prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
#coding=utf8 import os import numpy as np import pickle # from lib.net.point_rcnn import PointRCNN # from lib.datasets.mada_rcnn_dataset import MadaRCNNDataset # import tools.train_utils.train_utils as train_utils # from lib.utils.bbox_transform import decode_bbox_target # from tools.kitti_object_eval_python.visualize_common import VisualizePcd, quaternion_from_euler # from lib.config import cfg, cfg_from_file, save_config_to_file, cfg_from_list # import lib.utils.kitti_utils as kitti_utils # import lib.utils.iou3d.iou3d_utils as iou3d_utils import logging import math import re import glob import time import rospy from sensor_msgs.msg import PointCloud2 from sensor_msgs import point_cloud2 as pc2 from std_msgs.msg import Header from jsk_recognition_msgs.msg import BoundingBox, BoundingBoxArray from jsk_rviz_plugins.msg import Pictogram,PictogramArray import sys from pynput.keyboard import Controller, Key, Listener from pynput import keyboard import json # import struct FIXED_FRAME = 'pandar' # map axes strings to/from tuples of inner axis, parity, repetition, frame _AXES2TUPLE = { 'sxyz': (0, 0, 0, 0), 'sxyx': (0, 0, 1, 0), 'sxzy': (0, 1, 0, 0), 'sxzx': (0, 1, 1, 0), 'syzx': (1, 0, 0, 0), 'syzy': (1, 0, 1, 0), 'syxz': (1, 1, 0, 0), 'syxy': (1, 1, 1, 0), 'szxy': (2, 0, 0, 0), 'szxz': (2, 0, 1, 0), 'szyx': (2, 1, 0, 0), 'szyz': (2, 1, 1, 0), 'rzyx': (0, 0, 0, 1), 'rxyx': (0, 0, 1, 1), 'ryzx': (0, 1, 0, 1), 'rxzx': (0, 1, 1, 1), 'rxzy': (1, 0, 0, 1), 'ryzy': (1, 0, 1, 1), 'rzxy': (1, 1, 0, 1), 'ryxy': (1, 1, 1, 1), 'ryxz': (2, 0, 0, 1), 'rzxz': (2, 0, 1, 1), 'rxyz': (2, 1, 0, 1), 'rzyz': (2, 1, 1, 1)} # axis sequences for Euler angles _NEXT_AXIS = [1, 2, 0, 1] # code from /opt/ros/kinetic/lib/python2.7/dist-packages/tf/transformations.py def quaternion_from_euler(ai, aj, ak, axes='sxyz'): """Return quaternion from Euler angles and axis sequence. ai, aj, ak : Euler's roll, pitch and yaw angles axes : One of 24 axis sequences as string or encoded tuple >>> q = quaternion_from_euler(1, 2, 3, 'ryxz') >>> np.allclose(q, [0.310622, -0.718287, 0.444435, 0.435953]) True """ try: firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()] except (AttributeError, KeyError): _ = _TUPLE2AXES[axes] firstaxis, parity, repetition, frame = axes i = firstaxis j = _NEXT_AXIS[i+parity] k = _NEXT_AXIS[i-parity+1] if frame: ai, ak = ak, ai if parity: aj = -aj ai /= 2.0 aj /= 2.0 # print("ak : {}".format(type(ak))) ak /= 2.0 ci = math.cos(ai) si = math.sin(ai) cj = math.cos(aj) sj = math.sin(aj) ck = math.cos(ak) sk = math.sin(ak) cc = ci*ck cs = ci*sk sc = si*ck ss = si*sk quaternion = np.empty((4, ), dtype=np.float64) if repetition: quaternion[i] = cj*(cs + sc) quaternion[j] = sj*(cc + ss) quaternion[k] = sj*(cs - sc) quaternion[3] = cj*(cc - ss) else: quaternion[i] = cj*sc - sj*cs quaternion[j] = cj*ss + sj*cc quaternion[k] = cj*cs - sj*sc quaternion[3] = cj*cc + sj*ss if parity: quaternion[j] *= -1 return quaternion # /velodyne_points topic's subscriber callback function # publishing function for DEBUG def publish_test(np_p_ranged, frame_id): header = Header() header.stamp = rospy.Time() header.frame_id = frame_id x = np_p_ranged[:, 0].reshape(-1) y = np_p_ranged[:, 1].reshape(-1) z = np_p_ranged[:, 2].reshape(-1) # if intensity field exists if np_p_ranged.shape[1] == 4: i = np_p_ranged[:, 3].reshape(-1) else: i = np.zeros((np_p_ranged.shape[0], 1)).reshape(-1) cloud = np.stack((x, y, z, i)) # point cloud segments # 4 PointFields as channel description msg_segment = pc2.create_cloud(header=header, fields=_make_point_field(4), points=cloud.T) # publish to /velodyne_points_modified point_pub.publish(msg_segment) # DEBUG # code from SqueezeSeg (inspired from Durant35) def hv_in_range(x, y, z, fov, fov_type='h'): """ Extract filtered in-range velodyne coordinates based on azimuth & elevation angle limit Args: `x`:velodyne points x array `y`:velodyne points y array `z`:velodyne points z array `fov`:a two element list, e.g.[-45,45] `fov_type`:the fov type, could be `h` or 'v',defualt in `h` Return: `cond`:condition of points within fov or not Raise: `NameError`:"fov type must be set between 'h' and 'v' " """ d = np.sqrt(x ** 2 + y ** 2 + z ** 2) if fov_type == 'h': return np.logical_and(np.arctan2(y, x) > (-fov[1] * np.pi/180), np.arctan2(y, x) < (-fov[0] * np.pi/180)) elif fov_type == 'v': return np.logical_and(np.arctan2(z, d) < (fov[1] * np.pi / 180), np.arctan2(z, d) > (fov[0] * np.pi / 180)) else: raise NameError("fov type must be set between 'h' and 'v' ") def _make_point_field(num_field): msg_pf1 = pc2.PointField() msg_pf1.name = np.str('x') msg_pf1.offset = np.uint32(0) msg_pf1.datatype = np.uint8(7) msg_pf1.count = np.uint32(1) msg_pf2 = pc2.PointField() msg_pf2.name = np.str('y') msg_pf2.offset = np.uint32(4) msg_pf2.datatype = np.uint8(7) msg_pf2.count = np.uint32(1) msg_pf3 = pc2.PointField() msg_pf3.name = np.str('z') msg_pf3.offset = np.uint32(8) msg_pf3.datatype = np.uint8(7) msg_pf3.count = np.uint32(1) msg_pf4 = pc2.PointField() msg_pf4.name = np.str('intensity') msg_pf4.offset = np.uint32(16) msg_pf4.datatype = np.uint8(7) msg_pf4.count = np.uint32(1) if num_field == 4: return [msg_pf1, msg_pf2, msg_pf3, msg_pf4] msg_pf5 = pc2.PointField() msg_pf5.name =
np.str('label')
numpy.str
import numpy as np import os import matplotlib.pyplot as plt from PIL import Image from ncpsort.utils.clustering import get_topn_clusters DEFAULT_COLORS = ['C0', 'C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C8', 'C9', 'C7', 'black', 'blue', 'red', 'green', 'magenta', 'brown', 'orange'] def plot_raw_spikes_in_rows(waveforms, assignments, spacing=1, width=1, vscale=1, subplot_adj=0.9, colors=DEFAULT_COLORS, figtitle="", figdir="./", fname_postfix="", show=True): """Plot raw spikes, each spike in a separate row and each channel in a separate column Args: waveforms: a numpy array of shape (n_samples, n_timesteps, n_channels) assignments: a numpy array of shape (n_samples,) """ waveforms = waveforms.transpose((0, 2, 1)) # [N, n_chs, n_times] n_samples = waveforms.shape[0] n_chs = waveforms.shape[1] n_unit = len(set(assignments)) waveforms_plot = waveforms * vscale - \ np.reshape(np.arange(n_samples), (-1, 1, 1)) * spacing * 8 fig_height = 1 fig, axes = plt.subplots(1, n_chs, figsize=( width * n_chs, 2 + (n_samples - 1) * spacing / 4), sharey=True) fontsize = 15 # plt.ylim(np.percentile(waveforms, 0.1), np.percentile(waveforms, 99.9)) plt.ylim(np.min(waveforms_plot) - 2, np.max(waveforms_plot) + 2) units = np.unique(assignments[assignments != -1]) for chid in range(n_chs): for unit in units: axes[chid].plot(waveforms_plot[assignments == unit, chid, :].T, color=DEFAULT_COLORS[unit % 20], alpha=0.8, label="unit {}".format(unit)) if
np.sum(assignments == -1)
numpy.sum
import numpy as np import scipy as sp import scipy.spatial import scipy.signal import numexpr as ne import warnings import os from ...misc.basic_functions import rowsum, differentiation_matrix, differentiate from ...kernels.high_level.laplace import Laplace_Layer_Form, Laplace_Layer_Apply from ...kernels.high_level.cauchy import Cauchy_Layer_Form, Cauchy_Layer_Apply class Laplace_Close_Quad(object): """ Module providing Laplace Close Eval based on Globaly Compensated Cauchy Quad """ def __init__(self, GSB): """ Initializes the Close Quad Module GSB (required): boundary of type Global_Smooth_Boundary """ self.boundary = GSB GSB.add_module('Laplace_CSLP_Self_Kress') inside_point = self.boundary.get_inside_point() complex_weights = self.boundary.complex_weights c = self.boundary.c t = self.boundary.t N = self.boundary.N self.sawlog = -1j*t + np.log(inside_point - c) self.sawlog.imag = np.unwrap(self.sawlog.imag) self.inf_scale = complex_weights/(c-inside_point) / (2.0j*np.pi) def get_differentiation_matrix(self): if not hasattr(self, 'differentiation_matrix'): self.differentiation_matrix = differentiation_matrix(self.boundary.N) return self.differentiation_matrix def Form(self, target, side, do_DLP=False, do_SLP=False, gradient=False, main_type='real', gradient_type='real', forstokes=False): return Compensated_Laplace_Form(self.boundary, target, side, do_DLP, do_SLP, gradient, main_type, gradient_type, forstokes) def Apply(self, target, side, tau, do_DLP=False, do_SLP=False, gradient=False, main_type='real', gradient_type='real', backend='fly', forstokes=False): return Compensated_Laplace_Apply(self.boundary, target, side, tau, do_DLP, do_SLP, gradient, main_type, gradient_type, backend, forstokes) def Get_Close_Corrector(self, target, side, do_DLP=False, do_SLP=False, backend='fly'): return Laplace_Close_Corrector(self.boundary, target, side, do_DLP, do_SLP, backend) class Laplace_Close_Corrector(object): def __init__(self, source, target, side, do_DLP, do_SLP, backend): self.source = source self.target = target self.side = side self.do_DLP = do_DLP self.do_SLP = do_SLP self.backend = backend self.preformed = self.backend == 'preformed' self.prepare = self._prepare_formed if self.preformed else self._prepare_apply self.call_func = self._call_formed if self.preformed else self._call_apply self.prepare() def __call__(self, *args, **kwargs): self.call_func(*args, **kwargs) def _prepare_formed(self): close_mat = Compensated_Laplace_Form(self.source, self.target, self.side, self.do_DLP, self.do_SLP) naive_mat = Laplace_Layer_Form(self.source, self.target, ifcharge=self.do_SLP, ifdipole=self.do_DLP) self.correction_mat = close_mat.real - naive_mat def _prepare_apply(self): pass def _call_formed(self, u, tau, close_pts): u[close_pts] += self.correction_mat.dot(tau) def _call_apply(self, u, tau, close_pts): v1 = Compensated_Laplace_Apply(self.source, self.target, self.side, tau, do_DLP=self.do_DLP, do_SLP=self.do_SLP, backend=self.backend) ch = tau if self.do_SLP else None ds = tau if self.do_DLP else None v2 = Laplace_Layer_Apply(self.source, self.target, charge=ch, dipstr=ds, backend=self.backend) u[close_pts] += (v1.real - v2) def Compensated_Laplace_Form(source, target, side, do_DLP=False, do_SLP=False, gradient=False, main_type='real', gradient_type='real', forstokes=False): """ Full Formation of Close-Eval Matrix for Laplace Problem Parameters: source (required): Boundary, source target (required): PointSet, target side (required): 'i' or 'e' for interior/exterior evaluation do_DLP (optional): whether to include DLP evaluation do_SLP (optional): whether to include SLP evaluation gradient (optional): compute gradient matrices or not main_type (optional): if 'real', return only real part of main matrix, otherwise return both real and complex parts grad_type (optional): if 'real', return two real matrices for u_x and u_y, otherwise return one complex matrix with the real part giving evaluation of u_x and the imaginary part giving evaluation of u_y Returns: if not gradient and main_type =='real': MAT; real matrix such that u = MAT.dot(tau) if not gradient and main_type == 'complex': MAT; complex matrix such that u = MAT.real.dot(tau) the complex part of MAT is used in Stokes evaluations if gradient and grad_type == 'real': (MAT, DX_MAT, DY_MAT), tuple of matrices MAT as described above DX_MAT real matrix such that u_x = DX_MAT.dot(tau) DY_MAT real matrix such that u_y = DY_MAT.dot(tau) if gradient and grad_type == 'complex': (MAT, DMAT), tuple of matrices MAT as described above DMAT complex matrix such that: u_x = DMAT.real.dot(tau) u_y = -DMAT.imag.dot(tau) """ N = source.N M = target.N PM = np.zeros([N, N], dtype=complex) if do_DLP: PM += compensated_laplace_dlp_preform(source, side) if do_SLP: SPM, AFTER_MATS = compensated_laplace_slp_preform(source, target, side, gradient=gradient) if gradient: AFTER_MAT = AFTER_MATS[0] AFTER_DER_MAT = AFTER_MATS[1] else: AFTER_MAT = AFTER_MATS if forstokes: SPM *= 0.5 AFTER_MAT *= 0.5 if gradient: AFTER_DER_MAT *= 0.5 PM += SPM cauchy_mats = compensated_cauchy_form(source, target, side, derivative=gradient) if gradient: cauchy_mat = cauchy_mats[0] der_cauchy_mat = cauchy_mats[1] else: cauchy_mat = cauchy_mats MAT1 = cauchy_mat.dot(PM) if gradient: der_cauchy_mat = cauchy_mats[1] MATD = der_cauchy_mat.dot(PM) if do_SLP: MAT1 += AFTER_MAT if gradient: MATD += AFTER_DER_MAT MAT = MAT1.real if main_type == 'real' else MAT1 if gradient: if gradient_type == 'real': ret = (MAT, MATD.real, -MATD.imag) else: ret = (MAT, MATD) else: ret = MAT return ret def compensated_cauchy_form(source, target, side, derivative=False): sc = source.c scT = sc[:,None] tcT = target.c[:,None] cw = source.complex_weights cwT = cw[:,None] comp = Cauchy_Layer_Form(source, target) J0 = rowsum(comp) if side == 'e': J0 += 1.0 prefac = 1.0/J0 prefacT = prefac[:,None] MAT = ne.evaluate('prefacT*comp') if derivative: # get Schneider-Werner derivative matrix DMAT = 2.0j*np.pi*Cauchy_Layer_Form(source, source) np.fill_diagonal(DMAT, 0.0) np.fill_diagonal(DMAT, -rowsum(DMAT)) if side == 'e': np.fill_diagonal(DMAT, DMAT.diagonal() - 2.0j*np.pi) ne.evaluate('DMAT/cwT', out=DMAT) ret = MAT, MAT.dot(DMAT) else: ret = MAT return ret def compensated_laplace_dlp_preform(source, side): method = source.Laplace_Close_Quad A1 = Cauchy_Layer_Form(source, source) np.fill_diagonal(A1, -rowsum(A1)) scale = 1.0j/source.N MAT = A1 + scale*method.get_differentiation_matrix() if side == 'i': np.fill_diagonal(MAT, MAT.diagonal()-1) return MAT def compensated_laplace_slp_preform(source, target, side, gradient=False): cslp_method = source.Laplace_CSLP_Self_Kress method = source.Laplace_Close_Quad target_difference = source.get_inside_point() - target.c # check if the CSLP Matrix was already generated CSLP = cslp_method.Form(side).copy() if side == 'e': # what gets done before cauchy MAT1 = CSLP + method.sawlog[:,None]*(source.weights/(2.0*np.pi)) MAT2 = method.inf_scale.dot(MAT1)[:,None] MAT = MAT1 - MAT2.T # what gets done after cauchy LA = np.log(
np.abs(target_difference)
numpy.abs
import numpy as np import numpy #################################################################### def paint(pos, mesh, weights=1.0, mode="raise", period=None, transform=None): """ CIC approximation (trilinear), painting points to Nmesh, each point has a weight given by weights. This does not give density. pos is supposed to be row vectors. aka for 3d input pos.shape is (?, 3). pos[:, i] should have been normalized in the range of [ 0, mesh.shape[i] ) thus z is the fast moving index mode can be : "raise" : raise exceptions if a particle is painted outside the mesh "ignore": ignore particle contribution outside of the mesh period can be a scalar or of length len(mesh.shape). if period is given the particles are wrapped by the period. transform is a function that transforms pos to mesh units: transform(pos[:, 3]) -> meshpos[:, 3] """ pos = numpy.array(pos) chunksize = 1024 * 16 * 4 Ndim = pos.shape[-1] Np = pos.shape[0] if transform is None: transform = lambda x:x neighbours = ((numpy.arange(2 ** Ndim)[:, None] >> \ numpy.arange(Ndim)[None, :]) & 1) for start in range(0, Np, chunksize): chunk = slice(start, start+chunksize) if numpy.isscalar(weights): wchunk = weights else: wchunk = weights[chunk] gridpos = transform(pos[chunk]) rmi_mode = 'raise' intpos = numpy.intp(numpy.floor(gridpos)) for i, neighbour in enumerate(neighbours): neighbour = neighbour[None, :] targetpos = intpos + neighbour kernel = (1.0 - numpy.abs(gridpos - targetpos)).prod(axis=-1) add = wchunk * kernel if period is not None: period = numpy.int32(period) numpy.remainder(targetpos, period, targetpos) if len(targetpos) > 0: targetindex = numpy.ravel_multi_index( targetpos.T, mesh.shape, mode=rmi_mode) u, label =
numpy.unique(targetindex, return_inverse=True)
numpy.unique
# -*- coding: utf-8 -*- """ Created on 29/03/2020 @author: Mahdad THIS IS THE CLASS FOR "MACHINE LEARNING & DEPRESSION PROJECT." The class is capable of extracting relevant features, applying various machine- learning algorithms and finally applying Randomized grid search to tune hyper- parameters of different classifiers. After each method of the class, there is a short description, introducing the relevant input/outputs. """ #%% Importing libs import numpy as np import pandas as pd import pywt from scipy.signal import butter, lfilter, periodogram, spectrogram, welch from sklearn.ensemble import RandomForestClassifier import heapq from scipy.signal import argrelextrema from sklearn.model_selection import cross_val_score from sklearn.metrics import confusion_matrix import seaborn as sb import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from scipy.stats import kurtosis, skew from entropy.entropy import spectral_entropy from scipy.fftpack import fft import h5py import time class ML_Depression(): def __init__(self, filename, channel, fs, T): self.filename = filename self.channel = channel self.fs = fs self.T = T def FeatureExtraction(self): ''' ~~~~~~################## INSTRUCTION #################~~~~~~~~ ---- THIS IS A FUNCTION TO EXTRACT FEATURES AND THEN USE THEM FOR ANY KIND OF SUPERVISED MACHINE LEARNING ALGORITHM. INPUTS: 1) filename : full directory of train-test split (e.g. .h5 file saved via Prepare_for_CNN.py) 2) channel : channel of interest, e.g. 'fp2-M1' OUTPUTS: 1) X : Concatenation of all featureset after random permutation. 2) y : Relevant labels of "X". ''' # Loading data section # Load data tic = time.time() fname = self.filename # choose channel to extract features from ch = self.channel fs = self.fs #Hz T = self.T #sec # Split train and test with h5py.File(fname, 'r') as rf: xtest = rf['.']['x_test_' + ch].value xtrain = rf['.']['x_train_' + ch].value ytest = rf['.']['y_test_' + ch].value ytrain = rf['.']['y_train_' + ch].value print('train and test data loaded in : {} secs'.format(time.time()-tic)) # Flatten data for filter and normalization X_train = np.reshape(xtrain, (np.shape(xtrain)[0] * np.shape(xtrain)[1] ,1)) X_test = np.reshape(xtest, (np.shape(xtest)[0] * np.shape(xtest)[1] ,1)) #%% Filtering section ## Defining preprocessing function ## def butter_bandpass_filter(data, lowcut, highcut, fs, order = 2): nyq = 0.5 * fs low = lowcut /nyq high = highcut/nyq b, a = butter(order, [low, high], btype='band') #print(b,a) y = lfilter(b, a, data) return y # Apply filter X_train = butter_bandpass_filter(data=X_train, lowcut=.3, highcut=20, fs=fs, order=2) X_test = butter_bandpass_filter(data=X_test , lowcut=.3, highcut=20, fs=fs, order=2) #%% Normalization section - DEACTIVATED #sc = StandardScaler() #X_train = sc.fit_transform(X_train) #X_test = sc.transform(X_test) #%% Reshaping data per epoch X_train = np.reshape(X_train, (int(len(X_train) / (fs*T)), fs*T)) X_test = np.reshape(X_test, (int(len(X_test) / (fs*T)), fs*T)) X = np.concatenate((X_train, X_test)) Y = np.concatenate((ytrain, ytest)) #%% Feature Extraction section # Defining EEG bands: eeg_bands = {'Delta' : (0.5, 4), 'Theta' : (4 , 8), 'Alpha' : (8 , 12), 'Beta' : (12 , 20), 'Sigma' : (12 , 16), 'Sigma_slow': (12 , 14), 'Sigma_fast': (14 , 16)} # Initializing variables of interest eeg_band_fft = dict() freq_ix = dict() Features = np.empty((0, 42)) # Settings of peridogram Window = 'hann' # zero-padding added with respect to (Nfft=2^(nextpow2(len(window)))) Nfft = 2 ** 15 # Defining freq. resoultion fm, _ = periodogram(x = X[0,:], fs = fs, nfft = Nfft , window = Window) tic = time.time() # Finding the index of different freq bands with respect to "fm" # for band in eeg_bands: freq_ix[band] = np.where((fm >= eeg_bands[band][0]) & (fm <= eeg_bands[band][1]))[0] print('Feature extraction started ... Please wait ...') # Defining for loop to extract features per epoch for i in np.arange(len(X)): data = X[i,:] # Compute the "total" power inside the investigational window _ , pxx = periodogram(x = data, fs = fs, nfft = Nfft , window = Window) # Initialization for wavelet cA_values = [] cD_values = [] cA_mean = [] cA_std = [] cA_Energy = [] cD_mean = [] cD_std = [] cD_Energy = [] Entropy_D = [] Entropy_A = [] first_diff = np.zeros(len(data)-1) '''Power in differnt freq ranges ''' # Total pow is defined form 0.5 - 20 Hz pow_total = np.sum(pxx[np.arange(freq_ix['Delta'][0], freq_ix['Beta'][-1]+1)]) Pow_Delta = np.sum(pxx[freq_ix['Delta']]) / pow_total Pow_Theta = np.sum(pxx[freq_ix['Theta']]) / pow_total Pow_Alpha = np.sum(pxx[freq_ix['Alpha']]) / pow_total Pow_Beta = np.sum(pxx[freq_ix['Beta']]) / pow_total Pow_Sigma = np.sum(pxx[freq_ix['Sigma']]) / pow_total Pow_Sigma_slow = np.sum(pxx[freq_ix['Sigma_slow']]) / pow_total Pow_Sigma_fast = np.sum(pxx[freq_ix['Sigma_fast']]) / pow_total '''Apply Welch to see the dominant Max power in each freq band''' ff, Psd = welch(x = data, fs = fs, window = 'hann', nperseg= 512, nfft = Nfft) Pow_max_Total = np.max(Psd[np.arange(freq_ix['Delta'][0], freq_ix['Beta'][-1]+1)]) Pow_max_Delta = np.max(Psd[freq_ix['Delta']]) Pow_max_Theta = np.max(Psd[freq_ix['Theta']]) Pow_max_Alpha = np.max(Psd[freq_ix['Alpha']]) Pow_max_Beta = np.max(Psd[freq_ix['Beta']]) Pow_max_Sigma = np.max(Psd[freq_ix['Sigma']]) Pow_max_Sigma_slow = np.max(Psd[freq_ix['Sigma_slow']]) Pow_max_Sigma_fast = np.max(Psd[freq_ix['Sigma_fast']]) ''' Spectral Entropy ''' Entropy_Welch = spectral_entropy(x = data, sf=fs, method='welch', nperseg = 512) Entropy_fft = spectral_entropy(x = data, sf=fs, method='fft') ''' Wavelet Decomposition ''' cA,cD=pywt.dwt(data,'coif1') cA_values.append(cA) cD_values.append(cD) cA_mean.append(np.mean(cA_values)) cA_std.append(np.std(cA_values)) cA_Energy.append(np.sum(np.square(cA_values))) cD_mean.append(np.mean(cD_values)) cD_std.append(np.std(cD_values)) cD_Energy.append(np.sum(np.square(cD_values))) Entropy_D.append(np.sum(np.square(cD_values) * np.log(np.square(cD_values)))) Entropy_A.append(np.sum(np.square(cA_values) * np.log(np.square(cA_values)))) ''' Hjorth Parameters ''' hjorth_activity = np.var(data) diff_input = np.diff(data) diff_diffinput = np.diff(diff_input) hjorth_mobility = np.sqrt(np.var(diff_input)/hjorth_activity) hjorth_diffmobility = np.sqrt(np.var(diff_diffinput)/np.var(diff_input)) hjorth_complexity = hjorth_diffmobility / hjorth_mobility ''' Statisctical features''' Kurt = kurtosis(data, fisher = False) Skewness = skew(data) Mean = np.mean(data) Median = np.median(data) Std = np.std(data) ''' Coefficient of variation ''' coeff_var = Std / Mean ''' First and second difference mean and max ''' sum1 = 0.0 sum2 = 0.0 Max1 = 0.0 Max2 = 0.0 for j in range(len(data)-1): sum1 += abs(data[j+1]-data[j]) first_diff[j] = abs(data[j+1]-data[j]) if first_diff[j] > Max1: Max1 = first_diff[j] # fi for j in range(len(data)-2): sum2 += abs(first_diff[j+1]-first_diff[j]) if abs(first_diff[j+1]-first_diff[j]) > Max2 : Max2 = first_diff[j+1]-first_diff[j] diff_mean1 = sum1 / (len(data)-1) diff_mean2 = sum2 / (len(data)-2) diff_max1 = Max1 diff_max2 = Max2 ''' Variance and Mean of Vertex to Vertex Slope ''' t_max = argrelextrema(data, np.greater)[0] amp_max = data[t_max] t_min = argrelextrema(data, np.less)[0] amp_min = data[t_min] tt =
np.concatenate((t_max,t_min),axis=0)
numpy.concatenate
# Created by <NAME> on 20190314 # # Kernel methods for 2048. # import numpy as np class My2048: """ My 2048 class. """ def __init__(self, game_size): """ :param game_size: 2D tuple for the game size. """ self.game_size = tuple(game_size) self.checkerboard = np.zeros(self.game_size, dtype=np.int32) # Spawn two blocks. for _ in range(2): self._spawn_new() def __str__(self): return str(self.checkerboard) def _spawn_new(self): """Spawn a new block. :return: True if success. """ # Get all indexes with 0 value. zero_indexes = list(zip(*np.where(self.checkerboard == 0))) if not len(zero_indexes): return False # Randomly pick up an index for spawning. target_index = np.random.randint(0, len(zero_indexes)) # Spawn. self.checkerboard[zero_indexes[target_index]] = 2 if np.random.random() < 0.75 else 4 return True def _move_left(self): """Take a left move action. All other actions are based on this method. :return: True if moved. """ is_moved = False for x in range(self.game_size[0]): has_merged_list = np.zeros(self.game_size[1], dtype=np.bool) for y in range(self.game_size[1]): # Skip 0 cells. if not self.checkerboard[x, y]: continue # Scan to the most left. for j in range(y, 0, -1): if not self.checkerboard[x][j-1]: is_moved = True self.checkerboard[x][j-1] = self.checkerboard[x][j] self.checkerboard[x][j] = 0 elif (self.checkerboard[x][j-1] == self.checkerboard[x][j]) and not has_merged_list[j-1]: # Merge if possible. has_merged_list[j-1] = True self.checkerboard[x][j-1] *= 2 self.checkerboard[x][j] = 0 return is_moved def move(self, direction, no_spawn=False): """ Take a move. :param direction: "up", "down", "left", "right". :param no_spawn: Do not spawn new block if True. :return: None. """ # Rotate the checkerboard. rotation_mapping = { "left": 0, "up": 1, "right": 2, "down": 3, } self.checkerboard =
np.rot90(self.checkerboard, k=rotation_mapping[direction], axes=(0, 1))
numpy.rot90
""" data generator for feeding data into pytorch models NOTE ---- In order to avoid potential error in the methods of slicing signals and rr intervals, one can check using the following code ```python from cfg import TrainCfg ds_train = CPSC2021(TrainCfg, task="qrs_detection", training=True) ds_val = CPSC2021(TrainCfg, task="qrs_detection", training=False) err_list = [] for idx, seg in enumerate(ds_train.segments): sig, lb = ds_train[idx] if sig.shape != (2,6000) or lb.shape != (750, 1): print("\n"+f"segment {seg} has sig.shape = {sig.shape}, lb.shape = {lb.shape}"+"\n") err_list.append(seg) print(f"{idx+1}/{len(ds_train)}", end="\r") for idx, seg in enumerate(ds_val.segments): sig, lb = ds_val[idx] if sig.shape != (2,6000) or lb.shape != (750, 1): print("\n"+f"segment {seg} has sig.shape = {sig.shape}, lb.shape = {lb.shape}"+"\n") err_list.append(seg) print(f"{idx+1}/{len(ds_val)}", end="\r") for idx, seg in enumerate(err_list): path = ds_train._get_seg_data_path(seg) os.remove(path) path = ds_train._get_seg_ann_path(seg) os.remove(path) print(f"{idx+1}/{len(err_list)}", end="\r") ``` and similarly for the task of `rr_lstm` """ import os, sys import json import re import time import multiprocessing as mp import random from itertools import repeat from copy import deepcopy from typing import Union, Optional, List, Tuple, Dict, Sequence, Set, NoReturn import numpy as np np.set_printoptions(precision=5, suppress=True) from scipy import signal as SS try: from tqdm.auto import tqdm except ModuleNotFoundError: from tqdm import tqdm import torch from torch.utils.data.dataset import Dataset from scipy.io import loadmat, savemat try: import torch_ecg except ModuleNotFoundError: import sys from os.path import dirname, abspath sys.path.insert(0, dirname(dirname(dirname(abspath(__file__))))) from torch_ecg.cfg import CFG from torch_ecg.databases import CPSC2021 as CR from torch_ecg._preprocessors import PreprocManager from torch_ecg.utils.utils_interval import mask_to_intervals from torch_ecg.utils.utils_signal import normalize, remove_spikes_naive from torch_ecg.utils.misc import ( list_sum, nildent, uniform, get_record_list_recursive3, ) from cfg import ( TrainCfg, ModelCfg, ) if ModelCfg.torch_dtype == torch.float64: torch.set_default_tensor_type(torch.DoubleTensor) __all__ = [ "CPSC2021", ] class CPSC2021(Dataset): """ 1. ECGs are preprocessed and stored in one folder 2. preprocessed ECGs are sliced with overlap to generate data and label for different tasks: the data files stores segments of fixed length of preprocessed ECGs, the annotation files contain "qrs_mask", and "af_mask" """ __DEBUG__ = False __name__ = "CPSC2021" def __init__(self, config:CFG, task:str, training:bool=True, lazy:bool=True) -> NoReturn: """ finished, checked, Parameters ---------- config: dict, configurations for the Dataset, ref. `cfg.TrainCfg` training: bool, default True, if True, the training set will be loaded, otherwise the test set """ super().__init__() self.config = deepcopy(config) self.reader = CR(db_dir=config.db_dir) if self.config.torch_dtype == torch.float64: self.dtype = np.float64 else: self.dtype = np.float32 self.allowed_preproc = list(set(["bandpass", "baseline_remove",]).intersection(set(self.config.keys()))) self.training = training self.lazy = lazy ppm_config = CFG(random=False) ppm_config.update(deepcopy(self.config)) ppm_config.pop("normalize") seg_ppm_config = CFG(random=False) seg_ppm_config.update(deepcopy(self.config)) seg_ppm_config.pop("bandpass") self.ppm = PreprocManager.from_config(ppm_config) self.seg_ppm = PreprocManager.from_config(seg_ppm_config) # create directories if needed # preprocess_dir stores pre-processed signals self.preprocess_dir = os.path.join(config.db_dir, "preprocessed") os.makedirs(self.preprocess_dir, exist_ok=True) # segments_dir for sliced segments of fixed length self.segments_base_dir = os.path.join(config.db_dir, "segments") os.makedirs(self.segments_base_dir, exist_ok=True) self.segment_name_pattern = "S_\d{1,3}_\d{1,2}_\d{7}" self.segment_ext = "mat" # rr_dir for sequence of rr intervals of fix length self.rr_seq_base_dir = os.path.join(config.db_dir, "rr_seq") os.makedirs(self.rr_seq_base_dir, exist_ok=True) self.rr_seq_name_pattern = "R_\d{1,3}_\d{1,2}_\d{7}" self.rr_seq_ext = "mat" self._all_data = None self._all_labels = None self._all_masks = None self.__set_task(task, lazy=self.lazy) def _load_all_data(self) -> NoReturn: """ """ self.__set_task(self.task, lazy=False) def __set_task(self, task:str, lazy:bool=True) -> NoReturn: """ finished, checked, Parameters ---------- task: str, name of the task, can be one of `TrainCfg.tasks` """ assert task.lower() in TrainCfg.tasks, f"illegal task \042{task}\042" if hasattr(self, "task") and self.task == task.lower() and self._all_data is not None and len(self._all_data)>0: return self.task = task.lower() self.all_classes = self.config[task].classes self.n_classes = len(self.config[task].classes) self.lazy = lazy self.seglen = self.config[task].input_len # alias, for simplicity split_res = self._train_test_split( train_ratio=self.config.train_ratio, force_recompute=False, ) if self.training: self.subjects = split_res.train else: self.subjects = split_res.test if self.task in ["qrs_detection", "main",]: # for qrs detection, or for the main task self.segments_dirs = CFG() self.__all_segments = CFG() self.segments_json = os.path.join(self.segments_base_dir, "segments.json") self._ls_segments() self.segments = list_sum([self.__all_segments[subject] for subject in self.subjects]) if self.__DEBUG__: self.segments = random.sample(self.segments, int(len(self.segments) * 0.01)) if self.training: random.shuffle(self.segments) # preload data self.fdr = FastDataReader(self.config, self.task, self.seg_ppm, self.segments_dirs, self.segments, self.segment_ext) if self.lazy: return self._all_data, self._all_labels, self._all_masks = [], [], [] with tqdm(range(len(self.fdr)), desc="Loading data", unit="records") as pbar: for idx in pbar: d, l, m = self.fdr[idx] self._all_data.append(d) self._all_labels.append(l) self._all_masks.append(m) self._all_data = np.array(self._all_data).astype(self.dtype) self._all_labels = np.array(self._all_labels).astype(self.dtype) if self.task == "qrs_detection": self._all_masks = None else: self._all_masks = np.array(self._all_masks).astype(self.dtype) elif self.task in ["rr_lstm",]: self.rr_seq_dirs = CFG() self.__all_rr_seq = CFG() self.rr_seq_json = os.path.join(self.rr_seq_base_dir, "rr_seq.json") self._ls_rr_seq() self.rr_seq = list_sum([self.__all_rr_seq[subject] for subject in self.subjects]) if self.__DEBUG__: self.rr_seq = random.sample(self.rr_seq, int(len(self.rr_seq) * 0.01)) if self.training: random.shuffle(self.rr_seq) # preload data self.fdr = FastDataReader(self.config, self.task, self.seg_ppm, self.rr_seq_dirs, self.rr_seq, self.rr_seq_ext) if self.lazy: return self._all_data, self._all_labels, self._all_masks = [], [], [] with tqdm(range(len(self.fdr)), desc="Loading data", unit="records") as pbar: for idx in pbar: d, l, m = self.fdr[idx] self._all_data.append(d) self._all_labels.append(l) self._all_masks.append(m) self._all_data = np.array(self._all_data).astype(self.dtype) self._all_labels =
np.array(self._all_labels)
numpy.array
import os import torch import numpy as np import scipy.misc import imageio import torch.nn.functional as F from PIL import Image from utils.dcrf import crf_inference from datasets.pascal_voc_ms import MultiscaleLoader, CropLoader class ResultWriter: def __init__(self, cfg, palette, out_path, verbose=True): self.cfg = cfg self.palette = palette self.root = out_path self.verbose = verbose def _mask_overlay(self, mask, image, alpha=0.3): """Creates an overlayed mask visualisation""" mask_rgb = self.__mask2rgb(mask) return alpha * image + (1 - alpha) * mask_rgb def __mask2rgb(self, mask): im = Image.fromarray(mask).convert("P") im.putpalette(self.palette) mask_rgb = np.array(im.convert("RGB"), dtype=np.float) return mask_rgb / 255. def _merge_masks(self, masks, labels, pads): """Combines masks at multiple scales Args: masks: list of masks obtained at different scales (already scaled to the original) Returns: pred: combined single mask pred_crf: refined mask with CRF """ raise NotImplementedError def save(self, img_path, img_orig, all_masks, labels, pads, gt_mask): img_name = os.path.basename(img_path).rstrip(".jpg") # converting original image to [0, 255] img_orig255 = np.round(255. * img_orig).astype(np.uint8) img_orig255 = np.transpose(img_orig255, [1,2,0]) img_orig255 = np.ascontiguousarray(img_orig255) merged_mask = self._merge_masks(all_masks, pads, labels, img_orig255.shape[:2]) pred = np.argmax(merged_mask, 0) # CRF pred_crf = crf_inference(img_orig255, merged_mask, t=10, scale_factor=1, labels=21) pred_crf = np.argmax(pred_crf, 0) filepath = os.path.join(self.root, img_name + '.png') # scipy.misc.imsave(filepath, pred.astype(np.uint8)) imageio.imsave(filepath, pred.astype(np.uint8)) filepath = os.path.join(self.root, "crf", img_name + '.png') # scipy.misc.imsave(filepath, pred_crf.astype(np.uint8)) imageio.imsave(filepath, pred_crf.astype(np.uint8)) if self.verbose: mask_gt = gt_mask.numpy() masks_all = np.concatenate([pred, pred_crf, mask_gt], 1).astype(np.uint8) images =
np.concatenate([img_orig]*3, 2)
numpy.concatenate
# -*- coding: utf-8 -*- from collections import defaultdict, OrderedDict from itertools import permutations import math import pytest try: import numpy as np except ImportError: np = None from chempy import Equilibrium, Reaction, ReactionSystem, Substance from chempy.thermodynamics.expressions import MassActionEq from chempy.units import ( SI_base_registry, get_derived_unit, allclose, units_library, linspace, to_unitless, default_constants as const, default_units as u, ) from chempy.util._expr import Expr from chempy.util.testing import requires from .test_rates import _get_SpecialFraction_rsys from ..arrhenius import ArrheniusParam from ..rates import Arrhenius, MassAction, Radiolytic, RampedTemp from .._rates import ShiftedTPoly from ..ode import ( get_odesys, chained_parameter_variation, _mk_dedim, _create_odesys as create_odesys, ) from ..integrated import dimerization_irrev, binary_rev @requires("numpy", "pyodesys") def test_get_odesys_1(): k = 0.2 a = Substance("A") b = Substance("B") r = Reaction({"A": 1}, {"B": 1}, param=k) rsys = ReactionSystem([r], [a, b]) assert sorted(rsys.substances.keys()) == ["A", "B"] odesys = get_odesys(rsys, include_params=True)[0] c0 = { "A": 1.0, "B": 3.0, } t = np.linspace(0.0, 10.0) xout, yout, info = odesys.integrate(t, c0) yref = np.zeros((t.size, 2)) yref[:, 0] = np.exp(-k * t) yref[:, 1] = 4 - np.exp(-k * t) assert np.allclose(yout, yref) @requires("numpy", "pyodesys", "sympy") def test_get_odesys__rate_exprs_cb(): k = 0.2 a = Substance("A") b = Substance("B") r = Reaction({"A": 1}, {"B": 1}, param=k) rsys = ReactionSystem([r], [a, b]) assert sorted(rsys.substances.keys()) == ["A", "B"] odesys, extra = get_odesys(rsys) c0 = {"A": 1.0, "B": 3.0} t = np.linspace(0.0, 10.0) res = odesys.integrate(t, c0) yref = np.zeros((t.size, 2)) yref[:, 0] = np.exp(-k * t) yref[:, 1] = 4 - np.exp(-k * t) assert np.allclose(res.yout, yref) rate = extra["rate_exprs_cb"](res.xout, res.yout, res.params) assert np.allclose(rate[:, 0], k * yref[:, 0]) @requires("numpy", "pyodesys") def test_get_odesys_2(): g = Radiolytic([3.14]) a = Substance("A") b = Substance("B") r = Reaction({"A": 1}, {"B": 1}, param=g) rsys = ReactionSystem([r], [a, b]) odesys = get_odesys(rsys, include_params=True)[0] c0 = { "A": 1.0, "B": 3.0, } t = np.linspace(0.0, 0.1) xout, yout, info = odesys.integrate( t, rsys.as_per_substance_array(c0), {"doserate": 2.72, "density": 0.998} ) yref = np.zeros((t.size, 2)) k = 3.14 * 2.72 * 0.998 yref[:, 0] = 1 - k * t yref[:, 1] = 3 + k * t assert np.allclose(yout, yref) @requires(units_library, "pyodesys") def test_get_odesys_3(): M = u.molar s = u.second mol = u.mol m = u.metre substances = list(map(Substance, "H2O H+ OH-".split())) dissociation = Reaction({"H2O": 1}, {"H+": 1, "OH-": 1}, 2.47e-5 / s) recombination = Reaction({"H+": 1, "OH-": 1}, {"H2O": 1}, 1.37e11 / M / s) rsys = ReactionSystem([dissociation, recombination], substances) odesys = get_odesys( rsys, include_params=True, unit_registry=SI_base_registry, output_conc_unit=M )[0] c0 = {"H2O": 55.4 * M, "H+": 1e-7 * M, "OH-": 1e-4 * mol / m ** 3} x, y, p = odesys.to_arrays( -42 * u.second, rsys.as_per_substance_array(c0, unit=M), () ) fout = odesys.f_cb(x, y, p) time_unit = get_derived_unit(SI_base_registry, "time") conc_unit = get_derived_unit(SI_base_registry, "concentration") r1 = to_unitless(55.4 * 2.47e-5 * M / s, conc_unit / time_unit) r2 = to_unitless(1e-14 * 1.37e11 * M / s, conc_unit / time_unit) assert np.all(abs(fout[:, 0] - r2 + r1)) < 1e-10 assert np.all(abs(fout[:, 1] - r1 + r2)) < 1e-10 assert np.all(abs(fout[:, 2] - r1 + r2)) < 1e-10 @requires(units_library, "pyodesys") def test_get_odesys__with_units(): a = Substance("A") b = Substance("B") molar = u.molar second = u.second r = Reaction({"A": 2}, {"B": 1}, param=1e-3 / molar / second) rsys = ReactionSystem([r], [a, b]) odesys = get_odesys(rsys, include_params=True, unit_registry=SI_base_registry)[0] c0 = {"A": 13 * u.mol / u.metre ** 3, "B": 0.2 * u.molar} conc_unit = get_derived_unit(SI_base_registry, "concentration") t = np.linspace(0, 10) * u.hour xout, yout, info = odesys.integrate( t, rsys.as_per_substance_array(c0, unit=conc_unit), atol=1e-10, rtol=1e-12 ) t_unitless = to_unitless(xout, u.second) Aref = dimerization_irrev(t_unitless, 1e-6, 13.0) # Aref = 1/(1/13 + 2*1e-6*t_unitless) yref = np.zeros((xout.size, 2)) yref[:, 0] = Aref yref[:, 1] = 200 + (13 - Aref) / 2 assert allclose(yout, yref * conc_unit) @requires("numpy", "pyodesys") def test_SpecialFraction(): k, kprime = 3.142, 2.718 rsys = _get_SpecialFraction_rsys(k, kprime) odesys = get_odesys(rsys, include_params=True)[0] c0 = {"H2": 13, "Br2": 17, "HBr": 19} r = k * c0["H2"] * c0["Br2"] ** (3 / 2) / (c0["Br2"] + kprime * c0["HBr"]) ref = rsys.as_per_substance_array({"H2": -r, "Br2": -r, "HBr": 2 * r}) res = odesys.f_cb(0, rsys.as_per_substance_array(c0)) assert np.allclose(res, ref) @requires(units_library, "pyodesys") def test_SpecialFraction_with_units(): k, kprime = 3.142 * u.s ** -1 * u.molar ** -0.5, 2.718 rsys = _get_SpecialFraction_rsys(k, kprime) odesys = get_odesys(rsys, include_params=True, unit_registry=SI_base_registry)[0] c0 = {"H2": 13 * u.molar, "Br2": 16 * u.molar, "HBr": 19 * u.molar} r = k * c0["H2"] * c0["Br2"] ** (3 / 2) / (c0["Br2"] + kprime * c0["HBr"]) conc_unit = u.mol / u.metre ** 3 rate_unit = conc_unit / u.second ref = rsys.as_per_substance_array( {"H2": -r, "Br2": -r, "HBr": 2 * r}, unit=rate_unit ) res = odesys.f_cb(0, rsys.as_per_substance_array(c0, unit=conc_unit)) assert allclose(to_unitless(ref, rate_unit), res) @requires("pyodesys") def test_ode_with_global_parameters(): ratex = MassAction(Arrhenius([1e10, 40e3 / 8.3145])) rxn = Reaction({"A": 1}, {"B": 1}, ratex) rsys = ReactionSystem([rxn], "A B") odesys, extra = get_odesys(rsys, include_params=False) param_keys, unique_keys, p_units = map( extra.get, "param_keys unique p_units".split() ) conc = {"A": 3, "B": 5} x, y, p = odesys.to_arrays(-37, conc, {"temperature": 298.15}) fout = odesys.f_cb(x, y, p) ref = 3 * 1e10 * np.exp(-40e3 / 8.3145 / 298.15) assert np.all(abs((fout[:, 0] + ref) / ref) < 1e-14) assert np.all(abs((fout[:, 1] - ref) / ref) < 1e-14) @requires("pyodesys") def test_get_ode__ArrheniusParam(): rxn = Reaction({"A": 1}, {"B": 1}, None) rxn.param = ArrheniusParam(1e10, 40e3) rsys = ReactionSystem([rxn], "A B") odesys = get_odesys(rsys, include_params=True)[0] conc = {"A": 3, "B": 5} x, y, p = odesys.to_arrays(-37, conc, {"temperature": 200}) fout = odesys.f_cb(x, y, p) ref = 3 * 1e10 * np.exp(-40e3 / 8.314472 / 200) assert np.all(abs((fout[:, 0] + ref) / ref) < 1e-14) assert np.all(abs((fout[:, 1] - ref) / ref) < 1e-14) @requires("pyodesys") def test_get_ode__Radiolytic(): rad = Radiolytic([2.4e-7]) rxn = Reaction({"A": 4, "B": 1}, {"C": 3, "D": 2}, rad) rsys = ReactionSystem([rxn], "A B C D") odesys = get_odesys(rsys, include_params=True)[0] c = {"A": 3, "B": 5, "C": 11, "D": 13} x, y, p = odesys.to_arrays(-37, c, {"doserate": 0.4, "density": 0.998}) fout = odesys.f_cb(x, y, p) r = 2.4e-7 * 0.4 * 0.998 ref = [-4 * r, -r, 3 * r, 2 * r] assert np.all(abs((fout - ref) / ref) < 1e-14) @requires("pyodesys", units_library) def test_get_ode__Radiolytic__units(): rad = Radiolytic([2.4e-7 * u.mol / u.joule]) rxn = Reaction({"A": 4, "B": 1}, {"C": 3, "D": 2}, rad) rsys = ReactionSystem([rxn], "A B C D") odesys = get_odesys(rsys, include_params=True, unit_registry=SI_base_registry)[0] conc = {"A": 3 * u.molar, "B": 5 * u.molar, "C": 11 * u.molar, "D": 13 * u.molar} x, y, p = odesys.to_arrays( -37 * u.second, conc, { "doserate": 0.4 * u.gray / u.second, "density": 0.998 * u.kg / u.decimetre ** 3, }, ) fout = odesys.f_cb(x, y, p) # f_cb does not carry any units r = 2.4e-7 * 0.4 * 0.998 * 1e3 # mol/m3 ref = [-4 * r, -r, 3 * r, 2 * r] assert np.all(abs((fout - ref) / ref) < 1e-14) @requires("pyodesys", units_library) def test_get_ode__Radiolytic__units__multi(): rad = Radiolytic([2.4e-7 * u.mol / u.joule]) rxn = Reaction({"A": 4, "B": 1}, {"C": 3, "D": 2}, rad) rsys = ReactionSystem([rxn], "A B C D") odesys = get_odesys(rsys, include_params=True, unit_registry=SI_base_registry)[0] conc = {"A": 3 * u.molar, "B": 5 * u.molar, "C": 11 * u.molar, "D": 13 * u.molar} doserates = [dr * u.gray / u.second for dr in [0.1, 0.2, 0.3, 0.4]] results = odesys.integrate( 37 * u.second, conc, {"doserate": doserates, "density": 0.998 * u.kg / u.decimetre ** 3}, ) assert len(results) == 4 for i, r in enumerate(results): dr = r.params[odesys.param_names.index("doserate")] assert dr.ndim == 0 or len(dr) == 1 assert dr == doserates[i] class Density(Expr): """ Arguments: rho0 drhodT T0 """ parameter_keys = ("temperature",) kw = {} def __call__(self, variables, backend=None): rho0, drhodT, T0 = self.all_args(variables) return rho0 + drhodT * (variables["temperature"] - T0) @requires("pyodesys") def test_get_ode__Radiolytic__substitutions(): rad = Radiolytic([2.4e-7]) rxn = Reaction({"A": 4, "B": 1}, {"C": 3, "D": 2}, rad) rsys = ReactionSystem([rxn], "A B C D") substance_rho = Density([1, -1e-3, 273.15]) odesys = get_odesys( rsys, include_params=True, substitutions={"density": substance_rho} )[0] conc = {"A": 3, "B": 5, "C": 11, "D": 13} state = {"doserate": 0.4, "temperature": 298.15} x, y, p = odesys.to_arrays(-37, conc, state) fout = odesys.f_cb(x, y, p) r = 2.4e-7 * 0.4 * substance_rho({"temperature": 298.15}) ref = [-4 * r, -r, 3 * r, 2 * r] assert np.all(abs((fout - ref) / ref) < 1e-14) @requires("pyodesys", units_library) def test_get_ode__Radiolytic__substitutions__units(): rad = Radiolytic([2.4e-7 * u.mol / u.joule]) rxn = Reaction({"A": 4, "B": 1}, {"C": 3, "D": 2}, rad) rsys = ReactionSystem([rxn], "A B C D") g_dm3 = u.gram / u.decimetre ** 3 kg_dm3 = u.kg / u.decimetre ** 3 substance_rho = Density([1 * kg_dm3, -1 * g_dm3 / u.kelvin, 273.15 * u.kelvin]) odesys = get_odesys( rsys, include_params=True, unit_registry=SI_base_registry, substitutions={"density": substance_rho}, )[0] conc = {"A": 3 * u.molar, "B": 5 * u.molar, "C": 11 * u.molar, "D": 13 * u.molar} x, y, p = odesys.to_arrays( -37 * u.second, conc, {"doserate": 0.4 * u.gray / u.second, "temperature": 298.15 * u.kelvin}, ) fout = odesys.f_cb(x, y, p) r = 2.4e-7 * 0.4 * 0.975 * 1e3 # mol/m3/s ref = [-4 * r, -r, 3 * r, 2 * r] assert np.all(abs((fout - ref) / ref) < 1e-14) @requires("pyodesys", units_library) def test_get_ode__TPoly(): rate = MassAction( ShiftedTPoly([273.15 * u.K, 10 / u.molar / u.s, 2 / u.molar / u.s / u.K]) ) rxn = Reaction({"A": 1, "B": 1}, {"C": 3, "D": 2}, rate, {"A": 3}) rsys = ReactionSystem([rxn], "A B C D") odesys = get_odesys(rsys, unit_registry=SI_base_registry)[0] conc = {"A": 3 * u.molar, "B": 5 * u.molar, "C": 11 * u.molar, "D": 13 * u.molar} x, y, p = odesys.to_arrays(-37 * u.second, conc, {"temperature": 298.15 * u.kelvin}) fout = odesys.f_cb(x, y, p) r = 3 * 5 * (10 + 2 * 25) * 1000 # mol/m3/s ref = [-4 * r, -r, 3 * r, 2 * r] assert np.all(abs((fout - ref) / ref) < 1e-14) @requires("pyodesys", units_library) def test_get_odesys__time_dep_rate(): class RampedRate(Expr): argument_names = ("rate_constant", "ramping_rate") def __call__(self, variables, reaction, backend=math): rate_constant, ramping_rate = self.all_args(variables, backend=backend) return rate_constant * ramping_rate * variables["time"] rate = MassAction(RampedRate([7, 2])) rxn = Reaction({"A": 1}, {"B": 3}, rate) rsys = ReactionSystem([rxn], "A B") odesys = get_odesys(rsys)[0] conc = {"A": 3, "B": 11} x, y, p = odesys.to_arrays([5, 13, 17], conc, ()) fout = odesys.f_cb(x, y, p) r = 2 * 7 * 3 ref = np.array([[-r * 5, -r * 13, -r * 17], [r * 5 * 3, r * 13 * 3, r * 17 * 3]]).T assert np.allclose(fout, ref) @requires("pyodesys", units_library) def test_get_odesys__time_dep_temperature(): import sympy as sp def refA(t, A0, A, Ea_over_R, T0, dTdt): T = T0 + dTdt * t d_Ei = sp.Ei(-Ea_over_R / T0).n(100).round(90) - sp.Ei(-Ea_over_R / T).n( 100 ).round(90) d_Texp = T0 * sp.exp(-Ea_over_R / T0) - T * sp.exp(-Ea_over_R / T) return A0 * sp.exp(A / dTdt * (Ea_over_R * d_Ei + d_Texp)).n(30) params = A0, A, Ea_over_R, T0, dTdt = [13, 1e10, 56e3 / 8, 273, 2] B0 = 11 rate = MassAction(Arrhenius([A, Ea_over_R])) rxn = Reaction({"A": 1}, {"B": 3}, rate) rsys = ReactionSystem([rxn], "A B") rt = RampedTemp([T0, dTdt], ("init_temp", "ramp_rate")) odesys, extra = get_odesys(rsys, False, substitutions={"temperature": rt}) all_pk, unique, p_units = map(extra.get, "param_keys unique p_units".split()) conc = {"A": A0, "B": B0} tout = [2, 5, 10] for ramp_rate in [2, 3, 4]: unique["ramp_rate"] = ramp_rate xout, yout, info = odesys.integrate(10, conc, unique, atol=1e-10, rtol=1e-12) params[-1] = ramp_rate Aref = np.array([float(refA(t, *params)) for t in xout]) # Aref = 1/(1/13 + 2*1e-6*t_unitless) yref = np.zeros((xout.size, 2)) yref[:, 0] = Aref yref[:, 1] = B0 + 3 * (A0 - Aref) assert allclose(yout, yref) unique["ramp_rate"] = 2 x, y, p = odesys.to_arrays(tout, conc, unique) fout = odesys.f_cb(x, y, p) def r(t): return A * np.exp(-Ea_over_R / (T0 + dTdt * t)) * A0 # refA(t, *params) ref = np.array([[-r(2), -r(5), -r(10)], [3 * r(2), 3 * r(5), 3 * r(10)]]).T assert np.allclose(fout, ref) @requires("numpy", "pyodesys") def test_get_odesys__late_binding(): def _gibbs(args, T, R, backend, **kwargs): H, S = args return backend.exp(-(H - T * S) / (R * T)) def _eyring(args, T, R, k_B, h, backend, **kwargs): H, S = args return k_B / h * T * backend.exp(-(H - T * S) / (R * T)) gibbs_pk = ("temperature", "molar_gas_constant") eyring_pk = gibbs_pk + ("Boltzmann_constant", "Planck_constant") GibbsEC = MassActionEq.from_callback( _gibbs, argument_names=("H", "S"), parameter_keys=gibbs_pk ) EyringMA = MassAction.from_callback( _eyring, argument_names=("H", "S"), parameter_keys=eyring_pk ) uk_equil = ("He_assoc", "Se_assoc") beta = GibbsEC(unique_keys=uk_equil) # equilibrium parameters uk_kinet = ("Ha_assoc", "Sa_assoc") bimol_barrier = EyringMA(unique_keys=uk_kinet) # activation parameters eq = Equilibrium({"Fe+3", "SCN-"}, {"FeSCN+2"}, beta) rsys = ReactionSystem(eq.as_reactions(kf=bimol_barrier)) odesys, extra = get_odesys(rsys, include_params=False) pk, unique, p_units = map(extra.get, "param_keys unique p_units".split()) assert sorted(unique) == sorted(uk_equil + uk_kinet) assert sorted(pk) == sorted(eyring_pk) @requires("numpy", "pyodesys") def test_get_odesys__ScaledSys(): from pyodesys.symbolic import ScaledSys k = 0.2 a = Substance("A") b = Substance("B") r = Reaction({"A": 1}, {"B": 1}, param=k) rsys = ReactionSystem([r], [a, b]) assert sorted(rsys.substances.keys()) == ["A", "B"] odesys = get_odesys(rsys, include_params=True, SymbolicSys=ScaledSys)[0] c0 = { "A": 1.0, "B": 3.0, } t = np.linspace(0.0, 10.0) xout, yout, info = odesys.integrate(t, c0) yref =
np.zeros((t.size, 2))
