambda x: x[1], reverse = True)
extLeft = extLeftListSorted[0]
extRight = extRightListSorted[0]
extTop = extTopListSorted[0]
extBot = extBotListSorted[0]
# draw the outline of the object, then draw each of the
# extreme points, where the left-most is red, right-most
# is green, top-most is blue, and bottom-most is teal
image = self.image.copy()
for c in sorted_contours[0:numberOfCnts]:
cv2.drawContours(image, [c], -1, (0, 255, 255), 2)
cv2.circle(image, extLeft, 5, (0, 0, 255), -1)
cv2.circle(image, extRight, 5, (0, 255, 0), -1)
cv2.circle(image, extTop, 5, (255, 0, 0), -1)
cv2.circle(image, extBot, 5, (255, 255, 0), -1)
#calculate Manhattan distance from half side point
leftHalfSidePoint = (0, int(self.image.shape[0]/2))
rightHalfSidePoint =(self.image.shape[1], int(self.image.shape[0]/2))
topHalfSidePoint = (int(self.image.shape[1] /2), 0)
bottomHalfSidePoint = (int(self.image.shape[1] /2), self.image.shape[0])
cv2.circle(image, leftHalfSidePoint, 3, (0, 0, 255), -1)
cv2.circle(image, rightHalfSidePoint, 3, (0, 0, 255), -1)
cv2.circle(image, topHalfSidePoint, 3, (0, 0, 255), -1)
cv2.circle(image, bottomHalfSidePoint, 3, (0, 0, 255), -1)
#halfHight = int(self.image.shape[0]/2)
dist01 = dist.euclidean(extLeft, leftHalfSidePoint)
dist02 = dist.euclidean(extRight, rightHalfSidePoint)
#meanDistA = int((dist01 + dist02)/2 )
#scoreA = meanDistA / halfHight
#halfwidth = int(self.image.shape[1]/2)
dist03 = dist.euclidean(extTop, topHalfSidePoint)
dist04 = dist.euclidean(extBot, bottomHalfSidePoint)
#meanDistB = int((dist03 + dist04)/2 )
#scoreB = meanDistB / halfwidth
#meanScore = (scoreA + scoreB)/2
#scoreMeanDistanceOppositeToHalfSide = np.exp(-meanScore*1.9) # used with mean on negative
if extLeft[1] < (self.image.shape[0] / 2):
DistExtLeft = - dist01
else:
DistExtLeft = dist01
if extRight[1] < (self.image.shape[0] / 2):
DistExtRight = - dist02
else:
DistExtRight = dist02
if extTop[0] < (self.image.shape[1] / 2):
DistExtTop = - dist03
else:
DistExtTop = dist03
if extBot[0] < (self.image.shape[1] / 2):
DistExtBot = - dist04
else:
DistExtBot = dist04
# make the script indipendent from the size of the image
if self.image.shape[1]> self.image.shape[0]:
ratio = self.image.shape[1]
else:
ratio = self.image.shape[0]
DistExtLeftToHalf = DistExtLeft / ratio
DistExtRightToHalf = DistExtRight / ratio
DistExtTopToHalf = DistExtTop / ratio
DistExtBotToHalf = DistExtBot / ratio
# =============================================================================
# if self.image.shape[1]> self.image.shape[0]:
# ratio = self.image.shape[1] / self.image.shape[0]
# else:
# ratio = self.image.shape[0] / self.image.shape[1]
#
# meanNeg = (DistExtLeft + DistExtRight + DistExtTop + DistExtBot) / 4
# scoreMeanDistanceOppositeToHalfSideadapted = np.exp(-meanNeg / (ratio * 10))
# =============================================================================
#cv2.putText(image, "Epts: {:.3f}".format(scoreMeanDistanceOppositeToHalfSideadapted), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
# =============================================================================
#
# self.scoreMeanDistanceOppositeToHalfSide = scoreMeanDistanceOppositeToHalfSideadapted
# =============================================================================
# distances from borders:
DistLeftBorder = abs(extLeft[0] - 0)
DistRightBorder = abs(extRight[0] - self.image.shape[1])
DistTopBorder = abs(extTop[1] - 0)
DistBotBorder = abs(extBot[1] - self.image.shape[0])
# make it indipendent from the size of the image by normalised by the lenght of the related side frame
DistLeftBorder = DistLeftBorder / (self.image.shape[1])
DistRightBorder = DistRightBorder / (self.image.shape[1])
DistTopBorder = DistTopBorder / (self.image.shape[0])
DistBotBorder = DistBotBorder / (self.image.shape[0])
return image, DistExtLeftToHalf,DistExtRightToHalf,DistExtTopToHalf, DistExtBotToHalf, DistLeftBorder, DistRightBorder, DistTopBorder, DistBotBorder
def vertAndHorizLinesBalance (self):
edges = self._edgeDetection(scalarFactor = 1, meanShift = 0, edgesdilateOpen = False)
lines = cv2.HoughLinesP(edges, 1, np.pi/180, 15, 100, 1)
copyImg = self.image.copy()
verticalLines = 0
horizontalLines = 0
verticalLinesLeft = 0
verticalLinesRight = 0
horizontalLinesLeft = 0
horizontalLinesRight = 0
allX = []
for line in lines:
x1, y1, x2, y2 = line[0]
allX.append(x1)
allX.append(x2)
# only horizzontal counts along the middle detection relevance
midX = int((max(allX) - min(allX))/2) + min(allX)
for line in lines:
x1, y1, x2, y2 = line[0]
angle = np.arctan2(y2 - y1, x2-x1) *180 / np.pi
# horizzontal lines
if angle == 0:
cv2.line(copyImg, (x1, y1), (x2, y2), (0,0,255), 1)
horizontalLines += 1
if x1 < midX and x2 < midX:
horizontalLinesLeft += 1
if x1 > midX and x2 > midX:
horizontalLinesRight += 1
# vertical lines
if angle == 90 or angle == -90 :
cv2.line(copyImg, (x1, y1), (x2, y2), (0,255,0), 1)
verticalLines += 1
if x1 < midX and x2 < midX:
verticalLinesLeft += 1
if x1 > midX and x2 > midX:
verticalLinesRight += 1
diffVerticals = abs(verticalLinesLeft - verticalLinesRight)
diffHorizontal = abs(horizontalLinesLeft -horizontalLinesRight )
if verticalLines == 0 or horizontalLines == 0:
verticalLinesBalanceScore = 0
horizontalLinesBalanceScore = 0
cv2.putText(copyImg, "Lines V: {:.3f} H: {:.3f}".format(verticalLinesBalanceScore,horizontalLinesBalanceScore), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
self.verticalandHorizBalanceMean = (verticalLinesBalanceScore + horizontalLinesBalanceScore) / 2
return copyImg, verticalLinesBalanceScore, horizontalLinesBalanceScore
else:
verticalLinesBalanceScore = (1 - (diffVerticals/verticalLines))
horizontalLinesBalanceScore = (1 - (diffHorizontal / horizontalLines))
cv2.putText(copyImg, "Lines V: {:.3f} H: {:.3f}".format(verticalLinesBalanceScore,horizontalLinesBalanceScore), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
self.verticalandHorizBalanceMean = (verticalLinesBalanceScore + horizontalLinesBalanceScore) / 2
return copyImg, verticalLinesBalanceScore, horizontalLinesBalanceScore
def numOfTangentandBalance (self):
edges = self._edgeDetection(scalarFactor = 1, meanShift = 0, edgesdilateOpen = False)
# first template
template = np.zeros((16,16), np.uint8)
template[7:9,0:16] = 255
template[0:16, 7:9] = 255
# w and h to also use later to draw the rectagles
w, h = template.shape[::-1]
# rotated template
M = cv2.getRotationMatrix2D((w/2,h/2),15,1)
template15 = cv2.warpAffine(template,M,(w,h))
template30 = cv2.warpAffine(template15,M,(w,h))
template45 = cv2.warpAffine(template30,M,(w,h))
template60 = cv2.warpAffine(template45,M,(w,h))
template75 = cv2.warpAffine(template60,M,(w,h))
# run the matchtemplate
result = cv2.matchTemplate(edges, template, cv2.TM_CCOEFF)
result15 = cv2.matchTemplate(edges, template15, cv2.TM_CCOEFF)
result30 = cv2.matchTemplate(edges, template30, cv2.TM_CCOEFF)
result45 = cv2.matchTemplate(edges, template45, cv2.TM_CCOEFF)
result60 = cv2.matchTemplate(edges, template60, cv2.TM_CCOEFF)
result75 = cv2.matchTemplate(edges, template75, cv2.TM_CCOEFF)
#find the points of match
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
threshold = max_val * 0.96
loc = np.where(result >= threshold)
loc90 = np.where(result15 >= threshold)
loc180 = np.where(result30 >= threshold)
loc270 = np.where(result45 >= threshold)
loc180a = np.where(result60 >= threshold)
loc270a = np.where(result75 >= threshold)
#convert edges for display
edges = cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR)
points = []
for pt in zip (*loc[::-1]):
cv2.rectangle(edges, pt, (pt[0] + w, pt[1] + h), (255,0,255), 1)
points.append(pt)
for pt in zip (*loc90[::-1]):
cv2.rectangle(edges, pt, (pt[0] + w, pt[1] + h), (255,0,255), 1)
points.append(pt)
for pt in zip (*loc180[::-1]):
cv2.rectangle(edges, pt, (pt[0] + w, pt[1] + h), (255,0,255), 1)
points.append(pt)
for pt in zip (*loc270[::-1]):
cv2.rectangle(edges, pt, (pt[0] + w, pt[1] + h), (255,0,255), 1)
points.append(pt)
for pt in zip (*loc180a[::-1]):
cv2.rectangle(edges, pt, (pt[0] + w, pt[1] + h), (255,0,255), 1)
points.append(pt)
for pt in zip (*loc270a[::-1]):
cv2.rectangle(edges, pt, (pt[0] + w, pt[1] + h), (255,0,255), 1)
points.append(pt)
score = np.exp(- len(points) )
# =============================================================================
# leftCount = 0
# rightCount = 0
# for p in points:
# if p[0] < self.image.shape[0]:
# leftCount += 1
# else:
# rightCount += 1
# =============================================================================
cv2.putText(edges, "Cross: {:.3f}".format(score), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
#self.crossDetectionbalance = score
return edges , score
def numberEdgesConvexCnt (self, minArea = True,
numberOfCnts = 8, areascalefactor = 1000 ):
HullimgCopy = self.image.copy()
gray = cv2.cvtColor(HullimgCopy,cv2.COLOR_BGR2GRAY)
meanThresh = np.mean(gray)
ret,thresh = cv2.threshold(gray, meanThresh, 255, cv2.THRESH_BINARY)
ing2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
# cut the border for more precision
thresh[0:2, :] = 0
thresh[-2:self.image.shape[0], :] = 0
thresh[:, 0:2] = 0
thresh[:, -2:self.image.shape[1]] = 0
# sort contours by area
if minArea == False:
sorted_contours = sorted(contours, key=cv2.contourArea, reverse = True)
# sorted and selected list of areas in contours if minArea is True
if minArea:
selected_contours = []
minArea = self.gray.size / areascalefactor
for cnt in contours:
area = cv2.contourArea(cnt)
if area > minArea:
selected_contours.append(cnt)
sorted_contours = sorted(selected_contours, key = cv2.contourArea, reverse = True)
# select only the bigger contours
contoursSelection = sorted_contours[0:numberOfCnts]
# mask creation
blankHull = np.zeros((self.image.shape[0], self.image.shape[1], 3), np.uint8)
listofHullsPoints = []
for cnt in contoursSelection:
hull = cv2.convexHull(cnt)
cv2.drawContours(HullimgCopy, [hull], -1, (0,255,0),1)
cv2.drawContours(blankHull, [hull], -1, (255,255,255),-1)
for coord in hull:
listofHullsPoints.append(coord[0])
# sort the points on the hull by the x coordinates
listofHullsPointsSorted = sorted(listofHullsPoints, key=lambda x: x[0])
#extRightListSorted = sorted(extRightList, key=lambda x: x[0], reverse = True)
firstPointLeft = (listofHullsPointsSorted[0][0], listofHullsPointsSorted[0][1])
secondtPointLeft = (listofHullsPointsSorted[1][0], listofHullsPointsSorted[1][1])
thirdPointLeft = (listofHullsPointsSorted[2][0], listofHullsPointsSorted[2][1])
firstPointRight = (listofHullsPointsSorted[-1][0], listofHullsPointsSorted[-1][1])
secondtPointRight = (listofHullsPointsSorted[-2][0], listofHullsPointsSorted[-2][1])
thirdPointRight = (listofHullsPointsSorted[-3][0], listofHullsPointsSorted[-3][1])
# draw the point on the image for visualisaton purpose
cv2.circle(HullimgCopy, firstPointLeft, 5, (0, 0, 255), -1)
cv2.circle(HullimgCopy, secondtPointLeft, 5, (0, 255, 0), -1)
cv2.circle(HullimgCopy, thirdPointLeft, 5, (0, 255, 0), -1)
cv2.circle(HullimgCopy, firstPointRight, 5, (0, 0, 255), -1)
cv2.circle(HullimgCopy, secondtPointRight, 5, (0, 255, 0), -1)
cv2.circle(HullimgCopy, thirdPointRight, 5, (0, 255, 0), -1)
# we only need the y coordinate since the column will tell the one is come first second and third (we focus on the slope here)
# and normalised to the height to make it indipendent from the size of the image
firstPointLeftY = firstPointLeft[1] / self.image.shape[0]
secondtPointLeftY = secondtPointLeft[1] / self.image.shape[0]
thirdPointLeftY = thirdPointLeft[1] / self.image.shape[0]
firstPointRightY = firstPointRight[1] / self.image.shape[0]
secondtPointRightY = secondtPointRight[1] / self.image.shape[0]
thirdPointRightY = thirdPointRight[1] / self.image.shape[0]
#left mask and right mask
x = self.gray.shape[1]
blankHullLeft = blankHull.copy()
blankHullRight = blankHull.copy()
blankHullLeft[ : , 0: int(x/2)] = 0
blankHullRight[ : , int(x/2): x ] = 0
totalWhiteinHull = (blankHull > 0).sum()
totalWhiteinLeft = (blankHullLeft > 0).sum()
totalWhiteInRight = (blankHullRight > 0).sum()
#calculate the score for negative space balance
alpha = 3.14
scoreHullBalance = np.exp(-(abs(totalWhiteinLeft - totalWhiteInRight ) / totalWhiteinHull) * 1.618 * alpha )
self.scoreHullBalance = scoreHullBalance
cv2.putText(HullimgCopy, "NegBal: {:.3f}".format(scoreHullBalance), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
return HullimgCopy, scoreHullBalance , firstPointLeftY,secondtPointLeftY,thirdPointLeftY,firstPointRightY,secondtPointRightY,thirdPointRightY
def rectangularComposition (self, segmentation = 'ORB'):
# calculate the area of the template triangle based on the golden ratio
h, w, s = self.image.shape
upLeftX = int((w - (w*0.618)) / 2)
upLeftY = int((h - (h*0.618)) / 2)
baseRightX = upLeftX + int(w* 0.618)
baseRightY = upLeftY + int(h * 0.618)
# draw the rect mask
blankForMasking = np.zeros(self.image.shape, dtype = "uint8")
rectangularMask = cv2.rectangle(blankForMasking,(upLeftX,upLeftY),(baseRightX,baseRightY), (255, 255, 255), 2)
# segmentation using
if segmentation == 'ORB' :
ImgImpRegion, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = True, edgesdilateOpen = True, method = cv2.RETR_EXTERNAL)
if segmentation == 'saliency':
contours, ImgImpRegion = self._saliencySegmentation(method = cv2.RETR_EXTERNAL )
ImgImpRegion = cv2.cvtColor(ImgImpRegion, cv2.COLOR_GRAY2BGR)
# create the segmentations of the images using threshold
if segmentation == 'thresh':
contours, ImgImpRegion = self._thresholdSegmentation(method = cv2.RETR_LIST )
if segmentation == 'both':
ImgImpRegionA, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = True, edgesdilateOpen = True, method = cv2.RETR_EXTERNAL)
contours, ImgImpRegionB = self._saliencySegmentation(method = cv2.RETR_EXTERNAL )
ImgImpRegionB = cv2.cvtColor(ImgImpRegionB, cv2.COLOR_GRAY2BGR)
# create the both mask
ImgImpRegion = cv2.bitwise_or(ImgImpRegionA,ImgImpRegionB)
# dilate the mask to capture more relevant pixels
kernel = np.ones((5,5),np.uint8)
rectangularMask = cv2.dilate(rectangularMask,kernel,iterations = 3)
# count the total number of segmentation pixel bigger than 0
maskedImage = cv2.bitwise_and(ImgImpRegion, rectangularMask)
sumOfrelevantPixels = (maskedImage > 0).sum()
totalRelevantPixels = (ImgImpRegion > 0).sum()
# ratio of the number counted in and out of the triangle
rectCompScore = sumOfrelevantPixels/totalRelevantPixels
# draw the image for display
cv2.putText(ImgImpRegion, "RectComp: {:.3f}".format(rectCompScore), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
rectangularMask = cv2.rectangle(ImgImpRegion,(upLeftX,upLeftY),(baseRightX,baseRightY), (255, 255, 255), 2)
self.rectCompScore = rectCompScore
return ImgImpRegion, rectCompScore
def circleComposition (self, segmentation = 'ORB'):
# calculate the area of the template triangle based on the golden ratio
h, w, s = self.image.shape
# draw the ellipse mask
blankForMasking = np.zeros(self.image.shape, dtype = "uint8")
ellipseMask = cv2.ellipse(blankForMasking, (int(w/2),int(h/2)), (int(w*0.618/2), int(h*0.618/2)),0,0,360,(255, 255, 255), 2)
# segmentation using
if segmentation == 'ORB' :
ImgImpRegion, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = True, edgesdilateOpen = True, method = cv2.RETR_EXTERNAL)
if segmentation == 'saliency':
contours, ImgImpRegion = self._saliencySegmentation(method = cv2.RETR_EXTERNAL )
ImgImpRegion = cv2.cvtColor(ImgImpRegion, cv2.COLOR_GRAY2BGR)
# create the segmentations of the images using threshold
if segmentation == 'thresh':
contours, ImgImpRegion = self._thresholdSegmentation(method = cv2.RETR_LIST )
if segmentation == 'both':
ImgImpRegionA, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = True, edgesdilateOpen = True, method = cv2.RETR_EXTERNAL)
contours, ImgImpRegionB = self._saliencySegmentation(method = cv2.RETR_EXTERNAL )
ImgImpRegionB = cv2.cvtColor(ImgImpRegionB, cv2.COLOR_GRAY2BGR)
# create the both mask
ImgImpRegion = cv2.bitwise_or(ImgImpRegionA,ImgImpRegionB)
# dilate the mask to capture more relevant pixels
kernel = np.ones((5,5),np.uint8)
ellipseMask = cv2.dilate(ellipseMask,kernel,iterations = 2)
# count the total number of segmentation pixel bigger than 0
maskedImage = cv2.bitwise_and(ImgImpRegion, ellipseMask)
sumOfrelevantPixels = (maskedImage > 0).sum()
totalRelevantPixels = (ImgImpRegion > 0).sum()
# ratio of the number counted in and out of the triangle
circleCompScore = sumOfrelevantPixels/totalRelevantPixels
# draw the image for display
cv2.putText(ImgImpRegion, "circleComp: {:.3f}".format(circleCompScore), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
cv2.ellipse(ImgImpRegion, (int(w/2),int(h/2)), (int(w*0.618/2), int(h*0.618/2)),0,0,360,(255, 255, 255), 2)
self.circleCompScore = circleCompScore
return ImgImpRegion, circleCompScore
def fourTriangleCompositionAdapted(self, segmentation = 'inner', minArea = True,
numberOfCnts = 100, areascalefactor = 2000, distanceMethod = 'segment'):
FourTriangleImg = self.image.copy()
# draw the lines of the diagonal
topLeft = (0,0)
lowerRight = (self.image.shape[1], self.image.shape[0])
lowerLeft = (0, self.image.shape[0])
topright = (self.image.shape[1],0)
#blankFourTriangle = np.array(blankFourTriangle)
cv2.line(FourTriangleImg, topright , lowerLeft, (255,255,255), 1) # topright - lowerleft
cv2.line(FourTriangleImg, topLeft , lowerRight, (255,0,255), 1) # topleft - lowerright
# draw the two perpendicular lines
leftIntersectionX, leftIntersectionY = self._find_perpendicular_through_point_to_line(lowerLeft[0], lowerLeft[1],topright[0],topright[1], topLeft[0], topLeft[1] )
cv2.line(FourTriangleImg, topLeft , (int(leftIntersectionX), int(leftIntersectionY) ), (255,255,255), 1)
rightIntersectionX, righttIntersectionY = self._find_perpendicular_through_point_to_line(lowerLeft[0], lowerLeft[1],topright[0],topright[1], lowerRight[0], lowerRight[1] )
cv2.line(FourTriangleImg, lowerRight , (int(rightIntersectionX), int(righttIntersectionY) ), (255,255,255), 1)
# second
leftIntersectionXB, leftIntersectionYB = self._find_perpendicular_through_point_to_line(topLeft[0], topLeft[1],lowerRight[0],lowerRight[1], lowerLeft[0], lowerLeft[1] )
cv2.line(FourTriangleImg, lowerLeft , (int(leftIntersectionXB), int(leftIntersectionYB) ), (255,0,255), 1)
rightIntersectionXB, righttIntersectionYB = self._find_perpendicular_through_point_to_line(topLeft[0], topLeft[1],lowerRight[0],lowerRight[1], topright[0], topright[1] )
cv2.line(FourTriangleImg, topright , (int(rightIntersectionXB), int(righttIntersectionYB) ), (255,0,255), 1)
# calculate the segmentation
if segmentation == 'ORB' :
blank, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = False, edgesdilateOpen = False, method = cv2.RETR_EXTERNAL)
if segmentation == 'saliency':
contours, SaliencyMask = self._saliencySegmentation(method = cv2.RETR_EXTERNAL )
# create the segmentations of the images using threshold
if segmentation == 'thresh':
contours, threshImg = self._thresholdSegmentation(method = cv2.RETR_LIST )
if segmentation == 'inner':
segmentationOnInnerCnts, contours = self._innerCntsSegmentation(numberOfCnts = numberOfCnts, method = cv2.RETR_CCOMP, minArea = 2)
# sort contours
sorted_contours = sorted(contours, key = cv2.contourArea, reverse = True)
# sorted and selected list of areas in contours if minArea is True
if minArea:
selected_contours = []
minArea = self.gray.size / areascalefactor
for cnt in sorted_contours[0:numberOfCnts]:
area = cv2.contourArea(cnt)
if area > minArea:
selected_contours.append(cnt)
sorted_contours = sorted(selected_contours, key = cv2.contourArea, reverse = True)
# select only the bigger contours
contoursSelection = sorted_contours[0:numberOfCnts]
# find the center of each contours and draw cnts, not using approx contours
imageDisplay, listOfCenterPoints = self._findCentreOfMass(image = FourTriangleImg, contours = contoursSelection, approxCnt = False)
# calculate the distance from the center points and the rule of third point(as in the paper)
# min distance of each center to the 4 points
distances_option_1 = []
distances_option_2 = []
if distanceMethod == 'segment':
for point in listOfCenterPoints:
centerPoint = np.asarray(point)
topLeftA = np.asarray((topLeft[0], topLeft[1]))
lowerRightA = np.asarray((lowerRight[0], lowerRight[1]))
lowerLeftA = np.asarray((lowerLeft[0], lowerLeft[1]))
toprightA = np.asarray((topright[0], topright[1]))
leftIntersectionPointA = np.asarray((leftIntersectionX, leftIntersectionY))
rightIntersectionPointA = np.asarray((rightIntersectionX,righttIntersectionY))
leftIntersectionPointB = np.asarray((leftIntersectionXB, leftIntersectionYB))
rightIntersectionPointB = np.asarray((rightIntersectionXB,righttIntersectionYB))
dist_01 = self._point_to_line_dist(centerPoint, [topLeftA,lowerRightA])
dist_02 = self._point_to_line_dist(centerPoint, [lowerLeftA,leftIntersectionPointA])
dist_03 = self._point_to_line_dist(centerPoint, [toprightA,rightIntersectionPointA])
dist_04 = self._point_to_line_dist(centerPoint, [lowerLeftA,toprightA])
dist_05 = self._point_to_line_dist(centerPoint, [topLeftA,leftIntersectionPointB])
dist_06 = self._point_to_line_dist(centerPoint, [lowerRightA,rightIntersectionPointB])
minDistance_option_1 = min(dist_01, dist_02, dist_03)
minDistance_option_2 = min(dist_04, dist_05, dist_06)
distances_option_1.append(minDistance_option_1)
distances_option_2.append(minDistance_option_2)
# initialise the result and set a paramenter that is linked to the size of the image
res_option_1 = 0
res_option_2 = 0
parameter = self.gray.size / ((self.gray.shape[0]+self.gray.shape[1]) * 1.618)
for distance in distances_option_1:
res_option_1 += distance * (np.exp((-distance/parameter)))
for distance in distances_option_2:
res_option_2 += distance * (np.exp((-distance/parameter)))
if len(distances_option_1) == 0:
cv2.putText(imageDisplay, "Nan: 0 ", (5, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
self.ScoreFourTriangleAdapted = 0
return imageDisplay, 0
elif len(distances_option_2) == 0:
cv2.putText(imageDisplay, "Nan: 0 ", (5, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
self.ScoreFourTriangleAdapted = 0
return imageDisplay, 0
else:
score_option_1 = res_option_1 / sum(distances_option_1)
score_option_2 = res_option_2 / sum(distances_option_2)
ScoreFourTriangleAdapted = max(score_option_1,score_option_2)
if distanceMethod == 'segment':
cv2.putText(imageDisplay, "TriangSeg: {:.3f}".format(ScoreFourTriangleAdapted), (5, 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
if segmentation == 'saliency':
cv2.putText(imageDisplay, "RTS: {:.3f}".format(ScoreFourTriangleAdapted), (5, 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
if segmentation == 'ORB':
cv2.putText(imageDisplay, "RTorb: {:.3f}".format(ScoreFourTriangleAdapted), (5, 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
self.ScoreFourTriangleAdapted = ScoreFourTriangleAdapted
return imageDisplay, ScoreFourTriangleAdapted
def bigTriangleCompositionAdapted(self, segmentation = 'inner', minArea = True,
numberOfCnts = 100, areascalefactor = 2000, distanceMethod = 'segment'):
# calculate the area of the template triangle based on the golden ratio
h, w, s = self.image.shape
baseLeftX = int((w - (w*0.618)) / 2)
baseLeftY = int(h - ((h*0.618) / 2))
baseRightX = baseLeftX + int(w* 0.618)
baseRightY = baseLeftY
vertexX = int( w / 2)
vertexY = h - baseLeftY
centerImgX = int(self.image.shape[1]/2)
centerImgY = int(self.image.shape[0]/2)
listOfPotins = [[baseLeftX, baseLeftY], [vertexX, vertexY], [baseRightX, baseRightY]]
ctr = np.array(listOfPotins).reshape((-1,1,2)).astype(np.int32)
bigTriangeImg = self.image.copy()
# fill the triangle for the mask
blankForMasking = np.zeros(self.image.shape, dtype = "uint8")
cv2.drawContours(blankForMasking, [ctr], -1, (255, 255, 255), 2)
if segmentation == 'ORB' :
blank, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = False, edgesdilateOpen = False, method = cv2.RETR_EXTERNAL)
if segmentation == 'saliency':
contours, SaliencyMask = self._saliencySegmentation(method = cv2.RETR_EXTERNAL )
# create the segmentations of the images using threshold
if segmentation == 'thresh':
contours, threshImg = self._thresholdSegmentation(method = cv2.RETR_LIST )
if segmentation == 'inner':
segmentationOnInnerCnts, contours = self._innerCntsSegmentation(numberOfCnts = numberOfCnts, method = cv2.RETR_CCOMP, minArea = 2)
# sort contours
sorted_contours = sorted(contours, key = cv2.contourArea, reverse = True)
# sorted and selected list of areas in contours if minArea is True
if minArea:
selected_contours = []
minArea = self.gray.size / areascalefactor
for cnt in sorted_contours[0:numberOfCnts]:
area = cv2.contourArea(cnt)
if area > minArea:
selected_contours.append(cnt)
sorted_contours = sorted(selected_contours, key = cv2.contourArea, reverse = True)
# select only the bigger contours
contoursSelection = sorted_contours[0:numberOfCnts]
# find the center of each contours and draw cnts, not using approx contours
imageDisplay, listOfCenterPoints = self._findCentreOfMass(image = bigTriangeImg, contours = contoursSelection, approxCnt = False)
# calculate the distance from the center points and the rule of third point(as in the paper)
# min distance of each center to the 4 points
distancePoints = []
if distanceMethod == 'point':
for point in listOfCenterPoints:
cX = point[0]
cY = point[1]
ManhattanDistanceNormalised_01 = abs(baseLeftX - cX) / self.image.shape[1] + abs(baseLeftY - cY) / self.image.shape[0]
ManhattanDistanceNormalised_02 = abs(baseRightX - cX) / self.image.shape[1] + abs(baseRightY - cY) / self.image.shape[0]
ManhattanDistanceNormalised_03 = abs(vertexX - cX) / self.image.shape[1] + abs(vertexY- cY) / self.image.shape[0]
ManhattanDistanceNormalised_04 = abs(centerImgX - cX) / self.image.shape[1] + abs(centerImgY - cY) / self.image.shape[0]
minDistance = min(ManhattanDistanceNormalised_01,ManhattanDistanceNormalised_02,ManhattanDistanceNormalised_03,ManhattanDistanceNormalised_04)
distancePoints.append(minDistance)
if distanceMethod == 'segment':
for point in listOfCenterPoints:
centerPoint = np.asarray(point)
baseLeftPoint = np.asarray((baseLeftX, baseLeftY))
baseRigthPoint = np.asarray((baseRightX, baseRightY))
vertexPoint = np.asarray((vertexX, vertexY))
centerOfImgPoint = np.asarray((centerImgX,centerImgY))
dist_01 = self._point_to_line_dist(centerPoint, [baseLeftPoint,baseRigthPoint])
dist_02 = self._point_to_line_dist(centerPoint, [baseLeftPoint,vertexPoint])
dist_03 = self._point_to_line_dist(centerPoint, [baseRigthPoint,vertexPoint])
dist_04 = self._point_to_line_dist(centerPoint, [centerOfImgPoint,vertexPoint])
minDistance = min(dist_01, dist_02, dist_03, dist_04)
distancePoints.append(minDistance)
# initialise the result and set a paramenter that is linked to the size of the image
res = 0
parameter = self.gray.size / ((self.gray.shape[0]+self.gray.shape[1]) * 1.618)
if len(distancePoints) == 0:
ScoreBigTriangle = 0
self.ScoreBigTriangle = ScoreBigTriangle
return imageDisplay, ScoreBigTriangle
else:
for distance in distancePoints:
res += distance * (np.exp((-distance/parameter)))
ScoreBigTriangle = res / sum(distancePoints)
# draw the guides rules and saliency on panel
cv2.line(imageDisplay,(baseLeftX,baseLeftY), (baseRightX,baseRightY), (255,0,255), 1)
cv2.line(imageDisplay,(baseLeftX,baseLeftY), (vertexX, vertexY), (255,0,255), 1)
cv2.line(imageDisplay,(baseRightX,baseRightY), (vertexX, vertexY), (255,0,255), 1)
cv2.line(imageDisplay,(centerImgX,centerImgY), (vertexX, vertexY), (255,0,255), 1)
if distanceMethod == 'segment':
cv2.putText(imageDisplay, "TriangSeg: {:.3f}".format(ScoreBigTriangle), (5, 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
if segmentation == 'saliency':
cv2.putText(imageDisplay, "RTS: {:.3f}".format(ScoreBigTriangle), (5, 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
if segmentation == 'ORB':
cv2.putText(imageDisplay, "RTorb: {:.3f}".format(ScoreBigTriangle), (5, 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
self.ScoreBigTriangle = ScoreBigTriangle
return imageDisplay, ScoreBigTriangle
def bigTriangleComposition (self, segmentation = 'ORB'):
# calculate the area of the template triangle based on the golden ratio
h, w, s = self.image.shape
baseLeftX = int((w - (w*0.618)) / 2)
baseLeftY = int(h - ((h*0.618) / 2))
baseRightX = baseLeftX + int(w* 0.618)
baseRightY = baseLeftY
vertexX = int( w / 2)
vertexY = h - baseLeftY
listOfPotins = [[baseLeftX, baseLeftY], [vertexX, vertexY], [baseRightX, baseRightY]]
ctr = np.array(listOfPotins).reshape((-1,1,2)).astype(np.int32)
# fill the triangle for the mask
blankForMasking = np.zeros(self.image.shape, dtype = "uint8")
cv2.drawContours(blankForMasking, [ctr], -1, (255, 255, 255), 2)
# dilate the mask to capture more relevant pixels
kernel = np.ones((5,5),np.uint8)
blankForMasking = cv2.dilate(blankForMasking,kernel,iterations = 2)
# flip to make the triangle with the base to the lower base
#blankForMasking = cv2.flip(blankForMasking, -1)
# segmentation using
if segmentation == 'ORB' :
ImgImpRegion, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = True, edgesdilateOpen = True, method = cv2.RETR_EXTERNAL)
if segmentation == 'saliency':
contours, ImgImpRegion = self._saliencySegmentation(method = cv2.RETR_EXTERNAL )
ImgImpRegion = cv2.cvtColor(ImgImpRegion, cv2.COLOR_GRAY2BGR)
# create the segmentations of the images using threshold
if segmentation == 'thresh':
contours, ImgImpRegion = self._thresholdSegmentation(method = cv2.RETR_LIST )
if segmentation == 'both':
ImgImpRegionA, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = True, edgesdilateOpen = True, method = cv2.RETR_EXTERNAL)
contours, ImgImpRegionB = self._saliencySegmentation(method = cv2.RETR_EXTERNAL )
ImgImpRegionB = cv2.cvtColor(ImgImpRegionB, cv2.COLOR_GRAY2BGR)
# create the both mask
ImgImpRegion = cv2.bitwise_or(ImgImpRegionA,ImgImpRegionB)
# count the total number of segmentation pixel bigger than 0
maskedImage = cv2.bitwise_and(ImgImpRegion, blankForMasking)
sumOfrelevantPixels = (maskedImage > 0).sum()
totalRelevantPixels = (ImgImpRegion > 0).sum()
# ratio of the number counted in and out of the triangle
bigTriangleCompScore = sumOfrelevantPixels/totalRelevantPixels
# draw the image for display
cv2.drawContours(ImgImpRegion, [ctr], -1, (255, 0, 0), 2)
cv2.putText(ImgImpRegion, "TriComp: {:.3f}".format(bigTriangleCompScore), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
self.bigTriangleCompScore = bigTriangleCompScore
return ImgImpRegion, bigTriangleCompScore
def fourTriangleDistance (self, segmentation = 'ORB', edged = True, edgesdilateOpen = True, method = cv2.RETR_EXTERNAL):
# draw the guidelines of the images
guideLinesA = self._fourTriangleGuidelines(flip = False)
guideLinesB = self._fourTriangleGuidelines(flip = True)
# dilate theguidelines
kernel = np.ones((5,5),np.uint8)
maskA = cv2.dilate(guideLinesA,kernel,iterations = 3)
maskB = cv2.dilate(guideLinesB,kernel,iterations = 3)
# segmentation using ORB or Saliency or Thresh or Edges expanded
if segmentation == 'ORB' :
ImgImpRegion, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = edged, edgesdilateOpen = edgesdilateOpen, method = method)
if segmentation == 'saliency':
contours, ImgImpRegion = self._saliencySegmentation(method = cv2.RETR_EXTERNAL )
ImgImpRegion = cv2.cvtColor(ImgImpRegion, cv2.COLOR_GRAY2BGR)
# create the segmentations of the images using threshold
if segmentation == 'thresh':
contours, ImgImpRegion = self._thresholdSegmentation(imageToTresh = None, method = cv2.RETR_LIST )
if segmentation == 'both':
ImgImpRegionA, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = edged, edgesdilateOpen = edgesdilateOpen, method = method)
contours, ImgImpRegionB = self._saliencySegmentation(method = cv2.RETR_EXTERNAL )
ImgImpRegionB = cv2.cvtColor(ImgImpRegionB, cv2.COLOR_GRAY2BGR)
# create the both mask
ImgImpRegion = cv2.bitwise_or(ImgImpRegionA,ImgImpRegionB)
intersectionA = cv2.bitwise_and(maskA, ImgImpRegion)
intersectionB = cv2.bitwise_and(maskB, ImgImpRegion)
# count the number of white pixels remained
validPointInA = ((intersectionA > 0).sum())
validPointInB = ((intersectionB > 0).sum())
# =============================================================================
# cv2.imshow('imp', ImgImpRegion)
# cv2.imshow ('maskA',intersectionA)
# cv2.waitKey()
# cv2.destroyAllWindows()
# =============================================================================
validPoints = max(validPointInA, validPointInB)
totalPossiblePoints = ((ImgImpRegion > 0).sum())
scoreFourTriangleDistance = validPoints / totalPossiblePoints
displayImg = cv2.bitwise_or(guideLinesA, ImgImpRegion)
cv2.putText(displayImg, "4TC: {:.3f}".format(scoreFourTriangleDistance), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
self.scoreFourTriangleDistance = scoreFourTriangleDistance
return displayImg, scoreFourTriangleDistance
def triangleAreaGoldenRatio (self, segmentation = 'ORB', minArea = False,
numberOfCnts = 10, areascalefactor = 3000):
triangleDisplay = self.image.copy()
# from paper 41
# calculate the area of the template triangle
h, w, s = self.image.shape
areaGoldenFittedTriangle = ((w * 0.618) * (h * 0.618)) / 2
# segmentation of the image
#TODO put other possible segmentation modes
#TODO also add the bitwise operation of saliency + orb
if segmentation == 'ORB' :
blank, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = True, edgesdilateOpen = True, method = cv2.RETR_EXTERNAL)
if segmentation == 'saliency':
contours, SaliencyMask = self._saliencySegmentation(method = cv2.RETR_EXTERNAL )
# create the segmentations of the images using threshold
if segmentation == 'thresh':
contours, threshImg = self._thresholdSegmentation(method = cv2.RETR_LIST )
# narrow the contorus to the most relevant
# sort contours
sorted_contours = sorted(contours, key = cv2.contourArea, reverse = True)
# sorted and selected list of areas in contours if minArea is True
if minArea:
selected_contours = []
MinArea = self.gray.size / areascalefactor
for cnt in sorted_contours[0:numberOfCnts]:
area = cv2.contourArea(cnt)
if area > MinArea:
selected_contours.append(cnt)
sorted_contours = sorted(selected_contours, key = cv2.contourArea, reverse = True)
# select only the biggest contours
contoursSelection = sorted_contours[0:numberOfCnts]
# find the center points of the contours
triangleDisplay, listOfCenterPoints = self._findCentreOfMass(image = triangleDisplay, contours = contoursSelection, approxCnt = False)
# calculate the area of the detected traingle using iteration over 6 points
# Return r length subsequences of elements from the input iterable.
listOfCenterPoints = [list(elem) for elem in listOfCenterPoints]
candidates = list(itertools.combinations(listOfCenterPoints, 3))
candidates = [list(elem) for elem in candidates]
areaCntDict = {}
for cnt in candidates:
cnt = np.array(cnt, dtype = np.int32)
cv2.drawContours(triangleDisplay, [cnt], -1, (0, 255, 0), 1)
areaCnt = cv2.contourArea(cnt)
areaCntDict[areaCnt] = cnt
# use the dictionary to find the bigger triangle
sortedKeys = sorted(areaCntDict, reverse = True)
if sortedKeys == []:
scoreGoldenTriangle = 0
return triangleDisplay, blank, scoreGoldenTriangle
# draw the bigger triangle in red in most cases is the same of the golden triangle
#biggerTriangle = (areaCntDict[sortedKeys[0]])
#cv2.drawContours(triangleDisplay, [biggerTriangle], -1, (0, 0, 255), 2)
# select the element value closest to the areaGolden
closestAreaTriangleToGoldeRation = min(enumerate(sortedKeys), key=lambda x: abs(x[1]-areaGoldenFittedTriangle))
#print (closestAreaTriangleToGoldeRation, areaGoldenFittedTriangle )
ClosestTriangle = (areaCntDict[closestAreaTriangleToGoldeRation[1]])
cv2.drawContours(triangleDisplay, [ClosestTriangle], -1, (255, 0, 0), 2)
# calculate the score as the minimum distance of the area
scoreGoldenTriangle = (closestAreaTriangleToGoldeRation[1] / areaGoldenFittedTriangle)
#TODO return also the mask in case is ORB or create separate PANEL in UI for the mask calling a dedicated funtion
cv2.putText(triangleDisplay, "Torb: {:.3f}".format(scoreGoldenTriangle), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
self.scoreGoldenTriangle = scoreGoldenTriangle
return triangleDisplay, blank, scoreGoldenTriangle
def diagonalDistanceBalance(self, segmentation = 'inner', minArea = True,
numberOfCnts = 100, areascalefactor = 3000, distanceMethod = 'lines'):
# https://stackoverflow.com/questions/45766534/finding-cross-product-to-find-points-above-below-a-line-in-matplotlib
diagonalImg = self.image.copy()
# draw the lines of the diagonal
topLeft = (0,0)
lowerRight = (self.image.shape[1], self.image.shape[0])
lowerLeft = (0, self.image.shape[0])
topright = (self.image.shape[1],0)
#blankFourTriangle = np.array(blankFourTriangle)
cv2.line(diagonalImg, topright , lowerLeft, (255,255,255), 1) # topright - lowerleft
cv2.line(diagonalImg, topLeft , lowerRight, (255,0,255), 1) # topleft - lowerright
# calculate the segmentation
if segmentation == 'ORB' :
blank, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = False, edgesdilateOpen = False, method = cv2.RETR_EXTERNAL)
if segmentation == 'saliency':
contours, SaliencyMask = self._saliencySegmentation(method = cv2.RETR_EXTERNAL )
# create the segmentations of the images using threshold
if segmentation == 'thresh':
contours, threshImg = self._thresholdSegmentation(method = cv2.RETR_LIST )
if segmentation == 'inner':
segmentationOnInnerCnts, contours = self._innerCntsSegmentation(numberOfCnts = numberOfCnts, method = cv2.RETR_CCOMP, minArea = 2)
# sort contours
sorted_contours = sorted(contours, key = cv2.contourArea, reverse = True)
# sorted and selected list of areas in contours if minArea is True
if minArea:
selected_contours = []
minArea = self.gray.size / areascalefactor
for cnt in sorted_contours[0:numberOfCnts]:
area = cv2.contourArea(cnt)
if area > minArea:
selected_contours.append(cnt)
sorted_contours = sorted(selected_contours, key = cv2.contourArea, reverse = True)
# select only the bigger contours
contoursSelection = sorted_contours[0:numberOfCnts]
# find the center of each contours and draw cnts, not using approx contours
imageDisplay, listOfCenterPoints = self._findCentreOfMass(image = diagonalImg, contours = contoursSelection, approxCnt = False)
# calculate how many points are below and above each diagonals and take the best result
aboveA = 0
belowA = 0
aboveB = 0
belowB = 0
if distanceMethod == 'segment':
for point in listOfCenterPoints:
centerPoint = np.asarray(point)
topLeftA = np.asarray((topLeft[0], topLeft[1]))
lowerRightA = np.asarray((lowerRight[0], lowerRight[1]))
lowerLeftA = np.asarray((lowerLeft[0], lowerLeft[1]))
toprightA = np.asarray((topright[0], topright[1]))
isabove = lambda p, a, b : np.cross (p-a, b-a) > 0
if isabove(centerPoint,topLeftA,lowerRightA):
aboveA += 1
else:
belowA += 1
if isabove(centerPoint,lowerLeftA,toprightA):
aboveB += 1
else:
belowB += 1
if len(contoursSelection) == 0:
diagonalasymmetryBalance = 0
self.diagonalasymmetryBalance = diagonalasymmetryBalance
return imageDisplay, diagonalasymmetryBalance
else:
ratio_A = max (aboveA, belowA)
resultA = ratio_A / len(contoursSelection)
ratio_B = max (aboveB, belowB)
resultB = ratio_B / len(contoursSelection)
# =============================================================================
#
# resultA = abs(aboveA-belowA) / len(contoursSelection)
# resultB = abs(aboveB - belowB) / len(contoursSelection)
# =============================================================================
diagonalasymmetryBalance = max(resultA,resultB)
# draw label
cv2.putText(imageDisplay, "Dcomp: {:.3f}".format(diagonalasymmetryBalance), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
self.diagonalasymmetryBalance = diagonalasymmetryBalance
return imageDisplay, diagonalasymmetryBalance
def diagonalsDistance (self, saliencySegmentation = True, minArea = True,
numberOfCnts = 4, areascalefactor = 3500):
# using adapted version of the paper 'Autonomous Viepoint Selection of Robots..'
diagonal = self.image.copy()
# take the 4 points of the two diagonal lines
topLeft = (0,0)
lowerRight = (self.image.shape[1], self.image.shape[0])
topright = (0, self.image.shape[0])
lowerLeft = (self.image.shape[1],0)
# extract the center points using saliency segmentation or threshold
# create the segmentation of the image using Saliency Segmentation
if saliencySegmentation == True:
contours, SaliencyMask = self._saliencySegmentation(method = cv2.RETR_EXTERNAL )
# create the segmentations of the images using threshold
if saliencySegmentation == False:
contours, threshImg = self._thresholdSegmentation(method = cv2.RETR_LIST )
# narrow the contorus to the most relevant
# sort contours
sorted_contours = sorted(contours, key = cv2.contourArea, reverse = True)
# sorted and selected list of areas in contours if minArea is True
if minArea:
selected_contours = []
MinArea = self.gray.size / areascalefactor
for cnt in sorted_contours[0:numberOfCnts]:
area = cv2.contourArea(cnt)
if area > MinArea:
selected_contours.append(cnt)
sorted_contours = sorted(selected_contours, key = cv2.contourArea, reverse = True)
# select only the biggest contours
contoursSelection = sorted_contours[0:numberOfCnts]
# find the center of cnts
diagonal, listOfCenterPoints = self._findCentreOfMass(image = diagonal, contours = contoursSelection, approxCnt = False)
# create the function to calculate the distance
# descending diagonal
distanceFromDescendingDiagonalList = []
for point in listOfCenterPoints:
x,y = point
p1 = topLeft
p2 = lowerRight
distanceFromDescendingDiagonal = self._distance_to_line( p1, p2, x, y)
distanceFromDescendingDiagonalList.append(distanceFromDescendingDiagonal)
meandistanceFromDescendingDiagonalList = np.mean(distanceFromDescendingDiagonalList)
# ascending diagonal
distanceFromAscendingDiagonalList = []
for point in listOfCenterPoints:
x,y = point
p1 = lowerLeft
p2 = topright
distanceFromAscendingDiagonal = self._distance_to_line( p1, p2, x, y)
distanceFromAscendingDiagonalList.append(distanceFromAscendingDiagonal)
meanddistanceFromAscendingDiagonalList = np.mean(distanceFromAscendingDiagonalList)
# extract the min distances
minDistancefromDiagonals = min(meandistanceFromDescendingDiagonalList,meanddistanceFromAscendingDiagonalList)
# use exponential formula to score the results
pointA = (int(self.image.shape[0]/2), 0)
maxDistanceA = self._distance_to_line( topLeft, lowerRight, pointA[0], pointA[1])
pointB = (0, int(self.image.shape[1]/2))
maxDistanceB = self._distance_to_line( topLeft, lowerRight, pointB[0], pointB[1])
maxdistance = max(maxDistanceA,maxDistanceB)
ScoreMinDistancefromDiagonals = 1 - (minDistancefromDiagonals / maxdistance)
# draw the 2 diagonals
cv2.line(diagonal, topLeft,lowerRight , (255,255,255), 1) # topleft - lowerright
cv2.line(diagonal, topright , lowerLeft, (255,255,255), 1) # topright - lowerleft
# draw label
cv2.putText(diagonal, "Ddist: {:.3f}".format(ScoreMinDistancefromDiagonals), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
self.ScoreMinDistancefromDiagonals = ScoreMinDistancefromDiagonals
return diagonal, ScoreMinDistancefromDiagonals
def ruleOfThirdOnThreshPixelsCount(self):
meanThresh = | np.mean(self.gray) | numpy.mean |
import numpy as np
import netCDF4 as nc
import geokit as gk
from geokit import Location, LocationSet, Extent
import ogr
import osr
import pandas as pd
from collections import namedtuple, OrderedDict
from scipy.interpolate import splrep, splev
from scipy.stats import norm
from glob import glob
import re
from os.path import join, dirname, basename, splitext
import types
from types import FunctionType
from datetime import datetime as dt
# making an error
class ResError(Exception):
pass # this just creates an error that we can use
# Add paths
_test_data_ = gk._test_data_
DATADIR = join(dirname(__file__), "..", "data")
_data_ = dict([(basename(f), f) for f in glob(join(DATADIR, "*"))])
# Make easy access to latlon projection system
LATLONSRS = gk.srs.EPSG4326
LATLONSRS.__doc__ = "Spatial reference system for latitue and longitude coordinates"
# STAN
def storeTimeseriesAsNc(output, timedata, varmeta={}, keydata=None, keydatameta={}, timeunit="minutes since 1900-01-01 00:00:00"):
"""Create a netCDF4 file from a set of time series arrays.
Parameters
----------
output : str
The path to write the netCDF4 file to
timedata : DataFrame or { <varname>:DataFrame, ... }
Two dimensional data which will be written to the netCDF4 file
* All dataframes must share a time-index and columns names
* If only a single DataFrame is given, a variable name of "var" is
assumed
varmeta : dict or { <varname>:dict, ... }, optional
Meta data to apply to the time-series variables
* If timedata is a DataFrame, the varmeta dictionary will be applied
directly to the "var" variable
* Variable names must match names given in timedata
* Dict keys must be strings, and values must be strings or numerics
* Example:
varmeta={ "power_output":
{ "name":"The power output of each wind turbine",
"units":"kWh", },
}
keydata : DataFrame, optional
Column-wise data to save for each key
* Indexes must match the columns in the timedata DataFrames
keydatameta : { <keyname>:dict, ... }, optional
Meta data to apply to the keydata variables
* Dict keys must be strings, and values must be strings or numerics
timeunit : str, optional
The time unit to use when compressing the time index
* Example: "Minutes since 01-01-1970"
Returns
-------
None
"""
# correct the time data
if isinstance(timedata, pd.DataFrame):
timedata = {"var": timedata, }
varmeta = {"var": varmeta, }
# Check the input data, just in case
cols = list(timedata.keys())
if len(cols) > 1:
for i in range(1, len(cols)):
if not (timedata[cols[i]].columns == timedata[cols[0]].columns).all():
raise RuntimeError("timedata columns do not match eachother")
if not (timedata[cols[i]].index == timedata[cols[0]].index).all():
raise RuntimeError("timedata indicies do not match eachother")
# Make an output file
ds = nc.Dataset(output, mode="w")
try:
# Make the dimensions
ds.createDimension("time", size=timedata[cols[0]].shape[0])
ds.createDimension("key", size=timedata[cols[0]].shape[1])
# Make the time variable
timeV = ds.createVariable(
"time", "u4", dimensions=("time",), contiguous=True)
timeV.units = timeunit
times = timedata[cols[0]].index
if timedata[cols[0]].index[0].tz is None:
timeV.tz = "unknown"
else:
timeV.tz = timedata[cols[0]].index[0].tzname()
times = times.tz_localize(None)
timeV[:] = nc.date2num(times.to_pydatetime(), timeunit)
# Make the data variables
for varN, tab in timedata.items():
var = ds.createVariable(varN, tab.iloc[0, 0].dtype, dimensions=(
"time", "key",), contiguous=True)
if varN in varmeta and len(varmeta[varN]) > 0:
var.setncatts(varmeta[varN])
var[:] = tab.values
# Make some key variables, maybe
if not keydata is None:
# test if the keys are in the right order
if not (timedata[cols[0]].columns == keydata.index).all():
raise RuntimeError(
"timedata columns do not match keydata indecies")
for col in keydata.columns:
dtype = str if keydata[col].dtype == np.dtype(
"O") else keydata[col].dtype
var = ds.createVariable(
col, dtype, dimensions=("key",), contiguous=True)
if col in keydatameta and len(keydatameta[col]) > 0:
var.setncatts(keydatameta[col])
var[:] = keydata[col].values if not dtype is str else keydata[col].values.astype(
np.str)
ds.close()
except Exception as e:
ds.close() # make sure the ds is closed!
raise e
# All done!
return
# Make basic helper functions
def removeLeapDay(timeseries):
"""Removes leap days from a given timeseries
Parameters
----------
timeseries : array_like
The time series data to remove leap days from
* If something array_like is given, the length must be 8784
* If a pandas DataFrame or Series is given, time indexes will be used
directly
Returns
-------
Array
"""
if isinstance(timeseries, np.ndarray):
if timeseries.shape[0] == 8760:
return timeseries
elif timeseries.shape[0] == 8784:
times = pd.date_range("01-01-2000 00:00:00",
"12-31-2000 23:00:00", freq="H")
sel = np.logical_and((times.day == 29), (times.month == 2))
if len(timeseries.shape) == 1:
return timeseries[~sel]
else:
return timeseries[~sel, :]
else:
raise ResError('Cannot handle array shape '+str(timeseries.shape))
elif isinstance(timeseries, pd.Series) or isinstance(timeseries, pd.DataFrame):
times = timeseries.index
sel = np.logical_and((times.day == 29), (times.month == 2))
if isinstance(timeseries, pd.Series):
return timeseries[~sel]
else:
return timeseries.loc[~sel]
else:
return removeLeapDay(np.array(timeseries))
def linearTransition(x, start, stop, invert=False):
"""Apply a linear transition function to the given data array
* All values less than 'start' are mapped to 0 (or 1, if 'invert' is True)
* All values greather than 'stop' are mapped to 1 (or 0, if 'invert' is True)
* Values between 'start' and 'stop' are mapped to a linearly increasing output
(or decreasing, if 'invert' is True)
Parameters
----------
x : array_like
The data to be mapped
start : numeric
The starting value of the linear transition
stop : numeric
The ending value of the linear transition
invert : bool, optional
Instructs the transition to go from 1->0 if True, or 0->1 if False
Returns
-------
Array
"""
tmp = np.zeros(x.shape)
s = x <= start
tmp[s] = 0
s = (x > start) & (x <= stop)
tmp[s] = (x[s]-start)/(stop-start)
s = x > stop
tmp[s] = 1
if invert:
return 1-tmp
else:
return tmp
# Parse Generation File
_Data = namedtuple("Data", "gen capex")
def parseRESGenerationFile(f, capacity, extrapolateOverCapacity=False, keepLeapDay=True):
"""Parse one of Sev's RES Generation files
* These files are each created for one regional context
* Each one contains the time series production values of one RES technology
at many capacity levels
* Sometimes cost data is also included
Parameters
----------
f : str
A path to the file to be parsed
capacity : numeric or array_like
The capacity levels to extract
Returns
-------
namedtuple
"""
ds = nc.Dataset(f)
try:
capUnit = ds['installed_capacity'].unit.lower()
except AttributeError:
capUnit = ds['installed_capacity'].units.lower()
if capUnit == "w":
capScaling = 1e9
elif capUnit == "kw":
capScaling = 1e6
elif capUnit == "mw":
capScaling = 1e3
elif capUnit == "gwh": # SEV MADE A STUPID MISTAKE WITH THE PV FILES, WHICH SHOULD BE FIXED LATER!!!!!
# THIS IS HERE AS A BANDAID FIX FOR NOW
capScaling = 1e6
else:
capScaling = 1.0
try:
timeIndex = nc.num2date(ds["time"][:], ds["time"].units)
CAP = ds["installed_capacity"][:]/capScaling
if "capex" in ds.variables.keys():
hasCapex = True
TrueCOST = ds["capex"][:]
else:
hasCapex = False
try:
capacity = list(capacity)
except:
capacity = [capacity, ]
def atCapacity(cap):
s = np.argmin(np.abs(CAP-cap))
if CAP[s] == cap:
gen = ds["capfac"][:, s]
if hasCapex:
capex = ds["capex"][s]
elif cap > CAP[-1]:
if extrapolateOverCapacity:
gen = ds["capfac"][:, -1]
if hasCapex:
capex = ds["capex"][s]/CAP[-1]*cap
else:
raise ResError(
"The given capacity (%f) exceeds the maximum capacity(%f)" % (cap, CAP[-1]))
else:
if CAP[s] > cap:
low, high = s-1, s
else:
low, high = s, s+1
raw = ds["capfac"][:, [low, high]]
factor = (cap-CAP[low])/(CAP[high]-CAP[low])
gen = raw[:, 0]*(1-factor) + raw[:, 1]*factor
if hasCapex:
lowCost, highCost = ds["capex"][[low, high]]
capex = lowCost*(1-factor) + highCost*factor
if hasCapex:
return gen, capex
else:
return gen, None
generations = pd.DataFrame(index=timeIndex,)
if hasCapex:
capexes = []
for cap in capacity:
gen, capex = atCapacity(cap)
generations[cap] = gen*cap
if hasCapex:
capexes.append(capex)
if len(capacity) == 1:
generations = generations[capacity[0]]
if not keepLeapDay:
generations = removeLeapDay(generations)
except Exception as e:
ds.close()
raise e
# return _SGF(capacity=np.array(capacity), capex=np.array(capexes), generation=generations,
# regionName=ds["generation"].region, variable=ds["generation"].technology,
# capacityUnit=ds["total_capacity"].unit, capexUnit=ds["total_cost"].unit,
# generationUnit=ds["generation"].unit)
if hasCapex:
return _Data(generations, np.array(capexes))
else:
return _Data(generations, None)
def rotateFromLatLon(lons, lats, lonSouthPole=18, latSouthPole=-39.25):
"""This function applies a spherical rotation to a set of given latitude and
longitude coordinates, yielding coordinates in the rotated system.
Parameters
----------
lons : list, numpy.ndarray
A one-dimensional list of longitude coordinates
lats : list, numpy.ndarray
A one-dimensional list of latitude coordinates
lonSouthPole : float
The longitude of the rotated system's south pole
latSouthPole : float
The latitude of the rotated system's south pole
"""
lons = np.radians(lons)
lats = np.radians(lats)
theta = np.radians(90+latSouthPole) # south pole is at 18 deg longitude
phi = np.radians(lonSouthPole) # south pole is at -39.25 deg latitude
x = np.cos(lons) * np.cos(lats)
y = np.sin(lons) * np.cos(lats)
z = np.sin(lats)
x_new = np.cos(theta) * np.cos(phi) * x + np.cos(theta) * \
np.sin(phi) * y + np.sin(theta) * z
y_new = -np.sin(phi) * x + np.cos(phi) * y
z_new = -np.sin(theta) * np.cos(phi) * x - np.sin(theta) * \
np.sin(phi) * y + np.cos(theta) * z
rlonCoords = np.degrees(np.arctan2(y_new, x_new))
rlatCoords = np.degrees(np.arcsin(z_new))
return rlonCoords, rlatCoords
def rotateToLatLon(rlons, rlats, lonSouthPole=18, latSouthPole=-39.25):
"""This function un-does a spherical rotation to a set of given latitude and
longitude coordinates (in the rotated), yielding coordinates in the regular
longitude and latitude system.
Parameters
----------
rlons : list, numpy.ndarray
A one-dimensional list of longitude coordinates in the rotated system
rlats : list, numpy.ndarray
A one-dimensional list of latitude coordinates in the rotated system
lonSouthPole : float
The longitude of the rotated system's south pole
latSouthPole : float
The latitude of the rotated system's south pole
"""
rlons = np.radians(rlons)
rlats = np.radians(rlats)
theta = -np.radians(90+latSouthPole) # south pole is at 18 deg longitude
phi = -np.radians(lonSouthPole) # south pole is at -39.25 deg latitude
x = np.cos(rlons) * np.cos(rlats)
y = np.sin(rlons) * np.cos(rlats)
z = np.sin(rlats)
x_new = np.cos(theta) * np.cos(phi) * x + np.sin(phi) * \
y + np.sin(theta) * np.cos(phi) * z
y_new = -np.cos(theta) * np.sin(phi) * x + np.cos(phi) * \
y - np.sin(theta) * np.sin(phi) * z
z_new = - | np.sin(theta) | numpy.sin |
"""
Plots Arctic sea ice extent from June 2002-present using JAXA metadata
Website : https://ads.nipr.ac.jp/vishop/vishop-extent.html
Author : <NAME>
Date : 4 August 2016
"""
### Import modules
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import matplotlib
import datetime
import urllib.request
import urllib as UL
### Directory and time
directory = './Figures/'
source = 'twitter'
now = datetime.datetime.now()
currentmn = str(now.month)
currentdy = str(now.day-1)
currentyr = str(now.year)
currenttime = currentmn + '_' + currentdy + '_' + currentyr
### Load url
url = 'https://ads.nipr.ac.jp/vishop.ver1/data/graph/plot_extent_n_v2.csv'
### Read file
raw_data = UL.request.urlopen(url)
dataset = | np.genfromtxt(raw_data, skip_header=0,delimiter=",",) | numpy.genfromtxt |
"""
It contains the functions to compute the cases that presents an analytical
solutions.
All functions output the analytical solution in kcal/mol
"""
import numpy
from numpy import pi
from scipy import special, linalg
from scipy.misc import factorial
from math import gamma
def an_spherical(q, xq, E_1, E_2, E_0, R, N):
"""
It computes the analytical solution of the potential of a sphere with
Nq charges inside.
Took from Kirkwood (1934).
Arguments
----------
q : array, charges.
xq : array, positions of the charges.
E_1: float, dielectric constant inside the sphere.
E_2: float, dielectric constant outside the sphere.
E_0: float, dielectric constant of vacuum.
R : float, radius of the sphere.
N : int, number of terms desired in the spherical harmonic expansion.
Returns
--------
PHI: array, reaction potential.
"""
PHI = numpy.zeros(len(q))
for K in range(len(q)):
rho = numpy.sqrt(numpy.sum(xq[K]**2))
zenit = numpy.arccos(xq[K, 2] / rho)
azim = numpy.arctan2(xq[K, 1], xq[K, 0])
phi = 0. + 0. * 1j
for n in range(N):
for m in range(-n, n + 1):
sph1 = special.sph_harm(m, n, zenit, azim)
cons1 = rho**n / (E_1 * E_0 * R**(2 * n + 1)) * (E_1 - E_2) * (
n + 1) / (E_1 * n + E_2 * (n + 1))
cons2 = 4 * pi / (2 * n + 1)
for k in range(len(q)):
rho_k = numpy.sqrt(numpy.sum(xq[k]**2))
zenit_k = numpy.arccos(xq[k, 2] / rho_k)
azim_k = numpy.arctan2(xq[k, 1], xq[k, 0])
sph2 = numpy.conj(special.sph_harm(m, n, zenit_k, azim_k))
phi += cons1 * cons2 * q[K] * rho_k**n * sph1 * sph2
PHI[K] = numpy.real(phi) / (4 * pi)
return PHI
def get_K(x, n):
"""
It computes the polinomials K needed for Kirkwood-1934 solutions.
K_n(x) in Equation 4 in Kirkwood 1934.
Arguments
----------
x: float, evaluation point of K.
n: int, number of terms desired in the expansion.
Returns
--------
K: float, polinomials K.
"""
K = 0.
n_fact = factorial(n)
n_fact2 = factorial(2 * n)
for s in range(n + 1):
K += 2**s * n_fact * factorial(2 * n - s) / (factorial(s) * n_fact2 *
factorial(n - s)) * x**s
return K
def an_P(q, xq, E_1, E_2, R, kappa, a, N):
"""
It computes the solvation energy according to Kirkwood-1934.
Arguments
----------
q : array, charges.
xq : array, positions of the charges.
E_1 : float, dielectric constant inside the sphere.
E_2 : float, dielectric constant outside the sphere.
R : float, radius of the sphere.
kappa: float, reciprocal of Debye length.
a : float, radius of the Stern Layer.
N : int, number of terms desired in the polinomial expansion.
Returns
--------
E_P : float, solvation energy.
"""
qe = 1.60217646e-19
Na = 6.0221415e23
E_0 = 8.854187818e-12
cal2J = 4.184
PHI = numpy.zeros(len(q))
for K in range(len(q)):
rho = numpy.sqrt(numpy.sum(xq[K]**2))
zenit = numpy.arccos(xq[K, 2] / rho)
azim = numpy.arctan2(xq[K, 1], xq[K, 0])
phi = 0. + 0. * 1j
for n in range(N):
for m in range(-n, n + 1):
P1 = special.lpmv(numpy.abs(m), n, numpy.cos(zenit))
Enm = 0.
for k in range(len(q)):
rho_k = numpy.sqrt(numpy.sum(xq[k]**2))
zenit_k = numpy.arccos(xq[k, 2] / rho_k)
azim_k = numpy.arctan2(xq[k, 1], xq[k, 0])
P2 = special.lpmv(numpy.abs(m), n, numpy.cos(zenit_k))
Enm += q[k] * rho_k**n * factorial(n - numpy.abs(
m)) / factorial(n + numpy.abs(m)) * P2 * numpy.exp(
-1j * m * azim_k)
C2 = (kappa * a)**2 * get_K(kappa * a, n - 1) / (
get_K(kappa * a, n + 1) + n * (E_2 - E_1) / (
(n + 1) * E_2 + n * E_1) * (R / a)**(2 * n + 1) *
(kappa * a)**2 * get_K(kappa * a, n - 1) / ((2 * n - 1) *
(2 * n + 1)))
C1 = Enm / (E_2 * E_0 * a**
(2 * n + 1)) * (2 * n + 1) / (2 * n - 1) * (E_2 / (
(n + 1) * E_2 + n * E_1))**2
if n == 0 and m == 0:
Bnm = Enm / (E_0 * R) * (
1 / E_2 - 1 / E_1) - Enm * kappa * a / (
E_0 * E_2 * a * (1 + kappa * a))
else:
Bnm = 1. / (E_1 * E_0 * R**(2 * n + 1)) * (E_1 - E_2) * (
n + 1) / (E_1 * n + E_2 * (n + 1)) * Enm - C1 * C2
phi += Bnm * rho**n * P1 * numpy.exp(1j * m * azim)
PHI[K] = numpy.real(phi) / (4 * pi)
C0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J)
E_P = 0.5 * C0 * numpy.sum(q * PHI)
return E_P
def two_sphere(a, R, kappa, E_1, E_2, q):
"""
It computes the analytical solution of a spherical surface and a spherical
molecule with a center charge, both of radius R.
Follows Cooper&Barba 2016
Arguments
----------
a : float, center to center distance.
R : float, radius of surface and molecule.
kappa: float, reciprocal of Debye length.
E_1 : float, dielectric constant inside the sphere.
E_2 : float, dielectric constant outside the sphere.
q : float, number of qe to be asigned to the charge.
Returns
--------
Einter : float, interaction energy.
E1sphere: float, solvation energy of one sphere.
E2sphere: float, solvation energy of two spheres together.
Note:
Einter should match (E2sphere - 2xE1sphere)
"""
N = 20 # Number of terms in expansion.
qe = 1.60217646e-19
Na = 6.0221415e23
E_0 = 8.854187818e-12
cal2J = 4.184
index2 = numpy.arange(N + 1, dtype=float) + 0.5
index = index2[0:-1]
K1 = special.kv(index2, kappa * a)
K1p = index / (kappa * a) * K1[0:-1] - K1[1:]
k1 = special.kv(index, kappa * a) * numpy.sqrt(pi / (2 * kappa * a))
k1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * a)**(3 / 2.)) * special.kv(
index, kappa * a) + numpy.sqrt(pi / (2 * kappa * a)) * K1p
I1 = special.iv(index2, kappa * a)
I1p = index / (kappa * a) * I1[0:-1] + I1[1:]
i1 = special.iv(index, kappa * a) * numpy.sqrt(pi / (2 * kappa * a))
i1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * a)**(3 / 2.)) * special.iv(
index, kappa * a) + numpy.sqrt(pi / (2 * kappa * a)) * I1p
B = numpy.zeros((N, N), dtype=float)
for n in range(N):
for m in range(N):
for nu in range(N):
if n >= nu and m >= nu:
g1 = gamma(n - nu + 0.5)
g2 = gamma(m - nu + 0.5)
g3 = gamma(nu + 0.5)
g4 = gamma(m + n - nu + 1.5)
f1 = factorial(n + m - nu)
f2 = factorial(n - nu)
f3 = factorial(m - nu)
f4 = factorial(nu)
Anm = g1 * g2 * g3 * f1 * (n + m - 2 * nu + 0.5) / (
pi * g4 * f2 * f3 * f4)
kB = special.kv(n + m - 2 * nu + 0.5, kappa *
R) * numpy.sqrt(pi / (2 * kappa * R))
B[n, m] += Anm * kB
M = numpy.zeros((N, N), float)
E_hat = E_1 / E_2
for i in range(N):
for j in range(N):
M[i, j] = (2 * i + 1) * B[i, j] * (
kappa * i1p[i] - E_hat * i * i1[i] / a)
if i == j:
M[i, j] += kappa * k1p[i] - E_hat * i * k1[i] / a
RHS = numpy.zeros(N)
RHS[0] = -E_hat * q / (4 * pi * E_1 * a * a)
a_coeff = linalg.solve(M, RHS)
a0 = a_coeff[0]
a0_inf = -E_hat * q / (4 * pi * E_1 * a * a) * 1 / (kappa * k1p[0])
phi_2 = a0 * k1[0] + i1[0] * numpy.sum(a_coeff * B[:, 0]) - q / (4 * pi *
E_1 * a)
phi_1 = a0_inf * k1[0] - q / (4 * pi * E_1 * a)
phi_inter = phi_2 - phi_1
CC0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0)
Einter = 0.5 * CC0 * q * phi_inter
E1sphere = 0.5 * CC0 * q * phi_1
E2sphere = 0.5 * CC0 * q * phi_2
return Einter, E1sphere, E2sphere
def constant_potential_single_point(phi0, a, r, kappa):
"""
It computes the potential in a point 'r' due to a spherical surface
with constant potential phi0, immersed in water. Solution to the
Poisson-Boltzmann problem.
Arguments
----------
phi0 : float, constant potential on the surface of the sphere.
a : float, radius of the sphere.
r : float, distance from the center of the sphere to the evaluation
point.
kappa: float, reciprocal of Debye length.
Returns
--------
phi : float, potential.
"""
phi = a / r * phi0 * numpy.exp(kappa * (a - r))
return phi
def constant_charge_single_point(sigma0, a, r, kappa, epsilon):
"""
It computes the potential in a point 'r' due to a spherical surface
with constant charge sigma0 immersed in water. Solution to the
Poisson-Boltzmann problem. .
Arguments
----------
sigma0 : float, constant charge on the surface of the sphere.
a : float, radius of the sphere.
r : float, distance from the center of the sphere to the evaluation
point.
kappa : float, reciprocal of Debye length.
epsilon: float, water dielectric constant.
Returns
--------
phi : float, potential.
"""
dphi0 = -sigma0 / epsilon
phi = -dphi0 * a * a / (1 + kappa * a) * numpy.exp(kappa * (a - r)) / r
return phi
def constant_potential_single_charge(phi0, radius, kappa, epsilon):
"""
It computes the surface charge of a sphere at constant potential, immersed
in water.
Arguments
----------
phi0 : float, constant potential on the surface of the sphere.
radius : float, radius of the sphere.
kappa : float, reciprocal of Debye length.
epsilon: float, water dielectric constant .
Returns
--------
sigma : float, surface charge.
"""
dphi = -phi0 * ((1. + kappa * radius) / radius)
sigma = -epsilon * dphi # Surface charge
return sigma
def constant_charge_single_potential(sigma0, radius, kappa, epsilon):
"""
It computes the surface potential on a sphere at constant charged, immersed
in water.
Arguments
----------
sigma0 : float, constant charge on the surface of the sphere.
radius : float, radius of the sphere.
kappa : float, reciprocal of Debye length.
epsilon: float, water dielectric constant.
Returns
--------
phi : float, potential.
"""
dphi = -sigma0 / epsilon
phi = -dphi * radius / (1. + kappa * radius) # Surface potential
return phi
def constant_potential_twosphere(phi01, phi02, r1, r2, R, kappa, epsilon):
"""
It computes the solvation energy of two spheres at constant potential,
immersed in water.
Arguments
----------
phi01 : float, constant potential on the surface of the sphere 1.
phi02 : float, constant potential on the surface of the sphere 2.
r1 : float, radius of sphere 1.
r2 : float, radius of sphere 2.
R : float, distance center to center.
kappa : float, reciprocal of Debye length.
epsilon: float, water dielectric constant.
Returns
--------
E_solv : float, solvation energy.
"""
kT = 4.1419464e-21 # at 300K
qe = 1.60217646e-19
Na = 6.0221415e23
E_0 = 8.854187818e-12
cal2J = 4.184
C0 = kT / qe
phi01 /= C0
phi02 /= C0
k1 = special.kv(0.5, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1))
k2 = special.kv(0.5, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2))
B00 = special.kv(0.5, kappa * R) * numpy.sqrt(pi / (2 * kappa * R))
# k1 = special.kv(0.5,kappa*r1)*numpy.sqrt(2/(pi*kappa*r1))
# k2 = special.kv(0.5,kappa*r2)*numpy.sqrt(2/(pi*kappa*r2))
# B00 = special.kv(0.5,kappa*R)*numpy.sqrt(2/(pi*kappa*R))
i1 = special.iv(0.5, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1))
i2 = special.iv(0.5, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2))
a0 = (phi02 * B00 * i1 - phi01 * k2) / (B00 * B00 * i2 * i1 - k1 * k2)
b0 = (phi02 * k1 - phi01 * B00 * i2) / (k2 * k1 - B00 * B00 * i1 * i2)
U1 = 2 * pi * phi01 * (phi01 * numpy.exp(kappa * r1) * (kappa * r1) *
(kappa * r1) / numpy.sinh(kappa * r1) - pi * a0 /
(2 * i1))
U2 = 2 * pi * phi02 * (phi02 * numpy.exp(kappa * r2) * (kappa * r2) *
(kappa * r2) / numpy.sinh(kappa * r2) - pi * b0 /
(2 * i2))
print('U1: {}'.format(U1))
print('U2: {}'.format(U2))
print('E: {}'.format(U1 + U2))
C1 = C0 * C0 * epsilon / kappa
u1 = U1 * C1
u2 = U2 * C1
CC0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0)
E_solv = CC0 * (u1 + u2)
return E_solv
def constant_potential_twosphere_2(phi01, phi02, r1, r2, R, kappa, epsilon):
"""
It computes the solvation energy of two spheres at constant potential,
immersed in water.
Arguments
----------
phi01 : float, constant potential on the surface of the sphere 1.
phi02 : float, constant potential on the surface of the sphere 2.
r1 : float, radius of sphere 1.
r2 : float, radius of sphere 2.
R : float, distance center to center.
kappa : float, reciprocal of Debye length.
epsilon: float, water dielectric constant.
Returns
--------
E_solv : float, solvation energy.
"""
kT = 4.1419464e-21 # at 300K
qe = 1.60217646e-19
Na = 6.0221415e23
E_0 = 8.854187818e-12
cal2J = 4.184
h = R - r1 - r2
# E_inter = r1*r2*epsilon/(4*R) * ( (phi01+phi02)**2 * log(1+numpy.exp(-kappa*h)) + (phi01-phi02)**2*log(1-numpy.exp(-kappa*h)) )
# E_inter = epsilon*r1*phi01**2/2 * log(1+numpy.exp(-kappa*h))
E_solv = epsilon * r1 * r2 * (phi01**2 + phi02**2) / (4 * (r1 + r2)) * (
(2 * phi01 * phi02) / (phi01**2 + phi02**2) * log(
(1 + numpy.exp(-kappa * h)) /
(1 - numpy.exp(-kappa * h))) + log(1 - numpy.exp(-2 * kappa * h)))
CC0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0)
E_solv *= CC0
return E_solv
def constant_potential_single_energy(phi0, r1, kappa, epsilon):
"""
It computes the total energy of a single sphere at constant potential,
inmmersed in water.
Arguments
----------
phi0 : float, constant potential on the surface of the sphere.
r1 : float, radius of sphere.
kappa : float, reciprocal of Debye length.
epsilon: float, water dielectric constant.
Returns
--------
E : float, total energy.
"""
N = 1 # Number of terms in expansion
qe = 1.60217646e-19
Na = 6.0221415e23
E_0 = 8.854187818e-12
cal2J = 4.184
index2 = numpy.arange(N + 1, dtype=float) + 0.5
index = index2[0:-1]
K1 = special.kv(index2, kappa * r1)
K1p = index / (kappa * r1) * K1[0:-1] - K1[1:]
k1 = special.kv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1))
k1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.kv(
index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * K1p
a0_inf = phi0 / k1[0]
U1_inf = a0_inf * k1p[0]
C1 = 2 * pi * kappa * phi0 * r1 * r1 * epsilon
C0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0)
E = C0 * C1 * U1_inf
return E
def constant_charge_single_energy(sigma0, r1, kappa, epsilon):
"""
It computes the total energy of a single sphere at constant charge,
inmmersed in water.
Arguments
----------
sigma0 : float, constant charge on the surface of the sphere.
r1 : float, radius of sphere.
kappa : float, reciprocal of Debye length.
epsilon: float, water dielectric constant.
Returns
--------
E : float, total energy.
"""
N = 20 # Number of terms in expansion
qe = 1.60217646e-19
Na = 6.0221415e23
E_0 = 8.854187818e-12
cal2J = 4.184
index2 = numpy.arange(N + 1, dtype=float) + 0.5
index = index2[0:-1]
K1 = special.kv(index2, kappa * r1)
K1p = index / (kappa * r1) * K1[0:-1] - K1[1:]
k1 = special.kv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1))
k1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.kv(
index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * K1p
a0_inf = -sigma0 / (epsilon * kappa * k1p[0])
U1_inf = a0_inf * k1[0]
C1 = 2 * pi * sigma0 * r1 * r1
C0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0)
E = C0 * C1 * U1_inf
return E
def constant_potential_twosphere_dissimilar(phi01, phi02, r1, r2, R, kappa,
epsilon):
"""
It computes the interaction energy for dissimilar spheres at constant
potential, immersed in water.
Arguments
----------
phi01 : float, constant potential on the surface of the sphere 1.
phi02 : float, constant potential on the surface of the sphere 2.
r1 : float, radius of sphere 1.
r2 : float, radius of sphere 2.
R : float, distance center to center.
kappa : float, reciprocal of Debye length.
epsilon: float, water dielectric constant.
Returns
--------
E_inter: float, interaction energy.
"""
N = 20 # Number of terms in expansion
qe = 1.60217646e-19
Na = 6.0221415e23
E_0 = 8.854187818e-12
cal2J = 4.184
index2 = numpy.arange(N + 1, dtype=float) + 0.5
index = index2[0:-1]
K1 = special.kv(index2, kappa * r1)
K1p = index / (kappa * r1) * K1[0:-1] - K1[1:]
k1 = special.kv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1))
k1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.kv(
index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * K1p
K2 = special.kv(index2, kappa * r2)
K2p = index / (kappa * r2) * K2[0:-1] - K2[1:]
k2 = special.kv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2))
k2p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r2)**(3 / 2.)) * special.kv(
index, kappa * r2) + numpy.sqrt(pi / (2 * kappa * r2)) * K2p
I1 = special.iv(index2, kappa * r1)
I1p = index / (kappa * r1) * I1[0:-1] + I1[1:]
i1 = special.iv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1))
i1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.iv(
index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * I1p
I2 = special.iv(index2, kappa * r2)
I2p = index / (kappa * r2) * I2[0:-1] + I2[1:]
i2 = special.iv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2))
i2p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r2)**(3 / 2.)) * special.iv(
index, kappa * r2) + numpy.sqrt(pi / (2 * kappa * r2)) * I2p
B = numpy.zeros((N, N), dtype=float)
for n in range(N):
for m in range(N):
for nu in range(N):
if n >= nu and m >= nu:
g1 = gamma(n - nu + 0.5)
g2 = gamma(m - nu + 0.5)
g3 = gamma(nu + 0.5)
g4 = gamma(m + n - nu + 1.5)
f1 = factorial(n + m - nu)
f2 = factorial(n - nu)
f3 = factorial(m - nu)
f4 = factorial(nu)
Anm = g1 * g2 * g3 * f1 * (n + m - 2 * nu + 0.5) / (
pi * g4 * f2 * f3 * f4)
kB = special.kv(n + m - 2 * nu + 0.5, kappa *
R) * numpy.sqrt(pi / (2 * kappa * R))
B[n, m] += Anm * kB
M = numpy.zeros((2 * N, 2 * N), float)
for j in range(N):
for n in range(N):
M[j, n + N] = (2 * j + 1) * B[j, n] * i1[j] / k2[n]
M[j + N, n] = (2 * j + 1) * B[j, n] * i2[j] / k1[n]
if n == j:
M[j, n] = 1
M[j + N, n + N] = 1
RHS = numpy.zeros(2 * N)
RHS[0] = phi01
RHS[N] = phi02
coeff = linalg.solve(M, RHS)
a = coeff[0:N] / k1
b = coeff[N:2 * N] / k2
a0 = a[0]
a0_inf = phi01 / k1[0]
b0 = b[0]
b0_inf = phi02 / k2[0]
U1_inf = a0_inf * k1p[0]
U1_h = a0 * k1p[0] + i1p[0] * numpy.sum(b * B[:, 0])
U2_inf = b0_inf * k2p[0]
U2_h = b0 * k2p[0] + i2p[0] * numpy.sum(a * B[:, 0])
C1 = 2 * pi * kappa * phi01 * r1 * r1 * epsilon
C2 = 2 * pi * kappa * phi02 * r2 * r2 * epsilon
C0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0)
E_inter = C0 * (C1 * (U1_h - U1_inf) + C2 * (U2_h - U2_inf))
return E_inter
def constant_charge_twosphere_dissimilar(sigma01, sigma02, r1, r2, R, kappa,
epsilon):
"""
It computes the interaction energy between two dissimilar spheres at
constant charge, immersed in water.
Arguments
----------
sigma01: float, constant charge on the surface of the sphere 1.
sigma02: float, constant charge on the surface of the sphere 2.
r1 : float, radius of sphere 1.
r2 : float, radius of sphere 2.
R : float, distance center to center.
kappa : float, reciprocal of Debye length.
epsilon: float, water dielectric constant.
Returns
--------
E_inter: float, interaction energy.
"""
N = 20 # Number of terms in expansion
qe = 1.60217646e-19
Na = 6.0221415e23
E_0 = 8.854187818e-12
cal2J = 4.184
index2 = numpy.arange(N + 1, dtype=float) + 0.5
index = index2[0:-1]
K1 = special.kv(index2, kappa * r1)
K1p = index / (kappa * r1) * K1[0:-1] - K1[1:]
k1 = special.kv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1))
k1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.kv(
index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * K1p
K2 = special.kv(index2, kappa * r2)
K2p = index / (kappa * r2) * K2[0:-1] - K2[1:]
k2 = special.kv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2))
k2p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r2)**(3 / 2.)) * special.kv(
index, kappa * r2) + numpy.sqrt(pi / (2 * kappa * r2)) * K2p
I1 = special.iv(index2, kappa * r1)
I1p = index / (kappa * r1) * I1[0:-1] + I1[1:]
i1 = special.iv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1))
i1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.iv(
index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * I1p
I2 = special.iv(index2, kappa * r2)
I2p = index / (kappa * r2) * I2[0:-1] + I2[1:]
i2 = special.iv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2))
i2p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r2)**(3 / 2.)) * special.iv(
index, kappa * r2) + numpy.sqrt(pi / (2 * kappa * r2)) * I2p
B = numpy.zeros((N, N), dtype=float)
for n in range(N):
for m in range(N):
for nu in range(N):
if n >= nu and m >= nu:
g1 = gamma(n - nu + 0.5)
g2 = gamma(m - nu + 0.5)
g3 = gamma(nu + 0.5)
g4 = gamma(m + n - nu + 1.5)
f1 = factorial(n + m - nu)
f2 = factorial(n - nu)
f3 = factorial(m - nu)
f4 = factorial(nu)
Anm = g1 * g2 * g3 * f1 * (n + m - 2 * nu + 0.5) / (
pi * g4 * f2 * f3 * f4)
kB = special.kv(n + m - 2 * nu + 0.5, kappa *
R) * numpy.sqrt(pi / (2 * kappa * R))
B[n, m] += Anm * kB
M = numpy.zeros((2 * N, 2 * N), float)
for j in range(N):
for n in range(N):
M[j, n + N] = (2 * j + 1) * B[j, n] * r1 * i1p[j] / (r2 * k2p[n])
M[j + N, n] = (2 * j + 1) * B[j, n] * r2 * i2p[j] / (r1 * k1p[n])
if n == j:
M[j, n] = 1
M[j + N, n + N] = 1
RHS = numpy.zeros(2 * N)
RHS[0] = sigma01 * r1 / epsilon
RHS[N] = sigma02 * r2 / epsilon
coeff = linalg.solve(M, RHS)
a = coeff[0:N] / (-r1 * kappa * k1p)
b = coeff[N:2 * N] / (-r2 * kappa * k2p)
a0 = a[0]
a0_inf = -sigma01 / (epsilon * kappa * k1p[0])
b0 = b[0]
b0_inf = -sigma02 / (epsilon * kappa * k2p[0])
U1_inf = a0_inf * k1[0]
U1_h = a0 * k1[0] + i1[0] * numpy.sum(b * B[:, 0])
U2_inf = b0_inf * k2[0]
U2_h = b0 * k2[0] + i2[0] * numpy.sum(a * B[:, 0])
C1 = 2 * pi * sigma01 * r1 * r1
C2 = 2 * pi * sigma02 * r2 * r2
C0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0)
E_inter = C0 * (C1 * (U1_h - U1_inf) + C2 * (U2_h - U2_inf))
return E_inter
def molecule_constant_potential(q, phi02, r1, r2, R, kappa, E_1, E_2):
"""
It computes the interaction energy between a molecule (sphere with
point-charge in the center) and a sphere at constant potential, immersed
in water.
Arguments
----------
q : float, number of qe to be asigned to the charge.
phi02 : float, constant potential on the surface of the sphere 2.
r1 : float, radius of sphere 1, i.e the molecule.
r2 : float, radius of sphere 2.
R : float, distance center to center.
kappa : float, reciprocal of Debye length.
E_1 : float, dielectric constant inside the sphere/molecule.
E_2 : float, dielectric constant outside the sphere/molecule.
Returns
--------
E_inter: float, interaction energy.
"""
N = 20 # Number of terms in expansion
qe = 1.60217646e-19
Na = 6.0221415e23
E_0 = 8.854187818e-12
cal2J = 4.184
index2 = numpy.arange(N + 1, dtype=float) + 0.5
index = index2[0:-1]
K1 = special.kv(index2, kappa * r1)
K1p = index / (kappa * r1) * K1[0:-1] - K1[1:]
k1 = special.kv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1))
k1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.kv(
index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * K1p
K2 = special.kv(index2, kappa * r2)
K2p = index / (kappa * r2) * K2[0:-1] - K2[1:]
k2 = special.kv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2))
k2p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r2)**(3 / 2.)) * special.kv(
index, kappa * r2) + numpy.sqrt(pi / (2 * kappa * r2)) * K2p
I1 = special.iv(index2, kappa * r1)
I1p = index / (kappa * r1) * I1[0:-1] + I1[1:]
i1 = special.iv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1))
i1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.iv(
index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * I1p
I2 = special.iv(index2, kappa * r2)
I2p = index / (kappa * r2) * I2[0:-1] + I2[1:]
i2 = special.iv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2))
i2p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r2)**(3 / 2.)) * special.iv(
index, kappa * r2) + numpy.sqrt(pi / (2 * kappa * r2)) * I2p
B = numpy.zeros((N, N), dtype=float)
for n in range(N):
for m in range(N):
for nu in range(N):
if n >= nu and m >= nu:
g1 = gamma(n - nu + 0.5)
g2 = gamma(m - nu + 0.5)
g3 = gamma(nu + 0.5)
g4 = gamma(m + n - nu + 1.5)
f1 = factorial(n + m - nu)
f2 = factorial(n - nu)
f3 = factorial(m - nu)
f4 = factorial(nu)
Anm = g1 * g2 * g3 * f1 * (n + m - 2 * nu + 0.5) / (
pi * g4 * f2 * f3 * f4)
kB = special.kv(n + m - 2 * nu + 0.5, kappa *
R) * numpy.sqrt(pi / (2 * kappa * R))
B[n, m] += Anm * kB
E_hat = E_1 / E_2
M = numpy.zeros((2 * N, 2 * N), float)
for j in range(N):
for n in range(N):
M[j, n + N] = (2 * j + 1) * B[j, n] * (
kappa * i1p[j] / k2[n] - E_hat * j / r1 * i1[j] / k2[n])
M[j + N, n] = (2 * j + 1) * B[j, n] * i2[j] * 1 / (
kappa * k1p[n] - E_hat * n / r1 * k1[n])
if n == j:
M[j, n] = 1
M[j + N, n + N] = 1
RHS = numpy.zeros(2 * N)
RHS[0] = -E_hat * q / (4 * pi * E_1 * r1 * r1)
RHS[N] = phi02
coeff = linalg.solve(M, RHS)
a = coeff[0:N] / (kappa * k1p - E_hat * numpy.arange(N) / r1 * k1)
b = coeff[N:2 * N] / k2
a0 = a[0]
a0_inf = -E_hat * q / (4 * pi * E_1 * r1 * r1) * 1 / (kappa * k1p[0])
b0 = b[0]
b0_inf = phi02 / k2[0]
phi_inf = a0_inf * k1[0] - q / (4 * pi * E_1 * r1)
phi_h = a0 * k1[0] + i1[0] * numpy.sum(b * B[:, 0]) - q / (4 * pi * E_1 *
r1)
phi_inter = phi_h - phi_inf
U_inf = b0_inf * k2p[0]
U_h = b0 * k2p[0] + i2p[0] * numpy.sum(a * B[:, 0])
U_inter = U_h - U_inf
C0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0)
C1 = q * 0.5
C2 = 2 * pi * kappa * phi02 * r2 * r2 * E_2
E_inter = C0 * (C1 * phi_inter + C2 * U_inter)
return E_inter
def molecule_constant_charge(q, sigma02, r1, r2, R, kappa, E_1, E_2):
"""
It computes the interaction energy between a molecule (sphere with
point-charge in the center) and a sphere at constant charge, immersed
in water.
Arguments
----------
q : float, number of qe to be asigned to the charge.
sigma02: float, constant charge on the surface of the sphere 2.
r1 : float, radius of sphere 1, i.e the molecule.
r2 : float, radius of sphere 2.
R : float, distance center to center.
kappa : float, reciprocal of Debye length.
E_1 : float, dielectric constant inside the sphere/molecule.
E_2 : float, dielectric constant outside the sphere/molecule.
Returns
--------
E_inter: float, interaction energy.
"""
N = 20 # Number of terms in expansion
qe = 1.60217646e-19
Na = 6.0221415e23
E_0 = 8.854187818e-12
cal2J = 4.184
index2 = numpy.arange(N + 1, dtype=float) + 0.5
index = index2[0:-1]
K1 = special.kv(index2, kappa * r1)
K1p = index / (kappa * r1) * K1[0:-1] - K1[1:]
k1 = special.kv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1))
k1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.kv(
index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * K1p
K2 = special.kv(index2, kappa * r2)
K2p = index / (kappa * r2) * K2[0:-1] - K2[1:]
k2 = special.kv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2))
k2p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r2)**(3 / 2.)) * special.kv(
index, kappa * r2) + numpy.sqrt(pi / (2 * kappa * r2)) * K2p
I1 = special.iv(index2, kappa * r1)
I1p = index / (kappa * r1) * I1[0:-1] + I1[1:]
i1 = special.iv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1))
i1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r1)**(3 / 2.)) * special.iv(
index, kappa * r1) + numpy.sqrt(pi / (2 * kappa * r1)) * I1p
I2 = special.iv(index2, kappa * r2)
I2p = index / (kappa * r2) * I2[0:-1] + I2[1:]
i2 = special.iv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2))
i2p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * r2)**(3 / 2.)) * special.iv(
index, kappa * r2) + numpy.sqrt(pi / (2 * kappa * r2)) * I2p
B = numpy.zeros((N, N), dtype=float)
for n in range(N):
for m in range(N):
for nu in range(N):
if n >= nu and m >= nu:
g1 = gamma(n - nu + 0.5)
g2 = gamma(m - nu + 0.5)
g3 = gamma(nu + 0.5)
g4 = gamma(m + n - nu + 1.5)
f1 = factorial(n + m - nu)
f2 = factorial(n - nu)
f3 = factorial(m - nu)
f4 = factorial(nu)
Anm = g1 * g2 * g3 * f1 * (n + m - 2 * nu + 0.5) / (
pi * g4 * f2 * f3 * f4)
kB = special.kv(n + m - 2 * nu + 0.5, kappa *
R) * numpy.sqrt(pi / (2 * kappa * R))
B[n, m] += Anm * kB
E_hat = E_1 / E_2
M = numpy.zeros((2 * N, 2 * N), float)
for j in range(N):
for n in range(N):
M[j, n + N] = (2 * j + 1) * B[j, n] * (
i1p[j] / k2p[n] - E_hat * j / r1 * i1[j] / (kappa * k2p[n]))
M[j + N, n] = (2 * j + 1) * B[j, n] * i2p[j] * kappa * 1 / (
kappa * k1p[n] - E_hat * n / r1 * k1[n])
if n == j:
M[j, n] = 1
M[j + N, n + N] = 1
RHS = numpy.zeros(2 * N)
RHS[0] = -E_hat * q / (4 * pi * E_1 * r1 * r1)
RHS[N] = -sigma02 / E_2
coeff = linalg.solve(M, RHS)
a = coeff[0:N] / (kappa * k1p - E_hat * numpy.arange(N) / r1 * k1)
b = coeff[N:2 * N] / (kappa * k2p)
a0 = a[0]
a0_inf = -E_hat * q / (4 * pi * E_1 * r1 * r1) * 1 / (kappa * k1p[0])
b0 = b[0]
b0_inf = -sigma02 / (E_2 * kappa * k2p[0])
phi_inf = a0_inf * k1[0] - q / (4 * pi * E_1 * r1)
phi_h = a0 * k1[0] + i1[0] * numpy.sum(b * B[:, 0]) - q / (4 * pi * E_1 *
r1)
phi_inter = phi_h - phi_inf
U_inf = b0_inf * k2[0]
U_h = b0 * k2[0] + i2[0] * numpy.sum(a * B[:, 0])
U_inter = U_h - U_inf
C0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0)
C1 = q * 0.5
C2 = 2 * pi * sigma02 * r2 * r2
E_inter = C0 * (C1 * phi_inter + C2 * U_inter)
return E_inter
def constant_potential_twosphere_identical(phi01, phi02, r1, r2, R, kappa,
epsilon):
"""
It computes the interaction energy for two spheres at constants surface
potential, according to Carnie&Chan-1993.
Arguments
----------
phi01 : float, constant potential on the surface of the sphere 1.
phi02 : float, constant potential on the surface of the sphere 2.
r1 : float, radius of sphere 1.
r2 : float, radius of sphere 2.
R : float, distance center to center.
kappa : float, reciprocal of Debye length.
epsilon: float, water dielectric constant.
Note:
Even though it admits phi01 and phi02, they should be identical; and
the same is applicable to r1 and r2.
Returns
--------
E_inter: float, interaction energy.
"""
# From Carnie+Chan 1993
N = 20 # Number of terms in expansion
qe = 1.60217646e-19
Na = 6.0221415e23
E_0 = 8.854187818e-12
cal2J = 4.184
index = numpy.arange(N, dtype=float) + 0.5
k1 = special.kv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1))
k2 = special.kv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2))
i1 = special.iv(index, kappa * r1) * numpy.sqrt(pi / (2 * kappa * r1))
i2 = special.iv(index, kappa * r2) * numpy.sqrt(pi / (2 * kappa * r2))
B = numpy.zeros((N, N), dtype=float)
for n in range(N):
for m in range(N):
for nu in range(N):
if n >= nu and m >= nu:
g1 = gamma(n - nu + 0.5)
g2 = gamma(m - nu + 0.5)
g3 = gamma(nu + 0.5)
g4 = gamma(m + n - nu + 1.5)
f1 = factorial(n + m - nu)
f2 = factorial(n - nu)
f3 = factorial(m - nu)
f4 = factorial(nu)
Anm = g1 * g2 * g3 * f1 * (n + m - 2 * nu + 0.5) / (
pi * g4 * f2 * f3 * f4)
kB = special.kv(n + m - 2 * nu + 0.5, kappa *
R) * numpy.sqrt(pi / (2 * kappa * R))
B[n, m] += Anm * kB
M = numpy.zeros((N, N), float)
for i in range(N):
for j in range(N):
M[i, j] = (2 * i + 1) * B[i, j] * i1[i]
if i == j:
M[i, j] += k1[i]
RHS = numpy.zeros(N)
RHS[0] = phi01
a = linalg.solve(M, RHS)
a0 = a[0]
U = 4 * pi * (-pi / 2 * a0 / phi01 * 1 / numpy.sinh(kappa * r1) + kappa *
r1 + kappa * r1 / numpy.tanh(kappa * r1))
C0 = qe**2 * Na * 1e-3 * 1e10 / (cal2J * E_0)
C1 = r1 * epsilon * phi01 * phi01
E_inter = U * C1 * C0
return E_inter
def constant_charge_twosphere_identical(sigma, a, R, kappa, epsilon):
"""
It computes the interaction energy for two spheres at constants surface
charge, according to Carnie&Chan-1993.
Arguments
----------
sigma : float, constant charge on the surface of the spheres.
a : float, radius of spheres.
R : float, distance center to center.
kappa : float, reciprocal of Debye length.
epsilon: float, water dielectric constant.
Returns
--------
E_inter: float, interaction energy.
"""
# From Carnie+Chan 1993
N = 10 # Number of terms in expansion
E_p = 0 # Permitivitty inside sphere
qe = 1.60217646e-19
Na = 6.0221415e23
E_0 = 8.854187818e-12
cal2J = 4.184
index2 = numpy.arange(N + 1, dtype=float) + 0.5
index = index2[0:-1]
K1 = special.kv(index2, kappa * a)
K1p = index / (kappa * a) * K1[0:-1] - K1[1:]
k1 = special.kv(index, kappa * a) * numpy.sqrt(pi / (2 * kappa * a))
k1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * a)**(3 / 2.)) * special.kv(
index, kappa * a) + numpy.sqrt(pi / (2 * kappa * a)) * K1p
I1 = special.iv(index2, kappa * a)
I1p = index / (kappa * a) * I1[0:-1] + I1[1:]
i1 = special.iv(index, kappa * a) * numpy.sqrt(pi / (2 * kappa * a))
i1p = -numpy.sqrt(pi / 2) * 1 / (2 * (kappa * a)**(3 / 2.)) * special.iv(
index, kappa * a) + numpy.sqrt(pi / (2 * kappa * a)) * I1p
B = numpy.zeros((N, N), dtype=float)
for n in range(N):
for m in range(N):
for nu in range(N):
if n >= nu and m >= nu:
g1 = gamma(n - nu + 0.5)
g2 = gamma(m - nu + 0.5)
g3 = gamma(nu + 0.5)
g4 = gamma(m + n - nu + 1.5)
f1 = factorial(n + m - nu)
f2 = factorial(n - nu)
f3 = factorial(m - nu)
f4 = factorial(nu)
Anm = g1 * g2 * g3 * f1 * (n + m - 2 * nu + 0.5) / (
pi * g4 * f2 * f3 * f4)
kB = special.kv(n + m - 2 * nu + 0.5, kappa *
R) * numpy.sqrt(pi / (2 * kappa * R))
B[n, m] += Anm * kB
M = | numpy.zeros((N, N), float) | numpy.zeros |
import folium
import itertools
import math
import numpy as np
def _degree_to_zoom_level(l1, l2, margin = 0.0):
degree = abs(l1 - l2) * (1 + margin)
zoom_level_int = 0
if degree != 0:
zoom_level_float = math.log(360/degree)/math.log(2)
zoom_level_int = int(zoom_level_float)
else:
zoom_level_int = 18
return zoom_level_int
def display_map(latitude = None, longitude = None, resolution = None):
""" Generates a folium map with a lat-lon bounded rectangle drawn on it. Folium maps can be
Args:
latitude (float,float): a tuple of latitude bounds in (min,max) format
longitude ((float, float)): a tuple of longitude bounds in (min,max) format
resolution ((float, float)): tuple in (lat,lon) format used to draw a grid on your map. Values denote
spacing of latitude and longitude lines. Gridding starts at top left
corner. Default displays no grid at all.
Returns:
folium.Map: A map centered on the lat lon bounds. A rectangle is drawn on this map detailing the
perimeter of the lat,lon bounds. A zoom level is calculated such that the resulting viewport is the
closest it can possibly get to the centered bounding rectangle without clipping it. An
optional grid can be overlaid with primitive interpolation.
.. _Folium
https://github.com/python-visualization/folium
"""
assert latitude is not None
assert longitude is not None
###### ###### ###### CALC ZOOM LEVEL ###### ###### ######
margin = -0.5
zoom_bias = 0
lat_zoom_level = _degree_to_zoom_level(*latitude, margin = margin) + zoom_bias
lon_zoom_level = _degree_to_zoom_level(*longitude, margin = margin) + zoom_bias
zoom_level = min(lat_zoom_level, lon_zoom_level)
###### ###### ###### CENTER POINT ###### ###### ######
center = [ | np.mean(latitude) | numpy.mean |
"""
MINOR MODIFICATION FOR ClassySORT:
In the original implementation of SORT,
it threw away the object classification category information
For example, (0: person, 1: bike, etc.)
I needed to keep that information for use in `Watchout`,
so I added a `detclass` attribute to the `KalmanBoxTracker` object
which stores YOLO detection object class information.
With this modification, SORT returns data in the format:
`[x_left_top, y_left_top, x_right_bottom, y_right_bottom, object_category, object_identification]`
==========================================================================
SORT: A Simple, Online and Realtime Tracker
Copyright (C) 2016-2020 <NAME> <EMAIL>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
from __future__ import print_function
import os
import numpy as np
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from skimage import io
import glob
import time
import argparse
from filterpy.kalman import KalmanFilter
np.random.seed(0)
def linear_assignment(cost_matrix):
try:
import lap #linear assignment problem solver
_, x, y = lap.lapjv(cost_matrix, extend_cost = True)
return np.array([[y[i],i] for i in x if i>=0])
except ImportError:
from scipy.optimize import linear_sum_assignment
x,y = linear_sum_assignment(cost_matrix)
return np.array(list(zip(x,y)))
def iou_batch(bb_test, bb_gt):
"""
From SORT: Computes IOU between two boxes in the form [x1,y1,x2,y2]
"""
bb_gt = | np.expand_dims(bb_gt, 0) | numpy.expand_dims |
"""GNSS utility functions, mostly based on satellite ephemerides.
Author: <NAME>
"""
try:
import autograd.numpy as np
except(ImportError):
print("""Package 'autograd' not found. 'autograd.numpy' is necessary for
coarse-time navigation via maximum-likelihood estimation. Falling
back to 'numpy'.""")
import numpy as np
import pymap3d as pm
try:
import mkl_fft as fft_lib
except(ImportError):
print("""Package 'mkl_fft' not found. Consider installing 'mkl_fft' with
'conda install -c intel mkl_fft' for faster FFT and IFFT. Falling
back to 'numpy.fft'.""")
import numpy.fft as fft_lib
def get_sat_pos_vel_acc(t, eph):
"""Calculate positions, velocities, and accelerations of satellites.
Accepts arrays for t / eph, i.e., can calculate multiple points in time
/ multiple satellites at once.
Does not interpolate GLONASS.
Implemented according to
<NAME>., et al. “Computing GPS Satellite Velocity and
Acceleration from the Broadcast Navigation Message.” Annual of
Navigation, vol. 66, no. 4, 2019, pp. 769–779.
https://www.gps.gov/technical/icwg/meetings/2019/09/GPS-SV-velocity-and-acceleration.pdf
Inputs:
t - GPS time(s) [s] (ignored for SBAS)
eph - Ephemeris as array(s)
Outputs:
positions - Satellite position(s) in ECEF XYZ as array(s) [m]
velocities - Satellite velocity/ies in ECEF XYZ as array(s) [m/s]
accelerations - Sat. acceleration(s) in ECEF XYZ as array(s) [m/s^2]
Author: <NAME>
"""
if not np.isnan(eph[2]).any(): # No SBAS / GLONASS
t = np.mod(t, 7 * 24 * 60 * 60)
cic = eph[13] # "cic"]
crs = eph[10] # "crs"]
Omega0 = eph[15] # "Omega0"]
Deltan = eph[4] # "Deltan"]
cis = eph[14] # "cis"]
M0 = eph[2] # "M0"]
i0 = eph[11] # "i0"]
cuc = eph[7] # "cuc"]
crc = eph[9] # "crc"]
e = eph[5] # "e"]
Omega = eph[6] # "Omega"]
cus = eph[8] # "cus"]
OmegaDot = eph[16] # "OmegaDot"]
sqrtA = eph[3] # "sqrtA"]
IDOT = eph[12] # "IDOT"]
toe = eph[20] # "toe"]
# Broadcast Navigation User Equations
# WGS 84 value of the earth’s gravitational constant for GPS user [m^3/s^2]
mu = 3.986005e14
# WGS 84 value of the earth’s rotation rate [rad/s]
OmegaeDot = 7.2921151467e-5
# Semi-major axis
A = sqrtA ** 2
# Computed mean motion [rad/s]
n0 = np.sqrt(mu / A ** 3)
# Time from ephemeris reference epoch
tk = np.array(t - toe)
# t is GPS system time at time of transmission, i.e., GPS time corrected
# for transit time (range/speed of light). Furthermore, tk shall be the
# actual total time difference between the time t and the epoch time toe,
# and must account for beginning or end of week crossovers. That is, if tk
# is greater than 302,400 seconds, subtract 604,800 seconds from tk. If tk
# is less than -302,400 seconds, add 604,800 seconds to tk.
with np.nditer(tk, op_flags=["readwrite"]) as it:
for tk_i in it:
if tk_i > 302400:
tk_i[...] = tk_i - 604800
elif tk_i < -302400:
tk_i[...] = tk_i + 604800
# Corrected mean motion
n = n0 + Deltan
# Mean anomaly
Mk = M0 + n * tk
# Kepler’s equation (Mk = Ek - e*np.sin(Ek)) solved for eccentric anomaly
# (Ek) by iteration:
# Initial value [rad]
Ek = Mk
# Refined value, three iterations, (j = 0,1,2)
for j in range(3):
Ek = Ek + (Mk - Ek + e * np.sin(Ek)) / (1 - e * np.cos(Ek))
# True anomaly (unambiguous quadrant)
nuk = 2 * np.arctan(np.sqrt((1 + e) / (1 - e)) * np.tan(Ek / 2))
# Argument of Latitude
Phik = nuk + Omega
# Argument of Latitude Correction
deltauk = cus * np.sin(2 * Phik) + cuc * np.cos(2 * Phik)
# Radius Correction
deltark = crs * np.sin(2 * Phik) + crc * np.cos(2 * Phik)
# Inclination Correction
deltaik = cis * np.sin(2 * Phik) + cic * np.cos(2 * Phik)
# Corrected Argument of Latitude
uk = Phik + deltauk
# Corrected Radius
rk = A * (1 - e * np.cos(Ek)) + deltark
# Corrected Inclination
ik = i0 + deltaik + IDOT * tk
# Positions in Orbital Plane
xkDash = rk * | np.cos(uk) | numpy.cos |
import numpy as np
import pytest
from psyneulink.core.components.component import ComponentError
from psyneulink.core.components.mechanisms.processing.transfermechanism import TransferMechanism
from psyneulink.core.components.mechanisms.modulatory.control.controlmechanism import ControlMechanism
from psyneulink.core.components.projections.pathway.mappingprojection import MappingProjection
from psyneulink.core.components.ports.modulatorysignals.controlsignal import ControlSignal
from psyneulink.core.compositions.composition import Composition
from psyneulink.core.scheduling.condition import AfterTrial, Any, AtTrial, Never
from psyneulink.core.globals.keywords import CONTROL_PROJECTION_PARAMS, INPUT_PORT_PARAMS, FUNCTION_PARAMS, \
OUTPUT_PORT_PARAMS, OVERRIDE, PARAMETER_PORT_PARAMS, MAPPING_PROJECTION_PARAMS, SAMPLE, TARGET
from psyneulink.library.components.mechanisms.processing.objective.comparatormechanism import ComparatorMechanism
class TestMechanismRuntimeParams:
def test_mechanism_runtime_param(self):
T = TransferMechanism()
assert T.noise.base == 0.0
assert T.parameter_ports['noise'].value == 0.0
# runtime param used for noise
T.execute(runtime_params={"noise": 10.0}, input=2.0)
assert T.value == 12.0
# defalut values are restored
assert T.noise.base == 0.0
assert T.parameter_ports['noise'].value == 0.0
T.execute(input=2.0)
assert T.noise.base == 0.0
assert T.parameter_ports['noise'].value == 0.0
assert T.value == 2.0
def test_function_runtime_param(self):
T = TransferMechanism()
assert T.function.slope.base == 1.0
assert T.parameter_ports['slope'].value == 1.0
# runtime param used for slope
T.execute(runtime_params={"slope": 10.0}, input=2.0)
assert T.value == 20.0
# defalut values are restored
assert T.function.slope.base == 1.0
assert T.parameter_ports['slope'].value == 1.0
T.execute(input=2.0)
assert T.function.slope.base == 1.0
assert T.parameter_ports['slope'].value == 1.0
assert T.value == 2.0
def test_use_and_reset_not_affect_other_assigned_vals(self):
T = TransferMechanism()
# Intercept attr assigned
T.function.intercept.base = 2.0
assert T.function.intercept.base == 2.0
# runtime param used for slope
T.execute(runtime_params={"slope": 10.0}, input=2.0)
# Assigned intercept and runtime_param for slope are used:
assert T.value == 22.0
# slope restored to default, but intercept retains assigned value
assert T.function.slope.base == 1.0
assert T.parameter_ports['slope'].value == 1.0
assert T.function.intercept.base == 2.0
# previous runtime_param for slope not used again
T.execute(input=2.0)
assert T.value == 4.0
assert T.function.slope.base == 1.0
assert T.parameter_ports['slope'].value == 1.0
def test_reset_to_previously_assigned_val(self):
T = TransferMechanism()
assert T.function.slope.base == 1.0
assert T.parameter_ports['slope'].value == 1.0
# set slope directly
T.function.slope.base = 2.0
assert T.function.slope.base == 2.0
# runtime param used for slope
T.execute(runtime_params={"slope": 10.0}, input=2.0)
assert T.value == 20.0
# slope restored to previously assigned value
assert T.function.slope.base == 2.0
assert T.parameter_ports['slope'].value == 2.0
T.execute(input=2.0)
assert T.value == 4.0
assert T.function.slope.base == 2.0
def test_runtime_param_error(self):
T = TransferMechanism()
with pytest.raises(ComponentError) as error_text:
T.execute(runtime_params={"glunfump": 10.0}, input=2.0)
assert ("Invalid specification in runtime_params arg for TransferMechanism" in str(error_text.value) and
"'glunfump'" in str(error_text.value))
# FIX 5/8/20 [JDC]: ADDD TEST FOR INVALID FUNCTION PARAM
# def test_mechanism_execute_mechanism_fuction_runtime_param_errors(self):
# # FIX 5/8/20 [JDC]: SHOULD FAIL BUT DOESN'T:
# T = TransferMechanism()
# with pytest.raises(ComponentError) as error_text:
# T.function.execute(runtime_params={"spranit": 23})
# assert ("Invalid specification in runtime_params arg for TransferMechanism" in str(error_text.value) and
# "'spranit'" in str(error_text.value))
class TestCompositionRuntimeParams:
def test_mechanism_param_no_condition(self):
T = TransferMechanism()
C = Composition()
C.add_node(T)
assert T.noise.base == 0.0
assert T.parameter_ports['noise'].value == 0.0
# runtime param used for noise
C.run(inputs={T: 2.0},
runtime_params={T: {"noise": 10.0}})
assert T.parameters.value.get(C.default_execution_id) == 12.0
# noise restored to default
assert T.noise.base == 0.0
assert T.parameter_ports['noise'].parameters.value.get(C) == 0.0
# previous runtime_param for noise not used again
C.run(inputs={T: 2.0}, )
assert T.noise.base == 0.0
assert T.parameter_ports['noise'].parameters.value.get(C) == 0.0
assert T.parameters.value.get(C.default_execution_id) == 2.0
def test_function_param_no_condition(self):
T = TransferMechanism()
C = Composition()
C.add_node(T)
assert T.function.slope.base == 1.0
assert T.parameter_ports['slope'].value == 1.0
C.run(inputs={T: 2.0}, runtime_params={T: {"slope": 10.0}})
# runtime param used for slope
assert T.parameters.value.get(C.default_execution_id) == 20.0
# slope restored to default
assert T.function.slope.base == 1.0
assert T.parameter_ports['slope'].parameters.value.get(C) == 1.0
# previous runtime_param for slope not used again
C.run(inputs={T: 2.0})
assert T.parameters.value.get(C.default_execution_id) == 2.0
assert T.function.slope.base == 1.0
assert T.parameter_ports['slope'].parameters.value.get(C) == 1.0
def test_input_port_param_no_condition(self):
T1 = TransferMechanism()
T2 = TransferMechanism()
C = Composition(pathways=[T1,T2])
T1.function.slope.base = 5
T2.input_port.function.scale = 4
C.run(inputs={T1: 2.0},
runtime_params={
T1: {'slope': 3}, # Mechanism's function (Linear) parameter
T2: {
'noise': 0.5, # Mechanism's parameter
'intercept': 1, # Mechanism's function parameter
INPUT_PORT_PARAMS: {
'weight':5, # InputPort's parameter (NOT USED)
'scale':20, # InputPort's function (LinearCombination) parameter
FUNCTION_PARAMS:{'weights':10, # InputPort's function (LinearCombination) parameter
}}
}
})
assert T2.parameters.value.get(C.default_execution_id) == [1201.5]
# all parameters restored to previous values (assigned or defaults)
assert T1.function.parameters.slope.get(C) == 5.0
assert T1.parameter_ports['slope'].parameters.value.get(C) == 5.0
assert T2.parameters.noise.get(C) == 0.0
assert T2.parameter_ports['noise'].parameters.value.get(C) == 0.0
assert T2.function.intercept.base == 0.0
assert T2.function.parameters.intercept.get(C) == 0.0
assert T2.input_port.weight is None
assert T2.input_port.function.scale == 4.0
assert T2.input_port.function.parameters.scale.get(C) == 4.0
assert T2.input_port.function.weights is None
assert T2.input_port.function.parameters.weights.get(C) is None
C.run(inputs={T1: 2.0}, )
assert C.results == [[[1201.5]], # (2*3*20*10)+1+0.5
[[40.]]] # 2*5*4
assert T1.function.slope.base == 5.0
assert T1.parameter_ports['slope'].parameters.value.get(C) == 5.0
assert T2.input_port.function.parameters.scale.get(C.default_execution_id) == 4.0
# FIX 5/8/20 [JDC]: ADD TESTS FOR PARAMETERPORTS AND OUTPUTPORTS
def test_mechanism_param_with_AtTrial_condition(self):
T = TransferMechanism()
C = Composition()
C.add_node(T)
assert T.noise.base == 0.0
assert T.parameter_ports['noise'].value == 0.0
# run with runtime param used for noise only on trial 1
C.run(inputs={T: 2.0},
runtime_params={T: {"noise": (10.0, AtTrial(1))}},
# scheduler=S,
num_trials=4)
# noise restored to default
assert T.noise.base == 0.0
assert T.parameter_ports['noise'].parameters.value.get(C) == 0.0
# run again to insure restored default for noise after last run
C.run(inputs={T: 2.0})
# results reflect runtime_param used for noise only on trial 1
assert np.allclose(C.results, [np.array([[2.]]), # Trial 0 - condition not satisfied yet
np.array([[12.]]), # Trial 1 - condition satisfied
np.array([[2.]]), # Trial 2 - condition no longer satisfied (not sticky)
np.array([[2.]]), # Trial 3 - condition no longer satisfied (not sticky)
np.array([[2.]])]) # New run (runtime param no longer applies)
def test_mechanism_param_with_AfterTrial_condition(self):
T = TransferMechanism()
C = Composition()
C.add_node(T)
assert T.noise.base == 0.0
assert T.parameter_ports['noise'].value == 0.0
# run with runtime param used for noise after trial 1 (i.e., trials 2 and 3)
C.run(inputs={T: 2.0},
runtime_params={T: {"noise": (10.0, AfterTrial(1))}},
num_trials=4)
# noise restored to default
assert T.noise.base == 0.0
assert T.parameter_ports['noise'].parameters.value.get(C) == 0.0
# run again to insure restored default for noise after last run
C.run(inputs={T: 2.0})
# results reflect runtime_param used for noise only on trials 2 and 3
assert np.allclose(C.results, [np.array([[2.]]), # Trial 0 - condition not satisfied yet
np.array([[2.]]), # Trial 1 - condition not satisfied yet
np.array([[12.]]), # Trial 2 - condition satisfied
np.array([[12.]]), # Trial 3 - condition satisfied (sticky)
np.array([[2.]])]) # New run (runtime param no longer applies)
def test_mechanism_param_with_combined_condition(self):
T = TransferMechanism()
C = Composition()
C.add_node(T)
# run with runtime param used for noise only on trial 1 and after 2 (i.e., 3 and 4)
C.run(inputs={T: 2.0},
runtime_params={T: {"noise": (10.0, Any(AtTrial(1), AfterTrial(2)))}},
num_trials=5)
# noise restored to default
assert T.noise.base == 0.0
assert T.parameter_ports['noise'].parameters.value.get(C) == 0.0
# run again to insure restored default for noise after last run
C.run(inputs={T: 2.0})
# results reflect runtime_param used for noise only on trials 1, 3 and 4
assert np.allclose(C.results,[np.array([[2.]]), # Trial 0 - NOT condition 0, NOT condition 1
np.array([[12.]]), # Trial 1 - condition 0, NOT condition 1
np.array([[2.]]), # Trial 2 - NOT condition 0, NOT condition 1
np.array([[12.]]), # Trial 3 - NOT condition 0, condition 1
np.array([[12.]]), # Trial 4 - NOT condition 0, condition 1
np.array([[2.]])]) # New run (runtime param no longer applies)
def test_function_param_with_combined_condition(self):
T = TransferMechanism()
C = Composition()
C.add_node(T)
assert T.function.slope.base == 1.0
assert T.parameter_ports['slope'].value == 1.0
# run with runtime param used for slope only on trial 1 and after 2 (i.e., 3 and 4)
C.run(inputs={T: 2.0},
runtime_params={T: {"slope": (10.0, Any(AtTrial(1), AfterTrial(2)))}},
num_trials=5)
# slope restored to default
assert T.function.slope.base == 1.0
assert T.parameter_ports['slope'].value == 1.0
# run again to insure restored default for slope after last run
C.run(inputs={T: 2.0})
# results reflect runtime_param used for slope only on trials 1, 3 and 4
assert np.allclose(C.results,[np.array([[2.]]), # Trial 0 - NOT condition 0, NOT condition 1
np.array([[20.]]), # Trial 1 - condition 0, NOT condition 1
np.array([[2.]]), # Trial 2 - NOT condition 0, NOT condition 1
np.array([[20.]]), # Trial 3 - NOT condition 0, condition 1
np.array([[20.]]), # Trial 4 - NOT condition 0, condition 1
np.array([[2.]])]) # New run (runtime param no longer applies)
def test_function_params_with_different_but_overlapping_conditions(self):
T = TransferMechanism()
C = Composition()
C.add_node(T)
assert T.function.slope.base == 1.0
assert T.parameter_ports['slope'].value == 1.0
# run with runtime param used for slope only on trial 1 and after 2 (i.e., 3 and 4)
C.run(inputs={T: 2.0},
runtime_params={T: {"slope": (10.0, Any(AtTrial(1), AfterTrial(2))),
"intercept": (1.0, AfterTrial(1))}},
num_trials=4)
# slope restored to default
assert T.function.slope.base == 1.0
assert T.parameter_ports['slope'].value == 1.0
assert T.function.intercept.base == 0.0
assert T.parameter_ports['intercept'].value == 0.0
# run again to insure restored default for slope after last run
C.run(inputs={T: 2.0})
# results reflect runtime_param used for slope only on trials 1, 3 and 4
assert np.allclose(C.results,[np.array([[2.]]), # Trial 0 - neither condition met
np.array([[20.]]), # Trial 1 - slope condition met, intercept not met
np.array([[3.]]), # Trial 2 - slope condition not met, intercept met
np.array([[21.]]), # Trial 3 - both conditions met
np.array([[2.]])]) # New run (runtime param no longer applies)
def test_mechanism_params_with_combined_conditions_for_all_INPUT_PORT_PARAMS(self):
T1 = TransferMechanism()
T2 = TransferMechanism()
C = Composition(pathways=[T1,T2])
T1.function.slope.base = 5
T2.input_port.function.scale = 4
C.run(inputs={T1: 2.0},
runtime_params={
T1: {'slope': (3, AtTrial(1))}, # Condition on Mechanism's function (Linear) parameter
T2: {
'noise': 0.5,
'intercept': (1, AtTrial(2)), # Condition on Mechanism's function parameter
# FIX 5/8/20 [JDC]: WHAT ABOUT PROJECTION PARAMS?
INPUT_PORT_PARAMS: ({
'weight':5,
'scale':20,
FUNCTION_PARAMS:{'weights':10,
}}, AtTrial(3)) # Condition on INPUT_PORT_PARAMS
}
},
num_trials=4
)
# all parameters restored to previous values (assigned or defaults)
assert T1.function.parameters.slope.get(C) == 5.0
assert T1.parameter_ports['slope'].parameters.value.get(C) == 5.0
assert T2.parameters.noise.get(C) == 0.0
assert T2.parameter_ports['noise'].parameters.value.get(C) == 0.0
assert T2.function.intercept.base == 0.0
assert T2.function.parameters.intercept.get(C) == 0.0
assert T2.input_port.weight is None
assert T2.input_port.function.scale == 4.0
assert T2.input_port.function.parameters.scale.get(C) == 4.0
assert T2.input_port.function.weights is None
assert T2.input_port.function.parameters.weights.get(C) is None
# run again to insure restored default for noise after last run
C.run(inputs={T1: 2.0}, )
assert np.allclose(C.results,[np.array([[40.5]]), # Trial 0 - no conditions met (2*5*4)+0.5
np.array([[24.5]]), # Trial 1 - only T1.slope condition met (2*3*4)+0.5
np.array([[41.5]]), # Trial 2 - only T2.intercept condition met (2*5*4)+1+0.5
np.array([[2000.5]]), # Trial 3 - only T2 INPUT_PORT_PARAMS conditions met
# (2*5*20*10) + 0.5
np.array([[40.]])]) # New run - revert to assignments before previous run (2*5*4)
def test_mechanism_params_with_combined_conditions_for_individual_INPUT_PORT_PARAMS(self):
T1 = TransferMechanism()
T2 = TransferMechanism()
P = MappingProjection(sender=T1, receiver=T2, name='MY PROJECTION')
C = Composition(pathways=[[T1,P,T2]])
T1.function.slope.base = 5
T2.input_port.function.scale = 4
# Run 0: Test INPUT_PORT_PARAMS for InputPort function directly (scale) and in FUNCTION_PARAMS dict (weights)
C.run(inputs={T1: 2.0},
runtime_params={
T1: {'slope': (3, AtTrial(1))}, # Condition on Mechanism's function (Linear) parameter
T2: {
'noise': 0.5,
'intercept': (1, AtTrial(2)), # Condition on Mechanism's function parameter
INPUT_PORT_PARAMS: {
'weight':5,
# FIX 5/8/20 [JDC] ADD TEST FOR THIS ERROR:
# 'scale': (20, AtTrial(3), 3 ),
'scale': (20, AtTrial(3)),
FUNCTION_PARAMS:{'weights':(10, AtTrial(4))},
}
},
},
num_trials=5
)
# Run 1: Test INPUT_PORT_PARAMS override by Never() Condition
C.run(inputs={T1: 2.0},
runtime_params={
T2: {
'noise': 0.5,
INPUT_PORT_PARAMS: ({
'scale': (20, AtTrial(0)),
FUNCTION_PARAMS:{'weights':(10, AtTrial(1))}
}, Never())
},
},
num_trials=2
)
# Run 2: Test INPUT_PORT_PARAMS constraint to Trial 1 assignements
C.run(inputs={T1: 2.0},
runtime_params={
T2: {
'noise': 0.5,
'intercept': (1, AtTrial(0)),
INPUT_PORT_PARAMS: ({
'scale': (20, AtTrial(0)),
FUNCTION_PARAMS:{'weights':(10, AtTrial(1))},
}, AtTrial(1))
},
},
num_trials=2
)
# Run 3: Test Projection params
C.run(inputs={T1: 2.0},
runtime_params={
T2: {
'noise': 0.5,
INPUT_PORT_PARAMS: {
MAPPING_PROJECTION_PARAMS:{
'variable':(1000, AtTrial(0)),
'value':(2000, AtTrial(1)),
},
P:{'value':(3000, AtTrial(2))},
'MY PROJECTION':{'value':(4000, AtTrial(3))}
}
}
},
num_trials=4
)
# all parameters restored to previous values (assigned or defaults)
assert T1.function.parameters.slope.get(C) == 5.0
assert T1.parameter_ports['slope'].parameters.value.get(C) == 5.0
assert T2.parameters.noise.get(C) == 0.0
assert T2.parameter_ports['noise'].parameters.value.get(C) == 0.0
assert T2.function.intercept.base == 0.0
assert T2.function.parameters.intercept.get(C) == 0.0
assert T2.input_port.weight is None
assert T2.input_port.function.parameters.scale.get(C) == 4.0
assert T2.input_port.function.parameters.weights.get(C) is None
# Final Run: insure restored default for noise after last run
C.run(inputs={T1: 2.0}, )
assert np.allclose(C.results,[ # Conditions satisfied:
np.array([[40.5]]), # Run 0 Trial 0: no conditions (2*5*4)+0.5
np.array([[24.5]]), # Run 0 Trial 1: only T1.slope condition (2*3*4)+0.5
np.array([[41.5]]), # Run 0 Trial 2: only T2.intercept condition (2*5*4)+1+0.5
np.array([[200.5]]), # Run 0 Trial 3: only T2 scale condition (2*5*20) + 0.5
np.array([[400.5]]), # Run 0 Trial 4: only T2.function.weights condition (2*5*4*10)+0.5
| np.array([[40.5]]) | numpy.array |
# encoding: utf-8
#
# @Author: <NAME>, <NAME>
# @Date: Nov 15, 2021
# @Filename: ism.py
# @License: BSD 3-Clause
# @Copyright: <NAME>, <NAME>
import os.path
from astropy import units as u
from astropy import constants as c
import numpy as np
from astropy.io import fits, ascii
from astropy.table import Table
from scipy.special import sph_harm
from astropy.wcs import WCS
from astropy.wcs.utils import proj_plane_pixel_scales
from astropy.coordinates import SkyCoord
from astropy.modeling.models import Sersic2D
from dataclasses import dataclass
import sys
if (sys.version_info[0]+sys.version_info[1]/10.) < 3.8:
from backports.cached_property import cached_property
else:
from functools import cached_property
from scipy.ndimage.interpolation import map_coordinates
from scipy.interpolate import interp1d, interp2d
import lvmdatasimulator
from lvmdatasimulator import log
import progressbar
from joblib import Parallel, delayed
from astropy.convolution import convolve_fft, kernels
from lvmdatasimulator.utils import calc_circular_mask, convolve_array, set_default_dict_values, \
ism_extinction, check_overlap, assign_units
fluxunit = u.erg / (u.cm ** 2 * u.s * u.arcsec ** 2)
velunit = u.km / u.s
def brightness_inhomogeneities_sphere(harm_amplitudes, ll, phi_cur, theta_cur, rho, med, radius, thickness):
"""
Auxiliary function producing the inhomogeneities on the brightness distribution for the Cloud of Bubble objects
using the spherical harmonics.
"""
brt = theta_cur * 0
for m in np.arange(-ll, ll + 1):
brt += (harm_amplitudes[m + ll * (ll + 1) - 1] * sph_harm(m, ll, phi_cur, theta_cur).real * med *
(1 - np.sqrt(abs(rho.value ** 2 / radius.value ** 2 - (1 - thickness / 2) ** 2))))
return brt
def sphere_brt_in_line(brt_3d, rad_3d, rad_model, flux_model):
"""
Auxiliary function computing the brightness of the Cloud or Bubble at given radii and in given line
according to the Cloudy models
"""
p = interp1d(rad_model, flux_model, fill_value='extrapolate', assume_sorted=True)
return p(rad_3d) * brt_3d
def interpolate_sphere_to_cartesian(spherical_array, x_grid=None, y_grid=None, z_grid=None,
rad_grid=None, theta_grid=None, phi_grid=None, pxscale=1. * u.pc):
"""
Auxiliary function to project the brightness or velocities from the spherical to cartesian coordinates
"""
x, y, z = np.meshgrid(x_grid, y_grid, z_grid, indexing='ij')
phi_c, theta_c, rad_c = xyz_to_sphere(x, y, z, pxscale=pxscale)
ir = interp1d(rad_grid, np.arange(len(rad_grid)), bounds_error=False)
ith = interp1d(theta_grid, np.arange(len(theta_grid)))
iphi = interp1d(phi_grid, np.arange(len(phi_grid)))
new_ir = ir(rad_c.ravel())
new_ith = ith(theta_c.ravel())
new_iphi = iphi(phi_c.ravel())
cart_data = map_coordinates(spherical_array, np.vstack([new_ir, new_ith, new_iphi]),
order=1, mode='constant', cval=0)
return cart_data.reshape([len(x_grid), len(y_grid), len(z_grid)]).T
def limit_angle(value, bottom_limit=0, top_limit=np.pi):
"""
Auxiliary function to limit the angle values to the range of [0, pi]
"""
value[value < bottom_limit] += (top_limit - bottom_limit)
value[value > top_limit] -= (top_limit - bottom_limit)
return value
def xyz_to_sphere(x, y, z, pxscale=1. * u.pc):
"""
Auxiliary function to map the coordinates from cartesian to spherical system
"""
phi_c = np.arctan2(y, x)
rad_c = (np.sqrt(x ** 2 + y ** 2 + z ** 2))
rad_c[rad_c == 0 * u.pc] = 1e-3 * pxscale
theta_c = (np.arccos(z / rad_c))
phi_c = limit_angle(phi_c, 0 * u.radian, 2 * np.pi * u.radian)
theta_c = limit_angle(theta_c, 0 * u.radian, np.pi * u.radian)
return phi_c, theta_c, rad_c
def find_model_id(file=lvmdatasimulator.CLOUDY_MODELS,
check_id=None, params=lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id']):
"""
Checks the input parameters of the pre-computed Cloudy model and return corresponding index in the grid
"""
with fits.open(file) as hdu:
if check_id is None:
if params is None:
check_id = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id']
log.warning(f'Default Cloudy model will be used (id = {check_id})')
else:
summary_table = Table(hdu['Summary'].data)
indexes = np.arange(len(summary_table)).astype(int)
rec_table = np.ones(shape=len(summary_table), dtype=bool)
def closest(rec, prop, val):
unique_col = np.unique(summary_table[prop][rec])
if isinstance(val, str):
res = unique_col[unique_col == val]
if len(res) == 0:
return ""
return res
else:
return unique_col[np.argsort(np.abs(unique_col - val))[0]]
for p in params:
if p not in summary_table.colnames or params[p] is None or \
((isinstance(params[p], float) or isinstance(params[p], int)) and ~np.isfinite(params[p])):
continue
rec_table = rec_table & (summary_table[p] == closest(indexes, p, params[p]))
indexes = np.flatnonzero(rec_table)
if len(indexes) == 0:
break
if len(indexes) == 0 or len(indexes) == len(summary_table):
check_id = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id']
log.warning('Input parameters do not correspond to any pre-computed Cloudy model.'