numpy.zeros
import itertools import math import numpy as np import pandas as pd import scipy.stats import statsmodels.stats.multitest from figures.figure1 import find_leaves from figures.util import experiments, mcc, get_subplots, produce_figure, plot_grid, plot_annotations, plot_scatter, \ to_col_name def generate_qval_data(data): regs = data.region.unique() leaves = regs[find_leaves(regs)] data = data[data.region.isin(leaves)] regs = leaves qvals = pd.DataFrame({'region': regs, 'region_name': [r['name'] for r in mcc.get_structure_tree().get_structures_by_acronym( regs)]}).set_index('region').sort_index() strains = { "BL6": 'C57BL/6J', "CD1": 'FVB.CD1(ICR)', "ALL": None } params = ['count3d', 'density3d', 'coverage', "volume"] genders = ['M', 'F'] groups = { (g, s[0], p): data[(data.gender == g) & (data.strain == s[1])].groupby('region')[to_col_name(data, p)].apply(np.array).sort_index() for g, s, p in itertools.product(genders, strains.items(), params) if s[1] is not None } def mdn(a): return np.median(a[~np.isnan(a)]) for p in params: for g in genders: local_data = pd.DataFrame({'left': groups[(g, 'BL6', p)], 'right': groups[(g, 'CD1', p)]}).sort_index() pvals = produce_pvals(local_data, scipy.stats.ranksums) pvals['sign'] = 1 qvals[f"BL6_vs_CD1_{g}_{p}_ranksum_rejected"] = pvals.rejected qvals[f"BL6_vs_CD1_{g}_{p}_ranksum_qval"] = pvals.qval * pvals.sign qvals[f"BL6_vs_CD1_{g}_{p}_ranksum_pval"] = pvals.pval * pvals.sign qvals[f"BL6_vs_CD1_{g}_{p}_ranksum_log10(qval)"] = -np.log10(pvals.pval) * pvals.sign qvals[f"BL6_vs_CD1_{g}_{p}_effect"] = 2 * (local_data.left.apply(mdn) - local_data.right.apply(mdn)) / (local_data.left.apply(mdn) + local_data.right.apply(mdn)) for strain_name, strain in strains.items(): strain_data = data if strain is not None: strain_data = strain_data[strain_data.strain == strain] males = strain_data[strain_data.gender == 'M'] females = strain_data[strain_data.gender == 'F'] male_groups = males.groupby('region') female_groups = females.groupby('region') for param in params: male_groups_data = male_groups[to_col_name(strain_data, param)] female_groups_data = female_groups[to_col_name(strain_data, param)] male_data = male_groups_data.apply(np.array).sort_index() female_data = female_groups_data.apply(np.array).sort_index() qvals[f'{strain_name}_{param}_male_means'] = male_groups_data.median().sort_index() qvals[f'{strain_name}_{param}_female_means'] = female_groups_data.median().sort_index() qvals[f'{strain_name}_male_vs_female_{param}_effect'] = 2 * ( qvals[f'{strain_name}_{param}_male_means'] - qvals[f'{strain_name}_{param}_female_means']) / ( qvals[f'{strain_name}_{param}_male_means'] + qvals[f'{strain_name}_{param}_female_means']) for method_name, method in {'t-test': scipy.stats.ttest_ind, 'ranksum': scipy.stats.ranksums}.items(): local_data = pd.DataFrame({'left': male_data, 'right': female_data}).sort_index() pvals = produce_pvals(local_data, method) pvals['sign'] = np.sign( qvals[f'{strain_name}_{param}_male_means'] - qvals[f'{strain_name}_{param}_female_means']) qvals[f"{strain_name}_male_vs_female_{param}_{method_name}_rejected"] = pvals.rejected qvals[f"{strain_name}_male_vs_female_{param}_{method_name}_qval"] = pvals.qval * pvals.sign qvals[f"{strain_name}_male_vs_female_{param}_{method_name}_pval"] = pvals.pval * pvals.sign qvals[f"{strain_name}_male_vs_female_{param}_{method_name}_log10(qval)"] = -np.log10( pvals.pval) * pvals.sign for gender, gender_groups in {'male': male_groups, 'female': female_groups}.items(): for param in ['count', 'density', 'region_area']: left_data = gender_groups[to_col_name(strain_data, f'{param}_left')].apply(np.array).sort_index() right_data = gender_groups[to_col_name(strain_data, f'{param}_right')].apply(np.array).sort_index() qvals[f'{strain_name}_{param}_{gender}_left_means'] = gender_groups[to_col_name(strain_data, f'{param}_left')].median().sort_index() qvals[f'{strain_name}_{param}_{gender}_right_means'] = gender_groups[to_col_name(strain_data, f'{param}_right')].median().sort_index() qvals[f'{strain_name}_{gender}_left_vs_right_{param}_effect'] = 2 * ( qvals[f'{strain_name}_{param}_{gender}_left_means'] - qvals[f'{strain_name}_{param}_{gender}_right_means']) / ( qvals[f'{strain_name}_{param}_{gender}_left_means'] + qvals[f'{strain_name}_{param}_{gender}_right_means']) for method_name, method in {'t-test': scipy.stats.ttest_ind, 'ranksum': scipy.stats.ranksums}.items(): local_data = pd.DataFrame({'left': left_data, 'right': right_data}).sort_index() pvals = produce_pvals(local_data, method) pvals['sign'] = np.sign( qvals[f'{strain_name}_{param}_{gender}_left_means'] - qvals[f'{strain_name}_{param}_{gender}_right_means']) qvals[f"{strain_name}_left_{param}_{gender}_rejected"] = pvals.rejected qvals[f"{strain_name}_left_vs_right_{param}_{gender}_{method_name}_rejected"] = pvals.rejected qvals[f"{strain_name}_left_vs_right_{param}_{gender}_{method_name}_qval"] = pvals.qval * pvals.sign qvals[f"{strain_name}_left_vs_right_{param}_{gender}_{method_name}_pval"] = pvals.pval * pvals.sign qvals[f"{strain_name}_left_vs_right_{param}_{gender}_{method_name}_log10(qval)"] = -np.log10( pvals.qval) * pvals.sign return qvals def produce_pvals(local_data, method): regs, pvals = zip(*[(t.Index, method(t.left[~np.isnan(t.left)], t.right[~np.isnan(t.right)]).pvalue) if min(t.left[~np.isnan(t.left)].shape[0], t.right[~np.isnan(t.right)].shape[0]) >= 20 else (t.Index, math.nan) for t in local_data.itertuples()]) pvals = np.array(pvals) rejected, pval_corrected = statsmodels.stats.multitest.fdrcorrection(pvals[~np.isnan(pvals)], alpha=0.1) rej = np.ones_like(pvals) rej[~np.isnan(pvals)] = rejected rej[np.isnan(pvals)] = math.nan qvals = pvals.copy() qvals[~np.isnan(pvals)] = pval_corrected pvals = pd.DataFrame({'region': regs, 'pval': pvals, 'qval': qvals, 'rejected': rej}).set_index( 'region').sort_index() return pvals def plot_qval_vs_qval(qvals, strain, prefix, highlight_col, x_col, y_col, filename): regions = qvals.index.to_numpy() fig, ax = get_subplots() highlight = qvals[strain + '_' + prefix + "_" + highlight_col + '_qval'].to_numpy().copy() highlight_rejected = qvals[strain + '_' + prefix + "_" + highlight_col + '_rejected'].to_numpy() highlight[highlight_rejected == 0] = 1 highlight[np.isnan(highlight)] = 1 x = qvals[strain + '_' + prefix + "_" + x_col + '_log10(qval)'].to_numpy() y = qvals[strain + '_' + prefix + "_" + y_col + '_log10(qval)'].to_numpy() non_nans = (~
np.isnan(x)
numpy.isnan
#!/usr/bin/env python # -*- coding: utf-8 -*- # pylint: disable=no-member # pylint: disable=not-an-iterable """ Functions __author__: <NAME>, <NAME>, <NAME> """ import numpy as np from scipy import special from pymdp.core import utils from itertools import chain EPS_VAL = 1e-16 # global constant for use in spm_log() function def spm_dot(X, x, dims_to_omit=None): """ Dot product of a multidimensional array with `x`. The dimensions in `dims_to_omit` will not be summed across during the dot product Parameters ---------- - `x` [1D numpy.ndarray] - either vector or array of arrays The alternative array to perform the dot product with - `dims_to_omit` [list :: int] (optional) Which dimensions to omit Returns ------- - `Y` [1D numpy.ndarray] - the result of the dot product """ # Construct dims to perform dot product on if utils.is_arr_of_arr(x): # dims = list((np.arange(0, len(x)) + X.ndim - len(x)).astype(int)) dims = list(range(X.ndim - len(x),len(x)+X.ndim - len(x))) # dims = list(range(X.ndim)) else: dims = [1] x = utils.to_arr_of_arr(x) if dims_to_omit is not None: arg_list = [X, list(range(X.ndim))] + list(chain(*([x[xdim_i],[dims[xdim_i]]] for xdim_i in range(len(x)) if xdim_i not in dims_to_omit))) + [dims_to_omit] else: arg_list = [X, list(range(X.ndim))] + list(chain(*([x[xdim_i],[dims[xdim_i]]] for xdim_i in range(len(x))))) + [[0]] Y = np.einsum(*arg_list) # check to see if `Y` is a scalar if np.prod(Y.shape) <= 1.0: Y = Y.item() Y = np.array([Y]).astype("float64") return Y def spm_dot_classic(X, x, dims_to_omit=None): """ Dot product of a multidimensional array with `x`. The dimensions in `dims_to_omit` will not be summed across during the dot product Parameters ---------- - `x` [1D numpy.ndarray] - either vector or array of arrays The alternative array to perform the dot product with - `dims_to_omit` [list :: int] (optional) Which dimensions to omit Returns ------- - `Y` [1D numpy.ndarray] - the result of the dot product """ # Construct dims to perform dot product on if utils.is_arr_of_arr(x): dims = (np.arange(0, len(x)) + X.ndim - len(x)).astype(int) else: dims = np.array([1], dtype=int) x = utils.to_arr_of_arr(x) # delete ignored dims if dims_to_omit is not None: if not isinstance(dims_to_omit, list): raise ValueError("`dims_to_omit` must be a `list` of `int`") dims = np.delete(dims, dims_to_omit) if len(x) == 1: x = np.empty([0], dtype=object) else: x = np.delete(x, dims_to_omit) # compute dot product for d in range(len(x)): s = np.ones(np.ndim(X), dtype=int) s[dims[d]] = np.shape(x[d])[0] X = X * x[d].reshape(tuple(s)) # X = np.sum(X, axis=dims[d], keepdims=True) Y = np.sum(X, axis=tuple(dims.astype(int))).squeeze() # Y = np.squeeze(X) # check to see if `Y` is a scalar if np.prod(Y.shape) <= 1.0: Y = Y.item() Y = np.array([Y]).astype("float64") return Y def spm_dot_old(X, x, dims_to_omit=None, obs_mode=False): """ Dot product of a multidimensional array with `x`. The dimensions in `dims_to_omit` will not be summed across during the dot product #TODO: we should look for an alternative to obs_mode Parameters ---------- - `x` [1D numpy.ndarray] - either vector or array of arrays The alternative array to perform the dot product with - `dims_to_omit` [list :: int] (optional) Which dimensions to omit Returns ------- - `Y` [1D numpy.ndarray] - the result of the dot product """ # Construct dims to perform dot product on if utils.is_arr_of_arr(x): dims = (np.arange(0, len(x)) + X.ndim - len(x)).astype(int) else: if obs_mode is True: """ @NOTE Case when you're getting the likelihood of an observation under the generative model. Equivalent to something like self.values[np.where(x),:] when `x` is a discrete 'one-hot' observation vector """ dims = np.array([0], dtype=int) else: """ @NOTE Case when `x` leading dimension matches the lagging dimension of `values` E.g. a more 'classical' dot product of a likelihood with hidden states """ dims = np.array([1], dtype=int) x = utils.to_arr_of_arr(x) # delete ignored dims if dims_to_omit is not None: if not isinstance(dims_to_omit, list): raise ValueError("`dims_to_omit` must be a `list` of `int`") dims = np.delete(dims, dims_to_omit) if len(x) == 1: x = np.empty([0], dtype=object) else: x = np.delete(x, dims_to_omit) # compute dot product for d in range(len(x)): s = np.ones(np.ndim(X), dtype=int) s[dims[d]] = np.shape(x[d])[0] X = X * x[d].reshape(tuple(s)) # X = np.sum(X, axis=dims[d], keepdims=True) Y = np.sum(X, axis=tuple(dims.astype(int))).squeeze() # Y = np.squeeze(X) # check to see if `Y` is a scalar if np.prod(Y.shape) <= 1.0: Y = Y.item() Y = np.array([Y]).astype("float64") return Y def spm_cross(x, y=None, *args): """ Multi-dimensional outer product Parameters ---------- - `x` [np.ndarray] || [Categorical] (optional) The values to perfrom the outer-product with. If empty, then the outer-product is taken between x and itself. If y is not empty, then outer product is taken between x and the various dimensions of y. - `args` [np.ndarray] || [Categorical] (optional) Remaining arrays to perform outer-product with. These extra arrays are recursively multiplied with the 'initial' outer product (that between X and x). Returns ------- - `z` [np.ndarray] || [Categorical] The result of the outer-product """ if len(args) == 0 and y is None: if utils.is_arr_of_arr(x): z = spm_cross(*list(x)) elif np.issubdtype(x.dtype, np.number): z = x else: raise ValueError(f"Invalid input to spm_cross ({x})") return z if utils.is_arr_of_arr(x): x = spm_cross(*list(x)) if y is not None and utils.is_arr_of_arr(y): y = spm_cross(*list(y)) reshape_dims = tuple(list(x.shape) + list(np.ones(y.ndim, dtype=int))) A = x.reshape(reshape_dims) reshape_dims = tuple(list(np.ones(x.ndim, dtype=int)) + list(y.shape)) B = y.reshape(reshape_dims) z = np.squeeze(A * B) for x in args: z = spm_cross(z, x) return z def dot_likelihood(A,obs): s = np.ones(np.ndim(A), dtype = int) s[0] = obs.shape[0] X = A * obs.reshape(tuple(s)) X = np.sum(X, axis=0, keepdims=True) LL = np.squeeze(X) # check to see if `LL` is a scalar if np.prod(LL.shape) <= 1.0: LL = LL.item() LL = np.array([LL]).astype("float64") return LL def get_joint_likelihood(A, obs, num_states): # deal with single modality case if type(num_states) is int: num_states = [num_states] A = utils.to_arr_of_arr(A) obs = utils.to_arr_of_arr(obs) ll = np.ones(tuple(num_states)) for modality in range(len(A)): ll = ll * dot_likelihood(A[modality], obs[modality]) return ll def get_joint_likelihood_seq(A, obs, num_states): ll_seq = np.empty(len(obs), dtype=object) for t in range(len(obs)): ll_seq[t] = get_joint_likelihood(A, obs[t], num_states) return ll_seq def spm_norm(A): """ Returns normalization of Categorical distribution, stored in the columns of A. """ A = A + EPS_VAL normed_A = np.divide(A, A.sum(axis=0)) return normed_A def spm_log(arr): """ Adds small epsilon value to an array before natural logging it """ return np.log(arr + EPS_VAL) def spm_wnorm(A): """ Returns Expectation of logarithm of Dirichlet parameters over a set of Categorical distributions, stored in the columns of A. """ A = A + EPS_VAL norm = np.divide(1.0, np.sum(A, axis=0)) avg = np.divide(1.0, A) wA = norm - avg return wA def spm_betaln(z): """ Log of the multivariate beta function of a vector. @NOTE this function computes across columns if `z` is a matrix """ return np.sum(special.gammaln(z), axis=0) - special.gammaln(np.sum(z, axis=0)) def softmax(dist, return_numpy=True): """ Computes the softmax function on a set of values """ if utils.is_distribution(dist): if dist.IS_AOA: output = [] for i in range(len(dist.values)): output[i] = softmax(dist.values[i], return_numpy=True) output = utils.to_categorical(np.array(output)) else: dist = np.copy(dist.values) output = dist - dist.max(axis=0) output = np.exp(output) output = output /
np.sum(output, axis=0)
numpy.sum
from coopihc.base.StateElement import StateElement from coopihc.base.utils import ( StateNotContainedError, StateNotContainedWarning, ) from coopihc.base.elements import integer_set, box_space import numpy import pytest import json import copy from tabulate import tabulate def test_array_init_integer(): x = StateElement(2, integer_set(3)) assert hasattr(x, "space") assert x.shape == () assert x == 2 def test_array_init_numeric(): x = StateElement( numpy.zeros((2, 2)), box_space(numpy.ones((2, 2))), out_of_bounds_mode="error" ) assert hasattr(x, "space") assert x.shape == (2, 2) assert (x == numpy.zeros((2, 2))).all() def test_array_init(): test_array_init_integer() test_array_init_numeric() def test_array_init_error_integer(): x = StateElement(2, integer_set(3), out_of_bounds_mode="error") with pytest.raises(StateNotContainedError): x = StateElement(4, integer_set(3), out_of_bounds_mode="error") with pytest.raises(StateNotContainedError): x = StateElement(-3, integer_set(3), out_of_bounds_mode="error") def test_array_init_error_numeric(): x = StateElement( numpy.zeros((2, 2)), box_space(numpy.ones((2, 2))), out_of_bounds_mode="error" ) with pytest.raises(StateNotContainedError): x = StateElement( 2 * numpy.ones((2, 2)), box_space(numpy.ones((2, 2))), out_of_bounds_mode="error", ) with pytest.raises(StateNotContainedError): x = StateElement( -2 * numpy.ones((2, 2)), box_space(numpy.ones((2, 2))), out_of_bounds_mode="error", ) with pytest.raises(StateNotContainedError): x = StateElement( numpy.array([[0, 0], [-2, 0]]), box_space(numpy.ones((2, 2))), out_of_bounds_mode="error", ) def test_array_init_error(): test_array_init_error_integer() test_array_init_error_numeric() def test_array_init_warning_integer(): x = StateElement(2, integer_set(3), out_of_bounds_mode="warning") with pytest.warns(StateNotContainedWarning): x = StateElement(4, integer_set(3), out_of_bounds_mode="warning") with pytest.warns(StateNotContainedWarning): x = StateElement(-3, integer_set(3), out_of_bounds_mode="warning") def test_array_init_warning_numeric(): x = StateElement( numpy.zeros((2, 2)), box_space(numpy.ones((2, 2))), out_of_bounds_mode="warning" ) with pytest.warns(StateNotContainedWarning): x = StateElement( 2 * numpy.ones((2, 2)), box_space(numpy.ones((2, 2))), out_of_bounds_mode="warning", ) with pytest.warns(StateNotContainedWarning): x = StateElement( -2 * numpy.ones((2, 2)), box_space(numpy.ones((2, 2))), out_of_bounds_mode="warning", ) with pytest.warns(StateNotContainedWarning): x = StateElement( numpy.array([[0, 0], [-2, 0]]), box_space(numpy.ones((2, 2))), out_of_bounds_mode="warning", ) def test_array_init_warning(): test_array_init_warning_integer() test_array_init_warning_numeric() def test_array_init_clip_integer(): x = StateElement(2, integer_set(3), out_of_bounds_mode="clip") assert x == numpy.array([2]) x = StateElement(4, integer_set(3), out_of_bounds_mode="clip") assert x == numpy.array([2]) x = StateElement(-3, integer_set(3), out_of_bounds_mode="clip") assert x == numpy.array([0]) def test_array_init_clip_numeric(): x = StateElement( numpy.zeros((2, 2)), box_space(numpy.ones((2, 2))), out_of_bounds_mode="clip" ) assert (x == numpy.zeros((2, 2))).all() x = StateElement( 2 * numpy.ones((2, 2)), box_space(numpy.ones((2, 2))), out_of_bounds_mode="clip", ) assert (x == numpy.ones((2, 2))).all() x = StateElement( -2 * numpy.ones((2, 2)), box_space(numpy.ones((2, 2))), out_of_bounds_mode="clip", ) assert (x == -1.0 * numpy.ones((2, 2))).all() def test_array_init_clip(): test_array_init_clip_integer() test_array_init_clip_numeric() def test_array_init_dtype_integer(): x = StateElement(2, integer_set(3), out_of_bounds_mode="warning") assert x.dtype == numpy.int64 x = StateElement(2, integer_set(3, dtype=numpy.int16), out_of_bounds_mode="warning") assert x.dtype == numpy.int16 def test_array_init_dtype_numeric(): x = StateElement( numpy.zeros((2, 2)), box_space(numpy.ones((2, 2))), out_of_bounds_mode="warning", ) assert x.dtype == numpy.float64 x = StateElement( numpy.zeros((2, 2)), box_space(numpy.ones((2, 2), dtype=numpy.float32)), out_of_bounds_mode="warning", ) assert x.dtype == numpy.float32 x = StateElement( numpy.zeros((2, 2)), box_space(numpy.ones((2, 2), dtype=numpy.int8)), out_of_bounds_mode="warning", ) assert x.dtype == numpy.int8 def test_array_init_dtype(): test_array_init_dtype_integer() test_array_init_dtype_numeric() # def test__array_ufunc__discrete(): # # Simple arithmetic # global discr_space # x = StateElement(2, discr_space, out_of_bounds_mode="error") # assert x + numpy.array(1) == 3 # assert x + 1 == 3 # assert x - 1 == 1 # assert 3 - x == 1 # assert x - numpy.array(1) == 1 # assert numpy.array(3) - x == 1 # assert 1 + x == 3 # x += 1 # y = x - 1 # assert y.out_of_bounds_mode == "error" # with pytest.raises(StateNotContainedError): # 1 - x # with pytest.raises(StateNotContainedError): # x + 2 # with pytest.raises(StateNotContainedError): # x += 5 # def test__array_ufunc__continuous(): # # some matrix operations # global cont_space # x = StateElement(numpy.zeros((2, 2)), cont_space, out_of_bounds_mode="error") # assert (x + numpy.ones((2, 2)) == numpy.ones((2, 2))).all() # assert (x + 1 == numpy.ones((2, 2))).all() # assert (1 + x == numpy.ones((2, 2))).all() # assert (x - 1 == -numpy.ones((2, 2))).all() # assert (1 - x == numpy.ones((2, 2))).all() # assert ((1 + x) * 0.5 == 0.5 * numpy.ones((2, 2))).all() # assert (0.5 * (1 + x) @ numpy.ones((2, 2)) == numpy.ones((2, 2))).all() # def test__array_ufunc__multidiscrete(): # global multidiscr_space # x = StateElement([1, 1, 8], multidiscr_space, out_of_bounds_mode="error") # assert (x + numpy.array([[1], [1], [-3]]) == numpy.array([[2], [2], [5]])).all() # with pytest.raises(StateNotContainedError): # x + numpy.array([[1], [1], [1]]) # def test__array_ufunc__comparisons(): # global discr_space # x = StateElement(2, discr_space, out_of_bounds_mode="error") # assert x > 1 == True # global cont_space # x = StateElement(numpy.zeros((2, 2)), cont_space, out_of_bounds_mode="error") # assert (x < 0).all() == False # global multidiscr_space # x = StateElement( # numpy.array([[1], [1], [1]]), multidiscr_space, out_of_bounds_mode="error" # ) # assert (x >= numpy.array([[1], [0], [1]])).all() == True # assert (x >= numpy.array([[1], [5], [1]])).all() == False # comp = x >= numpy.array([[1], [5], [1]]) # assert (comp == numpy.array([[True], [False], [True]])).all() # def test__array_ufunc__trigonometry(): # global cont_space # x = StateElement(numpy.zeros((2, 2)), cont_space, out_of_bounds_mode="error") # assert (numpy.cos(x) == numpy.ones((2, 2))).all() # def test__array_ufunc__floating(): # global cont_space # x = StateElement( # numpy.array([[0.2, 0.3], [1, 0.95]]), cont_space, out_of_bounds_mode="error" # ) # assert numpy.isfinite(x).all() == True # def test__array_ufunc__out_of_bounds_mode(): # x = StateElement( # numpy.array([[0.2, 0.3], [1, 0.95]]), cont_space, out_of_bounds_mode="error" # ) # y = StateElement( # numpy.array([[-0.2, -0.3], [-1, -0.95]]), # cont_space, # out_of_bounds_mode="warning", # ) # z = StateElement( # numpy.array([[0.0, 0.0], [0.0, 0.0]]), # cont_space, # out_of_bounds_mode="silent", # ) # u = x + y # assert u.out_of_bounds_mode == "error" # u = y + x # assert u.out_of_bounds_mode == "error" # u = z + x # assert u.out_of_bounds_mode == "error" # u = y + z # assert u.out_of_bounds_mode == "warning" # u = z + 0 # assert u.out_of_bounds_mode == "silent" # def test__array_ufunc__(): # test__array_ufunc__discrete() # test__array_ufunc__continuous() # test__array_ufunc__multidiscrete() # test__array_ufunc__comparisons() # test__array_ufunc__trigonometry() # test__array_ufunc__floating() # test__array_ufunc__out_of_bounds_mode() # def test_amax_nothandled(): # StateElement.HANDLED_FUNCTIONS = {} # cont_space = autospace( # [[-1, -1], [-1, -1]], [[1, 1], [1, 1]], dtype=numpy.float64 # ) # Here the # x = StateElement( # numpy.array([[0, 0.1], [-0.5, 0.8]], dtype=numpy.float64), # cont_space, # out_of_bounds_mode="warning", # ) # # Without handled function # with pytest.warns(NumpyFunctionNotHandledWarning): # y = numpy.max(x) # assert isinstance(y, numpy.ndarray) # assert not isinstance(y, StateElement) # assert y == 0.8 # assert not hasattr(y, "space") # assert not hasattr(y, "out_of_bounds_mode") # def test_amax_implements_decorator(): # cont_space = autospace([[-1, -1], [-1, -2]], [[1, 1], [1, 3]], dtype=numpy.float64) # x = StateElement( # numpy.array([[0, 0.1], [-0.5, 0.8]], dtype=numpy.float64), # cont_space, # out_of_bounds_mode="warning", # ) # @StateElement.implements(numpy.amax) # def amax(arr, **keywordargs): # space, out_of_bounds_mode, kwargs = ( # arr.space, # arr.out_of_bounds_mode, # arr.kwargs, # ) # obj = arr.view(numpy.ndarray) # argmax = numpy.argmax(obj, **keywordargs) # index = numpy.unravel_index(argmax, arr.space.shape) # obj = numpy.amax(obj, **keywordargs) # obj = numpy.asarray(obj).view(StateElement) # if arr.space.space_type == "continuous": # obj.space = autospace( # numpy.atleast_2d(arr.space.low[index[0], index[1]]), # numpy.atleast_2d(arr.space.high[index[0], index[1]]), # ) # else: # raise NotImplementedError # obj.out_of_bounds_mode = arr.out_of_bounds_mode # obj.kwargs = arr.kwargs # return obj # y = numpy.amax(x) # assert isinstance(y, StateElement) # assert StateElement.HANDLED_FUNCTIONS.get(numpy.amax) is not None # assert x.HANDLED_FUNCTIONS.get(numpy.amax) is not None # assert y.shape == () # assert y == 0.8 # assert y.space.space_type == "continuous" # assert y.space.shape == (1, 1) # assert y.space.low == numpy.array([[-2]]) # assert y.space.high == numpy.array([[3]]) # def test_array_function_simple(): # test_amax_nothandled() # test_amax_implements_decorator() # def test__array_function__(): # test_array_function_simple() def test_equals_integer(): int_space = integer_set(3) other_int_space = integer_set(4) x = StateElement(numpy.array(1), int_space) y = StateElement(numpy.array(1), other_int_space) assert x.equals(y) assert not x.equals(y, mode="hard") z = StateElement(numpy.array(2), int_space) assert not x.equals(z) def test_equals_numeric(): numeric_space = box_space(numpy.ones((2, 2))) other_numeric_space = box_space( low=numpy.array([[-1, -1], [-1, -2]]), high=numpy.array([[1, 2], [1, 1]]) ) x = StateElement(numpy.zeros((2, 2)), numeric_space) y = StateElement(numpy.zeros((2, 2)), other_numeric_space) assert (x.equals(y)).all() assert not (x.equals(y, mode="hard")).all() z = StateElement(numpy.eye(2), numeric_space) assert not (x.equals(z)).all() def test_equals(): test_equals_integer() test_equals_numeric() def test__iter__integer(): x = StateElement([2], integer_set(3)) with pytest.raises(TypeError): next(iter(x)) def test__iter__numeric(): x = StateElement( numpy.array([[0.2, 0.3], [0.4, 0.5]]), box_space(numpy.ones((2, 2))) ) for i, _x in enumerate(x): if i == 0: assert ( _x == StateElement(numpy.array([0.2, 0.3]), box_space(numpy.ones((2,)))) ).all() if i == 1: assert ( _x == StateElement(numpy.array([0.4, 0.5]), box_space(numpy.ones((2,)))) ).all() for j, _xx in enumerate(_x): print(i, j) if i == 0 and j == 0: assert _xx == StateElement( numpy.array(0.2), box_space(numpy.float64(1)) ) elif i == 0 and j == 1: assert _xx == StateElement( numpy.array(0.3), box_space(numpy.float64(1)) ) elif i == 1 and j == 0: assert _xx == StateElement( numpy.array(0.4), box_space(numpy.float64(1)) ) elif i == 1 and j == 1: assert _xx == StateElement( numpy.array(0.5), box_space(numpy.float64(1)) ) def test__iter__(): test__iter__integer() test__iter__numeric() def test__repr__integer(): x = StateElement(2, integer_set(3)) assert x.__repr__() == "StateElement(array(2), CatSet([0 1 2]), 'warning')" def test__repr__numeric(): x = StateElement(numpy.zeros((2, 2)), box_space(numpy.ones((2, 2)))) x.__repr__() def test__repr__(): test__repr__integer() test__repr__numeric() def test_serialize_integer(): x = StateElement(numpy.array([2]), integer_set(3)) assert x.serialize() == { "values": 2, "space": { "space": "CatSet", "seed": None, "array": [0, 1, 2], "dtype": "dtype[int64]", }, } def test_serialize_numeric(): x = StateElement(numpy.zeros((2, 2)), box_space(numpy.ones((2, 2)))) assert x.serialize() == { "values": [[0.0, 0.0], [0.0, 0.0]], "space": { "space": "Numeric", "seed": None, "low,high": [[[-1.0, -1.0], [-1.0, -1.0]], [[1.0, 1.0], [1.0, 1.0]]], "shape": (2, 2), "dtype": "dtype[float64]", }, } def test_serialize(): test_serialize_integer() test_serialize_numeric() def test__getitem__integer(): x = StateElement(1, integer_set(3)) assert x[..., {"space": True}] == x assert x[..., {"space": True}] is x assert x[...] == x def test__getitem__numeric(): x = StateElement( numpy.array([[0.0, 0.1], [0.2, 0.3]]), box_space(numpy.ones((2, 2))) ) assert x[0, 0] == 0.0 assert x[0, 0, {"space": True}] == StateElement(0.0, box_space(numpy.float64(1))) assert x[0, 1, {"space": True}] == StateElement(0.1, box_space(numpy.float64(1))) assert x[1, 0, {"space": True}] == StateElement(0.2, box_space(numpy.float64(1))) assert x[1, 1, {"space": True}] == StateElement(0.3, box_space(numpy.float64(1))) assert (x[:, 1] == numpy.array([0.1, 0.3])).all() assert ( x[:, 1, {"space": True}] == StateElement(numpy.array([0.1, 0.3]), box_space(numpy.ones((2,)))) ).all() x = StateElement(numpy.array(0), box_space(low=-1, high=1)) from coopihc import State s = State() s["x"] = x fd = {"x": ...} a = s.filter(mode="stateelement", filterdict=fd) def test__getitem__(): test__getitem__integer() test__getitem__numeric() def test__setitem__integer(): x = StateElement(1, integer_set(3)) x[...] = 2 assert x == StateElement(2, integer_set(3)) with pytest.warns(StateNotContainedWarning): x[...] = 4 def test__setitem__numeric(): x = StateElement( numpy.array([[0.0, 0.1], [0.2, 0.3]]), box_space(numpy.ones((2, 2))) ) x[0, 0] = 0.5 x[0, 1] = 0.6 x[1, 0] = 0.7 x[1, 1] = 0.8 assert ( x == StateElement( numpy.array([[0.5, 0.6], [0.7, 0.8]]), box_space(numpy.ones((2, 2))) ) ).all() with pytest.warns(StateNotContainedWarning): x[0, 0] = 1.3 x = StateElement( numpy.array([[0.0, 0.1], [0.2, 0.3]]), box_space(numpy.ones((2, 2))), out_of_bounds_mode="clip", ) x[:, 0] = numpy.array([0.9, 0.9]) x[0, :] = numpy.array([1.2, 0.2]) x[1, 1] = 0.5 assert ( x == StateElement(
numpy.array([[1, 0.2], [0.9, 0.5]])
numpy.array
#!/usr/bin/env python """Make big QUOCKA cubes""" from IPython import embed import schwimmbad import sys from glob import glob from tqdm import tqdm import matplotlib.pyplot as plt from radio_beam import Beam, Beams from radio_beam.utils import BeamError from astropy import units as u from astropy.io import fits from astropy.wcs import WCS import au2 import scipy.signal import numpy as np from functools import partial import reproject as rpj import warnings from astropy.utils.exceptions import AstropyWarning warnings.simplefilter('ignore', category=AstropyWarning) # Require reproject >= 0.7 try: assert float(rpj.__version__[0:3]) >= 0.7 except AssertionError: print('We require reproject version > 0.7') print(f'Current version is {rpj.__version__}') print('Please update reproject!') quit() class Error(Exception): """Base class for other exceptions""" pass class GridError(Error): """Raised when grid is too coarse for the convolving beam""" pass def round_up(n, decimals=0): multiplier = 10 ** decimals return np.ceil(n * multiplier) / multiplier def my_ceil(a, precision=0): return
np.round(a + 0.5 * 10**(-precision), precision)
numpy.round
# base.py # Author: <NAME> <<EMAIL>> """ This file contains code that implements the core of the submodular selection algorithms. """ import numpy from tqdm import tqdm from ..optimizers import BaseOptimizer from ..optimizers import NaiveGreedy from ..optimizers import LazyGreedy from ..optimizers import ApproximateLazyGreedy from ..optimizers import TwoStageGreedy from ..optimizers import StochasticGreedy from ..optimizers import BidirectionalGreedy from ..optimizers import GreeDi from ..optimizers import SieveGreedy from ..optimizers import OPTIMIZERS from ..utils import PriorityQueue from ..utils import check_random_state from ..utils import _calculate_pairwise_distances from scipy.sparse import csr_matrix class BaseSelection(object): """The base selection object. This object defines the structures that all submodular selection algorithms should follow. All algorithms will have the same public methods and the same attributes. Parameters ---------- n_samples : int The number of samples to return. initial_subset : list, numpy.ndarray or None, optional If provided, this should be a list of indices into the data matrix to use as the initial subset, or a group of examples that may not be in the provided data should beused as the initial subset. If indices, the provided array should be one-dimensional. If a group of examples, the data should be 2 dimensional. optimizer : string or optimizers.BaseOptimizer, optional The optimization approach to use for the selection. Default is 'two-stage', which makes selections using the naive greedy algorithm initially and then switches to the lazy greedy algorithm. Must be one of 'naive' : the naive greedy algorithm 'lazy' : the lazy (or accelerated) greedy algorithm 'approximate-lazy' : the approximate lazy greedy algorithm 'two-stage' : starts with naive and switches to lazy 'stochastic' : the stochastic greedy algorithm 'greedi' : the GreeDi distributed algorithm 'bidirectional' : the bidirectional greedy algorithm Default is 'naive'. optimizer_kwds : dict or None A dictionary of arguments to pass into the optimizer object. The keys of this dictionary should be the names of the parameters in the optimizer and the values in the dictionary should be the values that these parameters take. Default is None. reservoir : numpy.ndarray or None The reservoir to use when calculating gains in the sieve greedy streaming optimization algorithm in the `partial_fit` method. Currently only used for graph-based functions. If a numpy array is passed in, it will be used as the reservoir. If None is passed in, will use reservoir sampling to collect a reservoir. Default is None. max_reservoir_size : int The maximum size that the reservoir can take. If a reservoir is passed in, this value is set to the size of that array. Default is 1000. n_jobs : int The number of threads to use when performing computation in parallel. Currently, this parameter is exposed but does not actually do anything. This will be fixed soon. random_state : int or RandomState or None, optional The random seed to use for the random selection process. Only used for stochastic greedy. verbose : bool Whether to print output during the selection process. Attributes ---------- n_samples : int The number of samples to select. ranking : numpy.array int The selected samples in the order of their gain with the first number in the ranking corresponding to the index of the first sample that was selected by the greedy procedure. gains : numpy.array float The gain of each sample in the returned set when it was added to the growing subset. The first number corresponds to the gain of the first added sample, the second corresponds to the gain of the second added sample, and so forth. """ def __init__(self, n_samples, initial_subset=None, optimizer='lazy', optimizer_kwds={}, reservoir=None, max_reservoir_size=1000, n_jobs=1, random_state=None, verbose=False): if n_samples <= 0: raise ValueError("n_samples must be a positive value.") if not isinstance(initial_subset, (list, numpy.ndarray)) and initial_subset is not None: raise ValueError("initial_subset must be a list, numpy array, or None") if isinstance(initial_subset, (list, numpy.ndarray)): initial_subset = numpy.array(initial_subset) if not isinstance(optimizer, BaseOptimizer): if optimizer not in OPTIMIZERS.keys(): raise ValueError("Optimizer must be an optimizer object or " \ "a str in {}.".format(str(OPTIMIZERS.keys()))) if isinstance(optimizer, BaseOptimizer): optimizer.function = self if verbose not in (True, False): raise ValueError("verbosity must be True or False") self.n_samples = n_samples self.metric = 'ignore' self.random_state = check_random_state(random_state) self.optimizer = optimizer self.optimizer_kwds = optimizer_kwds self.n_jobs = n_jobs self.verbose = verbose self.initial_subset = initial_subset self.ranking = None self.idxs = None self.gains = None self.subset = None self.sparse = None self._X = None self.sieve_current_values_ = None self.n_seen_ = 0 self.reservoir_size = 0 if reservoir is None else reservoir.shape[0] self.reservoir = reservoir self.max_reservoir_size = max_reservoir_size if reservoir is None else reservoir.shape[0] self.update_reservoir_ = reservoir is None def fit(self, X, y=None, sample_weight=None, sample_cost=None): """Run submodular optimization to select a subset of examples. This method is a wrapper for the full submodular optimization process. It takes in some data set (and optionally labels that are ignored during this process) and selects `n_samples` from it in the greedy manner specified by the optimizer. This method will return the selector object itself, not the transformed data set. The `transform` method will then transform a data set to the selected points, or alternatively one can use the ranking stored in the `self.ranking` attribute. The `fit_transform` method will perform both optimization and selection and return the selected items. Parameters ---------- X : list or numpy.ndarray, shape=(n, d) The data set to transform. Must be numeric. y : list or numpy.ndarray or None, shape=(n,), optional The labels to transform. If passed in this function will return both the data and th corresponding labels for the rows that have been selected. sample_weight : list or numpy.ndarray or None, shape=(n,), optional The weight of each example. Currently ignored in apricot but included to maintain compatibility with sklearn pipelines. sample_cost : list or numpy.ndarray or None, shape=(n,), optional The cost of each item. If set, indicates that optimization should be performed with respect to a knapsack constraint. Returns ------- self : BaseGraphSelection The fit step returns this selector object. """ allowed_dtypes = list, numpy.ndarray, csr_matrix if not isinstance(X, allowed_dtypes): raise ValueError("X must be either a list of lists, a 2D numpy " \ "array, or a scipy.sparse.csr_matrix.") if isinstance(X, numpy.ndarray) and len(X.shape) != 2: raise ValueError("X must have exactly two dimensions.") if numpy.min(X) < 0.0 and numpy.max(X) > 0.: raise ValueError("X cannot contain negative values or must be entirely "\ "negative values.") if self.n_samples > X.shape[0]: raise ValueError("Cannot select more examples than the number in" \ " the data set.") if not self.sparse: if X.dtype != 'float64': X = X.astype('float64') if isinstance(self.optimizer, str): optimizer = OPTIMIZERS[self.optimizer](function=self, verbose=self.verbose, random_state=self.random_state, **self.optimizer_kwds) else: optimizer = self.optimizer self._X = X if self._X is None else self._X self._initialize(X) if self.verbose: self.pbar = tqdm(total=self.n_samples, unit_scale=True) optimizer.select(X, self.n_samples, sample_cost=sample_cost) if self.verbose == True: self.pbar.close() self.ranking =
numpy.array(self.ranking)