'Default Cloudy model will be used (id = {0})'.format(check_id))
elif len(indexes) == 1:
check_id = summary_table['Model_ID'][indexes[0]]
for p in params:
if p not in summary_table.colnames or params[p] is None or \
((isinstance(params[p], float) or
isinstance(params[p], int)) and ~np.isfinite(params[p])):
continue
if params[p] != summary_table[p][indexes[0]]:
log.warning(f'Use the closest pre-computed Cloudy model with id = {check_id}')
break
else:
check_id = summary_table['Model_ID'][indexes[0]]
log.warning(f'Select one of the closest pre-computed Cloudy model with id = {check_id}')
#
# for cur_ext in range(len(hdu)):
# if cur_ext == 0:
# continue
# found = False
# for p in params:
# if p == 'id':
# continue
# precision = 1
# if p == 'Z':
# precision = 2
# if np.round(params[p], precision) != np.round(hdu[cur_ext].header[p], precision):
# break
# else:
# found = True
# if found:
# return cur_ext, check_id
# check_id = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id']
# log.warning('Input parameters do not correspond to any pre-computed Cloudy model.'
# 'Default Cloudy model will be used (id = {0})'.format(check_id))
extension_index = None
while extension_index is None:
extension_index = [cur_ext for cur_ext in range(len(hdu)) if (
check_id == hdu[cur_ext].header.get('MODEL_ID'))]
if len(extension_index) == 0:
if check_id == lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id']:
log.warning('Model_ID = {0} is not found in the Cloudy models grid. '
'Use the first one in the grid instead'.format(check_id))
extension_index = 1
else:
log.warning('Model_ID = {0} is not found in the Cloudy models grid. '
'Use default ({1}) instead'.format(check_id,
lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id']))
check_id = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id']
extension_index = None
else:
extension_index = extension_index[0]
return extension_index, check_id
@dataclass
class Nebula:
"""
Base class defining properties of every nebula type.
By itself it describes the rectangular nebula (e.g. DIG)
Constructed nebula has 4 dimensions, where 4th derive its appearance in different lines
(if spectrum_id is None, or if it is dark nebula => only one line)
"""
xc: int = None # Center of the region in the field of view, pix
yc: int = None # Center of the region in the field of view, pix
x0: int = 0 # Coordinates of the bottom-left corner in the field of view, pix
y0: int = 0 # Coordinates of the bottom-left corner in the field of view, pix
pix_width: int = None # full width of cartesian grid, pix (should be odd)
pix_height: int = None # full height of cartesian grid, pix (should be odd)
width: u.pc = 0 * u.pc # width of the nebula in pc (not used if pix_width is set up)
height: u.pc = 0 * u.pc # height of the nebula in pc (not used if pix_height is set up)
pxscale: u.pc = 0.01 * u.pc # pixel size in pc
spectrum_id: int = None # ID of a template Cloudy emission spectrum for this nebula
n_brightest_lines: int = None # limit the number of the lines to the first N brightest
sys_velocity: velunit = 0 * velunit # Systemic velocity
turbulent_sigma: velunit = 10 * velunit # Velocity dispersion due to turbulence; included in calculations of LSF
max_brightness: fluxunit = 1e-15 * fluxunit
max_extinction: u.mag = 0 * u.mag
perturb_scale: int = 0 * u.pc # Spatial scale of correlated perturbations
perturb_amplitude: float = 0.1 # Maximal amplitude of perturbations
_npix_los: int = 1 # full size along line of sight in pixels
nchunks: int = -1 # number of chuncks to use for the convolution. If negative, select automatically
vel_gradient: (velunit / u.pc) = 0 # velocity gradient along the nebula
vel_pa: u.degree = 0 # Position angle of the kinematical axis (for the velocity gradient or rotation velocity)
def __post_init__(self):
self._assign_all_units()
self._assign_position_params()
self._ref_line_id = 0
self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula
def _assign_all_units(self):
whole_list_properties = ['pxscale', 'sys_velocity', 'turbulent_sigma', 'max_brightness', 'max_extinction',
'perturb_scale', 'radius', 'PA', 'length', 'width', 'vel_gradient', 'r_eff',
'vel_rot', 'expansion_velocity', 'spectral_axis', 'vel_pa']
whole_list_units = [u.pc, velunit, velunit, fluxunit, u.mag, u.pc, u.pc, u.degree, u.pc, u.pc,
(velunit / u.pc), u.kpc, velunit, velunit, velunit, u.degree]
cur_list_properties = []
cur_list_units = []
for prp, unit in zip(whole_list_properties, whole_list_units):
if hasattr(self, prp):
cur_list_properties.append(prp)
cur_list_units.append(unit)
assign_units(self, cur_list_properties, cur_list_units)
def _assign_position_params(self, conversion_type='rect'):
if conversion_type == 'rect':
for v in ['height', 'width']:
if self.__getattribute__(f'pix_{v}') is None:
val = np.round((self.__getattribute__(v) / self.pxscale).value / 2.).astype(int) * 2 + 1
else:
val = np.round(self.__getattribute__(f'pix_{v}') / 2.).astype(int) * 2 + 1
setattr(self, f'pix_{v}', val)
elif conversion_type == 'ellipse':
self.pix_width = (np.round(np.abs(self.radius / self.pxscale * np.sin(self.PA)) +
np.abs(self.radius / self.pxscale *
self.ax_ratio * np.cos(self.PA))).astype(int) * 2 + 1).value
self.pix_height = (np.round(np.abs(self.radius / self.pxscale * np.cos(self.PA)) +
np.abs(self.radius / self.pxscale *
self.ax_ratio * np.sin(self.PA))).astype(int) * 2 + 1).value
elif conversion_type == 'galaxy':
self.pix_width = (np.round(np.abs(self.r_max * np.sin(self.PA)) +
np.abs(self.r_max * self.ax_ratio * np.cos(self.PA))).astype(int) * 2 + 1).value
self.pix_height = (np.round(np.abs(self.r_max * np.cos(self.PA)) +
np.abs(self.r_max * self.ax_ratio * np.sin(self.PA))).astype(int) * 2 + 1).value
elif conversion_type == 'cylinder':
self.pix_width = (np.ceil((self.length * np.abs(np.sin(self.PA)) +
self.width * np.abs(np.cos(self.PA))) / self.pxscale / 2.
).astype(int) * 2 + 1).value
self.pix_height = (np.ceil((self.length * np.abs(np.cos(self.PA)) +
self.width * np.abs(np.sin(self.PA))) / self.pxscale / 2.
).astype(int) * 2 + 1).value
if (self.xc is not None) and (self.yc is not None):
self.x0 = self.xc - np.round((self.pix_width - 1) / 2).astype(int)
self.y0 = self.yc - np.round((self.pix_height - 1) / 2).astype(int)
elif (self.x0 is not None) and (self.y0 is not None):
self.xc = self.x0 + np.round((self.pix_width - 1) / 2).astype(int)
self.yc = self.y0 + np.round((self.pix_height - 1) / 2).astype(int)
@cached_property
def _cartesian_x_grid(self):
return np.arange(self.pix_width) * self.pxscale
@cached_property
def _cartesian_y_grid(self):
return np.arange(self.pix_height) * self.pxscale
@cached_property
def _cartesian_z_grid(self):
return np.arange(self._npix_los) * self.pxscale
@cached_property
def _max_density(self):
return self.max_extinction * (1.8e21 / (u.cm ** 2 * u.mag))
@cached_property
def _brightness_3d_cartesian(self):
"""
Method to obtain the brightness (or density) distribution of the nebula in cartesian coordinates
"""
brt = np.ones(shape=(self.pix_height, self.pix_width, self._npix_los), dtype=float) / self._npix_los
if (self.perturb_scale > 0) and (self.perturb_amplitude > 0):
pertscale = (self.perturb_scale / self.pxscale).value
perturb = np.random.uniform(-1, 1, (self.pix_height, self.pix_width)
) * self.perturb_amplitude / self._npix_los
xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height))
f = np.exp(-2 * (xx ** 2 + yy ** 2) / pertscale)
perturb = 4 / np.sqrt(np.pi) / pertscale * np.fft.ifft2(np.fft.fft2(perturb) * np.fft.fft2(f)).real
brt += (perturb[:, :, None] - np.median(perturb))
return brt
@cached_property
def _brightness_4d_cartesian(self):
"""
Derive the brightness (or density) distribution of the nebula for each emission line in cartesian coordinates
"""
if self.spectrum_id is None or self.linerat_constant:
flux_ratios = np.array([1.])
else:
with fits.open(lvmdatasimulator.CLOUDY_MODELS) as hdu:
flux_ratios = hdu[self.spectrum_id].data[1:, 1]
index_ha = np.flatnonzero(hdu[self.spectrum_id].data[1:, 0] == 6562.81)
if self.n_brightest_lines is not None and \
(self.n_brightest_lines > 0) and (self.n_brightest_lines < len(flux_ratios)):
indexes_sorted = np.argsort(flux_ratios)[::-1]
flux_ratios = flux_ratios[indexes_sorted[: self.n_brightest_lines]]
index_ha = np.flatnonzero(hdu[self.spectrum_id].data[1:, 0][indexes_sorted] == 6562.81)
if len(index_ha) == 1:
self._ref_line_id = index_ha[0]
return self._brightness_3d_cartesian[None, :, :, :] * flux_ratios[:, None, None, None]
@cached_property
def brightness_skyplane(self):
"""
Project the 3D nebula onto sky plane (for emission or continuum sources)
"""
if self.max_brightness > 0:
norm_max = self.max_brightness
else:
norm_max = 1
map2d = np.nansum(self._brightness_3d_cartesian, 2)
return map2d / np.nanmax(map2d) * norm_max
@cached_property
def brightness_skyplane_lines(self):
"""
Project the 3D emission nebula line onto sky plane (return images in each emission line)
"""
if self.max_brightness > 0:
map2d = np.nansum(self._brightness_4d_cartesian, 3)
return map2d / np.nanmax(map2d[self._ref_line_id, :, :]) * self.max_brightness
else:
return None
@cached_property
def extinction_skyplane(self):
"""
Project the 3D nebula onto sky plane (for dark clouds)
"""
if self.max_extinction > 0:
map2d = np.nansum(self._brightness_3d_cartesian, 2)
return map2d / np.nanmax(map2d) * self._max_density / (1.8e21 / (u.cm ** 2 * u.mag))
else:
return None
@cached_property
def vel_field(self):
return self._get_2d_velocity()
# if vel_field is None:
# return np.atleast_1d(self.sys_velocity)
# else:
# return vel_field + self.sys_velocity
def _get_2d_velocity(self):
if hasattr(self, 'vel_gradient') and (self.vel_gradient is not None) and (self.vel_gradient != 0):
xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height))
vel_field = (- (xx - (self.pix_width - 1) / 2) * np.sin(self.vel_pa) +
(yy - (self.pix_height - 1) / 2) * np.cos(self.vel_pa)) * self.pxscale * self.vel_gradient
return vel_field
else:
return None
# @cached_property
# def line_profile(self):
# lprf = np.zeros(shape=len(self.los_velocity), dtype=float)
# lprf[np.floor(len(lprf) / 2.).astype(int)] = 1.
# return lprf
@dataclass
class Rectangle(Nebula):
"""
Class defining a simple rectangular component.
This is equal to Nebula, but no perturbations and turbulence by default
"""
perturb_amplitude: float = 0.0 # Maximal amplitude of perturbations
turbulent_sigma: velunit = 0 * velunit # Velocity dispersion due to turbulence; included in calculations of LSF
def __post_init__(self):
self._assign_all_units()
self._assign_position_params()
self._ref_line_id = 0
self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula
@dataclass
class Ellipse(Nebula):
"""
Class defining a simple elliptical component.
No perturbations and turbulence by default
"""
perturb_amplitude: float = 0.0 # Maximal amplitude of perturbations
turbulent_sigma: velunit = 0 * velunit # Velocity dispersion due to turbulence; included in calculations of LSF
radius: u.pc = 1.0 * u.pc # Radius along the major axis of the ellipse (or radius of the circle)
PA: u.degree = 90 * u.degree # position angle of the major axis
ax_ratio: float = 1. # ratio of minor/major axes
def __post_init__(self):
self._assign_all_units()
self._npix_los = 1
self._assign_position_params(conversion_type='ellipse')
self._ref_line_id = 0
self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula
@cached_property
def _brightness_3d_cartesian(self):
"""
Method to obtain the brightness (or density) distribution of the nebula in cartesian coordinates
"""
xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height))
brt = np.ones(shape=(self.pix_height, self.pix_width), dtype=np.float32)
angle = (self.PA + 90 * u.degree).to(u.radian).value
xct = (xx - (self.pix_width - 1) / 2) * np.cos(angle) + \
(yy - (self.pix_height - 1) / 2) * np.sin(angle)
yct = (xx - (self.pix_width - 1) / 2) * np.sin(angle) - \
(yy - (self.pix_height - 1) / 2) * np.cos(angle)
rmaj = (self.radius.to(u.pc) / self.pxscale.to(u.pc)).value
rmin = (self.radius.to(u.pc) / self.pxscale.to(u.pc)).value * self.ax_ratio
rec = (xct ** 2 / rmaj ** 2) + (yct ** 2 / rmin ** 2) >= 1
brt[rec] = 0
brt = brt.reshape((self.pix_height, self.pix_width, 1))
return brt
@dataclass
class Circle(Ellipse):
"""
Class defining a simple circular component.
"""
def __post_init__(self):
self._assign_all_units()
self.ax_ratio = 1.
self._npix_los = 1
self._assign_position_params(conversion_type='ellipse')
self._ref_line_id = 0
self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula
@dataclass
class Filament(Nebula):
"""
Class of an isotropic cylindrical shape filament.
Defined by its position, length, PA, radius, maximal optical depth.
If it is emission-type filament, then also maximal brightness is required.
Velocity gradient also can be set up
"""
PA: u.degree = 90 * u.degree # position angle of the filament
length: u.pc = 10 * u.pc # full length of the filament
width: u.pc = 0.1 * u.pc # full width (diameter) of the filament
def __post_init__(self):
self._assign_all_units()
self._assign_position_params(conversion_type='cylinder')
self._npix_los = 1
self._ref_line_id = 0
self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula
@cached_property
def _brightness_3d_cartesian(self):
"""
Method to obtain the brightness (or density) distribution of the nebula in cartesian coordinates
"""
xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height))
brt = np.zeros_like(xx, dtype=np.float32)
xct = (xx - (self.pix_width - 1) / 2) * np.cos(self.PA + 90 * u.degree) + \
(yy - (self.pix_height - 1) / 2) * np.sin(self.PA + 90 * u.degree)
yct = (xx - (self.pix_width - 1) / 2) * np.sin(self.PA + 90 * u.degree) - \
(yy - (self.pix_height - 1) / 2) * np.cos(self.PA + 90 * u.degree)
rad = ((self.width / self.pxscale).value / 2.)
len_px = ((self.length / self.pxscale).value / 2.)
rec = (np.abs(yct) <= rad) & (np.abs(xct) <= len_px)
brt[rec] = np.sqrt(1. - (yct[rec] / rad) ** 2)
brt = brt.reshape((self.pix_height, self.pix_width, 1))
return brt
@dataclass
class _ObsoleteFilament(Nebula):
"""
Class of an isotropic cylindrical shape filament.
Defined by its position, length, PA, radius, maximal optical depth
if it is emission-type filament, then maximal brightness
NB: this class is obsolete, but might be considered later in case of implementation of varying line ratios
"""
PA: u.degree = 90 * u.degree # position angle of the filament
length: u.pc = 10 * u.pc # full length of the filament
width: u.pc = 0.1 * u.pc # full width (diameter) of the filament
vel_gradient: (velunit / u.pc) = 0 # velocity gradient along the filament (to be added)
_theta_bins: int = 50
_rad_bins: int = 0
_h_bins: int = 2
_npix_los: int = 101
def __post_init__(self):
self._assign_all_units()
if self._rad_bins == 0:
self._rad_bins = np.ceil(self.width.to(u.pc).value / self.pxscale.to(u.pc).value * 5).astype(int)
if (self.xc is not None) and (self.yc is not None):
self.x0 = self.xc - np.round((len(self._cartesian_y_grid) - 1) / 2).astype(int)
self.y0 = self.yc - np.round((len(self._cartesian_z_grid) - 1) / 2).astype(int)
elif (self.x0 is not None) and (self.y0 is not None):
self.xc = self.x0 + np.round((len(self._cartesian_y_grid) - 1) / 2).astype(int)
self.yc = self.y0 + np.round((len(self._cartesian_z_grid) - 1) / 2).astype(int)
self._ref_line_id = 0
self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula
@cached_property
def _theta_grid(self):
return np.linspace(0, 2 * np.pi, self._theta_bins)
@cached_property
def _h_grid(self):
return np.linspace(0, self.length, self._h_bins)
@cached_property
def _rad_grid(self):
return np.linspace(0, self.width / 2, self._rad_bins)
@cached_property
def _cartesian_y_grid(self):
npix = np.ceil(1.01 * (self.length * np.abs(np.sin(self.PA)) +
self.width * np.abs(np.cos(self.PA))) / self.pxscale).astype(int)
npix_l = npix / 2 - np.ceil(self.length / 2 * np.sin(-self.PA) / self.pxscale).astype(int)
return (np.linspace(0, npix, npix + 1) - npix_l) * self.pxscale
@cached_property
def _cartesian_z_grid(self):
npix = np.ceil(1.01 * (self.length * np.abs(np.cos(self.PA)) +
self.width * np.abs(np.sin(self.PA))) / self.pxscale).astype(int)
npix_l = npix / 2 - np.ceil(self.length / 2 * np.cos(-self.PA) / self.pxscale).astype(int)
return (np.linspace(0, npix, npix + 1) - npix_l) * self.pxscale
@cached_property
def _cartesian_x_grid(self):
return np.linspace(-1.01, 1.01, self._npix_los) * self.width / 2
@cached_property
def _brightness_3d_cylindrical(self):
"""
Method to calculate brightness (or opacity) of the cloud at given theta, phi and radii
theta: float -- azimuthal angle [0, 2 * np.pi]
rad: float -- radius [0, self.width / 2]
h: float -- height [0, self.length]
Returns:
3D cube of normalized brightness in theta-rad-h grid; total brightness = 1
"""
rho, theta, h = np.meshgrid(self._rad_grid, self._theta_grid, self._h_grid, indexing='ij')
brt = np.ones_like(theta)
brt[rho > (self.width / 2)] = 0
norm = np.sum(brt)
if norm > 0:
brt = brt / np.sum(brt)
return brt
@cached_property
def _brightness_3d_cartesian(self):
x, y, z = np.meshgrid(self._cartesian_x_grid, self._cartesian_y_grid,
self._cartesian_z_grid, indexing='ij')
h_c = -y * np.sin(self.PA) + z * np.cos(self.PA)
theta_c = np.arctan2(y * np.cos(self.PA) + z * np.sin(self.PA), x)
rad_c = np.sqrt(x ** 2 + (y * np.cos(self.PA) + z * np.sin(self.PA)) ** 2)
rad_c[rad_c == 0 * u.pc] = 1e-3 * self.pxscale
theta_c = limit_angle(theta_c, 0 * u.radian, 2 * np.pi * u.radian)
ir = interp1d(self._rad_grid, np.arange(self._rad_bins), bounds_error=False)
ith = interp1d(self._theta_grid, np.arange(self._theta_bins))
ih = interp1d(self._h_grid, np.arange(self._h_bins), bounds_error=False)
new_ir = ir(rad_c.ravel())
new_ith = ith(theta_c.ravel())
new_ih = ih(h_c.ravel())
cart_data = map_coordinates(self._brightness_3d_cylindrical,
np.vstack([new_ir, new_ith, new_ih]),
order=1, mode='constant', cval=0)
return cart_data.reshape([len(self._cartesian_x_grid),
len(self._cartesian_y_grid),
len(self._cartesian_z_grid)]).T
@dataclass
class Galaxy(Nebula):
"""
Class defining the galaxy object (set up it as Sersic2D profile assuming it has continuum and emission components)
"""
PA: u.degree = 90 * u.degree # position angle of the major axis
ax_ratio: float = 0.7 # ratio of minor/major axes
r_eff: u.kpc = 1 * u.kpc # Effective radius in kpc
rad_lim: float = 3. # Maximum radius for calculations (in R_eff)
n: float = 1. # Sersic index
vel_rot: velunit = 0 * velunit # Rotational velocity (not implemented yet)
def __post_init__(self):
self._assign_all_units()
self._npix_los = 1
self.r_max = self.r_eff.to(u.pc).value / self.pxscale.to(u.pc).value * self.rad_lim
self._assign_position_params(conversion_type='galaxy')
self._ref_line_id = 0
self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula
@cached_property
def _brightness_3d_cartesian(self):
"""
Method to obtain the brightness (or density) distribution of the nebula in cartesian coordinates
"""
xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height))
angle = (self.PA + 90 * u.degree).to(u.radian).value
mod = Sersic2D(amplitude=1, r_eff=(self.r_eff.to(u.pc) / self.pxscale.to(u.pc)).value,
n=self.n, x_0=(self.pix_width - 1) / 2, y_0=(self.pix_height - 1) / 2,
ellip=1 - self.ax_ratio, theta=angle)
brt = mod(xx, yy)
xct = (xx - (self.pix_width - 1) / 2) * np.cos(angle) + \
(yy - (self.pix_height - 1) / 2) * np.sin(angle)
yct = (xx - (self.pix_width - 1) / 2) * np.sin(angle) - \
(yy - (self.pix_height - 1) / 2) * np.cos(angle)
rmaj = self.rad_lim * (self.r_eff.to(u.pc) / self.pxscale.to(u.pc)).value
rmin = self.rad_lim * (self.r_eff.to(u.pc) / self.pxscale.to(u.pc)).value * self.ax_ratio
mask = np.ones_like(brt, dtype=np.float32)
rec = (xct ** 2 / rmaj ** 2) + (yct ** 2 / rmin ** 2) >= 1
mask[rec] = 0
mask = convolve_fft(mask, kernels.Gaussian2DKernel(3.), fill_value=0, allow_huge=True)
brt = brt * mask
brt = brt.reshape(self.pix_height, self.pix_width, 1)
return brt
def _get_2d_velocity(self):
if hasattr(self, 'vel_rot') and (self.vel_rot is not None) and (self.vel_rot != 0):
xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height))
angle = (self.PA + 90 * u.degree).to(u.radian).value
xct = (xx - (self.pix_width - 1) / 2) * np.cos(angle) + \
(yy - (self.pix_height - 1) / 2) * np.sin(angle)
yct = (xx - (self.pix_width - 1) / 2) * np.sin(angle) - \
(yy - (self.pix_height - 1) / 2) * np.cos(angle)
rad = np.sqrt(xct ** 2 + yct ** 2)
vel_field = np.zeros_like(xx, dtype=np.float32) * velunit
rec = rad > 0
vel_field[rec] = self.vel_rot * np.sqrt(1 - self.ax_ratio ** 2) * xct[rec] / rad[rec]
return vel_field
else:
return None
@dataclass
class DIG(Nebula):
"""
Class defining the DIG component. For now it is defined just by its brightness (constant)
"""
max_brightness: fluxunit = 1e-17 * fluxunit
vel_gradient: (velunit / u.pc) = 0
@dataclass
class Cloud(Nebula):
"""Class of an isotropic spherical gas cloud without any ionization source.
Defined by its position, radius, density, maximal optical depth"""
radius: u.pc = 1.0 * u.pc
max_brightness: fluxunit = 0 * fluxunit
max_extinction: u.mag = 2.0 * u.mag
thickness: float = 1.0
perturb_degree: int = 0 # Degree of perturbations (max. degree of spherical harmonics for cloud)
linerat_constant: bool = False # True if the ratio of line fluxes shouldn't change across the nebula
_phi_bins: int = 90
_theta_bins: int = 90
_rad_bins: int = 0
_npix_los: int = 100
def __post_init__(self):
self._assign_all_units()
if self._rad_bins == 0:
self._rad_bins = np.ceil(self.radius.to(u.pc).value / self.pxscale.to(u.pc).value * 3).astype(int)
delta = np.round((len(self._cartesian_y_grid) - 1) / 2).astype(int)
if (self.xc is not None) and (self.yc is not None):
self.x0 = self.xc - delta
self.y0 = self.yc - delta
elif (self.x0 is not None) and (self.y0 is not None):
self.xc = self.x0 + delta
self.yc = self.y0 + delta
self._ref_line_id = 0
@cached_property
def _theta_grid(self):
return np.linspace(0, np.pi, self._theta_bins)
@cached_property
def _phi_grid(self):
return np.linspace(0, 2 * np.pi, self._phi_bins)
@cached_property
def _rad_grid(self):
return np.linspace(0, self.radius, self._rad_bins)
@cached_property
def _cartesian_z_grid(self):
npix = | np.ceil(1.02 * self.radius / self.pxscale) | numpy.ceil |
# Copyright (c) 2021 <NAME>.
# Distributed under the terms of the BSD 3-Clause License.
"""Tests for dparcel.parcel."""
import pytest
import pandas as pd
import numpy as np
from metpy.testing import assert_almost_equal, assert_array_equal
from metpy.units import units
from dparcel.parcel import Parcel, FastParcel
data = pd.read_csv('tests/test_soundings/sydney_20210716_00Z.csv', header=0)
p_sydney, z_sydney, t_sydney, td_sydney = data.to_numpy().T
p_sydney *= units.mbar
z_sydney *= units.meter
t_sydney *= units.kelvin
td_sydney *= units.kelvin
sydney = Parcel(p_sydney[4:], z_sydney[4:], t_sydney[4:], td_sydney[4:])
sydneyfast = FastParcel(
p_sydney[4:], z_sydney[4:], t_sydney[4:], td_sydney[4:])
def test_parcel_profile_height_above_reference():
"""Test Parcel.profile for final height above the reference height."""
height = [4000, 2000, 1000]*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 1e-4*units.dimensionless
l_initial = 0*units.dimensionless
rate = 0.5/units.km
with pytest.raises(ValueError):
_, _, _ = sydney.profile(
height, t_initial, q_initial, l_initial, rate,
reference_height=z_init)
def test_parcel_profile_no_descent():
"""Test Parcel.profile when no descent is needed."""
height = 3000*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 1e-4*units.dimensionless
l_initial = 0*units.dimensionless
rate = 0.5/units.km
actual_t, actual_q, actual_l = sydney.profile(
height, t_initial, q_initial, l_initial, rate, reference_height=z_init)
assert_almost_equal(actual_t, t_initial, 3)
assert_almost_equal(actual_q, q_initial, 6)
assert_array_equal(actual_l, l_initial)
def test_parcel_profile_no_reference():
"""Test Parcel.profile without a reference height."""
height = [3000, 2000, 1000]*units.meter
t_initial = -2*units.celsius
q_initial = 1e-4*units.dimensionless
l_initial = 0*units.dimensionless
rate = 0.5/units.km
truth_t = [-2., 7.59522877, 14.32321658]*units.celsius
truth_q = [0.0001, 0.00045977, 0.00213945]*units.dimensionless
truth_l = [0., 0., 0.]*units.dimensionless
actual_t, actual_q, actual_l = sydney.profile(
height, t_initial, q_initial, l_initial, rate)
assert_almost_equal(actual_t, truth_t, 3)
assert_almost_equal(actual_q, truth_q, 6)
assert_array_equal(actual_l, truth_l)
def test_parcel_profile_reference_equals_first_height():
"""Test Parcel.profile when reference height equals first final height."""
height = [3000, 2000, 1000]*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 1e-4*units.dimensionless
l_initial = 0*units.dimensionless
rate = 0.5/units.km
truth_t = [-2., 7.59522877, 14.32321658]*units.celsius
truth_q = [0.0001, 0.00045977, 0.00213945]*units.dimensionless
truth_l = [0., 0., 0.]*units.dimensionless
actual_t, actual_q, actual_l = sydney.profile(
height, t_initial, q_initial, l_initial, rate, reference_height=z_init)
assert_almost_equal(actual_t, truth_t, 3)
assert_almost_equal(actual_q, truth_q, 6)
assert_array_equal(actual_l, truth_l)
def test_parcel_profile_scalar_height():
"""Test Parcel.profile when the final height is a scalar."""
height = 1000*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 1e-4*units.dimensionless
l_initial = 0*units.dimensionless
rate = 0.5/units.km
truth_t = 14.32321658*units.celsius
truth_q = 0.00213945*units.dimensionless
truth_l = 0.*units.dimensionless
actual_t, actual_q, actual_l = sydney.profile(
height, t_initial, q_initial, l_initial, rate, reference_height=z_init)
assert_almost_equal(actual_t, truth_t, 3)
assert_almost_equal(actual_q, truth_q, 6)
assert_array_equal(actual_l, truth_l)
assert not hasattr(actual_t, 'size')
assert not hasattr(actual_q, 'size')
assert not hasattr(actual_l, 'size')
def test_parcel_profile_initially_subsaturated():
"""Test Parcel.profile for a subsaturated parcel."""
height = [2000, 1000, 0]*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 1e-4*units.dimensionless
l_initial = 0*units.dimensionless
rate = 0.5/units.km
truth_t = [7.59522877, 14.32321658, 20.96021533]*units.celsius
truth_q = [0.00045977, 0.00213945, 0.00387132]*units.dimensionless
truth_l = [0., 0., 0.]*units.dimensionless
actual_t, actual_q, actual_l = sydney.profile(
height, t_initial, q_initial, l_initial, rate, reference_height=z_init)
assert_almost_equal(actual_t, truth_t, 3)
assert_almost_equal(actual_q, truth_q, 6)
assert_array_equal(actual_l, truth_l)
def test_parcel_profile_pseudoadiabatic_initially_saturated():
"""Test Parcel.profile for a saturated parcel, pseudoadiabatic descent."""
height = [2000, 1000, 0]*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 0.004751707262581661*units.dimensionless
l_initial = 5e-3*units.dimensionless
rate = 0.5/units.km
truth_t = [1.80559804, 9.55493141, 17.98658756]*units.celsius
truth_q = [0.0055382, 0.00564526, 0.00598423]*units.dimensionless
truth_l = [0.00073854, 0., 0.]*units.dimensionless
actual_t, actual_q, actual_l = sydney.profile(
height, t_initial, q_initial, l_initial, rate, reference_height=z_init)
assert_almost_equal(actual_t, truth_t, 3)
assert_almost_equal(actual_q, truth_q, 6)
assert_almost_equal(actual_l, truth_l, 6)
def test_parcel_profile_reversible_initially_saturated():
"""Test Parcel.profile, saturated parcel, reversible adiabatic descent."""
height = [2000, 1000, 0]*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 0.004751707262581661*units.dimensionless
l_initial = 5e-3*units.dimensionless
rate = 0.5/units.km
truth_t = [1.78019707, 9.52454163, 17.96763569]*units.celsius
truth_q = [0.00552812, 0.00564526, 0.00598423]*units.dimensionless
truth_l = [0.00074862, 0., 0.]*units.dimensionless
actual_t, actual_q, actual_l = sydney.profile(
height, t_initial, q_initial, l_initial, rate,
reference_height=z_init, kind='reversible')
assert_almost_equal(actual_t, truth_t, 3)
assert_almost_equal(actual_q, truth_q, 6)
assert_almost_equal(actual_l, truth_l, 6)
def test_parcel_parcel_density_initially_subsaturated():
"""Test Parcel.parcel_density for a subsaturated parcel."""
height = [2000, 1000, 0]*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 1e-4*units.dimensionless
l_initial = 0*units.dimensionless
rate = 0.5/units.km
truth = [0.97304305, 1.07284677, 1.18054049]*units('kg/m^3')
actual = sydney.parcel_density(
height, z_init, t_initial, q_initial, l_initial, rate)
assert_almost_equal(actual, truth, 6)
def test_parcel_parcel_density_pseudoadiabatic_initially_saturated():
"""Test Parcel.parcel_density, saturated parcel, pseudoadiabatic."""
height = [2000, 1000, 0]*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 0.004751707262581661*units.dimensionless
l_initial = 5e-3*units.dimensionless
rate = 0.5/units.km
truth = [0.99120751, 1.08862533, 1.19107227]*units('kg/m^3')
actual = sydney.parcel_density(
height, z_init, t_initial, q_initial, l_initial, rate)
assert_almost_equal(actual, truth, 6)
def test_parcel_parcel_density_reversible_initially_saturated():
"""Test Parcel.parcel_density, saturated parcel, reversible descent."""
height = [2000, 1000, 0]*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 0.004751707262581661*units.dimensionless
l_initial = 5e-3*units.dimensionless
rate = 0.5/units.km
truth = [0.99131515, 1.08874236, 1.19114981]*units('kg/m^3')
actual = sydney.parcel_density(
height, z_init, t_initial, q_initial, l_initial, rate,
kind='reversible')
assert_almost_equal(actual, truth, 6)
def test_parcel_parcel_density_no_liquid_correction():
"""Test Parcel.parcel_density with liquid_correction=False."""
height = [2000, 1000, 0]*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 0.004751707262581661*units.dimensionless
l_initial = 5e-3*units.dimensionless
rate = 0.5/units.km
truth = [0.99047547, 1.08862533, 1.19107227]*units('kg/m^3')
actual = sydney.parcel_density(
height, z_init, t_initial, q_initial, l_initial, rate,
liquid_correction=False)
assert_almost_equal(actual, truth, 6)
def test_parcel_buoyancy_initially_subsaturated():
"""Test Parcel.buoyancy for a subsaturated parcel."""
height = [2000, 1000, 0]*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 1e-4*units.dimensionless
l_initial = 0*units.dimensionless
rate = 0.5/units.km
truth = [0.07574004, 0.24243366, 0.18312808]*units('m/s^2')
actual = sydney.buoyancy(
height, z_init, t_initial, q_initial, l_initial, rate)
assert_almost_equal(actual, truth, 6)
def test_parcel_buoyancy_pseudoadiabatic_initially_saturated():
"""Test Parcel.buoyancy for a saturated parcel, pseudoadiabatic descent."""
height = [2000, 1000, 0]*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 0.004751707262581661*units.dimensionless
l_initial = 5e-3*units.dimensionless
rate = 0.5/units.km
truth = [-0.10536063, 0.09678205, 0.09479574]*units('m/s^2')
actual = sydney.buoyancy(
height, z_init, t_initial, q_initial, l_initial, rate)
assert_almost_equal(actual, truth, 6)
def test_parcel_buoyancy_reversible_initially_saturated():
"""Test Parcel.buoyancy for a saturated parcel, reversible descent."""
height = [2000, 1000, 0]*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 0.004751707262581661*units.dimensionless
l_initial = 5e-3*units.dimensionless
rate = 0.5/units.km
truth = [-0.10641401, 0.09571746, 0.0941512]*units('m/s^2')
actual = sydney.buoyancy(
height, z_init, t_initial, q_initial, l_initial, rate,
kind='reversible')
assert_almost_equal(actual, truth, 6)
def test_parcel_buoyancy_no_liquid_correction():
"""Test Parcel.buoyancy with liquid_correction=False."""
height = [2000, 1000, 0]*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 0.004751707262581661*units.dimensionless
l_initial = 5e-3*units.dimensionless
rate = 0.5/units.km
truth = [-0.09819057, 0.09678205, 0.09479574]*units('m/s^2')
actual = sydney.buoyancy(
height, z_init, t_initial, q_initial, l_initial, rate,
liquid_correction=False)
assert_almost_equal(actual, truth, 6)
def test_parcel_motion_hit_ground():
"""Test Parcel.motion for a parcel reaching the ground."""
time = np.arange(0, 6*60, 60)*units.second
z_init = 3000*units.meter
w_init = 0*units('m/s')
t_initial = -3*units.celsius
q_initial = 0.004411511498126446*units.dimensionless
l_initial = 5e-3*units.dimensionless
rate = 0.5/units.km
truth = {
'height': [3000., 2779.40740568, 2111.85174618,
1126.13930493, 345.60577653, np.nan]*units.meter,
'velocity': [0, -7.40141405, -14.86871612,
-15.51565616, -10.59514798, np.nan]*units('m/s'),
'temperature': [-3., -2.07444998, 0.76303326,
8.09248224, 14.78024907, np.nan]*units.celsius,
'specific_humidity': [0.00441151, 0.004598, 0.00520855,
0.00546518, 0.00578415, np.nan]*units(''),
'liquid_ratio': [0.005, 0.0038962, 0.00114186,
0., 0., np.nan]*units(''),
'density': [0.89587838, 0.91641684, 0.98204805,
1.0777025, 1.15644317, np.nan]*units('kg/m^3'),
'buoyancy': [-0.12107617, -0.12425642, -0.12584922,
0.08259816, 0.07495148, np.nan]*units('m/s^2'),
'neutral_buoyancy_time': 146.72595790038056*units.second,
'hit_ground_time': 277.523717064885*units.second,
'min_height_time': np.nan*units.second,
'neutral_buoyancy_height': 1676.8165192484294*units.meter,
'neutral_buoyancy_velocity': -17.071598366562046*units('m/s'),
'hit_ground_velocity': -7.773893588250036*units('m/s'),
'min_height': np.nan*units.meter
}
actual = sydney.motion(
time, z_init, w_init, t_initial, q_initial, l_initial, rate)
for truth_var, actual_var in zip(truth.values(), actual.__dict__.values()):
assert_almost_equal(actual_var, truth_var, 4)
def test_parcel_motion_not_hit_ground():
"""Test Parcel.motion for a parcel not reaching the ground."""
time = np.arange(0, 6*60, 60)*units.second
z_init = 3000*units.meter
w_init = 0*units('m/s')
t_initial = -1*units.celsius
q_initial = 1e-3*units.dimensionless
l_initial = 0*units.dimensionless
rate = 0.5/units.km
truth = {
'height': [3000., 2963.91427237, 2867.7678195,
2754.49703165, 2682.19699647, np.nan]*units.meter,
'velocity': [0., -1.16946209, -1.91033584,
-1.69044915, -0.61770804, np.nan]*units('m/s'),
'temperature': [-1., -0.65261826, 0.29346522,
1.41235842, 2.10568038, np.nan]*units.celsius,
'specific_humidity': [0.001, 0.00099383, 0.00098031,
0.00096887, 0.00096388, np.nan]*units(''),
'liquid_ratio': [0., 0., 0., 0., 0., np.nan]*units(''),
'density': [0.88668191, 0.88938961, 0.89688489,
0.90606089, 0.91194679, np.nan]*units('kg/m^3'),
'buoyancy': [-0.02061958, -0.0172448, -0.00513284,
0.01194682, 0.0220604, np.nan]*units('m/s^2'),
'neutral_buoyancy_time': 136.97895522269684*units.second,
'hit_ground_time': np.nan*units.second,
'min_height_time': 267.06600918022554*units.second,
'neutral_buoyancy_height': 2834.7941061947395*units.meter,
'neutral_buoyancy_velocity': -1.9540112264154348*units('m/s'),
'hit_ground_velocity': np.nan*units('m/s'),
'min_height': 2673.7559561309704*units.meter
}
actual = sydney.motion(
time, z_init, w_init, t_initial, q_initial, l_initial, rate)
for truth_var, actual_var in zip(truth.values(), actual.__dict__.values()):
assert_almost_equal(actual_var, truth_var, 4)
def test_fastparcel_parcel_equivalent_potential_temperature():
"""Test FastParcel.parcel_equivalent_potential_temperature."""
height = [2000, 1000, 0]*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 0.004751707262581661*units.dimensionless
rate = 0.5/units.km
actual = sydneyfast.parcel_equivalent_potential_temperature(
z_init, t_initial, q_initial, rate)(height)
truth = [311.18426538, 309.50915144, 308.95267974]*units.kelvin
assert_almost_equal(actual, truth, 3)
def test_fastparcel_parcel_equivalent_potential_temperature_scalar():
"""Test FastParcel.parcel_equivalent_potential_temperature for scalars."""
height = 2000*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 0.004751707262581661*units.dimensionless
rate = 0.5/units.km
actual = sydneyfast.parcel_equivalent_potential_temperature(
z_init, t_initial, q_initial, rate)(height)
truth = 311.18426538*units.kelvin
assert_almost_equal(actual, truth, 3)
assert not hasattr(actual, 'size')
def test_fastparcel_parcel_equivalent_potential_temperature_rate_func():
"""
Test FastParcel.parcel_equivalent_potential_temperature.
Check the case where entrainment rate is callable.
"""
height = [2000, 1000, 0]*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 0.004751707262581661*units.dimensionless
rate = lambda z: 0.5/units.km + z/(1*units.km)*(0.1/units.km)
actual = sydneyfast.parcel_equivalent_potential_temperature(
z_init, t_initial, q_initial, rate)(height)
truth = [309.46813541, 306.84084219, 307.32459864]*units.kelvin
assert_almost_equal(actual, truth, 3)
def test_fastparcel_water_content():
"""Test FastParcel.water_content."""
height = [2000, 1000, 0]*units.meter
z_init = 3000*units.meter
q_initial = 0.004751707262581661*units.dimensionless
l_initial = 2e-3*units.dimensionless
rate = 0.5/units.km
actual = sydneyfast.water_content(
z_init, q_initial, l_initial, rate)(height)
truth = [0.00450332, 0.00462289, 0.00537897]*units.dimensionless
assert_almost_equal(actual, truth, 6)
def test_fastparcel_water_content_scalar():
"""Test FastParcel.water_content for scalar input."""
height = 2000*units.meter
z_init = 3000*units.meter
q_initial = 0.004751707262581661*units.dimensionless
l_initial = 2e-3*units.dimensionless
rate = 0.5/units.km
actual = sydneyfast.water_content(
z_init, q_initial, l_initial, rate)(height)
truth = 0.00450332*units.dimensionless
assert_almost_equal(actual, truth, 6)
assert not hasattr(actual, 'size')
def test_fastparcel_water_content_rate_func():
"""Test FastParcel.water_content for callable entrainment rate."""
height = [2000, 1000, 0]*units.meter
z_init = 3000*units.meter
q_initial = 0.004751707262581661*units.dimensionless
l_initial = 2e-3*units.dimensionless
rate = lambda z: 0.5/units.km + z/(1*units.km)*(0.1/units.km)
actual = sydneyfast.water_content(
z_init, q_initial, l_initial, rate)(height)
truth = [0.0037374, 0.00424625, 0.00521945]*units.dimensionless
assert_almost_equal(actual, truth, 6)
def test_fastparcel_properties_moist():
"""Test FastParcel._properties_moist."""
height = [2000, 1000, 0]*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 0.004751707262581661*units.dimensionless
l_initial = 2e-3*units.dimensionless
rate = 0.5/units.km
theta_e = sydneyfast.parcel_equivalent_potential_temperature(
z_init, t_initial, q_initial, rate)
total_water = sydneyfast.water_content(
z_init, q_initial, l_initial, rate)
actual_t, actual_q, actual_l = sydneyfast._properties_moist(
height, z_init, t_initial, theta_e, total_water)
truth_t = [274.97291915, 279.82475884, 284.81223373]*units.kelvin
truth_q = [0.00554509, 0.00690006, 0.00857783]*units.dimensionless
truth_l = [-0.00104177, -0.00227717, -0.00319885]*units.dimensionless
assert_almost_equal(actual_t, truth_t, 3)
assert_almost_equal(actual_q, truth_q, 6)
assert_almost_equal(actual_l, truth_l, 6)
def test_fastparcel_properties_moist_scalar():
"""Test FastParcel._properties_moist for scalar input."""
height = 2000*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 0.004751707262581661*units.dimensionless
l_initial = 2e-3*units.dimensionless
rate = 0.5/units.km
theta_e = sydneyfast.parcel_equivalent_potential_temperature(
z_init, t_initial, q_initial, rate)
total_water = sydneyfast.water_content(
z_init, q_initial, l_initial, rate)
actual_t, actual_q, actual_l = sydneyfast._properties_moist(
height, z_init, t_initial, theta_e, total_water)
truth_t = 274.97291915*units.kelvin
truth_q = 0.00554509*units.dimensionless
truth_l = -0.00104177*units.dimensionless
assert_almost_equal(actual_t, truth_t, 3)
assert_almost_equal(actual_q, truth_q, 6)
assert_almost_equal(actual_l, truth_l, 6)
assert not hasattr(actual_t, 'size')
assert not hasattr(actual_q, 'size')
assert not hasattr(actual_l, 'size')
def test_fastparcel_properties_dry():
"""Test FastParcel._properties_dry."""
height = [2000, 1000, 0]*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 1e-3*units.dimensionless
l_initial = 0*units.dimensionless
rate = 0.5/units.km
theta_e = sydneyfast.parcel_equivalent_potential_temperature(
z_init, t_initial, q_initial, rate)
total_water = sydneyfast.water_content(
z_init, q_initial, l_initial, rate)
actual_t, actual_q, actual_l = sydneyfast._properties_dry(
height, z_init, t_initial, theta_e, total_water)
truth_t = [280.5449438, 286.3411977, 293.36942736]*units.kelvin
truth_q = [0.00101066, 0.00250059, 0.00409071]*units.dimensionless
truth_l = [0., 0., 0.]*units.dimensionless
assert_almost_equal(actual_t, truth_t, 3)
assert_almost_equal(actual_q, truth_q, 6)
assert_array_equal(actual_l, truth_l)
def test_fastparcel_properties_dry_scalar():
"""Test FastParcel._properties_dry for scalar input."""
height = 2000*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 1e-3*units.dimensionless
l_initial = 0*units.dimensionless
rate = 0.5/units.km
theta_e = sydneyfast.parcel_equivalent_potential_temperature(
z_init, t_initial, q_initial, rate)
total_water = sydneyfast.water_content(
z_init, q_initial, l_initial, rate)
actual_t, actual_q, actual_l = sydneyfast._properties_dry(
height, z_init, t_initial, theta_e, total_water)
truth_t = 280.5449438*units.kelvin
truth_q = 0.00101066*units.dimensionless
truth_l = 0.*units.dimensionless
assert_almost_equal(actual_t, truth_t, 3)
assert_almost_equal(actual_q, truth_q, 6)
assert_array_equal(actual_l, truth_l)
assert not hasattr(actual_t, 'size')
assert not hasattr(actual_q, 'size')
assert not hasattr(actual_l, 'size')
def test_fastparcel_transition_point_dry():
"""Test FastParcel._transition_point for dry descent."""
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 1e-3*units.dimensionless
l_initial = 0*units.dimensionless
rate = 0.5/units.km
theta_e = sydneyfast.parcel_equivalent_potential_temperature(
z_init, t_initial, q_initial, rate)
total_water = sydneyfast.water_content(
z_init, q_initial, l_initial, rate)
actual_z, actual_t = sydneyfast._transition_point(
z_init, t_initial, l_initial, theta_e, total_water)
assert_almost_equal(actual_z, z_init)
assert_almost_equal(actual_t, t_initial)
assert not hasattr(actual_z, 'size')
assert not hasattr(actual_t, 'size')
def test_fastparcel_transition_point_mixed():
"""Test FastParcel._transition_point for mixed moist/dry descent."""
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 0.004751707262581661*units.dimensionless
l_initial = 2e-3*units.dimensionless
rate = 0.5/units.km
theta_e = sydneyfast.parcel_equivalent_potential_temperature(
z_init, t_initial, q_initial, rate)
total_water = sydneyfast.water_content(
z_init, q_initial, l_initial, rate)
actual_z, actual_t = sydneyfast._transition_point(
z_init, t_initial, l_initial, theta_e, total_water)
truth_z = 2391.6137533395254*units.meter
truth_t = 273.44171068846475*units.kelvin
assert_almost_equal(actual_z, truth_z, 3)
assert_almost_equal(actual_t, truth_t, 3)
assert not hasattr(actual_z, 'size')
assert not hasattr(actual_t, 'size')
def test_fastparcel_transition_point_moist():
"""Test FastParcel._transition_point for only moist descent."""
z_init = 500*units.meter
t_initial = 10*units.celsius
q_initial = 0.008146560796663203*units.dimensionless
l_initial = 2e-3*units.dimensionless
rate = 0.5/units.km
theta_e = sydneyfast.parcel_equivalent_potential_temperature(
z_init, t_initial, q_initial, rate)
total_water = sydneyfast.water_content(
z_init, q_initial, l_initial, rate)
actual_z, actual_t = sydneyfast._transition_point(
z_init, t_initial, l_initial, theta_e, total_water)
truth_z = 0*units.meter
truth_t = 285.41367938613286*units.kelvin
assert_almost_equal(actual_z, truth_z)
assert_almost_equal(actual_t, truth_t, 3)
assert not hasattr(actual_z, 'size')
assert not hasattr(actual_t, 'size')
def test_fastparcel_properties_all_dry():
"""Test FastParcel.properties for only dry descent."""
height = [2000, 1000, 0]*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 1e-3*units.dimensionless
l_initial = 0*units.dimensionless
rate = 0.5/units.km
theta_e = sydneyfast.parcel_equivalent_potential_temperature(
z_init, t_initial, q_initial, rate)
total_water = sydneyfast.water_content(
z_init, q_initial, l_initial, rate)
z_switch, t_switch = z_init, t_initial
actual_t, actual_q, actual_l = sydneyfast.properties(
height, z_init, t_initial, z_switch, t_switch, theta_e, total_water)
actual_t_dry, actual_q_dry, actual_l_dry = sydneyfast._properties_dry(
height, z_init, t_initial, theta_e, total_water)
truth_t = [280.5449438, 286.3411977, 293.36942736]*units.kelvin
truth_q = [0.00101066, 0.00250059, 0.00409071]*units.dimensionless
truth_l = [0., 0., 0.]*units.dimensionless
assert_almost_equal(actual_t, truth_t, 3)
assert_almost_equal(actual_q, truth_q, 6)
assert_array_equal(actual_l, truth_l)
assert_array_equal(actual_t, actual_t_dry)
assert_array_equal(actual_q, actual_q_dry)
assert_array_equal(actual_l, actual_l_dry)
def test_fastparcel_properties_all_moist():
"""Test FastParcel.properties for only moist descent."""
height = [400, 200, 0]*units.meter
z_init = 500*units.meter
t_initial = 10*units.celsius
q_initial = 0.008146560796663203*units.dimensionless
l_initial = 2e-3*units.dimensionless
rate = 0.5/units.km
theta_e = sydneyfast.parcel_equivalent_potential_temperature(
z_init, t_initial, q_initial, rate)
total_water = sydneyfast.water_content(
z_init, q_initial, l_initial, rate)
z_switch, t_switch = sydneyfast._transition_point(
z_init, t_initial, l_initial, theta_e, total_water)
actual_t, actual_q, actual_l = sydneyfast.properties(
height, z_init, t_initial, z_switch, t_switch, theta_e, total_water)
truth_t = [283.6021255, 284.50188453, 284.26175698]*units.kelvin
truth_q = [0.00829667, 0.00860362, 0.00939808]*units.dimensionless
truth_l = [0.00167194, 0.00105108, 0.]*units.dimensionless
assert_almost_equal(actual_t, truth_t, 3)
assert_almost_equal(actual_q, truth_q, 6)
assert_almost_equal(actual_l, truth_l, 6)
def test_fastparcel_properties_mixed():
"""Test FastParcel.properties for mixed moist/dry descent."""
height = [2000, 1000, 0]*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 0.004751707262581661*units.dimensionless
l_initial = 2e-3*units.dimensionless
rate = 0.5/units.km
theta_e = sydneyfast.parcel_equivalent_potential_temperature(
z_init, t_initial, q_initial, rate)
total_water = sydneyfast.water_content(
z_init, q_initial, l_initial, rate)
z_switch, t_switch = sydneyfast._transition_point(
z_init, t_initial, l_initial, theta_e, total_water)
actual_t, actual_q, actual_l = sydneyfast.properties(
height, z_init, t_initial, z_switch, t_switch, theta_e, total_water)
truth_t = [277.59502539, 285.61272634, 292.96804134]*units.kelvin
truth_q = [0.00450332, 0.00462289, 0.00537897]*units.dimensionless
truth_l = [0., 0., 0.]*units.dimensionless
assert_almost_equal(actual_t, truth_t, 3)
assert_almost_equal(actual_q, truth_q, 6)
assert_array_equal(actual_l, truth_l)
def test_fastparcel_properties_scalar():
"""Test FastParcel.properties for scalar input."""
height = 2000*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 0.004751707262581661*units.dimensionless
l_initial = 2e-3*units.dimensionless
rate = 0.5/units.km
theta_e = sydneyfast.parcel_equivalent_potential_temperature(
z_init, t_initial, q_initial, rate)
total_water = sydneyfast.water_content(
z_init, q_initial, l_initial, rate)
z_switch, t_switch = sydneyfast._transition_point(
z_init, t_initial, l_initial, theta_e, total_water)
actual_t, actual_q, actual_l = sydneyfast.properties(
height, z_init, t_initial, z_switch, t_switch, theta_e, total_water)
truth_t = 277.59502539*units.kelvin
truth_q = 0.00450332*units.dimensionless
truth_l = 0*units.dimensionless
assert_almost_equal(actual_t, truth_t, 3)
assert_almost_equal(actual_q, truth_q, 6)
assert_array_equal(actual_l, truth_l)
assert not hasattr(actual_t, 'size')
assert not hasattr(actual_q, 'size')
assert not hasattr(actual_l, 'size')
def test_fastparcel_buoyancy():
"""Test FastParcel.buoyancy."""
height = [2000, 1000, 0]*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 0.004751707262581661*units.dimensionless
l_initial = 5e-3*units.dimensionless
rate = 0.5/units.km
theta_e = sydneyfast.parcel_equivalent_potential_temperature(
z_init, t_initial, q_initial, rate)
total_water = sydneyfast.water_content(
z_init, q_initial, l_initial, rate)
z_switch, t_switch = sydneyfast._transition_point(
z_init, t_initial, l_initial, theta_e, total_water)
actual = sydneyfast.buoyancy(
height, z_init, t_initial, z_switch, t_switch, theta_e, total_water)
truth = [-0.10509032, 0.09942803, 0.0981763]*units('m/s^2')
assert_almost_equal(actual, truth, 6)
def test_fastparcel_buoyancy_no_liquid_correction():
"""Test FastParcel.buoyancy with liquid_correction=False."""
height = [2000, 1000, 0]*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 0.004751707262581661*units.dimensionless
l_initial = 5e-3*units.dimensionless
rate = 0.5/units.km
theta_e = sydneyfast.parcel_equivalent_potential_temperature(
z_init, t_initial, q_initial, rate)
total_water = sydneyfast.water_content(
z_init, q_initial, l_initial, rate)
z_switch, t_switch = sydneyfast._transition_point(
z_init, t_initial, l_initial, theta_e, total_water)
actual = sydneyfast.buoyancy(
height, z_init, t_initial, z_switch, t_switch, theta_e, total_water,
liquid_correction=False)
truth = [-0.09753847, 0.09942803, 0.0981763]*units('m/s^2')
assert_almost_equal(actual, truth, 6)
def test_fastparcel_buoyancy_scalar():
"""Test FastParcel.buoyancy for scalar input."""
height = 2000*units.meter
z_init = 3000*units.meter
t_initial = -2*units.celsius
q_initial = 0.004751707262581661*units.dimensionless
l_initial = 5e-3*units.dimensionless
rate = 0.5/units.km
theta_e = sydneyfast.parcel_equivalent_potential_temperature(
z_init, t_initial, q_initial, rate)
total_water = sydneyfast.water_content(
z_init, q_initial, l_initial, rate)
z_switch, t_switch = sydneyfast._transition_point(
z_init, t_initial, l_initial, theta_e, total_water)
actual = sydneyfast.buoyancy(
height, z_init, t_initial, z_switch, t_switch, theta_e, total_water)
truth = -0.10509032*units('m/s^2')
assert_almost_equal(actual, truth, 6)
assert not hasattr(actual, 'size')
def test_fastparcel_motion_hit_ground():
"""Test FastParcel.motion for a parcel reaching the ground."""
time = | np.arange(0, 6*60, 60) | numpy.arange |
import numpy as np
from scipy.spatial.distance import pdist, squareform
def scalar_dpp_diversity(x, max_distance=1.):
x = np.array(x)[:,None]
K = max_distance - squareform(pdist(x))
K /= max_distance
return np.linalg.det(K)
def scalar_mean_pdist_diversity(x):
x = | np.array(x) | numpy.array |
"""
legacyhalos.ellipse
===================
Code to do ellipse fitting on the residual coadds.
"""
import os, pdb
import time, warnings
import numpy as np
import matplotlib.pyplot as plt
import astropy.modeling
from photutils.isophote import (EllipseGeometry, Ellipse, EllipseSample,
Isophote, IsophoteList)
from photutils.isophote.sample import CentralEllipseSample
from photutils.isophote.fitter import CentralEllipseFitter
import legacyhalos.io
REF_SBTHRESH = [22, 22.5, 23, 23.5, 24, 24.5, 25, 25.5, 26] # surface brightness thresholds
class CogModel(astropy.modeling.Fittable1DModel):
"""Class to empirically model the curve of growth.
radius in arcsec
r0 - constant scale factor (10)
m(r) = mtot + mcen * (1-exp**(-alpha1*(radius/r0)**(-alpha2))
"""
mtot = astropy.modeling.Parameter(default=20.0, bounds=(1, 30)) # integrated magnitude (r-->infty)
m0 = astropy.modeling.Parameter(default=10.0, bounds=(1, 30)) # central magnitude (r=0)
alpha1 = astropy.modeling.Parameter(default=0.3, bounds=(1e-3, 5)) # scale factor 1
alpha2 = astropy.modeling.Parameter(default=0.5, bounds=(1e-3, 5)) # scale factor 2
def __init__(self, mtot=mtot.default, m0=m0.default,
alpha1=alpha1.default, alpha2=alpha2.default):
super(CogModel, self).__init__(mtot, m0, alpha1, alpha2)
self.r0 = 10 # scale factor [arcsec]
def evaluate(self, radius, mtot, m0, alpha1, alpha2):
"""Evaluate the COG model."""
model = mtot + m0 * (1 - np.exp(-alpha1*(radius/self.r0)**(-alpha2)))
return model
def _apphot_one(args):
"""Wrapper function for the multiprocessing."""
return apphot_one(*args)
def apphot_one(img, mask, theta, x0, y0, aa, bb, pixscale, variance=False, iscircle=False):
"""Perform aperture photometry in a single elliptical annulus.
"""
from photutils import EllipticalAperture, CircularAperture, aperture_photometry
if iscircle:
aperture = CircularAperture((x0, y0), aa)
else:
aperture = EllipticalAperture((x0, y0), aa, bb, theta)
# Integrate the data to get the total surface brightness (in
# nanomaggies/arcsec2) and the mask to get the fractional area.
#area = (aperture_photometry(~mask*1, aperture, mask=mask, method='exact'))['aperture_sum'].data * pixscale**2 # [arcsec**2]
mu_flux = (aperture_photometry(img, aperture, mask=mask, method='exact'))['aperture_sum'].data # [nanomaggies/arcsec2]
if variance:
apphot = np.sqrt(mu_flux) * pixscale**2 # [nanomaggies]
else:
apphot = mu_flux * pixscale**2 # [nanomaggies]
return apphot
def ellipse_cog(bands, data, refellipsefit, pixscalefactor,
pixscale, centralindx=0, pool=None, seed=1,
sbthresh=REF_SBTHRESH):
"""Measure the curve of growth (CoG) by performing elliptical aperture
photometry.
maxsma in pixels
pixscalefactor - assumed to be constant for all bandpasses!
"""
import numpy.ma as ma
import astropy.table
from astropy.utils.exceptions import AstropyUserWarning
from scipy import integrate
from scipy.interpolate import interp1d
rand = np.random.RandomState(seed)
deltaa = 0.5 # pixel spacing
#theta, eps = refellipsefit['geometry'].pa, refellipsefit['geometry'].eps
theta, eps = np.radians(refellipsefit['pa']-90), refellipsefit['eps']
refband = refellipsefit['refband']
#maxsma = refellipsefit['maxsma']
results = {}
# Build the SB profile and measure the radius (in arcsec) at which mu
# crosses a few different thresholds like 25 mag/arcsec, etc.
sbprofile = ellipse_sbprofile(refellipsefit)
#print('We should measure these radii from the extinction-corrected photometry!')
for sbcut in sbthresh:
if sbprofile['mu_r'].max() < sbcut or sbprofile['mu_r'].min() > sbcut:
print('Insufficient profile to measure the radius at {:.1f} mag/arcsec2!'.format(sbcut))
results['radius_sb{:0g}'.format(sbcut)] = np.float32(-1.0)
results['radius_sb{:0g}_err'.format(sbcut)] = np.float32(-1.0)
continue
rr = (sbprofile['sma_r'] * pixscale)**0.25 # [arcsec]
sb = sbprofile['mu_r'] - sbcut
sberr = sbprofile['muerr_r']
keep = np.where((sb > -1) * (sb < 1))[0]
if len(keep) < 5:
keep = np.where((sb > -2) * (sb < 2))[0]
if len(keep) < 5:
print('Insufficient profile to measure the radius at {:.1f} mag/arcsec2!'.format(sbcut))
results['radius_sb{:0g}'.format(sbcut)] = np.float32(-1.0)
results['radius_sb{:0g}_err'.format(sbcut)] = np.float32(-1.0)
continue
# Monte Carlo to get the radius
rcut = []
for ii in np.arange(20):
sbfit = rand.normal(sb[keep], sberr[keep])
coeff = np.polyfit(sbfit, rr[keep], 1)
rcut.append((np.polyval(coeff, 0))**4)
meanrcut, sigrcut = np.mean(rcut), np.std(rcut)
#print(rcut, meanrcut, sigrcut)
#plt.clf() ; plt.plot((rr[keep])**4, sb[keep]) ; plt.axvline(x=meanrcut) ; plt.savefig('junk.png')
#plt.clf() ; plt.plot(rr, sb+sbcut) ; plt.axvline(x=meanrcut**0.25) ; plt.axhline(y=sbcut) ; plt.xlim(2, 2.6) ; plt.savefig('junk.png')
#pdb.set_trace()
#try:
# rcut = interp1d()(sbcut) # [arcsec]
#except:
# print('Warning: extrapolating r({:0g})!'.format(sbcut))
# rcut = interp1d(sbprofile['mu_r'], sbprofile['sma_r'] * pixscale, fill_value='extrapolate')(sbcut) # [arcsec]
results['radius_sb{:0g}'.format(sbcut)] = np.float32(meanrcut)
results['radius_sb{:0g}_err'.format(sbcut)] = np.float32(sigrcut)
for filt in bands:
img = ma.getdata(data['{}_masked'.format(filt)][centralindx]) # [nanomaggies/arcsec2]
mask = ma.getmask(data['{}_masked'.format(filt)][centralindx])
deltaa_filt = deltaa * pixscalefactor
if filt in refellipsefit['bands']:
if len(sbprofile['sma_{}'.format(filt)]) == 0: # can happen with partial coverage in other bands
maxsma = sbprofile['sma_{}'.format(refband)].max()
else:
maxsma = sbprofile['sma_{}'.format(filt)].max() # [pixels]
#minsma = 3 * refellipsefit['psfsigma_{}'.format(filt)] # [pixels]
else:
maxsma = sbprofile['sma_{}'.format(refband)].max() # [pixels]
#minsma = 3 * refellipsefit['psfsigma_{}'.format(refband)] # [pixels]
sma = np.arange(deltaa_filt, maxsma * pixscalefactor, deltaa_filt)
smb = sma * eps
if eps == 0:
iscircle = True
else:
iscircle = False
x0 = refellipsefit['x0'] * pixscalefactor
y0 = refellipsefit['y0'] * pixscalefactor
#im = np.log10(img) ; im[mask] = 0 ; plt.clf() ; plt.imshow(im, origin='lower') ; plt.scatter(y0, x0, s=50, color='red') ; plt.savefig('junk.png')
#pdb.set_trace()
with np.errstate(all='ignore'):
with warnings.catch_warnings():
warnings.simplefilter('ignore', category=AstropyUserWarning)
cogflux = pool.map(_apphot_one, [(img, mask, theta, x0, y0, aa, bb, pixscale, False, iscircle)
for aa, bb in zip(sma, smb)])
if len(cogflux) > 0:
cogflux = np.hstack(cogflux)
else:
cogflux = np.array([0.0])
if '{}_var'.format(filt) in data.keys():
var = data['{}_var'.format(filt)][centralindx] # [nanomaggies**2/arcsec**4]
cogferr = pool.map(_apphot_one, [(var, mask, theta, x0, y0, aa, bb, pixscale, True, iscircle)
for aa, bb in zip(sma, smb)])
if len(cogferr) > 0:
cogferr = np.hstack(cogferr)
else:
cogferr = np.array([0.0])
else:
cogferr = None
# Aperture fluxes can be negative (or nan?) sometimes--
with warnings.catch_warnings():
if cogferr is not None:
ok = (cogflux > 0) * (cogferr > 0) * np.isfinite(cogflux) * np.isfinite(cogferr)
else:
ok = (cogflux > 0) * np.isfinite(cogflux)
cogmagerr = np.ones(len(cogmag))
#results['cog_smaunit'] = 'arcsec'
if np.count_nonzero(ok) < 10:
print('Warning: Too few {}-band pixels to fit the curve of growth; skipping.'.format(filt))
results['{}_cog_sma'.format(filt)] = np.float32(-1) # np.array([])
results['{}_cog_mag'.format(filt)] = np.float32(-1) # np.array([])
results['{}_cog_magerr'.format(filt)] = np.float32(-1) # np.array([])
# old data model
#results['{}_cog_params'.format(filt)] = {'mtot': np.float32(-1),
# 'm0': np.float32(-1),
# 'alpha1': np.float32(-1),
# 'alpha2': np.float32(-1),
# 'chi2': np.float32(1e6)}
results['{}_cog_params_mtot'.format(filt)] = np.float32(-1)
results['{}_cog_params_m0'.format(filt)] = np.float32(-1)
results['{}_cog_params_alpha1'.format(filt)] = np.float32(-1)
results['{}_cog_params_alpha2'.format(filt)] = np.float32(-1)
results['{}_cog_params_chi2'.format(filt)] = np.float32(1e6)
for sbcut in sbthresh:
results['{}_mag_sb{:0g}'.format(filt, sbcut)] = np.float32(-1)
results['{}_mag_sb{:0g}_err'.format(filt, sbcut)] = np.float32(-1)
continue
sma_arcsec = sma[ok] * pixscale # [arcsec]
cogmag = 22.5 - 2.5 * np.log10(cogflux[ok]) # [mag]
if cogferr is not None:
cogmagerr = 2.5 * cogferr[ok] / cogflux[ok] / np.log(10)
results['{}_cog_sma'.format(filt)] = np.float32(sma_arcsec)
results['{}_cog_mag'.format(filt)] = np.float32(cogmag)
results['{}_cog_magerr'.format(filt)] = np.float32(cogmagerr)
#print('Modeling the curve of growth.')
def get_chi2(bestfit):
sbmodel = bestfit(self.radius, self.wave)
chi2 = np.sum( (self.sb - sbmodel)**2 / self.sberr**2 ) / dof
cogfitter = astropy.modeling.fitting.LevMarLSQFitter()
cogmodel = CogModel()
nball = 10
# perturb the parameter values
nparams = len(cogmodel.parameters)
dof = len(cogmag) - nparams
params = np.repeat(cogmodel.parameters, nball).reshape(nparams, nball)
for ii, pp in enumerate(cogmodel.param_names):
pinfo = getattr(cogmodel, pp)
if pinfo.bounds[0] is not None:
scale = 0.2 * pinfo.default
params[ii, :] += rand.normal(scale=scale, size=nball)
toosmall = np.where( params[ii, :] < pinfo.bounds[0] )[0]
if len(toosmall) > 0:
params[ii, toosmall] = pinfo.default
toobig = np.where( params[ii, :] > pinfo.bounds[1] )[0]
if len(toobig) > 0:
params[ii, toobig] = pinfo.default
else:
params[ii, :] += rand.normal(scale=0.2 * pinfo.default, size=nball)
# perform the fit nball times
chi2fail = 1e6
with warnings.catch_warnings():
warnings.simplefilter('ignore')
chi2 = np.zeros(nball) + chi2fail
for jj in range(nball):
cogmodel.parameters = params[:, jj]
# Fit up until the curve of growth turns over, but no less than
# the second moment of the light distribution! Pretty fragile..
these = np.where(np.diff(cogmag) < 0)[0]
if len(these) > 5: # this is bad if we don't have at least 5 points!
if sma_arcsec[these[0]] < (refellipsefit['majoraxis'] * pixscale * pixscalefactor):
these = np.where(sma_arcsec < refellipsefit['majoraxis'] * pixscale * pixscalefactor)[0]
if len(these) > 5: # can happen in corner cases (e.g., PGC155984)
ballfit = cogfitter(cogmodel, sma_arcsec[these], cogmag[these],
maxiter=100, weights=1/cogmagerr[these])
bestfit = ballfit(sma_arcsec)
chi2[jj] = np.sum( (cogmag - bestfit)**2 / cogmagerr**2 ) / dof
if cogfitter.fit_info['param_cov'] is None: # failed
if False:
print(jj, cogfitter.fit_info['message'], chi2[jj])
else:
params[:, jj] = ballfit.parameters # update
# if at least one fit succeeded, re-evaluate the model at the chi2
# minimum.
good = chi2 < chi2fail
if np.sum(good) == 0:
print('{} CoG modeling failed.'.format(filt))
#result.update({'fit_message': cogfitter.fit_info['message']})
#return result
mindx = np.argmin(chi2)
minchi2 = chi2[mindx]
cogmodel.parameters = params[:, mindx]
P = cogfitter(cogmodel, sma_arcsec, cogmag, weights=1/cogmagerr, maxiter=100)
print('{} CoG modeling succeeded with a chi^2 minimum of {:.2f}'.format(filt, minchi2))
#P = cogfitter(cogmodel, sma_arcsec, cogmag, weights=1/cogmagerr)
#results['{}_cog_params'.format(filt)] = {'mtot': np.float32(P.mtot.value),
# 'm0': np.float32(P.m0.value),
# 'alpha1': np.float32(P.alpha1.value),
# 'alpha2': np.float32(P.alpha2.value),
# 'chi2': np.float32(minchi2)}
results['{}_cog_params_mtot'.format(filt)] = np.float32(P.mtot.value)
results['{}_cog_params_m0'.format(filt)] = np.float32(P.m0.value)
results['{}_cog_params_alpha1'.format(filt)] = np.float32(P.alpha1.value)
results['{}_cog_params_alpha2'.format(filt)] = np.float32(P.alpha2.value)
results['{}_cog_params_chi2'.format(filt)] = np.float32(minchi2)
#print('Measuring integrated magnitudes to different radii.')
sb = ellipse_sbprofile(refellipsefit, linear=True)
radkeys = ['radius_sb{:0g}'.format(sbcut) for sbcut in sbthresh]
for radkey in radkeys:
magkey = radkey.replace('radius_', '{}_mag_'.format(filt))
magerrkey = '{}_err'.format(magkey)
smamax = results[radkey] # semi-major axis
if smamax > 0 and smamax < np.max(sma_arcsec):
rmax = smamax * np.sqrt(1 - refellipsefit['eps']) # [circularized radius, arcsec]
rr = sb['radius_{}'.format(filt)] # [circularized radius, arcsec]
yy = sb['mu_{}'.format(filt)] # [surface brightness, nanomaggies/arcsec**2]
yyerr = sb['muerr_{}'.format(filt)] # [surface brightness, nanomaggies/arcsec**2]
try:
#print(filt, rr.max(), rmax)
yy_rmax = interp1d(rr, yy)(rmax) # can fail if rmax < np.min(sma_arcsec)
yyerr_rmax = interp1d(rr, yyerr)(rmax)
# append the maximum radius to the end of the array
keep = np.where(rr < rmax)[0]
_rr = np.hstack((rr[keep], rmax))
_yy = np.hstack((yy[keep], yy_rmax))
_yyerr = np.hstack((yyerr[keep], yyerr_rmax))
flux = 2 * np.pi * integrate.simps(x=_rr, y=_rr*_yy)
fvar = integrate.simps(x=_rr, y=_rr*_yyerr**2)
if fvar <= 0:
ferr = -1.0
else:
ferr = 2 * np.pi * np.sqrt(fvar)
results[magkey] = np.float32(22.5 - 2.5 * np.log10(flux))
results[magerrkey] = np.float32(2.5 * ferr / flux / np.log(10))
except:
results[magkey] = np.float32(-1.0)
results[magerrkey] = np.float32(-1.0)
else:
results[magkey] = np.float32(-1.0)
results[magerrkey] = np.float32(-1.0)
#pdb.set_trace()
# print(filt, P)
# default_model = cogmodel.evaluate(radius, P.mtot.default, P.m0.default, P.alpha1.default, P.alpha2.default)
# bestfit_model = cogmodel.evaluate(radius, P.mtot.value, P.m0.value, P.alpha1.value, P.alpha2.value)
# plt.scatter(radius, cog, label='Data {}'.format(filt), s=10)
# plt.plot(radius, bestfit_model, label='Best Fit {}'.format(filt), color='k', lw=1, alpha=0.5)
#plt.legend(fontsize=10)
#plt.ylim(15, 30)
#plt.savefig('junk.png')
#pdb.set_trace()
#fig, ax = plt.subplots()
#for filt in bands:
# ax.plot(results['apphot_sma_{}'.format(filt)],
# 22.5-2.5*np.log10(results['apphot_mag_{}'.format(filt)]), label=filt)
#ax.set_ylim(30, 5)
#ax.legend(loc='lower right')
#plt.show()
#pdb.set_trace()
return results
def _unmask_center(img):
# https://stackoverflow.com/questions/8647024/how-to-apply-a-disc-shaped-mask-to-a-numpy-array
import numpy.ma as ma
nn = img.shape[0]
x0, y0 = geometry.x0, geometry.y0
rad = geometry.sma # [pixels]
yy, xx = np.ogrid[-x0:nn-x0, -y0:nn-y0]
img.mask[xx**2 + yy**2 <= rad**2] = ma.nomask
return img
def _unpack_isofit(ellipsefit, filt, isofit, failed=False):
"""Unpack the IsophotList objects into a dictionary because the resulting pickle
files are huge.
https://photutils.readthedocs.io/en/stable/api/photutils.isophote.IsophoteList.html#photutils.isophote.IsophoteList
"""
if failed:
ellipsefit.update({
'{}_sma'.format(filt): np.array([-1]).astype(np.int16),
'{}_intens'.format(filt): np.array([-1]).astype('f4'),
'{}_intens_err'.format(filt): np.array([-1]).astype('f4'),
'{}_eps'.format(filt): np.array([-1]).astype('f4'),
'{}_eps_err'.format(filt): np.array([-1]).astype('f4'),
'{}_pa'.format(filt): np.array([-1]).astype('f4'),
'{}_pa_err'.format(filt): np.array([-1]).astype('f4'),
'{}_x0'.format(filt): np.array([-1]).astype('f4'),
'{}_x0_err'.format(filt): np.array([-1]).astype('f4'),
'{}_y0'.format(filt): np.array([-1]).astype('f4'),
'{}_y0_err'.format(filt): np.array([-1]).astype('f4'),
'{}_a3'.format(filt): np.array([-1]).astype('f4'),
'{}_a3_err'.format(filt): np.array([-1]).astype('f4'),
'{}_a4'.format(filt): np.array([-1]).astype('f4'),
'{}_a4_err'.format(filt): np.array([-1]).astype('f4'),
'{}_rms'.format(filt): np.array([-1]).astype('f4'),
'{}_pix_stddev'.format(filt): np.array([-1]).astype('f4'),
'{}_stop_code'.format(filt): np.array([-1]).astype(np.int16),
'{}_ndata'.format(filt): | np.array([-1]) | numpy.array |
import numpy as np
import scipy.interpolate as scpinterp
# ###############################################
# ###############################################
# CrystalBragg
# ###############################################
# ###############################################
# ###############################################
# sampling
# ###############################################
def CrystBragg_sample_outline_sphrect(dpsi, dtheta, npsi=None, ntheta=None):
psi = dpsi*np.linspace(-1, 1., npsi)
theta = np.pi/2. + dtheta*np.linspace(-1, 1., ntheta)
psimin = np.full((ntheta,), psi[0])
psimax = np.full((ntheta,), psi[-1])
thetamin = np.full((npsi,), theta[0])
thetamax = np.full((npsi,), theta[-1])
psi = np.concatenate((psi, psimax,
psi[::-1], psimin))
theta = np.concatenate((thetamin, theta,
thetamax, theta[::-1]))
return psi, theta
def CrystBragg_get_noute1e2_from_psitheta(nout, e1, e2, psi, theta,
e1e2=True):
vout = ((np.cos(psi)[None, :]*nout[:, None]
+ np.sin(psi)[None, :]*e1[:, None])*np.sin(theta)[None, :]
+ np.cos(theta)[None, :]*e2[:, None])
if e1e2:
ve1 = (-np.sin(psi)[None, :]*nout[:, None] + np.cos(psi)[None, :]*e1[:, None])
ve2 = np.array([vout[1, :]*ve1[2, :] - vout[2, :]*ve1[1, :],
vout[2, :]*ve1[0, :] - vout[0, :]*ve1[2, :],
vout[0, :]*ve1[1, :] - vout[1, :]*ve1[0, :]])
return vout, ve1, ve2
else:
return vout
def CrystBragg_sample_outline_plot_sphrect(center, nout, e1, e2,
rcurve, extenthalf, res=None):
dpsi, dtheta = extenthalf
if res is None:
res = np.min(extenthalf)/5.
npsi = 2*int(np.ceil(dpsi / res)) + 1
ntheta = 2*int(np.ceil(dtheta / res)) + 1
psi, theta = CrystBragg_sample_outline_sphrect(dpsi, dtheta,
npsi=npsi, ntheta=ntheta)
vout = CrystBragg_get_noute1e2_from_psitheta(nout, e1, e2, psi, theta,
e1e2=False)
return center[:, None] + rcurve*vout
def CrystBragg_sample_outline_Rays(center, nout, e1, e2,
rcurve, extenthalf,
bragg, phi):
dpsi, dtheta = extenthalf
psi, theta = CrystBragg_sample_outline_sphrect(dpsi, dtheta,
npsi=3, ntheta=3)
psi = np.append(psi, [0])
theta = np.append(theta, [np.pi/2.])
npts = psi.size
# add repetitions for rays
nrays = phi.size
psi = np.repeat(psi, nrays)
theta = np.repeat(theta, nrays)
# add tiling for pts
bragg = np.tile(bragg, npts)
phi = np.tile(phi, npts)
# Compute local vectors
vout, ve1, ve2 = CrystBragg_get_noute1e2_from_psitheta(nout, e1, e2,
psi, theta)
# Deduce D, u
D = center[:, None] + rcurve*vout
u = (-np.sin(bragg)*vect
+ np.cos(bragg)*(np.cos(phi)*ve1 + np.sin(phi)*ve2))
return D, u
# ###############################################
# lamb <=> bragg
# ###############################################
def get_bragg_from_lamb(lamb, d, n=None):
""" n*lamb = 2d*sin(bragg) """
if n is None:
n = 1
bragg= np.full(lamb.shape, np.nan)
sin = n*lamb/(2.*d)
indok = np.abs(sin) <= 1.
bragg[indok] = np.arcsin(sin[indok])
return bragg
def get_lamb_from_bragg(bragg, d, n=None):
""" n*lamb = 2d*sin(bragg) """
if n is None:
n = 1
return 2*d*np.sin(bragg) / n
# ###############################################
# Approximate solution
# ###############################################
def get_approx_detector_rel(rcurve, bragg, tangent_to_rowland=None):
if tangent_to_rowland is None:
tangent_to_rowland = True
# distance crystal - det_center
det_dist = rcurve*np.sin(bragg)
# det_nout and det_e1 in (nout, e1, e2) (det_e2 = e2)
n_crystdet_rel = np.r_[-np.sin(bragg), np.cos(bragg), 0.]
if tangent_to_rowland:
bragg2 = 2.*bragg
det_nout_rel = np.r_[-np.cos(bragg2), -np.sin(bragg2), 0.]
det_ei_rel = np.r_[np.sin(bragg2), -np.cos(bragg2), 0.]
else:
det_nout_rel = -n_crystdet_rel
det_ei_rel = np.r_[np.cos(bragg), np.sin(bragg), 0]
return det_dist, n_crystdet_rel, det_nout_rel, det_ei_rel
def get_det_abs_from_rel(det_dist, n_crystdet_rel, det_nout_rel, det_ei_rel,
summit, nout, e1, e2,
ddist=None, di=None, dj=None,
dtheta=None, dpsi=None, tilt=None):
# Reference
det_nout = (det_nout_rel[0]*nout
+ det_nout_rel[1]*e1 + det_nout_rel[2]*e2)
det_ei = (det_ei_rel[0]*nout
+ det_ei_rel[1]*e1 + det_ei_rel[2]*e2)
det_ej = np.cross(det_nout, det_ei)
# Apply translation of center (ddist, di, dj)
if ddist is None:
ddist = 0.
if di is None:
di = 0.
if dj is None:
dj = 0.
det_dist += ddist
n_crystdet = (n_crystdet_rel[0]*nout
+ n_crystdet_rel[1]*e1 + n_crystdet_rel[2]*e2)
det_cent = summit + det_dist*n_crystdet + di*det_ei + dj*det_ej
# Apply angles on unit vectors with respect to themselves
if dtheta is None:
dtheta = 0.
if dpsi is None:
dpsi = 0.
if tilt is None:
tilt = 0.
# dtheta and dpsi
det_nout2 = ((np.cos(dpsi)*det_nout
+ np.sin(dpsi)*det_ei)*np.cos(dtheta)
+ np.sin(dtheta)*det_ej)
det_ei2 = (np.cos(dpsi)*det_ei - np.sin(dpsi)*det_nout)
det_ej2 = np.cross(det_nout2, det_ei2)
# tilt
det_ei3 = np.cos(tilt)*det_ei2 + np.sin(tilt)*det_ej2
det_ej3 = np.cross(det_nout2, det_ei3)
return det_cent, det_nout2, det_ei3, det_ej3
# ###############################################
# Coordinates transforms
# ###############################################
def checkformat_vectang(Z, nn, frame_cent, frame_ang):
# Check / format inputs
nn = np.atleast_1d(nn).ravel()
assert nn.size == 3
nn = nn / np.linalg.norm(nn)
Z = float(Z)
frame_cent = np.atleast_1d(frame_cent).ravel()
assert frame_cent.size == 2
frame_ang = float(frame_ang)
return Z, nn, frame_cent, frame_ang
def get_e1e2_detectorplane(nn, nIn):
e1 = np.cross(nn, nIn)
e1n = np.linalg.norm(e1)
if e1n < 1.e-10:
e1 = np.array([nIn[2], -nIn[1], 0.])
e1n = np.linalg.norm(e1)
e1 = e1 / e1n
e2 = np.cross(nn, e1)
e2 = e2 / np.linalg.norm(e2)
return e1, e2
def calc_xixj_from_braggphi(summit, det_cent, det_nout, det_ei, det_ej,
nout, e1, e2, bragg, phi):
sp = (det_cent - summit)
vect = (-np.sin(bragg)[None, :]*nout[:, None]
+ np.cos(bragg)[None, :]*(np.cos(phi)[None, :]*e1[:, None]
+ np.sin(phi)[None, :]*e2[:, None]))
k = np.sum(sp*det_nout) / np.sum(vect*det_nout[:, None], axis=0)
pts = summit[:, None] + k[None, :]*vect
xi = np.sum((pts - det_cent[:, None])*det_ei[:, None], axis=0)
xj = np.sum((pts - det_cent[:, None])*det_ej[:, None], axis=0)
return xi, xj
def calc_braggphi_from_xixjpts(det_cent, det_ei, det_ej,
summit, nin, e1, e2,
xi=None, xj=None, pts=None):
if pts is None:
xi = xi[None, ...]
xj = xj[None, ...]
if xi.ndim == 1:
summit = summit[:, None]
det_cent = det_cent[:, None]
det_ei, det_ej = det_ei[:, None], det_ej[:, None]
nin, e1, e2 = nin[:, None], e1[:, None], e2[:, None]
else:
summit = summit[:, None, None]
det_cent = det_cent[:, None, None]
det_ei, det_ej = det_ei[:, None, None], det_ej[:, None, None]
nin, e1, e2 = (nin[:, None, None],
e1[:, None, None], e2[:, None, None])
pts = det_cent + xi*det_ei + xj*det_ej
else:
assert pts.ndim == 2
pts = pts[:, :, None]
summit = summit[:, None, None]
nin, e1, e2 = nin[:, None, None], e1[:, None, None], e2[:, None, None]
vect = pts - summit
vect = vect / np.sqrt(np.sum(vect**2, axis=0))[None, ...]
bragg = np.arcsin(np.sum(vect*nin, axis=0))
phi = np.arctan2(np.sum(vect*e2, axis=0), np.sum(vect*e1, axis=0))
return bragg, phi
def get_lambphifit(lamb, phi, nxi, nxj):
lambD = lamb.max()-lamb.min()
lambfit = lamb.min() +lambD*np.linspace(0, 1, nxi)
phiD = phi.max() - phi.min()
phifit = phi.min() + phiD*np.linspace(0, 1, nxj)
return lambfit, phifit
# ###############################################
# From plasma pts
# ###############################################
def calc_psidthetaphi_from_pts_lamb(pts, center, rcurve,
bragg, nlamb, npts,
nout, e1, e2, extenthalf, ntheta=None):
if ntheta is None:
ntheta = 100
scaPCem = np.full((nlamb, npts), np.nan)
dtheta = np.full((nlamb, npts, ntheta), np.nan)
psi = np.full((nlamb, npts, ntheta), np.nan)
# Get to scalar product
PC = center[:, None] - pts
PCnorm2 = np.sum(PC**2, axis=0)
cos2 = | np.cos(bragg) | numpy.cos |
import numpy as np
import pandas as pd
from sklearn.preprocessing import PolynomialFeatures # TODO: implement what I need from this package
class Design:
"""
Class Docstring.
"""
def __init__(self, experiments=None, levels=None):
"""
:param int experiments: Number of Experiments to design
:param dict levels: Levels of factors
Constructor Docstring.
"""
self.experiments = experiments
self.levels = levels
self.features = len(levels.keys())
self.order = None
self.interactions_only = None
self.bias = None
self.epochs = None
self.engine = None
# ---------------DUNDER, GETTERS AND SETTERS FUNCTION---------------------------------------------------------------
def __repr__(self):
return f"Design(experiments={self.experiments}, levels={self.levels})"
def set_model(self, order, interactions_only=False, bias=True):
"""
:param int order: Order of the polynomial (1-main effects, 2-quadratic effects, ...)
:param bool interactions_only: Include terms as x1^2 or not
:param bool bias: Include a beta_0 on the design matrix or not
Setter for model parameters
"""
self.order = order
self.interactions_only = interactions_only
self.bias = bias
def set_algorithm(self, epochs, engine):
"""
:param int epochs: Number of random start to check
:param str engine: What engine to use for maximization. Includes ("A", "C", "D", "E", "S", "T", "G", "I", "V")
Setter for algorithm parameters
"""
self.epochs = epochs
self.engine = engine
# ------------------------------------------------------------------------------------------------------------------
def gen_random_design(self) -> pd.DataFrame:
"""
Generate a random starting design matrix.
"""
df = pd.DataFrame(np.random.random((self.experiments, self.features)))
df.columns = ['x' + str(x) for x in list(range(self.features))]
return df
def gen_model_matrix(self, data=None) -> pd.DataFrame:
"""
:param pd.DataFrame data: Design matrix
Generate the model matrix of a design matrix (argument)
"""
if any(var is None for var in [self.order, self.interactions_only, self.bias]):
raise Exception('Parameters: \'order\', \'interactions_only\' and \'bias\' cannot be None')
poly = PolynomialFeatures(degree=self.order,
interaction_only=self.interactions_only,
include_bias=self.bias)
df = pd.DataFrame(poly.fit_transform(data))
df.columns = poly.get_feature_names(data.columns)
return df
@staticmethod
def clear_histories(optimalities, designs, design_mat):
"""
:param list designs: Number of Experiments to design
:param list optimalities: Number of random start to check
:param pd.DataFrame design_mat: Should the engine be maximized (True) or minimizes (False)?
Run the coordinate exchange algorithm and produce the best model matrix, according to the engine chosen, as well as a history of all other possible model matrices and the history of the selected engine used.
"""
hstry_designs = pd.DataFrame(designs, columns=['epoch', *list(design_mat.columns)])
hstry_opt_cr = pd.DataFrame(optimalities).rename(columns={0: 'epoch',
1: 'experiment',
2: 'feature'})
hstry_opt_cr['max'] = hstry_opt_cr.iloc[:, 3:].max(axis=1)
return hstry_designs, hstry_opt_cr
@staticmethod
def find_best_design(histories, designs, max_bool=True):
"""
:param pd.DataFrame histories: Dataframe of all the histories per epoch
:param pd.DataFrame designs: Dataframe of all the designs per epoch
:param bool max_bool: Should the engine be maximized (True) or minimizes (False)?
Group the histories per epoch and getting the max. Then, the function uses that max index (best epoch) to retrieve the design of that epoch and save it as the best design.
The function also changes behaviour according to the max_bool flag which is used to tell the function if we are searching for a maximum of a minimum.
"""
if max_bool:
per_epoch = histories.groupby('epoch')['max'].max()
return designs[designs['epoch'] == per_epoch.idxmax()].reset_index().iloc[:, 2:]
else:
per_epoch = histories.groupby('epoch')['min'].min()
return designs[designs['epoch'] == per_epoch.idxmin()].reset_index().iloc[:, 2:]
@staticmethod
def guards():
pass
# Engines --------------------------------------------------------------------------------------------------------
@staticmethod
def d_opt(matrix):
# Priority: Estimation
# Maximize the determinant of the information matrix X'X of the design.
# This engine results in maximizing the differential Shannon information content of the parameter estimates.
return np.linalg.det(matrix.T @ matrix)
@staticmethod
def a_opt(matrix):
# Priority: Estimation
# Maximizes the trace of the information matrix.
# This engine results in minimizing the average variance of the estimates of the regression coefficients.
return np.trace(matrix.T @ matrix)
@staticmethod
def e_opt(matrix):
# Priority: Estimation
# Maximizes the minimum eigenvalue of the information matrix.
w, v = np.linalg.eig(matrix.T @ matrix)
w.sort()
return w[0]
def fit(self):
self.guards()
hstry_opt_cr = [] # all optimality criteria in a dataframe
hstry_designs = np.array([]).reshape((0, self.features + 1)) # all final designs in a dataframe
for epoch in range(self.epochs):
design_matrix = self.gen_random_design()
for exp in range(self.experiments):
for feat in range(self.features):
coordinate_opt_cr = []
for count, level in enumerate(self.levels[feat]):
# check all possible levels for the specific experiment, feature
design_matrix.iat[exp, feat] = level
model_matrix = self.gen_model_matrix(data=design_matrix)
engine = self.d_opt(model_matrix)
coordinate_opt_cr.append(engine)
hstry_opt_cr.append([epoch, exp, feat, *coordinate_opt_cr])
# updated design_matrix
design_matrix.iat[exp, feat] = self.levels[feat][coordinate_opt_cr.index(max(coordinate_opt_cr))]
# clean results of inner loops
hstry_designs = np.append(hstry_designs,
np.hstack((np.array([epoch] * self.experiments).reshape(-1, 1),
| np.array(design_matrix) | numpy.array |
from desdeo_tools.solver.ScalarSolver import (
ScalarMethod,
ScalarMinimizer,
DiscreteMinimizer,
DiscreteScalarizer,
ScalarSolverException,
)
from desdeo_tools.scalarization.ASF import PointMethodASF
import pytest
import numpy as np
def simple_problem(xs: np.ndarray):
return xs[0] * 2 - xs[1] + xs[2]
def simple_constr(xs: np.ndarray):
if xs[0] > 0.2:
con_1 = 1
else:
con_1 = -1
if xs[2] < 0.2:
con_2 = 1
else:
con_2 = -1
return np.array([con_1, con_2])
def dummy_minimizer(fun, x0, bounds, constraints=None):
res_dict = {}
if constraints is not None:
con_vals = constraints(x0)
if np.all(con_vals > 0):
res_dict["success"] = True
else:
res_dict["success"] = False
else:
res_dict["success"] = True
res_dict["x"] = x0
res_dict[
"message"
] = "I just retruned the initial guess as the optimal solution."
return res_dict
def test_dummy_no_cons():
method = ScalarMethod(dummy_minimizer)
solver = ScalarMinimizer(
simple_problem, | np.array([[0, 0, 0], [1, 1, 1]]) | numpy.array |
import numpy as np
# Element-wise addition of three vectors
def vadd3(V1, V2, V3):
R = np.add(V1, | np.add(V2, V3) | numpy.add |
import os
import string
import sys
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import multiprocessing as mp
import numpy as np
import pandas as pd
from palettable.colorbrewer.qualitative import Paired_12
import seaborn as sns
import scipy.stats as stats
mpl.rcParams['text.usetex'] = True
mpl.rcParams['text.latex.preamble'] = [r'\usepackage{amsmath}']
INT_MIN = 0.
INT_MAX = 250.
D_INT = 5.
ACC = 0.99
INTS = np.arange(INT_MIN, INT_MAX, D_INT)
FIGS_DIR = '/home/johnmcbride/Dropbox/phd/LaTEX/Scales/Figures/'
def gaussian(x, mean, var):
return np.exp( - (x - mean)**2 / (2. * var)) / (var * 2 * np.pi)**0.5
def integrate_gauss(mean, var, x1, x2, num=1000):
X = np.linspace(x1, x2, num=num)
P = gaussian(X, mean, var)
# return X, P
return np.trapz(P, X)
def get_percentage_correct_from_range_of_ints(dI, prod_var, percep_var, ints=INTS):
correct = []
for I0 in ints:
int_cats = np.arange(0, I0*2, dI)
prob_produced = []
prob_correct = []
for I1 in int_cats:
prod_prob = integrate_gauss(I0, prod_var, I1-dI/2., I1+dI/2.)
percep_prob = [integrate_gauss(i, percep_var, I1-dI/2., I1+dI/2.) for i in [0, I0, I0*2]]
prob_produced.append(prod_prob)
prob_correct.append(percep_prob[1] / sum(percep_prob))
correct.append(np.sum(np.array(prob_produced) * np.array(prob_correct)) / np.sum(prob_produced))
return np.array(correct)
def get_percentage_correct_from_range_of_ints_2(dI, prod_var, percep_var, ints=INTS):
correct = []
for I0 in ints:
int_cats = np.arange(0, I0*2, dI)
prob_produced = []
prob_correct = []
for I1 in int_cats:
prod_prob = integrate_gauss(I0, prod_var, I1-dI/2., I1+dI/2.)
percep_prob = [integrate_gauss(i, percep_var, I1-dI/2., I1+dI/2.) for i in [0, I0]]
prob_produced.append(prod_prob)
prob_correct.append(percep_prob[1] / sum(percep_prob))
correct.append(np.sum(np.array(prob_produced) * np.array(prob_correct)) / np.sum(prob_produced))
return np.array(correct)
def get_interval_by_accuracy(ints, correct, acc=ACC):
try:
i = np.where(correct > acc)[0][0]
except:
i = np.argmin(np.abs(correct - acc))
if i:
return ints[i-1] + (ints[i] - ints[i-1]) * (acc - correct[i-1]) / (correct[i] - correct[i-1])
else:
return ints[0]
def plot_distinguishability_by_grid_size():
dI = 5
dI_arr = [3, 5, 10, 20, 25, 30]
prod_sdev_arr = np.arange(5., 32.5, 2.5)
percep_sdev_arr = np.arange(5., 32.5, 2.5)
fig1, ax1 = plt.subplots(2,3)
ax1 = ax1.reshape(ax1.size)
df_list = []
for i, dI in enumerate(dI_arr):
xi, yi = np.meshgrid(prod_sdev_arr, percep_sdev_arr)
prod_in = xi.ravel()
percep_in = yi.ravel()
pool = mp.Pool(24)
correct = pool.starmap(get_percentage_correct_from_range_of_ints, [(dI, prod_in[i]**2, percep_in[i]**2) for i in range(len(prod_in))])
thresh_list = [get_interval_by_accuracy(INTS, c) for c in correct]
df_list.append(pd.DataFrame(data={'production':prod_in, 'perception':percep_in, 'threshold':thresh_list, 'dI':[dI]*prod_in.size}))
sns.heatmap(df_list[i].pivot('production', 'perception', 'threshold'), ax=ax1[i], vmin=50, vmax=180, annot=True)
ax1[i].invert_yaxis()
ax1[i].set_title(f"dI = {dI}")
# plt.legend(loc='best')
# plt.plot(np.arange(50, 550, 50), thresh_int)
plt.show()
def plot_distinguishability_ranges():
dI = 5
min_prod = [5., 10., 30.]
min_per = [10., 20., 40.]
rang = 27.5
titles = ['expert', 'good_untrained', 'bad_untrained']
fig, ax = plt.subplots(3)
for i in range(3):
prod_sdev_arr = np.arange(min_prod[i], min_prod[i]+rang, 2.5)
percep_sdev_arr = np.arange(min_per[i], min_per[i]+rang, 2.5)
xi, yi = np.meshgrid(prod_sdev_arr, percep_sdev_arr)
prod_in = xi.ravel()
percep_in = yi.ravel()
pool = mp.Pool(28)
correct = pool.starmap(get_percentage_correct_from_range_of_ints, [(dI, prod_in[j]**2, percep_in[j]**2) for j in range(len(prod_in))])
thresh_list = [get_interval_by_accuracy(INTS, c) for c in correct]
annot = np.zeros(xi.shape, dtype='<U3')
np.fill_diagonal(annot, [str(int(x)) for x in np.array(thresh_list).reshape(xi.shape).T.diagonal()])
df = pd.DataFrame(data={'production':prod_in, 'perception':percep_in, 'threshold':thresh_list, 'dI':[dI]*prod_in.size})
sns.heatmap(df.pivot('production', 'perception', 'threshold'), ax=ax[i], vmin=50, vmax=180, annot=annot, fmt="s")
ax[i].invert_yaxis()
ax[i].set_title(titles[i])
plt.show()
def plot_distinguishability_ranges_one_plot():
dI = 5
min_prod = [10., 20., 40.]
min_per = [10., 20., 40.]
rang = 27.5
titles = ['expert', 'good_untrained', 'bad_untrained']
fig, ax = plt.subplots()
prod_sdev_arr = np.arange(5, 57.5, 5)
percep_sdev_arr = np.arange(5, 57.5, 5)
xi, yi = np.meshgrid(prod_sdev_arr, percep_sdev_arr)
prod_in = xi.ravel()
percep_in = yi.ravel()
pool = mp.Pool(28)
correct = pool.starmap(get_percentage_correct_from_range_of_ints, [(dI, prod_in[j]**2, percep_in[j]**2) for j in range(len(prod_in))])
thresh_list = [get_interval_by_accuracy(INTS, c) for c in correct]
annot = np.zeros(xi.shape, dtype='<U3')
np.fill_diagonal(annot, [str(int(x)) for x in np.array(thresh_list).reshape(xi.shape).T.diagonal()])
np.save('Results/annotations', annot)
df = pd.DataFrame(data={'production':prod_in, 'perception':percep_in, 'threshold':thresh_list, 'dI':[dI]*prod_in.size})
df.to_feather(f'Results/three_notes_acc{ACC}.feather')
xticks = np.arange(5, 55, 5)
yticks = np.arange(5, 55, 5)
sns.heatmap(df.pivot('production', 'perception', 'threshold'), ax=ax, vmin=30, vmax=300, annot=annot, fmt="s", xticklabels=xticks, yticklabels=yticks)
ax.invert_yaxis()
ax_scale = 5.0
ax.set_xticks((np.arange(5, 55, 5)-2.5)/ax_scale)
ax.set_yticks((np.arange(5, 55, 5)-2.5)/ax_scale)
plt.savefig('Figs/accurate_intervals.png', dpi=1200)
plt.savefig('Figs/accurate_intervals.pdf', dpi=1200)
# plt.show()
def plot_distinguishability_two_notes():
dI = 5
min_prod = [10., 20., 40.]
min_per = [10., 20., 40.]
rang = 27.5
titles = ['expert', 'good_untrained', 'bad_untrained']
fig, ax = plt.subplots()
prod_sdev_arr = np.arange(2.5, 57.5, 2.5)
percep_sdev_arr = np.arange(2.5, 57.5, 2.5)
xi, yi = np.meshgrid(prod_sdev_arr, percep_sdev_arr)
prod_in = xi.ravel()
percep_in = yi.ravel()
pool = mp.Pool(28)
correct = pool.starmap(get_percentage_correct_from_range_of_ints_2, [(dI, prod_in[j]**2, percep_in[j]**2) for j in range(len(prod_in))])
thresh_list = [get_interval_by_accuracy(INTS, c) for c in correct]
annot = np.zeros(xi.shape, dtype='<U3')
np.fill_diagonal(annot, [str(int(x)) for x in np.array(thresh_list).reshape(xi.shape).T.diagonal()])
df = pd.DataFrame(data={'production':prod_in, 'perception':percep_in, 'threshold':thresh_list, 'dI':[dI]*prod_in.size})
xticks = np.arange(5, 55, 5)
yticks = np.arange(5, 55, 5)
sns.heatmap(df.pivot('production', 'perception', 'threshold'), ax=ax, vmin=30, vmax=300, annot=annot, fmt="s", xticklabels=xticks, yticklabels=yticks)
ax.invert_yaxis()
ax_scale = 2.5
ax.set_xticks((np.arange(5, 55, 5)-2.5)/ax_scale)
ax.set_yticks((np.arange(5, 55, 5)-2.5)/ax_scale)
plt.savefig('Figs/two_notes_accurate_intervals.png', dpi=1200)
plt.savefig('Figs/two_notes_accurate_intervals.pdf', dpi=1200)
# plt.show()
def plot_frac_correct():
fig, ax = plt.subplots()
dI = 2
for std in [5, 10, 20, 40]:
correct = get_percentage_correct_from_range_of_ints(dI, std**2, std**2)
ax.plot(INTS, correct, label=r"$\sigma = {0}$".format(std))
ax.legend(loc='best', frameon=False)
plt.show()
def plot_heatmap():
fig, ax = plt.subplots()
df = pd.read_feather(f'Results/three_notes_acc{ACC}.feather')
annot = np.load('Results/annotations.npy')
xticks = np.arange(5, 55, 5)
yticks = np.arange(5, 55, 5)
sns.heatmap(df.pivot('production', 'perception', 'threshold'), ax=ax, vmin=30, vmax=300, annot=annot, fmt="s", xticklabels=xticks, yticklabels=yticks)
ax.invert_yaxis()
ax_scale = 5.0
ax.set_xticks((np.arange(5, 55, 5)-2.5)/ax_scale)
ax.set_yticks(( | np.arange(5, 55, 5) | numpy.arange |
# Lint as: python2, python3
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for breakdown_metric."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from lingvo import compat as tf
from lingvo.core import py_utils
from lingvo.core import test_utils
from lingvo.tasks.car import breakdown_metric
from lingvo.tasks.car import kitti_ap_metric
from lingvo.tasks.car import kitti_metadata
import numpy as np
from six.moves import range
FLAGS = tf.flags.FLAGS
class BreakdownMetricTest(test_utils.TestCase):
def _GenerateRandomBBoxes(self, num_bboxes):
xyz = np.random.uniform(low=-1.0, high=1.0, size=(num_bboxes, 3))
dimension = np.random.uniform(low=-1, high=1.0, size=(num_bboxes, 3))
rotation = np.random.uniform(low=-np.pi, high=np.pi, size=(num_bboxes, 1))
bboxes = np.concatenate([xyz, dimension, rotation], axis=-1)
return bboxes
def _GenerateBBoxesAtDistanceAndRotation(self, num_boxes, distance, rotation):
bboxes = np.zeros(shape=(num_boxes, 7))
bboxes[:, -1] = rotation
bboxes[:, 0] = distance
return bboxes
def _GenerateMetricsWithTestData(self, num_classes):
metadata = kitti_metadata.KITTIMetadata()
num_bins_of_distance = int(
np.rint(metadata.MaximumDistance() / metadata.DistanceBinWidth()))
num_bins_of_rotation = metadata.NumberOfRotationBins()
num_bins_of_points = metadata.NumberOfPointsBins()
# Generate ground truth bounding boxes with prescribed labels, distances,
# rotations and number of points.
expected_objects_at_distance = np.random.randint(
low=0, high=8, size=(num_classes, num_bins_of_distance), dtype=np.int32)
expected_objects_at_rotation = np.zeros(
shape=(num_classes, num_bins_of_rotation), dtype=np.int32)
# Note that we need preserve the same number of objects for each label.
expected_objects_at_points = np.zeros(
shape=(num_classes, num_bins_of_points), dtype=np.int32)
prob = 1.0 / float(num_bins_of_points)
for c in range(num_classes):
num_objects_for_class = np.sum(expected_objects_at_distance[c, :])
expected_objects_at_points[c, :] = np.random.multinomial(
num_objects_for_class, pvals=num_bins_of_points * [prob])
# Zero out the number of boxes in the background class.
expected_objects_at_distance[0, :] = 0
expected_objects_at_points[0, :] = 0
expected_objects_at_rotation[0, :] = 0
bboxes = []
labels = []
num_points = []
bin_width = (
metadata.MaximumRotation() / float(metadata.NumberOfRotationBins()))
# Note that we always skip 'Background' class 0.
for label in range(1, num_classes):
for distance_index in range(num_bins_of_distance):
distance = (
distance_index * metadata.DistanceBinWidth() +
metadata.DistanceBinWidth() / 2.0)
num_box = expected_objects_at_distance[label, distance_index]
if num_box > 0:
rotation_index = np.random.randint(num_bins_of_rotation)
expected_objects_at_rotation[label, rotation_index] += num_box
rotation = rotation_index * bin_width + bin_width / 2.0
bboxes.append(
self._GenerateBBoxesAtDistanceAndRotation(num_box, distance,
rotation))
labels.append(label * np.ones(shape=[num_box], dtype=np.int32))
point_bin_edges = np.logspace(
np.log10(1.0), np.log10(metadata.MaximumNumberOfPoints()),
metadata.NumberOfPointsBins() + 1)
for point_index in range(num_bins_of_points):
num_box = expected_objects_at_points[label, point_index]
for _ in range(num_box):
points = (point_bin_edges[point_index] +
point_bin_edges[point_index + 1]) / 2.0
num_points.append([points])
bboxes = np.concatenate(bboxes)
labels = np.concatenate(labels)
num_points = np.concatenate(num_points)
# Generate dummy predictions as placeholders for the API.
num_predictions = 9
prediction_scores = np.random.uniform(size=[num_classes, num_predictions])
prediction_bboxes = self._GenerateRandomBBoxes(
num_predictions * num_classes).reshape(num_classes, num_predictions, 7)
# Update the metrics.
metric_names = ['rotation', 'num_points', 'distance']
ap_params = kitti_ap_metric.KITTIAPMetrics.Params(metadata).Set(
breakdown_metrics=metric_names)
metrics = ap_params.Instantiate()
metrics.Update(
'dummy_image1',
py_utils.NestedMap(
groundtruth_labels=labels,
groundtruth_bboxes=bboxes,
groundtruth_difficulties=np.ones(shape=(bboxes.shape[0])),
groundtruth_num_points=num_points,
detection_scores=prediction_scores,
detection_boxes=prediction_bboxes,
detection_heights_in_pixels=np.ones(
shape=prediction_bboxes.shape[0:2]) * 100))
return py_utils.NestedMap(
metrics=metrics,
expected_objects_at_distance=expected_objects_at_distance,
expected_objects_at_points=expected_objects_at_points,
expected_objects_at_rotation=expected_objects_at_rotation)
def testLoadBoundingBoxes(self):
# Test if all of the groundtruth data loads correctly for each label
# when no distance is specified.
metadata = kitti_metadata.KITTIMetadata()
num_classes = len(metadata.ClassNames())
test_data = self._GenerateMetricsWithTestData(num_classes)
expected_num_objects = np.sum(
test_data.expected_objects_at_distance, axis=1)
# Note that we always skip 'Background' class 0.
for label in range(1, num_classes):
data = test_data.metrics._LoadBoundingBoxes(
'groundtruth', label, distance=None)
if expected_num_objects[label] == 0:
self.assertIsNone(data)
else:
self.assertEqual(expected_num_objects[label], len(data.boxes))
self.assertEqual(expected_num_objects[label], len(data.imgids))
self.assertEqual(expected_num_objects[label], len(data.scores))
self.assertEqual(expected_num_objects[label], len(data.difficulties))
self.assertAllEqual(
np.ones(shape=[expected_num_objects[label]]), data.scores)
self.assertAllEqual(
np.zeros(shape=[expected_num_objects[label]]), data.imgids)
def testLoadBoundingBoxesDifficulty(self):
metadata = kitti_metadata.KITTIMetadata()
num_classes = len(metadata.ClassNames())
test_data = self._GenerateMetricsWithTestData(num_classes)
expected_num_objects = np.sum(
test_data.expected_objects_at_distance, axis=1)
difficulty_metric = test_data.metrics._breakdown_metrics['difficulty']
# Test if difficulties are properly accumulated.
for d in metadata.DifficultyLevels().values():
if d == 1:
self.assertAllEqual(expected_num_objects,
difficulty_metric._histogram[d, :])
else:
self.assertAllEqual(
np.zeros_like(expected_num_objects),
difficulty_metric._histogram[d, :])
def testLoadBoundingBoxesDistance(self):
# Test if all of the groundtruth data loads correctly for each label
# when distance is specified.
metadata = kitti_metadata.KITTIMetadata()
num_classes = len(metadata.ClassNames())
test_data = self._GenerateMetricsWithTestData(num_classes)
num_bins_of_distance = int(
np.rint(metadata.MaximumDistance() / metadata.DistanceBinWidth()))
distance_metric = test_data.metrics._breakdown_metrics['distance']
# Test if all of the groundtruth data loads correctly for each label
# when no distance is specified.
self.assertAllEqual(test_data.expected_objects_at_distance,
np.transpose(distance_metric._histogram))
# Note that we always skip 'Background' class 0.
for label in range(1, num_classes):
for distance in range(num_bins_of_distance):
data = test_data.metrics._LoadBoundingBoxes(
'groundtruth', label, distance=distance)
if test_data.expected_objects_at_distance[label, distance] == 0:
self.assertIsNone(data)
else:
self.assertEqual(
test_data.expected_objects_at_distance[label, distance],
len(data.boxes))
self.assertEqual(
test_data.expected_objects_at_distance[label, distance],
len(data.imgids))
self.assertEqual(
test_data.expected_objects_at_distance[label, distance],
len(data.scores))
self.assertEqual(
test_data.expected_objects_at_distance[label, distance],
len(data.difficulties))
self.assertAllEqual(
np.ones(shape=[
test_data.expected_objects_at_distance[label, distance]
]), data.scores)
self.assertAllEqual(
np.zeros(shape=[
test_data.expected_objects_at_distance[label, distance]
]), data.imgids)
def testLoadBoundingBoxesNumPoints(self):
# Test if all of the groundtruth data loads correctly for each label
# when number of points is specified.
metadata = kitti_metadata.KITTIMetadata()
num_classes = len(metadata.ClassNames())
test_data = self._GenerateMetricsWithTestData(num_classes)
num_bins_of_points = metadata.NumberOfPointsBins()
num_points_metric = test_data.metrics._breakdown_metrics['num_points']
self.assertAllEqual(test_data.expected_objects_at_points,
np.transpose(num_points_metric._histogram))
# Note that we always skip 'Background' class 0.
for label in range(1, num_classes):
for num_points in range(num_bins_of_points):
data = test_data.metrics._LoadBoundingBoxes(
'groundtruth', label, num_points=num_points)
if test_data.expected_objects_at_points[label, num_points] == 0:
self.assertIsNone(data)
else:
# Skip the first bin because it is a special case.
if num_points == 0:
continue
self.assertEqual(
test_data.expected_objects_at_points[label, num_points],
len(data.boxes))
self.assertEqual(
test_data.expected_objects_at_points[label, num_points],
len(data.imgids))
self.assertEqual(
test_data.expected_objects_at_points[label, num_points],
len(data.scores))
self.assertEqual(
test_data.expected_objects_at_points[label, num_points],
len(data.difficulties))
self.assertAllEqual(
np.ones(shape=[
test_data.expected_objects_at_points[label, num_points]
]), data.scores)
self.assertAllEqual(
np.zeros(shape=[
test_data.expected_objects_at_points[label, num_points]
]), data.imgids)
def testLoadBoundingBoxesRotation(self):
# Test if all of the groundtruth data loads correctly for each label
# when rotation is specified.
metadata = kitti_metadata.KITTIMetadata()
num_classes = len(metadata.ClassNames())
test_data = self._GenerateMetricsWithTestData(num_classes)
num_bins_of_rotation = metadata.NumberOfRotationBins()
rotation_metric = test_data.metrics._breakdown_metrics['rotation']
# Test if all of the groundtruth data loads correctly for each label
# when no distance is specified.
self.assertAllEqual(test_data.expected_objects_at_rotation,
np.transpose(rotation_metric._histogram))
# Note that we always skip 'Background' class 0.
for label in range(1, num_classes):
for rotation in range(num_bins_of_rotation):
data = test_data.metrics._LoadBoundingBoxes(
'groundtruth', label, rotation=rotation)
if test_data.expected_objects_at_rotation[label, rotation] == 0:
self.assertIsNone(data)
else:
self.assertEqual(
test_data.expected_objects_at_rotation[label, rotation],
len(data.boxes))
self.assertEqual(
test_data.expected_objects_at_rotation[label, rotation],
len(data.imgids))
self.assertEqual(
test_data.expected_objects_at_rotation[label, rotation],
len(data.scores))
self.assertEqual(
test_data.expected_objects_at_rotation[label, rotation],
len(data.difficulties))
self.assertAllEqual(
np.ones(shape=[
test_data.expected_objects_at_rotation[label, rotation]
]), data.scores)
self.assertAllEqual(
np.zeros(shape=[
test_data.expected_objects_at_rotation[label, rotation]
]), data.imgids)
def testAccumulateHistogram(self):
metadata = kitti_metadata.KITTIMetadata()
num_per_class = np.arange(metadata.NumClasses()) + 1
statistics = [
1 * np.ones(shape=( | np.sum(num_per_class) | numpy.sum |
"""
## usage:
plot_raster.py COMMAND
## COMMANDS
COMMAND is one of the following:
dir -- `plot_dir_vts()`
plots both layer voltage traces for a given dir
vt -- `plot_vt()`
plots a voltage trace from a file
"""
import os
import sys
from typing import *
import numpy as np
from nptyping import NDArray
import matplotlib.pyplot as plt
def load_voltage_traces(filename : str):
"""loads voltage traces from either a numpy or csv file
if numpy, extension should be .npy or .npz
csv or tsv expect csv-style format with appropriate delim
### Parameters:
- `filename : str`
filename
### Returns:
- `NDArray`
numpy array with data
"""
filetype = filename.split('.')[-1]
data = None
if filetype in ['npy', 'npz']:
data = np.load(filename)['arr_0']
elif filetype == 'csv':
data = np.genfromtxt(filename, delimiter=',').T
elif filetype == 'tsv':
data = | np.genfromtxt(filename, delimiter='\t') | numpy.genfromtxt |
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import wavfile
from scipy.signal import fftconvolve
from librosa.core import load
from librosa.core import stft
from librosa.core import istft
from librosa import amplitude_to_db, db_to_amplitude
from librosa.display import specshow
from librosa.output import write_wav
from scipy.signal import butter, lfilter, csd
from scipy.linalg import svd, pinv
from utils import apply_reverb, read_wav
import corpus
import mir_eval
from pypesq import pypesq
import pyroomacoustics as pra
import roomsimove_single
import olafilt
def load_file(files):
print(files[0])
print(files[1])
s1, _ = load(files[0], sr=16000)
s2, _ = load(files[1], sr=16000)
# s1, s2 = map(read_wav, files)
if len(s1) > len(s2):
pad_length = len(s1) - len(s2)
s2 = np.pad(s2, (0,pad_length), 'reflect')
else:
pad_length = len(s2) - len(s1)
s1 = np.pad(s1, (0,pad_length), 'reflect')
return s1, s2
def do_reverb(s1,s2):
corners = np.array([[0,0], [0,8], [8,8], [8,0]]).T # [x,y]
room = pra.Room.from_corners(corners)
room.extrude(5.)
room.add_source([8.,4.,1.6], signal=s1)
# room.add_source([2.,4.,1.6], signal=s2)
#[[X],[Y],[Z]]
R = | np.asarray([[4.75,5.5],[2.,2.],[1.,1]]) | numpy.asarray |
# Frenet PID Module.
import time
import numpy as np
from controller import Controller
class KinFrenetPIDPathFollower(Controller):
##
def __init__(self,
N = 10, # timesteps in MPC Horizon
DT = 0.2, # discretization time between timesteps (s)
L_F = 1.5213, # distance from CoG to front axle (m)
L_R = 1.4987, # distance from CoG to rear axle (m)
kLA = 10, # Lookahead distance (m)
k_delta = 1., # Gain for lookahead error
kp_acc = 1., # Proportional Gain for velocity error
ki_acc = 0.1, # Integrator Gain for velocity error
INT_MAX = 5., # Integrator error max value to avoid windup
AY_MAX = 3.,
AX_MAX = 5.0,
AX_MIN = -10.0, # min/max longitudinal acceleration constraint (m/s^2)
DF_MAX = 30*np.pi/180,
DF_MIN = -30*np.pi/180, # min/max front steer angle constraint (rad)
AX_DOT_MAX = 1.5,
AX_DOT_MIN = -1.5, # min/max longitudinal jerk constraint (m/s^3)
DF_DOT_MAX = 30*np.pi/180,
DF_DOT_MIN = -30*np.pi/180, # min/max front steer angle rate constraint (rad/s)
):
for key in list(locals()):
if key == 'self':
pass
else:
setattr(self, '%s' % key, locals()[key])
self.global_state = np.array([0., 0., 0., 0.])
self.global_ref = np.zeros((N+1, 4))
self.z_curr = np.array([0., 0., 0., 0.]) # s0, ey0, epsi0, v0
self.curv_ref = np.zeros(self.N)
self.v_ref = 1.
self.u_prev = np.array([0., 0.])
self.int_error = 0.
def _get_frenet_trajectory(self, u_mpc):
z_mpc_frenet = np.ones((1 + u_mpc.shape[0], 4)) * np.nan
z_mpc_frenet[0, :] = self.z_curr
for ind, u in enumerate(u_mpc):
s, ey, ep, v = z_mpc_frenet[ind, :]
u_acc, u_df = u
beta = np.arctan( self.L_R / (self.L_F + self.L_R) * np.tan(u_df) )
dyawdt = v / self.L_R * np.sin(beta)
dsdt = v * np.cos(ep+beta) / (1 - ey * self.curv_ref[ind] )
sn = s + self.DT * (dsdt)
eyn = ey + self.DT * (v * np.sin(ep + beta))
epn = ep + self.DT * (dyawdt - dsdt * self.curv_ref[ind])
vn = v + self.DT * (u_acc)
z_mpc_frenet[ind+1, :] = [sn, eyn, epn, vn]
return z_mpc_frenet
def _get_global_trajectory(self, u_mpc):
z_mpc = np.ones((1 + u_mpc.shape[0], 4)) * np.nan
z_mpc[0, :] = self.global_state
for ind, u in enumerate(u_mpc):
x, y, p, v = z_mpc[ind, :]
u_acc, u_df = u
beta = np.arctan( self.L_R / (self.L_F + self.L_R) * np.tan(u_df) )
xn = x + self.DT * (v * np.cos(p + beta))
yn = y + self.DT * (v * np.sin(p + beta))
pn = p + self.DT * (v / self.L_R * np.sin(beta))
vn = v + self.DT * (u_acc)
z_mpc[ind+1, :] = [xn, yn, pn, vn]
return z_mpc
def solve(self):
st = time.time()
_, ey, ep, v = self.z_curr
# Acceleration Control.
vel_error = self.v_ref - v
self.int_error += vel_error * self.DT
if | np.abs(self.int_error) | numpy.abs |
from __future__ import print_function, division
import os, sys, warnings, platform
from time import time
import numpy as np
if "PyPy" not in platform.python_implementation():
from scipy.io import loadmat, savemat
from Florence.Tensor import makezero, itemfreq, unique2d, in2d
from Florence.Utils import insensitive
from .vtk_writer import write_vtu
try:
import meshpy.triangle as triangle
has_meshpy = True
except ImportError:
has_meshpy = False
from .HigherOrderMeshing import *
from .NodeArrangement import *
from .GeometricPath import *
from warnings import warn
from copy import deepcopy
"""
Mesh class providing most of the pre-processing functionalities of the Core module
<NAME> - 13/06/2015
"""
class Mesh(object):
"""Mesh class provides the following functionalities:
1. Generating higher order meshes based on a linear mesh, for tris, tets, quads and hexes
2. Generating linear tri and tet meshes based on meshpy back-end
3. Generating linear tri meshes based on distmesh back-end
4. Finding bounary edges and faces for tris and tets, in case they are not provided by the mesh generator
5. Reading Salome meshes in binary (.dat/.txt/etc) format
6. Reading gmsh files .msh
7. Checking for node numbering order of elements and fixing it if desired
8. Writing meshes to unstructured vtk file format (.vtu) in xml and binary formats,
including high order elements
"""
def __init__(self, element_type=None):
super(Mesh, self).__init__()
# self.faces and self.edges ARE BOUNDARY FACES
# AND BOUNDARY EDGES, RESPECTIVELY
self.degree = None
self.ndim = None
self.edim = None
self.nelem = None
self.nnode = None
self.elements = None
self.points = None
self.corners = None
self.edges = None
self.faces = None
self.element_type = element_type
self.face_to_element = None
self.edge_to_element = None
self.boundary_edge_to_element = None
self.boundary_face_to_element = None
self.all_faces = None
self.all_edges = None
self.interior_faces = None
self.interior_edges = None
# TYPE OF BOUNDARY FACES/EDGES
self.boundary_element_type = None
# FOR GEOMETRICAL CURVES/SURFACES
self.edge_to_curve = None
self.face_to_surface = None
self.spatial_dimension = None
self.reader_type = None
self.reader_type_format = None
self.reader_type_version = None
self.writer_type = None
self.filename = None
# self.has_meshpy = has_meshpy
def SetElements(self,arr):
self.elements = arr
def SetPoints(self,arr):
self.points = arr
def SetEdges(self,arr):
self.edges = arr
def SetFaces(self,arr):
self.faces = arr
def GetElements(self):
return self.elements
def GetPoints(self):
return self.points
def GetEdges(self):
assert self.element_type is not None
if self.element_type == "tri":
self.GetEdgesTri()
elif self.element_type == "quad":
self.GetEdgesQuad()
elif self.element_type == "pent":
self.GetEdgesPent()
elif self.element_type == "tet":
self.GetEdgesTet()
elif self.element_type == "hex":
self.GetEdgesHex()
else:
raise ValueError('Type of element not understood')
return self.all_edges
def GetBoundaryEdges(self):
assert self.element_type is not None
if self.element_type == "tri":
self.GetBoundaryEdgesTri()
elif self.element_type == "quad":
self.GetBoundaryEdgesQuad()
elif self.element_type == "pent":
self.GetBoundaryEdgesPent()
elif self.element_type == "tet":
self.GetBoundaryEdgesTet()
elif self.element_type == "hex":
self.GetBoundaryEdgesHex()
else:
raise ValueError('Type of element not understood')
return self.edges
def GetInteriorEdges(self):
assert self.element_type is not None
if self.element_type == "tri":
self.GetInteriorEdgesTri()
elif self.element_type == "quad":
self.GetInteriorEdgesQuad()
elif self.element_type == "pent":
self.GetInteriorEdgesPent()
elif self.element_type == "tet":
self.GetInteriorEdgesTet()
elif self.element_type == "hex":
self.GetInteriorEdgesHex()
else:
raise ValueError('Type of element not understood')
return self.interior_edges
def GetFaces(self):
assert self.element_type is not None
if self.element_type == "tet":
self.GetFacesTet()
elif self.element_type == "hex":
self.GetFacesHex()
elif self.element_type=="tri" or self.element_type=="quad":
raise ValueError("2D mesh does not have faces")
else:
raise ValueError('Type of element not understood')
return self.all_faces
def GetBoundaryFaces(self):
assert self.element_type is not None
if self.element_type == "tet":
self.GetBoundaryFacesTet()
elif self.element_type == "hex":
self.GetBoundaryFacesHex()
elif self.element_type=="tri" or self.element_type=="quad":
raise ValueError("2D mesh does not have faces")
else:
raise ValueError('Type of element not understood')
return self.faces
def GetInteriorFaces(self):
assert self.element_type is not None
if self.element_type == "tet":
self.GetInteriorFacesTet()
elif self.element_type == "hex":
self.GetInteriorFacesHex()
elif self.element_type=="tri" or self.element_type=="quad":
raise ValueError("2D mesh does not have faces")
else:
raise ValueError('Type of element not understood')
return self.interior_faces
def GetElementsEdgeNumbering(self):
assert self.element_type is not None
if self.element_type == "tri":
return self.GetElementsEdgeNumberingTri()
elif self.element_type == "quad":
return self.GetElementsEdgeNumberingQuad()
else:
raise ValueError('Type of element not understood')
return self.edge_to_element
def GetElementsWithBoundaryEdges(self):
assert self.element_type is not None
if self.element_type == "tri":
return self.GetElementsWithBoundaryEdgesTri()
elif self.element_type == "quad":
return self.GetElementsWithBoundaryEdgesQuad()
else:
raise ValueError('Type of element not understood')
return self.boundary_edge_to_element
def GetElementsFaceNumbering(self):
assert self.element_type is not None
if self.element_type == "tet":
return self.GetElementsFaceNumberingTet()
elif self.element_type == "hex":
return self.GetElementsFaceNumberingHex()
elif self.element_type=="tri" or self.element_type=="quad":
raise ValueError("2D mesh does not have faces")
else:
raise ValueError('Type of element not understood')
return self.face_to_element
def GetElementsWithBoundaryFaces(self):
assert self.element_type is not None
if self.element_type == "tet":
return self.GetElementsWithBoundaryFacesTet()
elif self.element_type == "hex":
return self.GetElementsWithBoundaryFacesHex()
elif self.element_type=="tri" or self.element_type=="quad":
raise ValueError("2D mesh does not have faces")
else:
raise ValueError('Type of element not understood')
return self.boundary_face_to_element
@property
def Bounds(self):
"""Returns bounds of a mesh i.e. the minimum and maximum coordinate values
in every direction
"""
assert self.points is not None
if self.points.shape[1] == 3:
bounds = np.array([[np.min(self.points[:,0]),
np.min(self.points[:,1]),
np.min(self.points[:,2])],
[np.max(self.points[:,0]),
np.max(self.points[:,1]),
np.max(self.points[:,2])]])
makezero(bounds)
return bounds
elif self.points.shape[1] == 2:
bounds = np.array([[np.min(self.points[:,0]),
np.min(self.points[:,1])],
[np.max(self.points[:,0]),
np.max(self.points[:,1])]])
makezero(bounds)
return bounds
elif self.points.shape[1] == 1:
bounds = np.array([[np.min(self.points[:,0])],
[np.max(self.points[:,0])]])
makezero(bounds)
return bounds
else:
raise ValueError("Invalid dimension for mesh coordinates")
def GetEdgesTri(self):
"""Find all edges of a triangular mesh.
Sets all_edges property and returns it
returns:
arr: numpy ndarray of all edges"""
p = self.InferPolynomialDegree()
# DO NOT COMPUTE IF ALREADY COMPUTED
if isinstance(self.all_edges,np.ndarray):
if self.all_edges.shape[0] > 1:
# IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION
if self.all_edges.shape[1]==2 and p > 1:
pass
else:
return self.all_edges
node_arranger = NodeArrangementTri(p-1)[0]
# CHECK IF FACES ARE ALREADY AVAILABLE
if isinstance(self.all_edges,np.ndarray):
if self.all_edges.shape[0] > 1 and self.all_edges.shape[1] == p+1:
warn("Mesh edges seem to be already computed. I am going to recompute them")
# GET ALL EDGES FROM THE ELEMENT CONNECTIVITY
edges = np.zeros((3*self.elements.shape[0],p+1),dtype=np.uint64)
edges[:self.elements.shape[0],:] = self.elements[:,node_arranger[0,:]]
edges[self.elements.shape[0]:2*self.elements.shape[0],:] = self.elements[:,node_arranger[1,:]]
edges[2*self.elements.shape[0]:,:] = self.elements[:,node_arranger[2,:]]
# REMOVE DUPLICATES
edges, idx = unique2d(edges,consider_sort=True,order=False,return_index=True)
edge_to_element = np.zeros((edges.shape[0],2),np.int64)
edge_to_element[:,0] = idx % self.elements.shape[0]
edge_to_element[:,1] = idx // self.elements.shape[0]
self.edge_to_element = edge_to_element
# DO NOT SET all_edges IF THE CALLER FUNCTION IS GetBoundaryEdgesTet
import inspect
curframe = inspect.currentframe()
calframe = inspect.getouterframes(curframe, 2)[1][3]
if calframe != "GetBoundaryEdgesTet":
self.all_edges = edges
return edges
def GetBoundaryEdgesTri(self):
"""Find boundary edges (lines) of triangular mesh"""
p = self.InferPolynomialDegree()
# DO NOT COMPUTE IF ALREADY COMPUTED
if isinstance(self.edges,np.ndarray):
if self.edges.shape[0] > 1:
# IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION
if self.edges.shape[1] == 2 and p > 1:
pass
else:
return
node_arranger = NodeArrangementTri(p-1)[0]
# CONCATENATE ALL THE EDGES MADE FROM ELEMENTS
all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]],
self.elements[:,node_arranger[2,:]]),axis=0)
# GET UNIQUE ROWS
uniques, idx, inv = unique2d(all_edges,consider_sort=True,order=False,return_index=True,return_inverse=True)
# ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY EDGES
freqs_inv = itemfreq(inv)
edges_ext_flags = freqs_inv[freqs_inv[:,1]==1,0]
# NOT ARRANGED
self.edges = uniques[edges_ext_flags,:]
# DETERMINE WHICH FACE OF THE ELEMENT THEY ARE
boundary_edge_to_element = np.zeros((edges_ext_flags.shape[0],2),dtype=np.int64)
# FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR
# IN ELEMENT CONNECTIVITY
# THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF EDGES
all_edges_in_edges = in2d(all_edges,self.edges,consider_sort=True)
all_edges_in_edges = np.where(all_edges_in_edges==True)[0]
boundary_edge_to_element[:,0] = all_edges_in_edges % self.elements.shape[0]
boundary_edge_to_element[:,1] = all_edges_in_edges // self.elements.shape[0]
# ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS
self.edges = self.elements[boundary_edge_to_element[:,0][:,None],node_arranger[boundary_edge_to_element[:,1],:]]
self.edges = self.edges.astype(np.uint64)
self.boundary_edge_to_element = boundary_edge_to_element
return self.edges
def GetInteriorEdgesTri(self):
"""Computes interior edges of a triangular mesh
returns:
interior_edges ndarray of interior edges
edge_flags ndarray of edge flags: 0 for interior and 1 for boundary
"""
if not isinstance(self.all_edges,np.ndarray):
self.GetEdgesTri()
if not isinstance(self.edges,np.ndarray):
self.GetBoundaryEdgesTri()
sorted_all_edges = np.sort(self.all_edges,axis=1)
sorted_boundary_edges = np.sort(self.edges,axis=1)
x = []
for i in range(self.edges.shape[0]):
current_sorted_boundary_edge = np.tile(sorted_boundary_edges[i,:],
self.all_edges.shape[0]).reshape(self.all_edges.shape[0],self.all_edges.shape[1])
interior_edges = np.linalg.norm(current_sorted_boundary_edge - sorted_all_edges,axis=1)
pos_interior_edges = np.where(interior_edges==0)[0]
if pos_interior_edges.shape[0] != 0:
x.append(pos_interior_edges)
edge_aranger = np.arange(self.all_edges.shape[0])
edge_aranger = np.setdiff1d(edge_aranger,np.array(x)[:,0])
interior_edges = self.all_edges[edge_aranger,:]
# GET FLAGS FOR BOUNDRAY AND INTERIOR
edge_flags = np.ones(self.all_edges.shape[0],dtype=np.int64)
edge_flags[edge_aranger] = 0
self.interior_edges = interior_edges
return interior_edges, edge_flags
def GetFacesTet(self):
"""Find all faces (surfaces) in the tetrahedral mesh (boundary & interior).
Sets all_faces property and returns it
returns:
arr: numpy ndarray of all faces
"""
# DETERMINE DEGREE
p = self.InferPolynomialDegree()
# DO NOT COMPUTE IF ALREADY COMPUTED
if isinstance(self.all_faces,np.ndarray):
if self.all_faces.shape[0] > 1:
# IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION
if self.all_faces.shape[1] == 3 and p > 1:
pass
else:
return self.all_faces
node_arranger = NodeArrangementTet(p-1)[0]
fsize = int((p+1.)*(p+2.)/2.)
# GET ALL FACES FROM THE ELEMENT CONNECTIVITY
faces = np.zeros((4*self.elements.shape[0],fsize),dtype=np.uint64)
faces[:self.elements.shape[0],:] = self.elements[:,node_arranger[0,:]]
faces[self.elements.shape[0]:2*self.elements.shape[0],:] = self.elements[:,node_arranger[1,:]]
faces[2*self.elements.shape[0]:3*self.elements.shape[0],:] = self.elements[:,node_arranger[2,:]]
faces[3*self.elements.shape[0]:,:] = self.elements[:,node_arranger[3,:]]
# REMOVE DUPLICATES
self.all_faces, idx = unique2d(faces,consider_sort=True,order=False,return_index=True)
face_to_element = np.zeros((self.all_faces.shape[0],2),np.int64)
face_to_element[:,0] = idx % self.elements.shape[0]
face_to_element[:,1] = idx // self.elements.shape[0]
self.face_to_element = face_to_element
return self.all_faces
def GetEdgesTet(self):
"""Find all edges (lines) of tetrahedral mesh (boundary & interior)"""
p = self.InferPolynomialDegree()
# DO NOT COMPUTE IF ALREADY COMPUTED
if isinstance(self.all_edges,np.ndarray):
if self.all_edges.shape[0] > 1:
# IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION
if self.all_edges.shape[1] == 2 and p > 1:
pass
else:
return self.all_edges
# FIRST GET BOUNDARY FACES
if isinstance(self.all_faces,np.ndarray):
if self.all_faces.shape[0] > 1:
# IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION
if self.all_faces.shape[1] == 3 and p > 1:
self.GetFacesTet()
else:
self.GetFacesTet()
# BUILD A 2D MESH
tmesh = Mesh()
# tmesh = deepcopy(self)
tmesh.element_type = "tri"
tmesh.elements = self.all_faces
tmesh.nelem = tmesh.elements.shape[0]
del tmesh.faces
del tmesh.points
# COMPUTE ALL EDGES
self.all_edges = tmesh.GetEdgesTri()
return self.all_edges
def GetBoundaryFacesTet(self):
"""Find boundary faces (surfaces) of a tetrahedral mesh"""
p = self.InferPolynomialDegree()
# DO NOT COMPUTE IF ALREADY COMPUTED
if isinstance(self.faces,np.ndarray):
if self.faces.shape[0] > 1:
# IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION
if self.faces.shape[1] == 3 and p > 1:
pass
else:
return
node_arranger = NodeArrangementTet(p-1)[0]
# CONCATENATE ALL THE FACES MADE FROM ELEMENTS
all_faces = np.concatenate((self.elements[:,:3],self.elements[:,[0,1,3]],
self.elements[:,[0,2,3]],self.elements[:,[1,2,3]]),axis=0)
# GET UNIQUE ROWS
uniques, idx, inv = unique2d(all_faces,consider_sort=True,order=False,return_index=True,return_inverse=True)
# ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY FACES
freqs_inv = itemfreq(inv)
faces_ext_flags = freqs_inv[freqs_inv[:,1]==1,0]
# NOT ARRANGED
self.faces = uniques[faces_ext_flags,:]
# DETERMINE WHICH FACE OF THE ELEMENT THEY ARE
boundary_face_to_element = np.zeros((faces_ext_flags.shape[0],2),dtype=np.int64)
# THE FOLLOWING WILL COMPUTE FACES BASED ON SORTING AND NOT TAKING INTO ACCOUNT
# THE ELEMENT CONNECTIVITY
# boundary_face_to_element[:,0] = np.remainder(idx[faces_ext_flags],self.elements.shape[0])
# boundary_face_to_element[:,1] = np.floor_divide(idx[faces_ext_flags],self.elements.shape[0])
# OR EQUIVALENTLY
# boundary_face_to_element[:,0] = idx[faces_ext_flags] % self.elements.shape[0]
# boundary_face_to_element[:,1] = idx[faces_ext_flags] // self.elements.shape[0]
# FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR
# IN ELEMENT CONNECTIVITY
# THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF FACES
all_faces_in_faces = in2d(all_faces,self.faces,consider_sort=True)
all_faces_in_faces = np.where(all_faces_in_faces==True)[0]
# boundary_face_to_element = np.zeros((all_faces_in_faces.shape[0],2),dtype=np.int64)
boundary_face_to_element[:,0] = all_faces_in_faces % self.elements.shape[0]
boundary_face_to_element[:,1] = all_faces_in_faces // self.elements.shape[0]
# ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS
self.faces = self.elements[boundary_face_to_element[:,0][:,None],node_arranger[boundary_face_to_element[:,1],:]]
self.faces = self.faces.astype(np.uint64)
self.boundary_face_to_element = boundary_face_to_element
def GetBoundaryEdgesTet(self):
"""Find boundary edges (lines) of tetrahedral mesh.
Note that for tetrahedrals this function is more robust than Salome's default edge generator
"""
p = self.InferPolynomialDegree()
# DO NOT COMPUTE IF ALREADY COMPUTED
if isinstance(self.edges,np.ndarray):
if self.edges.shape[0] > 1:
# IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION
if self.edges.shape[1] == 2 and p > 1:
pass
else:
return
# FIRST GET BOUNDARY FACES
if not isinstance(self.faces,np.ndarray):
self.GetBoundaryFacesTet()
# BUILD A 2D MESH
tmesh = Mesh()
tmesh.element_type = "tri"
tmesh.elements = self.faces
tmesh.nelem = tmesh.elements.shape[0]
del tmesh.faces
del tmesh.points
# ALL THE EDGES CORRESPONDING TO THESE BOUNDARY FACES ARE BOUNDARY EDGES
self.edges = tmesh.GetEdgesTri()
def GetInteriorFacesTet(self):
"""Computes interior faces of a tetrahedral mesh
returns:
interior_faces ndarray of interior faces
face_flags 1D array of face flags: 0 for interior and 1 for boundary
"""
if not isinstance(self.all_faces,np.ndarray):
self.GetFacesTet()
if not isinstance(self.faces,np.ndarray):
self.GetBoundaryFacesTet()
face_flags = in2d(self.all_faces.astype(self.faces.dtype),self.faces,consider_sort=True)
face_flags[face_flags==True] = 1
face_flags[face_flags==False] = 0
interior_faces = self.all_faces[face_flags==False,:]
return interior_faces, face_flags
def GetInteriorEdgesTet(self):
"""Computes interior faces of a tetrahedral mesh
returns:
interior_edges ndarray of interior edges
edge_flags 1D array of edge flags: 0 for interior and 1 for boundary
"""
if not isinstance(self.all_edges,np.ndarray):
self.GetEdgesTet()
if not isinstance(self.edges,np.ndarray):
self.GetBoundaryEdgesTet()
edge_flags = in2d(self.all_edges.astype(self.edges.dtype),self.edges,consider_sort=True)
edge_flags[edge_flags==True] = 1
edge_flags[edge_flags==False] = 0
interior_edges = self.all_edges[edge_flags==False,:]
self.interior_edges = interior_edges
return interior_edges, edge_flags
def GetEdgesQuad(self):
"""Find the all edges of a quadrilateral mesh.
Sets all_edges property and returns it
returns:
arr: numpy ndarray of all edges"""
p = self.InferPolynomialDegree()
# DO NOT COMPUTE IF ALREADY COMPUTED
if isinstance(self.all_edges,np.ndarray):
if self.all_edges.shape[0] > 1:
# IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION
if self.all_edges.shape[1]==2 and p > 1:
pass
else:
return self.all_edges
node_arranger = NodeArrangementQuad(p-1)[0]
# GET ALL EDGES FROM THE ELEMENT CONNECTIVITY
edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]],
self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(np.uint64)
# REMOVE DUPLICATES
edges, idx = unique2d(edges,consider_sort=True,order=False,return_index=True)
edge_to_element = np.zeros((edges.shape[0],2),np.int64)
edge_to_element[:,0] = idx % self.elements.shape[0]
edge_to_element[:,1] = idx // self.elements.shape[0]
self.edge_to_element = edge_to_element
# DO NOT SET all_edges IF THE CALLER FUNCTION IS GetBoundaryEdgesHex
import inspect
curframe = inspect.currentframe()
calframe = inspect.getouterframes(curframe, 2)[1][3]
if calframe != "GetBoundaryEdgesHex":
self.all_edges = edges
return edges
def GetBoundaryEdgesQuad(self):
"""Find boundary edges (lines) of a quadrilateral mesh"""
p = self.InferPolynomialDegree()
# DO NOT COMPUTE IF ALREADY COMPUTED
if isinstance(self.edges,np.ndarray):
if self.edges.shape[0] > 1:
# IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION
if self.edges.shape[1] == 2 and p > 1:
pass
else:
return
node_arranger = NodeArrangementQuad(p-1)[0]
# GET ALL EDGES FROM THE ELEMENT CONNECTIVITY
all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]],
self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(np.uint64)
# GET UNIQUE ROWS
uniques, idx, inv = unique2d(all_edges,consider_sort=True,order=False,return_index=True,return_inverse=True)
# ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY EDGES
freqs_inv = itemfreq(inv)
edges_ext_flags = freqs_inv[freqs_inv[:,1]==1,0]
# NOT ARRANGED
self.edges = uniques[edges_ext_flags,:]
# DETERMINE WHICH FACE OF THE ELEMENT THEY ARE
boundary_edge_to_element = np.zeros((edges_ext_flags.shape[0],2),dtype=np.int64)
# FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR
# IN ELEMENT CONNECTIVITY
# THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF EDGES
all_edges_in_edges = in2d(all_edges,self.edges,consider_sort=True)
all_edges_in_edges = np.where(all_edges_in_edges==True)[0]
boundary_edge_to_element[:,0] = all_edges_in_edges % self.elements.shape[0]
boundary_edge_to_element[:,1] = all_edges_in_edges // self.elements.shape[0]
# ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS
self.edges = self.elements[boundary_edge_to_element[:,0][:,None],node_arranger[boundary_edge_to_element[:,1],:]]
self.edges = self.edges.astype(np.uint64)
self.boundary_edge_to_element = boundary_edge_to_element
return self.edges
def GetInteriorEdgesQuad(self):
"""Computes interior edges of a quadrilateral mesh
returns:
interior_faces ndarray of interior edges
edge_flags ndarray of edge flags: 0 for interior and 1 for boundary
"""
if not isinstance(self.all_edges,np.ndarray):
self.GetEdgesQuad()
if not isinstance(self.edges,np.ndarray):
self.GetBoundaryEdgesQuad()
sorted_all_edges = np.sort(self.all_edges,axis=1)
sorted_boundary_edges = np.sort(self.edges,axis=1)
x = []
for i in range(self.edges.shape[0]):
current_sorted_boundary_edge = np.tile(sorted_boundary_edges[i,:],
self.all_edges.shape[0]).reshape(self.all_edges.shape[0],self.all_edges.shape[1])
interior_edges = np.linalg.norm(current_sorted_boundary_edge - sorted_all_edges,axis=1)
pos_interior_edges = np.where(interior_edges==0)[0]
if pos_interior_edges.shape[0] != 0:
x.append(pos_interior_edges)
edge_aranger = np.arange(self.all_edges.shape[0])
edge_aranger = np.setdiff1d(edge_aranger,np.array(x)[:,0])
interior_edges = self.all_edges[edge_aranger,:]
# GET FLAGS FOR BOUNDRAY AND INTERIOR
edge_flags = np.ones(self.all_edges.shape[0],dtype=np.int64)
edge_flags[edge_aranger] = 0
self.interior_edges = interior_edges
return interior_edges, edge_flags
def GetFacesHex(self):
"""Find all faces (surfaces) in the hexahedral mesh (boundary & interior).
Sets all_faces property and returns it
returns:
arr: numpy ndarray of all faces
"""
# DETERMINE DEGREE
p = self.InferPolynomialDegree()
# DO NOT COMPUTE IF ALREADY COMPUTED
if isinstance(self.all_faces,np.ndarray):
if self.all_faces.shape[0] > 1:
# IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION
if self.all_faces.shape[1] == 4 and p > 1:
pass
else:
return self.all_faces
node_arranger = NodeArrangementHex(p-1)[0]
fsize = int((p+1)**3)
# GET ALL FACES FROM THE ELEMENT CONNECTIVITY
faces = np.concatenate((np.concatenate((
np.concatenate((np.concatenate((np.concatenate((self.elements[:,node_arranger[0,:]],
self.elements[:,node_arranger[1,:]]),axis=0),self.elements[:,node_arranger[2,:]]),axis=0),
self.elements[:,node_arranger[3,:]]),axis=0),self.elements[:,node_arranger[4,:]]),axis=0),
self.elements[:,node_arranger[5,:]]),axis=0).astype(np.int64)
# REMOVE DUPLICATES
self.all_faces, idx = unique2d(faces,consider_sort=True,order=False,return_index=True)
face_to_element = np.zeros((self.all_faces.shape[0],2),np.int64)
face_to_element[:,0] = idx % self.elements.shape[0]
face_to_element[:,1] = idx // self.elements.shape[0]
self.face_to_element = face_to_element
return self.all_faces
def GetEdgesHex(self):
"""Find all edges (lines) of tetrahedral mesh (boundary & interior)"""
p = self.InferPolynomialDegree()
# DO NOT COMPUTE IF ALREADY COMPUTED
if isinstance(self.all_edges,np.ndarray):
if self.all_edges.shape[0] > 1:
# IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION
if self.all_edges.shape[1] == 2 and p > 1:
pass
else:
return self.all_edges
# FIRST GET BOUNDARY FACES
if not isinstance(self.all_faces,np.ndarray):
self.GetFacesHex()
# BUILD A 2D MESH
tmesh = Mesh()
# tmesh = deepcopy(self)
tmesh.element_type = "quad"
tmesh.elements = self.all_faces
tmesh.nelem = tmesh.elements.shape[0]
del tmesh.faces
del tmesh.points
# COMPUTE ALL EDGES
self.all_edges = tmesh.GetEdgesQuad()
return self.all_edges
def GetBoundaryFacesHex(self):
"""Find boundary faces (surfaces) of a hexahedral mesh"""
p = self.InferPolynomialDegree()
# DO NOT COMPUTE IF ALREADY COMPUTED
if isinstance(self.faces,np.ndarray):
if self.faces.shape[0] > 1:
# IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION
if self.faces.shape[1] == 4 and p > 1:
pass
else:
return
node_arranger = NodeArrangementHex(p-1)[0]
# CONCATENATE ALL THE FACES MADE FROM ELEMENTS
all_faces = np.concatenate((np.concatenate((
np.concatenate((np.concatenate((np.concatenate((self.elements[:,node_arranger[0,:]],
self.elements[:,node_arranger[1,:]]),axis=0),self.elements[:,node_arranger[2,:]]),axis=0),
self.elements[:,node_arranger[3,:]]),axis=0),self.elements[:,node_arranger[4,:]]),axis=0),
self.elements[:,node_arranger[5,:]]),axis=0).astype(np.int64)
# GET UNIQUE ROWS
uniques, idx, inv = unique2d(all_faces,consider_sort=True,order=False,return_index=True,return_inverse=True)
# ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY FACES
freqs_inv = itemfreq(inv)
faces_ext_flags = freqs_inv[freqs_inv[:,1]==1,0]
# NOT ARRANGED
self.faces = uniques[faces_ext_flags,:]
# DETERMINE WHICH FACE OF THE ELEMENT THEY ARE
boundary_face_to_element = np.zeros((faces_ext_flags.shape[0],2),dtype=np.int64)
# FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR
# IN ELEMENT CONNECTIVITY
# THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF FACES
all_faces_in_faces = in2d(all_faces,self.faces,consider_sort=True)
all_faces_in_faces = np.where(all_faces_in_faces==True)[0]
# boundary_face_to_element = np.zeros((all_faces_in_faces.shape[0],2),dtype=np.int64)
boundary_face_to_element[:,0] = all_faces_in_faces % self.elements.shape[0]
boundary_face_to_element[:,1] = all_faces_in_faces // self.elements.shape[0]
# ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS
self.faces = self.elements[boundary_face_to_element[:,0][:,None],node_arranger[boundary_face_to_element[:,1],:]]
self.faces = self.faces.astype(np.uint64)
self.boundary_face_to_element = boundary_face_to_element
def GetBoundaryEdgesHex(self):
"""Find boundary edges (lines) of hexahedral mesh.
"""
p = self.InferPolynomialDegree()
# DO NOT COMPUTE IF ALREADY COMPUTED
if isinstance(self.edges,np.ndarray):
if self.edges.shape[0] > 1:
# IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION
if self.edges.shape[1] == 2 and p > 1:
pass
else:
return
# FIRST GET BOUNDARY FACES
if not isinstance(self.faces,np.ndarray):
self.GetBoundaryFacesHex()
# BUILD A 2D MESH
tmesh = Mesh()
tmesh.element_type = "quad"
tmesh.elements = self.faces
tmesh.nelem = tmesh.elements.shape[0]
del tmesh.faces
del tmesh.points
# ALL THE EDGES CORRESPONDING TO THESE BOUNDARY FACES ARE BOUNDARY EDGES
self.edges = tmesh.GetEdgesQuad()
def GetInteriorFacesHex(self):
"""Computes interior faces of a hexahedral mesh
returns:
interior_faces ndarray of interior faces
face_flags 1D array of face flags: 0 for interior and 1 for boundary
"""
if not isinstance(self.all_faces,np.ndarray):
self.GetFacesHex()
if not isinstance(self.faces,np.ndarray):
self.GetBoundaryFacesHex()
face_flags = in2d(self.all_faces.astype(self.faces.dtype),self.faces,consider_sort=True)
face_flags[face_flags==True] = 1
face_flags[face_flags==False] = 0
interior_faces = self.all_faces[face_flags==False,:]
return interior_faces, face_flags
def GetInteriorEdgesHex(self):
"""Computes interior faces of a hexahedral mesh
returns:
interior_edges ndarray of interior edges
edge_flags 1D array of edge flags: 0 for interior and 1 for boundary
"""
if not isinstance(self.all_edges,np.ndarray):
self.GetEdgesHex()
if not isinstance(self.edges,np.ndarray):
self.GetBoundaryEdgesHex()
edge_flags = in2d(self.all_edges.astype(self.edges.dtype),self.edges,consider_sort=True)
edge_flags[edge_flags==True] = 1
edge_flags[edge_flags==False] = 0
interior_edges = self.all_edges[edge_flags==False,:]
self.interior_edges = interior_edges
return interior_edges, edge_flags
def GetEdgesPent(self):
"""Find the all edges of a pentagonal mesh.
Sets all_edges property and returns it
returns:
arr: numpy ndarray of all edges"""
p = self.InferPolynomialDegree()
# DO NOT COMPUTE IF ALREADY COMPUTED
if isinstance(self.all_edges,np.ndarray):
if self.all_edges.shape[0] > 1:
# IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION
if self.all_edges.shape[1]==2 and p > 1:
pass
else:
return self.all_edges
node_arranger = np.array([
[0,1],
[1,2],
[2,3],
[3,4],
[4,0],
])
# GET ALL EDGES FROM THE ELEMENT CONNECTIVITY
edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]],
self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]],
self.elements[:,node_arranger[4,:]]),axis=0).astype(np.uint64)
# REMOVE DUPLICATES
edges, idx = unique2d(edges,consider_sort=True,order=False,return_index=True)
edge_to_element = np.zeros((edges.shape[0],2),np.int64)
edge_to_element[:,0] = idx % self.elements.shape[0]
edge_to_element[:,1] = idx // self.elements.shape[0]
self.edge_to_element = edge_to_element
self.all_edges = edges
return edges
def GetBoundaryEdgesPent(self):
"""Find boundary edges (lines) of a pentagonal mesh"""
p = self.InferPolynomialDegree()
# DO NOT COMPUTE IF ALREADY COMPUTED
if isinstance(self.edges,np.ndarray):
if self.edges.shape[0] > 1:
# IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION
if self.edges.shape[1] == 2 and p > 1:
pass
else:
return
node_arranger = np.array([
[0,1],
[1,2],
[2,3],
[3,4],
[4,0],
])
# GET ALL EDGES FROM THE ELEMENT CONNECTIVITY
all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]],
self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]],
self.elements[:,node_arranger[4,:]]),axis=0).astype(np.uint64)
# GET UNIQUE ROWS
uniques, idx, inv = unique2d(all_edges,consider_sort=True,order=False,return_index=True,return_inverse=True)
# ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY EDGES
freqs_inv = itemfreq(inv)
edges_ext_flags = freqs_inv[freqs_inv[:,1]==1,0]
# NOT ARRANGED
self.edges = uniques[edges_ext_flags,:]
# DETERMINE WHICH FACE OF THE ELEMENT THEY ARE
boundary_edge_to_element = np.zeros((edges_ext_flags.shape[0],2),dtype=np.int64)
# FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR
# IN ELEMENT CONNECTIVITY
# THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF EDGES
all_edges_in_edges = in2d(all_edges,self.edges,consider_sort=True)
all_edges_in_edges = np.where(all_edges_in_edges==True)[0]
boundary_edge_to_element[:,0] = all_edges_in_edges % self.elements.shape[0]
boundary_edge_to_element[:,1] = all_edges_in_edges // self.elements.shape[0]
# ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS
self.edges = self.elements[boundary_edge_to_element[:,0][:,None],node_arranger[boundary_edge_to_element[:,1],:]]
self.edges = self.edges.astype(np.uint64)
self.boundary_edge_to_element = boundary_edge_to_element
return self.edges
def GetInteriorEdgesPent(self):
"""Computes interior edges of a pentagonal mesh
returns:
interior_faces ndarray of interior edges
edge_flags ndarray of edge flags: 0 for interior and 1 for boundary
"""
if not isinstance(self.all_edges,np.ndarray):
self.GetEdgesPent()
if not isinstance(self.edges,np.ndarray):
self.GetBoundaryEdgesPent()
sorted_all_edges = np.sort(self.all_edges,axis=1)
sorted_boundary_edges = np.sort(self.edges,axis=1)
x = []
for i in range(self.edges.shape[0]):
current_sorted_boundary_edge = np.tile(sorted_boundary_edges[i,:],
self.all_edges.shape[0]).reshape(self.all_edges.shape[0],self.all_edges.shape[1])
interior_edges = np.linalg.norm(current_sorted_boundary_edge - sorted_all_edges,axis=1)
pos_interior_edges = np.where(interior_edges==0)[0]
if pos_interior_edges.shape[0] != 0:
x.append(pos_interior_edges)
edge_aranger = np.arange(self.all_edges.shape[0])
edge_aranger = np.setdiff1d(edge_aranger,np.array(x)[:,0])
interior_edges = self.all_edges[edge_aranger,:]
# GET FLAGS FOR BOUNDRAY AND INTERIOR
edge_flags = np.ones(self.all_edges.shape[0],dtype=np.int64)
edge_flags[edge_aranger] = 0
self.interior_edges = interior_edges
return interior_edges, edge_flags
def GetHighOrderMesh(self,p=1, silent=True, **kwargs):
"""Given a linear tri, tet, quad or hex mesh compute high order mesh based on it.
This is a static method linked to the HigherOrderMeshing module"""
if not isinstance(p,int):
raise ValueError("p must be an integer")
else:
if p < 1:
raise ValueError("Value of p={} is not acceptable. Provide p>=1.".format(p))
if self.degree is None:
self.InferPolynomialDegree()
C = p-1
if 'C' in kwargs.keys():
if kwargs['C'] != p - 1:
raise ValueError("Did not understand the specified interpolation degree of the mesh")
del kwargs['C']
# DO NOT COMPUTE IF ALREADY COMPUTED FOR THE SAME ORDER
if self.degree == None:
self.degree = self.InferPolynomialDegree()
if self.degree == p:
return
# SITUATIONS WHEN ANOTHER HIGH ORDER MESH IS REQUIRED, WITH ONE HIGH
# ORDER MESH ALREADY AVAILABLE
if self.degree != 1 and self.degree - 1 != C:
dum = self.GetLinearMesh(remap=True)
self.__dict__.update(dum.__dict__)
if not silent:
print('Generating p = '+str(C+1)+' mesh based on the linear mesh...')
t_mesh = time()
# BUILD A NEW MESH BASED ON THE LINEAR MESH
if self.element_type == 'line':
nmesh = HighOrderMeshLine(C,self,**kwargs)
if self.element_type == 'tri':
if self.edges is None:
self.GetBoundaryEdgesTri()
# nmesh = HighOrderMeshTri(C,self,**kwargs)
nmesh = HighOrderMeshTri_SEMISTABLE(C,self,**kwargs)
elif self.element_type == 'tet':
# nmesh = HighOrderMeshTet(C,self,**kwargs)
nmesh = HighOrderMeshTet_SEMISTABLE(C,self,**kwargs)
elif self.element_type == 'quad':
if self.edges is None:
self.GetBoundaryEdgesQuad()
nmesh = HighOrderMeshQuad(C,self,**kwargs)
elif self.element_type == 'hex':
nmesh = HighOrderMeshHex(C,self,**kwargs)
self.points = nmesh.points
self.elements = nmesh.elements.astype(np.uint64)
if isinstance(self.corners,np.ndarray):
# NOT NECESSARY BUT GENERIC
self.corners = nmesh.corners.astype(np.uint64)
if isinstance(self.edges,np.ndarray):
self.edges = nmesh.edges.astype(np.uint64)
if isinstance(self.faces,np.ndarray):
if isinstance(nmesh.faces,np.ndarray):
self.faces = nmesh.faces.astype(np.uint64)
self.nelem = nmesh.nelem
self.nnode = self.points.shape[0]
self.element_type = nmesh.info
self.degree = C+1
self.ChangeType()
if not silent:
print('Finished generating the high order mesh. Time taken', time()-t_mesh,'sec')
def EdgeLengths(self,which_edges='boundary'):
"""Computes length of edges, for 2D and 3D meshes
which_edges: [str] 'boundary' for boundary edges only
and 'all' for all edges
"""
assert self.points is not None
assert self.element_type is not None
lengths = None
if which_edges == 'boundary':
if self.edges is None:
self.GetBoundaryEdges()
edge_coords = self.points[self.edges[:,:2],:]
lengths = np.linalg.norm(edge_coords[:,1,:] - edge_coords[:,0,:],axis=1)
elif which_edges == 'all':
if self.all_edges is None:
self.GetEdges()
edge_coords = self.points[self.all_edges[:,:2],:]
lengths = np.linalg.norm(edge_coords[:,1,:] - edge_coords[:,0,:],axis=1)
return lengths
def Lengths(self,):
"""Computes length of all types of elements
"""
self.__do_essential_memebers_exist__()
if self.element_type == "line":
coords = self.points[self.elements[:,:2],:]
lengths = np.linalg.norm(coords[:,1,:] - coords[:,0,:],axis=1)
else:
self.GetEdges()
coord = self.all_edges
coords = self.points[self.elements[:,:2],:]
lengths = np.linalg.norm(coords[:,1,:] - coords[:,0,:],axis=1)
return lengths
def Areas(self, with_sign=False, gpoints=None):
"""Find areas of all 2D elements [tris, quads].
For 3D elements returns surface areas of all faces
input:
with_sign: [str] compute with/without sign
gpoints: [ndarray] given coordinates to use instead of
self.points
returns: 1D array of nelem x 1 containing areas
"""
assert self.elements is not None
assert self.element_type is not None
if gpoints is None:
assert self.points is not None
gpoints = self.points
if self.element_type == "tri":
points = np.ones((gpoints.shape[0],3),dtype=np.float64)
points[:,:2] = gpoints
# FIND AREAS OF ALL THE ELEMENTS
area = 0.5*np.linalg.det(points[self.elements[:,:3],:])
elif self.element_type == "quad":
# NODE ORDERING IS IRRELEVANT, AS IT IS THESE AREAS
# WHICH DETERMINE NODE ORDERING
# AREA OF QUAD ABCD = AREA OF ABC + AREA OF ACD
points = np.ones((gpoints.shape[0],3),dtype=np.float64)
points[:,:2] = gpoints
# FIND AREAS ABC
area0 = np.linalg.det(points[self.elements[:,:3],:])
# FIND AREAS ACD
area1 = np.linalg.det(points[self.elements[:,[0,2,3]],:])
# FIND AREAS OF ALL THE ELEMENTS
area = 0.5*(area0+area1)
elif self.element_type == "tet":
# GET ALL THE FACES
faces = self.GetFacesTet()
points = np.ones((gpoints.shape[0],3),dtype=np.float64)
points[:,:2]=gpoints[:,:2]
area0 = np.linalg.det(points[faces[:,:3],:])
points[:,:2]=gpoints[:,[2,0]]
area1 = np.linalg.det(points[faces[:,:3],:])
points[:,:2]=gpoints[:,[1,2]]
area2 = np.linalg.det(points[faces[:,:3],:])
area = 0.5*np.linalg.norm(area0+area1+area2)
elif self.element_type == "hex":
from Florence.Tensor import unique2d
C = self.InferPolynomialDegree() - 1
area = 0
node_arranger = NodeArrangementHex(C)[0]
for i in range(node_arranger.shape[0]):
# print node_arranger[i,:]
# AREA OF FACES
points = np.ones((gpoints.shape[0],3),dtype=np.float64)
if i==0 or i==1:
points[:,:2] = gpoints[:,:2]
elif i==2 or i==3:
points[:,:2] = gpoints[:,[0,2]]
elif i==4 or i==5:
points[:,:2] = gpoints[:,1:]
# FIND AREAS ABC
area0 = np.linalg.det(points[self.elements[:,node_arranger[i,:3]],:])
# FIND AREAS ACD
area1 = np.linalg.det(points[self.elements[:,node_arranger[i,1:]],:])
# FIND AREAS OF ALL THE ELEMENTS
area += 0.5*np.linalg.norm(area0+area1)
# print area
raise ValueError('Hex areas implementation requires further checks')
else:
raise NotImplementedError("Computing areas for", self.element_type, "elements not implemented yet")
if with_sign is False:
if self.element_type == "tri" or self.element_type == "quad":
area = np.abs(area)
elif self.element_type == "tet":
raise NotImplementedError('Numbering order of tetrahedral faces could not be determined')
return area
def Volumes(self, with_sign=False, gpoints=None):
"""Find Volumes of all 3D elements [tets, hexes]
input:
with_sign: [str] compute with/without sign
gpoints: [ndarray] given coordinates to use instead of
self.points
returns: 1D array of nelem x 1 containing volumes
"""
assert self.elements is not None
assert self.element_type is not None
if self.points.shape[1] == 2:
raise ValueError("2D mesh does not have volume")
if gpoints is None:
assert self.points is not None
gpoints = self.points
if self.element_type == "tet":
a = gpoints[self.elements[:,0],:]
b = gpoints[self.elements[:,1],:]
c = gpoints[self.elements[:,2],:]
d = gpoints[self.elements[:,3],:]
det_array = np.dstack((a-d,b-d,c-d))
# FIND VOLUME OF ALL THE ELEMENTS
volume = 1./6.*np.linalg.det(det_array)
elif self.element_type == "hex":
# Refer: https://en.wikipedia.org/wiki/Parallelepiped
a = gpoints[self.elements[:,0],:]
b = gpoints[self.elements[:,1],:]
c = gpoints[self.elements[:,3],:]
d = gpoints[self.elements[:,4],:]
det_array = np.dstack((b-a,c-a,d-a))
# FIND VOLUME OF ALL THE ELEMENTS
volume = np.linalg.det(det_array)
else:
raise NotImplementedError("Computing volumes for", self.element_type, "elements not implemented yet")
if with_sign is False:
volume = np.abs(volume)
return volume
def Sizes(self, with_sign=False):
"""Computes the size of elements for all element types.
This is a generic method that for 1D=lengths, for 2D=areas and for 3D=volumes.
It works for planar and curved elements
"""
self.__do_essential_memebers_exist__()
try:
from Florence import DisplacementFormulation
except ImportError:
raise ValueError("This functionality requires Florence's support")
if self.element_type != "line":
# FOR LINE ELEMENTS THIS APPROACH DOES NOT WORK AS JACOBIAN IS NOT WELL DEFINED
formulation = DisplacementFormulation(self)
sizes = np.zeros(self.nelem)
if not with_sign:
for elem in range(self.nelem):
LagrangeElemCoords = self.points[self.elements[elem,:],:]
sizes[elem] = formulation.GetVolume(formulation.function_spaces[0],
LagrangeElemCoords, LagrangeElemCoords, False, elem=elem)
else:
for elem in range(self.nelem):
LagrangeElemCoords = self.points[self.elements[elem,:],:]
sizes[elem] = formulation.GetSignedVolume(formulation.function_spaces[0],
LagrangeElemCoords, LagrangeElemCoords, False, elem=elem)
return sizes
else:
warn("Sizes of line elements could be incorrect if the mesh is curvilinear")
return self.Lengths()
def AspectRatios(self,algorithm='edge_based'):
"""Compute aspect ratio of the mesh element-by-element.
For 2D meshes aspect ratio is aspect ratio is defined as
the ratio of maximum edge length to minimum edge length.
For 3D meshes aspect ratio can be either length or area based.
input:
algorithm: [str] 'edge_based' or 'face_based'
returns:
aspect_ratio: [1D array] of size (self.nelem) containing aspect ratio of elements
"""
assert self.points is not None
assert self.element_type is not None
aspect_ratio = None
if algorithm == 'edge_based':
if self.element_type == "tri":
edge_coords = self.points[self.elements[:,:3],:]
AB = np.linalg.norm(edge_coords[:,1,:] - edge_coords[:,0,:],axis=1)
AC = np.linalg.norm(edge_coords[:,2,:] - edge_coords[:,0,:],axis=1)
BC = np.linalg.norm(edge_coords[:,2,:] - edge_coords[:,1,:],axis=1)
minimum = np.minimum(np.minimum(AB,AC),BC)
maximum = np.maximum(np.maximum(AB,AC),BC)
aspect_ratio = 1.0*maximum/minimum
elif self.element_type == "quad":
edge_coords = self.points[self.elements[:,:4],:]
AB = np.linalg.norm(edge_coords[:,1,:] - edge_coords[:,0,:],axis=1)
BC = np.linalg.norm(edge_coords[:,2,:] - edge_coords[:,1,:],axis=1)
CD = np.linalg.norm(edge_coords[:,3,:] - edge_coords[:,2,:],axis=1)
DA = np.linalg.norm(edge_coords[:,0,:] - edge_coords[:,3,:],axis=1)
minimum = np.minimum(np.minimum(np.minimum(AB,BC),CD),DA)
maximum = np.maximum(np.maximum(np.maximum(AB,BC),CD),DA)
aspect_ratio = 1.0*maximum/minimum
elif self.element_type == "tet":
edge_coords = self.points[self.elements[:,:4],:]
AB = np.linalg.norm(edge_coords[:,1,:] - edge_coords[:,0,:],axis=1)
AC = np.linalg.norm(edge_coords[:,2,:] - edge_coords[:,0,:],axis=1)
AD = np.linalg.norm(edge_coords[:,3,:] - edge_coords[:,0,:],axis=1)
BC = np.linalg.norm(edge_coords[:,2,:] - edge_coords[:,1,:],axis=1)
BD = np.linalg.norm(edge_coords[:,3,:] - edge_coords[:,1,:],axis=1)
CD = np.linalg.norm(edge_coords[:,3,:] - edge_coords[:,2,:],axis=1)
minimum = np.minimum(np.minimum(np.minimum(np.minimum(np.minimum(AB,AC),AD),BC),BD),CD)
maximum = np.maximum(np.maximum(np.maximum(np.maximum(np.maximum(AB,AC),AD),BC),BD),CD)
aspect_ratio = 1.0*maximum/minimum
elif self.element_type == "hex":
edge_coords = self.points[self.elements[:,:8],:]
AB = np.linalg.norm(edge_coords[:,1,:] - edge_coords[:,0,:],axis=1)
BC = np.linalg.norm(edge_coords[:,2,:] - edge_coords[:,1,:],axis=1)
CD = np.linalg.norm(edge_coords[:,3,:] - edge_coords[:,2,:],axis=1)
DA = np.linalg.norm(edge_coords[:,0,:] - edge_coords[:,3,:],axis=1)
minimum0 = np.minimum(np.minimum(np.minimum(AB,BC),CD),DA)
maximum0 = np.maximum(np.maximum(np.maximum(AB,BC),CD),DA)
AB = np.linalg.norm(edge_coords[:,5,:] - edge_coords[:,4,:],axis=1)
BC = np.linalg.norm(edge_coords[:,6,:] - edge_coords[:,5,:],axis=1)
CD = np.linalg.norm(edge_coords[:,7,:] - edge_coords[:,6,:],axis=1)
DA = np.linalg.norm(edge_coords[:,4,:] - edge_coords[:,7,:],axis=1)
minimum1 = np.minimum(np.minimum(np.minimum(AB,BC),CD),DA)
maximum1 = np.maximum(np.maximum(np.maximum(AB,BC),CD),DA)
AB = np.linalg.norm(edge_coords[:,4,:] - edge_coords[:,0,:],axis=1)
BC = np.linalg.norm(edge_coords[:,5,:] - edge_coords[:,1,:],axis=1)
CD = np.linalg.norm(edge_coords[:,6,:] - edge_coords[:,2,:],axis=1)
DA = np.linalg.norm(edge_coords[:,7,:] - edge_coords[:,3,:],axis=1)
minimum2 = np.minimum(np.minimum(np.minimum(AB,BC),CD),DA)
maximum2 = np.maximum(np.maximum(np.maximum(AB,BC),CD),DA)
minimum = np.minimum(minimum0,np.minimum(minimum1,minimum2))
maximum = np.maximum(maximum0,np.maximum(maximum1,maximum2))
aspect_ratio = 1.0*maximum/minimum
elif self.element_type == "line":
raise ValueError("Line elments do no have aspect ratio")
elif algorithm == 'face_based':
raise NotImplementedError("Face/area based aspect ratio is not implemented yet")
return aspect_ratio
def FaceNormals(self):
"""Computes outward unit normals on faces.
This is a generic method for all element types apart from lines. If the mesh is in 2D plane
then the unit outward normals will point in Z direction. If the mesh is quad or tri type but
in 3D plane, this will still compute the correct unit outward normals. outwardness can only
be guaranteed for volume meshes.
This method is different from the method self.Normals() as the latter can compute normals
for 1D/2D elements in-plane
"""
self.__do_memebers_exist__()
points = np.copy(self.points)
if points.shape[1] < 3:
dum = np.zeros((points.shape[0],3))
dum[:,:points.shape[1]] = points
points = dum
if self.element_type == "tet" or self.element_type == "hex":
faces = self.faces
elif self.element_type == "tri" or self.element_type == "quad":
faces = self.elements
else:
raise ValueError("Cannot compute face normals on {}".format(self.element_type))
face_coords = self.points[faces[:,:3],:]
p1p0 = face_coords[:,1,:] - face_coords[:,0,:]
p2p0 = face_coords[:,2,:] - face_coords[:,0,:]
normals = np.cross(p1p0,p2p0)
norm_normals = np.linalg.norm(normals,axis=1)
normals[:,0] /= norm_normals
normals[:,1] /= norm_normals
normals[:,2] /= norm_normals
# CHECK IF THE NORMAL IS OUTWARD - FOR LINES DIRECTIONALITY DOES NOT MATTER
if self.element_type == "tet" or self.element_type == "hex":
self.GetElementsWithBoundaryFaces()
meds = self.Medians()
face_element_meds = meds[self.boundary_face_to_element[:,0],:]
p1pm = face_coords[:,1,:] - face_element_meds
# IF THE DOT PROUCT OF NORMALS AND EDGE-MED NODE VECTOR IS NEGATIVE THEN FLIP
_check = np.einsum("ij,ij->i",normals,p1pm)
normals[np.less(_check,0.)] = -normals[np.less(_check,0.)]
return normals
def Normals(self, show_plot=False):
"""Computes unit outward normals to the boundary for all element types.
Unity and outwardness are guaranteed
"""
self.__do_memebers_exist__()
ndim = self.InferSpatialDimension()
if self.element_type == "tet" or self.element_type == "hex":
normals = self.FaceNormals()
elif self.element_type == "tri" or self.element_type == "quad" or self.element_type == "line":
if self.points.shape[1] == 3:
normals = self.FaceNormals()
else:
if self.element_type == "tri" or self.element_type == "quad":
edges = self.edges
elif self.element_type == "line":
edges = self.elements
edge_coords = self.points[edges[:,:2],:]
p1p0 = edge_coords[:,1,:] - edge_coords[:,0,:]
normals = np.zeros_like(p1p0)
normals[:,0] = -p1p0[:,1]
normals[:,1] = p1p0[:,0]
norm_normals = np.linalg.norm(normals,axis=1)
normals[:,0] /= norm_normals
normals[:,1] /= norm_normals
# CHECK IF THE NORMAL IS OUTWARD - FOR LINES DIRECTIONALITY DOES NOT MATTER
if self.element_type == "tri" or self.element_type == "quad":
self.GetElementsWithBoundaryEdges()
meds = self.Medians()
edge_element_meds = meds[self.boundary_edge_to_element[:,0],:]
p1pm = edge_coords[:,1,:] - edge_element_meds
# IF THE DOT PROUCT OF NORMALS AND EDGE-MED NODE VECTOR IS NEGATIVE THEN FLIP
_check = np.einsum("ij,ij->i",normals,p1pm)
normals[np.less(_check,0.)] = -normals[np.less(_check,0.)]
if show_plot:
if ndim == 2:
mid_edge_coords = 0.5*(edge_coords[:,1,:] + edge_coords[:,0,:])
import matplotlib.pyplot as plt
figure = plt.figure()
self.SimplePlot(figure=figure, show_plot=False)
q = plt.quiver(mid_edge_coords[:,0], mid_edge_coords[:,1],
normals[:,0], normals[:,1],
color='Teal', headlength=5, width=0.004)
plt.axis('equal')
plt.axis('off')
plt.tight_layout()
plt.show()
elif ndim == 3:
mid_face_coords = np.sum(self.points[self.faces,:3],axis=1)/self.faces.shape[1]
import os
os.environ['ETS_TOOLKIT'] = 'qt4'
from mayavi import mlab
figure = mlab.figure(bgcolor=(1,1,1),fgcolor=(1,1,1),size=(1000,800))
self.SimplePlot(figure=figure, show_plot=False)
mlab.quiver3d(mid_face_coords[:,0], mid_face_coords[:,1], mid_face_coords[:,2],
normals[:,0], normals[:,1], normals[:,2],
color=(0.,128./255,128./255),line_width=2)
mlab.show()
return normals
def Angles(self, degrees=True):
"""Compute angles of 2D meshes. Strictly 2D meshes and linear elements.
If the mesh is curved the angles would be inaccurate
input:
degrees [bool] if True returns angles in degrees
otherwise in radians
returns:
angles [2D array] of angles per element. Angles are
computed per element so every element will
have as many angles as it's nodes
"""
self.__do_essential_memebers_exist__()
if self.InferElementalDimension() != 2:
raise ValueError("Angles can be computed only for 2D elements")
if self.InferSpatialDimension() != 2:
raise ValueError("Angles can be computed only in 2-dimensional plane")
nodeperelem = self.InferNumberOfNodesPerLinearElement()
angles = np.zeros((self.nelem, nodeperelem))
norm = lambda x: np.linalg.norm(x,axis=1)
edge_coords = self.points[self.elements[:,:],:]
if self.element_type == "tri":
AB = edge_coords[:,1,:] - edge_coords[:,0,:]
AC = edge_coords[:,2,:] - edge_coords[:,0,:]
BC = edge_coords[:,2,:] - edge_coords[:,1,:]
angles[:,0] = np.einsum("ij,ij->i",AB,AC) / (norm(AB)*norm(AC))
angles[:,1] = np.einsum("ij,ij->i",AC,BC) / (norm(AC)*norm(BC))
angles[:,2] = np.einsum("ij,ij->i",BC,-AB)/ (norm(BC)*norm(AB))
angles = np.arccos(angles)
elif self.element_type == "quad":
AB = edge_coords[:,1,:] - edge_coords[:,0,:]
BC = edge_coords[:,2,:] - edge_coords[:,1,:]
CD = edge_coords[:,3,:] - edge_coords[:,2,:]
DA = edge_coords[:,0,:] - edge_coords[:,3,:]
angles[:,0] = np.einsum("ij,ij->i",AB,BC) / (norm(AB)*norm(BC))
angles[:,1] = np.einsum("ij,ij->i",BC,CD) / (norm(BC)*norm(CD))
angles[:,2] = np.einsum("ij,ij->i",CD,DA) / (norm(CD)*norm(DA))
angles[:,3] = np.einsum("ij,ij->i",DA,-AB)/ (norm(DA)*norm(AB))
angles = np.arccos(angles)
if degrees:
angles *= 180/np.pi
return angles
def BoundingBoxes(self, show_plot=False, figure=None):
"""Computes a bounding box for every element.
This method complements the Bounds method/property in that it computes
the bounds for every individual element
returns:
bboxes [3D array] of nelem x ndim x ndim of bounding
boxes for every element
"""
self.__do_essential_memebers_exist__()
ndim = self.InferSpatialDimension()
all_elem_coords = self.points[self.elements]
mins = all_elem_coords.min(axis=1)
maxs = all_elem_coords.max(axis=1)
bboxes = np.zeros((2*self.nelem,self.points.shape[1]))
bboxes[::2] = mins
bboxes[1::2] = maxs
bboxes = bboxes.reshape(self.nelem,2,self.points.shape[1])
if show_plot:
if ndim == 3:
point_generator = lambda bbox: np.array([
[ bbox[0,0], bbox[0,1], bbox[0,2] ],
[ bbox[1,0], bbox[0,1], bbox[0,2] ],
[ bbox[1,0], bbox[1,1], bbox[0,2] ],
[ bbox[0,0], bbox[1,1], bbox[0,2] ],
[ bbox[0,0], bbox[0,1], bbox[1,2] ],
[ bbox[1,0], bbox[0,1], bbox[1,2] ],
[ bbox[1,0], bbox[1,1], bbox[1,2] ],
[ bbox[0,0], bbox[1,1], bbox[1,2] ]
])
elif ndim == 2:
point_generator = lambda bbox: np.array([
[ bbox[0,0], bbox[0,1] ],
[ bbox[1,0], bbox[0,1] ],
[ bbox[1,0], bbox[1,1] ],
[ bbox[0,0], bbox[1,1] ]
])
nsize = 4 if ndim ==2 else 8
ranger = np.arange(nsize)
bmesh = Mesh()
bmesh.element_type = "quad" if ndim ==2 else "hex"
bmesh.elements = np.arange(self.nelem*nsize).reshape(self.nelem,nsize)
bmesh.points = np.zeros((self.nelem*nsize,ndim))
bmesh.nelem = self.nelem
bmesh.nnode = bmesh.points.shape[0]
for i in range(0,self.nelem):
bmesh.points[i*nsize:(i+1)*nsize,:] = point_generator(bboxes[i])
if ndim == 2:
import matplotlib.pyplot as plt
if figure is None:
figure = plt.figure()
self.SimplePlot(figure=figure, show_plot=False)
bmesh.SimplePlot(figure=figure, show_plot=False, edge_color='r')
plt.show()
else:
import os
os.environ['ETS_TOOLKIT'] = 'qt4'
from mayavi import mlab
if figure is None:
figure = mlab.figure(bgcolor=(1,1,1),fgcolor=(1,1,1),size=(1000,800))
self.SimplePlot(figure=figure, show_plot=False)
bmesh.SimplePlot(figure=figure, show_plot=False, plot_faces=False, edge_color='r')
mlab.show()
return bboxes
def Medians(self, geometric=True):
"""Computes median of the elements tri, tet, quad, hex based on the interpolation function
input:
geometric [Bool] geometrically computes median without relying on FEM bases
retruns:
median: [ndarray] of median of elements
bases_at_median: [1D array] of (p=1) bases at median
"""
self.__do_essential_memebers_exist__()
median = None
if geometric == True:
median = np.sum(self.points[self.elements,:],axis=1)/self.elements.shape[1]
return median
else:
try:
from Florence.FunctionSpace import Tri, Tet
from Florence.QuadratureRules import FeketePointsTri, FeketePointsTet
except ImportError:
raise ImportError("This functionality requires florence's support")
if self.element_type == "tri":
eps = FeketePointsTri(2)
middle_point_isoparametric = eps[6,:]
if not np.isclose(sum(middle_point_isoparametric),-0.6666666):
raise ValueError("Median of triangle does not match [-0.3333,-0.3333]. "
"Did you change your nodal spacing or interpolation functions?")
hpBases = Tri.hpNodal.hpBases
bases_for_middle_point = hpBases(0,middle_point_isoparametric[0],
middle_point_isoparametric[1])[0]
median = np.einsum('ijk,j',self.points[self.elements[:,:3],:],bases_for_middle_point)
elif self.element_type == "tet":
middle_point_isoparametric = FeketePointsTet(3)[21]
if not np.isclose(sum(middle_point_isoparametric),-1.5):
raise ValueError("Median of tetrahedral does not match [-0.5,-0.5,-0.5]. "
"Did you change your nodal spacing or interpolation functions?")
# C = self.InferPolynomialDegree() - 1
hpBases = Tet.hpNodal.hpBases
bases_for_middle_point = hpBases(0,middle_point_isoparametric[0],
middle_point_isoparametric[1],middle_point_isoparametric[2])[0]
median = np.einsum('ijk,j',self.points[self.elements[:,:4],:],bases_for_middle_point)
else:
raise NotImplementedError('Median for {} elements not implemented yet'.format(self.element_type))
return median, bases_for_middle_point
def FindElementContainingPoint(self, point, algorithm="fem", find_parametric_coordinate=True,
scaling_factor=5., tolerance=1.0e-7, maxiter=20, use_simple_bases=False, return_on_geometric_finds=False,
initial_guess=None, initial_guesses=None, restart=False):
"""Find which element does a point lie in using specificed algorithm.
The FEM isoparametric coordinate of the point is returned as well.
If the isoparametric coordinate of the point is not required, issue find_parametric_coordinate=False
input:
point: [tuple] XYZ of enquiry point
algorithm: [str] either 'fem' or 'geometric'. The 'fem' algorithm uses k-d tree
search to get the right bounding box around as few elements as possible.
The size of the box can be specified by the user through the keyword scaling_factor.
The geometric algorithm is a lot more stable and converges much quicker.
The geomtric algorithm first identifies the right element using volume check,
then tries all possible combination of initial guesses to get the FEM
isoparametric point. Trying all possible combination with FEM can be potentially
more costly since bounding box size can be large.
return_on_geometric_finds:
[bool] if geometric algorithm is chosen and this option is on, then it returns
the indices of elements as soon as the volume check and no further checks are
done. This is useful for situations when searching for points that are meant to
be in the interior of the elements rather than at the boundaries or nodes
otherwise the number of elements returned by geometric algorithm is going to be
more than one
return:
element_index [int/1D array of ints] element(s) containing the point.
If the point is shared between many elements a 1D array is returned
iso_parametric_point [1D array] the parametric coordinate of the point within the element.
return only if find_parametric_coordinate=True
"""
if restart:
if initial_guesses is None:
if self.element_type == "pent":
initial_guesses = np.array([
[0.,0.],
[1.,0.],
[1.,0.5],
[0.5,1.],
[0.,1.],
])
else:
raise ValueError("restart option for this element type is only supported if initial_guesses are available")
for i in range(initial_guesses.shape[0]):
ret_val = self.FindElementContainingPoint(point, algorithm=algorithm,
find_parametric_coordinate=find_parametric_coordinate,
scaling_factor=scaling_factor, tolerance=tolerance, maxiter=maxiter,
use_simple_bases=use_simple_bases, return_on_geometric_finds=return_on_geometric_finds,
initial_guess=initial_guesses[i,:], restart=False)
if ret_val[1] is not None:
break
return ret_val
self.__do_essential_memebers_exist__()
C = self.InferPolynomialDegree() - 1
if C > 0:
warn("Note that finding a point within higher order curved mesh is not supported yet")
if C > 0 and algorithm == "geometric":
warn("High order meshes are not supported using geometric algorithim. I am going to operate on linear mesh")
if use_simple_bases:
raise ValueError("Simple bases for high order elements are not available")
return
ndim = self.InferSpatialDimension()
assert len(point) == ndim
from Florence.FunctionSpace import PointInversionIsoparametricFEM
candidate_element, candidate_piso = None, None
if self.element_type == "tet" and algorithm == "fem":
algorithm = "geometric"
if algorithm == "fem":
scaling_factor = float(scaling_factor)
max_h = self.EdgeLengths().max()
# max_h=1.
# FOR CURVED ELEMENTS
# max_h = self.LargestSegment().max()
# GET A BOUNDING BOX AROUND THE POINT, n TIMES LARGER THAN MAXIMUM h, WHERE n is the SCALING FACTOR
if ndim==3:
bounding_box = (point[0]-scaling_factor*max_h,
point[1]-scaling_factor*max_h,
point[2]-scaling_factor*max_h,
point[0]+scaling_factor*max_h,
point[1]+scaling_factor*max_h,
point[2]+scaling_factor*max_h)
elif ndim==2:
bounding_box = (point[0]-scaling_factor*max_h,
point[1]-scaling_factor*max_h,
point[0]+scaling_factor*max_h,
point[1]+scaling_factor*max_h)
# SELECT ELEMENTS ONLY WITHIN THE BOUNDING BOX
mesh = deepcopy(self)
idx_kept_element = self.RemoveElements(bounding_box)[1]
if ndim==3:
for i in range(self.nelem):
coord = self.points[self.elements[i,:],:]
p_iso, converged = PointInversionIsoparametricFEM(self.element_type, C, coord, point,
tolerance=tolerance, maxiter=maxiter, verbose=True, use_simple_bases=use_simple_bases,
initial_guess=initial_guess)
if converged:
# if p_iso[0] >= -1. and p_iso[0] <=1. and \
# p_iso[1] >= -1. and p_iso[1] <=1. and \
# p_iso[2] >= -1. and p_iso[2] <=1. :
if (p_iso[0] > -1. or np.isclose(p_iso[0],-1.,rtol=tolerance)) and \
(p_iso[0] < 1. or np.isclose(p_iso[0], 1.,rtol=tolerance)) and \
(p_iso[1] > -1. or np.isclose(p_iso[1],-1.,rtol=tolerance)) and \
(p_iso[1] < 1. or np.isclose(p_iso[1],-1.,rtol=tolerance)) and \
(p_iso[2] > -1. or np.isclose(p_iso[2],-1.,rtol=tolerance)) and \
(p_iso[2] < 1. or np.isclose(p_iso[2], 1.,rtol=tolerance)) :
candidate_element, candidate_piso = i, p_iso
break
elif ndim==2:
for i in range(self.nelem):
coord = self.points[self.elements[i,:],:]
p_iso, converged = PointInversionIsoparametricFEM(self.element_type, C, coord, point,
tolerance=tolerance, maxiter=maxiter, verbose=True, use_simple_bases=use_simple_bases,
initial_guess=initial_guess)
# if p_iso[0] >= -1. and p_iso[0] <=1. and \
# p_iso[1] >= -1. and p_iso[1] <=1.:
# candidate_element, candidate_piso = i, p_iso
# break
if (p_iso[0] > -1. or np.isclose(p_iso[0],-1.,rtol=tolerance)) and \
(p_iso[0] < 1. or np.isclose(p_iso[0], 1.,rtol=tolerance)) and \
(p_iso[1] > -1. or np.isclose(p_iso[1],-1.,rtol=tolerance)) and \
(p_iso[1] < 1. or np.isclose(p_iso[1],-1.,rtol=tolerance)) :
candidate_element, candidate_piso = i, p_iso
break
self.__update__(mesh)
# print(candidate_element)
if candidate_element is not None:
candidate_element = idx_kept_element[candidate_element]
if find_parametric_coordinate:
return candidate_element, candidate_piso
else:
return candidate_element
else:
if self.element_type == "tet":
from Florence.QuadratureRules.FeketePointsTet import FeketePointsTet
initial_guesses = FeketePointsTet(C)
def GetVolTet(a0,b0,c0,d0):
det_array = np.dstack((a0-d0,b0-d0,c0-d0))
# FIND VOLUME OF ALL THE ELEMENTS
volume = 1./6.*np.abs(np.linalg.det(det_array))
return volume
a = self.points[self.elements[:,0],:]
b = self.points[self.elements[:,1],:]
c = self.points[self.elements[:,2],:]
d = self.points[self.elements[:,3],:]
o = np.tile(point,self.nelem).reshape(self.nelem,a.shape[1])
# TOTAL VOLUME
vol = self.Volumes()
# PARTS' VOLUMES
vol0 = GetVolTet(a,b,c,o)
vol1 = GetVolTet(a,b,o,d)
vol2 = GetVolTet(a,o,c,d)
vol3 = GetVolTet(o,b,c,d)
criterion_check = vol0+vol1+vol2+vol3-vol
elems = np.isclose(criterion_check,0.,rtol=tolerance)
elems_idx = np.where(elems==True)[0]
elif self.element_type == "quad":
from Florence.QuadratureRules.GaussLobattoPoints import GaussLobattoPointsQuad
initial_guesses = GaussLobattoPointsQuad(C)
def GetAreaQuad(a0,b0,c0,d0):
# AREA OF QUAD ABCD = AREA OF ABC + AREA OF ACD
a00 = np.ones((a0.shape[0],3),dtype=np.float64); a00[:,:2] = a0
b00 = np.ones((b0.shape[0],3),dtype=np.float64); b00[:,:2] = b0
c00 = np.ones((c0.shape[0],3),dtype=np.float64); c00[:,:2] = c0
d00 = np.ones((d0.shape[0],3),dtype=np.float64); d00[:,:2] = d0
# FIND AREAS ABC
area0 = np.abs(np.linalg.det(np.dstack((a00,b00,c00))))
# FIND AREAS ACD
area1 = np.abs(np.linalg.det(np.dstack((a00,c00,d00))))
# FIND AREAS OF ALL THE ELEMENTS
area = 0.5*(area0+area1)
return area
a = self.points[self.elements[:,0],:]
b = self.points[self.elements[:,1],:]
c = self.points[self.elements[:,2],:]
d = self.points[self.elements[:,3],:]
o = np.tile(point,self.nelem).reshape(self.nelem,a.shape[1])
# TOTAL VOLUME
vol = self.Areas()
# PARTS' VOLUMES - DONT CHANGE THE ORDERING OF SPECIALLY vol1
vol0 = GetAreaQuad(o,c,b,a)
vol1 = GetAreaQuad(o,a,d,c)
criterion_check = vol0+vol1-vol
elems = np.isclose(criterion_check,0.,rtol=tolerance)
elems_idx = np.where(elems==True)[0]
else:
raise NotImplementedError("Geometric algorithm for {} elements not implemented yet".format(self.element_type))
if return_on_geometric_finds:
return elems_idx
for i in range(len(elems_idx)):
coord = self.points[self.elements[elems_idx[i],:],:]
# TRY ALL POSSIBLE INITIAL GUESSES - THIS IS CHEAP AS THE SEARCH SPACE CONTAINS ONLY A
# FEW ELEMENTS
for guess in initial_guesses:
p_iso, converged = PointInversionIsoparametricFEM(self.element_type, C, coord, point,
tolerance=tolerance, maxiter=maxiter, verbose=True,
use_simple_bases=use_simple_bases, initial_guess=guess)
if converged:
break
if converged:
candidate_element, candidate_piso = elems_idx[i], p_iso
break
if find_parametric_coordinate:
return candidate_element, candidate_piso
else:
return candidate_element
def AverageJacobian(self):
"""Computes average Jacobian of elements for all element types over a mesh
This is a generic method that for 1D=lengths, for 2D=areas and for 3D=volumes.
It works for planar and curved elements
"""
self.__do_essential_memebers_exist__()
try:
from Florence import DisplacementFormulation
except ImportError:
raise ValueError("This functionality requires Florence's support")
if self.element_type != "line":
# FOR LINE ELEMENTS THIS APPROACH DOES NOT WORK AS JACOBIAN IS NOT WELL DEFINED
formulation = DisplacementFormulation(self)
sizes = np.zeros(self.nelem)
for elem in range(self.nelem):
LagrangeElemCoords = self.points[self.elements[elem,:],:]
sizes[elem] = formulation.GetAverageJacobian(formulation.function_spaces[0],
LagrangeElemCoords, LagrangeElemCoords, False, elem=elem)
return sizes.mean()
else:
raise ValueError("Not implemented for 1D elements")
def LargestSegment(self, smallest_element=True, nsamples=30,
plot_segment=False, plot_element=False, figure=None, save=False, filename=None):
"""Finds the largest segment that can fit in an element. For curvilinear elements
this measure can be used as (h) for h-refinement studies
input:
smallest_element [bool] if the largest segment size is to be computed in the
smallest element (i.e. element with the smallest area in 2D or
smallest volume in 3D). Default is True. If False, then the largest
segment in the largest element will be computed.
nsample: [int] number of sample points along the curved
edges of the elements. The maximum distance between
all combinations of these points is the largest
segment
plot_segment: [bool] plots segment on tope of [curved/straight] mesh
plot_element: [bool] plots the straight/curved element to which the segment
belongs
figure: [an instance of matplotlib/mayavi.mlab figure for 2D/3D]
save: [bool] wether to save the figure or not
filename: [str] file name for the figure to be save
returns:
largest_segment_length [float] maximum segment length that could be fit within either the
"""
self.__do_memebers_exist__()
if self.element_type == "hex" or self.element_type == "tet":
quantity = self.Volumes()
elif self.element_type == "quad" or self.element_type == "tri":
quantity = self.Areas()
if smallest_element:
omesh = self.GetLocalisedMesh(quantity.argmin())
else:
omesh = self.GetLocalisedMesh(quantity.argmax())
try:
from Florence.PostProcessing import PostProcess
except:
raise ImportError('This function requires florence PostProcessing module')
return
if save:
if filename is None:
raise ValueError("No file name provided. I am going to write one the current directory")
filename = PWD(__file__) + "/output.png"
if self.element_type == "tri":
tmesh = PostProcess.TessellateTris(omesh,np.zeros_like(omesh.points),
plot_edges=True, interpolation_degree=nsamples)
elif self.element_type == "quad":
tmesh = PostProcess.TessellateQuads(omesh,np.zeros_like(omesh.points),
plot_edges=True, interpolation_degree=nsamples)
elif self.element_type == "tet":
tmesh = PostProcess.TessellateTets(omesh,np.zeros_like(omesh.points),
plot_edges=True, interpolation_degree=nsamples)
elif self.element_type == "hex":
tmesh = PostProcess.TessellateHexes(omesh,np.zeros_like(omesh.points),
plot_edges=True, interpolation_degree=nsamples)
ndim = omesh.InferSpatialDimension()
nnode = tmesh.points.shape[0]
largest_segment_lengths = []
nodes = np.array((1,ndim))
for i in range(nnode):
tiled_points = np.tile(tmesh.points[i,:][:,None],nnode).T
segment_lengths = np.linalg.norm(tmesh.points - tiled_points, axis=1)
largest_segment_lengths.append(segment_lengths.max())
nodes = np.vstack((nodes, np.array([i,segment_lengths.argmax()])[None,:]))
largest_segment_lengths = np.array(largest_segment_lengths)
nodes = nodes[1:,:]
largest_segment_length = largest_segment_lengths.max()
corresponding_nodes = nodes[largest_segment_lengths.argmax(),:]
if plot_segment:
segment_coords = tmesh.points[corresponding_nodes,:]
if ndim==2:
import matplotlib.pyplot as plt
if figure == None:
figure = plt.figure()
if plot_element:
if omesh.element_type == "tri":
PostProcess.CurvilinearPlotTri(omesh,
np.zeros_like(omesh.points),plot_points=True,
figure=figure, interpolation_degree=nsamples, show_plot=False)
elif omesh.element_type == "quad":
PostProcess.CurvilinearPlotQuad(omesh,
np.zeros_like(omesh.points),plot_points=True,
figure=figure, interpolation_degree=nsamples, show_plot=False)
tmesh.SimplePlot(figure=figure,show_plot=False)
if save:
plt.savefig(filename,bbox_inches="tight",dpi=300)
plt.show()
elif ndim==3:
import os
os.environ['ETS_TOOLKIT'] = 'qt4'
from mayavi import mlab
if figure is None:
figure = mlab.figure(bgcolor=(1,1,1),fgcolor=(1,1,1),size=(1000,800))
if plot_element:
if omesh.element_type == "tet":
PostProcess.CurvilinearPlotTet(omesh,
np.zeros_like(omesh.points),plot_points=True, point_radius=0.13,
figure=figure, interpolation_degree=nsamples, show_plot=False)
elif omesh.element_type == "hex":
PostProcess.CurvilinearPlotHex(omesh,
np.zeros_like(omesh.points),plot_points=True,
figure=figure, interpolation_degree=nsamples, show_plot=False)
tmesh.GetEdges()
edge_coords = tmesh.points[np.unique(tmesh.all_edges),:]
mlab.triangular_mesh(tmesh.points[:,0],tmesh.points[:,1],tmesh.points[:,2],
tmesh.elements, representation='wireframe', color=(0,0,0))
# # mlab.points3d(edge_coords[:,0],edge_coords[:,1],edge_coords[:,2],color=(1., 99/255., 71./255), scale_factor=0.03)
# # mlab.plot3d(segment_coords[:,0],segment_coords[:,1],segment_coords[:,2], color=(227./255, 66./255, 52./255))
mlab.points3d(edge_coords[:,0],edge_coords[:,1],edge_coords[:,2],color=(1., 99/255., 71./255), scale_factor=0.17)
mlab.plot3d(segment_coords[:,0],segment_coords[:,1],segment_coords[:,2],
color=(227./255, 66./255, 52./255), line_width=10., representation="wireframe")
if save:
mlab.savefig(filename,dpi=300)
mlab.show()
return largest_segment_length
def CheckNodeNumbering(self,change_order_to='retain', verbose=True):
"""Checks for node numbering order of the imported mesh. Mesh can be tri or tet
input:
change_order_to: [str] {'clockwise','anti-clockwise','retain'} changes the order to clockwise,
anti-clockwise or retains the numbering order - default is 'retain'
output:
original_order: [str] {'clockwise','anti-clockwise','retain'} returns the original numbering order"""
self.__do_essential_memebers_exist__()
# CHECK IF IT IS LINEAR MESH
nodeperelem = self.InferNumberOfNodesPerLinearElement()
assert self.elements.shape[1] == nodeperelem
quantity = np.array([])
if self.element_type == "tri":
quantity = self.Areas(with_sign=True)
elif self.element_type == "quad":
quantity = self.Areas(with_sign=True)
elif self.element_type == "tet":
quantity = self.Volumes(with_sign=True)
elif self.element_type == "hex":
quantity = self.Volumes(with_sign=True)
original_order = ''
# CHECK NUMBERING
if (quantity > 0).all():
original_order = 'anti-clockwise'
if change_order_to == 'clockwise':
self.elements = np.fliplr(self.elements)
elif (quantity < 0).all():
original_order = 'clockwise'
if change_order_to == 'anti-clockwise':
self.elements = np.fliplr(self.elements)
else:
original_order = 'mixed'
if change_order_to == 'clockwise':
self.elements[quantity>0,:] = np.fliplr(self.elements[quantity>0,:])
elif change_order_to == 'anti-clockwise':
self.elements[quantity<0,:] = np.fliplr(self.elements[quantity<0,:])
if original_order == 'anti-clockwise':
print(u'\u2713'.encode('utf8')+b' : ','Imported mesh has',original_order,'node ordering')
else:
print(u'\u2717'.encode('utf8')+b' : ','Imported mesh has',original_order,'node ordering')
return original_order
def GetElementsEdgeNumberingTri(self):
"""Finds edges of elements and their flags saying which edge they are [0,1,2].
At most a triangle can have all its three edges on the boundary.
output:
edge_elements: [1D array] array containing elements which have edges
on the boundary
Note that this method sets the self.edge_to_element to edge_elements,
so the return value is not strictly necessary
"""
if isinstance(self.edge_to_element,np.ndarray):
if self.edge_to_element.shape[0] > 1:
return self.edge_to_element
# GET ALL EDGES FROM THE ELEMENT CONNECTIVITY
if self.all_edges is None:
self.GetEdgesTri()
all_edges = np.concatenate((self.elements[:,:2],self.elements[:,[1,2]],
self.elements[:,[2,0]]),axis=0).astype(np.int64)
all_edges, idx = unique2d(all_edges,consider_sort=True,order=False, return_index=True)
edge_elements = np.zeros((all_edges.shape[0],2),dtype=np.int64)
edge_elements[:,0] = idx % self.elements.shape[0]
edge_elements[:,1] = idx // self.elements.shape[0]
self.edge_to_element = edge_elements
return self.edge_to_element
def GetElementsWithBoundaryEdgesTri(self):
"""Finds elements which have edges on the boundary.
At most an element can have all its three edges on the boundary.
output:
edge_elements: [2D array] array containing elements which have edge
on the boundary [cloumn 0] and a flag stating which edges they are [column 1]
"""
if isinstance(self.boundary_edge_to_element,np.ndarray):
if self.boundary_edge_to_element.shape[1] > 1 and self.boundary_edge_to_element.shape[0] > 1:
return self.boundary_edge_to_element
# DO NOT COMPUTE EDGES AND RAISE BECAUSE OF CYCLIC DEPENDENCIES
assert self.elements is not None
assert self.edges is not None
edge_elements = np.zeros((self.edges.shape[0],2),dtype=np.int64)
# FIND WHICH FACE NODES ARE IN WHICH ELEMENT
for i in range(self.edges.shape[0]):
x = []
for j in range(2):
x.append(np.where(self.elements[:,:3]==self.edges[i,j])[0])
# FIND WHICH ELEMENTS CONTAIN ALL FACE NODES - FOR INTERIOR ELEMENTS
# THEIR CAN BE MORE THAN ONE ELEMENT CONTAINING ALL FACE NODES
z = x[0]
for k in range(1,len(x)):
z = np.intersect1d(x[k],z)
# CHOOSE ONLY ONE OF THESE ELEMENTS
edge_elements[i,0] = z[0]
# WHICH COLUMNS IN THAT ELEMENT ARE THE FACE NODES LOCATED
cols = np.array([np.where(self.elements[z[0],:]==self.edges[i,0])[0],
np.where(self.elements[z[0],:]==self.edges[i,1])[0]
])
cols = np.sort(cols.flatten())
if cols[0] == 0 and cols[1] == 1:
edge_elements[i,1] = 0
elif cols[0] == 1 and cols[1] == 2:
edge_elements[i,1] = 1
elif cols[0] == 0 and cols[1] == 2:
edge_elements[i,1] = 2
self.boundary_edge_to_element = edge_elements
return edge_elements
def GetElementsWithBoundaryFacesTet(self):
"""Finds elements which have faces on the boundary.
At most a tetrahedral element can have all its four faces on the boundary.
output:
boundary_face_to_element: [2D array] array containing elements which have face
on the boundary [column 0] and a flag stating which faces they are [column 1]
"""
if self.boundary_face_to_element is not None:
return self.boundary_face_to_element
# DO NOT COMPUTE FACES AND RAISE BECAUSE OF CYCLIC DEPENDENCIES
assert self.elements is not None
assert self.faces is not None
# THIS METHOD ALWAYS RETURNS THE FACE TO ELEMENT ARRAY, AND DOES NOT CHECK
# IF THIS HAS BEEN COMPUTED BEFORE, THE REASON BEING THAT THE FACES CAN COME
# EXTERNALLY WHOSE ARRANGEMENT WOULD NOT CORRESPOND TO THE ONE USED INTERNALLY
# HENCE THIS MAPPING BECOMES NECESSARY
all_faces = np.concatenate((self.elements[:,:3],self.elements[:,[0,1,3]],
self.elements[:,[0,2,3]],self.elements[:,[1,2,3]]),axis=0).astype(self.faces.dtype)
all_faces_in_faces = in2d(all_faces,self.faces[:,:3],consider_sort=True)
all_faces_in_faces = np.where(all_faces_in_faces==True)[0]
boundary_face_to_element = np.zeros((all_faces_in_faces.shape[0],2),dtype=np.int64)
boundary_face_to_element[:,0] = all_faces_in_faces % self.elements.shape[0]
boundary_face_to_element[:,1] = all_faces_in_faces // self.elements.shape[0]
# SO FAR WE HAVE COMPUTED THE ELEMENTS THAT CONTAIN FACES, HOWEVER
# NOTE THAT WE STILL HAVE NOT COMPUTED A MAPPING BETWEEN ELEMENTS AND
# FACES. WE ONLY KNOW WHICH ELEMENTS CONTAIN FACES FROM in2d.
# WE NEED TO FIND THIS MAPPING NOW
C = self.InferPolynomialDegree() - 1
node_arranger = NodeArrangementTet(C)[0]
# WE NEED TO DO THIS DUMMY RECONSTRUCTION OF FACES BASED ON ELEMENTS
faces = self.elements[boundary_face_to_element[:,0][:,None],
node_arranger[boundary_face_to_element[:,1],:]].astype(self.faces.dtype)
# CHECK FOR THIS CONDITION AS ARRANGEMENT IS NO LONGER MAINTAINED
assert np.sum(faces[:,:3].astype(np.int64) - self.faces[:,:3].astype(np.int64)) == 0
# NOW GET THE ROW MAPPING BETWEEN OLD FACES AND NEW FACES
from Florence.Tensor import shuffle_along_axis
row_mapper = shuffle_along_axis(faces[:,:3],self.faces[:,:3],consider_sort=True)
# UPDATE THE MAP
boundary_face_to_element[:,:] = boundary_face_to_element[row_mapper,:]
self.boundary_face_to_element = boundary_face_to_element
return self.boundary_face_to_element
def GetElementsFaceNumberingTet(self):
"""Finds which faces belong to which elements and which faces of the elements
they are e.g. 0, 1, 2 or 3.
output:
face_elements: [2D array] nfaces x 2 array containing elements which have face
on the boundary with their flags
Note that this method also sets the self.face_to_element to face_elements,
so the return value is not strictly necessary
"""
if isinstance(self.face_to_element,np.ndarray):
if self.face_to_element.shape[0] > 1:
return self.face_to_element
assert self.elements is not None
# GET ALL FACES FROM ELEMENT CONNECTIVITY
if self.all_faces is None:
self.GetFacesTet()
all_faces = np.concatenate((self.elements[:,:3],self.elements[:,[0,1,3]],
self.elements[:,[0,2,3]],self.elements[:,[1,2,3]]),axis=0).astype(np.int64)
_,idx = unique2d(all_faces,consider_sort=True,order=False, return_index=True)
face_elements = np.zeros((self.all_faces.shape[0],2),dtype=np.int64)
face_elements[:,0] = idx % self.elements.shape[0]
face_elements[:,1] = idx // self.elements.shape[0]
self.face_to_element = face_elements
return self.face_to_element
def ArrangeFacesTet(self):
"""Arranges all the faces of tetrahedral elements
with triangular type node ordering """
if self.all_faces is None:
self.all_faces = self.GetFacesTet()
if self.face_to_element is None:
self.GetElementsFaceNumberingTet()
# DETERMINE DEGREE
p = self.InferPolynomialDegree()
node_arranger = NodeArrangementTet(p-1)[0]
# for i in range(self.face_to_element.shape[0]):
# self.all_faces = self.elements[self.face_to_element[i,0],node_arranger[self.face_to_element[i,1],:]]
self.all_faces = self.elements[self.face_to_element[:,0][:,None],node_arranger[self.face_to_element[:,1],:]]
def GetElementsEdgeNumberingQuad(self):
"""Finds edges of elements and their flags saying which edge they are [0,1,2,3].
At most a quad can have all its four edges on the boundary.
output:
edge_elements: [1D array] array containing elements which have edges
on the boundary
Note that this method sets the self.edge_to_element to edge_elements,
so the return value is not strictly necessary
"""
if isinstance(self.edge_to_element,np.ndarray):
if self.edge_to_element.shape[0] > 1:
return self.edge_to_element
# GET ALL EDGES FROM THE ELEMENT CONNECTIVITY
if self.all_edges is None:
self.GetEdgesQuad()
p = self.InferPolynomialDegree()
# FIND WHICH FACE NODES ARE IN WHICH ELEMENT
node_arranger = NodeArrangementQuad(p-1)[0]
# GET ALL EDGES FROM THE ELEMENT CONNECTIVITY
all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]],
self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(np.int64)
all_edges, idx = unique2d(all_edges,consider_sort=True,order=False, return_index=True)
edge_elements = np.zeros((all_edges.shape[0],2),dtype=np.int64)
# edge_elements = np.zeros((self.edges.shape[0],2),dtype=np.int64)
edge_elements[:,0] = idx % self.elements.shape[0]
edge_elements[:,1] = idx // self.elements.shape[0]
self.edge_to_element = edge_elements
return self.edge_to_element
def GetElementsWithBoundaryEdgesQuad(self):
"""Finds elements which have edges on the boundary.
At most a quad can have all its four edges on the boundary.
output:
boundary_edge_to_element: [2D array] array containing elements which have face
on the boundary [cloumn 0] and a flag stating which edges they are [column 1]
"""
if isinstance(self.boundary_edge_to_element,np.ndarray):
if self.boundary_edge_to_element.shape[1] > 1 and self.boundary_edge_to_element.shape[0] > 1:
return self.boundary_edge_to_element
# DO NOT COMPUTE EDGES AND RAISE BECAUSE OF CYCLIC DEPENDENCIES
assert self.elements is not None
assert self.edges is not None
p = self.InferPolynomialDegree()
# FIND WHICH FACE NODES ARE IN WHICH ELEMENT
node_arranger = NodeArrangementQuad(p-1)[0]
# GET ALL EDGES FROM THE ELEMENT CONNECTIVITY
all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]],
self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(self.edges.dtype)
# GET UNIQUE ROWS
uniques, idx, inv = unique2d(all_edges,consider_sort=True,order=False,return_index=True,return_inverse=True)
# ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY EDGES
freqs_inv = itemfreq(inv)
edges_ext_flags = freqs_inv[freqs_inv[:,1]==1,0]
# NOT ARRANGED
edges = uniques[edges_ext_flags,:]
# DETERMINE WHICH FACE OF THE ELEMENT THEY ARE
boundary_edge_to_element = np.zeros((edges_ext_flags.shape[0],2),dtype=np.int64)
# FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR
# IN ELEMENT CONNECTIVITY
# THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF EDGES
all_edges_in_edges = in2d(all_edges,self.edges,consider_sort=True)
all_edges_in_edges = np.where(all_edges_in_edges==True)[0]
boundary_edge_to_element[:,0] = all_edges_in_edges % self.elements.shape[0]
boundary_edge_to_element[:,1] = all_edges_in_edges // self.elements.shape[0]
# ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS
self.boundary_edge_to_element = boundary_edge_to_element
return self.boundary_edge_to_element
def GetElementsWithBoundaryFacesHex(self):
"""Finds elements which have faces on the boundary.
At most a hexahedral can have all its 8 faces on the boundary.
output:
boundary_face_to_element: [2D array] array containing elements which have face
on the boundary [column 0] and a flag stating which faces they are [column 1]
"""
# DO NOT COMPUTE FACES AND RAISE BECAUSE OF CYCLIC DEPENDENCIES
assert self.elements is not None
assert self.faces is not None
if self.boundary_face_to_element is not None:
return self.boundary_face_to_element
# THIS METHOD ALWAYS RETURNS THE FACE TO ELEMENT ARRAY, AND DOES NOT CHECK
# IF THIS HAS BEEN COMPUTED BEFORE, THE REASON BEING THAT THE FACES CAN COME
# EXTERNALLY WHOSE ARRANGEMENT WOULD NOT CORRESPOND TO THE ONE USED INTERNALLY
# HENCE THIS MAPPING BECOMES NECESSARY
C = self.InferPolynomialDegree() - 1
node_arranger = NodeArrangementHex(C)[0]
all_faces = np.concatenate((np.concatenate((
np.concatenate((np.concatenate((np.concatenate((self.elements[:,node_arranger[0,:]],
self.elements[:,node_arranger[1,:]]),axis=0),self.elements[:,node_arranger[2,:]]),axis=0),
self.elements[:,node_arranger[3,:]]),axis=0),self.elements[:,node_arranger[4,:]]),axis=0),
self.elements[:,node_arranger[5,:]]),axis=0).astype(self.faces.dtype)
all_faces_in_faces = in2d(all_faces,self.faces[:,:4],consider_sort=True)
all_faces_in_faces = np.where(all_faces_in_faces==True)[0]
boundary_face_to_element = np.zeros((all_faces_in_faces.shape[0],2),dtype=np.int64)
boundary_face_to_element[:,0] = all_faces_in_faces % self.elements.shape[0]
boundary_face_to_element[:,1] = all_faces_in_faces // self.elements.shape[0]
# SO FAR WE HAVE COMPUTED THE ELEMENTS THAT CONTAIN FACES, HOWEVER
# NOTE THAT WE STILL HAVE NOT COMPUTED A MAPPING BETWEEN ELEMENTS AND
# FACES. WE ONLY KNOW WHICH ELEMENTS CONTAIN FACES FROM in2d.
# WE NEED TO FIND THIS MAPPING NOW
# WE NEED TO DO THIS DUMMY RECONSTRUCTION OF FACES BASED ON ELEMENTS
faces = self.elements[boundary_face_to_element[:,0][:,None],
node_arranger[boundary_face_to_element[:,1],:]].astype(self.faces.dtype)
# CHECK FOR THIS CONDITION AS ARRANGEMENT IS NO LONGER MAINTAINED
assert np.sum(faces[:,:4].astype(np.int64) - self.faces[:,:4].astype(np.int64)) == 0
# NOW GET THE ROW MAPPING BETWEEN OLD FACES AND NEW FACES
from Florence.Tensor import shuffle_along_axis
row_mapper = shuffle_along_axis(faces[:,:4],self.faces[:,:4],consider_sort=True)
# UPDATE THE MAP
boundary_face_to_element[:,:] = boundary_face_to_element[row_mapper,:]
self.boundary_face_to_element = boundary_face_to_element
return self.boundary_face_to_element
def GetElementsFaceNumberingHex(self):
"""Finds which faces belong to which elements and which faces of the elements
they are e.g. 0, 1, 2 or 3.
output:
face_elements: [2D array] nfaces x 2 array containing elements which have face
on the boundary with their flags
Note that this method also sets the self.face_to_element to face_elements,
so the return value is not strictly necessary
"""
if isinstance(self.face_to_element,np.ndarray):
if self.face_to_element.shape[0] > 1:
return self.face_to_element
assert self.elements is not None
# GET ALL FACES FROM ELEMENT CONNECTIVITY
if self.all_faces is None:
self.GetFacesHex()
C = self.InferPolynomialDegree() - 1
node_arranger = NodeArrangementHex(C)[0]
all_faces = np.concatenate((np.concatenate((
np.concatenate((np.concatenate((np.concatenate((self.elements[:,node_arranger[0,:]],
self.elements[:,node_arranger[1,:]]),axis=0),self.elements[:,node_arranger[2,:]]),axis=0),
self.elements[:,node_arranger[3,:]]),axis=0),self.elements[:,node_arranger[4,:]]),axis=0),
self.elements[:,node_arranger[5,:]]),axis=0).astype(self.all_faces.dtype)
_,idx = unique2d(all_faces,consider_sort=True,order=False, return_index=True)
face_elements = np.zeros((self.all_faces.shape[0],2),dtype=np.int64)
face_elements[:,0] = idx % self.elements.shape[0]
face_elements[:,1] = idx // self.elements.shape[0]
self.face_to_element = face_elements
return self.face_to_element
def ArrangeFacesHex(self):
"""Arranges all the faces of hexahedral elements
with quadrilateral type node ordering """
if self.all_faces is None:
self.all_faces = self.GetFacesHex()
if self.face_to_element is None:
self.GetElementsFaceNumberingHex()
# DETERMINE DEGREE
p = self.InferPolynomialDegree()
node_arranger = NodeArrangementHex(p-1)[0]
self.all_faces = self.elements[self.face_to_element[:,0][:,None],node_arranger[self.face_to_element[:,1],:]]
def GetNodeCommonality(self):
"""Finds the elements sharing a node.
The return values are linked lists [list of numpy of arrays].
Each numpy array within the list gives the elements that contain a given node.
As a result the size of the linked list is nnode
outputs:
els: [list of numpy arrays] element numbers containing nodes
pos: [list of numpy arrays] elemental positions of the nodes
res_flat: [list of numpy arrays] position of nodes in the
flattened element connectivity.
"""
self.__do_essential_memebers_exist__()
elements = self.elements.ravel()
idx_sort = np.argsort(elements)
sorted_elements = elements[idx_sort]
vals, idx_start = np.unique(sorted_elements, return_index=True)
# Sets of indices
flat_pos = np.split(idx_sort, idx_start[1:])
els = np.split(idx_sort // int(self.elements.shape[1]), idx_start[1:])
pos = np.split(idx_sort % int(self.elements.shape[1]), idx_start[1:])
# In case one wants to return only the duplicates i.e. filter keeping only items occurring more than once
# vals, idx_start, count = np.unique(sorted_elements, return_counts=True, return_index=True)
# vals = vals[count > 1]
# res = filter(lambda x: x.size > 1, res)
return els, pos, flat_pos
def Read(self, filename=None, element_type="tri", reader_type=None, reader_type_format=None,
reader_type_version=None, order=0, read_surface_info=False, **kwargs):
"""Convenience mesh reader method to dispatch call to subsequent apporpriate methods"""
if reader_type != 'read_separate':
if not isinstance(filename,str):
raise ValueError("filename must be a string")
return
if reader_type is None:
if filename.split('.')[-1] == "msh":
reader_type = "gmsh"
elif filename.split('.')[-1] == "obj":
reader_type = "obj"
elif filename.split('.')[-1] == "unv":
reader_type = "unv"
elif filename.split('.')[-1] == "fro":
reader_type = "fro"
elif filename.split('.')[-1] == "dat":
for key in kwargs.keys():
inkey = insensitive(key)
if "connectivity" in inkey and "delimiter" not in inkey:
reader_type = "read_separate"
break
if reader_type is None:
raise ValueError("Mesh file format was not undertood. Please specify it using reader_type keyword")
self.filename = filename
self.reader_type = reader_type
self.reader_type_format = reader_type_format
self.reader_type_version = reader_type_version
if self.reader_type == 'salome':
self.ReadSalome(filename, element_type=element_type, read_surface_info=read_surface_info)
elif reader_type == 'GID':
self.ReadGIDMesh(filename, element_type, order)
elif self.reader_type == 'gmsh':
self.ReadGmsh(filename, element_type=element_type, read_surface_info=read_surface_info)
elif self.reader_type == 'obj':
self.ReadOBJ(filename, element_type=element_type, read_surface_info=read_surface_info)
elif self.reader_type == 'fenics':
self.ReadFenics(filename, element_type)
elif self.reader_type == 'vtu':
self.ReadVTK(filename)
elif self.reader_type == 'unv':
self.ReadUNV(filename, element_type)
elif self.reader_type == 'fro':
self.ReadFRO(filename, element_type)
elif self.reader_type == 'read_separate':
# READ MESH FROM SEPARATE FILES FOR CONNECTIVITY AND COORDINATES
from Florence.Utils import insensitive
# return insensitive(kwargs.keys())
for key in kwargs.keys():
inkey = insensitive(key)
if "connectivity" in inkey and "delimiter" not in inkey:
connectivity_file = kwargs.get(key)
if "coordinate" in insensitive(key) and "delimiter" not in inkey:
coordinates_file = kwargs.get(key)
self.ReadSeparate(connectivity_file,coordinates_file,element_type,
delimiter_connectivity=',',delimiter_coordinates=',')
elif self.reader_type == 'ReadHDF5':
self.ReadHDF5(filename)
self.nnode = self.points.shape[0]
# MAKE SURE MESH DATA IS CONTIGUOUS
self.points = np.ascontiguousarray(self.points)
self.elements = np.ascontiguousarray(self.elements)
return
def ReadSalome(self, filename, element_type="tri", read_surface_info=False):
"""Salome .dat format mesh reader"""
if element_type == "line":
el = "102"
bel = ""
elif element_type == "tri":
el = "203"
bel = "102"
elif element_type == "quad":
el = "204"
bel = "102"
elif element_type == "tet":
el = "304"
bel = "203"
elif element_type == "hex":
el = "308"
bel = "204"
if read_surface_info is True and element_type == "line":
warn("No surface info for lines. I am going to ignore this")
read_surface_info = False
with open(filename,'r') as f:
lines = f.readlines()
info = lines[0].rstrip().split()
self.nnode = int(info[0])
all_nelem = int(info[1])
nodes = lines[1:self.nnode+1]
points = []
for line in nodes:
points.append([float(i) for i in line.rstrip().split()[1:4]])
self.points = np.array(points,copy=True)
self.nnode = self.points.shape[0]
edges, faces, elements = [], [], []
for counter in range(self.nnode+1,len(lines)):
line = lines[counter].rstrip().split()
if read_surface_info:
if bel == line[1]:
faces.append([int(i) for i in line[2:]])
if el == line[1]:
elements.append([int(i) for i in line[2:]])
self.element_type = element_type
self.elements = np.array(elements,dtype=np.int64,copy=True) - 1
self.nelem = self.elements.shape[0]
if self.nelem == 0:
raise ValueError("file does not contain {} elements".format(element_type))
ndim = self.InferSpatialDimension()
if self.element_type == "tri" or self.element_type == "quad":
self.GetEdges()
self.GetBoundaryEdges()
elif self.element_type == "tet" or self.element_type == "hex":
self.GetFaces()
self.GetBoundaryFaces()
self.GetBoundaryEdges()
def ReadSeparate(self,connectivity_file,coordinates_file,mesh_type, edges_file = None, faces_file = None,
delimiter_connectivity=' ',delimiter_coordinates=' ', delimiter_edges=' ', delimiter_faces=' ',
ignore_cols_connectivity=None,ignore_cols_coordinates=None,ignore_cols_edges=None,
ignore_cols_faces=None,index_style='c'):
"""Read meshes when the element connectivity and nodal coordinates are written in separate files
input:
connectivity_file: [str] filename containing element connectivity
coordinates_file: [str] filename containing nodal coordinates
mesh_type: [str] type of mesh tri/tet/quad/hex
edges_file: [str] filename containing edges of the mesh (if not given gets computed)
faces_file: [str] filename containing faces of the mesh (if not given gets computed)
delimiter_connectivity: [str] delimiter for connectivity_file - default is white space/tab
delimiter_coordinates: [str] delimiter for coordinates_file - default is white space/tab
delimiter_edges: [str] delimiter for edges_file - default is white space/tab
delimiter_faces: [str] delimiter for faces_file - default is white space/tab
ignore_cols_connectivity: [int] no of columns to be ignored (from the start) in the connectivity_file
ignore_cols_coordinates: [int] no of columns to be ignored (from the start) in the coordinates_file
ignore_cols_edges: [int] no of columns to be ignored (from the start) in the connectivity_file
ignore_cols_faces: [int] no of columns to be ignored (from the start) in the coordinates_file
index_style: [str] either 'c' C-based (zero based) indexing or 'f' fortran-based
(one based) indexing for elements connectivity - default is 'c'
"""
index = 0
if index_style == 'c':
index = 1
from time import time; t1=time()
self.elements = np.loadtxt(connectivity_file,dtype=np.int64,delimiter=delimiter_connectivity) - index
# self.elements = np.fromfile(connectivity_file,dtype=np.int64,count=-1) - index
self.points = np.loadtxt(coordinates_file,dtype=np.float64,delimiter=delimiter_coordinates)
if ignore_cols_connectivity != None:
self.elements = self.elements[ignore_cols_connectivity:,:]
if ignore_cols_coordinates != None:
self.points = self.points[ignore_cols_coordinates:,:]
if (mesh_type == 'tri' or mesh_type == 'quad') and self.points.shape[1]>2:
self.points = self.points[:,:2]
self.element_type = mesh_type
self.nelem = self.elements.shape[0]
# self.edges = None
if edges_file is None:
if mesh_type == "tri":
self.GetBoundaryEdgesTri()
elif mesh_type == "tet":
self.GetBoundaryEdgesTet()
else:
self.edges = np.loadtxt(edges_file,dtype=np.int64,delimiter=delimiter_edges) - index
if ignore_cols_edges !=None:
self.edges = self.edges[ignore_cols_edges:,:]
if faces_file is None:
if mesh_type == "tet":
self.GetBoundaryFacesTet()
else:
self.faces = np.loadtxt(faces_file,dtype=np.int64,delimiter=delimiter_edges) - index
if ignore_cols_faces !=None:
self.faces = self.faces[ignore_cols_faces:,:]
def ReadGIDMesh(self,filename,mesh_type,polynomial_order = 0):
"""Read GID meshes"""
if self.elements is not None and self.points is not None:
self.__reset__()
self.element_type = mesh_type
ndim, self.nelem, nnode, nboundary = np.fromfile(filename,dtype=np.int64,count=4,sep=' ')
if ndim==2 and mesh_type=="tri":
content = np.fromfile(filename,dtype=np.float64,count=4+3*nnode+4*self.nelem,sep=' ')
self.points = content[4:4+3*nnode].reshape(nnode,3)[:,1:]
self.elements = content[4+3*nnode:4+3*nnode+4*self.nelem].reshape(self.nelem,4)[:,1:].astype(np.int64)
self.elements -= 1
self.GetBoundaryEdgesTri()
if ndim==3 and mesh_type=="tet":
content = np.fromfile(filename,dtype=np.float64,count=4+4*nnode+5*self.nelem+9*nboundary,sep=' ')
self.points = content[4:4+4*nnode].reshape(nnode,4)[:,1:]
self.elements = content[4+4*nnode:4+4*nnode+5*self.nelem].reshape(self.nelem,5)[:,1:].astype(np.int64)
self.elements -= 1
face_flags = content[4*nnode+5*self.nelem+4:].reshape(nboundary,9)[:,1:].astype(np.int64)
self.faces = np.ascontiguousarray(face_flags[:,1:4] - 1)
self.face_to_surface = np.ascontiguousarray(face_flags[:,7] - 1)
# self.boundary_face_to_element = np.ascontiguousarray(face_flags[:,0])
# self.GetBoundaryFacesTet()
self.GetBoundaryEdgesTet()
def ReadVTK(self, filename, element_type=None):
"""Read mesh from a vtu file"""
try:
import vtkInterface as vtki
except IOError:
raise IOError("vtkInterface is not installed. Please install it first using 'pip install vtkInterface'")
self.__reset__()
vmesh = vtki.UnstructuredGrid(filename)
flat_elements = np.copy(np.delete(vmesh.cells, vmesh.offset))
if not np.all(vmesh.celltypes == vmesh.celltypes[0]):
raise IOError("Cannot read VTK files with hybrid elements")
cellflag = vmesh.celltypes[0]
if cellflag == 5:
self.element_type = "tri"
divider = 3
elif cellflag == 9:
self.element_type = "quad"
divider = 4
elif cellflag == 10:
self.element_type = "tet"
divider = 4
elif cellflag == 12:
self.element_type = "hex"
divider = 8
elif cellflag == 3:
self.element_type = "line"
divider = 2
else:
raise IOError("VTK element type not understood")
if element_type is not None:
if self.element_type != element_type:
raise ValueError("VTK file does not contain {} elements".format(element_type))
self.elements = np.ascontiguousarray(flat_elements.reshape(int(flat_elements.shape[0]/divider),divider), dtype=np.uint64)
self.points = np.ascontiguousarray(vmesh.points, dtype=np.float64)
self.nelem = self.elements.shape[0]
self.nnode = self.points.shape[0]
if self.points.shape[1] == 3:
if np.allclose(self.points[:,2],0.):
self.points = np.ascontiguousarray(self.points[:,:2])
if self.element_type == "tri" or self.element_type == "quad":
self.GetEdges()
self.GetBoundaryEdges()
elif self.element_type == "tet" or self.element_type == "hex":
self.GetFaces()
self.GetBoundaryFaces()
self.GetBoundaryEdges()
return
def ReadGmsh(self, filename, element_type, p=1, read_surface_info=False):
"""Read gmsh (.msh) file"""
try:
fid = open(filename, "r")
except IOError:
print("File '%s' not found." % (filename))
sys.exit()
msh_version = None
# CHECK MSH FILE VERSION
if "MeshFormat" in fid.readline():
msh_version = int(np.floor(float(fid.readline().split(" ")[0])))
if 4 != msh_version and 2 != msh_version:
raise IOError("Only ASCII version 2 and 4 (>=4.1) .msh file formats are supported")
if 4 != msh_version and 2 != msh_version:
raise IOError("Only ASCII version 2 and 4 (>=4.1) .msh file formats are supported")
fid.close()
if self.elements is not None and self.points is not None:
self.__reset__()
self.filename = filename
bel = -1
if element_type == "line":
el = 1
elif element_type == "tri":
if p == 1:
el = 2
bel = 1
elif p == 2:
el = 9
bel = 8
elif element_type == "quad":
if p == 1:
el = 3
bel = 1
elif p == 2:
el = 10
bel = 8
elif element_type == "tet":
if p == 1:
el = 4
bel = 2
elif p == 2:
el = 11
bel = 9
elif element_type == "hex":
if p == 1:
el = 5
bel = 3
elif p == 2:
el = 12
bel = 10
else:
raise ValueError("Element type not understood")
# NEW FAST READER
var = 0 # for old gmsh versions - needs checks
node_blocks, elem_blocks, face_blocks = None, None, None
rem_nnode, rem_nelem, rem_faces = int(1e09), int(1e09), int(1e09)
face_counter = 0
for line_counter, line in enumerate(open(filename)):
item = line.rstrip()
plist = item.split()
if plist[0] == "Dimension":
self.ndim = plist[1]
elif plist[0] == "Vertices":
rem_nnode = line_counter+1
continue
elif plist[0] == "$Nodes":
rem_nnode = line_counter+1
continue
elif plist[0] == "Triangles":
rem_faces = line_counter+1
continue
elif plist[0] == "Tetrahedra":
rem_nelem = line_counter+1
continue
elif plist[0] == "$Elements":
rem_nelem = line_counter+1
var = 1
continue
if msh_version == 2:
if rem_nnode == line_counter:
self.nnode = int(plist[0])
if rem_faces == line_counter:
face_counter = int(plist[0])
if rem_nelem == line_counter:
self.nelem = int(plist[0])
break
else:
if rem_nnode == line_counter:
node_blocks, self.nnode = int(plist[0]), int(plist[1])
if rem_faces == line_counter:
face_blocks, face_counter = int(plist[0]), int(plist[1])
if rem_nelem == line_counter:
elem_blocks, self.nelem = int(plist[0]), int(plist[1])
break
points, elements, faces, face_to_surface = [],[], [], []
if msh_version == 2:
# RE-READ
ns = self.InferNumberOfNodesPerElement(p=p,element_type=element_type)
for line_counter, line in enumerate(open(filename)):
item = line.rstrip()
plist = item.split()
if var == 0:
if line_counter > rem_nnode and line_counter < self.nnode+rem_nnode+1:
points.append([float(i) for i in plist[:3]])
if line_counter > rem_nelem and line_counter < self.nelem+rem_nelem+1:
elements.append([int(i) for i in plist[:4]])
elif var == 1:
if line_counter > rem_nnode and line_counter < self.nnode+rem_nnode+1:
points.append([float(i) for i in plist[1:]])
if line_counter > rem_nelem and line_counter < self.nelem+rem_nelem+1:
if int(plist[1]) == el:
elements.append([int(i) for i in plist[-ns:]])
# READ SURFACE INFO - CERTAINLY ONLY IF SURFACE ELEMENT TYPE IS QUADS/TRIS
if read_surface_info:
if int(plist[1]) == bel:
faces.append([int(i) for i in plist[5:]])
face_to_surface.append(int(plist[4]))
elif msh_version == 4:
# RE-READ
fid = open(filename)
content = fid.readlines()
# READ NODES
nodes_content = content[rem_nnode+1:2*self.nnode+node_blocks+rem_nnode+1]
incrementer, line_number = 0, 0
# LOOP OVER BLOCKS
for i in range(node_blocks):
incrementer = int(nodes_content[line_number].rstrip().split()[3])
# LOOP OVER NODES OF EACH BLOCK
for j in range(line_number+1, line_number+2*incrementer+1):
plist = nodes_content[j].rstrip().split()
if len(plist) == 1:
continue
points.append([float(plist[k]) for k in range(0,len(plist))])
line_number += 2*incrementer + 1
# READ ELEMENTS
elems_content = content[rem_nelem+1:self.nelem+elem_blocks+rem_nelem+1]
incrementer, line_number = 0, 0
# LOOP OVER BLOCKS
for i in range(elem_blocks):
incrementer = int(elems_content[line_number].rstrip().split()[3])
if el == int(elems_content[line_number].rstrip().split()[2]):
# LOOP OVER ELEMENTS OF EACH BLOCK
for j in range(line_number+1, line_number+incrementer+1):
plist = elems_content[j].rstrip().split()
elements.append([int(plist[k]) for k in range(1,len(plist))])
line_number += incrementer + 1
if read_surface_info:
# READ FACES
incrementer, line_number = 0, 0
# LOOP OVER BLOCKS
for i in range(elem_blocks):
incrementer = int(elems_content[line_number].rstrip().split()[3])
surface_tag = int(elems_content[line_number].rstrip().split()[1])
if bel == int(elems_content[line_number].rstrip().split()[2]):
# LOOP OVER FACES OF EACH BLOCK
for j in range(line_number+1, line_number+incrementer+1):
plist = elems_content[j].rstrip().split()
faces.append([int(plist[k]) for k in range(1,len(plist))])
face_to_surface.append(surface_tag)
line_number += incrementer + 1
self.points = np.array(points,copy=True)
self.elements = np.array(elements,copy=True) - 1
# REORDER CONNECTIVITY
if p == 2:
# TRI6
if el == 9:
self.elements = self.elements[:,[0,1,2,3,5,4]]
# QUAD9
elif el == 10:
self.elements = self.elements[:,[0, 1, 2, 3, 4, 7, 8, 5, 6]]
# TET10
elif el == 11:
self.elements = self.elements[:,[0,1,2,3,4,6,5,7,9,8]]
# CORRECT
self.nelem = self.elements.shape[0]
self.nnode = self.points.shape[0]
if self.nelem == 0:
raise ValueError("msh file does not contain {} elements".format(element_type))
if read_surface_info:
self.faces = np.array(faces,copy=True) - 1
self.face_to_surface = np.array(face_to_surface, dtype=np.int64, copy=True).flatten()
self.face_to_surface -= 1
# CHECK IF FILLED
if isinstance(self.face_to_surface,list):
if not self.face_to_surface:
self.face_to_surface = None
elif isinstance(self.face_to_surface,np.ndarray):
if self.face_to_surface.shape[0]==0:
self.face_to_surface = None
if self.points.shape[1] == 3:
if np.allclose(self.points[:,2],0.):
self.points = np.ascontiguousarray(self.points[:,:2])
self.element_type = element_type
if self.element_type == "tri" or self.element_type == "quad":
self.GetEdges()
self.GetBoundaryEdges()
elif self.element_type == "tet" or self.element_type == "hex":
self.GetFaces()
self.GetBoundaryFaces()
self.GetBoundaryEdges()
return
def ReadOBJ(self, filename, element_type="tri"):
try:
fid = open(filename, "r")
except IOError:
print("File '%s' not found." % (filename))
sys.exit()
if self.elements is not None and self.points is not None:
self.__reset__()
self.filename = filename
bel = -1
if element_type == "line":
el = 2
elif element_type == "tri":
el = 3
bel = 2
elif element_type == "quad":
el = 4
bel = 2
elif element_type == "tet":
el = 4
bel = 3
elif element_type == "hex":
el = 8
bel = 4
else:
raise ValueError("Element type not understood")
# Read
points, elements, faces = [],[], []
# Normal and texture coordinates
normals, textures = [], []
# Connectivity for texture
telements = []
for line_counter, line in enumerate(open(filename,'r')):
item = line.rstrip()
plist = item.split()
if not plist:
continue
if plist[0] == 'v':
points.append([float(i) for i in plist[1:4]])
if plist[0] == 'f' and len(plist) > el:
cplist = deepcopy(plist)
for i in range(1,el+1):
if "/" in plist[i]:
plist[i] = plist[i].split("/")[0]
elements.append([int(i) for i in plist[1:el+1]])
plist = cplist
has_texture = False
for i in range(1,el+1):
if "/" in plist[i]:
has_texture = True
plist[i] = plist[i].split("/")[1]
if has_texture:
telements.append([int(i) for i in plist[1:el+1]])
if plist[0] == 'vn':
normals.append([float(i) for i in plist[1:4]])
if plist[0] == 'vt':
textures.append([float(i) for i in plist[1:4]])
self.points = np.array(points,copy=True)
self.elements = np.array(elements,copy=True) - 1
if normals:
self.normals = np.array(normals,copy=True)
if textures:
self.textures = np.array(textures,copy=True)
if telements:
self.telements = np.array(telements,copy=True) - 1
# CORRECT
self.nelem = self.elements.shape[0]
self.nnode = self.points.shape[0]
if self.nelem == 0:
raise ValueError("obj file does not contain {} elements".format(element_type))
if self.points.shape[1] == 3:
if np.allclose(self.points[:,2],0.):
self.points = np.ascontiguousarray(self.points[:,:2])
self.element_type = element_type
ndim = self.InferSpatialDimension()
if self.element_type == "tri" or self.element_type == "quad":
self.GetEdges()
self.GetBoundaryEdges()
elif self.element_type == "tet" or self.element_type == "hex":
self.GetFaces()
self.GetBoundaryFaces()
self.GetBoundaryEdges()
def ReadFenics(self, filename, element_type):
"""Read ASCII fenics meshes"""
if element_type == "tet":
etype = "tetrahedron"
elif element_type == "hex":
etype = "hexahedron"
elif element_type == "tri":
etype = "triangle"
elif element_type == "quad":
etype = "quadrilateral"
import xml.etree.cElementTree as ET
root = ET.parse(filename).getroot()
X = []
T = []
for child in root:
if child.attrib['celltype'] != etype:
raise ValueError("xml file does not contain {} elements".format(element_type))
for child in root:
for cchild in child:
if cchild.tag == "vertices":
if element_type == "tet" or element_type == "hex":
for child3 in cchild:
x = float(child3.attrib['x'])
y = float(child3.attrib['y'])
z = float(child3.attrib['z'])
X.append([x,y,z])
elif element_type == "tri" or element_type == "quad":
for child3 in cchild:
x = float(child3.attrib['x'])
y = float(child3.attrib['y'])
X.append([x,y])
elif cchild.tag == "cells":
if element_type == "tet":
for child3 in cchild:
v0 = int(child3.attrib['v0'])
v1 = int(child3.attrib['v1'])
v2 = int(child3.attrib['v2'])
v3 = int(child3.attrib['v3'])
T.append([v0,v1,v2,v3])
elif element_type == "tri":
for child3 in cchild:
v0 = int(child3.attrib['v0'])
v1 = int(child3.attrib['v1'])
v2 = int(child3.attrib['v2'])
T.append([v0,v1,v2])
X = np.array(X)
T = np.array(T,dtype=np.int64)
self.elements = T
self.points = X
self.element_type = element_type
self.nelem = self.elements.shape[0]
self.nnode = self.points.shape[0]
if self.points.shape[1] == 3:
if np.allclose(self.points[:,2],0.):
self.points = np.ascontiguousarray(self.points[:,:2])
ndim = self.InferSpatialDimension()
if self.element_type == "tri" or self.element_type == "quad":
self.GetEdges()
self.GetBoundaryEdges()
elif self.element_type == "tet" or self.element_type == "hex":
self.GetFaces()
self.GetBoundaryFaces()
self.GetBoundaryEdges()
def ReadUNV(self, filename, element_type="tri"):
"""Read I-DEAS universal files
"""
try:
fid = open(filename, "r")
fid.close()
except IOError:
print("File '%s' not found." % (filename))
sys.exit()
if self.elements is not None and self.points is not None:
self.__reset__()
self.filename = filename
with open(filename, 'r') as fid:
file_content = fid.readlines()
points, elements = [], []
is_point_line, is_element_line = False, False
is_point_record_line, is_element_record_line = True, True
celems, cpoints = [], []
first_point_line, first_element_line = True, True
read_element_type = element_type
point_ids, element_ids = [], []
for counter, line in enumerate(file_content):
sline = line.rstrip().split()
# Read points
if len(sline) == 1 and sline[0] == "2411":
is_point_line = True
is_element_line = False
if len(sline) == 1 and sline[0] == "2412":
is_point_line = False
is_element_line = True
if len(sline) == 1 and sline[0] == "2477":
is_point_line = False
is_element_line = False
is_point_line = False
is_element_line = False
if is_point_line:
if first_point_line or sline[0] == "-1":
first_point_line = False
continue
if is_point_record_line:
point_id = int(sline[0])
point_ids.append(point_id)
is_point_record_line = False
else:
cpoints = [float(i.replace('D', 'E')) for i in sline]
points.append(cpoints)
is_point_record_line = True
if is_element_line:
if first_element_line or sline[0] == "-1":
first_element_line = False
continue
if is_element_record_line:
# Get number of nodes for this element from the record line
nnode = int(sline[5])
# Read element type
read_element_type = sline[1]
# Set record line to False
is_element_record_line = False
else:
# If it is not a record line then read elements
for i in sline:
celems.append(int(i) - 1)
# If all elements are read set record line to True else False
if len(celems) == nnode:
is_element_record_line = True
else:
is_element_record_line = False
if is_element_record_line:
elements.append(celems)
celems = []
self.points = np.copy(points)
self.elements = np.copy(elements)
# MAP POINTS TO GROUND
point_ids = np.copy(point_ids)
sorter = np.argsort(point_ids)
self.points = self.points[sorter,:]
# MAP TO GROUND
unique_elements, inv_elements = np.unique(self.elements, return_inverse=True)
aranger = np.arange(self.points.shape[0])
self.elements = aranger[inv_elements].reshape(self.elements.shape[0],self.elements.shape[1])
self.element_type = element_type
if read_element_type == "92":
element_type = "tri"
self.elements = self.elements[:,[0,2,4,1,5,3]]
self.degree = 2
elif read_element_type == "118":
element_type = "tet"
self.elements = self.elements[:,[0,2,4,9,1,5,3,6,7,8]]
self.degree = 2
self.nelem = self.elements.shape[0]
self.nnode = self.points.shape[0]
while True:
if np.allclose(self.elements[-1,:],0.):
self.elements = self.elements[:-1, :]
else:
break
if self.points.shape[1] == 3:
if np.allclose(self.points[:,2],0.):
self.points = np.ascontiguousarray(self.points[:,:2])
if self.element_type == "tri" or self.element_type == "quad":
self.GetEdges()
self.GetBoundaryEdges()
elif self.element_type == "tet" or self.element_type == "hex":
self.GetFaces()
self.GetBoundaryFaces()
self.GetBoundaryEdges()
return
def ReadFRO(self, filename, element_type):
"""Read fro mesh"""
if self.elements is not None and self.points is not None:
self.__reset__()
if element_type == "tri":
el = 5
else:
raise NotImplementedError("Reading FRO files for {} elements not yet implemented".format(element_type))
content = np.fromfile(filename, dtype=np.float64, sep=" ")
nelem = int(content[0])
nnode = int(content[1])
nsurface = int(content[3])
points = content[8:8+4*nnode].reshape(nnode,4)[:,1:]
elements = content[8+4*nnode::].reshape(nelem,el)[:,1:-1].astype(np.int64) - 1
face_to_surface = content[8+4*nnode::].reshape(nelem,el)[:,-1].astype(np.int64) - 1
self.nelem = nelem
self.nnode = nnode
self.elements = np.ascontiguousarray(elements)
self.element_type = element_type
self.points = np.ascontiguousarray(points)
if self.element_type == "tri" or self.element_type == "quad":
self.GetEdges()
self.GetBoundaryEdges()
elif self.element_type == "tet" or self.element_type == "hex":
self.GetFaces()
self.GetBoundaryFaces()
self.GetBoundaryEdges()
self.face_to_surface = np.ascontiguousarray(face_to_surface)
return
def ReadHDF5(self,filename):
"""Read mesh from MATLAB HDF5 file format"""
if self.elements is not None and self.points is not None:
self.__reset__()
DictOutput = loadmat(filename)
# GENERIC READER - READS EVERYTHING FROM HDF5 AND ASSIGNS IT TO MESH OBJECT
for key, value in DictOutput.items():
if isinstance(DictOutput[key],np.ndarray):
if "elements" in key or "edge" in key or "face" in key:
setattr(self, key, np.ascontiguousarray(value).astype(np.uint64))
else:
setattr(self, key, np.ascontiguousarray(value))
else:
setattr(self, key, value)
if isinstance(self.element_type,np.ndarray):
self.element_type = str(self.element_type[0])
if isinstance(self.nelem,np.ndarray):
self.nelem = int(self.nelem[0])
for key in self.__dict__.keys():
if isinstance(self.__dict__[str(key)],np.ndarray):
if self.__dict__[str(key)].size == 1:
self.__dict__[str(key)] = np.asscalar(self.__dict__[str(key)])
def ReadDCM(self, filename, element_type="quad", ndim=2):
""" EZ4U mesh reader
"""
if element_type != "quad":
raise NotImplementedError("DCM/EZ4U reader for {} elements not yet implemented".format(element_type))
self.__reset__()
self.element_type = element_type
content = np.fromfile(filename, dtype=np.float64, sep=" ")
self.nnode = int(content[0])
self.nelem = int(content[1])
if ndim==2:
self.points = content[3:self.nnode*4+3].reshape(self.nnode,4)[:,[1,2]]
else:
self.points = content[3:self.nnode*4+3].reshape(self.nnode,4)[:,1:]
self.elements = content[self.nnode*4+3:].astype(np.int64).reshape(self.nelem,11)[:,7:] - 1
if self.points.shape[1] == 3:
if np.allclose(self.points[:,2],0.):
self.points = np.ascontiguousarray(self.points[:,:2])
self.GetEdgesQuad()
self.GetBoundaryEdgesQuad()
def SimplePlot(self, to_plot='faces', color=None, edge_color=None, point_color=None,
plot_points=False, plot_faces=None, plot_edges=True, point_radius=None,
save=False, filename=None, figure=None, show_plot=True, show_axis=False, grid="off"):
"""Simple mesh plot
to_plot: [str] only for 3D. 'faces' to plot only boundary faces
or 'all_faces' to plot all faces
grid: [str] None, "on" or "off"
"""
self.__do_essential_memebers_exist__()
# REDIRECT FOR 3D SURFACE MESHES
if self.element_type == "tri" or self.element_type == "quad":
if self.points.ndim == 2 and self.points.shape[1] == 3:
mesh = self.CreateDummy3DMeshfrom2DMesh()
mesh.SimplePlot(to_plot=to_plot, color=color, plot_points=plot_points,
plot_edges=plot_edges, point_radius=point_radius,
save=save, filename=filename, figure=figure, show_plot=show_plot,
show_axis=show_axis, grid=grid)
return
ndim = self.InferSpatialDimension()
edim = self.InferElementalDimension()
if color is None:
color=(197/255.,241/255.,197/255.)
if edge_color is None:
edge_color = (0,0,0)
if point_color is None:
point_color = (0,0,0)
if grid is None:
grid = "off"
if point_radius is None:
if ndim == 2:
point_radius = 0.75
else:
point_radius = 0.1
if save:
if filename is None:
warn('File name not given. I am going to write one in the current directory')
filename = PWD(__file__) + "/output.png"
else:
if filename.split(".")[-1] == filename:
filename += ".png"
import matplotlib as mpl
if self.element_type == "tri" or self.element_type == "quad" or self.element_type == "pent":
import matplotlib.pyplot as plt
if figure is None:
figure = plt.figure()
elif self.element_type == "tet" or self.element_type == "hex":
import os
os.environ['ETS_TOOLKIT'] = 'qt4'
# os.environ['ETS_TOOLKIT'] = 'wx'
from mayavi import mlab
if to_plot == 'all_faces':
if self.all_faces is None:
self.GetFaces()
faces = self.all_faces
else:
if self.faces is None:
self.GetBoundaryFaces()
faces = self.faces
if figure is None:
figure = mlab.figure(bgcolor=(1,1,1),fgcolor=(1,1,1),size=(1000,800))
if color is not None:
if isinstance(color,tuple):
if len(color) != 3:
raise ValueError("Color should be given in a rgb/RGB tuple format with 3 values i.e. (x,y,z)")
if color[0] > 1.0 or color[1] > 1.0 or color[2] > 1.0:
color = (color[0]/255.,color[1]/255.,color[2]/255.)
elif isinstance(color,str):
color = mpl.colors.hex2color(color)
if edge_color is not None:
if isinstance(edge_color,tuple):
if len(edge_color) != 3:
raise ValueError("Color should be given in a rgb/RGB tuple format with 3 values i.e. (x,y,z)")
if edge_color[0] > 1.0 or edge_color[1] > 1.0 or edge_color[2] > 1.0:
edge_color = (edge_color[0]/255.,edge_color[1]/255.,edge_color[2]/255.)
elif isinstance(edge_color,str):
edge_color = mpl.colors.hex2color(edge_color)
if plot_faces is None:
if edim == 3:
plot_faces = True
else:
plot_faces = False
if self.element_type == "tri":
plt.triplot(self.points[:,0],self.points[:,1], self.elements[:,:3],color=edge_color)
if plot_faces:
plt.tricontourf(self.points[:,0], self.points[:,1], self.elements[:,:3],
np.ones(self.points.shape[0]), 100, alpha=0.3)
if plot_points:
plt.plot(self.points[:,0],self.points[:,1], "o", color=point_color, markersize=point_radius)
plt.axis("equal")
if not show_axis:
plt.axis('off')
if grid == "on":
plt.grid("on")
if show_plot:
plt.show()
elif self.element_type == "tet":
if plot_faces:
mlab.triangular_mesh(self.points[:,0],self.points[:,1],
self.points[:,2],faces[:,:3],color=color)
radius = 1e-00
if plot_edges:
mlab.triangular_mesh(self.points[:,0],self.points[:,1],self.points[:,2], faces[:,:3],
line_width=radius,tube_radius=radius,color=edge_color,
representation='wireframe')
if plot_points:
mlab.points3d(self.points[:,0],self.points[:,1],self.points[:,2],
color=point_color,mode='sphere',scale_factor=point_radius)
# svpoints = self.points[np.unique(self.faces),:]
# mlab.points3d(svpoints[:,0],svpoints[:,1],svpoints[:,2],color=(0,0,0),mode='sphere',scale_factor=0.005)
# mlab.view(azimuth=135, elevation=45, distance=7, focalpoint=None,
# roll=0, reset_roll=True, figure=None)
if show_plot:
mlab.show()
elif self.element_type=="quad":
C = self.InferPolynomialDegree() - 1
pdim = self.points.shape[1]
edge_elements = self.GetElementsEdgeNumberingQuad()
reference_edges = NodeArrangementQuad(C)[0]
reference_edges = np.concatenate((reference_edges,reference_edges[:,1,None]),axis=1)
reference_edges = np.delete(reference_edges,1,1)
self.GetEdgesQuad()
x_edges = np.zeros((C+2,self.all_edges.shape[0]))
y_edges = np.zeros((C+2,self.all_edges.shape[0]))
z_edges = np.zeros((C+2,self.all_edges.shape[0]))
BasesOneD = np.eye(2,2)
for iedge in range(self.all_edges.shape[0]):
ielem = edge_elements[iedge,0]
edge = self.elements[ielem,reference_edges[edge_elements[iedge,1],:]]
if pdim == 2:
x_edges[:,iedge], y_edges[:,iedge] = self.points[edge,:].T
elif pdim == 3:
x_edges[:,iedge], y_edges[:,iedge], z_edges[:,iedge] = self.points[edge,:].T
plt.plot(x_edges,y_edges,'-', color=edge_color)
if plot_points:
plt.plot(self.points[:,0],self.points[:,1], "o", color=point_color, markersize=point_radius)
if plot_faces:
plt.tricontourf(self.points[:,0], self.points[:,1], self.elements[:,:3],
np.ones(self.points.shape[0]), 100, alpha=0.3)
plt.tricontourf(self.points[:,0], self.points[:,1], self.elements[:,[0,2,3]],
np.ones(self.points.shape[0]), 100, alpha=0.3)
plt.axis('equal')
if not show_axis:
plt.axis('off')
if grid == "on":
plt.grid("on")
if show_plot:
plt.show()
elif self.element_type == "hex":
if to_plot == "all_faces":
ProjectionFlags = np.ones(faces.shape[0],dtype=np.int64)
else:
ProjectionFlags = None
from Florence.PostProcessing import PostProcess
tmesh = PostProcess.TessellateHexes(self,np.zeros_like(self.points),plot_points=True,
interpolation_degree=0, ProjectionFlags=ProjectionFlags)
Xplot = tmesh.points
Tplot = tmesh.elements
# color=(197/255.,241/255.,197/255.)
point_line_width = .002
if plot_faces:
trimesh_h = mlab.triangular_mesh(Xplot[:,0], Xplot[:,1], Xplot[:,2], Tplot,
line_width=point_line_width,color=color)
if plot_edges:
src = mlab.pipeline.scalar_scatter(tmesh.x_edges.T.copy().flatten(),
tmesh.y_edges.T.copy().flatten(), tmesh.z_edges.T.copy().flatten())
src.mlab_source.dataset.lines = tmesh.connections
h_edges = mlab.pipeline.surface(src, color = edge_color, line_width=3)
# AVOID WARNINGS
# lines = mlab.pipeline.stripper(src)
# h_edges = mlab.pipeline.surface(lines, color = edge_color, line_width=3)
# mlab.view(azimuth=135, elevation=45, distance=7, focalpoint=None,
# roll=0, reset_roll=True, figure=None)
if plot_points:
mlab.points3d(self.points[:,0],self.points[:,1],self.points[:,2],
color=point_color,mode='sphere',scale_factor=point_radius)
if show_plot:
mlab.show()
elif self.element_type == "line":
import os
os.environ['ETS_TOOLKIT'] = 'qt4'
from mayavi import mlab
if figure is None:
figure = mlab.figure(bgcolor=(1,1,1),fgcolor=(1,1,1),size=(1000,800))
if self.points.ndim == 1:
self.points = self.points[:,None]
points = np.zeros((self.points.shape[0],3))
if self.points.shape[1] == 1:
points[:,0] = np.copy(self.points[:,0])
if self.points.shape[1] == 2:
points[:,:2] = np.copy(self.points)
elif self.points.shape[1] == 3:
points = np.copy(self.points)
if plot_edges:
src = mlab.pipeline.scalar_scatter(points[:,0],points[:,1],points[:,2])
src.mlab_source.dataset.lines = self.elements[:,:2]
lines = mlab.pipeline.stripper(src)
h_edges = mlab.pipeline.surface(lines, color = (0,0,0), line_width=2)
if plot_points:
h_points = mlab.points3d(points[:,0],points[:,1],points[:,2],color=(0,0,0),mode='sphere',scale_factor=point_radius)
if show_plot:
mlab.show()
else:
raise NotImplementedError("SimplePlot for {} not implemented yet".format(self.element_type))
if save:
ndim = self.InferSpatialDimension()
if ndim == 2:
plt.savefig(filename,format="png",dpi=300)
else:
mlab.savefig(filename,dpi=300)
def PlotMeshNumbering(self, figure=None, show_plot=True):
"""Plots element and node numbers on top of the triangular mesh"""
self.__do_essential_memebers_exist__()
import matplotlib.pyplot as plt
import matplotlib as mpl
if self.element_type == "tri":
if figure is None:
figure = plt.figure()
plt.triplot(self.points[:,0],self.points[:,1], self.elements[:,:3])
plt.tricontourf(self.points[:,0], self.points[:,1], self.elements[:,:3], np.ones(self.points.shape[0]), 100,alpha=0.3)
for i in range(0,self.elements.shape[0]):
coord = self.points[self.elements[i,:],:]
x_avg = np.sum(coord[:,0])/self.elements.shape[1]
y_avg = np.sum(coord[:,1])/self.elements.shape[1]
plt.text(x_avg,y_avg,str(i),backgroundcolor='#F88379',ha='center')
for i in range(0,self.points.shape[0]):
plt.text(self.points[i,0],self.points[i,1],str(i),backgroundcolor='#0087BD',ha='center')
plt.axis('equal')
if show_plot:
plt.show()
elif self.element_type == "quad":
if figure is None:
figure = plt.figure()
point_radius = 3.
C = self.InferPolynomialDegree() - 1
edge_elements = self.GetElementsEdgeNumberingQuad()
reference_edges = NodeArrangementQuad(C)[0]
reference_edges = np.concatenate((reference_edges,reference_edges[:,1,None]),axis=1)
reference_edges = np.delete(reference_edges,1,1)
self.GetEdgesQuad()
x_edges = np.zeros((C+2,self.all_edges.shape[0]))
y_edges = np.zeros((C+2,self.all_edges.shape[0]))
BasesOneD = np.eye(2,2)
for iedge in range(self.all_edges.shape[0]):
ielem = edge_elements[iedge,0]
edge = self.elements[ielem,reference_edges[edge_elements[iedge,1],:]]
x_edges[:,iedge], y_edges[:,iedge] = self.points[edge,:].T
plt.plot(x_edges,y_edges,'-k')
for i in range(self.elements.shape[0]):
coord = self.points[self.elements[i,:],:]
x_avg = np.sum(coord[:,0])/self.elements.shape[1]
y_avg = np.sum(coord[:,1])/self.elements.shape[1]
plt.text(x_avg,y_avg,str(i),backgroundcolor='#F88379',ha='center')
for i in range(0,self.points.shape[0]):
plt.text(self.points[i,0],self.points[i,1],str(i),backgroundcolor='#0087BD',ha='center')
plt.axis('equal')
if show_plot:
plt.show()
elif self.element_type == "tet" or self.element_type == "hex":
import matplotlib as mpl
import os
os.environ['ETS_TOOLKIT'] = 'qt4'
from mayavi import mlab
if figure is None:
figure = mlab.figure(bgcolor=(1,1,1),fgcolor=(1,1,1),size=(800,600))
view = mlab.view()
figure.scene.disable_render = True
color = mpl.colors.hex2color('#F88379')
linewidth = 3.
# trimesh_h = mlab.triangular_mesh(self.points[:,0],
# self.points[:,1], self.points[:,2], self.faces[:,:3],
# line_width=linewidth,tube_radius=linewidth,color=(0,0.6,0.4),
# representation='wireframe') # representation='surface'
# # CHANGE LIGHTING OPTION
# trimesh_h.actor.property.interpolation = 'phong'
# trimesh_h.actor.property.specular = 0.1
# trimesh_h.actor.property.specular_power = 5
# PLOTTING EDGES
from Florence.PostProcessing import PostProcess
tmesh = PostProcess(3,3).Tessellate(self, np.zeros_like(self.points), interpolation_degree=0,
plot_points=True, plot_edges=True, plot_surfaces=False)
x_edges = tmesh.x_edges
y_edges = tmesh.y_edges
z_edges = tmesh.z_edges
connections = tmesh.connections
src = mlab.pipeline.scalar_scatter(x_edges.T.copy().flatten(), y_edges.T.copy().flatten(), z_edges.T.copy().flatten())
src.mlab_source.dataset.lines = connections
h_edges = mlab.pipeline.surface(src, color = (0,0.6,0.4), line_width=linewidth)
# AVOID WARNINGS
# lines = mlab.pipeline.stripper(src)
# h_edges = mlab.pipeline.surface(lines, color = (0,0.6,0.4), line_width=linewidth)
# ELEMENT NUMBERING
# for i in range(0,self.elements.shape[0]):
# coord = self.points[self.elements[i,:],:]
# x_avg = np.sum(coord[:,0])/self.elements.shape[1]
# y_avg = np.sum(coord[:,1])/self.elements.shape[1]
# z_avg = np.sum(coord[:,2])/self.elements.shape[1]
# # mlab.text3d(x_avg,y_avg,z_avg,str(i),color=color)
# mlab.text3d(x_avg,y_avg,z_avg,str(i),color=(0,0,0.),scale=2)
# POINT NUMBERING
for i in range(self.elements.shape[0]):
for j in range(self.elements.shape[1]):
text_obj = mlab.text3d(self.points[self.elements[i,j],0],
self.points[self.elements[i,j],1],self.points[self.elements[i,j],2],str(self.elements[i,j]),
color=(0,0,0.),scale=0.05)
figure.scene.disable_render = False
if show_plot:
# mlab.view(*view)
mlab.show()
def WriteVTK(self, filename=None, result=None, fmt="binary", interpolation_degree=10, ProjectionFlags=None):
"""Write mesh/results to vtu
inputs:
fmt: [str] VTK writer format either "binary" or "xml".