numpy.array
import numpy as np import loupe def test_sserror_forward(): data = np.ones((10,10)) model = loupe.ones((10,10)) err = loupe.sserror(model, data, mask=None, gain_bias_invariant=False) assert err.data == 0 model = 0.9*loupe.ones((10,10)) err = loupe.sserror(model, data, mask=None, gain_bias_invariant=False) assert np.allclose(err.data, 0.01) def test_sserror_fit_gain(): model = loupe.rand(size=(10,10)) gain = np.random.uniform(low=-0.5, high=0.5) data = model.data.copy() * gain _model = loupe.sserror._G(model.data, mask=None) _data = loupe.sserror._G(data, mask=None) gain_est = loupe.sserror._fit_gain(_data, _model, mask=None) assert np.allclose(gain, gain_est) def test_sserror_fit_bias(): model = loupe.rand(size=(10,10)) bias = np.random.uniform(low=-5, high=5) data = model.data.copy() + bias bias_est = loupe.sserror._fit_bias(data, model.data, mask=None, gain=1) assert np.allclose(bias, bias_est) def test_sserror_fit_gain_bias(): model = loupe.rand(size=(10,10)) gain = np.random.uniform(low=-0.5, high=0.5) bias = np.random.uniform(low=-5, high=5) data = (model.data.copy() * gain) + bias _model = loupe.sserror._G(model.data, mask=None) _data = loupe.sserror._G(data, mask=None) gain_est = loupe.sserror._fit_gain(_data, _model, mask=None) bias_est = loupe.sserror._fit_bias(data, model.data, mask=None, gain=gain_est) assert np.allclose(gain, gain_est) assert np.allclose(bias, bias_est) def test_sserror_forward_multi(): model = loupe.rand(size=(3,10,10)) gain = np.random.uniform(low=-0.5, high=0.5) bias = np.random.uniform(low=-5, high=5) data_clean = model.data.copy() data_clean += np.random.uniform(low=-.1, high=.1, size=(3,10,10)) data = gain * data_clean + bias err = loupe.sserror(model, data, mask=None, gain_bias_invariant=True) assert err.data def test_sserror_backward_multi(): model = loupe.rand(size=(3,10,10), requires_grad=True) gain = np.random.uniform(low=-0.5, high=0.5) bias = np.random.uniform(low=-5, high=5) data_clean = model.data.copy() data_clean += np.random.uniform(low=-.1, high=.1, size=(3,10,10)) data = gain * data_clean + bias err = loupe.sserror(model, data, mask=None, gain_bias_invariant=True) err.backward(grad=1.0) assert np.all(model.grad != 0) assert model.grad.shape == model.shape def test_sserror_residual(): model = loupe.rand(size=(3,10,10)) gain =
np.random.uniform(low=-0.5, high=0.5)
numpy.random.uniform
from unittest import TestCase import numpy as np from kmeans import iou, avg_iou, kmeans class TestBasic(TestCase): def test_iou_100(self): self.assertEqual(iou([200, 200], np.array([[200, 200]])), 1.) def test_iou_50(self): self.assertEqual(iou([200, 200], np.array([[100, 200]])), .5) self.assertEqual(iou([200, 200], np.array([[200, 100]])), .5) def test_iou_75(self): self.assertEqual(iou([200, 200], np.array([[150, 200]])), .75) self.assertEqual(iou([200, 200], np.array([[200, 150]])), .75) def test_iou_20(self): self.assertEqual(iou([183, 73], np.array([[73, 36.6]])), .2) self.assertEqual(iou([183, 73], np.array([[36.6, 73]])), .2) def test_iou_multiple(self): a = np.array([[200, 200], [100, 200], [200, 100], [150, 200], [200, 150]]) b = np.array([1., 0.5, 0.5, 0.75, 0.75]) self.assertTrue((iou([200, 200], a) == b).all()) def test_iou_0(self): self.assertRaises(ValueError, iou, [100, 100], np.array([[0, 0]])) self.assertRaises(ValueError, iou, [0, 0], np.array([[100, 100]])) self.assertRaises(ValueError, iou, [0, 0], np.array([[0, 0]])) self.assertRaises(ValueError, iou, [100, 0], np.array([[100, 100]])) self.assertRaises(ValueError, iou, [0, 100],
np.array([[100, 100]])
numpy.array
from os.path import abspath, dirname from os.path import join as pjoin import h5py import numpy as np import pytest from cfelpyutils.crystfel_utils import load_crystfel_geometry from matplotlib.axes import Axes from testpath import assert_isfile from extra_geom import LPD_1MGeometry from extra_geom.detectors import invert_xfel_lpd_geom from .utils import assert_geom_close tests_dir = dirname(abspath(__file__)) def test_write_read_crystfel_file(tmpdir): geom = LPD_1MGeometry.from_quad_positions( [(11.4, 299), (-11.5, 8), (254.5, -16), (278.5, 275)] ) path = str(tmpdir / 'test.geom') geom.write_crystfel_geom(filename=path) with open(path, 'r') as f: contents = f.read() with open(path, 'w') as f: f.write('clen = 0.119\n') f.write('adu_per_eV = 0.0075\n') f.write(contents) # Load the geometry file with cfelpyutils and test the ridget groups loaded = LPD_1MGeometry.from_crystfel_geom(path) np.testing.assert_allclose( loaded.modules[0][0].corner_pos, geom.modules[0][0].corner_pos ) np.testing.assert_allclose(loaded.modules[0][0].fs_vec, geom.modules[0][0].fs_vec) geom_dict = load_crystfel_geometry(path) quad_gr0 = ['p0a0', 'p0a1', 'p0a2', 'p0a3', 'p0a4', 'p0a5', 'p0a6', 'p0a7', 'p0a8', 'p0a9', 'p0a10','p0a11', 'p0a12', 'p0a13', 'p0a14', 'p0a15', 'p1a0', 'p1a1','p1a2', 'p1a3','p1a4','p1a5','p1a6', 'p1a7', 'p1a8', 'p1a9', 'p1a10', 'p1a11', 'p1a12', 'p1a13', 'p1a14', 'p1a15', 'p2a0', 'p2a1', 'p2a2', 'p2a3', 'p2a4', 'p2a5', 'p2a6', 'p2a7', 'p2a8', 'p2a9', 'p2a10', 'p2a11', 'p2a12', 'p2a13', 'p2a14','p2a15', 'p3a0', 'p3a1','p3a2', 'p3a3', 'p3a4', 'p3a5', 'p3a6', 'p3a7', 'p3a8','p3a9', 'p3a10', 'p3a11', 'p3a12', 'p3a13', 'p3a14', 'p3a15'] assert geom_dict['rigid_groups']['p0'] == quad_gr0[:16] assert geom_dict['rigid_groups']['p3'] == quad_gr0[-16:] assert geom_dict['rigid_groups']['q0'] == quad_gr0 def test_read_write_xfel_file_quadpos(tmpdir): quad_pos = [(11.4, 299), (-11.5, 8), (254.5, -16), (278.5, 275)] geom = LPD_1MGeometry.from_quad_positions(quad_pos) path = str(tmpdir / 'lpd_geom.h5') quad_pos_out = geom.to_h5_file_and_quad_positions(path) np.testing.assert_allclose(quad_pos_out, quad_pos) assert_isfile(path) loaded = LPD_1MGeometry.from_h5_file_and_quad_positions(path, quad_pos_out) assert_geom_close(loaded, geom) def test_read_write_xfel_file(tmpdir): quad_pos = [(11.4, 299), (-11.5, 8), (254.5, -16), (278.5, 275)] geom = LPD_1MGeometry.from_quad_positions(quad_pos) path = str(tmpdir / 'lpd_geom.h5') geom.to_h5_file_and_quad_positions(path) assert_isfile(path) loaded = LPD_1MGeometry.from_h5_file(path) assert_geom_close(loaded, geom) def test_quad_positions_with_file(): path = pjoin(tests_dir, 'lpd_mar_18.h5') quad_pos = [(11.4, 299), (-11.5, 8), (254.5, -16), (278.5, 275)] geom = LPD_1MGeometry.from_h5_file_and_quad_positions(path, quad_pos) np.testing.assert_allclose(geom.quad_positions(path), quad_pos) def test_quad_positions_no_file(): quad_pos = [(11.4, 299), (-11.5, 8), (254.5, -16), (278.5, 275)] geom = LPD_1MGeometry.from_quad_positions(quad_pos) np.testing.assert_allclose(geom.quad_positions(), quad_pos) def test_offset(): quad_pos = [(11.4, 299), (-11.5, 8), (254.5, -16), (278.5, 275)] geom = LPD_1MGeometry.from_quad_positions(quad_pos) y_orig = np.array([m[0].corner_pos[1] for m in geom.modules]) # Uniform shift for all modules, all tiles all_shifted = geom.offset((0, 1e-3)) y1 = np.array([m[0].corner_pos[1] for m in all_shifted.modules]) np.testing.assert_allclose(y1, y_orig + 1e-3) # Select some modules q4_shifted = geom.offset((0, 2e-3), modules=np.s_[12:]) y2 = np.array([m[0].corner_pos[1] for m in q4_shifted.modules]) np.testing.assert_allclose(y2[:12], y_orig[:12]) np.testing.assert_allclose(y2[12:], y_orig[12:] + 2e-3) quad_pos_modified = q4_shifted.quad_positions() np.testing.assert_allclose(quad_pos_modified[:3], quad_pos[:3]) np.testing.assert_allclose( quad_pos_modified[3], np.array(quad_pos[3]) + [0, 2] # quad positions in mm ) # Per-module shift q3_shifted = geom.offset(np.repeat([ (0, 0), (0, 0), (0, 2e-3), (0, 0), ], repeats=4, axis=0)) y3 = np.array([m[0].corner_pos[1] for m in q3_shifted.modules]) np.testing.assert_allclose(y3[:8], y_orig[:8]) np.testing.assert_allclose(y3[8:12], y_orig[8:12] + 2e-3) np.testing.assert_allclose(y3[12:], y_orig[12:]) # Per-tile shift shift = np.zeros((4, 16, 3), dtype=np.float64) shift[:, 5, 1] = 3e-3 # Shift T6 of each module in y dimension q2_t2_shifted = geom.offset(shift, modules=np.s_[4:8]) y_t1 = np.array([m[0].corner_pos[1] for m in q2_t2_shifted.modules]) np.testing.assert_allclose(y_t1, y_orig) y_t6 = np.array([m[5].corner_pos[1] for m in q2_t2_shifted.modules]) y_t6_orig = np.array([m[5].corner_pos[1] for m in geom.modules]) np.testing.assert_allclose(y_t6[:4], y_t6_orig[:4]) np.testing.assert_allclose(y_t6[4:8], y_t6_orig[4:8] + 3e-3)
np.testing.assert_allclose(y_t6[8:], y_t6_orig[8:])
numpy.testing.assert_allclose
import logging from pathlib import Path from typing import Union, List import json import matplotlib.pyplot as plt import numpy as np import pandas as pd from collections import defaultdict import scipy.stats as scst from HPOBenchExperimentUtils import _log as _main_log from HPOBenchExperimentUtils.utils.validation_utils import load_json_files, \ load_trajectories_as_df, df_per_optimizer from HPOBenchExperimentUtils.utils.plotting_utils import plot_dc, color_per_opt, marker_per_opt,\ unify_layout from HPOBenchExperimentUtils.utils.runner_utils import get_optimizer_setting, get_benchmark_settings _main_log.setLevel(logging.DEBUG) _log = logging.getLogger(__name__) def plot_fidels(benchmark: str, output_dir: Union[Path, str], input_dir: Union[Path, str], opts: str, opt_list: Union[List[str], None]=None, **kwargs): _log.info(f'Plotting evaluated fidelities of benchmark {benchmark}') input_dir = Path(input_dir) / benchmark assert input_dir.is_dir(), f'Result folder doesn\"t exist: {input_dir}' output_dir = Path(output_dir) output_dir.mkdir(exist_ok=True, parents=True) opt_rh_dc = load_trajectories_as_df(input_dir=input_dir, which="runhistory") if opt_list is None: opt_list = list(opt_rh_dc.keys()) other_stats_dc = dict() best_val = 1000 other_stats_dc["lowest"] = best_val plt.figure(figsize=[5*len(opt_rh_dc), 5]) ax_old = None for i, opt in enumerate(opt_rh_dc): _log.info(f'Handling {opt}') if opt not in opt_list: _log.info(f'Skip {opt}') continue if len(opt_rh_dc) == 0: continue other_stats_dc[opt] = defaultdict(list) rhs = load_json_files(opt_rh_dc[opt]) for rh in rhs: final_time = rh[-1]["finish_time"] - rh[0]["boot_time"] bench_time = rh[-1]["total_time_used"] calls = rh[-1]["function_call"] other_stats_dc[opt]["final_time"].append(final_time) other_stats_dc[opt]["bench_time"].append(bench_time) other_stats_dc[opt]["calls"].append(calls) df = df_per_optimizer(opt, rhs) ax = plt.subplot(1, len(opt_rh_dc), i+1, sharey=ax_old) thresh = 10000 if df.shape[0] > thresh: sub = df[["fidel_values", "total_time_used"]].sample(n=thresh, random_state=1) else: sub = df[["fidel_values", "total_time_used"]] avg = sub.shape[0] / len(df['id'].unique()) max_f = np.max(sub["fidel_values"]) vals = np.min(df.query('fidel_values == @max_f')["function_values"]) best_val = np.min([best_val, vals]) other_stats_dc["lowest"] = best_val label = get_optimizer_setting(opt).get("display_name", opt) plt.scatter(sub["total_time_used"], sub["fidel_values"], edgecolor=color_per_opt.get(opt, "k"), facecolor="none", marker=marker_per_opt.get(opt, "o"), alpha=0.5, label=label) plt.xscale("log") if get_benchmark_settings(benchmark)["is_surrogate"]: plt.xlabel("Simulated runtime in seconds") else: plt.xlabel("Runtime in seconds") unify_layout(ax, legend_args={"title": "%g evals on avg" % avg}) ax_old = ax del rhs, df, sub with open(Path(output_dir) / f'stats1_{benchmark}_{opts}.json', "w") as fh: json.dump(other_stats_dc, fh, indent=4, sort_keys=True) plt.ylabel("Fidelity") plt.tight_layout() plt.savefig(Path(output_dir) / f'fidel_{benchmark}_{opts}.png') plt.close('all') def plot_overhead(benchmark: str, output_dir: Union[Path, str], input_dir: Union[Path, str], opts: str, opt_list: Union[List[str], None]=None, **kwargs): _log.info(f'Start plotting overhead of benchmark {benchmark}') input_dir = Path(input_dir) / benchmark assert input_dir.is_dir(), f'Result folder doesn\"t exist: {input_dir}' output_dir = Path(output_dir) output_dir.mkdir(exist_ok=True, parents=True) opt_rh_dc = load_trajectories_as_df(input_dir=input_dir, which="runhistory") if opt_list is None: opt_list = list(opt_rh_dc.keys()) plt.figure(figsize=[5, 5]) a = plt.subplot(111) for opt in opt_rh_dc: _log.info(f'Handling {opt}') if opt not in opt_list: _log.info(f'Skip {opt}') if len(opt_rh_dc) == 0: continue rhs = load_json_files(opt_rh_dc[opt]) df = df_per_optimizer(opt, rhs) nseeds = df['id'].unique() for seed in nseeds: steps = df[df['id'] == seed]["total_time_used"] label = get_optimizer_setting(opt).get("display_name", opt) benchmark_cost = df[df['id'] == seed]["finish_time"] - df[df['id'] == seed]["start_time"] benchmark_cost = np.cumsum(benchmark_cost) plt.plot(steps, benchmark_cost, color='k', alpha=0.5, zorder=99, label=benchmark if seed == 0 and opt == list(opt_rh_dc.keys())[0] else None) overhead = df[df['id'] == seed]["start_time"] - df[df['id'] == seed]["finish_time"].shift(1) overhead = np.cumsum(overhead) plt.plot(steps, overhead, color=color_per_opt.get(opt, "k"), linestyle=":", label=label if seed == 0 else None) overall_cost = df[df['id'] == seed]["finish_time"] - df[df['id'] == seed]["start_time"].iloc[0] benchmark_cost = np.cumsum(overall_cost) plt.plot(steps, overall_cost, color=color_per_opt.get(opt, "k"), alpha=0.5, zorder=99, label="%s overall" % label if seed == 0 else None) a.set_yscale("log") a.set_xscale("log") if get_benchmark_settings(benchmark)["is_surrogate"]: a.set_xlabel("Simulated runtime in seconds") else: a.set_xlabel("Runtime in seconds") a.set_ylabel("Cumulated overhead in seconds") a.set_xlim([1, a.set_xlim()[1]]) unify_layout(a) plt.tight_layout() plt.savefig(Path(output_dir) / f'overhead_{benchmark}_{opts}.png') plt.close('all') def plot_ecdf(benchmark: str, output_dir: Union[Path, str], input_dir: Union[Path, str], opts: str, opt_list: Union[List[str], None] = None, **kwargs): _log.info(f'Start plotting ECDFs for benchmark {benchmark}') input_dir = Path(input_dir) / benchmark Path(output_dir).mkdir(exist_ok=True, parents=True) assert input_dir.is_dir(), f'Result folder doesn\"t exist: {input_dir}' opt_rh_dc = load_trajectories_as_df(input_dir=input_dir, which="runhistory") benchmark_spec = plot_dc.get(benchmark, {}) y_best = benchmark_spec.get("ystar_valid", 0) def ecdf(x): xs = np.sort(x) ys = np.arange(1, len(xs) + 1) / float(len(xs)) return xs, ys plt.figure(figsize=[5, 5]) a = plt.subplot(111) if opt_list is None: opt_list = list(opt_rh_dc.keys()) for opt in opt_rh_dc: if opt not in opt_list: _log.info(f'Skip {opt}') if len(opt_rh_dc) == 0: continue rhs = load_json_files(opt_rh_dc[opt]) df = df_per_optimizer(opt, rhs, y_best=y_best) color = color_per_opt.get(opt, "k") obj_vals = df["function_values"] x, y = ecdf(obj_vals.to_numpy()) label = get_optimizer_setting(opt).get("display_name", opt) plt.plot(x, y, c=color, linewidth=2, label=label) nseeds = df['id'].unique() for seed in nseeds: obj_vals = df[df['id'] == seed]["function_values"] x, y = ecdf(obj_vals.to_numpy()) plt.plot(x, y, c=color, alpha=0.2) if y_best != 0: plt.xlabel("Optimization Regret") else: plt.xlabel("Optimization objective value") plt.ylabel("P(x < X)") yscale = benchmark_spec.get("yscale", "log") plt.xscale(yscale) unify_layout(a) plt.tight_layout() plt.grid(b=True, which="both", axis="both", alpha=0.5) plt.savefig(Path(output_dir) / f'ecdf_{benchmark}_{opts}.png') def plot_correlation(benchmark: str, output_dir: Union[Path, str], input_dir: Union[Path, str], opts: str, opt_list: Union[List[str], None] = None, **kwargs): _log.info(f'Start plotting correlations for benchmark {benchmark}') input_dir = Path(input_dir) / benchmark Path(output_dir).mkdir(exist_ok=True, parents=True) assert input_dir.is_dir(), f'Result folder doesn\"t exist: {input_dir}' opt_rh_dc = load_trajectories_as_df(input_dir=input_dir, which="runhistory") benchmark_spec = plot_dc.get(benchmark, {}) conf_dc = defaultdict(dict) f_set = [] if opt_list is None: opt_list = list(opt_rh_dc.keys()) for opt in opt_rh_dc: if not ("smac_hb" in opt or "dehb" in opt or "hpbandster_bohb" in opt or "hpbandster_hb" in opt ): _log.info(f'Neither smac, dehb nor hpband: {opt}') continue if opt not in opt_list: _log.info("Skip %s" % opt) _log.info("Read %s" % opt) if len(opt_rh_dc[opt]) == 0: continue rhs = load_json_files(opt_rh_dc[opt]) for rh in rhs: for record in rh[1:]: c = json.dumps(record["configuration"], sort_keys=True) f = record['fidelity'][list(record['fidelity'])[0]] f_set.append(f) conf_dc[c][f] = record["function_value"] f_set = np.array(list(set(f_set))) f_set.sort() # Clean dc: to_rm = [] for c in conf_dc: if len(conf_dc[c]) < 2: to_rm.append(c) for c in to_rm: del conf_dc[c] # Start with computing correlations cors = {} for fi, f1 in enumerate(f_set): cors[(f1, f1)] = (1, 0) for f2 in f_set[fi+1:]: a = [] b = [] for c in conf_dc: if f1 in conf_dc[c] and f2 in conf_dc[c]: a.append(conf_dc[c][f1]) b.append(conf_dc[c][f2]) c, _ = scst.spearmanr(a, b) cors[(f1, f2)] = (c, len(a)) # Create plot styles = [ ('#99000d', "o", 2, 10, "-"), ('#cb181d', "^", 2, 10, "-"), ('#ef3b2c', "s", 2, 10, "-"), ('#fb6a4a', "*", 2, 10, "-"), ('#fc9272', "v", 2, 10, "-"), ('#fcbba1', "p", 2, 10, "-"), ('#fee5d9', "d", 2, 10, "-"), ] plt.figure(figsize=[5, 5]) a = plt.subplot(111) for fi, f in enumerate(f_set): if len(f_set[fi:]) == 0: continue c, m, lw, ms, ls = styles[fi] a.plot(f_set[fi:], [cors[(f, f1)][0] for f1 in f_set[fi:]], label=f, marker=m, linewidth=lw, linestyle=ls, markersize=ms, c=c) #a.annotate("%d" % f, [f, 1.01], fontsize=15) a.set_xlabel("Fidelity value") a.set_ylabel("Spearman correlation coefficient") a.set_ylim(benchmark_spec.get("cylim", [-1, 1])) a.set_xscale("log") unify_layout(a, legend_args={"title": "Fidelity value"}) plt.tight_layout() plt.savefig(Path(output_dir) / f'correlation_{benchmark}.png') # Create table df = defaultdict(list) for fi, f1 in enumerate(f_set[:-1]): for fj, f2 in enumerate(f_set): if fj < fi: df[f1].append("-") else: df[f1].append("%.3g (%d)" % (
np.round(cors[f1, f2][0], 3)
numpy.round
import numpy as np from time import time from scipy.spatial.distance import pdist, cdist from copy import deepcopy import random """ Scripts to compute LJ energy and force """ def LJ(pos): """ Calculate the total energy """ distance = pdist(pos) r6 = np.power(distance, 6) r12 = np.multiply(r6, r6) Eng = np.sum(4 * (1 / r12 - 1 / r6)) return Eng def LJ_force(pos): N_atom = len(pos) force = np.zeros([N_atom, 3]) for i, pos0 in enumerate(pos): pos1 = deepcopy(pos) pos1 = np.delete(pos1, i, 0) distance = cdist([pos0], pos1) r = pos1 - pos0 r2 =
np.power(distance, 2)
numpy.power
#!/usr/bin/env python from __future__ import print_function, division import math import glob import aplpy import numpy as np import itertools import multiprocessing as mp from astropy.wcs.utils import proj_plane_pixel_scales from astropy import wcs import astropy.units as u from astropy.stats import sigma_clipped_stats from astropy.nddata.utils import Cutout2D from astropy.io import fits from astropy.visualization import ZScaleInterval from astropy.coordinates import SkyCoord import matplotlib.pyplot as plt from matplotlib.patches import Rectangle from matplotlib.collections import PatchCollection from scipy.optimize import curve_fit from photutils import aperture_photometry, CircularAperture from photutils import Background2D, MedianBackground, make_source_mask from qso_toolbox import utils as ut from qso_toolbox import catalog_tools as ct from qso_toolbox import photometry_tools as pt def show_rectangles(fig, xw, yw, width, height, angle=0, layer=False, zorder=None, coords_frame='world', **kwargs): """ Overlay rectangles on the current plot. ATTENTION! THIS IS A MODIFIED VERSION OF THE ORIGINAL APLPY ROUTINE THAT CORRECTLY ROTATES THE RECTANGLE AROUND ITS CENTER POSITION. see https://github.com/aplpy/aplpy/pull/327 Parameters ---------- xw : list or `~numpy.ndarray` The x positions of the centers of the rectangles (in world coordinates) yw : list or `~numpy.ndarray` The y positions of the centers of the rectangles (in world coordinates) width : int or float or list or `~numpy.ndarray` The width of the rectangle (in world coordinates) height : int or float or list or `~numpy.ndarray` The height of the rectangle (in world coordinates) angle : int or float or list or `~numpy.ndarray`, optional rotation in degrees (anti-clockwise). Default angle is 0.0. layer : str, optional The name of the rectangle layer. This is useful for giving custom names to layers (instead of rectangle_set_n) and for replacing existing layers. coords_frame : 'pixel' or 'world' The reference frame in which the coordinates are defined. This is used to interpret the values of ``xw``, ``yw``, ``width``, and ``height``. kwargs Additional keyword arguments (such as facecolor, edgecolor, alpha, or linewidth) are passed to Matplotlib :class:`~matplotlib.collections.PatchCollection` class, and can be used to control the appearance of the rectangles. """ xw, yw, width, height, angle = aplpy.core.uniformize_1d(xw, yw, width, height, angle) if 'facecolor' not in kwargs: kwargs.setdefault('facecolor', 'none') if layer: fig.remove_layer(layer, raise_exception=False) if coords_frame not in ['pixel', 'world']: raise ValueError("coords_frame should be set to 'pixel' or 'world'") # While we could plot the shape using the get_transform('world') mode # from WCSAxes, the issue is that the rotation angle is also measured in # world coordinates so will not be what the user is expecting. So we # allow the user to specify the reference frame for the coordinates and # for the rotation. if coords_frame == 'pixel': x, y = xw, yw w = width h = height a = angle transform = fig.ax.transData else: x, y = fig.world2pixel(xw, yw) pix_scale = aplpy.core.proj_plane_pixel_scales(fig._wcs) sx, sy = pix_scale[fig.x], pix_scale[fig.y] w = width / sx h = height / sy a = angle transform = fig.ax.transData # x = x - w / 2. # y = y - h / 2. # # patches = [] # for i in range(len(x)): # patches.append(Rectangle((x[i], y[i]), width=w[i], height=h[i], # angle=a[i])) xp = x - w / 2. yp = y - h / 2. radeg = np.pi / 180 xr = (xp - x) * np.cos((angle) * radeg) - (yp - y) * np.sin( (angle) * radeg) + x yr = (xp - x) * np.sin((angle) * radeg) + (yp - y) * np.cos( (angle) * radeg) + y patches = [] for i in range(len(xr)): patches.append( Rectangle((xr[i], yr[i]), width=w[i], height=h[i], angle=a[i])) # Due to bugs in matplotlib, we need to pass the patch properties # directly to the PatchCollection rather than use match_original. p = PatchCollection(patches, transform=transform, **kwargs) if zorder is not None: p.zorder = zorder c = fig.ax.add_collection(p) if layer: rectangle_set_name = layer else: fig._rectangle_counter += 1 rectangle_set_name = 'rectangle_set_' + str(fig._rectangle_counter) fig._layers[rectangle_set_name] = c return fig # ------------------------------------------------------------------------------ # Plotting functions for image_cutouts # ------------------------------------------------------------------------------ def open_image(filename, ra, dec, fov, image_folder_path, verbosity=0): """Opens an image defined by the filename with a fov of at least the specified size (in arcseonds). :param filename: :param ra: :param dec: :param fov: :param image_folder_path: :param verbosity: :return: """ filenames_available = glob.glob(filename) file_found = False open_file_fov = None file_path = None if len(filenames_available) > 0: for filename in filenames_available: try: file_fov = int(filename.split("_")[3].split(".")[0][3:]) except: file_fov = 9999999 if fov <= file_fov: data, hdr = fits.getdata(filename, header=True) file_found = True file_path =filename open_file_fov = file_fov if file_found: if verbosity > 0: print("Opened {} with a fov of {} " "arcseconds".format(file_path, open_file_fov)) return data, hdr, file_path else: if verbosity > 0: print("File {} in folder {} not found. Target with RA {}" " and Decl {}".format(filename, image_folder_path, ra, dec)) return None, None, None def make_mult_png_fig(ra, dec, surveys, bands, fovs, apertures, square_sizes, image_folder_path, mag_list=None, magerr_list=None, sn_list=None, forced_mag_list=None, forced_magerr_list=None, forced_sn_list=None, n_col=3, n_sigma=3, color_map_name='viridis', add_info_label=None, add_info_value=None, verbosity=0): """Create a figure to plot cutouts for one source in all specified surveys and bands. :param ra: float Right Ascension of the target :param dec: float Declination of the target :param surveys: list of strings List of survey names, length has to be equal to bands and fovs :param bands: list of strings List of band names, length has to be equal to surveys and fovs :param fovs: list of floats Field of view in arcseconds of image cutouts, length has be equal to surveys, bands and apertures. :param apertures: list of floats List of apertures in arcseconds for forced photometry calculated, length has to be equal to surveys, bands and fovs :param square_sizes: list of floats List of :param image_folder_path: string Path to the directory where all the images are be stored :param mag_list: list of floats List of magnitudes for each survey/band :param magerr_list: list of floats List of magnitude errors for each survey/band :param sn_list: list of floats List of S/N for each survey/band :param forced_mag_list: list of floats List of forced magnitudes for each survey/band :param forced_magerr_list: list of floats List of forced magnitude errors for each survey/band :param forced_sn_list: list of floats List of forced S/N for each survey/band :param n_col: int Number of columns :param n_sigma: int Number of sigmas for the sigma-clipping routine that creates the boundaries for the color map. :param color_map_name: string Name of the color map :param add_info_value : string Value for additional information added to the title of the figure :param add_info_label : string Label for additional information added to the title of the figure :param verbosity: Verbosity > 0 will print verbose statements during the execution :return: matplotlib.figure Figure with the plot. """ n_images = len(surveys) n_row = int(math.ceil(n_images / n_col)) fig = plt.figure(figsize=(5*n_col, 5*n_row)) fig = _make_mult_png_axes(fig, n_row, n_col, ra, dec, surveys, bands, fovs, apertures, square_sizes, image_folder_path, mag_list, magerr_list, sn_list, forced_mag_list, forced_magerr_list, forced_sn_list, n_sigma, color_map_name, verbosity) coord_name = ut.coord_to_name(np.array([ra]), np.array([dec]), epoch="J") if add_info_label is None or add_info_value is None: fig.suptitle(coord_name[0]) else: fig.suptitle(coord_name[0]+' '+add_info_label+'='+add_info_value) return fig def _make_mult_png_axes(fig, n_row, n_col, ra, dec, surveys, bands, fovs, apertures, square_sizes, image_folder_path, mag_list=None, magerr_list=None, sn_list=None, forced_mag_list=None, forced_magerr_list=None, forced_sn_list=None, n_sigma=3, color_map_name='viridis', verbosity=0): """ Create axes components to plot one source in all specified surveys and bands. :param fig: matplotlib.figure Figure :param n_row: int Number of rows :param n_col: int Number of columns :param ra: float Right Ascension of the target :param dec: float Declination of the target :param surveys: list of strings List of survey names, length has to be equal to bands and fovs :param bands: list of strings List of band names, length has to be equal to surveys and fovs :param fovs: list of floats Field of view in arcseconds of image cutouts, length has be equal to surveys, bands and apertures. :param apertures: list of floats List of apertures in arcseconds for forced photometry calculated, length has to be equal to surveys, bands and fovs :param square_sizes: list of floats List of :param image_folder_path: string Path to the directory where all the images are be stored :param mag_list: list of floats List of magnitudes for each survey/band :param magerr_list: list of floats List of magnitude errors for each survey/band :param sn_list: list of floats List of S/N for each survey/band :param forced_mag_list: list of floats List of forced magnitudes for each survey/band :param forced_magerr_list: list of floats List of forced magnitude errors for each survey/band :param forced_sn_list: list of floats List of forced S/N for each survey/band :param n_col: int Number of columns :param n_sigma: int Number of sigmas for the sigma-clipping routine that creates the boundaries for the color map. :param color_map_name: string Name of the color map :param verbosity: Verbosity > 0 will print verbose statements during the execution :return: matplotlib.figure Figure with the plot. """ for idx, survey in enumerate(surveys): band = bands[idx] fov = fovs[idx] aperture = apertures[idx] size = square_sizes[idx] if mag_list is not None: catmag = mag_list[idx] else: catmag = None if magerr_list is not None: caterr = magerr_list[idx] else: caterr = None if sn_list is not None: catsn = sn_list[idx] else: catsn = None if forced_mag_list is not None: forced_mag = forced_mag_list[idx] else: forced_mag = None if forced_magerr_list is not None: forced_magerr = forced_magerr_list[idx] else: forced_magerr = None if forced_sn_list is not None: forced_sn = forced_sn_list[idx] else: forced_sn = None # Get the correct filename, accept larger fovs coord_name = ut.coord_to_name(np.array([ra]), np.array([dec]), epoch="J") filename = image_folder_path + '/' + coord_name[0] + "_" + survey + "_" + \ band + "*fov*.fits" data, hdr, file_path = open_image(filename, ra, dec, fov, image_folder_path, verbosity) if data is not None and hdr is not None: file_found = True else: file_found = False # Old plotting routine to modify, currently it only plots images for # surveys and bands that it could open, no auto download implemented if file_found: wcs_img = wcs.WCS(hdr) pixcrd = wcs_img.wcs_world2pix(ra, dec, 0) positions = (np.float(pixcrd[0]), np.float(pixcrd[1])) overlap = True if verbosity >= 4: print("[DIAGNOSTIC] Image file shape {}".format(data.shape)) try: img_stamp = Cutout2D(data, positions, size=fov * u.arcsec, wcs=wcs_img) if verbosity >= 4: print("[DIAGNOSTIC] Cutout2D file shape {}".format( img_stamp.shape)) except: print("Source not in image") overlap = False img_stamp = None if img_stamp is not None: if overlap: img_stamp = img_stamp.data hdu = fits.ImageHDU(data=img_stamp, header=hdr) axs = aplpy.FITSFigure(hdu, figure=fig, subplot=(n_row, n_col, idx + 1), north=True) # Check if input color map name is a color map, else use viridis try: cm = plt.get_cmap(color_map_name) except ValueError: print('Color map argument is not a color map. Setting ' 'default: viridis') cm = plt.get_cmap('viridis') color_map_name = 'viridis' # Sigma-clipping of the color scale mean = np.mean(img_stamp[~np.isnan(img_stamp)]) std = np.std(img_stamp[~np.isnan(img_stamp)]) upp_lim = mean + n_sigma * std low_lim = mean - n_sigma * std axs.show_colorscale(vmin=low_lim, vmax=upp_lim, cmap=color_map_name) # Plot circular aperture (forced photometry flux) (yy, xx) = img_stamp.shape circx = (xx * 0.5) # + 1 circy = (yy * 0.5) # + 1 aper_pix = aperture_inpixels(aperture, hdr) circle = plt.Circle((circx, circy), aper_pix, color='r', fill=False, lw=1.5) fig.gca().add_artist(circle) # Plot rectangular aperture (error region) rect_inpixels = aperture_inpixels(size, hdr) square = plt.Rectangle((circx - rect_inpixels * 0.5, circy - rect_inpixels * 0.5), rect_inpixels, rect_inpixels, color='r', fill=False, lw=1.5) fig.gca().add_artist(square) # Create forced photometry label if (forced_mag is not None): if (forced_sn is not None) & (forced_magerr is not None): forcedlabel = r'${0:s} = {1:.2f} \pm {2:.2f} (SN=' \ r'{3:.1f})$'.format(band + "_{forced}", forced_mag, forced_magerr, forced_sn) elif forced_magerr is not None: forcedlabel = r'${0:s} = {1:.2f} \pm {2:.2f}$'.format( band + "_{forced}", forced_mag, forced_magerr) else: forcedlabel = r'${0:s} = {1:.2f}$'.format( band + "_{forced}", forced_mag) fig.gca().text(0.03, 0.16, forcedlabel, color='black', weight='bold', fontsize='large', bbox=dict(facecolor='white', alpha=0.6), transform=fig.gca().transAxes) # Create catalog magnitude label if catmag is not None: if (catsn is not None) & (caterr is not None): maglabel = r'${0:s} = {1:.2f} \pm {2:.2f} (SN=' \ r'{3:.2f})$'.format( band + "_{cat}", catmag, caterr, catsn) elif caterr is not None: maglabel = r'${0:s} = {1:.2f} \pm {2:.2f}$'.format( band + "_{cat}", catmag, caterr) else: maglabel = r'${0:s} = {1:.2f}$'.format( band + "_{cat}", catmag) fig.gca().text(0.03, 0.04, maglabel, color='black', weight='bold', fontsize='large', bbox=dict(facecolor='white', alpha=0.6), transform=fig.gca().transAxes) fig.gca().set_title(survey + " " + band) return fig # ------------------------------------------------------------------------------ # Finding Chart plotting routine # ------------------------------------------------------------------------------ def make_finding_charts(table, ra_column_name, dec_column_name, target_column_name, survey, band, aperture, fov, image_folder_path, offset_table=None, offset_id = 0, offset_focus = False, offset_ra_column_name=None, offset_dec_column_name=None, pos_angle_column_name=None, offset_mag_column_name=None, offset_id_column_name=None, # offset_finding_chart=True, label_position='bottom', slit_width=None, slit_length=None, format ='pdf', auto_download=False, verbosity=0): """Create and save finding charts plots for all targets in the input table. :param table: pandas.core.frame.DataFrame Dataframe with targets to plot finding charts for :param ra_column_name: string Right ascension column name :param dec_column_name: string Declination column name :param target_column_name: string Name of the target identifier column :param survey: string Survey name :param band: string Passband name :param aperture: float Aperture to plot in arcseconds :param fov: float Field of view in arcseconds :param image_folder_path: string Path to where the image will be stored :param offset_table: pandas.core.frame.DataFrame Pandas dataframe with offset star information for all targets :param offset_id: int Integer indicating the primary offset from the offset table :param offset_focus: boolean Boolean to indicate whether offset star will be in the center or not :param offset_ra_column_name: string Offset star dataframe right ascension column name :param offset_dec_column_name: string Offset star dataframe declination column name :param pos_angle_column_name: string Offset star dataframe position angle column name :param offset_mag_column_name: string Offset star dataframe magnitude column name :param offset_id_column_name: string Offset star dataframe identifier column name :param label_position: string String that defines the label position for the offset stars. Possible label positions are ["left", "right", "top", "bottom", "topleft"] :param slit_width: float Slit width in arcseconds. :param slit_length: float Slit length in arcseconds :param format: string A string indicating in which format the finding charts are save. Possible formats: 'pdf', 'png' :param auto_download: boolean Boolean to indicate whether images should be automatically downloaded. :param verbosity: Verbosity > 0 will print verbose statements during the execution. """ surveys = [survey] bands = [band] fovs = [fov] print(offset_table) print(table) for idx in table.index: ra = table.loc[idx, ra_column_name] dec = table.loc[idx, dec_column_name] target_name = table.loc[idx, target_column_name] if offset_table is not None: offset_target = offset_table.query('target_name=="{}"'.format( target_name)) # Set position angle if len(offset_target) > 0: if pos_angle_column_name is not None: position_angle = offset_target.loc[offset_target.index[0], pos_angle_column_name] else: target_coords = SkyCoord(ra=ra, dec=dec, unit=(u.deg, u.deg), frame='icrs') offset_coords = SkyCoord(ra=offset_target.loc[:, offset_ra_column_name].values, dec=offset_target.loc[:, offset_dec_column_name].values, unit=(u.deg, u.deg), frame='icrs') # Calculate position angles(East of North) pos_angles = offset_coords.position_angle(target_coords).to( u.deg) # Take position angle to offset_id star in list position_angle = pos_angles[offset_id].to(u.deg).value else: position_angle = 0 offset_target = None else: offset_target = None position_angle = 0 if offset_target is not None: offset_target.reset_index(inplace=True, drop=True) if auto_download: if offset_focus: ct.get_photometry(offset_target.loc[[0]], offset_ra_column_name, offset_dec_column_name, surveys, bands, image_folder_path, fovs, # n_jobs=1, verbosity=verbosity) else: ct.get_photometry(table.loc[[idx]], ra_column_name, dec_column_name, surveys, bands, image_folder_path, fovs, # n_jobs=1, verbosity=verbosity) fig = make_finding_chart(ra, dec, survey, band, aperture, fov, image_folder_path, offset_df=offset_target, offset_id=offset_id, offset_focus=offset_focus, offset_ra_column_name=offset_ra_column_name, offset_dec_column_name=offset_dec_column_name, offset_mag_column_name=offset_mag_column_name, offset_id_column_name=offset_id_column_name, label_position=label_position, slit_width=slit_width, slit_length=slit_length, position_angle=position_angle, verbosity=verbosity) if format == 'pdf': fig.save('fc_{}.pdf'.format(target_name), transparent=False) if format == 'png': fig.save('fc_{}.png'.format(target_name), transparent=False) print('{} created'.format('fc_{}'.format(target_name))) def make_finding_chart(ra, dec, survey, band, aperture, fov, image_folder_path, offset_df=None, offset_id=0, offset_focus=False, offset_ra_column_name=None, offset_dec_column_name=None, offset_mag_column_name=None, offset_id_column_name=None, label_position='bottom', slit_width=None, slit_length=None, position_angle=None, verbosity=0): """Make the finding chart figure and return it. This is an internal function, but can be used to create one finding chart. :param ra: float Right ascension of the target in decimal degrees :param dec: float Declination of the target in decimal degrees :param survey: string Survey name :param band: string Passband name :param aperture: float Size of the plotted aperture in arcseconds :param fov: float Field of view in arcseconds :param image_folder_path: string Path to where the image will be stored :param offset_df: pandas.core.frame.DataFrame Pandas dataframe with offset star information :param offset_id: int Integer indicating the primary offset from the offset table :param offset_focus: boolean Boolean to indicate whether offset star will be in the center or not :param offset_ra_column_name: string Offset star dataframe right ascension column name :param offset_dec_column_name: string Offset star dataframe declination column name :param offset_mag_column_name: string Offset star dataframe magnitude column name :param offset_id_column_name: string Offset star dataframe identifier column name :param label_position: string String that defines the label position for the offset stars. Possible label positions are ["left", "right", "top", "bottom", "topleft"] :param slit_width: float Slit width in arcseconds. :param slit_length: float Slit length in arcseconds :param position_angle: Position angle for the observation. :param verbosity: Verbosity > 0 will print verbose statements during the execution. :return: matplotlib.figure Return the matplotlib figure of the finding chart. """ if offset_focus: im_ra = offset_df.loc[offset_id, offset_ra_column_name] im_dec = offset_df.loc[offset_id, offset_dec_column_name] else: im_ra = ra im_dec = dec coord_name = ut.coord_to_name(np.array([im_ra]), np.array([im_dec]), epoch="J") filename = image_folder_path + '/' + coord_name[0] + "_" + survey + "_" + \ band + "*.fits" data, hdr, file_path = open_image(filename, im_ra, im_dec, fov, image_folder_path, verbosity=verbosity) # Reproject data if position angle is specified if position_angle != 0: hdr['CRPIX1'] = int(hdr['NAXIS1'] / 2.) hdr['CRPIX2'] = int(hdr['NAXIS2'] / 2.) hdr['CRVAL1'] = im_ra hdr['CRVAL2'] = im_dec new_hdr = hdr.copy() pa_rad = np.deg2rad(position_angle) # TODO: Note that the rotation definition here reflects one axis # TODO: to make sure that it is a rotated version of north up east left # TODO: both 001 components have a negative sign! new_hdr['PC001001'] = -np.cos(pa_rad) new_hdr['PC001002'] =
np.sin(pa_rad)
numpy.sin
import time import numpy as np from sklearn.datasets import make_classification from logreg import logreg_path from sklearn.datasets.mldata import fetch_mldata from sklearn.datasets import load_svmlight_file # import pandas as pd from blitz_path import blitz_path import matplotlib.pyplot as plt from matplotlib import rc plt.close('all') plt.style.use('ggplot') fontsize = 13 rc('font', **{'family': 'sans-serif', 'sans-serif': ['Computer Modern Roman']}) params = {'axes.labelsize': 20, 'font.size': 15, 'legend.fontsize': 15, 'xtick.labelsize': 15, 'ytick.labelsize': 15, 'text.usetex': True, 'text.latex.preamble': r'\usepackage{amsmath}'} plt.rcParams.update(params) dataset_id = 2 bench_time = 1 bench_active_set = 0 display_time = 0 if dataset_id == 1: dataset = "synthetic" X, y = make_classification(n_samples=50, n_features=3000, n_classes=2, random_state=42) X = X.astype(float) X /= np.sqrt(np.sum(X ** 2, axis=0)) mask = np.sum(np.isnan(X), axis=0) == 0 if np.any(mask): X = X[:, mask] y = y.astype(float) y_blitz = 2 * y - 1 # blitz's label = +-1 eps = 1e-3 # the smaller it is the longer is the path elif dataset_id == 2: dataset = "leukemia" data = fetch_mldata(dataset) X = data.data # [:, fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b] y = data.target X = X.astype(float) y = y.astype(float) y_blitz = y.copy() # blitz's label = +-1 y[y == -1] = 0 eps = 1e-3 # the smaller it is the longer is the path elif dataset_id == 3: # download the file here # http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#news20.binary X, y = load_svmlight_file("data/news20.binary") X = X.astype(float) y = y.astype(float) y[y == -1] = 0 alpha_max = np.linalg.norm(np.dot(X.T, 0.5 - y), ord=np.inf) alpha_max_blitz = np.linalg.norm(
np.dot(X.T, y_blitz)
numpy.dot
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import learning_curve from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression df = pd.read_csv('wdbc.data', header=None) X = df.loc[:, 2:].values y = df.loc[:, 1].values le = LabelEncoder() y = le.fit_transform(y) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, stratify=y, random_state=1) # Debugging algorithms with learning curves # Diagnosing bias and variance problems with learning curves pipe_lr = make_pipeline(StandardScaler(), LogisticRegression(penalty='l2', random_state=1, solver='lbfgs', max_iter=10000)) train_sizes, train_scores, test_scores = learning_curve(estimator=pipe_lr, X=X_train, y=y_train, train_sizes=np.linspace(0.1, 1.0, 10), cv=10, n_jobs=1) train_mean =
np.mean(train_scores, axis=1)
numpy.mean