"xml" files do not support big vtk/vtu files
typically greater than 2GB whereas "binary" files can. Also "xml" writer is
in-built whereas "binary" writer depends on evtk/pyevtk module
interpolation_degree: [int] used only for writing high order curved meshes
"""
self.__do_essential_memebers_exist__()
if fmt == "xml":
pass
elif fmt == "binary":
try:
from pyevtk.hl import pointsToVTK, linesToVTK, gridToVTK, unstructuredGridToVTK
from pyevtk.vtk import VtkVertex, VtkLine, VtkTriangle, VtkQuad, VtkTetra, VtkPyramid, VtkHexahedron
except ImportError:
raise ImportError("Could not import evtk. Install it using 'pip install pyevtk'")
else:
raise ValueError("Writer format not understood")
elements = np.copy(self.elements)
cellflag = None
if self.element_type =='tri':
cellflag = 5
offset = 3
if self.elements.shape[1]==6:
cellflag = 22
offset = 6
elif self.element_type =='quad':
cellflag = 9
offset = 4
if self.elements.shape[1]==8:
cellflag = 23
offset = 8
if self.element_type =='tet':
cellflag = 10
offset = 4
if self.elements.shape[1]==10:
cellflag = 24
offset = 10
# CHANGE NUMBERING ORDER FOR PARAVIEW
para_arange = [0,4,1,6,2,5,7,8,9,3]
elements = elements[:,para_arange]
elif self.element_type == 'hex':
cellflag = 12
offset = 8
if self.elements.shape[1] == 20:
cellflag = 25
offset = 20
elif self.element_type == 'line':
cellflag = 3
offset = 2
if filename is None:
warn('File name not specified. I am going to write one in the current directory')
filename = os.path.join(PWD(__file__), "output.vtu")
if ".vtu" in filename and fmt == "binary":
filename = filename.split('.')[0]
if ".vtu" not in filename and fmt == "xml":
filename = filename + ".vtu"
if self.InferPolynomialDegree() > 1:
try:
from Florence.PostProcessing import PostProcess
from Florence.VariationalPrinciple import DisplacementFormulation
except ImportError:
raise RuntimeError("Writing high order elements to VTK is not supported yet")
if result is not None and result.ndim > 1:
raise NotImplementedError("Writing multliple or vector/tensor valued results to binary vtk not supported yet")
return
else:
if result is None:
result = np.zeros_like(self.points)[:,:,None]
if result.ndim == 1:
result = result.reshape(result.shape[0],1,1)
pp = PostProcess(3,3)
pp.SetMesh(self)
pp.SetSolution(result)
pp.SetFormulation(DisplacementFormulation(self,compute_post_quadrature=False))
pp.WriteVTK(filename,quantity=0,interpolation_degree=interpolation_degree, ProjectionFlags=ProjectionFlags)
return
if self.InferSpatialDimension() == 2:
points = np.zeros((self.points.shape[0],3))
points[:,:2] = self.points
else:
points = self.points
if result is None:
if fmt == "xml":
write_vtu(Verts=self.points, Cells={cellflag:elements},fname=filename)
elif fmt == "binary":
unstructuredGridToVTK(filename,
np.ascontiguousarray(points[:,0]),np.ascontiguousarray(points[:,1]),
np.ascontiguousarray(points[:,2]), np.ascontiguousarray(elements.ravel()),
np.arange(0,offset*self.nelem,offset)+offset, np.ones(self.nelem)*cellflag)
else:
if isinstance(result, np.ndarray):
if result.ndim > 1:
if result.size == result.shape[0]:
result = result.flatten()
if fmt == "xml":
if result.ndim > 1:
if result.shape[0] == self.nelem:
write_vtu(Verts=self.points, Cells={cellflag:elements},
cvdata={cellflag:result.ravel()},fname=filename)
elif result.shape[0] == self.points.shape[0]:
write_vtu(Verts=self.points, Cells={cellflag:elements},
pvdata=result.ravel(),fname=filename)
else:
if result.shape[0] == self.nelem:
write_vtu(Verts=self.points, Cells={cellflag:elements},cdata=result,fname=filename)
elif result.shape[0] == self.points.shape[0]:
write_vtu(Verts=self.points, Cells={cellflag:elements},pdata=result,fname=filename)
elif fmt == "binary":
if result.ndim <= 1:
if result.shape[0] == self.nelem:
unstructuredGridToVTK(filename,
np.ascontiguousarray(points[:,0]),np.ascontiguousarray(points[:,1]),
np.ascontiguousarray(points[:,2]), np.ascontiguousarray(elements.ravel()),
np.arange(0,offset*self.nelem,offset)+offset, np.ones(self.nelem)*cellflag,
cellData={'result':np.ascontiguousarray(result.ravel())})
elif result.shape[0] == self.points.shape[0]:
unstructuredGridToVTK(filename,
np.ascontiguousarray(points[:,0]),np.ascontiguousarray(points[:,1]),
np.ascontiguousarray(points[:,2]), np.ascontiguousarray(elements.ravel()),
np.arange(0,offset*self.nelem,offset)+offset, np.ones(self.nelem)*cellflag,
pointData={'result':np.ascontiguousarray(result.ravel())})
else:
raise NotImplementedError("Writing multliple or vector/tensor valued results to binary vtk not supported yet")
def WriteHDF5(self, filename=None, external_fields=None):
"""Write to MATLAB's HDF5 format
external_fields: [dict or tuple] of fields to save together with the mesh
for instance desired results. If a tuple is given keys in
dictionary will be named results_0, results_1 and so on"""
# DO NOT WRITE IF POINTS DO NOT EXIST - THIS IS TO PREVENT ACCIDENTAL WRITING OF
# POTENTIALLU EMPTY MESH OBJECT
if self.points is None:
warn("Nothing to write")
return
Dict = deepcopy(self.__dict__)
if external_fields is not None:
if isinstance(external_fields,dict):
Dict.update(external_fields)
elif isinstance(external_fields,tuple):
for counter, fields in enumerate(external_fields):
Dict['results_'+str(counter)] = fields
else:
raise AssertionError("Fields should be either tuple or a dict")
if filename is None:
pwd = os.path.dirname(os.path.realpath(__file__))
filename = pwd+'/output.mat'
for key in list(Dict.keys()):
if Dict[str(key)] is None:
del Dict[str(key)]
savemat(filename, Dict, do_compression=True)
def WriteGmsh(self, filename, write_surface_info=False):
"""Write mesh to a .msh (gmsh format) file"""
self.__do_essential_memebers_exist__()
mesh = deepcopy(self)
p = self.InferPolynomialDegree()
# if p > 1:
# mesh = self.GetLinearMesh(remap=True)
element_type = mesh.element_type
edim = mesh.InferElementalDimension()
# THESE TAGS ARE DIFFERENT FROM THE GMSH READER TAGS
bel = -1
if element_type == "line":
el = 1
elif element_type == "tri":
if p == 1:
el = 2
bel = 1
else:
el = 9
bel = 8
elif element_type == "quad":
if p == 1:
el = 3
bel = 1
elif p == 2:
el = 10
bel = 8
elif element_type == "tet":
if p == 1:
el = 4
bel = 2
elif p == 2:
el = 11
bel = 9
elif element_type == "hex":
el = 5
bel = 3
else:
raise ValueError("Element type not understood")
elements = np.copy(mesh.elements).astype(np.int64)
points = mesh.points[np.unique(elements),:]
if el == 9:
elements = elements[:,[0,1,2,3,5,4]]
elif el == 10:
elements = elements[:,[0, 1, 2, 3, 4, 7, 8, 5, 6]]
elif el == 11:
elements = elements[:,[0,1,2,3,4,6,5,7,9,8]]
# Take care of a corner case where nnode != points.shape[0]
if mesh.nnode != points.shape[0]:
mesh.nnode = points.shape[0]
if points.shape[1] == 2:
points = np.hstack((points,np.zeros((points.shape[0],1))))
points_repr = np.zeros((points.shape[0],points.shape[1]+1), dtype=object)
points_repr[:,0] = | np.arange(mesh.nnode) | numpy.arange |
import unittest
import numpy
from become_yukarin.dataset import dataset
class TestDataset(unittest.TestCase):
def setUp(self):
self.sample_rate = 24000
self.len_time = len_time = 100
self.fft_size = fft_size = 1024
self.order = order = 59
self.dummy_feature = dataset.AcousticFeature(
f0=numpy.arange(len_time).reshape((len_time, -1)),
spectrogram=numpy.arange(len_time * (fft_size // 2 + 1)).reshape((len_time, -1)),
aperiodicity=numpy.arange(len_time * (fft_size // 2 + 1)).reshape((len_time, -1)),
mfcc=numpy.arange(len_time * (order + 1)).reshape((len_time, -1)),
voiced=(numpy.arange(len_time) % 2 == 1).reshape((len_time, -1)),
)
self.feature_sizes = dataset.AcousticFeature.get_sizes(
sampling_rate=self.sample_rate,
order=self.order,
)
def test_encode_decode_feature(self):
encode_feature = dataset.EncodeFeatureProcess(['mfcc'])
decode_feature = dataset.DecodeFeatureProcess(['mfcc'], self.feature_sizes)
e = encode_feature(self.dummy_feature, test=True)
d = decode_feature(e, test=True)
self.assertTrue( | numpy.all(self.dummy_feature.mfcc == d.mfcc) | numpy.all |
import numpy as np
import torch
import torch.nn.functional as F
import skimage.measure as sk
import time
import pyrender
import pymesh
import trimesh
from pyemd import emd_samples
import chamfer_python
import binvox_rw
from glob import glob
D2R = np.pi/180.0
voxsize = 32
sample_size = 2048
def RotatePhi(phi):
return np.array([[1, 0, 0, 0],
[0, np.cos(D2R*phi), np.sin(D2R*phi), 0],
[0, -np.sin(D2R*phi), np.cos(D2R*phi), 0],
[0, 0, 0, 1]])
def RotateAzimuth(phi):
return np.array([[np.cos(D2R*phi), np.sin(D2R*phi), 0, 0],
[-np.sin(D2R*phi), np.cos(D2R*phi), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
def RotateAlongAxis(theta, a, b, c):
return np.array([[a**2*(1-np.cos(D2R*theta)) + np.cos(D2R*theta), a*b*(1-np.cos(D2R*theta)) - c*np.sin(D2R*theta), a*c*(1-np.cos(D2R*theta)) + b*np.sin(D2R*theta), 0],
[a*b*(1-np.cos(D2R*theta)) + c*np.sin(D2R*theta), b**2*(1-np.cos(D2R*theta)) + np.cos(D2R*theta), b*c*(1-np.cos(D2R*theta)) - a*np.sin(D2R*theta), 0],
[a*c*(1-np.cos(D2R*theta)) - b*np.sin(D2R*theta), b*c*(1-np.cos(D2R*theta)) + a*np.sin(D2R*theta), c**2*(1-np.cos(D2R*theta)) + np.cos(D2R*theta), 0],
[0, 0, 0, 1]])
# generate meshgrid
# [depth, height, width]
def get_meshgrid(depth = voxsize, height = voxsize, width = voxsize, ratio = 1.0):
x_mesh = np.repeat(np.repeat(np.linspace(-ratio, ratio, width)[np.newaxis, :], height, axis=0)[np.newaxis, :, :], depth, axis=0)
y_mesh = np.repeat(np.repeat(np.linspace(-ratio, ratio, height)[:, np.newaxis], width, axis=-1)[np.newaxis, :, :], depth, axis=0)
z_mesh = np.repeat(np.repeat(np.linspace(-ratio, ratio, depth)[:, np.newaxis], height, axis= -1)[:,:, np.newaxis], width, axis=-1)
x_expand = np.expand_dims(x_mesh, axis = -1)
y_expand = np.expand_dims(y_mesh, axis = -1)
z_expand = np.expand_dims(z_mesh, axis = -1)
meshgrid = np.concatenate((x_expand, np.concatenate((y_expand, z_expand), axis = -1)), axis = -1)
return meshgrid
# transform meshgrid given transformation matrix
def get_transformed_meshgrid(meshgrid, transform_matrix, depth = voxsize, height = voxsize, width = voxsize):
meshgrid_flat = meshgrid.transpose(3, 0, 1, 2).reshape(3,-1)
one = np.ones((1, meshgrid_flat.shape[1]))
meshgrid_expand = np.vstack((meshgrid_flat, one))
transformed_meshgrid = (transform_matrix @ meshgrid_expand)
transformed_meshgrid = (transformed_meshgrid[0:3, :]/transformed_meshgrid[3, :]).reshape(3, depth, height, width).transpose(1, 2, 3, 0)
return torch.tensor(transformed_meshgrid, dtype=torch.float)
######################
# single transform #
######################
# compute transformation matrix
def get_transform_matrix(azimuth, elevation, scale = np.sqrt(3)):
rot_base = RotateAlongAxis(90, 0, 0, 1) @ RotateAlongAxis(-90, 1, 0, 0)
rot_m = RotateAlongAxis(azimuth, 0, 1, 0) @ RotateAlongAxis(-elevation, 1, 0, 0) @ rot_base
sca_m = np.array([[scale, 0, 0, 0],
[0, scale, 0, 0],
[0, 0, scale, 0],
[0, 0, 0, 1]])
return rot_m @ sca_m
# group function for transform voxel in pytorch tensor
def get_transformed_vox(vox_torch, azimuth, elevation, scale = np.sqrt(3)):
meshgird = get_transformed_meshgrid(get_meshgrid(voxsize, voxsize, voxsize), get_transform_matrix(azimuth, elevation, scale), voxsize, voxsize, voxsize)
transformedVox = F.grid_sample(vox_torch, meshgird.unsqueeze(0), mode='bilinear', padding_mode='zeros', align_corners=False)
return transformedVox[0]
########################
# Relative transform #
########################
def get_relative_transform_matrix(azimuth_1, elevation_1, azimuth_2, elevation_2):
rot_m = RotateAlongAxis(elevation_1, 0, 0, 1) @ RotateAlongAxis(azimuth_1, 1, 0, 0) @ RotateAlongAxis(azimuth_2, 1, 0, 0) @ RotateAlongAxis(elevation_2, 0, 0, 1)
scale = 1
#scale = 1/np.sqrt(3)
sca_m = np.array([[scale, 0, 0, 0],
[0, scale, 0, 0],
[0, 0, scale, 0],
[0, 0, 0, 1]])
return rot_m @ sca_m
def get_relative_transformed_vox(vox_torch, azimuth_1, elevation_1, azimuth_2, elevation_2, device, voxsize = 32, align_mode = 'zeros'):
meshgird = get_transformed_meshgrid(get_meshgrid(voxsize, voxsize, voxsize),
get_relative_transform_matrix(azimuth_1, elevation_1, azimuth_2, elevation_2),
voxsize, voxsize, voxsize).to(device)
transformedVox = F.grid_sample(vox_torch, meshgird.unsqueeze(0), mode='bilinear', padding_mode=align_mode, align_corners=False)
return transformedVox
#########
# SDF #
#########
# transformation function to rotate sdf indice
def get_transform_matrix_sdf(azimuth, elevation, scale = 1.0):
rot_base = RotateAlongAxis(90, 0, 1, 0) @ RotateAlongAxis(-90, 1, 0, 0)
rot_m = RotateAlongAxis(azimuth, 0, 1, 0) @ RotateAlongAxis(-elevation, 0, 0, 1) @ rot_base
sca_m = np.array([[scale, 0, 0, 0],
[0, scale, 0, 0],
[0, 0, scale, 0],
[0, 0, 0, 1]])
return rot_m @ sca_m
# group function to get transformed sdf indice
def get_transformed_indices(indices, azimuth, elevation, scale = 1/np.sqrt(3)):
transform_matrix = get_transform_matrix_sdf(-azimuth, -elevation, scale)[0:3, 0:3]
transformed_indices = indices @ transform_matrix
return transformed_indices
# convert sdf to voxel
def sdf2Voxel(sample_pt, sample_sdf_val, fill = 0):
sample_pt = ((sample_pt + np.array([0.5, 0.5, 0.5]))* voxsize).astype(int)
sample_pt = np.clip(sample_pt, 0, voxsize-1)
v = fill * | np.ones((voxsize, voxsize, voxsize)) | numpy.ones |
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for convolutional layers."""
# pylint: disable=g-direct-tensorflow-import
import keras
from keras import keras_parameterized
from keras import testing_utils
import numpy as np
import tensorflow.compat.v2 as tf
from tensorflow.python.framework import test_util
@test_util.for_all_test_methods(test_util.disable_xla,
'align_corners=False not supported by XLA')
@keras_parameterized.run_all_keras_modes
class UpSamplingTest(keras_parameterized.TestCase):
def test_upsampling_1d(self):
with self.cached_session():
testing_utils.layer_test(
keras.layers.UpSampling1D, kwargs={'size': 2}, input_shape=(3, 5, 4))
def test_upsampling_2d(self):
num_samples = 2
stack_size = 2
input_num_row = 11
input_num_col = 12
for data_format in ['channels_first', 'channels_last']:
if data_format == 'channels_first':
inputs = np.random.rand(num_samples, stack_size, input_num_row,
input_num_col)
else:
inputs = np.random.rand(num_samples, input_num_row, input_num_col,
stack_size)
# basic test
with self.cached_session():
testing_utils.layer_test(
keras.layers.UpSampling2D,
kwargs={'size': (2, 2),
'data_format': data_format},
input_shape=inputs.shape)
for length_row in [2]:
for length_col in [2, 3]:
layer = keras.layers.UpSampling2D(
size=(length_row, length_col), data_format=data_format)
layer.build(inputs.shape)
output = layer(keras.backend.variable(inputs))
if tf.executing_eagerly():
np_output = output.numpy()
else:
np_output = keras.backend.eval(output)
if data_format == 'channels_first':
assert np_output.shape[2] == length_row * input_num_row
assert np_output.shape[3] == length_col * input_num_col
else: # tf
assert np_output.shape[1] == length_row * input_num_row
assert np_output.shape[2] == length_col * input_num_col
# compare with numpy
if data_format == 'channels_first':
expected_out = np.repeat(inputs, length_row, axis=2)
expected_out = np.repeat(expected_out, length_col, axis=3)
else: # tf
expected_out = np.repeat(inputs, length_row, axis=1)
expected_out = np.repeat(expected_out, length_col, axis=2)
| np.testing.assert_allclose(np_output, expected_out) | numpy.testing.assert_allclose |
import cv2,os
import numpy as np
from keras.applications.vgg16 import decode_predictions
from keras.applications import ResNet50, Xception, InceptionV3, VGG16, VGG19
from keras.preprocessing import image as Image
from keras.applications.vgg16 import preprocess_input
from tqdm import tqdm
from skimage import feature
#LBP feature
class LocalBinaryPatterns:
def __init__(self, numPoints, radius):
# store the number of points and radius
self.numPoints = numPoints
self.radius = radius
def describe(self, image, eps=1e-7):
# compute the Local Binary Pattern representation
# of the image, and then use the LBP representation
# to build the histogram of patterns
lbp = feature.local_binary_pattern(image, self.numPoints,
self.radius, method="nri_uniform")
(hist, _) = np.histogram(lbp.ravel(),
bins=np.arange(0, self.numPoints*(self.numPoints-1) + 3),
range=(0, self.numPoints*(self.numPoints-1) + 2))
# normalize the histogram
hist = hist.astype("float")
hist /= (hist.sum() + eps)
# return the histogram of Local Binary Patterns
return hist
def embedding_load(embedding_path):
embedding_vector = {}
f = open(embedding_path,'r',encoding='utf8')
for line in tqdm(f):
value = line.split(' ')
word = value[0]
coef = np.array(value[1:], dtype='float32')
embedding_vector[word] = coef
f.close()
return embedding_vector
#tag embedding feature
def im_tag_embedding_feature_extraction(img_path, model,embedding_vector,im_size):
img = Image.load_img(img_path, target_size=(im_size, im_size))
x = Image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
yhat = model.predict(x)
labels = decode_predictions(yhat,top=10)
#print(labels[0])
words = []
for label in labels[0]:
word = label[1]
#print(word)
words.append(word)
tags_matrix = []
zero_array = np.zeros(300)
for tag in words:
if tag in embedding_vector.keys():
tag_embedding = embedding_vector[tag]
tags_matrix.append(np.array(tag_embedding))
zero_array = zero_array+np.array(tag_embedding)
tag_feature = zero_array / len(tags_matrix)
return list(tag_feature)
if __name__ == '__main__':
embedding_path = '../data/GoogleNews_vectors_negative_300d.txt'
embedding_vector = embedding_load(embedding_path)
im_path = '../data/politifact_images/' #../data/gossipcop_images/
model_vgg16 = VGG16(weights='imagenet', include_top=True)
model_vgg19 = VGG19(weights='imagenet', include_top=True)
model_resnet = ResNet50(weights='imagenet', include_top=True)
model_inception = InceptionV3(weights='imagenet', include_top=True)
model_xception = Xception(weights='imagenet', include_top=True)
lbp_feature_dict = {}
vgg16_tags_embedding_feature_dict = {}
vgg19_tags_embedding_feature_dict = {}
resnet_tags_embedding_feature_dict = {}
inception_tags_embedding_feature_dict = {}
xception_tags_embedding_feature_dict = {}
i=0
for im in os.listdir(im_path):
try:
print(im)
i += 1
if i%100 == 0:
print(i)
#read image data
image = cv2.imread(im_path+im)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# features extraction
desc = LocalBinaryPatterns(8, 1.0)
hist_LBP = desc.describe(gray)
vgg16_tags_embedding_feature = im_tag_embedding_feature_extraction(im_path+im, model_vgg16, embedding_vector, 224)
vgg19_tags_embedding_feature = im_tag_embedding_feature_extraction(im_path+im, model_vgg19, embedding_vector, 224)
resnet_tags_embedding_feature = im_tag_embedding_feature_extraction(im_path+im, model_resnet, embedding_vector, 224)
inception_tags_embedding_feature = im_tag_embedding_feature_extraction(im_path+im, model_inception, embedding_vector, 299)
xception_tags_embedding_feature = im_tag_embedding_feature_extraction(im_path+im, model_xception, embedding_vector, 299)
lbp_feature_dict[im] = list(hist_LBP)
vgg16_tags_embedding_feature_dict[im] = vgg16_tags_embedding_feature
vgg19_tags_embedding_feature_dict[im] = vgg19_tags_embedding_feature
resnet_tags_embedding_feature_dict[im] = resnet_tags_embedding_feature
inception_tags_embedding_feature_dict[im] = inception_tags_embedding_feature
xception_tags_embedding_feature_dict[im] = xception_tags_embedding_feature
except Exception:
print('error image',im)
continue
# save features
np.save('politifact_image_LBP_feature.npy', lbp_feature_dict)
| np.save('politifact_image_tag_vgg16_feature.npy', vgg16_tags_embedding_feature_dict) | numpy.save |
import numpy as np
import pytest
from scipy import linalg
from .. import gKDR
from ..DimensionReduction import median_dist, gram_matrix_sqexp, gram_matrix
from .. import fitting
##### Some simple functions useful for training
def fn(x):
"""A linear function for testing the dimension reduction"""
return 10*(x[0] + x[1]) + (x[1] - x[0])
def fn2(x):
"""A linear function for testing the dimension reduction"""
return 10*(x[0] + x[1]) + (x[1] - x[0]) + x[2] + 0.1*x[3]
def fn3(x):
return x[0]
##### The tests
def test_DimensionReduction_basic():
"""Basic check that we can create gKDR with the expected arguments"""
Y = | np.array([[1],[2.1],[3.2]]) | numpy.array |
import copy
import itertools
import re
import operator
from datetime import datetime, timedelta
from collections import defaultdict
import numpy as np
from pandas.core.base import PandasObject
from pandas.core.common import (_possibly_downcast_to_dtype, isnull,
_NS_DTYPE, _TD_DTYPE, ABCSeries, is_list_like,
ABCSparseSeries, _infer_dtype_from_scalar,
is_null_datelike_scalar, _maybe_promote,
is_timedelta64_dtype, is_datetime64_dtype,
array_equivalent, _maybe_convert_string_to_object,
is_categorical, needs_i8_conversion, is_datetimelike_v_numeric)
from pandas.core.index import Index, MultiIndex, _ensure_index
from pandas.core.indexing import maybe_convert_indices, length_of_indexer
from pandas.core.categorical import Categorical, maybe_to_categorical
import pandas.core.common as com
from pandas.sparse.array import _maybe_to_sparse, SparseArray
import pandas.lib as lib
import pandas.tslib as tslib
import pandas.computation.expressions as expressions
from pandas.util.decorators import cache_readonly
from pandas.tslib import Timestamp, Timedelta
from pandas import compat
from pandas.compat import range, map, zip, u
from pandas.tseries.timedeltas import _coerce_scalar_to_timedelta_type
from pandas.lib import BlockPlacement
class Block(PandasObject):
"""
Canonical n-dimensional unit of homogeneous dtype contained in a pandas
data structure
Index-ignorant; let the container take care of that
"""
__slots__ = ['_mgr_locs', 'values', 'ndim']
is_numeric = False
is_float = False
is_integer = False
is_complex = False
is_datetime = False
is_timedelta = False
is_bool = False
is_object = False
is_categorical = False
is_sparse = False
_can_hold_na = False
_downcast_dtype = None
_can_consolidate = True
_verify_integrity = True
_validate_ndim = True
_ftype = 'dense'
_holder = None
def __init__(self, values, placement, ndim=None, fastpath=False):
if ndim is None:
ndim = values.ndim
elif values.ndim != ndim:
raise ValueError('Wrong number of dimensions')
self.ndim = ndim
self.mgr_locs = placement
self.values = values
if len(self.mgr_locs) != len(self.values):
raise ValueError('Wrong number of items passed %d,'
' placement implies %d' % (
len(self.values), len(self.mgr_locs)))
@property
def _consolidate_key(self):
return (self._can_consolidate, self.dtype.name)
@property
def _is_single_block(self):
return self.ndim == 1
@property
def is_view(self):
""" return a boolean if I am possibly a view """
return self.values.base is not None
@property
def is_datelike(self):
""" return True if I am a non-datelike """
return self.is_datetime or self.is_timedelta
def is_categorical_astype(self, dtype):
"""
validate that we have a astypeable to categorical,
returns a boolean if we are a categorical
"""
if com.is_categorical_dtype(dtype):
if dtype == com.CategoricalDtype():
return True
# this is a pd.Categorical, but is not
# a valid type for astypeing
raise TypeError("invalid type {0} for astype".format(dtype))
return False
def to_dense(self):
return self.values.view()
@property
def fill_value(self):
return np.nan
@property
def mgr_locs(self):
return self._mgr_locs
@property
def array_dtype(self):
""" the dtype to return if I want to construct this block as an array """
return self.dtype
def make_block_same_class(self, values, placement, copy=False, fastpath=True,
**kwargs):
"""
Wrap given values in a block of same type as self.
`kwargs` are used in SparseBlock override.
"""
if copy:
values = values.copy()
return make_block(values, placement, klass=self.__class__,
fastpath=fastpath, **kwargs)
@mgr_locs.setter
def mgr_locs(self, new_mgr_locs):
if not isinstance(new_mgr_locs, BlockPlacement):
new_mgr_locs = BlockPlacement(new_mgr_locs)
self._mgr_locs = new_mgr_locs
def __unicode__(self):
# don't want to print out all of the items here
name = com.pprint_thing(self.__class__.__name__)
if self._is_single_block:
result = '%s: %s dtype: %s' % (
name, len(self), self.dtype)
else:
shape = ' x '.join([com.pprint_thing(s) for s in self.shape])
result = '%s: %s, %s, dtype: %s' % (
name, com.pprint_thing(self.mgr_locs.indexer), shape,
self.dtype)
return result
def __len__(self):
return len(self.values)
def __getstate__(self):
return self.mgr_locs.indexer, self.values
def __setstate__(self, state):
self.mgr_locs = BlockPlacement(state[0])
self.values = state[1]
self.ndim = self.values.ndim
def _slice(self, slicer):
""" return a slice of my values """
return self.values[slicer]
def reshape_nd(self, labels, shape, ref_items):
"""
Parameters
----------
labels : list of new axis labels
shape : new shape
ref_items : new ref_items
return a new block that is transformed to a nd block
"""
return _block2d_to_blocknd(
values=self.get_values().T,
placement=self.mgr_locs,
shape=shape,
labels=labels,
ref_items=ref_items)
def getitem_block(self, slicer, new_mgr_locs=None):
"""
Perform __getitem__-like, return result as block.
As of now, only supports slices that preserve dimensionality.
"""
if new_mgr_locs is None:
if isinstance(slicer, tuple):
axis0_slicer = slicer[0]
else:
axis0_slicer = slicer
new_mgr_locs = self.mgr_locs[axis0_slicer]
new_values = self._slice(slicer)
if self._validate_ndim and new_values.ndim != self.ndim:
raise ValueError("Only same dim slicing is allowed")
return self.make_block_same_class(new_values, new_mgr_locs)
@property
def shape(self):
return self.values.shape
@property
def itemsize(self):
return self.values.itemsize
@property
def dtype(self):
return self.values.dtype
@property
def ftype(self):
return "%s:%s" % (self.dtype, self._ftype)
def merge(self, other):
return _merge_blocks([self, other])
def reindex_axis(self, indexer, method=None, axis=1, fill_value=None,
limit=None, mask_info=None):
"""
Reindex using pre-computed indexer information
"""
if axis < 1:
raise AssertionError('axis must be at least 1, got %d' % axis)
if fill_value is None:
fill_value = self.fill_value
new_values = com.take_nd(self.values, indexer, axis,
fill_value=fill_value, mask_info=mask_info)
return make_block(new_values,
ndim=self.ndim, fastpath=True,
placement=self.mgr_locs)
def get(self, item):
loc = self.items.get_loc(item)
return self.values[loc]
def iget(self, i):
return self.values[i]
def set(self, locs, values, check=False):
"""
Modify Block in-place with new item value
Returns
-------
None
"""
self.values[locs] = values
def delete(self, loc):
"""
Delete given loc(-s) from block in-place.
"""
self.values = np.delete(self.values, loc, 0)
self.mgr_locs = self.mgr_locs.delete(loc)
def apply(self, func, **kwargs):
""" apply the function to my values; return a block if we are not one """
result = func(self.values, **kwargs)
if not isinstance(result, Block):
result = make_block(values=_block_shape(result), placement=self.mgr_locs,)
return result
def fillna(self, value, limit=None, inplace=False, downcast=None):
if not self._can_hold_na:
if inplace:
return [self]
else:
return [self.copy()]
mask = isnull(self.values)
if limit is not None:
if self.ndim > 2:
raise NotImplementedError("number of dimensions for 'fillna' "
"is currently limited to 2")
mask[mask.cumsum(self.ndim-1) > limit] = False
value = self._try_fill(value)
blocks = self.putmask(mask, value, inplace=inplace)
return self._maybe_downcast(blocks, downcast)
def _maybe_downcast(self, blocks, downcast=None):
# no need to downcast our float
# unless indicated
if downcast is None and self.is_float:
return blocks
elif downcast is None and (self.is_timedelta or self.is_datetime):
return blocks
result_blocks = []
for b in blocks:
result_blocks.extend(b.downcast(downcast))
return result_blocks
def downcast(self, dtypes=None):
""" try to downcast each item to the dict of dtypes if present """
# turn it off completely
if dtypes is False:
return [self]
values = self.values
# single block handling
if self._is_single_block:
# try to cast all non-floats here
if dtypes is None:
dtypes = 'infer'
nv = _possibly_downcast_to_dtype(values, dtypes)
return [make_block(nv, ndim=self.ndim,
fastpath=True, placement=self.mgr_locs)]
# ndim > 1
if dtypes is None:
return [self]
if not (dtypes == 'infer' or isinstance(dtypes, dict)):
raise ValueError("downcast must have a dictionary or 'infer' as "
"its argument")
# item-by-item
# this is expensive as it splits the blocks items-by-item
blocks = []
for i, rl in enumerate(self.mgr_locs):
if dtypes == 'infer':
dtype = 'infer'
else:
raise AssertionError("dtypes as dict is not supported yet")
dtype = dtypes.get(item, self._downcast_dtype)
if dtype is None:
nv = _block_shape(values[i], ndim=self.ndim)
else:
nv = _possibly_downcast_to_dtype(values[i], dtype)
nv = _block_shape(nv, ndim=self.ndim)
blocks.append(make_block(nv,
ndim=self.ndim, fastpath=True,
placement=[rl]))
return blocks
def astype(self, dtype, copy=False, raise_on_error=True, values=None, **kwargs):
return self._astype(dtype, copy=copy, raise_on_error=raise_on_error,
values=values, **kwargs)
def _astype(self, dtype, copy=False, raise_on_error=True, values=None,
klass=None, **kwargs):
"""
Coerce to the new type (if copy=True, return a new copy)
raise on an except if raise == True
"""
# may need to convert to categorical
# this is only called for non-categoricals
if self.is_categorical_astype(dtype):
return make_block(Categorical(self.values, **kwargs),
ndim=self.ndim,
placement=self.mgr_locs)
# astype processing
dtype = np.dtype(dtype)
if self.dtype == dtype:
if copy:
return self.copy()
return self
if klass is None:
if dtype == np.object_:
klass = ObjectBlock
try:
# force the copy here
if values is None:
# _astype_nansafe works fine with 1-d only
values = com._astype_nansafe(self.values.ravel(), dtype, copy=True)
values = values.reshape(self.values.shape)
newb = make_block(values,
ndim=self.ndim, placement=self.mgr_locs,
fastpath=True, dtype=dtype, klass=klass)
except:
if raise_on_error is True:
raise
newb = self.copy() if copy else self
if newb.is_numeric and self.is_numeric:
if newb.shape != self.shape:
raise TypeError("cannot set astype for copy = [%s] for dtype "
"(%s [%s]) with smaller itemsize that current "
"(%s [%s])" % (copy, self.dtype.name,
self.itemsize, newb.dtype.name,
newb.itemsize))
return newb
def convert(self, copy=True, **kwargs):
""" attempt to coerce any object types to better types
return a copy of the block (if copy = True)
by definition we are not an ObjectBlock here! """
return [self.copy()] if copy else [self]
def _can_hold_element(self, value):
raise NotImplementedError()
def _try_cast(self, value):
raise NotImplementedError()
def _try_cast_result(self, result, dtype=None):
""" try to cast the result to our original type,
we may have roundtripped thru object in the mean-time """
if dtype is None:
dtype = self.dtype
if self.is_integer or self.is_bool or self.is_datetime:
pass
elif self.is_float and result.dtype == self.dtype:
# protect against a bool/object showing up here
if isinstance(dtype, compat.string_types) and dtype == 'infer':
return result
if not isinstance(dtype, type):
dtype = dtype.type
if issubclass(dtype, (np.bool_, np.object_)):
if issubclass(dtype, np.bool_):
if isnull(result).all():
return result.astype(np.bool_)
else:
result = result.astype(np.object_)
result[result == 1] = True
result[result == 0] = False
return result
else:
return result.astype(np.object_)
return result
# may need to change the dtype here
return _possibly_downcast_to_dtype(result, dtype)
def _try_operate(self, values):
""" return a version to operate on as the input """
return values
def _try_coerce_args(self, values, other):
""" provide coercion to our input arguments """
return values, other
def _try_coerce_result(self, result):
""" reverse of try_coerce_args """
return result
def _try_coerce_and_cast_result(self, result, dtype=None):
result = self._try_coerce_result(result)
result = self._try_cast_result(result, dtype=dtype)
return result
def _try_fill(self, value):
return value
def to_native_types(self, slicer=None, na_rep='', quoting=None, **kwargs):
""" convert to our native types format, slicing if desired """
values = self.values
if slicer is not None:
values = values[:, slicer]
mask = isnull(values)
if not self.is_object and not quoting:
values = values.astype(str)
else:
values = np.array(values, dtype='object')
values[mask] = na_rep
return values
# block actions ####
def copy(self, deep=True):
values = self.values
if deep:
values = values.copy()
return make_block(values, ndim=self.ndim,
klass=self.__class__, fastpath=True,
placement=self.mgr_locs)
def replace(self, to_replace, value, inplace=False, filter=None,
regex=False):
""" replace the to_replace value with value, possible to create new
blocks here this is just a call to putmask. regex is not used here.
It is used in ObjectBlocks. It is here for API
compatibility."""
mask = com.mask_missing(self.values, to_replace)
if filter is not None:
filtered_out = ~self.mgr_locs.isin(filter)
mask[filtered_out.nonzero()[0]] = False
if not mask.any():
if inplace:
return [self]
return [self.copy()]
return self.putmask(mask, value, inplace=inplace)
def setitem(self, indexer, value):
""" set the value inplace; return a new block (of a possibly different
dtype)
indexer is a direct slice/positional indexer; value must be a
compatible shape
"""
# coerce None values, if appropriate
if value is None:
if self.is_numeric:
value = np.nan
# coerce args
values, value = self._try_coerce_args(self.values, value)
arr_value = np.array(value)
# cast the values to a type that can hold nan (if necessary)
if not self._can_hold_element(value):
dtype, _ = com._maybe_promote(arr_value.dtype)
values = values.astype(dtype)
transf = (lambda x: x.T) if self.ndim == 2 else (lambda x: x)
values = transf(values)
l = len(values)
# length checking
# boolean with truth values == len of the value is ok too
if isinstance(indexer, (np.ndarray, list)):
if is_list_like(value) and len(indexer) != len(value):
if not (isinstance(indexer, np.ndarray) and
indexer.dtype == np.bool_ and
len(indexer[indexer]) == len(value)):
raise ValueError("cannot set using a list-like indexer "
"with a different length than the value")
# slice
elif isinstance(indexer, slice):
if is_list_like(value) and l:
if len(value) != length_of_indexer(indexer, values):
raise ValueError("cannot set using a slice indexer with a "
"different length than the value")
try:
def _is_scalar_indexer(indexer):
# return True if we are all scalar indexers
if arr_value.ndim == 1:
if not isinstance(indexer, tuple):
indexer = tuple([indexer])
return all([ np.isscalar(idx) for idx in indexer ])
return False
def _is_empty_indexer(indexer):
# return a boolean if we have an empty indexer
if arr_value.ndim == 1:
if not isinstance(indexer, tuple):
indexer = tuple([indexer])
return any(isinstance(idx, np.ndarray) and len(idx) == 0 for idx in indexer)
return False
# empty indexers
# 8669 (empty)
if _is_empty_indexer(indexer):
pass
# setting a single element for each dim and with a rhs that could be say a list
# GH 6043
elif _is_scalar_indexer(indexer):
values[indexer] = value
# if we are an exact match (ex-broadcasting),
# then use the resultant dtype
elif len(arr_value.shape) and arr_value.shape[0] == values.shape[0] and np.prod(arr_value.shape) == np.prod(values.shape):
values[indexer] = value
values = values.astype(arr_value.dtype)
# set
else:
values[indexer] = value
# coerce and try to infer the dtypes of the result
if np.isscalar(value):
dtype, _ = _infer_dtype_from_scalar(value)
else:
dtype = 'infer'
values = self._try_coerce_and_cast_result(values, dtype)
block = make_block(transf(values),
ndim=self.ndim, placement=self.mgr_locs,
fastpath=True)
# may have to soft convert_objects here
if block.is_object and not self.is_object:
block = block.convert(numeric=False)
return block
except (ValueError, TypeError) as detail:
raise
except Exception as detail:
pass
return [self]
def putmask(self, mask, new, align=True, inplace=False):
""" putmask the data to the block; it is possible that we may create a
new dtype of block
return the resulting block(s)
Parameters
----------
mask : the condition to respect
new : a ndarray/object
align : boolean, perform alignment on other/cond, default is True
inplace : perform inplace modification, default is False
Returns
-------
a new block(s), the result of the putmask
"""
new_values = self.values if inplace else self.values.copy()
# may need to align the new
if hasattr(new, 'reindex_axis'):
new = new.values.T
# may need to align the mask
if hasattr(mask, 'reindex_axis'):
mask = mask.values.T
# if we are passed a scalar None, convert it here
if not is_list_like(new) and isnull(new) and not self.is_object:
new = self.fill_value
if self._can_hold_element(new):
new = self._try_cast(new)
# pseudo-broadcast
if isinstance(new, np.ndarray) and new.ndim == self.ndim - 1:
new = np.repeat(new, self.shape[-1]).reshape(self.shape)
np.putmask(new_values, mask, new)
# maybe upcast me
elif mask.any():
# need to go column by column
new_blocks = []
if self.ndim > 1:
for i, ref_loc in enumerate(self.mgr_locs):
m = mask[i]
v = new_values[i]
# need a new block
if m.any():
n = new[i] if isinstance(
new, np.ndarray) else np.array(new)
# type of the new block
dtype, _ = com._maybe_promote(n.dtype)
# we need to exiplicty astype here to make a copy
n = n.astype(dtype)
nv = _putmask_smart(v, m, n)
else:
nv = v if inplace else v.copy()
# Put back the dimension that was taken from it and make
# a block out of the result.
block = make_block(values=nv[np.newaxis],
placement=[ref_loc],
fastpath=True)
new_blocks.append(block)
else:
nv = _putmask_smart(new_values, mask, new)
new_blocks.append(make_block(values=nv,
placement=self.mgr_locs,
fastpath=True))
return new_blocks
if inplace:
return [self]
return [make_block(new_values,
placement=self.mgr_locs, fastpath=True)]
def interpolate(self, method='pad', axis=0, index=None,
values=None, inplace=False, limit=None,
fill_value=None, coerce=False, downcast=None, **kwargs):
def check_int_bool(self, inplace):
# Only FloatBlocks will contain NaNs.
# timedelta subclasses IntBlock
if (self.is_bool or self.is_integer) and not self.is_timedelta:
if inplace:
return self
else:
return self.copy()
# a fill na type method
try:
m = com._clean_fill_method(method)
except:
m = None
if m is not None:
r = check_int_bool(self, inplace)
if r is not None:
return r
return self._interpolate_with_fill(method=m,
axis=axis,
inplace=inplace,
limit=limit,
fill_value=fill_value,
coerce=coerce,
downcast=downcast)
# try an interp method
try:
m = com._clean_interp_method(method, **kwargs)
except:
m = None
if m is not None:
r = check_int_bool(self, inplace)
if r is not None:
return r
return self._interpolate(method=m,
index=index,
values=values,
axis=axis,
limit=limit,
fill_value=fill_value,
inplace=inplace,
downcast=downcast,
**kwargs)
raise ValueError("invalid method '{0}' to interpolate.".format(method))
def _interpolate_with_fill(self, method='pad', axis=0, inplace=False,
limit=None, fill_value=None, coerce=False,
downcast=None):
""" fillna but using the interpolate machinery """
# if we are coercing, then don't force the conversion
# if the block can't hold the type
if coerce:
if not self._can_hold_na:
if inplace:
return [self]
else:
return [self.copy()]
fill_value = self._try_fill(fill_value)
values = self.values if inplace else self.values.copy()
values = self._try_operate(values)
values = com.interpolate_2d(values,
method=method,
axis=axis,
limit=limit,
fill_value=fill_value,
dtype=self.dtype)
values = self._try_coerce_result(values)
blocks = [make_block(values,
ndim=self.ndim, klass=self.__class__,
fastpath=True, placement=self.mgr_locs)]
return self._maybe_downcast(blocks, downcast)
def _interpolate(self, method=None, index=None, values=None,
fill_value=None, axis=0, limit=None,
inplace=False, downcast=None, **kwargs):
""" interpolate using scipy wrappers """
data = self.values if inplace else self.values.copy()
# only deal with floats
if not self.is_float:
if not self.is_integer:
return self
data = data.astype(np.float64)
if fill_value is None:
fill_value = self.fill_value
if method in ('krogh', 'piecewise_polynomial', 'pchip'):
if not index.is_monotonic:
raise ValueError("{0} interpolation requires that the "
"index be monotonic.".format(method))
# process 1-d slices in the axis direction
def func(x):
# process a 1-d slice, returning it
# should the axis argument be handled below in apply_along_axis?
# i.e. not an arg to com.interpolate_1d
return com.interpolate_1d(index, x, method=method, limit=limit,
fill_value=fill_value,
bounds_error=False, **kwargs)
# interp each column independently
interp_values = | np.apply_along_axis(func, axis, data) | numpy.apply_along_axis |
# <NAME>, 2019
# <EMAIL>
# Essentials
import os, sys, glob
import pandas as pd
import numpy as np
import nibabel as nib
# Stats
import scipy as sp
from scipy import stats
import statsmodels.api as sm
import pingouin as pg
# Plotting
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams['svg.fonttype'] = 'none'
from IPython.display import clear_output
from scipy.stats import t
from numpy.matlib import repmat
from scipy.linalg import svd, schur
from statsmodels.stats import multitest
# Sklearn
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import KFold, GridSearchCV
from sklearn.linear_model import Ridge, Lasso, LinearRegression
from sklearn.kernel_ridge import KernelRidge
from sklearn.svm import SVR, LinearSVR
from sklearn.metrics import make_scorer, r2_score, mean_squared_error, mean_absolute_error
from sklearn.decomposition import PCA
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF
def my_get_cmap(which_type = 'qual1', num_classes = 8):
# Returns a nice set of colors to make a nice colormap using the color schemes
# from http://colorbrewer2.org/
#
# The online tool, colorbrewer2, is copyright <NAME>, <NAME> and
# The Pennsylvania State University.
if which_type == 'linden':
cmap_base = np.array([[255,105,97],[97,168,255],[178,223,138],[117,112,179],[255,179,71]])
elif which_type == 'pair':
cmap_base = np.array([[124,230,199],[255,169,132]])
elif which_type == 'qual1':
cmap_base = np.array([[166,206,227],[31,120,180],[178,223,138],[51,160,44],[251,154,153],[227,26,28],
[253,191,111],[255,127,0],[202,178,214],[106,61,154],[255,255,153],[177,89,40]])
elif which_type == 'qual2':
cmap_base = np.array([[141,211,199],[255,255,179],[190,186,218],[251,128,114],[128,177,211],[253,180,98],
[179,222,105],[252,205,229],[217,217,217],[188,128,189],[204,235,197],[255,237,111]])
elif which_type == 'seq_red':
cmap_base = np.array([[255,245,240],[254,224,210],[252,187,161],[252,146,114],[251,106,74],
[239,59,44],[203,24,29],[165,15,21],[103,0,13]])
elif which_type == 'seq_blu':
cmap_base = np.array([[247,251,255],[222,235,247],[198,219,239],[158,202,225],[107,174,214],
[66,146,198],[33,113,181],[8,81,156],[8,48,107]])
elif which_type == 'redblu_pair':
cmap_base = np.array([[222,45,38],[49,130,189]])
elif which_type == 'yeo17':
cmap_base = np.array([[97,38,107], # VisCent
[194,33,39], # VisPeri
[79,130,165], # SomMotA
[44,181,140], # SomMotB
[75,148,72], # DorsAttnA
[23,116,62], # DorsAttnB
[149,77,158], # SalVentAttnA
[222,130,177], # SalVentAttnB
[75,87,61], # LimbicA
[149,166,110], # LimbicB
[210,135,47], # ContA
[132,48,73], # ContB
[92,107,131], # ContC
[218,221,50], # DefaultA
[175,49,69], # DefaultB
[41,38,99], # DefaultC
[53,75,158] # TempPar
])
elif which_type == 'yeo17_downsampled':
cmap_base = np.array([[97,38,107], # VisCent
[79,130,165], # SomMotA
[75,148,72], # DorsAttnA
[149,77,158], # SalVentAttnA
[75,87,61], # LimbicA
[210,135,47], # ContA
[218,221,50], # DefaultA
[53,75,158] # TempPar
])
if cmap_base.shape[0] > num_classes: cmap = cmap_base[0:num_classes]
else: cmap = cmap_base
cmap = cmap / 255
return cmap
def get_sys_prop(coef, p_vals, idx, alpha = 0.05):
u_idx = np.unique(idx)
sys_prop = np.zeros((len(u_idx),2))
for i in u_idx:
# filter regions by system idx
coef_tmp = coef[idx == i]
p_tmp = p_vals[idx == i]
# threshold out non-sig coef
coef_tmp = coef_tmp[p_tmp < alpha]
# proportion of signed significant coefs within system i
sys_prop[i-1,0] = coef_tmp[coef_tmp > 0].shape[0] / np.sum(idx == i)
sys_prop[i-1,1] = coef_tmp[coef_tmp < 0].shape[0] / np.sum(idx == i)
return sys_prop
def get_sys_summary(coef, p_vals, idx, method = 'mean', alpha = 0.05, signed = True):
u_idx = np.unique(idx)
if signed == True:
sys_summary = np.zeros((len(u_idx),2))
else:
sys_summary = np.zeros((len(u_idx),1))
for i in u_idx:
# filter regions by system idx
coef_tmp = coef[idx == i]
p_tmp = p_vals[idx == i]
# threshold out non-sig coef
coef_tmp = coef_tmp[p_tmp < alpha]
# proportion of signed significant coefs within system i
if method == 'mean':
if signed == True:
if any(coef_tmp[coef_tmp > 0]): sys_summary[i-1,0] = np.mean(abs(coef_tmp[coef_tmp > 0]))
if any(coef_tmp[coef_tmp < 0]): sys_summary[i-1,1] = np.mean(abs(coef_tmp[coef_tmp < 0]))
else:
try:
sys_summary[i-1,0] = np.mean(coef_tmp[coef_tmp != 0])
except:
sys_summary[i-1,0] = 0
elif method == 'median':
if signed == True:
if any(coef_tmp[coef_tmp > 0]): sys_summary[i-1,0] = np.median(abs(coef_tmp[coef_tmp > 0]))
if any(coef_tmp[coef_tmp < 0]): sys_summary[i-1,1] = np.median(abs(coef_tmp[coef_tmp < 0]))
else:
try:
sys_summary[i-1,0] = np.median(coef_tmp[coef_tmp != 0])
except:
sys_summary[i-1,0] = 0
elif method == 'max':
if signed == True:
if any(coef_tmp[coef_tmp > 0]): sys_summary[i-1,0] = np.max(abs(coef_tmp[coef_tmp > 0]))
if any(coef_tmp[coef_tmp < 0]): sys_summary[i-1,1] = np.max(abs(coef_tmp[coef_tmp < 0]))
else:
try:
sys_summary[i-1,0] = np.max(coef_tmp[coef_tmp != 0])
except:
sys_summary[i-1,0] = 0
if np.any(np.isnan(sys_summary)):
sys_summary[np.isnan(sys_summary)] = 0
return sys_summary
def prop_bar_plot(sys_prop, sys_summary, labels = '', which_colors = 'yeo17', axlim = 'auto', title_str = '', fig_size = [4,4]):
f, ax = plt.subplots()
f.set_figwidth(fig_size[0])
f.set_figheight(fig_size[1])
y_pos = np.arange(1,sys_prop.shape[0]+1)
if which_colors == 'solid':
cmap = my_get_cmap(which_type = 'redblu_pair', num_classes = 2)
ax.barh(y_pos, sys_prop[:,0], color = cmap[0], edgecolor = 'k', align='center')
if sys_prop.shape[1] == 2:
ax.barh(y_pos, -sys_prop[:,1], color = cmap[1], edgecolor = 'k', align='center')
ax.axvline(linewidth = 1, color = 'k')
elif which_colors == 'opac_scaler':
cmap = my_get_cmap(which_type = 'redblu_pair', num_classes = 2)
for i in range(sys_prop.shape[0]):
ax.barh(y_pos[i], sys_prop[i,0], facecolor = np.append(cmap[0], sys_summary[i,0]), edgecolor = 'k', align='center')
if sys_prop.shape[1] == 2:
ax.barh(y_pos[i], -sys_prop[i,1], facecolor = np.append(cmap[1], sys_summary[i,1]), edgecolor = 'k', align='center')
ax.axvline(linewidth = 1, color = 'k')
else:
cmap = my_get_cmap(which_type = which_colors, num_classes = sys_prop.shape[0])
ax.barh(y_pos, sys_prop[:,0], color = cmap, linewidth = 0, align='center')
if sys_prop.shape[1] == 2:
ax.barh(y_pos, -sys_prop[:,1], color = cmap, linewidth = 0, align='center')
ax.axvline(linewidth = 1, color = 'k')
ax.set_yticks(y_pos)
ax.set_yticklabels(labels)
ax.invert_yaxis() # labels read top-to-bottom
if axlim == 'auto':
anchors = np.array([0.2, 0.4, 0.6, 0.8, 1])
the_max = np.round(np.max(sys_prop),2)
ax_anchor = anchors[find_nearest_above(anchors, the_max)]
ax.set_xlim([-ax_anchor-ax_anchor*.05, ax_anchor+ax_anchor*.05])
else:
if axlim == 0.2:
ax.set_xticks(np.arange(axlim[0], axlim[1]+0.1, 0.1))
elif axlim == 0.1:
ax.set_xticks(np.arange(axlim[0], axlim[1]+0.05, 0.05))
elif axlim == 1:
ax.set_xticks(np.arange(axlim[0], axlim[1]+0.5, 0.5))
else:
ax.set_xlim([axlim[0], axlim[1]])
ax.xaxis.grid(True, which='major')
ax.xaxis.tick_top()
if sys_prop.shape[1] == 2:
ax.set_xticklabels([str(abs(np.round(x,2))) for x in ax.get_xticks()])
ax.set_title(title_str)
# Hide the right and top spines
ax.spines['left'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
plt.show()
return f, ax
def update_progress(progress, my_str = ''):
bar_length = 20
if isinstance(progress, int):
progress = float(progress)
if not isinstance(progress, float):
progress = 0
if progress < 0:
progress = 0
if progress >= 1:
progress = 1
block = int(round(bar_length * progress))
clear_output(wait = True)
text = my_str + " Progress: [{0}] {1:.1f}%".format( "#" * block + "-" * (bar_length - block), progress * 100)
print(text)
def node_strength(A):
s = np.sum(A, axis = 0)
return s
def node_degree(A):
B = A > 0
k = np.sum(B, axis = 0)
return k
def ave_control(A, c = 1):
# FUNCTION:
# Returns values of AVERAGE CONTROLLABILITY for each node in a
# network, given the adjacency matrix for that network. Average
# controllability measures the ease by which input at that node can
# steer the system into many easily-reachable states.
#
# INPUT:
# A is the structural (NOT FUNCTIONAL) network adjacency matrix,
# such that the simple linear model of dynamics outlined in the
# reference is an accurate estimate of brain state fluctuations.
# Assumes all values in the matrix are positive, and that the
# matrix is symmetric.
#
# OUTPUT:
# Vector of average controllability values for each node
#
# Bassett Lab, University of Pennsylvania, 2016.
# Reference: <NAME>, Cieslak, Telesford, <NAME>,
# <NAME>, Grafton & Bassett, Nature Communications
# 6:8414, 2015.
u, s, vt = svd(A) # singluar value decomposition
A = A/(c + s[0]) # Matrix normalization
T, U = schur(A,'real') # Schur stability
midMat = np.multiply(U,U).transpose()
v = np.matrix(np.diag(T)).transpose()
N = A.shape[0]
P = np.diag(1 - np.matmul(v,v.transpose()))
P = repmat(P.reshape([N,1]), 1, N)
values = sum(np.divide(midMat,P))
return values
def ave_control_alt(A, c = 0.99):
# FUNCTION:
# Returns values of AVERAGE CONTROLLABILITY for each node in a
# network, given the adjacency matrix for that network. Average
# controllability measures the ease by which input at that node can
# steer the system into many easily-reachable states.
#
# INPUT:
# A is the structural (NOT FUNCTIONAL) network adjacency matrix,
# such that the simple linear model of dynamics outlined in the
# reference is an accurate estimate of brain state fluctuations.
# Assumes all values in the matrix are positive, and that the
# matrix is symmetric.
#
# OUTPUT:
# Vector of average controllability values for each node
#
# Bassett Lab, University of Pennsylvania, 2016.
# Reference: <NAME>, Cieslak, Telesford, <NAME>,
# <NAME>, <NAME>, Nature Communications
# 6:8414, 2015.
u, s, vt = svd(A) # singluar value decomposition
A = (A/s[0])*c # Matrix normalization
T, U = schur(A,'real') # Schur stability
midMat = np.multiply(U,U).transpose()
v = np.matrix(np.diag(T)).transpose()
N = A.shape[0]
P = np.diag(1 - np.matmul(v,v.transpose()))
P = repmat(P.reshape([N,1]), 1, N)
values = sum(np.divide(midMat,P))
return values
def modal_control(A, c = 1):
# FUNCTION:
# Returns values of MODAL CONTROLLABILITY for each node in a
# network, given the adjacency matrix for that network. Modal
# controllability indicates the ability of that node to steer the
# system into difficult-to-reach states, given input at that node.
#
# INPUT:
# A is the structural (NOT FUNCTIONAL) network adjacency matrix,
# such that the simple linear model of dynamics outlined in the
# reference is an accurate estimate of brain state fluctuations.
# Assumes all values in the matrix are positive, and that the
# matrix is symmetric.
#
# OUTPUT:
# Vector of modal controllability values for each node
#
# Bassett Lab, University of Pennsylvania, 2016.
# Reference: <NAME>, Cieslak, Telesford, Yu, Kahn, Medaglia,
# Vettel, Miller, Grafton & Bassett, Nature Communications
# 6:8414, 2015.
u, s, vt = svd(A) # singluar value decomposition
A = A/(c + s[0]) # Matrix normalization
T, U = schur(A,'real') # Schur stability
eigVals = np.diag(T)
N = A.shape[0]
phi = np.zeros(N,dtype = float)
for i in range(N):
Al = U[i,] * U[i,]
Ar = (1.0 - np.power(eigVals,2)).transpose()
phi[i] = np.matmul(Al, Ar)
return phi
def modal_control_alt(A, c = 0.99):
# FUNCTION:
# Returns values of MODAL CONTROLLABILITY for each node in a
# network, given the adjacency matrix for that network. Modal
# controllability indicates the ability of that node to steer the
# system into difficult-to-reach states, given input at that node.
#
# INPUT:
# A is the structural (NOT FUNCTIONAL) network adjacency matrix,
# such that the simple linear model of dynamics outlined in the
# reference is an accurate estimate of brain state fluctuations.
# Assumes all values in the matrix are positive, and that the
# matrix is symmetric.
#
# OUTPUT:
# Vector of modal controllability values for each node
#
# Bassett Lab, University of Pennsylvania, 2016.
# Reference: <NAME>, Cieslak, Telesford, <NAME>, Medaglia,
# Vettel, Miller, Grafton & Bassett, Nature Communications
# 6:8414, 2015.
u, s, vt = svd(A) # singluar value decomposition
A = (A/s[0])*c # Matrix normalization
T, U = schur(A,'real') # Schur stability
eigVals = | np.diag(T) | numpy.diag |
import matplotlib
import pickle
from gpaw import setup_paths
import numpy as np
from tqdm import tqdm
from ase.io import read
import os
import argparse
from utils import *
#from my_poisson_solver import solve_directly, minus_gradient, solve_with_multigrid
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('--path',
default='../data/c8/',
help='path')
parser.add_argument('--ef',
default=0.,
help='fermi')
args = parser.parse_args()
path = os.path.abspath(args.path) + "/"
ef = float(args.ef)
def main(path = path):
"""
Calculates the current density for a molecule with different basis set.
"""
calc(path=path,h=0.2,basis="sz",inv="",grid_size=0,wideband=True,electrode_type="H",ef=ef)
def calc(path, h=0.20, co=1e-10, basis='sz', vacuum=4, xc='PBE',\
bias=1e-3, ef=0, grid_size=0.2/2.,\
gamma=1e0, estart=-8, eend=8, es=4e-3, inv="", mode='lcao',\
wideband=True ,electrode_type="H",kpts=(1,1,1), FDwidth=0.1,\
correction=False):
"""
Calculate the current
"""
# constants
eV2au = 1/27.211
au2eV = 27.211
au2A = 0.529177249
# n6 = get_nbasis_electrode(electrode_type,basis)
a = 25. # Size of unit cell (Angstrom)
c = a / 2
d = 0.74
# fname = "basis_{0}__xc_{1}__fdwithd_{2}__kpts_{3}__mode_{4}__vacuum_{5}__".format(basis,xc,FDwidth,kpts,mode,vacuum)
fname = "basis_{0}__xc_{1}__h_{2}__fdwithd_{3}__kpts_{4}__mode_{5}__vacuum_{6}__".format(basis,xc,h,FDwidth,kpts,mode,vacuum)
basename = "__basis_{0}__h_{1}__cutoff_{2}__xc_{3}__gridsize_{4:.2f}__bias_{5}__ef_{6}__gamma_{7}__e_grid_{8}_{9}_{10}__muliti_grid__type__"\
.format(basis, h, co, xc, grid_size, bias, ef, gamma, estart, eend, es)
plot_basename = "plots/"+basename
data_basename = "data/"+basename
bias *= eV2au
ef *= eV2au
estart *= eV2au
eend *= eV2au
es *= eV2au
gamma *= eV2au
H_ao, S_ao = pickle.load(open(path+'scat_'+fname+'0.pckl', 'rb'))
H_ao = H_ao[0, 0]
S_ao = S_ao[0]
n = len(H_ao)
H_cen = H_ao *eV2au
S_cen = S_ao
GamL = | np.zeros([n,n]) | numpy.zeros |
import random
import numpy as np
import cv2
import scipy.ndimage as ndimage
from scipy.interpolate import RegularGridInterpolator
from scipy.ndimage.filters import gaussian_filter
class RandomChoice(object):
"""
choose a random tranform from list an apply
transforms: tranforms to apply
p: probability
"""
def __init__(self, transforms=[],
p=0.5):
self.transforms = transforms
self.p = p
def __call__(self, sample):
augment = np.random.random(1) < self.p
if not augment:
return sample
t = random.choice(self.transforms)
return t(sample)
class ComposeTransforms(object):
"""
Composes several transforms together.
"""
def __init__(self, transforms=[],
p=0.9):
self.transforms = transforms
self.p = p
def __call__(self, sample):
augment = np.random.random(1) < self.p
if not augment:
return sample
for t in self.transforms:
sample = t(sample)
return sample
from scipy.interpolate import RegularGridInterpolator
from scipy.ndimage.filters import gaussian_filter
def stack_seg_2_image(sample):
image = sample['image']
seg = sample['segmentation']
channels = [chan for chan in image]
channels.append(seg)
return np.stack(channels, axis=3)
def elastic_transform_3d(sample, alpha=1, sigma=20, c_val=0.0, method="linear"):
"""
:param sample: dict of image and seg
:param alpha: scaling factor of gaussian filter
:param sigma: standard deviation of random gaussian filter
:param c_val: fill value
:param method: interpolation method. supported methods : ("linear", "nearest")
:return: deformed image and/or label
"""
img_numpy = sample['image'].copy()
label = sample['segmentation'] if 'segmentation' in sample else None
shape = img_numpy.shape
# Define 3D coordinate system
coords = np.arange(shape[0]), np.arange(shape[1]), np.arange(shape[2])
# Interpolated images
chan_intrps = [RegularGridInterpolator(coords, img_numpy[:,:,:,chan],
method=method,
bounds_error=False,
fill_value=c_val) for chan in range(shape[3])]
#Get random elastic deformations
dx = gaussian_filter((np.random.rand(shape[0],shape[1],shape[2]) * 2 - 1), sigma,
mode="constant", cval=0.) * alpha
dy = gaussian_filter((np.random.rand(shape[0],shape[1],shape[2]) * 2 - 1), sigma,
mode="constant", cval=0.) * alpha
dz = gaussian_filter((np.random.rand(shape[0],shape[1],shape[2]) * 2 - 1), sigma,
mode="constant", cval=0.) * alpha
# Define sample points
x, y, z = np.mgrid[0:shape[0], 0:shape[1], 0:shape[2]]
indices = np.reshape(x + dx, (-1, 1)), \
np.reshape(y + dy, (-1, 1)), \
np.reshape(z + dz, (-1, 1))
# Interpolate 3D image image
img_numpy = np.stack([chan_intrp(indices).reshape((shape[0],shape[1],shape[2]))
for chan_intrp in chan_intrps], axis=3).astype(np.float32)
# Interpolate labels
if label is not None:
lab_intrp = RegularGridInterpolator(coords, label,
method="nearest",
bounds_error=False,
fill_value=0)
label = lab_intrp(indices).reshape(shape[0],shape[1],shape[2]).astype(label.dtype)
sample['segmentation'] = label
sample['image'] = img_numpy
return sample
class ElasticTransform(object):
def __init__(self, p=0.5, alpha=1, sigma=20, c_val=0.0, method="linear"):
self.p = p
self.alpha = alpha
self.sigma = sigma
self.c_val = c_val
self.method = method
def __call__(self, sample):
augment = np.random.random(1) < self.p
if not augment:
return sample
return elastic_transform_3d(sample, self.alpha, self.sigma, self.c_val, self.method)
def random_noise(sample, mean=0, std=0.001, eps=1e-6):
im = sample['image'].copy()
noise = np.random.normal(mean, std, im.shape)
sample['image'] = np.where(im > eps, im + noise, im)
return sample
class GaussianNoise(object):
def __init__(self, p=0.5, mean=0, std=0.001):
self.mean = mean
self.std = std
self.p = p
def __call__(self, sample):
augment = | np.random.random(1) | numpy.random.random |
import csv
import random as random
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import expit, logit
# Variables a usar
archivos_fonts = [
"data/font1.csv",
"data/font2.csv",
"data/font3.csv"
]
archivo_respuestas = [
"data/respuestas1.csv",
"data/respuestas2.csv",
"data/respuestas3.csv",
]
neuronas_ocultas = 30
ep = 1
alfa = 0.001
data_entrenamiento = []
respuestas_esperadas = []
# O(n)
# Carga de los datos de entrenamiento, lectura de los archivos
for archivo_font in archivos_fonts:
data = []
with open(archivo_font) as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
for row in csv_reader:
row = np.array(row)
data.append(row.astype(np.float))
data_entrenamiento.append(data)
# O(n)
# Carga las repsuestas esperadas desde el archivo
for archivo_respuesta in archivo_respuestas:
data = []
with open(archivo_respuesta) as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
for row in csv_reader:
row = list(map(int, row))
data.append(np.array(row))
respuestas_esperadas.append(np.array(data).T)
# Iniciando los valores de entrenamiento
# Para cada tipo (a1,a2,a3) hay:
# Teniendo p1, p2, p3, p4, p5, p6, p7
# Y t1, t2, t3, t4, t5, t6, t7
data_entrenamiento[0] = np.array(data_entrenamiento[0]).T
data_entrenamiento[1] = np.array(data_entrenamiento[1]).T
data_entrenamiento[2] = np.array(data_entrenamiento[2]).T
data_entrenamiento = np.concatenate((data_entrenamiento[0], data_entrenamiento[1], data_entrenamiento[2]))
respuestas_esperadas = np.concatenate( (respuestas_esperadas[0], respuestas_esperadas[1], respuestas_esperadas[2]) ).T
# Actualizando la cantidad de ejemplos
cantidad_patrones = len(data_entrenamiento[0])
cantidad_pruebas = len(data_entrenamiento)
cantidad_respuestas = len(respuestas_esperadas)
# Iniciando los pesos por cada patron
W1 = ep * ( 2 * np.random.rand(neuronas_ocultas, cantidad_patrones) - 1 ) # 5x63
b1 = ep * ( 2 * np.random.rand(neuronas_ocultas, 1) - 1 ) # 5x1
W2 = ep * ( 2 * np.random.rand(cantidad_respuestas, neuronas_ocultas) - 1 ) # 21x5
b2 = ep * ( 2 * np.random.rand(cantidad_respuestas, 1) - 1 ) # 21x1
# Impresion de los datos de entrenamiento
# print(f'Data: {np.array(data_entrenamiento).shape}')
# print(f'Respuestas esperadas: {np.array(respuestas_esperadas).shape}')
# print(f'Respuestas esperadas: {respuestas_esperadas}')
# print(f'Cantidad de neuronas ocultas: {neuronas_ocultas}')
# print(f'Cantidad de pruebas: {cantidad_pruebas}')
# print(f'Cantidad de respuestas: {cantidad_respuestas}')
# print(f'Cantidad patrones de prueba: {cantidad_patrones}')
# print(f'Ep: {ep}')
# print(f'Alfa: {alfa}')
# print(f'W1: {W1}')
# print(f'W2: {np.array(W2).shape}')
# print(f'b1: {np.array(b1).shape}')
# print(f'b2: {np.array(b2).shape}')
# Funciones de activacion
def sigmoid(x):
return 1.0/(1.0 + np.exp(-x))
def sigmoid_derivada(x):
return sigmoid(x)*(1.0-sigmoid(x))
def tanh(x):
return np.tanh(x)
def tanh_derivada(x):
return 1.0 - x**2
def tansig(x):
return (2/(1+np.exp(-2*x))-1)
def sig_tanh(x):
return np.divide( (expit(x) - expit(-x)), (expit(x) + expit(-x)) )
# Se usaran 5 neuronas ya que para identificar las letras necesitamos minimo 3 neuronas
# y para identificar el tipo necesitamos 2 neuronas mas
# Quedando las 3 primers para reconocer el tipo de letra y las otras 2 la fuente
# por ejemplo: A = [1,1,1], B=[1,1,0] y el tipo de fuente asi: Fuente1: [1,1], Fuente2: [1,0]
# quedando: A de la fuente uno A = [1,1,1,1,1] y B de la fuente dos B = [1,1,0,1,0]
epocas = 1
error_cuadratico_medio = np.empty([epocas, 1])
for epoca in range(0, epocas):
if(epoca%100 == 0):
print(f'Epoca: {epoca}')
error_cuadratico = np.zeros([cantidad_pruebas, 1])
a2 = np.zeros([cantidad_pruebas, cantidad_respuestas, 1])
for patron in range(0, cantidad_pruebas):
patron = random.randrange(patron + 1)
# Respuesta esperada para este patron
respuesta = respuestas_esperadas[:,patron].reshape([cantidad_respuestas, 1])
# Rearmando vector de patron
patron_columna = data_entrenamiento[patron].reshape([cantidad_patrones, 1])
# Resultante cantidad_neuronas_ocultas x 1
a1 = sig_tanh(np.dot(W1, patron_columna) + b1)
# Resultante vector de cantidad_respuestas x 1
a2[patron] = sig_tanh( np.dot(W2, a1) + b2 )
# Retropropagacion de las sensibilidades cantidad_respuestas x 1
e = respuesta - a2[patron]
# La matriz al cuadrado es la matri por su matriz transpuesta la multiplicamos por la retropropagacion y sacamos la sensibilidad de la capa 2
# cantidad_respuestas x 1
s2 = -2 * np.dot(( 1 - np.dot(a2[patron], np.array(a2[patron]).T) ), e)
# Sensibilidad de la capa 1
# Resultante un vector de cantidad_neuronas_ocultas x 1
s1 = np.dot(np.diagflat( np.matrix(1 - | np.power(a1, 2) | numpy.power |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import numpy as np
from scipy.stats import entropy, normaltest, mode, kurtosis, skew, pearsonr, moment
import pandas as pd
from collections import OrderedDict
from feature_extraction.helpers import *
from feature_extraction.type_detection import detect_field_type, data_type_to_general_type, data_types, general_types
np.warnings.filterwarnings('ignore')
field_basic_features_list = [
{'name': 'fid', 'type': 'id'},
{'name': 'field_id', 'type': 'id'},
{'name': 'exists', 'type': 'boolean'},
{'name': 'length', 'type': 'numeric'}
]
for data_type in data_types:
field_basic_features_list.append({
'name': 'data_type_is_{}'.format(data_type), 'type': 'boolean'
})
for general_type in general_types:
field_basic_features_list.append({
'name': 'general_type_is_{}'.format(general_type), 'type': 'boolean'
})
field_existence_features_list = [
{'name': 'has_none', 'type': 'boolean'},
{'name': 'percentage_none', 'type': 'numeric'},
{'name': 'num_none', 'type': 'numeric'},
]
field_uniqueness_features_list = [
{'name': 'num_unique_elements', 'type': 'numeric'},
{'name': 'unique_percent', 'type': 'numeric'},
{'name': 'is_unique', 'type': 'boolean'}
]
field_c_statistical_features_list = [
{'name': 'list_entropy', 'type': 'numeric'},
{'name': 'mean_value_length', 'type': 'numeric'},
{'name': 'median_value_length', 'type': 'numeric'},
{'name': 'min_value_length', 'type': 'numeric'},
{'name': 'max_value_length', 'type': 'numeric'},
{'name': 'std_value_length', 'type': 'numeric'},
{'name': 'percentage_of_mode', 'type': 'numeric'},
]
field_q_statistical_features_list = [
{'name': 'mean', 'type': 'numeric'},
{'name': 'normalized_mean', 'type': 'numeric'},
{'name': 'median', 'type': 'numeric'},
{'name': 'normalized_median', 'type': 'numeric'},
{'name': 'var', 'type': 'numeric'},
{'name': 'std', 'type': 'numeric'},
{'name': 'coeff_var', 'type': 'numeric'},
{'name': 'min', 'type': 'numeric'},
{'name': 'max', 'type': 'numeric'},
{'name': 'range', 'type': 'numeric'},
{'name': 'normalized_range', 'type': 'numeric'},
{'name': 'entropy', 'type': 'numeric'},
{'name': 'gini', 'type': 'numeric'},
{'name': 'q25', 'type': 'numeric'},
{'name': 'q75', 'type': 'numeric'},
{'name': 'med_abs_dev', 'type': 'numeric'},
{'name': 'avg_abs_dev', 'type': 'numeric'},
{'name': 'quant_coeff_disp', 'type': 'numeric'},
{'name': 'skewness', 'type': 'numeric'},
{'name': 'kurtosis', 'type': 'numeric'},
{'name': 'moment_5', 'type': 'numeric'},
{'name': 'moment_6', 'type': 'numeric'},
{'name': 'moment_7', 'type': 'numeric'},
{'name': 'moment_8', 'type': 'numeric'},
{'name': 'moment_9', 'type': 'numeric'},
{'name': 'moment_10', 'type': 'numeric'},
{'name': 'percent_outliers_15iqr', 'type': 'numeric'},
{'name': 'percent_outliers_3iqr', 'type': 'numeric'},
{'name': 'percent_outliers_1_99', 'type': 'numeric'},
{'name': 'percent_outliers_3std', 'type': 'numeric'},
{'name': 'has_outliers_15iqr', 'type': 'boolean'},
{'name': 'has_outliers_3iqr', 'type': 'boolean'},
{'name': 'has_outliers_1_99', 'type': 'boolean'},
{'name': 'has_outliers_3std', 'type': 'boolean'},
{'name': 'normality_statistic', 'type': 'numeric'},
{'name': 'normality_p', 'type': 'numeric'},
{'name': 'is_normal_5', 'type': 'boolean'},
{'name': 'is_normal_1', 'type': 'boolean'},
]
field_name_features_list = [
{'name': 'field_name_length', 'type': 'numeric'},
{'name': 'x_in_name', 'type': 'boolean'},
{'name': 'y_in_name', 'type': 'boolean'},
{'name': 'id_in_name', 'type': 'boolean'},
{'name': 'time_in_name', 'type': 'boolean'},
{'name': 'digit_in_name', 'type': 'boolean'},
{'name': 'dollar_in_name', 'type': 'boolean'},
{'name': 'pound_in_name', 'type': 'boolean'},
{'name': 'euro_in_name', 'type': 'boolean'},
{'name': 'yen_in_name', 'type': 'boolean'},
{'name': 'first_char_uppercase_name', 'type': 'boolean'},
{'name': 'num_uppercase_characters', 'type': 'numeric'},
{'name': 'space_in_name', 'type': 'boolean'},
{'name': 'number_of_words_in_name', 'type': 'numeric'},
]
field_sequence_features_list = [
{'name': 'is_sorted', 'type': 'boolean'},
{'name': 'is_monotonic', 'type': 'boolean'},
{'name': 'sortedness', 'type': 'numeric'},
{'name': 'lin_space_sequence_coeff', 'type': 'numeric'},
{'name': 'log_space_sequence_coeff', 'type': 'numeric'},
{'name': 'is_lin_space', 'type': 'boolean'},
{'name': 'is_log_space', 'type': 'boolean'},
]
all_field_features_list = \
field_basic_features_list + \
field_existence_features_list + \
field_uniqueness_features_list + \
field_c_statistical_features_list + \
field_q_statistical_features_list + \
field_name_features_list + \
field_sequence_features_list
all_field_features_list_names = [x['name'] for x in all_field_features_list]
def get_existence_features(v):
r = OrderedDict([(f['name'], None) for f in field_existence_features_list])
if not len(v):
return r
num_none = sum(1 for e in v if e == 'None')
r['num_none'] = num_none
r['percentage_none'] = num_none / len(v)
r['has_none'] = (num_none > 0)
return r
# Sequence Properties
def get_uniqueness_features(v, field_type, field_general_type):
r = OrderedDict([(f['name'], None)
for f in field_uniqueness_features_list])
if not len(v):
return r
if field_general_type == 'c' or field_type == 'integer':
unique_elements = get_unique(v)
r = {}
r['num_unique_elements'] = unique_elements.size
r['unique_percent'] = (r['num_unique_elements'] / len(v))
r['is_unique'] = (r['num_unique_elements'] == len(v))
return r
def get_statistical_features(v, field_type, field_general_type):
r = OrderedDict([(f['name'], None)
for f in field_c_statistical_features_list + field_q_statistical_features_list])
if not len(v):
return r
if field_general_type == 'c':
r['list_entropy'] = list_entropy(v)
value_lengths = [len(x) for x in v]
r['mean_value_length'] = np.mean(value_lengths)
r['median_value_length'] = np.median(value_lengths)
r['min_value_length'] = np.min(value_lengths)
r['max_value_length'] = np.max(value_lengths)
r['std_value_length'] = np.std(value_lengths)
r['percentage_of_mode'] = (pd.Series(v).value_counts().max() / len(v))
if field_general_type in 'q':
sample_mean = np.mean(v)
sample_median = np.median(v)
sample_var = np.var(v)
sample_min = np.min(v)
sample_max = np.max(v)
sample_std = np.std(v)
q1, q25, q75, q99 = np.percentile(v, [0.01, 0.25, 0.75, 0.99])
iqr = q75 - q25
r['mean'] = sample_mean
r['normalized_mean'] = sample_mean / sample_max
r['median'] = sample_median
r['normalized_median'] = sample_median / sample_max
r['var'] = sample_var
r['std'] = sample_std
r['coeff_var'] = (sample_mean / sample_var) if sample_var else None
r['min'] = sample_min
r['max'] = sample_max
r['range'] = r['max'] - r['min']
r['normalized_range'] = (r['max'] - r['min']) / \
sample_mean if sample_mean else None
r['entropy'] = entropy(v)
r['gini'] = gini(v)
r['q25'] = q25
r['q75'] = q75
r['med_abs_dev'] = np.median(np.absolute(v - sample_median))
r['avg_abs_dev'] = np.mean(np.absolute(v - sample_mean))
r['quant_coeff_disp'] = (q75 - q25) / (q75 + q25)
r['coeff_var'] = sample_var / sample_mean
r['skewness'] = skew(v)
r['kurtosis'] = kurtosis(v)
r['moment_5'] = moment(v, moment=5)
r['moment_6'] = moment(v, moment=6)
r['moment_7'] = moment(v, moment=7)
r['moment_8'] = moment(v, moment=8)
r['moment_9'] = moment(v, moment=9)
r['moment_10'] = moment(v, moment=10)
# Outliers
outliers_15iqr = np.logical_or(
v < (q25 - 1.5 * iqr), v > (q75 + 1.5 * iqr))
outliers_3iqr = np.logical_or(v < (q25 - 3 * iqr), v > (q75 + 3 * iqr))
outliers_1_99 = np.logical_or(v < q1, v > q99)
outliers_3std = np.logical_or(
v < (
sample_mean -
3 *
sample_std),
v > (
sample_mean +
3 *
sample_std))
r['percent_outliers_15iqr'] = np.sum(outliers_15iqr) / len(v)
r['percent_outliers_3iqr'] = np.sum(outliers_3iqr) / len(v)
r['percent_outliers_1_99'] = np.sum(outliers_1_99) / len(v)
r['percent_outliers_3std'] = np.sum(outliers_3std) / len(v)
r['has_outliers_15iqr'] = np.any(outliers_15iqr)
r['has_outliers_3iqr'] = | np.any(outliers_3iqr) | numpy.any |
import sys
import warnings
import itertools
import platform
import pytest
from decimal import Decimal
import numpy as np
from numpy.core import umath
from numpy.random import rand, randint, randn
from numpy.testing import (
assert_, assert_equal, assert_raises, assert_raises_regex,
assert_array_equal, assert_almost_equal, assert_array_almost_equal,
assert_warns, HAS_REFCOUNT
)
class TestResize(object):
def test_copies(self):
A = np.array([[1, 2], [3, 4]])
Ar1 = np.array([[1, 2, 3, 4], [1, 2, 3, 4]])
assert_equal(np.resize(A, (2, 4)), Ar1)
Ar2 = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
assert_equal(np.resize(A, (4, 2)), Ar2)
Ar3 = np.array([[1, 2, 3], [4, 1, 2], [3, 4, 1], [2, 3, 4]])
assert_equal(np.resize(A, (4, 3)), Ar3)
def test_zeroresize(self):
A = np.array([[1, 2], [3, 4]])
Ar = np.resize(A, (0,))
assert_array_equal(Ar, np.array([]))
assert_equal(A.dtype, Ar.dtype)
Ar = np.resize(A, (0, 2))
assert_equal(Ar.shape, (0, 2))
Ar = np.resize(A, (2, 0))
assert_equal(Ar.shape, (2, 0))
def test_reshape_from_zero(self):
# See also gh-6740
A = np.zeros(0, dtype=[('a', np.float32)])
Ar = np.resize(A, (2, 1))
assert_array_equal(Ar, np.zeros((2, 1), Ar.dtype))
assert_equal(A.dtype, Ar.dtype)
class TestNonarrayArgs(object):
# check that non-array arguments to functions wrap them in arrays
def test_choose(self):
choices = [[0, 1, 2],
[3, 4, 5],
[5, 6, 7]]
tgt = [5, 1, 5]
a = [2, 0, 1]
out = np.choose(a, choices)
assert_equal(out, tgt)
def test_clip(self):
arr = [-1, 5, 2, 3, 10, -4, -9]
out = np.clip(arr, 2, 7)
tgt = [2, 5, 2, 3, 7, 2, 2]
assert_equal(out, tgt)
def test_compress(self):
arr = [[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]]
tgt = [[5, 6, 7, 8, 9]]
out = np.compress([0, 1], arr, axis=0)
assert_equal(out, tgt)
def test_count_nonzero(self):
arr = [[0, 1, 7, 0, 0],
[3, 0, 0, 2, 19]]
tgt = np.array([2, 3])
out = np.count_nonzero(arr, axis=1)
assert_equal(out, tgt)
def test_cumproduct(self):
A = [[1, 2, 3], [4, 5, 6]]
assert_(np.all(np.cumproduct(A) == np.array([1, 2, 6, 24, 120, 720])))
def test_diagonal(self):
a = [[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]]
out = np.diagonal(a)
tgt = [0, 5, 10]
assert_equal(out, tgt)
def test_mean(self):
A = [[1, 2, 3], [4, 5, 6]]
assert_(np.mean(A) == 3.5)
assert_(np.all(np.mean(A, 0) == np.array([2.5, 3.5, 4.5])))
assert_(np.all(np.mean(A, 1) == np.array([2., 5.])))
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', RuntimeWarning)
assert_(np.isnan(np.mean([])))
assert_(w[0].category is RuntimeWarning)
def test_ptp(self):
a = [3, 4, 5, 10, -3, -5, 6.0]
assert_equal(np.ptp(a, axis=0), 15.0)
def test_prod(self):
arr = [[1, 2, 3, 4],
[5, 6, 7, 9],
[10, 3, 4, 5]]
tgt = [24, 1890, 600]
assert_equal(np.prod(arr, axis=-1), tgt)
def test_ravel(self):
a = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
tgt = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
assert_equal(np.ravel(a), tgt)
def test_repeat(self):
a = [1, 2, 3]
tgt = [1, 1, 2, 2, 3, 3]
out = np.repeat(a, 2)
assert_equal(out, tgt)
def test_reshape(self):
arr = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
tgt = [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]
assert_equal(np.reshape(arr, (2, 6)), tgt)
def test_round(self):
arr = [1.56, 72.54, 6.35, 3.25]
tgt = [1.6, 72.5, 6.4, 3.2]
assert_equal(np.around(arr, decimals=1), tgt)
def test_searchsorted(self):
arr = [-8, -5, -1, 3, 6, 10]
out = np.searchsorted(arr, 0)
assert_equal(out, 3)
def test_size(self):
A = [[1, 2, 3], [4, 5, 6]]
assert_(np.size(A) == 6)
assert_(np.size(A, 0) == 2)
assert_(np.size(A, 1) == 3)
def test_squeeze(self):
A = [[[1, 1, 1], [2, 2, 2], [3, 3, 3]]]
assert_equal(np.squeeze(A).shape, (3, 3))
assert_equal(np.squeeze(np.zeros((1, 3, 1))).shape, (3,))
assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=0).shape, (3, 1))
assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=-1).shape, (1, 3))
assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=2).shape, (1, 3))
assert_equal(np.squeeze([np.zeros((3, 1))]).shape, (3,))
assert_equal(np.squeeze([np.zeros((3, 1))], axis=0).shape, (3, 1))
assert_equal(np.squeeze([np.zeros((3, 1))], axis=2).shape, (1, 3))
assert_equal(np.squeeze([np.zeros((3, 1))], axis=-1).shape, (1, 3))
def test_std(self):
A = [[1, 2, 3], [4, 5, 6]]
assert_almost_equal(np.std(A), 1.707825127659933)
assert_almost_equal(np.std(A, 0), np.array([1.5, 1.5, 1.5]))
assert_almost_equal(np.std(A, 1), np.array([0.81649658, 0.81649658]))
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', RuntimeWarning)
assert_(np.isnan(np.std([])))
assert_(w[0].category is RuntimeWarning)
def test_swapaxes(self):
tgt = [[[0, 4], [2, 6]], [[1, 5], [3, 7]]]
a = [[[0, 1], [2, 3]], [[4, 5], [6, 7]]]
out = np.swapaxes(a, 0, 2)
assert_equal(out, tgt)
def test_sum(self):
m = [[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]
tgt = [[6], [15], [24]]
out = np.sum(m, axis=1, keepdims=True)
assert_equal(tgt, out)
def test_take(self):
tgt = [2, 3, 5]
indices = [1, 2, 4]
a = [1, 2, 3, 4, 5]
out = np.take(a, indices)
assert_equal(out, tgt)
def test_trace(self):
c = [[1, 2], [3, 4], [5, 6]]
assert_equal(np.trace(c), 5)
def test_transpose(self):
arr = [[1, 2], [3, 4], [5, 6]]
tgt = [[1, 3, 5], [2, 4, 6]]
assert_equal(np.transpose(arr, (1, 0)), tgt)
def test_var(self):
A = [[1, 2, 3], [4, 5, 6]]
assert_almost_equal(np.var(A), 2.9166666666666665)
assert_almost_equal(np.var(A, 0), np.array([2.25, 2.25, 2.25]))
assert_almost_equal(np.var(A, 1), np.array([0.66666667, 0.66666667]))
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', RuntimeWarning)
assert_(np.isnan(np.var([])))
assert_(w[0].category is RuntimeWarning)
B = np.array([None, 0])
B[0] = 1j
assert_almost_equal(np.var(B), 0.25)
class TestIsscalar(object):
def test_isscalar(self):
assert_(np.isscalar(3.1))
assert_(np.isscalar(np.int16(12345)))
assert_(np.isscalar(False))
assert_(np.isscalar('numpy'))
assert_(not np.isscalar([3.1]))
assert_(not np.isscalar(None))
# PEP 3141
from fractions import Fraction
assert_(np.isscalar(Fraction(5, 17)))
from numbers import Number
assert_(np.isscalar(Number()))
class TestBoolScalar(object):
def test_logical(self):
f = np.False_
t = np.True_
s = "xyz"
assert_((t and s) is s)
assert_((f and s) is f)
def test_bitwise_or(self):
f = np.False_
t = np.True_
assert_((t | t) is t)
assert_((f | t) is t)
assert_((t | f) is t)
assert_((f | f) is f)
def test_bitwise_and(self):
f = np.False_
t = np.True_
assert_((t & t) is t)
assert_((f & t) is f)
assert_((t & f) is f)
assert_((f & f) is f)
def test_bitwise_xor(self):
f = np.False_
t = np.True_
assert_((t ^ t) is f)
assert_((f ^ t) is t)
assert_((t ^ f) is t)
assert_((f ^ f) is f)
class TestBoolArray(object):
def setup(self):
# offset for simd tests
self.t = np.array([True] * 41, dtype=bool)[1::]
self.f = np.array([False] * 41, dtype=bool)[1::]
self.o = np.array([False] * 42, dtype=bool)[2::]
self.nm = self.f.copy()
self.im = self.t.copy()
self.nm[3] = True
self.nm[-2] = True
self.im[3] = False
self.im[-2] = False
def test_all_any(self):
assert_(self.t.all())
assert_(self.t.any())
assert_(not self.f.all())
assert_(not self.f.any())
assert_(self.nm.any())
assert_(self.im.any())
assert_(not self.nm.all())
assert_(not self.im.all())
# check bad element in all positions
for i in range(256 - 7):
d = np.array([False] * 256, dtype=bool)[7::]
d[i] = True
assert_(np.any(d))
e = np.array([True] * 256, dtype=bool)[7::]
e[i] = False
assert_(not np.all(e))
assert_array_equal(e, ~d)
# big array test for blocked libc loops
for i in list(range(9, 6000, 507)) + [7764, 90021, -10]:
d = np.array([False] * 100043, dtype=bool)
d[i] = True
assert_(np.any(d), msg="%r" % i)
e = np.array([True] * 100043, dtype=bool)
e[i] = False
assert_(not np.all(e), msg="%r" % i)
def test_logical_not_abs(self):
assert_array_equal(~self.t, self.f)
assert_array_equal(np.abs(~self.t), self.f)
assert_array_equal(np.abs(~self.f), self.t)
assert_array_equal(np.abs(self.f), self.f)
assert_array_equal(~np.abs(self.f), self.t)
assert_array_equal(~np.abs(self.t), self.f)
assert_array_equal(np.abs(~self.nm), self.im)
np.logical_not(self.t, out=self.o)
assert_array_equal(self.o, self.f)
np.abs(self.t, out=self.o)
assert_array_equal(self.o, self.t)
def test_logical_and_or_xor(self):
assert_array_equal(self.t | self.t, self.t)
assert_array_equal(self.f | self.f, self.f)
assert_array_equal(self.t | self.f, self.t)
assert_array_equal(self.f | self.t, self.t)
np.logical_or(self.t, self.t, out=self.o)
assert_array_equal(self.o, self.t)
assert_array_equal(self.t & self.t, self.t)
assert_array_equal(self.f & self.f, self.f)
assert_array_equal(self.t & self.f, self.f)
assert_array_equal(self.f & self.t, self.f)
np.logical_and(self.t, self.t, out=self.o)
assert_array_equal(self.o, self.t)
assert_array_equal(self.t ^ self.t, self.f)
assert_array_equal(self.f ^ self.f, self.f)
assert_array_equal(self.t ^ self.f, self.t)
assert_array_equal(self.f ^ self.t, self.t)
np.logical_xor(self.t, self.t, out=self.o)
assert_array_equal(self.o, self.f)
assert_array_equal(self.nm & self.t, self.nm)
assert_array_equal(self.im & self.f, False)
assert_array_equal(self.nm & True, self.nm)
assert_array_equal(self.im & False, self.f)
assert_array_equal(self.nm | self.t, self.t)
assert_array_equal(self.im | self.f, self.im)
assert_array_equal(self.nm | True, self.t)
assert_array_equal(self.im | False, self.im)
assert_array_equal(self.nm ^ self.t, self.im)
assert_array_equal(self.im ^ self.f, self.im)
assert_array_equal(self.nm ^ True, self.im)
| assert_array_equal(self.im ^ False, self.im) | numpy.testing.assert_array_equal |
__author__ = "<NAME> <<EMAIL>>"
__date__ = "2020/05/25 18:54:04"
import numpy as np
import matplotlib as mpl
mpl.use('Agg')
mpl.rc('font', size = 16)
mpl.rc('axes', titlesize = 'large', labelsize = 'large')
mpl.rc('xtick', labelsize = 'large')
mpl.rc('ytick', labelsize = 'large')
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
from matplotlib.legend_handler import HandlerLine2D, HandlerTuple
import pickle
import argparse
from matplotlib import cm
from scipy.stats import multivariate_normal
import scipy.integrate as integrate
from sys import exit
import sys
sys.path.append("./script")
from functions import *
import torch
torch.set_default_dtype(torch.double)
from FastMBAR import *
argparser = argparse.ArgumentParser()
argparser.add_argument("--alpha", type = float)
args = argparser.parse_args()
alpha = args.alpha
with open("./output/F_numeric_integration_alpha_{:.3f}.pkl".format(alpha), 'rb') as file_handle:
data = pickle.load(file_handle)
Fp = data['F']
## read range
with open("./output/range.pkl", 'rb') as file_handle:
data = pickle.load(file_handle)
x1_min, x1_max = data['x1_min'], data['x1_max']
x2_min, x2_max = data['x2_min'], data['x2_max']
U = data['U']
with open("./output/TREMC/x_record_alpha_{:.3f}.pkl".format(alpha), 'rb') as file_handle:
data = pickle.load(file_handle)
x_record = data['x_record']
alphas = data['alphas']
x = x_record[::, -1, :]
exit()
plots_samples = PdfPages("./output/mixture_of_normal/samples_alpha_{:.3f}.pdf".format(alpha))
#### normal distribution with one component ####
################################################
x_mean = np.mean(x, 0)
x_cov = np.cov(x.T)
dist = multivariate_normal(x_mean, x_cov)
def compute_density(x2, x1, dist):
return dist.pdf((x1, x2))
Z, Z_error = integrate.dblquad(compute_density, x1_min, x1_max, x2_min, x2_max, [dist],
epsabs = 1e-12, epsrel = 1e-12)
Fq = -np.log(Z)
Fp_DKL_pq_one_repeats = []
Fp_DKL_qp_one_repeats = []
Fp_BAR_one_repeats = []
for idx_rep in range(5):
num_samples = x.shape[0]*20
samples = dist.rvs(num_samples)
flag = (samples[:,0] >= x1_min) & (samples[:,0] <= x1_max) &\
(samples[:,1] >= x2_min) & (samples[:,1] <= x2_max)
samples = samples[flag]
idx = np.random.choice(range(x.shape[0]), size = (x.shape[0],))
x_resample = x[idx,:]
p_logp = -compute_Muller_potential(alpha, torch.from_numpy(x_resample)).numpy()
p_logq = dist.logpdf(x_resample)
q_logp = -compute_Muller_potential(alpha, torch.from_numpy(samples)).numpy()
q_logq = dist.logpdf(samples)
Fp_DKL_pq_one = -np.mean(p_logp - p_logq) + Fq
Fp_DKL_qp_one = np.mean(q_logq - q_logp) + Fq
energy_matrix = (-1)*np.stack([np.concatenate([q_logq, p_logq]),
np.concatenate([q_logp, p_logp])],
0)
num_conf = np.array([q_logq.shape[0], p_logq.shape[0]])
fastmbar = FastMBAR(energy_matrix, num_conf, verbose = False)
Fp_BAR_one = fastmbar.F[-1] + Fq
Fp_DKL_pq_one_repeats.append(Fp_DKL_pq_one)
Fp_DKL_qp_one_repeats.append(Fp_DKL_qp_one)
Fp_BAR_one_repeats.append(Fp_BAR_one)
fig = plt.figure(0)
fig.clf()
plt.contourf(U, levels = 30, extent = (x1_min, x1_max, x2_min, x2_max), cmap = cm.viridis_r)
idx = np.random.choice(range(samples.shape[0]), size = 1000)
plt.plot(samples[:,0][idx], samples[:,1][idx], '.')
plt.xlabel(r"$x_1$")
plt.ylabel(r"$x_2$")
plt.colorbar()
plots_samples.savefig()
#### normal distribution with two components ####
#################################################
x_mean_0 = np.copy(x_mean)
x_mean_1 = np.copy(x_mean)
x_cov_0 = np.copy(x_cov)
x_cov_1 = np.copy(x_cov)
alpha_0 = 0.55
alpha_1 = 1 - alpha_0
## EM algorithm
curren_log_prob = -np.inf
stop_criteria = 1e-8
idx_step = 0
parameters = [{'x_mean_0': x_mean_0, 'x_mean_1': x_mean_1,
'x_cov_0': x_cov_0, 'x_cov_1': x_cov_1,
'alpha_0': alpha_0, 'alpha_1': alpha_1}]
while True:
## EM algorithm
dist_0 = multivariate_normal(x_mean_0, x_cov_0)
dist_1 = multivariate_normal(x_mean_1, x_cov_1)
Z_0, _ = integrate.dblquad(compute_density, x1_min, x1_max, x2_min, x2_max, [dist_0],
epsabs = 1e-12, epsrel = 1e-12)
Z_1, _ = integrate.dblquad(compute_density, x1_min, x1_max, x2_min, x2_max, [dist_1],
epsabs = 1e-12, epsrel = 1e-12)
logp_0 = dist_0.logpdf(x) - np.log(Z_0) + np.log(alpha_0)
logp_1 = dist_1.logpdf(x) - np.log(Z_1) + np.log(alpha_1)
p_0 = np.exp(logp_0)
p_1 = np.exp(logp_1)
w_0 = p_0 / (p_0 + p_1)
w_1 = 1 - w_0
x_mean_0 = np.sum(x * w_0[:,np.newaxis], 0)/np.sum(w_0)
x_mean_1 = np.sum(x * w_1[:,np.newaxis], 0)/np.sum(w_1)
x_cov_0 = np.matmul(((x - x_mean_0)*w_0[:, np.newaxis]).T, (x - x_mean_0)*w_0[:, np.newaxis])/np.sum(w_0)
x_cov_1 = np.matmul(((x - x_mean_1)*w_1[:, np.newaxis]).T, (x - x_mean_1)*w_1[:, np.newaxis])/np.sum(w_1)
alpha_0 = np.sum(w_0)/(np.sum(w_0) + np.sum(w_1))
alpha_1 = 1 - alpha_0
log_prob = np.mean(np.log(p_0 + p_1))
print("idx_step: {}, log_prob: {:2f}".format(idx_step, log_prob))
parameters.append({'x_mean_0': x_mean_0, 'x_mean_1': x_mean_1,
'x_cov_0': x_cov_0, 'x_cov_1': x_cov_1,
'alpha_0': alpha_0, 'alpha_1': alpha_1})
if log_prob - curren_log_prob < stop_criteria and idx_step > 10:
break
else:
idx_step += 1
curren_log_prob = log_prob
Fp_DKL_pq_two_repeats = []
Fp_DKL_qp_two_repeats = []
Fp_BAR_two_repeats = []
for idx_step in range(len(parameters)):
print(idx_step)
x_mean_0 = parameters[idx_step]['x_mean_0']
x_mean_1 = parameters[idx_step]['x_mean_1']
x_cov_0 = parameters[idx_step]['x_cov_0']
x_cov_1 = parameters[idx_step]['x_cov_1']
alpha_0 = parameters[idx_step]['alpha_0']
alpha_1 = parameters[idx_step]['alpha_1']
dist_0 = multivariate_normal(x_mean_0, x_cov_0)
dist_1 = multivariate_normal(x_mean_1, x_cov_1)
Z_0, _ = integrate.dblquad(compute_density, x1_min, x1_max, x2_min, x2_max, [dist_0],
epsabs = 1e-12, epsrel = 1e-12)
Z_1, _ = integrate.dblquad(compute_density, x1_min, x1_max, x2_min, x2_max, [dist_1],
epsabs = 1e-12, epsrel = 1e-12)
Fp_DKL_pq_two = []
Fp_DKL_qp_two = []
Fp_BAR_two = []
for idx_repeat in range(5):
print("idx_repeat:", idx_repeat)
idx = np.random.choice(range(x.shape[0]), size = (x.shape[0],))
x_resample = x[idx,:]
logp_0 = dist_0.logpdf(x_resample) - np.log(Z_0) + np.log(alpha_0)
logp_1 = dist_1.logpdf(x_resample) - np.log(Z_1) + np.log(alpha_1)
p_0 = np.exp(logp_0)
p_1 = np.exp(logp_1)
p_logq = np.log(p_0 + p_1)
p_logp = -compute_Muller_potential(alpha, torch.from_numpy(x_resample)).numpy()
num_samples = x.shape[0] * 20
samples_0 = dist_0.rvs(num_samples)
samples_1 = dist_1.rvs(num_samples)
flag = (samples_0[:,0] >= x1_min) & (samples_0[:,0] <= x1_max) &\
(samples_0[:,1] >= x2_min) & (samples_0[:,1] <= x2_max)
samples_0 = samples_0[flag]
flag = (samples_1[:,0] >= x1_min) & (samples_1[:,0] <= x1_max) &\
(samples_1[:,1] >= x2_min) & (samples_1[:,1] <= x2_max)
samples_1 = samples_1[flag]
num_samples_0 = int(num_samples*alpha_0)
num_samples_1 = int(num_samples*alpha_1)
samples_0 = samples_0[0:num_samples_0]
samples_1 = samples_1[0:num_samples_1]
samples = np.concatenate([samples_0, samples_1])
logp_0 = dist_0.logpdf(samples) - np.log(Z_0) + np.log(alpha_0)
logp_1 = dist_1.logpdf(samples) - np.log(Z_1) + np.log(alpha_1)
p_0 = np.exp(logp_0)
p_1 = np.exp(logp_1)
q_logq = np.log(p_0 + p_1)
q_logp = -compute_Muller_potential(alpha, torch.from_numpy(samples)).numpy()
Fq = -np.log(alpha_0*Z_0 + alpha_1*Z_1)
Fp_DKL_pq = - | np.mean(p_logp - p_logq) | numpy.mean |
from copy import deepcopy
from astropy.io.fits import hdu
import numpy as np
import multiprocessing as mp
import six
import scipy
from scipy import fftpack
from scipy.ndimage import fourier_shift
from scipy.ndimage.interpolation import rotate
from astropy.convolution import convolve, convolve_fft
from astropy.io import fits
from poppy.utils import krebin
from .utils import S
# Program bar
from tqdm.auto import trange, tqdm
import logging
_log = logging.getLogger('webbpsf_ext')
###########################################################################
# Image manipulation
###########################################################################
def fshift(inarr, delx=0, dely=0, pad=False, cval=0.0, interp='linear', **kwargs):
""" Fractional image shift
Ported from IDL function fshift.pro.
Routine to shift an image by non-integer values.
Parameters
----------
inarr: ndarray
1D, or 2D array to be shifted. Can also be an image
cube assume with shape [nz,ny,nx].
delx : float
shift in x (same direction as IDL SHIFT function)
dely: float
shift in y
pad : bool
Should we pad the array before shifting, then truncate?
Otherwise, the image is wrapped.
cval : sequence or float, optional
The values to set the padded values for each axis. Default is 0.
((before_1, after_1), ... (before_N, after_N)) unique pad constants for each axis.
((before, after),) yields same before and after constants for each axis.
(constant,) or int is a shortcut for before = after = constant for all axes.
interp : str
Type of interpolation to use during the sub-pixel shift. Valid values are
'linear', 'cubic', and 'quintic'.
Returns
-------
ndarray
Shifted image
"""
from scipy.interpolate import interp1d, interp2d
shape = inarr.shape
ndim = len(shape)
if ndim == 1:
# Return if delx is 0
if np.isclose(delx, 0, atol=1e-5):
return inarr
# separate shift into an integer and fraction shift
intx = np.int(delx)
fracx = delx - intx
if fracx < 0:
fracx += 1
intx -= 1
# Pad ends with constant value
if pad:
padx = np.abs(intx) + 5
out = np.pad(inarr,np.abs(intx),'constant',constant_values=cval)
else:
padx = 0
out = inarr.copy()
# shift by integer portion
out = np.roll(out, intx)
# if significant fractional shift...
if not np.isclose(fracx, 0, atol=1e-5):
if interp=='linear':
out = out * (1.-fracx) + np.roll(out,1) * fracx
elif interp=='cubic':
xvals = np.arange(len(out))
fint = interp1d(xvals, out, kind=interp, bounds_error=False, fill_value='extrapolate')
out = fint(xvals+fracx)
elif interp=='quintic':
xvals = np.arange(len(out))
fint = interp1d(xvals, out, kind=5, bounds_error=False, fill_value='extrapolate')
out = fint(xvals+fracx)
else:
raise ValueError(f'interp={interp} not recognized.')
out = out[padx:padx+inarr.size]
elif ndim == 2:
# Return if both delx and dely are 0
if np.isclose(delx, 0, atol=1e-5) and np.isclose(dely, 0, atol=1e-5):
return inarr
ny, nx = shape
# separate shift into an integer and fraction shift
intx = np.int(delx)
inty = np.int(dely)
fracx = delx - intx
fracy = dely - inty
if fracx < 0:
fracx += 1
intx -= 1
if fracy < 0:
fracy += 1
inty -= 1
# Pad ends with constant value
if pad:
padx = np.abs(intx) + 5
pady = np.abs(inty) + 5
pad_vals = ([pady]*2,[padx]*2)
out = np.pad(inarr,pad_vals,'constant',constant_values=cval)
else:
padx = 0; pady = 0
out = inarr.copy()
# shift by integer portion
out = np.roll(np.roll(out, intx, axis=1), inty, axis=0)
# Check if fracx and fracy are effectively 0
fxis0 = np.isclose(fracx,0, atol=1e-5)
fyis0 = np.isclose(fracy,0, atol=1e-5)
# If fractional shifts are significant
# use bi-linear interpolation between four pixels
if interp=='linear':
if not (fxis0 and fyis0):
# Break bi-linear interpolation into four parts
# to avoid NaNs unnecessarily affecting integer shifted dimensions
part1 = out * ((1-fracx)*(1-fracy))
part2 = 0 if fyis0 else np.roll(out,1,axis=0)*((1-fracx)*fracy)
part3 = 0 if fxis0 else np.roll(out,1,axis=1)*((1-fracy)*fracx)
part4 = 0 if (fxis0 or fyis0) else np.roll(np.roll(out, 1, axis=1), 1, axis=0) * fracx*fracy
out = part1 + part2 + part3 + part4
elif interp=='cubic' or interp=='quintic':
fracx = 0 if fxis0 else fracx
fracy = 0 if fxis0 else fracy
y = np.arange(out.shape[0])
x = np.arange(out.shape[1])
fint = interp2d(x, y, out, kind=interp)
out = fint(x-fracx, y-fracy)
else:
raise ValueError(f'interp={interp} not recognized.')
out = out[pady:pady+ny, padx:padx+nx]
elif ndim == 3:
# Perform shift on each image in succession
kwargs['delx'] = delx
kwargs['dely'] = dely
kwargs['pad'] = pad
kwargs['cval'] = cval
kwargs['interp'] = interp
out = np.array([fshift(im, **kwargs) for im in inarr])
else:
raise ValueError(f'Found {ndim} dimensions {shape}. Only up to 3 dimensions allowed.')
return out
def fourier_imshift(image, xshift, yshift, pad=False, cval=0.0, **kwargs):
"""Fourier shift image
Shift an image by use of Fourier shift theorem
Parameters
----------
image : ndarray
2D image or 3D image cube [nz,ny,nx].
xshift : float
Number of pixels to shift image in the x direction
yshift : float
Number of pixels to shift image in the y direction
pad : bool
Should we pad the array before shifting, then truncate?
Otherwise, the image is wrapped.
cval : sequence or float, optional
The values to set the padded values for each axis. Default is 0.
((before_1, after_1), ... (before_N, after_N)) unique pad constants for each axis.
((before, after),) yields same before and after constants for each axis.
(constant,) or int is a shortcut for before = after = constant for all axes.
Returns
-------
ndarray
Shifted image
"""
shape = image.shape
ndim = len(shape)
if ndim==2:
ny, nx = shape
# Pad ends with zeros
if pad:
padx = np.abs(np.int(xshift)) + 5
pady = np.abs(np.int(yshift)) + 5
pad_vals = ([pady]*2,[padx]*2)
im = np.pad(image,pad_vals,'constant',constant_values=cval)
else:
padx = 0; pady = 0
im = image
offset = fourier_shift( np.fft.fft2(im), (yshift,xshift) )
offset = np.fft.ifft2(offset).real
offset = offset[pady:pady+ny, padx:padx+nx]
elif ndim==3:
kwargs['pad'] = pad
kwargs['cval'] = cval
offset = np.array([fourier_imshift(im, xshift, yshift, **kwargs) for im in image])
else:
raise ValueError(f'Found {ndim} dimensions {shape}. Only up 2 or 3 dimensions allowed.')
return offset
def pad_or_cut_to_size(array, new_shape, fill_val=0.0, offset_vals=None,
shift_func=fshift, **kwargs):
"""
Resize an array to a new shape by either padding with zeros
or trimming off rows and/or columns. The output shape can
be of any arbitrary amount.
Parameters
----------
array : ndarray
A 1D, 2D, or 3D array. If 3D, then taken to be a stack of images
that are cropped or expanded in the same fashion.
new_shape : tuple
Desired size for the output array. For 2D case, if a single value,
then will create a 2-element tuple of the same value.
fill_val : scalar, optional
Value to pad borders. Default is 0.0
offset_vals : tuple
Option to perform image shift in the (xpix) direction for 1D,
or (ypix,xpix) direction for 2D/3D prior to cropping or expansion.
shift_func : function
Function to use for shifting. Usually either `fshift` or `fourier_imshift`.
Returns
-------
output : ndarray
An array of size new_shape that preserves the central information
of the input array.
"""
shape_orig = array.shape
ndim = len(shape_orig)
if ndim == 1:
# is_1d = True
# Reshape array to a 2D array with nx=1
array = array.reshape((1,1,-1))
nz, ny, nx = array.shape
if isinstance(new_shape, (float,int,np.int,np.int64)):
nx_new = int(new_shape+0.5)
ny_new = 1
new_shape = (ny_new, nx_new)
elif len(new_shape) < 2:
nx_new = new_shape[0]
ny_new = 1
new_shape = (ny_new, nx_new)
else:
ny_new, nx_new = new_shape
output = np.zeros(shape=(nz,ny_new,nx_new), dtype=array.dtype)
elif (ndim == 2) or (ndim == 3):
if ndim==2:
nz = 1
ny, nx = array.shape
array = array.reshape([nz,ny,nx])
else:
nz, ny, nx = array.shape
if isinstance(new_shape, (float,int,np.int,np.int64)):
ny_new = nx_new = int(new_shape+0.5)
new_shape = (ny_new, nx_new)
elif len(new_shape) < 2:
ny_new = nx_new = new_shape[0]
new_shape = (ny_new, nx_new)
else:
ny_new, nx_new = new_shape
output = np.zeros(shape=(nz,ny_new,nx_new), dtype=array.dtype)
else:
raise ValueError(f'Found {ndim} dimensions {shape_orig}. Only up to 3 dimensions allowed.')
# Return if no difference in shapes
# This needs to occur after the above so that new_shape is verified to be a tuple
# If offset_vals is set, then continue to perform shift function
if (array.shape == new_shape) and (offset_vals is None):
return array
# Input the fill values
if fill_val != 0:
output += fill_val
# Pixel shift values
if offset_vals is not None:
if ndim == 1:
ny_off = 0
if isinstance(offset_vals, (float,int,np.int,np.int64)):
nx_off = offset_vals
elif len(offset_vals) < 2:
nx_off = offset_vals[0]
else:
raise ValueError('offset_vals should be a single value.')
else:
if len(offset_vals) == 2:
ny_off, nx_off = offset_vals
else:
raise ValueError('offset_vals should have two values.')
else:
nx_off = ny_off = 0
if nx_new>nx:
n0 = (nx_new - nx) / 2
n1 = n0 + nx
elif nx>nx_new:
n0 = (nx - nx_new) / 2
n1 = n0 + nx_new
else:
n0, n1 = (0, nx)
n0 = int(n0+0.5)
n1 = int(n1+0.5)
if ny_new>ny:
m0 = (ny_new - ny) / 2
m1 = m0 + ny
elif ny>ny_new:
m0 = (ny - ny_new) / 2
m1 = m0 + ny_new
else:
m0, m1 = (0, ny)
m0 = int(m0+0.5)
m1 = int(m1+0.5)
if (nx_new>=nx) and (ny_new>=ny):
#print('Case 1')
output[:,m0:m1,n0:n1] = array.copy()
for i, im in enumerate(output):
output[i] = shift_func(im, nx_off, ny_off, pad=True, cval=fill_val, **kwargs)
elif (nx_new<=nx) and (ny_new<=ny):
#print('Case 2')
if (nx_off!=0) or (ny_off!=0):
array_temp = array.copy()
for i, im in enumerate(array_temp):
array_temp[i] = shift_func(im, nx_off, ny_off, pad=True, cval=fill_val, **kwargs)
output = array_temp[:,m0:m1,n0:n1]
else:
output = array[:,m0:m1,n0:n1]
elif (nx_new<=nx) and (ny_new>=ny):
#print('Case 3')
if nx_off!=0:
array_temp = array.copy()
for i, im in enumerate(array_temp):
array_temp[i] = shift_func(im, nx_off, 0, pad=True, cval=fill_val, **kwargs)
output[:,m0:m1,:] = array_temp[:,:,n0:n1]
else:
output[:,m0:m1,:] = array[:,:,n0:n1]
for i, im in enumerate(output):
output[i] = shift_func(im, 0, ny_off, pad=True, cval=fill_val, **kwargs)
elif (nx_new>=nx) and (ny_new<=ny):
#print('Case 4')
if ny_off!=0:
array_temp = array.copy()
for i, im in enumerate(array_temp):
array_temp[i] = shift_func(im, 0, ny_off, pad=True, cval=fill_val, **kwargs)
output[:,:,n0:n1] = array_temp[:,m0:m1,:]
else:
output[:,:,n0:n1] = array[:,m0:m1,:]
for i, im in enumerate(output):
output[i] = shift_func(im, nx_off, 0, pad=True, cval=fill_val, **kwargs)
# Flatten if input and output arrays are 1D
if (ndim==1) and (ny_new==1):
output = output.flatten()
elif ndim==2:
output = output[0]
return output
def rotate_offset(data, angle, cen=None, cval=0.0, order=1,
reshape=True, recenter=True, shift_func=fshift, **kwargs):
"""Rotate and offset an array.
Same as `rotate` in `scipy.ndimage.interpolation` except that it
rotates around a center point given by `cen` keyword.
The array is rotated in the plane defined by the two axes given by the
`axes` parameter using spline interpolation of the requested order.
Default rotation is clockwise direction.
Parameters
----------
data : ndarray
The input array.
angle : float
The rotation angle in degrees (rotates in clockwise direction).
cen : tuple
Center location around which to rotate image.
Values are expected to be `(xcen, ycen)`.
recenter : bool
Do we want to reposition so that `cen` is the image center?
shift_func : function
Function to use for shifting. Usually either `fshift` or `fourier_imshift`.
Keyword Args
------------
axes : tuple of 2 ints, optional
The two axes that define the plane of rotation. Default is the first
two axes.
reshape : bool, optional
If `reshape` is True, the output shape is adapted so that the input
array is contained completely in the output. Default is True.
order : int, optional
The order of the spline interpolation, default is 1.
The order has to be in the range 0-5.
mode : str, optional
Points outside the boundaries of the input are filled according
to the given mode ('constant', 'nearest', 'reflect', 'mirror' or 'wrap').
Default is 'constant'.
cval : scalar, optional
Value used for points outside the boundaries of the input if
``mode='constant'``. Default is 0.0
prefilter : bool, optional
The parameter prefilter determines if the input is pre-filtered with
`spline_filter` before interpolation (necessary for spline
interpolation of order > 1). If False, it is assumed that the input is
already filtered. Default is True.
Returns
-------
rotate : ndarray or None
The rotated data.
"""
# Return input data if angle is set to None or 0
# and if
if ((angle is None) or (angle==0)) and (cen is None):
return data
shape_orig = data.shape
ndim = len(shape_orig)
if ndim==2:
ny, nx = shape_orig
nz = 1
elif ndim==3:
nz, ny, nx = shape_orig
else:
raise ValueError(f'Found {ndim} dimensions {shape_orig}. Only 2 or 3 dimensions allowed.')
if 'axes' not in kwargs.keys():
kwargs['axes'] = (2,1)
kwargs['order'] = order
kwargs['cval'] = cval
xcen, ycen = (nx/2, ny/2)
if cen is None:
cen = (xcen, ycen)
xcen_new, ycen_new = cen
delx, dely = (xcen-xcen_new, ycen-ycen_new)
# Reshape into a 3D array if nz=1
data = data.reshape([nz,ny,nx])
# Return rotate function if rotating about center
if np.allclose((delx, dely), 0, atol=1e-5):
return rotate(data, angle, reshape=reshape, **kwargs).squeeze()
# fshift interp type
if order <=1:
interp='linear'
elif order <=3:
interp='cubic'
else:
interp='quintic'
# Pad and then shift array
new_shape = (int(ny+2*abs(dely)), int(nx+2*abs(delx)))
images_shift = []
for im in data:
im_pad = pad_or_cut_to_size(im, new_shape, fill_val=cval)
im_new = shift_func(im_pad, delx, dely, cval=cval, interp=interp)
images_shift.append(im_new)
images_shift = np.asarray(images_shift)
# Remove additional dimension in the case of single image
#images_shift = images_shift.squeeze()
# Rotate images
# TODO: Should reshape=True or reshape=reshape?
images_shrot = rotate(images_shift, angle, reshape=True, **kwargs)
if reshape:
return images_shrot.squeeze()
else:
# Shift back to it's location
if recenter:
images_rot = images_shrot
else:
images_rot = []
for im in images_shrot:
im_new = shift_func(im, -1*delx, -1*dely, pad=True, cval=cval, interp=interp)
images_rot.append(im_new)
images_rot = np.asarray(images_rot)
images_fin = []
for im in images_rot:
im_new = pad_or_cut_to_size(im, (ny,nx))
images_fin.append(im_new)
images_fin = np.asarray(images_fin)
return images_fin.squeeze()
def frebin(image, dimensions=None, scale=None, total=True):
"""Fractional rebin
Python port from the IDL frebin.pro
Shrink or expand the size of a 1D or 2D array by an arbitary amount
using bilinear interpolation. Conserves flux by ensuring that each
input pixel is equally represented in the output array. Can also input
an image cube.
Parameters
----------
image : ndarray
Input image ndarray (1D, 2D). Can also be an image
cube assumed to have shape [nz,ny,nx].
dimensions : tuple or None
Desired size of output array (take priority over scale).
scale : tuple or None
Factor to scale output array size. A scale of 2 will increase
the number of pixels by 2 (ie., finer pixel scale).
total : bool
Conserves the surface flux. If True, the output pixels
will be the sum of pixels within the appropriate box of
the input image. Otherwise, they will be the average.
Returns
-------
ndarray
The binned ndarray
"""
shape = image.shape
ndim = len(shape)
if ndim>2:
ndim_temp = 2
sh_temp = shape[-2:]
else:
ndim_temp = ndim
sh_temp = shape
if dimensions is not None:
if isinstance(dimensions, float):
dimensions = [int(dimensions)] * ndim_temp
elif isinstance(dimensions, int):
dimensions = [dimensions] * ndim_temp
elif len(dimensions) != ndim_temp:
raise RuntimeError("The number of input dimensions don't match the image shape.")
elif scale is not None:
if isinstance(scale, float) or isinstance(scale, int):
dimensions = list(map(int, map(lambda x: x+0.5, map(lambda x: x*scale, sh_temp))))
elif len(scale) != ndim_temp:
raise RuntimeError("The number of input dimensions don't match the image shape.")
else:
dimensions = [scale[i]*sh_temp[i] for i in range(len(scale))]
else:
raise RuntimeError('Incorrect parameters to rebin.\n\frebin(image, dimensions=(x,y))\n\frebin(image, scale=a')
#print(dimensions)
if ndim==1:
nlout = 1
nsout = dimensions[0]
nsout = int(nsout+0.5)
dimensions = [nsout]
elif ndim==2:
nlout, nsout = dimensions
nlout = int(nlout+0.5)
nsout = int(nsout+0.5)
dimensions = [nlout, nsout]
elif ndim==3:
kwargs = {'dimensions': dimensions, 'scale': scale, 'total': total}
result = np.array([frebin(im, **kwargs) for im in image])
return result
elif ndim > 3:
raise ValueError(f'Found {ndim} dimensions {shape}. Only up to 3 dimensions allowed.')
if nlout != 1:
nl = shape[0]
ns = shape[1]
else:
nl = nlout
ns = shape[0]
sbox = ns / float(nsout)
lbox = nl / float(nlout)
#print(sbox,lbox)
# Contract by integer amount
if (sbox.is_integer()) and (lbox.is_integer()):
image = image.reshape((nl,ns))
result = krebin(image, (nlout,nsout))
if not total:
result /= (sbox*lbox)
if nl == 1:
return result[0,:]
else:
return result
ns1 = ns - 1
nl1 = nl - 1
if nl == 1:
#1D case
_log.debug("Rebinning to Dimension: %s" % nsout)
result = np.zeros(nsout)
for i in range(nsout):
rstart = i * sbox
istart = int(rstart)
rstop = rstart + sbox
if int(rstop) < ns1:
istop = int(rstop)
else:
istop = ns1
frac1 = float(rstart) - istart
frac2 = 1.0 - (rstop - istop)
#add pixel values from istart to istop and subtract fraction pixel
#from istart to rstart and fraction pixel from rstop to istop
result[i] = np.sum(image[istart:istop + 1]) - frac1 * image[istart] - frac2 * image[istop]
if total:
return result
else:
return result / (float(sbox) * lbox)
else:
_log.debug("Rebinning to Dimensions: %s, %s" % tuple(dimensions))
#2D case, first bin in second dimension
temp = np.zeros((nlout, ns))
result = np.zeros((nsout, nlout))
#first lines
for i in range(nlout):
rstart = i * lbox
istart = int(rstart)
rstop = rstart + lbox
if int(rstop) < nl1:
istop = int(rstop)
else:
istop = nl1
frac1 = float(rstart) - istart
frac2 = 1.0 - (rstop - istop)
if istart == istop:
temp[i, :] = (1.0 - frac1 - frac2) * image[istart, :]
else:
temp[i, :] = np.sum(image[istart:istop + 1, :], axis=0) -\
frac1 * image[istart, :] - frac2 * image[istop, :]
temp = np.transpose(temp)
#then samples
for i in range(nsout):
rstart = i * sbox
istart = int(rstart)
rstop = rstart + sbox
if int(rstop) < ns1:
istop = int(rstop)
else:
istop = ns1
frac1 = float(rstart) - istart
frac2 = 1.0 - (rstop - istop)
if istart == istop:
result[i, :] = (1. - frac1 - frac2) * temp[istart, :]
else:
result[i, :] = np.sum(temp[istart:istop + 1, :], axis=0) -\
frac1 * temp[istart, :] - frac2 * temp[istop, :]
if total:
return np.transpose(result)
else:
return np.transpose(result) / (sbox * lbox)
def image_rescale(HDUlist_or_filename, pixscale_out, pixscale_in=None,
dist_in=None, dist_out=None, cen_star=True, shape_out=None):
""" Rescale image flux
Scale the flux and rebin an image to some new pixel scale and distance.
The object's physical units (AU) are assumed to be constant, so the
total angular size changes if the distance to the object changes.
IT IS RECOMMENDED THAT UNITS BE IN PHOTONS/SEC/PIXEL (not mJy/arcsec)
Parameters
==========
HDUlist_or_filename : HDUList or str
Input either an HDUList or file name.
pixscale_out : float
Desired pixel scale (asec/pix) of returned image. Will be saved in header info.
Keyword Args
============
pixscale_in : float or None
Input image pixel scale. If None, then tries to grab info from the header.
dist_in : float
Input distance (parsec) of original object. If not set, then we look for
the header keywords 'DISTANCE' or 'DIST'.
dist_out : float
Output distance (parsec) of object in image. Will be saved in header info.
If not set, then assumed to be same as input distance.
cen_star : bool
Is the star placed in the central pixel? If so, then the stellar flux is
assumed to be a single pixel that is equal to the maximum flux in the
image. Rather than rebinning that pixel, the total flux is pulled out
and re-added to the central pixel of the final image.
shape_out : tuple, int, or None
Desired size for the output array (ny,nx). If a single value, then will
create a 2-element tuple of the same value.
Returns
=======
HDUlist of the new image.
"""
if isinstance(HDUlist_or_filename, six.string_types):
hdulist = fits.open(HDUlist_or_filename)
elif isinstance(HDUlist_or_filename, fits.HDUList):
hdulist = HDUlist_or_filename
else:
raise ValueError("Input must be a filename or HDUlist")
header = hdulist[0].header
# Try to update input pixel scale if it exists in header
if pixscale_in is None:
key_test = ['PIXELSCL','PIXSCALE']
for k in key_test:
if k in header:
pixscale_in = header[k]
if pixscale_in is None:
raise KeyError("Cannot determine input image pixel scale.")
# Try to update input distance if it exists in header
if dist_in is None:
key_test = ['DISTANCE','DIST']
for k in key_test:
if k in header:
dist_in = header[k]
# If output distance is not set, set to input distance
if dist_out is None:
dist_out = 'None' if dist_in is None else dist_in
fratio = 1
elif dist_in is None:
raise ValueError('Input distance should not be None if output distance is specified.')
else:
fratio = dist_in / dist_out
# Scale the input flux by inverse square law
image = (hdulist[0].data) * fratio**2
# If we move the image closer while assuming same number of pixels with
# the same AU/pixel, then this implies we've increased the angle that
# the image subtends. So, each pixel would have a larger angular size.
# New image scale in arcsec/pixel
imscale_new = pixscale_in * fratio
# Before rebinning, we want the flux in the central pixel to
# always be in the central pixel (the star). So, let's save
# and remove that flux then add back after the rebinning.
if cen_star:
mask_max = image==image.max()
star_flux = image[mask_max][0]
image[mask_max] = 0
# Rebin the image to get a pixel scale that oversamples the detector pixels
fact = imscale_new / pixscale_out
image_new = frebin(image, scale=fact)
# Restore stellar flux to the central pixel.
ny, nx = image_new.shape
if cen_star:
image_new[ny//2, nx//2] += star_flux
if shape_out is not None:
image_new = pad_or_cut_to_size(image_new, shape_out)
hdu_new = fits.PrimaryHDU(image_new)
hdu_new.header = hdulist[0].header.copy()
hdulist_new = fits.HDUList([hdu_new])
hdulist_new[0].header['PIXELSCL'] = (pixscale_out, 'arcsec/pixel')
hdulist_new[0].header['PIXSCALE'] = (pixscale_out, 'arcsec/pixel')
hdulist_new[0].header['DISTANCE'] = (dist_out, 'parsecs')
return hdulist_new
def model_to_hdulist(args_model, sp_star, bandpass):
"""HDUList from model FITS file.
Convert disk model to an HDUList with units of photons/sec/pixel.
If observed filter is different than input filter, we assume that
the disk has a flat scattering, meaning it scales with stellar
continuum. Pixel sizes and distances are left unchanged, and
stored in header.
Parameters
----------
args_model - tuple
Arguments describing the necessary model information:
- fname : Name of model file or an HDUList
- scale0 : Pixel scale (in arcsec/pixel)
- dist0 : Assumed model distance
- wave_um : Wavelength of observation
- units0 : Assumed flux units (e.g., MJy/arcsec^2 or muJy/pixel)
sp_star : :mod:`pysynphot.spectrum`
A pysynphot spectrum of central star. Used to adjust observed
photon flux if filter differs from model input
bandpass : :mod:`pysynphot.obsbandpass`
Output `Pysynphot` bandpass from instrument class. This corresponds
to the flux at the entrance pupil for the particular filter.
"""
#filt, mask, pupil = args_inst
fname, scale0, dist0, wave_um, units0 = args_model
wave0 = wave_um * 1e4
#### Read in the image, then convert from mJy/arcsec^2 to photons/sec/pixel
if isinstance(fname, fits.HDUList):
hdulist = fname
else:
# Open file
hdulist = fits.open(fname)
# Get rid of any non-standard header keywords
hdu = fits.PrimaryHDU(hdulist[0].data)
for k in hdulist[0].header.keys():
try:
hdu.header[k] = hdulist[0].header[k]
except ValueError:
pass
hdulist = fits.HDUList(hdu)
# Break apart units0
units_list = units0.split('/')
if 'mJy' in units_list[0]:
units_pysyn = S.units.mJy()
elif 'uJy' in units_list[0]:
units_pysyn = S.units.muJy()
elif 'nJy' in units_list[0]:
units_pysyn = S.units.nJy()
elif 'MJy' in units_list[0]:
hdulist[0].data *= 1000 # Convert to Jy
units_pysyn = S.units.Jy()
elif 'Jy' in units_list[0]: # Jy should be last
units_pysyn = S.units.Jy()
else:
errstr = "Do not recognize units0='{}'".format(units0)
raise ValueError(errstr)
# Convert from input units to photlam (photons/sec/cm^2/A/angular size)
im = units_pysyn.ToPhotlam(wave0, hdulist[0].data)
# We assume scattering is flat in photons/sec/A
# This means everything scales with stellar continuum
sp_star.convert('photlam')
wstar, fstar = (sp_star.wave/1e4, sp_star.flux)
# Compare observed wavelength to image wavelength
wobs_um = bandpass.avgwave() / 1e4 # Current bandpass wavelength
wdel = np.linspace(-0.1,0.1)
f_obs = | np.interp(wobs_um+wdel, wstar, fstar) | numpy.interp |
import os
import matplotlib.pyplot as plt
from hyperparams import MAX_STEPS
import pdb
import numpy as np
steps, rewards = [], []
def mean(lst):
return sum(lst)/len(lst)
def std(lst):
mn = mean(lst)
return sum([(elem - mn)**2 for elem in lst])**.5
def plot(step, reward, title):
steps.append(step)
rewards.append(reward)
plt.plot(steps, rewards, 'b-')
plt.title(title)
plt.xlabel('Steps')
plt.ylabel('Rewards')
plt.xlim((0, MAX_STEPS))
plt.ylim((-2000, 1000))
plt.savefig(os.path.join('results', title + '.png'))
# def plot_with_error_bars(steps, rewards, title, label='Rewards', finished=True, color = 'g'):
# samples = len(rewards)
# rewards = np.array(rewards)
# means = np.mean(rewards, axis=0)
# stds = np.std(rewards, axis=0)
# steps = np.array(steps)
# conf_ints = 2*stds*samples**(-1/2)
# # pdb.set_trace()
# plt.plot(np.array(steps), np.array(means), color=color, label=label)
# plt.fill_between(np.array(steps), np.array(means+conf_ints), np.array(means-conf_ints), color=color, alpha=.7)
# plt.xlabel('Steps')
# plt.ylabel('Rewards')
# min_steps = steps.min()
# max_steps = steps.max()
# plt.xlim((min_steps, max_steps))
# min_reward = (means-conf_ints*1.5).min()
# max_reward = (means+conf_ints*1.5).max()
# plt.ylim((min_reward, max_reward))
# if finished:
# def multiplot(steps_list, rewards_list, label_list, title):
# finished = False
# color_cycle = ['b', 'r', 'c', 'g']
# plt.figure(1)
# plt.title(title)
# for i in range(len(rewards_list)):
# if i == len(rewards_list)-1:
# finished = True
# # break
# plot_with_error_bars(steps_list[i], rewards_list[i], title, label_list[i], finished=finished, color=color_cycle[i])
# plt.legend()
# plt.savefig(os.path.join('results', title + '.png'))
# plt.close()
def multiplot(steps_list, rewards_list, label_list, title):
finished = False
color_cycle = ['b', 'r', 'c', 'g']
plt.figure(1)
plt.title(title)
rewards_list = | np.array(rewards_list) | numpy.array |
"""
Module containing various functions I have found useful in assembling the feature vector.
"""
import numpy as np
def combine_as_max(vector1, vector2):
"""
Combine two vectors and return a vector that has the maximum values from each vector compared pairwise.
:param vector1: First list to compare
:param vector2: Second list to compare
:return: a list containing the max of each element of vector1 and vector2 compared pairwise.
"""
combined_vector = []
if len(vector1) != len(vector2):
raise RuntimeError("Vectors must be of equal length!")
for index in range(0, len(vector1)):
if vector1[index] > vector2[index]:
combined_vector.append(vector1[index])
else:
combined_vector.append(vector2[index])
return combined_vector
def combine_by_append(vector1, vector2):
"""
Combines two lists by appending them.
:param vector1: list of values
:param vector2: list of values
:return: a list created by appending vector1 to vector2
"""
return vector1 + vector2
def combine_as_average(vector1, vector2, include_zeros=True):
"""
Takes the average of two vectors. It can include zeros when computing the average or drop them.
:param vector1: list of values
:param vector2: list of values
:param include_zeros: boolean, if True zeros will be included in the average, if False they will be dropped.
:return: list containing each element is the average of the elements from the two vectors
"""
if len(vector1) != len(vector2):
raise RuntimeError("Vectors must be of equal length!")
empty_sentiment_vector = [0.0] * len(vector1)
if vector1 == empty_sentiment_vector and vector2 == empty_sentiment_vector:
# We received two zero vectors, don't need to compute an average for that
return empty_sentiment_vector
if vector1 == empty_sentiment_vector and not include_zeros:
# If vector1 is empty, and we are not including zeros, then the average is vector2
return vector2
if vector2 == empty_sentiment_vector and not include_zeros:
# If vector2 is empty, and we are not including zeros, then the average is vector1
return vector1
nv1 = np.array(vector1)
nv2 = np.array(vector2)
avg = np.divide(np.sum([nv1, nv2], axis=0), 2.0)
return list(avg)
def combine_as_average_np(vector1, vector2, include_zeros=True):
"""
Combine two numpy vectors (numpy array of values) by averaging them.
:param vector1: first numpy array
:param vector2: second numpy array
:param include_zeros: include_zeros: boolean, if True zeros will be included in the average,
if False they will be dropped.
:return: a numpy array, each element is the average of the elements from the two vectors
"""
if len(vector1) != len(vector2):
raise RuntimeError("Vectors must be of equal length!")
empty_sentiment_vector = np.array([0.0] * len(vector1))
if np.array_equal(vector1, empty_sentiment_vector) and | np.array_equal(vector2, empty_sentiment_vector) | numpy.array_equal |
# This module has been generated automatically from space group information
# obtained from the Computational Crystallography Toolbox
#
"""
Space groups
This module contains a list of all the 230 space groups that can occur in
a crystal. The variable space_groups contains a dictionary that maps
space group numbers and space group names to the corresponding space
group objects.
.. moduleauthor:: <NAME> <<EMAIL>>
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2013 The Mosaic Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file LICENSE.txt, distributed as part of this software.
#-----------------------------------------------------------------------------
import numpy as N
class SpaceGroup(object):
"""
Space group
All possible space group objects are created in this module. Other
modules should access these objects through the dictionary
space_groups rather than create their own space group objects.
"""
def __init__(self, number, symbol, transformations):
"""
:param number: the number assigned to the space group by
international convention
:type number: int
:param symbol: the Hermann-Mauguin space-group symbol as used
in PDB and mmCIF files
:type symbol: str
:param transformations: a list of space group transformations,
each consisting of a tuple of three
integer arrays (rot, tn, td), where
rot is the rotation matrix and tn/td
are the numerator and denominator of the
translation vector. The transformations
are defined in fractional coordinates.
:type transformations: list
"""
self.number = number
self.symbol = symbol
self.transformations = transformations
self.transposed_rotations = N.array([N.transpose(t[0])
for t in transformations])
self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2]
for t in transformations]))
def __repr__(self):
return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol))
def __len__(self):
"""
:return: the number of space group transformations
:rtype: int
"""
return len(self.transformations)
def symmetryEquivalentMillerIndices(self, hkl):
"""
:param hkl: a set of Miller indices
:type hkl: Scientific.N.array_type
:return: a tuple (miller_indices, phase_factor) of two arrays
of length equal to the number of space group
transformations. miller_indices contains the Miller
indices of each reflection equivalent by symmetry to the
reflection hkl (including hkl itself as the first element).
phase_factor contains the phase factors that must be applied
to the structure factor of reflection hkl to obtain the
structure factor of the symmetry equivalent reflection.
:rtype: tuple
"""
hkls = N.dot(self.transposed_rotations, hkl)
p = N.multiply.reduce(self.phase_factors**hkl, -1)
return hkls, p
space_groups = {}
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(1, 'P 1', transformations)
space_groups[1] = sg
space_groups['P 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(2, 'P -1', transformations)
space_groups[2] = sg
space_groups['P -1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(3, 'P 1 2 1', transformations)
space_groups[3] = sg
space_groups['P 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(4, 'P 1 21 1', transformations)
space_groups[4] = sg
space_groups['P 1 21 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(5, 'C 1 2 1', transformations)
space_groups[5] = sg
space_groups['C 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(6, 'P 1 m 1', transformations)
space_groups[6] = sg
space_groups['P 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(7, 'P 1 c 1', transformations)
space_groups[7] = sg
space_groups['P 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(8, 'C 1 m 1', transformations)
space_groups[8] = sg
space_groups['C 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(9, 'C 1 c 1', transformations)
space_groups[9] = sg
space_groups['C 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(10, 'P 1 2/m 1', transformations)
space_groups[10] = sg
space_groups['P 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(11, 'P 1 21/m 1', transformations)
space_groups[11] = sg
space_groups['P 1 21/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(12, 'C 1 2/m 1', transformations)
space_groups[12] = sg
space_groups['C 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(13, 'P 1 2/c 1', transformations)
space_groups[13] = sg
space_groups['P 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(14, 'P 1 21/c 1', transformations)
space_groups[14] = sg
space_groups['P 1 21/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(15, 'C 1 2/c 1', transformations)
space_groups[15] = sg
space_groups['C 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(16, 'P 2 2 2', transformations)
space_groups[16] = sg
space_groups['P 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(17, 'P 2 2 21', transformations)
space_groups[17] = sg
space_groups['P 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(18, 'P 21 21 2', transformations)
space_groups[18] = sg
space_groups['P 21 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(19, 'P 21 21 21', transformations)
space_groups[19] = sg
space_groups['P 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(20, 'C 2 2 21', transformations)
space_groups[20] = sg
space_groups['C 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(21, 'C 2 2 2', transformations)
space_groups[21] = sg
space_groups['C 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(22, 'F 2 2 2', transformations)
space_groups[22] = sg
space_groups['F 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(23, 'I 2 2 2', transformations)
space_groups[23] = sg
space_groups['I 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(24, 'I 21 21 21', transformations)
space_groups[24] = sg
space_groups['I 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(25, 'P m m 2', transformations)
space_groups[25] = sg
space_groups['P m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(26, 'P m c 21', transformations)
space_groups[26] = sg
space_groups['P m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(27, 'P c c 2', transformations)
space_groups[27] = sg
space_groups['P c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(28, 'P m a 2', transformations)
space_groups[28] = sg
space_groups['P m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(29, 'P c a 21', transformations)
space_groups[29] = sg
space_groups['P c a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(30, 'P n c 2', transformations)
space_groups[30] = sg
space_groups['P n c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(31, 'P m n 21', transformations)
space_groups[31] = sg
space_groups['P m n 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(32, 'P b a 2', transformations)
space_groups[32] = sg
space_groups['P b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(33, 'P n a 21', transformations)
space_groups[33] = sg
space_groups['P n a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(34, 'P n n 2', transformations)
space_groups[34] = sg
space_groups['P n n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(35, 'C m m 2', transformations)
space_groups[35] = sg
space_groups['C m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(36, 'C m c 21', transformations)
space_groups[36] = sg
space_groups['C m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(37, 'C c c 2', transformations)
space_groups[37] = sg
space_groups['C c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(38, 'A m m 2', transformations)
space_groups[38] = sg
space_groups['A m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(39, 'A b m 2', transformations)
space_groups[39] = sg
space_groups['A b m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(40, 'A m a 2', transformations)
space_groups[40] = sg
space_groups['A m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(41, 'A b a 2', transformations)
space_groups[41] = sg
space_groups['A b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(42, 'F m m 2', transformations)
space_groups[42] = sg
space_groups['F m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(43, 'F d d 2', transformations)
space_groups[43] = sg
space_groups['F d d 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(44, 'I m m 2', transformations)
space_groups[44] = sg
space_groups['I m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(45, 'I b a 2', transformations)
space_groups[45] = sg
space_groups['I b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(46, 'I m a 2', transformations)
space_groups[46] = sg
space_groups['I m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(47, 'P m m m', transformations)
space_groups[47] = sg
space_groups['P m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(48, 'P n n n :2', transformations)
space_groups[48] = sg
space_groups['P n n n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(49, 'P c c m', transformations)
space_groups[49] = sg
space_groups['P c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(50, 'P b a n :2', transformations)
space_groups[50] = sg
space_groups['P b a n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(51, 'P m m a', transformations)
space_groups[51] = sg
space_groups['P m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(52, 'P n n a', transformations)
space_groups[52] = sg
space_groups['P n n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(53, 'P m n a', transformations)
space_groups[53] = sg
space_groups['P m n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(54, 'P c c a', transformations)
space_groups[54] = sg
space_groups['P c c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(55, 'P b a m', transformations)
space_groups[55] = sg
space_groups['P b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(56, 'P c c n', transformations)
space_groups[56] = sg
space_groups['P c c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(57, 'P b c m', transformations)
space_groups[57] = sg
space_groups['P b c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(58, 'P n n m', transformations)
space_groups[58] = sg
space_groups['P n n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(59, 'P m m n :2', transformations)
space_groups[59] = sg
space_groups['P m m n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(60, 'P b c n', transformations)
space_groups[60] = sg
space_groups['P b c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(61, 'P b c a', transformations)
space_groups[61] = sg
space_groups['P b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(62, 'P n m a', transformations)
space_groups[62] = sg
space_groups['P n m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(63, 'C m c m', transformations)
space_groups[63] = sg
space_groups['C m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(64, 'C m c a', transformations)
space_groups[64] = sg
space_groups['C m c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(65, 'C m m m', transformations)
space_groups[65] = sg
space_groups['C m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(66, 'C c c m', transformations)
space_groups[66] = sg
space_groups['C c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(67, 'C m m a', transformations)
space_groups[67] = sg
space_groups['C m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(68, 'C c c a :2', transformations)
space_groups[68] = sg
space_groups['C c c a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(69, 'F m m m', transformations)
space_groups[69] = sg
space_groups['F m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(70, 'F d d d :2', transformations)
space_groups[70] = sg
space_groups['F d d d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(71, 'I m m m', transformations)
space_groups[71] = sg
space_groups['I m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(72, 'I b a m', transformations)
space_groups[72] = sg
space_groups['I b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(73, 'I b c a', transformations)
space_groups[73] = sg
space_groups['I b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(74, 'I m m a', transformations)
space_groups[74] = sg
space_groups['I m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(75, 'P 4', transformations)
space_groups[75] = sg
space_groups['P 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(76, 'P 41', transformations)
space_groups[76] = sg
space_groups['P 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(77, 'P 42', transformations)
space_groups[77] = sg
space_groups['P 42'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(78, 'P 43', transformations)
space_groups[78] = sg
space_groups['P 43'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(79, 'I 4', transformations)
space_groups[79] = sg
space_groups['I 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(80, 'I 41', transformations)
space_groups[80] = sg
space_groups['I 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(81, 'P -4', transformations)
space_groups[81] = sg
space_groups['P -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(82, 'I -4', transformations)
space_groups[82] = sg
space_groups['I -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(83, 'P 4/m', transformations)
space_groups[83] = sg
space_groups['P 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(84, 'P 42/m', transformations)
space_groups[84] = sg
space_groups['P 42/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(85, 'P 4/n :2', transformations)
space_groups[85] = sg
space_groups['P 4/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(86, 'P 42/n :2', transformations)
space_groups[86] = sg
space_groups['P 42/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(87, 'I 4/m', transformations)
space_groups[87] = sg
space_groups['I 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(88, 'I 41/a :2', transformations)
space_groups[88] = sg
space_groups['I 41/a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(89, 'P 4 2 2', transformations)
space_groups[89] = sg
space_groups['P 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(90, 'P 4 21 2', transformations)
space_groups[90] = sg
space_groups['P 4 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(91, 'P 41 2 2', transformations)
space_groups[91] = sg
space_groups['P 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(92, 'P 41 21 2', transformations)
space_groups[92] = sg
space_groups['P 41 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(93, 'P 42 2 2', transformations)
space_groups[93] = sg
space_groups['P 42 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(94, 'P 42 21 2', transformations)
space_groups[94] = sg
space_groups['P 42 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(95, 'P 43 2 2', transformations)
space_groups[95] = sg
space_groups['P 43 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(96, 'P 43 21 2', transformations)
space_groups[96] = sg
space_groups['P 43 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(97, 'I 4 2 2', transformations)
space_groups[97] = sg
space_groups['I 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(98, 'I 41 2 2', transformations)
space_groups[98] = sg
space_groups['I 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(99, 'P 4 m m', transformations)
space_groups[99] = sg
space_groups['P 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(100, 'P 4 b m', transformations)
space_groups[100] = sg
space_groups['P 4 b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(101, 'P 42 c m', transformations)
space_groups[101] = sg
space_groups['P 42 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(102, 'P 42 n m', transformations)
space_groups[102] = sg
space_groups['P 42 n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(103, 'P 4 c c', transformations)
space_groups[103] = sg
space_groups['P 4 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(104, 'P 4 n c', transformations)
space_groups[104] = sg
space_groups['P 4 n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(105, 'P 42 m c', transformations)
space_groups[105] = sg
space_groups['P 42 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(106, 'P 42 b c', transformations)
space_groups[106] = sg
space_groups['P 42 b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(107, 'I 4 m m', transformations)
space_groups[107] = sg
space_groups['I 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(108, 'I 4 c m', transformations)
space_groups[108] = sg
space_groups['I 4 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(109, 'I 41 m d', transformations)
space_groups[109] = sg
space_groups['I 41 m d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(110, 'I 41 c d', transformations)
space_groups[110] = sg
space_groups['I 41 c d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(111, 'P -4 2 m', transformations)
space_groups[111] = sg
space_groups['P -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(112, 'P -4 2 c', transformations)
space_groups[112] = sg
space_groups['P -4 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(113, 'P -4 21 m', transformations)
space_groups[113] = sg
space_groups['P -4 21 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(114, 'P -4 21 c', transformations)
space_groups[114] = sg
space_groups['P -4 21 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(115, 'P -4 m 2', transformations)
space_groups[115] = sg
space_groups['P -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(116, 'P -4 c 2', transformations)
space_groups[116] = sg
space_groups['P -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(117, 'P -4 b 2', transformations)
space_groups[117] = sg
space_groups['P -4 b 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(118, 'P -4 n 2', transformations)
space_groups[118] = sg
space_groups['P -4 n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(119, 'I -4 m 2', transformations)
space_groups[119] = sg
space_groups['I -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(120, 'I -4 c 2', transformations)
space_groups[120] = sg
space_groups['I -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(121, 'I -4 2 m', transformations)
space_groups[121] = sg
space_groups['I -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(122, 'I -4 2 d', transformations)
space_groups[122] = sg
space_groups['I -4 2 d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(123, 'P 4/m m m', transformations)
space_groups[123] = sg
space_groups['P 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(124, 'P 4/m c c', transformations)
space_groups[124] = sg
space_groups['P 4/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(125, 'P 4/n b m :2', transformations)
space_groups[125] = sg
space_groups['P 4/n b m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(126, 'P 4/n n c :2', transformations)
space_groups[126] = sg
space_groups['P 4/n n c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(127, 'P 4/m b m', transformations)
space_groups[127] = sg
space_groups['P 4/m b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(128, 'P 4/m n c', transformations)
space_groups[128] = sg
space_groups['P 4/m n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(129, 'P 4/n m m :2', transformations)
space_groups[129] = sg
space_groups['P 4/n m m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(130, 'P 4/n c c :2', transformations)
space_groups[130] = sg
space_groups['P 4/n c c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(131, 'P 42/m m c', transformations)
space_groups[131] = sg
space_groups['P 42/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(132, 'P 42/m c m', transformations)
space_groups[132] = sg
space_groups['P 42/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(133, 'P 42/n b c :2', transformations)
space_groups[133] = sg
space_groups['P 42/n b c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(134, 'P 42/n n m :2', transformations)
space_groups[134] = sg
space_groups['P 42/n n m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(135, 'P 42/m b c', transformations)
space_groups[135] = sg
space_groups['P 42/m b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(136, 'P 42/m n m', transformations)
space_groups[136] = sg
space_groups['P 42/m n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(137, 'P 42/n m c :2', transformations)
space_groups[137] = sg
space_groups['P 42/n m c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(138, 'P 42/n c m :2', transformations)
space_groups[138] = sg
space_groups['P 42/n c m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(139, 'I 4/m m m', transformations)
space_groups[139] = sg
space_groups['I 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(140, 'I 4/m c m', transformations)
space_groups[140] = sg
space_groups['I 4/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(141, 'I 41/a m d :2', transformations)
space_groups[141] = sg
space_groups['I 41/a m d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(142, 'I 41/a c d :2', transformations)
space_groups[142] = sg
space_groups['I 41/a c d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(143, 'P 3', transformations)
space_groups[143] = sg
space_groups['P 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(144, 'P 31', transformations)
space_groups[144] = sg
space_groups['P 31'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(145, 'P 32', transformations)
space_groups[145] = sg
space_groups['P 32'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(146, 'R 3 :H', transformations)
space_groups[146] = sg
space_groups['R 3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(147, 'P -3', transformations)
space_groups[147] = sg
space_groups['P -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(148, 'R -3 :H', transformations)
space_groups[148] = sg
space_groups['R -3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(149, 'P 3 1 2', transformations)
space_groups[149] = sg
space_groups['P 3 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(150, 'P 3 2 1', transformations)
space_groups[150] = sg
space_groups['P 3 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(151, 'P 31 1 2', transformations)
space_groups[151] = sg
space_groups['P 31 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(152, 'P 31 2 1', transformations)
space_groups[152] = sg
space_groups['P 31 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(153, 'P 32 1 2', transformations)
space_groups[153] = sg
space_groups['P 32 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(154, 'P 32 2 1', transformations)
space_groups[154] = sg
space_groups['P 32 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(155, 'R 3 2 :H', transformations)
space_groups[155] = sg
space_groups['R 3 2 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(156, 'P 3 m 1', transformations)
space_groups[156] = sg
space_groups['P 3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(157, 'P 3 1 m', transformations)
space_groups[157] = sg
space_groups['P 3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(158, 'P 3 c 1', transformations)
space_groups[158] = sg
space_groups['P 3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(159, 'P 3 1 c', transformations)
space_groups[159] = sg
space_groups['P 3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(160, 'R 3 m :H', transformations)
space_groups[160] = sg
space_groups['R 3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(161, 'R 3 c :H', transformations)
space_groups[161] = sg
space_groups['R 3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(162, 'P -3 1 m', transformations)
space_groups[162] = sg
space_groups['P -3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(163, 'P -3 1 c', transformations)
space_groups[163] = sg
space_groups['P -3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(164, 'P -3 m 1', transformations)
space_groups[164] = sg
space_groups['P -3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(165, 'P -3 c 1', transformations)
space_groups[165] = sg
space_groups['P -3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(166, 'R -3 m :H', transformations)
space_groups[166] = sg
space_groups['R -3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(167, 'R -3 c :H', transformations)
space_groups[167] = sg
space_groups['R -3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(168, 'P 6', transformations)
space_groups[168] = sg
space_groups['P 6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(169, 'P 61', transformations)
space_groups[169] = sg
space_groups['P 61'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(170, 'P 65', transformations)
space_groups[170] = sg
space_groups['P 65'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(171, 'P 62', transformations)
space_groups[171] = sg
space_groups['P 62'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(172, 'P 64', transformations)
space_groups[172] = sg
space_groups['P 64'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(173, 'P 63', transformations)
space_groups[173] = sg
space_groups['P 63'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(174, 'P -6', transformations)
space_groups[174] = sg
space_groups['P -6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(175, 'P 6/m', transformations)
space_groups[175] = sg
space_groups['P 6/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(176, 'P 63/m', transformations)
space_groups[176] = sg
space_groups['P 63/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(177, 'P 6 2 2', transformations)
space_groups[177] = sg
space_groups['P 6 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(178, 'P 61 2 2', transformations)
space_groups[178] = sg
space_groups['P 61 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(179, 'P 65 2 2', transformations)
space_groups[179] = sg
space_groups['P 65 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(180, 'P 62 2 2', transformations)
space_groups[180] = sg
space_groups['P 62 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(181, 'P 64 2 2', transformations)
space_groups[181] = sg
space_groups['P 64 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(182, 'P 63 2 2', transformations)
space_groups[182] = sg
space_groups['P 63 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(183, 'P 6 m m', transformations)
space_groups[183] = sg
space_groups['P 6 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(184, 'P 6 c c', transformations)
space_groups[184] = sg
space_groups['P 6 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(185, 'P 63 c m', transformations)
space_groups[185] = sg
space_groups['P 63 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(186, 'P 63 m c', transformations)
space_groups[186] = sg
space_groups['P 63 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(187, 'P -6 m 2', transformations)
space_groups[187] = sg
space_groups['P -6 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(188, 'P -6 c 2', transformations)
space_groups[188] = sg
space_groups['P -6 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(189, 'P -6 2 m', transformations)
space_groups[189] = sg
space_groups['P -6 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(190, 'P -6 2 c', transformations)
space_groups[190] = sg
space_groups['P -6 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(191, 'P 6/m m m', transformations)
space_groups[191] = sg
space_groups['P 6/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(192, 'P 6/m c c', transformations)
space_groups[192] = sg
space_groups['P 6/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(193, 'P 63/m c m', transformations)
space_groups[193] = sg
space_groups['P 63/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(194, 'P 63/m m c', transformations)
space_groups[194] = sg
space_groups['P 63/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(195, 'P 2 3', transformations)
space_groups[195] = sg
space_groups['P 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(196, 'F 2 3', transformations)
space_groups[196] = sg
space_groups['F 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(197, 'I 2 3', transformations)
space_groups[197] = sg
space_groups['I 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(198, 'P 21 3', transformations)
space_groups[198] = sg
space_groups['P 21 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(199, 'I 21 3', transformations)
space_groups[199] = sg
space_groups['I 21 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(200, 'P m -3', transformations)
space_groups[200] = sg
space_groups['P m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(201, 'P n -3 :2', transformations)
space_groups[201] = sg
space_groups['P n -3 :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(202, 'F m -3', transformations)
space_groups[202] = sg
space_groups['F m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(203, 'F d -3 :2', transformations)
space_groups[203] = sg
space_groups['F d -3 :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(204, 'I m -3', transformations)
space_groups[204] = sg
space_groups['I m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(205, 'P a -3', transformations)
space_groups[205] = sg
space_groups['P a -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(206, 'I a -3', transformations)
space_groups[206] = sg
space_groups['I a -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(207, 'P 4 3 2', transformations)
space_groups[207] = sg
space_groups['P 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(208, 'P 42 3 2', transformations)
space_groups[208] = sg
space_groups['P 42 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(209, 'F 4 3 2', transformations)
space_groups[209] = sg
space_groups['F 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(210, 'F 41 3 2', transformations)
space_groups[210] = sg
space_groups['F 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(211, 'I 4 3 2', transformations)
space_groups[211] = sg
space_groups['I 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(212, 'P 43 3 2', transformations)
space_groups[212] = sg
space_groups['P 43 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(213, 'P 41 3 2', transformations)
space_groups[213] = sg
space_groups['P 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(214, 'I 41 3 2', transformations)
space_groups[214] = sg
space_groups['I 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(215, 'P -4 3 m', transformations)
space_groups[215] = sg
space_groups['P -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(216, 'F -4 3 m', transformations)
space_groups[216] = sg
space_groups['F -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(217, 'I -4 3 m', transformations)
space_groups[217] = sg
space_groups['I -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(218, 'P -4 3 n', transformations)
space_groups[218] = sg
space_groups['P -4 3 n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(219, 'F -4 3 c', transformations)
space_groups[219] = sg
space_groups['F -4 3 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(220, 'I -4 3 d', transformations)
space_groups[220] = sg
space_groups['I -4 3 d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(221, 'P m -3 m', transformations)
space_groups[221] = sg
space_groups['P m -3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(222, 'P n -3 n :2', transformations)
space_groups[222] = sg
space_groups['P n -3 n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(223, 'P m -3 n', transformations)
space_groups[223] = sg
space_groups['P m -3 n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(224, 'P n -3 m :2', transformations)
space_groups[224] = sg
space_groups['P n -3 m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = | N.array([0,1,0,1,0,0,0,0,1]) | numpy.array |
"""
This code is for plotting real size output image. For high resolution images for demonstration and paper, please refer to
demonstration_viewer.py
"""
import os
import sys
import shutil
import numpy as np
from PIL import Image
from tqdm import tqdm
test_results_folder = './test_results'
test_results_img_folder = './test_results/images'
test_results_files = os.listdir(test_results_folder)
if os.path.exists(test_results_img_folder):
shutil.rmtree(test_results_img_folder)
os.makedirs(test_results_img_folder)
height = 64
width = 192
test_results_files = ['test_resutls_90.npy']
for p_file in tqdm(test_results_files):
p_file_path = os.path.join(test_results_folder, p_file)
p_epoch_res = np.load(p_file_path)
epoch_idx = p_file.split('.')[0].split('_')[2]
epoch_folder = 'epoch_' + epoch_idx
epoch_folder = os.path.join(test_results_img_folder, epoch_folder)
os.makedirs(epoch_folder)
index = 0
num_batch = p_epoch_res.shape[0]
for p_batch in tqdm(range(num_batch)):
data = p_epoch_res[p_batch][0]
tar = p_epoch_res[p_batch][1]
res = p_epoch_res[p_batch][2]
batch_size = tar.shape[0]
for p_data in range(batch_size):
# get output image
out_img = res[p_data]
out_img = np.transpose(out_img, (1, 2, 0))
# out_img = out_img * 128 + 128
out_img = out_img * 255
# import IPython
# IPython.embed()
# assert False
out_img = Image.fromarray(out_img.astype('uint8'))
# get target image
tar_out_img = tar[p_data]
tar_out_img = np.transpose(tar_out_img, (1, 2, 0))
# tar_out_img = tar_out_img * 128 + 128
tar_out_img = tar_out_img * 255
tar_out_img = Image.fromarray(tar_out_img.astype('uint8'))
# get data image
data_out_img = data[p_data]
data_out_img = | np.transpose(data_out_img, (1, 2, 0)) | numpy.transpose |
import cv2
import json
import os
import csv
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw
from pathlib import Path
from PIL import Image
from matplotlib import cm, colors
import crispy as csp
import tensorflow as tf
from tensorflow import keras
import tifffile
import pandas as pd
import shutil
from multiprocessing import Pool, cpu_count
from functools import partial
import tensorflow_addons as tfa
from tensorflow.train import BytesList, FloatList, Int64List
from tensorflow.train import Feature, Features, Example
Image.MAX_IMAGE_PIXELS = None
###
def load_tiff(path):
image = tifffile.imread(path)
if image.shape[-1] != 3:
print("The shape of loaded image will be reshaped, current shape = {}".format(image.shape))
image = np.squeeze(image)
image = np.transpose(image, axes = (1, 2, 0))
print("Sample id: {}, image shape = {}".format(Path(path).stem, image.shape))
return image
###
def make_mask(json_path, image):
json_data = json.load(open(json_path, "r"))
## Make polygons
polys = []
for index in range(json_data.__len__()):
geom = np.array(json_data[index]['geometry']['coordinates'])
polys.append(geom)
mask = np.zeros(image.shape[:-1])
mask = np.expand_dims(mask, axis = -1)
for i in range(len(polys)):
cv2.fillPoly(
mask, polys[i],
1
)
mask = mask.astype(bool)
print("Mask shape: {}".format(mask.shape))
return mask
###
def get_tile(baseimage, tile_size, tile_row_pos, tile_col_pos, stride):
start_col = tile_col_pos * stride
end_col = start_col + tile_size
start_row = tile_row_pos * stride
end_row = start_row + tile_size
tile_image = baseimage[start_row:end_row, start_col:end_col, :]
## For truncated tiles, pad zeros to the tiles in order to get the same shape as normal tiles.
if tile_image.shape != (tile_size, tile_size, baseimage.shape[-1]):
zero_array = np.zeros((tile_size, tile_size, baseimage.shape[-1]))
row, col, ch = tile_image.shape
zero_array[:row, :col, :ch] = tile_image
tile_image = zero_array
orig_tile_shape = (row, col, ch)
else:
orig_tile_shape = "no"
tile_image = tile_image.astype(np.uint8)
return tile_image, orig_tile_shape
###
def show_tile_and_mask(tile_image, tile_mask):
fig, ax = plt.subplots(1,2,figsize=(20,3))
ax[0].imshow(tile_image)
ax[1].imshow(tile_mask)
# Utilities serialize data into a TFRecord
def _bytes_feature(value):
"""Returns a bytes_list from a string / byte."""
if isinstance(value, type(tf.constant(0))):
value = value.numpy() # BytesList won't unpack a string from an EagerTensor.
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def _float_feature(value):
"""Returns a float_list from a float / double."""
return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))
def _int64_feature(value):
"""Returns an int64_list from a bool / enum / int / uint."""
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
###
def image_example(image_index, image, mask, tile_id, tile_col_pos, tile_row_pos):
image_shape = image.shape
img_bytes = image.tobytes()
mask_bytes = mask.tobytes()
feature = {
'img_index': _int64_feature(image_index),
'height': _int64_feature(image_shape[0]),
'width': _int64_feature(image_shape[1]),
'num_channels': _int64_feature(image_shape[2]),
'img_bytes': _bytes_feature(img_bytes),
'img_dtype': _bytes_feature(str(image.dtype).encode()),
'mask' : _bytes_feature(mask_bytes),
'mask_dtype' : _bytes_feature(str(mask.dtype).encode()),
'tile_id': _int64_feature(tile_id),
'tile_col_pos': _int64_feature(tile_col_pos),
'tile_row_pos': _int64_feature(tile_row_pos),
}
return tf.train.Example(features=tf.train.Features(feature=feature))
###
def create_tfrecord(image_index, image, mask, tile_id, tile_col_pos, tile_row_pos, output_path):
opts = tf.io.TFRecordOptions(compression_type="GZIP")
with tf.io.TFRecordWriter(str(output_path), opts) as writer:
tf_example = image_example(image_index, image, mask, tile_id, tile_col_pos, tile_row_pos)
writer.write(tf_example.SerializeToString())
writer.close()
###
def write_tfrecord_tiles(image_index, image_id, image, mask, tile_size, stride, output_path):
output_dir = Path(output_path) / image_id
# if output_dir.exists():
# shutil.rmtree(output_dir)
output_dir.mkdir(exist_ok = True)
image_rows = image.shape[0]
image_cols = image.shape[1]
tile_rows = (image_rows-1) // stride + 1
tile_cols = (image_cols-1) // stride + 1
tileID = 0
pb = csp.Progressbar(total = tile_rows * tile_cols)
# create a pandas dataframe to store metadata for each tile
tile_df = pd.DataFrame(columns = ['img_index', 'img_id', 'tile_id', 'tile_rel_path', 'tile_row_num', 'tile_col_num', 'lowband_density', 'mask_density', "zero_padded"])
# create one directory for each row of images
for row_number in range(tile_rows):
# print('row_offset{} '.format(row_number),end='')
# dir_path = output_dir / 'row{}'.format(row_number)
# # create directory
# if dir_path.exists():
# shutil.rmtree(dir_path)
# dir_path.mkdir()
for col_number in range(tile_cols):
#print("row{}".format(col_number),end='')
# dataset_file_path = dir_path+'/col{}_row{}.tfrecords'.format(row_number,col_number)
dataset_file_path = dir_path / 'row{}_col{}.tfrecords'.format(row_number, col_number)
relative_path = image_id + "/row{}_col{}.tfrecords".format(row_number, col_number)
# if dataset_file_path.exists():
# shutil.rmtree(dataset_file_path)
# dataset_file_path.mkdir(parents = True, exist_ok = True)
lower_col_range = col_number * stride
image_tile, orig_image_shape = get_tile(image, tile_size, row_number, col_number, stride)
tile_mask, _ = get_tile(image, tile_size, row_number, col_number, stride)
num_records = create_tfrecord(image_index, image_tile, tile_mask, tileID, row_number, col_number, dataset_file_path)
# populate the metadata for this tile
img_hist = np.histogram(image_tile)
lowband_density = np.sum(img_hist[0][0:4])
mask_density = np.count_nonzero(tile_mask)
tile_df = tile_df.append({'img_index':image_index, 'img_id':image_id, 'tile_id': tileID, 'tile_rel_path':relative_path,
'tile_col_num':col_number, 'tile_row_num':row_number,'lowband_density':lowband_density, 'mask_density':mask_density, "zero_padded":orig_image_shape},ignore_index=True)
pb.show(tileID, details = "Current sample id = {}, row_offset = {}, col_offset = {}".format(image_id, row_number, col_number))
tileID += 1
return tile_df
###
def write_tfrecord_tiles_mp(image_index, image_id, image, mask, tile_size, stride, output_path):
output_dir = Path(output_path) / image_id
# if output_dir.exists():
# shutil.rmtree(output_dir)
output_dir.mkdir(exist_ok = True)
image_rows = image.shape[0]
image_cols = image.shape[1]
tile_rows = (image_rows-1) // stride + 1
tile_cols = (image_cols-1) // stride + 1
write_tfrecord_tiles_mp_main_partial = partial(write_tfrecord_tiles_mp_main,
image_index = image_index, image_id = image_id, output_dir = output_dir,
tile_size = tile_size, stride = stride, tile_cols = tile_cols
)
v.map(os.chdir, [os.getcwd()] * len(v))
r = v.map_async(write_tfrecord_tiles_mp_main_partial, list(range(tile_rows)))
print(dir(r))
# csp.track_job(r, tile_rows)
r.wait()
ipc_result = r.get()
print("Multiprocessing job done.")
# with Pool(cpu_count()) as p:
# r = p.map_async(write_tfrecord_tiles_mp_main_partial, list(range(tile_rows)))
# csp.track_job(r, tile_rows)
# r.wait()
# pool_result = r.get()
# print("Multiprocessing job done.")
###
def write_tfrecord_tiles_mp_main(row_number, image, mask, image_index, image_id, output_dir, tile_cols, tile_size, stride):
# print("write_tfrecord_tiles_mp_main: starting...")
tile_df = pd.DataFrame(columns = ['img_index', 'img_id', 'tile_id', 'tile_rel_path', 'tile_row_num', 'tile_col_num', 'lowband_density', 'mask_density', "zero_padded"])
tileID = 0
dir_path = Path(output_dir) / "row{}".format(row_number)
dir_path.mkdir(exist_ok = True)
# print("write_tfrecord_tiles_mp_main: Entering for loop ...")
for col_number in range(tile_cols):
print("Starting to write tfrecords... {}-row{}-col{}".format(image_id, row_number, col_number))
#print("row{}".format(col_number),end='')
dataset_file_path = dir_path / 'row{}_col{}.tfrecord'.format(row_number, col_number)
relative_path = image_id + "/row{0}/row{0}_col{1}.tfrecord".format(row_number, col_number)
lower_col_range = col_number * stride
image_tile, orig_image_shape = get_tile(image, tile_size, row_number, col_number, stride)
tile_mask, _ = get_tile(mask, tile_size, row_number, col_number, stride)
num_records = create_tfrecord(image_index, image_tile, tile_mask, tileID, row_number, col_number, dataset_file_path)
# populate the metadata for this tile
img_hist = | np.histogram(image_tile) | numpy.histogram |
# -*- coding: utf-8 -*-
#
# This file is part of pyfesom2
# Original code by <NAME>, <NAME>, <NAME>,
# <NAME>, <NAME> and <NAME>
#
import json
import math as mt
from collections import OrderedDict
import matplotlib as mpl
import matplotlib.pylab as plt
import numpy as np
import pkg_resources
import shapely
import xarray as xr
from cmocean import cm as cmo
try:
import cartopy.feature as cfeature
except ImportError:
print("Cartopy is not installed, plotting is not available.")
def scalar_r2g(al, be, ga, rlon, rlat):
"""
Converts rotated coordinates to geographical coordinates.
Parameters
----------
al : float
alpha Euler angle
be : float
beta Euler angle
ga : float
gamma Euler angle
rlon : array
1d array of longitudes in rotated coordinates
rlat : array
1d araay of latitudes in rotated coordinates
Returns
-------
lon : array
1d array of longitudes in geographical coordinates
lat : array
1d array of latitudes in geographical coordinates
"""
rad = mt.pi / 180
al = al * rad
be = be * rad
ga = ga * rad
rotate_matrix = np.zeros(shape=(3, 3))
rotate_matrix[0, 0] = np.cos(ga) * np.cos(al) - np.sin(ga) * np.cos(be) * np.sin(al)
rotate_matrix[0, 1] = np.cos(ga) * np.sin(al) + np.sin(ga) * np.cos(be) * np.cos(al)
rotate_matrix[0, 2] = np.sin(ga) * np.sin(be)
rotate_matrix[1, 0] = -np.sin(ga) * np.cos(al) - np.cos(ga) * np.cos(be) * np.sin(
al
)
rotate_matrix[1, 1] = -np.sin(ga) * np.sin(al) + np.cos(ga) * np.cos(be) * np.cos(
al
)
rotate_matrix[1, 2] = np.cos(ga) * np.sin(be)
rotate_matrix[2, 0] = np.sin(be) * np.sin(al)
rotate_matrix[2, 1] = -np.sin(be) * np.cos(al)
rotate_matrix[2, 2] = np.cos(be)
rotate_matrix = np.linalg.pinv(rotate_matrix)
rlat = rlat * rad
rlon = rlon * rad
# Rotated Cartesian coordinates:
xr = np.cos(rlat) * np.cos(rlon)
yr = np.cos(rlat) * np.sin(rlon)
zr = np.sin(rlat)
# Geographical Cartesian coordinates:
xg = rotate_matrix[0, 0] * xr + rotate_matrix[0, 1] * yr + rotate_matrix[0, 2] * zr
yg = rotate_matrix[1, 0] * xr + rotate_matrix[1, 1] * yr + rotate_matrix[1, 2] * zr
zg = (
rotate_matrix[2, 0] * xr + rotate_matrix[2, 1] * yr + rotate_matrix[2, 2] * zr
)
# Geographical coordinates:
lat = np.arcsin(zg)
lon = np.arctan2(yg, xg)
a = np.where((np.abs(xg) + np.abs(yg)) == 0)
if a:
lon[a] = 0
lat = lat / rad
lon = lon / rad
return (lon, lat)
def scalar_g2r(al, be, ga, lon, lat):
"""
Converts geographical coordinates to rotated coordinates.
Parameters
----------
al : float
alpha Euler angle
be : float
beta Euler angle
ga : float
gamma Euler angle
lon : array
1d array of longitudes in geographical coordinates
lat : array
1d array of latitudes in geographical coordinates
Returns
-------
rlon : array
1d array of longitudes in rotated coordinates
rlat : array
1d araay of latitudes in rotated coordinates
"""
rad = mt.pi / 180
al = al * rad
be = be * rad
ga = ga * rad
rotate_matrix = np.zeros(shape=(3, 3))
rotate_matrix[0, 0] = np.cos(ga) * np.cos(al) - np.sin(ga) * np.cos(be) * np.sin(al)
rotate_matrix[0, 1] = np.cos(ga) * np.sin(al) + np.sin(ga) * np.cos(be) * np.cos(al)
rotate_matrix[0, 2] = np.sin(ga) * np.sin(be)
rotate_matrix[1, 0] = -np.sin(ga) * np.cos(al) - np.cos(ga) * np.cos(be) * np.sin(
al
)
rotate_matrix[1, 1] = -np.sin(ga) * np.sin(al) + np.cos(ga) * np.cos(be) * np.cos(
al
)
rotate_matrix[1, 2] = np.cos(ga) * np.sin(be)
rotate_matrix[2, 0] = np.sin(be) * np.sin(al)
rotate_matrix[2, 1] = -np.sin(be) * np.cos(al)
rotate_matrix[2, 2] = np.cos(be)
lat = lat * rad
lon = lon * rad
# geographical Cartesian coordinates:
xr = np.cos(lat) * np.cos(lon)
yr = np.cos(lat) * np.sin(lon)
zr = np.sin(lat)
# rotated Cartesian coordinates:
xg = rotate_matrix[0, 0] * xr + rotate_matrix[0, 1] * yr + rotate_matrix[0, 2] * zr
yg = rotate_matrix[1, 0] * xr + rotate_matrix[1, 1] * yr + rotate_matrix[1, 2] * zr
zg = rotate_matrix[2, 0] * xr + rotate_matrix[2, 1] * yr + rotate_matrix[2, 2] * zr
# rotated coordinates:
rlat = np.arcsin(zg)
rlon = np.arctan2(yg, xg)
a = np.where((np.abs(xg) + np.abs(yg)) == 0)
if a:
lon[a] = 0
rlat = rlat / rad
rlon = rlon / rad
return (rlon, rlat)
def vec_rotate_r2g(al, be, ga, lon, lat, urot, vrot, flag):
"""
Rotate vectors from rotated coordinates to geographical coordinates.
Parameters
----------
al : float
alpha Euler angle
be : float
beta Euler angle
ga : float
gamma Euler angle
lon : array
1d array of longitudes in rotated or geographical coordinates (see flag parameter)
lat : array
1d array of latitudes in rotated or geographical coordinates (see flag parameter)
urot : array
1d array of u component of the vector in rotated coordinates
vrot : array
1d array of v component of the vector in rotated coordinates
flag : 1 or 0
flag=1 - lon,lat are in geographical coordinate
flag=0 - lon,lat are in rotated coordinate
Returns
-------
u : array
1d array of u component of the vector in geographical coordinates
v : array
1d array of v component of the vector in geographical coordinates
"""
# first get another coordinate
if flag == 1:
(rlon, rlat) = scalar_g2r(al, be, ga, lon, lat)
else:
rlon = lon
rlat = lat
(lon, lat) = scalar_r2g(al, be, ga, rlon, rlat)
# then proceed...
rad = mt.pi / 180
al = al * rad
be = be * rad
ga = ga * rad
rotate_matrix = np.zeros(shape=(3, 3))
rotate_matrix[0, 0] = np.cos(ga) * np.cos(al) - np.sin(ga) * np.cos(be) * np.sin(al)
rotate_matrix[0, 1] = np.cos(ga) * np.sin(al) + np.sin(ga) * np.cos(be) * np.cos(al)
rotate_matrix[0, 2] = np.sin(ga) * np.sin(be)
rotate_matrix[1, 0] = -np.sin(ga) * np.cos(al) - np.cos(ga) * np.cos(be) * np.sin(
al
)
rotate_matrix[1, 1] = -np.sin(ga) * np.sin(al) + np.cos(ga) * np.cos(be) * np.cos(
al
)
rotate_matrix[1, 2] = np.cos(ga) * np.sin(be)
rotate_matrix[2, 0] = | np.sin(be) | numpy.sin |
'''
Author: Dr. <NAME>
Required packages: scikit-learn, scipy, numpy
This library contains a class for individual pointclouds ( ProcessPC() ), and classes for lists of pointclouds
( iterator_points_pointlabels() , iterator_points() , iterator_binaryVoxels() , iterator_binaryVoxels_pointlabels() ).
ProcessPC() is useful for various applications where you want a single pointcloud to be an object, and you wish you
to mutate that object in different ways (e.g. voxelise, rasterise, normalise, rotate, etc.)
The iterator classes are designed for machine learning applications. They are useful as iterators when you want to
use several pointclouds to train (or predict with) a machine learning model (e.g. return the next batch of
pointclouds to train on).
'''
import numpy as np
import copy
import random
from scipy import signal #only for bev vertical density
from scipy import ndimage #only for bev max height
from sklearn.neighbors import KDTree # only for ground normalisation
# Insert another class which, given a list of pointclouds, splits data into training and val upon init.
# Contains get batch, when called it, pulls random batch of pointclouds as list, loops through list using ProcessPC
def gaussian_kernel(size,mu=0.0,sigma=1.0):
x, y = np.meshgrid(np.linspace(-1, 1, size), np.linspace(-1, 1, size))
d = np.sqrt(x * x + y * y)
g = np.exp(-((d - mu) ** 2 / (2.0 * sigma ** 2)))
return g
class iterator_points_pointlabels():
def __init__(self, xyz_list=None,labels=None,returns=None, numClasses=None, batchsize=None ):
self.data_num = len(xyz_list)
if numClasses is None:
self.nb_class = np.size(np.unique(labels[0])) # only counts number of classes in first pcd
else:
self.nb_class = numClasses
self.pc_list = []
for i in range(len(xyz_list)):
if (labels is None) & (returns is None):
self.pc_list.append(ProcessPC(xyz_data=xyz_list[i]))
elif (labels is None) & (returns is not None):
self.pc_list.append(ProcessPC(xyz_data=xyz_list[i], pc_returns=returns[i]))
elif (labels is not None) & (returns is None):
self.pc_list.append(ProcessPC(xyz_data=xyz_list[i], pc_labels=labels[i]))
else:
self.pc_list.append(ProcessPC(xyz_data=xyz_list[i],pc_labels=labels[i],pc_returns=returns[i]))
if labels is None:
self.flag_label = 0
else:
self.flag_label = 1
if returns is None:
self.flag_return = 0
else:
self.flag_return = 1
if batchsize is not None:
self.batchsize = batchsize
else:
self.batchsize = self.data_num
self.current_batch = np.arange(self.batchsize)
def next_batch( self, augment=False, pre_process=False, addAxis=False ):
# augments the current batch once
# use with network_pointnet_bs1 (only works for batchsize of 1)
pc_temp = copy.deepcopy(self.pc_list[self.current_batch[0]])
if augment==True:
pc_temp.augmentation_Rotation()
pc_temp.augmentation_Flipping()
pc_batch = pc_temp.pc.copy()
if addAxis: # if using bsK, want output to be K x 1 x N x 3, where k=1
pc_batch = pc_batch[np.newaxis,...]
pc_batch = pc_batch[np.newaxis, ...]
if pre_process:
pc_batch[0, ...] -= np.min(pc_batch[i, ...], axis=0)
pc_batch[0, ...] /= np.max(pc_batch[i, ...])
if self.flag_label == 1:
labels = np.array(pc_temp.pc_labels)
labels_onehot = np.zeros((len(labels), self.nb_class))
labels_onehot[np.arange(len(labels)), labels] = 1
if self.flag_return == 1:
pc_returns_batch = np.array(pc_temp.pc_returns)
# update current batch
self.current_batch += self.batchsize
self.current_batch[self.current_batch >= self.data_num] = \
self.current_batch[self.current_batch >= self.data_num] - self.data_num
if (self.flag_label == 1) & (self.flag_return == 0):
return pc_batch, labels_onehot, labels
elif (self.flag_label == 0) & (self.flag_return == 1):
return pc_batch, pc_returns_batch
elif (self.flag_label == 1) & (self.flag_return == 1):
return pc_batch, labels_onehot, labels, pc_returns_batch
else:
return pc_batch
def next_batch2( self, augment=False, numAugs=0, pre_process=False, angle_x_randLim=0, angle_y_randLim=0, normalise=False, newAxis_loc=1 ):
# appends numAugs different augmentations to the current batch
n_points = self.pc_list[self.current_batch[0]].pc.shape[0]
pc_batch = np.empty( ( [self.batchsize*(numAugs+1),n_points,3] ) )
labels = np.empty( ( [self.batchsize*(numAugs+1),n_points] ) )
returns_batch = np.empty( ( [self.batchsize*(numAugs+1),n_points] ) )
for j in range(numAugs+1):
for i in range(self.batchsize):
pc_temp = copy.deepcopy(self.pc_list[self.current_batch[i]])
if (augment==True)&(j>0): # leave one set un-augmented
pc_temp.augmentation_Rotation(angle_x_randLim=angle_x_randLim, angle_y_randLim=angle_y_randLim)
pc_temp.augmentation_Flipping()
if normalise:
pc_temp.normalisation()
pc_batch[(j*self.batchsize)+i,...] = pc_temp.pc.copy()
labels[(j*self.batchsize)+i,...] = pc_temp.pc_labels.copy()
if self.flag_return == 1:
returns_batch[(j * self.batchsize) + i, ...] = pc_temp.pc_returns.copy()
# pre-process
if pre_process:
pc_batch[0, ...] -= np.min(pc_batch[i, ...], axis=0)
pc_batch[0, ...] /= np.max(pc_batch[i, ...])
if newAxis_loc == 1:
pc_batch = pc_batch[:, np.newaxis, ...]
elif newAxis_loc == 0:
pc_batch = pc_batch[np.newaxis, ...]
#labels = np.array(pc_temp.pc_labels)
#labels = np.tile(labels[:,np.newaxis],(1,numAugs+1))
labels_onehot = np.zeros((self.batchsize*(numAugs+1) , n_points , self.nb_class))
#labels_onehot[:,np.arange(n_points), labels.astype(np.int).T] = 1
xv, yv = np.meshgrid(np.arange(0, (self.batchsize*(numAugs+1))), np.arange(0, n_points))
labels_onehot[np.ravel(xv), np.ravel(yv), np.ravel( labels.astype(np.int).T )] = 1
#labels = np.tile(labels[np.newaxis,:],[numAugs+1,1])
# update current batch
self.current_batch += self.batchsize
self.current_batch[self.current_batch >= self.data_num] = \
self.current_batch[self.current_batch >= self.data_num] - self.data_num
if self.flag_return == 1:
return pc_batch, labels_onehot,labels, returns_batch
else:
return pc_batch, labels_onehot,labels
def get_pc(self, idx=[1], augment=False, angle_x=0, angle_y=0, angle_z=30, pre_process=False, addAxis=False, normalise=False, newAxis_loc=1 ):
# default not to augment, but if so you can specify the rotations. Default rotation only about z
n_points = self.pc_list[idx[0]].pc.shape[0]
pc_batch = np.empty(([len(idx), n_points, 3]))
if self.flag_label==1:
labels = np.empty(([len(idx), n_points]))
if self.flag_return == 1:
returns_batch = np.empty(([len(idx), n_points]))
for i in range(len(idx)):
pc_temp = copy.deepcopy(self.pc_list[idx[i]])
if augment==True:
pc_temp.augmentation_Rotation(angle_x=angle_x, angle_y=angle_y, angle_z=angle_z)
#pc_temp.augmentation_Flipping()
if normalise:
pc_temp.normalisation()
pc_batch[i,...] = pc_temp.pc.copy()
if self.flag_label == 1:
labels[i,:] = np.array(pc_temp.pc_labels)
if self.flag_return == 1:
returns_batch[i,:] = np.array(pc_temp.pc_returns)
if addAxis:
if newAxis_loc == 1:
pc_batch = pc_batch[:, np.newaxis, ...]
elif newAxis_loc == 0:
pc_batch = pc_batch[np.newaxis, ...]
if self.flag_label == 1:
labels_onehot = np.zeros((len(idx), n_points, self.nb_class))
xv, yv = np.meshgrid(np.arange(0, (len(idx))), np.arange(0, n_points))
labels_onehot[np.ravel(xv), np.ravel(yv), np.ravel(labels.astype(np.int).T)] = 1
if (self.flag_label == 1) & (self.flag_return == 0):
return pc_batch, labels_onehot, labels
elif (self.flag_label == 0) & (self.flag_return == 1):
return pc_batch, returns_batch
elif (self.flag_label == 1) & (self.flag_return == 1):
return pc_batch, labels_onehot, labels, returns_batch
else:
return pc_batch
def indexed_batch( self, idx=[1], augment=False, numAugs=0, pre_process=False, angle_x_randLim=0, angle_y_randLim=0, normalise=False, newAxis_loc=1, adapt_num_classes=False ):
# appends numAugs different augmentations to the current batch
n_points = self.pc_list[idx[0]].pc.shape[0]
pc_batch = np.empty( ( [len(idx)*(numAugs+1),n_points,3] ) )
labels = np.empty( ( [len(idx)*(numAugs+1),n_points] ) )
returns_batch = np.empty(([len(idx)*(numAugs+1),n_points]))
for j in range(numAugs+1):
for i in range(len(idx)):
pc_temp = copy.deepcopy(self.pc_list[idx[i]])
if (augment==True)&(j>0): # leave one set un-augmented
pc_temp.augmentation_Rotation(angle_x_randLim=angle_x_randLim, angle_y_randLim=angle_y_randLim)
pc_temp.augmentation_Flipping()
#pc_temp.augmentation_Shuffle()
if normalise:
pc_temp.normalisation()
pc_batch[(j*len(idx))+i,...] = pc_temp.pc.copy()
labels[(j*len(idx))+i,...] = pc_temp.pc_labels.copy()
if self.flag_return == 1:
returns_batch[(j*len(idx))+i,...] = pc_temp.pc_returns.copy()
# pre-process
if pre_process:
pc_batch[0, ...] -= np.min(pc_batch[i, ...], axis=0)
pc_batch[0, ...] /= np.max(pc_batch[i, ...])
if newAxis_loc == 1:
pc_batch = pc_batch[:,np.newaxis, ...]
elif newAxis_loc == 0:
pc_batch = pc_batch[np.newaxis, ...]
#labels = np.array(pc_temp.pc_labels)
#labels = np.tile(labels[:,np.newaxis],(1,numAugs+1))
if adapt_num_classes: # allows number of classes (and hence size of onehot) to be modified each batch
self.nb_class = len(np.unique(labels))
labels_onehot = np.zeros((len(idx)*(numAugs+1) , n_points , self.nb_class))
#labels_onehot[:,np.arange(n_points), labels.astype(np.int).T] = 1
xv, yv = np.meshgrid(np.arange(0, (len(idx)*(numAugs+1))), np.arange(0, n_points))
labels_onehot[np.ravel(xv), np.ravel(yv), np.ravel( labels.astype(np.int).T )] = 1
#labels = np.tile(labels[np.newaxis,:],[numAugs+1,1])
if self.flag_return == 1:
return pc_batch, labels_onehot,labels, returns_batch
else:
return pc_batch, labels_onehot,labels
def reset_batch(self):
""" Resets the current batch to the beginning.
"""
self.current_batch = np.arange(self.batchsize)
def shuffle(self):
""" Randomly permutes all dataSamples (and corresponding targets).
"""
random.shuffle(self.pc_list)
class iterator_points():
def __init__(self, xyz_list=None,labels=None, batchsize=None ):
self.data_num = len(xyz_list)
self.nb_class = np.max(labels)+1
self.first_batch = 1
self.current_batch = []
self.labels = labels
self.pc_list = []
for i in range(len(xyz_list)):
self.pc_list.append(ProcessPC(xyz_list[i]))
if batchsize is not None:
self.batchsize = batchsize
else:
self.batchsize = self.data_num
self.current_batch = np.arange(self.batchsize)
def next_batch( self, augment=False, pre_process=False ):
# augments the current batch once
if self.first_batch:
self.current_batch = (np.arange(self.batchsize)).tolist()
self.first_batch = 0
else:
self.current_batch = (np.array(self.current_batch) + self.batchsize).tolist()
if self.current_batch[-1] > (self.data_num - self.batchsize):
self.first_batch = 1
pc_temp = copy.deepcopy(self.pc_list[self.current_batch[0]])
if augment==True:
pc_temp.augmentation_Rotation()
pc_temp.augmentation_Flipping()
pc_batch = pc_temp.pc.copy()
pc_batch = pc_batch[np.newaxis,...]
# pre-process - scale between [-1,1]
#if pre_process:
#og_batch = 2*(og_batch-0.5)
labels = np.array(self.labels)
labels = labels[self.current_batch]
labels_onehot = np.zeros((len(labels), self.nb_class))
labels_onehot[np.arange(len(labels)), labels] = 1
# update current batch
self.current_batch += self.batchsize
self.current_batch[self.current_batch >= self.data_num] = \
self.current_batch[self.current_batch >= self.data_num] - self.data_num
return pc_batch, labels_onehot, labels
def next_batch2( self, augment=False, numAugs=0, pre_process=False ):
# appends numAugs different augmentations to the current batch
if self.first_batch:
self.current_batch = (np.arange(self.batchsize)).tolist()
self.first_batch = 0
else:
self.current_batch = (np.array(self.current_batch) + self.batchsize).tolist()
if self.current_batch[-1] > (self.data_num - self.batchsize):
self.first_batch = 1
n_points = self.pc_list[self.current_batch[0]].pc.shape[0]
pc_batch = np.empty( ( [self.batchsize*(numAugs+1),n_points,3] ) )
for j in range(numAugs+1):
pc_temp = copy.deepcopy(self.pc_list[self.current_batch[0]])
if (augment==True)&(j>1): # leave one set un-augmented
pc_temp.augmentation_Rotation()
pc_temp.augmentation_Flipping()
pc_batch[j,...] = pc_temp.pc.copy()
# pre-process - scale between [-1,1]
#if pre_process:
#og_batch = 2*(og_batch-0.5)
labels = np.array(self.labels)
labels = labels[self.current_batch]
labels = np.tile(labels,(numAugs+1))
labels_onehot = np.zeros((len(labels), self.nb_class))
labels_onehot[np.arange(len(labels)), labels] = 1
# update current batch
self.current_batch += self.batchsize
self.current_batch[self.current_batch >= self.data_num] = \
self.current_batch[self.current_batch >= self.data_num] - self.data_num
return pc_batch, labels_onehot, labels
def get_pc(self, idx=[1], augment=False, angle_x=0, angle_y=0, angle_z=30):
# default not to augment, but if so you can specify the rotations. Default rotation only about z
pc_temp = copy.deepcopy(self.pc_list[idx[0]])
if augment==True:
pc_temp.augmentation_Rotation(angle_x=angle_x, angle_y=angle_y, angle_z=angle_z)
#pc_temp.augmentation_Flipping()
pc_batch = pc_temp.pc.copy()
pc_batch = pc_batch[np.newaxis, ...]
labels = | np.array(self.labels) | numpy.array |
import logging
import os
import numpy as np
from skimage.measure import block_reduce
import utils.data_utils
import utils.image_utils
log = logging.getLogger('data')
class Data(object):
def __init__(self, images, masks, index, downsample=1):
"""
Data constructor.
:param images: a 4-D numpy array of images. Expected shape: (N, H, W, 1)
:param masks: a 4-D numpy array of segmentation masks. Expected shape: (N, H, W, L)
:param index: a 1-D numpy array indicating the volume each image/mask belongs to. Used for data selection.
:param downsample: factor to downsample images.
"""
assert images.shape[:-1] == masks.shape[:-1]
assert images.shape[0] == index.shape[0]
self.image_shape = images.shape[1:]
self.mask_shape = masks.shape[1:]
self.images = images
self.masks = masks
self.index = index
self.num_volumes = len(self.volumes())
self.downsample(downsample)
log.info(
'Creating Data object with images of shape %s and %d volumes' % (str(self.images.shape), self.num_volumes))
log.info('Images value range [%.1f, %.1f]' % (images.min(), images.max()))
log.info('Masks value range [%.1f, %.1f]' % (masks.min(), masks.max()))
def copy(self):
return Data(np.copy(self.images), np.copy(self.masks), np.copy(self.index))
def merge(self, other):
assert self.images.shape[1:] == other.images.shape[1:], str(self.images.shape) + ' vs ' + str(
other.images.shape)
assert self.masks.shape[1:] == other.masks.shape[1:], str(self.masks.shape) + ' vs ' + str(other.masks.shape)
log.info('Merging Data object of %d to this Data object of size %d' % (other.size(), self.size()))
self.images = np.concatenate([self.images, other.images], axis=0)
self.masks = np.concatenate([self.masks, other.masks], axis=0)
self.index = np.concatenate([self.index, other.index], axis=0)
self.num_volumes = len(self.volumes())
def shuffle(self):
idx = np.array(range(self.images.shape[0]))
np.random.shuffle(idx)
self.images = self.images[idx]
self.masks = self.masks[idx]
self.index = self.index[idx]
def crop(self, shape):
log.debug('Cropping images and masks to shape ' + str(shape))
[images], [masks] = utils.data_utils.crop_same([self.images], [self.masks], size=shape, pad_mode='constant')
self.images = images
self.masks = masks
assert self.images.shape[1:-1] == self.masks.shape[1:-1] == tuple(shape), \
'Invalid shapes: ' + str(self.images.shape[1:-1]) + ' ' + str(self.masks.shape[1:-1]) + ' ' + str(shape)
def volumes(self):
return sorted(set(self.index))
def get_images(self, vol):
return self.images[self.index == vol]
def get_masks(self, vol):
return self.masks[self.index == vol]
def size(self):
return len(self.images)
def sample_per_volume(self, num, seed=-1):
log.info('Sampling %d from each volume' % num)
if seed > -1:
| np.random.seed(seed) | numpy.random.seed |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
aerodynamics.py includes the functions used to calculate the aerodynamic
moments and forces experienced by an object entering the atmosphere which are
required for uvw_trajectory function
Created on Mon Jan 23 10:18:06 2017
@author: tr1010 (<NAME>)
"""
import numpy as np
import math
def aero_calc(Vinf, areas, normals, centroids, Ma, Kn, R, T, q_inf, p_inf, Tw, aero_params):
"""
aero_calc calculates the aerodynamic forces and moments acting on the
spacecraft (in the spacecraft body frame of reference). In the case of
hypersonic continuum flow, aero_calc uses Newtonian impact theory to calculate
the pressure distribution over the body. In the free-molecular flow regime
aero_calc usesSchaaf & Chambre's formulation. For the transitional regime,
the bridging function of Wilmoth et al. is used.
Inputs:
Vinf: a 3-vector describing the oncoming free-stream flow velocity in
the body frame of reference
areas: a n-element array of the areas of each of the shape's surfaces.
centroids: a 3xn numpy array of reals describing the position of each
surface's centroid
Ma: Mach number of the free stream flow
Kn: Knudsen number of the free stream flow
R: Gas constant of the free stream flow
T: Free-stream temperature of the flow
q_inf: dynamic pressure of the free stream flow
p_inf: atmospheric pressure (static pressure of the free stream)
Tw: Wall temperature (currently fixed to default 287 K)
aero_params: python tuple describing a number of parameters for the
aerodynamics solver in the following order:
KnFM, KnCont, a1, a2, SigN, SigT = aero_params
Outputs:
AeroF: a 3 vector describing the aerodynamic forces acting on the body
in the body frame of reference
AeroM: a 3 vector describing the aerodynamic moments acting on the body
in the body frame of reference
"""
numpans = np.size(normals,1)
AeroF = np.zeros(3)
AeroM = np.zeros(3)
KnFM, KnCont, a1, a2, SigN, SigT = aero_params
#calculate aerodynamic forces or moments
# for continuum or transitional flow
if Kn < KnFM:
if Kn < KnCont:
# Calculate continuum pressure distribution
Cp = newton_solver(normals,Vinf,Ma,1)
Ct = | np.zeros(numpans) | numpy.zeros |
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.pyplot import rc as rc
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import seaborn as sns
parser = argparse.ArgumentParser()
parser.add_argument('--npoints', type=int, default=5000)
args = parser.parse_args()
data = pd.read_csv('F16Data_FullMSine_Level1.csv', header=0, nrows=args.npoints)
data = data.values.tolist()
data = np.asarray(data)
data = np.transpose(data)
acc1_data = data[2]
acc2_data = data[3]
acc1_data = acc1_data - np.full_like(acc1_data, np.mean(acc1_data))
acc2_data = acc2_data - np.full_like(acc2_data, np.mean(acc2_data))
rescaling = 1
acc1_data = rescaling*acc1_data
acc2_data = rescaling*acc2_data
acc2_tensor = torch.tensor(acc2_data).float()
acc2_tensor = acc2_tensor.reshape(args.npoints, 1)
samp_ts_array = np.arange(args.npoints)
samp_ts = torch.tensor(samp_ts_array).float()
samp_ts = samp_ts.reshape(args.npoints, 1)
fig = plt.figure(figsize=[15, 4])
fig.subplots_adjust(hspace=0., wspace=0)
####################################################
sns.set_style('darkgrid')
rc('font', family='serif')
rc('text', usetex=True)
ax1 = plt.subplot(1,3,1)
names = ['sonode', 'anode(1)']
labels =['SONODE', 'ANODE(1)']
colors = ['#004488', '#BB5566']
def add_bit(x):
iters = np.load(names[x]+'./1./itr_arr.npy')
loss_1 = np.load(names[x]+'./1./loss_arr.npy')
loss_2 = np.load(names[x]+'./2./loss_arr.npy')
loss_3 = np.load(names[x]+'./3./loss_arr.npy')
loss = np.empty((len(loss_1),3))
for i in range(len(loss_1)):
loss[i][0] = loss_1[i]
loss[i][1] = loss_2[i]
loss[i][2] = loss_3[i]
loss_mean = np.empty(len(loss_1))
for i in range(len(loss_1)):
loss_mean[i] = np.mean(loss[i])
loss_std = np.empty(len(loss_1))
for i in range(len(loss_1)):
loss_std[i] = np.std(loss[i])
loss_p = loss_mean + loss_std
loss_m = loss_mean - loss_std
plt.plot(iters, loss_mean, color=colors[x], label=labels[x])
ax1.fill_between(x=iters, y1=loss_p, y2=loss_m, alpha=0.2, color=colors[x])
add_bit(0)
add_bit(1)
rc('font', family='serif')
rc('text', usetex=True)
plt.legend(fontsize=12)
plt.xlabel('Iterations', fontsize=16)
plt.ylabel('MSE', fontsize=16)
plt.ylim(0, 2)
plt.title('Airplane Training MSE', fontsize=22)
#################################################
sns.set_style('dark')
ax2 = plt.subplot(1,3,2)
sonode_to_plot_acc2 = np.load('sonode./1./acc2_test.npy')
anode_to_plot_acc2 = np.load('anode(1)./2./acc2_test.npy')
rc('font', family='serif')
rc('text', usetex=True)
plt.plot(samp_ts_array, acc2_data, label='True $a_{2}$', color='#DDAA33')
plt.plot(samp_ts_array, anode_to_plot_acc2, label='ANODE(1)', color='#BB5566')
plt.plot(samp_ts_array, sonode_to_plot_acc2, label='SONODE', color='#004488')
plt.xlabel('t', fontsize=16)
plt.ylabel('$a_{2}$', fontsize=16)
handles, labels = plt.gca().get_legend_handles_labels()
order = [0,2,1]
plt.legend([handles[idx] for idx in order],[labels[idx] for idx in order],\
loc='lower right', fontsize=12, framealpha=1)
plt.axvline(x=1000, linestyle='--', color='k')
plt.title('Airplane $a_{2}$', fontsize=22)
###################################################
sns.set_style('darkgrid')
ax3 = plt.subplot(1,3,3)
names = ['sonode', 'anode(1)']
labels =['SONODE', 'ANODE(1)']
colors = ['#004488', '#BB5566']
def add_bit(x):
iters = np.load(names[x]+'./1./running_error_times.npy')
loss_1 = np.load(names[x]+'./1./running_error.npy')
loss_2 = np.load(names[x]+'./2./running_error.npy')
loss_3 = | np.load(names[x]+'./3./running_error.npy') | numpy.load |
import cv2
import glob
import math
import os
import sys
import tempfile
import numpy as np
from PIL import Image
from scipy import ndimage
from cnn import get_num, get_name
BUF = 5
def gap_left(hist, x, th, K=10):
"""
Checks if this x-coordinate marks the start of a new word/block.
:param hist: distribution of pixels.
:param x: x-coordinate.
:param th: threshold value.
:param K: number of columns of empty pixels to consider as new word/block.
:return: whether this x-coordinate marks the start of a new word/block.
"""
gap = hist[x+1] > th
for i in range(K):
if x - i < 0:
break
gap = gap and (i > x or hist[x-i] <= th)
return gap
def gap_right(hist, x, th, W, K=10):
"""
Checks if this x-coordinate marks the end of a word/block.
:param hist: distribution of pixels.
:param x: x-coordinate.
:param th: threshold value.
:param K: number of columns of empty pixels to consider as new word/block.
:return: whether this x-coordinate marks the end of a word/block.
"""
gap = hist[x-1] > th
for i in range(K):
if x + i > W:
break
gap = gap and (x+i >= len(hist) or hist[x+i] <= th)
return gap
def straighten(img):
"""
Deskews the input image based on the largest contour.
:param img: input image.
:return: deskewed image.
"""
contours, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
max_area = 0
max_contour = None
for contour in contours:
area = cv2.contourArea(contour)
if area > max_area:
max_area = area
max_contour = contour
rect = cv2.minAreaRect(max_contour)
angle = rect[2]
if angle < -45:
angle = (90 + angle)
# rotate the image to deskew it
(h, w) = img.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
rotated = cv2.warpAffine(threshed, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
return rotated
def sort_contours(cnts):
"""
Sorts the contours in left-to-right order (based on x coordinate).
:param cnts: list of contours.
:return: sorted contours.
"""
# construct the list of bounding boxes and sort them from top to bottom
bounding_boxes = [cv2.boundingRect(c) for c in cnts]
(cnts, bounding_boxes) = zip(*sorted(zip(cnts, bounding_boxes), key=lambda b: b[1][0]))
return (cnts, bounding_boxes)
def get_best_shift(img):
"""
Finds x and y units to shift the image by so it is centered.
:param img: input image.
:return: best x and y units to shift by.
"""
cy,cx = ndimage.measurements.center_of_mass(img)
rows,cols = img.shape
shiftx = np.round(cols/2.0-cx).astype(int)
shifty = np.round(rows/2.0-cy).astype(int)
return shiftx, shifty
def shift(img,sx,sy):
"""
Shifts the image by the given x and y units.
:param img: input image.
:param sx: x units to shift by.
:param sy: y units to shift by.
:return: shifted image.
"""
rows, cols = img.shape
M = np.float32([[1, 0, sx], [0, 1, sy]])
shifted = cv2.warpAffine(img, M, (cols, rows))
return shifted
def process_num(gray):
"""
Process an input image of a handwritten number in the same way the MNIST dataset was processed.
:param gray: the input grayscaled image.
:return: the processed image.
"""
gray = cv2.resize(gray, (28, 28))
# strip away empty rows and columns from all sides
while np.sum(gray[0]) == 0:
gray = gray[1:]
while np.sum(gray[:, 0]) == 0:
gray = np.delete(gray, 0, 1)
while np.sum(gray[-1]) == 0:
gray = gray[:-1]
while np.sum(gray[:, -1]) == 0:
gray = | np.delete(gray, -1, 1) | numpy.delete |
#!/usr/bin/python
'''
Distance calculation substitute for cosmolopy
All formula used are from
https://arxiv.org/pdf/astro-ph/9905116.pdf
'''
import numpy as np
from scipy.integrate import quad
class cosmo_distance(object):
def __init__(self, **cosmology):
'''
To initiate, cosmological parameters must be supplied
in the form of a dictionary with the following keys
{'omega_M_0', 'omega_lambda_0', 'h'}
Input:
**kwargs = {'omega_M_0', 'omega_lambda_0', 'h'}
'''
self.c = 299792458 # speed of light in ms^-1
# initialize class
for k in ['omega_M_0', 'omega_lambda_0', 'h']:
if k not in cosmology.keys():
raise Exception('Cosmological parameter {} must be supplied'.format(k))
self.load_param(**cosmology)
def load_param(self, **cosmology):
'''
set up the cosmological parameters
density of curvature is defined as 1-om0-ode
unless otherwise specified.
'''
self.om0 = cosmology.get('omega_M_0')
self.ode = cosmology.get('omega_lambda_0')
self.ok0 = cosmology.get('omega_k_0', 1-self.om0-self.ode)
self.h = cosmology.get('h')
# Hubble distance D_h (unit=Mpc)
self.D_h = self.c/1000./100./self.h
def E(self, z):
'''
time derivative of the logarithm of the scale factor
E(z) = \frac{\dot{a}(t)}{a(t)}
Input:
z : float or array of float, redshift
kwargs: 'omega_M_0'
'omega_lambda_0'
'omega_k_0'
density parameters
output:
E : float or array of float
'''
EE = np.sqrt(self.om0*(1.+z)**3.+self.ok0*(1.+z)**2.+self.ode)
return EE
def comoving_distance(self, z, z_0=0):
'''
line-of-sight comoving distance
D_c = D_h \int^z_0 \frac{dz'}{E(z')}
unit = Mpc
Input:
z : float or array of float, redshift
z0 : float, default is 0, where integration begins
kwargs: 'omega_M_0'
'omega_lambda_0'
'omega_k_0'
density parameters
output:
D_c : float or array of float
'''
z = np.atleast_1d(z)
# epsabs can be tweaked to achieve higher precision
D_c = np.array([self.D_h*quad(lambda x:1./self.E(x),
z_0, lim, epsabs=1.e-5)[0] for lim in z])
# return a float if only one redshift
if np.size(D_c) > 1:
return D_c
else:
return D_c[0]
def transverse_comoving_distance(self, z):
'''
The comoving distance between two events at the same redshift or distance
but separated on the sky by some angle is D_m * d\theta
D_m is the transverse comoving distance
if omega_R > 0:
D_m = D_h /\sqrt(Omega_R) \sinh(\sqrt(Omega_R)*D_c/D_h)
if omega_R = 0:
D_m = D_c
if omega_R < 0:
D_m = D_h /\sqrt(\abs(Omega_R)) \sin(\sqrt(\abs(Omega_R))*D_c/D_h)
unit = Mpc
Input:
z : float or array of float, redshift
kwargs: 'omega_M_0'
'omega_lambda_0'
'omega_k_0'
density parameters
output:
D_m : float or array of float
'''
if self.ok0==0:
return self.comoving_distance(z)
elif self.ok0>0:
return self.D_h/np.sqrt(self.ok0)*np.sinh(np.sqrt(self.ok0)\
*self.comoving_distance(z)/self.D_h)
else:
return self.D_h/np.sqrt(np.abs(self.ok0))*np.sin(np.sqrt(np.abs(self.ok0))\
*self.comoving_distance(z)/self.D_h)
def angular_diameter_distance(self, z):
'''
ratio of an object’s physical transverse size to its angular size
D_A = \frac{D_M}{1+z}
Input:
z : float or array of float, redshift
kwargs: 'omega_M_0'
'omega_lambda_0'
'omega_k_0'
density parameters
output:
D_A : float or array of float
'''
return self.transverse_comoving_distance(z)/(1.+z)
def luminosity_distance(self, z):
'''
for a flat universe
D_L = (1+z)*D_M
unit = Mpc
Input:
z : float or array of float, redshift
kwargs: 'omega_M_0'
'omega_lambda_0'
'omega_k_0'
density parameters
output:
D_L : float or array of float
'''
return (1.+z)*self.transverse_comoving_distance(z)
def comoving_volume(self, z):
'''
comoving volume up to redshift z
for flat universe
V_c = \frac{4\pi}{3}D_M^3 = \frac{4\pi}{3}D_c^3
other definitions please refer to the reference
unit = Mpc^3
Input:
z : float or array of float, redshift
kwargs: 'omega_M_0'
'omega_lambda_0'
'omega_k_0'
density parameters
output:
V_c : float or array of float
'''
if self.ok0 == 0:
return 4*np.pi/3 * self.comoving_distance(z)**3.
elif ok0>0:
D_m = self.transverse_comoving_distance(z)
D_ratio = D_m/self.D_h
prefactor = 4.*np.pi*self.D_h**3./2./self.ok0
return prefactor*(D_ratio*np.sqrt(1+self.ok0*D_ratio**2.)\
-np.arcsinh(np.sqrt( | np.abs(self.ok0) | numpy.abs |
import numpy as np
import numpy.ma as ma
from numpy.testing import assert_array_equal
import pytest
from cloudnetpy.categorize import melting
@pytest.mark.parametrize("model, result", [
('some_ecmwf_model', (-4, 3)),
('some_other_model', (-8, 6)),
])
def test_find_model_temperature_range(model, result):
assert melting._find_model_temperature_range(model) == result
@pytest.mark.parametrize("t_prof, t_range, result", [
(np.array([300, 290, 280, 270, 260, 250, 240]), (-10, 10), [2, 3]),
(np.array([300, 290, 280, 270, 260, 250, 240]), (-5, 5), [3]),
(np.array([290, 280, 270, 275, 260, 250, 240]), (-10, 10), [1, 2, 3]),
(np.array([270, 275, 260, 250, 240]), (-10, 10), [0, 1]),
(np.array([220, 210, 200]), (-10, 10), [0]),
(np.array([280, 270, 260]), (-5, 2), [1]),
(np.linspace(275, 270, 10), (-4, -3), range(10))
])
def test_get_temp_indices(t_prof, t_range, result):
indices = melting._get_temp_indices(t_prof, t_range)
assert_array_equal(indices, result)
@pytest.mark.parametrize("ldr, v, indices, result", [
([0, 1, 20, 100, 30, 2, 1], [-1, -2, -4, -1, 0, 0, 0], (1, 3, 6), True)
])
def test__is_good_ldr_peak(ldr, v, indices, result):
assert melting._is_good_ldr_peak(ldr, v, indices) is result
@pytest.mark.parametrize("v, indices, result", [
([-1, -2.1, -1, 0], (1, 2), True),
([-1, -1.9, -1, 0], (1, 2), False),
])
def test__is_good_ldr_peak(v, indices, result):
assert melting._is_good_v_peak(v, indices) is result
class Obs:
def __init__(self):
self.tw = np.tile(np.linspace(275, 270, 10), (2, 1))
self.tw[:, -1] = 250
self.ldr = ma.array([[1, 1, 1, 3, 150, 3, 1, 1, 1, 1],
[1, 1, 1, 3, 150, 3, 1, 1, 1, 1]])
self.v = ma.array([[-1, -1, -4, -2, -2, -1, 0, 0, 0, 0],
[-1, -1, -4, -2, -2, -1, 0, 0, 0, 0]])
self.model_type = 'ecmwf'
def test_find_melting_layer():
obs = Obs()
layer = melting.find_melting_layer(obs, smooth=False)
result = np.array([[0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0, 0]])
| assert_array_equal(layer, result) | numpy.testing.assert_array_equal |
"""
Run SSN-Moment Matching
"""
from __future__ import print_function
import theano
import theano.tensor as T
import lasagne
import numpy as np
from .. import utils
from ..gradient_expressions.utils import subsample_neurons, \
sample_sites_from_stim_space
from ..gradient_expressions import make_w_batch as make_w
from ..gradient_expressions import SS_grad as SSgrad
from .. import ssnode as SSsolve
from .gan import add_learning_options, do_learning
import time
from .. import stimuli
def learn(
seed, gen_learn_rate,
loss, n_samples, lam,
rate_cost, rate_penalty_threshold, rate_penalty_no_I,
n_sites, IO_type, rate_hard_bound, rate_soft_bound, dt, max_iter,
true_IO_type, truth_size, truth_seed, bandwidths,
sample_sites, track_offset_identity, init_disturbance,
contrast,
offsets,
datastore, J0, D0, S0,
timetest, convtest, testDW, DRtest, truth_size_per_batch, use_inhibitory,
# ignore:
gan, driver):
iterations = driver.iterations
quiet = driver.quiet
print(datastore)
sample_sites = sample_sites_from_stim_space(sample_sites, n_sites)
print(sample_sites)
def make_functions(**kwds):
return make_MOMENT_functions(lam=lam, **kwds)
train_update = MOMENT_update
rate_cost = float(rate_cost)
np.random.seed(seed)
smoothness = 0.03125
coe_value = .01 #k
exp_value = 2.2 #n
ssn_params = dict(
dt=dt,
max_iter=max_iter,
rate_soft_bound=rate_soft_bound,
rate_hard_bound=rate_hard_bound,
io_type=IO_type,
k=coe_value,
n=exp_value,
r0=np.zeros(2 * n_sites),
)
#specifying the shape of model/input
n = theano.shared(n_sites,name = "n_sites")
nz = theano.shared(n_samples,name = 'n_samples')
nb = theano.shared(len(bandwidths)*len(contrast),name = 'n_stim')
##getting regular nums##
N = int(n.get_value())
NZ = int(nz.get_value())
NB = int(nb.get_value())
###
#array that computes the positions
X = theano.shared(np.linspace(-.5,.5,n.get_value()).astype("float32"),name = "positions")
pos_num = X.get_value()
BAND_IN = stimuli.input(bandwidths, X.get_value(), smoothness, contrast)
data = []
if not true_IO_type:
true_IO_type = IO_type
print("Generating the truth...")
data, _ = SSsolve.sample_tuning_curves(
sample_sites=sample_sites,
NZ=truth_size,
seed=truth_seed,
bandwidths=bandwidths,
smoothness=smoothness,
contrast = contrast,
offset = offsets,
N=n_sites,
rate_stop_at=200,
track_offset_identity=track_offset_identity,
include_inhibitory_neurons = use_inhibitory,
**dict(ssn_params, io_type=true_IO_type))
print("DONE")
data = data.T # shape: (ncondition,N_data, nb)
print(data.shape)
# Check for sanity:
n_stim = len(bandwidths) * len(contrast) # number of stimulus conditions
if track_offset_identity:
assert n_stim * len(sample_sites) * (2 if use_inhibitory else 1) == data.shape[-1]
else:
assert n_stim == data.shape[-1]
#defining all the parameters that we might want to train
print(n_sites)
exp = theano.shared(exp_value,name = "exp")
coe = theano.shared(coe_value,name = "coe")
#these are parameters we will use to test the GAN
J2 = theano.shared(np.log(np.array(J0)).astype("float32"), name="j")
D2 = theano.shared(np.log(np.array(D0)).astype("float32"), name="d")
S2 = theano.shared(np.log(np.array(S0)).astype("float32"), name="s")
Jp2 = T.exp(J2)
Dp2 = T.exp(D2)
Sp2 = T.exp(S2)
#these are the parameters to be fit
dp = init_disturbance
if isinstance(dp, tuple):
J_dis, D_dis, S_dis = dp
else:
J_dis = D_dis = S_dis = dp
J_dis = np.array(J_dis) * np.ones((2, 2))
D_dis = | np.array(D_dis) | numpy.array |
import numpy
import sounddevice
import time
import math
fs = 48000
sounddevice.default.samplerate=fs
G = numpy.zeros(int(0.125*fs))
hz=783 #G
for x in range(len(G)):
G[x]= round(math.sin(2*math.pi*x*hz/fs))
Ab = numpy.zeros(int(.125*fs))
hz=415 #G
for x in range(len(Ab)):
Ab[x]= round(math.sin(2*math.pi*x*hz/fs))
A = numpy.zeros(int(.125*fs))
hz=459 #G
for x in range(len(A)):
A[x]= round(math.sin(2*math.pi*x*hz/fs))
Bb = numpy.zeros(int(.125*fs))
hz=466 #G
for x in range(len(Bb)):
Bb[x]= round(math.sin(2*math.pi*x*hz/fs))
B = numpy.zeros(int(.125*fs))
hz=493 #G
for x in range(len(B)):
B[x]= round(math.sin(2*math.pi*x*hz/fs))
C = numpy.zeros(int(.125*fs))
hz=523 #G
for x in range(len(C)):
C[x]= round(math.sin(2*math.pi*x*hz/fs))
Db = numpy.zeros(int(.125*fs))
hz=554 #G
for x in range(len(Db)):
Db[x]= round(math.sin(2*math.pi*x*hz/fs))
D = numpy.zeros(int(.125*fs))
hz=587 #G
for x in range(len(D)):
D[x]= round(math.sin(2*math.pi*x*hz/fs))
Eb = numpy.zeros(int(.125*fs))
hz=622 #G
for x in range(len(Eb)):
Eb[x]= round(math.sin(2*math.pi*x*hz/fs))
E = numpy.zeros(int(.125*fs))
hz=659 #G
for x in range(len(E)):
E[x]= round(math.sin(2*math.pi*x*hz/fs))
F = numpy.zeros(int(.125*fs))
hz=698 #G
for x in range(len(F)):
F[x]= round(math.sin(2*math.pi*x*hz/fs))
Gb = numpy.zeros(int(.125*fs))
hz=739 #G
for x in range(len(Gb)):
Gb[x]= round(math.sin(*math.pi*x*hz/fs))
song = (Ab,A,Bb,B,C,Db,D,Eb,E,F,Gb,G,Gb,F,E,Eb,D,Db,C,B,Bb,A,)
data = | numpy.concatenate(song) | numpy.concatenate |
import numpy as np
from test_utils import single_test, multiple_test
def initialize_parameters_test(target):
n_x, n_h, n_y = 3, 2, 1
expected_W1 = np.array([[ 0.01624345, -0.00611756, -0.00528172],
[-0.01072969, 0.00865408, -0.02301539]])
expected_b1 = np.array([[0.],
[0.]])
expected_W2 = np.array([[ 0.01744812, -0.00761207]])
expected_b2 = np.array([[0.]])
expected_output = {"W1": expected_W1,
"b1": expected_b1,
"W2": expected_W2,
"b2": expected_b2}
test_cases = [
{
"name":"datatype_check",
"input": [n_x, n_h, n_y],
"expected": expected_output,
"error":"Datatype mismatch."
},
{
"name": "equation_output_check",
"input": [n_x, n_h, n_y],
"expected": expected_output,
"error": "Wrong output"
}
]
multiple_test(test_cases, target)
def initialize_parameters_deep_test(target):
layer_dims = [5,4,3]
expected_W1 = np.array([[ 0.01788628, 0.0043651 , 0.00096497, -0.01863493, -0.00277388],
[-0.00354759, -0.00082741, -0.00627001, -0.00043818, -0.00477218],
[-0.01313865, 0.00884622, 0.00881318, 0.01709573, 0.00050034],
[-0.00404677, -0.0054536 , -0.01546477, 0.00982367, -0.01101068]])
expected_b1 = np.array([[0.],
[0.],
[0.],
[0.]])
expected_W2 = np.array([[-0.01185047, -0.0020565 , 0.01486148, 0.00236716],
[-0.01023785, -0.00712993, 0.00625245, -0.00160513],
[-0.00768836, -0.00230031, 0.00745056, 0.01976111]])
expected_b2 = np.array([[0.],
[0.],
[0.]])
expected_output = {"W1": expected_W1,
"b1": expected_b1,
"W2": expected_W2,
"b2": expected_b2}
test_cases = [
{
"name":"datatype_check",
"input": [layer_dims],
"expected": expected_output,
"error":"Datatype mismatch"
},
{
"name": "shape_check",
"input": [layer_dims],
"expected": expected_output,
"error": "Wrong shape"
},
{
"name": "equation_output_check",
"input": [layer_dims],
"expected": expected_output,
"error": "Wrong output"
}
]
multiple_test(test_cases, target)
def linear_forward_test(target):
np.random.seed(1)
A_prev = np.random.randn(3,2)
W = np.random.randn(1,3)
b = np.random.randn(1,1)
expected_cache = (A_prev, W, b)
expected_Z = np.array([[ 3.26295337, -1.23429987]])
expected_output = (expected_Z, expected_cache)
test_cases = [
{
"name":"datatype_check",
"input": [A_prev, W, b],
"expected": expected_output,
"error":"Datatype mismatch"
},
{
"name": "shape_check",
"input": [A_prev, W, b],
"expected": expected_output,
"error": "Wrong shape"
},
{
"name": "equation_output_check",
"input": [A_prev, W, b],
"expected": expected_output,
"error": "Wrong output"
},
]
multiple_test(test_cases, target)
def linear_activation_forward_test(target):
np.random.seed(2)
A_prev = np.random.randn(3,2)
W = np.random.randn(1,3)
b = np.random.randn(1,1)
expected_linear_cache = (A_prev, W, b)
expected_Z = np.array([[ 3.43896131, -2.08938436]])
expected_cache = (expected_linear_cache, expected_Z)
expected_A_sigmoid = np.array([[0.96890023, 0.11013289]])
expected_A_relu = np.array([[3.43896131, 0.]])
expected_output_sigmoid = (expected_A_sigmoid, expected_cache)
expected_output_relu = (expected_A_relu, expected_cache)
test_cases = [
{
"name":"datatype_check",
"input": [A_prev, W, b, 'sigmoid'],
"expected": expected_output_sigmoid,
"error":"Datatype mismatch with sigmoid activation"
},
{
"name": "shape_check",
"input": [A_prev, W, b, 'sigmoid'],
"expected": expected_output_sigmoid,
"error": "Wrong shape with sigmoid activation"
},
{
"name": "equation_output_check",
"input": [A_prev, W, b, 'sigmoid'],
"expected": expected_output_sigmoid,
"error": "Wrong output with sigmoid activation"
},
{
"name":"datatype_check",
"input": [A_prev, W, b, 'relu'],
"expected": expected_output_relu,
"error":"Datatype mismatch with relu activation"
},
{
"name": "shape_check",
"input": [A_prev, W, b, 'relu'],
"expected": expected_output_relu,
"error": "Wrong shape with relu activation"
},
{
"name": "equation_output_check",
"input": [A_prev, W, b, 'relu'],
"expected": expected_output_relu,
"error": "Wrong output with relu activation"
}
]
multiple_test(test_cases, target)
def L_model_forward_test(target):
np.random.seed(6)
X = np.random.randn(5,4)
W1 = np.random.randn(4,5)
b1 = np.random.randn(4,1)
W2 = np.random.randn(3,4)
b2 = np.random.randn(3,1)
W3 = np.random.randn(1,3)
b3 = np.random.randn(1,1)
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2,
"W3": W3,
"b3": b3}
expected_cache = [((np.array([[-0.31178367, 0.72900392, 0.21782079, -0.8990918 ],
[-2.48678065, 0.91325152, 1.12706373, -1.51409323],
[ 1.63929108, -0.4298936 , 2.63128056, 0.60182225],
[-0.33588161, 1.23773784, 0.11112817, 0.12915125],
[ 0.07612761, -0.15512816, 0.63422534, 0.810655 ]]),
np.array([[ 0.35480861, 1.81259031, -1.3564758 , -0.46363197, 0.82465384],
[-1.17643148, 1.56448966, 0.71270509, -0.1810066 , 0.53419953],
[-0.58661296, -1.48185327, 0.85724762, 0.94309899, 0.11444143],
[-0.02195668, -2.12714455, -0.83440747, -0.46550831, 0.23371059]]),
np.array([[ 1.38503523],
[-0.51962709],
[-0.78015214],
[ 0.95560959]])),
np.array([[-5.23825714, 3.18040136, 0.4074501 , -1.88612721],
[-2.77358234, -0.56177316, 3.18141623, -0.99209432],
[ 4.18500916, -1.78006909, -0.14502619, 2.72141638],
[ 5.05850802, -1.25674082, -3.54566654, 3.82321852]])),
((np.array([[0. , 3.18040136, 0.4074501 , 0. ],
[0. , 0. , 3.18141623, 0. ],
[4.18500916, 0. , 0. , 2.72141638],
[5.05850802, 0. , 0. , 3.82321852]]),
np.array([[-0.12673638, -1.36861282, 1.21848065, -0.85750144],
[-0.56147088, -1.0335199 , 0.35877096, 1.07368134],
[-0.37550472, 0.39636757, -0.47144628, 2.33660781]]),
np.array([[ 1.50278553],
[-0.59545972],
[ 0.52834106]])),
np.array([[ 2.2644603 , 1.09971298, -2.90298027, 1.54036335],
[ 6.33722569, -2.38116246, -4.11228806, 4.48582383],
[10.37508342, -0.66591468, 1.63635185, 8.17870169]])),
((np.array([[ 2.2644603 , 1.09971298, 0. , 1.54036335],
[ 6.33722569, 0. , 0. , 4.48582383],
[10.37508342, 0. , 1.63635185, 8.17870169]]),
np.array([[ 0.9398248 , 0.42628539, -0.75815703]]),
np.array([[-0.16236698]])),
np.array([[-3.19864676, 0.87117055, -1.40297864, -3.00319435]]))]
expected_AL = np.array([[0.03921668, 0.70498921, 0.19734387, 0.04728177]])
expected_output = (expected_AL, expected_cache)
test_cases = [
{
"name":"datatype_check",
"input": [X, parameters],
"expected": expected_output,
"error":"The function should return a numpy array."
},
{
"name": "shape_check",
"input": [X, parameters],
"expected": expected_output,
"error": "Wrong shape"
},
{
"name": "equation_output_check",
"input": [X, parameters],
"expected": expected_output,
"error": "Wrong output"
}
]
multiple_test(test_cases, target)
''' {
"name":"datatype_check",
"input": [AL, Y],
"expected": expected_output,
"error":"Data type mismatch"
},
{
"name": "shape_check",
"input": [AL, Y],
"expected": expected_output,
"error": "Wrong shape"
},'''
def compute_cost_test(target):
Y = np.asarray([[1, 1, 0]])
AL = np.array([[.8,.9,0.4]])
expected_output = np.array(0.27977656)
test_cases = [
{
"name": "equation_output_check",
"input": [AL, Y],
"expected": expected_output,
"error": "Wrong output"
}
]
single_test(test_cases, target)
def linear_backward_test(target):
np.random.seed(1)
dZ = np.random.randn(3,4)
A = | np.random.randn(5,4) | numpy.random.randn |
# ----------------------------------------------------------------------------
# Title: Scientific Visualisation - Python & Matplotlib
# Author: <NAME>
# License: BSD
# ----------------------------------------------------------------------------
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.path as mpath
from matplotlib.collections import LineCollection
from matplotlib.collections import PathCollection
from matplotlib.collections import CircleCollection
from matplotlib.collections import PolyCollection
from matplotlib.collections import EllipseCollection
from matplotlib.collections import RegularPolyCollection
from matplotlib.collections import StarPolygonCollection
from matplotlib.collections import AsteriskPolygonCollection
fig = plt.figure(figsize=(4.25, 8 * 0.4))
ax = fig.add_axes(
[0, 0, 1, 1],
xlim=[0, 11],
ylim=[0.5, 8.5],
frameon=False,
xticks=[],
yticks=[],
aspect=1,
)
y = 8
# Line collection
# ----------------------------------------------------------------------------
n = 50
segments = np.zeros((n, 2, 2))
segments[:, 0, 0] = | np.linspace(1, 10.25, n) | numpy.linspace |
if '__file__' in globals():
import os
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
is_simple_core = True
if is_simple_core:
from dezero.core_simple import Variable
from dezero.core_simple import Variable
from dezero.core_simple import Variable
from dezero.core_simple import Function
from dezero.core_simple import using_config
from dezero.core_simple import no_grad
from dezero.core_simple import as_array
from dezero.core_simple import as_variable
from dezero.core_simple import setup_variable
from dezero.core_simple import Config, add, mul, neg, sub, rsub, div, rdiv, pow
import numpy as np
import pytest
setup_variable()
class TestVariable:
def test_name(self):
x = Variable(np.array(1), "test")
assert x.name == "test"
@pytest.mark.parametrize("input, expected", [(Variable(np.array(1)), 'int32'), (Variable(np.array([1.0, 2.0, 3.0])), 'float64'), (Variable(np.array([[1.0, 2.0], [2.0, 3.0]])), 'float64')])
def test_dtype(self, input, expected):
assert input.dtype == expected
@pytest.mark.parametrize("input, expected", [(Variable(np.array(1.0)), 0), (Variable(np.array([1.0, 2.0, 3.0])), 1), (Variable(np.array([[1.0, 2.0], [2.0, 3.0]])), 2)])
def test_ndim(self, input, expected):
assert input.ndim == expected
@pytest.mark.parametrize("input, expected", [(Variable(np.array(1.0)), 1), (Variable(np.array([1.0, 2.0, 3.0])), 3), (Variable(np.array([[1.0, 2.0], [2.0, 3.0]])), 4)])
def test_size(self, input, expected):
assert input.size == expected
@pytest.mark.parametrize("input, expected", [(Variable(np.array(1.0)), 1), (Variable(np.array([1.0, 2.0, 3.0])), 3), (Variable(np.array([[1.0, 2.0], [2.0, 3.0]])), 2)])
def test_len(self, input, expected):
assert len(input) == expected
@pytest.mark.parametrize("input, expected", [(Variable(np.array(1.0)), ()), (Variable(np.array([1.0, 2.0, 3.0])), (3,)), (Variable(np.array([[1.0, 2.0], [2.0, 3.0]])), (2, 2))])
def test_shape(self, input, expected):
assert input.shape == expected
@pytest.mark.parametrize("input, expected", [(Variable(np.array(1.0)), "variable(1.0)\n"), (Variable(np.array([1.0, 2.0, 3.0])), "variable([1. 2. 3.])\n"), (Variable(np.array([[1.0, 2.0], [2.0, 3.0]])), "variable([[1. 2.]\n [2. 3.]])\n")])
def test_shape(self, input, expected, capsys):
print(input)
captured = capsys.readouterr()
assert captured.out == expected
@pytest.mark.parametrize("input, expected", [(np.array(1.0), Variable(np.array(1.0))), (Variable(np.array(1.0)), Variable(np.array(1.0)))])
def test_as_variable(self, input, expected):
assert type(as_variable(input)) == type(expected)
@pytest.fixture(scope="function", autouse=True)
def culc_object():
yield Variable(np.array(2)), Variable(np.array(3))
class TestNeg:
def test_neg(self):
x = Variable(np.array(2.0))
assert neg(x).data == -2.0
def test_neg_backward(self):
x = Variable(np.array(2.0))
y = -x
y.backward()
assert x.grad == -1
def test_neg_overload(self):
x = Variable(np.array(2.0))
assert (-x).data == -2.0
class TestAdd:
def test_add(self, culc_object):
assert add(culc_object[0], culc_object[1]).data == 5
def test_add_backward(self, culc_object):
x0 = culc_object[0]
x1 = culc_object[1]
y = add(x0, x1)
y.backward()
assert x0.grad == 1 and x1.grad == 1
def test_add_overload(self, culc_object):
x0 = culc_object[0]
x1 = culc_object[1]
assert (x0 + x1).data == 5
def test_add_backward_overload(self, culc_object):
x0 = culc_object[0]
x1 = culc_object[1]
y = x0 + x1
y.backward()
assert x0.grad == 1 and x1.grad == 1
def test_calc_multi_type(self):
x = Variable(np.array(2.0))
y = x + np.array(3.0)
assert y.data == Variable(np.array(5.0)).data
def test_calc_multi_type_left(self):
x = Variable(np.array(2.0))
y = x + 3
assert y.data == Variable(np.array(5.0)).data
def test_calc_multi_type_right(self):
x = Variable(np.array(2.0))
y = 3.0 + x
assert y.data == Variable(np.array(5.0)).data
def test_calc_multi_type_ndarray_right(self):
x = Variable(np.array(2.0))
y = | np.array(3.0) | numpy.array |
"""Unit test suite for falco.setup.falco_set_spectral_properties()"""
import numpy as np
import falco
def test_1subband_1wavelength():
mp = falco.config.ModelParameters()
mp.full = falco.config.Object()
mp.lambda0 = 1e-6
mp.flagSim = False
mp.Nsbp = 1
mp.Nwpsbp = 1
mp.fracBW = 0.20
falco.setup.falco_set_spectral_properties(mp)
assert np.array_equal(mp.sbp_weights, np.ones((1, 1)))
assert np.array_equal(mp.sbp_centers, | np.array((1e-6, )) | numpy.array |
# -*- coding: utf-8 -*-
"""
author: <NAME>
email: <EMAIL>
license: MIT
Please feel free to use and modify this, but keep the above information. Thanks!
"""
# Position and Velocity Control based on https://github.com/PX4/Firmware/blob/master/src/modules/mc_pos_control/PositionControl.cpp
# Desired Thrust to Desired Attitude based on https://github.com/PX4/Firmware/blob/master/src/modules/mc_pos_control/Utility/ControlMath.cpp
# Attitude Control based on https://github.com/PX4/Firmware/blob/master/src/modules/mc_att_control/AttitudeControl/AttitudeControl.cpp
# and https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/154099/eth-7387-01.pdf
# Rate Control based on https://github.com/PX4/Firmware/blob/master/src/modules/mc_att_control/mc_att_control_main.cpp
import numpy as np
from numpy import pi
from numpy import sin, cos, tan, sqrt
from numpy.linalg import norm
import utils
import config
rad2deg = 180.0/pi
deg2rad = pi/180.0
# Set PID Gains and Max Values
# ---------------------------
params = {
# Position P gains
"Py" : 2.0,
"Px" : 2.0,
"Pz" : 1.0,
# Velocity P-D gains
"Pxdot" : 5.0,
"Dxdot" : 0.5,
"Ixdot" : 5.0,
"Pydot" : 5.0,
"Dydot" : 0.5,
"Iydot" : 5.0,
"Pzdot" : 4.0,
"Dzdot" : 0.5,
"Izdot" : 5.0,
# Attitude P gains
"Pphi" : 8.0,
"Ptheta" : 8.0,
"Ppsi" : 1.5,
"PpsiStrong" : 8,
# Rate P-D gains
"Pp" : 1.5,
"Dp" : 0.04,
"Pq" : 1.5,
"Dq" : 0.04 ,
"Pr" : 1.0,
"Dr" : 0.1,
# Max Velocities
"uMax" : 5.0,
"vMax" : 5.0,
"wMax" : 5.0,
"saturateVel_separately" : False,
# Max tilt
"tiltMax" : 50.0,
# Max Rate
"pMax" : 200.0,
"qMax" : 200.0,
"rMax" : 150.0
}
class Control:
def __init__(self, quad, yawType, params=params):
self.saturateVel_separately = params["saturateVel_separately"]
# Max tilt
self.tiltMax = params["tiltMax"]*deg2rad
# Max Rate
self.pMax = params["pMax"]*deg2rad
self.qMax = params["qMax"]*deg2rad
self.rMax = params["rMax"]*deg2rad
self.pos_P_gain = np.array([params["Px"], params["Py"], params["Pz"]])
self.vel_P_gain = np.array([params["Pxdot"], params["Pydot"], params["Pzdot"]])
self.vel_D_gain = np.array([params["Dxdot"], params["Dydot"], params["Dzdot"]])
self.vel_I_gain = np.array([params["Ixdot"], params["Iydot"], params["Izdot"]])
self.att_P_gain = np.array([params["Pphi"], params["Ptheta"], params["Ppsi"]])
self.rate_P_gain = np.array([params["Pp"], params["Pq"], params["Pr"]])
self.rate_D_gain = np.array([params["Dp"], params["Dq"], params["Dr"]])
self.velMax = np.array([params["uMax"], params["vMax"], params["wMax"]])
self.velMaxAll = self.velMax.min()
self.rateMax = np.array([self.pMax, self.qMax, self.rMax])
self.sDesCalc = np.zeros(16)
self.w_cmd = np.ones(4)*quad.params["w_hover"]
self.thr_int = np.zeros(3)
if (yawType == 0):
self.att_P_gain[2] = 0
self.setYawWeight()
self.pos_sp = np.zeros(3)
self.vel_sp = np.zeros(3)
self.acc_sp = np.zeros(3)
self.thrust_sp = np.zeros(3)
self.thrust_rep_sp = np.zeros(3)
self.eul_sp = np.zeros(3)
self.pqr_sp = np.zeros(3)
self.yawFF = 0.
def controller(self, traj, quad, potfld, Ts):
# Desired State (Create a copy, hence the [:])
# ---------------------------
self.pos_sp[:] = traj.sDes[0:3]
self.vel_sp[:] = traj.sDes[3:6]
self.acc_sp[:] = traj.sDes[6:9]
self.thrust_sp[:] = traj.sDes[9:12]
self.eul_sp[:] = traj.sDes[12:15]
self.pqr_sp[:] = traj.sDes[15:18]
self.yawFF = traj.sDes[18]
# Select Controller
# ---------------------------
if (traj.ctrlType == "xyz_vel"):
self.saturateVel()
self.z_vel_control(quad, potfld, Ts)
self.xy_vel_control(quad, potfld, Ts)
self.thrustToAttitude(quad, potfld, Ts)
self.attitude_control(quad, Ts)
self.rate_control(quad, Ts)
elif (traj.ctrlType == "xy_vel_z_pos"):
self.z_pos_control(quad, potfld, Ts)
self.saturateVel()
self.z_vel_control(quad, potfld, Ts)
self.xy_vel_control(quad, potfld, Ts)
self.thrustToAttitude(quad, potfld, Ts)
self.attitude_control(quad, Ts)
self.rate_control(quad, Ts)
elif (traj.ctrlType == "xyz_pos"):
self.z_pos_control(quad, potfld, Ts)
self.xy_pos_control(quad, potfld, Ts)
self.saturateVel()
self.addFrepToVel(potfld)
self.saturateVel()
self.yaw_follow(traj, Ts)
self.z_vel_control(quad, potfld, Ts)
self.xy_vel_control(quad, potfld, Ts)
self.thrustToAttitude(quad, potfld, Ts)
self.attitude_control(quad, Ts)
self.rate_control(quad, Ts)
# Mixer
# ---------------------------
self.w_cmd = utils.mixerFM(quad, norm(self.thrust_rep_sp), self.rateCtrl)
# Add calculated Desired States
# ---------------------------
self.sDesCalc[0:3][:] = self.pos_sp
self.sDesCalc[3:6][:] = self.vel_sp
self.sDesCalc[6:9][:] = self.thrust_sp
self.sDesCalc[9:13][:] = self.qd
self.sDesCalc[13:16][:] = self.rate_sp
def z_pos_control(self, quad, potfld, Ts):
# Z Position Control
# ---------------------------
pos_z_error = self.pos_sp[2] - quad.pos[2]
self.vel_sp[2] += self.pos_P_gain[2]*pos_z_error
def xy_pos_control(self, quad, potfld, Ts):
# XY Position Control
# ---------------------------
pos_xy_error = (self.pos_sp[0:2] - quad.pos[0:2])
self.vel_sp[0:2] += self.pos_P_gain[0:2]*pos_xy_error
def saturateVel(self):
# Saturate Velocity Setpoint
# ---------------------------
# Either saturate each velocity axis separately, or total velocity (prefered)
if (self.saturateVel_separately):
self.vel_sp = np.clip(self.vel_sp, -self.velMax, self.velMax)
else:
totalVel_sp = norm(self.vel_sp)
if (totalVel_sp > self.velMaxAll):
self.vel_sp = self.vel_sp/totalVel_sp*self.velMaxAll
def addFrepToVel(self, potfld):
# Add repulsive force "velocity" to velocity setpoint
self.vel_sp += potfld.pfVel*potfld.F_rep
def yaw_follow(self, traj, Ts):
# Generate Yaw setpoint and FF
# ---------------------------
# If yawType == "Follow", then set Yaw setpoint and Yaw Rate Feed-Forward to follow the velocity setpoint
if (traj.yawType == 4 and traj.omit_yaw_follow == 0):
totalVel_sp = norm(self.vel_sp)
if (totalVel_sp > 0.1):
# Calculate desired Yaw
self.eul_sp[2] = np.arctan2(self.vel_sp[1], self.vel_sp[0])
# Dirty hack, detect when desEul[2] switches from -pi to pi (or vice-versa) and switch manualy current_heading
if (np.sign(self.eul_sp[2]) - np.sign(traj.current_heading) and abs(self.eul_sp[2]-traj.current_heading) >= 2*pi-0.1):
traj.current_heading = traj.current_heading + np.sign(self.eul_sp[2])*2*pi
# Angle between current vector with the next heading vector
delta_psi = self.eul_sp[2] - traj.current_heading
# Set Yaw rate
self.yawFF = delta_psi / Ts
# Prepare next iteration
traj.current_heading = self.eul_sp[2]
def z_vel_control(self, quad, potfld, Ts):
# Z Velocity Control (Thrust in D-direction)
# ---------------------------
# Hover thrust (m*g) is sent as a Feed-Forward term, in order to
# allow hover when the position and velocity error are nul
vel_z_error = self.vel_sp[2] - quad.vel[2]
if (config.orient == "NED"):
thrust_z_sp = (self.vel_P_gain[2]*vel_z_error - self.vel_D_gain[2]*quad.vel_dot[2] +
quad.params["mB"]*(self.acc_sp[2] - quad.params["g"]) +
self.thr_int[2] + potfld.pfSatFor*potfld.F_rep[2])
elif (config.orient == "ENU"):
thrust_z_sp = (self.vel_P_gain[2]*vel_z_error - self.vel_D_gain[2]*quad.vel_dot[2] +
quad.params["mB"]*(self.acc_sp[2] + quad.params["g"]) +
self.thr_int[2] + potfld.pfSatFor*potfld.F_rep[2])
# Get thrust limits
if (config.orient == "NED"):
# The Thrust limits are negated and swapped due to NED-frame
uMax = -quad.params["minThr"]
uMin = -quad.params["maxThr"]
elif (config.orient == "ENU"):
uMax = quad.params["maxThr"]
uMin = quad.params["minThr"]
# Apply Anti-Windup in D-direction
stop_int_D = (thrust_z_sp >= uMax and vel_z_error >= 0.0) or (thrust_z_sp <= uMin and vel_z_error <= 0.0)
# Calculate integral part
if not (stop_int_D):
self.thr_int[2] += self.vel_I_gain[2]*vel_z_error*Ts * quad.params["useIntergral"]
# Limit thrust integral
self.thr_int[2] = min(abs(self.thr_int[2]), quad.params["maxThr"])*np.sign(self.thr_int[2])
# Saturate thrust setpoint in D-direction
self.thrust_sp[2] = np.clip(thrust_z_sp, uMin, uMax)
def xy_vel_control(self, quad, potfld, Ts):
# XY Velocity Control (Thrust in NE-direction)
# ---------------------------
vel_xy_error = self.vel_sp[0:2] - quad.vel[0:2]
thrust_xy_sp = (self.vel_P_gain[0:2]*vel_xy_error - self.vel_D_gain[0:2]*quad.vel_dot[0:2] +
quad.params["mB"]*(self.acc_sp[0:2]) + self.thr_int[0:2] +
potfld.pfSatFor*potfld.F_rep[0:2])
# Max allowed thrust in NE based on tilt and excess thrust
thrust_max_xy_tilt = abs(self.thrust_sp[2])*np.tan(self.tiltMax)
thrust_max_xy = sqrt(quad.params["maxThr"]**2 - self.thrust_sp[2]**2)
thrust_max_xy = min(thrust_max_xy, thrust_max_xy_tilt)
# Saturate thrust in NE-direction
self.thrust_sp[0:2] = thrust_xy_sp
if (np.dot(self.thrust_sp[0:2].T, self.thrust_sp[0:2]) > thrust_max_xy**2):
mag = norm(self.thrust_sp[0:2])
self.thrust_sp[0:2] = thrust_xy_sp/mag*thrust_max_xy
# Use tracking Anti-Windup for NE-direction: during saturation, the integrator is used to unsaturate the output
# see Anti-Reset Windup for PID controllers, L.Rundqwist, 1990
arw_gain = 2.0/self.vel_P_gain[0:2]
vel_err_lim = vel_xy_error - (thrust_xy_sp - self.thrust_sp[0:2])*arw_gain
self.thr_int[0:2] += self.vel_I_gain[0:2]*vel_err_lim*Ts * quad.params["useIntergral"]
def thrustToAttitude(self, quad, potfld, Ts):
# Create Full Desired Quaternion Based on Thrust Setpoint and Desired Yaw Angle
# ---------------------------
# Add potential field repulsive force to Thrust setpoint
self.thrust_rep_sp = self.thrust_sp + potfld.pfFor*potfld.F_rep
# Yaw setpoint
yaw_sp = self.eul_sp[2]
# Desired body_z axis direction
body_z = -utils.vectNormalize(self.thrust_rep_sp)
if (config.orient == "ENU"):
body_z = -body_z
# Vector of desired Yaw direction in XY plane, rotated by pi/2 (fake body_y axis)
y_C = np.array([-sin(yaw_sp), cos(yaw_sp), 0.0])
# Desired body_x axis direction
body_x = np.cross(y_C, body_z)
body_x = utils.vectNormalize(body_x)
# Desired body_y axis direction
body_y = np.cross(body_z, body_x)
# Desired rotation matrix
R_sp = np.array([body_x, body_y, body_z]).T
# Full desired quaternion (full because it considers the desired Yaw angle)
self.qd_full = utils.RotToQuat(R_sp)
def attitude_control(self, quad, Ts):
# Current thrust orientation e_z and desired thrust orientation e_z_d
e_z = quad.dcm[:,2]
e_z_d = -utils.vectNormalize(self.thrust_rep_sp)
if (config.orient == "ENU"):
e_z_d = -e_z_d
# Quaternion error between the 2 vectors
qe_red = np.zeros(4)
qe_red[0] = np.dot(e_z, e_z_d) + sqrt(norm(e_z)**2 * norm(e_z_d)**2)
qe_red[1:4] = np.cross(e_z, e_z_d)
qe_red = utils.vectNormalize(qe_red)
# Reduced desired quaternion (reduced because it doesn't consider the desired Yaw angle)
self.qd_red = utils.quatMultiply(qe_red, quad.quat)
# Mixed desired quaternion (between reduced and full) and resulting desired quaternion qd
q_mix = utils.quatMultiply(utils.inverse(self.qd_red), self.qd_full)
q_mix = q_mix* | np.sign(q_mix[0]) | numpy.sign |
import dash
import dash_html_components as html
import dash_core_components as dcc
from dash.dependencies import Input, Output
import pandas_datareader.data as web
import datetime as dateT
import plotly.graph_objs as go
from headlines import generate_headline_bar, generate_link_table
from quotes import generate_top_bar_logo, generate_pick_stock
from stock_graph import generate_graph, generate_graph_now, generate_sentiment_analysis_heatmap, generate_open_range_prediction
from iexfinance.stocks import Stock, get_historical_intraday
#from IPython.display import Image
from time_handling import TimeConvert, IsMarketOpen, days_hours_mins_secs, MarketDateAdj, GetTimeToMktOpen, IsMarketOpen_pd
from convert_image_to_square import make_square
from bid_ask import PrintBidAsk, GetLastBidAsk
# our own util functions
import mkt_dt_utils as dtutils
from PIL import Image
import urllib.request
from datetime import datetime, timedelta
# import pandas_market_calendars as mcal
import pytz
# import pandas as pd
import plotly.plotly as py
import pandas as pd
from scipy import stats
import numpy as np
from functools import reduce
#import sqlite3
app = dash.Dash('SENDASH')
# a config setting for run css and js in locally
app.css.config.serve_locally = True
app.scripts.config.serve_locally = True
#conn = sqlite3.connect('stocks.db')
#c = conn.cursor()
# Container Div
app.layout = html.Div([
# import local stylesheet
html.Link(
rel='stylesheet',
href='/assets/materialize.min.css'
),
html.Link(
rel='stylesheet',
href='/assets/sendash.css'
),
# import local javascript
html.Link(
rel='javascript',
href='/assets/materialize.min.js'
),
# Top Bar Div
html.Div([
generate_top_bar_logo(),
generate_pick_stock(),
# stock indicator
html.Div(
[
html.Div(id='output-symbol'),
#dcc.Input(id='output-ticker', type='hidden'),
dcc.Interval(id='input-symbol', interval=6 * 10000, n_intervals=0),
], className="col s2 top-bar-col borders"
),
# QQQ indicator
html.Div(
[
html.Div(id="output-QQQ"),
dcc.Interval(id='input-QQQ', interval=6 * 10000, n_intervals=0),
], className="col s2 top-bar-col borders"
),
# SPY indicator
html.Div(
[
html.Div(id="output-SPY"),
dcc.Interval(id='input-SPY', interval=6 * 10000, n_intervals=0),
], className="col s2 top-bar-col borders"
),
# Market Clock
html.Div(
[
html.Div(id='output-time-clock'),
dcc.Interval(id='input-time-clock', interval=2 * 1000, n_intervals=0),
], className="col s3 top-bar-col borders"
),
], className="row row-margin-reduce"),
# 2nd Row Div
html.Div([
# Left Panel
html.Div(
[
html.Div([
generate_headline_bar("Headlines"),
html.Div(id='output-headline')
], className="row row-margin-reduce"),
html.Div([
html.Strong("RS = Relevance Score | SS = Sentiemnt Score", style={'color':'white'})
], className="row borders row-margin-reduce", style={'height':'30px', 'text-align':'center'}),
#generate_link_table(),
# generate_headline_bar("Tweets"),
# generate_link_table(),
#], className="col s3 row-margin-reduce borders", style={'height': '406px'}
], className="col s3 row-margin-reduce borders"
),
# Right Panel
html.Div(
[
#dcc.Input(id='input-date', value=dateT.datetime.today(), type='datetime-local', max=dateT.datetime.today(), style={'color':'white'}),
#dcc.Input(id='input-date', value=dateT.datetime.today().date(), type='date', max=dateT.date.today(), style={'color':'white'}),
dcc.Input(
id='input-date',
value=TimeConvert(dateT.datetime.utcnow().replace(tzinfo=pytz.timezone('UTC')), 'EST').date(),
type='date',
max=TimeConvert(dateT.datetime.utcnow().replace(tzinfo=pytz.timezone('UTC')), 'EST').date(),
min=TimeConvert(dateT.datetime.utcnow().replace(tzinfo=pytz.timezone('UTC')), 'EST').date() - timedelta(days=90),
style={'color':'black', 'background-color':'white'}
),
html.Div(children=[
html.Div(id='output-stock-price-graph')
]),
], className="col s9 row-margin-reduce borders"
)
#], className="row row-margin-reduce", style={'height': '406px'}),
], className="row row-margin-reduce"),
# 3rd Row Div
html.Div([
html.Div(
[
html.Div([
html.Div([
html.Div(id="output-stock-logo"),
], className="col s2", style={'max-height': '120px', 'padding-top':'5px'}),
html.Div([
html.Div(id="output-key-stats"),
], className="col s10 borders", style={'min-height': '120px', 'padding':'0px'})
], className="row borders row-margin-reduce"),
html.Div([
html.Div(id='output-get-company')
], className="row borders row-margin-reduce"),
], className="col s6 borders" # 230px
),
html.Div(
[
#html.P('5'), html.P('5'), html.P('5'), html.P('5'), html.P('5'),
html.Div([
html.Strong("Overnight Sentiment Score", className="section-title"),
], className="row row-margin-reduce left-div-header-div borders"),
html.Div([
#html.P('5'), html.P('5'), html.P('5'), html.P('5'), html.P('5'),html.P('5'), html.P('5'), html.P('5'), html.P('5'),
#generate_sentiment_analysis_piechart()
html.Div(id='output-sentiment-score')
#generate_sentiment_analysis_heatmap(a)
], className="row row-margin-reduce")
], className="col s2 borders" # 230px
),
html.Div(
[
html.Div([
html.Div([
html.Div([
html.Strong("Bid", className="section-title"),
], className="col s6 borders"),
html.Div([
html.Strong("Ask", className="section-title"),
], className="col s6 borders")
], className="row row-margin-reduce left-div-header-div borders", style={'margin-left':'0px', 'margin-right': '0px'}),
html.Div([
html.Div(id='output-bid-ask'),
dcc.Interval(id='input-bid-ask', interval=10 * 1000, n_intervals=0),
], className="row row-margin-reduce"),
], className="row borders row-margin-reduce"),
html.Div([
html.Div([
html.Strong("Opening Range Prediction", className="section-title"),
], className="row row-margin-reduce left-div-header-div borders", style={'margin-left':'0px', 'margin-right': '0px'}),
html.Div([
html.Div(id='output-range-prediction', style={'padding-left':'10px'})
#generate_open_range_prediction(e_p, e_std)
#generate_sentiment_analysis_piechart()
#html.P('5'), html.P('5'), html.P('5'), html.P('5'), html.P('5'),html.P('5'), html.P('5'), html.P('5'), html.P('5'),
], className="row row-margin-reduce borders")
], className="row borders row-margin-reduce borders")
], className="col s4 borders" # 230px
),
# html.Div(
# [
# #html.P('5'), html.P('5'), html.P('5'), html.P('5'), html.P('5'),
# html.Div([
# html.Div([
# html.Strong("Bid", className="section-title"),
# ], className="col s6"),
# html.Div([
# html.Strong("Ask", className="section-title"),
# ], className="col s6")
# ], className="row row-margin-reduce left-div-header-div borders"),
# html.Div([
# html.Div([
# # html.P('5'), html.P('5'), html.P('5'), html.P('5'), html.P('5'),html.P('5'), html.P('5'), html.P('5'), html.P('5'),
# html.Div(id='output-bid-ask'),
# dcc.Interval(id='input-bid-ask', interval=30 * 1000, n_intervals=0),
# ], className="col s6 borders"),
# html.Div([
# html.P('5'), html.P('5'), html.P('5'), html.P('5'), html.P('5'),html.P('5'), html.P('5'), html.P('5'), html.P('5'),
# ], className="col s6 borders")
# ], className="row row-margin-reduce")
# ], className="col s2 borders" # 230px
# ),
], className="row row-margin-reduce"),
], className="container bg-color", style={'width': '100%', 'max-width': 50000})
def GetOpenRange(closePx, returns):
'''
returns expected open price and std * closePx
'''
r_mean = np.mean(returns)
r_std = np.std(returns)
e_px = np.exp(r_mean) * closePx
e_std = (np.exp(r_mean + r_std) -1 ) * closePx
return e_px, e_std
def GetReturnsYHF(yhoo_data, l_symbols, overnight = False):
data = yhoo_data.stack()
#print(data)
data.reset_index(inplace = True)
l_col_to_keep = ['Date', 'Symbols', 'Adj Close','Open', 'Volume']
r_dfs = []
# 1
for sym in l_symbols:
r_df = data[ data.Symbols == sym ].loc[:, l_col_to_keep]
r_df = r_df.set_index('Date')
r_df[f'r({sym})'] = r_df['Adj Close']/ r_df['Adj Close'].shift(1) - 1
# or just do df.pct_change()
if overnight:
r_df[f'r({sym})'] = r_df['Open']/ r_df['Adj Close'].shift(1) - 1
r_dfs.append( r_df.iloc[1:,:])
# 2
df = reduce( lambda x, y : pd.concat([x,y], axis =1),
[ r_df.iloc[:,-1] for r_df in r_dfs ]
)
#df.sort_values(by = 'Date',ascending = False).head(3)
return df
# def GetBeta( r_sym , r_benchmark):
# slope, intercept, r_value, p_value, std_err = stats.linregress( r_sym, r_benchmark)
# return slope
# def GetAlpha( r_sym , r_benchmark):
# beta = GetBeta( r_sym, r_benchmark)
# return r_sym - beta * r_benchmark
def PrintSignal(zscore):
if(zscore != 0):
buysell = 'Higher'
if np.sign(zscore) == -1:
buysell = 'Lower'
conf_lvl = 'Low'
if abs(zscore)> 1:
conf_lvl = 'Moderate'
if abs(zscore)> 2:
conf_lvl = 'High'
text = f'Stock should open {buysell} with {conf_lvl} confidence.'
else:
text = 'No signal.'
return text
def GetOpeningRange(TradeDate, Ticker, NumDays = 100):
edate = TradeDate
sdate = dtutils.MarketDateAdj(edate, -NumDays, 'NYSE')
prev_td = dtutils.MarketDateAdj(edate, -1, 'NYSE')
data = web.DataReader( Ticker, 'yahoo', sdate, edate)
# Exclude TradeDate's data in returns
r_df = data[data.index.to_pydatetime() < TradeDate ]
r_df['returns'] = r_df['Adj Close']/ r_df['Adj Close'].shift(1) - 1
r_df['overnight'] = r_df['Open']/ r_df['Adj Close'].shift(1) - 1
returns = r_df['overnight']
r_mean = np.mean(returns)
r_std = | np.std(returns) | numpy.std |
from __future__ import print_function, absolute_import
import time
from collections import OrderedDict
import pdb
import torch
import numpy as np
from .evaluation_metrics import cmc, mean_ap
from .utils.meters import AverageMeter
from torch.autograd import Variable
from .utils import to_torch
from .utils import to_numpy
import pdb
def extract_cnn_feature(model, inputs, output_feature=None):
model.eval()
inputs = to_torch(inputs)
inputs = Variable(inputs, volatile=True)
inputs = inputs.cuda()
outputs = model(inputs)
outputs = outputs.data.cpu()
return outputs
def extract_features(model, data_loader, print_freq=1, output_feature=None):
model.eval()
batch_time = AverageMeter()
data_time = AverageMeter()
features = OrderedDict()
labels = OrderedDict()
end = time.time()
for i, (imgs, fnames, pids, _) in enumerate(data_loader):
data_time.update(time.time() - end)
outputs = extract_cnn_feature(model, imgs, output_feature)
for fname, output, pid in zip(fnames, outputs, pids):
features[fname] = output
labels[fname] = pid
batch_time.update(time.time() - end)
end = time.time()
'''if (i + 1) % print_freq == 0:
print('Extract Features: [{}/{}]\t'
'Time {:.3f} ({:.3f})\t'
'Data {:.3f} ({:.3f})\t'
.format(i + 1, len(data_loader),
batch_time.val, batch_time.avg,
data_time.val, data_time.avg))'''
return features, labels
def pairwise_distance(query_features, gallery_features, query=None, gallery=None):
x = torch.cat([query_features[f].unsqueeze(0) for f, _, _ in query], 0)
y = torch.cat([gallery_features[f].unsqueeze(0) for f, _, _ in gallery], 0)
m, n = x.size(0), y.size(0)
x = x.view(m, -1)
y = y.view(n, -1)
dist = torch.pow(x, 2).sum(dim=1, keepdim=True).expand(m, n) + \
torch.pow(y, 2).sum(dim=1, keepdim=True).expand(n, m).t()
dist.addmm_(1, -2, x, y.t())
return dist
def evaluate_all(distmat, query=None, gallery=None,
query_ids=None, gallery_ids=None,
query_cams=None, gallery_cams=None,
cmc_topk=(1, 5, 10, 20)):
if query is not None and gallery is not None:
query_ids = [pid for _, pid, _ in query]
gallery_ids = [pid for _, pid, _ in gallery]
query_cams = [cam for _, _, cam in query]
gallery_cams = [cam for _, _, cam in gallery]
else:
assert (query_ids is not None and gallery_ids is not None
and query_cams is not None and gallery_cams is not None)
# Compute mean AP
mAP = mean_ap(distmat, query_ids, gallery_ids, query_cams, gallery_cams)
print('Mean AP: {:4.1%}'.format(mAP))
# Compute CMC scores
cmc_configs = {
'market1501': dict(separate_camera_set=False,
single_gallery_shot=False,
first_match_break=True)}
cmc_scores = {name: cmc(distmat, query_ids, gallery_ids,
query_cams, gallery_cams, **params)
for name, params in cmc_configs.items()}
print('CMC Scores')
for k in cmc_topk:
print(' top-{:<4}{:12.1%}'
.format(k, cmc_scores['market1501'][k - 1]))
return cmc_scores['market1501'][0]
def reranking(query_features, gallery_features, query=None, gallery=None, k1=20, k2=6, lamda_value=0.3):
x = torch.cat([query_features[f].unsqueeze(0) for f, _, _ in query], 0)
y = torch.cat([gallery_features[f].unsqueeze(0) for f, _, _ in gallery], 0)
feat = torch.cat((x, y))
query_num, all_num = x.size(0), feat.size(0)
feat = feat.view(all_num, -1)
dist = torch.pow(feat, 2).sum(dim=1, keepdim=True).expand(all_num, all_num)
dist = dist + dist.t()
dist.addmm_(1, -2, feat, feat.t())
original_dist = dist.numpy()
all_num = original_dist.shape[0]
original_dist = np.transpose(original_dist / np.max(original_dist, axis=0))
V = np.zeros_like(original_dist).astype(np.float16)
initial_rank = np.argsort(original_dist).astype(np.int32)
print('starting re_ranking')
for i in range(all_num):
# k-reciprocal neighbors
forward_k_neigh_index = initial_rank[i, :k1 + 1]
backward_k_neigh_index = initial_rank[forward_k_neigh_index, :k1 + 1]
fi = np.where(backward_k_neigh_index == i)[0]
k_reciprocal_index = forward_k_neigh_index[fi]
k_reciprocal_expansion_index = k_reciprocal_index
for j in range(len(k_reciprocal_index)):
candidate = k_reciprocal_index[j]
candidate_forward_k_neigh_index = initial_rank[candidate, :int(np.around(k1 / 2)) + 1]
candidate_backward_k_neigh_index = initial_rank[candidate_forward_k_neigh_index,
:int(np.around(k1 / 2)) + 1]
fi_candidate = np.where(candidate_backward_k_neigh_index == candidate)[0]
candidate_k_reciprocal_index = candidate_forward_k_neigh_index[fi_candidate]
if len(np.intersect1d(candidate_k_reciprocal_index, k_reciprocal_index)) > 2 / 3 * len(
candidate_k_reciprocal_index):
k_reciprocal_expansion_index = np.append(k_reciprocal_expansion_index, candidate_k_reciprocal_index)
k_reciprocal_expansion_index = np.unique(k_reciprocal_expansion_index)
weight = np.exp(-original_dist[i, k_reciprocal_expansion_index])
V[i, k_reciprocal_expansion_index] = weight / np.sum(weight)
original_dist = original_dist[:query_num, ]
if k2 != 1:
V_qe = np.zeros_like(V, dtype=np.float16)
for i in range(all_num):
V_qe[i, :] = np.mean(V[initial_rank[i, :k2], :], axis=0)
V = V_qe
del V_qe
del initial_rank
invIndex = []
for i in range(all_num):
invIndex.append(np.where(V[:, i] != 0)[0])
jaccard_dist = | np.zeros_like(original_dist, dtype=np.float16) | numpy.zeros_like |
# Copyright 2018 The Cirq Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for xmon_simulator."""
import cmath
import itertools
import math
import time
from typing import Optional, Callable
import numpy as np
import pytest
import sympy
import cirq
import cirq.google as cg
from cirq.circuits.insert_strategy import InsertStrategy
Q1 = cirq.GridQubit(0, 0)
Q2 = cirq.GridQubit(1, 0)
Q3 = cirq.GridQubit(2, 0)
test_device = cirq.google.XmonDevice(
measurement_duration=cirq.Duration(nanos=1000),
exp_w_duration=cirq.Duration(nanos=20),
exp_11_duration=cirq.Duration(nanos=50),
qubits=[Q1, Q2, Q3])
def basic_circuit():
sqrt_x = cirq.PhasedXPowGate(exponent=-0.5, phase_exponent=0.0)
return cirq.Circuit.from_ops(
sqrt_x(Q1), sqrt_x(Q2),
cirq.CZ(Q1, Q2),
sqrt_x(Q1), sqrt_x(Q2),
cirq.Z(Q1),
device=test_device)
def large_circuit():
np.random.seed(0)
qubits = [cirq.GridQubit(0, i) for i in range(10)]
sqrt_x = cirq.PhasedXPowGate(exponent=0.5, phase_exponent=0.0)
circuit = cirq.Circuit(device=cirq.google.Foxtail)
for _ in range(11):
circuit.append(
[sqrt_x(qubit) for qubit in qubits if np.random.random() < 0.5])
circuit.append([cirq.CZ(qubits[i], qubits[i + 1]) for i in range(9)])
circuit.append([cirq.measure(*qubits, key='meas')])
return circuit
def test_xmon_options_negative_num_shards():
with pytest.raises(AssertionError):
cg.XmonOptions(num_shards=-1)
def test_xmon_options_negative_min_qubits_before_shard():
with pytest.raises(AssertionError):
cg.XmonOptions(min_qubits_before_shard=-1)
def test_xmon_options():
options = cg.XmonOptions(num_shards=3,
min_qubits_before_shard=0)
assert options.num_prefix_qubits == 1
assert options.min_qubits_before_shard == 0
def run(simulator: cg.XmonSimulator,
circuit: cirq.Circuit,
scheduler: Optional[Callable],
**kw):
if scheduler is None:
program = circuit
else:
program = scheduler(circuit.device, circuit)
return simulator.run(program, **kw)
def simulate(simulator, circuit, scheduler, **kw):
if scheduler is None:
program = circuit
else:
program = scheduler(circuit.device, circuit)
return simulator.simulate(program, **kw)
SCHEDULERS = [None, cirq.moment_by_moment_schedule]
@pytest.mark.parametrize(('scheduler', 'use_processes'),
zip(SCHEDULERS, (True, False)))
def test_run_no_results(scheduler, use_processes):
options = cg.XmonOptions(use_processes=use_processes)
simulator = cg.XmonSimulator(options)
with pytest.raises(ValueError, match="no measurements"):
run(simulator, basic_circuit(), scheduler)
@pytest.mark.parametrize('scheduler', SCHEDULERS)
def test_run(scheduler):
np.random.seed(0)
circuit = basic_circuit()
circuit.append(
[cirq.measure(Q1, key='a'), cirq.measure(Q2, key='b')],
strategy=InsertStrategy.NEW_THEN_INLINE)
simulator = cg.XmonSimulator()
result = run(simulator, circuit, scheduler)
assert result.measurements['a'].dtype == bool
assert result.measurements['b'].dtype == bool
np.testing.assert_equal(result.measurements,
{'a': [[False]], 'b': [[True]]})
@pytest.mark.parametrize('scheduler', SCHEDULERS)
def test_run_empty_circuit(scheduler):
simulator = cg.XmonSimulator()
with pytest.raises(ValueError, match="no measurements"):
run(simulator, cirq.Circuit(device=test_device), scheduler)
@pytest.mark.parametrize('scheduler', SCHEDULERS)
def test_initial_state_empty_circuit_qubits_specified(scheduler):
simulator = cg.XmonSimulator()
result = simulate(simulator,
cirq.Circuit(device=test_device),
scheduler,
qubit_order=[Q1, Q2])
np.testing.assert_almost_equal(result.final_state, np.array([1, 0, 0, 0]))
result = simulate(simulator,
cirq.Circuit(device=test_device),
scheduler,
qubit_order=[Q1, Q2],
initial_state=1)
np.testing.assert_almost_equal(result.final_state, np.array([0, 1, 0, 0]))
result = simulate(simulator,
cirq.Circuit(device=test_device),
scheduler,
qubit_order=[Q1, Q2],
initial_state=np.array([0, 1, 0, 0],
dtype=np.complex64))
np.testing.assert_almost_equal(result.final_state, np.array([0, 1, 0, 0]))
@pytest.mark.parametrize('scheduler', SCHEDULERS)
def test_qubit_order_to_wavefunction_order_matches_np_kron(scheduler):
simulator = cg.XmonSimulator()
zero = [1, 0]
one = [0, 1]
result = simulate(simulator,
cirq.Circuit.from_ops(cirq.X(Q1), device=test_device),
scheduler,
qubit_order=[Q1, Q2])
assert cirq.allclose_up_to_global_phase(
result.final_state, np.kron(one, zero))
result = simulate(simulator,
cirq.Circuit.from_ops(cirq.X(Q1), device=test_device),
scheduler,
qubit_order=[Q2, Q1])
assert cirq.allclose_up_to_global_phase(
result.final_state, np.kron(zero, one))
result = simulate(simulator,
cirq.Circuit.from_ops(cirq.X(Q1), device=test_device),
scheduler,
qubit_order=cirq.QubitOrder.sorted_by(repr))
assert cirq.allclose_up_to_global_phase(
result.final_state, np.array(one))
result = simulate(simulator,
cirq.Circuit.from_ops(cirq.X(Q1),
cirq.Z(Q2),
device=test_device),
scheduler,
qubit_order=cirq.QubitOrder.sorted_by(repr))
assert cirq.allclose_up_to_global_phase(
result.final_state, np.kron(one, zero))
@pytest.mark.parametrize('scheduler', SCHEDULERS)
def test_bit_flip_order_to_wavefunction_order_matches_np_kron(scheduler):
simulator = cg.XmonSimulator()
result = simulate(simulator,
cirq.Circuit.from_ops(cirq.X(Q1), device=test_device),
scheduler,
qubit_order=[Q1, Q2, Q3])
assert cirq.allclose_up_to_global_phase(
result.final_state, np.array([0, 0, 0, 0, 1, 0, 0, 0]))
result = simulate(simulator,
cirq.Circuit.from_ops(cirq.X(Q3), device=test_device),
scheduler,
qubit_order=[Q1, Q2, Q3])
assert cirq.allclose_up_to_global_phase(
result.final_state, np.array([0, 1, 0, 0, 0, 0, 0, 0]))
result = simulate(simulator,
cirq.Circuit.from_ops(cirq.X(Q3), device=test_device),
scheduler,
qubit_order=[Q3, Q2, Q1])
assert cirq.allclose_up_to_global_phase(
result.final_state, | np.array([0, 0, 0, 0, 1, 0, 0, 0]) | numpy.array |
'''
This file contains the Deep Q Learning Neural Net (DQN) class, as well as a class containing methods used by the DQN model.