import numpy as np from nuspacesim.config import NssConfig from nuspacesim.simulation.geometry import region_geometry from . import cpp_region_geometry def test_rg(): cfg = NssConfig() u = np.random.rand(int(1e6), 4) T = region_geometry.RegionGeom(cfg) T.throw(u.T) R = cpp_region_geometry.RegionGeom(cfg) R.run_geo_dmc_from_ran_array_nparray(u) Rmsk = R.evMasknpArray Tmsk = T.event_mask assert all(Rmsk == Tmsk) assert np.allclose(R.evArray["thetaS"][Rmsk], T.thetaS[Tmsk]) assert np.allclose(R.evArray["phiS"][Rmsk], T.phiS[Tmsk]) assert np.allclose(R.evArray["raS"][Rmsk], T.raS[Tmsk]) assert np.allclose(R.evArray["decS"][Rmsk], T.decS[Tmsk]) assert np.allclose(R.evArray["thetaTrSubV"][Rmsk], T.thetaTrSubV[Tmsk]) assert np.allclose(R.evArray["costhetaTrSubV"][Rmsk], T.costhetaTrSubV[Tmsk]) assert np.allclose(R.evArray["phiTrSubV"][Rmsk], T.phiTrSubV[Tmsk]) assert np.allclose(R.evArray["thetaTrSubN"][Rmsk], T.thetaTrSubN[Tmsk]) assert np.allclose(R.evArray["costhetaTrSubN"][Rmsk], T.costhetaTrSubN[Tmsk]) assert np.allclose(R.evArray["betaTrSubN"][Rmsk], T.betaTrSubN[Tmsk]) assert np.allclose(R.evArray["losPathLen"][Rmsk], T.losPathLen[Tmsk]) assert np.allclose(R.evArray["thetaTrSubV"][Rmsk], T.thetaTrSubV[Tmsk]) assert np.allclose(R.evArray["costhetaTrSubV"][Rmsk], T.costhetaTrSubV[Tmsk]) assert not np.allclose(R.evArray["thetaS"][Rmsk], 1 + T.thetaS[Tmsk]) assert np.allclose(R.betas(), T.betas()) assert np.allclose(R.beta_rad(), T.beta_rad()) assert np.allclose(R.thetas(), T.thetas()) assert np.allclose(R.pathLens(), T.pathLens()) triggers = np.random.uniform(size=int(1e6))[Tmsk] costheta = np.random.normal(size=int(1e6))[Tmsk] tauexitprob = np.random.uniform(size=int(1e6))[Tmsk] threshold = 1 / 10 Rmci, Rmcig, Rpass = R.mcintegral(triggers, costheta, tauexitprob, threshold) Tmci, Tmcig, Tpass = T.mcintegral(triggers, costheta, tauexitprob, threshold) assert
np.allclose(Rmci, Tmci)
numpy.allclose
# MIT License # # Copyright (c) 2018-2021 Tskit Developers # Copyright (c) 2015-2018 University of Oxford # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ Test cases for the low level C interface to tskit. """ import collections import inspect import itertools import os import random import tempfile import msprime import numpy as np import pytest import _tskit import tskit def get_tracked_sample_counts(st, tracked_samples): """ Returns a list giving the number of samples in the specified list that are in the subtree rooted at each node. """ nu = [0 for j in range(st.get_num_nodes())] for j in tracked_samples: # Duplicates not permitted. assert nu[j] == 0 u = j while u != _tskit.NULL: nu[u] += 1 u = st.get_parent(u) return nu def get_sample_counts(tree_sequence, st): """ Returns a list of the sample node counts for the specified tree. """ nu = [0 for j in range(st.get_num_nodes())] for j in range(tree_sequence.get_num_samples()): u = j while u != _tskit.NULL: nu[u] += 1 u = st.get_parent(u) return nu class LowLevelTestCase: """ Superclass of tests for the low-level interface. """ def verify_tree_dict(self, n, pi): """ Verifies that the specified tree in dict format is a consistent coalescent history for a sample of size n. """ assert len(pi) <= 2 * n - 1 # _tskit.NULL should not be a node assert _tskit.NULL not in pi # verify the root is equal for all samples root = 0 while pi[root] != _tskit.NULL: root = pi[root] for j in range(n): k = j while pi[k] != _tskit.NULL: k = pi[k] assert k == root # 0 to n - 1 inclusive should always be nodes for j in range(n): assert j in pi num_children = collections.defaultdict(int) for j in pi.keys(): num_children[pi[j]] += 1 # nodes 0 to n are samples. for j in range(n): assert pi[j] != 0 assert num_children[j] == 0 # All non-sample nodes should be binary for j in pi.keys(): if j > n: assert num_children[j] >= 2 def get_example_tree_sequence( self, sample_size=10, length=1, mutation_rate=1, random_seed=1 ): ts = msprime.simulate( sample_size, recombination_rate=0.1, mutation_rate=mutation_rate, random_seed=random_seed, length=length, ) return ts.ll_tree_sequence def get_example_tree_sequences(self): yield self.get_example_tree_sequence() yield self.get_example_tree_sequence(2, 10) yield self.get_example_tree_sequence(20, 10) yield self.get_example_migration_tree_sequence() def get_example_migration_tree_sequence(self): pop_configs = [msprime.PopulationConfiguration(5) for _ in range(2)] migration_matrix = [[0, 1], [1, 0]] ts = msprime.simulate( population_configurations=pop_configs, migration_matrix=migration_matrix, mutation_rate=1, record_migrations=True, random_seed=1, ) return ts.ll_tree_sequence def verify_iterator(self, iterator): """ Checks that the specified non-empty iterator implements the iterator protocol correctly. """ list_ = list(iterator) assert len(list_) > 0 for _ in range(10): with pytest.raises(StopIteration): next(iterator) class MetadataTestMixin: metadata_tables = [ "node", "edge", "site", "mutation", "migration", "individual", "population", ] class TestTableCollection(LowLevelTestCase): """ Tests for the low-level TableCollection class """ def test_file_errors(self): tc1 = _tskit.TableCollection(1) self.get_example_tree_sequence().dump_tables(tc1) def loader(*args): tc = _tskit.TableCollection(1) tc.load(*args) for func in [tc1.dump, loader]: with pytest.raises(TypeError): func() for bad_type in [None, [], {}]: with pytest.raises(TypeError): func(bad_type) def test_dump_equality(self, tmp_path): for ts in self.get_example_tree_sequences(): tc = _tskit.TableCollection(sequence_length=ts.get_sequence_length()) ts.dump_tables(tc) with open(tmp_path / "tmp.trees", "wb") as f: tc.dump(f) with open(tmp_path / "tmp.trees", "rb") as f: tc2 = _tskit.TableCollection() tc2.load(f) assert tc.equals(tc2) def test_reference_deletion(self): ts = msprime.simulate(10, mutation_rate=1, random_seed=1) tc = ts.tables._ll_tables # Get references to all the tables tables = [ tc.individuals, tc.nodes, tc.edges, tc.migrations, tc.sites, tc.mutations, tc.populations, tc.provenances, ] del tc for _ in range(10): for table in tables: assert len(str(table)) > 0 def test_set_sequence_length_errors(self): tables = _tskit.TableCollection(1) with pytest.raises(TypeError): del tables.sequence_length for bad_value in ["sdf", None, []]: with pytest.raises(TypeError): tables.sequence_length = bad_value def test_set_sequence_length(self): tables = _tskit.TableCollection(1) assert tables.sequence_length == 1 for value in [-1, 1e6, 1e-22, 1000, 2 ** 32, -10000]: tables.sequence_length = value assert tables.sequence_length == value def test_set_metadata_errors(self): tables = _tskit.TableCollection(1) with pytest.raises(AttributeError): del tables.metadata for bad_value in ["bytes only", 59, 43.4, None, []]: with pytest.raises(TypeError): tables.metadata = bad_value def test_set_metadata(self): tables = _tskit.TableCollection(1) assert tables.metadata == b"" for value in [b"foo", b"", "💩".encode(), b"null char \0 in string"]: tables.metadata = value tables.metadata_schema = "Test we have two separate fields" assert tables.metadata == value def test_set_metadata_schema_errors(self): tables = _tskit.TableCollection(1) with pytest.raises(AttributeError): del tables.metadata_schema for bad_value in [59, 43.4, None, []]: with pytest.raises(TypeError): tables.metadata_schema = bad_value def test_set_metadata_schema(self): tables = _tskit.TableCollection(1) assert tables.metadata_schema == "" for value in ["foo", "", "💩", "null char \0 in string"]: tables.metadata_schema = value tables.metadata = b"Test we have two separate fields" assert tables.metadata_schema == value def test_simplify_bad_args(self): ts = msprime.simulate(10, random_seed=1) tc = ts.tables._ll_tables with pytest.raises(TypeError): tc.simplify() with pytest.raises(ValueError): tc.simplify("asdf") with pytest.raises(TypeError): tc.simplify([0, 1], keep_unary="sdf") with pytest.raises(TypeError): tc.simplify([0, 1], keep_unary_in_individuals="abc") with pytest.raises(TypeError): tc.simplify([0, 1], keep_input_roots="sdf") with pytest.raises(TypeError): tc.simplify([0, 1], filter_populations="x") with pytest.raises(_tskit.LibraryError): tc.simplify([0, -1]) def test_link_ancestors_bad_args(self): ts = msprime.simulate(10, random_seed=1) tc = ts.tables._ll_tables with pytest.raises(TypeError): tc.link_ancestors() with pytest.raises(TypeError): tc.link_ancestors([0, 1]) with pytest.raises(ValueError): tc.link_ancestors(samples=[0, 1], ancestors="sdf") with pytest.raises(ValueError): tc.link_ancestors(samples="sdf", ancestors=[0, 1]) with pytest.raises(_tskit.LibraryError): tc.link_ancestors(samples=[0, 1], ancestors=[11, -1]) with pytest.raises(_tskit.LibraryError): tc.link_ancestors(samples=[0, -1], ancestors=[11]) def test_link_ancestors(self): ts = msprime.simulate(2, random_seed=1) tc = ts.tables._ll_tables edges = tc.link_ancestors([0, 1], [3]) assert isinstance(edges, _tskit.EdgeTable) del edges assert tc.edges.num_rows == 2 def test_subset_bad_args(self): ts = msprime.simulate(10, random_seed=1) tc = ts.tables._ll_tables with pytest.raises(TypeError): tc.subset(np.array(["a"])) with pytest.raises(ValueError): tc.subset(np.array([[1], [2]], dtype="int32")) with pytest.raises(TypeError): tc.subset() with pytest.raises(_tskit.LibraryError): tc.subset(np.array([100, 200], dtype="int32")) def test_union_bad_args(self): ts = msprime.simulate(10, random_seed=1) tc = ts.tables._ll_tables tc2 = tc with pytest.raises(TypeError): tc.union(tc2, np.array(["a"])) with pytest.raises(ValueError): tc.union(tc2, np.array([0], dtype="int32")) with pytest.raises(TypeError): tc.union(tc2) with pytest.raises(TypeError): tc.union() node_mapping = np.arange(ts.num_nodes, dtype="int32") node_mapping[0] = 1200 with pytest.raises(_tskit.LibraryError): tc.union(tc2, node_mapping) node_mapping = np.array( [node_mapping.tolist(), node_mapping.tolist()], dtype="int32" ) with pytest.raises(ValueError): tc.union(tc2, node_mapping) with pytest.raises(ValueError): tc.union(tc2, np.array([[1], [2]], dtype="int32")) def test_equals_bad_args(self): ts = msprime.simulate(10, random_seed=1242) tc = ts.tables._ll_tables with pytest.raises(TypeError): tc.equals() with pytest.raises(TypeError): tc.equals(None) assert tc.equals(tc) with pytest.raises(TypeError): tc.equals(tc, no_such_arg=1) bad_bool = "x" with pytest.raises(TypeError): tc.equals(tc, ignore_metadata=bad_bool) with pytest.raises(TypeError): tc.equals(tc, ignore_ts_metadata=bad_bool) with pytest.raises(TypeError): tc.equals(tc, ignore_provenance=bad_bool) with pytest.raises(TypeError): tc.equals(tc, ignore_timestamps=bad_bool) def test_asdict(self): for ts in self.get_example_tree_sequences(): tc = _tskit.TableCollection(sequence_length=ts.get_sequence_length()) ts.dump_tables(tc) d = tc.asdict() # Method is tested extensively elsewhere, just basic sanity check here assert isinstance(d, dict) assert len(d) > 0 def test_fromdict(self): for ts in self.get_example_tree_sequences(): tc1 = _tskit.TableCollection(sequence_length=ts.get_sequence_length()) ts.dump_tables(tc1) d = tc1.asdict() tc2 = _tskit.TableCollection(sequence_length=0) tc2.fromdict(d) assert tc1.equals(tc2) def test_asdict_bad_args(self): ts = msprime.simulate(10, random_seed=1242) tc = ts.tables._ll_tables for bad_type in [None, 0.1, "str"]: with pytest.raises(TypeError): tc.asdict(force_offset_64=bad_type) def test_fromdict_bad_args(self): tc = _tskit.TableCollection(0) for bad_type in [None, 0.1, "str"]: with pytest.raises(TypeError): tc.fromdict(bad_type) class TestIbd: def test_uninitialised(self): result = _tskit.IbdResult.__new__(_tskit.IbdResult) with pytest.raises(SystemError): result.get(0, 1) with pytest.raises(SystemError): result.print_state() with pytest.raises(SystemError): result.total_segments def test_find_bad_args(self): ts = msprime.simulate(10, random_seed=1) tc = ts.tables._ll_tables with pytest.raises(TypeError): tc.find_ibd() for bad_samples in ["sdf", None, {}]: with pytest.raises(ValueError): tc.find_ibd(bad_samples) for not_enough_samples in [[], [0]]: with pytest.raises(ValueError): tc.find_ibd(not_enough_samples) # input array must be 2D with pytest.raises(ValueError): tc.find_ibd([[[1], [1]]]) # Input array must be (n, 2) with pytest.raises(ValueError): tc.find_ibd([[1, 1, 1]]) for bad_float in ["sdf", None, {}]: with pytest.raises(TypeError): tc.find_ibd([(0, 1)], min_length=bad_float) with pytest.raises(TypeError): tc.find_ibd([(0, 1)], max_time=bad_float) with pytest.raises(_tskit.LibraryError): tc.find_ibd([(0, 1)], max_time=-1) with pytest.raises(_tskit.LibraryError): tc.find_ibd([(0, 1)], min_length=-1) def test_get_output(self): ts = msprime.simulate(10, random_seed=1) tc = ts.tables._ll_tables pairs = [(0, 1), (2, 3)] result = tc.find_ibd(pairs) assert isinstance(result, _tskit.IbdResult) for pair in pairs: value = result.get(*pair) assert isinstance(value, dict) assert len(value) == 3 assert list(value["left"]) == [0] assert list(value["right"]) == [1] assert len(value["node"]) == 1 def test_get_bad_args(self): ts = msprime.simulate(10, random_seed=1) tc = ts.tables._ll_tables pairs = [(0, 1), (2, 3)] result = tc.find_ibd(pairs) with pytest.raises(TypeError): result.get() with pytest.raises(TypeError): result.get("0", 1) with pytest.raises(_tskit.LibraryError): result.get(0, 0) # TODO this should probably be a KeyError, but let's not # worry about it for now. with pytest.raises(_tskit.LibraryError): result.get(0, 2) def test_print_state(self): ts = msprime.simulate(10, random_seed=1) tc = ts.tables._ll_tables pairs = [(0, 1), (2, 3)] result = tc.find_ibd(pairs) with pytest.raises(TypeError): result.print_state() with tempfile.TemporaryFile("w+") as f: result.print_state(f) f.seek(0) output = f.read() assert len(output) > 0 assert "IBD" in output def test_direct_instantiation(self): # Nobody should do this, but just in case result = _tskit.IbdResult() assert result.total_segments == 0 with tempfile.TemporaryFile("w+") as f: result.print_state(f) f.seek(0) output = f.read() assert len(output) > 0 assert "IBD" in output class TestTableMethods: """ Tests for the low-level table methods. """ @pytest.mark.parametrize("table_name", tskit.TABLE_NAMES) def test_table_extend(self, table_name, ts_fixture): table = getattr(ts_fixture.tables, table_name) assert len(table) >= 5 ll_table = table.ll_table table_copy = table.copy() ll_table.extend(table_copy.ll_table, row_indexes=[]) assert table == table_copy ll_table.clear() ll_table.extend(table_copy.ll_table, row_indexes=range(len(table_copy))) assert table == table_copy @pytest.mark.parametrize("table_name", tskit.TABLE_NAMES) @pytest.mark.parametrize( ["row_indexes", "expected_rows"], [ ([0], [0]), ([4] * 1000, [4] * 1000), ([4, 1, 3, 0, 0], [4, 1, 3, 0, 0]), (np.array([0, 1, 4], dtype=np.uint8), [0, 1, 4]), (np.array([3, 3, 3], dtype=np.uint16), [3, 3, 3]), (np.array([4, 2, 1], dtype=np.int8), [4, 2, 1]), (np.array([4, 2], dtype=np.int16), [4, 2]), (np.array([0, 1], dtype=np.int32), [0, 1]), (range(2, -1, -1), [2, 1, 0]), ], ) def test_table_extend_types( self, ts_fixture, table_name, row_indexes, expected_rows ): table = getattr(ts_fixture.tables, table_name) assert len(table) >= 5 ll_table = table.ll_table table_copy = table.copy() ll_table.extend(table_copy.ll_table, row_indexes=row_indexes) assert len(table) == len(table_copy) + len(expected_rows) for i, expected_row in enumerate(expected_rows): assert table[len(table_copy) + i] == table_copy[expected_row] @pytest.mark.parametrize( ["table_name", "column_name"], [ (t, c) for t in tskit.TABLE_NAMES for c in getattr(tskit, f"{t[:-1].capitalize()}Table").column_names if c[-7:] != "_offset" ], ) def test_table_update(self, ts_fixture, table_name, column_name): table = getattr(ts_fixture.tables, table_name) copy = table.copy() ll_table = table.ll_table # Find the first row where this column differs to get a value to swap in other_row_index = -1 for i, row in enumerate(table): if not np.array_equal( getattr(table[0], column_name), getattr(row, column_name) ): other_row_index = i assert other_row_index != -1 # No-op update should not create a change args = ll_table.get_row(0) ll_table.update_row(0, *args) table.assert_equals(copy) # Modify the column under test in the first row new_args = list(ll_table.get_row(0)) arg_index = list(inspect.signature(table.add_row).parameters.keys()).index( column_name ) new_args[arg_index] = ll_table.get_row(other_row_index)[arg_index] ll_table.update_row(0, *new_args) for a, b in zip(ll_table.get_row(0), new_args): np.array_equal(a, b) def test_update_defaults(self): t = tskit.IndividualTable() assert t.add_row(flags=1, location=[1, 2], parents=[3, 4], metadata=b"FOO") == 0 t.ll_table.update_row(0) assert t.flags[0] == 0 assert len(t.location) == 0 assert t.location_offset[0] == 0 assert len(t.parents) == 0 assert t.parents_offset[0] == 0 assert len(t.metadata) == 0 assert t.metadata_offset[0] == 0 t = tskit.NodeTable() assert ( t.add_row(flags=1, time=2, population=3, individual=4, metadata=b"FOO") == 0 ) t.ll_table.update_row(0) assert t.time[0] == 0 assert t.flags[0] == 0 assert t.population[0] == tskit.NULL assert t.individual[0] == tskit.NULL assert len(t.metadata) == 0 assert t.metadata_offset[0] == 0 t = tskit.EdgeTable() assert t.add_row(1, 2, 3, 4, metadata=b"FOO") == 0 t.ll_table.update_row(0, 1, 2, 3, 4) assert len(t.metadata) == 0 assert t.metadata_offset[0] == 0 t = tskit.MigrationTable() assert t.add_row(1, 2, 3, 4, 5, 6, b"FOO") == 0 t.ll_table.update_row(0, 1, 2, 3, 4, 5, 6) assert len(t.metadata) == 0 assert t.metadata_offset[0] == 0 t = tskit.MutationTable() assert t.add_row(1, 2, "A", 3, b"FOO", 4) == 0 t.ll_table.update_row(0, 1, 2, "A", 3) assert len(t.metadata) == 0 assert t.metadata_offset[0] == 0 assert tskit.is_unknown_time(t.time[0]) t = tskit.PopulationTable() assert t.add_row(b"FOO") == 0 t.ll_table.update_row(0) assert len(t.metadata) == 0 assert t.metadata_offset[0] == 0 def test_update_bad_data(self): t = tskit.IndividualTable() t.add_row() with pytest.raises(TypeError): t.ll_table.update_row(0, flags="x") with pytest.raises(TypeError): t.ll_table.update_row(0, metadata=123) with pytest.raises(ValueError): t.ll_table.update_row(0, location="1234") with pytest.raises(ValueError): t.ll_table.update_row(0, parents="forty-two") t = tskit.NodeTable() t.add_row() with pytest.raises(TypeError): t.ll_table.update_row(0, flags="x") with pytest.raises(TypeError): t.ll_table.update_row(0, time="x") with pytest.raises(TypeError): t.ll_table.update_row(0, individual="x") with pytest.raises(TypeError): t.ll_table.update_row(0, population="x") with pytest.raises(TypeError): t.ll_table.update_row(0, metadata=123) t = tskit.EdgeTable() t.add_row(1, 2, 3, 4) with pytest.raises(TypeError): t.ll_table.update_row(0, left="x", right=0, parent=0, child=0) with pytest.raises(TypeError): t.ll_table.update_row( 0, ) with pytest.raises(TypeError): t.ll_table.update_row(0, 0, 0, 0, 0, metadata=123) t = tskit.SiteTable() t.add_row(0, "A") with pytest.raises(TypeError): t.ll_table.update_row(0, "x", "A") with pytest.raises(TypeError): t.ll_table.update_row(0, 0, 0) with pytest.raises(TypeError): t.ll_table.update_row(0, 0, "A", metadata=[0, 1, 2]) t = tskit.MutationTable() t.add_row(0, 0, "A") with pytest.raises(TypeError): t.ll_table.update_row(0, "0", 0, "A") with pytest.raises(TypeError): t.ll_table.update_row(0, 0, "0", "A") with pytest.raises(TypeError): t.ll_table.update_row(0, 0, 0, "A", parent=None) with pytest.raises(TypeError): t.ll_table.update_row(0, 0, 0, "A", metadata=[0]) with pytest.raises(TypeError): t.ll_table.update_row(0, 0, 0, "A", time="A") t = tskit.MigrationTable() with pytest.raises(TypeError): t.add_row(left="x", right=0, node=0, source=0, dest=0, time=0) with pytest.raises(TypeError): t.ll_table.update_row( 0, ) with pytest.raises(TypeError): t.ll_table.update_row(0, 0, 0, 0, 0, 0, 0, metadata=123) t = tskit.ProvenanceTable() t.add_row("a", "b") with pytest.raises(TypeError): t.ll_table.update_row(0, 0, "b") with pytest.raises(TypeError): t.ll_table.update_row(0, "a", 0) t = tskit.PopulationTable() t.add_row() with pytest.raises(TypeError): t.ll_table.update_row(0, metadata=[0]) class TestTableMethodsErrors: """ Tests for the error handling of errors in the low-level tables. """ def yield_tables(self, ts): for table in ts.tables.name_map.values(): yield table.ll_table @pytest.mark.parametrize( "table_name", tskit.TABLE_NAMES, ) def test_table_extend_bad_args(self, ts_fixture, table_name): table = getattr(ts_fixture.tables, table_name) ll_table = table.ll_table ll_table_copy = table.copy().ll_table with pytest.raises( _tskit.LibraryError, match="Tables can only be extended using rows from a different table", ): ll_table.extend(ll_table, row_indexes=[]) with pytest.raises(TypeError): ll_table.extend(None, row_indexes=[]) with pytest.raises(ValueError): ll_table.extend(ll_table_copy, row_indexes=5) with pytest.raises(TypeError): ll_table.extend(ll_table_copy, row_indexes=[None]) with pytest.raises(ValueError, match="object too deep"): ll_table.extend(ll_table_copy, row_indexes=[[0, 1], [2, 3]]) with pytest.raises(ValueError, match="object too deep"): ll_table.extend(ll_table_copy, row_indexes=[[0, 1]]) with pytest.raises(_tskit.LibraryError, match="out of bounds"): ll_table.extend(ll_table_copy, row_indexes=[-1]) with pytest.raises(_tskit.LibraryError, match="out of bounds"): ll_table.extend(ll_table_copy, row_indexes=[1000]) with pytest.raises(_tskit.LibraryError, match="out of bounds"): ll_table.extend(ll_table_copy, row_indexes=range(10000000, 10000001)) # Uncastable types for dtype in [np.uint32, np.int64, np.uint64, np.float32, np.float64]: with pytest.raises(TypeError, match="Cannot cast"): ll_table.extend(ll_table_copy, row_indexes=np.array([0], dtype=dtype)) @pytest.mark.parametrize("table_name", tskit.TABLE_NAMES) def test_update_bad_row_index(self, ts_fixture, table_name): table = getattr(ts_fixture.tables, table_name) ll_table = table.ll_table row_data = ll_table.get_row(0) with pytest.raises(_tskit.LibraryError, match="out of bounds"): ll_table.update_row(-1, *row_data) with pytest.raises(ValueError, match="tskit ids must be"): ll_table.update_row(-42, *row_data) with pytest.raises(TypeError): ll_table.update_row([], *row_data) with pytest.raises(TypeError): ll_table.update_row("abc", *row_data) with pytest.raises(_tskit.LibraryError, match="out of bounds"): ll_table.update_row(10000, *row_data) with pytest.raises(OverflowError, match="Value too large for tskit id type"): ll_table.update_row(2 ** 62, *row_data) def test_equals_bad_args(self, ts_fixture): for ll_table in self.yield_tables(ts_fixture): assert ll_table.equals(ll_table) with pytest.raises(TypeError): ll_table.equals(None) with pytest.raises(TypeError): ll_table.equals(ll_table, no_such_arg="") uninit_other = type(ll_table).__new__(type(ll_table)) with pytest.raises(SystemError): ll_table.equals(uninit_other) def test_get_row_bad_args(self, ts_fixture): for ll_table in self.yield_tables(ts_fixture): assert ll_table.get_row(0) is not None with pytest.raises(TypeError): ll_table.get_row(no_such_arg="") @pytest.mark.parametrize("table", ["nodes", "individuals"]) def test_flag_underflow_overflow(self, table): tables = _tskit.TableCollection(1) table = getattr(tables, table) table.add_row(flags=0) table.add_row(flags=(1 << 32) - 1) with pytest.raises(OverflowError, match="unsigned int32 >= than 2\\^32"): table.add_row(flags=1 << 32) with pytest.raises(OverflowError, match="int too big to convert"): table.add_row(flags=1 << 64) with pytest.raises(OverflowError, match="int too big to convert"): table.add_row(flags=1 << 256) with pytest.raises( ValueError, match="Can't convert negative value to unsigned int" ): table.add_row(flags=-1) def test_index(self): tc = msprime.simulate(10, random_seed=42).tables._ll_tables assert tc.indexes["edge_insertion_order"].dtype == np.int32 assert tc.indexes["edge_removal_order"].dtype == np.int32 assert np.array_equal( tc.indexes["edge_insertion_order"], np.arange(18, dtype=np.int32) ) assert np.array_equal( tc.indexes["edge_removal_order"], np.arange(18, dtype=np.int32)[::-1] ) tc.drop_index() assert tc.indexes == {} tc.build_index() assert np.array_equal( tc.indexes["edge_insertion_order"], np.arange(18, dtype=np.int32) ) assert np.array_equal( tc.indexes["edge_removal_order"], np.arange(18, dtype=np.int32)[::-1] ) modify_indexes = tc.indexes modify_indexes["edge_insertion_order"] = np.arange(42, 42 + 18, dtype=np.int32) modify_indexes["edge_removal_order"] = np.arange( 4242, 4242 + 18, dtype=np.int32 ) tc.indexes = modify_indexes assert np.array_equal( tc.indexes["edge_insertion_order"], np.arange(42, 42 + 18, dtype=np.int32) ) assert np.array_equal( tc.indexes["edge_removal_order"], np.arange(4242, 4242 + 18, dtype=np.int32) ) def test_no_indexes(self): tc = msprime.simulate(10, random_seed=42).tables._ll_tables tc.drop_index() assert tc.indexes == {} def test_bad_indexes(self): tc = msprime.simulate(10, random_seed=42).tables._ll_tables for col in ("insertion", "removal"): d = tc.indexes d[f"edge_{col}_order"] = d[f"edge_{col}_order"][:-1] with pytest.raises( ValueError, match="^edge_insertion_order and" " edge_removal_order must be the same" " length$", ): tc.indexes = d d = tc.indexes for col in ("insertion", "removal"): d[f"edge_{col}_order"] = d[f"edge_{col}_order"][:-1] with pytest.raises( ValueError, match="^edge_insertion_order and edge_removal_order must be" " the same length as the number of edges$", ): tc.indexes = d # Both columns must be provided, if one is for col in ("insertion", "removal"): d = tc.indexes del d[f"edge_{col}_order"] with pytest.raises( TypeError, match="^edge_insertion_order and " "edge_removal_order must be specified " "together$", ): tc.indexes = d tc = msprime.simulate( 10, recombination_rate=10, random_seed=42 ).tables._ll_tables modify_indexes = tc.indexes shape = modify_indexes["edge_insertion_order"].shape modify_indexes["edge_insertion_order"] = np.zeros(shape, dtype=np.int32) modify_indexes["edge_removal_order"] = np.zeros(shape, dtype=np.int32) tc.indexes = modify_indexes ts = _tskit.TreeSequence() with pytest.raises( _tskit.LibraryError, match="^Bad edges: contradictory children for a given" " parent over an interval$", ): ts.load_tables(tc, build_indexes=False) modify_indexes["edge_insertion_order"] = np.full(shape, 2 ** 30, dtype=np.int32) modify_indexes["edge_removal_order"] = np.full(shape, 2 ** 30, dtype=np.int32) tc.indexes = modify_indexes ts = _tskit.TreeSequence() with pytest.raises(_tskit.LibraryError, match="^Edge out of bounds$"): ts.load_tables(tc, build_indexes=False) class TestTreeSequence(LowLevelTestCase, MetadataTestMixin): """ Tests for the low-level interface for the TreeSequence. """ def setUp(self): fd, self.temp_file = tempfile.mkstemp(prefix="msp_ll_ts_") os.close(fd) def tearDown(self): os.unlink(self.temp_file) def test_file_errors(self): ts1 = self.get_example_tree_sequence() def loader(*args): ts2 = _tskit.TreeSequence() ts2.load(*args) for func in [ts1.dump, loader]: with pytest.raises(TypeError): func() for bad_type in [None, [], {}]: with pytest.raises(TypeError): func(bad_type) def test_initial_state(self): # Check the initial state to make sure that it is empty. ts = _tskit.TreeSequence() with pytest.raises(ValueError): ts.get_num_samples() with pytest.raises(ValueError): ts.get_sequence_length() with pytest.raises(ValueError): ts.get_num_trees() with pytest.raises(ValueError): ts.get_num_edges() with pytest.raises(ValueError): ts.get_num_mutations() with pytest.raises(ValueError): ts.get_num_migrations() with pytest.raises(ValueError): ts.get_num_migrations() with pytest.raises(ValueError): ts.get_genotype_matrix() with pytest.raises(ValueError): ts.dump() def test_num_nodes(self): for ts in self.get_example_tree_sequences(): max_node = 0 for j in range(ts.get_num_edges()): _, _, parent, child, _ = ts.get_edge(j) for node in [parent, child]: if node > max_node: max_node = node assert max_node + 1 == ts.get_num_nodes() def test_dump_equality(self, tmp_path): for ts in self.get_example_tree_sequences(): tables = _tskit.TableCollection(sequence_length=ts.get_sequence_length()) ts.dump_tables(tables) tables.compute_mutation_times() ts = _tskit.TreeSequence() ts.load_tables(tables) with open(tmp_path / "temp.trees", "wb") as f: ts.dump(f) with open(tmp_path / "temp.trees", "rb") as f: ts2 = _tskit.TreeSequence() ts2.load(f) tc = _tskit.TableCollection(ts.get_sequence_length()) ts.dump_tables(tc) tc2 = _tskit.TableCollection(ts2.get_sequence_length()) ts2.dump_tables(tc2) assert tc.equals(tc2) def verify_mutations(self, ts): mutations = [ts.get_mutation(j) for j in range(ts.get_num_mutations())] assert ts.get_num_mutations() > 0 assert len(mutations) == ts.get_num_mutations() # Check the form of the mutations for j, (position, nodes, index) in enumerate(mutations): assert j == index for node in nodes: assert isinstance(node, int) assert node >= 0 assert node <= ts.get_num_nodes() assert isinstance(position, float) assert position > 0 assert position < ts.get_sequence_length() # mutations must be sorted by position order. assert mutations == sorted(mutations) def test_get_edge_interface(self): for ts in self.get_example_tree_sequences(): num_edges = ts.get_num_edges() # We don't accept Python negative indexes here. with pytest.raises(IndexError): ts.get_edge(-1) for j in [0, 10, 10 ** 6]: with pytest.raises(IndexError): ts.get_edge(num_edges + j) for x in [None, "", {}, []]: with pytest.raises(TypeError): ts.get_edge(x) def test_get_node_interface(self): for ts in self.get_example_tree_sequences(): num_nodes = ts.get_num_nodes() # We don't accept Python negative indexes here. with pytest.raises(IndexError): ts.get_node(-1) for j in [0, 10, 10 ** 6]: with pytest.raises(IndexError): ts.get_node(num_nodes + j) for x in [None, "", {}, []]: with pytest.raises(TypeError): ts.get_node(x) def test_get_genotype_matrix_interface(self): for ts in self.get_example_tree_sequences(): num_samples = ts.get_num_samples() num_sites = ts.get_num_sites() G = ts.get_genotype_matrix() assert G.shape == (num_sites, num_samples) with pytest.raises(TypeError): ts.get_genotype_matrix(isolated_as_missing=None) with pytest.raises(TypeError): ts.get_genotype_matrix(alleles="XYZ") with pytest.raises(ValueError): ts.get_genotype_matrix(alleles=tuple()) G = ts.get_genotype_matrix(isolated_as_missing=False) assert G.shape == (num_sites, num_samples) def test_get_genotype_matrix_missing_data(self): tables = _tskit.TableCollection(1) tables.nodes.add_row(flags=1, time=0) tables.nodes.add_row(flags=1, time=0) tables.sites.add_row(0.1, "A") tables.build_index() ts = _tskit.TreeSequence(0) ts.load_tables(tables) G = ts.get_genotype_matrix(isolated_as_missing=False) assert np.all(G == 0) G = ts.get_genotype_matrix(isolated_as_missing=True) assert np.all(G == -1) G = ts.get_genotype_matrix() assert np.all(G == -1) def test_get_migration_interface(self): ts = self.get_example_migration_tree_sequence() for bad_type in ["", None, {}]: with pytest.raises(TypeError): ts.get_migration(bad_type) num_records = ts.get_num_migrations() # We don't accept Python negative indexes here. with pytest.raises(IndexError): ts.get_migration(-1) for j in [0, 10, 10 ** 6]: with pytest.raises(IndexError): ts.get_migration(num_records + j) def test_get_samples(self): for ts in self.get_example_tree_sequences(): # get_samples takes no arguments. with pytest.raises(TypeError): ts.get_samples(0) assert np.array_equal( np.arange(ts.get_num_samples(), dtype=np.int32), ts.get_samples() ) def test_genealogical_nearest_neighbours(self): for ts in self.get_example_tree_sequences(): with pytest.raises(TypeError): ts.genealogical_nearest_neighbours() with pytest.raises(TypeError): ts.genealogical_nearest_neighbours(focal=None) with pytest.raises(TypeError): ts.genealogical_nearest_neighbours( focal=ts.get_samples(), reference_sets={}, ) with pytest.raises(ValueError): ts.genealogical_nearest_neighbours( focal=ts.get_samples(), reference_sets=[], ) bad_array_values = ["", {}, "x", [[[0], [1, 2]]]] for bad_array_value in bad_array_values: with pytest.raises(ValueError): ts.genealogical_nearest_neighbours( focal=bad_array_value, reference_sets=[[0], [1]], ) with pytest.raises(ValueError): ts.genealogical_nearest_neighbours( focal=ts.get_samples(), reference_sets=[[0], bad_array_value], ) with pytest.raises(ValueError): ts.genealogical_nearest_neighbours( focal=ts.get_samples(), reference_sets=[bad_array_value], ) focal = ts.get_samples() A = ts.genealogical_nearest_neighbours(focal, [focal[2:], focal[:2]]) assert A.shape == (len(focal), 2) def test_mean_descendants(self): for ts in self.get_example_tree_sequences(): with pytest.raises(TypeError): ts.mean_descendants() with pytest.raises(TypeError): ts.mean_descendants(reference_sets={}) with pytest.raises(ValueError): ts.mean_descendants(reference_sets=[]) bad_array_values = ["", {}, "x", [[[0], [1, 2]]]] for bad_array_value in bad_array_values: with pytest.raises(ValueError): ts.mean_descendants( reference_sets=[[0], bad_array_value], ) with pytest.raises(ValueError): ts.mean_descendants(reference_sets=[bad_array_value]) focal = ts.get_samples() A = ts.mean_descendants([focal[2:], focal[:2]]) assert A.shape == (ts.get_num_nodes(), 2) def test_metadata_schemas(self): tables = _tskit.TableCollection(1.0) # Set the schema for table_name in self.metadata_tables: table = getattr(tables, f"{table_name}s") table.metadata_schema = f"{table_name} test metadata schema" # Read back via ll tree sequence tables.build_index() ts = _tskit.TreeSequence() ts.load_tables(tables) schemas = ts.get_table_metadata_schemas() for table_name in self.metadata_tables: assert getattr(schemas, table_name) == f"{table_name} test metadata schema" # Clear and read back again for table_name in self.metadata_tables: getattr(tables, f"{table_name}s").metadata_schema = "" ts = _tskit.TreeSequence() ts.load_tables(tables) schemas = ts.get_table_metadata_schemas() for table_name in self.metadata_tables: assert getattr(schemas, table_name) == "" def test_metadata(self): tables = _tskit.TableCollection(1) tables.build_index() ts = _tskit.TreeSequence() ts.load_tables(tables) assert ts.get_metadata() == b"" for value in [b"foo", b"", "💩".encode(), b"null char \0 in string"]: tables.metadata = value ts = _tskit.TreeSequence() ts.load_tables(tables) assert ts.get_metadata() == value def test_metadata_schema(self): tables = _tskit.TableCollection(1) tables.build_index() ts = _tskit.TreeSequence() ts.load_tables(tables) assert ts.get_metadata_schema() == "" for value in ["foo", "", "💩", "null char \0 in string"]: tables.metadata_schema = value ts = _tskit.TreeSequence() ts.load_tables(tables) assert ts.get_metadata_schema() == value def test_kc_distance_errors(self): ts1 = self.get_example_tree_sequence(10) with pytest.raises(TypeError): ts1.get_kc_distance() with pytest.raises(TypeError): ts1.get_kc_distance(ts1) for bad_tree in [None, "tree", 0]: with pytest.raises(TypeError): ts1.get_kc_distance(bad_tree, lambda_=0) for bad_value in ["tree", [], None]: with pytest.raises(TypeError): ts1.get_kc_distance(ts1, lambda_=bad_value) # Different numbers of samples fail. ts2 = self.get_example_tree_sequence(11) self.verify_kc_library_error(ts1, ts2) # Different sequence lengths fail. ts2 = self.get_example_tree_sequence(10, length=11) self.verify_kc_library_error(ts1, ts2) def verify_kc_library_error(self, ts1, ts2): with pytest.raises(_tskit.LibraryError): ts1.get_kc_distance(ts2, 0) def test_kc_distance(self): ts1 = self.get_example_tree_sequence(10, random_seed=123456) ts2 = self.get_example_tree_sequence(10, random_seed=1234) for lambda_ in [-1, 0, 1, 1000, -1e300]: x1 = ts1.get_kc_distance(ts2, lambda_) x2 = ts2.get_kc_distance(ts1, lambda_) assert x1 == x2 def test_load_tables_build_indexes(self): for ts in self.get_example_tree_sequences(): tables = _tskit.TableCollection(sequence_length=ts.get_sequence_length()) ts.dump_tables(tables) tables.drop_index() # Tables not in tc but rebuilt ts2 = _tskit.TreeSequence() ts2.load_tables(tables, build_indexes=True) tables2 = _tskit.TableCollection(sequence_length=ts.get_sequence_length()) ts2.dump_tables(tables2) assert tables2.has_index() # Tables not in tc, not rebuilt so error ts3 = _tskit.TreeSequence() with pytest.raises( _tskit.LibraryError, match="Table collection must be indexed" ): ts3.load_tables(tables) # Tables in tc, not rebuilt tables.build_index() ts4 = _tskit.TreeSequence() ts4.load_tables(tables, build_indexes=False) tables4 = _tskit.TableCollection(sequence_length=ts.get_sequence_length()) ts4.dump_tables(tables4) assert tables4.has_index() def test_clear_table(self, ts_fixture): tables = _tskit.TableCollection( sequence_length=ts_fixture.get_sequence_length() ) ts_fixture.ll_tree_sequence.dump_tables(tables) tables.clear() data_tables = [t for t in tskit.TABLE_NAMES if t != "provenances"] for table in data_tables: assert getattr(tables, f"{table}").num_rows == 0 assert len(getattr(tables, f"{table}").metadata_schema) != 0 assert tables.provenances.num_rows > 0 assert len(tables.metadata) > 0 assert len(tables.metadata_schema) > 0 tables.clear(clear_provenance=True) assert tables.provenances.num_rows == 0 for table in data_tables: assert len(getattr(tables, f"{table}").metadata_schema) != 0 assert len(tables.metadata) > 0 assert len(tables.metadata_schema) > 0 tables.clear(clear_metadata_schemas=True) for table in data_tables: assert len(getattr(tables, f"{table}").metadata_schema) == 0 assert len(tables.metadata) > 0 assert len(tables.metadata_schema) > 0 tables.clear(clear_ts_metadata_and_schema=True) assert len(tables.metadata) == 0 assert len(tables.metadata_schema) == 0 class StatsInterfaceMixin: """ Tests for the interface on specific stats. """ def test_mode_errors(self): _, f, params = self.get_example() for bad_mode in ["", "not a mode", "SITE", "x" * 8192]: with pytest.raises(ValueError): f(mode=bad_mode, **params) for bad_type in [123, {}, None, [[]]]: with pytest.raises(TypeError): f(mode=bad_type, **params) def test_window_errors(self): ts, f, params = self.get_example() del params["windows"] for bad_array in ["asdf", None, [[[[]], [[]]]], np.zeros((10, 3, 4))]: with pytest.raises(ValueError): f(windows=bad_array, **params) for bad_windows in [[], [0]]: with pytest.raises(ValueError): f(windows=bad_windows, **params) L = ts.get_sequence_length() bad_windows = [ [L, 0], [0.1, L], [-1, L], [0, L + 0.1], [0, 0.1, 0.1, L], [0, -1, L], [0, 0.1, 0.05, 0.2, L], ] for bad_window in bad_windows: with pytest.raises(_tskit.LibraryError): f(windows=bad_window, **params) def test_windows_output(self): ts, f, params = self.get_example() del params["windows"] for num_windows in range(1, 10): windows = np.linspace(0, ts.get_sequence_length(), num=num_windows + 1) assert windows.shape[0] == num_windows + 1 sigma = f(windows=windows, **params) assert sigma.shape[0] == num_windows class WeightMixin(StatsInterfaceMixin): def get_example(self): ts, method = self.get_method() params = { "weights": np.ones((ts.get_num_samples(), 2)), "windows": [0, ts.get_sequence_length()], } return ts, method, params def test_bad_weights(self): ts, f, params = self.get_example() del params["weights"] n = ts.get_num_samples() with pytest.raises(_tskit.LibraryError): f(weights=np.ones((n, 0)), **params) for bad_weight_shape in [(n - 1, 1), (n + 1, 1), (0, 3)]: with pytest.raises(ValueError): f(weights=np.ones(bad_weight_shape), **params) def test_output_dims(self): ts, method, params = self.get_example() weights = params["weights"] nw = weights.shape[1] windows = [0, ts.get_sequence_length()] for mode in ["site", "branch"]: out = method(weights[:, [0]], windows, mode=mode) assert out.shape == (1, 1) out = method(weights, windows, mode=mode) assert out.shape == (1, nw) out = method(weights[:, [0, 0, 0]], windows, mode=mode) assert out.shape == (1, 3) mode = "node" N = ts.get_num_nodes() out = method(weights[:, [0]], windows, mode=mode) assert out.shape == (1, N, 1) out = method(weights, windows, mode=mode) assert out.shape == (1, N, nw) out = method(weights[:, [0, 0, 0]], windows, mode=mode) assert out.shape == (1, N, 3) class WeightCovariateMixin(StatsInterfaceMixin): def get_example(self): ts, method = self.get_method() params = { "weights": np.ones((ts.get_num_samples(), 2)), "covariates": np.array( [np.arange(ts.get_num_samples()), np.arange(ts.get_num_samples()) ** 2] ).T, "windows": [0, ts.get_sequence_length()], } return ts, method, params def test_output_dims(self): ts, method, params = self.get_example() weights = params["weights"] nw = weights.shape[1] windows = [0, ts.get_sequence_length()] for covariates in (params["covariates"], params["covariates"][:, :0]): for mode in ["site", "branch"]: out = method(weights[:, [0]], covariates, windows, mode=mode) assert out.shape == (1, 1) out = method(weights, covariates, windows, mode=mode) assert out.shape == (1, nw) out = method(weights[:, [0, 0, 0]], covariates, windows, mode=mode) assert out.shape == (1, 3) mode = "node" N = ts.get_num_nodes() out = method(weights[:, [0]], covariates, windows, mode=mode) assert out.shape == (1, N, 1) out = method(weights, covariates, windows, mode=mode) assert out.shape == (1, N, nw) out = method(weights[:, [0, 0, 0]], covariates, windows, mode=mode) assert out.shape == (1, N, 3) class SampleSetMixin(StatsInterfaceMixin): def test_bad_sample_sets(self): ts, f, params = self.get_example() del params["sample_set_sizes"] del params["sample_sets"] with pytest.raises(_tskit.LibraryError): f(sample_sets=[], sample_set_sizes=[], **params) n = ts.get_num_samples() samples = ts.get_samples() for bad_set_sizes in [[], [1], [n - 1], [n + 1], [n - 3, 1, 1], [1, n - 2]]: with pytest.raises(ValueError): f(sample_set_sizes=bad_set_sizes, sample_sets=samples, **params) N = ts.get_num_nodes() for bad_node in [-1, N, N + 1, -N]: with pytest.raises(_tskit.LibraryError): f(sample_set_sizes=[2], sample_sets=[0, bad_node], **params) for bad_sample in [n, n + 1, N - 1]: with pytest.raises(_tskit.LibraryError): f(sample_set_sizes=[2], sample_sets=[0, bad_sample], **params) class OneWaySampleStatsMixin(SampleSetMixin): """ Tests for one-way sample stats. """ def get_example(self): ts, method = self.get_method() params = { "sample_set_sizes": [ts.get_num_samples()], "sample_sets": ts.get_samples(), "windows": [0, ts.get_sequence_length()], } return ts, method, params def test_basic_example(self): ts, method = self.get_method() result = method( [ts.get_num_samples()], ts.get_samples(), [0, ts.get_sequence_length()] ) assert result.shape == (1, 1) result = method( [ts.get_num_samples()], ts.get_samples(), [0, ts.get_sequence_length()], mode="node", ) assert result.shape == (1, ts.get_num_nodes(), 1) result = method( [ts.get_num_samples()], ts.get_samples(), ts.get_breakpoints(), mode="node" ) assert result.shape == (ts.get_num_trees(), ts.get_num_nodes(), 1) def test_output_dims(self): ts, method = self.get_method() samples = ts.get_samples() windows = [0, ts.get_sequence_length()] n = len(samples) for mode in ["site", "branch"]: pi = method([n], samples, windows, mode=mode) assert pi.shape == (1, 1) pi = method([2, n - 2], samples, windows, mode=mode) assert pi.shape == (1, 2) pi = method([2, 2, n - 4], samples, windows, mode=mode) assert pi.shape == (1, 3) pi = method(np.ones(n).astype(np.uint32), samples, windows, mode=mode) assert pi.shape == (1, n) mode = "node" N = ts.get_num_nodes() pi = method([n], samples, windows, mode=mode) assert pi.shape == (1, N, 1) pi = method([2, n - 2], samples, windows, mode=mode) assert pi.shape == (1, N, 2) pi = method([2, 2, n - 4], samples, windows, mode=mode) assert pi.shape == (1, N, 3) pi = method(np.ones(n).astype(np.uint32), samples, windows, mode=mode) assert pi.shape == (1, N, n) def test_polarised(self): # TODO move this to the top level. ts, method = self.get_method() samples = ts.get_samples() n = len(samples) windows = [0, ts.get_sequence_length()] method([n], samples, windows, polarised=True) method([n], samples, windows, polarised=False) class TestDiversity(LowLevelTestCase, OneWaySampleStatsMixin): """ Tests for the diversity method. """ def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.diversity class TestTraitCovariance(LowLevelTestCase, WeightMixin): """ Tests for trait covariance. """ def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.trait_covariance class TestTraitCorrelation(LowLevelTestCase, WeightMixin): """ Tests for trait correlation. """ def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.trait_correlation class TestTraitLinearModel(LowLevelTestCase, WeightCovariateMixin): """ Tests for trait correlation. """ def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.trait_linear_model class TestSegregatingSites(LowLevelTestCase, OneWaySampleStatsMixin): """ Tests for the diversity method. """ def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.segregating_sites class TestY1(LowLevelTestCase, OneWaySampleStatsMixin): """ Tests for the diversity method. """ def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.Y1 class TestAlleleFrequencySpectrum(LowLevelTestCase, OneWaySampleStatsMixin): """ Tests for the diversity method. """ def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.allele_frequency_spectrum def test_basic_example(self): ts = self.get_example_tree_sequence() n = ts.get_num_samples() result = ts.allele_frequency_spectrum( [n], ts.get_samples(), [0, ts.get_sequence_length()] ) assert result.shape == (1, n + 1) result = ts.allele_frequency_spectrum( [n], ts.get_samples(), [0, ts.get_sequence_length()], polarised=True ) assert result.shape == (1, n + 1) def test_output_dims(self): ts = self.get_example_tree_sequence() samples = ts.get_samples() L = ts.get_sequence_length() n = len(samples) for mode in ["site", "branch"]: for s in [[n], [n - 2, 2], [n - 4, 2, 2], [1] * n]: s = np.array(s, dtype=np.uint32) windows = [0, L] for windows in [[0, L], [0, L / 2, L], np.linspace(0, L, num=10)]: jafs = ts.allele_frequency_spectrum( s, samples, windows, mode=mode, polarised=True ) assert jafs.shape == tuple([len(windows) - 1] + list(s + 1)) jafs = ts.allele_frequency_spectrum( s, samples, windows, mode=mode, polarised=False ) assert jafs.shape == tuple([len(windows) - 1] + list(s + 1)) def test_node_mode_not_supported(self): ts = self.get_example_tree_sequence() with pytest.raises(_tskit.LibraryError): ts.allele_frequency_spectrum( [ts.get_num_samples()], ts.get_samples(), [0, ts.get_sequence_length()], mode="node", ) class TwoWaySampleStatsMixin(SampleSetMixin): """ Tests for the two way sample stats. """ def get_example(self): ts, method = self.get_method() params = { "sample_set_sizes": [2, ts.get_num_samples() - 2], "sample_sets": ts.get_samples(), "indexes": [[0, 1]], "windows": [0, ts.get_sequence_length()], } return ts, method, params def test_basic_example(self): ts, method = self.get_method() div = method( [2, ts.get_num_samples() - 2], ts.get_samples(), [[0, 1]], windows=[0, ts.get_sequence_length()], ) assert div.shape == (1, 1) def test_output_dims(self): ts, method = self.get_method() samples = ts.get_samples() windows = [0, ts.get_sequence_length()] n = len(samples) for mode in ["site", "branch"]: div = method([2, 2, n - 4], samples, [[0, 1]], windows, mode=mode) assert div.shape == (1, 1) div = method([2, 2, n - 4], samples, [[0, 1], [1, 2]], windows, mode=mode) assert div.shape == (1, 2) div = method( [2, 2, n - 4], samples, [[0, 1], [1, 2], [0, 1]], windows, mode=mode ) assert div.shape == (1, 3) N = ts.get_num_nodes() mode = "node" div = method([2, 2, n - 4], samples, [[0, 1]], windows, mode=mode) assert div.shape == (1, N, 1) div = method([2, 2, n - 4], samples, [[0, 1], [1, 2]], windows, mode=mode) assert div.shape == (1, N, 2) div = method( [2, 2, n - 4], samples, [[0, 1], [1, 2], [0, 1]], windows, mode=mode ) assert div.shape == (1, N, 3) def test_set_index_errors(self): ts, method = self.get_method() samples = ts.get_samples() windows = [0, ts.get_sequence_length()] n = len(samples) def f(indexes): method([2, 2, n - 4], samples, indexes, windows) for bad_array in ["wer", {}, [[[], []], [[], []]]]: with pytest.raises(ValueError): f(bad_array) for bad_dim in [[[]], [[1], [1]]]: with pytest.raises(ValueError): f(bad_dim) class ThreeWaySampleStatsMixin(SampleSetMixin): """ Tests for the two way sample stats. """ def get_example(self): ts, method = self.get_method() params = { "sample_set_sizes": [1, 1, ts.get_num_samples() - 2], "sample_sets": ts.get_samples(), "indexes": [[0, 1, 2]], "windows": [0, ts.get_sequence_length()], } return ts, method, params def test_basic_example(self): ts, method = self.get_method() div = method( [1, 1, ts.get_num_samples() - 2], ts.get_samples(), [[0, 1, 2]], windows=[0, ts.get_sequence_length()], ) assert div.shape == (1, 1) def test_output_dims(self): ts, method = self.get_method() samples = ts.get_samples() windows = [0, ts.get_sequence_length()] n = len(samples) for mode in ["site", "branch"]: div = method([2, 2, n - 4], samples, [[0, 1, 2]], windows, mode=mode) assert div.shape == (1, 1) div = method( [1, 1, 2, n - 4], samples, [[0, 1, 2], [1, 2, 3]], windows, mode=mode ) assert div.shape == (1, 2) div = method( [1, 1, 2, n - 4], samples, [[0, 1, 2], [1, 2, 3], [0, 1, 2]], windows, mode=mode, ) assert div.shape == (1, 3) N = ts.get_num_nodes() mode = "node" div = method([2, 2, n - 4], samples, [[0, 1, 2]], windows, mode=mode) assert div.shape == (1, N, 1) div = method( [1, 1, 2, n - 4], samples, [[0, 1, 2], [1, 2, 3]], windows, mode=mode ) assert div.shape == (1, N, 2) div = method( [1, 1, 2, n - 4], samples, [[0, 1, 2], [1, 2, 3], [0, 1, 2]], windows, mode=mode, ) assert div.shape == (1, N, 3) def test_set_index_errors(self): ts, method = self.get_method() samples = ts.get_samples() windows = [0, ts.get_sequence_length()] n = len(samples) def f(indexes): method([2, 2, n - 4], samples, indexes, windows) for bad_array in ["wer", {}, [[[], []], [[], []]]]: with pytest.raises(ValueError): f(bad_array) for bad_dim in [[[]], [[1], [1]], [(0, 1)], [(0, 1, 2, 3)]]: with pytest.raises(ValueError): f(bad_dim) class FourWaySampleStatsMixin(SampleSetMixin): """ Tests for the four way sample stats. """ def get_example(self): ts, method = self.get_method() params = { "sample_set_sizes": [1, 1, 1, ts.get_num_samples() - 3], "sample_sets": ts.get_samples(), "indexes": [[0, 1, 2, 3]], "windows": [0, ts.get_sequence_length()], } return ts, method, params def test_basic_example(self): ts, method = self.get_method() div = method( [1, 1, 1, ts.get_num_samples() - 3], ts.get_samples(), [[0, 1, 2, 3]], windows=[0, ts.get_sequence_length()], ) assert div.shape == (1, 1) def test_output_dims(self): ts, method = self.get_method() samples = ts.get_samples() windows = [0, ts.get_sequence_length()] n = len(samples) for mode in ["site", "branch"]: div = method([2, 1, 1, n - 4], samples, [[0, 1, 2, 3]], windows, mode=mode) assert div.shape == (1, 1) div = method( [1, 1, 1, 1, n - 4], samples, [[0, 1, 2, 3], [1, 2, 3, 4]], windows, mode=mode, ) assert div.shape == (1, 2) div = method( [1, 1, 1, 1, n - 4], samples, [[0, 1, 2, 3], [1, 2, 3, 4], [0, 1, 2, 4]], windows, mode=mode, ) assert div.shape == (1, 3) N = ts.get_num_nodes() mode = "node" div = method([2, 1, 1, n - 4], samples, [[0, 1, 2, 3]], windows, mode=mode) assert div.shape == (1, N, 1) div = method( [1, 1, 1, 1, n - 4], samples, [[0, 1, 2, 3], [1, 2, 3, 4]], windows, mode=mode, ) assert div.shape == (1, N, 2) div = method( [1, 1, 1, 1, n - 4], samples, [[0, 1, 2, 3], [1, 2, 3, 4], [0, 1, 2, 4]], windows, mode=mode, ) assert div.shape == (1, N, 3) def test_set_index_errors(self): ts, method = self.get_method() samples = ts.get_samples() windows = [0, ts.get_sequence_length()] n = len(samples) def f(indexes): method([2, 1, 1, n - 4], samples, indexes, windows) for bad_array in ["wer", {}, [[[], []], [[], []]]]: with pytest.raises(ValueError): f(bad_array) for bad_dim in [[[]], [[1], [1]], [(0, 1)], [(0, 1, 2, 3, 4)]]: with pytest.raises(ValueError): f(bad_dim) class TestDivergence(LowLevelTestCase, TwoWaySampleStatsMixin): def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.divergence class TestY2(LowLevelTestCase, TwoWaySampleStatsMixin): def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.Y2 class Testf2(LowLevelTestCase, TwoWaySampleStatsMixin): def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.f2 class TestY3(LowLevelTestCase, ThreeWaySampleStatsMixin): def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.Y3 class Testf3(LowLevelTestCase, ThreeWaySampleStatsMixin): def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.f3 class Testf4(LowLevelTestCase, FourWaySampleStatsMixin): def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.f4 class TestGeneralStatsInterface(LowLevelTestCase, StatsInterfaceMixin): """ Tests for the general stats interface. """ def get_example(self): ts = self.get_example_tree_sequence() W = np.zeros((ts.get_num_samples(), 1)) params = { "weights": W, "summary_func": lambda x: np.cumsum(x), "output_dim": 1, "windows": ts.get_breakpoints(), } return ts, ts.general_stat, params def test_basic_example(self): ts = self.get_example_tree_sequence() W = np.zeros((ts.get_num_samples(), 1)) sigma = ts.general_stat( W, lambda x: np.cumsum(x), 1, ts.get_breakpoints(), mode="branch" ) assert sigma.shape == (ts.get_num_trees(), 1) def test_non_numpy_return(self): ts = self.get_example_tree_sequence() W = np.ones((ts.get_num_samples(), 3)) sigma = ts.general_stat( W, lambda x: [sum(x)], 1, ts.get_breakpoints(), mode="branch" ) assert sigma.shape == (ts.get_num_trees(), 1) sigma = ts.general_stat( W, lambda x: [2, 2], 2, ts.get_breakpoints(), mode="branch" ) assert sigma.shape == (ts.get_num_trees(), 2) def test_complicated_numpy_function(self): ts = self.get_example_tree_sequence(sample_size=20, length=30, random_seed=325) W = np.zeros((ts.get_num_samples(), 4)) def f(x): y = np.sum(x * x), np.prod(x + np.arange(x.shape[0])) return y sigma = ts.general_stat(W, f, 2, ts.get_breakpoints(), mode="branch") assert sigma.shape == (ts.get_num_trees(), 2) def test_input_dims(self): ts = self.get_example_tree_sequence() for k in range(1, 20): W = np.zeros((ts.get_num_samples(), k)) sigma = ts.general_stat( W, lambda x: np.cumsum(x), k, ts.get_breakpoints(), mode="branch" ) assert sigma.shape == (ts.get_num_trees(), k) sigma = ts.general_stat( W, lambda x: [np.sum(x)], 1, ts.get_breakpoints(), mode="branch" ) assert sigma.shape == (ts.get_num_trees(), 1) def test_W_errors(self): ts = self.get_example_tree_sequence() n = ts.get_num_samples() for bad_array in [[], [0, 1], [[[[]], [[]]]], np.zeros((10, 3, 4))]: with pytest.raises(ValueError): ts.general_stat(bad_array, lambda x: x, 1, ts.get_breakpoints()) for bad_size in [n - 1, n + 1, 0]: W = np.zeros((bad_size, 1)) with pytest.raises(ValueError): ts.general_stat(W, lambda x: x, 1, ts.get_breakpoints()) def test_summary_func_errors(self): ts = self.get_example_tree_sequence() W = np.zeros((ts.get_num_samples(), 1)) for bad_type in ["sdf", 1, {}]: with pytest.raises(TypeError): ts.general_stat(W, bad_type, 1, ts.get_breakpoints()) # Wrong numbers of arguments to f with pytest.raises(TypeError): ts.general_stat(W, lambda: 0, 1, ts.get_breakpoints()) with pytest.raises(TypeError): ts.general_stat(W, lambda x, y: None, 1, ts.get_breakpoints()) # Exceptions within f are correctly raised. for exception in [ValueError, TypeError]: def f(x): raise exception("test") with pytest.raises(exception): ts.general_stat(W, f, 1, ts.get_breakpoints()) # Wrong output dimensions for bad_array in [[1, 1], range(10)]: with pytest.raises(ValueError): ts.general_stat(W, lambda x: bad_array, 1, ts.get_breakpoints()) with pytest.raises(ValueError): ts.general_stat(W, lambda x: [1], 2, ts.get_breakpoints()) # Bad arrays returned from f for bad_array in [["sdf"], 0, "w4", None]: with pytest.raises(ValueError): ts.general_stat(W, lambda x: bad_array, 1, ts.get_breakpoints()) class TestTreeDiffIterator(LowLevelTestCase): """ Tests for the low-level tree diff iterator. """ def test_uninitialised_tree_sequence(self): ts = _tskit.TreeSequence() with pytest.raises(ValueError): _tskit.TreeDiffIterator(ts) def test_constructor(self): with pytest.raises(TypeError): _tskit.TreeDiffIterator() with pytest.raises(TypeError): _tskit.TreeDiffIterator(None) ts = self.get_example_tree_sequence() before = list(_tskit.TreeDiffIterator(ts)) iterator = _tskit.TreeDiffIterator(ts) del ts # We should keep a reference to the tree sequence. after = list(iterator) assert before == after def test_iterator(self): ts = self.get_example_tree_sequence() self.verify_iterator(_tskit.TreeDiffIterator(ts)) class TestVariantGenerator(LowLevelTestCase): """ Tests for the VariantGenerator class. """ def test_uninitialised_tree_sequence(self): ts = _tskit.TreeSequence() with pytest.raises(ValueError): _tskit.VariantGenerator(ts) def test_constructor(self): with pytest.raises(TypeError): _tskit.VariantGenerator() with pytest.raises(TypeError): _tskit.VariantGenerator(None) ts = self.get_example_tree_sequence() with pytest.raises(ValueError): _tskit.VariantGenerator(ts, samples={}) with pytest.raises(TypeError): _tskit.VariantGenerator(ts, impute_missing_data=None) with pytest.raises(_tskit.LibraryError): _tskit.VariantGenerator(ts, samples=[-1, 2]) with pytest.raises(TypeError): _tskit.VariantGenerator(ts, alleles=1234) def test_alleles(self): ts = self.get_example_tree_sequence() for bad_type in [["a", "b"], "sdf", 234]: with pytest.raises(TypeError): _tskit.VariantGenerator(ts, samples=[1, 2], alleles=bad_type) with pytest.raises(ValueError): _tskit.VariantGenerator(ts, samples=[1, 2], alleles=tuple()) for bad_allele_type in [None, 0, b"x", []]: with pytest.raises(TypeError): _tskit.VariantGenerator(ts, samples=[1, 2], alleles=(bad_allele_type,)) too_many_alleles = tuple(str(j) for j in range(128)) with pytest.raises(_tskit.LibraryError): _tskit.VariantGenerator(ts, samples=[1, 2], alleles=too_many_alleles) def test_iterator(self): ts = self.get_example_tree_sequence() self.verify_iterator(_tskit.VariantGenerator(ts)) def test_missing_data(self): tables = _tskit.TableCollection(1) tables.nodes.add_row(flags=1, time=0) tables.nodes.add_row(flags=1, time=0) tables.sites.add_row(0.1, "A") tables.build_index() ts = _tskit.TreeSequence(0) ts.load_tables(tables) variant = list(_tskit.VariantGenerator(ts))[0] _, genotypes, alleles = variant assert np.all(genotypes == -1) assert alleles == ("A", None) class TestLdCalculator(LowLevelTestCase): """ Tests for the LdCalculator class. """ def test_uninitialised_tree_sequence(self): ts = _tskit.TreeSequence() with pytest.raises(ValueError): _tskit.LdCalculator(ts) def test_constructor(self): with pytest.raises(TypeError): _tskit.LdCalculator() with pytest.raises(TypeError): _tskit.LdCalculator(None) def test_get_r2(self): ts = self.get_example_tree_sequence() calc = _tskit.LdCalculator(ts) n = ts.get_num_sites() for bad_id in [-1, n, n + 1]: with pytest.raises(_tskit.LibraryError): calc.get_r2(0, bad_id) with pytest.raises(_tskit.LibraryError): calc.get_r2(bad_id, 0) def test_get_r2_array(self): ts = self.get_example_tree_sequence() calc = _tskit.LdCalculator(ts) with pytest.raises(TypeError): calc.get_r2_array() with pytest.raises(TypeError): calc.get_r2_array(None) # Doesn't support buffer protocol, so raises typeerror with pytest.raises(TypeError): calc.get_r2_array(None, 0) n = ts.get_num_sites() assert n > 2 with pytest.raises(BufferError): calc.get_r2_array(bytes(100), 0) buff = bytearray(1024) with pytest.raises(ValueError): calc.get_r2_array(buff, 0, max_distance=-1) with pytest.raises(ValueError): calc.get_r2_array(buff, 0, direction=1000) # TODO this API is poor, we should explicitly catch these negative # size errors. for bad_max_mutations in [-2, -3]: with pytest.raises(BufferError): calc.get_r2_array(buff, 0, max_mutations=bad_max_mutations) for bad_start_pos in [-1, n, n + 1]: with pytest.raises(_tskit.LibraryError): calc.get_r2_array(buff, bad_start_pos) class TestLsHmm(LowLevelTestCase): """ Tests for the LsHmm class. """ def test_uninitialised_tree_sequence(self): ts = _tskit.TreeSequence() with pytest.raises(ValueError): _tskit.LsHmm(ts, None, None) def test_constructor(self): ts = self.get_example_tree_sequence() with pytest.raises(TypeError): _tskit.LsHmm() with pytest.raises(TypeError): _tskit.LsHmm(None) values = np.zeros(ts.get_num_sites()) for bad_array in ["asdf", [[], []], None]: with pytest.raises(ValueError): _tskit.LsHmm(ts, bad_array, values) with pytest.raises(ValueError): _tskit.LsHmm(ts, values, bad_array) def test_bad_rate_arrays(self): ts = self.get_example_tree_sequence() m = ts.get_num_sites() assert m > 0 values = np.zeros(m) for bad_size in [0, m - 1, m + 1, m + 2]: bad_array = np.zeros(bad_size) with pytest.raises(ValueError): _tskit.LsHmm(ts, bad_array, values) with pytest.raises(ValueError): _tskit.LsHmm(ts, values, bad_array) def test_haplotype_input(self): ts = self.get_example_tree_sequence() m = ts.get_num_sites() fm = _tskit.CompressedMatrix(ts) vm = _tskit.ViterbiMatrix(ts) ls_hmm = _tskit.LsHmm(ts, np.zeros(m), np.zeros(m)) for bad_size in [0, m - 1, m + 1, m + 2]: bad_array = np.zeros(bad_size, dtype=np.int8) with pytest.raises(ValueError): ls_hmm.forward_matrix(bad_array, fm) with pytest.raises(ValueError): ls_hmm.viterbi_matrix(bad_array, vm) for bad_array in [[0.002], [[], []], None]: with pytest.raises(ValueError): ls_hmm.forward_matrix(bad_array, fm) with pytest.raises(ValueError): ls_hmm.viterbi_matrix(bad_array, vm) def test_output_type_errors(self): ts = self.get_example_tree_sequence() m = ts.get_num_sites() h = np.zeros(m, dtype=np.int8) ls_hmm = _tskit.LsHmm(ts, np.zeros(m), np.zeros(m)) for bad_type in [ls_hmm, None, m, []]: with pytest.raises(TypeError): ls_hmm.forward_matrix(h, bad_type) with pytest.raises(TypeError): ls_hmm.viterbi_matrix(h, bad_type) other_ts = self.get_example_tree_sequence() output = _tskit.CompressedMatrix(other_ts) with pytest.raises(_tskit.LibraryError): ls_hmm.forward_matrix(h, output) output = _tskit.ViterbiMatrix(other_ts) with pytest.raises(_tskit.LibraryError): ls_hmm.viterbi_matrix(h, output) def test_empty_forward_matrix(self): for mu in [0, 1]: ts = self.get_example_tree_sequence(mutation_rate=mu) m = ts.get_num_sites() fm = _tskit.CompressedMatrix(ts) assert fm.num_sites == m assert np.array_equal(np.zeros(m), fm.normalisation_factor) assert np.array_equal(np.zeros(m, dtype=np.uint32), fm.num_transitions) F = fm.decode() assert np.all(F >= 0) for j in range(m): assert fm.get_site(j) == [] def test_empty_viterbi_matrix(self): for mu in [0, 1]: ts = self.get_example_tree_sequence(mutation_rate=mu) m = ts.get_num_sites() vm = _tskit.ViterbiMatrix(ts) assert vm.num_sites == m # TODO we should have the same semantics for 0 sites if m == 0: h = vm.traceback() assert len(h) == 0 else: with pytest.raises(_tskit.LibraryError): vm.traceback() def verify_compressed_matrix(self, ts, output): S = output.normalisation_factor N = output.num_transitions assert np.all(0 < S) assert np.all(S < 1) assert np.all(N > 0) F = output.decode() assert F.shape == (ts.get_num_sites(), ts.get_num_samples()) assert np.all(F >= 0) m = ts.get_num_sites() for j in range(m): site_list = output.get_site(j) assert len(site_list) == N[j] for item in site_list: assert len(item) == 2 node, value = item assert 0 <= node < ts.get_num_nodes() assert 0 <= value <= 1 for site in [m, m + 1, 2 * m]: with pytest.raises(ValueError): output.get_site(site) def test_forward_matrix(self): ts = self.get_example_tree_sequence() m = ts.get_num_sites() output = _tskit.CompressedMatrix(ts) ls_hmm = _tskit.LsHmm(ts, np.zeros(m) + 0.1, np.zeros(m) + 0.1) rv = ls_hmm.forward_matrix([0 for _ in range(m)], output) assert rv is None self.verify_compressed_matrix(ts, output) def test_viterbi_matrix(self): ts = self.get_example_tree_sequence() m = ts.get_num_sites() output = _tskit.ViterbiMatrix(ts) ls_hmm = _tskit.LsHmm(ts, np.zeros(m) + 0.1, np.zeros(m) + 0.1) rv = ls_hmm.viterbi_matrix([0 for _ in range(m)], output) assert rv is None self.verify_compressed_matrix(ts, output) h = output.traceback() assert isinstance(h, np.ndarray) class TestTree(LowLevelTestCase): """ Tests on the low-level tree interface. """ ARRAY_NAMES = ["parent", "left_child", "right_child", "left_sib", "right_sib"] def test_options(self): ts = self.get_example_tree_sequence() st = _tskit.Tree(ts) assert st.get_options() == 0 all_options = [ 0, _tskit.NO_SAMPLE_COUNTS, _tskit.SAMPLE_LISTS, _tskit.NO_SAMPLE_COUNTS | _tskit.SAMPLE_LISTS, ] for options in all_options: tree = _tskit.Tree(ts, options=options) copy = tree.copy() for st in [tree, copy]: assert st.get_options() == options assert st.get_num_samples(0) == 1 if options & _tskit.NO_SAMPLE_COUNTS: # We should still be able to count the samples, just inefficiently. assert st.get_num_samples(0) == 1 with pytest.raises(_tskit.LibraryError): st.get_num_tracked_samples(0) else: assert st.get_num_tracked_samples(0) == 0 if options & _tskit.SAMPLE_LISTS: assert 0 == st.get_left_sample(0) assert 0 == st.get_right_sample(0) else: with pytest.raises(ValueError): st.get_left_sample(0) with pytest.raises(ValueError): st.get_right_sample(0) with pytest.raises(ValueError): st.get_next_sample(0) def test_site_errors(self): ts = self.get_example_tree_sequence() for bad_index in [-1, ts.get_num_sites(), ts.get_num_sites() + 1]: with pytest.raises(IndexError): ts.get_site(bad_index) def test_mutation_errors(self): ts = self.get_example_tree_sequence() for bad_index in [-1, ts.get_num_mutations(), ts.get_num_mutations() + 1]: with pytest.raises(IndexError): ts.get_mutation(bad_index) def test_individual_errors(self): ts = self.get_example_tree_sequence() for bad_index in [-1, ts.get_num_individuals(), ts.get_num_individuals() + 1]: with pytest.raises(IndexError): ts.get_individual(bad_index) def test_population_errors(self): ts = self.get_example_tree_sequence() for bad_index in [-1, ts.get_num_populations(), ts.get_num_populations() + 1]: with pytest.raises(IndexError): ts.get_population(bad_index) def test_provenance_errors(self): ts = self.get_example_tree_sequence() for bad_index in [-1, ts.get_num_provenances(), ts.get_num_provenances() + 1]: with pytest.raises(IndexError): ts.get_provenance(bad_index) def test_sites(self): for ts in self.get_example_tree_sequences(): st = _tskit.Tree(ts) all_sites = [ts.get_site(j) for j in range(ts.get_num_sites())] all_tree_sites = [] j = 0 mutation_id = 0 while st.next(): tree_sites = st.get_sites() assert st.get_num_sites() == len(tree_sites) all_tree_sites.extend(tree_sites) for ( position, _ancestral_state, mutations, index, metadata, ) in tree_sites: assert st.get_left() <= position < st.get_right() assert index == j assert metadata == b"" for mut_id in mutations: ( site, node, derived_state, parent, metadata, time, ) = ts.get_mutation(mut_id) assert site == index assert mutation_id == mut_id assert st.get_parent(node) != _tskit.NULL assert metadata == b"" mutation_id += 1 j += 1 assert all_tree_sites == all_sites def test_root_threshold_errors(self): ts = self.get_example_tree_sequence() tree = _tskit.Tree(ts) for bad_type in ["", "x", {}]: with pytest.raises(TypeError): tree.set_root_threshold(bad_type) with pytest.raises(_tskit.LibraryError): tree.set_root_threshold(0) tree.set_root_threshold(2) # Setting when not in the null state raises an error tree.next() with pytest.raises(_tskit.LibraryError): tree.set_root_threshold(2) def test_root_threshold(self): for ts in self.get_example_tree_sequences(): tree = _tskit.Tree(ts) for root_threshold in [1, 2, ts.get_num_samples() * 2]: tree.set_root_threshold(root_threshold) assert tree.get_root_threshold() == root_threshold while tree.next(): assert tree.get_root_threshold() == root_threshold with pytest.raises(_tskit.LibraryError): tree.set_root_threshold(2) assert tree.get_root_threshold() == root_threshold def test_constructor(self): with pytest.raises(TypeError): _tskit.Tree() for bad_type in ["", {}, [], None, 0]: with pytest.raises(TypeError): _tskit.Tree(bad_type) ts = self.get_example_tree_sequence() for bad_type in ["", {}, True, 1, None]: with pytest.raises(TypeError): _tskit.Tree(ts, tracked_samples=bad_type) for bad_type in ["", {}, None, []]: with pytest.raises(TypeError): _tskit.Tree(ts, options=bad_type) for ts in self.get_example_tree_sequences(): st = _tskit.Tree(ts) assert st.get_num_nodes() == ts.get_num_nodes() # An uninitialised tree should always be zero. assert st.get_left_root() == 0 assert st.get_left() == 0 assert st.get_right() == 0 for j in range(ts.get_num_samples()): assert st.get_parent(j) == _tskit.NULL assert st.get_children(j) == tuple() assert st.get_time(j) == 0 def test_bad_tracked_samples(self): ts = self.get_example_tree_sequence() options = 0 for bad_type in ["", {}, [], None]: with pytest.raises(TypeError): _tskit.Tree(ts, options=options, tracked_samples=[bad_type]) with pytest.raises(TypeError): _tskit.Tree( ts, options=options, tracked_samples=[1, bad_type], ) for bad_sample in [10 ** 6, -1e6]: with pytest.raises(ValueError): # Implicit conversion to integers using __int__ is deprecated with pytest.deprecated_call(): _tskit.Tree( ts, options=options, tracked_samples=[bad_sample], ) with pytest.raises(ValueError): with pytest.deprecated_call(): _tskit.Tree( ts, options=options, tracked_samples=[1, bad_sample], ) with pytest.raises(ValueError): with pytest.deprecated_call(): _tskit.Tree(ts, tracked_samples=[1, bad_sample, 1]) def test_while_loop_semantics(self): for ts in self.get_example_tree_sequences(): tree = _tskit.Tree(ts) # Any mixture of prev and next is OK and gives a valid iteration. for _ in range(2): j = 0 while tree.next(): assert tree.get_index() == j j += 1 assert j == ts.get_num_trees() for _ in range(2): j = ts.get_num_trees() while tree.prev(): assert tree.get_index() == j - 1 j -= 1 assert j == 0 j = 0 while tree.next(): assert tree.get_index() == j j += 1 assert j == ts.get_num_trees() def test_count_all_samples(self): for ts in self.get_example_tree_sequences(): self.verify_iterator(_tskit.TreeDiffIterator(ts)) st = _tskit.Tree(ts) # Without initialisation we should be 0 samples for every node # that is not a sample. for j in range(st.get_num_nodes()): count = 1 if j < ts.get_num_samples() else 0 assert st.get_num_samples(j) == count assert st.get_num_tracked_samples(j) == 0 while st.next(): nu = get_sample_counts(ts, st) nu_prime = [st.get_num_samples(j) for j in range(st.get_num_nodes())] assert nu == nu_prime # For tracked samples, this should be all zeros. nu = [st.get_num_tracked_samples(j) for j in range(st.get_num_nodes())] assert nu == list([0 for _ in nu]) def test_count_tracked_samples(self): # Ensure that there are some non-binary nodes. non_binary = False for ts in self.get_example_tree_sequences(): st = _tskit.Tree(ts) while st.next(): for u in range(ts.get_num_nodes()): if len(st.get_children(u)) > 1: non_binary = True samples = [j for j in range(ts.get_num_samples())] powerset = itertools.chain.from_iterable( itertools.combinations(samples, r) for r in range(len(samples) + 1) ) max_sets = 100 for _, subset in zip(range(max_sets), map(list, powerset)): # Ordering shouldn't make any difference. random.shuffle(subset) st = _tskit.Tree(ts, tracked_samples=subset) while st.next(): nu = get_tracked_sample_counts(st, subset) nu_prime = [ st.get_num_tracked_samples(j) for j in range(st.get_num_nodes()) ] assert nu == nu_prime # Passing duplicated values should raise an error sample = 1 for j in range(2, 20): tracked_samples = [sample for _ in range(j)] with pytest.raises(_tskit.LibraryError): _tskit.Tree( ts, tracked_samples=tracked_samples, ) assert non_binary def test_bounds_checking(self): for ts in self.get_example_tree_sequences(): n = ts.get_num_nodes() st = _tskit.Tree(ts, options=_tskit.SAMPLE_LISTS) for v in [-100, -1, n + 1, n + 100, n * 100]: with pytest.raises(ValueError): st.get_parent(v) with pytest.raises(ValueError): st.get_children(v) with pytest.raises(ValueError): st.get_time(v) with pytest.raises(ValueError): st.get_left_sample(v) with pytest.raises(ValueError): st.get_right_sample(v) with pytest.raises(ValueError): st.is_descendant(v, 0) with pytest.raises(ValueError): st.is_descendant(0, v) with pytest.raises(ValueError): st.depth(v) n = ts.get_num_samples() for v in [-100, -1, n + 1, n + 100, n * 100]: with pytest.raises(ValueError): st.get_next_sample(v) def test_mrca_interface(self): for ts in self.get_example_tree_sequences(): num_nodes = ts.get_num_nodes() st = _tskit.Tree(ts) for v in [num_nodes, 10 ** 6, _tskit.NULL]: with pytest.raises(ValueError): st.get_mrca(v, v) with pytest.raises(ValueError): st.get_mrca(v, 1) with pytest.raises(ValueError): st.get_mrca(1, v) # All the mrcas for an uninitialised tree should be _tskit.NULL for u, v in itertools.combinations(range(num_nodes), 2): assert st.get_mrca(u, v) == _tskit.NULL def test_newick_precision(self): def get_times(tree): """ Returns the time strings from the specified newick tree. """ ret = [] current_time = None for c in tree: if c == ":": current_time = "" elif c in [",", ")"]: ret.append(current_time) current_time = None elif current_time is not None: current_time += c return ret ts = self.get_example_tree_sequence() st = _tskit.Tree(ts) while st.next(): with pytest.raises(ValueError): st.get_newick(root=0, precision=-1) with pytest.raises(ValueError): st.get_newick(root=0, precision=17) with pytest.raises(ValueError): st.get_newick(root=0, precision=100) for precision in range(17): tree = st.get_newick( root=st.get_left_root(), precision=precision ).decode() times = get_times(tree) assert len(times) > ts.get_num_samples() for t in times: if precision == 0: assert "." not in t else: point = t.find(".") assert precision == len(t) - point - 1 def test_cleared_tree(self): ts = self.get_example_tree_sequence() samples = ts.get_samples() def check_tree(tree): assert tree.get_index() == -1 assert tree.get_left_root() == samples[0] assert tree.get_mrca(0, 1) == _tskit.NULL for u in range(ts.get_num_nodes()): assert tree.get_parent(u) == _tskit.NULL assert tree.get_left_child(u) == _tskit.NULL assert tree.get_right_child(u) == _tskit.NULL tree = _tskit.Tree(ts) check_tree(tree) while tree.next(): pass check_tree(tree) while tree.prev(): pass check_tree(tree) def test_newick_interface(self): ts = self.get_example_tree_sequence() st = _tskit.Tree(ts) # TODO this will break when we correctly handle multiple roots. assert st.get_newick(0) == b"1;" for bad_type in [None, "", [], {}]: with pytest.raises(TypeError): st.get_newick(precision=bad_type) with pytest.raises(TypeError): st.get_newick(ts, buffer_size=bad_type) while st.next(): u = st.get_left_root() newick = st.get_newick(u) assert newick.endswith(b";") with pytest.raises(ValueError): st.get_newick(u, buffer_size=-1) with pytest.raises(_tskit.LibraryError): st.get_newick(u, buffer_size=1) def test_index(self): for ts in self.get_example_tree_sequences(): st = _tskit.Tree(ts) index = 0 while st.next(): assert index == st.get_index() index += 1 def test_bad_mutations(self): ts = self.get_example_tree_sequence() tables = _tskit.TableCollection() ts.dump_tables(tables) def f(mutations): position = [] node = [] site = [] ancestral_state = [] ancestral_state_offset = [0] derived_state = [] derived_state_offset = [0] for j, (p, n) in enumerate(mutations): site.append(j) position.append(p) ancestral_state.append("0") ancestral_state_offset.append(ancestral_state_offset[-1] + 1) derived_state.append("1") derived_state_offset.append(derived_state_offset[-1] + 1) node.append(n) tables.sites.set_columns( dict( position=position, ancestral_state=ancestral_state, ancestral_state_offset=ancestral_state_offset, metadata=None, metadata_offset=None, ) ) tables.mutations.set_columns( dict( site=site, node=node, derived_state=derived_state, derived_state_offset=derived_state_offset, parent=None, metadata=None, metadata_offset=None, ) ) ts2 = _tskit.TreeSequence() ts2.load_tables(tables) with pytest.raises(_tskit.LibraryError): f([(0.1, -1)]) length = ts.get_sequence_length() u = ts.get_num_nodes() for bad_node in [u, u + 1, 2 * u]: with pytest.raises(_tskit.LibraryError): f([(0.1, bad_node)]) for bad_pos in [-1, length, length + 1]: with pytest.raises(_tskit.LibraryError): f([(bad_pos, 0)]) def test_sample_list(self): options = _tskit.SAMPLE_LISTS # Note: we're assuming that samples are 0-n here. for ts in self.get_example_tree_sequences(): t = _tskit.Tree(ts, options=options) while t.next(): # All sample nodes should have themselves. for j in range(ts.get_num_samples()): assert t.get_left_sample(j) == j assert t.get_right_sample(j) == j # All non-tree nodes should have 0 for j in range(t.get_num_nodes()): if ( t.get_parent(j) == _tskit.NULL and t.get_left_child(j) == _tskit.NULL ): assert t.get_left_sample(j) == _tskit.NULL assert t.get_right_sample(j) == _tskit.NULL # The roots should have all samples. u = t.get_left_root() samples = [] while u != _tskit.NULL: sample = t.get_left_sample(u) end = t.get_right_sample(u) while True: samples.append(sample) if sample == end: break sample = t.get_next_sample(sample) u = t.get_right_sib(u) assert sorted(samples) == list(range(ts.get_num_samples())) def test_equality(self): last_ts = None for ts in self.get_example_tree_sequences(): t1 = _tskit.Tree(ts) t2 = _tskit.Tree(ts) assert t1.equals(t2) assert t2.equals(t1) while True: assert t1.equals(t2) assert t2.equals(t1) n1 = t1.next() assert not t1.equals(t2) assert not t2.equals(t1) n2 = t2.next() assert n1 == n2 if not n1: break if last_ts is not None: t2 = _tskit.Tree(last_ts) assert not t1.equals(t2) assert not t2.equals(t1) last_ts = ts def test_kc_distance_errors(self): ts1 = self.get_example_tree_sequence(10) t1 = _tskit.Tree(ts1, options=_tskit.SAMPLE_LISTS) t1.first() with pytest.raises(TypeError): t1.get_kc_distance() with pytest.raises(TypeError): t1.get_kc_distance(t1) for bad_tree in [None, "tree", 0]: with pytest.raises(TypeError): t1.get_kc_distance(bad_tree, lambda_=0) for bad_value in ["tree", [], None]: with pytest.raises(TypeError): t1.get_kc_distance(t1, lambda_=bad_value) t2 = _tskit.Tree(ts1, options=_tskit.SAMPLE_LISTS) # If we don't seek to a specific tree, it has multiple roots (i.e., it's # in the null state). This fails because we don't accept multiple roots. self.verify_kc_library_error(t2, t2) # Different numbers of samples fail. ts2 = self.get_example_tree_sequence(11) t2 = _tskit.Tree(ts2, options=_tskit.SAMPLE_LISTS) t2.first() self.verify_kc_library_error(t1, t2) # Error when tree not initialized with sample lists ts2 = self.get_example_tree_sequence(10) t2 = _tskit.Tree(ts2) t2.first() self.verify_kc_library_error(t1, t2) # Unary nodes cause errors. tables = _tskit.TableCollection(1.0) tables.nodes.add_row(flags=1) tables.nodes.add_row(flags=1, time=1) tables.edges.add_row(0, 1, 1, 0) tables.build_index() ts = _tskit.TreeSequence() ts.load_tables(tables) t1 = _tskit.Tree(ts, options=_tskit.SAMPLE_LISTS) t1.first() self.verify_kc_library_error(t1, t1) def verify_kc_library_error(self, t1, t2): with pytest.raises(_tskit.LibraryError): t1.get_kc_distance(t2, 0) def test_kc_distance(self): ts1 = self.get_example_tree_sequence(10, random_seed=123456) t1 = _tskit.Tree(ts1, options=_tskit.SAMPLE_LISTS) t1.first() ts2 = self.get_example_tree_sequence(10, random_seed=1234) t2 = _tskit.Tree(ts2, options=_tskit.SAMPLE_LISTS) t2.first() for lambda_ in [-1, 0, 1, 1000, -1e300]: x1 = t1.get_kc_distance(t2, lambda_) x2 = t2.get_kc_distance(t1, lambda_) assert x1 == x2 def test_copy(self): for ts in self.get_example_tree_sequences(): t1 = _tskit.Tree(ts) t2 = t1.copy() assert t1.get_index() == t2.get_index() assert t1 is not t2 while t1.next(): t2 = t1.copy() assert t1.get_index() == t2.get_index() def test_map_mutations_null(self): ts = self.get_example_tree_sequence() tree = _tskit.Tree(ts) n = ts.get_num_samples() genotypes = np.zeros(n, dtype=np.int8) ancestral_state, transitions = tree.map_mutations(genotypes) assert ancestral_state == 0 assert len(transitions) == 0 genotypes = np.arange(n, dtype=np.int8) ancestral_state, transitions = tree.map_mutations(genotypes) assert ancestral_state == 0 for j in range(n - 1): assert transitions[j][0] == j + 1 assert transitions[j][1] == -1 assert transitions[j][2] == j + 1 def test_map_mutations(self): ts = self.get_example_tree_sequence() tree = _tskit.Tree(ts) tree.next() n = ts.get_num_samples() genotypes = np.zeros(n, dtype=np.int8) ancestral_state, transitions = tree.map_mutations(genotypes) assert ancestral_state == 0 assert len(transitions) == 0 def test_map_mutations_fixed_ancestral_state(self): ts = self.get_example_tree_sequence() tree = _tskit.Tree(ts) tree.next() n = ts.get_num_samples() genotypes = np.ones(n, dtype=np.int8) ancestral_state, transitions = tree.map_mutations(genotypes, 0) assert ancestral_state == 0 assert len(transitions) == 1 def test_map_mutations_errors(self): ts = self.get_example_tree_sequence() tree = _tskit.Tree(ts) n = ts.get_num_samples() genotypes = np.zeros(n, dtype=np.int8) with pytest.raises(TypeError): tree.map_mutations() for bad_size in [0, 1, n - 1, n + 1]: with pytest.raises(ValueError): tree.map_mutations(np.zeros(bad_size, dtype=np.int8)) for bad_type in [None, {}, set()]: with pytest.raises(TypeError): tree.map_mutations([bad_type] * n) for bad_type in [np.uint8, np.uint64, np.float32]: with pytest.raises(TypeError): tree.map_mutations(np.zeros(bad_size, dtype=bad_type)) genotypes = np.zeros(n, dtype=np.int8) tree.map_mutations(genotypes) for bad_value in [64, 65, 127, -2]: genotypes[0] = bad_value with pytest.raises(_tskit.LibraryError): tree.map_mutations(genotypes) genotypes = np.zeros(n, dtype=np.int8) tree.map_mutations(genotypes) for bad_type in ["d", []]: with pytest.raises(TypeError): tree.map_mutations(genotypes, bad_type) for bad_state in [-2, -1, 127, 255]: with pytest.raises(_tskit.LibraryError, match="Bad ancestral"): tree.map_mutations(genotypes, bad_state) @pytest.mark.parametrize("array", ARRAY_NAMES) def test_array_read_only(self, array): name = array + "_array" ts1 = self.get_example_tree_sequence(10) t1 = _tskit.Tree(ts1) t1.first() with pytest.raises(AttributeError, match="not writable"): setattr(t1, name, None) with pytest.raises(AttributeError, match="not writable"): delattr(t1, name) a = getattr(t1, name) with pytest.raises(ValueError, match="assignment destination"): a[:] = 0 with pytest.raises(ValueError, match="assignment destination"): a[0] = 0 with pytest.raises(ValueError, match="cannot set WRITEABLE"): a.setflags(write=True) @pytest.mark.parametrize("array", ARRAY_NAMES) def test_array_properties(self, array): ts1 = self.get_example_tree_sequence(10) t1 = _tskit.Tree(ts1) a = getattr(t1, array + "_array") t1.first() a = getattr(t1, array + "_array") assert a.dtype == np.int32 assert a.shape == (ts1.get_num_nodes(),) assert a.base == t1 assert not a.flags.writeable assert a.flags.aligned assert a.flags.c_contiguous assert not a.flags.owndata b = getattr(t1, array + "_array") assert a is not b assert np.all(a == b) a_copy = a.copy() # This checks that the underlying pointer to memory is the same in # both arrays. assert a.__array_interface__ == b.__array_interface__ t1.next() # NB! Because we are pointing to the underlying memory, the arrays # will change as we iterate along the trees! This is a gotcha, but # it's just something we have to document as it's a consequence of the # zero copy semantics. b = getattr(t1, array + "_array") assert np.all(a == b) assert np.any(a_copy != b) @pytest.mark.parametrize("array", ARRAY_NAMES) def test_array_lifetime(self, array): ts1 = self.get_example_tree_sequence(10) t1 = _tskit.Tree(ts1) t1.first() a1 = getattr(t1, array + "_array") a2 = a1.copy() assert a1 is not a2 del t1 # Do some memory operations a3 =
np.ones(10 ** 6)
numpy.ones