'''
import pandas as pd
import matplotlib.pyplot as plt
import geopandas as gpd
import math
import networkx as nx
import random
import torch
import torch.nn as nn
import numpy as np
import matplotlib.animation as animation
R_EARTH = 3958.8 # Radius of Earth in miles
OUTPUT_SIZE = 1 # Length of NN output
NUM_FEATURES = 6 # Length of NN input (# of features)
'''
This model stands as the basis of the most developed pathing learners.
'''
class DQN(nn.Module):
def __init__(self, input_size=NUM_FEATURES, hidden_size=2*NUM_FEATURES):
super(DQN, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.fc1 = torch.nn.Linear(self.input_size, self.hidden_size)
self.relu = torch.nn.LeakyReLU(0.2)
self.fc2 = torch.nn.Linear(self.hidden_size, OUTPUT_SIZE)
self.sigmoid = torch.nn.Sigmoid()
self.iter = 0
def forward(self, x):
hidden = self.fc1(x)
relu = self.relu(hidden)
output = self.fc2(relu)
output = self.sigmoid(output)
return output
'''
The following class stores all the necessary methods used for both training and evaluating a DQN model on a given environment (Map).
'''
class METHODS:
'''
The initializer method creates a reference to the environment, model, as well as other hyperparameters used later.
'''
def __init__(self, Map, model, clusters, EPSILON_START=5, EPSILON_CONST=0.25, EPSILON_STATIC=False, lr=0.1, BATCH_SIZE=7, START_NODE=0):
self.Map = Map # NetworkX DiGraph of the region
self.model = model # DQN instance; model to be trained/evaluated
self.clusters = clusters # List of clusters [C[0]: coordinates, C[1]: size of cluster] <- C: cluster
self.EPSILON_START = EPSILON_START # Initial epsilon value for dynamic epsilon greedy
self.EPSILON_CONST = EPSILON_CONST # Constant epsilon value for static epsilon greedy
self.EPSILON_STATIC = EPSILON_STATIC # Boolean value that determines type of epsilon value
self.lr = lr # Learning rate of NN
self.FULL_SIZE = len(self.clusters) # Full size of cluster dataset
self.BATCH_SIZE = min(BATCH_SIZE, 10, self.FULL_SIZE-1) # Batch size when training learner [MAX VALUE: 10 / number of clusters - start node]
self.START_NODE = START_NODE # Index of starting cluster
self.DISTANCE_TABLE = np.array([[self.total_distance(i, j) for i in range(len(self.clusters))] for j in range(len(self.clusters))])
self.memo = [] # Memoization for iterator: used to prune bad branches and speed up process
# Takes in indices of clusters and returns the total distance
def total_distance(self, i, j):
distance = 0
path = nx.shortest_path(self.Map, self.clusters[i][0], self.clusters[j][0])
for k in range(1, len(path)): # Identifies the edge, stores the distance and adds it to the total distance
distance += self.Map.edges[path[k-1], path[k]]['Distance']
return distance
'''
The following method returns the normal dot product (also the cos of the angle) between two edges.
If given a z coordinate, it will measure the angle of deviation the pather takes from where it originally was headed.
If given a CORE coordinate, it will measure the angle between the next action and the CORE.
Both values shouldn't be called simultaneously, however one value must be given.
'''
def norm_dot_product(self, x, y, z=None, CORE=None): # x, y are start / end coordinates of a path (respectively)
# z is called whenever an angle is formed between two edges; CORE is called whenever comparing the angle to the current average cluster point
norm = lambda x, y: | np.sqrt((y[0]-x[0])**2 + (y[1]-x[1])**2) | numpy.sqrt |
"""
Test Surrogates Overview
========================
"""
# Author: <NAME> <<EMAIL>>
# License: new BSD
from PIL import Image
import numpy as np
import scripts.surrogates_overview as exo
import scripts.image_classifier as imgclf
import sklearn.datasets
import sklearn.linear_model
SAMPLES = 10
BATCH = 50
SAMPLE_IRIS = False
IRIS_SAMPLES = 50000
def test_bilmey_image():
"""Tests surrogate image bLIMEy."""
# Load the image
doggo_img = Image.open('surrogates_overview/img/doggo.jpg')
doggo_array = np.array(doggo_img)
# Load the classifier
clf = imgclf.ImageClassifier()
explain_classes = [('tennis ball', 852),
('golden retriever', 207),
('Labrador retriever', 208)]
# Configure widgets to select occlusion colour, segmentation granularity
# and explained class
colour_selection = {
i: i for i in ['mean', 'black', 'white', 'randomise-patch', 'green']
}
granularity_selection = {'low': 13, 'medium': 30, 'high': 50}
# Generate explanations
blimey_image_collection = {}
for gran_name, gran_number in granularity_selection.items():
blimey_image_collection[gran_name] = {}
for col_name in colour_selection:
blimey_image_collection[gran_name][col_name] = \
exo.build_image_blimey(
doggo_array,
clf.predict_proba,
explain_classes,
explanation_size=5,
segments_number=gran_number,
occlusion_colour=col_name,
samples_number=SAMPLES,
batch_size=BATCH,
random_seed=42)
exp = []
for gran_ in blimey_image_collection:
for col_ in blimey_image_collection[gran_]:
exp.append(blimey_image_collection[gran_][col_]['surrogates'])
assert len(exp) == len(EXP_IMG)
for e, E in zip(exp, EXP_IMG):
assert sorted(list(e.keys())) == sorted(list(E.keys()))
for key in e.keys():
assert e[key]['name'] == E[key]['name']
assert len(e[key]['explanation']) == len(E[key]['explanation'])
for e_, E_ in zip(e[key]['explanation'], E[key]['explanation']):
assert e_[0] == E_[0]
assert np.allclose(e_[1], E_[1], atol=.001, equal_nan=True)
def test_bilmey_tabular():
"""Tests surrogate tabular bLIMEy."""
# Load the iris data set
iris = sklearn.datasets.load_iris()
iris_X = iris.data # [:, :2] # take the first two features only
iris_y = iris.target
iris_labels = iris.target_names
iris_feature_names = iris.feature_names
label2class = {lab: i for i, lab in enumerate(iris_labels)}
# Fit the classifier
logreg = sklearn.linear_model.LogisticRegression(C=1e5)
logreg.fit(iris_X, iris_y)
# explained class
_dtype = iris_X.dtype
explained_instances = {
'setosa': np.array([5, 3.5, 1.5, 0.25]).astype(_dtype),
'versicolor': np.array([5.5, 2.75, 4.5, 1.25]).astype(_dtype),
'virginica': np.array([7, 3, 5.5, 2.25]).astype(_dtype)
}
petal_length_idx = iris_feature_names.index('petal length (cm)')
petal_length_bins = [1, 2, 3, 4, 5, 6, 7]
petal_width_idx = iris_feature_names.index('petal width (cm)')
petal_width_bins = [0, .5, 1, 1.5, 2, 2.5]
discs_ = []
for i, ix in enumerate(petal_length_bins): # X-axis
for iix in petal_length_bins[i + 1:]:
for j, jy in enumerate(petal_width_bins): # Y-axis
for jjy in petal_width_bins[j + 1:]:
discs_.append({
petal_length_idx: [ix, iix],
petal_width_idx: [jy, jjy]
})
for inst_i in explained_instances:
for cls_i in iris_labels:
for disc_i, disc in enumerate(discs_):
inst = explained_instances[inst_i]
cls = label2class[cls_i]
exp = exo.build_tabular_blimey(
inst, cls, iris_X, iris_y, logreg.predict_proba, disc,
IRIS_SAMPLES, SAMPLE_IRIS, 42)
key = '{}&{}&{}'.format(inst_i, cls, disc_i)
exp_ = EXP_TAB[key]
assert exp['explanation'].shape[0] == exp_.shape[0]
assert np.allclose(
exp['explanation'], exp_, atol=.001, equal_nan=True)
EXP_IMG = [
{207: {'explanation': [(13, -0.24406872165780585),
(11, -0.20456180387430317),
(9, -0.1866779131424261),
(4, 0.15001224157793785),
(3, 0.11589480417160983)],
'name': 'golden retriever'},
208: {'explanation': [(13, -0.08395966359346249),
(0, -0.0644986107387837),
(9, 0.05845584633658977),
(1, 0.04369763085720947),
(11, -0.035958188394941866)],
'name': '<NAME>'},
852: {'explanation': [(13, 0.3463529698715463),
(11, 0.2678050131923326),
(4, -0.10639863421417416),
(6, 0.08345792378117327),
(9, 0.07366945242386444)],
'name': '<NAME>'}},
{207: {'explanation': [(13, -0.0624167912596456),
(7, 0.06083359545295548),
(3, 0.0495953943686462),
(11, -0.04819787147412231),
(2, -0.03858823761391199)],
'name': '<NAME>'},
208: {'explanation': [(13, -0.08408428146916162),
(7, 0.07704235920590158),
(3, 0.06646468388122273),
(11, -0.0638326572126609),
(2, -0.052621478002380796)],
'name': '<NAME>'},
852: {'explanation': [(11, 0.35248212611685886),
(13, 0.2516925608037859),
(2, 0.13682853028454384),
(9, 0.12930134856644754),
(6, 0.1257747954095489)],
'name': '<NAME>'}},
{207: {'explanation': [(3, 0.21351937934930917),
(10, 0.16933456312772083),
(11, -0.13447244552856766),
(8, 0.11058919217055371),
(2, -0.06269239798368743)],
'name': '<NAME>'},
208: {'explanation': [(8, 0.05995551486884414),
(9, -0.05375302972380482),
(11, -0.051997353324246445),
(6, 0.04213181405953071),
(2, -0.039169895361928275)],
'name': '<NAME>'},
852: {'explanation': [(7, 0.31382219776986503),
(11, 0.24126214884275987),
(13, 0.21075924370226598),
(2, 0.11937652039885377),
(8, -0.11911265319329697)],
'name': '<NAME>'}},
{207: {'explanation': [(3, 0.39254403293049134),
(9, 0.19357165018747347),
(6, 0.16592079671652987),
(0, 0.14042059731407297),
(1, 0.09793027079765507)],
'name': '<NAME>'},
208: {'explanation': [(9, -0.19351859273276703),
(1, -0.15262967987262344),
(3, 0.12205127112235375),
(2, 0.11352141032313934),
(6, -0.11164209893429898)],
'name': '<NAME>'},
852: {'explanation': [(7, 0.17213007100844877),
(0, -0.1583030948868859),
(3, -0.13748574615069775),
(5, 0.13273283867075436),
(11, 0.12309551170070354)],
'name': '<NAME>'}},
{207: {'explanation': [(3, 0.4073533182995105),
(10, 0.20711667988142463),
(8, 0.15360813290032324),
(6, 0.1405424759832785),
(1, 0.1332920685413575)],
'name': '<NAME>'},
208: {'explanation': [(9, -0.14747910525112617),
(1, -0.13977061235228924),
(2, 0.10526833898161611),
(6, -0.10416022118399552),
(3, 0.09555992655161764)],
'name': '<NAME>'},
852: {'explanation': [(11, 0.2232260929107954),
(7, 0.21638443149433054),
(5, 0.21100464215582274),
(13, 0.145614853795006),
(1, -0.11416523431311262)],
'name': '<NAME>'}},
{207: {'explanation': [(1, 0.14700178977744183),
(0, 0.10346667279328238),
(2, 0.10346667279328238),
(7, 0.10346667279328238),
(8, 0.10162900633690726)],
'name': '<NAME>'},
208: {'explanation': [(10, -0.10845134816658476),
(8, -0.1026920429226184),
(6, -0.10238154733842847),
(18, 0.10094164937411244),
(16, 0.08646888450232793)],
'name': '<NAME>'},
852: {'explanation': [(18, -0.20542297091894474),
(13, 0.2012751176130666),
(8, -0.19194747162742365),
(20, 0.14686930696710473),
(15, 0.11796990086271067)],
'name': '<NAME>'}},
{207: {'explanation': [(13, 0.12446259821701779),
(17, 0.11859084421095789),
(15, 0.09690553833007137),
(12, -0.08869743701731962),
(4, 0.08124900427893789)],
'name': '<NAME>'},
208: {'explanation': [(10, -0.09478194981909983),
(20, -0.09173392507039077),
(9, 0.08768898801254493),
(17, -0.07553994244536394),
(4, 0.07422905503397653)],
'name': '<NAME>'},
852: {'explanation': [(21, 0.1327882942965061),
(1, 0.1238236573086363),
(18, -0.10911712271717902),
(19, 0.09707191051320978),
(6, 0.08593672504338913)],
'name': '<NAME>'}},
{207: {'explanation': [(6, 0.14931728779865114),
(14, 0.14092073957103526),
(1, 0.11071480021464616),
(4, 0.10655287976934531),
(8, 0.08705404649152573)],
'name': '<NAME>'},
208: {'explanation': [(8, -0.12242580400886727),
(9, 0.12142729544158742),
(14, -0.1148252787068248),
(16, -0.09562322208795092),
(4, 0.09350160975513132)],
'name': '<NAME>'},
852: {'explanation': [(6, 0.04227675072263027),
(9, -0.03107924340879173),
(14, 0.028007115650713045),
(13, 0.02771190348545554),
(19, 0.02640441416071482)],
'name': '<NAME>'}},
{207: {'explanation': [(19, 0.14313680656283245),
(18, 0.12866508562342843),
(8, 0.11809779264185447),
(0, 0.11286255403442104),
(2, 0.11286255403442104)],
'name': '<NAME>'},
208: {'explanation': [(9, 0.2397917428082761),
(14, -0.19435572812170654),
(6, -0.1760894833446507),
(18, -0.12243333818399058),
(15, 0.10986343675377105)],
'name': '<NAME>'},
852: {'explanation': [(14, 0.15378038774613365),
(9, -0.14245940635481966),
(6, 0.10213601012183973),
(20, 0.1009180838986786),
(3, 0.09780065767815548)],
'name': '<NAME>'}},
{207: {'explanation': [(15, 0.06525850448807077),
(9, 0.06286791243851698),
(19, 0.055189970374185854),
(8, 0.05499197604401475),
(13, 0.04748220842936177)],
'name': '<NAME>'},
208: {'explanation': [(6, -0.31549091899770765),
(5, 0.1862302670824446),
(8, -0.17381478451341995),
(10, -0.17353516098662508),
(14, -0.13591542421754205)],
'name': '<NAME>'},
852: {'explanation': [(14, 0.2163853942943355),
(6, 0.17565046338282214),
(1, 0.12446193028474549),
(9, -0.11365789839746396),
(10, 0.09239073691962967)],
'name': '<NAME>'}},
{207: {'explanation': [(19, 0.1141207265647932),
(36, -0.08861425922625768),
(30, 0.07219209872026074),
(9, -0.07150939547859836),
(38, -0.06988288637544438)],
'name': '<NAME>'},
208: {'explanation': [(29, 0.10531073909547647),
(13, 0.08279642208039652),
(34, -0.0817952443980797),
(33, -0.08086848205765082),
(12, 0.08086848205765082)],
'name': '<NAME>'},
852: {'explanation': [(13, -0.1330452414595897),
(4, 0.09942366413042845),
(12, -0.09881995683190645),
(33, 0.09881995683190645),
(19, -0.09596925317560831)],
'name': '<NAME>'}},
{207: {'explanation': [(37, 0.08193926967758253),
(35, 0.06804043021426347),
(15, 0.06396269230810163),
(11, 0.062255657227065296),
(8, 0.05529200233091672)],
'name': '<NAME>'},
208: {'explanation': [(19, 0.05711957286614678),
(27, -0.050230108135410824),
(16, -0.04743034616549999),
(5, -0.046717346734255705),
(9, -0.04419100026638039)],
'name': '<NAME>'},
852: {'explanation': [(3, -0.08390967998497496),
(30, -0.07037680222442452),
(22, 0.07029819368543713),
(8, -0.06861396187180349),
(37, -0.06662511956402824)],
'name': '<NAME>'}},
{207: {'explanation': [(19, 0.048418845359024805),
(9, -0.0423869575883795),
(30, 0.04012650790044438),
(36, -0.03787242980067195),
(10, 0.036557999380695635)],
'name': '<NAME>'},
208: {'explanation': [(10, 0.12120686823129677),
(17, 0.10196564232230493),
(7, 0.09495133975425854),
(25, -0.0759657891182803),
(2, -0.07035244568286837)],
'name': '<NAME>'},
852: {'explanation': [(3, -0.0770578003457272),
(28, 0.0769372258280398),
(6, -0.06044725989272927),
(22, 0.05550155775286349),
(31, -0.05399028046597057)],
'name': '<NAME>'}},
{207: {'explanation': [(14, 0.05371383110181226),
(0, -0.04442539316084218),
(18, 0.042589475382826494),
(19, 0.04227647855354252),
(17, 0.041685661662754295)],
'name': '<NAME>'},
208: {'explanation': [(29, 0.14419601354489464),
(17, 0.11785174500536676),
(36, 0.1000501679652906),
(10, 0.09679790134851017),
(35, 0.08710376081189208)],
'name': '<NAME>'},
852: {'explanation': [(8, -0.02486237985832769),
(3, -0.022559886154747102),
(11, -0.021878686669239856),
(36, 0.021847953817988534),
(19, -0.018317598300716522)],
'name': '<NAME>'}},
{207: {'explanation': [(37, 0.08098729255605368),
(35, 0.06639102704982619),
(15, 0.06033721190370432),
(34, 0.05826267856117829),
(28, 0.05549505160798173)],
'name': '<NAME>'},
208: {'explanation': [(17, 0.13839012042250542),
(10, 0.11312187488346881),
(7, 0.10729071207480922),
(25, -0.09529127965797404),
(11, -0.09279834572979286)],
'name': '<NAME>'},
852: {'explanation': [(3, -0.028385651836694076),
(22, 0.023364702783498722),
(8, -0.023097812578270233),
(30, -0.022931236620034406),
(37, -0.022040170736525342)],
'name': '<NAME>'}}
]
EXP_TAB = {
'setosa&0&0': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&1': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&2': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&3': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&4': np.array([0.9706534384443797, 0.007448195602953232]),
'setosa&0&5': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&6': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&7': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&8': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&9': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&10': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&11': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&12': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&13': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&14': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&15': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&16': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&17': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&18': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&19': np.array([0.9706534384443797, 0.007448195602953232]),
'setosa&0&20': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&21': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&22': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&23': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&24': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&25': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&26': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&27': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&28': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&29': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&30': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&31': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&32': np.array([0.7770298852793471, 0.0294434304771479]),
'setosa&0&33': np.array([0.7936433456054741, 0.01258375207649658]),
'setosa&0&34': np.array([0.7974072911132786, 0.006894018772033576]),
'setosa&0&35': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&36': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&37': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&38': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&39': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&40': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&41': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&42': np.array([0.7770298852793471, 0.0294434304771479]),
'setosa&0&43': np.array([0.7770298852793471, 0.0294434304771479]),
'setosa&0&44': np.array([0.7936433456054741, 0.01258375207649658]),
'setosa&0&45': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&46': np.array([0.0171486447659196, 0.9632117581295891]),
'setosa&0&47': np.array([0.06151571389390039, 0.524561199322281]),
'setosa&0&48': np.array([0.4329463382004908, 0.057167210150691136]),
'setosa&0&49': np.array([0.4656481363306145, 0.007982539480288167]),
'setosa&0&50': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&51': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&52': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&53': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&54': np.array([0.0171486447659196, 0.9632117581295891]),
'setosa&0&55': np.array([0.0171486447659196, 0.9632117581295891]),
'setosa&0&56': np.array([0.0171486447659196, 0.9632117581295891]),
'setosa&0&57': np.array([0.06151571389390039, 0.524561199322281]),
'setosa&0&58': np.array([0.06151571389390039, 0.524561199322281]),
'setosa&0&59': np.array([0.4329463382004908, 0.057167210150691136]),
'setosa&0&60': np.array([0.029402442458921055, 0.9481684282717416]),
'setosa&0&61': np.array([0.00988785935411159, 0.9698143912008228]),
'setosa&0&62': np.array([0.009595083643662688, 0.5643652067423869]),
'setosa&0&63': np.array([0.13694026920485936, 0.36331091829858003]),
'setosa&0&64': np.array([0.3094460464703627, 0.11400643817329122]),
'setosa&0&65': np.array([0.029402442458921055, 0.9481684282717416]),
'setosa&0&66': np.array([0.029402442458921055, 0.9481684282717416]),
'setosa&0&67': np.array([0.029402442458921055, 0.9481684282717416]),
'setosa&0&68': np.array([0.029402442458921055, 0.9481684282717416]),
'setosa&0&69': np.array([0.00988785935411159, 0.9698143912008228]),
'setosa&0&70': np.array([0.00988785935411159, 0.9698143912008228]),
'setosa&0&71': np.array([0.00988785935411159, 0.9698143912008228]),
'setosa&0&72': np.array([0.009595083643662688, 0.5643652067423869]),
'setosa&0&73': np.array([0.009595083643662688, 0.5643652067423869]),
'setosa&0&74': np.array([0.13694026920485936, 0.36331091829858003]),
'setosa&0&75': np.array([0.0, 0.95124502153736]),
'setosa&0&76': np.array([0.0, 0.9708703761803881]),
'setosa&0&77': np.array([0.0, 0.5659706098422994]),
'setosa&0&78': np.array([0.0, 0.3962828716108186]),
'setosa&0&79': np.array([0.0, 0.2538069363248767]),
'setosa&0&80': np.array([0.0, 0.95124502153736]),
'setosa&0&81': np.array([0.0, 0.95124502153736]),
'setosa&0&82': np.array([0.0, 0.95124502153736]),
'setosa&0&83': np.array([0.0, 0.95124502153736]),
'setosa&0&84': np.array([0.0, 0.9708703761803881]),
'setosa&0&85': np.array([0.0, 0.9708703761803881]),
'setosa&0&86': np.array([0.0, 0.9708703761803881]),
'setosa&0&87': np.array([0.0, 0.5659706098422994]),
'setosa&0&88': np.array([0.0, 0.5659706098422994]),
'setosa&0&89': np.array([0.0, 0.3962828716108186]),
'setosa&0&90': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&91': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&92': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&93': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&94': np.array([0.9706534384443797, 0.007448195602953232]),
'setosa&0&95': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&96': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&97': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&98': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&99': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&100': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&101': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&102': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&103': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&104': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&105': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&106': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&107': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&108': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&109': np.array([0.9706534384443797, 0.007448195602953232]),
'setosa&0&110': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&111': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&112': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&113': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&114': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&115': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&116': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&117': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&118': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&119': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&120': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&121': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&122': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&123': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&124': np.array([0.9706534384443797, 0.007448195602953232]),
'setosa&0&125': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&126': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&127': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&128': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&129': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&130': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&131': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&132': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&133': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&134': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&135': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&136': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&137': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&138': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&139': np.array([0.9706534384443797, 0.007448195602953232]),
'setosa&0&140': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&141': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&142': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&143': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&144': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&145': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&146': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&147': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&148': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&149': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&150': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&151': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&152': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&153': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&154': np.array([0.9706534384443797, 0.007448195602953232]),
'setosa&0&155': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&156': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&157': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&158': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&159': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&160': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&161': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&162': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&163': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&164': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&165': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&166': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&167': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&168': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&169': np.array([0.9706534384443797, 0.007448195602953232]),
'setosa&0&170': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&171': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&172': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&173': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&174': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&175': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&176': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&177': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&178': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&179': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&180': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&181': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&182': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&183': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&184': np.array([0.9706534384443797, 0.007448195602953232]),
'setosa&0&185': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&186': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&187': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&188': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&189': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&190': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&191': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&192': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&193': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&194': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&195': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&196': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&197': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&198': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&199': np.array([0.9706534384443797, 0.007448195602953232]),
'setosa&0&200': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&201': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&202': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&203': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&204': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&205': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&206': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&207': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&208': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&209': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&210': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&211': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&212': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&213': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&214': np.array([0.9706534384443797, 0.007448195602953232]),
'setosa&0&215': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&216': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&217': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&218': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&219': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&220': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&221': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&222': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&223': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&224': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&225': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&226': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&227': np.array([0.7770298852793471, 0.0294434304771479]),
'setosa&0&228': np.array([0.7936433456054741, 0.01258375207649658]),
'setosa&0&229': np.array([0.7974072911132786, 0.006894018772033576]),
'setosa&0&230': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&231': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&232': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&233': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&234': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&235': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&236': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&237': np.array([0.7770298852793471, 0.0294434304771479]),
'setosa&0&238': np.array([0.7770298852793471, 0.0294434304771479]),
'setosa&0&239': np.array([0.7936433456054741, 0.01258375207649658]),
'setosa&0&240': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&241': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&242': np.array([0.7770298852793471, 0.0294434304771479]),
'setosa&0&243': np.array([0.7936433456054741, 0.01258375207649658]),
'setosa&0&244': np.array([0.7974072911132786, 0.006894018772033576]),
'setosa&0&245': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&246': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&247': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&248': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&249': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&250': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&251': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&252': np.array([0.7770298852793471, 0.0294434304771479]),
'setosa&0&253': np.array([0.7770298852793471, 0.0294434304771479]),
'setosa&0&254': np.array([0.7936433456054741, 0.01258375207649658]),
'setosa&0&255': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&256': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&257': np.array([0.7770298852793471, 0.0294434304771479]),
'setosa&0&258': np.array([0.7936433456054741, 0.01258375207649658]),
'setosa&0&259': np.array([0.7974072911132786, 0.006894018772033576]),
'setosa&0&260': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&261': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&262': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&263': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&264': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&265': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&266': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&267': np.array([0.7770298852793471, 0.0294434304771479]),
'setosa&0&268': np.array([0.7770298852793471, 0.0294434304771479]),
'setosa&0&269': np.array([0.7936433456054741, 0.01258375207649658]),
'setosa&0&270': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&271': np.array([0.0171486447659196, 0.9632117581295891]),
'setosa&0&272': np.array([0.06151571389390039, 0.524561199322281]),
'setosa&0&273': np.array([0.4329463382004908, 0.057167210150691136]),
'setosa&0&274': np.array([0.4656481363306145, 0.007982539480288167]),
'setosa&0&275': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&276': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&277': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&278': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&279': np.array([0.0171486447659196, 0.9632117581295891]),
'setosa&0&280': np.array([0.0171486447659196, 0.9632117581295891]),
'setosa&0&281': np.array([0.0171486447659196, 0.9632117581295891]),
'setosa&0&282': np.array([0.06151571389390039, 0.524561199322281]),
'setosa&0&283': np.array([0.06151571389390039, 0.524561199322281]),
'setosa&0&284': np.array([0.4329463382004908, 0.057167210150691136]),
'setosa&0&285': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&286': np.array([0.0171486447659196, 0.9632117581295891]),
'setosa&0&287': np.array([0.06151571389390039, 0.524561199322281]),
'setosa&0&288': np.array([0.4329463382004908, 0.057167210150691136]),
'setosa&0&289': np.array([0.4656481363306145, 0.007982539480288167]),
'setosa&0&290': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&291': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&292': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&293': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&294': np.array([0.0171486447659196, 0.9632117581295891]),
'setosa&0&295': np.array([0.0171486447659196, 0.9632117581295891]),
'setosa&0&296': np.array([0.0171486447659196, 0.9632117581295891]),
'setosa&0&297': np.array([0.06151571389390039, 0.524561199322281]),
'setosa&0&298': np.array([0.06151571389390039, 0.524561199322281]),
'setosa&0&299': np.array([0.4329463382004908, 0.057167210150691136]),
'setosa&0&300': np.array([0.029402442458921055, 0.9481684282717416]),
'setosa&0&301': np.array([0.00988785935411159, 0.9698143912008228]),
'setosa&0&302': np.array([0.009595083643662688, 0.5643652067423869]),
'setosa&0&303': np.array([0.13694026920485936, 0.36331091829858003]),
'setosa&0&304': np.array([0.3094460464703627, 0.11400643817329122]),
'setosa&0&305': np.array([0.029402442458921055, 0.9481684282717416]),
'setosa&0&306': np.array([0.029402442458921055, 0.9481684282717416]),
'setosa&0&307': np.array([0.029402442458921055, 0.9481684282717416]),
'setosa&0&308': np.array([0.029402442458921055, 0.9481684282717416]),
'setosa&0&309': np.array([0.00988785935411159, 0.9698143912008228]),
'setosa&0&310': np.array([0.00988785935411159, 0.9698143912008228]),
'setosa&0&311': np.array([0.00988785935411159, 0.9698143912008228]),
'setosa&0&312': np.array([0.009595083643662688, 0.5643652067423869]),
'setosa&0&313': np.array([0.009595083643662688, 0.5643652067423869]),
'setosa&0&314': np.array([0.13694026920485936, 0.36331091829858003]),
'setosa&1&0': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&1': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&2': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&3': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&4': np.array([-0.4964962439921071, 0.3798215458387346]),
'setosa&1&5': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&6': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&7': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&8': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&9': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&10': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&11': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&12': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&13': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&14': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&15': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&16': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&17': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&18': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&19': np.array([-0.4964962439921071, 0.3798215458387346]),
'setosa&1&20': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&21': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&22': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&23': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&24': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&25': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&26': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&27': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&28': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&29': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&30': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&31': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&32': np.array([-0.7141739659554724, 0.6619819140152877]),
'setosa&1&33': np.array([-0.4446001433508151, 0.6107546840046902]),
'setosa&1&34': np.array([-0.26192650167775977, 0.33491141590339474]),
'setosa&1&35': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&36': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&37': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&38': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&39': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&40': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&41': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&42': np.array([-0.7141739659554724, 0.6619819140152877]),
'setosa&1&43': np.array([-0.7141739659554724, 0.6619819140152877]),
'setosa&1&44': np.array([-0.4446001433508151, 0.6107546840046902]),
'setosa&1&45': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&46': np.array([0.80403091954169, -0.844515250413482]),
'setosa&1&47': np.array([0.5826506963750848, -0.22335655671229107]),
'setosa&1&48': np.array([0.33108168891715983, 0.13647816746351163]),
'setosa&1&49': np.array([0.4079256832347186, 0.038455640985860955]),
'setosa&1&50': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&51': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&52': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&53': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&54': np.array([0.80403091954169, -0.844515250413482]),
'setosa&1&55': np.array([0.80403091954169, -0.844515250413482]),
'setosa&1&56': np.array([0.80403091954169, -0.844515250413482]),
'setosa&1&57': np.array([0.5826506963750848, -0.22335655671229107]),
'setosa&1&58': np.array([0.5826506963750848, -0.22335655671229107]),
'setosa&1&59': np.array([0.33108168891715983, 0.13647816746351163]),
'setosa&1&60': np.array([0.4933316375690333, -0.5272416708629277]),
'setosa&1&61': np.array([0.5041830043657418, -0.5392782673950876]),
'setosa&1&62': np.array([0.25657760110071476, 0.12592645350389123]),
'setosa&1&63': np.array([0.13717260713320106, 0.3627779907901665]),
'setosa&1&64': np.array([0.3093950298647913, 0.1140298206733954]),
'setosa&1&65': np.array([0.4933316375690333, -0.5272416708629277]),
'setosa&1&66': np.array([0.4933316375690333, -0.5272416708629277]),
'setosa&1&67': np.array([0.4933316375690333, -0.5272416708629277]),
'setosa&1&68': np.array([0.4933316375690333, -0.5272416708629277]),
'setosa&1&69': np.array([0.5041830043657418, -0.5392782673950876]),
'setosa&1&70': np.array([0.5041830043657418, -0.5392782673950876]),
'setosa&1&71': np.array([0.5041830043657418, -0.5392782673950876]),
'setosa&1&72': np.array([0.25657760110071476, 0.12592645350389123]),
'setosa&1&73': np.array([0.25657760110071476, 0.12592645350389123]),
'setosa&1&74': np.array([0.13717260713320106, 0.3627779907901665]),
'setosa&1&75': np.array([0.0, -0.4756207622944677]),
'setosa&1&76': np.array([0.0, -0.4854334805210761]),
'setosa&1&77': np.array([0.0, 0.16885577975809635]),
'setosa&1&78': np.array([0.0, 0.395805885538554]),
'setosa&1&79': np.array([0.0, 0.2538072707138344]),
'setosa&1&80': np.array([0.0, -0.4756207622944677]),
'setosa&1&81': np.array([0.0, -0.4756207622944677]),
'setosa&1&82': np.array([0.0, -0.4756207622944677]),
'setosa&1&83': np.array([0.0, -0.4756207622944677]),
'setosa&1&84': np.array([0.0, -0.4854334805210761]),
'setosa&1&85': np.array([0.0, -0.4854334805210761]),
'setosa&1&86': np.array([0.0, -0.4854334805210761]),
'setosa&1&87': np.array([0.0, 0.16885577975809635]),
'setosa&1&88': np.array([0.0, 0.16885577975809635]),
'setosa&1&89': np.array([0.0, 0.395805885538554]),
'setosa&1&90': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&91': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&92': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&93': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&94': np.array([-0.4964962439921071, 0.3798215458387346]),
'setosa&1&95': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&96': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&97': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&98': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&99': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&100': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&101': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&102': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&103': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&104': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&105': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&106': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&107': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&108': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&109': np.array([-0.4964962439921071, 0.3798215458387346]),
'setosa&1&110': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&111': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&112': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&113': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&114': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&115': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&116': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&117': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&118': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&119': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&120': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&121': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&122': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&123': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&124': np.array([-0.4964962439921071, 0.3798215458387346]),
'setosa&1&125': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&126': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&127': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&128': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&129': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&130': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&131': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&132': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&133': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&134': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&135': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&136': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&137': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&138': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&139': np.array([-0.4964962439921071, 0.3798215458387346]),
'setosa&1&140': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&141': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&142': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&143': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&144': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&145': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&146': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&147': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&148': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&149': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&150': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&151': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&152': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&153': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&154': np.array([-0.4964962439921071, 0.3798215458387346]),
'setosa&1&155': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&156': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&157': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&158': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&159': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&160': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&161': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&162': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&163': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&164': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&165': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&166': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&167': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&168': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&169': np.array([-0.4964962439921071, 0.3798215458387346]),
'setosa&1&170': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&171': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&172': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&173': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&174': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&175': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&176': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&177': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&178': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&179': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&180': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&181': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&182': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&183': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&184': np.array([-0.4964962439921071, 0.3798215458387346]),
'setosa&1&185': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&186': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&187': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&188': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&189': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&190': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&191': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&192': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&193': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&194': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&195': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&196': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&197': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&198': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&199': np.array([-0.4964962439921071, 0.3798215458387346]),
'setosa&1&200': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&201': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&202': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&203': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&204': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&205': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&206': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&207': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&208': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&209': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&210': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&211': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&212': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&213': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&214': np.array([-0.4964962439921071, 0.3798215458387346]),
'setosa&1&215': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&216': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&217': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&218': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&219': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&220': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&221': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&222': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&223': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&224': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&225': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&226': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&227': np.array([-0.7141739659554724, 0.6619819140152877]),
'setosa&1&228': np.array([-0.4446001433508151, 0.6107546840046902]),
'setosa&1&229': np.array([-0.26192650167775977, 0.33491141590339474]),
'setosa&1&230': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&231': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&232': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&233': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&234': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&235': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&236': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&237': np.array([-0.7141739659554724, 0.6619819140152877]),
'setosa&1&238': np.array([-0.7141739659554724, 0.6619819140152877]),
'setosa&1&239': np.array([-0.4446001433508151, 0.6107546840046902]),
'setosa&1&240': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&241': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&242': np.array([-0.7141739659554724, 0.6619819140152877]),
'setosa&1&243': np.array([-0.4446001433508151, 0.6107546840046902]),
'setosa&1&244': np.array([-0.26192650167775977, 0.33491141590339474]),
'setosa&1&245': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&246': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&247': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&248': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&249': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&250': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&251': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&252': np.array([-0.7141739659554724, 0.6619819140152877]),
'setosa&1&253': np.array([-0.7141739659554724, 0.6619819140152877]),
'setosa&1&254': np.array([-0.4446001433508151, 0.6107546840046902]),
'setosa&1&255': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&256': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&257': np.array([-0.7141739659554724, 0.6619819140152877]),
'setosa&1&258': np.array([-0.4446001433508151, 0.6107546840046902]),
'setosa&1&259': np.array([-0.26192650167775977, 0.33491141590339474]),
'setosa&1&260': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&261': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&262': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&263': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&264': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&265': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&266': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&267': np.array([-0.7141739659554724, 0.6619819140152877]),
'setosa&1&268': np.array([-0.7141739659554724, 0.6619819140152877]),
'setosa&1&269': np.array([-0.4446001433508151, 0.6107546840046902]),
'setosa&1&270': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&271': np.array([0.80403091954169, -0.844515250413482]),
'setosa&1&272': np.array([0.5826506963750848, -0.22335655671229107]),
'setosa&1&273': np.array([0.33108168891715983, 0.13647816746351163]),
'setosa&1&274': np.array([0.4079256832347186, 0.038455640985860955]),
'setosa&1&275': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&276': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&277': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&278': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&279': np.array([0.80403091954169, -0.844515250413482]),
'setosa&1&280': np.array([0.80403091954169, -0.844515250413482]),
'setosa&1&281': np.array([0.80403091954169, -0.844515250413482]),
'setosa&1&282': np.array([0.5826506963750848, -0.22335655671229107]),
'setosa&1&283': np.array([0.5826506963750848, -0.22335655671229107]),
'setosa&1&284': np.array([0.33108168891715983, 0.13647816746351163]),
'setosa&1&285': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&286': np.array([0.80403091954169, -0.844515250413482]),
'setosa&1&287': np.array([0.5826506963750848, -0.22335655671229107]),
'setosa&1&288': np.array([0.33108168891715983, 0.13647816746351163]),
'setosa&1&289': np.array([0.4079256832347186, 0.038455640985860955]),
'setosa&1&290': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&291': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&292': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&293': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&294': np.array([0.80403091954169, -0.844515250413482]),
'setosa&1&295': np.array([0.80403091954169, -0.844515250413482]),
'setosa&1&296': np.array([0.80403091954169, -0.844515250413482]),
'setosa&1&297': np.array([0.5826506963750848, -0.22335655671229107]),
'setosa&1&298': np.array([0.5826506963750848, -0.22335655671229107]),
'setosa&1&299': np.array([0.33108168891715983, 0.13647816746351163]),
'setosa&1&300': np.array([0.4933316375690333, -0.5272416708629277]),
'setosa&1&301': np.array([0.5041830043657418, -0.5392782673950876]),
'setosa&1&302': np.array([0.25657760110071476, 0.12592645350389123]),
'setosa&1&303': np.array([0.13717260713320106, 0.3627779907901665]),
'setosa&1&304': np.array([0.3093950298647913, 0.1140298206733954]),
'setosa&1&305': np.array([0.4933316375690333, -0.5272416708629277]),
'setosa&1&306': np.array([0.4933316375690333, -0.5272416708629277]),
'setosa&1&307': np.array([0.4933316375690333, -0.5272416708629277]),
'setosa&1&308': np.array([0.4933316375690333, -0.5272416708629277]),
'setosa&1&309': np.array([0.5041830043657418, -0.5392782673950876]),
'setosa&1&310': np.array([0.5041830043657418, -0.5392782673950876]),
'setosa&1&311': np.array([0.5041830043657418, -0.5392782673950876]),
'setosa&1&312': np.array([0.25657760110071476, 0.12592645350389123]),
'setosa&1&313': np.array([0.25657760110071476, 0.12592645350389123]),
'setosa&1&314': np.array([0.13717260713320106, 0.3627779907901665]),
'setosa&2&0': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&1': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&2': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&3': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&4': np.array([-0.47415719445227245, -0.38726974144168774]),
'setosa&2&5': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&6': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&7': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&8': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&9': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&10': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&11': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&12': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&13': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&14': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&15': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&16': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&17': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&18': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&19': np.array([-0.47415719445227245, -0.38726974144168774]),
'setosa&2&20': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&21': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&22': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&23': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&24': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&25': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&26': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&27': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&28': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&29': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&30': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&31': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&32': np.array([-0.06285591932387405, -0.6914253444924359]),
'setosa&2&33': np.array([-0.34904320225465857, -0.6233384360811872]),
'setosa&2&34': np.array([-0.5354807894355184, -0.3418054346754283]),
'setosa&2&35': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&36': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&37': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&38': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&39': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&40': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&41': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&42': np.array([-0.06285591932387405, -0.6914253444924359]),
'setosa&2&43': np.array([-0.06285591932387405, -0.6914253444924359]),
'setosa&2&44': np.array([-0.34904320225465857, -0.6233384360811872]),
'setosa&2&45': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&46': np.array([-0.8211795643076093, -0.1186965077161071]),
'setosa&2&47': np.array([-0.6441664102689847, -0.3012046426099901]),
'setosa&2&48': np.array([-0.7640280271176497, -0.19364537761420375]),
'setosa&2&49': np.array([-0.8735738195653328, -0.046438180466149094]),
'setosa&2&50': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&51': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&52': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&53': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&54': np.array([-0.8211795643076093, -0.1186965077161071]),
'setosa&2&55': np.array([-0.8211795643076093, -0.1186965077161071]),
'setosa&2&56': np.array([-0.8211795643076093, -0.1186965077161071]),
'setosa&2&57': np.array([-0.6441664102689847, -0.3012046426099901]),
'setosa&2&58': np.array([-0.6441664102689847, -0.3012046426099901]),
'setosa&2&59': np.array([-0.7640280271176497, -0.19364537761420375]),
'setosa&2&60': np.array([-0.5227340800279542, -0.42092675740881474]),
'setosa&2&61': np.array([-0.5140708637198534, -0.43053612380573514]),
'setosa&2&62': np.array([-0.2661726847443776, -0.6902916602462779]),
'setosa&2&63': np.array([-0.2741128763380603, -0.7260889090887469]),
'setosa&2&64': np.array([-0.6188410763351541, -0.22803625884668638]),
'setosa&2&65': np.array([-0.5227340800279542, -0.42092675740881474]),
'setosa&2&66': np.array([-0.5227340800279542, -0.42092675740881474]),
'setosa&2&67': np.array([-0.5227340800279542, -0.42092675740881474]),
'setosa&2&68': np.array([-0.5227340800279542, -0.42092675740881474]),
'setosa&2&69': np.array([-0.5140708637198534, -0.43053612380573514]),
'setosa&2&70': np.array([-0.5140708637198534, -0.43053612380573514]),
'setosa&2&71': np.array([-0.5140708637198534, -0.43053612380573514]),
'setosa&2&72': np.array([-0.2661726847443776, -0.6902916602462779]),
'setosa&2&73': np.array([-0.2661726847443776, -0.6902916602462779]),
'setosa&2&74': np.array([-0.2741128763380603, -0.7260889090887469]),
'setosa&2&75': np.array([0.0, -0.47562425924289314]),
'setosa&2&76': np.array([0.0, -0.48543689565931186]),
'setosa&2&77': np.array([0.0, -0.7348263896003956]),
'setosa&2&78': np.array([0.0, -0.7920887571493729]),
'setosa&2&79': np.array([0.0, -0.507614207038711]),
'setosa&2&80': np.array([0.0, -0.47562425924289314]),
'setosa&2&81': np.array([0.0, -0.47562425924289314]),
'setosa&2&82': np.array([0.0, -0.47562425924289314]),
'setosa&2&83': np.array([0.0, -0.47562425924289314]),
'setosa&2&84': np.array([0.0, -0.48543689565931186]),
'setosa&2&85': np.array([0.0, -0.48543689565931186]),
'setosa&2&86': np.array([0.0, -0.48543689565931186]),
'setosa&2&87': np.array([0.0, -0.7348263896003956]),
'setosa&2&88': np.array([0.0, -0.7348263896003956]),
'setosa&2&89': np.array([0.0, -0.7920887571493729]),
'setosa&2&90': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&91': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&92': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&93': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&94': np.array([-0.47415719445227245, -0.38726974144168774]),
'setosa&2&95': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&96': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&97': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&98': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&99': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&100': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&101': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&102': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&103': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&104': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&105': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&106': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&107': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&108': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&109': np.array([-0.47415719445227245, -0.38726974144168774]),
'setosa&2&110': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&111': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&112': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&113': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&114': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&115': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&116': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&117': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&118': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&119': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&120': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&121': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&122': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&123': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&124': np.array([-0.47415719445227245, -0.38726974144168774]),
'setosa&2&125': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&126': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&127': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&128': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&129': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&130': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&131': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&132': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&133': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&134': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&135': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&136': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&137': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&138': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&139': np.array([-0.47415719445227245, -0.38726974144168774]),
'setosa&2&140': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&141': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&142': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&143': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&144': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&145': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&146': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&147': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&148': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&149': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&150': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&151': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&152': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&153': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&154': np.array([-0.47415719445227245, -0.38726974144168774]),
'setosa&2&155': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&156': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&157': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&158': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&159': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&160': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&161': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&162': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&163': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&164': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&165': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&166': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&167': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&168': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&169': np.array([-0.47415719445227245, -0.38726974144168774]),
'setosa&2&170': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&171': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&172': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&173': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&174': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&175': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&176': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&177': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&178': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&179': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&180': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&181': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&182': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&183': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&184': np.array([-0.47415719445227245, -0.38726974144168774]),
'setosa&2&185': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&186': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&187': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&188': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&189': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&190': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&191': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&192': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&193': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&194': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&195': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&196': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&197': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&198': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&199': np.array([-0.47415719445227245, -0.38726974144168774]),
'setosa&2&200': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&201': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&202': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&203': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&204': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&205': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&206': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&207': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&208': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&209': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&210': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&211': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&212': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&213': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&214': np.array([-0.47415719445227245, -0.38726974144168774]),
'setosa&2&215': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&216': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&217': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&218': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&219': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&220': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&221': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&222': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&223': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&224': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&225': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&226': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&227': np.array([-0.06285591932387405, -0.6914253444924359]),
'setosa&2&228': np.array([-0.34904320225465857, -0.6233384360811872]),
'setosa&2&229': np.array([-0.5354807894355184, -0.3418054346754283]),
'setosa&2&230': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&231': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&232': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&233': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&234': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&235': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&236': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&237': np.array([-0.06285591932387405, -0.6914253444924359]),
'setosa&2&238': np.array([-0.06285591932387405, -0.6914253444924359]),
'setosa&2&239': np.array([-0.34904320225465857, -0.6233384360811872]),
'setosa&2&240': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&241': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&242': np.array([-0.06285591932387405, -0.6914253444924359]),
'setosa&2&243': np.array([-0.34904320225465857, -0.6233384360811872]),
'setosa&2&244': np.array([-0.5354807894355184, -0.3418054346754283]),
'setosa&2&245': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&246': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&247': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&248': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&249': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&250': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&251': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&252': np.array([-0.06285591932387405, -0.6914253444924359]),
'setosa&2&253': np.array([-0.06285591932387405, -0.6914253444924359]),
'setosa&2&254': np.array([-0.34904320225465857, -0.6233384360811872]),
'setosa&2&255': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&256': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&257': np.array([-0.06285591932387405, -0.6914253444924359]),
'setosa&2&258': np.array([-0.34904320225465857, -0.6233384360811872]),
'setosa&2&259': np.array([-0.5354807894355184, -0.3418054346754283]),
'setosa&2&260': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&261': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&262': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&263': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&264': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&265': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&266': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&267': np.array([-0.06285591932387405, -0.6914253444924359]),
'setosa&2&268': np.array([-0.06285591932387405, -0.6914253444924359]),
'setosa&2&269': np.array([-0.34904320225465857, -0.6233384360811872]),
'setosa&2&270': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&271': np.array([-0.8211795643076093, -0.1186965077161071]),
'setosa&2&272': np.array([-0.6441664102689847, -0.3012046426099901]),
'setosa&2&273': np.array([-0.7640280271176497, -0.19364537761420375]),
'setosa&2&274': np.array([-0.8735738195653328, -0.046438180466149094]),
'setosa&2&275': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&276': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&277': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&278': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&279': np.array([-0.8211795643076093, -0.1186965077161071]),
'setosa&2&280': np.array([-0.8211795643076093, -0.1186965077161071]),
'setosa&2&281': np.array([-0.8211795643076093, -0.1186965077161071]),
'setosa&2&282': np.array([-0.6441664102689847, -0.3012046426099901]),
'setosa&2&283': np.array([-0.6441664102689847, -0.3012046426099901]),
'setosa&2&284': np.array([-0.7640280271176497, -0.19364537761420375]),
'setosa&2&285': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&286': np.array([-0.8211795643076093, -0.1186965077161071]),
'setosa&2&287': np.array([-0.6441664102689847, -0.3012046426099901]),
'setosa&2&288': np.array([-0.7640280271176497, -0.19364537761420375]),
'setosa&2&289': np.array([-0.8735738195653328, -0.046438180466149094]),
'setosa&2&290': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&291': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&292': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&293': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&294': np.array([-0.8211795643076093, -0.1186965077161071]),
'setosa&2&295': np.array([-0.8211795643076093, -0.1186965077161071]),
'setosa&2&296': np.array([-0.8211795643076093, -0.1186965077161071]),
'setosa&2&297': np.array([-0.6441664102689847, -0.3012046426099901]),
'setosa&2&298': np.array([-0.6441664102689847, -0.3012046426099901]),
'setosa&2&299': np.array([-0.7640280271176497, -0.19364537761420375]),
'setosa&2&300': np.array([-0.5227340800279542, -0.42092675740881474]),
'setosa&2&301': np.array([-0.5140708637198534, -0.43053612380573514]),
'setosa&2&302': np.array([-0.2661726847443776, -0.6902916602462779]),
'setosa&2&303': np.array([-0.2741128763380603, -0.7260889090887469]),
'setosa&2&304': np.array([-0.6188410763351541, -0.22803625884668638]),
'setosa&2&305': np.array([-0.5227340800279542, -0.42092675740881474]),
'setosa&2&306': np.array([-0.5227340800279542, -0.42092675740881474]),
'setosa&2&307': np.array([-0.5227340800279542, -0.42092675740881474]),
'setosa&2&308': np.array([-0.5227340800279542, -0.42092675740881474]),
'setosa&2&309': np.array([-0.5140708637198534, -0.43053612380573514]),
'setosa&2&310': np.array([-0.5140708637198534, -0.43053612380573514]),
'setosa&2&311': np.array([-0.5140708637198534, -0.43053612380573514]),
'setosa&2&312': np.array([-0.2661726847443776, -0.6902916602462779]),
'setosa&2&313': np.array([-0.2661726847443776, -0.6902916602462779]),
'setosa&2&314': np.array([-0.2741128763380603, -0.7260889090887469]),
'versicolor&0&0': np.array([-0.7431524521056113, -0.24432235603856345]),
'versicolor&0&1': np.array([-0.4926091071260067, -0.49260910712601286]),
'versicolor&0&2': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&3': np.array([-0.9672121512728677, 0.012993005706020341]),
'versicolor&0&4': np.array([-0.9706534384443797, 0.007448195602953232]),
'versicolor&0&5': np.array([-0.4926091071260067, -0.49260910712601286]),
'versicolor&0&6': np.array([-0.967167257194905, -0.011919414234523772]),
'versicolor&0&7': np.array([-0.953200964337313, -0.027163424176667752]),
'versicolor&0&8': np.array([-0.8486399726113752, -0.13537345771621853]),
'versicolor&0&9': np.array([-0.9658161779555727, -0.01446062269877741]),
'versicolor&0&10': np.array([-0.9493506964095418, -0.0312186903717912]),
'versicolor&0&11': np.array([-0.7870031444780577, -0.1952404625292782]),
'versicolor&0&12': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&13': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&14': np.array([-0.9672121512728677, 0.012993005706020341]),
'versicolor&0&15': np.array([-0.7431524521056113, -0.24432235603856345]),
'versicolor&0&16': np.array([-0.4926091071260067, -0.49260910712601286]),
'versicolor&0&17': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&18': np.array([-0.9672121512728677, 0.012993005706020341]),
'versicolor&0&19': np.array([-0.9706534384443797, 0.007448195602953232]),
'versicolor&0&20': np.array([-0.4926091071260067, -0.49260910712601286]),
'versicolor&0&21': np.array([-0.967167257194905, -0.011919414234523772]),
'versicolor&0&22': np.array([-0.953200964337313, -0.027163424176667752]),
'versicolor&0&23': np.array([-0.8486399726113752, -0.13537345771621853]),
'versicolor&0&24': np.array([-0.9658161779555727, -0.01446062269877741]),
'versicolor&0&25': np.array([-0.9493506964095418, -0.0312186903717912]),
'versicolor&0&26': np.array([-0.7870031444780577, -0.1952404625292782]),
'versicolor&0&27': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&28': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&29': np.array([-0.9672121512728677, 0.012993005706020341]),
'versicolor&0&30': np.array([-0.19685199412911655, -0.7845879230594393]),
'versicolor&0&31': np.array([-0.07476043598366228, -0.9062715528546994]),
'versicolor&0&32': np.array([-0.7770298852793476, 0.029443430477147536]),
'versicolor&0&33': np.array([-0.7936433456054744, 0.012583752076496493]),
'versicolor&0&34': np.array([-0.7974072911132788, 0.006894018772033604]),
'versicolor&0&35': np.array([-0.07476043598366228, -0.9062715528546994]),
'versicolor&0&36': np.array([-0.7779663027946229, -0.2981599980028888]),
'versicolor&0&37': np.array([-0.6669876551417979, -0.2911996622134135]),
'versicolor&0&38': np.array([-0.3355030348883163, -0.6305271339971502]),
'versicolor&0&39': np.array([-0.7658431164447598, -0.3248317507526541]),
'versicolor&0&40': np.array([-0.6459073168288453, -0.31573292128613833]),
'versicolor&0&41': np.array([-0.2519677855687844, -0.7134447168661863]),
'versicolor&0&42': np.array([-0.7770298852793476, 0.029443430477147536]),
'versicolor&0&43': np.array([-0.7770298852793476, 0.029443430477147536]),
'versicolor&0&44': np.array([-0.7936433456054744, 0.012583752076496493]),
'versicolor&0&45': np.array([0.05031696218434577, -0.929227611211748]),
'versicolor&0&46': np.array([0.017148644765919676, -0.9632117581295891]),
'versicolor&0&47': np.array([0.06151571389390039, 0.524561199322281]),
'versicolor&0&48': np.array([0.4329463382004908, 0.057167210150691136]),
'versicolor&0&49': np.array([0.4656481363306145, 0.007982539480288167]),
'versicolor&0&50': np.array([0.017148644765919676, -0.9632117581295891]),
'versicolor&0&51': np.array([0.6614632074748169, -0.6030419328583525]),
'versicolor&0&52': np.array([0.5519595359123358, -0.6434192906054143]),
'versicolor&0&53': np.array([0.14241819268815753, -0.8424615476000691]),
'versicolor&0&54': np.array([0.667423576348749, -0.6594086777766442]),
'versicolor&0&55': np.array([0.5429872243487625, -0.6697888833280774]),
'versicolor&0&56': np.array([0.1140907502997574, -0.8737800276630269]),
'versicolor&0&57': np.array([0.06151571389390039, 0.524561199322281]),
'versicolor&0&58': np.array([0.06151571389390039, 0.524561199322281]),
'versicolor&0&59': np.array([0.4329463382004908, 0.057167210150691136]),
'versicolor&0&60': np.array([0.029402442458921384, -0.9481684282717414]),
'versicolor&0&61': np.array([0.009887859354111524, -0.9698143912008228]),
'versicolor&0&62': np.array([0.009595083643662688, 0.5643652067423869]),
'versicolor&0&63': np.array([0.13694026920485936, 0.36331091829858003]),
'versicolor&0&64': np.array([0.3094460464703627, 0.11400643817329122]),
'versicolor&0&65': np.array([0.009887859354111524, -0.9698143912008228]),
'versicolor&0&66': np.array([0.42809266524335826, -0.40375108595117376]),
'versicolor&0&67': np.array([0.45547700380103057, -0.6083463409799501]),
'versicolor&0&68': np.array([0.19002455311770447, -0.8848597943731074]),
'versicolor&0&69': np.array([0.436966114193701, -0.4638042290788281]),
'versicolor&0&70': np.array([0.45424510803217066, -0.6425314361631614]),
'versicolor&0&71': np.array([0.1746467870122951, -0.9073062742839755]),
'versicolor&0&72': np.array([0.009595083643662688, 0.5643652067423869]),
'versicolor&0&73': np.array([0.009595083643662688, 0.5643652067423869]),
'versicolor&0&74': np.array([0.13694026920485936, 0.36331091829858003]),
'versicolor&0&75': np.array([0.0, -0.95124502153736]),
'versicolor&0&76': np.array([0.0, -0.9708703761803881]),
'versicolor&0&77': np.array([0.0, 0.5659706098422994]),
'versicolor&0&78': np.array([0.0, 0.3962828716108186]),
'versicolor&0&79': np.array([0.0, 0.2538069363248767]),
'versicolor&0&80': np.array([0.0, -0.9708703761803881]),
'versicolor&0&81': np.array([0.0, -0.3631376646911367]),
'versicolor&0&82': np.array([0.0, -0.5804857652839247]),
'versicolor&0&83': np.array([0.0, -0.8943993997517804]),
'versicolor&0&84': np.array([0.0, -0.4231275527222919]),
'versicolor&0&85': np.array([0.0, -0.6164235822373675]),
'versicolor&0&86': np.array([0.0, -0.9166476163222441]),
'versicolor&0&87': np.array([0.0, 0.5659706098422994]),
'versicolor&0&88': np.array([0.0, 0.5659706098422994]),
'versicolor&0&89': np.array([0.0, 0.3962828716108186]),
'versicolor&0&90': np.array([-0.7431524521056113, -0.24432235603856345]),
'versicolor&0&91': np.array([-0.4926091071260067, -0.49260910712601286]),
'versicolor&0&92': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&93': np.array([-0.9672121512728677, 0.012993005706020341]),
'versicolor&0&94': np.array([-0.9706534384443797, 0.007448195602953232]),
'versicolor&0&95': np.array([-0.4926091071260067, -0.49260910712601286]),
'versicolor&0&96': np.array([-0.967167257194905, -0.011919414234523772]),
'versicolor&0&97': np.array([-0.953200964337313, -0.027163424176667752]),
'versicolor&0&98': np.array([-0.8486399726113752, -0.13537345771621853]),
'versicolor&0&99': np.array([-0.9658161779555727, -0.01446062269877741]),
'versicolor&0&100': np.array([-0.9493506964095418, -0.0312186903717912]),
'versicolor&0&101': np.array([-0.7870031444780577, -0.1952404625292782]),
'versicolor&0&102': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&103': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&104': np.array([-0.9672121512728677, 0.012993005706020341]),
'versicolor&0&105': np.array([-0.19685199412911655, -0.7845879230594393]),
'versicolor&0&106': np.array([-0.07476043598366228, -0.9062715528546994]),
'versicolor&0&107': np.array([-0.7770298852793476, 0.029443430477147536]),
'versicolor&0&108': np.array([-0.7936433456054744, 0.012583752076496493]),
'versicolor&0&109': np.array([-0.7974072911132788, 0.006894018772033604]),
'versicolor&0&110': np.array([-0.07476043598366228, -0.9062715528546994]),
'versicolor&0&111': np.array([-0.7779663027946229, -0.2981599980028888]),
'versicolor&0&112': np.array([-0.6669876551417979, -0.2911996622134135]),
'versicolor&0&113': np.array([-0.3355030348883163, -0.6305271339971502]),
'versicolor&0&114': np.array([-0.7658431164447598, -0.3248317507526541]),
'versicolor&0&115': np.array([-0.6459073168288453, -0.31573292128613833]),
'versicolor&0&116': np.array([-0.2519677855687844, -0.7134447168661863]),
'versicolor&0&117': np.array([-0.7770298852793476, 0.029443430477147536]),
'versicolor&0&118': np.array([-0.7770298852793476, 0.029443430477147536]),
'versicolor&0&119': np.array([-0.7936433456054744, 0.012583752076496493]),
'versicolor&0&120': np.array([-0.05855179950109871, -0.9211684729232403]),
'versicolor&0&121': np.array([-0.020067537725011863, -0.960349531159508]),
'versicolor&0&122': np.array([-0.5775164514598086, 0.6278692602817483]),
'versicolor&0&123': np.array([-0.6813845327458135, 0.6599725404733693]),
'versicolor&0&124': np.array([-0.5182062652425321, 0.3958533237517639]),
'versicolor&0&125': np.array([-0.020067537725011863, -0.960349531159508]),
'versicolor&0&126': np.array([-0.5107107533700952, 0.0075507123577884866]),
'versicolor&0&127': np.array([-0.1464063320531759, -0.4788055402156298]),
'versicolor&0&128': np.array([-0.061109248092233844, -0.8620287767000373]),
'versicolor&0&129': np.array([-0.4706137753079746, -0.057389625790424635]),
'versicolor&0&130': np.array([-0.06804620923037683, -0.5677904519730453]),
'versicolor&0&131': np.array([-0.020216773196675246, -0.9057119888626176]),
'versicolor&0&132': np.array([-0.5775164514598086, 0.6278692602817483]),
'versicolor&0&133': np.array([-0.5775164514598086, 0.6278692602817483]),
'versicolor&0&134': np.array([-0.6813845327458135, 0.6599725404733693]),
'versicolor&0&135': np.array([-0.19684482070614498, -0.7845939961595055]),
'versicolor&0&136': np.array([-0.07475231751447156, -0.9062785678426409]),
'versicolor&0&137': np.array([-0.6782037543706109, 0.2956007367698983]),
'versicolor&0&138': np.array([-0.7694171988675237, 0.276633135028249]),
'versicolor&0&139': np.array([-0.8063011502229427, 0.4134300066735808]),
'versicolor&0&140': np.array([-0.07475231751447156, -0.9062785678426409]),
'versicolor&0&141': np.array([-0.7985789197998611, 0.0026209054759345337]),
'versicolor&0&142': np.array([-0.7182275903095532, -0.11963032135457498]),
'versicolor&0&143': np.array([-0.2798927835773098, -0.6581136857450849]),
'versicolor&0&144': np.array([-0.7920119433269182, -0.0142751249964083]),
'versicolor&0&145': np.array([-0.6943081428778407, -0.14852813120265815]),
'versicolor&0&146': np.array([-0.16106555563262584, -0.777621649099753]),
'versicolor&0&147': np.array([-0.6782037543706109, 0.2956007367698983]),
'versicolor&0&148': np.array([-0.6782037543706109, 0.2956007367698983]),
'versicolor&0&149': np.array([-0.7694171988675237, 0.276633135028249]),
'versicolor&0&150': np.array([-0.7431524521056113, -0.24432235603856345]),
'versicolor&0&151': np.array([-0.4926091071260067, -0.49260910712601286]),
'versicolor&0&152': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&153': np.array([-0.9672121512728677, 0.012993005706020341]),
'versicolor&0&154': np.array([-0.9706534384443797, 0.007448195602953232]),
'versicolor&0&155': np.array([-0.4926091071260067, -0.49260910712601286]),
'versicolor&0&156': np.array([-0.967167257194905, -0.011919414234523772]),
'versicolor&0&157': np.array([-0.953200964337313, -0.027163424176667752]),
'versicolor&0&158': np.array([-0.8486399726113752, -0.13537345771621853]),
'versicolor&0&159': np.array([-0.9658161779555727, -0.01446062269877741]),
'versicolor&0&160': np.array([-0.9493506964095418, -0.0312186903717912]),
'versicolor&0&161': np.array([-0.7870031444780577, -0.1952404625292782]),
'versicolor&0&162': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&163': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&164': np.array([-0.9672121512728677, 0.012993005706020341]),
'versicolor&0&165': np.array([-0.19685199412911655, -0.7845879230594393]),
'versicolor&0&166': np.array([-0.07476043598366228, -0.9062715528546994]),
'versicolor&0&167': np.array([-0.7770298852793476, 0.029443430477147536]),
'versicolor&0&168': np.array([-0.7936433456054744, 0.012583752076496493]),
'versicolor&0&169': np.array([-0.7974072911132788, 0.006894018772033604]),
'versicolor&0&170': np.array([-0.07476043598366228, -0.9062715528546994]),
'versicolor&0&171': np.array([-0.7779663027946229, -0.2981599980028888]),
'versicolor&0&172': np.array([-0.6669876551417979, -0.2911996622134135]),
'versicolor&0&173': np.array([-0.3355030348883163, -0.6305271339971502]),
'versicolor&0&174': np.array([-0.7658431164447598, -0.3248317507526541]),
'versicolor&0&175': np.array([-0.6459073168288453, -0.31573292128613833]),
'versicolor&0&176': np.array([-0.2519677855687844, -0.7134447168661863]),
'versicolor&0&177': np.array([-0.7770298852793476, 0.029443430477147536]),
'versicolor&0&178': np.array([-0.7770298852793476, 0.029443430477147536]),
'versicolor&0&179': np.array([-0.7936433456054744, 0.012583752076496493]),
'versicolor&0&180': np.array([-0.05855179950109871, -0.9211684729232403]),
'versicolor&0&181': np.array([-0.020067537725011863, -0.960349531159508]),
'versicolor&0&182': np.array([-0.5775164514598086, 0.6278692602817483]),
'versicolor&0&183': np.array([-0.6813845327458135, 0.6599725404733693]),
'versicolor&0&184': np.array([-0.5182062652425321, 0.3958533237517639]),
'versicolor&0&185': np.array([-0.020067537725011863, -0.960349531159508]),
'versicolor&0&186': np.array([-0.5107107533700952, 0.0075507123577884866]),
'versicolor&0&187': np.array([-0.1464063320531759, -0.4788055402156298]),
'versicolor&0&188': np.array([-0.061109248092233844, -0.8620287767000373]),
'versicolor&0&189': np.array([-0.4706137753079746, -0.057389625790424635]),
'versicolor&0&190': np.array([-0.06804620923037683, -0.5677904519730453]),
'versicolor&0&191': np.array([-0.020216773196675246, -0.9057119888626176]),
'versicolor&0&192': np.array([-0.5775164514598086, 0.6278692602817483]),
'versicolor&0&193': np.array([-0.5775164514598086, 0.6278692602817483]),
'versicolor&0&194': np.array([-0.6813845327458135, 0.6599725404733693]),
'versicolor&0&195': np.array([-0.19684482070614498, -0.7845939961595055]),
'versicolor&0&196': np.array([-0.07475231751447156, -0.9062785678426409]),
'versicolor&0&197': np.array([-0.6782037543706109, 0.2956007367698983]),
'versicolor&0&198': np.array([-0.7694171988675237, 0.276633135028249]),
'versicolor&0&199': np.array([-0.8063011502229427, 0.4134300066735808]),
'versicolor&0&200': np.array([-0.07475231751447156, -0.9062785678426409]),
'versicolor&0&201': np.array([-0.7985789197998611, 0.0026209054759345337]),
'versicolor&0&202': np.array([-0.7182275903095532, -0.11963032135457498]),
'versicolor&0&203': np.array([-0.2798927835773098, -0.6581136857450849]),
'versicolor&0&204': np.array([-0.7920119433269182, -0.0142751249964083]),
'versicolor&0&205': np.array([-0.6943081428778407, -0.14852813120265815]),
'versicolor&0&206': np.array([-0.16106555563262584, -0.777621649099753]),
'versicolor&0&207': np.array([-0.6782037543706109, 0.2956007367698983]),
'versicolor&0&208': np.array([-0.6782037543706109, 0.2956007367698983]),
'versicolor&0&209': np.array([-0.7694171988675237, 0.276633135028249]),
'versicolor&0&210': np.array([-0.7431524521056113, -0.24432235603856345]),
'versicolor&0&211': np.array([-0.4926091071260067, -0.49260910712601286]),
'versicolor&0&212': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&213': np.array([-0.9672121512728677, 0.012993005706020341]),
'versicolor&0&214': np.array([-0.9706534384443797, 0.007448195602953232]),
'versicolor&0&215': np.array([-0.4926091071260067, -0.49260910712601286]),
'versicolor&0&216': np.array([-0.967167257194905, -0.011919414234523772]),
'versicolor&0&217': np.array([-0.953200964337313, -0.027163424176667752]),
'versicolor&0&218': np.array([-0.8486399726113752, -0.13537345771621853]),
'versicolor&0&219': np.array([-0.9658161779555727, -0.01446062269877741]),
'versicolor&0&220': np.array([-0.9493506964095418, -0.0312186903717912]),
'versicolor&0&221': np.array([-0.7870031444780577, -0.1952404625292782]),
'versicolor&0&222': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&223': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&224': np.array([-0.9672121512728677, 0.012993005706020341]),
'versicolor&0&225': np.array([-0.04777085826693217, -0.931704979630315]),
'versicolor&0&226': np.array([-0.016252316132452975, -0.9640854286687816]),
'versicolor&0&227': np.array([-0.44101924439572626, 0.5583264842761904]),
'versicolor&0&228': np.array([-0.5844994389588399, 0.5715208832363579]),
'versicolor&0&229': np.array([-0.46216647196120714, 0.35468591243823655]),
'versicolor&0&230': np.array([-0.016252316132452975, -0.9640854286687816]),
'versicolor&0&231': np.array([-0.3707180757031537, -0.1977196581472426]),
'versicolor&0&232': np.array([-0.1043459833293615, -0.5233314327065356]),
'versicolor&0&233': np.array([-0.049289647556763364, -0.8736084405111605]),
'versicolor&0&234': np.array([-0.34078174031874375, -0.25874482325965437]),
'versicolor&0&235': np.array([-0.050841051273783675, -0.5877587283589205]),
'versicolor&0&236': np.array([-0.0161720977425142, -0.9096817855236822]),
'versicolor&0&237': np.array([-0.44101924439572626, 0.5583264842761904]),
'versicolor&0&238': np.array([-0.44101924439572626, 0.5583264842761904]),
'versicolor&0&239': np.array([-0.5844994389588399, 0.5715208832363579]),
'versicolor&0&240': np.array([-0.11329659732608087, -0.8671819100849522]),
'versicolor&0&241': np.array([-0.040390637135858574, -0.9402832917474078]),
'versicolor&0&242': np.array([-0.5276460255602035, 0.28992233541586077]),
'versicolor&0&243': np.array([-0.6392402874163683, 0.24114611970435948]),
'versicolor&0&244': np.array([-0.6814868825686854, 0.35066801608083215]),
'versicolor&0&245': np.array([-0.040390637135858574, -0.9402832917474078]),
'versicolor&0&246': np.array([-0.6425009695928476, -0.24851992476830956]),
'versicolor&0&247': np.array([-0.5151243662384031, -0.3255567772442641]),
'versicolor&0&248': np.array([-0.16157511199607094, -0.7754323813403634]),
'versicolor&0&249': np.array([-0.6300442788906601, -0.28361140069713875]),
'versicolor&0&250': np.array([-0.4875864856121089, -0.3614122096616301]),
'versicolor&0&251': np.array([-0.08968204532514226, -0.8491191210330045]),
'versicolor&0&252': np.array([-0.5276460255602035, 0.28992233541586077]),
'versicolor&0&253': np.array([-0.5276460255602035, 0.28992233541586077]),
'versicolor&0&254': np.array([-0.6392402874163683, 0.24114611970435948]),
'versicolor&0&255': np.array([-0.19685199412911655, -0.7845879230594393]),
'versicolor&0&256': np.array([-0.07476043598366228, -0.9062715528546994]),
'versicolor&0&257': np.array([-0.7770298852793476, 0.029443430477147536]),
'versicolor&0&258': np.array([-0.7936433456054744, 0.012583752076496493]),
'versicolor&0&259': np.array([-0.7974072911132788, 0.006894018772033604]),
'versicolor&0&260': np.array([-0.07476043598366228, -0.9062715528546994]),
'versicolor&0&261': np.array([-0.7779663027946229, -0.2981599980028888]),
'versicolor&0&262': np.array([-0.6669876551417979, -0.2911996622134135]),
'versicolor&0&263': np.array([-0.3355030348883163, -0.6305271339971502]),
'versicolor&0&264': np.array([-0.7658431164447598, -0.3248317507526541]),
'versicolor&0&265': np.array([-0.6459073168288453, -0.31573292128613833]),
'versicolor&0&266': np.array([-0.2519677855687844, -0.7134447168661863]),
'versicolor&0&267': np.array([-0.7770298852793476, 0.029443430477147536]),
'versicolor&0&268': np.array([-0.7770298852793476, 0.029443430477147536]),
'versicolor&0&269': np.array([-0.7936433456054744, 0.012583752076496493]),
'versicolor&0&270': np.array([0.05031696218434577, -0.929227611211748]),
'versicolor&0&271': np.array([0.017148644765919676, -0.9632117581295891]),
'versicolor&0&272': np.array([0.06151571389390039, 0.524561199322281]),
'versicolor&0&273': np.array([0.4329463382004908, 0.057167210150691136]),
'versicolor&0&274': np.array([0.4656481363306145, 0.007982539480288167]),
'versicolor&0&275': np.array([0.017148644765919676, -0.9632117581295891]),
'versicolor&0&276': np.array([0.6614632074748169, -0.6030419328583525]),
'versicolor&0&277': np.array([0.5519595359123358, -0.6434192906054143]),
'versicolor&0&278': np.array([0.14241819268815753, -0.8424615476000691]),
'versicolor&0&279': np.array([0.667423576348749, -0.6594086777766442]),
'versicolor&0&280': np.array([0.5429872243487625, -0.6697888833280774]),
'versicolor&0&281': np.array([0.1140907502997574, -0.8737800276630269]),
'versicolor&0&282': np.array([0.06151571389390039, 0.524561199322281]),
'versicolor&0&283': np.array([0.06151571389390039, 0.524561199322281]),
'versicolor&0&284': np.array([0.4329463382004908, 0.057167210150691136]),
'versicolor&0&285': np.array([0.05031696218434577, -0.929227611211748]),
'versicolor&0&286': np.array([0.017148644765919676, -0.9632117581295891]),
'versicolor&0&287': np.array([0.06151571389390039, 0.524561199322281]),
'versicolor&0&288': np.array([0.4329463382004908, 0.057167210150691136]),
'versicolor&0&289': np.array([0.4656481363306145, 0.007982539480288167]),
'versicolor&0&290': np.array([0.017148644765919676, -0.9632117581295891]),
'versicolor&0&291': np.array([0.6614632074748169, -0.6030419328583525]),
'versicolor&0&292': np.array([0.5519595359123358, -0.6434192906054143]),
'versicolor&0&293': np.array([0.14241819268815753, -0.8424615476000691]),
'versicolor&0&294': np.array([0.667423576348749, -0.6594086777766442]),
'versicolor&0&295': np.array([0.5429872243487625, -0.6697888833280774]),
'versicolor&0&296': np.array([0.1140907502997574, -0.8737800276630269]),
'versicolor&0&297': np.array([0.06151571389390039, 0.524561199322281]),
'versicolor&0&298': np.array([0.06151571389390039, 0.524561199322281]),
'versicolor&0&299': np.array([0.4329463382004908, 0.057167210150691136]),
'versicolor&0&300': np.array([0.029402442458921384, -0.9481684282717414]),
'versicolor&0&301': np.array([0.009887859354111524, -0.9698143912008228]),
'versicolor&0&302': np.array([0.009595083643662688, 0.5643652067423869]),
'versicolor&0&303': np.array([0.13694026920485936, 0.36331091829858003]),
'versicolor&0&304': np.array([0.3094460464703627, 0.11400643817329122]),
'versicolor&0&305': np.array([0.009887859354111524, -0.9698143912008228]),
'versicolor&0&306': np.array([0.42809266524335826, -0.40375108595117376]),
'versicolor&0&307': np.array([0.45547700380103057, -0.6083463409799501]),
'versicolor&0&308': np.array([0.19002455311770447, -0.8848597943731074]),
'versicolor&0&309': np.array([0.436966114193701, -0.4638042290788281]),
'versicolor&0&310': np.array([0.45424510803217066, -0.6425314361631614]),
'versicolor&0&311': np.array([0.1746467870122951, -0.9073062742839755]),
'versicolor&0&312': np.array([0.009595083643662688, 0.5643652067423869]),
'versicolor&0&313': np.array([0.009595083643662688, 0.5643652067423869]),
'versicolor&0&314': np.array([0.13694026920485936, 0.36331091829858003]),
'versicolor&1&0': np.array([0.37157553889555184, 0.1221600832023858]),
'versicolor&1&1': np.array([0.2463036871609408, 0.24630368716093934]),
'versicolor&1&2': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&3': np.array([0.6718337295341267, 0.6620422637360075]),
'versicolor&1&4': np.array([0.4964962439921071, 0.3798215458387346]),
'versicolor&1&5': np.array([0.2463036871609408, 0.24630368716093934]),
'versicolor&1&6': np.array([0.2805345936193346, 0.6595182922149835]),
'versicolor&1&7': np.array([0.08302493125394889, 0.6186280682763334]),
'versicolor&1&8': np.array([0.22125635302655813, 0.2925832702358638]),
'versicolor&1&9': np.array([0.2365788606456636, 0.7120007179768731]),
'versicolor&1&10': np.array([0.022347126801293967, 0.6718013300441928]),
'versicolor&1&11': np.array([0.10063786451829529, 0.4085974066833644]),
'versicolor&1&12': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&13': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&14': np.array([0.6718337295341267, 0.6620422637360075]),
'versicolor&1&15': np.array([0.37157553889555184, 0.1221600832023858]),
'versicolor&1&16': np.array([0.2463036871609408, 0.24630368716093934]),
'versicolor&1&17': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&18': np.array([0.6718337295341267, 0.6620422637360075]),
'versicolor&1&19': np.array([0.4964962439921071, 0.3798215458387346]),
'versicolor&1&20': np.array([0.2463036871609408, 0.24630368716093934]),
'versicolor&1&21': np.array([0.2805345936193346, 0.6595182922149835]),
'versicolor&1&22': np.array([0.08302493125394889, 0.6186280682763334]),
'versicolor&1&23': np.array([0.22125635302655813, 0.2925832702358638]),
'versicolor&1&24': np.array([0.2365788606456636, 0.7120007179768731]),
'versicolor&1&25': np.array([0.022347126801293967, 0.6718013300441928]),
'versicolor&1&26': np.array([0.10063786451829529, 0.4085974066833644]),
'versicolor&1&27': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&28': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&29': np.array([0.6718337295341267, 0.6620422637360075]),
'versicolor&1&30': np.array([-0.32199975656257646, 0.7482293552463756]),
'versicolor&1&31': np.array([-0.43843349141088417, 0.8642740701867917]),
'versicolor&1&32': np.array([0.7141739659554727, 0.6619819140152878]),
'versicolor&1&33': np.array([0.44460014335081516, 0.6107546840046902]),
'versicolor&1&34': np.array([0.2619265016777598, 0.33491141590339474]),
'versicolor&1&35': np.array([-0.43843349141088417, 0.8642740701867917]),
'versicolor&1&36': np.array([0.20183015430619713, 0.7445346002055082]),
'versicolor&1&37': np.array([-0.05987874887638573, 0.6927937290176818]),
'versicolor&1&38': np.array([-0.2562642052727569, 0.6920266972283227]),
'versicolor&1&39': np.array([0.1736438124560164, 0.7898174616442941]),
'versicolor&1&40': np.array([-0.10114089899940126, 0.7326610366533243]),
'versicolor&1&41': np.array([-0.34479806250338163, 0.7789143553916729]),
'versicolor&1&42': np.array([0.7141739659554727, 0.6619819140152878]),
'versicolor&1&43': np.array([0.7141739659554727, 0.6619819140152878]),
'versicolor&1&44': np.array([0.44460014335081516, 0.6107546840046902]),
'versicolor&1&45': np.array([0.7749499208750119, 0.8147189440804429]),
'versicolor&1&46': np.array([0.8040309195416899, 0.8445152504134819]),
'versicolor&1&47': np.array([0.5826506963750848, -0.22335655671229107]),
'versicolor&1&48': np.array([0.33108168891715983, 0.13647816746351163]),
'versicolor&1&49': np.array([0.4079256832347186, 0.038455640985860955]),
'versicolor&1&50': np.array([0.8040309195416899, 0.8445152504134819]),
'versicolor&1&51': np.array([0.18555813792691386, 0.6940923833143309]),
'versicolor&1&52': np.array([0.32639262064172164, 0.6296083447134281]),
'versicolor&1&53': np.array([0.6964303997553315, 0.7444536452136676]),
'versicolor&1&54': np.array([0.18216358701833335, 0.747615101407194]),
'versicolor&1&55': np.array([0.33549445287370383, 0.6526039763053625]),
'versicolor&1&56': np.array([0.7213651642695392, 0.7718874443854203]),
'versicolor&1&57': np.array([0.5826506963750848, -0.22335655671229107]),
'versicolor&1&58': np.array([0.5826506963750848, -0.22335655671229107]),
'versicolor&1&59': np.array([0.33108168891715983, 0.13647816746351163]),
'versicolor&1&60': np.array([0.4933316375690332, 0.5272416708629276]),
'versicolor&1&61': np.array([0.5041830043657418, 0.5392782673950876]),
'versicolor&1&62': np.array([0.25657760110071476, 0.12592645350389123]),
'versicolor&1&63': np.array([0.13717260713320106, 0.3627779907901665]),
'versicolor&1&64': np.array([0.3093950298647913, 0.1140298206733954]),
'versicolor&1&65': np.array([0.5041830043657418, 0.5392782673950876]),
'versicolor&1&66': np.array([0.1413116283690917, 0.7479856297394165]),
'versicolor&1&67': np.array([0.189773257421942, 0.6552150653012478]),
'versicolor&1&68': np.array([0.40694846236352233, 0.5109051764198169]),
'versicolor&1&69': np.array([0.1390424906594644, 0.7991613016301518]),
'versicolor&1&70': np.array([0.1945777487290197, 0.6743932844312892]),
'versicolor&1&71': np.array([0.415695226122737, 0.5230815102377903]),
'versicolor&1&72': np.array([0.25657760110071476, 0.12592645350389123]),
'versicolor&1&73': np.array([0.25657760110071476, 0.12592645350389123]),
'versicolor&1&74': np.array([0.13717260713320106, 0.3627779907901665]),
'versicolor&1&75': np.array([0.0, 0.4756207622944677]),
'versicolor&1&76': np.array([0.0, 0.4854334805210761]),
'versicolor&1&77': np.array([0.0, 0.16885577975809635]),
'versicolor&1&78': np.array([0.0, 0.395805885538554]),
'versicolor&1&79': np.array([0.0, 0.2538072707138344]),
'versicolor&1&80': np.array([0.0, 0.4854334805210761]),
'versicolor&1&81': np.array([0.0, 0.7613919530844643]),
'versicolor&1&82': np.array([0.0, 0.6668230985485095]),
'versicolor&1&83': np.array([0.0, 0.4904755652105692]),
'versicolor&1&84': np.array([0.0, 0.8121046082359693]),
'versicolor&1&85': np.array([0.0, 0.6855766903749089]),
'versicolor&1&86': np.array([0.0, 0.5008471974438506]),
'versicolor&1&87': np.array([0.0, 0.16885577975809635]),
'versicolor&1&88': np.array([0.0, 0.16885577975809635]),
'versicolor&1&89': np.array([0.0, 0.395805885538554]),
'versicolor&1&90': np.array([0.37157553889555184, 0.1221600832023858]),
'versicolor&1&91': np.array([0.2463036871609408, 0.24630368716093934]),
'versicolor&1&92': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&93': np.array([0.6718337295341267, 0.6620422637360075]),
'versicolor&1&94': np.array([0.4964962439921071, 0.3798215458387346]),
'versicolor&1&95': np.array([0.2463036871609408, 0.24630368716093934]),
'versicolor&1&96': np.array([0.2805345936193346, 0.6595182922149835]),
'versicolor&1&97': np.array([0.08302493125394889, 0.6186280682763334]),
'versicolor&1&98': np.array([0.22125635302655813, 0.2925832702358638]),
'versicolor&1&99': np.array([0.2365788606456636, 0.7120007179768731]),
'versicolor&1&100': np.array([0.022347126801293967, 0.6718013300441928]),
'versicolor&1&101': np.array([0.10063786451829529, 0.4085974066833644]),
'versicolor&1&102': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&103': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&104': np.array([0.6718337295341267, 0.6620422637360075]),
'versicolor&1&105': np.array([-0.32199975656257646, 0.7482293552463756]),
'versicolor&1&106': np.array([-0.43843349141088417, 0.8642740701867917]),
'versicolor&1&107': np.array([0.7141739659554727, 0.6619819140152878]),
'versicolor&1&108': np.array([0.44460014335081516, 0.6107546840046902]),
'versicolor&1&109': np.array([0.2619265016777598, 0.33491141590339474]),
'versicolor&1&110': np.array([-0.43843349141088417, 0.8642740701867917]),
'versicolor&1&111': np.array([0.20183015430619713, 0.7445346002055082]),
'versicolor&1&112': np.array([-0.05987874887638573, 0.6927937290176818]),
'versicolor&1&113': np.array([-0.2562642052727569, 0.6920266972283227]),
'versicolor&1&114': np.array([0.1736438124560164, 0.7898174616442941]),
'versicolor&1&115': np.array([-0.10114089899940126, 0.7326610366533243]),
'versicolor&1&116': np.array([-0.34479806250338163, 0.7789143553916729]),
'versicolor&1&117': np.array([0.7141739659554727, 0.6619819140152878]),
'versicolor&1&118': np.array([0.7141739659554727, 0.6619819140152878]),
'versicolor&1&119': np.array([0.44460014335081516, 0.6107546840046902]),
'versicolor&1&120': np.array([0.8224435822504677, 0.05315271528828394]),
'versicolor&1&121': np.array([0.820222886307464, 0.055413714884152906]),
'versicolor&1&122': np.array([0.8393089066702096, 0.0788980157959197]),
'versicolor&1&123': np.array([0.8282924295054531, 0.0752641855714259]),
'versicolor&1&124': np.array([0.8476206690613984, 0.02146454924522743]),
'versicolor&1&125': np.array([0.820222886307464, 0.055413714884152906]),
'versicolor&1&126': np.array([0.69362517791403, 0.2579390890424607]),
'versicolor&1&127': np.array([0.7261791877801502, 0.16248655642013624]),
'versicolor&1&128': np.array([0.8190416077589757, 0.05661509439536992]),
'versicolor&1&129': np.array([0.6654762076749751, 0.2949291633432878]),
'versicolor&1&130': np.array([0.7118161070185614, 0.17683644094125878]),
'versicolor&1&131': np.array([0.8165214253946836, 0.059175619390630096]),
'versicolor&1&132': np.array([0.8393089066702096, 0.0788980157959197]),
'versicolor&1&133': np.array([0.8393089066702096, 0.0788980157959197]),
'versicolor&1&134': np.array([0.8282924295054531, 0.0752641855714259]),
'versicolor&1&135': np.array([0.5188109114552927, 0.03638964581864269]),
'versicolor&1&136': np.array([0.5131478569192371, 0.04203387599862816]),
'versicolor&1&137': np.array([0.73294627367007, 0.4610490766898855]),
'versicolor&1&138': np.array([0.5965042032375719, 0.48856644624972617]),
'versicolor&1&139': np.array([0.5436097000280874, 0.1461891067488832]),
'versicolor&1&140': np.array([0.5131478569192371, 0.04203387599862816]),
'versicolor&1&141': np.array([0.32513442685780247, 0.6124765483184536]),
'versicolor&1&142': np.array([0.1812883360919208, 0.5504982486874137]),
'versicolor&1&143': np.array([0.4788153032824012, 0.08625929936974323]),
'versicolor&1&144': np.array([0.28490718210609345, 0.6650298146522879]),
'versicolor&1&145': np.array([0.1313204067730033, 0.597079642504441]),
'versicolor&1&146': np.array([0.46583127837967303, 0.09875847161509169]),
'versicolor&1&147': np.array([0.73294627367007, 0.4610490766898855]),
'versicolor&1&148': np.array([0.73294627367007, 0.4610490766898855]),
'versicolor&1&149': np.array([0.5965042032375719, 0.48856644624972617]),
'versicolor&1&150': np.array([0.37157553889555184, 0.1221600832023858]),
'versicolor&1&151': np.array([0.2463036871609408, 0.24630368716093934]),
'versicolor&1&152': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&153': np.array([0.6718337295341267, 0.6620422637360075]),
'versicolor&1&154': np.array([0.4964962439921071, 0.3798215458387346]),
'versicolor&1&155': np.array([0.2463036871609408, 0.24630368716093934]),
'versicolor&1&156': np.array([0.2805345936193346, 0.6595182922149835]),
'versicolor&1&157': np.array([0.08302493125394889, 0.6186280682763334]),
'versicolor&1&158': np.array([0.22125635302655813, 0.2925832702358638]),
'versicolor&1&159': np.array([0.2365788606456636, 0.7120007179768731]),
'versicolor&1&160': np.array([0.022347126801293967, 0.6718013300441928]),
'versicolor&1&161': np.array([0.10063786451829529, 0.4085974066833644]),
'versicolor&1&162': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&163': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&164': np.array([0.6718337295341267, 0.6620422637360075]),
'versicolor&1&165': np.array([-0.32199975656257646, 0.7482293552463756]),
'versicolor&1&166': np.array([-0.43843349141088417, 0.8642740701867917]),
'versicolor&1&167': np.array([0.7141739659554727, 0.6619819140152878]),
'versicolor&1&168': np.array([0.44460014335081516, 0.6107546840046902]),
'versicolor&1&169': np.array([0.2619265016777598, 0.33491141590339474]),
'versicolor&1&170': np.array([-0.43843349141088417, 0.8642740701867917]),
'versicolor&1&171': np.array([0.20183015430619713, 0.7445346002055082]),
'versicolor&1&172': np.array([-0.05987874887638573, 0.6927937290176818]),
'versicolor&1&173': np.array([-0.2562642052727569, 0.6920266972283227]),
'versicolor&1&174': np.array([0.1736438124560164, 0.7898174616442941]),
'versicolor&1&175': np.array([-0.10114089899940126, 0.7326610366533243]),
'versicolor&1&176': np.array([-0.34479806250338163, 0.7789143553916729]),
'versicolor&1&177': np.array([0.7141739659554727, 0.6619819140152878]),
'versicolor&1&178': np.array([0.7141739659554727, 0.6619819140152878]),
'versicolor&1&179': np.array([0.44460014335081516, 0.6107546840046902]),
'versicolor&1&180': np.array([0.8224435822504677, 0.05315271528828394]),
'versicolor&1&181': np.array([0.820222886307464, 0.055413714884152906]),
'versicolor&1&182': np.array([0.8393089066702096, 0.0788980157959197]),
'versicolor&1&183': np.array([0.8282924295054531, 0.0752641855714259]),
'versicolor&1&184': np.array([0.8476206690613984, 0.02146454924522743]),
'versicolor&1&185': np.array([0.820222886307464, 0.055413714884152906]),
'versicolor&1&186': np.array([0.69362517791403, 0.2579390890424607]),
'versicolor&1&187': np.array([0.7261791877801502, 0.16248655642013624]),
'versicolor&1&188': np.array([0.8190416077589757, 0.05661509439536992]),
'versicolor&1&189': np.array([0.6654762076749751, 0.2949291633432878]),
'versicolor&1&190': np.array([0.7118161070185614, 0.17683644094125878]),
'versicolor&1&191': np.array([0.8165214253946836, 0.059175619390630096]),
'versicolor&1&192': np.array([0.8393089066702096, 0.0788980157959197]),
'versicolor&1&193': np.array([0.8393089066702096, 0.0788980157959197]),
'versicolor&1&194': np.array([0.8282924295054531, 0.0752641855714259]),
'versicolor&1&195': np.array([0.5188109114552927, 0.03638964581864269]),
'versicolor&1&196': np.array([0.5131478569192371, 0.04203387599862816]),
'versicolor&1&197': np.array([0.73294627367007, 0.4610490766898855]),
'versicolor&1&198': np.array([0.5965042032375719, 0.48856644624972617]),
'versicolor&1&199': np.array([0.5436097000280874, 0.1461891067488832]),
'versicolor&1&200': np.array([0.5131478569192371, 0.04203387599862816]),
'versicolor&1&201': np.array([0.32513442685780247, 0.6124765483184536]),
'versicolor&1&202': np.array([0.1812883360919208, 0.5504982486874137]),
'versicolor&1&203': np.array([0.4788153032824012, 0.08625929936974323]),
'versicolor&1&204': np.array([0.28490718210609345, 0.6650298146522879]),
'versicolor&1&205': np.array([0.1313204067730033, 0.597079642504441]),
'versicolor&1&206': np.array([0.46583127837967303, 0.09875847161509169]),
'versicolor&1&207': np.array([0.73294627367007, 0.4610490766898855]),
'versicolor&1&208': np.array([0.73294627367007, 0.4610490766898855]),
'versicolor&1&209': np.array([0.5965042032375719, 0.48856644624972617]),
'versicolor&1&210': np.array([0.37157553889555184, 0.1221600832023858]),
'versicolor&1&211': np.array([0.2463036871609408, 0.24630368716093934]),
'versicolor&1&212': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&213': np.array([0.6718337295341267, 0.6620422637360075]),
'versicolor&1&214': np.array([0.4964962439921071, 0.3798215458387346]),
'versicolor&1&215': np.array([0.2463036871609408, 0.24630368716093934]),
'versicolor&1&216': np.array([0.2805345936193346, 0.6595182922149835]),
'versicolor&1&217': np.array([0.08302493125394889, 0.6186280682763334]),
'versicolor&1&218': np.array([0.22125635302655813, 0.2925832702358638]),
'versicolor&1&219': np.array([0.2365788606456636, 0.7120007179768731]),
'versicolor&1&220': np.array([0.022347126801293967, 0.6718013300441928]),
'versicolor&1&221': np.array([0.10063786451829529, 0.4085974066833644]),
'versicolor&1&222': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&223': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&224': np.array([0.6718337295341267, 0.6620422637360075]),
'versicolor&1&225': np.array([0.6253337666017573, 0.21983620140147825]),
'versicolor&1&226': np.array([0.6178968870349187, 0.22747652768125623]),
'versicolor&1&227': np.array([0.7245803616608639, 0.18141483095066183]),
'versicolor&1&228': np.array([0.6762617119303499, 0.19305674697949574]),
'versicolor&1&229': np.array([0.7182033715159247, 0.0970420677941148]),
'versicolor&1&230': np.array([0.6178968870349187, 0.22747652768125623]),
'versicolor&1&231': np.array([0.4976586558055923, 0.5393318265947251]),
'versicolor&1&232': np.array([0.4361093214026388, 0.4279491486345008]),
'versicolor&1&233': np.array([0.613985959011319, 0.23148898930908424]),
'versicolor&1&234': np.array([0.46747697713468217, 0.586607956360002]),
'versicolor&1&235': np.array([0.41044950174869577, 0.45415985894965977]),
'versicolor&1&236': np.array([0.6057447478066579, 0.23993389556303918]),
'versicolor&1&237': np.array([0.7245803616608639, 0.18141483095066183]),
'versicolor&1&238': np.array([0.7245803616608639, 0.18141483095066183]),
'versicolor&1&239': np.array([0.6762617119303499, 0.19305674697949574]),
'versicolor&1&240': np.array([0.056623968925773045, 0.43360725859686644]),
'versicolor&1&241': np.array([0.020169511418752378, 0.47015948158260334]),
'versicolor&1&242': np.array([0.5806365328450954, 0.47262706807712623]),
'versicolor&1&243': np.array([0.4146290154471569, 0.4964318942067898]),
'versicolor&1&244': np.array([0.3351719071445682, 0.20616862401308342]),
'versicolor&1&245': np.array([0.020169511418752378, 0.47015948158260334]),
'versicolor&1&246': np.array([0.24022705822940116, 0.7185371033867092]),
'versicolor&1&247': np.array([0.010447231513465048, 0.6616528865917504]),
'versicolor&1&248': np.array([0.024556360933646205, 0.4723948285969902]),
'versicolor&1&249': np.array([0.21321406009810842, 0.7648907754638917]),
'versicolor&1&250': np.array([-0.027450681014480036, 0.6999336015080245]),
'versicolor&1&251': np.array([-0.0164329511444131, 0.5132208276383963]),
'versicolor&1&252': np.array([0.5806365328450954, 0.47262706807712623]),
'versicolor&1&253': np.array([0.5806365328450954, 0.47262706807712623]),
'versicolor&1&254': np.array([0.4146290154471569, 0.4964318942067898]),
'versicolor&1&255': np.array([-0.32199975656257646, 0.7482293552463756]),
'versicolor&1&256': np.array([-0.43843349141088417, 0.8642740701867917]),
'versicolor&1&257': np.array([0.7141739659554727, 0.6619819140152878]),
'versicolor&1&258': np.array([0.44460014335081516, 0.6107546840046902]),
'versicolor&1&259': np.array([0.2619265016777598, 0.33491141590339474]),
'versicolor&1&260': np.array([-0.43843349141088417, 0.8642740701867917]),
'versicolor&1&261': np.array([0.20183015430619713, 0.7445346002055082]),
'versicolor&1&262': np.array([-0.05987874887638573, 0.6927937290176818]),
'versicolor&1&263': np.array([-0.2562642052727569, 0.6920266972283227]),
'versicolor&1&264': np.array([0.1736438124560164, 0.7898174616442941]),
'versicolor&1&265': np.array([-0.10114089899940126, 0.7326610366533243]),
'versicolor&1&266': np.array([-0.34479806250338163, 0.7789143553916729]),
'versicolor&1&267': np.array([0.7141739659554727, 0.6619819140152878]),
'versicolor&1&268': np.array([0.7141739659554727, 0.6619819140152878]),
'versicolor&1&269': np.array([0.44460014335081516, 0.6107546840046902]),
'versicolor&1&270': np.array([0.7749499208750119, 0.8147189440804429]),
'versicolor&1&271': np.array([0.8040309195416899, 0.8445152504134819]),
'versicolor&1&272': np.array([0.5826506963750848, -0.22335655671229107]),
'versicolor&1&273': np.array([0.33108168891715983, 0.13647816746351163]),
'versicolor&1&274': np.array([0.4079256832347186, 0.038455640985860955]),
'versicolor&1&275': np.array([0.8040309195416899, 0.8445152504134819]),
'versicolor&1&276': np.array([0.18555813792691386, 0.6940923833143309]),
'versicolor&1&277': np.array([0.32639262064172164, 0.6296083447134281]),
'versicolor&1&278': np.array([0.6964303997553315, 0.7444536452136676]),
'versicolor&1&279': np.array([0.18216358701833335, 0.747615101407194]),
'versicolor&1&280': np.array([0.33549445287370383, 0.6526039763053625]),
'versicolor&1&281': np.array([0.7213651642695392, 0.7718874443854203]),
'versicolor&1&282': np.array([0.5826506963750848, -0.22335655671229107]),
'versicolor&1&283': np.array([0.5826506963750848, -0.22335655671229107]),
'versicolor&1&284': np.array([0.33108168891715983, 0.13647816746351163]),
'versicolor&1&285': np.array([0.7749499208750119, 0.8147189440804429]),
'versicolor&1&286': np.array([0.8040309195416899, 0.8445152504134819]),
'versicolor&1&287': np.array([0.5826506963750848, -0.22335655671229107]),
'versicolor&1&288': np.array([0.33108168891715983, 0.13647816746351163]),
'versicolor&1&289': np.array([0.4079256832347186, 0.038455640985860955]),
'versicolor&1&290': np.array([0.8040309195416899, 0.8445152504134819]),
'versicolor&1&291': np.array([0.18555813792691386, 0.6940923833143309]),
'versicolor&1&292': np.array([0.32639262064172164, 0.6296083447134281]),
'versicolor&1&293': np.array([0.6964303997553315, 0.7444536452136676]),
'versicolor&1&294': np.array([0.18216358701833335, 0.747615101407194]),
'versicolor&1&295': np.array([0.33549445287370383, 0.6526039763053625]),
'versicolor&1&296': np.array([0.7213651642695392, 0.7718874443854203]),
'versicolor&1&297': np.array([0.5826506963750848, -0.22335655671229107]),
'versicolor&1&298': np.array([0.5826506963750848, -0.22335655671229107]),
'versicolor&1&299': np.array([0.33108168891715983, 0.13647816746351163]),
'versicolor&1&300': np.array([0.4933316375690332, 0.5272416708629276]),
'versicolor&1&301': np.array([0.5041830043657418, 0.5392782673950876]),
'versicolor&1&302': np.array([0.25657760110071476, 0.12592645350389123]),
'versicolor&1&303': np.array([0.13717260713320106, 0.3627779907901665]),
'versicolor&1&304': np.array([0.3093950298647913, 0.1140298206733954]),
'versicolor&1&305': np.array([0.5041830043657418, 0.5392782673950876]),
'versicolor&1&306': np.array([0.1413116283690917, 0.7479856297394165]),
'versicolor&1&307': np.array([0.189773257421942, 0.6552150653012478]),
'versicolor&1&308': np.array([0.40694846236352233, 0.5109051764198169]),
'versicolor&1&309': np.array([0.1390424906594644, 0.7991613016301518]),
'versicolor&1&310': np.array([0.1945777487290197, 0.6743932844312892]),
'versicolor&1&311': np.array([0.415695226122737, 0.5230815102377903]),
'versicolor&1&312': np.array([0.25657760110071476, 0.12592645350389123]),
'versicolor&1&313': np.array([0.25657760110071476, 0.12592645350389123]),
'versicolor&1&314': np.array([0.13717260713320106, 0.3627779907901665]),
'versicolor&2&0': np.array([0.37157691321004915, 0.12216227283618836]),
'versicolor&2&1': np.array([0.24630541996506908, 0.24630541996506994]),
'versicolor&2&2': np.array([0.04449246321056282, -0.709644945972203]),
'versicolor&2&3': np.array([0.2953784217387408, -0.6750352694420283]),
'versicolor&2&4': np.array([0.4741571944522723, -0.3872697414416878]),
'versicolor&2&5': np.array([0.24630541996506908, 0.24630541996506994]),
'versicolor&2&6': np.array([0.68663266357557, -0.6475988779804592]),
'versicolor&2&7': np.array([0.8701760330833639, -0.5914646440996656]),
'versicolor&2&8': np.array([0.6273836195848199, -0.15720981251964872]),
'versicolor&2&9': np.array([0.7292373173099087, -0.6975400952780954]),
'versicolor&2&10': np.array([0.9270035696082471, -0.640582639672401]),
'versicolor&2&11': np.array([0.6863652799597699, -0.21335694415409426]),
'versicolor&2&12': np.array([0.04449246321056282, -0.709644945972203]),
'versicolor&2&13': np.array([0.04449246321056282, -0.709644945972203]),
'versicolor&2&14': np.array([0.2953784217387408, -0.6750352694420283]),
'versicolor&2&15': np.array([0.37157691321004915, 0.12216227283618836]),
'versicolor&2&16': np.array([0.24630541996506908, 0.24630541996506994]),
'versicolor&2&17': np.array([0.04449246321056282, -0.709644945972203]),
'versicolor&2&18': np.array([0.2953784217387408, -0.6750352694420283]),
'versicolor&2&19': np.array([0.4741571944522723, -0.3872697414416878]),
'versicolor&2&20': np.array([0.24630541996506908, 0.24630541996506994]),
'versicolor&2&21': np.array([0.68663266357557, -0.6475988779804592]),
'versicolor&2&22': np.array([0.8701760330833639, -0.5914646440996656]),
'versicolor&2&23': np.array([0.6273836195848199, -0.15720981251964872]),
'versicolor&2&24': np.array([0.7292373173099087, -0.6975400952780954]),
'versicolor&2&25': np.array([0.9270035696082471, -0.640582639672401]),
'versicolor&2&26': np.array([0.6863652799597699, -0.21335694415409426]),
'versicolor&2&27': np.array([0.04449246321056282, -0.709644945972203]),
'versicolor&2&28': np.array([0.04449246321056282, -0.709644945972203]),
'versicolor&2&29': np.array([0.2953784217387408, -0.6750352694420283]),
'versicolor&2&30': np.array([0.5188517506916897, 0.036358567813067386]),
'versicolor&2&31': np.array([0.5131939273945454, 0.04199748266790813]),
'versicolor&2&32': np.array([0.06285591932387405, -0.6914253444924359]),