# Authors: <NAME> <<EMAIL>> # License: Apache 2.0 from PyNomaly import loop import logging import numpy as np from numpy.testing import assert_array_equal import pandas as pd import pytest from sklearn.datasets import load_iris from sklearn.metrics import roc_auc_score from sklearn.neighbors import NearestNeighbors from sklearn.utils import check_random_state from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_warns import sys logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) # flag to enable or disable NUMBA NUMBA = False # load the iris dataset # and randomly permute it rng = check_random_state(0) iris = load_iris() perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # fixtures @pytest.fixture() def X_n8() -> np.ndarray: # Toy sample (the last two samples are outliers): X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 2], [1, 2], [2, 1], [5, 3], [-4, 2]]) return X @pytest.fixture() def X_n120() -> np.ndarray: # Generate train/test data rng = check_random_state(2) X = 0.3 * rng.randn(120, 2) return X @pytest.fixture() def X_n140_outliers(X_n120) -> np.ndarray: # Generate some abnormal novel observations X_outliers = rng.uniform(low=-4, high=4, size=(20, 2)) X = np.r_[X_n120, X_outliers] return X @pytest.fixture() def X_n1000() -> np.ndarray: # Generate train/test data rng = check_random_state(2) X = 0.3 * rng.randn(1000, 2) return X def test_loop(X_n8) -> None: # Test LocalOutlierProbability: clf = loop.LocalOutlierProbability(X_n8, n_neighbors=5, use_numba=NUMBA) score = clf.fit().local_outlier_probabilities share_outlier = 2. / 8. predictions = [-1 if s > share_outlier else 1 for s in score] assert_array_equal(predictions, 6 * [1] + 2 * [-1]) # Assert smallest outlier score is greater than largest inlier score: assert_greater(np.min(score[-2:]), np.max(score[:-2])) # Test the DataFrame functionality X_df = pd.DataFrame(X_n8) # Test LocalOutlierProbability: clf = loop.LocalOutlierProbability(X_df, n_neighbors=5, use_numba=NUMBA) score = clf.fit().local_outlier_probabilities share_outlier = 2. / 8. predictions = [-1 if s > share_outlier else 1 for s in score] assert_array_equal(predictions, 6 * [1] + 2 * [-1]) # Assert smallest outlier score is greater than largest inlier score: assert_greater(np.min(score[-2:]), np.max(score[:-2])) def test_loop_performance(X_n120) -> None: # Generate some abnormal novel observations X_outliers = rng.uniform(low=-4, high=4, size=(20, 2)) X_test = np.r_[X_n120, X_outliers] X_labels = np.r_[ np.repeat(1, X_n120.shape[0]), np.repeat(-1, X_outliers.shape[0])] # fit the model clf = loop.LocalOutlierProbability( X_test, n_neighbors=X_test.shape[0] - 1, # test the progress bar progress_bar=True, use_numba=NUMBA ) # predict scores (the lower, the more normal) score = clf.fit().local_outlier_probabilities share_outlier = X_outliers.shape[0] / X_test.shape[0] X_pred = [-1 if s > share_outlier else 1 for s in score] # check that roc_auc is good assert_greater(roc_auc_score(X_pred, X_labels), .98) def test_input_nodata(X_n140_outliers) -> None: with pytest.warns(UserWarning) as record: # attempt to fit loop without data or a distance matrix loop.LocalOutlierProbability(n_neighbors=X_n140_outliers.shape[0] - 1, use_numba=NUMBA) # check that only one warning was raised assert len(record) == 1 # check that the message matches assert record[0].message.args[ 0] == "Data or a distance matrix must be provided." def test_bad_input_argument(X_n140_outliers) -> None: with pytest.warns(UserWarning) as record: # attempt to fit loop with a string input for n_neighbors loop.LocalOutlierProbability(X_n140_outliers, n_neighbors=str( X_n140_outliers.shape[0] - 1), use_numba=NUMBA ) # check that only one warning was raised assert len(record) == 1 # check that the message matches assert record[0].message.args[ 0] == "Argument 'n_neighbors' is not of type (<class 'int'>, " \ "<class 'numpy.integer'>)." def test_neighbor_zero(X_n120) -> None: clf = loop.LocalOutlierProbability(X_n120, n_neighbors=0, use_numba=NUMBA) with pytest.warns(UserWarning) as record: # attempt to fit loop with a 0 neighbor count clf.fit() # check that only one warning was raised assert len(record) == 1 # check that the message matches assert record[0].message.args[ 0] == "n_neighbors must be greater than 0. Fit with 10 instead." def test_input_distonly(X_n120) -> None: # generate distance and neighbor indices neigh = NearestNeighbors(metric='euclidean') neigh.fit(X_n120) d, idx = neigh.kneighbors(X_n120, n_neighbors=10, return_distance=True) with pytest.warns(UserWarning) as record: # attempt to fit loop with a distance matrix and no neighbor matrix loop.LocalOutlierProbability(distance_matrix=d, use_numba=NUMBA) # check that only one warning was raised assert len(record) == 1 # check that the message matches assert record[0].message.args[ 0] == "A neighbor index matrix and distance matrix must both " \ "be provided when not using raw input data." def test_input_neighboronly(X_n120) -> None: # generate distance and neighbor indices neigh = NearestNeighbors(metric='euclidean') neigh.fit(X_n120) d, idx = neigh.kneighbors(X_n120, n_neighbors=10, return_distance=True) with pytest.warns(UserWarning) as record: # attempt to fit loop with a neighbor matrix and no distance matrix loop.LocalOutlierProbability(neighbor_matrix=idx, use_numba=NUMBA) # check that only one warning was raised assert len(record) == 1 # check that the message matches assert record[0].message.args[ 0] == "Data or a distance matrix must be provided." def test_input_too_many(X_n120) -> None: # generate distance and neighbor indices neigh = NearestNeighbors(metric='euclidean') neigh.fit(X_n120) d, idx = neigh.kneighbors(X_n120, n_neighbors=10, return_distance=True) with pytest.warns(UserWarning) as record: # attempt to fit loop with data and a distance matrix loop.LocalOutlierProbability(X_n120, distance_matrix=d, neighbor_matrix=idx, use_numba=NUMBA) # check that only one warning was raised assert len(record) == 1 # check that the message matches assert record[0].message.args[ 0] == "Only one of the following may be provided: data or a " \ "distance matrix (not both)." def test_distance_neighbor_shape_mismatch(X_n120) -> None: # generate distance and neighbor indices neigh = NearestNeighbors(metric='euclidean') neigh.fit(X_n120) d, idx = neigh.kneighbors(X_n120, n_neighbors=10, return_distance=True) # generate distance and neighbor indices of a different shape neigh_2 = NearestNeighbors(metric='euclidean') neigh_2.fit(X_n120) d_2, idx_2 = neigh.kneighbors(X_n120, n_neighbors=5, return_distance=True) with pytest.warns(UserWarning) as record: # attempt to fit loop with a mismatch in shapes loop.LocalOutlierProbability( distance_matrix=d, neighbor_matrix=idx_2, n_neighbors=5, use_numba=NUMBA ) # check that only one warning was raised assert len(record) == 1 # check that the message matches assert record[0].message.args[ 0] == "The shape of the distance and neighbor " \ "index matrices must match." def test_input_neighbor_mismatch(X_n120) -> None: # generate distance and neighbor indices neigh = NearestNeighbors(metric='euclidean') neigh.fit(X_n120) d, idx = neigh.kneighbors(X_n120, n_neighbors=5, return_distance=True) with pytest.warns(UserWarning) as record: # attempt to fit loop with a neighbor size mismatch loop.LocalOutlierProbability(distance_matrix=d, neighbor_matrix=idx, n_neighbors=10, use_numba=NUMBA) # check that only one warning was raised assert len(record) == 1 # check that the message matches assert record[0].message.args[ 0] == "The shape of the distance or " \ "neighbor index matrix does not " \ "match the number of neighbors " \ "specified." def test_loop_dist_matrix(X_n120) -> None: # generate distance and neighbor indices neigh = NearestNeighbors(metric='euclidean') neigh.fit(X_n120) d, idx = neigh.kneighbors(X_n120, n_neighbors=10, return_distance=True) # fit loop using data and distance matrix clf1 = loop.LocalOutlierProbability(X_n120, use_numba=NUMBA) clf2 = loop.LocalOutlierProbability(distance_matrix=d, neighbor_matrix=idx, use_numba=NUMBA) scores1 = clf1.fit().local_outlier_probabilities scores2 = clf2.fit().local_outlier_probabilities # compare the agreement between the results assert_almost_equal(scores1, scores2, decimal=1) def test_lambda_values(X_n140_outliers) -> None: # Fit the model with different extent (lambda) values clf1 = loop.LocalOutlierProbability(X_n140_outliers, extent=1, use_numba=NUMBA) clf2 = loop.LocalOutlierProbability(X_n140_outliers, extent=2, use_numba=NUMBA) clf3 = loop.LocalOutlierProbability(X_n140_outliers, extent=3, use_numba=NUMBA) # predict scores (the lower, the more normal) score1 = clf1.fit().local_outlier_probabilities score2 = clf2.fit().local_outlier_probabilities score3 = clf3.fit().local_outlier_probabilities # Get the mean of all the scores score_mean1 = np.mean(score1) score_mean2 = np.mean(score2) score_mean3 = np.mean(score3) # check that expected the means align with expectation assert_greater(score_mean1, score_mean2) assert_greater(score_mean2, score_mean3) def test_parameters(X_n120) -> None: # fit the model clf = loop.LocalOutlierProbability(X_n120, use_numba=NUMBA).fit() # check that the model has attributes post fit assert (hasattr(clf, 'n_neighbors') and clf.n_neighbors is not None) assert (hasattr(clf, 'extent') and clf.extent is not None) assert (hasattr(clf, 'cluster_labels') and clf._cluster_labels() is not None) assert (hasattr(clf, 'prob_distances') and clf.prob_distances is not None) assert (hasattr(clf, 'prob_distances_ev') and clf.prob_distances_ev is not None) assert (hasattr(clf, 'norm_prob_local_outlier_factor') and clf.norm_prob_local_outlier_factor is not None) assert (hasattr(clf, 'local_outlier_probabilities') and clf.local_outlier_probabilities is not None) def test_n_neighbors() -> None: X = iris.data clf = loop.LocalOutlierProbability(X, n_neighbors=500, use_numba=NUMBA).fit() assert_equal(clf.n_neighbors, X.shape[0] - 1) clf = loop.LocalOutlierProbability(X, n_neighbors=500, use_numba=NUMBA) assert_warns(UserWarning, clf.fit) assert_equal(clf.n_neighbors, X.shape[0] - 1) def test_extent() -> None: X = np.array([[1, 1], [1, 0]]) clf = loop.LocalOutlierProbability(X, n_neighbors=2, extent=4, use_numba=NUMBA) assert_warns(UserWarning, clf.fit) def test_data_format() -> None: X = [1.3, 1.1, 0.9, 1.4, 1.5, 3.2] clf = loop.LocalOutlierProbability(X, n_neighbors=3, use_numba=NUMBA) assert_warns(UserWarning, clf.fit) def test_missing_values() -> None: X = np.array([1.3, 1.1, 0.9, 1.4, 1.5, np.nan, 3.2]) clf = loop.LocalOutlierProbability(X, n_neighbors=3, use_numba=NUMBA) with pytest.raises(SystemExit) as record_a, pytest.warns( UserWarning) as record_b: clf.fit() assert record_a.type == SystemExit # check that only one warning was raised assert len(record_b) == 1 # check that the message matches assert record_b[0].message.args[ 0] == "Method does not support missing values in input data." def test_small_cluster_size(X_n140_outliers) -> None: # Generate cluster labels a = [0] * 120 b = [1] * 18 cluster_labels = a + b clf = loop.LocalOutlierProbability( X_n140_outliers, n_neighbors=50, cluster_labels=cluster_labels, use_numba=NUMBA ) with pytest.raises(SystemExit) as record_a, pytest.warns( UserWarning) as record_b: clf.fit() assert record_a.type == SystemExit # check that only one warning was raised assert len(record_b) == 1 # check that the message matches assert record_b[0].message.args[ 0] == "Number of neighbors specified larger than smallest " \ "cluster. Specify a number of neighbors smaller than " \ "the smallest cluster size (observations in smallest " \ "cluster minus one)." def test_stream_fit(X_n140_outliers) -> None: # Fit the model X_train = X_n140_outliers[0:138] X_test = X_n140_outliers[139] clf = loop.LocalOutlierProbability(X_train, use_numba=NUMBA) with pytest.warns(UserWarning) as record: clf.stream(X_test) # check that the message matches messages = [i.message.args[0] for i in record] assert "Must fit on historical data by calling fit() prior to " \ "calling stream(x)." in messages def test_stream_distance(X_n140_outliers) -> None: X_train = X_n140_outliers[0:100] X_test = X_n140_outliers[100:140] # generate distance and neighbor indices neigh = NearestNeighbors(metric='euclidean') neigh.fit(X_train) d, idx = neigh.kneighbors(X_train, n_neighbors=10, return_distance=True) # Fit the models in standard and distance matrix form m = loop.LocalOutlierProbability(X_train, use_numba=NUMBA).fit() m_dist = loop.LocalOutlierProbability(distance_matrix=d, neighbor_matrix=idx, use_numba=NUMBA).fit() # Collect the scores X_test_scores = [] for i in range(X_test.shape[0]): X_test_scores.append(m.stream(np.array(X_test[i]))) X_test_scores = np.array(X_test_scores) X_test_dist_scores = [] for i in range(X_test.shape[0]): dd, ii = neigh.kneighbors(
np.array([X_test[i]])
numpy.array
# coding=utf-8 import numpy as np from pandas import (DataFrame, date_range, Timestamp, Series, to_datetime) import pandas.util.testing as tm from .common import TestData class TestFrameAsof(TestData): def setup_method(self, method): self.N = N = 50 self.rng = date_range('1/1/1990', periods=N, freq='53s') self.df = DataFrame({'A':
np.arange(N)
numpy.arange
# FIXME: this file contains 9 errors according to PyCharm import time import logging import numpy as np import warnings import pytest import cma import datetime import multiprocessing from .qubit_object import Qubit from pycqed.measurement import calibration_toolbox as cal_toolbox from pycqed.measurement import sweep_functions as swf from pycqed.measurement import detector_functions as det from pycqed.measurement.mc_parameter_wrapper import wrap_par_to_swf import pycqed.measurement.composite_detector_functions as cdf from pycqed.measurement.optimization import nelder_mead from pycqed.measurement.openql_experiments import single_qubit_oql as sqo import pycqed.measurement.openql_experiments.multi_qubit_oql as mqo from pycqed.measurement.openql_experiments import clifford_rb_oql as cl_oql from pycqed.measurement.openql_experiments import pygsti_oql from pycqed.measurement.openql_experiments import openql_helpers as oqh from pycqed.measurement.openql_experiments.openql_helpers import \ load_range_of_oql_programs, load_range_of_oql_programs_from_filenames from pycqed.analysis import measurement_analysis as ma from pycqed.analysis import analysis_toolbox as a_tools from pycqed.analysis.tools import cryoscope_tools as ct from pycqed.analysis.tools import plotting as plt_tools from pycqed.analysis_v2 import measurement_analysis as ma2 from pycqed.utilities.general import gen_sweep_pts from pycqed.utilities.learnerND_minimizer import LearnerND_Minimizer, \ mk_minimization_loss_func, mk_minimization_goal_func # Imported for a type check from pycqed.instrument_drivers.physical_instruments.QuTech_AWG_Module \ import QuTech_AWG_Module from qcodes.utils import validators as vals from qcodes.instrument.parameter import ( ManualParameter, InstrumentRefParameter) log = logging.getLogger(__name__) class CCLight_Transmon(Qubit): """ The CCLight_Transmon Setup configuration: Drive: CCLight controlling AWG8's and a VSM Acquisition: UHFQC Readout pulse configuration: LO modulated using UHFQC AWG """ def __init__(self, name, **kw): t0 = time.time() super().__init__(name, **kw) self.add_parameters() self.connect_message(begin_time=t0) ########################################################################## # Overrides for class Qubit ########################################################################## def add_instrument_ref_parameters(self): self.add_parameter('instr_device', docstring='Represents sample, contains all qubits ' 'and resonators', parameter_class=InstrumentRefParameter) # MW sources self.add_parameter('instr_LO_ro', parameter_class=InstrumentRefParameter) self.add_parameter('instr_LO_mw', parameter_class=InstrumentRefParameter) self.add_parameter('instr_spec_source', parameter_class=InstrumentRefParameter) self.add_parameter('instr_spec_source_2', parameter_class=InstrumentRefParameter) # Control electronics self.add_parameter( 'instr_CC', label='Central Controller', docstring=('Device responsible for controlling the experiment' ' using eQASM generated using OpenQL, in the near' ' future will be the CC_Light.'), parameter_class=InstrumentRefParameter) self.add_parameter('instr_acquisition', parameter_class=InstrumentRefParameter) self.add_parameter('instr_VSM', label='Vector Switch Matrix', parameter_class=InstrumentRefParameter) self.add_parameter('instr_MC', label='MeasurementControl', parameter_class=InstrumentRefParameter) self.add_parameter('instr_nested_MC', label='Nested MeasurementControl', parameter_class=InstrumentRefParameter) self.add_parameter('instr_SH', label='SignalHound', parameter_class=InstrumentRefParameter) self.add_parameter( 'instr_FluxCtrl', label='Flux control', docstring=( 'Instrument used to control flux can either be an IVVI rack ' 'or a meta instrument such as the Flux control.'), parameter_class=InstrumentRefParameter) self.add_parameter('instr_VNA', docstring='Vector Network Analyzer', parameter_class=InstrumentRefParameter, initial_value=None) # LutMan's self.add_parameter('instr_LutMan_MW', docstring='Lookuptable manager for ' 'microwave control pulses.', parameter_class=InstrumentRefParameter) self.add_parameter('instr_LutMan_RO', docstring='Lookuptable manager responsible for ' 'microwave readout pulses.', parameter_class=InstrumentRefParameter) self.add_parameter('instr_LutMan_Flux', docstring='Lookuptable manager responsible for ' 'flux pulses.', initial_value=None, parameter_class=InstrumentRefParameter) def add_ro_parameters(self): """ Adding the parameters relevant for readout. """ ################################ # RO stimulus/pulse parameters # ################################ self.add_parameter('ro_freq', label='Readout frequency', unit='Hz', parameter_class=ManualParameter) self.add_parameter('ro_freq_mod', label='Readout-modulation frequency', unit='Hz', initial_value=-20e6, parameter_class=ManualParameter) self.add_parameter('ro_pow_LO', label='RO power LO', unit='dBm', initial_value=20, parameter_class=ManualParameter) # RO pulse parameters self.add_parameter('ro_pulse_type', initial_value='simple', vals=vals.Enum('gated', 'simple', 'up_down_down', 'up_down_down_final'), parameter_class=ManualParameter) # Mixer offsets correction, RO pulse self.add_parameter('ro_pulse_mixer_offs_I', unit='V', parameter_class=ManualParameter, initial_value=0) self.add_parameter('ro_pulse_mixer_offs_Q', unit='V', parameter_class=ManualParameter, initial_value=0) self.add_parameter('ro_pulse_mixer_alpha', initial_value=1, parameter_class=ManualParameter) self.add_parameter('ro_pulse_mixer_phi', initial_value=0, parameter_class=ManualParameter) self.add_parameter('ro_pulse_length', label='Readout pulse length', initial_value=100e-9, unit='s', parameter_class=ManualParameter) self.add_parameter('ro_pulse_amp', unit='V', label='Readout pulse amplitude', initial_value=0.1, parameter_class=ManualParameter) self.add_parameter('ro_pulse_amp_CW', unit='V', label='Readout pulse amplitude', initial_value=0.1, parameter_class=ManualParameter) self.add_parameter('ro_pulse_phi', unit='deg', initial_value=0, parameter_class=ManualParameter) self.add_parameter('ro_pulse_down_length0', unit='s', initial_value=1e-9, parameter_class=ManualParameter) self.add_parameter('ro_pulse_down_amp0', unit='V', initial_value=0, parameter_class=ManualParameter) self.add_parameter('ro_pulse_down_phi0', unit='deg', initial_value=0, parameter_class=ManualParameter) self.add_parameter('ro_pulse_down_length1', unit='s', initial_value=1e-9, parameter_class=ManualParameter) self.add_parameter('ro_pulse_down_amp1', unit='V', initial_value=0, parameter_class=ManualParameter) self.add_parameter('ro_pulse_down_phi1', unit='deg', initial_value=0, parameter_class=ManualParameter) ############################# # RO acquisition parameters # ############################# ro_acq_docstr = ( 'Determines what type of integration weights to use: ' '\n\t SSB: Single sideband demodulation\n\t' 'DSB: Double sideband demodulation\n\t' 'optimal: waveforms specified in "RO_acq_weight_func_I" ' '\n\tand "RO_acq_weight_func_Q"') self.add_parameter('ro_acq_weight_type', initial_value='SSB', vals=vals.Enum( 'SSB', 'DSB', 'optimal', 'optimal IQ'), docstring=ro_acq_docstr, parameter_class=ManualParameter) self.add_parameter( 'ro_acq_weight_chI', initial_value=0, docstring=( 'Determines the I-channel for integration. When the' ' ro_acq_weight_type is optimal only this channel will ' 'affect the result.'), vals=vals.Ints(0, 9), parameter_class=ManualParameter) self.add_parameter( 'ro_acq_weight_chQ', initial_value=1, docstring=( 'Determines the Q-channel for integration.'), vals=vals.Ints(0, 9), parameter_class=ManualParameter) self.add_parameter('ro_acq_weight_func_I', vals=vals.Arrays(), label='Optimized weights for I channel', parameter_class=ManualParameter) self.add_parameter('ro_acq_weight_func_Q', vals=vals.Arrays(), label='Optimized weights for Q channel', parameter_class=ManualParameter) # FIXME!: Dirty hack because of qusurf issue #63, added 2 hardcoded # delay samples in the optimized weights self.add_parameter('ro_acq_weight_func_delay_samples_hack', vals=vals.Ints(), initial_value=0, label='weight function delay samples', parameter_class=ManualParameter) self.add_parameter( 'ro_acq_delay', unit='s', label='Readout acquisition delay', vals=vals.Numbers(min_value=0), initial_value=0, parameter_class=ManualParameter, docstring=('The time between the instruction that trigger the' ' readout pulse and the instruction that triggers the ' 'acquisition. The positive number means that the ' 'acquisition is started after the pulse is send.')) self.add_parameter( 'ro_pulse_delay', unit='s', label='Readout acquisition delay', vals=vals.Numbers(0, 1e-6), initial_value=0, parameter_class=ManualParameter, docstring=('The delay time for the readout pulse')) self.add_parameter( 'ro_acq_mixer_phi', unit='degree', label='Readout mixer phi', vals=vals.Numbers(), initial_value=0, parameter_class=ManualParameter, docstring=('acquisition mixer phi, used for mixer deskewing in' 'real time')) self.add_parameter( 'ro_acq_mixer_alpha', unit='', label='Readout mixer alpha', vals=vals.Numbers(min_value=0.8), initial_value=1, parameter_class=ManualParameter, docstring=('acquisition mixer alpha, used for mixer deskewing in' 'real time')) self.add_parameter( 'ro_acq_input_average_length', unit='s', label='Readout acquisition delay', vals=vals.Numbers(min_value=0, max_value=4096/1.8e9), initial_value=4096/1.8e9, parameter_class=ManualParameter, docstring=('The measurement time in input averaging.')) self.add_parameter('ro_acq_integration_length', initial_value=500e-9, vals=vals.Numbers( min_value=0, max_value=4096/1.8e9), parameter_class=ManualParameter) self.add_parameter('ro_acq_averages', initial_value=1024, vals=vals.Numbers(min_value=0, max_value=1e6), parameter_class=ManualParameter) self.add_parameter('ro_soft_avg', initial_value=1, docstring=('Number of soft averages to be ' 'performed using the MC.'), vals=vals.Ints(min_value=1), parameter_class=ManualParameter) # self.add_parameter('ro_power_cw', label='RO power cw', # unit='dBm', # parameter_class=ManualParameter) # Single shot readout specific parameters self.add_parameter('ro_acq_digitized', vals=vals.Bool(), initial_value=False, parameter_class=ManualParameter) self.add_parameter('ro_acq_threshold', unit='dac-value', initial_value=0, parameter_class=ManualParameter) self.add_parameter('ro_acq_rotated_SSB_when_optimal', vals=vals.Bool(), docstring=( 'bypasses optimal weights, and uses rotated SSB instead'), initial_value=False, parameter_class=ManualParameter) self.add_parameter('ro_acq_rotated_SSB_rotation_angle', vals=vals.Numbers( min_value=-np.pi, max_value=np.pi), docstring=( 'uses this as the rotation angle for rotated SSB'), initial_value=0, parameter_class=ManualParameter) self.add_parameter('ro_acq_integration_length_weigth_function', vals=vals.Numbers( min_value=0, max_value=4096/1.8e9), docstring=( 'sets weight function elements to 0 beyond this time'), initial_value=4096/1.8e9, parameter_class=ManualParameter) # self.add_parameter('cal_pt_zero', # initial_value=None, # vals=vals.Anything(), # should be a tuple validator # label='Calibration point |0>', # parameter_class=ManualParameter) # self.add_parameter('cal_pt_one', # initial_value=None, # vals=vals.Anything(), # should be a tuple validator # label='Calibration point |1>', # parameter_class=ManualParameter) def add_mw_parameters(self): # Mixer skewness correction self.add_parameter('mw_G_mixer_phi', unit='deg', label='Mixer skewness phi Gaussian quadrature', parameter_class=ManualParameter, initial_value=0) self.add_parameter('mw_G_mixer_alpha', unit='', label='Mixer skewness alpha Gaussian quadrature', parameter_class=ManualParameter, initial_value=1) self.add_parameter('mw_D_mixer_phi', unit='deg', label='Mixer skewness phi Derivative quadrature', parameter_class=ManualParameter, initial_value=0) self.add_parameter('mw_D_mixer_alpha', unit='', label='Mixer skewness alpha Derivative quadrature', parameter_class=ManualParameter, initial_value=1) # Mixer offsets correction, qubit drive self.add_parameter('mw_mixer_offs_GI', unit='V', parameter_class=ManualParameter, initial_value=0) self.add_parameter('mw_mixer_offs_GQ', unit='V', parameter_class=ManualParameter, initial_value=0) self.add_parameter('mw_mixer_offs_DI', unit='V', parameter_class=ManualParameter, initial_value=0) self.add_parameter('mw_mixer_offs_DQ', unit='V', parameter_class=ManualParameter, initial_value=0) self.add_parameter('mw_pow_td_source', label='Time-domain power', unit='dBm', initial_value=20, parameter_class=ManualParameter) self.add_parameter('mw_freq_mod', initial_value=-100e6, label='pulse-modulation frequency', unit='Hz', parameter_class=ManualParameter) self.add_parameter('mw_amp180', label='Pi-pulse amplitude', unit='V', initial_value=.8, parameter_class=ManualParameter) self.add_parameter('mw_amp90_scale', label='pulse amplitude scaling factor', unit='', initial_value=.5, vals=vals.Numbers(min_value=0, max_value=1.0), parameter_class=ManualParameter) self.add_parameter('mw_channel_amp', label='AWG channel amplitude. WARNING: Check your hardware specific limits!', unit='', initial_value=.5, vals=vals.Numbers(min_value=0, max_value=1.6), parameter_class=ManualParameter) self.add_parameter('mw_channel_range', label='AWG channel range. WARNING: Check your hardware specific limits!', unit='V', initial_value=.8, vals=vals.Enum(0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, 5), parameter_class=ManualParameter) self.add_parameter('mw_ef_amp', label='Pi-pulse amplitude ef-transition', unit='V', initial_value=.4, parameter_class=ManualParameter) self.add_parameter('mw_awg_ch', parameter_class=ManualParameter, initial_value=1, vals=vals.Ints()) self.add_parameter('mw_gauss_width', unit='s', initial_value=10e-9, parameter_class=ManualParameter) self.add_parameter('mw_motzoi', label='Motzoi parameter', unit='', initial_value=0, parameter_class=ManualParameter) self.add_parameter('mw_vsm_marker_source', label='VSM switch state', initial_value='int', vals=vals.Enum('ext', 'int'), parameter_class=ManualParameter) self._mw_vsm_delay = 0 self.add_parameter( 'mw_vsm_delay', label='CCL VSM trigger delay', vals=vals.Ints(0, 127), unit='samples', docstring=('This value needs to be calibrated to ensure that ' 'the VSM mask aligns with the microwave pulses. ' 'Calibration is done using' ' self.calibrate_mw_vsm_delay.'), set_cmd=self._set_mw_vsm_delay, get_cmd=self._get_mw_vsm_delay) self._mw_fine_delay = 0 self.add_parameter('mw_fine_delay', label='fine delay of the AWG channel', unit='s', docstring='This parameters serves for fine tuning of ' 'the RO, MW and flux pulses. It should be kept ' 'positive and below 20e-9. Any larger adjustments' 'should be done by changing CCL dio delay' 'through device object.', set_cmd=self._set_mw_fine_delay, get_cmd=self._get_mw_fine_delay) self._flux_fine_delay = 0 self.add_parameter('flux_fine_delay', label='fine delay of the AWG channel', unit='s', docstring='This parameters serves for fine tuning of ' 'the RO, MW and flux pulses. It should be kept ' 'positive and below 20e-9. Any larger adjustments' 'should be done by changing CCL dio delay' 'through device object.', set_cmd=self._set_flux_fine_delay, get_cmd=self._get_flux_fine_delay) self.add_parameter('mw_vsm_ch_in', label='VSM input channel Gaussian component', vals=vals.Ints(1, 4), initial_value=1, parameter_class=ManualParameter) self.add_parameter('mw_vsm_mod_out', label='VSM output module for microwave pulses', docstring=('Selects the VSM output module for MW' ' pulses. N.B. for spec the ' 'spec_vsm_ch_out parameter is used.'), vals=vals.Ints(1, 8), initial_value=1, parameter_class=ManualParameter) self.add_parameter('mw_vsm_G_amp', label='VSM amp Gaussian component', vals=vals.Numbers(0.1, 1.0), initial_value=1.0, parameter_class=ManualParameter) self.add_parameter('mw_vsm_D_amp', label='VSM amp Derivative component', vals=vals.Numbers(0.1, 1.0), initial_value=1.0, parameter_class=ManualParameter) self.add_parameter('mw_vsm_G_phase', vals=vals.Numbers(-125, 45), initial_value=0, unit='deg', parameter_class=ManualParameter) self.add_parameter('mw_vsm_D_phase', vals=vals.Numbers(-125, 45), initial_value=0, unit='deg', parameter_class=ManualParameter) def add_spec_parameters(self): self.add_parameter('spec_vsm_amp', label='VSM amplitude for spec pulses', vals=vals.Numbers(0.1, 1.0), initial_value=1.0, parameter_class=ManualParameter) self.add_parameter('spec_vsm_mod_out', label='VSM output module for spectroscopy pulses', docstring=('Selects the VSM output channel for spec' ' pulses. N.B. for mw pulses the ' 'spec_mw_ch_out parameter is used.'), vals=vals.Ints(1, 8), initial_value=1, parameter_class=ManualParameter) self.add_parameter('spec_vsm_ch_in', label='VSM input channel for spec pulses', docstring=('VSM input channel for spec pulses' ' generally this should be the same as ' ' the mw_vsm_ch_Gin parameter.'), vals=vals.Ints(1, 4), initial_value=1, parameter_class=ManualParameter) self.add_parameter('spec_pulse_length', label='Pulsed spec pulse duration', unit='s', vals=vals.Numbers(0e-9, 20e-6), # FIXME validator: should be multiple of 20e-9 initial_value=500e-9, parameter_class=ManualParameter) self.add_parameter( 'spec_type', parameter_class=ManualParameter, docstring=( 'determines what kind of spectroscopy to do, \n' '"CW": opens the relevant VSM channel to always let the tone ' 'through. \n' '"vsm_gated": uses the VSM in external mode to gate the spec ' 'source. \n ' '"IQ" uses the TD source and AWG8 to generate a spec pulse'), initial_value='CW', vals=vals.Enum('CW', 'IQ', 'vsm_gated')) self.add_parameter( 'spec_amp', unit='V', docstring=( 'Amplitude of the spectroscopy pulse in the mw LutMan. ' 'The power of the spec pulse should be controlled through ' 'the vsm amplitude "spec_vsm_amp"'), vals=vals.Numbers(0, 1), parameter_class=ManualParameter, initial_value=0.8) self.add_parameter( 'spec_pow', unit='dB', vals=vals.Numbers(-70, 20), parameter_class=ManualParameter, initial_value=-30) self.add_parameter( 'spec_wait_time', unit='s', vals=vals.Numbers(0, 100e-6), parameter_class=ManualParameter, initial_value=0) def add_flux_parameters(self): # fl_dc_ is the prefix for DC flux bias related params # FIXME: self.add_parameter( 'fl_dc_polycoeff', docstring='Polynomial coefficients for current to frequency conversion', vals=vals.Arrays(), # initial value is chosen to not raise errors initial_value=np.array([0, 0, -1e12, 0, 6e9]), parameter_class=ManualParameter) self.add_parameter( 'fl_ac_polycoeff', docstring='Polynomial coefficients for current to frequency conversion', vals=vals.Arrays(), # initial value is chosen to not raise errors initial_value=np.array([0, 0, -1e12, 0, 6e9]), parameter_class=ManualParameter) self.add_parameter( 'fl_dc_I_per_phi0', label='Flux bias I/Phi0', docstring='Conversion factor for flux bias, current per flux quantum', vals=vals.Numbers(), unit='A', initial_value=10e-3, parameter_class=ManualParameter) self.add_parameter( 'fl_dc_I', label='Flux bias', unit='A', docstring='Current flux bias setting', vals=vals.Numbers(), initial_value=0, parameter_class=ManualParameter) self.add_parameter( 'fl_dc_I0', unit='A', label='Flux bias sweet spot', docstring=( 'Flux bias offset corresponding to the sweetspot'), vals=vals.Numbers(), initial_value=0, parameter_class=ManualParameter) # FIXME: ? not used anywhere self.add_parameter( 'fl_dc_ch', label='Flux bias channel', docstring=('Used to determine the DAC channel used for DC ' 'flux biasing. Should be an int when using an IVVI rack' 'or a str (channel name) when using an SPI rack.'), vals=vals.Strings(), initial_value=None, parameter_class=ManualParameter) # Currently this has only the parameters for 1 CZ gate. # in the future there will be 5 distinct flux operations for which # parameters have to be stored. # cz to all nearest neighbours (of which 2 are only phase corr) and # the "park" operation. self.add_parameter('fl_cz_length', vals=vals.Numbers(), unit='s', initial_value=35e-9, parameter_class=ManualParameter) self.add_parameter('fl_cz_lambda_2', vals=vals.Numbers(), initial_value=0, parameter_class=ManualParameter) self.add_parameter('fl_cz_lambda_3', vals=vals.Numbers(), initial_value=0, parameter_class=ManualParameter) self.add_parameter('fl_cz_theta_f', vals=vals.Numbers(), unit='deg', initial_value=80, parameter_class=ManualParameter) self.add_parameter('fl_cz_V_per_phi0', vals=vals.Numbers(), unit='V', initial_value=1, parameter_class=ManualParameter) self.add_parameter('fl_cz_freq_01_max', vals=vals.Numbers(), unit='Hz', parameter_class=ManualParameter) self.add_parameter('fl_cz_J2', vals=vals.Numbers(), unit='Hz', initial_value=50e6, parameter_class=ManualParameter) self.add_parameter('fl_cz_freq_interaction', vals=vals.Numbers(), unit='Hz', parameter_class=ManualParameter) self.add_parameter('fl_cz_phase_corr_length', unit='s', initial_value=5e-9, vals=vals.Numbers(), parameter_class=ManualParameter) self.add_parameter('fl_cz_phase_corr_amp', unit='V', initial_value=0, vals=vals.Numbers(), parameter_class=ManualParameter) def add_config_parameters(self): self.add_parameter( 'cfg_trigger_period', label='Trigger period', docstring=('Time between experiments, used to initialize all' ' qubits in the ground state'), unit='s', initial_value=200e-6, parameter_class=ManualParameter, vals=vals.Numbers(min_value=1e-6, max_value=327668e-9)) self.add_parameter('cfg_openql_platform_fn', label='OpenQL platform configuration filename', parameter_class=ManualParameter, vals=vals.Strings()) self.add_parameter( 'cfg_qubit_nr', label='Qubit number', vals=vals.Ints(0, 20), parameter_class=ManualParameter, initial_value=0, docstring='The qubit number is used in the OpenQL compiler. ') self.add_parameter('cfg_qubit_freq_calc_method', initial_value='latest', parameter_class=ManualParameter, vals=vals.Enum('latest', 'flux')) self.add_parameter('cfg_rb_calibrate_method', initial_value='restless', parameter_class=ManualParameter, vals=vals.Enum('restless', 'ORBIT')) self.add_parameter('cfg_cycle_time', initial_value=20e-9, unit='s', parameter_class=ManualParameter, # this is to effictively hardcode the cycle time vals=vals.Enum(20e-9)) # TODO: add docstring (Oct 2017) self.add_parameter('cfg_prepare_ro_awg', vals=vals.Bool(), docstring=('If False disables uploading pulses ' 'to UHFQC'), initial_value=True, parameter_class=ManualParameter) self.add_parameter('cfg_prepare_mw_awg', vals=vals.Bool(), docstring=('If False disables uploading pulses ' 'to AWG8'), initial_value=True, parameter_class=ManualParameter) self.add_parameter('cfg_with_vsm', vals=vals.Bool(), docstring=('to avoid using the VSM if set to False' ' bypasses all commands to vsm if set False'), initial_value=True, parameter_class=ManualParameter) self.add_parameter('cfg_spec_mode', vals=vals.Bool(), docstring=( 'Used to activate spec mode in measurements'), initial_value=False, parameter_class=ManualParameter) def add_generic_qubit_parameters(self): self.add_parameter('E_c', unit='Hz', initial_value=300e6, parameter_class=ManualParameter, vals=vals.Numbers()) self.add_parameter('E_j', unit='Hz', parameter_class=ManualParameter, vals=vals.Numbers()) self.add_parameter('T1', unit='s', parameter_class=ManualParameter, vals=vals.Numbers(0, 200e-6)) self.add_parameter('T2_echo', unit='s', parameter_class=ManualParameter, vals=vals.Numbers(0, 200e-6)) self.add_parameter('T2_star', unit='s', parameter_class=ManualParameter, vals=vals.Numbers(0, 200e-6)) self.add_parameter('freq_qubit', label='Qubit frequency', unit='Hz', parameter_class=ManualParameter) self.add_parameter('freq_max', label='qubit sweet spot frequency', unit='Hz', parameter_class=ManualParameter) self.add_parameter('freq_res', label='Resonator frequency', unit='Hz', parameter_class=ManualParameter) self.add_parameter('asymmetry', unit='', docstring='Asymmetry parameter of the SQUID loop', initial_value=0, parameter_class=ManualParameter) self.add_parameter('anharmonicity', unit='Hz', label='Anharmonicity', docstring='Anharmonicity, negative by convention', parameter_class=ManualParameter, # typical target value initial_value=-300e6, vals=vals.Numbers()) self.add_parameter('dispersive_shift', label='Resonator dispersive shift', unit='Hz', parameter_class=ManualParameter, vals=vals.Numbers()) self.add_parameter('F_ssro', initial_value=0, label='Single shot readout assignment fidelity', vals=vals.Numbers(0.0, 1.0), parameter_class=ManualParameter) self.add_parameter('F_discr', initial_value=0, label='Single shot readout discrimination fidelity', vals=vals.Numbers(0.0, 1.0), parameter_class=ManualParameter) self.add_parameter('ro_rel_events', initial_value=0, label='relaxation errors from ssro fit', vals=vals.Numbers(0.0, 1.0), parameter_class=ManualParameter) self.add_parameter('ro_res_ext', initial_value=0, label='residual extiction errors from ssro fit', vals=vals.Numbers(0.0, 1.0), parameter_class=ManualParameter) self.add_parameter('F_RB', initial_value=0, label='RB single qubit Clifford fidelity', vals=vals.Numbers(0, 1.0), parameter_class=ManualParameter) # Parameter helpers def _using_QWG(self): """ Checks if a QWG is used for microwave control. """ AWG = self.instr_LutMan_MW.get_instr().AWG.get_instr() return isinstance(AWG, QuTech_AWG_Module) def _set_mw_vsm_delay(self, val): # sort of a pseudo Manual Parameter self.instr_CC.get_instr().set( 'vsm_channel_delay{}'.format(self.cfg_qubit_nr()), val) self._mw_vsm_delay = val def _get_mw_vsm_delay(self): return self._mw_vsm_delay def _set_mw_fine_delay(self, val): if self.cfg_with_vsm(): logging.warning('CCL transmon is using VSM. Use mw_vsm_delay to' 'adjust delay') else: lutman = self.find_instrument(self.instr_LutMan_MW()) AWG = lutman.find_instrument(lutman.AWG()) if self._using_QWG(): logging.warning( 'CCL transmon is using QWG. mw_fine_delay not supported.') else: AWG.set('sigouts_{}_delay'.format(lutman.channel_I()-1), val) AWG.set('sigouts_{}_delay'.format(lutman.channel_Q()-1), val) self._mw_fine_delay = val def _get_mw_fine_delay(self): return self._mw_fine_delay def _set_flux_fine_delay(self, val): if self.instr_LutMan_Flux() is not None: lutman = self.find_instrument(self.instr_LutMan_Flux()) AWG = lutman.find_instrument(lutman.AWG()) if self._using_QWG(): logging.warning('CCL transmon is using QWG. Not implemented.') else: AWG.set('sigouts_{}_delay'.format( lutman.cfg_awg_channel()-1), val) # val = AWG.get('sigouts_{}_delay'.format(lutman.cfg_awg_channel()-1)) else: logging.warning( 'No Flux LutMan specified, could not set flux timing fine') self._flux_fine_delay = val def _get_flux_fine_delay(self): return self._flux_fine_delay ########################################################################## # Prepare functions ########################################################################## def prepare_for_continuous_wave(self): if 'optimal' in self.ro_acq_weight_type(): warnings.warn('Changing ro_acq_weight_type to SSB.') self.ro_acq_weight_type('SSB') if self.ro_acq_weight_type() not in {'DSB', 'SSB'}: # this is because the CW acquisition detects using angle and phase # and this requires two channels to rotate the signal properly. raise ValueError('Readout "{}" '.format(self.ro_acq_weight_type()) + 'weight type must be "SSB" or "DSB"') if self.cfg_with_vsm(): self._prep_cw_configure_VSM() self.prepare_readout(CW=True) self._prep_cw_spec() # source is turned on in measure spec when needed self.instr_LO_mw.get_instr().off() if self.instr_spec_source() != None: self.instr_spec_source.get_instr().off() if self.instr_spec_source_2() != None: self.instr_spec_source_2.get_instr().off() def prepare_readout(self, CW=False): """ Configures the readout. Consists of the following steps - instantiate the relevant detector functions - set the microwave frequencies and sources - generate the RO pulse - set the integration weights """ if self.cfg_prepare_ro_awg(): self.instr_acquisition.get_instr().load_default_settings( upload_sequence=False) self._prep_ro_pulse(CW=CW) self._prep_ro_integration_weights() self._prep_deskewing_matrix() else: warnings.warn( '"cfg_prepare_ro_awg" set to False, not preparing readout .') self._prep_ro_instantiate_detectors() self._prep_ro_sources() def prepare_for_timedomain(self): self.prepare_readout() self._prep_td_sources() self._prep_mw_pulses() if self.cfg_with_vsm(): self._prep_td_configure_VSM() def prepare_for_fluxing(self, reset=True): pass def prepare_characterizing(self, exceptions: list = [], verbose=True): """ Prepares the qubit for (automatic) characterisation. Will park all other qubits in the device object to their 'anti-sweetspot' (which is a sweetspot as well technically speaking). Afterwards, it will move the qubit to be characterized (self) to its sweetspot. Will ignore any qubit whose name (string) is in 'exceptions' """ fluxcurrent = self.instr_FluxCtrl.get_instr() device = self.instr_device.get_instr() exceptions.append('fakequbit') Qs = device.qubits() for Q in Qs: if device.find_instrument(Q).fl_dc_I_per_phi0() == 1: exceptions.append(Q) # exceptions.append('D2') # First park all other qubits to anti sweetspot print('Moving other qubits away ...') for qubit_name in device.qubits(): if (qubit_name not in exceptions) and (qubit_name != self.name): qubit = device.find_instrument(qubit_name) channel = qubit.fl_dc_ch() current = qubit.fl_dc_I0() + qubit.fl_dc_I_per_phi0()/2 fluxcurrent[channel](current) if verbose: print('\t Moving {} to {:.3f} mA' .format(qubit_name, current/1e-3)) # Move self to sweetspot: if verbose: print('Moving {} to {:.3f} mA'.format( self.name, self.fl_dc_I0()/1e-3)) fluxcurrent[self.fl_dc_ch()](self.fl_dc_I0()) return True def get_int_avg_det(self, **kw): """ Instantiates an integration average detector using parameters from the qubit object. **kw get passed on to the class when instantiating the detector function. """ if self.ro_acq_weight_type() == 'optimal': ro_channels = [self.ro_acq_weight_chI()] if self.ro_acq_digitized(): result_logging_mode = 'digitized' else: result_logging_mode = 'lin_trans' else: ro_channels = [self.ro_acq_weight_chI(), self.ro_acq_weight_chQ()] result_logging_mode = 'raw' int_avg_det = det.UHFQC_integrated_average_detector( UHFQC=self.instr_acquisition.get_instr(), AWG=self.instr_CC.get_instr(), channels=ro_channels, result_logging_mode=result_logging_mode, nr_averages=self.ro_acq_averages(), integration_length=self.ro_acq_integration_length(), **kw) return int_avg_det ########################################################################## # Prepare functions: private ########################################################################## def _prep_cw_spec(self): # FIXME: this code block has no effect if self.cfg_with_vsm(): VSM = self.instr_VSM.get_instr() if self.spec_type() == 'CW': marker_source = 'int' else: marker_source = 'ext' if self.instr_spec_source() != None: self.instr_spec_source.get_instr().power(self.spec_pow()) # FIXME: UHFQC specific def _prep_deskewing_matrix(self): UHFQC = self.instr_acquisition.get_instr() alpha = self.ro_acq_mixer_alpha() phi = self.ro_acq_mixer_phi() predistortion_matrix = np.array( ((1, -alpha * np.sin(phi * 2 * np.pi / 360)), (0, alpha * np.cos(phi * 2 * np.pi / 360)))) UHFQC.qas_0_deskew_rows_0_cols_0(predistortion_matrix[0, 0]) UHFQC.qas_0_deskew_rows_0_cols_1(predistortion_matrix[0, 1]) UHFQC.qas_0_deskew_rows_1_cols_0(predistortion_matrix[1, 0]) UHFQC.qas_0_deskew_rows_1_cols_1(predistortion_matrix[1, 1]) return predistortion_matrix def _prep_ro_instantiate_detectors(self): self.instr_MC.get_instr().soft_avg(self.ro_soft_avg()) if 'optimal' in self.ro_acq_weight_type(): if self.ro_acq_weight_type() == 'optimal': ro_channels = [self.ro_acq_weight_chI()] elif self.ro_acq_weight_type() == 'optimal IQ': ro_channels = [ self.ro_acq_weight_chI(), self.ro_acq_weight_chQ()] result_logging_mode = 'lin_trans' if self.ro_acq_digitized(): result_logging_mode = 'digitized' # Update the RO theshold acq_ch = self.ro_acq_weight_chI() # The threshold that is set in the hardware needs to be # corrected for the offset as this is only applied in # software. if abs(self.ro_acq_threshold()) > 32: threshold = 32 warnings.warn('Clipping {}.ro_acq_threshold {}>32'.format( self.name, self.ro_acq_threshold())) # working around the limitation of threshold in UHFQC # which cannot be >abs(32). else: threshold = self.ro_acq_threshold() self.instr_acquisition.get_instr().set( 'qas_0_thresholds_{}_level'.format(acq_ch), threshold) else: ro_channels = [self.ro_acq_weight_chI(), self.ro_acq_weight_chQ()] result_logging_mode = 'raw' if 'UHFQC' in