'versicolor&2&33': np.array([0.34904320225465857, -0.6233384360811872]),
'versicolor&2&34': np.array([0.5354807894355184, -0.3418054346754283]),
'versicolor&2&35': np.array([0.5131939273945454, 0.04199748266790813]),
'versicolor&2&36': np.array([0.5761361484884252, -0.44637460220261904]),
'versicolor&2&37': np.array([0.7268664040181829, -0.40159406680426807]),
'versicolor&2&38': np.array([0.5917672401610737, -0.061499563231173816]),
'versicolor&2&39': np.array([0.5921993039887428, -0.46498571089163954]),
'versicolor&2&40': np.array([0.7470482158282458, -0.4169281153671854]),
'versicolor&2&41': np.array([0.5967658480721675, -0.06546963852548916]),
'versicolor&2&42': np.array([0.06285591932387405, -0.6914253444924359]),
'versicolor&2&43': np.array([0.06285591932387405, -0.6914253444924359]),
'versicolor&2&44': np.array([0.34904320225465857, -0.6233384360811872]),
'versicolor&2&45': np.array([-0.8252668830593566, 0.11450866713130668]),
'versicolor&2&46': np.array([-0.8211795643076095, 0.11869650771610692]),
'versicolor&2&47': np.array([-0.6441664102689847, -0.3012046426099901]),
'versicolor&2&48': np.array([-0.7640280271176497, -0.19364537761420375]),
'versicolor&2&49': np.array([-0.8735738195653328, -0.046438180466149094]),
'versicolor&2&50': np.array([-0.8211795643076095, 0.11869650771610692]),
'versicolor&2&51': np.array([-0.8470213454017305, -0.0910504504559782]),
'versicolor&2&52': np.array([-0.8783521565540571, 0.01381094589198601]),
'versicolor&2&53': np.array([-0.8388485924434891, 0.09800790238640067]),
'versicolor&2&54': np.array([-0.8495871633670822, -0.08820642363054954]),
'versicolor&2&55': np.array([-0.8784816772224661, 0.017184907022714958]),
'versicolor&2&56': np.array([-0.835455914569297, 0.10189258327760495]),
'versicolor&2&57': np.array([-0.6441664102689847, -0.3012046426099901]),
'versicolor&2&58': np.array([-0.6441664102689847, -0.3012046426099901]),
'versicolor&2&59': np.array([-0.7640280271176497, -0.19364537761420375]),
'versicolor&2&60': np.array([-0.5227340800279543, 0.4209267574088147]),
'versicolor&2&61': np.array([-0.5140708637198534, 0.4305361238057349]),
'versicolor&2&62': np.array([-0.2661726847443776, -0.6902916602462779]),
'versicolor&2&63': np.array([-0.2741128763380603, -0.7260889090887469]),
'versicolor&2&64': np.array([-0.6188410763351541, -0.22803625884668638]),
'versicolor&2&65': np.array([-0.5140708637198534, 0.4305361238057349]),
'versicolor&2&66': np.array([-0.56940429361245, -0.3442345437882425]),
'versicolor&2&67': np.array([-0.6452502612229726, -0.04686872432129788]),
'versicolor&2&68': np.array([-0.596973015481227, 0.37395461795328944]),
'versicolor&2&69': np.array([-0.5760086048531655, -0.3353570725513232]),
'versicolor&2&70': np.array([-0.6488228567611906, -0.03186184826812757]),
'versicolor&2&71': np.array([-0.5903420131350324, 0.384224764046184]),
'versicolor&2&72': np.array([-0.2661726847443776, -0.6902916602462779]),
'versicolor&2&73': np.array([-0.2661726847443776, -0.6902916602462779]),
'versicolor&2&74': np.array([-0.2741128763380603, -0.7260889090887469]),
'versicolor&2&75': np.array([0.0, 0.47562425924289314]),
'versicolor&2&76': np.array([0.0, 0.4854368956593117]),
'versicolor&2&77': np.array([0.0, -0.7348263896003956]),
'versicolor&2&78': np.array([0.0, -0.7920887571493729]),
'versicolor&2&79': np.array([0.0, -0.507614207038711]),
'versicolor&2&80': np.array([0.0, 0.4854368956593117]),
'versicolor&2&81': np.array([0.0, -0.3982542883933272]),
'versicolor&2&82': np.array([0.0, -0.08633733326458487]),
'versicolor&2&83': np.array([0.0, 0.4039238345412103]),
'versicolor&2&84': np.array([0.0, -0.38897705551367706]),
'versicolor&2&85': np.array([0.0, -0.06915310813754129]),
'versicolor&2&86': np.array([0.0, 0.41580041887839214]),
'versicolor&2&87': np.array([0.0, -0.7348263896003956]),
'versicolor&2&88': np.array([0.0, -0.7348263896003956]),
'versicolor&2&89': np.array([0.0, -0.7920887571493729]),
'versicolor&2&90': np.array([0.37157691321004915, 0.12216227283618836]),
'versicolor&2&91': np.array([0.24630541996506908, 0.24630541996506994]),
'versicolor&2&92': np.array([0.04449246321056282, -0.709644945972203]),
'versicolor&2&93': np.array([0.2953784217387408, -0.6750352694420283]),
'versicolor&2&94': np.array([0.4741571944522723, -0.3872697414416878]),
'versicolor&2&95': np.array([0.24630541996506908, 0.24630541996506994]),
'versicolor&2&96': np.array([0.68663266357557, -0.6475988779804592]),
'versicolor&2&97': np.array([0.8701760330833639, -0.5914646440996656]),
'versicolor&2&98': np.array([0.6273836195848199, -0.15720981251964872]),
'versicolor&2&99': np.array([0.7292373173099087, -0.6975400952780954]),
'versicolor&2&100': np.array([0.9270035696082471, -0.640582639672401]),
'versicolor&2&101': np.array([0.6863652799597699, -0.21335694415409426]),
'versicolor&2&102': np.array([0.04449246321056282, -0.709644945972203]),
'versicolor&2&103': np.array([0.04449246321056282, -0.709644945972203]),
'versicolor&2&104': np.array([0.2953784217387408, -0.6750352694420283]),
'versicolor&2&105': np.array([0.5188517506916897, 0.036358567813067386]),
'versicolor&2&106': np.array([0.5131939273945454, 0.04199748266790813]),
'versicolor&2&107': np.array([0.06285591932387405, -0.6914253444924359]),
'versicolor&2&108': np.array([0.34904320225465857, -0.6233384360811872]),
'versicolor&2&109': np.array([0.5354807894355184, -0.3418054346754283]),
'versicolor&2&110': np.array([0.5131939273945454, 0.04199748266790813]),
'versicolor&2&111': np.array([0.5761361484884252, -0.44637460220261904]),
'versicolor&2&112': np.array([0.7268664040181829, -0.40159406680426807]),
'versicolor&2&113': np.array([0.5917672401610737, -0.061499563231173816]),
'versicolor&2&114': np.array([0.5921993039887428, -0.46498571089163954]),
'versicolor&2&115': np.array([0.7470482158282458, -0.4169281153671854]),
'versicolor&2&116': np.array([0.5967658480721675, -0.06546963852548916]),
'versicolor&2&117': np.array([0.06285591932387405, -0.6914253444924359]),
'versicolor&2&118': np.array([0.06285591932387405, -0.6914253444924359]),
'versicolor&2&119': np.array([0.34904320225465857, -0.6233384360811872]),
'versicolor&2&120': np.array([-0.7638917827493686, 0.868015757634957]),
'versicolor&2&121': np.array([-0.8001553485824509, 0.9049358162753539]),
'versicolor&2&122': np.array([-0.26179245521040034, -0.7067672760776678]),
'versicolor&2&123': np.array([-0.14690789675963867, -0.7352367260447958]),
'versicolor&2&124': np.array([-0.32941440381886555, -0.4173178729969913]),
'versicolor&2&125': np.array([-0.8001553485824509, 0.9049358162753539]),
'versicolor&2&126': np.array([-0.18291442454393395, -0.2654898014002494]),
'versicolor&2&127': np.array([-0.5797728557269727, 0.3163189837954924]),
'versicolor&2&128': np.array([-0.7579323596667402, 0.8054136823046655]),
'versicolor&2&129': np.array([-0.1948624323669993, -0.23753953755286383]),
'versicolor&2&130': np.array([-0.6437698977881832, 0.3909540110317858]),
'versicolor&2&131': np.array([-0.7963046521980063, 0.846536369471985]),
'versicolor&2&132': np.array([-0.26179245521040034, -0.7067672760776678]),
'versicolor&2&133': np.array([-0.26179245521040034, -0.7067672760776678]),
'versicolor&2&134': np.array([-0.14690789675963867, -0.7352367260447958]),
'versicolor&2&135': np.array([-0.3219660907491514, 0.7482043503408669]),
'versicolor&2&136': np.array([-0.43839553940476644, 0.8642446918440131]),
'versicolor&2&137': np.array([-0.05474251929945989, -0.7566498134597841]),
'versicolor&2&138': np.array([0.17291299562995102, -0.7651995812779756]),
'versicolor&2&139': np.array([0.2626914501948546, -0.5596191134224637]),
'versicolor&2&140': np.array([-0.43839553940476644, 0.8642446918440131]),
'versicolor&2&141': np.array([0.4734444929420575, -0.6150974537943872]),
'versicolor&2&142': np.array([0.5369392542176313, -0.430867927332838]),
'versicolor&2&143': np.array([-0.19892251970509112, 0.5718543863753405]),
'versicolor&2&144': np.array([0.5071047612208237, -0.6507546896558788]),
'versicolor&2&145': np.array([0.5629877361048359, -0.4485515113017818]),
'versicolor&2&146': np.array([-0.3047657227470458, 0.6788631774846587]),
'versicolor&2&147': np.array([-0.05474251929945989, -0.7566498134597841]),
'versicolor&2&148': np.array([-0.05474251929945989, -0.7566498134597841]),
'versicolor&2&149': np.array([0.17291299562995102, -0.7651995812779756]),
'versicolor&2&150': np.array([0.37157691321004915, 0.12216227283618836]),
'versicolor&2&151': np.array([0.24630541996506908, 0.24630541996506994]),
'versicolor&2&152': np.array([0.04449246321056282, -0.709644945972203]),
'versicolor&2&153': np.array([0.2953784217387408, -0.6750352694420283]),
'versicolor&2&154': np.array([0.4741571944522723, -0.3872697414416878]),
'versicolor&2&155': np.array([0.24630541996506908, 0.24630541996506994]),
'versicolor&2&156': np.array([0.68663266357557, -0.6475988779804592]),
'versicolor&2&157': np.array([0.8701760330833639, -0.5914646440996656]),
'versicolor&2&158': np.array([0.6273836195848199, -0.15720981251964872]),
'versicolor&2&159': np.array([0.7292373173099087, -0.6975400952780954]),
'versicolor&2&160': np.array([0.9270035696082471, -0.640582639672401]),
'versicolor&2&161': np.array([0.6863652799597699, -0.21335694415409426]),
'versicolor&2&162': np.array([0.04449246321056282, -0.709644945972203]),
'versicolor&2&163': np.array([0.04449246321056282, -0.709644945972203]),
'versicolor&2&164': np.array([0.2953784217387408, -0.6750352694420283]),
'versicolor&2&165': np.array([0.5188517506916897, 0.036358567813067386]),
'versicolor&2&166': np.array([0.5131939273945454, 0.04199748266790813]),
'versicolor&2&167': np.array([0.06285591932387405, -0.6914253444924359]),
'versicolor&2&168': np.array([0.34904320225465857, -0.6233384360811872]),
'versicolor&2&169': np.array([0.5354807894355184, -0.3418054346754283]),
'versicolor&2&170': np.array([0.5131939273945454, 0.04199748266790813]),
'versicolor&2&171': np.array([0.5761361484884252, -0.44637460220261904]),
'versicolor&2&172': np.array([0.7268664040181829, -0.40159406680426807]),
'versicolor&2&173': np.array([0.5917672401610737, -0.061499563231173816]),
'versicolor&2&174': np.array([0.5921993039887428, -0.46498571089163954]),
'versicolor&2&175': np.array([0.7470482158282458, -0.4169281153671854]),
'versicolor&2&176': np.array([0.5967658480721675, -0.06546963852548916]),
'versicolor&2&177': np.array([0.06285591932387405, -0.6914253444924359]),
'versicolor&2&178': np.array([0.06285591932387405, -0.6914253444924359]),
'versicolor&2&179': np.array([0.34904320225465857, -0.6233384360811872]),
'versicolor&2&180': np.array([-0.7638917827493686, 0.868015757634957]),
'versicolor&2&181': np.array([-0.8001553485824509, 0.9049358162753539]),
'versicolor&2&182': np.array([-0.26179245521040034, -0.7067672760776678]),
'versicolor&2&183': np.array([-0.14690789675963867, -0.7352367260447958]),
'versicolor&2&184': np.array([-0.32941440381886555, -0.4173178729969913]),
'versicolor&2&185': np.array([-0.8001553485824509, 0.9049358162753539]),
'versicolor&2&186': np.array([-0.18291442454393395, -0.2654898014002494]),
'versicolor&2&187': np.array([-0.5797728557269727, 0.3163189837954924]),
'versicolor&2&188': np.array([-0.7579323596667402, 0.8054136823046655]),
'versicolor&2&189': np.array([-0.1948624323669993, -0.23753953755286383]),
'versicolor&2&190': np.array([-0.6437698977881832, 0.3909540110317858]),
'versicolor&2&191': np.array([-0.7963046521980063, 0.846536369471985]),
'versicolor&2&192': np.array([-0.26179245521040034, -0.7067672760776678]),
'versicolor&2&193': np.array([-0.26179245521040034, -0.7067672760776678]),
'versicolor&2&194': np.array([-0.14690789675963867, -0.7352367260447958]),
'versicolor&2&195': np.array([-0.3219660907491514, 0.7482043503408669]),
'versicolor&2&196': np.array([-0.43839553940476644, 0.8642446918440131]),
'versicolor&2&197': np.array([-0.05474251929945989, -0.7566498134597841]),
'versicolor&2&198': np.array([0.17291299562995102, -0.7651995812779756]),
'versicolor&2&199': np.array([0.2626914501948546, -0.5596191134224637]),
'versicolor&2&200': np.array([-0.43839553940476644, 0.8642446918440131]),
'versicolor&2&201': np.array([0.4734444929420575, -0.6150974537943872]),
'versicolor&2&202': np.array([0.5369392542176313, -0.430867927332838]),
'versicolor&2&203': np.array([-0.19892251970509112, 0.5718543863753405]),
'versicolor&2&204': np.array([0.5071047612208237, -0.6507546896558788]),
'versicolor&2&205': np.array([0.5629877361048359, -0.4485515113017818]),
'versicolor&2&206': np.array([-0.3047657227470458, 0.6788631774846587]),
'versicolor&2&207': np.array([-0.05474251929945989, -0.7566498134597841]),
'versicolor&2&208': np.array([-0.05474251929945989, -0.7566498134597841]),
'versicolor&2&209': np.array([0.17291299562995102, -0.7651995812779756]),
'versicolor&2&210': np.array([0.37157691321004915, 0.12216227283618836]),
'versicolor&2&211': np.array([0.24630541996506908, 0.24630541996506994]),
'versicolor&2&212': np.array([0.04449246321056282, -0.709644945972203]),
'versicolor&2&213': np.array([0.2953784217387408, -0.6750352694420283]),
'versicolor&2&214': np.array([0.4741571944522723, -0.3872697414416878]),
'versicolor&2&215': np.array([0.24630541996506908, 0.24630541996506994]),
'versicolor&2&216': np.array([0.68663266357557, -0.6475988779804592]),
'versicolor&2&217': np.array([0.8701760330833639, -0.5914646440996656]),
'versicolor&2&218': np.array([0.6273836195848199, -0.15720981251964872]),
'versicolor&2&219': np.array([0.7292373173099087, -0.6975400952780954]),
'versicolor&2&220': np.array([0.9270035696082471, -0.640582639672401]),
'versicolor&2&221': np.array([0.6863652799597699, -0.21335694415409426]),
'versicolor&2&222': np.array([0.04449246321056282, -0.709644945972203]),
'versicolor&2&223': np.array([0.04449246321056282, -0.709644945972203]),
'versicolor&2&224': np.array([0.2953784217387408, -0.6750352694420283]),
'versicolor&2&225': np.array([-0.5775629083348267, 0.7118687782288384]),
'versicolor&2&226': np.array([-0.6016445709024666, 0.7366089009875252]),
'versicolor&2&227': np.array([-0.28356111726513855, -0.739741315226852]),
'versicolor&2&228': np.array([-0.0917622729715107, -0.7645776302158537]),
'versicolor&2&229': np.array([-0.25603689955471853, -0.451727980232351]),
'versicolor&2&230': np.array([-0.6016445709024666, 0.7366089009875252]),
'versicolor&2&231': np.array([-0.1269405801024398, -0.34161216844748166]),
'versicolor&2&232': np.array([-0.33176333807327857, 0.09538228407203546]),
'versicolor&2&233': np.array([-0.564696311454556, 0.6421194512020755]),
'versicolor&2&234': np.array([-0.12669523681593967, -0.32786313310034665]),
'versicolor&2&235': np.array([-0.35960845047491363, 0.1335988694092619]),
'versicolor&2&236': np.array([-0.589572650064144, 0.6697478899606418]),
'versicolor&2&237': np.array([-0.28356111726513855, -0.739741315226852]),
'versicolor&2&238': np.array([-0.28356111726513855, -0.739741315226852]),
'versicolor&2&239': np.array([-0.0917622729715107, -0.7645776302158537]),
'versicolor&2&240': np.array([0.05667262840030629, 0.4335746514880877]),
'versicolor&2&241': np.array([0.0202211257171063, 0.470123810164804]),
'versicolor&2&242': np.array([-0.052990507284891984, -0.7625494034929868]),
'versicolor&2&243': np.array([0.22461127196921116, -0.7375780139111495]),
'versicolor&2&244': np.array([0.3463149754241171, -0.5568366400939154]),
'versicolor&2&245': np.array([0.0202211257171063, 0.470123810164804]),
'versicolor&2&246': np.array([0.4022739113634462, -0.4700171786183992]),
'versicolor&2&247': np.array([0.5046771347249378, -0.33609610934748635]),
'versicolor&2&248': np.array([0.1370187510624256, 0.30303755274337163]),
'versicolor&2&249': np.array([0.41683021879255133, -0.4812793747667524]),
'versicolor&2&250': np.array([0.5150371666265885, -0.33852139184639396]),
'versicolor&2&251': np.array([0.10611499646955676, 0.33589829339460586]),
'versicolor&2&252': np.array([-0.052990507284891984, -0.7625494034929868]),
'versicolor&2&253': np.array([-0.052990507284891984, -0.7625494034929868]),
'versicolor&2&254': np.array([0.22461127196921116, -0.7375780139111495]),
'versicolor&2&255': np.array([0.5188517506916897, 0.036358567813067386]),
'versicolor&2&256': np.array([0.5131939273945454, 0.04199748266790813]),
'versicolor&2&257': np.array([0.06285591932387405, -0.6914253444924359]),
'versicolor&2&258': np.array([0.34904320225465857, -0.6233384360811872]),
'versicolor&2&259': np.array([0.5354807894355184, -0.3418054346754283]),
'versicolor&2&260': np.array([0.5131939273945454, 0.04199748266790813]),
'versicolor&2&261': np.array([0.5761361484884252, -0.44637460220261904]),
'versicolor&2&262': np.array([0.7268664040181829, -0.40159406680426807]),
'versicolor&2&263': np.array([0.5917672401610737, -0.061499563231173816]),
'versicolor&2&264': np.array([0.5921993039887428, -0.46498571089163954]),
'versicolor&2&265': np.array([0.7470482158282458, -0.4169281153671854]),
'versicolor&2&266': np.array([0.5967658480721675, -0.06546963852548916]),
'versicolor&2&267': np.array([0.06285591932387405, -0.6914253444924359]),
'versicolor&2&268': np.array([0.06285591932387405, -0.6914253444924359]),
'versicolor&2&269': np.array([0.34904320225465857, -0.6233384360811872]),
'versicolor&2&270': np.array([-0.8252668830593566, 0.11450866713130668]),
'versicolor&2&271': np.array([-0.8211795643076095, 0.11869650771610692]),
'versicolor&2&272': np.array([-0.6441664102689847, -0.3012046426099901]),
'versicolor&2&273': np.array([-0.7640280271176497, -0.19364537761420375]),
'versicolor&2&274': np.array([-0.8735738195653328, -0.046438180466149094]),
'versicolor&2&275': np.array([-0.8211795643076095, 0.11869650771610692]),
'versicolor&2&276': np.array([-0.8470213454017305, -0.0910504504559782]),
'versicolor&2&277': np.array([-0.8783521565540571, 0.01381094589198601]),
'versicolor&2&278': np.array([-0.8388485924434891, 0.09800790238640067]),
'versicolor&2&279': np.array([-0.8495871633670822, -0.08820642363054954]),
'versicolor&2&280': np.array([-0.8784816772224661, 0.017184907022714958]),
'versicolor&2&281': np.array([-0.835455914569297, 0.10189258327760495]),
'versicolor&2&282': np.array([-0.6441664102689847, -0.3012046426099901]),
'versicolor&2&283': np.array([-0.6441664102689847, -0.3012046426099901]),
'versicolor&2&284': np.array([-0.7640280271176497, -0.19364537761420375]),
'versicolor&2&285': np.array([-0.8252668830593566, 0.11450866713130668]),
'versicolor&2&286': np.array([-0.8211795643076095, 0.11869650771610692]),
'versicolor&2&287': np.array([-0.6441664102689847, -0.3012046426099901]),
'versicolor&2&288': np.array([-0.7640280271176497, -0.19364537761420375]),
'versicolor&2&289': np.array([-0.8735738195653328, -0.046438180466149094]),
'versicolor&2&290': np.array([-0.8211795643076095, 0.11869650771610692]),
'versicolor&2&291': np.array([-0.8470213454017305, -0.0910504504559782]),
'versicolor&2&292': np.array([-0.8783521565540571, 0.01381094589198601]),
'versicolor&2&293': np.array([-0.8388485924434891, 0.09800790238640067]),
'versicolor&2&294': np.array([-0.8495871633670822, -0.08820642363054954]),
'versicolor&2&295': np.array([-0.8784816772224661, 0.017184907022714958]),
'versicolor&2&296': np.array([-0.835455914569297, 0.10189258327760495]),
'versicolor&2&297': np.array([-0.6441664102689847, -0.3012046426099901]),
'versicolor&2&298': np.array([-0.6441664102689847, -0.3012046426099901]),
'versicolor&2&299': np.array([-0.7640280271176497, -0.19364537761420375]),
'versicolor&2&300': np.array([-0.5227340800279543, 0.4209267574088147]),
'versicolor&2&301': np.array([-0.5140708637198534, 0.4305361238057349]),
'versicolor&2&302': np.array([-0.2661726847443776, -0.6902916602462779]),
'versicolor&2&303': np.array([-0.2741128763380603, -0.7260889090887469]),
'versicolor&2&304': np.array([-0.6188410763351541, -0.22803625884668638]),
'versicolor&2&305': np.array([-0.5140708637198534, 0.4305361238057349]),
'versicolor&2&306': np.array([-0.56940429361245, -0.3442345437882425]),
'versicolor&2&307': np.array([-0.6452502612229726, -0.04686872432129788]),
'versicolor&2&308': np.array([-0.596973015481227, 0.37395461795328944]),
'versicolor&2&309': np.array([-0.5760086048531655, -0.3353570725513232]),
'versicolor&2&310': np.array([-0.6488228567611906, -0.03186184826812757]),
'versicolor&2&311': np.array([-0.5903420131350324, 0.384224764046184]),
'versicolor&2&312': np.array([-0.2661726847443776, -0.6902916602462779]),
'versicolor&2&313': np.array([-0.2661726847443776, -0.6902916602462779]),
'versicolor&2&314': np.array([-0.2741128763380603, -0.7260889090887469]),
'virginica&0&0': np.array([-0.7431524521056113, -0.24432235603856345]),
'virginica&0&1': np.array([-0.4926091071260067, -0.49260910712601286]),
'virginica&0&2': np.array([-0.9550700362273441, -0.025428672111930138]),
'virginica&0&3': np.array([-0.9672121512728677, -0.012993005706020504]),
'virginica&0&4': np.array([-0.9706534384443797, 0.007448195602953232]),
'virginica&0&5': np.array([-0.4926091071260067, -0.49260910712601286]),
'virginica&0&6': np.array([-0.9550700362273441, -0.025428672111930138]),
'virginica&0&7': np.array([-0.9672121512728677, -0.012993005706020504]),
'virginica&0&8': np.array([-0.8486399726113752, -0.13537345771621853]),
'virginica&0&9': np.array([-0.9550700362273441, -0.025428672111930138]),
'virginica&0&10': np.array([-0.9672121512728677, -0.012993005706020504]),
'virginica&0&11': np.array([-0.7870031444780577, -0.1952404625292782]),
'virginica&0&12': np.array([-0.9672121512728677, -0.012993005706020504]),
'virginica&0&13': np.array([-0.9569238464170641, -0.02354905845282574]),
'virginica&0&14': np.array([-0.9677320606992984, -0.012432557482778654]),
'virginica&0&15': np.array([-0.7431524521056113, -0.24432235603856345]),
'virginica&0&16': np.array([-0.4926091071260067, -0.49260910712601286]),
'virginica&0&17': np.array([-0.9550700362273441, -0.025428672111930138]),
'virginica&0&18': np.array([-0.9672121512728677, -0.012993005706020504]),
'virginica&0&19': np.array([-0.9706534384443797, 0.007448195602953232]),
'virginica&0&20': np.array([-0.4926091071260067, -0.49260910712601286]),
'virginica&0&21': np.array([-0.9550700362273441, -0.025428672111930138]),
'virginica&0&22': np.array([-0.9672121512728677, -0.012993005706020504]),
'virginica&0&23': np.array([-0.8486399726113752, -0.13537345771621853]),
'virginica&0&24': np.array([-0.9550700362273441, -0.025428672111930138]),
'virginica&0&25': np.array([-0.9672121512728677, -0.012993005706020504]),
'virginica&0&26': np.array([-0.7870031444780577, -0.1952404625292782]),
'virginica&0&27': np.array([-0.9672121512728677, -0.012993005706020504]),
'virginica&0&28': np.array([-0.9569238464170641, -0.02354905845282574]),
'virginica&0&29': np.array([-0.9677320606992984, -0.012432557482778654]),
'virginica&0&30': np.array([-0.19685199412911655, -0.7845879230594393]),
'virginica&0&31': np.array([-0.07476043598366228, -0.9062715528546994]),
'virginica&0&32': np.array([-0.7770298852793477, -0.029443430477147373]),
'virginica&0&33': np.array([-0.7936433456054744, -0.012583752076496493]),
'virginica&0&34': np.array([-0.7974072911132788, 0.006894018772033604]),
'virginica&0&35': np.array([-0.07476043598366228, -0.9062715528546994]),
'virginica&0&36': np.array([-0.7770298852793477, -0.029443430477147373]),
'virginica&0&37': np.array([-0.7936433456054744, -0.012583752076496493]),
'virginica&0&38': np.array([-0.3355030348883163, -0.6305271339971502]),
'virginica&0&39': np.array([-0.7770298852793477, -0.029443430477147373]),
'virginica&0&40': np.array([-0.7936433456054744, -0.012583752076496493]),
'virginica&0&41': np.array([-0.2519677855687844, -0.7134447168661863]),
'virginica&0&42': np.array([-0.7936433456054744, -0.012583752076496493]),
'virginica&0&43': np.array([-0.7799744386472778, -0.026476616324402506]),
'virginica&0&44': np.array([-0.7942342242967624, -0.0119572163963601]),
'virginica&0&45': np.array([-0.05031696218434577, -0.929227611211748]),
'virginica&0&46': np.array([-0.017148644765919676, -0.9632117581295891]),
'virginica&0&47': np.array([-0.061515713893900315, -0.524561199322281]),
'virginica&0&48': np.array([-0.4329463382004908, -0.057167210150691136]),
'virginica&0&49': np.array([-0.4656481363306145, 0.007982539480288167]),
'virginica&0&50': np.array([-0.017148644765919676, -0.9632117581295891]),
'virginica&0&51': np.array([-0.061515713893900315, -0.524561199322281]),
'virginica&0&52': np.array([-0.4329463382004908, -0.057167210150691136]),
'virginica&0&53': np.array([-0.14241819268815753, -0.8424615476000691]),
'virginica&0&54': np.array([-0.061515713893900315, -0.524561199322281]),
'virginica&0&55': np.array([-0.4329463382004908, -0.057167210150691136]),
'virginica&0&56': np.array([-0.1140907502997574, -0.8737800276630269]),
'virginica&0&57': np.array([-0.4329463382004908, -0.057167210150691136]),
'virginica&0&58': np.array([-0.14198277461566922, -0.4577720226157396]),
'virginica&0&59': np.array([-0.4385442121294165, -0.05333645823279597]),
'virginica&0&60': np.array([0.029402442458921384, -0.9481684282717414]),
'virginica&0&61': np.array([0.009887859354111524, -0.9698143912008228]),
'virginica&0&62': np.array([0.009595083643662688, -0.5643652067423869]),
'virginica&0&63': np.array([0.13694026920485936, -0.36331091829858003]),
'virginica&0&64': np.array([0.3094460464703627, 0.11400643817329122]),
'virginica&0&65': np.array([0.009887859354111524, -0.9698143912008228]),
'virginica&0&66': np.array([0.009595083643662688, -0.5643652067423869]),
'virginica&0&67': np.array([0.13694026920485936, -0.36331091829858003]),
'virginica&0&68': np.array([0.19002455311770447, -0.8848597943731074]),
'virginica&0&69': np.array([0.009595083643662688, -0.5643652067423869]),
'virginica&0&70': np.array([0.13694026920485936, -0.36331091829858003]),
'virginica&0&71': np.array([0.1746467870122951, -0.9073062742839755]),
'virginica&0&72': np.array([0.13694026920485936, -0.36331091829858003]),
'virginica&0&73': np.array([0.11200181312407695, -0.5330612470996793]),
'virginica&0&74': np.array([0.19998284600732558, -0.3489062419702088]),
'virginica&0&75': np.array([0.0, -0.95124502153736]),
'virginica&0&76': np.array([0.0, -0.9708703761803881]),
'virginica&0&77': np.array([0.0, -0.5659706098422994]),
'virginica&0&78': np.array([0.0, -0.3962828716108186]),
'virginica&0&79': np.array([0.0, 0.2538069363248767]),
'virginica&0&80': np.array([0.0, -0.9708703761803881]),
'virginica&0&81': np.array([0.0, -0.5659706098422994]),
'virginica&0&82': np.array([0.0, -0.3962828716108186]),
'virginica&0&83': np.array([0.0, -0.8943993997517804]),
'virginica&0&84': np.array([0.0, -0.5659706098422994]),
'virginica&0&85': np.array([0.0, -0.3962828716108186]),
'virginica&0&86': np.array([0.0, -0.9166476163222441]),
'virginica&0&87': np.array([0.0, -0.3962828716108186]),
'virginica&0&88': np.array([0.0, -0.5466925844560601]),
'virginica&0&89': np.array([0.0, -0.38529908946531777]),
'virginica&0&90': np.array([-0.7431524521056113, -0.24432235603856345]),
'virginica&0&91': np.array([-0.4926091071260067, -0.49260910712601286]),
'virginica&0&92': np.array([-0.9550700362273441, -0.025428672111930138]),
'virginica&0&93': np.array([-0.9672121512728677, -0.012993005706020504]),
'virginica&0&94': np.array([-0.9706534384443797, 0.007448195602953232]),
'virginica&0&95': np.array([-0.4926091071260067, -0.49260910712601286]),
'virginica&0&96': np.array([-0.9550700362273441, -0.025428672111930138]),
'virginica&0&97': np.array([-0.9672121512728677, -0.012993005706020504]),
'virginica&0&98': np.array([-0.8486399726113752, -0.13537345771621853]),
'virginica&0&99': np.array([-0.9550700362273441, -0.025428672111930138]),
'virginica&0&100': np.array([-0.9672121512728677, -0.012993005706020504]),
'virginica&0&101': np.array([-0.7870031444780577, -0.1952404625292782]),
'virginica&0&102': np.array([-0.9672121512728677, -0.012993005706020504]),
'virginica&0&103': np.array([-0.9569238464170641, -0.02354905845282574]),
'virginica&0&104': np.array([-0.9677320606992984, -0.012432557482778654]),
'virginica&0&105': np.array([-0.19685199412911655, -0.7845879230594393]),
'virginica&0&106': np.array([-0.07476043598366228, -0.9062715528546994]),
'virginica&0&107': np.array([-0.7770298852793477, -0.029443430477147373]),
'virginica&0&108': np.array([-0.7936433456054744, -0.012583752076496493]),
'virginica&0&109': np.array([-0.7974072911132788, 0.006894018772033604]),
'virginica&0&110': np.array([-0.07476043598366228, -0.9062715528546994]),
'virginica&0&111': np.array([-0.7770298852793477, -0.029443430477147373]),
'virginica&0&112': np.array([-0.7936433456054744, -0.012583752076496493]),
'virginica&0&113': np.array([-0.3355030348883163, -0.6305271339971502]),
'virginica&0&114': np.array([-0.7770298852793477, -0.029443430477147373]),
'virginica&0&115': np.array([-0.7936433456054744, -0.012583752076496493]),
'virginica&0&116': np.array([-0.2519677855687844, -0.7134447168661863]),
'virginica&0&117': np.array([-0.7936433456054744, -0.012583752076496493]),
'virginica&0&118': np.array([-0.7799744386472778, -0.026476616324402506]),
'virginica&0&119': np.array([-0.7942342242967624, -0.0119572163963601]),
'virginica&0&120': np.array([-0.05031696218434577, -0.929227611211748]),
'virginica&0&121': np.array([-0.017148644765919676, -0.9632117581295891]),
'virginica&0&122': np.array([-0.061515713893900315, -0.524561199322281]),
'virginica&0&123': np.array([-0.4329463382004908, -0.057167210150691136]),
'virginica&0&124': np.array([-0.4656481363306145, 0.007982539480288167]),
'virginica&0&125': np.array([-0.017148644765919676, -0.9632117581295891]),
'virginica&0&126': np.array([-0.061515713893900315, -0.524561199322281]),
'virginica&0&127': np.array([-0.4329463382004908, -0.057167210150691136]),
'virginica&0&128': np.array([-0.14241819268815753, -0.8424615476000691]),
'virginica&0&129': np.array([-0.061515713893900315, -0.524561199322281]),
'virginica&0&130': np.array([-0.4329463382004908, -0.057167210150691136]),
'virginica&0&131': np.array([-0.1140907502997574, -0.8737800276630269]),
'virginica&0&132': np.array([-0.4329463382004908, -0.057167210150691136]),
'virginica&0&133': np.array([-0.14198277461566922, -0.4577720226157396]),
'virginica&0&134': np.array([-0.4385442121294165, -0.05333645823279597]),
'virginica&0&135': np.array([-0.19684482070614498, -0.7845939961595055]),
'virginica&0&136': np.array([-0.07475231751447156, -0.9062785678426409]),
'virginica&0&137': np.array([-0.6782037543706109, -0.29560073676989834]),
'virginica&0&138': np.array([-0.7694171988675237, -0.276633135028249]),
'virginica&0&139': np.array([-0.8063011502229427, 0.4134300066735808]),
'virginica&0&140': np.array([-0.07475231751447156, -0.9062785678426409]),
'virginica&0&141': np.array([-0.6782037543706109, -0.29560073676989834]),
'virginica&0&142': np.array([-0.7694171988675237, -0.276633135028249]),
'virginica&0&143': np.array([-0.2798927835773098, -0.6581136857450849]),
'virginica&0&144': np.array([-0.6782037543706109, -0.29560073676989834]),
'virginica&0&145': np.array([-0.7694171988675237, -0.276633135028249]),
'virginica&0&146': np.array([-0.16106555563262584, -0.777621649099753]),
'virginica&0&147': np.array([-0.7694171988675237, -0.276633135028249]),
'virginica&0&148': np.array([-0.6898990333725056, -0.2534947697713122]),
'virginica&0&149': np.array([-0.769491694075929, -0.22884642137519118]),
'virginica&0&150': np.array([-0.7431524521056113, -0.24432235603856345]),
'virginica&0&151': np.array([-0.4926091071260067, -0.49260910712601286]),
'virginica&0&152': np.array([-0.9550700362273441, -0.025428672111930138]),
'virginica&0&153': np.array([-0.9672121512728677, -0.012993005706020504]),
'virginica&0&154': np.array([-0.9706534384443797, 0.007448195602953232]),
'virginica&0&155': np.array([-0.4926091071260067, -0.49260910712601286]),
'virginica&0&156': np.array([-0.9550700362273441, -0.025428672111930138]),
'virginica&0&157': np.array([-0.9672121512728677, -0.012993005706020504]),
'virginica&0&158': np.array([-0.8486399726113752, -0.13537345771621853]),
'virginica&0&159': np.array([-0.9550700362273441, -0.025428672111930138]),
'virginica&0&160': np.array([-0.9672121512728677, -0.012993005706020504]),
'virginica&0&161': np.array([-0.7870031444780577, -0.1952404625292782]),
'virginica&0&162': np.array([-0.9672121512728677, -0.012993005706020504]),
'virginica&0&163': np.array([-0.9569238464170641, -0.02354905845282574]),
'virginica&0&164': np.array([-0.9677320606992984, -0.012432557482778654]),
'virginica&0&165': np.array([-0.19685199412911655, -0.7845879230594393]),
'virginica&0&166': np.array([-0.07476043598366228, -0.9062715528546994]),
'virginica&0&167': np.array([-0.7770298852793477, -0.029443430477147373]),
'virginica&0&168': np.array([-0.7936433456054744, -0.012583752076496493]),
'virginica&0&169': np.array([-0.7974072911132788, 0.006894018772033604]),
'virginica&0&170': np.array([-0.07476043598366228, -0.9062715528546994]),
'virginica&0&171': np.array([-0.7770298852793477, -0.029443430477147373]),
'virginica&0&172': np.array([-0.7936433456054744, -0.012583752076496493]),
'virginica&0&173': np.array([-0.3355030348883163, -0.6305271339971502]),
'virginica&0&174': np.array([-0.7770298852793477, -0.029443430477147373]),
'virginica&0&175': np.array([-0.7936433456054744, -0.012583752076496493]),
'virginica&0&176': np.array([-0.2519677855687844, -0.7134447168661863]),
'virginica&0&177': np.array([-0.7936433456054744, -0.012583752076496493]),
'virginica&0&178': np.array([-0.7799744386472778, -0.026476616324402506]),
'virginica&0&179': np.array([-0.7942342242967624, -0.0119572163963601]),
'virginica&0&180': np.array([-0.05031696218434577, -0.929227611211748]),
'virginica&0&181': np.array([-0.017148644765919676, -0.9632117581295891]),
'virginica&0&182': np.array([-0.061515713893900315, -0.524561199322281]),
'virginica&0&183': np.array([-0.4329463382004908, -0.057167210150691136]),
'virginica&0&184': np.array([-0.4656481363306145, 0.007982539480288167]),
'virginica&0&185': np.array([-0.017148644765919676, -0.9632117581295891]),
'virginica&0&186': np.array([-0.061515713893900315, -0.524561199322281]),
'virginica&0&187': np.array([-0.4329463382004908, -0.057167210150691136]),
'virginica&0&188': np.array([-0.14241819268815753, -0.8424615476000691]),
'virginica&0&189': np.array([-0.061515713893900315, -0.524561199322281]),
'virginica&0&190': np.array([-0.4329463382004908, -0.057167210150691136]),
'virginica&0&191': np.array([-0.1140907502997574, -0.8737800276630269]),
'virginica&0&192': np.array([-0.4329463382004908, -0.057167210150691136]),
'virginica&0&193': np.array([-0.14198277461566922, -0.4577720226157396]),
'virginica&0&194': np.array([-0.4385442121294165, -0.05333645823279597]),
'virginica&0&195': np.array([-0.19684482070614498, -0.7845939961595055]),
'virginica&0&196': np.array([-0.07475231751447156, -0.9062785678426409]),
'virginica&0&197': np.array([-0.6782037543706109, -0.29560073676989834]),
'virginica&0&198': np.array([-0.7694171988675237, -0.276633135028249]),
'virginica&0&199': np.array([-0.8063011502229427, 0.4134300066735808]),
'virginica&0&200': np.array([-0.07475231751447156, -0.9062785678426409]),
'virginica&0&201': np.array([-0.6782037543706109, -0.29560073676989834]),
'virginica&0&202': np.array([-0.7694171988675237, -0.276633135028249]),
'virginica&0&203': np.array([-0.2798927835773098, -0.6581136857450849]),
'virginica&0&204': np.array([-0.6782037543706109, -0.29560073676989834]),
'virginica&0&205': np.array([-0.7694171988675237, -0.276633135028249]),
'virginica&0&206': np.array([-0.16106555563262584, -0.777621649099753]),
'virginica&0&207': np.array([-0.7694171988675237, -0.276633135028249]),
'virginica&0&208': np.array([-0.6898990333725056, -0.2534947697713122]),
'virginica&0&209': np.array([-0.769491694075929, -0.22884642137519118]),
'virginica&0&210': np.array([-0.7431524521056113, -0.24432235603856345]),
'virginica&0&211': np.array([-0.4926091071260067, -0.49260910712601286]),
'virginica&0&212': np.array([-0.9550700362273441, -0.025428672111930138]),
'virginica&0&213': np.array([-0.9672121512728677, -0.012993005706020504]),
'virginica&0&214': np.array([-0.9706534384443797, 0.007448195602953232]),
'virginica&0&215': np.array([-0.4926091071260067, -0.49260910712601286]),
'virginica&0&216': np.array([-0.9550700362273441, -0.025428672111930138]),
'virginica&0&217': np.array([-0.9672121512728677, -0.012993005706020504]),
'virginica&0&218': np.array([-0.8486399726113752, -0.13537345771621853]),
'virginica&0&219': np.array([-0.9550700362273441, -0.025428672111930138]),
'virginica&0&220': np.array([-0.9672121512728677, -0.012993005706020504]),
'virginica&0&221': np.array([-0.7870031444780577, -0.1952404625292782]),
'virginica&0&222': np.array([-0.9672121512728677, -0.012993005706020504]),
'virginica&0&223': np.array([-0.9569238464170641, -0.02354905845282574]),
'virginica&0&224': np.array([-0.9677320606992984, -0.012432557482778654]),
'virginica&0&225': np.array([-0.05031696218434577, -0.929227611211748]),
'virginica&0&226': np.array([-0.017148644765919676, -0.9632117581295891]),
'virginica&0&227': np.array([-0.061515713893900315, -0.524561199322281]),
'virginica&0&228': np.array([-0.4329463382004908, -0.057167210150691136]),
'virginica&0&229': np.array([-0.4656481363306145, 0.007982539480288167]),
'virginica&0&230': np.array([-0.017148644765919676, -0.9632117581295891]),
'virginica&0&231': np.array([-0.061515713893900315, -0.524561199322281]),
'virginica&0&232': np.array([-0.4329463382004908, -0.057167210150691136]),
'virginica&0&233': np.array([-0.14241819268815753, -0.8424615476000691]),
'virginica&0&234': np.array([-0.061515713893900315, -0.524561199322281]),
'virginica&0&235': np.array([-0.4329463382004908, -0.057167210150691136]),
'virginica&0&236': np.array([-0.1140907502997574, -0.8737800276630269]),
'virginica&0&237': np.array([-0.4329463382004908, -0.057167210150691136]),
'virginica&0&238': np.array([-0.14198277461566922, -0.4577720226157396]),
'virginica&0&239': np.array([-0.4385442121294165, -0.05333645823279597]),
'virginica&0&240': np.array([-0.11329659732608087, -0.8671819100849522]),
'virginica&0&241': np.array([-0.040390637135858574, -0.9402832917474078]),
'virginica&0&242': np.array([-0.5276460255602035, -0.28992233541586077]),
'virginica&0&243': np.array([-0.6392402874163683, -0.24114611970435948]),
'virginica&0&244': np.array([-0.6814868825686854, 0.35066801608083215]),
'virginica&0&245': np.array([-0.040390637135858574, -0.9402832917474078]),
'virginica&0&246': np.array([-0.5276460255602035, -0.28992233541586077]),
'virginica&0&247': np.array([-0.6392402874163683, -0.24114611970435948]),
'virginica&0&248': np.array([-0.16157511199607094, -0.7754323813403634]),
'virginica&0&249': np.array([-0.5276460255602035, -0.28992233541586077]),
'virginica&0&250': np.array([-0.6392402874163683, -0.24114611970435948]),
'virginica&0&251': np.array([-0.08968204532514226, -0.8491191210330045]),
'virginica&0&252': np.array([-0.6392402874163683, -0.24114611970435948]),
'virginica&0&253': np.array([-0.544626974647221, -0.24972982107967573]),
'virginica&0&254': np.array([-0.6426355680762406, -0.20016519137103667]),
'virginica&0&255': np.array([-0.19685199412911655, -0.7845879230594393]),
'virginica&0&256': np.array([-0.07476043598366228, -0.9062715528546994]),
'virginica&0&257': np.array([-0.7770298852793477, -0.029443430477147373]),
'virginica&0&258': np.array([-0.7936433456054744, -0.012583752076496493]),
'virginica&0&259': np.array([-0.7974072911132788, 0.006894018772033604]),
'virginica&0&260': np.array([-0.07476043598366228, -0.9062715528546994]),
'virginica&0&261': np.array([-0.7770298852793477, -0.029443430477147373]),
'virginica&0&262': np.array([-0.7936433456054744, -0.012583752076496493]),
'virginica&0&263': np.array([-0.3355030348883163, -0.6305271339971502]),
'virginica&0&264': np.array([-0.7770298852793477, -0.029443430477147373]),
'virginica&0&265': np.array([-0.7936433456054744, -0.012583752076496493]),
'virginica&0&266': np.array([-0.2519677855687844, -0.7134447168661863]),
'virginica&0&267': np.array([-0.7936433456054744, -0.012583752076496493]),
'virginica&0&268': np.array([-0.7799744386472778, -0.026476616324402506]),
'virginica&0&269': np.array([-0.7942342242967624, -0.0119572163963601]),
'virginica&0&270': np.array([-0.04201361383207032, -0.9372571358382161]),
'virginica&0&271': np.array([-0.014237661899709955, -0.9660323357290304]),
'virginica&0&272': np.array([-0.04813346258022244, -0.5416229439456887]),
'virginica&0&273': np.array([-0.3109532939139045, -0.22759134703604383]),
'virginica&0&274': np.array([-0.4167677904879879, 0.22207334821665425]),
'virginica&0&275': np.array([-0.014237661899709955, -0.9660323357290304]),
'virginica&0&276': np.array([-0.04813346258022244, -0.5416229439456887]),
'virginica&0&277': np.array([-0.3109532939139045, -0.22759134703604383]),
'virginica&0&278': np.array([-0.07857689135903215, -0.8696882596532965]),
'virginica&0&279': np.array([-0.04813346258022244, -0.5416229439456887]),
'virginica&0&280': np.array([-0.3109532939139045, -0.22759134703604383]),
'virginica&0&281': np.array([-0.05160969201296555, -0.9000166344885441]),
'virginica&0&282': np.array([-0.3109532939139045, -0.22759134703604383]),
'virginica&0&283': np.array([-0.0766197045034485, -0.5080325256323984]),
'virginica&0&284': np.array([-0.32767091750230254, -0.19689316772421933]),
'virginica&0&285': np.array([-0.05031696218434577, -0.929227611211748]),
'virginica&0&286': np.array([-0.017148644765919676, -0.9632117581295891]),
'virginica&0&287': np.array([-0.061515713893900315, -0.524561199322281]),
'virginica&0&288': np.array([-0.4329463382004908, -0.057167210150691136]),
'virginica&0&289': np.array([-0.4656481363306145, 0.007982539480288167]),
'virginica&0&290': np.array([-0.017148644765919676, -0.9632117581295891]),
'virginica&0&291': np.array([-0.061515713893900315, -0.524561199322281]),
'virginica&0&292': np.array([-0.4329463382004908, -0.057167210150691136]),
'virginica&0&293': np.array([-0.14241819268815753, -0.8424615476000691]),
'virginica&0&294': np.array([-0.061515713893900315, -0.524561199322281]),
'virginica&0&295': np.array([-0.4329463382004908, -0.057167210150691136]),
'virginica&0&296': np.array([-0.1140907502997574, -0.8737800276630269]),
'virginica&0&297': np.array([-0.4329463382004908, -0.057167210150691136]),
'virginica&0&298': np.array([-0.14198277461566922, -0.4577720226157396]),
'virginica&0&299': np.array([-0.4385442121294165, -0.05333645823279597]),
'virginica&0&300': np.array([0.029402442458921384, -0.9481684282717414]),
'virginica&0&301': np.array([0.009887859354111524, -0.9698143912008228]),
'virginica&0&302': np.array([0.009595083643662688, -0.5643652067423869]),
'virginica&0&303': np.array([0.13694026920485936, -0.36331091829858003]),
'virginica&0&304': np.array([0.3094460464703627, 0.11400643817329122]),
'virginica&0&305': np.array([0.009887859354111524, -0.9698143912008228]),
'virginica&0&306': np.array([0.009595083643662688, -0.5643652067423869]),
'virginica&0&307': np.array([0.13694026920485936, -0.36331091829858003]),
'virginica&0&308': np.array([0.19002455311770447, -0.8848597943731074]),
'virginica&0&309': np.array([0.009595083643662688, -0.5643652067423869]),
'virginica&0&310': np.array([0.13694026920485936, -0.36331091829858003]),
'virginica&0&311': np.array([0.1746467870122951, -0.9073062742839755]),
'virginica&0&312': np.array([0.13694026920485936, -0.36331091829858003]),
'virginica&0&313': np.array([0.11200181312407695, -0.5330612470996793]),
'virginica&0&314': np.array([0.19998284600732558, -0.3489062419702088]),
'virginica&1&0': np.array([0.37157553889555184, 0.1221600832023858]),
'virginica&1&1': np.array([0.2463036871609408, 0.24630368716093934]),
'virginica&1&2': np.array([0.9105775730167809, -0.6842162738602727]),
'virginica&1&3': np.array([0.6718337295341265, -0.6620422637360074]),
'virginica&1&4': np.array([0.4964962439921071, 0.3798215458387346]),
'virginica&1&5': np.array([0.2463036871609408, 0.24630368716093934]),
'virginica&1&6': np.array([0.9105775730167809, -0.6842162738602727]),
'virginica&1&7': np.array([0.6718337295341265, -0.6620422637360074]),
'virginica&1&8': np.array([0.22125635302655813, 0.2925832702358638]),
'virginica&1&9': np.array([0.9105775730167809, -0.6842162738602727]),
'virginica&1&10': np.array([0.6718337295341265, -0.6620422637360074]),
'virginica&1&11': np.array([0.10063786451829529, 0.4085974066833644]),
'virginica&1&12': np.array([0.6718337295341265, -0.6620422637360074]),
'virginica&1&13': np.array([0.8441748651745272, -0.6057436494968107]),
'virginica&1&14': np.array([0.6453274192140858, -0.6334259878992301]),
'virginica&1&15': np.array([0.37157553889555184, 0.1221600832023858]),
'virginica&1&16': np.array([0.2463036871609408, 0.24630368716093934]),
'virginica&1&17': np.array([0.9105775730167809, -0.6842162738602727]),
'virginica&1&18': np.array([0.6718337295341265, -0.6620422637360074]),
'virginica&1&19': np.array([0.4964962439921071, 0.3798215458387346]),
'virginica&1&20': np.array([0.2463036871609408, 0.24630368716093934]),
'virginica&1&21': np.array([0.9105775730167809, -0.6842162738602727]),
'virginica&1&22': np.array([0.6718337295341265, -0.6620422637360074]),
'virginica&1&23': np.array([0.22125635302655813, 0.2925832702358638]),
'virginica&1&24': np.array([0.9105775730167809, -0.6842162738602727]),
'virginica&1&25': np.array([0.6718337295341265, -0.6620422637360074]),
'virginica&1&26': np.array([0.10063786451829529, 0.4085974066833644]),
'virginica&1&27': np.array([0.6718337295341265, -0.6620422637360074]),
'virginica&1&28': np.array([0.8441748651745272, -0.6057436494968107]),
'virginica&1&29': np.array([0.6453274192140858, -0.6334259878992301]),
'virginica&1&30': np.array([-0.32199975656257646, 0.7482293552463756]),
'virginica&1&31': np.array([-0.43843349141088417, 0.8642740701867917]),
'virginica&1&32': np.array([0.7141739659554729, -0.661981914015288]),
'virginica&1&33': np.array([0.4446001433508151, -0.6107546840046901]),
'virginica&1&34': np.array([0.2619265016777598, 0.33491141590339474]),
'virginica&1&35': np.array([-0.43843349141088417, 0.8642740701867917]),
'virginica&1&36': np.array([0.7141739659554729, -0.661981914015288]),
'virginica&1&37': np.array([0.4446001433508151, -0.6107546840046901]),
'virginica&1&38': np.array([-0.2562642052727569, 0.6920266972283227]),
'virginica&1&39': np.array([0.7141739659554729, -0.661981914015288]),
'virginica&1&40': np.array([0.4446001433508151, -0.6107546840046901]),
'virginica&1&41': np.array([-0.34479806250338163, 0.7789143553916729]),
'virginica&1&42': np.array([0.4446001433508151, -0.6107546840046901]),
'virginica&1&43': np.array([0.6253066100206679, -0.5612970743228719]),
'virginica&1&44': np.array([0.4159041613345079, -0.5802838287107943]),
'virginica&1&45': np.array([-0.7749499208750119, 0.8147189440804429]),
'virginica&1&46': np.array([-0.8040309195416899, 0.8445152504134819]),
'virginica&1&47': np.array([-0.582650696375085, 0.22335655671229132]),
'virginica&1&48': np.array([-0.33108168891715994, -0.1364781674635115]),
'virginica&1&49': np.array([-0.4079256832347186, 0.038455640985860955]),
'virginica&1&50': np.array([-0.8040309195416899, 0.8445152504134819]),
'virginica&1&51': np.array([-0.582650696375085, 0.22335655671229132]),
'virginica&1&52': np.array([-0.33108168891715994, -0.1364781674635115]),
'virginica&1&53': np.array([-0.6964303997553315, 0.7444536452136676]),
'virginica&1&54': np.array([-0.582650696375085, 0.22335655671229132]),
'virginica&1&55': np.array([-0.33108168891715994, -0.1364781674635115]),
'virginica&1&56': np.array([-0.7213651642695392, 0.7718874443854203]),
'virginica&1&57': np.array([-0.33108168891715994, -0.1364781674635115]),
'virginica&1&58': np.array([-0.5538416840542331, 0.2026191723113616]),
'virginica&1&59': np.array([-0.3472412936248763, -0.1219322389673262]),
'virginica&1&60': np.array([0.4933316375690332, 0.5272416708629276]),
'virginica&1&61': np.array([0.5041830043657418, 0.5392782673950876]),
'virginica&1&62': np.array([0.25657760110071476, -0.12592645350389117]),
'virginica&1&63': np.array([0.13717260713320115, -0.36277799079016637]),
'virginica&1&64': np.array([0.3093950298647913, 0.1140298206733954]),
'virginica&1&65': np.array([0.5041830043657418, 0.5392782673950876]),
'virginica&1&66': np.array([0.25657760110071476, -0.12592645350389117]),
'virginica&1&67': np.array([0.13717260713320115, -0.36277799079016637]),
'virginica&1&68': np.array([0.40694846236352233, 0.5109051764198169]),
'virginica&1&69': np.array([0.25657760110071476, -0.12592645350389117]),
'virginica&1&70': np.array([0.13717260713320115, -0.36277799079016637]),
'virginica&1&71': np.array([0.415695226122737, 0.5230815102377903]),
'virginica&1&72': np.array([0.13717260713320115, -0.36277799079016637]),
'virginica&1&73': np.array([0.28313251310829024, -0.10978015869508362]),
'virginica&1&74': np.array([0.20013484983664692, -0.3483612449300506]),
'virginica&1&75': np.array([0.0, 0.4756207622944677]),
'virginica&1&76': np.array([0.0, 0.4854334805210761]),
'virginica&1&77': np.array([0.0, -0.16885577975809632]),
'virginica&1&78': np.array([0.0, -0.39580588553855395]),
'virginica&1&79': np.array([0.0, 0.2538072707138344]),
'virginica&1&80': np.array([0.0, 0.4854334805210761]),
'virginica&1&81': np.array([0.0, -0.16885577975809632]),
'virginica&1&82': np.array([0.0, -0.39580588553855395]),
'virginica&1&83': np.array([0.0, 0.4904755652105692]),
'virginica&1&84': np.array([0.0, -0.16885577975809632]),
'virginica&1&85': np.array([0.0, -0.39580588553855395]),
'virginica&1&86': np.array([0.0, 0.5008471974438506]),
'virginica&1&87': np.array([0.0, -0.39580588553855395]),
'virginica&1&88': np.array([0.0, -0.14423919730424817]),
'virginica&1&89': np.array([0.0, -0.3847817540585927]),
'virginica&1&90': np.array([0.37157553889555184, 0.1221600832023858]),
'virginica&1&91': np.array([0.2463036871609408, 0.24630368716093934]),
'virginica&1&92': np.array([0.9105775730167809, -0.6842162738602727]),
'virginica&1&93': np.array([0.6718337295341265, -0.6620422637360074]),
'virginica&1&94': np.array([0.4964962439921071, 0.3798215458387346]),
'virginica&1&95': np.array([0.2463036871609408, 0.24630368716093934]),
'virginica&1&96': np.array([0.9105775730167809, -0.6842162738602727]),
'virginica&1&97': np.array([0.6718337295341265, -0.6620422637360074]),
'virginica&1&98': np.array([0.22125635302655813, 0.2925832702358638]),
'virginica&1&99': np.array([0.9105775730167809, -0.6842162738602727]),
'virginica&1&100': np.array([0.6718337295341265, -0.6620422637360074]),
'virginica&1&101': np.array([0.10063786451829529, 0.4085974066833644]),
'virginica&1&102': np.array([0.6718337295341265, -0.6620422637360074]),
'virginica&1&103': np.array([0.8441748651745272, -0.6057436494968107]),
'virginica&1&104': np.array([0.6453274192140858, -0.6334259878992301]),
'virginica&1&105': np.array([-0.32199975656257646, 0.7482293552463756]),
'virginica&1&106': np.array([-0.43843349141088417, 0.8642740701867917]),
'virginica&1&107': np.array([0.7141739659554729, -0.661981914015288]),
'virginica&1&108': np.array([0.4446001433508151, -0.6107546840046901]),
'virginica&1&109': np.array([0.2619265016777598, 0.33491141590339474]),
'virginica&1&110': np.array([-0.43843349141088417, 0.8642740701867917]),
'virginica&1&111': np.array([0.7141739659554729, -0.661981914015288]),
'virginica&1&112': np.array([0.4446001433508151, -0.6107546840046901]),
'virginica&1&113': np.array([-0.2562642052727569, 0.6920266972283227]),
'virginica&1&114': np.array([0.7141739659554729, -0.661981914015288]),
'virginica&1&115': np.array([0.4446001433508151, -0.6107546840046901]),
'virginica&1&116': np.array([-0.34479806250338163, 0.7789143553916729]),
'virginica&1&117': np.array([0.4446001433508151, -0.6107546840046901]),
'virginica&1&118': np.array([0.6253066100206679, -0.5612970743228719]),
'virginica&1&119': np.array([0.4159041613345079, -0.5802838287107943]),
'virginica&1&120': np.array([-0.7749499208750119, 0.8147189440804429]),
'virginica&1&121': np.array([-0.8040309195416899, 0.8445152504134819]),
'virginica&1&122': np.array([-0.582650696375085, 0.22335655671229132]),
'virginica&1&123': np.array([-0.33108168891715994, -0.1364781674635115]),
'virginica&1&124': np.array([-0.4079256832347186, 0.038455640985860955]),
'virginica&1&125': np.array([-0.8040309195416899, 0.8445152504134819]),
'virginica&1&126': np.array([-0.582650696375085, 0.22335655671229132]),
'virginica&1&127': np.array([-0.33108168891715994, -0.1364781674635115]),
'virginica&1&128': np.array([-0.6964303997553315, 0.7444536452136676]),
'virginica&1&129': np.array([-0.582650696375085, 0.22335655671229132]),
'virginica&1&130': np.array([-0.33108168891715994, -0.1364781674635115]),
'virginica&1&131': np.array([-0.7213651642695392, 0.7718874443854203]),
'virginica&1&132': np.array([-0.33108168891715994, -0.1364781674635115]),
'virginica&1&133': np.array([-0.5538416840542331, 0.2026191723113616]),
'virginica&1&134': np.array([-0.3472412936248763, -0.1219322389673262]),
'virginica&1&135': np.array([0.5188109114552927, 0.03638964581864269]),
'virginica&1&136': np.array([0.5131478569192371, 0.04203387599862816]),
'virginica&1&137': np.array([0.7329462736700701, -0.4610490766898857]),
'virginica&1&138': np.array([0.5965042032375719, -0.48856644624972617]),
'virginica&1&139': np.array([0.5436097000280874, 0.1461891067488832]),
'virginica&1&140': np.array([0.5131478569192371, 0.04203387599862816]),
'virginica&1&141': np.array([0.7329462736700701, -0.4610490766898857]),
'virginica&1&142': np.array([0.5965042032375719, -0.48856644624972617]),
'virginica&1&143': np.array([0.4788153032824012, 0.08625929936974323]),
'virginica&1&144': np.array([0.7329462736700701, -0.4610490766898857]),
'virginica&1&145': np.array([0.5965042032375719, -0.48856644624972617]),
'virginica&1&146': np.array([0.46583127837967303, 0.09875847161509169]),
'virginica&1&147': np.array([0.5965042032375719, -0.48856644624972617]),
'virginica&1&148': np.array([0.7419884013108898, -0.4595742931114029]),
'virginica&1&149': np.array([0.6092194175719845, -0.5086479426935605]),
'virginica&1&150': np.array([0.37157553889555184, 0.1221600832023858]),
'virginica&1&151': np.array([0.2463036871609408, 0.24630368716093934]),
'virginica&1&152': np.array([0.9105775730167809, -0.6842162738602727]),
'virginica&1&153': np.array([0.6718337295341265, -0.6620422637360074]),
'virginica&1&154': np.array([0.4964962439921071, 0.3798215458387346]),
'virginica&1&155': np.array([0.2463036871609408, 0.24630368716093934]),
'virginica&1&156': np.array([0.9105775730167809, -0.6842162738602727]),
'virginica&1&157': np.array([0.6718337295341265, -0.6620422637360074]),
'virginica&1&158': np.array([0.22125635302655813, 0.2925832702358638]),
'virginica&1&159': np.array([0.9105775730167809, -0.6842162738602727]),
'virginica&1&160': np.array([0.6718337295341265, -0.6620422637360074]),
'virginica&1&161': np.array([0.10063786451829529, 0.4085974066833644]),
'virginica&1&162': np.array([0.6718337295341265, -0.6620422637360074]),
'virginica&1&163': np.array([0.8441748651745272, -0.6057436494968107]),
'virginica&1&164': np.array([0.6453274192140858, -0.6334259878992301]),
'virginica&1&165': np.array([-0.32199975656257646, 0.7482293552463756]),
'virginica&1&166': np.array([-0.43843349141088417, 0.8642740701867917]),
'virginica&1&167': np.array([0.7141739659554729, -0.661981914015288]),
'virginica&1&168': np.array([0.4446001433508151, -0.6107546840046901]),
'virginica&1&169': np.array([0.2619265016777598, 0.33491141590339474]),
'virginica&1&170': np.array([-0.43843349141088417, 0.8642740701867917]),
'virginica&1&171': np.array([0.7141739659554729, -0.661981914015288]),
'virginica&1&172': np.array([0.4446001433508151, -0.6107546840046901]),
'virginica&1&173': np.array([-0.2562642052727569, 0.6920266972283227]),
'virginica&1&174': np.array([0.7141739659554729, -0.661981914015288]),
'virginica&1&175': np.array([0.4446001433508151, -0.6107546840046901]),
'virginica&1&176': np.array([-0.34479806250338163, 0.7789143553916729]),
'virginica&1&177': np.array([0.4446001433508151, -0.6107546840046901]),
'virginica&1&178': np.array([0.6253066100206679, -0.5612970743228719]),
'virginica&1&179': np.array([0.4159041613345079, -0.5802838287107943]),
'virginica&1&180': np.array([-0.7749499208750119, 0.8147189440804429]),
'virginica&1&181': np.array([-0.8040309195416899, 0.8445152504134819]),
'virginica&1&182': np.array([-0.582650696375085, 0.22335655671229132]),
'virginica&1&183': np.array([-0.33108168891715994, -0.1364781674635115]),
'virginica&1&184': np.array([-0.4079256832347186, 0.038455640985860955]),
'virginica&1&185': np.array([-0.8040309195416899, 0.8445152504134819]),
'virginica&1&186': np.array([-0.582650696375085, 0.22335655671229132]),
'virginica&1&187': np.array([-0.33108168891715994, -0.1364781674635115]),
'virginica&1&188': np.array([-0.6964303997553315, 0.7444536452136676]),
'virginica&1&189': np.array([-0.582650696375085, 0.22335655671229132]),
'virginica&1&190': np.array([-0.33108168891715994, -0.1364781674635115]),
'virginica&1&191': np.array([-0.7213651642695392, 0.7718874443854203]),
'virginica&1&192': np.array([-0.33108168891715994, -0.1364781674635115]),
'virginica&1&193': np.array([-0.5538416840542331, 0.2026191723113616]),
'virginica&1&194': np.array([-0.3472412936248763, -0.1219322389673262]),
'virginica&1&195': np.array([0.5188109114552927, 0.03638964581864269]),
'virginica&1&196': np.array([0.5131478569192371, 0.04203387599862816]),
'virginica&1&197': np.array([0.7329462736700701, -0.4610490766898857]),
'virginica&1&198': np.array([0.5965042032375719, -0.48856644624972617]),
'virginica&1&199': np.array([0.5436097000280874, 0.1461891067488832]),
'virginica&1&200': np.array([0.5131478569192371, 0.04203387599862816]),
'virginica&1&201': np.array([0.7329462736700701, -0.4610490766898857]),
'virginica&1&202': np.array([0.5965042032375719, -0.48856644624972617]),
'virginica&1&203': np.array([0.4788153032824012, 0.08625929936974323]),
'virginica&1&204': np.array([0.7329462736700701, -0.4610490766898857]),
'virginica&1&205': np.array([0.5965042032375719, -0.48856644624972617]),
'virginica&1&206': np.array([0.46583127837967303, 0.09875847161509169]),
'virginica&1&207': np.array([0.5965042032375719, -0.48856644624972617]),
'virginica&1&208': np.array([0.7419884013108898, -0.4595742931114029]),
'virginica&1&209': np.array([0.6092194175719845, -0.5086479426935605]),
'virginica&1&210': np.array([0.37157553889555184, 0.1221600832023858]),
'virginica&1&211': np.array([0.2463036871609408, 0.24630368716093934]),
'virginica&1&212': np.array([0.9105775730167809, -0.6842162738602727]),
'virginica&1&213': np.array([0.6718337295341265, -0.6620422637360074]),
'virginica&1&214': np.array([0.4964962439921071, 0.3798215458387346]),
'virginica&1&215': np.array([0.2463036871609408, 0.24630368716093934]),
'virginica&1&216': np.array([0.9105775730167809, -0.6842162738602727]),
'virginica&1&217': np.array([0.6718337295341265, -0.6620422637360074]),
'virginica&1&218': np.array([0.22125635302655813, 0.2925832702358638]),
'virginica&1&219': np.array([0.9105775730167809, -0.6842162738602727]),
'virginica&1&220': np.array([0.6718337295341265, -0.6620422637360074]),
'virginica&1&221': np.array([0.10063786451829529, 0.4085974066833644]),
'virginica&1&222': np.array([0.6718337295341265, -0.6620422637360074]),
'virginica&1&223': np.array([0.8441748651745272, -0.6057436494968107]),
'virginica&1&224': np.array([0.6453274192140858, -0.6334259878992301]),
'virginica&1&225': np.array([-0.7749499208750119, 0.8147189440804429]),
'virginica&1&226': np.array([-0.8040309195416899, 0.8445152504134819]),
'virginica&1&227': np.array([-0.582650696375085, 0.22335655671229132]),
'virginica&1&228': np.array([-0.33108168891715994, -0.1364781674635115]),
'virginica&1&229': np.array([-0.4079256832347186, 0.038455640985860955]),
'virginica&1&230': np.array([-0.8040309195416899, 0.8445152504134819]),
'virginica&1&231': np.array([-0.582650696375085, 0.22335655671229132]),
'virginica&1&232': np.array([-0.33108168891715994, -0.1364781674635115]),
'virginica&1&233': np.array([-0.6964303997553315, 0.7444536452136676]),
'virginica&1&234': np.array([-0.582650696375085, 0.22335655671229132]),
'virginica&1&235': np.array([-0.33108168891715994, -0.1364781674635115]),
'virginica&1&236': np.array([-0.7213651642695392, 0.7718874443854203]),
'virginica&1&237': np.array([-0.33108168891715994, -0.1364781674635115]),
'virginica&1&238': np.array([-0.5538416840542331, 0.2026191723113616]),
'virginica&1&239': np.array([-0.3472412936248763, -0.1219322389673262]),
'virginica&1&240': np.array([0.056623968925773045, 0.43360725859686644]),
'virginica&1&241': np.array([0.020169511418752378, 0.47015948158260334]),
'virginica&1&242': np.array([0.5806365328450952, -0.4726270680771261]),
'virginica&1&243': np.array([0.41462901544715686, -0.4964318942067897]),
'virginica&1&244': np.array([0.3351719071445682, 0.20616862401308342]),
'virginica&1&245': np.array([0.020169511418752378, 0.47015948158260334]),
'virginica&1&246': np.array([0.5806365328450952, -0.4726270680771261]),
'virginica&1&247': np.array([0.41462901544715686, -0.4964318942067897]),
'virginica&1&248': np.array([0.024556360933646205, 0.4723948285969902]),
'virginica&1&249': np.array([0.5806365328450952, -0.4726270680771261]),
'virginica&1&250': np.array([0.41462901544715686, -0.4964318942067897]),
'virginica&1&251': np.array([-0.0164329511444131, 0.5132208276383963]),
'virginica&1&252': np.array([0.41462901544715686, -0.4964318942067897]),
'virginica&1&253': np.array([0.581569928198426, -0.46134543884925855]),
'virginica&1&254': np.array([0.42361197252581306, -0.5068181610814407]),
'virginica&1&255': np.array([-0.32199975656257646, 0.7482293552463756]),
'virginica&1&256': np.array([-0.43843349141088417, 0.8642740701867917]),
'virginica&1&257': np.array([0.7141739659554729, -0.661981914015288]),
'virginica&1&258': np.array([0.4446001433508151, -0.6107546840046901]),
'virginica&1&259': np.array([0.2619265016777598, 0.33491141590339474]),
'virginica&1&260': np.array([-0.43843349141088417, 0.8642740701867917]),
'virginica&1&261': np.array([0.7141739659554729, -0.661981914015288]),
'virginica&1&262': np.array([0.4446001433508151, -0.6107546840046901]),
'virginica&1&263': np.array([-0.2562642052727569, 0.6920266972283227]),
'virginica&1&264': np.array([0.7141739659554729, -0.661981914015288]),
'virginica&1&265': np.array([0.4446001433508151, -0.6107546840046901]),
'virginica&1&266': np.array([-0.34479806250338163, 0.7789143553916729]),
'virginica&1&267': np.array([0.4446001433508151, -0.6107546840046901]),
'virginica&1&268': np.array([0.6253066100206679, -0.5612970743228719]),
'virginica&1&269': np.array([0.4159041613345079, -0.5802838287107943]),
'virginica&1&270': np.array([-0.6288817118959938, 0.6849987400957501]),
'virginica&1&271': np.array([-0.6491819158994796, 0.7060292771859485]),
'virginica&1&272': np.array([-0.36354251586275393, 0.01503732165107865]),
'virginica&1&273': np.array([-0.2224264339516076, -0.2751400010362469]),
'virginica&1&274': np.array([-0.3507937472799825, 0.22709708691079003]),
'virginica&1&275': np.array([-0.6491819158994796, 0.7060292771859485]),
'virginica&1&276': np.array([-0.36354251586275393, 0.01503732165107865]),
'virginica&1&277': np.array([-0.2224264339516076, -0.2751400010362469]),
'virginica&1&278': np.array([-0.6219129029345898, 0.6860569455333333]),
'virginica&1&279': np.array([-0.36354251586275393, 0.01503732165107865]),
'virginica&1&280': np.array([-0.2224264339516076, -0.2751400010362469]),
'virginica&1&281': np.array([-0.6423063482710314, 0.7078274136226649]),
'virginica&1&282': np.array([-0.2224264339516076, -0.2751400010362469]),
'virginica&1&283': np.array([-0.38798262782075055, 0.05152547330256509]),
'virginica&1&284': np.array([-0.23804537254556749, -0.24790919248823104]),
'virginica&1&285': np.array([-0.7749499208750119, 0.8147189440804429]),
'virginica&1&286': np.array([-0.8040309195416899, 0.8445152504134819]),
'virginica&1&287': np.array([-0.582650696375085, 0.22335655671229132]),
'virginica&1&288': np.array([-0.33108168891715994, -0.1364781674635115]),
'virginica&1&289': np.array([-0.4079256832347186, 0.038455640985860955]),
'virginica&1&290': np.array([-0.8040309195416899, 0.8445152504134819]),
'virginica&1&291': np.array([-0.582650696375085, 0.22335655671229132]),
'virginica&1&292': np.array([-0.33108168891715994, -0.1364781674635115]),
'virginica&1&293': np.array([-0.6964303997553315, 0.7444536452136676]),
'virginica&1&294': np.array([-0.582650696375085, 0.22335655671229132]),
'virginica&1&295': np.array([-0.33108168891715994, -0.1364781674635115]),
'virginica&1&296': np.array([-0.7213651642695392, 0.7718874443854203]),
'virginica&1&297': np.array([-0.33108168891715994, -0.1364781674635115]),
'virginica&1&298': np.array([-0.5538416840542331, 0.2026191723113616]),
'virginica&1&299': np.array([-0.3472412936248763, -0.1219322389673262]),
'virginica&1&300': np.array([0.4933316375690332, 0.5272416708629276]),
'virginica&1&301': np.array([0.5041830043657418, 0.5392782673950876]),
'virginica&1&302': np.array([0.25657760110071476, -0.12592645350389117]),
'virginica&1&303': np.array([0.13717260713320115, -0.36277799079016637]),
'virginica&1&304': np.array([0.3093950298647913, 0.1140298206733954]),
'virginica&1&305': np.array([0.5041830043657418, 0.5392782673950876]),
'virginica&1&306': np.array([0.25657760110071476, -0.12592645350389117]),
'virginica&1&307': np.array([0.13717260713320115, -0.36277799079016637]),
'virginica&1&308': np.array([0.40694846236352233, 0.5109051764198169]),
'virginica&1&309': np.array([0.25657760110071476, -0.12592645350389117]),
'virginica&1&310': np.array([0.13717260713320115, -0.36277799079016637]),
'virginica&1&311': np.array([0.415695226122737, 0.5230815102377903]),
'virginica&1&312': np.array([0.13717260713320115, -0.36277799079016637]),
'virginica&1&313': np.array([0.28313251310829024, -0.10978015869508362]),
'virginica&1&314': np.array([0.20013484983664692, -0.3483612449300506]),
'virginica&2&0': np.array([0.37157691321004915, 0.12216227283618836]),
'virginica&2&1': np.array([0.24630541996506908, 0.24630541996506994]),
'virginica&2&2': np.array([0.04449246321056297, 0.7096449459722027]),
'virginica&2&3': np.array([0.2953784217387408, 0.6750352694420284]),
'virginica&2&4': np.array([0.4741571944522723, -0.3872697414416878]),
'virginica&2&5': np.array([0.24630541996506908, 0.24630541996506994]),
'virginica&2&6': np.array([0.04449246321056297, 0.7096449459722027]),
'virginica&2&7': np.array([0.2953784217387408, 0.6750352694420284]),
'virginica&2&8': np.array([0.6273836195848199, -0.15720981251964872]),
'virginica&2&9': np.array([0.04449246321056297, 0.7096449459722027]),
'virginica&2&10': np.array([0.2953784217387408, 0.6750352694420284]),
'virginica&2&11': np.array([0.6863652799597699, -0.21335694415409426]),
'virginica&2&12': np.array([0.2953784217387408, 0.6750352694420284]),
'virginica&2&13': np.array([0.11274898124253621, 0.6292927079496371]),
'virginica&2&14': np.array([0.32240464148521225, 0.645858545382009]),
'virginica&2&15': np.array([0.37157691321004915, 0.12216227283618836]),
'virginica&2&16': np.array([0.24630541996506908, 0.24630541996506994]),
'virginica&2&17': np.array([0.04449246321056297, 0.7096449459722027]),
'virginica&2&18': np.array([0.2953784217387408, 0.6750352694420284]),
'virginica&2&19': np.array([0.4741571944522723, -0.3872697414416878]),
'virginica&2&20': np.array([0.24630541996506908, 0.24630541996506994]),
'virginica&2&21': np.array([0.04449246321056297, 0.7096449459722027]),
'virginica&2&22': np.array([0.2953784217387408, 0.6750352694420284]),
'virginica&2&23': np.array([0.6273836195848199, -0.15720981251964872]),
'virginica&2&24': np.array([0.04449246321056297, 0.7096449459722027]),
'virginica&2&25': np.array([0.2953784217387408, 0.6750352694420284]),
'virginica&2&26': np.array([0.6863652799597699, -0.21335694415409426]),
'virginica&2&27': np.array([0.2953784217387408, 0.6750352694420284]),
'virginica&2&28': np.array([0.11274898124253621, 0.6292927079496371]),
'virginica&2&29': np.array([0.32240464148521225, 0.645858545382009]),
'virginica&2&30': np.array([0.5188517506916897, 0.036358567813067386]),
'virginica&2&31': np.array([0.5131939273945454, 0.04199748266790813]),
'virginica&2&32': np.array([0.06285591932387397, 0.6914253444924359]),
'virginica&2&33': np.array([0.34904320225465857, 0.6233384360811872]),
'virginica&2&34': np.array([0.5354807894355184, -0.3418054346754283]),
'virginica&2&35': np.array([0.5131939273945454, 0.04199748266790813]),
'virginica&2&36': np.array([0.06285591932387397, 0.6914253444924359]),
'virginica&2&37': np.array([0.34904320225465857, 0.6233384360811872]),
'virginica&2&38': np.array([0.5917672401610737, -0.061499563231173816]),
'virginica&2&39': np.array([0.06285591932387397, 0.6914253444924359]),
'virginica&2&40': np.array([0.34904320225465857, 0.6233384360811872]),
'virginica&2&41': np.array([0.5967658480721675, -0.06546963852548916]),
'virginica&2&42': np.array([0.34904320225465857, 0.6233384360811872]),
'virginica&2&43': np.array([0.15466782862660866, 0.5877736906472755]),
'virginica&2&44': np.array([0.37833006296225374, 0.5922410451071548]),
'virginica&2&45': np.array([0.8252668830593566, 0.11450866713130668]),
'virginica&2&46': np.array([0.8211795643076095, 0.11869650771610692]),
'virginica&2&47': np.array([0.644166410268985, 0.30120464260998964]),
'virginica&2&48': np.array([0.7640280271176497, 0.19364537761420375]),
'virginica&2&49': np.array([0.8735738195653328, -0.046438180466149094]),
'virginica&2&50': np.array([0.8211795643076095, 0.11869650771610692]),
'virginica&2&51': np.array([0.644166410268985, 0.30120464260998964]),
'virginica&2&52': np.array([0.7640280271176497, 0.19364537761420375]),
'virginica&2&53': np.array([0.8388485924434891, 0.09800790238640067]),
'virginica&2&54': np.array([0.644166410268985, 0.30120464260998964]),
'virginica&2&55': np.array([0.7640280271176497, 0.19364537761420375]),
'virginica&2&56': np.array([0.835455914569297, 0.10189258327760495]),
'virginica&2&57': np.array([0.7640280271176497, 0.19364537761420375]),
'virginica&2&58': np.array([0.6958244586699014, 0.2551528503043789]),
'virginica&2&59': np.array([0.7857855057542923, 0.17526869720012267]),
'virginica&2&60': np.array([-0.5227340800279543, 0.4209267574088147]),
'virginica&2&61': np.array([-0.5140708637198534, 0.4305361238057349]),
'virginica&2&62': np.array([-0.2661726847443776, 0.6902916602462779]),
'virginica&2&63': np.array([-0.2741128763380603, 0.7260889090887469]),
'virginica&2&64': np.array([-0.6188410763351541, -0.22803625884668638]),
'virginica&2&65': np.array([-0.5140708637198534, 0.4305361238057349]),
'virginica&2&66': np.array([-0.2661726847443776, 0.6902916602462779]),
'virginica&2&67': np.array([-0.2741128763380603, 0.7260889090887469]),
'virginica&2&68': np.array([-0.596973015481227, 0.37395461795328944]),
'virginica&2&69': np.array([-0.2661726847443776, 0.6902916602462779]),
'virginica&2&70': np.array([-0.2741128763380603, 0.7260889090887469]),
'virginica&2&71': np.array([-0.5903420131350324, 0.384224764046184]),
'virginica&2&72': np.array([-0.2741128763380603, 0.7260889090887469]),
'virginica&2&73': np.array([-0.3951343262323671, 0.6428414057947632]),
'virginica&2&74': np.array([-0.4001176958439725, 0.6972674869002595]),
'virginica&2&75': np.array([0.0, 0.47562425924289314]),
'virginica&2&76': np.array([0.0, 0.4854368956593117]),
'virginica&2&77': np.array([0.0, 0.7348263896003954]),
'virginica&2&78': np.array([0.0, 0.7920887571493729]),
'virginica&2&79': np.array([0.0, -0.507614207038711]),
'virginica&2&80': np.array([0.0, 0.4854368956593117]),
'virginica&2&81': np.array([0.0, 0.7348263896003954]),
'virginica&2&82': np.array([0.0, 0.7920887571493729]),
'virginica&2&83': np.array([0.0, 0.4039238345412103]),
'virginica&2&84': np.array([0.0, 0.7348263896003954]),
'virginica&2&85': np.array([0.0, 0.7920887571493729]),
'virginica&2&86': np.array([0.0, 0.41580041887839214]),
'virginica&2&87': np.array([0.0, 0.7920887571493729]),
'virginica&2&88': np.array([0.0, 0.6909317817603084]),
'virginica&2&89': np.array([0.0, 0.7700808435239105]),
'virginica&2&90': np.array([0.37157691321004915, 0.12216227283618836]),
'virginica&2&91': np.array([0.24630541996506908, 0.24630541996506994]),
'virginica&2&92': np.array([0.04449246321056297, 0.7096449459722027]),
'virginica&2&93': np.array([0.2953784217387408, 0.6750352694420284]),
'virginica&2&94': np.array([0.4741571944522723, -0.3872697414416878]),
'virginica&2&95': np.array([0.24630541996506908, 0.24630541996506994]),
'virginica&2&96': np.array([0.04449246321056297, 0.7096449459722027]),
'virginica&2&97': np.array([0.2953784217387408, 0.6750352694420284]),
'virginica&2&98': np.array([0.6273836195848199, -0.15720981251964872]),
'virginica&2&99': np.array([0.04449246321056297, 0.7096449459722027]),
'virginica&2&100': np.array([0.2953784217387408, 0.6750352694420284]),
'virginica&2&101': np.array([0.6863652799597699, -0.21335694415409426]),
'virginica&2&102': np.array([0.2953784217387408, 0.6750352694420284]),
'virginica&2&103': np.array([0.11274898124253621, 0.6292927079496371]),
'virginica&2&104': np.array([0.32240464148521225, 0.645858545382009]),
'virginica&2&105': np.array([0.5188517506916897, 0.036358567813067386]),
'virginica&2&106': np.array([0.5131939273945454, 0.04199748266790813]),
'virginica&2&107': np.array([0.06285591932387397, 0.6914253444924359]),
'virginica&2&108': np.array([0.34904320225465857, 0.6233384360811872]),
'virginica&2&109': np.array([0.5354807894355184, -0.3418054346754283]),
'virginica&2&110': np.array([0.5131939273945454, 0.04199748266790813]),
'virginica&2&111': np.array([0.06285591932387397, 0.6914253444924359]),
'virginica&2&112': np.array([0.34904320225465857, 0.6233384360811872]),
'virginica&2&113': np.array([0.5917672401610737, -0.061499563231173816]),
'virginica&2&114': np.array([0.06285591932387397, 0.6914253444924359]),
'virginica&2&115': np.array([0.34904320225465857, 0.6233384360811872]),
'virginica&2&116': np.array([0.5967658480721675, -0.06546963852548916]),
'virginica&2&117': np.array([0.34904320225465857, 0.6233384360811872]),
'virginica&2&118': np.array([0.15466782862660866, 0.5877736906472755]),
'virginica&2&119': np.array([0.37833006296225374, 0.5922410451071548]),
'virginica&2&120': np.array([0.8252668830593566, 0.11450866713130668]),
'virginica&2&121': np.array([0.8211795643076095, 0.11869650771610692]),
'virginica&2&122': np.array([0.644166410268985, 0.30120464260998964]),
'virginica&2&123': np.array([0.7640280271176497, 0.19364537761420375]),
'virginica&2&124': np.array([0.8735738195653328, -0.046438180466149094]),
'virginica&2&125': np.array([0.8211795643076095, 0.11869650771610692]),
'virginica&2&126': np.array([0.644166410268985, 0.30120464260998964]),
'virginica&2&127': np.array([0.7640280271176497, 0.19364537761420375]),
'virginica&2&128': np.array([0.8388485924434891, 0.09800790238640067]),
'virginica&2&129': np.array([0.644166410268985, 0.30120464260998964]),
'virginica&2&130': np.array([0.7640280271176497, 0.19364537761420375]),
'virginica&2&131': np.array([0.835455914569297, 0.10189258327760495]),
'virginica&2&132': np.array([0.7640280271176497, 0.19364537761420375]),
'virginica&2&133': np.array([0.6958244586699014, 0.2551528503043789]),
'virginica&2&134': np.array([0.7857855057542923, 0.17526869720012267]),
'virginica&2&135': np.array([-0.3219660907491514, 0.7482043503408669]),
'virginica&2&136': np.array([-0.43839553940476644, 0.8642446918440131]),
'virginica&2&137': np.array([-0.05474251929945989, 0.756649813459784]),
'virginica&2&138': np.array([0.17291299562995102, 0.7651995812779756]),
'virginica&2&139': np.array([0.2626914501948546, -0.5596191134224637]),
'virginica&2&140': np.array([-0.43839553940476644, 0.8642446918440131]),
'virginica&2&141': np.array([-0.05474251929945989, 0.756649813459784]),
'virginica&2&142': np.array([0.17291299562995102, 0.7651995812779756]),
'virginica&2&143': np.array([-0.19892251970509112, 0.5718543863753405]),
'virginica&2&144': np.array([-0.05474251929945989, 0.756649813459784]),
'virginica&2&145': np.array([0.17291299562995102, 0.7651995812779756]),
'virginica&2&146': np.array([-0.3047657227470458, 0.6788631774846587]),
'virginica&2&147': np.array([0.17291299562995102, 0.7651995812779756]),
'virginica&2&148': np.array([-0.05208936793838525, 0.7130690628827158]),
'virginica&2&149': np.array([0.16027227650394366, 0.7374943640687518]),
'virginica&2&150': np.array([0.37157691321004915, 0.12216227283618836]),
'virginica&2&151': np.array([0.24630541996506908, 0.24630541996506994]),
'virginica&2&152': np.array([0.04449246321056297, 0.7096449459722027]),
'virginica&2&153': np.array([0.2953784217387408, 0.6750352694420284]),
'virginica&2&154': np.array([0.4741571944522723, -0.3872697414416878]),
'virginica&2&155': np.array([0.24630541996506908, 0.24630541996506994]),
'virginica&2&156': np.array([0.04449246321056297, 0.7096449459722027]),
'virginica&2&157': np.array([0.2953784217387408, 0.6750352694420284]),
'virginica&2&158': np.array([0.6273836195848199, -0.15720981251964872]),
'virginica&2&159': np.array([0.04449246321056297, 0.7096449459722027]),
'virginica&2&160': np.array([0.2953784217387408, 0.6750352694420284]),
'virginica&2&161': np.array([0.6863652799597699, -0.21335694415409426]),
'virginica&2&162': np.array([0.2953784217387408, 0.6750352694420284]),
'virginica&2&163': np.array([0.11274898124253621, 0.6292927079496371]),
'virginica&2&164': np.array([0.32240464148521225, 0.645858545382009]),
'virginica&2&165': np.array([0.5188517506916897, 0.036358567813067386]),
'virginica&2&166': np.array([0.5131939273945454, 0.04199748266790813]),
'virginica&2&167': np.array([0.06285591932387397, 0.6914253444924359]),
'virginica&2&168': np.array([0.34904320225465857, 0.6233384360811872]),
'virginica&2&169': np.array([0.5354807894355184, -0.3418054346754283]),
'virginica&2&170': np.array([0.5131939273945454, 0.04199748266790813]),
'virginica&2&171': np.array([0.06285591932387397, 0.6914253444924359]),
'virginica&2&172': np.array([0.34904320225465857, 0.6233384360811872]),
'virginica&2&173': np.array([0.5917672401610737, -0.061499563231173816]),
'virginica&2&174': np.array([0.06285591932387397, 0.6914253444924359]),
'virginica&2&175': np.array([0.34904320225465857, 0.6233384360811872]),
'virginica&2&176': np.array([0.5967658480721675, -0.06546963852548916]),
'virginica&2&177': np.array([0.34904320225465857, 0.6233384360811872]),
'virginica&2&178': np.array([0.15466782862660866, 0.5877736906472755]),
'virginica&2&179': np.array([0.37833006296225374, 0.5922410451071548]),
'virginica&2&180': np.array([0.8252668830593566, 0.11450866713130668]),
'virginica&2&181': np.array([0.8211795643076095, 0.11869650771610692]),
'virginica&2&182': np.array([0.644166410268985, 0.30120464260998964]),
'virginica&2&183': np.array([0.7640280271176497, 0.19364537761420375]),
'virginica&2&184': np.array([0.8735738195653328, -0.046438180466149094]),
'virginica&2&185': np.array([0.8211795643076095, 0.11869650771610692]),
'virginica&2&186': np.array([0.644166410268985, 0.30120464260998964]),
'virginica&2&187': np.array([0.7640280271176497, 0.19364537761420375]),
'virginica&2&188': np.array([0.8388485924434891, 0.09800790238640067]),
'virginica&2&189': np.array([0.644166410268985, 0.30120464260998964]),
'virginica&2&190': np.array([0.7640280271176497, 0.19364537761420375]),
'virginica&2&191': np.array([0.835455914569297, 0.10189258327760495]),
'virginica&2&192': np.array([0.7640280271176497, 0.19364537761420375]),
'virginica&2&193': np.array([0.6958244586699014, 0.2551528503043789]),
'virginica&2&194': np.array([0.7857855057542923, 0.17526869720012267]),
'virginica&2&195': np.array([-0.3219660907491514, 0.7482043503408669]),
'virginica&2&196': np.array([-0.43839553940476644, 0.8642446918440131]),
'virginica&2&197': np.array([-0.05474251929945989, 0.756649813459784]),
'virginica&2&198': np.array([0.17291299562995102, 0.7651995812779756]),
'virginica&2&199': np.array([0.2626914501948546, -0.5596191134224637]),
'virginica&2&200': np.array([-0.43839553940476644, 0.8642446918440131]),
'virginica&2&201': np.array([-0.05474251929945989, 0.756649813459784]),
'virginica&2&202': np.array([0.17291299562995102, 0.7651995812779756]),
'virginica&2&203': np.array([-0.19892251970509112, 0.5718543863753405]),
'virginica&2&204': np.array([-0.05474251929945989, 0.756649813459784]),
'virginica&2&205': np.array([0.17291299562995102, 0.7651995812779756]),
'virginica&2&206': np.array([-0.3047657227470458, 0.6788631774846587]),
'virginica&2&207': np.array([0.17291299562995102, 0.7651995812779756]),
'virginica&2&208': np.array([-0.05208936793838525, 0.7130690628827158]),
'virginica&2&209': np.array([0.16027227650394366, 0.7374943640687518]),
'virginica&2&210': np.array([0.37157691321004915, 0.12216227283618836]),
'virginica&2&211': np.array([0.24630541996506908, 0.24630541996506994]),
'virginica&2&212': np.array([0.04449246321056297, 0.7096449459722027]),
'virginica&2&213': np.array([0.2953784217387408, 0.6750352694420284]),
'virginica&2&214': np.array([0.4741571944522723, -0.3872697414416878]),
'virginica&2&215': np.array([0.24630541996506908, 0.24630541996506994]),
'virginica&2&216': np.array([0.04449246321056297, 0.7096449459722027]),
'virginica&2&217': np.array([0.2953784217387408, 0.6750352694420284]),
'virginica&2&218': np.array([0.6273836195848199, -0.15720981251964872]),
'virginica&2&219': np.array([0.04449246321056297, 0.7096449459722027]),
'virginica&2&220': np.array([0.2953784217387408, 0.6750352694420284]),
'virginica&2&221': np.array([0.6863652799597699, -0.21335694415409426]),
'virginica&2&222': np.array([0.2953784217387408, 0.6750352694420284]),
'virginica&2&223': np.array([0.11274898124253621, 0.6292927079496371]),
'virginica&2&224': np.array([0.32240464148521225, 0.645858545382009]),
'virginica&2&225': np.array([0.8252668830593566, 0.11450866713130668]),
'virginica&2&226': np.array([0.8211795643076095, 0.11869650771610692]),
'virginica&2&227': np.array([0.644166410268985, 0.30120464260998964]),
'virginica&2&228': np.array([0.7640280271176497, 0.19364537761420375]),
'virginica&2&229': np.array([0.8735738195653328, -0.046438180466149094]),
'virginica&2&230': np.array([0.8211795643076095, 0.11869650771610692]),
'virginica&2&231': np.array([0.644166410268985, 0.30120464260998964]),
'virginica&2&232': np.array([0.7640280271176497, 0.19364537761420375]),
'virginica&2&233': np.array([0.8388485924434891, 0.09800790238640067]),
'virginica&2&234': np.array([0.644166410268985, 0.30120464260998964]),
'virginica&2&235': np.array([0.7640280271176497, 0.19364537761420375]),
'virginica&2&236': np.array([0.835455914569297, 0.10189258327760495]),
'virginica&2&237': np.array([0.7640280271176497, 0.19364537761420375]),
'virginica&2&238': np.array([0.6958244586699014, 0.2551528503043789]),
'virginica&2&239': np.array([0.7857855057542923, 0.17526869720012267]),
'virginica&2&240': np.array([0.05667262840030629, 0.4335746514880877]),
'virginica&2&241': np.array([0.0202211257171063, 0.470123810164804]),
'virginica&2&242': np.array([-0.052990507284891915, 0.7625494034929867]),
'virginica&2&243': np.array([0.22461127196921116, 0.7375780139111495]),
'virginica&2&244': np.array([0.3463149754241171, -0.5568366400939154]),
'virginica&2&245': np.array([0.0202211257171063, 0.470123810164804]),
'virginica&2&246': np.array([-0.052990507284891915, 0.7625494034929867]),
'virginica&2&247': np.array([0.22461127196921116, 0.7375780139111495]),
'virginica&2&248': np.array([0.1370187510624256, 0.30303755274337163]),
'virginica&2&249': np.array([-0.052990507284891915, 0.7625494034929867]),
'virginica&2&250': np.array([0.22461127196921116, 0.7375780139111495]),
'virginica&2&251': np.array([0.10611499646955676, 0.33589829339460586]),
'virginica&2&252': np.array([0.22461127196921116, 0.7375780139111495]),
'virginica&2&253': np.array([-0.036942953551205526, 0.7110752599289349]),
'virginica&2&254': np.array([0.21902359555042725, 0.7069833524524777]),
'virginica&2&255': np.array([0.5188517506916897, 0.036358567813067386]),
'virginica&2&256': np.array([0.5131939273945454, 0.04199748266790813]),
'virginica&2&257': np.array([0.06285591932387397, 0.6914253444924359]),
'virginica&2&258': np.array([0.34904320225465857, 0.6233384360811872]),
'virginica&2&259': np.array([0.5354807894355184, -0.3418054346754283]),
'virginica&2&260': np.array([0.5131939273945454, 0.04199748266790813]),
'virginica&2&261': np.array([0.06285591932387397, 0.6914253444924359]),
'virginica&2&262': np.array([0.34904320225465857, 0.6233384360811872]),
'virginica&2&263': np.array([0.5917672401610737, -0.061499563231173816]),
'virginica&2&264': np.array([0.06285591932387397, 0.6914253444924359]),
'virginica&2&265': np.array([0.34904320225465857, 0.6233384360811872]),
'virginica&2&266': np.array([0.5967658480721675, -0.06546963852548916]),
'virginica&2&267': np.array([0.34904320225465857, 0.6233384360811872]),
'virginica&2&268': np.array([0.15466782862660866, 0.5877736906472755]),
'virginica&2&269': np.array([0.37833006296225374, 0.5922410451071548]),
'virginica&2&270': np.array([0.6708953257280641, 0.25225839574246695]),
'virginica&2&271': np.array([0.6634195777991901, 0.2600030585430812]),
'virginica&2&272': np.array([0.4116759784429769, 0.5265856222946096]),
'virginica&2&273': np.array([0.5333797278655124, 0.5027313480722909]),
'virginica&2&274': np.array([0.7675615377679706, -0.4491704351274441]),
'virginica&2&275': | np.array([0.6634195777991901, 0.2600030585430812]) | numpy.array |
import cv2
import ezdxf
import numpy as np
def draw_hatch(img, entity, color, mask):
for poly_path in entity.paths.paths:
# print(poly_path.path_type_flags)
polygon = np.array([vertex[:-1] for vertex in poly_path.vertices]).astype(int)
if poly_path.path_type_flags & 1 == 1:
cv2.fillPoly(img, [polygon], color)
cv2.fillPoly(mask, [polygon], (255, 255, 255))
else:
cv2.fillPoly(img, [polygon], (255, 255, 255))
return color
def draw_line(img, entity, color, mask):
p1 = entity.dxf.start[:-1]
p2 = entity.dxf.end[:-1]
cv2.line(img, (int(p1[0]), int(p1[1])), (int(p2[0]), int(p2[1])), color, 1)
cv2.line(mask, (int(p1[0]), int(p1[1])), (int(p2[0]), int(p2[1])), (255, 255, 255), 2)
return color
def draw_lwpolyline(img, entity, color, mask):
polyline = []
a = np.array(entity.lwpoints.values).astype(int)
while len(a) > 0:
polyline.append((a[0], a[1]))
a = a[5:]
cv2.polylines(img, [ | np.array(polyline) | numpy.array |
import numpy as np
import matplotlib.pyplot as plt
# be careful with deep and shallow copies
class Quat(object):
def __init__(self, *args, **kwargs):
self.quatCoef = np.zeros(4, dtype=float)
# construt with Bunge euler angles (radians, ZXZ)
if len(args) == 3:
ph1 = args[0]
phi = args[1]
ph2 = args[2]
self.quatCoef[0] = np.cos(phi / 2.0) * np.cos((ph1 + ph2) / 2.0)
self.quatCoef[1] = -np.sin(phi / 2.0) * np.cos((ph1 - ph2) / 2.0)
self.quatCoef[2] = -np.sin(phi / 2.0) * np.sin((ph1 - ph2) / 2.0)
self.quatCoef[3] = -np.cos(phi / 2.0) * np.sin((ph1 + ph2) / 2.0)
# construt with array of quat coefficients
elif len(args) == 1:
self.quatCoef = args[0]
# construt with quat coefficients
elif len(args) == 4:
self.quatCoef[0] = args[0]
self.quatCoef[1] = args[1]
self.quatCoef[2] = args[2]
self.quatCoef[3] = args[3]
if (self.quatCoef[0] < 0):
self.quatCoef = self.quatCoef * -1
# overload static method with instance method of same name in object
self.plotIPF = self._plotIPF
@classmethod
def fromAxisAngle(cls, axis, angle):
"""Create a quat object from an axis angle pair
Args:
axis (np.array size 3): Axis of rotation
angle (float): Rotation arround axis (radians)
Returns:
Quat: Initialised Quat object
"""
# normalise the axis vector
axis = axis / np.sqrt(np.dot(axis, axis))
# calculate quat coefficients
quatCoef = np.zeros(4, dtype=float)
quatCoef[0] = np.cos(angle / 2)
quatCoef[1:4] = np.sin(angle / 2) * axis
# call constructor
return cls(quatCoef)
def eulerAngles(self):
# See Melcher, <NAME>, <NAME>, <NAME>, B. Conversion of EBSD data by a
# quaternion based algorithm to be used for grain structure simulations
# or
# Rowenhorst, D et al. Consistent representations of and conversions between 3D rotations
# P = +1
eulers = np.empty(3, dtype=float)
q = self.quatCoef
q03 = q[0]**2 + q[3]**2
q12 = q[1]**2 + q[2]**2
chi = np.sqrt(q03 * q12)
if (chi == 0 and q12 == 0):
eulers[0] = np.arctan2(-2 * q[0] * q[3],
q[0]**2 - q[3]**2)
eulers[1] = 0
eulers[2] = 0
elif (chi == 0 and q03 == 0):
eulers[0] = np.arctan2(2 * q[1] * q[2],
q[1]**2 - q[2]**2)
eulers[1] = np.pi
eulers[2] = 0
else:
cosPh1 = (-q[0] * q[1] - q[2] * q[3]) / chi
sinPh1 = (-q[0] * q[2] + q[1] * q[3]) / chi
cosPhi = q[0]**2 + q[3]**2 - q[1]**2 - q[2]**2
sinPhi = 2 * chi
cosPh2 = (-q[0] * q[1] + q[2] * q[3]) / chi
sinPh2 = (q[1] * q[3] + q[0] * q[2]) / chi
eulers[0] = np.arctan2(sinPh1, cosPh1)
eulers[1] = np.arctan2(sinPhi, cosPhi)
eulers[2] = np.arctan2(sinPh2, cosPh2)
if eulers[0] < 0:
eulers[0] += 2 * np.pi
if eulers[2] < 0:
eulers[2] += 2 * np.pi
return eulers
def rotMatrix(self):
rotMatrix = np.empty((3, 3), dtype=float)
q = self.quatCoef
qbar = q[0]**2 - q[1]**2 - q[2]**2 - q[3]**2
rotMatrix[0, 0] = qbar + 2 * q[1]**2
rotMatrix[0, 1] = 2 * (q[1] * q[2] - q[0] * q[3])
rotMatrix[0, 2] = 2 * (q[1] * q[3] + q[0] * q[2])
rotMatrix[1, 0] = 2 * (q[1] * q[2] + q[0] * q[3])
rotMatrix[1, 1] = qbar + 2 * q[2]**2
rotMatrix[1, 2] = 2 * (q[2] * q[3] - q[0] * q[1])
rotMatrix[2, 0] = 2 * (q[1] * q[3] - q[0] * q[2])
rotMatrix[2, 1] = 2 * (q[2] * q[3] + q[0] * q[1])
rotMatrix[2, 2] = qbar + 2 * q[3]**2
return rotMatrix
# show components when the quat is printed
def __repr__(self):
return "[%.4f, %.4f, %.4f, %.4f]" % (self.quatCoef[0], self.quatCoef[1], self.quatCoef[2], self.quatCoef[3])
def __str__(self):
return "[%.4f, %.4f, %.4f, %.4f]" % (self.quatCoef[0], self.quatCoef[1], self.quatCoef[2], self.quatCoef[3])
def _plotIPF(self, direction, symGroup, **kwargs):
Quat.plotIPF([self], direction, symGroup, **kwargs)
# overload * operator for quaterion product and vector product
def __mul__(self, right):
if isinstance(right, type(self)): # another quat
newQuatCoef = np.zeros(4, dtype=float)
newQuatCoef[0] = (self.quatCoef[0] * right.quatCoef[0] -
np.dot(self.quatCoef[1:4], right.quatCoef[1:4]))
newQuatCoef[1:4] = (self.quatCoef[0] * right.quatCoef[1:4] +
right.quatCoef[0] * self.quatCoef[1:4] +
np.cross(self.quatCoef[1:4], right.quatCoef[1:4]))
return Quat(newQuatCoef)
raise TypeError()
# # overload % operator for dot product
# def __mod__(self, right):
def dot(self, right):
if isinstance(right, type(self)):
return np.dot(self.quatCoef, right.quatCoef)
raise TypeError()
# overload + operator
def __add__(self, right):
if isinstance(right, type(self)):
return Quat(self.quatCoef + right.quatCoef)
raise TypeError()
# overload += operator
def __iadd__(self, right):
if isinstance(right, type(self)):
self.quatCoef += right.quatCoef
return self
raise TypeError()
# allow array like setting/getting of components
def __getitem__(self, key):
return self.quatCoef[key]
def __setitem__(self, key, value):
self.quatCoef[key] = value
return
def norm(self):
return np.sqrt(np.dot(self.quatCoef[0:4], self.quatCoef[0:4]))
def normalise(self):
self.quatCoef /= self.norm()
return
# also the inverse if this is a unit quaterion
@property
def conjugate(self):
return Quat(self.quatCoef[0], -self.quatCoef[1], -self.quatCoef[2], -self.quatCoef[3])
def transformVector(self, vector):
"""Transforms vector by the quaternion. For EBSD quaterions this
is a transformation from sample space to crystal space. Perform
on conjugate of quaternion for crystal to sample.
Args:
vector (numpy.ndarray): Vector to transform
Returns:
numpy.ndarray: Transformed vector
"""
if isinstance(vector, np.ndarray) and vector.shape == (3,):
vectorQuat = Quat(0, vector[0], vector[1], vector[2])
vectorQuatTransformed = (self * vectorQuat) * self.conjugate
vectorTransformed = vectorQuatTransformed.quatCoef[1:4]
return vectorTransformed
raise TypeError("Vector must be a size 3 numpy array.")
def misOri(self, right, symGroup, returnQuat=0):
"""Calculate misorientation angle between 2 orientations taking
into account the symmetries of the crystal structure.
Angle is 2*arccos(output).
Args:
rigth (quat): Orientation to find misorientation to
symGroup (str): Crystal type (cubic, hexagonal)
returnQuat (int): What to return
Returns:
various: returnQuat = 0 - misorientation
returnQuat = 1 - symmetric equivalent with min misorientation
returnQuat = 2 - both
"""
if isinstance(right, type(self)):
minMisOri = 0 # actually looking for max of this as it is cos of misoriention angle
for sym in Quat.symEqv(symGroup): # loop over symmetrically equivelent orienations
quatSym = sym * right
currentMisOri = abs(self.dot(quatSym))
if currentMisOri > minMisOri: # keep if misorientation lower
minMisOri = currentMisOri
minQuatSym = quatSym
if returnQuat == 1:
return minQuatSym
elif returnQuat == 2:
return minMisOri, minQuatSym
else:
return minMisOri
raise TypeError("Input must be a quaternion.")
def misOriAxis(self, right):
"""Calculate misorientation axis between 2 orientations.
This does not consider symmetries of the crystal structure.
Args:
rigth (quat): Orientation to find misorientation axis to
Returns:
numpy.ndarray: axis of misorientation
"""
if isinstance(right, type(self)):
Dq = right * self.conjugate
Dq = Dq.quatCoef
misOriAxis = (2 * Dq[1:4] * np.arccos(Dq[0])) / np.sqrt(1 - np.power(Dq[0], 2))
return misOriAxis
raise TypeError("Input must be a quaternion.")
# Static methods
@staticmethod
def createManyQuats(eulerArray):
"""Create a an array of quats from an array of Euler angles
Args:
eulerArray (array): Size 3 x n x ... x m
"""
ph1 = eulerArray[0]
phi = eulerArray[1]
ph2 = eulerArray[2]
oriShape = eulerArray.shape[1:]
quatComps = np.zeros((4,) + oriShape, dtype=float)
quatComps[0] = np.cos(phi / 2.0) * np.cos((ph1 + ph2) / 2.0)
quatComps[1] = -np.sin(phi / 2.0) * np.cos((ph1 - ph2) / 2.0)
quatComps[2] = -np.sin(phi / 2.0) * np.sin((ph1 - ph2) / 2.0)
quatComps[3] = -np.cos(phi / 2.0) * np.sin((ph1 + ph2) / 2.0)
quats = np.empty(oriShape, dtype=Quat)
for idx in np.ndindex(oriShape):
quats[idx] = Quat(quatComps[(slice(None),) + idx])
# quatComps[(slice(None),) + idx] is equivalent to quatComps[:, idx[0], ..., idx[n]]
return quats
@staticmethod
def calcSymEqvs(quats, symGroup):
syms = Quat.symEqv(symGroup)
quatComps = np.empty((len(syms), 4, len(quats)))
# store quat components in array
for i, quat in enumerate(quats):
quatComps[0, :, i] = quat.quatCoef
# calculate symmetrical equivalents
for i, sym in enumerate(syms[1:], start=1):
# sym[i] * quat for all points (* is quaternion product)
quatComps[i, 0, :] = (quatComps[0, 0, :] * sym[0] - quatComps[0, 1, :] * sym[1] -
quatComps[0, 2, :] * sym[2] - quatComps[0, 3, :] * sym[3])
quatComps[i, 1, :] = (quatComps[0, 0, :] * sym[1] + quatComps[0, 1, :] * sym[0] -
quatComps[0, 2, :] * sym[3] + quatComps[0, 3, :] * sym[2])
quatComps[i, 2, :] = (quatComps[0, 0, :] * sym[2] + quatComps[0, 2, :] * sym[0] -
quatComps[0, 3, :] * sym[1] + quatComps[0, 1, :] * sym[3])
quatComps[i, 3, :] = (quatComps[0, 0, :] * sym[3] + quatComps[0, 3, :] * sym[0] -
quatComps[0, 1, :] * sym[2] + quatComps[0, 2, :] * sym[1])
# swap into positve hemisphere if required
quatComps[i, :, quatComps[i, 0, :] < 0] = -quatComps[i, :, quatComps[i, 0, :] < 0]
return quatComps
@staticmethod
def calcAverageOri(quatComps):
avOri = np.copy(quatComps[0, :, 0])
currMisOris = np.empty(quatComps.shape[0])
for i in range(1, quatComps.shape[2]):
# calculate misorientation between current average and all symmetrical equivalents
# Dot product of each symm quat in quatComps with refOri for point i
currMisOris[:] = abs(np.einsum("ij,j->i", quatComps[:, :, i], avOri))
# find min misorientation with current average then add to it
maxIdx = np.argmax(currMisOris[:])
avOri += quatComps[maxIdx, :, i]
# Convert components back to a quat and normalise
avOri = Quat(avOri)
avOri.normalise()
return avOri
@staticmethod
def calcMisOri(quatComps, refOri):
misOris = np.empty((quatComps.shape[0], quatComps.shape[2]))
# Dot product of each quat in quatComps with refOri
misOris[:, :] = abs(np.einsum("ijk,j->ik", quatComps, refOri.quatCoef))
maxIdxs0 = np.argmax(misOris, axis=0)
maxIdxs1 = np.arange(misOris.shape[1])
minMisOris = misOris[maxIdxs0, maxIdxs1]
minQuatComps = quatComps[maxIdxs0, :, maxIdxs1].transpose()
minMisOris[minMisOris > 1] = 1
return minMisOris, minQuatComps
@staticmethod
def polarAngles(x, y, z):
mod = np.sqrt(x**2 + y**2 + z**2)
x = x / mod
y = y / mod
z = z / mod
# alpha - angle with z axis
alpha = np.arccos(z)
# beta - angle around z axis
beta = np.arctan2(y, x)
return alpha, beta
@staticmethod
def stereoProject(*args):
if len(args) == 3:
alpha, beta = Quat.polarAngles(args[0], args[1], args[2])
elif len(args) == 2:
alpha, beta = args
else:
raise Exception("3 arguments for pole directions and 2 for polar angles.")
alphaComp = np.tan(alpha / 2)
xp = alphaComp * np.cos(beta)
yp = alphaComp * np.sin(beta)
return xp, yp
@staticmethod
def plotLine(startPoint, endPoint, plotSymmetries=False, symGroup=None, res=100, projection=None, ax=None, **kwargs):
if projection is None:
projection = Quat.stereoProject
if ax is None:
ax = plt.gca()
lines = []
lines.append((startPoint, endPoint))
if plotSymmetries:
if symGroup is None:
raise Exception("Please provide a symGroup")
for symm in Quat.symEqv(symGroup)[1:]:
startPointSymm = symm.transformVector(startPoint).astype(int)
endPointSymm = symm.transformVector(endPoint).astype(int)
if startPointSymm[2] < 0:
startPointSymm *= -1
if endPointSymm[2] < 0:
endPointSymm *= -1
lines.append((startPointSymm, endPointSymm))
linePoints = np.zeros((3, res), dtype=float)
for line in lines:
for i in range(3):
if line[0][i] == line[1][i]:
linePoints[i] = np.full(res, line[0][i])
else:
linePoints[i] = np.linspace(line[0][i], line[1][i], res)
xp, yp = projection(linePoints[0], linePoints[1], linePoints[2])
ax.plot(xp, yp, **kwargs)
@staticmethod
def labelPoint(point, label, projection=None, ax=None, padX=0, padY=0, **kwargs):
if projection is None:
projection = Quat.stereoProject
if ax is None:
ax = plt.gca()
xp, yp = projection(point[0], point[1], point[2])
ax.text(xp + padX, yp + padY, label, **kwargs)
@staticmethod
def plotPoleAxis(plotType, symGroup, ax=None):
if ax is None:
ax = plt.gca()
if plotType == "IPF" and symGroup == "cubic":
# line between [001] and [111]
Quat.plotLine(np.array([0, 0, 1]), np.array([1, 1, 1]), ax=ax, c='k', lw=2)
# line between [001] and [101]
Quat.plotLine(np.array([0, 0, 1]), np.array([1, 0, 1]), ax=ax, c='k', lw=2)
# line between [101] and [111]
Quat.plotLine(np.array([1, 0, 1]), np.array([1, 1, 1]), ax=ax, c='k', lw=2)
# label poles
Quat.labelPoint(np.array([0, 0, 1]), '001', ax=ax, padY=-0.005, va='top', ha='center')
Quat.labelPoint(np.array([1, 0, 1]), '101', ax=ax, padY=-0.005, va='top', ha='center')
Quat.labelPoint(np.array([1, 1, 1]), '111', ax=ax, padY=0.005, va='bottom', ha='center')
ax.axis('equal')
ax.axis('off')
else:
print("Only works for cubic")
@staticmethod
def plotIPF(quats, direction, symGroup, ax=None, **kwargs):
plotParams = {'marker': '+', 'c': 'r'}
plotParams.update(kwargs)
if ax is None:
ax = plt.gca()
if symGroup == "hexagonal":
raise Exception("Have fun with that")
# Plot IPF axis
# plt.figure()
Quat.plotPoleAxis("IPF", symGroup, ax=ax)
# get array of symmetry operations. shape - (numSym, 4, numQuats)
quatCompsSym = Quat.calcSymEqvs(quats, symGroup)
# array to store crytal directions for all orientations and symmetries
directionCrystal = np.empty((3, quatCompsSym.shape[0], quatCompsSym.shape[2]))
# temp variables to use bleow
quatDotVec = (quatCompsSym[:, 1, :] * direction[0] +
quatCompsSym[:, 2, :] * direction[1] +
quatCompsSym[:, 3, :] * direction[2])
temp = (np.square(quatCompsSym[:, 0, :]) - np.square(quatCompsSym[:, 1, :]) -
np.square(quatCompsSym[:, 2, :]) - np.square(quatCompsSym[:, 3, :]))
# transform the pole direction to crystal coords for all orientations and symmetries
# (quatCompsSym * vectorQuat) * quatCompsSym.conjugate
directionCrystal[0, :, :] = (2 * quatDotVec * quatCompsSym[:, 1, :] +
temp * direction[0] +
2 * quatCompsSym[:, 0, :] * (quatCompsSym[:, 2, :] * direction[2] -
quatCompsSym[:, 3, :] * direction[1]))
directionCrystal[1, :, :] = (2 * quatDotVec * quatCompsSym[:, 2, :] +
temp * direction[1] +
2 * quatCompsSym[:, 0, :] * (quatCompsSym[:, 3, :] * direction[0] -
quatCompsSym[:, 1, :] * direction[2]))
directionCrystal[2, :, :] = (2 * quatDotVec * quatCompsSym[:, 3, :] +
temp * direction[2] +
2 * quatCompsSym[:, 0, :] * (quatCompsSym[:, 1, :] * direction[1] -
quatCompsSym[:, 2, :] * direction[0]))
# normalise vectors
directionCrystal /= np.sqrt(np.einsum('ijk,ijk->jk', directionCrystal, directionCrystal))
# move all vectors into north hemisphere
directionCrystal[:, directionCrystal[2, :, :] < 0] *= -1
# convert to spherical coordinates
alpha, beta = Quat.polarAngles(directionCrystal[0], directionCrystal[1], directionCrystal[2])
# find the poles in the fundamental triangle
if symGroup == "cubic":
# first beta should be between 0 and 45 deg leaving 3 symmetric equivalents per orientation
trialPoles = | np.logical_and(beta >= 0, beta <= np.pi / 4) | numpy.logical_and |
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable
import matplotlib.gridspec as gridspec
from astropy.stats import mad_std
NAME='astero'
NAME='pande'
wnoise_frac=pd.read_csv('LLR_gaia/{}_wnoise_frac.txt'.format(NAME),delimiter=' ',names=['KICID','Fraction','Radius'],skiprows=1)
# idx=np.where(wnoise_frac['More']>0.01)[0]
df=pd.read_csv('LLR_gaia/Gaia_Catalogue.txt',index_col=False,delimiter=';')
# df=pd.read_csv('LLR_seismic_final/Astero_Catalogue.txt',index_col=False,delimiter=';')
keep=np.array(df[df['Outlier']==0]['KICID'])
outliers=np.array(df[df['Outlier']==1]['KICID'])
true=np.array(df[df['Outlier']==0]['True_Logg'])
pred=np.array(df[df['Outlier']==0]['Inferred_Logg'])
trueo=np.array(df[df['Outlier']==1]['True_Logg'])
predo=np.array(df[df['Outlier']==1]['Inferred_Logg'])
teff=np.array(df[df['Outlier']==0]['Teff'])
teffo=np.array(df[df['Outlier']==1]['Teff'])
rad=np.array(df[df['Outlier']==0]['Radius'])
rado=np.array(df[df['Outlier']==1]['Radius'])
snr=np.array(df[df['Outlier']==0]['SNR'])
snro=np.array(df[df['Outlier']==1]['SNR'])
tloggp=np.array(df[df['Outlier']==0]['TLoggp'])
tloggn=np.array(df[df['Outlier']==0]['TLoggn'])
mass=np.array(df[df['Outlier']==0]['Inferred_Mass'])
radius= | np.array(df[df['Outlier']==0]['Radius']) | numpy.array |
import warnings
import numba
import numpy as np
import pandas as pd
import scipy as sp
from scipy.cluster.hierarchy import fcluster, linkage
from sklearn.metrics import pairwise_distances
import trisicell as tsc
from trisicell.external._betabinom import pmf_BetaBinomial
@numba.jit(nopython=True)
def _l1_ignore_na(a, b):
a[a == 3] = np.nan
b[b == 3] = np.nan
return np.nanmean(np.abs(a - b))
def dist_l1_ignore_na(I_mtr, n_jobs=1):
dist = pairwise_distances(
I_mtr, metric=_l1_ignore_na, force_all_finite="allow-nan", n_jobs=n_jobs
)
np.fill_diagonal(dist, 0)
return dist
# https://gist.github.com/FedericoV/0e7d6d8c8794a99a7a42
@numba.jit(nopython=True)
def _cosine_ignore_na(u, v):
m = u.shape[0]
udotv = 0
u_norm = 0
v_norm = 0
for i in range(m):
if (np.isnan(u[i])) or (np.isnan(v[i])):
continue
udotv += u[i] * v[i]
u_norm += u[i] * u[i]
v_norm += v[i] * v[i]
u_norm = np.sqrt(u_norm)
v_norm = np.sqrt(v_norm)
if (u_norm == 0) or (v_norm == 0):
ratio = 1.0
else:
ratio = 1 - udotv / (u_norm * v_norm)
if ratio < 0:
return 0
return ratio
def dist_cosine_ignore_na(I_mtr, n_jobs=1):
dist = pairwise_distances(
I_mtr, metric=_cosine_ignore_na, force_all_finite="allow-nan", n_jobs=n_jobs
)
| np.fill_diagonal(dist, 0) | numpy.fill_diagonal |
import numpy as np
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'False'
actions = ['up', 'down', 'stop']
data = np.concatenate([
np.load('dataset1/seq_down_1643621733.npy'),
np.load('dataset1/seq_up_1643621733.npy'),
| np.load('dataset1/seq_stop_1643621733.npy') | numpy.load |
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 22 00:39:18 2020
@author: nikbakht
"""
import tensorflow as tf
from tensorflow.keras.layers import Layer
import numpy as np
class Data(Layer):
def __init__(self,Nuser, **kwargs):
super(Data, self).__init__(**kwargs)
self.EX=100
self.EY=100
self.exponent=3.8
self.shadowing_sigma=0;
self.Zuser=0;
self.Zap=1;
self.Nuser_drop=10*Nuser
self.Nap=Nuser
self.Nuser=Nuser
self.grid_size=32
def call(self,batch_num,beta_open_loop=.5):
Xin=np.zeros([batch_num,self.grid_size,self.grid_size,self.Nuser],dtype='float32')
G= | np.zeros([batch_num,self.Nap,self.Nuser],dtype='float32') | numpy.zeros |
# 导入所需模块
from cv2 import cv2
from matplotlib import pyplot as plt
import os
import numpy as np
import util
SZ = 20 # 训练图片长宽
MAX_WIDTH = 1000 # 原始图片最大宽度
Min_Area = 2000 # 车牌区域允许最大面积
PROVINCE_START = 1000
# 图像预处理
def img_preprocess(car_pic_file):
"""
:param car_pic_file: 图像文件
:return:已经处理好的图像文件 原图像文件
"""
if type(car_pic_file) == type(""):
img = util.img_read(car_pic_file)
else:
img = car_pic_file
pic_hight, pic_width = img.shape[:2]
if pic_width > MAX_WIDTH:
resize_rate = MAX_WIDTH / pic_width
img = cv2.resize(img, (MAX_WIDTH, int(pic_hight * resize_rate)), interpolation=cv2.INTER_AREA)
# 缩小图片
blur = 5
img = cv2.GaussianBlur(img, (blur, blur), 0)
oldimg = img
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# cv2.imwrite("tmp/img_gray.jpg", img)
# 转化成灰度图像
util.plt_show_gray(img)
Matrix = np.ones((20, 20), np.uint8)
img_opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, Matrix)
img_opening = cv2.addWeighted(img, 1, img_opening, -1, 0)
# cv2.imwrite("tmp/img_opening.jpg", img_opening)
# 创建20*20的元素为1的矩阵 开操作,并和img重合
ret, img_thresh = cv2.threshold(img_opening, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
img_edge = cv2.Canny(img_thresh, 100, 200)
# cv2.imwrite("tmp/img_edge.jpg", img_edge)
# Otsu’s二值化 找到图像边缘
util.plt_show_gray(img_edge)
Matrix = np.ones((4, 19), np.uint8)
img_edge1 = cv2.morphologyEx(img_edge, cv2.MORPH_CLOSE, Matrix)
img_edge2 = cv2.morphologyEx(img_edge1, cv2.MORPH_OPEN, Matrix)
util.plt_show_gray(img_edge2)
return img_edge2, oldimg
# 图像定位与字符分割
def img_color_contours(img_contours, oldimg):
"""
:param img_contours: 预处理好的图像
:param oldimg: 原图像
:return: 已经定位好的车牌
"""
# if img_contours.any():
#config.set_name(img_contours)
# cv2.imwrite("tmp/img_contours.jpg", img_contours)
pic_hight, pic_width = img_contours.shape[:2]
card_contours = util.img_findContours(img_contours)
# print('card_contours',card_contours)
card_imgs = util.img_Transform(card_contours, oldimg, pic_width, pic_hight)
# print('card_imgs',card_imgs)
colors, car_imgs = util.img_color(card_imgs)
roi = None
card_color = None
part_cards = ''
# print('card_imgs',len(card_imgs))
for i, color in enumerate(colors):
if color in ("blue", "yello", "green"):
card_img = card_imgs[i]
# cv2.imwrite('./tmp/card_img'+str(i)+'.jpg', card_img)
try:
gray_img = cv2.cvtColor(card_img, cv2.COLOR_BGR2GRAY)
# cv2.imwrite("tmp/card_gray_img.jpg", gray_img)
# 黄、绿车牌字符比背景暗、与蓝车牌刚好相反,所以黄、绿车牌需要反向
except:
raise ValueError('黄、绿车牌反向失败')
if color == "green" or color == "yello":
gray_img = cv2.bitwise_not(gray_img)
# cv2.imwrite("tmp/card_gray_img2.jpg", gray_img)
ret, gray_img = cv2.threshold(gray_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# cv2.imwrite("tmp/card_gray_img3.jpg", gray_img)
x_histogram = np.sum(gray_img, axis=1)
x_min = | np.min(x_histogram) | numpy.min |
from ..lennard_jones import lennard_jones_forces, lennard_jones_potential, all_lennard_jones_forces, all_lennard_jones_potential, lennard_jones
from ..cell_order import create_cell_order_3d, create_cell_order_2d, create_cell_order
import numpy as np
import numpy.testing as npt
"""Tests"""
def test_potential_1d_0():
potential = lennard_jones_potential(0, 1, epsilon=1, sigma=1)
potenital_ref = 0
npt.assert_equal(potential, potenital_ref)
def test_potential_3d_0():
potential = lennard_jones_potential(
np.array([1, 2, 3]), np.array([2, 2, 3]), epsilon=1, sigma=1)
potenital_ref = 0
npt.assert_equal(potential, potenital_ref)
def test_potential_3d():
potential = lennard_jones_potential(
np.array([0, 4, 3]), np.array([0, 0, 0]), epsilon=1, sigma=1)
potenital_ref = -0.00025598361
npt.assert_almost_equal(potential, potenital_ref)
test_potential_1d_0()
test_potential_3d_0()
test_potential_3d
# test forces and directions
def test_force_attractive():
force = lennard_jones_forces(0, 5, epsilon=1, sigma=1)
force_ref = -0.00030716067 * -1
npt.assert_almost_equal(force, force_ref)
def test_force_zero():
force = lennard_jones_forces(0, 2**(1 / 6), epsilon=1, sigma=1)
force_ref = 0
npt.assert_almost_equal(force, force_ref)
def test_force_repulsive():
force = lennard_jones_forces(0, 1, epsilon=1, sigma=1)
force_ref = 24 * -1
npt.assert_almost_equal(force, force_ref)
def test_force_3d():
force = lennard_jones_forces(
np.array([0, 4, 3]), np.array([0, 0, 0]), epsilon=1, sigma=1)
force_ref = -0.00030716067 * np.array([0, 4, 3]) / 5
npt.assert_almost_equal(force, force_ref)
test_force_repulsive()
test_force_zero()
test_force_attractive()
test_force_3d()
def test_forces_2d_1cell():
class TestNl(object):
def __init__(self):
self.head = np.array([1])
self.list = np.array([-1, 0])
cell_order = create_cell_order_2d(1, [1, 1])
test = TestNl()
particle_position_test = np.array([[3, 4], [0, 0]])
forces = all_lennard_jones_forces(
particle_position_test, test, cell_order, epsilon=1, sigma=1)
forces_ref = np.array(
[-0.00030716067 * np.array([3, 4]) / 5,
0.00030716067 * np.array([3, 4]) / 5])
npt.assert_almost_equal(forces, forces_ref)
def test_forces_2d():
class TestNl(object):
"""four cells", two particles"""
def __init__(self):
self.head = np.array([0, -1, -1, 1])
self.list = np.array([-1, -1])
cell_order = create_cell_order_2d(2, [4, 4])
test = TestNl()
particle_position_test = np.array([[0, 0], [3, 4]])
forces = all_lennard_jones_forces(
particle_position_test, test, cell_order, epsilon=1, sigma=1)
forces_ref = np.array(
[0.00030716067 * np.array([3, 4]) / 5,
- 0.00030716067 * np.array([3, 4]) / 5])
npt.assert_almost_equal(forces, forces_ref)
def test_forces_3d():
"""8 cells, two particles"""
class TestNl(object):
def __init__(self):
self.head = np.array([-1, -1, -1, -1, 0, -1, 1, -1])
self.list = np.array([-1, -1, -1, -1, -1, -1, -1, -1])
cell_order = create_cell_order(2, [4, 4, 4])
test = TestNl()
particle_position_test = np.array([[0, 0, 1.5], [3, 4, 1.5]])
forces = all_lennard_jones_forces(
particle_position_test, test, cell_order, epsilon=1, sigma=1)
forces_ref = np.array([0.00030716067 * np.array([3, 4, 0]) /
5, - 0.00030716067 * np.array([3, 4, 0]) / 5])
npt.assert_almost_equal(forces, forces_ref)
def test_forces_3d_three_particles():
"""8 cells, three particles, all in same octant"""
class TestNl(object):
def __init__(self):
self.head = np.array([2, -1, -1, -1, -1, -1, -1, -1])
self.list = np.array([-1, 0, 1])
cell_order = create_cell_order(5, [10, 10, 10])
test = TestNl()
particle_position_test = np.array([[0, 0, 0], [3, 4, 0], [4, 3, 0]])
forces = all_lennard_jones_forces(
particle_position_test, test, cell_order, r_cut=5, epsilon=1, sigma=1)
forces_ref = np.array([0.00030716067 * np.array([3, 4, 0]) / 5
+ 0.00030716067 *
np.array([4, 3, 0]) / 5, - 0.00030716067 *
np.array([3, 4, 0]) / 5
+ 1.5909902576697312 *
np.array([1, -1, 0]) / np.sqrt(2), -
0.00030716067 * np.array([4, 3, 0]) / 5
- 1.5909902576697312 * np.array([1, -1, 0]) / np.sqrt(2)])
npt.assert_almost_equal(forces, forces_ref)
def test_forces_3d_cutoff():
"""8 cells, three particles, all in different octants
and out off cuttoff radius"""
class TestNl(object):
def __init__(self):
self.head = np.array([0, -1, 1, -1, -1, -1, -1, 2])
self.list = np.array([-1, -1, -1])
cell_order = create_cell_order(5, [10, 10, 10])
test = TestNl()
particle_position_test = np.array([[0, 0, 0], [10, 10, 10], [0, 10, 0]])
forces = all_lennard_jones_forces(
particle_position_test, test, cell_order, r_cut=5, epsilon=1, sigma=1)
forces_ref = np.array([[0, 0, 0], [0, 0, 0], [0, 0, 0]])
npt.assert_almost_equal(forces, forces_ref)
def test_forces_3d_three_particles_2():
"""8 cells, three particles, all in different octants"""
class TestNl(object):
def __init__(self):
self.head = np.array([0, 2, 1, -1, -1, -1, -1, -1])
self.list = np.array([-1, -1, -1])
cell_order = create_cell_order(5, [10, 10, 10])
test = TestNl()
particle_position_test = np.array([[2, 2, 2], [5, 6, 2], [6, 5, 2]])
forces = all_lennard_jones_forces(
particle_position_test, test, cell_order, r_cut=5, epsilon=1, sigma=1)
forces_ref = np.array([0.00030716067 * np.array([3, 4, 0]) / 5
+ 0.00030716067 *
np.array([4, 3, 0]) / 5, - 0.00030716067 *
np.array([3, 4, 0]) / 5
+ 1.5909902576697312 *
np.array([1, -1, 0]) / np.sqrt(2), -
0.00030716067 * np.array([4, 3, 0]) / 5
- 1.5909902576697312 * np.array([1, -1, 0]) / np.sqrt(2)])
npt.assert_almost_equal(forces, forces_ref)
test_forces_2d_1cell()
test_forces_2d()
test_forces_3d()
test_forces_3d_three_particles()
test_forces_3d_cutoff()
test_forces_3d_three_particles_2()
def test_potential_3d_three_particles():
"""8 cells, three particles, all in same octant"""
class TestNl(object):
def __init__(self):
self.head = np.array([2, -1, -1, -1, -1, -1, -1, -1])
self.list = np.array([-1, 0, 1])
cell_order = create_cell_order(5, [10, 10, 10])
test = TestNl()
particle_position_test = | np.array([[0, 0, 0], [3, 4, 0], [4, 3, 0]]) | numpy.array |
#!/usr/bin/env python
#
# Author: <NAME> <<EMAIL>>
#
import time
from functools import reduce
import numpy
import scipy.linalg
from pyscf import lib
from pyscf import symm
from pyscf.lib import logger
from pyscf.scf import hf
from pyscf.scf import hf_symm
from pyscf.scf import uhf
from pyscf.scf import chkfile
def analyze(mf, verbose=logger.DEBUG, **kwargs):
from pyscf.lo import orth
from pyscf.tools import dump_mat
mol = mf.mol
if not mol.symmetry:
return uhf.analyze(mf, verbose, **kwargs)
mo_energy = mf.mo_energy
mo_occ = mf.mo_occ
mo_coeff = mf.mo_coeff
log = logger.Logger(mf.stdout, verbose)
nirrep = len(mol.irrep_id)
ovlp_ao = mf.get_ovlp()
orbsyma = symm.label_orb_symm(mol, mol.irrep_id, mol.symm_orb,
mo_coeff[0], ovlp_ao, False)
orbsymb = symm.label_orb_symm(mol, mol.irrep_id, mol.symm_orb,
mo_coeff[1], ovlp_ao, False)
orbsyma = numpy.array(orbsyma)
orbsymb = numpy.array(orbsymb)
tot_sym = 0
noccsa = [sum(orbsyma[mo_occ[0]>0]==ir) for ir in mol.irrep_id]
noccsb = [sum(orbsymb[mo_occ[1]>0]==ir) for ir in mol.irrep_id]
for i, ir in enumerate(mol.irrep_id):
if (noccsa[i]+noccsb[i]) % 2:
tot_sym ^= ir
if mol.groupname in ('Dooh', 'Coov', 'SO3'):
log.note('TODO: total symmetry for %s', mol.groupname)
else:
log.note('total symmetry = %s',
symm.irrep_id2name(mol.groupname, tot_sym))
log.note('alpha occupancy for each irrep: '+(' %4s'*nirrep),
*mol.irrep_name)
log.note(' '+(' %4d'*nirrep),
*noccsa)
log.note('beta occupancy for each irrep: '+(' %4s'*nirrep),
*mol.irrep_name)
log.note(' '+(' %4d'*nirrep),
*noccsb)
ss, s = mf.spin_square((mo_coeff[0][:,mo_occ[0]>0],
mo_coeff[1][:,mo_occ[1]>0]), ovlp_ao)
log.note('multiplicity <S^2> = %.8g 2S+1 = %.8g', ss, s)
if verbose >= logger.NOTE:
log.note('**** MO energy ****')
irname_full = {}
for k, ir in enumerate(mol.irrep_id):
irname_full[ir] = mol.irrep_name[k]
irorbcnt = {}
for k, j in enumerate(orbsyma):
if j in irorbcnt:
irorbcnt[j] += 1
else:
irorbcnt[j] = 1
log.note('alpha MO #%d (%s #%d), energy= %.15g occ= %g',
k+1, irname_full[j], irorbcnt[j], mo_energy[0][k], mo_occ[0][k])
irorbcnt = {}
for k, j in enumerate(orbsymb):
if j in irorbcnt:
irorbcnt[j] += 1
else:
irorbcnt[j] = 1
log.note('beta MO #%d (%s #%d), energy= %.15g occ= %g',
k+1, irname_full[j], irorbcnt[j], mo_energy[1][k], mo_occ[1][k])
ovlp_ao = mf.get_ovlp()
if mf.verbose >= logger.DEBUG:
label = mol.spheric_labels(True)
molabel = []
irorbcnt = {}
for k, j in enumerate(orbsyma):
if j in irorbcnt:
irorbcnt[j] += 1
else:
irorbcnt[j] = 1
molabel.append('#%-d(%s #%d)' % (k+1, irname_full[j], irorbcnt[j]))
log.debug(' ** alpha MO coefficients (expansion on meta-Lowdin AOs) **')
orth_coeff = orth.orth_ao(mol, 'meta_lowdin', s=ovlp_ao)
c_inv = numpy.dot(orth_coeff.T, ovlp_ao)
dump_mat.dump_rec(mol.stdout, c_inv.dot(mo_coeff[0]), label, molabel,
start=1, **kwargs)
molabel = []
irorbcnt = {}
for k, j in enumerate(orbsymb):
if j in irorbcnt:
irorbcnt[j] += 1
else:
irorbcnt[j] = 1
molabel.append('#%-d(%s #%d)' % (k+1, irname_full[j], irorbcnt[j]))
log.debug(' ** beta MO coefficients (expansion on meta-Lowdin AOs) **')
dump_mat.dump_rec(mol.stdout, c_inv.dot(mo_coeff[1]), label, molabel,
start=1, **kwargs)
dm = mf.make_rdm1(mo_coeff, mo_occ)
return mf.mulliken_meta(mol, dm, s=ovlp_ao, verbose=log)
def get_irrep_nelec(mol, mo_coeff, mo_occ, s=None):
'''Alpha/beta electron numbers for each irreducible representation.
Args:
mol : an instance of :class:`Mole`
To provide irrep_id, and spin-adapted basis
mo_occ : a list of 1D ndarray
Regular occupancy, without grouping for irreps
mo_coeff : a list of 2D ndarray
Regular orbital coefficients, without grouping for irreps
Returns:
irrep_nelec : dict
The number of alpha/beta electrons for each irrep {'ir_name':(int,int), ...}.
Examples:
>>> mol = gto.M(atom='O 0 0 0; H 0 0 1; H 0 1 0', basis='ccpvdz', symmetry=True, charge=1, spin=1, verbose=0)
>>> mf = scf.UHF(mol)
>>> mf.scf()
-75.623975516256721
>>> scf.uhf_symm.get_irrep_nelec(mol, mf.mo_coeff, mf.mo_occ)
{'A1': (3, 3), 'A2': (0, 0), 'B1': (1, 1), 'B2': (1, 0)}
'''
orbsyma = symm.label_orb_symm(mol, mol.irrep_id, mol.symm_orb,
mo_coeff[0], s, False)
orbsymb = symm.label_orb_symm(mol, mol.irrep_id, mol.symm_orb,
mo_coeff[1], s, False)
orbsyma = numpy.array(orbsyma)
orbsymb = numpy.array(orbsymb)
irrep_nelec = dict([(mol.irrep_name[k], (int(sum(mo_occ[0][orbsyma==ir])),
int(sum(mo_occ[1][orbsymb==ir]))))
for k, ir in enumerate(mol.irrep_id)])
return irrep_nelec
map_rhf_to_uhf = uhf.map_rhf_to_uhf
def canonicalize(mf, mo_coeff, mo_occ, fock=None):
'''Canonicalization diagonalizes the UHF Fock matrix in occupied, virtual
subspaces separatedly (without change occupancy).
'''
if not mf.mol.symmetry:
return uhf.canonicalize(mf, mo_coeff, mo_occ, fock)
mo_occ = numpy.asarray(mo_occ)
assert(mo_occ.ndim == 2)
if fock is None:
dm = mf.make_rdm1(mo_coeff, mo_occ)
fock = mf.get_hcore() + mf.get_jk(mol, dm)
occidxa = mo_occ[0] == 1
occidxb = mo_occ[1] == 1
viridxa = mo_occ[0] == 0
viridxb = mo_occ[1] == 0
s = mf.get_ovlp()
def eig_(fock, mo_coeff, idx, es, cs):
if | numpy.count_nonzero(idx) | numpy.count_nonzero |
"""
This file contains functions that are used to perform data augmentation.
"""
from turtle import reset
import cv2
import io
import torch
import numpy as np
import scipy.misc
from PIL import Image
from rembg.bg import remove
import human_det
from lib.pymaf.core import constants
from lib.pymaf.utils.streamer import aug_matrix
from lib.common.cloth_extraction import load_segmentation
from torchvision import transforms
def load_img(img_file):
img = cv2.imread(img_file, cv2.IMREAD_UNCHANGED)
if len(img.shape) == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
if not img_file.endswith("png"):
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
else:
img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGR)
return img
def get_bbox(img, det):
input = np.float32(img)
input = (input / 255.0 -
(0.5, 0.5, 0.5)) / (0.5, 0.5, 0.5) # TO [-1.0, 1.0]
input = input.transpose(2, 0, 1) # TO [3 x H x W]
bboxes, probs = det(torch.from_numpy(input).float().unsqueeze(0))
probs = probs.unsqueeze(3)
bboxes = (bboxes * probs).sum(dim=1, keepdim=True) / probs.sum(
dim=1, keepdim=True)
bbox = bboxes[0, 0, 0].cpu().numpy()
return bbox
def get_transformer(input_res):
image_to_tensor = transforms.Compose([
transforms.Resize(input_res),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
mask_to_tensor = transforms.Compose([
transforms.Resize(input_res),
transforms.ToTensor(),
transforms.Normalize((0.0, ), (1.0, ))
])
image_to_pymaf_tensor = transforms.Compose([
transforms.Resize(size=224),
transforms.Normalize(mean=constants.IMG_NORM_MEAN,
std=constants.IMG_NORM_STD)
])
image_to_pixie_tensor = transforms.Compose([
transforms.Resize(224)
])
def image_to_hybrik_tensor(img):
# mean
img[0].add_(-0.406)
img[1].add_(-0.457)
img[2].add_(-0.480)
# std
img[0].div_(0.225)
img[1].div_(0.224)
img[2].div_(0.229)
return img
return [image_to_tensor, mask_to_tensor, image_to_pymaf_tensor, image_to_pixie_tensor, image_to_hybrik_tensor]
def process_image(img_file, det, hps_type, input_res=512, device=None, seg_path=None):
"""Read image, do preprocessing and possibly crop it according to the bounding box.
If there are bounding box annotations, use them to crop the image.
If no bounding box is specified but openpose detections are available, use them to get the bounding box.
"""
[image_to_tensor, mask_to_tensor, image_to_pymaf_tensor,
image_to_pixie_tensor, image_to_hybrik_tensor] = get_transformer(input_res)
img_ori = load_img(img_file)
in_height, in_width, _ = img_ori.shape
M = aug_matrix(in_width, in_height, input_res*2, input_res*2)
# from rectangle to square
img_for_crop = cv2.warpAffine(img_ori, M[0:2, :],
(input_res*2, input_res*2), flags=cv2.INTER_CUBIC)
if det is not None:
# detection for bbox
bbox = get_bbox(img_for_crop, det)
width = bbox[2] - bbox[0]
height = bbox[3] - bbox[1]
center = np.array([(bbox[0] + bbox[2]) / 2.0,
(bbox[1] + bbox[3]) / 2.0])
else:
# Assume that the person is centerered in the image
height = img_for_crop.shape[0]
width = img_for_crop.shape[1]
center = np.array([width // 2, height // 2])
scale = max(height, width) / 180
if hps_type == 'hybrik':
img_np = crop_for_hybrik(img_for_crop, center,
np.array([scale * 180, scale * 180]))
else:
img_np, cropping_parameters = crop(
img_for_crop, center, scale, (input_res, input_res))
with torch.no_grad():
buf = io.BytesIO()
Image.fromarray(img_np).save(buf, format='png')
img_pil = Image.open(
io.BytesIO(remove(buf.getvalue()))).convert("RGBA")
# for icon
img_rgb = image_to_tensor(img_pil.convert("RGB"))
img_mask = torch.tensor(1.0) - (mask_to_tensor(img_pil.split()[-1]) <
torch.tensor(0.5)).float()
img_tensor = img_rgb * img_mask
# for hps
img_hps = img_np.astype(np.float32) / 255.
img_hps = torch.from_numpy(img_hps).permute(2, 0, 1)
if hps_type == 'bev':
img_hps = img_np[:, :, [2, 1, 0]]
elif hps_type == 'hybrik':
img_hps = image_to_hybrik_tensor(img_hps).unsqueeze(0).to(device)
elif hps_type != 'pixie':
img_hps = image_to_pymaf_tensor(img_hps).unsqueeze(0).to(device)
else:
img_hps = image_to_pixie_tensor(img_hps).unsqueeze(0).to(device)
# uncrop params
uncrop_param = {'center': center,
'scale': scale,
'ori_shape': img_ori.shape,
'box_shape': img_np.shape,
'crop_shape': img_for_crop.shape,
'M': M}
if not (seg_path is None):
segmentations = load_segmentation(seg_path, (in_height, in_width))
seg_coord_normalized = []
for seg in segmentations:
coord_normalized = []
for xy in seg['coordinates']:
xy_h = np.vstack((xy[:, 0], xy[:, 1], np.ones(len(xy)))).T
warped_indeces = M[0:2, :] @ xy_h[:, :, None]
warped_indeces = np.array(warped_indeces).astype(int)
warped_indeces.resize((warped_indeces.shape[:2]))
# cropped_indeces = crop_segmentation(warped_indeces, center, scale, (input_res, input_res), img_np.shape)
cropped_indeces = crop_segmentation(
warped_indeces, (input_res, input_res), cropping_parameters)
indices = np.vstack(
(cropped_indeces[:, 0], cropped_indeces[:, 1])).T
# Convert to NDC coordinates
seg_cropped_normalized = 2*(indices / input_res) - 1
# Don't know why we need to divide by 50 but it works ¯\_(ツ)_/¯ (probably some scaling factor somewhere)
# Divide only by 45 on the horizontal axis to take the curve of the human body into account
seg_cropped_normalized[:, 0] = (
1/40) * seg_cropped_normalized[:, 0]
seg_cropped_normalized[:, 1] = (
1/50) * seg_cropped_normalized[:, 1]
coord_normalized.append(seg_cropped_normalized)
seg['coord_normalized'] = coord_normalized
seg_coord_normalized.append(seg)
return img_tensor, img_hps, img_ori, img_mask, uncrop_param, seg_coord_normalized
return img_tensor, img_hps, img_ori, img_mask, uncrop_param
def get_transform(center, scale, res):
"""Generate transformation matrix."""
h = 200 * scale
t = np.zeros((3, 3))
t[0, 0] = float(res[1]) / h
t[1, 1] = float(res[0]) / h
t[0, 2] = res[1] * (-float(center[0]) / h + .5)
t[1, 2] = res[0] * (-float(center[1]) / h + .5)
t[2, 2] = 1
return t
def transform(pt, center, scale, res, invert=0):
"""Transform pixel location to different reference."""
t = get_transform(center, scale, res)
if invert:
t = np.linalg.inv(t)
new_pt = | np.array([pt[0] - 1, pt[1] - 1, 1.]) | numpy.array |
import pickle
import sys
import numpy as np
from ...ops.iou3d_nms import iou3d_nms_utils
from ...utils import box_utils, point_box_utils, coords_utils
class MltBestMatchQuerier(object):
def __init__(self, root_path, querier_cfg, class_names, db_infos, logger=None):
self.root_path = root_path
self.class_names = class_names
self.querier_cfg = querier_cfg
self.logger = logger
self.bmatch_infos = {}
self.mlt_bm_root = {
"Car":self.root_path.resolve() / querier_cfg.CAR_MLT_BM_ROOT,
"Cyclist":self.root_path.resolve() / querier_cfg.CYC_MLT_BM_ROOT,
"Pedestrian":self.root_path.resolve() / querier_cfg.PED_MLT_BM_ROOT,
}
self.db_infos, self.vis = db_infos, False
self.load_point_features = querier_cfg.get("LOAD_POINT_FEATURES", 3)
self.add_bm_2_raw = querier_cfg.get("ADD_BM_2_RAW", False)
if querier_cfg.get("ABLATION", None) is not None:
self.rmv_self_occ = querier_cfg.ABLATION.get("RMV_SELF_OCC", False)
self.rmv_miss = querier_cfg.ABLATION.get("RMV_MISS", False)
self.num_point_features = querier_cfg.ABLATION.get("NUM_POINT_FEATURES", 4)
self.vis = querier_cfg.ABLATION.get("VIS", False)
# self.sphere_coords_res = np.asarray([[0.2, 0.0875*2, 0.4203125]])
self.sphere_coords_res = np.asarray([[0.32, 0.5184, 0.4203125]])
self.expand = False
# self.expand = False
def __getstate__(self):
d = dict(self.__dict__)
del d['logger']
return d
def __setstate__(self, d):
self.__dict__.update(d)
def mirror(self, pnts, lastchannel=3):
mirror_pnts = np.concatenate([pnts[..., 0:1], -pnts[..., 1:2], pnts[..., 2:lastchannel]], axis=-1)
return np.concatenate([pnts, mirror_pnts], axis=0)
def add_gtbox_best_match_points_to_scene(self, data_dict):
obj_points_list = []
aug_boxes_num = data_dict['aug_boxes_image_idx'].shape[0] if 'aug_boxes_image_idx' in data_dict else 0
gt_boxes_num = data_dict['gt_boxes'].shape[0] - aug_boxes_num
image_idx = int(data_dict['frame_id'])
assert gt_boxes_num == data_dict["gt_boxes_inds"].shape[0]
for idx in range(gt_boxes_num):
gt_box = data_dict['gt_boxes'][idx]
gt_name = data_dict['gt_names'][idx]
# print("self.bmatch_infos[gt_names]", self.bmatch_infos[gt_names].keys())
# print("gt_names", gt_names, gt_boxes_num, aug_boxes_num, data_dict["gt_boxes_inds"])
if gt_name in self.class_names:
gt_box_id = data_dict["gt_boxes_inds"][idx]
file_path = self.mlt_bm_root[gt_name] / "{}_{}.pkl".format(image_idx, gt_box_id)
with open(file_path, 'rb') as f:
obj_points = pickle.load(f)
obj_points = obj_points.reshape(
[-1, self.load_point_features])[:,:3].astype(np.float32)
gtrotation = point_box_utils.get_yaw_rotation(gt_box[6])
obj_points = np.einsum("nj,ij->ni", obj_points, gtrotation) + gt_box[:3]
obj_points_list.append(obj_points)
# else:
# print("found ", gt_name," skip")
if "bm_points" in data_dict:
data_dict['bm_points'].extend(obj_points_list)
else:
data_dict['bm_points'] = obj_points_list
return data_dict
def add_sampled_boxes_best_match_points_to_scene(self, data_dict):
aug_boxes_image_idx = data_dict['aug_boxes_image_idx']
aug_length = aug_boxes_image_idx.shape[0]
aug_boxes_gt_idx = data_dict['aug_boxes_gt_idx']
aug_box = data_dict['gt_boxes'][-aug_length:]
aug_box_names = data_dict['gt_names'][-aug_length:]
obj_points_list = []
for ind in range(aug_length):
gt_box = aug_box[ind]
gt_name = aug_box_names[ind]
file_path = self.mlt_bm_root[gt_name] / "{}_{}.pkl".format(aug_boxes_image_idx[ind], aug_boxes_gt_idx[ind])
with open(file_path, 'rb') as f:
obj_points = pickle.load(f)
obj_points = obj_points.reshape(
[-1, self.load_point_features])[:, :3].astype(np.float32)
gtrotation = point_box_utils.get_yaw_rotation(gt_box[6])
obj_points = np.einsum("nj,ij->ni", obj_points, gtrotation) + gt_box[:3]
obj_points_list.append(obj_points)
data_dict['bm_points'].extend(obj_points_list)
return data_dict
def filter_bm(self, data_dict):
gt_boxes_filtered = data_dict['gt_boxes'][data_dict['gt_boxes_mask']] if 'gt_boxes_mask' in data_dict else data_dict['gt_boxes']
assert len(gt_boxes_filtered) == len(data_dict['bm_points']), "{}_{}".format(len(data_dict['gt_boxes']), len(data_dict['bm_points']))
boxes_xy_dist = np.linalg.norm(gt_boxes_filtered[:,:2], axis=-1)
box_inds = np.argsort(boxes_xy_dist)
gt_boxes, bm_points_lst = gt_boxes_filtered[box_inds, :], [data_dict['bm_points'][box_inds[i]] for i in range(len(box_inds))]
box_labels = np.arange(len(gt_boxes_filtered), dtype=np.float32).reshape(-1, 1) + 1
boxes = np.concatenate([gt_boxes, box_labels], axis=-1)
pointwise_box_label = np.round(point_box_utils.points_in_box_3d_label(data_dict["points"][:,:3], boxes, slack=1.0, shift=np.array([[0., 0., 0.15, 0., 0., 0.]]))).astype(np.int)
_, raw_sphere_points, raw_sphere_coords, raw_expand_sphere_coords, voxelwise_mask, sphere_coords_min, nx, ny, nz, _ = self.get_coords(data_dict["points"], nx=None, ny=None, nz=None, sphere_coords_min=None)
occ_mask = (np.cumsum(voxelwise_mask, axis=0) > 0.5).astype(np.uint8)
raw_points_len = len(data_dict["points"])
other_bm_points_lst, self_bm_points_lst, miss_bm_points_lst, coverage_rate_lst = [], [], [], []
if self.vis:
other_occluder_mask, miss_tot_mask, bm_tot_mask, other_tot_mask = np.zeros([nx, ny, nz], dtype=np.uint8),np.zeros([nx, ny, nz], dtype=np.uint8), np.zeros([nx, ny, nz], dtype=np.uint8), np.zeros([nx, ny, nz], dtype=np.uint8)
for i in range(len(bm_points_lst)):
obj_points = data_dict["points"][:raw_points_len,:][pointwise_box_label==(i+1), :]
avg_feature = np.mean(obj_points[:, 3:self.num_point_features], axis=0, keepdims=True) if len(obj_points) > 0 else np.zeros([1, self.num_point_features-3])
_, obj_sphere_points, obj_sphere_coords, obj_expand_sphere_coords, obj_voxelwise_mask, _, _, _, _, num_unique_obj = self.get_coords(obj_points, nx=nx, ny=ny, nz=nz, sphere_coords_min=sphere_coords_min, expand=False, x_expand=True)
bm_points = np.concatenate([bm_points_lst[i], np.tile(avg_feature, (bm_points_lst[i].shape[0], 1))], axis=-1)
bm_points, bm_sphere_points, bm_sphere_coords, bm_expand_sphere_coords, bm_voxelwise_mask, _, _, _, _, num_unique_bm = self.get_coords(bm_points, nx=nx, ny=ny, nz=nz, sphere_coords_min=sphere_coords_min, expand=False)
coverage_rate_lst.append(num_unique_obj / max(1, num_unique_bm))
keep_mask = 1 - obj_voxelwise_mask[bm_sphere_coords[..., 0], bm_sphere_coords[..., 1], bm_sphere_coords[..., 2]]
rmv_miss_filter_mask = occ_mask[bm_sphere_coords[..., 0], bm_sphere_coords[..., 1], bm_sphere_coords[..., 2]]
bm_occ_mask = (np.cumsum(bm_voxelwise_mask, axis=0) < 1.5).astype(np.uint8)
rmv_self_filter_mask = bm_occ_mask[bm_sphere_coords[..., 0], bm_sphere_coords[..., 1], bm_sphere_coords[..., 2]]
if self.vis:
miss_mask = (keep_mask * rmv_self_filter_mask * (1 - rmv_miss_filter_mask)).astype(np.bool)
self_mask = (keep_mask * (1-rmv_self_filter_mask)).astype(np.bool)
other_mask = (keep_mask * rmv_miss_filter_mask * rmv_self_filter_mask).astype(np.bool)
miss_sphere_coords, miss_points = self.get_nearest_points(miss_mask, bm_sphere_points, bm_sphere_coords, bm_points, axis=0)
self_sphere_coords, self_points = self.get_nearest_points(self_mask, bm_sphere_points, bm_sphere_coords, bm_points, axis=0)
other_sphere_coords, other_points = self.get_nearest_points(other_mask, bm_sphere_points, bm_sphere_coords, bm_points, axis=0)
other_bm_points_lst.append(other_points), self_bm_points_lst.append(self_points), miss_bm_points_lst.append(miss_points)
miss_tot_mask[miss_sphere_coords[..., 0], miss_sphere_coords[..., 1], miss_sphere_coords[..., 2]] = np.ones_like(miss_sphere_coords[..., 0], dtype=np.uint8)
bm_tot_mask = np.maximum(bm_tot_mask, bm_voxelwise_mask)
other_tot_mask[other_sphere_coords[..., 0], other_sphere_coords[..., 1], other_sphere_coords[..., 2]] = np.ones_like(other_sphere_coords[..., 0], dtype=np.uint8)
if self.rmv_self_occ:
keep_mask *= rmv_self_filter_mask
if self.rmv_miss:
keep_mask *= rmv_miss_filter_mask
keep_mask = keep_mask.astype(np.bool)
bm_sphere_coords, bm_points = self.get_nearest_points(keep_mask, bm_sphere_points, bm_sphere_coords, bm_points, axis=0)
if self.expand:
bm_expand_sphere_coords = self.expand_voxel(bm_sphere_coords, nx, ny, nz)
else:
bm_expand_sphere_coords = bm_sphere_coords
## update voxel mask and occ mask
voxelwise_mask[bm_expand_sphere_coords[..., 0], bm_expand_sphere_coords[..., 1], bm_expand_sphere_coords[..., 2]] = np.ones_like(bm_expand_sphere_coords[..., 0], dtype=np.uint8)
occ_mask = (np.cumsum(voxelwise_mask, axis=0) > 0.5).astype(np.uint8)
if self.add_bm_2_raw:
data_dict["points"] = np.concatenate([data_dict["points"], bm_points], axis=0)
if self.vis:
self_cum = np.cumsum(bm_tot_mask, axis=0)
self_reverse_cum = np.flip(np.cumsum(np.flip(bm_tot_mask, axis=0), axis=0), axis=0)
self_tot_occ_mask = (self_cum > 0.5).astype(np.uint8) # - bm_tot_mask.astype(np.uint8)
self_limit_occ_mask = (self_reverse_cum > 0.5).astype(np.uint8) * self_tot_occ_mask
other_occluder_mask[raw_sphere_coords[..., 0], raw_sphere_coords[..., 1], raw_sphere_coords[..., 2]] = np.ones_like(raw_sphere_coords[..., 0], dtype=np.uint8)
other_full_tot_occ_mask = (np.cumsum(other_occluder_mask, axis=0) > 0.5).astype(np.uint8) * self.propagate_323(other_tot_mask)
other_tot_occ_mask = other_full_tot_occ_mask * (1 - self_tot_occ_mask)
miss_full_tot_occ_mask = self.propagate_323(miss_tot_mask)
miss_tot_occ_mask = miss_full_tot_occ_mask * (1 - self_tot_occ_mask)
data_dict.update({
'miss_points': self.combine_lst(miss_bm_points_lst),
'self_points': self.combine_lst(self_bm_points_lst),
'other_points': self.combine_lst(other_bm_points_lst),
'miss_occ_points': self.get_voxel_centers(miss_tot_occ_mask, sphere_coords_min, self.sphere_coords_res),
'miss_full_occ_points': self.get_voxel_centers(miss_full_tot_occ_mask, sphere_coords_min, self.sphere_coords_res),
'self_occ_points': self.get_voxel_centers(self_tot_occ_mask, sphere_coords_min, self.sphere_coords_res),
'self_limit_occ_mask': self.get_voxel_centers(self_limit_occ_mask, sphere_coords_min, self.sphere_coords_res),
'other_occ_points': self.get_voxel_centers(other_tot_occ_mask, sphere_coords_min, self.sphere_coords_res),
'other_full_occ_points': self.get_voxel_centers(other_full_tot_occ_mask, sphere_coords_min, self.sphere_coords_res),
})
# if len(coverage_rate_lst) == 0:
# data_dict["coverage_rates"] = np.zeros([0,1], dtype=np.float32)
# elif len(coverage_rate_lst) == 1:
# data_dict["coverage_rates"] = np.asarray(coverage_rate_lst[0]).reshape(-1, 1)
# else:
# data_dict["coverage_rates"] = np.stack(coverage_rate_lst, axis=0)
return data_dict
def get_voxel_centers(self, mask, sphere_coords_min, sphere_coords_res):
coords = np.stack(np.nonzero(mask), axis=-1)
# print("coords", coords.shape, sphere_coords_min.shape, sphere_coords_res.shape)
sphere_points = sphere_coords_min + (coords + 0.5) * sphere_coords_res
return coords_utils.uvd2absxyz_np(sphere_points[..., 0], sphere_points[..., 1], sphere_points[..., 2], type="sphere")
def propagate_323(self, mask_3d):
mask_2d = np.max(mask_3d, axis=0, keepdims=True)
mask_3d = np.tile(mask_2d, [mask_3d.shape[0], 1, 1])
return mask_3d
def exclude_map(self, occ_coords, x_epansion=2):
x = np.arange(-x_epansion, 1)
y, z = np.zeros_like(x), np.zeros_like(x)
xyz_shift = np.stack([x, y, z], axis=-1).reshape(1, len(x), 3)
expand_occ_coords = (np.expand_dims(occ_coords, axis=1) + xyz_shift).reshape(-1, 3)
expand_occ_coords = np.maximum(np.array([[0, 0, 0]]), expand_occ_coords)
return expand_occ_coords
def expand_voxel(self, occ_coords, nx, ny, nz, yz_epansion=2):
y_ind = np.arange(-1, yz_epansion)
z_ind = np.arange(-1, yz_epansion)
y, z = np.meshgrid(y_ind, z_ind)
x = np.ones_like(y)
xyz_shift = np.stack([x, y, z], axis=-1).reshape(1, 9, 3)
xyz_shift[0, 4, 0] = 0
# print("xyz_shift", y.shape, y, xyz_shift.shape, xyz_shift[0,0], xyz_shift[0,1], xyz_shift[0,2])
expand_occ_coords = (np.expand_dims(occ_coords, axis=1) + xyz_shift).reshape(-1, 3)
expand_occ_coords = np.minimum(np.maximum(np.array([[0,0,0]]), expand_occ_coords), np.array([[nx-1, ny-1, nz-1]]))
return expand_occ_coords
def get_nearest_points(self, keep_mask, bm_sphere_points, bm_sphere_coords, bm_points, axis=0):
bm_sphere_coords = bm_sphere_coords[keep_mask, :]
bm_sphere_points = bm_sphere_points[keep_mask, :]
bm_points = bm_points[keep_mask, :]
closeind = np.argsort(bm_sphere_points[..., 0])
bm_points, bm_sphere_coords = bm_points[closeind, :], bm_sphere_coords[closeind, :]
uniq_coords, indices = np.unique(bm_sphere_coords, axis=0, return_index=True)
return bm_sphere_coords, bm_points[indices, :]
def get_coords(self, points, nx=None, ny=None, nz=None, sphere_coords_min=None, expand=True, x_expand=False):
raw_sphere_points = coords_utils.absxyz_2_spherexyz_np(points[..., :3])
if sphere_coords_min is None:
sphere_coords_min = np.min(raw_sphere_points, axis=0, keepdims=True) - np.asarray(
[[0.2 * 10, 0.0875 * 2 * 10, 0.4203125 * 10]])
raw_sphere_coords = np.floor_divide(raw_sphere_points - sphere_coords_min, self.sphere_coords_res).astype(np.int32)
unique_occupied = 0
if nx is None:
nx, ny, nz = list(np.max(raw_sphere_coords, axis=0))
nx, ny, nz = nx + 1 + 10, ny + 1 + 10, nz + 1 + 10
else:
keep_mask = np.all(raw_sphere_coords >= 0, axis=-1) & np.all(raw_sphere_coords < np.array([[nx, ny, nz]]), axis=-1)
raw_sphere_points = raw_sphere_points[keep_mask, :]
raw_sphere_coords = raw_sphere_coords[keep_mask, :]
points = points[keep_mask, :]
unique_occupied = len(np.unique(raw_sphere_coords, axis=0))
# print("nx",nx,ny,nz)
raw_expand_sphere_coords = self.expand_voxel(raw_sphere_coords, nx, ny, nz) if (expand and self.expand) else raw_sphere_coords
raw_expand_sphere_coords = self.exclude_map(raw_sphere_coords) if x_expand else raw_expand_sphere_coords
voxelwise_mask = np.zeros([nx, ny, nz], dtype=np.uint8)
voxelwise_mask[raw_expand_sphere_coords[..., 0], raw_expand_sphere_coords[..., 1], raw_expand_sphere_coords[..., 2]] = np.ones_like(raw_expand_sphere_coords[..., 0], dtype=np.uint8)
return points, raw_sphere_points, raw_sphere_coords, raw_expand_sphere_coords, voxelwise_mask, sphere_coords_min, nx, ny, nz, unique_occupied
def combine_lst(self, bm_points_lst):
if len(bm_points_lst) > 1:
return np.concatenate(bm_points_lst, axis=0)[...,:3]
elif len(bm_points_lst) == 1:
return bm_points_lst[0][...,:3]
else:
return | np.zeros([0,3], dtype=np.float32) | numpy.zeros |
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchmetrics.functional as MF
import dgl
import dgl.nn as dglnn
import time
import numpy as np
from ogb.nodeproppred import DglNodePropPredDataset
class SAGE(nn.Module):
def __init__(self, in_feats, n_hidden, n_classes):
super().__init__()
self.layers = nn.ModuleList()
self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, 'mean'))
self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, 'mean'))
self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, 'mean'))
self.dropout = nn.Dropout(0.5)
def forward(self, sg, x):
h = x
for l, layer in enumerate(self.layers):
h = layer(sg, h)
if l != len(self.layers) - 1:
h = F.relu(h)
h = self.dropout(h)
return h
dataset = dgl.data.AsNodePredDataset(DglNodePropPredDataset('ogbn-products'))
graph = dataset[0] # already prepares ndata['label'/'train_mask'/'val_mask'/'test_mask']
model = SAGE(graph.ndata['feat'].shape[1], 256, dataset.num_classes).cuda()
opt = torch.optim.Adam(model.parameters(), lr=0.001, weight_decay=5e-4)
num_partitions = 1000
sampler = dgl.dataloading.ClusterGCNSampler(
graph, num_partitions,
prefetch_ndata=['feat', 'label', 'train_mask', 'val_mask', 'test_mask'])
# DataLoader for generic dataloading with a graph, a set of indices (any indices, like
# partition IDs here), and a graph sampler.
dataloader = dgl.dataloading.DataLoader(
graph,
torch.arange(num_partitions).to('cuda'),
sampler,
device='cuda',
batch_size=100,
shuffle=True,
drop_last=False,
num_workers=0,
use_uva=True)
durations = []
for _ in range(10):
t0 = time.time()
model.train()
for it, sg in enumerate(dataloader):
x = sg.ndata['feat']
y = sg.ndata['label']
m = sg.ndata['train_mask'].bool()
y_hat = model(sg, x)
loss = F.cross_entropy(y_hat[m], y[m])
opt.zero_grad()
loss.backward()
opt.step()
if it % 20 == 0:
acc = MF.accuracy(y_hat[m], y[m])
mem = torch.cuda.max_memory_allocated() / 1000000
print('Loss', loss.item(), 'Acc', acc.item(), 'GPU Mem', mem, 'MB')
tt = time.time()
print(tt - t0)
durations.append(tt - t0)
model.eval()
with torch.no_grad():
val_preds, test_preds = [], []
val_labels, test_labels = [], []
for it, sg in enumerate(dataloader):
x = sg.ndata['feat']
y = sg.ndata['label']
m_val = sg.ndata['val_mask'].bool()
m_test = sg.ndata['test_mask'].bool()
y_hat = model(sg, x)
val_preds.append(y_hat[m_val])
val_labels.append(y[m_val])
test_preds.append(y_hat[m_test])
test_labels.append(y[m_test])
val_preds = torch.cat(val_preds, 0)
val_labels = torch.cat(val_labels, 0)
test_preds = torch.cat(test_preds, 0)
test_labels = torch.cat(test_labels, 0)
val_acc = MF.accuracy(val_preds, val_labels)
test_acc = MF.accuracy(test_preds, test_labels)
print('Validation acc:', val_acc.item(), 'Test acc:', test_acc.item())
print( | np.mean(durations[4:]) | numpy.mean |
import os
from sys import version_info
import numpy as np
import pandas as pd
import pytest
import sklearn.datasets as datasets
import sklearn.preprocessing as sk_preprocessing
import xgboost as xgb
import yaml
import clearbox_wrapper as cbw
@pytest.fixture
def model_path(tmpdir):
return os.path.join(str(tmpdir), "model")
@pytest.fixture(scope="module")
def iris_data():
iris = datasets.load_iris()
x = iris.data
y = iris.target
return x, y
@pytest.fixture()
def sk_function_transformer():
def simple_preprocessor(numpy_x):
return numpy_x ** 2
transformer = sk_preprocessing.FunctionTransformer(
simple_preprocessor, validate=True
)
return transformer
@pytest.fixture()
def custom_transformer():
def simple_preprocessor(numpy_x):
transformed_x = numpy_x + 1.0
return transformed_x
return simple_preprocessor
@pytest.fixture()
def drop_column_transformer():
def drop_column(numpy_x):
transformed_x = np.delete(numpy_x, 0, axis=1)
return transformed_x
return drop_column
def _check_schema(pdf, input_schema):
if isinstance(pdf, (list, np.ndarray, dict)):
try:
pdf = pd.DataFrame(pdf)
except Exception as e:
message = (
"This model contains a model signature, which suggests a DataFrame input."
"There was an error casting the input data to a DataFrame: {0}".format(
str(e)
)
)
raise cbw.ClearboxWrapperException(message)
if not isinstance(pdf, pd.DataFrame):
message = (
"Expected input to be DataFrame or list. Found: %s" % type(pdf).__name__
)
raise cbw.ClearboxWrapperException(message)
if input_schema.has_column_names():
# make sure there are no missing columns
col_names = input_schema.column_names()
expected_names = set(col_names)
actual_names = set(pdf.columns)
missing_cols = expected_names - actual_names
extra_cols = actual_names - expected_names
# Preserve order from the original columns, since missing/extra columns are likely to
# be in same order.
missing_cols = [c for c in col_names if c in missing_cols]
extra_cols = [c for c in pdf.columns if c in extra_cols]
if missing_cols:
print(
"Model input is missing columns {0}."
" Note that there were extra columns: {1}".format(
missing_cols, extra_cols
)
)
return False
else:
# The model signature does not specify column names => we can only verify column count.
if len(pdf.columns) != len(input_schema.columns):
print(
"The model signature declares "
"{0} input columns but the provided input has "
"{1} columns. Note: the columns were not named in the signature so we can "
"only verify their count.".format(
len(input_schema.columns), len(pdf.columns)
)
)
return False
col_names = pdf.columns[: len(input_schema.columns)]
return True
def test_iris_xgboost_no_preprocessing(iris_data, model_path):
x, y = iris_data
model = xgb.XGBClassifier(use_label_encoder=False)
fitted_model = model.fit(x, y)
cbw.save_model(model_path, fitted_model, zip=False)
loaded_model = cbw.load_model(model_path)
original_model_predictions = fitted_model.predict_proba(x)
loaded_model_predictions = loaded_model.predict_proba(x)
np.testing.assert_array_equal(original_model_predictions, loaded_model_predictions)
@pytest.mark.parametrize(
"sk_transformer",
[
(sk_preprocessing.StandardScaler()),
(sk_preprocessing.QuantileTransformer(random_state=0, n_quantiles=50)),
(sk_preprocessing.KBinsDiscretizer(n_bins=2, encode="ordinal")),
(sk_preprocessing.RobustScaler()),
(sk_preprocessing.MaxAbsScaler()),
],
)
def test_iris_xgboost_preprocessing(sk_transformer, iris_data, model_path):
x, y = iris_data
x_transformed = sk_transformer.fit_transform(x)
model = xgb.XGBClassifier(use_label_encoder=False)
fitted_model = model.fit(x_transformed, y)
cbw.save_model(model_path, fitted_model, preprocessing=sk_transformer, zip=False)
loaded_model = cbw.load_model(model_path)
original_model_predictions = fitted_model.predict(x_transformed)
loaded_model_predictions = loaded_model.predict(x)
np.testing.assert_array_equal(original_model_predictions, loaded_model_predictions)
def test_iris_xgboost_preprocessing_with_function_transformer(
sk_function_transformer, iris_data, model_path
):
x, y = iris_data
x_transformed = sk_function_transformer.fit_transform(x)
model = xgb.XGBClassifier(use_label_encoder=False)
fitted_model = model.fit(x_transformed, y)
cbw.save_model(
model_path, fitted_model, preprocessing=sk_function_transformer, zip=False
)
loaded_model = cbw.load_model(model_path)
original_model_predictions = fitted_model.predict_proba(x_transformed)
loaded_model_predictions = loaded_model.predict_proba(x)
np.testing.assert_array_equal(original_model_predictions, loaded_model_predictions)
def test_iris_xgboost_preprocessing_with_custom_transformer(
custom_transformer, iris_data, model_path
):
x, y = iris_data
x_transformed = custom_transformer(x)
model = xgb.XGBClassifier(use_label_encoder=False)
fitted_model = model.fit(x_transformed, y)
cbw.save_model(
model_path, fitted_model, preprocessing=custom_transformer, zip=False
)
loaded_model = cbw.load_model(model_path)
original_model_predictions = fitted_model.predict(x_transformed)
loaded_model_predictions = loaded_model.predict(x)
np.testing.assert_array_equal(original_model_predictions, loaded_model_predictions)
@pytest.mark.parametrize(
"preprocessor",
[
(sk_preprocessing.StandardScaler()),
(sk_preprocessing.QuantileTransformer(random_state=0, n_quantiles=50)),
(sk_preprocessing.KBinsDiscretizer(n_bins=2, encode="ordinal")),
(sk_preprocessing.RobustScaler()),
(sk_preprocessing.MaxAbsScaler()),
],
)
def test_iris_xgboost_data_preparation_and_preprocessing(
preprocessor, iris_data, drop_column_transformer, model_path
):
x, y = iris_data
x_prepared = drop_column_transformer(x)
x_transformed = preprocessor.fit_transform(x_prepared)
model = xgb.XGBClassifier(use_label_encoder=False)
fitted_model = model.fit(x_transformed, y)
cbw.save_model(
model_path,
fitted_model,
preprocessing=preprocessor,
data_preparation=drop_column_transformer,
zip=False,
)
loaded_model = cbw.load_model(model_path)
original_model_predictions = fitted_model.predict_proba(x_transformed)
loaded_model_predictions = loaded_model.predict_proba(x)
| np.testing.assert_array_equal(original_model_predictions, loaded_model_predictions) | numpy.testing.assert_array_equal |
from collections import deque, OrderedDict
import numpy as np
# from rlkit.core.eval_util import create_stats_ordered_dict
from rlkit.data_management.path_builder import PathBuilder
from rlkit.samplers.data_collector.base import DataCollector
from rlkit.envs.vecenv import BaseVectorEnv
class VecMdpStepCollector(DataCollector):
def __init__(
self,
env: BaseVectorEnv,
policy,
max_num_epoch_paths_saved=None,
render=False,
render_kwargs=None,
):
if render_kwargs is None:
render_kwargs = {}
self._env = env
self._env_num = self._env.env_num
self._policy = policy
self._max_num_epoch_paths_saved = max_num_epoch_paths_saved
self._epoch_paths = deque(maxlen=self._max_num_epoch_paths_saved)
self._render = render
self._render_kwargs = render_kwargs
self._num_steps_total = 0
self._num_paths_total = 0
self._obs = None # cache variable
def get_epoch_paths(self):
return self._epoch_paths
def end_epoch(self, epoch):
self._epoch_paths = deque(maxlen=self._max_num_epoch_paths_saved)
def reset(self):
self._epoch_paths = deque(maxlen=self._max_num_epoch_paths_saved)
self._obs = None
def get_diagnostics(self):
stats = OrderedDict([
('num steps total', self._num_steps_total),
('num paths total', self._num_paths_total),
])
# path_lens = [len(path['actions']) for path in self._epoch_paths]
# stats.update(create_stats_ordered_dict(
# "path length",
# path_lens,
# always_show_all_stats=True,
# ))
return stats
def get_snapshot(self):
return dict(
env=self._env,
policy=self._policy,
)
def collect_new_steps(
self,
max_path_length,
num_steps,
discard_incomplete_paths,
random=False,
):
steps_collector = PathBuilder()
for _ in range(num_steps):
self.collect_one_step(
max_path_length,
discard_incomplete_paths,
steps_collector,
random,
)
return [steps_collector.get_all_stacked()]
def collect_one_step(
self,
max_path_length,
discard_incomplete_paths,
steps_collector: PathBuilder = None,
random=False,
):
if self._obs is None:
self._start_new_rollout()
if random:
actions = [self._env.action_space.sample() for _ in range(self._env_num)]
else:
actions = self._policy.get_actions(self._obs)
next_obs, rewards, terminals, env_infos = self._env.step(actions)
if self._render:
self._env.render(**self._render_kwargs)
# unzip vectorized data
for env_idx, (
path_builder,
next_ob,
action,
reward,
terminal,
env_info,
) in enumerate(zip(
self._current_path_builders,
next_obs,
actions,
rewards,
terminals,
env_infos,
)):
obs = self._obs[env_idx].copy()
terminal = np.array([terminal])
reward = | np.array([reward]) | numpy.array |
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import cv2
"""
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_thresholding/py_thresholding.html
"""
# importing image
img = Image.open("giraffe.jpg")
img_np = np.asarray(img)
print(np.shape(img_np))
# plt.imshow(img_np)
# plt.show()
img_gray = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
print(img_gray.shape)
# plt.imshow(img_gray, cmap='gray')
# plt.show()
# ret: This is the threshold limit
# img_threshold: The image after applying threshold
ret, img_threshold = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
i = | np.hstack((img_gray, img_threshold)) | numpy.hstack |
import keras
import pickle
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
import os
import numpy as np
import glob
import random
import math
from keras.callbacks import ModelCheckpoint
import time
import keras.backend as K
import tensorflow as tf
import subprocess
from collections import Counter
import socket
import sys
HOST='127.0.0.1'
PORT=12012
MAX_FILE_SIZE = 10000
MAX_BITMAP_SIZE = 2000
round_cnt=0
# Choose a seed for random initilzation
#seed = int(time.time())
seed = 12
np.random.seed(seed)
random.seed(seed)
tf.random.set_seed(seed)
seed_list = glob.glob('./seeds/*')
new_seeds = glob.glob('./seeds/id_*')
SPLIT_RATIO = len(seed_list)
# get binary argv
argvv = sys.argv[1:]
# process training data from afl raw data
def process_data():
global MAX_BITMAP_SIZE
global MAX_FILE_SIZE
global SPLIT_RATIO
global seed_list
global new_seeds
# shuffle training samples
seed_list = glob.glob('./seeds/*')
seed_list.sort()
SPLIT_RATIO = len(seed_list)
rand_index = np.arange(SPLIT_RATIO)
np.random.shuffle(seed_list)
new_seeds = glob.glob('./seeds/id_*')
call=subprocess.check_output
# get MAX_FILE_SIZE
cwd = os.getcwd()
max_file_name = call(['ls','-S', cwd+'/seeds/']).split('\n')[0].rstrip('\n')
MAX_FILE_SIZE = os.path.getsize(cwd+'/seeds/'+max_file_name)
# create directories to save label, spliced seeds, variant length seeds, crashes and mutated seeds.
if os.path.isdir("./bitmaps/") == False:
os.makedirs('./bitmaps')
if os.path.isdir("./splice_seeds/") == False:
os.makedirs('./splice_seeds')
if os.path.isdir("./vari_seeds/") == False:
os.makedirs('./vari_seeds')
if os.path.isdir("./crashes/") == False:
os.makedirs('./crashes')
# obtain raw bitmaps
raw_bitmap = {}
tmp_cnt = []
out = ''
for f in seed_list:
tmp_list = []
try:
# append "-o tmp_file" to strip's arguments to avoid tampering tested binary.
if argvv[0] == './strip':
out = call(['./afl-showmap', '-q', '-e', '-o', '/dev/stdout', '-m', '512', '-t', '500'] + argvv + [f] + ['-o', 'tmp_file'])
else:
out = call(['./afl-showmap', '-q', '-e', '-o', '/dev/stdout', '-m', '512', '-t', '500'] + argvv + [f])
except subprocess.CalledProcessError:
print("find a crash")
for line in out.splitlines():
edge = line.split(':')[0]
tmp_cnt.append(edge)
tmp_list.append(edge)
raw_bitmap[f] = tmp_list
counter = Counter(tmp_cnt).most_common()
# save bitmaps to individual numpy label
label = [int(f[0]) for f in counter]
bitmap = np.zeros((len(seed_list), len(label)))
for idx,i in enumerate(seed_list):
tmp = raw_bitmap[i]
for j in tmp:
if int(j) in label:
bitmap[idx][label.index((int(j)))] = 1
# label dimension reduction
fit_bitmap = np.unique(bitmap,axis=1)
print("data dimension" + str(fit_bitmap.shape))
# save training data
MAX_BITMAP_SIZE = fit_bitmap.shape[1]
for idx,i in enumerate(seed_list):
file_name = "./bitmaps/"+i.split('/')[-1]
np.save(file_name,fit_bitmap[idx])
# training data generator
def generate_training_data(lb,ub):
seed = np.zeros((ub-lb,MAX_FILE_SIZE))
bitmap = np.zeros((ub-lb,MAX_BITMAP_SIZE))
for i in range(lb,ub):
tmp = open(seed_list[i],'r').read()
ln = len(tmp)
if ln < MAX_FILE_SIZE:
tmp = tmp + (MAX_FILE_SIZE - ln) * '\0'
seed[i-lb] = [ord(j) for j in list(tmp)]
for i in range(lb,ub):
file_name = "./bitmaps/"+ seed_list[i].split('/')[-1] + ".npy"
bitmap[i-lb] = np.load(file_name)
return seed,bitmap
#learning rate decay
def step_decay(epoch):
initial_lrate = 0.001
drop = 0.7
epochs_drop = 10.0
lrate = initial_lrate * math.pow(drop,math.floor((1+epoch)/epochs_drop))
return lrate
class LossHistory(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self.losses = []
self.lr = []
def on_epoch_end(self, batch, logs={}):
self.losses.append(logs.get('loss'))
self.lr.append(step_decay(len(self.losses)))
print(step_decay(len(self.losses)))
#compute jaccard accuracy for multiple label
def accur_1(y_true,y_pred):
y_true = tf.round(y_true)
pred = tf.round(y_pred)
summ = tf.constant(MAX_BITMAP_SIZE,dtype=tf.float32)
wrong_num = tf.subtract(summ,tf.reduce_sum(tf.cast(tf.equal(y_true, pred),tf.float32),axis=-1))
right_1_num = tf.reduce_sum(tf.cast(tf.logical_and(tf.cast(y_true,tf.bool), tf.cast(pred,tf.bool)),tf.float32),axis=-1)
ret = K.mean(tf.divide(right_1_num,tf.add(right_1_num,wrong_num)))
return ret
def train_generate(batch_size):
global seed_list
while 1:
np.random.shuffle(seed_list)
# load a batch of training data
for i in range(0,SPLIT_RATIO,batch_size):
# load full batch
if (i+batch_size) > SPLIT_RATIO:
x,y=generate_training_data(i,SPLIT_RATIO)
x = x.astype('float32')/255
# load remaining data for last batch
else:
x,y=generate_training_data(i,i+batch_size)
x = x.astype('float32')/255
yield (x,y)
# get vector representation of input
def vectorize_file(fl):
seed = np.zeros((1,MAX_FILE_SIZE))
tmp = open(fl,'r').read()
ln = len(tmp)
if ln < MAX_FILE_SIZE:
tmp = tmp + (MAX_FILE_SIZE - ln) * '\0'
seed[0] = [ord(j) for j in list(tmp)]
seed = seed.astype('float32')/255
return seed
# splice two seeds to a new seed
def splice_seed(fl1, fl2, idxx):
tmp1 = open(fl1, 'r').read()
ret = 1
randd = fl2
while(ret == 1):
tmp2 = open(randd, 'r').read()
if len(tmp1) >= len(tmp2):
lenn = len(tmp2)
head = tmp2
tail = tmp1
else:
lenn = len(tmp1)
head = tmp1
tail = tmp2
f_diff = 0
l_diff = 0
for i in range(lenn):
if tmp1[i] != tmp2[i]:
f_diff = i
break
for i in reversed(range(lenn)):
if tmp1[i] != tmp2[i]:
l_diff = i
break
if f_diff >= 0 and l_diff >0 and (l_diff - f_diff) >= 2:
splice_at = f_diff + random.randint(1,l_diff - f_diff - 1)
head = list(head)
tail = list(tail)
tail[:splice_at] = head[:splice_at]
with open ('./splice_seeds/tmp_' + str(idxx), 'w') as f:
f.write("".join(tail))
ret = 0
print((f_diff,l_diff))
randd = random.choice(seed_list)
# compute gradient for given input
def gen_adv2(f,fl,model,layer_list,idxx,splice):
adv_list = []
loss = layer_list[-2][1].output[:,f]
grads = K.gradients(loss,model.input)[0]
iterate = K.function([model.input], [loss, grads])
ll=2
while(fl[0] == fl[1]):
fl[1] = random.choice(seed_list)
for index in range(ll):
x=vectorize_file(fl[index])
loss_value, grads_value = iterate([x])
idx = np.flip(np.argsort(np.absolute(grads_value),axis=1)[:, -MAX_FILE_SIZE:].reshape((MAX_FILE_SIZE,)),0)
val = np.sign(grads_value[0][idx])
adv_list.append((idx,val,fl[index]))
if(splice== 1):
# do not generate spliced seed for the first round
if(round_cnt != 0):
if(round_cnt%2 == 0):
splice_seed(fl[0], fl[1], idxx)
x=vectorize_file('./splice_seeds/tmp_'+str(idxx))
loss_value, grads_value = iterate([x])
idx = np.flip(np.argsort(np.absolute(grads_value),axis=1)[:, -MAX_FILE_SIZE:].reshape((MAX_FILE_SIZE,)),0)
val = np.sign(grads_value[0][idx])
adv_list.append((idx,val,'./splice_seeds/tmp_'+str(idxx)))
else:
splice_seed(fl[0], fl[1], idxx+500)
x=vectorize_file('./splice_seeds/tmp_'+str(idxx+500))
loss_value, grads_value = iterate([x])
idx = np.flip(np.argsort( | np.absolute(grads_value) | numpy.absolute |
import subprocess
import os
import numpy as np
import open3d as o3d
from PyQt5 import QtWidgets, uic, QtGui
from PyQt5.QtCore import QRunnable, pyqtSlot, QThreadPool, pyqtSignal
from PyQt5 import QtCore
from sklearn.neighbors import KDTree
PATH_TO_CORRESPONDENCES = "smooth_net_correspondences.txt"
class WorkerSignals(QtCore.QObject):
updated_console = pyqtSignal(str)
parametrization_finished = pyqtSignal()
inference_finished = pyqtSignal()
update_button = pyqtSignal()
class RunMatching(QRunnable):
def __init__(self, args):
super(RunMatching, self).__init__()
self.signals = WorkerSignals()
self.args = args
@pyqtSlot()
def run(self):
print("Running matching")
# load descriptors
desc_dir = self.args["desc_dir"]
src_cloud = self.args["src_cloud"]
tgt_cloud = self.args["tgt_cloud"]
src_desc = self.args["src_desc"]
tgt_desc = self.args["tgt_desc"]
src_kpoints = self.args["src_kpoints"]
tgt_kpoints = self.args["tgt_kpoints"]
frag1_desc_file = os.path.join(
desc_dir, '32_dim', src_desc
)
frag1_desc = np.load(frag1_desc_file)
frag1_desc = frag1_desc["data"]
frag2_desc_file = os.path.join(
desc_dir, '32_dim', tgt_desc
)
frag2_desc = np.load(frag2_desc_file)
frag2_desc = frag2_desc["data"]
# save as o3d feature
frag1 = o3d.registration.Feature()
frag1.data = frag1_desc.T
frag2 = o3d.registration.Feature()
frag2.data = frag2_desc.T
# load point clouds
frag1_pc = o3d.io.read_point_cloud(
os.path.join(src_cloud)
)
frag2_pc = o3d.io.read_point_cloud(
os.path.join(tgt_cloud)
)
# load keypoints
frag1_indices = np.genfromtxt(
os.path.join(src_kpoints)
)
frag2_indices = np.genfromtxt(
os.path.join(tgt_kpoints)
)
frag1_pc_keypoints = np.asarray(frag1_pc.points)[frag1_indices.astype(int), :]
frag2_pc_keypoints = np.asarray(frag2_pc.points)[frag2_indices.astype(int), :]
# Save as open3d point clouds
frag1_key = o3d.geometry.PointCloud()
frag1_key.points = o3d.utility.Vector3dVector(frag1_pc_keypoints)
frag2_key = o3d.geometry.PointCloud()
frag2_key.points = o3d.utility.Vector3dVector(frag2_pc_keypoints)
ref_matched_key, test_matched_key, idx = find_mutually_nn_keypoints(
frag2_key, frag1_key, frag2, frag1
)
correspondences = np.vstack((frag1_indices[idx], frag2_indices[idx]))
with open(PATH_TO_CORRESPONDENCES, 'w') as corr_file:
for i in range(correspondences.shape[1]):
x, y = correspondences[:, i]
corr_file.write(f"{int(x)} {int(y)}\n")
self.signals.update_button.emit()
class RunExecutable(QRunnable):
def __init__(self, args):
super(RunExecutable, self).__init__()
self.signals = WorkerSignals()
self.args = args
@pyqtSlot()
def run(self):
process = subprocess.Popen(
self.args,
stdout=subprocess.PIPE
)
for line in iter(process.stdout.readline, b''):
self.signals.updated_console.emit(line.decode("utf-8"))
self.signals.parametrization_finished.emit()
class RunCNN(QRunnable):
def __init__(self, args):
super(RunCNN, self).__init__()
self.signals = WorkerSignals()
self.args = args
@pyqtSlot(str)
def run(self):
print("Running CNN")
process = subprocess.Popen(
self.args,
stdout=subprocess.PIPE
)
for line in iter(process.stdout.readline, b''):
self.signals.updated_console.emit(line.decode("utf-8"))
self.signals.updated_console.emit('\nInference completed\n')
self.signals.inference_finished.emit()
def find_mutually_nn_keypoints(ref_key, test_key, ref, test):
"""
Use kdtree to find mutually closest keypoints
ref_key: reference keypoints (source)
test_key: test keypoints (target)
ref: reference feature (source feature)
test: test feature (target feature)
"""
ref_features = ref.data.T
test_features = test.data.T
ref_keypoints = | np.asarray(ref_key.points) | numpy.asarray |
import numpy as np
import pytest
from numpy.testing import assert_allclose
from ..linalg.cholesky import ChoInv, ChoInvPivot, cholesky_factor, fixed_cholesky
from ..linalg.cholesky import jit_cholesky, _check_cholesky_inputs, pivot_cholesky, _pivot_transpose
from ..linalg.linalg_utils import calc_Ainv, calc_A_deriv, calc_mean_params, calc_R, logdet_deriv
from ..Kernel import SquaredExponential
from ..Priors import MeanPriors
from scipy import linalg
@pytest.fixture
def A():
return np.array([[2., 1., 0.2], [1., 2., 0.4], [0.2, 0.4, 2.]])
@pytest.fixture
def b():
return np.array([2., 3., 1.])
def test_ChoInv(A, b):
"test the ChoInv class"
L = linalg.cholesky(A, lower=True)
Ainv = ChoInv(L)
assert_allclose(Ainv.L, L)
x = np.linalg.solve(A, b)
assert_allclose(Ainv.solve(b), x)
assert_allclose(np.log(np.linalg.det(A)), Ainv.logdet())
assert Ainv.solve(np.zeros((3,0))).shape == (3,0)
Ainv = ChoInv(np.zeros((0,0)))
assert Ainv.solve(np.ones(3)).shape == (3,)
Ainv = ChoInv(2.*np.ones((1,1)))
assert_allclose(Ainv.solve(np.ones((1, 3, 1))), 0.25*np.ones((1,3,1)))
def test_ChoInvPivot(A, b):
"test the cho_solve routine using pivoting"
L = np.linalg.cholesky(A)
x = linalg.cho_solve((L, True), b)
L_pivot, P = pivot_cholesky(A)
Ainv = ChoInvPivot(L_pivot, P)
x_pivot = Ainv.solve(b)
assert_allclose(x, x_pivot)
with pytest.raises(AssertionError):
ChoInvPivot(L_pivot, np.array([0, 2, 1, 1], dtype=np.int32)).solve(b)
with pytest.raises(ValueError):
ChoInvPivot(L_pivot, np.array([0, 0, 1], dtype=np.int32)).solve(b)
def test_check_cholesky_inputs():
"Test function that checks inputs to cholesky decomposition routines"
A = np.array([[2., 1.], [1., 2.]])
B = _check_cholesky_inputs(A)
assert_allclose(A, B)
A = np.array([[1., 2.], [1., 2.]])
with pytest.raises(AssertionError):
_check_cholesky_inputs(A)
A = np.array([1., 2.])
with pytest.raises(AssertionError):
_check_cholesky_inputs(A)
A = np.array([[1., 2., 3.], [4., 5., 6.]])
with pytest.raises(AssertionError):
_check_cholesky_inputs(A)
input_matrix = np.array([[-1., 2., 2.], [2., 3., 2.], [2., 2., -3.]])
with pytest.raises(linalg.LinAlgError):
_check_cholesky_inputs(input_matrix)
def test_fixed_cholesky(A):
"Test the cholesky routine with fixed nugget"
L_expected = np.array([[2., 0., 0.], [6., 1., 0.], [-8., 5., 3.]])
input_matrix = np.array([[4., 12., -16.], [12., 37., -43.], [-16., -43., 98.]])
L_actual = fixed_cholesky(input_matrix)
assert_allclose(L_actual, L_expected)
L_actual, nugget = cholesky_factor(input_matrix, 0., "fixed")
assert_allclose(L_actual.L, L_expected)
assert nugget == 0.
L_actual, nugget = cholesky_factor(input_matrix, 0., "fit")
assert_allclose(L_actual.L, L_expected)
assert nugget == 0.
L_expected = np.array([[1.0000004999998751e+00, 0.0000000000000000e+00, 0.0000000000000000e+00],
[9.9999950000037496e-01, 1.4142132088085626e-03, 0.0000000000000000e+00],
[6.7379436301144941e-03, 4.7644444411381860e-06, 9.9997779980004420e-01]])
input_matrix = np.array([[1. + 1.e-6 , 1. , 0.0067379469990855 ],
[1. , 1. + 1.e-6 , 0.0067379469990855 ],
[0.0067379469990855, 0.0067379469990855, 1. + 1.e-6 ]])
L_actual = fixed_cholesky(input_matrix)
assert_allclose(L_expected, L_actual)
def test_jit_cholesky():
"Tests the stabilized Cholesky decomposition routine"
L_expected = np.array([[2., 0., 0.], [6., 1., 0.], [-8., 5., 3.]])
input_matrix = np.array([[4., 12., -16.], [12., 37., -43.], [-16., -43., 98.]])
L_actual, jitter = jit_cholesky(input_matrix)
assert_allclose(L_expected, L_actual)
assert_allclose(jitter, 0.)
L_expected = np.array([[1.0000004999998751e+00, 0.0000000000000000e+00, 0.0000000000000000e+00],
[9.9999950000037496e-01, 1.4142132088085626e-03, 0.0000000000000000e+00],
[6.7379436301144941e-03, 4.7644444411381860e-06, 9.9997779980004420e-01]])
input_matrix = np.array([[1. , 1. , 0.0067379469990855],
[1. , 1. , 0.0067379469990855],
[0.0067379469990855, 0.0067379469990855, 1. ]])
L_actual, jitter = jit_cholesky(input_matrix)
assert_allclose(L_expected, L_actual)
assert_allclose(jitter, 1.e-6)
L_actual, jitter = cholesky_factor(input_matrix, 0., "adaptive")
assert_allclose(L_expected, L_actual.L)
assert_allclose(jitter, 1.e-6)
input_matrix = np.array([[1.e-6, 1., 0.], [1., 1., 1.], [0., 1., 1.e-10]])
with pytest.raises(linalg.LinAlgError):
jit_cholesky(input_matrix)
def test_pivot_cholesky():
"Tests pivoted cholesky decomposition routine"
input_matrix = np.array([[4., 12., -16.], [12., 37., -43.], [-16., -43., 98.]])
input_matrix_copy = np.copy(input_matrix)
L_expected = np.array([[ 9.899494936611665 , 0. , 0. ],
[-4.3436559415745055, 4.258245303082538 , 0. ],
[-1.616244071283537 , 1.1693999481734827, 0.1423336335961131]])
Piv_expected = np.array([2, 1, 0], dtype = np.int32)
L_actual, Piv_actual = pivot_cholesky(input_matrix)
| assert_allclose(L_actual, L_expected) | numpy.testing.assert_allclose |
import numpy as np
from shapreg import utils, games, stochastic_games
from tqdm.auto import tqdm
def default_min_variance_samples(game):
'''Determine min_variance_samples.'''
return 5
def default_variance_batches(game, batch_size):
'''
Determine variance_batches.
This value tries to ensure that enough samples are included to make A
approximation non-singular.
'''
if isinstance(game, games.CooperativeGame):
return int(np.ceil(10 * game.players / batch_size))
else:
# Require more intermediate samples for stochastic games.
return int(np.ceil(25 * game.players / batch_size))
def calculate_result(A, b, total):
'''Calculate the regression coefficients.'''
num_players = A.shape[1]
try:
if len(b.shape) == 2:
A_inv_one = np.linalg.solve(A, np.ones((num_players, 1)))
else:
A_inv_one = np.linalg.solve(A, np.ones(num_players))
A_inv_vec = np.linalg.solve(A, b)
values = (
A_inv_vec -
A_inv_one * (np.sum(A_inv_vec, axis=0, keepdims=True) - total)
/ np.sum(A_inv_one))
except np.linalg.LinAlgError:
raise ValueError('singular matrix inversion. Consider using larger '
'variance_batches')
return values
def ShapleyRegression(game,
batch_size=512,
detect_convergence=True,
thresh=0.01,
n_samples=None,
paired_sampling=True,
return_all=False,
min_variance_samples=None,
variance_batches=None,
bar=True,
verbose=False):
# Verify arguments.
if isinstance(game, games.CooperativeGame):
stochastic = False
elif isinstance(game, stochastic_games.StochasticCooperativeGame):
stochastic = True
else:
raise ValueError('game must be CooperativeGame or '
'StochasticCooperativeGame')
if min_variance_samples is None:
min_variance_samples = default_min_variance_samples(game)
else:
assert isinstance(min_variance_samples, int)
assert min_variance_samples > 1
if variance_batches is None:
variance_batches = default_variance_batches(game, batch_size)
else:
assert isinstance(variance_batches, int)
assert variance_batches >= 1
# Possibly force convergence detection.
if n_samples is None:
n_samples = 1e20
if not detect_convergence:
detect_convergence = True
if verbose:
print('Turning convergence detection on')
if detect_convergence:
assert 0 < thresh < 1
# Weighting kernel (probability of each subset size).
num_players = game.players
weights = np.arange(1, num_players)
weights = 1 / (weights * (num_players - weights))
weights = weights / np.sum(weights)
# Calculate null and grand coalitions for constraints.
if stochastic:
null = game.null(batch_size=batch_size)
grand = game.grand(batch_size=batch_size)
else:
null = game.null()
grand = game.grand()
# Calculate difference between grand and null coalitions.
total = grand - null
# Set up bar.
n_loops = int(np.ceil(n_samples / batch_size))
if bar:
if detect_convergence:
bar = tqdm(total=1)
else:
bar = tqdm(total=n_loops * batch_size)
# Setup.
n = 0
b = 0
A = 0
estimate_list = []
# For variance estimation.
A_sample_list = []
b_sample_list = []
# For tracking progress.
var = np.nan * np.ones(num_players)
if return_all:
N_list = []
std_list = []
val_list = []
# Begin sampling.
for it in range(n_loops):
# Sample subsets.
S = np.zeros((batch_size, num_players), dtype=bool)
num_included = np.random.choice(num_players - 1, size=batch_size,
p=weights) + 1
for row, num in zip(S, num_included):
inds = np.random.choice(num_players, size=num, replace=False)
row[inds] = 1
# Sample exogenous (if applicable).
if stochastic:
U = game.sample(batch_size)
# Update estimators.
if paired_sampling:
# Paired samples.
A_sample = 0.5 * (
np.matmul(S[:, :, np.newaxis].astype(float),
S[:, np.newaxis, :].astype(float))
+ np.matmul(np.logical_not(S)[:, :, np.newaxis].astype(float),
np.logical_not(S)[:, np.newaxis, :].astype(float)))
if stochastic:
game_eval = game(S, U) - null
S_comp = np.logical_not(S)
comp_eval = game(S_comp, U) - null
b_sample = 0.5 * (
S.astype(float).T * game_eval[:, np.newaxis].T
+ S_comp.astype(float).T * comp_eval[:, np.newaxis].T).T
else:
game_eval = game(S) - null
S_comp = np.logical_not(S)
comp_eval = game(S_comp) - null
b_sample = 0.5 * (
S.astype(float).T * game_eval[:, np.newaxis].T +
S_comp.astype(float).T * comp_eval[:, np.newaxis].T).T
else:
# Single sample.
A_sample = np.matmul(S[:, :, np.newaxis].astype(float),
S[:, np.newaxis, :].astype(float))
if stochastic:
b_sample = (S.astype(float).T
* (game(S, U) - null)[:, np.newaxis].T).T
else:
b_sample = (S.astype(float).T
* (game(S) - null)[:, np.newaxis].T).T
# Welford's algorithm.
n += batch_size
b += np.sum(b_sample - b, axis=0) / n
A += np.sum(A_sample - A, axis=0) / n
# Calculate progress.
values = calculate_result(A, b, total)
A_sample_list.append(A_sample)
b_sample_list.append(b_sample)
if len(A_sample_list) == variance_batches:
# Aggregate samples for intermediate estimate.
A_sample = np.concatenate(A_sample_list, axis=0).mean(axis=0)
b_sample = np.concatenate(b_sample_list, axis=0).mean(axis=0)
A_sample_list = []
b_sample_list = []
# Add new estimate.
estimate_list.append(calculate_result(A_sample, b_sample, total))
# Estimate current var.
if len(estimate_list) >= min_variance_samples:
var = np.array(estimate_list).var(axis=0)
# Convergence ratio.
std = np.sqrt(var * variance_batches / (it + 1))
ratio = np.max(
| np.max(std, axis=0) | numpy.max |
import numpy as np
import trimesh
import argparse
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--mesh_path',
default=None,
type=str,
help='Path to stl file of a mesh.')
args = parser.parse_args()
return args
class PointCloudGenerator:
def load_mesh(self, path):
mesh = trimesh.load(path)
return mesh
# Function to sample pointcloud given vertices and faces of a mesh
# Copied from: https://github.com/gsp-27/mujoco_hand_exps/blob/659b2b30042680fbafea8a764a7267c8add9d8c8/trajectory_env/dataset_generator.py#L262-L314
def sample_faces(self, vertices, faces, n_samples=5000):
"""
Samples point cloud on the surface of the model defined as vectices and
faces. This function uses vectorized operations so fast at the cost of some
memory.
Parameters:
vertices - n x 3 matrix
faces - n x 3 matrix
n_samples - positive integer
Return:
vertices - point cloud
Reference :
[1] Barycentric coordinate system
\begin{align}
P = (1 - \sqrt{r_1})A + \sqrt{r_1} (1 - r_2) B + \sqrt{r_1} r_2 C
\end{align}
"""
actual_n_samples = n_samples
vec_cross = np.cross(vertices[faces[:, 0], :] - vertices[faces[:, 2], :],
vertices[faces[:, 1], :] - vertices[faces[:, 2], :])
face_areas = np.sqrt(np.sum(vec_cross ** 2, 1))
face_areas = face_areas / np.sum(face_areas)
# Sample exactly n_samples. First, oversample points and remove redundant
# Error fix by Yangyan (<EMAIL>) 2017-Aug-7
n_samples_per_face = np.ceil(n_samples * face_areas).astype(int)
floor_num = np.sum(n_samples_per_face) - n_samples
if floor_num > 0:
indices = np.where(n_samples_per_face > 0)[0]
floor_indices = np.random.choice(indices, floor_num, replace=True)
n_samples_per_face[floor_indices] -= 1
n_samples = np.sum(n_samples_per_face)
# Create a vector that contains the face indices
sample_face_idx = np.zeros((n_samples, ), dtype=int)
acc = 0
for face_idx, _n_sample in enumerate(n_samples_per_face):
sample_face_idx[acc: acc + _n_sample] = face_idx
acc += _n_sample
r = | np.random.rand(n_samples, 2) | numpy.random.rand |
#!/usr/bin/env python
import cv2
import numpy as np
import math
import matplotlib
import PIL
matplotlib.use('TkAgg')
import matplotlib.pyplot
_color = [
# BGR?
(255, 255, 0),
(255, 0, 255),
(0, 255, 255),
(0, 0, 255),
(0, 255, 0),
(255, 0, 0),
(255, 255, 255),
(0, 0, 0)]
class RadarProb():
def __init__(self, num_cls, classes=None):
s = 360/num_cls
self.cos_offset = np.array([math.cos(x*math.pi/180) for x in range(0, 360, s)])
self.sin_offset = np.array([math.sin(x*math.pi/180) for x in range(0, 360, s)])
matplotlib.pyplot.ion()
fig = matplotlib.pyplot.figure()
self.ax = fig.add_subplot(111, polar=True)
self.ax.grid(False)
self.ax.set_ylim(0, 1)
if classes is not None:
classes = np.array(classes) * np.pi / 180.
x = np.expand_dims(np.cos(classes[:, 1]) * np.cos(classes[:, 0]), axis=1)
y = np.expand_dims(np.cos(classes[:, 1]) * np.sin(classes[:, 0]), axis=1)
z = np.expand_dims(np.sin(classes[:, 1]), axis=1)
self.classes_xyz = np.concatenate((x, y, z), axis=1)
def plot3d(self, confidence, prob):
prob = _numpy_softmax(prob)
prob = prob * confidence / max(prob)
vecs = self.classes_xyz * | np.expand_dims(prob, axis=1) | numpy.expand_dims |
# -*- coding: utf-8 -*-
#
# Copyright (c) 2018 Leland Stanford Junior University
# Copyright (c) 2018 The Regents of the University of California
#
# This file is part of the SimCenter Backend Applications
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# You should have received a copy of the BSD 3-Clause License along with
# this file. If not, see <http://www.opensource.org/licenses/>.
#
# Contributors:
# <NAME>
# <NAME>
"""
These are unit and integration tests on the auto_HU_NJ module.
"""
import pytest
import numpy as np
from numpy.testing import assert_allclose
import json
import os
import inspect
# Importing auto_HU_NJ module
from auto_HU_NJ import *
# Current directory
cur_dir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
# Test input directory
base_input_path = 'resources'
def test_parse_BIM():
"""
Testing the parse_BIM function.
"""
# Testing the ruleset for Hurricane-Prone Region (HPR)
res = []
ref = [1, 0, 1, 0]
for i in range(4):
BIM_dir = os.path.join(cur_dir, base_input_path, 'BIM_Data',
'parse_BIM_test_' + str(i+1) + '.json')
with open(BIM_dir) as f:
BIM_input = json.load(f)
BIM_output = parse_BIM(BIM_input['GI'])
res.append(int(BIM_output['HPR']))
# Check
assert_allclose(res, ref, atol=1e-5)
# Testing the ruleset for Wind Borne Debris (WBD)
res = []
ref = [0, 0, 0, 0, 1, 1, 1, 1]
for i in range(8):
BIM_dir = os.path.join(cur_dir, base_input_path, 'BIM_Data',
'parse_BIM_test_' + str(i+1) + '.json')
with open(BIM_dir) as f:
BIM_input = json.load(f)
BIM_output = parse_BIM(BIM_input['GI'])
res.append(int(BIM_output['WBD']))
# Check
assert_allclose(res, ref, atol=1e-5)
# Testing the ruleset for terrain
res = []
ref = [3, 15, 35, 70, 3, 15, 35, 70]
for i in range(8):
BIM_dir = os.path.join(cur_dir, base_input_path, 'BIM_Data',
'parse_BIM_test_' + str(i+1) + '.json')
with open(BIM_dir) as f:
BIM_input = json.load(f)
BIM_output = parse_BIM(BIM_input['GI'])
res.append(int(BIM_output['terrain']))
# Check
assert_allclose(res, ref, atol=1e-5)
def test_building_class():
"""
Testing the building class function.
"""
# Testing the ruleset for classifying Hazus building class
res = []
ref_class = ['WSF', 'WMUH', 'SERB', 'SECB', 'SPMB', 'CERB', 'CECB', 'MSF',
'MERB', 'MECB', 'MLRI', 'MMUH', 'MLRM']
ref = np.ones(13)
for i in range(13):
data_dir = os.path.join(cur_dir, base_input_path, 'BuildingClass_Data',
'building_class_test_' + str(i+1) + '.json')
with open(data_dir) as f:
data_input = json.load(f)
tmp = parse_BIM(data_input['GI'])
data_output = building_class(tmp)
print(data_output)
res.append(int(data_output == ref_class[i]))
# Check
assert_allclose(res, ref, atol=1e-5)
def test_WSF_config():
"""
Testing the WSF_config function.
"""
res = []
ref_class = ['WSF2_gab_0_8d_tnail_no',
'WSF2_gab_1_8d_tnail_no',
'WSF2_hip_1_8d_tnail_no',
'WSF2_hip_0_8d_tnail_no',
'8s_strap_no',
'8s_strap_no',
'8s_tnail_no',
'8s_strap_sup',
'8d_strap_std',
'8d_tnail_wkd',
'WSF1']
ref = np.ones(11)
for i in range(11):
data_dir = os.path.join(cur_dir, base_input_path, 'Config_Data',
'wsf_test_' + str(i+1) + '.json')
with open(data_dir) as f:
data_input = json.load(f)
tmp = parse_BIM(data_input['GI'])
data_output = WSF_config(tmp)
print(data_output)
res.append(int(ref_class[i] in data_output))
# Check
assert_allclose(res, ref, atol=1e-5)
def test_WMUH_config():
"""
Testing the WMUH_config function.
"""
res = []
ref_class = ['WMUH2_flt_spm_god_null',
'WMUH2_flt_spm_god_null',
'WMUH2_flt_spm_god_null',
'WMUH2_gab_null_null_1',
'WMUH2_hip_null_null_1',
'WMUH2_gab_null_null_0',
'WMUH2_hip_null_null_0',
'WMUH2_flt_spm_por_null',
'WMUH2_flt_bur_por_null',
'WMUH2_flt_spm_god_null_8s',
'WMUH2_flt_spm_god_null_8d',
'WMUH2_flt_spm_god_null_8s',
'WMUH2_flt_spm_god_null_8d',
'strap',
'tnail',
'tnail',
'tnail_1',
'WMUH3']
ref = np.ones(18)
for i in range(18):
data_dir = os.path.join(cur_dir, base_input_path, 'Config_Data',
'wmuh_test_' + str(i+1) + '.json')
with open(data_dir) as f:
data_input = json.load(f)
tmp = parse_BIM(data_input['GI'])
data_output = WMUH_config(tmp)
print(data_output)
res.append(int(ref_class[i] in data_output))
# Check
| assert_allclose(res, ref, atol=1e-5) | numpy.testing.assert_allclose |
import matplotlib
matplotlib.use('Agg')
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.ticker import FormatStrFormatter
import random
random.seed(0)
np.random.seed(0)
import os.path as osp
def plot_clusters_vs_lambda(X_org,l,filename,dataset, lmbda, fairness_error):
K = max(l) +1
COLORSX = np.array(['rD','gP'])
plt.figure(1,figsize=(6.4,4.8))
plt.ion()
plt.clf()
group = ['cluster 1', 'cluster 2']
for k in range(K):
idx = np.asarray(np.where(l == k)).squeeze()
plt.plot(X_org[idx,0],X_org[idx,1],COLORSX[k],label = group[k]);
if dataset == 'Synthetic':
tmp_title = '$\lambda$ = {}, fairness Error = {: .2f}'.format(lmbda,fairness_error)
else:
tmp_title = '$\lambda$ = {}, fairness Error = {: .2f}'.format(lmbda,fairness_error)
plt.title(tmp_title)
plt.legend()
plt.tight_layout()
plt.savefig(filename, format='png', dpi = 800, bbox_inches='tight')
plt.show()
plt.close('all')
def plot_fairness_vs_clusterE(cluster_option, savefile, filename, lmbdas, fairness_error_set, min_balance_set, avg_balance_set, E_cluster_set, save = True):
if not osp.exists(savefile) or save == True:
np.savez(savefile, lmbdas = lmbdas, min_balance_set = min_balance_set, avg_balance_set = avg_balance_set, fairness_error = fairness_error_set, E_cluster = E_cluster_set)
else:
data = | np.load(savefile) | numpy.load |
"""
This file contains classes and functions for representing, solving, and simulating
agents who must allocate their resources among consumption, saving in a risk-free
asset (with a low return), and saving in a risky asset (with higher average return).
"""
import numpy as np
from copy import deepcopy
from HARK import MetricObject, NullFunc # Basic HARK features
from HARK.ConsumptionSaving.ConsIndShockModel import (
utility, # CRRA utility function
utility_inv, # Inverse CRRA utility function
utilityP, # CRRA marginal utility function
utilityP_inv, # Inverse CRRA marginal utility function
init_lifecycle,
)
from HARK.ConsumptionSaving.ConsRiskyAssetModel import (
RiskyAssetConsumerType,
risky_asset_parms,
init_risky_asset,
)
from HARK.distribution import calc_expectation
from HARK.interpolation import (
LinearInterp, # Piecewise linear interpolation
BilinearInterp, # 2D interpolator
TrilinearInterp, # 3D interpolator
ConstantFunction, # Interpolator-like class that returns constant value
IdentityFunction, # Interpolator-like class that returns one of its arguments
ValueFuncCRRA,
MargValueFuncCRRA,
DiscreteInterp,
)
from HARK.utilities import make_grid_exp_mult
class RiskyContribConsumerType(RiskyAssetConsumerType):
"""
A consumer type with idiosyncratic shocks to permanent and transitory income,
who can save in both a risk-free and a risky asset but faces frictions to
moving funds between them. The agent can only consume out of his risk-free
asset.
The frictions are:
- A proportional tax on funds moved from the risky to the risk-free
asset.
- A stochastic inability to move funds between his accounts.
To partially avoid the second friction, the agent can commit to have a
fraction of his labor income, which is usually deposited in his risk-free
account, diverted to his risky account. He can change this fraction
only in periods where he is able to move funds between accounts.
"""
time_inv_ = deepcopy(RiskyAssetConsumerType.time_inv_)
time_inv_ = time_inv_ + ["DiscreteShareBool"]
# The new state variables (over those in ConsIndShock) are:
# - nMrm: start-of-period risky resources.
# - mNrmTilde: post-rebalancing risk-free resources.
# - nNrmTilde: post-rebalancing risky resources.
# - Share: income-deduction share.
# For details, see
# https://github.com/Mv77/RiskyContrib/blob/main/RiskyContrib.pdf
state_vars = RiskyAssetConsumerType.state_vars + [
"gNrm",
"nNrm",
"mNrmTilde",
"nNrmTilde",
"Share",
]
shock_vars_ = RiskyAssetConsumerType.shock_vars_
def __init__(self, verbose=False, quiet=False, **kwds):
params = init_risky_contrib.copy()
params.update(kwds)
kwds = params
# Initialize a basic consumer type
RiskyAssetConsumerType.__init__(self, verbose=verbose, quiet=quiet, **kwds)
# The model is solved and simulated spliting each of the agent's
# decisions into its own "stage". The stages in chronological order
# are
# - Reb: asset-rebalancing stage.
# - Sha: definition of the income contribution share.
# - Cns: consumption stage.
self.stages = ["Reb", "Sha", "Cns"]
# Each stage has its own states and controls, and its methods
# to find them.
self.get_states = {
"Reb": self.get_states_Reb,
"Sha": self.get_states_Sha,
"Cns": self.get_states_Cns,
}
self.get_controls = {
"Reb": self.get_controls_Reb,
"Sha": self.get_controls_Sha,
"Cns": self.get_controls_Cns,
}
# Set the solver for the portfolio model, and update various constructed attributes
self.solve_one_period = solveRiskyContrib
self.update()
def pre_solve(self):
self.update_solution_terminal()
def update(self):
RiskyAssetConsumerType.update(self)
self.update_share_grid()
self.update_dfrac_grid()
self.update_nNrm_grid()
self.update_mNrm_grid()
self.update_tau()
def update_solution_terminal(self):
"""
Solves the terminal period. The solution is trivial.
Cns: agent will consume all of his liquid resources.
Sha: irrelevant as there is no "next" period.
Reb: agent will shift all of his resources to the risk-free asset.
Parameters
----------
None
Returns
-------
None
"""
# Construct the terminal solution backwards.
# Start with the consumption stage. All liquid resources are consumed.
cFunc_term = IdentityFunction(i_dim=0, n_dims=3)
vFunc_Cns_term = ValueFuncCRRA(cFunc_term, CRRA=self.CRRA)
# Marginal values
dvdmFunc_Cns_term = MargValueFuncCRRA(cFunc_term, CRRA=self.CRRA)
dvdnFunc_Cns_term = ConstantFunction(0.0)
dvdsFunc_Cns_term = ConstantFunction(0.0)
Cns_stage_sol = RiskyContribCnsSolution(
# Consumption stage
vFunc=vFunc_Cns_term,
cFunc=cFunc_term,
dvdmFunc=dvdmFunc_Cns_term,
dvdnFunc=dvdnFunc_Cns_term,
dvdsFunc=dvdsFunc_Cns_term,
)
# Share stage
# It's irrelevant because there is no future period. Set share to 0.
# Create a dummy 2-d consumption function to get value function and marginal
c2d = IdentityFunction(i_dim=0, n_dims=2)
Sha_stage_sol = RiskyContribShaSolution(
# Adjust
vFunc_Adj=ValueFuncCRRA(c2d, CRRA=self.CRRA),
ShareFunc_Adj=ConstantFunction(0.0),
dvdmFunc_Adj=MargValueFuncCRRA(c2d, CRRA=self.CRRA),
dvdnFunc_Adj=ConstantFunction(0.0),
# Fixed
vFunc_Fxd=vFunc_Cns_term,
ShareFunc_Fxd=IdentityFunction(i_dim=2, n_dims=3),
dvdmFunc_Fxd=dvdmFunc_Cns_term,
dvdnFunc_Fxd=dvdnFunc_Cns_term,
dvdsFunc_Fxd=dvdsFunc_Cns_term,
)
# Rebalancing stage
# Adjusting agent:
# Withdraw everything from the pension fund and consume everything
dfracFunc_Adj_term = ConstantFunction(-1.0)
# Find the withdrawal penalty. If it is time-varying, assume it takes
# the same value as in the last non-terminal period
if type(self.tau) is list:
tau = self.tau[-1]
else:
tau = self.tau
# Value and marginal value function of the adjusting agent
vFunc_Reb_Adj_term = ValueFuncCRRA(lambda m, n: m + n / (1 + tau), self.CRRA)
dvdmFunc_Reb_Adj_term = MargValueFuncCRRA(
lambda m, n: m + n / (1 + tau), self.CRRA
)
# A marginal unit of n will be withdrawn and put into m. Then consumed.
dvdnFunc_Reb_Adj_term = lambda m, n: dvdmFunc_Reb_Adj_term(m, n) / (1 + tau)
Reb_stage_sol = RiskyContribRebSolution(
# Rebalancing stage
vFunc_Adj=vFunc_Reb_Adj_term,
dfracFunc_Adj=dfracFunc_Adj_term,
dvdmFunc_Adj=dvdmFunc_Reb_Adj_term,
dvdnFunc_Adj=dvdnFunc_Reb_Adj_term,
# Adjusting stage
vFunc_Fxd=vFunc_Cns_term,
dfracFunc_Fxd=ConstantFunction(0.0),
dvdmFunc_Fxd=dvdmFunc_Cns_term,
dvdnFunc_Fxd=dvdnFunc_Cns_term,
dvdsFunc_Fxd=dvdsFunc_Cns_term,
)
# Construct the terminal period solution
self.solution_terminal = RiskyContribSolution(
Reb_stage_sol, Sha_stage_sol, Cns_stage_sol
)
def update_tau(self):
"""
Checks that the tax rate on risky-to-risk-free flows has the appropriate
length adds it to time_(in)vary
Returns
-------
None.
"""
if type(self.tau) is list and (len(self.tau) == self.T_cycle):
self.add_to_time_vary("tau")
elif type(self.tau) is list:
raise AttributeError(
"If tau is time-varying, it must have length of T_cycle!"
)
else:
self.add_to_time_inv("tau")
def update_share_grid(self):
"""
Creates grid for the income contribution share.
Parameters
----------
None
Returns
-------
None
"""
self.ShareGrid = np.linspace(0.0, self.ShareMax, self.ShareCount)
self.add_to_time_inv("ShareGrid")
def update_dfrac_grid(self):
"""
Creates grid for the rebalancing flow between assets. This flow is
normalized as a ratio.
- If d > 0, d*mNrm flows towards the risky asset.
- If d < 0, d*nNrm (pre-tax) flows towards the risk-free asset.
Returns
-------
None.
"""
self.dfracGrid = np.linspace(0, 1, self.dCount)
self.add_to_time_inv("dfracGrid")
def update_nNrm_grid(self):
"""
Updates the agent's iliquid assets grid by constructing a
multi-exponentially spaced grid of nNrm values.
Parameters
----------
None
Returns
-------
None.
"""
# Extract parameters
nNrmMin = self.nNrmMin
nNrmMax = self.nNrmMax
nNrmCount = self.nNrmCount
exp_nest = self.nNrmNestFac
# Create grid
nNrmGrid = make_grid_exp_mult(
ming=nNrmMin, maxg=nNrmMax, ng=nNrmCount, timestonest=exp_nest
)
# Assign and set it as time invariant
self.nNrmGrid = nNrmGrid
self.add_to_time_inv("nNrmGrid")
def update_mNrm_grid(self):
"""
Updates the agent's liquid assets exogenous grid by constructing a
multi-exponentially spaced grid of mNrm values.
Parameters
----------
None
Returns
-------
None.
"""
# Extract parameters
mNrmMin = self.mNrmMin
mNrmMax = self.mNrmMax
mNrmCount = self.mNrmCount
exp_nest = self.mNrmNestFac
# Create grid
mNrmGrid = make_grid_exp_mult(
ming=mNrmMin, maxg=mNrmMax, ng=mNrmCount, timestonest=exp_nest
)
# Assign and set it as time invariant
self.mNrmGrid = mNrmGrid
self.add_to_time_inv("mNrmGrid")
def initialize_sim(self):
"""
Initialize the state of simulation attributes.
Parameters
----------
None
Returns
-------
None
"""
RiskyAssetConsumerType.initialize_sim(self)
self.state_now["Share"] = np.zeros(self.AgentCount)
def sim_birth(self, which_agents):
"""
Create new agents to replace ones who have recently died; takes draws of
initial aNrm and pLvl, as in ConsIndShockModel, then sets Share, Adjust
and post-rebalancing risky asset nNrmTilde to zero as initial values.
Parameters
----------
which_agents : np.array
Boolean array of size AgentCount indicating which agents should be "born".
Returns
-------
None
"""
RiskyAssetConsumerType.sim_birth(self, which_agents)
self.state_now["Share"][which_agents] = 0.0
self.state_now["nNrmTilde"][which_agents] = 0.0
def sim_one_period(self):
"""
Simulates one period for this type.
Has to be re-defined instead of using AgentType.sim_one_period() because
of the "stages" structure.
Parameters
----------
None
Returns
-------
None
"""
if not hasattr(self, "solution"):
raise Exception(
"Model instance does not have a solution stored. To simulate, it is necessary"
" to run the `solve()` method of the class first."
)
# Mortality adjusts the agent population
self.get_mortality() # Replace some agents with "newborns"
# Make state_now into state_prev, clearing state_now
for var in self.state_now:
self.state_prev[var] = self.state_now[var]
if isinstance(self.state_now[var], np.ndarray):
self.state_now[var] = np.empty(self.AgentCount)
else:
# Probably an aggregate variable. It may be getting set by the Market.
pass
if self.read_shocks: # If shock histories have been pre-specified, use those
self.read_shocks_from_history()
else: # Otherwise, draw shocks as usual according to subclass-specific method
self.get_shocks()
# Sequentially get states and controls of every stage
for s in self.stages:
self.get_states[s]()
self.get_controls[s]()
self.get_post_states()
# Advance time for all agents
self.t_age = self.t_age + 1 # Age all consumers by one period
self.t_cycle = self.t_cycle + 1 # Age all consumers within their cycle
self.t_cycle[
self.t_cycle == self.T_cycle
] = 0 # Resetting to zero for those who have reached the end
def get_states_Reb(self):
"""
Get states for the first "stage": rebalancing.
"""
pLvlPrev = self.state_prev["pLvl"]
aNrmPrev = self.state_prev["aNrm"]
SharePrev = self.state_prev["Share"]
nNrmTildePrev = self.state_prev["nNrmTilde"]
Rfree = self.Rfree
Rrisk = self.shocks["Risky"]
# Calculate new states:
# Permanent income
self.state_now["pLvl"] = pLvlPrev * self.shocks["PermShk"]
self.state_now["PlvlAgg"] = self.state_prev["PlvlAgg"] * self.PermShkAggNow
# Assets: mNrm and nNrm
# Compute the effective growth factor of each asset
RfEff = Rfree / self.shocks["PermShk"]
RrEff = Rrisk / self.shocks["PermShk"]
self.state_now["bNrm"] = RfEff * aNrmPrev # Liquid balances before labor income
self.state_now["gNrm"] = (
RrEff * nNrmTildePrev
) # Iliquid balances before labor income
# Liquid balances after labor income
self.state_now["mNrm"] = self.state_now["bNrm"] + self.shocks["TranShk"] * (
1 - SharePrev
)
# Iliquid balances after labor income
self.state_now["nNrm"] = (
self.state_now["gNrm"] + self.shocks["TranShk"] * SharePrev
)
return None
def get_controls_Reb(self):
"""
Get controls for the first stage: rebalancing
"""
dfrac = np.zeros(self.AgentCount) + np.nan
# Loop over each period of the cycle, getting controls separately depending on "age"
for t in range(self.T_cycle):
# Find agents in this period-stage
these = t == self.t_cycle
# Get controls for agents who *can* adjust.
those = np.logical_and(these, self.shocks["Adjust"])
dfrac[those] = (
self.solution[t]
.stage_sols["Reb"]
.dfracFunc_Adj(
self.state_now["mNrm"][those], self.state_now["nNrm"][those]
)
)
# Get Controls for agents who *can't* adjust.
those = np.logical_and(these, np.logical_not(self.shocks["Adjust"]))
dfrac[those] = (
self.solution[t]
.stage_sols["Reb"]
.dfracFunc_Fxd(
self.state_now["mNrm"][those],
self.state_now["nNrm"][those],
self.state_prev["Share"][those],
)
)
# Store controls as attributes of self
self.controls["dfrac"] = dfrac
def get_states_Sha(self):
"""
Get states for the second "stage": choosing the contribution share.
"""
# Post-states are assets after rebalancing
if not "tau" in self.time_vary:
mNrmTilde, nNrmTilde = rebalance_assets(
self.controls["dfrac"],
self.state_now["mNrm"],
self.state_now["nNrm"],
self.tau,
)
else:
# Initialize
mNrmTilde = np.zeros_like(self.state_now["mNrm"]) + np.nan
nNrmTilde = np.zeros_like(self.state_now["mNrm"]) + np.nan
# Loop over each period of the cycle, getting controls separately depending on "age"
for t in range(self.T_cycle):
# Find agents in this period-stage
these = t == self.t_cycle
if np.sum(these) > 0:
tau = self.tau[t]
mNrmTilde[these], nNrmTilde[these] = rebalance_assets(
self.controls["dfrac"][these],
self.state_now["mNrm"][these],
self.state_now["nNrm"][these],
tau,
)
self.state_now["mNrmTilde"] = mNrmTilde
self.state_now["nNrmTilde"] = nNrmTilde
def get_controls_Sha(self):
"""
Get controls for the second "stage": choosing the contribution share.
"""
Share = np.zeros(self.AgentCount) + np.nan
# Loop over each period of the cycle, getting controls separately depending on "age"
for t in range(self.T_cycle):
# Find agents in this period-stage
these = t == self.t_cycle
# Get controls for agents who *can* adjust.
those = np.logical_and(these, self.shocks["Adjust"])
Share[those] = (
self.solution[t]
.stage_sols["Sha"]
.ShareFunc_Adj(
self.state_now["mNrmTilde"][those],
self.state_now["nNrmTilde"][those],
)
)
# Get Controls for agents who *can't* adjust.
those = np.logical_and(these, np.logical_not(self.shocks["Adjust"]))
Share[those] = (
self.solution[t]
.stage_sols["Sha"]
.ShareFunc_Fxd(
self.state_now["mNrmTilde"][those],
self.state_now["nNrmTilde"][those],
self.state_prev["Share"][those],
)
)
# Store controls as attributes of self
self.controls["Share"] = Share
def get_states_Cns(self):
"""
Get states for the third "stage": consumption.
"""
# Contribution share becomes a state in the consumption problem
self.state_now["Share"] = self.controls["Share"]
def get_controls_Cns(self):
"""
Get controls for the third "stage": consumption.
"""
cNrm = np.zeros(self.AgentCount) + np.nan
# Loop over each period of the cycle, getting controls separately depending on "age"
for t in range(self.T_cycle):
# Find agents in this period-stage
these = t == self.t_cycle
# Get consumption
cNrm[these] = (
self.solution[t]
.stage_sols["Cns"]
.cFunc(
self.state_now["mNrmTilde"][these],
self.state_now["nNrmTilde"][these],
self.state_now["Share"][these],
)
)
# Store controls as attributes of self
# Since agents might be willing to end the period with a = 0, make
# sure consumption does not go over m because of some numerical error.
self.controls["cNrm"] = np.minimum(cNrm, self.state_now["mNrmTilde"])
def get_post_states(self):
"""
Set variables that are not a state to any problem but need to be
computed in order to interact with shocks and produce next period's
states.
"""
self.state_now["aNrm"] = self.state_now["mNrmTilde"] - self.controls["cNrm"]
# %% Classes for RiskyContrib type solution objects
# Class for asset adjustment stage solution
class RiskyContribRebSolution(MetricObject):
"""
A class for representing the solution to the asset-rebalancing stage of
the 'RiskyContrib' model.
Parameters
----------
vFunc_Adj : ValueFunc2D
Stage value function over normalized liquid resources and normalized
iliquid resources when the agent is able to adjust his portfolio.
dfracFunc_Adj : Interp2D
Deposit function over normalized liquid resources and normalized
iliquid resources when the agent is able to adjust his portfolio.
dvdmFunc_Adj : MargValueFunc2D
Marginal value over normalized liquid resources when the agent is able
to adjust his portfolio.
dvdnFunc_Adj : MargValueFunc2D
Marginal value over normalized liquid resources when the agent is able
to adjust his portfolio.
vFunc_Fxd : ValueFunc3D
Stage value function over normalized liquid resources, normalized
iliquid resources, and income contribution share when the agent is
not able to adjust his portfolio.
dfracFunc_Fxd : Interp2D
Deposit function over normalized liquid resources, normalized iliquid
resources, and income contribution share when the agent is not able to
adjust his portfolio.
Must be ConstantFunction(0.0)
dvdmFunc_Fxd : MargValueFunc3D
Marginal value over normalized liquid resources when the agent is not
able to adjust his portfolio.
dvdnFunc_Fxd : MargValueFunc3D
Marginal value over normalized iliquid resources when the agent is not
able to adjust his portfolio.
dvdsFunc_Fxd : Interp3D
Marginal value function over income contribution share when the agent
is not able to ajust his portfolio.
"""
distance_criteria = ["dvdmFunc_Adj", "dvdnFunc_Adj"]
def __init__(
self,
# Rebalancing stage, adjusting
vFunc_Adj=None,
dfracFunc_Adj=None,
dvdmFunc_Adj=None,
dvdnFunc_Adj=None,
# Rebalancing stage, fixed
vFunc_Fxd=None,
dfracFunc_Fxd=None,
dvdmFunc_Fxd=None,
dvdnFunc_Fxd=None,
dvdsFunc_Fxd=None,
):
# Rebalancing stage
if vFunc_Adj is None:
vFunc_Adj = NullFunc()
if dfracFunc_Adj is None:
dfracFunc_Adj = NullFunc()
if dvdmFunc_Adj is None:
dvdmFunc_Adj = NullFunc()
if dvdnFunc_Adj is None:
dvdnFunc_Adj = NullFunc()
if vFunc_Fxd is None:
vFunc_Fxd = NullFunc()
if dfracFunc_Fxd is None:
dfracFunc_Fxd = NullFunc()
if dvdmFunc_Fxd is None:
dvdmFunc_Fxd = NullFunc()
if dvdnFunc_Fxd is None:
dvdnFunc_Fxd = NullFunc()
if dvdsFunc_Fxd is None:
dvdsFunc_Fxd = NullFunc()
# Components of the adjusting problem
self.vFunc_Adj = vFunc_Adj
self.dfracFunc_Adj = dfracFunc_Adj
self.dvdmFunc_Adj = dvdmFunc_Adj
self.dvdnFunc_Adj = dvdnFunc_Adj
# Components of the fixed problem
self.vFunc_Fxd = vFunc_Fxd
self.dfracFunc_Fxd = dfracFunc_Fxd
self.dvdmFunc_Fxd = dvdmFunc_Fxd
self.dvdnFunc_Fxd = dvdnFunc_Fxd
self.dvdsFunc_Fxd = dvdsFunc_Fxd
# Class for the contribution share stage solution
class RiskyContribShaSolution(MetricObject):
"""
A class for representing the solution to the contribution-share stage of
the 'RiskyContrib' model.
Parameters
----------
vFunc_Adj : ValueFunc2D
Stage value function over normalized liquid resources and normalized
iliquid resources when the agent is able to adjust his portfolio.
ShareFunc_Adj : Interp2D
Income contribution share function over normalized liquid resources
and normalized iliquid resources when the agent is able to adjust his
portfolio.
dvdmFunc_Adj : MargValueFunc2D
Marginal value function over normalized liquid resources when the agent
is able to adjust his portfolio.
dvdnFunc_Adj : MargValueFunc2D
Marginal value function over normalized iliquid resources when the
agent is able to adjust his portfolio.
vFunc_Fxd : ValueFunc3D
Stage value function over normalized liquid resources, normalized
iliquid resources, and income contribution share when the agent is not
able to adjust his portfolio.
ShareFunc_Fxd : Interp3D
Income contribution share function over normalized liquid resources,
iliquid resources, and income contribution share when the agent is not
able to adjust his portfolio.
Should be an IdentityFunc.
dvdmFunc_Fxd : MargValueFunc3D
Marginal value function over normalized liquid resources when the agent
is not able to adjust his portfolio.
dvdnFunc_Fxd : MargValueFunc3D
Marginal value function over normalized iliquid resources when the
agent is not able to adjust his portfolio.
dvdsFunc_Fxd : Interp3D
Marginal value function over income contribution share when the agent
is not able to adjust his portfolio
"""
distance_criteria = ["dvdmFunc_Adj", "dvdnFunc_Adj"]
def __init__(
self,
# Contribution stage, adjust
vFunc_Adj=None,
ShareFunc_Adj=None,
dvdmFunc_Adj=None,
dvdnFunc_Adj=None,
# Contribution stage, fixed
vFunc_Fxd=None,
ShareFunc_Fxd=None,
dvdmFunc_Fxd=None,
dvdnFunc_Fxd=None,
dvdsFunc_Fxd=None,
):
# Contribution stage, adjust
if vFunc_Adj is None:
vFunc_Adj = NullFunc()
if ShareFunc_Adj is None:
ShareFunc_Adj = NullFunc()
if dvdmFunc_Adj is None:
dvdmFunc_Adj = NullFunc()
if dvdnFunc_Adj is None:
dvdnFunc_Adj = NullFunc()
# Contribution stage, fixed
if vFunc_Fxd is None:
vFunc_Fxd = NullFunc()
if ShareFunc_Fxd is None:
ShareFunc_Fxd = NullFunc()
if dvdmFunc_Fxd is None:
dvdmFunc_Fxd = NullFunc()
if dvdnFunc_Fxd is None:
dvdnFunc_Fxd = NullFunc()
if dvdsFunc_Fxd is None:
dvdsFunc_Fxd = NullFunc()
# Set attributes of self
self.vFunc_Adj = vFunc_Adj
self.ShareFunc_Adj = ShareFunc_Adj
self.dvdmFunc_Adj = dvdmFunc_Adj
self.dvdnFunc_Adj = dvdnFunc_Adj
self.vFunc_Fxd = vFunc_Fxd
self.ShareFunc_Fxd = ShareFunc_Fxd
self.dvdmFunc_Fxd = dvdmFunc_Fxd
self.dvdnFunc_Fxd = dvdnFunc_Fxd
self.dvdsFunc_Fxd = dvdsFunc_Fxd
# Class for the consumption stage solution
class RiskyContribCnsSolution(MetricObject):
"""
A class for representing the solution to the consumption stage of the
'RiskyContrib' model.
Parameters
----------
vFunc : ValueFunc3D
Stage-value function over normalized liquid resources, normalized
iliquid resources, and income contribution share.
cFunc : Interp3D
Consumption function over normalized liquid resources, normalized
iliquid resources, and income contribution share.
dvdmFunc : MargValueFunc3D
Marginal value function over normalized liquid resources.
dvdnFunc : MargValueFunc3D
Marginal value function over normalized iliquid resources.
dvdsFunc : Interp3D
Marginal value function over income contribution share.
"""
distance_criteria = ["dvdmFunc", "dvdnFunc"]
def __init__(
self,
# Consumption stage
vFunc=None,
cFunc=None,
dvdmFunc=None,
dvdnFunc=None,
dvdsFunc=None,
):
if vFunc is None:
vFunc = NullFunc()
if cFunc is None:
cFunc = NullFunc()
if dvdmFunc is None:
dvdmFunc = NullFunc()
if dvdnFunc is None:
dvdmFunc = NullFunc()
if dvdsFunc is None:
dvdsFunc = NullFunc()
self.vFunc = vFunc
self.cFunc = cFunc
self.dvdmFunc = dvdmFunc
self.dvdnFunc = dvdnFunc
self.dvdsFunc = dvdsFunc
# Class for the solution of a whole period
class RiskyContribSolution(MetricObject):
"""
A class for representing the solution to a full time-period of the
'RiskyContrib' agent type's problem.
Parameters
----------
Reb : RiskyContribRebSolution
Solution to the period's rebalancing stage.
Sha : RiskyContribShaSolution
Solution to the period's contribution-share stage.
Cns : RiskyContribCnsSolution
Solution to the period's consumption stage.
"""
# Solutions are to be compared on the basis of their sub-period solutions
distance_criteria = ["stage_sols"]
def __init__(self, Reb, Sha, Cns):
# Dictionary of stage solutions
self.stage_sols = {"Reb": Reb, "Sha": Sha, "Cns": Cns}
# %% Auxiliary functions and transition equations for the RiskyContrib model.
def rebalance_assets(d, m, n, tau):
"""
A function that produces post-rebalancing assets for given initial assets,
rebalancing action, and tax rate.
Parameters
----------
d : np.array
Array with rebalancing decisions. d > 0 represents depositing d*m into
the risky asset account. d<0 represents withdrawing |d|*n (pre-tax)
from the risky account into the risky account.
m : np.array
Initial risk-free assets.
n : np.array
Initial risky assets.
tau : float
Tax rate on flows from the risky to the risk-free asset.
Returns
-------
mTil : np.array
Post-rebalancing risk-free assets.
nTil : np.arrat
Post-rebalancing risky assets.
"""
# Initialize
mTil = np.zeros_like(m) + np.nan
nTil = np.zeros_like(m) + np.nan
# Contributions
inds = d >= 0
mTil[inds] = m[inds] * (1 - d[inds])
nTil[inds] = n[inds] + m[inds] * d[inds]
# Withdrawals
inds = d < 0
mTil[inds] = m[inds] - d[inds] * n[inds] * (1 - tau)
nTil[inds] = n[inds] * (1 + d[inds])
return (mTil, nTil)
# Transition equations for the consumption stage
def m_nrm_next(shocks, aNrm, Share, Rfree, PermGroFac):
"""
Given end-of-period balances and contribution share and the
start-of-next-period shocks, figure out next period's normalized riskless
assets
Parameters
----------
shocks : np.array
Length-3 array with the stochastic shocks that get realized between the
end of the current period and the start of next period. Their order is
(0) permanent income shock, (1) transitory income shock, (2) risky
asset return.
aNrm : float
End-of-period risk-free asset balances.
Share : float
End-of-period income deduction share.
Rfree : float
Risk-free return factor.
PermGroFac : float
Permanent income growth factor.
Returns
-------
m_nrm_tp1 : float
Next-period normalized riskless balance.
"""
# Extract shocks
perm_shk = shocks[0]
tran_shk = shocks[1]
m_nrm_tp1 = Rfree * aNrm / (perm_shk * PermGroFac) + (1.0 - Share) * tran_shk
return m_nrm_tp1
def n_nrm_next(shocks, nNrm, Share, PermGroFac):
"""
Given end-of-period balances and contribution share and the
start-of-next-period shocks, figure out next period's normalized risky
assets
Parameters
----------
shocks : np.array
Length-3 array with the stochastic shocks that get realized between the
end of the current period and the start of next period. Their order is
(0) permanent income shock, (1) transitory income shock, (2) risky
asset return.
nNrm : float
End-of-period risky asset balances.
Share : float
End-of-period income deduction share.
PermGroFac : float
Permanent income growth factor.
Returns
-------
n_nrm_tp1 : float
Next-period normalized risky balance.
"""
# Extract shocks
perm_shk = shocks[0]
tran_shk = shocks[1]
R_risky = shocks[2]
n_nrm_tp1 = R_risky * nNrm / (perm_shk * PermGroFac) + Share * tran_shk
return n_nrm_tp1
# %% RiskyContrib solvers
# Consumption stage solver
def solve_RiskyContrib_Cns(
solution_next,
ShockDstn,
LivPrb,
DiscFac,
CRRA,
Rfree,
PermGroFac,
BoroCnstArt,
aXtraGrid,
nNrmGrid,
mNrmGrid,
ShareGrid,
vFuncBool,
AdjustPrb,
DiscreteShareBool,
**unused_params
):
"""
Solves the consumption stage of the agent's problem
Parameters
----------
solution_next : RiskyContribRebSolution
Solution to the first stage of the next period in the agent's problem.
ShockDstn : DiscreteDistribution
Joint distribution of next period's (0) permanent income shock, (1)
transitory income shock, and (2) risky asset return factor.
LivPrb : float
Probability of surviving until next period.
DiscFac : float
Time-preference discount factor.
CRRA : float
Coefficient of relative risk aversion.
Rfree : float
Risk-free return factor.
PermGroFac : float
Deterministic permanent income growth factor.
BoroCnstArt : float
Minimum allowed market resources (must be 0).
aXtraGrid : numpy array
Exogenous grid for end-of-period risk free resources.
nNrmGrid : numpy array
Exogenous grid for risky resources.
mNrmGrid : numpy array
Exogenous grid for risk-free resources.
ShareGrid : numpt array
Exogenous grid for the income contribution share.
vFuncBool : bool
Boolean that determines wether the value function's level needs to be
computed.
AdjustPrb : float
Probability thet the agent will be able to adjust his portfolio next
period.
DiscreteShareBool : bool
Boolean that determines whether only a discrete set of contribution
shares (ShareGrid) is allowed.
Returns
-------
solution : RiskyContribCnsSolution
Solution to the agent's consumption stage problem.
"""
# Make sure the individual is liquidity constrained. Allowing a consumer to
# borrow *and* invest in an asset with unbounded (negative) returns is a bad mix.
if BoroCnstArt != 0.0:
raise ValueError("PortfolioConsumerType must have BoroCnstArt=0.0!")
# Make sure that if risky portfolio share is optimized only discretely, then
# the value function is also constructed (else this task would be impossible).
if DiscreteShareBool and (not vFuncBool):
raise ValueError(
"PortfolioConsumerType requires vFuncBool to be True when DiscreteShareBool is True!"
)
# Define temporary functions for utility and its derivative and inverse
u = lambda x: utility(x, CRRA)
uPinv = lambda x: utilityP_inv(x, CRRA)
uInv = lambda x: utility_inv(x, CRRA)
# Unpack next period's solution
vFunc_Reb_Adj_next = solution_next.vFunc_Adj
dvdmFunc_Reb_Adj_next = solution_next.dvdmFunc_Adj
dvdnFunc_Reb_Adj_next = solution_next.dvdnFunc_Adj
vFunc_Reb_Fxd_next = solution_next.vFunc_Fxd
dvdmFunc_Reb_Fxd_next = solution_next.dvdmFunc_Fxd
dvdnFunc_Reb_Fxd_next = solution_next.dvdnFunc_Fxd
dvdsFunc_Reb_Fxd_next = solution_next.dvdsFunc_Fxd
# STEP ONE
# Find end-of-period (continuation) value function and its derivatives.
# Start by constructing functions for next-period's pre-adjustment-shock
# expected value functions
if AdjustPrb < 1.0:
dvdm_next = lambda m, n, s: AdjustPrb * dvdmFunc_Reb_Adj_next(m, n) + (
1.0 - AdjustPrb
) * dvdmFunc_Reb_Fxd_next(m, n, s)
dvdn_next = lambda m, n, s: AdjustPrb * dvdnFunc_Reb_Adj_next(m, n) + (
1.0 - AdjustPrb
) * dvdnFunc_Reb_Fxd_next(m, n, s)
dvds_next = lambda m, n, s: (1.0 - AdjustPrb) * dvdsFunc_Reb_Fxd_next(m, n, s)
# Value function if needed
if vFuncBool:
v_next = lambda m, n, s: AdjustPrb * vFunc_Reb_Adj_next(m, n) + (
1.0 - AdjustPrb
) * vFunc_Reb_Fxd_next(m, n, s)
else:
dvdm_next = lambda m, n, s: dvdmFunc_Reb_Adj_next(m, n)
dvdn_next = lambda m, n, s: dvdnFunc_Reb_Adj_next(m, n)
dvds_next = ConstantFunction(0.0)
if vFuncBool:
v_next = lambda m, n, s: vFunc_Reb_Adj_next(m, n)
# Now construct a function that evaluates and discounts them given a
# vector of return and income shocks and an end-of-period state
def end_of_period_derivs(shocks, a, nTil, s):
"""
Computes the end-of-period derivatives (and optionally the value) of the
continuation value function, conditional on shocks. This is so that the
expectations can be calculated by integrating over shocks.
Parameters
----------
shocks : np.array
Length-3 array with the stochastic shocks that get realized between the
end of the current period and the start of next period. Their order is
(0) permanent income shock, (1) transitory income shock, (2) risky
asset return.
a : float
end-of-period risk-free assets.
nTil : float
end-of-period risky assets.
s : float
end-of-period income deduction share.
"""
temp_fac_A = utilityP(shocks[0] * PermGroFac, CRRA)
temp_fac_B = (shocks[0] * PermGroFac) ** (1.0 - CRRA)
# Find next-period asset balances
m_next = m_nrm_next(shocks, a, s, Rfree, PermGroFac)
n_next = n_nrm_next(shocks, nTil, s, PermGroFac)
# Interpolate next-period-value derivatives
dvdm_tp1 = dvdm_next(m_next, n_next, s)
dvdn_tp1 = dvdn_next(m_next, n_next, s)
if shocks[1] == 0:
dvds_tp1 = dvds_next(m_next, n_next, s)
else:
dvds_tp1 = shocks[1] * (dvdn_tp1 - dvdm_tp1) + dvds_next(m_next, n_next, s)
# Discount next-period-value derivatives to current period
# Liquid resources
end_of_prd_dvda = DiscFac * Rfree * LivPrb * temp_fac_A * dvdm_tp1
# Iliquid resources
end_of_prd_dvdn = DiscFac * shocks[2] * LivPrb * temp_fac_A * dvdn_tp1
# Contribution share
end_of_prd_dvds = DiscFac * LivPrb * temp_fac_B * dvds_tp1
# End of period value function, i11f needed
if vFuncBool:
end_of_prd_v = DiscFac * LivPrb * temp_fac_B * v_next(m_next, n_next, s)
return np.stack(
[end_of_prd_dvda, end_of_prd_dvdn, end_of_prd_dvds, end_of_prd_v]
)
else:
return np.stack([end_of_prd_dvda, end_of_prd_dvdn, end_of_prd_dvds])
# Now find the expected values on a (a, nTil, s) grid
# The "inversion" machinery can deal with assets of 0 even if there is a
# natural borrowing constraint, so include zeros.
nNrmGrid = np.concatenate([np.array([0.0]), nNrmGrid])
aNrmGrid = np.concatenate([np.array([0.0]), aXtraGrid])
# Create tiled arrays with conforming dimensions.
aNrm_tiled, nNrm_tiled, Share_tiled = np.meshgrid(
aNrmGrid, nNrmGrid, ShareGrid, indexing="ij"
)
# Find end of period derivatives and value as expectations of (discounted)
# next period's derivatives and value.
eop_derivs = calc_expectation(
ShockDstn, end_of_period_derivs, aNrm_tiled, nNrm_tiled, Share_tiled
)[:, :, :, :, 0]
# Unpack results
eop_dvdaNvrs = uPinv(eop_derivs[0])
eop_dvdnNvrs = uPinv(eop_derivs[1])
eop_dvds = eop_derivs[2]
if vFuncBool:
eop_vNvrs = uInv(eop_derivs[3])
# Construct an interpolator for eop_V. It will be used later.
eop_vFunc = ValueFuncCRRA(
TrilinearInterp(eop_vNvrs, aNrmGrid, nNrmGrid, ShareGrid), CRRA
)
# STEP TWO:
# Solve the consumption problem and create interpolators for c, vCns,
# and its derivatives.
# Apply EGM over liquid resources at every (n,s) to find consumption.
c_end = eop_dvdaNvrs
mNrm_end = aNrm_tiled + c_end
# Now construct interpolators for c and the derivatives of vCns.
# The m grid is different for every (n,s). We interpolate the object of
# interest on the regular m grid for every (n,s). At the end we will have
# values of the functions of interest on a regular (m,n,s) grid. We use
# trilinear interpolation on those points.
# Expand the exogenous m grid to contain 0.
mNrmGrid = np.insert(mNrmGrid, 0, 0)
# Dimensions might have changed, so re-create tiled arrays
mNrm_tiled, nNrm_tiled, Share_tiled = np.meshgrid(
mNrmGrid, nNrmGrid, ShareGrid, indexing="ij"
)
# Initialize arrays
c_vals = | np.zeros_like(mNrm_tiled) | numpy.zeros_like |
from bresenham import bresenham
from scipy.spatial import Voronoi
import numpy as np
from queue import PriorityQueue
import networkx as nx
def closest_node(graph, current_position):
'''
Compute the closest node in the graph to the current position
'''
closest_node = None
dist = 100000
xy_position = (current_position[0], current_position[1])
for p in graph.nodes:
d = heuristic(xy_position, p)
if d < dist:
closest_node = p
dist = d
return closest_node
def create_grid_and_edges(data, drone_altitude, safety_distance):
'''
Create a grid representation of a 2D configuration space and a Voronoi Graph
'''
# minimum and maximum north coordinates
north_min = np.floor(np.min(data[:, 0] - data[:, 3]))
north_max = np.ceil(np.max(data[:, 0] + data[:, 3]))
# minimum and maximum east coordinates
east_min = np.floor(np.min(data[:, 1] - data[:, 4]))
east_max = np.ceil(np.max(data[:, 1] + data[:, 4]))
# given the minimum and maximum coordinates we can
# calculate the size of the grid.
north_size = int(np.ceil(north_max - north_min))
east_size = int(np.ceil(east_max - east_min))
# Initialize an empty grid
grid = np.zeros((north_size, east_size))
# Initialize an empty list for Voronoi points
points = []
# Populate the grid with obstacles
for i in range(data.shape[0]):
north, east, alt, d_north, d_east, d_alt = data[i, :]
if alt + d_alt + safety_distance > drone_altitude:
obstacle = [
int(np.clip(north - d_north - safety_distance - north_min, 0, north_size - 1)),
int(np.clip(north + d_north + safety_distance - north_min, 0, north_size - 1)),
int( | np.clip(east - d_east - safety_distance - east_min, 0, east_size - 1) | numpy.clip |
# Copyright 2021 Sony Group Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import numpy as np
import nnabla as nn
import nnabla.parametric_functions as PF
import nnabla.functions as F
from nnabla.core.graph_def import ProtoGraph
from nnabla.utils.nnp_graph import NnpNetwork
from nnabla.utils.load import load
from .utils import is_proto_graph
def block(x, scope_name, n_channels, kernel, pad, test):
with nn.parameter_scope(scope_name):
with nn.parameter_scope('conv1'):
h = PF.convolution(x, n_channels, kernel=kernel,
pad=pad, with_bias=True)
h = PF.batch_normalization(h, batch_stat=not test)
h = F.relu(h)
with nn.parameter_scope('conv2'):
h = PF.convolution(h, n_channels, kernel=kernel,
pad=pad, with_bias=True)
h = F.relu(h)
h = F.max_pooling(h, kernel=(2, 2), stride=(2, 2))
return h
def cifarnet(x, test=False, n_classes=10):
maps = [32, 64, 128]
kernel = (3, 3)
pad = (1, 1)
h = block(x, 'block1', maps[0], kernel, pad, test)
h = block(h, 'block2', maps[1], kernel, pad, test)
h = block(h, 'block3', maps[2], kernel, pad, test)
h = PF.affine(h, n_classes)
return h
def calc_loss_reduction(loss, reduction='mean'):
loss_dict = {
'mean': F.mean(loss),
'sum': F.sum(loss)
}
return loss_dict[reduction]
def calc_acc(pred, label, method='mean'):
acc_sum = ( | np.argmax(pred, axis=1) | numpy.argmax |
##################### IMPORT STATEMENTS #####################
# required to view plots on AWS instance - must come first
from typing import List
import matplotlib
matplotlib.use('Agg')
# dependencies
import csv
import cv2
import numpy as np
import random
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.utils import shuffle
from keras.models import Sequential
from keras.layers import Flatten, Activation, Cropping2D, Dense, Lambda, Dropout
from keras.layers.convolutional import Conv2D
#################### SET HYPERPARAMETERS ####################
nb_periods = 10
sample_rate = 1.0
p_flip = 0.3
batch_size = 30
################# IMPORT & PRECONDITION DATA ################
# read driving log file
samples = []
with open('driving_log.csv') as csvfile:
reader = csv.reader(csvfile)
for line in reader:
samples.append(line)
# function to convert array values to a moving average
def moving_average(angles, width):
cumsum_vec = np.cumsum(np.insert(angles, 0, 0))
mvavg_vec = (cumsum_vec[width:] - cumsum_vec[:-width]) / width
return | np.array(mvavg_vec) | numpy.array |
import unittest
import numpy as np
import tensorflow as tf
from autogp import util
from autogp import likelihoods
SIG_FIGS = 5
class TestSoftmax(unittest.TestCase):
def log_prob(self, outputs, latent):
softmax = likelihoods.Softmax()
return tf.Session().run(softmax.log_cond_prob(np.array(outputs, dtype=np.float32),
np.array(latent, dtype=np.float32)))
def predict(self, latent_means, latent_vars):
softmax = likelihoods.Softmax()
return tf.Session().run(softmax.predict(np.array(latent_means, dtype=np.float32),
np.array(latent_vars, dtype=np.float32)))
def test_single_prob(self):
log_prob = self.log_prob([[1.0, 0.0]], [[[5.0, 2.0]]])
self.assertAlmostEqual(np.exp(log_prob), np.exp(5.0) / (np.exp(5.0) + np.exp(2.0)),
SIG_FIGS)
def test_extreme_probs(self):
log_prob = self.log_prob([[1.0, 0.0],
[0.0, 1.0]],
[[[1e10, -1e10],
[-1e10, 1e10]],
[[-1e10, 1e10],
[1e10, -1e10]]])
true_probs = np.array([[1.0, 1.0],
[0.0, 0.0]])
np.testing.assert_approx_equal(np.exp(log_prob), true_probs, SIG_FIGS)
def test_multi_probs(self):
log_prob = self.log_prob([[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0]],
[[[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0],
[7.0, 8.0, 9.0]],
[[10.0, 11.0, 12.0],
[13.0, 14.0, 15.0],
[16.0, 17.0, 18.0]]])
true_probs = np.array([[np.exp(1.0) / (np.exp(1.0) + np.exp(2.0) + np.exp(3.0)),
| np.exp(5.0) | numpy.exp |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Utility code for converting between protein representations.
Note that several methods here are no longer used in any of the training routines.
However, they were quite useful to us during the course of research,
so we are releasing them here in case they help others.
"""
import collections
import os
import os.path as osp
import pickle
import random
from itertools import product
from multiprocessing import Pool
import numpy as np
import pandas as pd
import gemmi
from amino_acid_config import kvs, res_atoms, res_children, res_chis, res_parents
from config import MMCIF_PATH, ROTAMER_LIBRARY_PATH
from constants import atom_names, residue_names
from math_utils import rotate_v1_v2, rotate_v1_v2_vec
def parse_dense_format(node_embed):
"""
In protein-ebm, we represent amino acids in two different formats.
This method converts from the dense format to a sparse format.
===============
==== Dense ====
===============
The dense format represents a protein using a is a D x 6 dimensional represention.
Each 6 dimensional vector represents an atom, following this scheme:
[1]: amino acid identity of the amino acid the atom is part of (residue_idx)
[2]: element identity of the amino acid the atom is part of (atom_idx)
[3]: positional location of atom in the amino acid (atom_num)
[4..6]: x,y,z coordinates
The dense format is useful for feeding data into a neural network.
===============
==== Sparse ===
===============
The sparse format represents a data based on its topology (parent/child/etc).
It follows this scheme:
amino_name: amino acid to substitue
par: A N x 20 encoding of the relative offset of the parent of each atom. For example,
the amino acid glycine would be represented as [-18 -1 -1 -1 0, ...]
child: A N x 20 encoding of the child of each atom. For example, the amino acid glycine
would be represented as [1 1 18 0 0 0 ..]
pos_exist: A N x 20 mask encoding of which atoms are valid for each amino acid so for
example the amino acid glycine would be represented as [1 1 1 1 0 0 ...]
chi_valid: A N x 5 mask encoding which chi angles are valid, so for example glycine would
be represented as [0 0 0 0 0]
pos: A N x 20 x 3 encoding the (x, y, z) coordinates of each atom per amino acid in a protein
i: amino acid position to substitute
sequence_map: map from amino acid to structure
rotate_matrix: matrix of rotation to amino acid position
This format is easier for manipulating the proteins, e.g changing the rotamers
during negative sampling.
See comments in the implementation below for more details.
"""
# The input is a list of atoms. We keep track of how many we have processed.
start = 0
# Construct amino acid-level information from the atomic inputs
# Each amino acid is described on the atomic-level by 20-dim lists
pars = [] # ordinal distance of parent atoms
childs = [] # ordinal distance of cildren atoms
pos = [] # 3d translations of each atom
pos_exists = [] # whether a position exists or not
residues = [] # the name of the amino acid
chis_valid = [] # a 20-dim list describing which atoms are part of the chi angle
# consume all of the atoms in the input
while start < node_embed.shape[0]:
idx = int(node_embed[start, 0])
residue = residue_names[idx]
# Get the parent and child representation (see amino_acid_config.py)
par = res_parents[residue].copy()
child = res_children[residue].copy()
n = len(par)
# 20-dim mask of which positions encode meaningful values
pos_exist = [1] * n + [0] * (20 - n) # this is the mask
# pad up to 20-dim with 0s
par = par + [0] * (20 - n)
child = child + [0] * (20 - len(child))
# x,y,z coordinates for each of the atoms in the amino acid, padded to 20-dim
pos_temp = np.concatenate(
[node_embed[start : start + n, -3:], np.zeros((20 - n, 3))], axis=0
)
# If we can fit these n atom in, then record the information
if start + n <= node_embed.shape[0]:
pars.append(par)
childs.append(child)
pos.append(pos_temp)
pos_exists.append(pos_exist)
chis = res_chis[residue]
chis_valid.append([1] * len(chis) + [0] * (20 - len(chis)))
residues.append(residue.lower())
# All atoms from start <-> start+n should belong to the same amino acid
if not (node_embed[start : start + n, 0] == idx).all():
return None, None, None, None, None, None
# keep track of number of atoms consumeed
start = start + n
# Don't proceess single amino acid proteins
if len(pos) < 2:
return None, None, None, None, None, None
# Wrap the results in numpy arrays
pars, childs, pos, pos_exists, chis_valid = (
np.array(pars),
np.array(childs),
np.stack(pos, axis=0),
np.array(pos_exists),
np.array(chis_valid),
)
# The code above assumes that each nitrogen is connected to previous carbon
# and each carbon is connected to the next nitrogen. This is not the case
# for the N-terminus and C-terminus, so we need to override those cases.
pars[0, 0] = 0
childs[-1, 2] = 0
# return the new encoding in amino acid form
return pars, childs, pos, pos_exists, residues, chis_valid
def reencode_dense_format(node_embed, pos_new, pos_exist):
"""Updates x,y,z positions in dense encoding with new positions"""
node_embed_new = node_embed.copy()
pos_mask = pos_exist.astype(np.bool)
elem_num = pos_mask.sum()
node_embed_new[:elem_num, -3:] = pos_new[pos_mask]
return node_embed_new
def cif_to_embed(cif_file, ix=None, parse_skip=False):
"""
Parses a CIF file into a more convenient representation.
# Embedding format for nodes:
# 'one hot amino acid' amino type of molecule
# 'x, y, z' positional encoding
# 'one hot representation of atom type', either C, CA, N, O,
"""
st = gemmi.read_structure(cif_file)
# print(st)
# for model in st:
# print(model)
# for chain in model:
# print(chain)
# for residue in chain:
# print(residue)
results = []
skips = []
for model in st:
for i, chain in enumerate(model):
if (ix is not None) and (ix != i):
continue
atoms = []
node_embeddings = []
for j, residue in enumerate(chain):
translation = []
if residue.name not in residue_names:
# Skip over any structure that contains nucleotides
if residue.name in ["DA", "DC", "DG", "DT"]:
return None, None
else:
continue
residue_counter = 0
namino_elements = len(res_parents[residue.name])
amino_atoms = res_atoms[residue.name]
residue_atoms = []
residue_embed = []
# reisdue object contains information about the residue, including identity
# and spatial coordiantes for atoms in the residue. We parse this into a
# dense encoding, for feeding into a neural network.
node_embed = parse_residue_embed(residue)
if len(node_embed) == 0:
skips.append(j)
node_embeddings.extend(node_embed)
node_embeddings = np.array(node_embeddings)
result = (node_embeddings,)
results.append(result)
if parse_skip:
return st, results, skips
else:
return st, results
def vis_cif(cif_path, im_path):
import pymol
from pymol import cmd
cmd.load(cif_path, "mov")
cmd.zoom()
cmd.png(im_path, 300, 200)
def compute_chi_angle_st(st, ix):
angles = []
num = int(ix)
chain_counter = 0
for model in st:
for chain in model:
if num != chain_counter:
chain_counter += 1
continue
else:
for residue in chain:
if residue.name in residue_names:
chi_angles = compute_chi_angle_residue(residue)
if chi_angles is not None:
angles.append(chi_angles)
return angles
def compute_chi_angle_residue(residue):
# look up the atoms that are used for computing the chi angles.
chi_angles_atoms = kvs[residue.name]
angles = []
try:
for chi_angles_atom in chi_angles_atoms:
atoms = chi_angles_atom.split("-")
pos = []
for atom in atoms:
# In some cases, amino acid side chains are listed with CD1 instead of CD
if atom == "CD":
if "CD" not in residue:
atom = residue["CD1"]
else:
atom = residue[atom]
else:
atom = residue[atom]
pos.append((atom.pos.x, atom.pos.y, atom.pos.z))
pos = np.array(pos)
diff_vec = pos[2] - pos[1]
# Compute the axis in which we are computing the dihedral angle
diff_vec_normalize = diff_vec / np.linalg.norm(diff_vec)
diff_bot = pos[0] - pos[1]
diff_top = pos[3] - pos[2]
# Now project diff_bot and diff_top to be on the plane
diff_bot = diff_bot - diff_bot.dot(diff_vec_normalize) * diff_vec_normalize
diff_top = diff_top - diff_top.dot(diff_vec_normalize) * diff_vec_normalize
diff_bot_normalize = diff_bot / np.linalg.norm(diff_bot)
diff_top_normalize = diff_top / np.linalg.norm(diff_top)
# Compute the dot product for cos and cross product for sin
sin = (np.cross(diff_bot_normalize, diff_top_normalize) * diff_vec_normalize).sum(
axis=1
)
cos = diff_bot_normalize.dot(diff_top_normalize)
# print("trig value ", sin, cos, np.linalg.norm([sin, cos]))
angle = np.arctan2(sin, cos)
# print("angle ", angle)
angles.append(angle)
except Exception as e:
return None
return angles
def parse_cif(path):
base_folder, f = osp.split(path)
base_name, *junk = f.split(".")
st, infos = cif_to_embed(path)
if infos is not None:
for i, info in enumerate(infos):
pickle_file = osp.join(base_folder, "{}.{}.p".format(base_name, i))
pickle.dump(info, open(pickle_file, "wb"))
return None
def script_parse_cif():
mmcif_path = osp.join(MMCIF_PATH, "mmCIF")
files = []
dirs = os.listdir(mmcif_path)
pool = Pool()
for d in dirs:
directory = osp.join(mmcif_path, d)
d_files = os.listdir(directory)
files_tmp = [osp.join(directory, d_file) for d_file in d_files if ".cif" in d_file]
files.extend(files_tmp)
pool.map(parse_cif, files)
def clean_cif():
mmcif_path = osp.join(MMCIF_PATH, mmCIF)
dirs = os.listdir(mmcif_path)
for d in dirs:
directory = osp.join(mmcif_path, d)
d_files = os.listdir(directory)
files_tmp = [osp.join(directory, d_file) for d_file in d_files if ".p" in d_file]
for f in files_tmp:
os.remove(f)
def recorrect_name(name):
if (name[-1]).isdigit() and name[-1] == "1":
return name[:-1]
elif not (name[-1].isdigit()):
return name + "1"
else:
return name
def _parse_residue(residue):
"""Obtains a sparse representation of residue from gemmi"""
# list of atoms in the residue (e.g. N-CA-C-O)
atoms = res_atoms[residue.name]
# ordinal encoding of how far away the parents are
parents = res_parents[residue.name]
# ordinal encoding of how far away the children are
children = res_children[residue.name]
# atoms belonging to chi anglse
chis = res_chis[residue.name]
# accumulate the xyz postions of the atoms, and node_embed encodings
pos, node_embeds = [], []
residue_counter = 0
for atom in atoms:
if atom in residue:
atom = residue[atom]
elif recorrect_name(atom) in residue:
atom = residue[recorrect_name(atom)]
else:
return None
#accounts for AtomGroup class
atom = atom[0] if type(atom) is gemmi.AtomGroup else atom
pos.append((atom.pos.x, atom.pos.y, atom.pos.z))
node_embeds.append(
(
residue_names.index(residue.name),
atom_names.index(atom.element.name),
residue_counter,
atom.pos.x,
atom.pos.y,
atom.pos.z,
)
)
residue_counter = residue_counter + 1
# 20-dim mask for each residue for atom existence
exist = [1] * len(parents) + [0] * (20 - len(parents))
# pad the parents and children to 20-dim
parents = parents + [0] * (20 - len(parents))
children = children + [0] * (20 - len(children))
# place the x,y,z coordinates into a numpy array
pos_fill = np.zeros((20, 3))
pos_fill[: len(pos)] = pos
# pad the chi angles
chis = [1] * len(chis) + [0] * (5 - len(chis))
# return the new representation
return parents, children, pos_fill, exist, chis, node_embeds
# shorthand methods for the above, since logic is the same
def parse_residue(residue):
ret = _parse_residue(residue, 0)
if ret:
parents, children, pos_fill, exist, chis, _, _ = ret
return parents, children, pos_fill, exist, chis
else:
return None, None, None, None, None
def parse_residue_embed(residue):
ret = _parse_residue(residue)
if ret:
_, _, _, _, _, node_embeds = ret
return node_embeds
else:
return []
def flatten(arr):
return arr.reshape((-1, *arr.shape[2:]))
def rotate_dihedral_fast(a, p, c, pos, pos_e, ch, chv, idx):
"""
Where as rotate_dihedral(...) rotates all amino acids in the batch by some angle,
this function just rotates a single amino acid in a protein.
"""
pos = pos.copy()
ai, pi, ci, pos_i, pos_ei, chi, chvi = (
a[idx - 1 : idx + 1],
p[idx - 1 : idx + 1],
c[idx - 1 : idx + 1],
pos[idx - 1 : idx + 1],
pos_e[idx - 1 : idx + 1],
ch[idx - 1 : idx + 1],
chv[idx - 1 : idx + 1],
)
pnew = rotate_dihedral(ai, pi, ci, pos_i, pos_ei, chi, chvi)
pos[idx - 1 : idx + 1] = pnew
return pos
def rotate_dihedral(angles, par, child, pos, pos_exist, chis, chi_valid):
"""Rotate a protein representation by a set of dihedral angles:
N represents the number of amino acids in the batch, 20 is the number of atoms.
angles: N x 20 set of angles to rotate each atom by
par: A N x 20 encoding of the relative offset of the parent of each atom. For example,
the amino acid glycine would be represented at [-18 -1 -1 -1 0, ...]
child: A N x 20 encoding of the child of each atom. For example, the amino acid glycine
would be represented as [1 1 18 0 0 0 ..]
pos_exist: A N x 20 mask encoding of which atoms are valid for each amino acid so for
example the amino acid glycine would be represented as [1 1 1 1 0 0 ...]
chis: A N x 20 representation of the existing chi angles
chi_valid: A N x 5 mask encoding which chi angles are valid, so for example glycine would
be represented as [0 0 0 0 0]
"""
angles = angles / 180 * np.pi
chis = chis / 180 * np.pi
pos_orig = pos
pos = pos.copy()
for i in range(4):
# There are a maximum of 5 chi angles
p2 = pos[:, 4 + i]
index = np.tile(4 + i, (pos.shape[0], 1)) + par[:, 4 + i : 5 + i]
# print("index, pos shape ", index.shape, pos.shape)
p1 = np.take_along_axis(pos, index[:, :, None], axis=1)[:, 0, :]
rot_angle = chis[:, i] - angles[:, 4 + i]
diff_vec = p2 - p1
diff_vec_normalize = diff_vec / (np.linalg.norm(diff_vec, axis=1, keepdims=True) + 1e-10)
# Rotate all subsequent points by the rotamor angle with the defined line where normalize on the origin
rot_points = pos[:, 5 + i :].copy() - p1[:, None, :]
par_points = (rot_points * diff_vec_normalize[:, None, :]).sum(
axis=2, keepdims=True
) * diff_vec_normalize[:, None, :]
perp_points = rot_points - par_points
perp_points_norm = np.linalg.norm(perp_points, axis=2, keepdims=True) + 1e-10
perp_points_normalize = perp_points / perp_points_norm
a3 = np.cross(diff_vec_normalize[:, None, :], perp_points_normalize)
rot_points = (
perp_points * np.cos(rot_angle)[:, None, None]
+ np.sin(rot_angle)[:, None, None] * a3 * perp_points_norm
+ par_points
+ p1[:, None, :]
)
rot_points[np.isnan(rot_points)] = 10000
# Only set the points that vald chi angles
first_term = rot_points * chi_valid[:, i : i + 1, None]
second_term = pos[:, 5 + i :] * (1 - chi_valid[:, i : i + 1, None])
pos[:, 5 + i :] = first_term + second_term
return pos
def compute_dihedral(par, child, pos, pos_exist, reshape=True):
"""Compute the dihedral angles of all atoms in a structure
par: A N x 20 encoding of the relative offset of the parent of each atom. For example,
the amino acid glycine would be represented at [-18 -1 -1 -1 0, ...]
child: A N x 20 encoding of the child of each atom. For example, the amino acid glycine
would be represented as [1 1 18 0 0 0 ..]
pos_exist: A N x 20 mask encoding of which atoms are valid for each amino acid so for
pos: A N x 20 x 3 encoding the (x, y, z) coordinates of each atom per amino acid in a protein
"""
par, child, pos, pos_exist = flatten(par), flatten(child), flatten(pos), flatten(pos_exist)
# pos[~pos_exist] = 0.1
idx = np.arange(par.shape[0])
child_idx = idx + child
child_pos = pos[child_idx, :].copy()
up_edge_idx = idx + par
up_edge_pos = pos[up_edge_idx, :].copy()
parent_idx = up_edge_idx + par[up_edge_idx]
parent_pos = pos[parent_idx, :].copy()
# The dihedral angle is given by parent_pos -> up_edge_pos -> pos -> child_pos
p0, p1, p2, p3 = parent_pos, up_edge_pos, pos, child_pos
p23 = p3 - p2
p12 = p2 - p1
p01 = p1 - p0
n1 = np.cross(p01, p12)
n2 = np.cross(p12, p23)
n1 = n1 / (np.linalg.norm(n1, axis=1, keepdims=True) + 1e-10)
n2 = n2 / (np.linalg.norm(n2, axis=1, keepdims=True) + 1e-10)
sin = ( | np.cross(n1, n2) | numpy.cross |
#!/usr/bin/env python
import rospy
# OpenCV2 for saving an image
from cv_bridge import CvBridge, CvBridgeError
import cv2
from geometry_msgs.msg import Twist
from sensor_msgs.msg import LaserScan
from std_msgs.msg import Empty
from nav_msgs.msg import Odometry
import time
import sys, select, tty, os, os.path
import numpy as np
import commands
from subprocess import call
import matplotlib.pyplot as plt
import matplotlib.animation as animation
#--------------------------------------------------------------------------------------------------------------
#
# Oracle for driving turtlebot in simulation or the real-world based on the LiDAR lazer range finder (5FPS)
# Starts with start_dh topic and publishes control on dh_vel topic.
# Bar plot is left out by default.
#
#--------------------------------------------------------------------------------------------------------------
# new
# clip_distance = 2 #0.5 #3 #5 tweak for doshico (from 0.5 --> 2 10/11/19)
# front_width=40 #50 # define the width of free space in before driving forward
# field_of_view=80 #100 #80
# scale_yaw=0.6 #0.4 #1
# original
clip_distance = 3 #1.5 #0.5 #3 #5 tweak for doshico (from 0.5 --> 2 10/11/19)
front_width=40 #50 # define the width of free space in before driving forward
field_of_view=100 #80
scale_yaw=0.6 #0.4 #1
turn_speed=0.0 #0.3 #0.6 #0.1 (from 0. --> 0.1 10/11/19)
speed=0.3
# Instantiate CvBridge
bridge = CvBridge()
control_pub=None
ready = False # toggle on and off with start_dh and stop_dh
finished = True
fig=plt.figure(figsize=(10,5))
plt.title('Depth_heuristic')
barcollection=plt.bar(range(3),[clip_distance for k in range(3)],align='center',color='blue')
x=np.zeros((3))
def animate(n):
for i, b in enumerate(barcollection):
b.set_height(x[i])
def depth_callback(data):
global action_pub, x, turn_speed, speed
if not ready or finished: return
# Preprocess depth:
ranges=[min(r,clip_distance) if r!=0 else np.nan for r in data.ranges]
# clip left 45degree range from 0:45 reversed with right 45degree range from the last 45:
ranges=list(reversed(ranges[:field_of_view/2]))+list(reversed(ranges[-field_of_view/2:]))
# turn away from the minimum (non-zero) depth reading
# discretize 3 bins (:-front_width/2:front_width/2:)
# range that covers going straight.
x=[np.nanmin(ranges[0:field_of_view/2-front_width/2]),np.nanmin(ranges[field_of_view/2-front_width/2:field_of_view/2+front_width/2]), | np.nanmin(ranges[field_of_view/2+front_width/2:]) | numpy.nanmin |
# python3
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test of models classes in models.py."""
from absl.testing import parameterized
import numpy as np
from datadrivenpdes.advection import equations as advection_equations
from datadrivenpdes.core import equations
from datadrivenpdes.core import geometry
from datadrivenpdes.core import grids
from datadrivenpdes.core import models
from datadrivenpdes.core import polynomials
from datadrivenpdes.core import states
from datadrivenpdes.core import tensor_ops
import tensorflow as tf
from absl.testing import absltest
StateDef = states.StateDefinition
NO_DERIVATIVES = (0, 0, 0)
D_X = (1, 0, 0)
D_Y = (0, 1, 0)
D_XX = (2, 0, 0)
D_YY = (0, 2, 0)
NO_OFFSET = (0, 0)
X_PLUS_HALF = (1, 0)
Y_PLUS_HALF = (0, 1)
class ConvLayersTest(parameterized.TestCase):
@parameterized.parameters(
(models.RescaledConv2DStack,
[[-0.5, 0.5], [1.0, 1.5]], [[0.0, 0.5], [0.75, 1.0]], 1e-7),
(models.ClippedConv2DStack,
[[-0.5, 0.5], [1.0, 1.5]], [[0.0, 0.5], [1.0, 1.0]], 2e-3),
)
def test_conv2d_variants(self, core_model_func, inputs, expected, atol):
# Variable names like `core_model` follow the internal of top-level models,
# such as the `PseudoLinearModel` class in `core.models` module.
# Here tries to mimic the small inner loop in top-level models.
# identity layer, does nothing except normalizing input
core_model = core_model_func(
num_inputs=1,
num_outputs=1,
scaled_keys={'concentration'},
num_layers=3,
filters=1,
kernel_size=1,
kernel_initializer=tf.initializers.ones,
activation=None,
use_bias=False
)
# (x, y) -> (batch, x, y)
inputs = np.array(inputs, dtype=np.float32)[np.newaxis, ...]
# (x, y) -> (batch, x, y, num_outputs)
expected = np.array(expected, dtype=np.float32)[np.newaxis, ..., np.newaxis]
# validate forward pass
#inputs = {'concentration': tf.convert_to_tensor(inputs)}
inputs=tf.convert_to_tensor(inputs)[:,:,:,None]
outputs = core_model(inputs).numpy()
np.testing.assert_allclose(outputs, expected, atol=atol)
# sanity check for backward pass: core_model should be trainable.
# We should prevent the use of a simple Python callable for `core_model`,
# which can pass the forward call(), integrate() and even Keras model.fit(),
# but the training will fail sliently as the weights are not tracked.
assert len(core_model.trainable_weights) >= 1
class BuildStencilsTest(absltest.TestCase):
def assert_sequences_allclose(self, a, b):
self.assertEqual(len(a), len(b))
for a_entry, b_entry in zip(a, b):
np.testing.assert_allclose(a_entry, b_entry)
def test_build_stencils(self):
sk00 = StateDef(name='foo', tensor_indices=(), derivative_orders=(0, 0, 0),
offset=(0, 0))
sk10 = StateDef(name='foo', tensor_indices=(), derivative_orders=(0, 0, 0),
offset=(1, 0))
self.assert_sequences_allclose([[-1, 0, 1], [-1, 0, 1]],
models.build_stencils(sk00, sk00, 3, 1.0))
self.assert_sequences_allclose([[-2, 0, 2], [-2, 0, 2]],
models.build_stencils(sk00, sk00, 3, 2.0))
self.assert_sequences_allclose([[-1, 0, 1], [-1, 0, 1]],
models.build_stencils(sk00, sk00, 4, 1.0))
self.assert_sequences_allclose([[-2, -1, 0, 1, 2], [-2, -1, 0, 1, 2]],
models.build_stencils(sk00, sk00, 5, 1.0))
self.assert_sequences_allclose([[-0.5, 0.5], [-1, 0, 1]],
models.build_stencils(sk00, sk10, 3, 1.0))
self.assert_sequences_allclose([[-0.5, 0.5], [-1, 0, 1]],
models.build_stencils(sk10, sk00, 3, 1.0))
class FiniteDifferenceModelTest(parameterized.TestCase):
@parameterized.parameters(
dict(model_cls=models.FiniteDifferenceModel, model_kwargs={}),
dict(model_cls=models.LinearModel,
model_kwargs=dict(constrained_accuracy_order=0)),
dict(model_cls=models.LinearModel,
model_kwargs=dict(constrained_accuracy_order=1)),
dict(model_cls=models.PseudoLinearModel,
model_kwargs=dict(constrained_accuracy_order=0)),
dict(model_cls=models.PseudoLinearModel,
model_kwargs=dict(constrained_accuracy_order=1)),
)
def test_from_centered(self, model_cls, model_kwargs):
class Equation(equations.Equation):
METHOD = polynomials.Method.FINITE_DIFFERENCE
def __init__(self):
self.key_definitions = {
'c': StateDef('concentration', (), NO_DERIVATIVES, NO_OFFSET),
'c_edge_x':
StateDef('concentration', (), NO_DERIVATIVES, X_PLUS_HALF),
'c_edge_y':
StateDef('concentration', (), NO_DERIVATIVES, Y_PLUS_HALF),
'c_x': StateDef('concentration', (), D_X, NO_OFFSET),
'c_y': StateDef('concentration', (), D_Y, NO_OFFSET),
'c_x_edge_x': StateDef('concentration', (), D_X, X_PLUS_HALF),
'c_y_edge_y': StateDef('concentration', (), D_Y, Y_PLUS_HALF),
'c_xx': StateDef('concentration', (), D_XX, NO_OFFSET),
'c_yy': StateDef('concentration', (), D_YY, NO_OFFSET),
}
self.evolving_keys = {'c'}
self.constant_keys = set()
grid = grids.Grid.from_period(10, length=1)
equation = Equation()
model = model_cls(equation, grid, **model_kwargs)
inputs = tf.convert_to_tensor(
np.random.RandomState(0).random_sample((1,) + grid.shape), tf.float32)
# create variables, then reset them all to zero
model.spatial_derivatives({'c': inputs})
for variable in model.variables:
variable.assign(tf.zeros_like(variable))
actual_derivatives = model.spatial_derivatives({'c': inputs})
expected_derivatives = {
'c': inputs,
'c_edge_x': (inputs + tensor_ops.roll_2d(inputs, (-1, 0))) / 2,
'c_edge_y': (inputs + tensor_ops.roll_2d(inputs, (0, -1))) / 2,
'c_x': (-tensor_ops.roll_2d(inputs, (1, 0))
+ tensor_ops.roll_2d(inputs, (-1, 0))) / (2 * grid.step),
'c_y': (-tensor_ops.roll_2d(inputs, (0, 1))
+ tensor_ops.roll_2d(inputs, (0, -1))) / (2 * grid.step),
'c_x_edge_x': (
-inputs + tensor_ops.roll_2d(inputs, (-1, 0))) / grid.step,
'c_y_edge_y': (
-inputs + tensor_ops.roll_2d(inputs, (0, -1))) / grid.step,
'c_xx': (tensor_ops.roll_2d(inputs, (1, 0))
- 2 * inputs
+ tensor_ops.roll_2d(inputs, (-1, 0))) / grid.step ** 2,
'c_yy': (tensor_ops.roll_2d(inputs, (0, 1))
- 2 * inputs
+ tensor_ops.roll_2d(inputs, (0, -1))) / grid.step ** 2,
}
for key, expected in sorted(expected_derivatives.items()):
np.testing.assert_allclose(
actual_derivatives[key], expected,
atol=1e-5, rtol=1e-5, err_msg=repr(key))
@parameterized.parameters(
dict(model_cls=models.FiniteDifferenceModel, model_kwargs={}),
dict(model_cls=models.LinearModel,
model_kwargs=dict(constrained_accuracy_order=0)),
dict(model_cls=models.LinearModel,
model_kwargs=dict(constrained_accuracy_order=1)),
dict(model_cls=models.PseudoLinearModel,
model_kwargs=dict(constrained_accuracy_order=0)),
dict(model_cls=models.PseudoLinearModel,
model_kwargs=dict(constrained_accuracy_order=1)),
)
def test_from_edge(self, model_cls, model_kwargs):
class Equation(equations.Equation):
METHOD = polynomials.Method.FINITE_DIFFERENCE
def __init__(self):
self.key_definitions = {
'c': StateDef('concentration', (), NO_DERIVATIVES, NO_OFFSET),
'c_edge_x':
StateDef('concentration', (), NO_DERIVATIVES, X_PLUS_HALF),
'c_edge_y':
StateDef('concentration', (), NO_DERIVATIVES, Y_PLUS_HALF),
'c_x': StateDef('concentration', (), D_X, NO_OFFSET),
'c_x_edge_x': StateDef('concentration', (), D_X, X_PLUS_HALF),
'c_xx': StateDef('concentration', (), D_XX, NO_OFFSET),
}
self.evolving_keys = {'c_edge_x'}
self.constant_keys = set()
grid = grids.Grid.from_period(10, length=1)
equation = Equation()
model = model_cls(equation, grid, **model_kwargs)
inputs = tf.convert_to_tensor(
| np.random.RandomState(0) | numpy.random.RandomState |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.