self.instr_acquisition(): UHFQC = self.instr_acquisition.get_instr() self.input_average_detector = det.UHFQC_input_average_detector( UHFQC=UHFQC, AWG=self.instr_CC.get_instr(), nr_averages=self.ro_acq_averages(), nr_samples=int(self.ro_acq_input_average_length()*1.8e9)) self.int_avg_det = self.get_int_avg_det() self.int_avg_det_single = det.UHFQC_integrated_average_detector( UHFQC=UHFQC, AWG=self.instr_CC.get_instr(), channels=ro_channels, result_logging_mode=result_logging_mode, nr_averages=self.ro_acq_averages(), real_imag=True, single_int_avg=True, integration_length=self.ro_acq_integration_length()) self.UHFQC_spec_det = det.UHFQC_spectroscopy_detector( UHFQC=UHFQC, ro_freq_mod=self.ro_freq_mod(), AWG=self.instr_CC.get_instr(), channels=ro_channels, nr_averages=self.ro_acq_averages(), integration_length=self.ro_acq_integration_length()) self.int_log_det = det.UHFQC_integration_logging_det( UHFQC=UHFQC, AWG=self.instr_CC.get_instr(), channels=ro_channels, result_logging_mode=result_logging_mode, integration_length=self.ro_acq_integration_length()) else: raise NotImplementedError() # def _prep_ro_sources(self): # LO = self.instr_LO_ro.get_instr() # LO.frequency.set(self.ro_freq() - self.ro_freq_mod()) # LO.on() # LO.power(self.ro_pow_LO()) def _prep_ro_sources(self): if self.instr_LutMan_RO.get_instr().LO_freq is not None: log.info('Warning: This qubit is using a fixed RO LO frequency.') LO = self.instr_LO_ro.get_instr() Lo_Lutman = self.instr_LutMan_RO.get_instr() LO_freq = Lo_Lutman.LO_freq() LO.frequency.set(LO_freq) mod_freq = self.ro_freq() - LO_freq self.ro_freq_mod(mod_freq) log.info("Setting modulation freq of {} to {}".format(self.name, mod_freq)) else: LO = self.instr_LO_ro.get_instr() LO.frequency.set(self.ro_freq() - self.ro_freq_mod()) LO.on() LO.power(self.ro_pow_LO()) # def _prep_ro_sources(self, qubits): # """ # turn on and configure the RO LO's of all qubits to be measured. # """ # for qb_name in qubits: # LO = self.find_instrument(qb_name).instr_LO_ro.get_instr() # LO.frequency.set(self.ro_lo_freq()) # LO.power(self.ro_pow_LO()) # LO.on() def _prep_ro_pulse(self, upload=True, CW=False): """ Sets the appropriate parameters in the RO LutMan and uploads the desired wave. Relevant parameters are: ro_pulse_type ("up_down_down", "square") ro_freq_mod ro_acq_delay ro_pulse_length ro_pulse_amp ro_pulse_phi ro_pulse_down_length0 ro_pulse_down_amp0 ro_pulse_down_phi0 ro_pulse_down_length1 ro_pulse_down_amp1 ro_pulse_down_phi1 ro_pulse_mixer_alpha ro_pulse_mixer_phi ro_pulse_mixer_offs_I ro_pulse_mixer_offs_Q """ if CW: ro_amp = self.ro_pulse_amp_CW() else: ro_amp = self.ro_pulse_amp() if 'UHFQC' not in self.instr_acquisition(): raise NotImplementedError() UHFQC = self.instr_acquisition.get_instr() if 'gated' in self.ro_pulse_type().lower(): UHFQC.awg_sequence_acquisition() else: ro_lm = self.instr_LutMan_RO.get_instr() ro_lm.AWG(self.instr_acquisition()) idx = self.cfg_qubit_nr() # These parameters affect all resonators ro_lm.set('resonator_combinations', [[idx]]) ro_lm.set('pulse_type', 'M_' + self.ro_pulse_type()) ro_lm.set('mixer_alpha', self.ro_pulse_mixer_alpha()) ro_lm.set('mixer_phi', self.ro_pulse_mixer_phi()) ro_lm.set('M_modulation_R{}'.format(idx), self.ro_freq_mod()) ro_lm.set('M_length_R{}'.format(idx), self.ro_pulse_length()) ro_lm.set('M_amp_R{}'.format(idx), ro_amp) ro_lm.set('M_delay_R{}'.format(idx), self.ro_pulse_delay()) ro_lm.set('M_phi_R{}'.format(idx), self.ro_pulse_phi()) ro_lm.set('M_down_length0_R{}'.format(idx), self.ro_pulse_down_length0()) ro_lm.set('M_down_amp0_R{}'.format(idx), self.ro_pulse_down_amp0()) ro_lm.set('M_down_phi0_R{}'.format(idx), self.ro_pulse_down_phi0()) ro_lm.set('M_down_length1_R{}'.format(idx), self.ro_pulse_down_length1()) ro_lm.set('M_down_amp1_R{}'.format(idx), self.ro_pulse_down_amp1()) ro_lm.set('M_down_phi1_R{}'.format(idx), self.ro_pulse_down_phi1()) ro_lm.acquisition_delay(self.ro_acq_delay()) if upload: ro_lm.load_DIO_triggered_sequence_onto_UHFQC() UHFQC.sigouts_0_offset(self.ro_pulse_mixer_offs_I()) UHFQC.sigouts_1_offset(self.ro_pulse_mixer_offs_Q()) if [self.cfg_qubit_nr()] not in ro_lm.resonator_combinations(): warnings.warn('Qubit number of {} is not '.format(self.name) + 'present in resonator_combinations of the readout lutman.') def _prep_ro_integration_weights(self): """ Sets the ro acquisition integration weights. The relevant parameters here are ro_acq_weight_type -> 'SSB', 'DSB' or 'Optimal' ro_acq_weight_chI -> Specifies which integration weight (channel) to use ro_acq_weight_chQ -> The second channel in case of SSB/DSB RO_acq_weight_func_I -> A custom integration weight (array) RO_acq_weight_func_Q -> "" """ if 'UHFQC' in self.instr_acquisition(): UHFQC = self.instr_acquisition.get_instr() if self.ro_acq_weight_type() == 'SSB': UHFQC.prepare_SSB_weight_and_rotation( IF=self.ro_freq_mod(), weight_function_I=self.ro_acq_weight_chI(), weight_function_Q=self.ro_acq_weight_chQ()) elif self.ro_acq_weight_type() == 'DSB': UHFQC.prepare_DSB_weight_and_rotation( IF=self.ro_freq_mod(), weight_function_I=self.ro_acq_weight_chI(), weight_function_Q=self.ro_acq_weight_chQ()) elif 'optimal' in self.ro_acq_weight_type(): if (self.ro_acq_weight_func_I() is None or self.ro_acq_weight_func_Q() is None): logging.warning('Optimal weights are None,' + ' not setting integration weights') elif self.ro_acq_rotated_SSB_when_optimal(): # this allows bypasing the optimal weights for poor SNR qubits # working around the limitation of threshold in UHFQC # which cannot be >abs(32) if self.ro_acq_digitized() and abs(self.ro_acq_threshold()) > 32: scaling_factor = 32/self.ro_acq_threshold() else: scaling_factor = 1 UHFQC.prepare_SSB_weight_and_rotation( IF=self.ro_freq_mod(), weight_function_I=self.ro_acq_weight_chI(), weight_function_Q=None, rotation_angle=self.ro_acq_rotated_SSB_rotation_angle(), length=self.ro_acq_integration_length_weigth_function(), scaling_factor=scaling_factor) else: # When optimal weights are used, only the RO I weight # channel is used # FIXME!: Dirty hack because of qusurf issue #63, adds # delay samples in the optimized weights opt_WI = self.ro_acq_weight_func_I() opt_WQ = self.ro_acq_weight_func_Q() del_sampl = self.ro_acq_weight_func_delay_samples_hack() if del_sampl > 0: zeros = np.zeros(abs(del_sampl)) opt_WI = np.concatenate( [opt_WI[abs(del_sampl):], zeros]) opt_WQ = np.concatenate( [opt_WQ[abs(del_sampl):], zeros]) elif del_sampl < 0: zeros = np.zeros(abs(del_sampl)) opt_WI = np.concatenate( [zeros, opt_WI[:-abs(del_sampl)]]) opt_WQ = np.concatenate( [zeros, opt_WQ[:-abs(del_sampl)]]) else: pass UHFQC.set('qas_0_integration_weights_{}_real'.format( self.ro_acq_weight_chI()), opt_WI) UHFQC.set('qas_0_integration_weights_{}_imag'.format( self.ro_acq_weight_chI()), opt_WQ) UHFQC.set('qas_0_rotations_{}'.format( self.ro_acq_weight_chI()), 1.0 - 1.0j) if self.ro_acq_weight_type() == 'optimal IQ': print('setting the optimal Q') UHFQC.set('qas_0_integration_weights_{}_real'.format( self.ro_acq_weight_chQ()), opt_WQ) UHFQC.set('qas_0_integration_weights_{}_imag'.format( self.ro_acq_weight_chQ()), opt_WI) UHFQC.set('qas_0_rotations_{}'.format( self.ro_acq_weight_chQ()), 1.0 + 1.0j) else: raise NotImplementedError( 'CBox, DDM or other are currently not supported') def _prep_td_sources(self): # if self.instr_spec_source() is not None: # self.instr_spec_source.get_instr().off() # self.instr_LO_mw.get_instr().on() # self.instr_LO_mw.get_instr().pulsemod_state(False) # # Set source to fs =f-f_mod such that pulses appear at f = fs+f_mod # self.instr_LO_mw.get_instr().frequency.set( # self.freq_qubit.get() - self.mw_freq_mod.get()) # self.instr_LO_mw.get_instr().power.set(self.mw_pow_td_source.get()) MW_LutMan = self.instr_LutMan_MW.get_instr() if self.instr_spec_source() is not None: self.instr_spec_source.get_instr().off() self.instr_LO_mw.get_instr().on() self.instr_LO_mw.get_instr().pulsemod_state(False) if MW_LutMan.cfg_sideband_mode() == 'static': # Set source to fs =f-f_mod such that pulses appear at f = fs+f_mod self.instr_LO_mw.get_instr().frequency.set( self.freq_qubit.get() - self.mw_freq_mod.get()) elif MW_LutMan.cfg_sideband_mode() == 'real-time': # For historic reasons, will maintain the change qubit frequency here in # _prep_td_sources, even for real-time mode, where it is only changed in the HDAWG if ((MW_LutMan.channel_I()-1)//2 != (MW_LutMan.channel_Q()-1)//2): raise KeyError('In real-time sideband mode, channel I/Q should share same awg group.') self.mw_freq_mod(self.freq_qubit.get() - self.instr_LO_mw.get_instr().frequency.get()) MW_LutMan.AWG.get_instr().set('oscs_{}_freq'.format((MW_LutMan.channel_I()-1)//2), self.mw_freq_mod.get()) else: raise ValueError('Unexpected value for parameter cfg_sideband_mode.') self.instr_LO_mw.get_instr().power.set(self.mw_pow_td_source.get()) def _prep_mw_pulses(self): # 1. Gets instruments and prepares cases MW_LutMan = self.instr_LutMan_MW.get_instr() AWG = MW_LutMan.AWG.get_instr() # 2. Prepares map and parameters for waveforms # (except pi-pulse amp, which depends on VSM usage) MW_LutMan.mw_amp90_scale(self.mw_amp90_scale()) MW_LutMan.mw_gauss_width(self.mw_gauss_width()) MW_LutMan.channel_amp(self.mw_channel_amp()) MW_LutMan.channel_range(self.mw_channel_range()) MW_LutMan.mw_motzoi(self.mw_motzoi()) MW_LutMan.mw_modulation(self.mw_freq_mod()) MW_LutMan.spec_amp(self.spec_amp()) # used for ef pulsing MW_LutMan.mw_ef_amp180(self.mw_ef_amp()) # MW_LutMan.mw_ef_modulation(MW_LutMan.mw_modulation() + # self.anharmonicity()) if MW_LutMan.cfg_sideband_mode() != 'real-time': MW_LutMan.mw_ef_modulation(MW_LutMan.mw_modulation() + self.anharmonicity()) else: MW_LutMan.mw_ef_modulation(self.anharmonicity()) # 3. Does case-dependent things: # mixers offset+skewness # pi-pulse amplitude if self.cfg_with_vsm(): # case with VSM (both QWG and AWG8) MW_LutMan.mw_amp180(self.mw_amp180()) MW_LutMan.G_mixer_phi(self.mw_G_mixer_phi()) MW_LutMan.G_mixer_alpha(self.mw_G_mixer_alpha()) MW_LutMan.D_mixer_phi(self.mw_D_mixer_phi()) MW_LutMan.D_mixer_alpha(self.mw_D_mixer_alpha()) MW_LutMan.channel_GI(0+self.mw_awg_ch()) MW_LutMan.channel_GQ(1+self.mw_awg_ch()) MW_LutMan.channel_DI(2+self.mw_awg_ch()) MW_LutMan.channel_DQ(3+self.mw_awg_ch()) if self._using_QWG(): # N.B. This part is QWG specific if hasattr(MW_LutMan, 'channel_GI'): # 4-channels are used for VSM based AWG's. AWG.ch1_offset(self.mw_mixer_offs_GI()) AWG.ch2_offset(self.mw_mixer_offs_GQ()) AWG.ch3_offset(self.mw_mixer_offs_DI()) AWG.ch4_offset(self.mw_mixer_offs_DQ()) else: # using_AWG8 # N.B. This part is AWG8 specific AWG.set('sigouts_{}_offset'.format(self.mw_awg_ch()-1), self.mw_mixer_offs_GI()) AWG.set('sigouts_{}_offset'.format(self.mw_awg_ch()+0), self.mw_mixer_offs_GQ()) AWG.set('sigouts_{}_offset'.format(self.mw_awg_ch()+1), self.mw_mixer_offs_DI()) AWG.set('sigouts_{}_offset'.format(self.mw_awg_ch()+2), self.mw_mixer_offs_DQ()) else: if self._using_QWG(): # case without VSM and with QWG if ((self.mw_G_mixer_phi() != self.mw_D_mixer_phi()) or (self.mw_G_mixer_alpha() != self.mw_D_mixer_alpha())): logging.warning('CCL_Transmon {}; _prep_mw_pulses: ' 'no VSM detected, using mixer parameters' ' from gaussian channel.'.format(self.name)) MW_LutMan.mixer_phi(self.mw_G_mixer_phi()) MW_LutMan.mixer_alpha(self.mw_G_mixer_alpha()) AWG.set('ch{}_offset'.format(MW_LutMan.channel_I()), self.mw_mixer_offs_GI()) AWG.set('ch{}_offset'.format(MW_LutMan.channel_Q()), self.mw_mixer_offs_GQ()) else: # case without VSM (and AWG8) MW_LutMan.mw_amp180(1) MW_LutMan.mixer_phi(self.mw_G_mixer_phi()) MW_LutMan.mixer_alpha(self.mw_G_mixer_alpha()) # N.B. This part is AWG8 specific AWG.set('sigouts_{}_offset'.format(self.mw_awg_ch()-1), self.mw_mixer_offs_GI()) AWG.set('sigouts_{}_offset'.format(self.mw_awg_ch()+0), self.mw_mixer_offs_GQ()) # 4. reloads the waveforms if self.cfg_prepare_mw_awg(): MW_LutMan.load_waveforms_onto_AWG_lookuptable() else: warnings.warn('"cfg_prepare_mw_awg" set to False, ' 'not preparing microwave pulses.') # 5. upload commandtable for virtual-phase gates MW_LutMan.upload_single_qubit_phase_corrections() # FIXME: assumes AWG8_MW_LutMan def _prep_td_configure_VSM(self): # Configure VSM VSM = self.instr_VSM.get_instr() VSM.set('ch{}_frequency'.format( self.mw_vsm_ch_in()), self.freq_qubit()) for mod in range(1, 9): VSM.set('mod{}_ch{}_marker_state'.format( mod, self.spec_vsm_ch_in()), 'off') VSM.set('mod{}_ch{}_marker_state'.format( self.mw_vsm_mod_out(), self.mw_vsm_ch_in()), 'on') VSM.set('mod{}_marker_source'.format( self.mw_vsm_mod_out()), self.mw_vsm_marker_source()) VSM.set('mod{}_ch{}_derivative_amp'.format( self.mw_vsm_mod_out(), self.mw_vsm_ch_in()), self.mw_vsm_D_amp()) VSM.set('mod{}_ch{}_derivative_phase'.format( self.mw_vsm_mod_out(), self.mw_vsm_ch_in()), self.mw_vsm_D_phase()) VSM.set('mod{}_ch{}_gaussian_amp'.format( self.mw_vsm_mod_out(), self.mw_vsm_ch_in()), self.mw_vsm_G_amp()) VSM.set('mod{}_ch{}_gaussian_phase'.format( self.mw_vsm_mod_out(), self.mw_vsm_ch_in()), self.mw_vsm_G_phase()) self.instr_CC.get_instr().set( 'vsm_channel_delay{}'.format(self.cfg_qubit_nr()), self.mw_vsm_delay()) def _prep_cw_configure_VSM(self): # Configure VSM VSM = self.instr_VSM.get_instr() for mod in range(1, 9): VSM.set('mod{}_ch{}_marker_state'.format( mod, self.mw_vsm_ch_in()), 'off') VSM.set('mod{}_ch{}_marker_state'.format( self.mw_vsm_mod_out(), self.spec_vsm_ch_in()), 'on') VSM.set('mod{}_marker_source'.format( self.mw_vsm_mod_out()), self.mw_vsm_marker_source()) ########################################################################## # find_ functions (CCLight_Transmon specific) ########################################################################## def find_frequency_adaptive(self, f_start=None, f_span=1e9, f_step=0.5e6, MC=None, update=True, use_max=False, spec_mode='pulsed_marked', verbose=True): """ 'Adaptive' measurement for finding the qubit frequency. Will look with a range of the current frequency estimate, and if it does not find a peak it will move and look f_span Hz above and below the estimate. Will continue to do such a shift until a peak is found. """ if MC is None: MC = self.instr_MC.get_instr() if f_start is None: f_start = self.freq_qubit() # Set high power and averages to be sure we find the peak. # self.spec_pow(-30) # self.ro_pulse_amp_CW(0.025) # old_avg = self.ro_acq_averages() # self.ro_acq_averages(2**15) # Repeat measurement while no peak is found: success = False f_center = f_start n = 0 while not success: success = None f_center += f_span*n*(-1)**n n += 1 if verbose: cfreq, cunit = plt_tools.SI_val_to_msg_str( f_center, 'Hz', float) sfreq, sunit = plt_tools.SI_val_to_msg_str(f_span, 'Hz', float) print('Doing adaptive spectroscopy around {:.3f} {} with a ' 'span of {:.0f} {}.'.format(cfreq, cunit, sfreq, sunit)) freqs = np.arange(f_center - f_span/2, f_center + f_span/2, f_step) self.measure_spectroscopy(MC=MC, freqs=freqs, mode=spec_mode, analyze=False) label = 'spec' # Use 'try' because it can give a TypeError when no peak is found try: analysis_spec = ma.Qubit_Spectroscopy_Analysis(label=label, close_fig=True, qb_name=self.name) except TypeError: logging.warning('TypeError in Adaptive spectroscopy') continue # Check for peak and check its height freq_peak = analysis_spec.peaks['peak'] offset = analysis_spec.fit_res.params['offset'].value peak_height = np.amax(analysis_spec.data_dist) # Check if peak is not another qubit, and if it is move that qubit away for qubit_name in self.instr_device.get_instr().qubits(): qubit = self.instr_device.get_instr().find_instrument(qubit_name) if qubit.name != self.name and qubit.freq_qubit() is not None: if np.abs(qubit.freq_qubit()-freq_peak) < 5e6: if verbose: logging.warning('Peak found at frequency of {}. ' 'Adjusting currents' .format(qubit.name)) fluxcurrent = self.instr_FluxCtrl.get_instr() old_current = fluxcurrent[qubit.fl_dc_ch()]() fluxcurrent[qubit.fl_dc_ch()](5e-3) n -= 1 success = False if success is None: if freq_peak is None: success = False elif peak_height < 4*offset: success = False elif peak_height < 3*np.mean(analysis_spec.data_dist): success = False else: success = True # self.ro_acq_averages(old_avg) if update: if use_max: self.freq_qubit(analysis_spec.peaks['peak']) else: self.freq_qubit(analysis_spec.fitted_freq) return True def find_qubit_sweetspot(self, freqs=None, dac_values=None, update=True, set_to_sweetspot=True, method='DAC', fluxChan=None, spec_mode='pulsed_marked'): """ Should be edited such that it contains reference to different measurement methods (tracking / 2D scan / broad spectroscopy) method = 'DAC' - uses ordinary 2D DAC scan 'tracked - uses tracked spectroscopy (not really implemented)' TODO: If spectroscopy does not yield a peak, it should discard it """ if freqs is None: freq_center = self.freq_qubit() freq_range = 50e6 freqs = np.arange(freq_center - freq_range, freq_center + freq_range, 1e6) if dac_values is None: if self.fl_dc_I0() is not None: dac_values = np.linspace(self.fl_dc_I0() - 1e-3, self.fl_dc_I0() + 1e-3, 8) else: dac_values = np.linspace(-0.5e3, 0.5e-3, 10) if fluxChan is None: if self.fl_dc_ch() is not None: fluxChan = self.fl_dc_ch() else: logging.error('No fluxchannel found or specified. Please ' 'specify fluxChan') if method == 'DAC': t_start = time.strftime('%Y%m%d_%H%M%S') self.measure_qubit_frequency_dac_scan(freqs=freqs, dac_values=dac_values, fluxChan=fluxChan, analyze=False, mode=spec_mode, nested_resonator_calibration=False, # nested_resonator_calibration_use_min=False, resonator_freqs=np.arange(-5e6, 5e6, 0.2e6)+self.freq_res()) timestamp = a_tools.get_timestamps_in_range(t_start, label='Qubit_dac_scan' + self.msmt_suffix) timestamp = timestamp[0] a = ma2.da.DAC_analysis(timestamp=timestamp) self.fl_dc_polycoeff(a.dac_fit_res['fit_polycoeffs']) sweetspot_current = a.dac_fit_res['sweetspot_dac'] elif method == 'tracked': t_start = time.strftime('%Y%m%d_%H%M%S') for i, dac_value in enumerate(dac_values): self.instr_FluxCtrl.get_instr()[self.fl_dc_ch()](dac_value) if i == 0: self.find_frequency(freqs=freqs, update=True) else: self.find_frequency(update=True) t_end = time.strftime('%Y%m%d_%H%M%S') a = ma2.DACarcPolyFit(t_start=t_start, t_stop=t_end, label='spectroscopy__' + self.name, dac_key='Instrument settings.fluxcurrent.'+self.fl_dc_ch(), degree=2) pc = a.fit_res['fit_polycoeffs'] self.fl_dc_polycoeff(pc) sweetspot_current = -pc[1]/(2*pc[0]) else: logging.error('Sweetspot method {} unknown. ' 'Use "DAC" or "tracked".'.format(method)) if update: self.fl_dc_I0(sweetspot_current) self.freq_max(self.calc_current_to_freq(sweetspot_current)) if set_to_sweetspot: self.instr_FluxCtrl.get_instr()[self.fl_dc_ch()](sweetspot_current) # Sanity check: does this peak move with flux? check_vals = [self.calc_current_to_freq(np.min(dac_values)), self.calc_current_to_freq(self.fl_dc_I0()), self.calc_current_to_freq(np.max(dac_values))] if check_vals[0] == pytest.approx(check_vals[1], abs=0.5e6): if check_vals[0] == pytest.approx(check_vals[2], abs=0.5e6): if check_vals[1] == pytest.approx(check_vals[2], abs=0.5e6): logging.warning('No qubit shift found with varying flux. ' 'Peak is not a qubit') return False if self.fl_dc_polycoeff()[1] < 1e6 and self.fl_dc_polycoeff()[2] < 1e6: logging.warning('No qubit shift found with varying flux. Peak is ' 'not a qubit') return False return True def find_qubit_sweetspot_1D(self, freqs=None, dac_values=None): # self.spec_pow(-30) self.ro_acq_averages(2**14) if dac_values is None: if self.fl_dc_I0() is not None: dac_values = np.linspace(self.fl_dc_I0() - 1e-3, self.fl_dc_I0() + 1e-3, 8) else: dac_values = np.linspace(-1e3, 1e-3, 8) if freqs is None: freq_center = self.freq_qubit() freq_range = 50e6 freqs = np.arange(freq_center - freq_range, freq_center + freq_range, 0.5e6) Qubit_frequency = [] Reson_frequency = [] flux_channel = self.fl_dc_ch() for dac_value in dac_values: # Set Flux Current self.instr_FluxCtrl.get_instr()[flux_channel](dac_value) # Find Resonator self.find_resonator_frequency(freqs=np.arange(-5e6, 5.1e6, .1e6)+self.freq_res(), use_min=True) # Find Qubit frequency self.find_frequency(freqs=freqs) Qubit_frequency.append(self.freq_qubit()) Reson_frequency.append(self.freq_res()) # Fit sweetspot with second degree polyfit fit_coefs = np.polyfit(dac_values, Qubit_frequency, deg=2) sweetspot_current = fit_coefs[1]/(2*fit_coefs[0]) # Set Flux Current to sweetspot self.instr_FluxCtrl.get_instr()[flux_channel](sweetspot_current) self.find_resonator_frequency(freqs=np.arange(-5e6, 5.1e6, .1e6)+self.freq_res(), use_min=True) frequency_sweet_spot = self.find_frequency( freqs=np.arange(-50e6, 50e6, .5e6)+self.freq_qubit()) return frequency_sweet_spot def find_anharmonicity_estimate(self, freqs=None, anharmonicity=None, mode='pulsed_marked', update=True, power_12=10): """ Finds an estimate of the anharmonicity by doing a spectroscopy around 150 MHz below the qubit frequency. TODO: if spec_pow is too low/high, it should adjust it to approx the ideal spec_pow + 25 dBm """ if anharmonicity is None: # Standard estimate, negative by convention anharmonicity = self.anharmonicity() f02_estimate = self.freq_qubit()*2 + anharmonicity if freqs is None: freq_center = f02_estimate/2 freq_range = 175e6 freqs = np.arange(freq_center-1/2*freq_range, self.freq_qubit()+1/2*freq_range, 0.5e6) old_spec_pow = self.spec_pow() self.spec_pow(self.spec_pow()+power_12) self.measure_spectroscopy(freqs=freqs, mode=mode, analyze=False) a = ma.Qubit_Spectroscopy_Analysis(label=self.msmt_suffix, analyze_ef=True) self.spec_pow(old_spec_pow) f02 = 2*a.params['f0_gf_over_2'].value if update: self.anharmonicity(f02-2*self.freq_qubit()) return True def find_bus_frequency(self, freqs, spec_source_bus, bus_power, f01=None, label='', close_fig=True, analyze=True, MC=None, prepare_for_continuous_wave=True): """ Drive the qubit and sit at the spectroscopy peak while the bus is driven with bus_spec_source Args: freqs (array): list of frequencies of the second drive tone (at bus frequency) spec_source_bus (RohdeSchwarz_SGS100A): rf source used for the second spectroscopy tone bus_power (float): power of the second spectroscopy tone f_01 (float): frequency of 01 transition (default: self.freq_qubit()) analyze (bool): indicates whether to look for peas in the data and perform a fit label (str): suffix to append to the measurement label prepare_for_continuous_wave (bool): indicates whether to regenerate a waveform generating a readout tone and set all the instruments according to the parameters stored in the qubit object """ if f01 is None: f01 = self.freq_qubit() UHFQC = self.instr_acquisition.get_instr() if prepare_for_continuous_wave: self.prepare_for_continuous_wave() if MC is None: MC = self.instr_MC.get_instr() # Starting specmode if set in config if self.cfg_spec_mode(): UHFQC.spec_mode_on(IF=self.ro_freq_mod(), ro_amp=self.ro_pulse_amp_CW()) # Snippet here to create and upload the CCL instructions CCL = self.instr_CC.get_instr() p = sqo.pulsed_spec_seq( qubit_idx=self.cfg_qubit_nr(), spec_pulse_length=self.spec_pulse_length(), platf_cfg=self.cfg_openql_platform_fn()) CCL.eqasm_program(p.filename) # CCL gets started in the int_avg detector spec_source = self.instr_spec_source.get_instr() spec_source.on() spec_source.frequency(f01) # spec_source.power(self.spec_pow()) spec_source_bus.on() spec_source_bus.power(bus_power) MC.set_sweep_function(spec_source_bus.frequency) MC.set_sweep_points(freqs) if self.cfg_spec_mode(): print('Enter loop') MC.set_detector_function(self.UHFQC_spec_det) else: self.int_avg_det_single._set_real_imag(False) MC.set_detector_function(self.int_avg_det_single) MC.run(name='Bus_spectroscopy_'+self.msmt_suffix+label) spec_source_bus.off() # Stopping specmode if self.cfg_spec_mode(): UHFQC.spec_mode_off() self._prep_ro_pulse(upload=True) if analyze: ma.Qubit_Spectroscopy_Analysis(label=self.msmt_suffix, close_fig=close_fig, qb_name=self.name) ########################################################################## # calibrate_ functions (CCLight_Transmon specific) ########################################################################## def calibrate_ro_pulse_amp_CW(self, freqs=None, powers=None, update=True): """ Does a resonator power scan and determines at which power the low power regime is exited. If update=True, will set the readout power to this power. """ if freqs is None: freq_center = self.freq_res() freq_range = 10e6 freqs = np.arange(freq_center - freq_range/2, freq_center + freq_range/2, 0.1e6) if powers is None: powers = np.arange(-40, 0.1, 8) self.measure_resonator_power(freqs=freqs, powers=powers, analyze=False) fit_res = ma.Resonator_Powerscan_Analysis(label='Resonator_power_scan', close_fig=True) if update: ro_pow = 10**(fit_res.power/20) self.ro_pulse_amp_CW(ro_pow) self.ro_pulse_amp(ro_pow) self.freq_res(fit_res.f_low) if self.freq_qubit() is None: f_qubit_estimate = self.freq_res() + (65e6)**2/(fit_res.shift) logging.info('No qubit frquency found. Updating with RWA to {}' .format(f_qubit_estimate)) self.freq_qubit(f_qubit_estimate) return True def calibrate_mw_pulse_amplitude_coarse(self, amps=None, close_fig=True, verbose=False, MC=None, update=True, all_modules=False): """ Calibrates the pulse amplitude using a single rabi oscillation. Depending on self.cfg_with_vsm uses VSM or AWG channel amplitude to sweep the amplitude of the pi pulse For details see self.measure_rabi """ if amps is None: if self.cfg_with_vsm(): amps = np.linspace(0.1, 1, 31) else: amps = np.linspace(0, 1, 31) self.measure_rabi(amps=amps, MC=MC, analyze=False, all_modules=all_modules) a = ma.Rabi_Analysis(close_fig=close_fig, label='rabi') try: if self.cfg_with_vsm(): self.mw_vsm_G_amp(a.rabi_amplitudes['piPulse']) else: self.mw_channel_amp(a.rabi_amplitudes['piPulse']) except(ValueError): warnings.warn("Extracted piPulse amplitude out of parameter range. " "Keeping previous value.") return True # FIXME: code contains errors # def calibrate_mw_pulse_amplitude_coarse_test(self, # amps=None, # close_fig=True, verbose=False, # MC=None, update=True, # all_modules=False): # """ # Calibrates the pulse amplitude using a single rabi oscillation. # Depending on self.cfg_with_vsm uses VSM or AWG channel amplitude # to sweep the amplitude of the pi pulse # # For details see self.measure_rabi # """ # self.ro_acq_averages(2**10) # self.ro_soft_avg(3) # # self.mw_gauss_width(10e-9) # # self.mw_pulse_duration()=4*self.mw_gauss_width() # if amps is None: # if self.cfg_with_vsm(): # amps = np.linspace(0.1, 1, 31) # else: # amps = np.linspace(0, 1, 31) # # self.measure_rabi(amps=amps, MC=MC, analyze=False, # all_modules=all_modules) # a = ma.Rabi_Analysis(close_fig=close_fig, label='rabi') # old_gw = self.mw_gauss_width() # if a.rabi_amplitudes['piPulse'] > 1 or a.rabi_amplitudes['piHalfPulse'] > a.rabi_amplitudes['piPulse']: # self.mw_gauss_width(2*old_gw) # self.prepare_for_timedomain() # mw_lutman.load_waveforms_onto_AWG_lookuptable( # force_load_sequencer_program=False) # # try: # if self.cfg_with_vsm(): # self.mw_vsm_G_amp(a.rabi_amplitudes['piPulse']) # else: # self.mw_channel_amp(a.rabi_amplitudes['piPulse']) # except(ValueError): # warnings.warn("Extracted piPulse amplitude out of parameter range. " # "Keeping previous value.") # return True def calibrate_mw_vsm_delay(self): """ Uploads a sequence for calibrating the vsm delay. The experiment consists of a single square pulse of 20 ns that triggers both the VSM channel specified and the AWG8. Note: there are two VSM markers, align with the first of two. By changing the "mw_vsm_delay" parameter the delay can be calibrated. N.B. Ensure that the signal is visible on a scope or in the UFHQC readout first! """ self.prepare_for_timedomain() CCL = self.instr_CC.get_instr() CCL.stop() p = sqo.vsm_timing_cal_sequence( qubit_idx=self.cfg_qubit_nr(), platf_cfg=self.cfg_openql_platform_fn()) CCL.eqasm_program(p.filename) CCL.start() print('CCL program is running. Parameter "mw_vsm_delay" can now be ' 'calibrated by hand.') def calibrate_mixer_skewness_drive(self, MC=None, mixer_channels: list = ['G', 'D'], x0: list = [1.0, 0.0], cma_stds: list = [.15, 10], maxfevals: int = 250, update: bool = True)-> bool: """ Calibrates the mixer skewness and updates values in the qubit object. Args: MC (MeasurementControl): instance of Measurement Control mixer_channels (list): list of strings indicating what channels to calibrate. In VSM case 'G' and/or 'D' can be specified. In no-VSM case mixer_channels is alway set to ['G']. update (bool): if True updates values in the qubit object. Return: success (bool): returns True if succesful. Currently always returns True (i.e., no sanity check implemented) """ # turn relevant channels on if MC == None: MC = self.instr_MC.get_instr() # Load the sequence CCL = self.instr_CC.get_instr() p = sqo.CW_tone( qubit_idx=self.cfg_qubit_nr(), platf_cfg=self.cfg_openql_platform_fn()) CCL.eqasm_program(p.filename) CCL.start() if self.cfg_with_vsm(): # Open the VSM channel VSM = self.instr_VSM.get_instr() ch_in = self.mw_vsm_ch_in() # module 8 is hardcoded for use mixer calls (signal hound) VSM.set('mod8_marker_source'.format(ch_in), 'int') VSM.set('mod8_ch{}_marker_state'.format(ch_in), 'on') VSM.set('mod8_ch{}_gaussian_amp'.format(ch_in), 1.0) VSM.set('mod8_ch{}_derivative_amp'.format(ch_in), 1.0) else: mixer_channels = ['G'] mw_lutman = self.instr_LutMan_MW.get_instr() mw_lutman.mixer_apply_predistortion_matrix(True) # # Define the parameters that will be varied for mixer_ch in mixer_channels: if self.cfg_with_vsm(): alpha = mw_lutman.parameters['{}_mixer_alpha'.format(mixer_ch)] phi = mw_lutman.parameters['{}_mixer_phi'.format(mixer_ch)] if mixer_ch == 'G': mw_lutman.sq_G_amp(.5) mw_lutman.sq_D_amp(0) elif mixer_ch == 'D': mw_lutman.sq_G_amp(0) mw_lutman.sq_D_amp(.5) else: alpha = mw_lutman.parameters['mixer_alpha'] phi = mw_lutman.parameters['mixer_phi'] mw_lutman.sq_amp(.5) spurious_sideband_freq = self.freq_qubit() - 2*self.mw_freq_mod() # This is to ensure the square waveform is pulse 10! mw_lutman.set_default_lutmap() if self._using_QWG(): prepare_function = mw_lutman.apply_mixer_predistortion_corrections prepare_function_kwargs = {'wave_dict': {}} else: def load_square(): AWG = mw_lutman.AWG.get_instr() AWG.stop() # When using real-time modulation, mixer_alpha is encoded in channel amplitudes. # Loading amplitude ensures new amplitude will be calculated with mixer_alpha. if mw_lutman.cfg_sideband_mode() == 'real-time': mw_lutman._set_channel_amp(mw_lutman._get_channel_amp()) # Codeword 10 is hardcoded in the generate CCL config # mw_lutman.load_waveform_realtime(wave_id='square') mw_lutman.load_waveforms_onto_AWG_lookuptable( force_load_sequencer_program=False) AWG.start() prepare_function = load_square prepare_function_kwargs = {} detector = det.Signal_Hound_fixed_frequency( self.instr_SH.get_instr(), spurious_sideband_freq, prepare_for_each_point=True, Navg=5, prepare_function=prepare_function, prepare_function_kwargs=prepare_function_kwargs) # mw_lutman.load_waveform_realtime, # prepare_function_kwargs={'waveform_key': 'square', 'wf_nr': 10}) ad_func_pars = {'adaptive_function': cma.fmin, 'x0': x0, 'sigma0': 1, 'minimize': True, 'noise_handler': cma.NoiseHandler(N=2), 'options': {'cma_stds': cma_stds, 'maxfevals': maxfevals}} # Should be enough for mixer skew MC.set_sweep_functions([alpha, phi]) #MC.set_sweep_function(alpha) MC.set_detector_function(detector) # sets test_detector MC.set_adaptive_function_parameters(ad_func_pars) MC.set_sweep_points(np.linspace(0,2,300)) MC.run( name='Spurious_sideband_{}{}'.format( mixer_ch, self.msmt_suffix), mode='adaptive') # For the figure ma.OptimizationAnalysis_v2() a = ma.OptimizationAnalysis(auto=True, label='Spurious_sideband') alpha = a.optimization_result[0][0] phi = a.optimization_result[0][1] if update: self.set('mw_{}_mixer_alpha'.format(mixer_ch), alpha) self.set('mw_{}_mixer_phi'.format(mixer_ch), phi) return True # def calibrate_mixer_skewness_RO(self, update=True): # """ # Calibrates the mixer skewness using mixer_skewness_cal_UHFQC_adaptive # see calibration toolbox for details # Args: # update (bool): # if True updates values in the qubit object. # Return: # success (bool): # returns True if succesful. Currently always # returns True (i.e., no sanity check implemented) # """ # # using the restless tuning sequence # self.prepare_for_timedomain() # p = sqo.randomized_benchmarking( # self.cfg_qubit_nr(), self.cfg_openql_platform_fn(), # nr_cliffords=[1], # net_clifford=1, nr_seeds=1, restless=True, cal_points=False) # self.instr_CC.get_instr().eqasm_program(p.filename) # self.instr_CC.get_instr().start() # LutMan = self.instr_LutMan_RO.get_instr() # LutMan.mixer_apply_predistortion_matrix(True) # MC = self.instr_MC.get_instr() # S1 = swf.lutman_par_UHFQC_dig_trig( # LutMan, LutMan.mixer_alpha, single=False, run=True) # S2 = swf.lutman_par_UHFQC_dig_trig( # LutMan, LutMan.mixer_phi, single=False, run=True) # detector = det.Signal_Hound_fixed_frequency( # self.instr_SH.get_instr(), frequency=(self.instr_LO_ro.get_instr().frequency() - # self.ro_freq_mod()), # Navg=5, delay=0.0, prepare_for_each_point=False) # ad_func_pars = {'adaptive_function': nelder_mead, # 'x0': [1.0, 0.0], # 'initial_step': [.15, 10], # 'no_improv_break': 15, # 'minimize': True, # 'maxiter': 500} # MC.set_sweep_functions([S1, S2]) # MC.set_detector_function(detector) # sets test_detector # MC.set_adaptive_function_parameters(ad_func_pars) # MC.run(name='Spurious_sideband', mode='adaptive') # a = ma.OptimizationAnalysis(auto=True, label='Spurious_sideband') # alpha = a.optimization_result[0][0] # phi = a.optimization_result[0][1] # if update: # self.ro_pulse_mixer_phi.set(phi) # self.ro_pulse_mixer_alpha.set(alpha) # LutMan.mixer_alpha(alpha) # LutMan.mixer_phi(phi) def calibrate_mixer_skewness_RO(self, update=True): """ Calibrates the mixer skewness using mixer_skewness_cal_UHFQC_adaptive see calibration toolbox for details Args: update (bool): if True updates values in the qubit object. Return: success (bool): returns True if succesful. Currently always returns True (i.e., no sanity check implemented) """ CCL = self.instr_CC.get_instr() p = sqo.CW_RO_sequence( qubit_idx=self.cfg_qubit_nr(), platf_cfg=self.cfg_openql_platform_fn()) CCL.eqasm_program(p.filename) CCL.start() # using the restless tuning sequence # self.prepare_for_timedomain() # p = sqo.randomized_benchmarking( # self.cfg_qubit_nr(), self.cfg_openql_platform_fn(), # nr_cliffords=[1], # net_clifford=1, nr_seeds=1, restless=True, cal_points=False) # self.instr_CC.get_instr().eqasm_program(p.filename) # self.instr_CC.get_instr().start() LutMan = self.instr_LutMan_RO.get_instr() LutMan.mixer_apply_predistortion_matrix(True) MC = self.instr_MC.get_instr() S1 = swf.lutman_par_UHFQC_dig_trig( LutMan, LutMan.mixer_alpha, single=False, run=True) S2 = swf.lutman_par_UHFQC_dig_trig( LutMan, LutMan.mixer_phi, single=False, run=True) detector = det.Signal_Hound_fixed_frequency( self.instr_SH.get_instr(), frequency=self.ro_freq() - 2*self.ro_freq_mod(), Navg=5, delay=0.0, prepare_for_each_point=False) ad_func_pars = {'adaptive_function': nelder_mead, 'x0': [1.0, 0.0], 'initial_step': [.15, 10], 'no_improv_break': 15, 'minimize': True, 'maxiter': 500} MC.set_sweep_functions([S1, S2]) MC.set_detector_function(detector) # sets test_detector MC.set_adaptive_function_parameters(ad_func_pars) MC.run(name='Spurious_sideband', mode='adaptive') a = ma.OptimizationAnalysis(auto=True, label='Spurious_sideband') alpha = a.optimization_result[0][0] phi = a.optimization_result[0][1] if update: self.ro_pulse_mixer_phi.set(phi) self.ro_pulse_mixer_alpha.set(alpha) LutMan.mixer_alpha(alpha) LutMan.mixer_phi(phi) def calibrate_mixer_offsets_RO(self, update: bool = True, ftarget=-110) -> bool: """ Calibrates the mixer offset and updates the I and Q offsets in the qubit object. Args: update (bool): if True updates values in the qubit object. ftarget (float): power of the signal at the LO frequency for which the optimization is terminated Return: success (bool): returns True if succesful. Currently always returns True (i.e., no sanity check implemented) """ chI_par = self.instr_acquisition.get_instr().sigouts_0_offset chQ_par = self.instr_acquisition.get_instr().sigouts_1_offset offset_I, offset_Q = cal_toolbox.mixer_carrier_cancellation( SH=self.instr_SH.get_instr(), source=self.instr_LO_ro.get_instr(), MC=self.instr_MC.get_instr(), chI_par=chI_par, chQ_par=chQ_par, x0=(0.05, 0.05), ftarget=ftarget) if update: self.ro_pulse_mixer_offs_I(offset_I) self.ro_pulse_mixer_offs_Q(offset_Q) return True def calibrate_mw_pulses_basic(self, cal_steps=['offsets', 'amp_coarse', 'freq', 'drag', 'amp_fine', 'amp_fine', 'amp_fine'], kw_freqs={'steps': [1, 3, 10, 30, 100, 300, 1000]}, kw_amp_coarse={'amps': np.linspace(0, 1, 31)}, kw_amp_fine={'update': True}, soft_avg_allxy=3, kw_offsets={'ftarget': -120}, kw_skewness={}, kw_motzoi={'update': True}, f_target_skewness=-120): """ Performs a standard calibration of microwave pulses consisting of - mixer offsets - mixer skewness - pulse ampl coarse (rabi) - frequency (ramsey) - motzoi - ampl fine (flipping) - AllXY (to verify) Note that this is a basic calibration and does not involve fine tuning to ~99.9% and only works if the qubit is well behaved. """ for this_step in cal_steps: if this_step == 'offsets': self.calibrate_mixer_offsets_drive(**kw_offsets) elif this_step == 'skewness': self.calibrate_mixer_skewness_drive(**kw_skewness) elif this_step == 'amp_coarse': self.calibrate_mw_pulse_amplitude_coarse(**kw_amp_coarse) elif this_step == 'freq': self.find_frequency('ramsey', **kw_freqs) elif this_step == 'drag': self.calibrate_motzoi(**kw_motzoi) elif this_step == 'amp_fine': self.measure_flipping(**kw_amp_fine) old_soft_avg = self.ro_soft_avg() self.ro_soft_avg(soft_avg_allxy) self.measure_allxy() self.ro_soft_avg(old_soft_avg) return True def calibrate_ssro_coarse(self, MC=None, nested_MC=None, freqs=None, amps=None, analyze: bool = True, update: bool = True): ''' Performs a 2D sweep of <qubit>.ro_freq and <qubit>.ro_pulse_amp and measures SSRO parameters (SNR, F_a, F_d). After the sweep is done, it sets the parameters for which the assignment fidelity was maximum. Args: freq (array): Range of frequencies of sweep. amps (array): Range of amplitudes of sweep. ''' if MC is None: MC = self.instr_MC.get_instr() if nested_MC is None: nested_MC = self.instr_nested_MC.get_instr() if freqs is None: if self.dispersive_shift() is not None: freqs = np.arange(-2*abs(self.dispersive_shift()), abs(self.dispersive_shift()), .5e6) + self.freq_res() else: raise ValueError('self.dispersive_shift is None. Please specify\ range of sweep frequencies.') if amps is None: amps = np.linspace(.001, .5, 31) ro_lm = self.find_instrument(self.instr_LutMan_RO()) q_idx = self.cfg_qubit_nr() swf1 = swf.RO_freq_sweep(name='RO frequency', qubit=self, ro_lutman=ro_lm, idx=q_idx, parameter=self.ro_freq) nested_MC.set_sweep_function(swf1) nested_MC.set_sweep_points(freqs) nested_MC.set_sweep_function_2D(self.ro_pulse_amp) nested_MC.set_sweep_points_2D(amps) d = det.Function_Detector(self.measure_ssro, result_keys=['SNR', 'F_a', 'F_d'], value_names=['SNR', 'F_a', 'F_d'], value_units=['a.u.', 'a.u.', 'a.u.'], msmt_kw={'prepare': False} ) nested_MC.set_detector_function(d) nested_MC.run(name='RO_coarse_tuneup', mode='2D') if analyze is True: # Analysis a = ma.TwoD_Analysis(label='RO_coarse_tuneup', auto=False) # Get best parameters a.get_naming_and_values_2D() arg = np.argmax(a.measured_values[1]) index = np.unravel_index(arg, (len(a.sweep_points), len(a.sweep_points_2D))) best_freq = a.sweep_points[index[0]] best_amp = a.sweep_points_2D[index[1]] a.run_default_analysis() print('Frequency: {}, Amplitude: {}'.format(best_freq, best_amp)) if update is True: self.ro_freq(best_freq) self.ro_pulse_amp(best_amp) return True def calibrate_ssro_pulse_duration(self, MC=None, nested_MC=None, amps=None, amp_lim=None, times= None, use_adaptive: bool = True, n_points: int = 80, analyze: bool = True, update: bool = True): ''' Calibrates the RO pulse duration by measuring the assignment fidelity of SSRO experiments as a function of the RO pulse duration and amplitude. For each set of parameters, the routine calibrates optimal weights and then extracts readout fidelity. This measurement can be performed using an adaptive sampler (use_adaptive=True) or a regular 2D parameter sweep (use_adaptive=False). Designed to be used in the GBT node 'SSRO Pulse Duration'. Args: amps (array): If using 2D sweep: Set of RO amplitudes sampled in the 2D sweep. If using adaptive sampling: Minimum and maximum (respectively) of the RO amplitude range used in the adaptive sampler. times (array): If using 2D sweep: Set of RO pulse durations sampled in the 2D sweep. If using adaptive sampling: Minimum and maximum (respectively) of the RO pulse duration range used in the adaptive sampler. use_adaptive (bool): Boolean that sets the sampling mode. Set to "False" for a regular 2D sweep or set to "True" for adaptive sampling. n_points: Only relevant in the adaptive sampling mode. Sets the maximum number of points sampled. ''' if MC is None: MC = self.instr_MC.get_instr() if nested_MC is None: nested_MC = self.instr_nested_MC.get_instr() if times is None: times = np.arange(10e-9, 401e-9, 10e-9) if amps is None: amps = np.linspace(.01,.25,11) if amp_lim is None: amp_lim = (0.01, 0.2) ###################### # Experiment ###################### nested_MC.set_sweep_functions([self.ro_pulse_length, self.ro_pulse_amp]) d = det.Function_Detector(self.calibrate_optimal_weights, result_keys=['F_a','F_d','SNR'], value_names=['F_a','F_d','SNR'], value_units=['a.u.','a.u.','a.u.']) nested_MC.set_detector_function(d) # Use adaptive sampling if use_adaptive is True: # Adaptive sampler cost function loss_per_simplex = mk_minimization_loss_func() goal = mk_minimization_goal_func() nested_MC.set_adaptive_function_parameters( {'adaptive_function': LearnerND_Minimizer, 'goal': lambda l: goal(l) or l.npoints > n_points, 'loss_per_simplex': loss_per_simplex, 'bounds': [(10e-9, 400e-9), amp_lim], 'minimize': False }) nested_MC.run(name='RO_duration_tuneup_{}'.format(self.name), mode='adaptive') # Use standard 2D sweep else: nested_MC.set_sweep_points(times) nested_MC.set_sweep_points_2D(amps) nested_MC.run(name='RO_duration_tuneup_{}'.format(self.name), mode='2D') ##################### # Analysis ##################### if analyze is True: if use_adaptive is True: A = ma2.Readout_landspace_Analysis(label='RO_duration_tuneup') optimal_pulse_duration = A.qoi['Optimal_parameter_X'] optimal_pulse_amplitude = A.qoi['Optimal_parameter_Y'] self.ro_pulse_length(optimal_pulse_duration) self.ro_pulse_amp(optimal_pulse_amplitude) else: A = ma.TwoD_Analysis(label='RO_duration_tuneup', auto=True) return True def calibrate_ssro_fine(self, MC=None, nested_MC=None, start_freq=None, start_amp=None, start_freq_step=None, start_amp_step=None, threshold: float = .99, analyze: bool = True, update: bool = True): ''' Runs an optimizer routine on the SSRO assignment fidelity of the <qubit>.ro_freq and <qubit>.ro_pulse_amp parameters. Intended to be used in the "SSRO Optimization" node of GBT. Args: start_freq (float): Starting frequency of the optmizer. start_amp (float): Starting amplitude of the optimizer. start_freq_step (float): Starting frequency step of the optmizer. start_amp_step (float): Starting amplitude step of the optimizer. threshold (float): Fidelity thershold after which the optimizer stops iterating. ''' if MC is None: MC = self.instr_MC.get_instr() if nested_MC is None: nested_MC = self.instr_nested_MC.get_instr() if start_freq_step is None: if start_freq is None: start_freq = self.ro_freq() start_freq_step = 0.1e6 else: raise ValueError('Must provide start frequency step if start\ frequency is specified.') if start_amp_step is None: if start_amp is None: start_amp = self.ro_pulse_amp() start_amp_step = 0.01 else: raise ValueError('Must provide start amplitude step if start\ amplitude is specified.') if start_amp is None: start_amp = self.ro_pulse_amp() nested_MC.set_sweep_functions([self.ro_freq, self.ro_pulse_amp]) d = det.Function_Detector(self.calibrate_optimal_weights, result_keys=['F_a'], value_names=['F_a'], value_units=['a.u.']) nested_MC.set_detector_function(d) ad_func_pars = {'adaptive_function': nelder_mead, 'x0': [self.ro_freq(), self.ro_pulse_amp()], 'initial_step': [start_freq_step, start_amp_step], 'no_improv_break': 10, 'minimize': False, 'maxiter': 20, 'f_termination': threshold} nested_MC.set_adaptive_function_parameters(ad_func_pars) nested_MC.set_optimization_method('nelder_mead') nested_MC.run(name='RO_fine_tuneup', mode='adaptive') if analyze is True: ma.OptimizationAnalysis(label='RO_fine_tuneup') return True def calibrate_ro_acq_delay(self, MC=None, analyze: bool = True, prepare: bool = True, disable_metadata: bool = False): """ Calibrates the ro_acq_delay parameter for the readout. For that it analyzes the transients. """ self.ro_acq_delay(0) # set delay to zero old_pow = self.ro_pulse_amp() self.ro_pulse_amp(0.5) if MC is None: MC = self.instr_MC.get_instr() # if plot_max_time is None: # plot_max_time = self.ro_acq_integration_length()+250e-9 if prepare: self.prepare_for_timedomain() p = sqo.off_on( qubit_idx=self.cfg_qubit_nr(), pulse_comb='off', initialize=False, platf_cfg=self.cfg_openql_platform_fn()) self.instr_CC.get_instr().eqasm_program(p.filename) else: p = None # object needs to exist for the openql_sweep to work s = swf.OpenQL_Sweep(openql_program=p, CCL=self.instr_CC.get_instr(), parameter_name='Transient time', unit='s', upload=prepare) MC.set_sweep_function(s) if 'UHFQC' in self.instr_acquisition(): sampling_rate = 1.8e9 else: raise NotImplementedError() MC.set_sweep_points(np.arange(self.input_average_detector.nr_samples) / sampling_rate) MC.set_detector_function(self.input_average_detector) MC.run(name='Measure_Acq_Delay_{}'.format(self.msmt_suffix), disable_snapshot_metadata=disable_metadata) self.ro_pulse_amp(old_pow) if analyze: a = ma2.RO_acquisition_delayAnalysis(qubit_name=self.name) # Delay time is averaged over the two quadratures. delay_time = (a.proc_data_dict['I_pulse_start'] + a.proc_data_dict['Q_pulse_start'])/2 self.ro_acq_delay(delay_time) return True def calibrate_mw_gates_restless( self, MC=None, parameter_list: list = ['G_amp', 'D_amp', 'freq'], initial_values: list = None, initial_steps: list = [0.05, 0.05, 1e6], nr_cliffords: int = 80, nr_seeds: int = 200, verbose: bool = True, update: bool = True, prepare_for_timedomain: bool = True): """ Refs: Rol PR Applied 7, 041001 (2017) """ return self.calibrate_mw_gates_rb( MC=None, parameter_list=parameter_list, initial_values=initial_values, initial_steps=initial_steps, nr_cliffords=nr_cliffords, nr_seeds=nr_seeds, verbose=verbose, update=update, prepare_for_timedomain=prepare_for_timedomain, method='restless') def calibrate_mw_gates_rb( self, MC=None, parameter_list: list = ['G_amp', 'D_amp', 'freq'], initial_values: list = None, initial_steps: list = [0.05, 0.05, 1e6], nr_cliffords: int = 80, nr_seeds: int = 200, verbose: bool = True, update: bool = True, prepare_for_timedomain: bool = True, method: bool = None, optimizer: str = 'NM'): """ Calibrates microwave pulses using a randomized benchmarking based cost-function. requirements for restless: - Digitized readout (calibrated) requirements for ORBIT: - Optimal weights such that minimizing correspond to 0 state. """ if method is None: method = self.cfg_rb_calibrate_method() if method == 'restless': restless = True else: # ORBIT restless = False if MC is None: MC = self.instr_MC.get_instr() if initial_steps is None: initial_steps: list = [0.05, 0.05, 1e6] if prepare_for_timedomain: self.prepare_for_timedomain() if parameter_list is None: # parameter_list = ['G_amp', 'D_amp'] parameter_list = ['G_amp', 'D_amp','freq'] mw_lutman = self.instr_LutMan_MW.get_instr() G_amp_par = wrap_par_to_swf( mw_lutman.parameters['channel_amp'], retrieve_value=True) D_amp_par = swf.QWG_lutman_par(LutMan=mw_lutman, LutMan_parameter=mw_lutman.mw_motzoi) freq_par = self.instr_LO_mw.get_instr().frequency sweep_pars = [] for par in parameter_list: if par == 'G_amp': sweep_pars.append(G_amp_par) elif par == 'D_amp': sweep_pars.append(D_amp_par) elif par == 'freq': sweep_pars.append(freq_par) else: raise NotImplementedError( "Parameter {} not recognized".format(par)) if initial_values is None: # use the current values of the parameters being varied. initial_values = [G_amp_par.get(),mw_lutman.mw_motzoi.get(),freq_par.get()] # Preparing the sequence if restless: net_clifford = 3 # flipping sequence d = det.UHFQC_single_qubit_statistics_logging_det( self.instr_acquisition.get_instr(), self.instr_CC.get_instr(), nr_shots=4*4095, integration_length=self.ro_acq_integration_length(), channel=self.ro_acq_weight_chI(), statemap={'0': '1', '1': '0'}) minimize = False msmt_string = 'Restless_tuneup_{}Cl_{}seeds'.format( nr_cliffords, nr_seeds) + self.msmt_suffix else: net_clifford = 0 # not flipping sequence d = self.int_avg_det_single minimize = True msmt_string = 'ORBIT_tuneup_{}Cl_{}seeds'.format( nr_cliffords, nr_seeds) + self.msmt_suffix p = sqo.randomized_benchmarking( self.cfg_qubit_nr(), self.cfg_openql_platform_fn(), nr_cliffords=[nr_cliffords], net_clifford=net_clifford, nr_seeds=nr_seeds, restless=restless, cal_points=False) self.instr_CC.get_instr().eqasm_program(p.filename) self.instr_CC.get_instr().start() MC.set_sweep_functions(sweep_pars) MC.set_detector_function(d) if optimizer == 'CMA': ad_func_pars = {'adaptive_function': cma.fmin, 'x0': initial_values, 'sigma0': 1, # 'noise_handler': cma.NoiseHandler(len(initial_values)), 'minimize': minimize, 'options': {'cma_stds': initial_steps}} elif optimizer == 'NM': ad_func_pars = {'adaptive_function': nelder_mead, 'x0': initial_values, 'initial_step': initial_steps, 'no_improv_break': 50, 'minimize': minimize, 'maxiter': 1500} MC.set_adaptive_function_parameters(ad_func_pars) MC.run(name=msmt_string, mode='adaptive') a = ma.OptimizationAnalysis(label=msmt_string) if update: if verbose: print("Updating parameters in qubit object") opt_par_values = a.optimization_result[0] for par in parameter_list: if par == 'G_amp': G_idx = parameter_list.index('G_amp') self.mw_channel_amp(opt_par_values[G_idx]) elif par == 'D_amp': D_idx = parameter_list.index('D_amp') self.mw_vsm_D_amp(opt_par_values[D_idx]) elif par == 'D_phase': D_idx = parameter_list.index('D_phase') self.mw_vsm_D_phase(opt_par_values[D_idx]) elif par == 'freq': freq_idx = parameter_list.index('freq') # We are varying the LO frequency in the opt, not the q freq. self.freq_qubit(opt_par_values[freq_idx] + self.mw_freq_mod.get()) def calibrate_mw_gates_allxy(self, nested_MC=None, start_values=None, initial_steps=None, parameter_list=None, termination_opt=0.01): # FIXME: this tuneup does not update the qubit object parameters # update: Fixed on the the pagani set-up # FIXME2: this tuneup does not return True upon success # update: Fixed on the pagani set-up if initial_steps is None: if parameter_list is None: initial_steps = [1e6, 0.05, 0.05] else: raise ValueError( "must pass initial steps if setting parameter_list") if nested_MC is None: nested_MC = self.instr_nested_MC.get_instr() if parameter_list is None: if self.cfg_with_vsm(): parameter_list = ["freq_qubit", "mw_vsm_G_amp", "mw_vsm_D_amp"] else: parameter_list = ["freq_qubit", "mw_channel_amp", "mw_motzoi"] nested_MC.set_sweep_functions([ self.__getattr__(p) for p in parameter_list]) if start_values is None: # use current values start_values = [self.get(p) for p in parameter_list] d = det.Function_Detector(self.measure_allxy, value_names=['AllXY cost'], value_units=['a.u.'],) nested_MC.set_detector_function(d) ad_func_pars = {'adaptive_function': nelder_mead, 'x0': start_values, 'initial_step': initial_steps, 'no_improv_break': 10, 'minimize': True, 'maxiter': 500, 'f_termination': termination_opt} nested_MC.set_adaptive_function_parameters(ad_func_pars) nested_MC.set_optimization_method('nelder_mead') nested_MC.run(name='gate_tuneup_allxy', mode='adaptive') a2 = ma.OptimizationAnalysis(label='gate_tuneup_allxy') if a2.optimization_result[1][0] > termination_opt: return False else: return True def calibrate_mw_gates_allxy2(self, nested_MC=None, start_values=None, initial_steps=None, f_termination=0.01): ''' FIXME! Merge both calibrate allxy methods. Optimizes ALLXY sequency by tunning 2 parameters: mw_channel_amp and mw_motzoi. Used for Graph based tune-up in the ALLXY node. ''' old_avg = self.ro_acq_averages() self.ro_acq_averages(2**14) VSM = self.instr_VSM.get_instr() # Close all vsm channels modules = range(8) for module in modules: VSM.set('mod{}_marker_source'.format(module+1), 'int') for channel in [1, 2, 3, 4]: VSM.set('mod{}_ch{}_marker_state'.format( module+1, channel), 'off') # Open intended channel VSM.set('mod{}_marker_source'.format(self.mw_vsm_mod_out()), 'int') VSM.set('mod{}_ch{}_marker_state'.format( self.mw_vsm_mod_out(), self.mw_vsm_ch_in()), 'on') if initial_steps is None: initial_steps = [0.05, 0.05] if nested_MC is None: nested_MC = self.instr_nested_MC.get_instr() if self.cfg_with_vsm(): parameter_list = ["mw_vsm_G_amp", "mw_vsm_D_amp"] else: parameter_list = ["mw_channel_amp", "mw_motzoi"] nested_MC.set_sweep_functions([ self.__getattr__(p) for p in parameter_list]) if start_values is None: # use current values start_values = [self.get(p) for p in parameter_list] d = det.Function_Detector(self.measure_allxy, value_names=['AllXY cost'], value_units=['a.u.'],) nested_MC.set_detector_function(d) ad_func_pars = {'adaptive_function': nelder_mead, 'x0': start_values, 'initial_step': initial_steps, 'no_improv_break': 10, 'minimize': True, 'maxiter': 500, 'f_termination': f_termination} nested_MC.set_adaptive_function_parameters(ad_func_pars) nested_MC.set_optimization_method('nelder_mead') nested_MC.run(name='gate_tuneup_allxy', mode='adaptive') a2 = ma.OptimizationAnalysis(label='gate_tuneup_allxy') self.ro_acq_averages(old_avg) # Open all vsm channels for module in modules: VSM.set('mod{}_marker_source'.format(module+1), 'int') for channel in [1, 2, 3, 4]: VSM.set('mod{}_ch{}_marker_state'.format( module+1, channel), 'on') if a2.optimization_result[1][0] > f_termination: return False else: return True def calibrate_RO(self, nested_MC=None, start_params=None, initial_step=None, threshold=0.05): ''' Optimizes the RO assignment fidelity using 2 parameters: ro_freq and ro_pulse_amp. Args: start_params: Starting parameters for <qubit>.ro_freq and <qubit>.ro_pulse_amp. These have to be passed on in the aforementioned order, that is: [ro_freq, ro_pulse_amp]. initial_steps: These have to be given in the order: [ro_freq, ro_pulse_amp] threshold: Assignment fidelity error (1-F_a) threshold used in the optimization. Used for Graph based tune-up. ''' # FIXME: Crashes whenever it tries to set the pulse amplitude higher # than 1. if nested_MC is None: nested_MC = self.instr_nested_MC.get_instr() if start_params is None: start_params = [self.ro_freq(), self.ro_pulse_amp()] if initial_step is None: initial_step = [1.e6, .05] nested_MC.set_sweep_functions([self.ro_freq, self.ro_pulse_amp]) def wrap_func(): error = 1 - self.calibrate_optimal_weights()['F_a'] return error d = det.Function_Detector(wrap_func, value_names=['F_a error'], value_units=['a.u.']) nested_MC.set_detector_function(d) ad_func_pars = {'adaptive_function': nelder_mead, 'x0': start_params, 'initial_step': initial_step, 'no_improv_break': 10, 'minimize': True, 'maxiter': 20, 'f_termination': threshold} nested_MC.set_adaptive_function_parameters(ad_func_pars) nested_MC.set_optimization_method('nelder_mead') nested_MC.run(name='RO_tuneup', mode='adaptive') a = ma.OptimizationAnalysis(label='RO_tuneup') if a.optimization_result[1][0] > 0.05: # Fidelity 0.95 return False else: return True def calibrate_depletion_pulse( self, nested_MC=None, amp0=None, amp1=None, phi0=180, phi1=0, initial_steps=None, two_par=True, depletion_optimization_window=None, depletion_analysis_plot=False, use_RTE_cost_function=False): """ this function automatically tunes up a two step, four-parameter depletion pulse. It uses the averaged transients for ground and excited state for its cost function. Refs: Bultnik PR Applied 6, 034008 (2016) Args: two_par: if readout is performed at the symmetry point and in the linear regime two parameters will suffice. Othen, four paramters do not converge. First optimizaing the amplitudes (two paramters) and then run the full 4 paramaters with the correct initial amplitudes works. optimization_window: optimization window determins which part of the transients will be nulled in the optimization. By default it uses a window of 500 ns post depletiona with a 50 ns buffer. initial_steps: These have to be given in the order [phi0,phi1,amp0,amp1] for 4-par tuning and [amp0,amp1] for 2-par tunining """ # FIXME: this calibration does not update the qubit object params # FIXME2: this calibration does not return a boolean upon success # tuneup requires nested MC as the transients detector will use MC self.ro_pulse_type('up_down_down') if nested_MC is None: nested_MC = self.instr_nested_MC.get_instr() # setting the initial depletion amplitudes if amp0 is None: amp0 = 2*self.ro_pulse_amp() if amp1 is None: amp1 = 0.5*self.ro_pulse_amp() if depletion_optimization_window is None: depletion_optimization_window = [ self.ro_pulse_length()+self.ro_pulse_down_length0() + self.ro_pulse_down_length1()+50e-9, self.ro_pulse_length()+self.ro_pulse_down_length0() + self.ro_pulse_down_length1()+550e-9] if two_par: nested_MC.set_sweep_functions([ self.ro_pulse_down_amp0, self.ro_pulse_down_amp1]) else: nested_MC.set_sweep_functions([self.ro_pulse_down_phi0, self.ro_pulse_down_phi1, self.ro_pulse_down_amp0, self.ro_pulse_down_amp1]) if use_RTE_cost_function: d = det.Function_Detector(self.measure_error_fraction, msmt_kw={'net_gate': 'pi', 'feedback': False, 'sequence_type': 'echo'}, value_names=['error fraction'], value_units=['au'], result_keys=['error fraction']) else: d = det.Function_Detector(self.measure_transients, msmt_kw={'depletion_analysis': True, 'depletion_analysis_plot': depletion_analysis_plot, 'depletion_optimization_window': depletion_optimization_window}, value_names=['depletion cost'], value_units=['au'], result_keys=['depletion_cost']) nested_MC.set_detector_function(d) if two_par: if initial_steps is None: initial_steps = [-0.5*amp0, -0.5*amp1] ad_func_pars = {'adaptive_function': nelder_mead, 'x0': [amp0, amp1], 'initial_step': initial_steps, 'no_improv_break': 12, 'minimize': True, 'maxiter': 500} self.ro_pulse_down_phi0(180) self.ro_pulse_down_phi1(0) else: if initial_steps is None: initial_steps = [15, 15, -0.1*amp0, -0.1*amp1] ad_func_pars = {'adaptive_function': nelder_mead, 'x0': [phi0, phi1, amp0, amp1], 'initial_step': initial_steps, 'no_improv_break': 12, 'minimize': True, 'maxiter': 500} nested_MC.set_adaptive_function_parameters(ad_func_pars) nested_MC.set_optimization_method('nelder_mead') nested_MC.run(name='depletion_tuneup', mode='adaptive') ma.OptimizationAnalysis(label='depletion_tuneup') def calibrate_ef_rabi(self, amps: list = np.linspace(-.8, .8, 18), recovery_pulse: bool = True, MC=None, label: str = '', analyze=True, close_fig=True, prepare_for_timedomain=True, update=True): """ Calibrates the pi pulse of the ef/12 transition using a rabi oscillation of the ef/12 transition. Modulation frequency of the "ef" pulses is controlled through the `anharmonicity` parameter of the qubit object. Hint: the expected pi-pulse amplitude of the ef/12 transition is ~1/2 the pi-pulse amplitude of the ge/01 transition. """ a2 = self.measure_ef_rabi(amps = amps, recovery_pulse = recovery_pulse, MC = MC, label = label, analyze = analyze, close_fig = close_fig, prepare_for_timedomain = prepare_for_timedomain) if update: ef_pi_amp = a2.proc_data_dict['ef_pi_amp'] self.mw_ef_amp(a2.proc_data_dict['ef_pi_amp']) ########################################################################## # calibrate_ functions (overrides for class Qubit) ########################################################################## def calibrate_motzoi(self, MC=None, verbose=True, update=True, motzois=None): """ Calibrates the DRAG coeffcieint value, named motzoi (after <NAME>) for legacy reasons. For details see docstring of measure_motzoi method. """ using_VSM = self.cfg_with_vsm() if using_VSM and motzois is None: motzois = gen_sweep_pts(start=0.1, stop=1.0, num=31) elif motzois is None: motzois = gen_sweep_pts(center=0, span=.3, num=31) # large range a = self.measure_motzoi(MC=MC, motzoi_amps=motzois, analyze=True) opt_motzoi = a.get_intersect()[0] if opt_motzoi > max(motzois) or opt_motzoi < min(motzois): if verbose: print('optimal motzoi {:.3f} '.format(opt_motzoi) + 'outside of measured span, aborting') return False if update: if using_VSM: if verbose: print('Setting motzoi to {:.3f}'.format(opt_motzoi)) self.mw_vsm_D_amp(opt_motzoi) else: self.mw_motzoi(opt_motzoi) return opt_motzoi def calibrate_mixer_offsets_drive(self, mixer_channels=['G', 'D'], update: bool = True, ftarget=-110, maxiter=300)-> bool: """ Calibrates the mixer offset and updates the I and Q offsets in the qubit object. Args: mixer_channels (list): No use in no-VSM case With VSM specifies whether to calibrate offsets for both gaussuan 'G' and derivarive 'D' channel update (bool): should optimal values be set in the qubit object ftarget (float): power of the signal at the LO frequency for which the optimization is terminated """ # turn relevant channels on using_VSM = self.cfg_with_vsm() MW_LutMan = self.instr_LutMan_MW.get_instr() AWG = MW_LutMan.AWG.get_instr() if using_VSM: if AWG.__class__.__name__ == 'QuTech_AWG_Module': chGI_par = AWG.parameters['ch1_offset'] chGQ_par = AWG.parameters['ch2_offset'] chDI_par = AWG.parameters['ch3_offset'] chDQ_par = AWG.parameters['ch4_offset'] else: # This part is AWG8 specific and wont work with a QWG awg_ch = self.mw_awg_ch() AWG.stop() AWG.set('sigouts_{}_on'.format(awg_ch-1), 1) AWG.set('sigouts_{}_on'.format(awg_ch+0), 1) AWG.set('sigouts_{}_on'.format(awg_ch+1), 1) AWG.set('sigouts_{}_on'.format(awg_ch+2), 1) chGI_par = AWG.parameters['sigouts_{}_offset'.format(awg_ch-1)] chGQ_par = AWG.parameters['sigouts_{}_offset'.format(awg_ch+0)] chDI_par = AWG.parameters['sigouts_{}_offset'.format(awg_ch+1)] chDQ_par = AWG.parameters['sigouts_{}_offset'.format(awg_ch+2)] # End of AWG8 specific part VSM = self.instr_VSM.get_instr() ch_in = self.mw_vsm_ch_in() # module 8 is hardcoded for mixer calibartions (signal hound) VSM.set('mod8_marker_source'.format(ch_in), 'int') VSM.set('mod8_ch{}_marker_state'.format(ch_in), 'on') # Calibrate Gaussian component mixer if 'G' in mixer_channels: VSM.set('mod8_ch{}_gaussian_amp'.format(ch_in), 1.0) VSM.set('mod8_ch{}_derivative_amp'.format(ch_in), 0.1) offset_I, offset_Q = cal_toolbox.mixer_carrier_cancellation( SH=self.instr_SH.get_instr(), source=self.instr_LO_mw.get_instr(), MC=self.instr_MC.get_instr(), chI_par=chGI_par, chQ_par=chGQ_par, label='Mixer_offsets_drive_G'+self.msmt_suffix, ftarget=ftarget, maxiter=maxiter) if update: self.mw_mixer_offs_GI(offset_I) self.mw_mixer_offs_GQ(offset_Q) if 'D' in mixer_channels: # Calibrate Derivative component mixer VSM.set('mod8_ch{}_gaussian_amp'.format(ch_in), 0.1) VSM.set('mod8_ch{}_derivative_amp'.format(ch_in), 1.0) offset_I, offset_Q = cal_toolbox.mixer_carrier_cancellation( SH=self.instr_SH.get_instr(), source=self.instr_LO_mw.get_instr(), MC=self.instr_MC.get_instr(), chI_par=chDI_par, chQ_par=chDQ_par, label='Mixer_offsets_drive_D'+self.msmt_suffix, ftarget=ftarget, maxiter=maxiter) if update: self.mw_mixer_offs_DI(offset_I) self.mw_mixer_offs_DQ(offset_Q) else: if self._using_QWG(): QWG_MW = self.instr_LutMan_MW.get_instr().AWG.get_instr() chI = self.instr_LutMan_MW.get_instr().channel_I() chQ = self.instr_LutMan_MW.get_instr().channel_Q() chI_par = QWG_MW.parameters['ch%s_offset' % chI] chQ_par = QWG_MW.parameters['ch%s_offset' % chQ] offset_I, offset_Q = cal_toolbox.mixer_carrier_cancellation( SH=self.instr_SH.get_instr(), source=self.instr_LO_mw.get_instr(), MC=self.instr_MC.get_instr(), chI_par=chI_par, chQ_par=chQ_par, ftarget=ftarget, maxiter=maxiter) if update: self.mw_mixer_offs_GI(offset_I) self.mw_mixer_offs_GQ(offset_Q) else: awg_ch = self.mw_awg_ch() AWG.stop() AWG.set('sigouts_{}_on'.format(awg_ch-1), 1) AWG.set('sigouts_{}_on'.format(awg_ch+0), 1) chGI_par = AWG.parameters['sigouts_{}_offset'.format(awg_ch-1)] chGQ_par = AWG.parameters['sigouts_{}_offset'.format(awg_ch+0)] offset_I, offset_Q = cal_toolbox.mixer_carrier_cancellation( SH=self.instr_SH.get_instr(), source=self.instr_LO_mw.get_instr(), MC=self.instr_MC.get_instr(), chI_par=chGI_par, chQ_par=chGQ_par, label='Mixer_offsets_drive'+self.msmt_suffix, ftarget=ftarget, maxiter=maxiter) if update: self.mw_mixer_offs_GI(offset_I) self.mw_mixer_offs_GQ(offset_Q) return True def calibrate_optimal_weights(self, MC=None, verify: bool = True, analyze: bool = True, update: bool = True, no_figs: bool = False, optimal_IQ: bool = False, measure_transients_CCL_switched: bool = False, prepare: bool = True, disable_metadata: bool = False, nr_shots_per_case: int = 2**13, post_select: bool = False, averages: int = 2**15, post_select_threshold: float = None, )->bool: """ Measures readout transients for the qubit in ground and excited state to indicate at what times the transients differ. Based on the transients calculates weights that are used to weigh measuremet traces to maximize the SNR. Args: optimal_IQ (bool): if set to True sets both the I and Q weights of the optimal weight functions for the verification experiment. A good sanity check is that when using optimal IQ one expects to see no signal in the Q quadrature of the verification SSRO experiment. verify (bool): indicates whether to run measure_ssro at the end of the routine to find the new SNR and readout fidelities with optimized weights update (bool): specifies whether to update the weights in the qubit object """ log.info('Calibrating optimal weights for {}'.format(self.name)) if MC is None: MC = self.instr_MC.get_instr() if prepare: self.prepare_for_timedomain() # Ensure that enough averages are used to get accurate weights old_avg = self.ro_acq_averages() self.ro_acq_averages(averages) if measure_transients_CCL_switched: transients = self.measure_transients_CCL_switched(MC=MC, analyze=analyze, depletion_analysis=False) else: transients = self.measure_transients(MC=MC, analyze=analyze, depletion_analysis=False, disable_metadata=disable_metadata) if analyze: ma.Input_average_analysis(IF=self.ro_freq_mod()) self.ro_acq_averages(old_avg) # deskewing the input signal # Calculate optimal weights optimized_weights_I = (transients[1][0] - transients[0][0]) optimized_weights_Q = (transients[1][1] - transients[0][1]) # joint rescaling to +/-1 Volt maxI = np.max(np.abs(optimized_weights_I)) maxQ = np.max(np.abs(optimized_weights_Q)) # fixme: deviding the weight functions by four to not have overflow in # thresholding of the UHFQC weight_scale_factor = 1./(4*np.max([maxI, maxQ])) optimized_weights_I = np.array( weight_scale_factor*optimized_weights_I) optimized_weights_Q = np.array( weight_scale_factor*optimized_weights_Q) if update: self.ro_acq_weight_func_I(optimized_weights_I) self.ro_acq_weight_func_Q(optimized_weights_Q) if optimal_IQ: self.ro_acq_weight_type('optimal IQ') else: self.ro_acq_weight_type('optimal') if verify: self._prep_ro_integration_weights() self._prep_ro_instantiate_detectors() ssro_dict = self.measure_ssro( no_figs=no_figs, update=update, prepare=True, disable_metadata=disable_metadata, nr_shots_per_case=nr_shots_per_case, post_select=post_select, post_select_threshold=post_select_threshold) return ssro_dict if verify: warnings.warn('Not verifying as settings were not updated.') return True ########################################################################## # measure_ functions (overrides for class Qubit) # NB: functions closely related to overrides are also also included here ########################################################################## def measure_heterodyne_spectroscopy(self, freqs, MC=None, analyze=True, close_fig=True, label=''): """ Measures a transmission through the feedline as a function of frequency. Usually used to find and characterize the resonators in routines such as find_resonators or find_resonator_frequency. Args: freqs (array): list of frequencies to sweep over analyze (bool): indicates whether to perform a hanger model fit to the data label (str): suffix to append to the measurement label """ UHFQC = self.instr_acquisition.get_instr() self.prepare_for_continuous_wave() if MC is None: MC = self.instr_MC.get_instr() # Starting specmode if set in config if self.cfg_spec_mode(): UHFQC.spec_mode_on(acq_length=self.ro_acq_integration_length(), IF=self.ro_freq_mod(), ro_amp=self.ro_pulse_amp_CW()) # Snippet here to create and upload the CCL instructions CCL = self.instr_CC.get_instr() CCL.stop() p = sqo.CW_RO_sequence(qubit_idx=self.cfg_qubit_nr(), platf_cfg=self.cfg_openql_platform_fn()) CCL.eqasm_program(p.filename) # CCL gets started in the int_avg detector MC.set_sweep_function(swf.Heterodyne_Frequency_Sweep_simple( MW_LO_source=self.instr_LO_ro.get_instr(), IF=self.ro_freq_mod())) MC.set_sweep_points(freqs) self.int_avg_det_single._set_real_imag(False) MC.set_detector_function(self.int_avg_det_single) MC.run(name='Resonator_scan'+self.msmt_suffix+label) # Stopping specmode if self.cfg_spec_mode(): UHFQC.spec_mode_off() self._prep_ro_pulse(upload=True) if analyze: ma.Homodyne_Analysis(label=self.msmt_suffix, close_fig=close_fig) def measure_resonator_power(self, freqs, powers, MC=None, analyze: bool = True, close_fig: bool = True, label: str = ''): """ Mesures the readout resonator with UHFQC as a function of the pulse power. The pulse power is controlled by changing the amplitude of the UHFQC-generated waveform. Args: freqs (array): list of freqencies to sweep over powers (array): powers of the readout pulse to sweep over. The power is adjusted by changing the amplitude of the UHFQC output channels. Thereby the range of powers is limited by the dynamic range of mixers. """ self.prepare_for_continuous_wave() if MC is None: MC = self.instr_MC.get_instr() # Snippet here to create and upload the CCL instructions CCL = self.instr_CC.get_instr() CCL.stop() p = sqo.CW_RO_sequence(qubit_idx=self.cfg_qubit_nr(), platf_cfg=self.cfg_openql_platform_fn()) CCL.eqasm_program(p.filename) # CCL gets started in the int_avg detector MC.set_sweep_function(swf.Heterodyne_Frequency_Sweep_simple( MW_LO_source=self.instr_LO_ro.get_instr(), IF=self.ro_freq_mod())) MC.set_sweep_points(freqs) ro_lm = self.instr_LutMan_RO.get_instr() m_amp_par = ro_lm.parameters[ 'M_amp_R{}'.format(self.cfg_qubit_nr())] s2 = swf.lutman_par_dB_attenuation_UHFQC_dig_trig( LutMan=ro_lm, LutMan_parameter=m_amp_par) MC.set_sweep_function_2D(s2) MC.set_sweep_points_2D(powers) self.int_avg_det_single._set_real_imag(False) MC.set_detector_function(self.int_avg_det_single) MC.run(name='Resonator_power_scan'+self.msmt_suffix+label, mode='2D') if analyze: ma.TwoD_Analysis(label='Resonator_power_scan', close_fig=close_fig, normalize=True) def measure_ssro(self, MC=None, nr_shots_per_case: int = 2**13, # 8192 cases=('off', 'on'), prepare: bool = True, no_figs: bool = False, post_select: bool = False, post_select_threshold: float = None, nr_flux_dance:float=None, wait_time:float=None, update: bool = True, SNR_detector: bool = False, shots_per_meas: int = 2**16, vary_residual_excitation: bool = True, disable_metadata: bool = False, label: str = ''): """ Performs a number of single shot measurements with qubit in ground and excited state to extract the SNR and readout fidelities. Args: analyze (bool): should the analysis be executed nr_shots_per_case (int): total number of measurements in qubit ground and excited state cases: currently unused update_threshold (bool): indicating whether to update a threshold according to which the shot is classified as ground or excited state. prepare (bool): should the prepare_for_timedomain be executed? SNR_detector (bool): the function will return a dictionary suitable, making this function easier to use as a detector in the nested measurement shots_per_meas (int): number of single shot measurements per single acquisition with UHFQC vary_residual_excitation (bool): if False, uses the last known values of residual excitation and measurement induced relaxation and keeps these fixed. ... """ # off and on, not including post selection init measurements yet nr_shots = nr_shots_per_case*2 old_RO_digit = self.ro_acq_digitized() self.ro_acq_digitized(False) if MC is None: MC = self.instr_MC.get_instr() # plotting really slows down SSRO (16k shots plotting is slow) old_plot_setting = MC.live_plot_enabled() MC.live_plot_enabled(False) if prepare: self.prepare_for_timedomain() # This snippet causes 0.08 s of overhead but is dangerous to bypass p = sqo.off_on( qubit_idx=self.cfg_qubit_nr(), pulse_comb='off_on', nr_flux_dance=nr_flux_dance, wait_time=wait_time, initialize=post_select, platf_cfg=self.cfg_openql_platform_fn()) self.instr_CC.get_instr().eqasm_program(p.filename) # digitization setting is reset here but the detector still uses # the disabled setting that was set above self.ro_acq_digitized(old_RO_digit) s = swf.OpenQL_Sweep(openql_program=p, CCL=self.instr_CC.get_instr(), parameter_name='Shot', unit='#', upload=prepare) MC.soft_avg(1) # don't want to average single shots MC.set_sweep_function(s) MC.set_sweep_points(np.arange(nr_shots)) d = self.int_log_det d.nr_shots = np.min([shots_per_meas, nr_shots]) MC.set_detector_function(d) MC.run('SSRO_{}{}'.format(label, self.msmt_suffix), disable_snapshot_metadata=disable_metadata) MC.live_plot_enabled(old_plot_setting) ###################################################################### # SSRO Analysis ###################################################################### if post_select_threshold == None: post_select_threshold = self.ro_acq_threshold() options_dict = {'post_select': post_select, 'nr_samples': 2+2*post_select, 'post_select_threshold': post_select_threshold, 'predict_qubit_temp': True, 'qubit_freq': self.freq_qubit()} if not vary_residual_excitation: options_dict.update( {'fixed_p10': self.res_exc, 'fixed_p01': self.mmt_rel}) a = ma2.ra.Singleshot_Readout_Analysis( options_dict=options_dict, extract_only=no_figs) ###################################################################### # Update parameters in the qubit object based on the analysis ###################################################################### if update: self.res_exc = a.proc_data_dict['quantities_of_interest']['residual_excitation'] self.mmt_rel = a.proc_data_dict['quantities_of_interest']['relaxation_events'] # UHFQC threshold is wrong, the magic number is a # dirty hack. This works. we don't know why. magic_scale_factor = 1 # 0.655 self.ro_acq_threshold( a.proc_data_dict['threshold_raw'] * magic_scale_factor) self.F_ssro(a.proc_data_dict['F_assignment_raw']) self.F_discr(a.proc_data_dict['F_discr']) self.ro_rel_events( a.proc_data_dict['quantities_of_interest']['relaxation_events']) self.ro_res_ext( a.proc_data_dict['quantities_of_interest']['residual_excitation']) warnings.warn("FIXME rotation angle could not be set") # self.ro_acq_rotated_SSB_rotation_angle(a.theta) return {'SNR': a.qoi['SNR'], 'F_d': a.qoi['F_d'], 'F_a': a.qoi['F_a'], 'relaxation': a.proc_data_dict['relaxation_events'], 'excitation': a.proc_data_dict['residual_excitation']} def measure_spectroscopy(self, freqs, mode='pulsed_marked', MC=None, analyze=True, close_fig=True, label='', prepare_for_continuous_wave=True): """ Performs a two-tone spectroscopy experiment where one tone is kept fixed at the resonator readout frequency and another frequency is swept. args: freqs (array) : Frequency range you want to sweep mode (string): 'CW' - Continuous wave 'pulsed_marked' - pulsed using trigger input of spec source 'pulsed_mixer' - pulsed using AWG and mixer analyze: indicates whether to look for the peak in the data and perform a fit label: suffix to append to the measurement label This experiment can be performed in three different modes Continuous wave (CW) Pulsed, marker modulated Pulsed, mixer modulated The mode argument selects which mode is being used and redirects the arguments to the appropriate method. """ if mode == 'CW': self.measure_spectroscopy_CW(freqs=freqs, MC=MC, analyze=analyze, close_fig=close_fig, label=label, prepare_for_continuous_wave=prepare_for_continuous_wave) elif mode == 'pulsed_marked': self.measure_spectroscopy_pulsed_marked( freqs=freqs, MC=MC, analyze=analyze, close_fig=close_fig, label=label, prepare_for_continuous_wave=prepare_for_continuous_wave) elif mode == 'pulsed_mixer': self.measure_spectroscopy_pulsed_mixer( freqs=freqs, MC=MC, analyze=analyze, close_fig=close_fig, label=label, prepare_for_timedomain=prepare_for_continuous_wave) else: logging.error('Mode {} not recognized. Available modes: "CW", \ "pulsed_marked", "pulsed_mixer"'.format(mode)) def measure_transients(self, MC=None, analyze: bool = True, cases=('off', 'on'), prepare: bool = True, depletion_analysis: bool = True, depletion_analysis_plot: bool = True, depletion_optimization_window=None, disable_metadata: bool = False, plot_max_time=None): # docstring from parent class if MC is None: MC = self.instr_MC.get_instr() if plot_max_time is None: plot_max_time = self.ro_acq_integration_length()+250e-9 if prepare: self.prepare_for_timedomain() # off/on switching is achieved by turning the MW source on and # off as this is much faster than recompiling/uploading p = sqo.off_on( qubit_idx=self.cfg_qubit_nr(), pulse_comb='on', initialize=False, platf_cfg=self.cfg_openql_platform_fn()) self.instr_CC.get_instr().eqasm_program(p.filename) else: p = None # object needs to exist for the openql_sweep to work transients = [] for i, pulse_comb in enumerate(cases): if 'off' in pulse_comb.lower(): self.instr_LO_mw.get_instr().off() elif 'on' in pulse_comb.lower(): self.instr_LO_mw.get_instr().on() else: raise ValueError( "pulse_comb {} not understood: Only 'on' and 'off' allowed.".format(pulse_comb)) s = swf.OpenQL_Sweep(openql_program=p, CCL=self.instr_CC.get_instr(), parameter_name='Transient time', unit='s', upload=prepare) MC.set_sweep_function(s) if 'UHFQC' in self.instr_acquisition(): sampling_rate = 1.8e9 else: raise NotImplementedError() MC.set_sweep_points( np.arange(self.input_average_detector.nr_samples) / sampling_rate) MC.set_detector_function(self.input_average_detector) data = MC.run( 'Measure_transients{}_{}'.format(self.msmt_suffix, i), disable_snapshot_metadata=disable_metadata) dset = data['dset'] transients.append(dset.T[1:]) if analyze: ma.MeasurementAnalysis() if depletion_analysis: a = ma.Input_average_analysis( IF=self.ro_freq_mod(), optimization_window=depletion_optimization_window, plot=depletion_analysis_plot, plot_max_time=plot_max_time) return a else: return [np.array(t, dtype=np.float64) for t in transients] def measure_rabi(self, MC=None, amps=np.linspace(0, 1, 31), analyze=True, close_fig=True, real_imag=True, prepare_for_timedomain=True, all_modules=False): """ Perform a Rabi experiment in which amplitude of the MW pulse is sweeped while the drive frequency and pulse duration is kept fixed Args: amps (array): range of amplitudes to sweep. If cfg_with_vsm()==True pulse amplitude is adjusted by sweeping the attenuation of the relevant gaussian VSM channel, in max range (0.1 to 1.0). If cfg_with_vsm()==False adjusts the channel amplitude of the AWG in range (0 to 1). Relevant parameters: mw_amp180 (float): amplitude of the waveform corresponding to pi pulse (from 0 to 1) mw_channel_amp (float): AWG channel amplitude (digitally scaling the waveform; form 0 to 1) """ if self.cfg_with_vsm(): self.measure_rabi_vsm(MC, amps, analyze, close_fig, real_imag, prepare_for_timedomain, all_modules) else: self.measure_rabi_channel_amp(MC, amps, analyze, close_fig, real_imag, prepare_for_timedomain) def measure_rabi_vsm(self, MC=None, amps=np.linspace(0.1, 1.0, 31), analyze=True, close_fig=True, real_imag=True, prepare_for_timedomain=True, all_modules=False): """ Perform a Rabi experiment in which amplitude of the MW pulse is sweeped while the drive frequency and pulse duration is kept fixed Args: amps (array): range of amplitudes to sweep. Pulse amplitude is adjusted by sweeping the attenuation of the relevant gaussian VSM channel, in max range (0.1 to 1.0). """ if MC is None: MC = self.instr_MC.get_instr() if prepare_for_timedomain: self.prepare_for_timedomain() p = sqo.off_on( qubit_idx=self.cfg_qubit_nr(), pulse_comb='on', initialize=False, platf_cfg=self.cfg_openql_platform_fn()) VSM = self.instr_VSM.get_instr() mod_out = self.mw_vsm_mod_out() ch_in = self.mw_vsm_ch_in() if all_modules: mod_sweep = [] for i in range(8): VSM.set('mod{}_ch{}_marker_state'.format(i+1, ch_in), 'on') G_par = VSM.parameters['mod{}_ch{}_gaussian_amp'.format( i+1, ch_in)] D_par = VSM.parameters['mod{}_ch{}_derivative_amp'.format( i+1, ch_in)] mod_sweep.append(swf.two_par_joint_sweep( G_par, D_par, preserve_ratio=False)) s = swf.multi_sweep_function(sweep_functions=mod_sweep, retrieve_value=True) else: G_par = VSM.parameters['mod{}_ch{}_gaussian_amp'.format( mod_out, ch_in)] D_par = VSM.parameters['mod{}_ch{}_derivative_amp'.format( mod_out, ch_in)] s = swf.two_par_joint_sweep(G_par, D_par, preserve_ratio=False, retrieve_value=True, instr=VSM) self.instr_CC.get_instr().eqasm_program(p.filename) MC.set_sweep_function(s) MC.set_sweep_points(amps) # real_imag is acutally not polar and as such works for opt weights self.int_avg_det_single._set_real_imag(real_imag) MC.set_detector_function(self.int_avg_det_single) MC.run(name='rabi_'+self.msmt_suffix) ma.Rabi_Analysis(label='rabi_') return True def measure_rabi_channel_amp(self, MC=None, amps=np.linspace(0, 1, 31), analyze=True, close_fig=True, real_imag=True, prepare_for_timedomain=True): """ Perform a Rabi experiment in which amplitude of the MW pulse is sweeped while the drive frequency and pulse duration is kept fixed Args: amps (array): range of amplitudes to sweep. Amplitude is adjusted via the channel amplitude of the AWG, in max range (0 to 1). """ MW_LutMan = self.instr_LutMan_MW.get_instr() if MC is None: MC = self.instr_MC.get_instr() if prepare_for_timedomain: self.prepare_for_timedomain() p = sqo.off_on( qubit_idx=self.cfg_qubit_nr(), pulse_comb='on', initialize=False, platf_cfg=self.cfg_openql_platform_fn()) self.instr_CC.get_instr().eqasm_program(p.filename) s = MW_LutMan.channel_amp MC.set_sweep_function(s) MC.set_sweep_points(amps) # real_imag is acutally not polar and as such works for opt weights self.int_avg_det_single._set_real_imag(real_imag) MC.set_detector_function(self.int_avg_det_single) MC.run(name='rabi_'+self.msmt_suffix) ma.Rabi_Analysis(label='rabi_') return True def measure_allxy(self, MC=None, label: str = '', analyze=True, close_fig=True, prepare_for_timedomain=True): # docstring from parent class # N.B. this is a good example for a generic timedomain experiment using # the CCL transmon. if MC is None: MC = self.instr_MC.get_instr() if prepare_for_timedomain: self.prepare_for_timedomain() p = sqo.AllXY(qubit_idx=self.cfg_qubit_nr(), double_points=True, platf_cfg=self.cfg_openql_platform_fn()) s = swf.OpenQL_Sweep(openql_program=p, CCL=self.instr_CC.get_instr()) d = self.int_avg_det MC.set_sweep_function(s) MC.set_sweep_points(np.arange(42)) MC.set_detector_function(d) MC.run('AllXY'+label+self.msmt_suffix) if analyze: a = ma.AllXY_Analysis(close_main_fig=close_fig) return a.deviation_total def measure_T1( self, times=None, update=True, nr_cz_instead_of_idle_time: list = None, qb_cz_instead_of_idle_time: str = None, nr_flux_dance: float = None, wait_time_after_flux_dance: float = 0, prepare_for_timedomain=True, close_fig=True, analyze=True, MC=None, ): """ N.B. this is a good example for a generic timedomain experiment using the CCL transmon. """ if times and nr_cz_instead_of_idle_time: raise ValueError("Either idle time or CZ mode must be chosen!") if nr_cz_instead_of_idle_time is not None and not qb_cz_instead_of_idle_time: raise ValueError("If CZ instead of idle time should be used, qubit to apply CZ to must be given!") if qb_cz_instead_of_idle_time: qb_cz_idx = self.find_instrument(qb_cz_instead_of_idle_time).cfg_qubit_nr() if MC is None: MC = self.instr_MC.get_instr() if times is None: if nr_cz_instead_of_idle_time is not None: # convert given numbers of CZs into time # NOTE: CZ time hardcoded to 40ns! times = np.array(nr_cz_instead_of_idle_time) * 40e-9 else: # default timing: 4 x current T1 times = np.linspace(0, self.T1() * 4, 31) if nr_cz_instead_of_idle_time is not None: # define time for calibration points at sufficiently distant times dt = 10 * 40e-9 # (times[-1] - times[-2])/2 else: # append the calibration points, times are for location in plot dt = times[1] - times[0] times = np.concatenate([times, (times[-1] + 1 * dt, times[-1] + 2 * dt, times[-1] + 3 * dt, times[-1] + 4 * dt)]) if prepare_for_timedomain: self.prepare_for_timedomain() p = sqo.T1(qubit_idx=self.cfg_qubit_nr(), platf_cfg=self.cfg_openql_platform_fn(), times=times, nr_cz_instead_of_idle_time=nr_cz_instead_of_idle_time, qb_cz_idx=qb_cz_idx if qb_cz_instead_of_idle_time else None, nr_flux_dance=nr_flux_dance, wait_time_after_flux_dance=wait_time_after_flux_dance) s = swf.OpenQL_Sweep(openql_program=p, parameter_name='Time', unit='s', CCL=self.instr_CC.get_instr()) d = self.int_avg_det MC.set_sweep_function(s) MC.set_sweep_points(times) MC.set_detector_function(d) MC.run('T1' + self.msmt_suffix) if analyze: a = ma.T1_Analysis(auto=True, close_fig=True) if update: self.T1(a.T1) return a.T1 def measure_T1_2nd_excited_state(self, times=None, MC=None, analyze=True, close_fig=True, update=True, prepare_for_timedomain=True): """ Performs a T1 experiment on the 2nd excited state. """ if MC is None: MC = self.instr_MC.get_instr() # default timing if times is None: times = np.linspace(0, self.T1() * 4, 31) if prepare_for_timedomain: self.prepare_for_timedomain() # Load pulses to the ef transition mw_lutman = self.instr_LutMan_MW.get_instr() mw_lutman.load_ef_rabi_pulses_to_AWG_lookuptable() p = sqo.T1_second_excited_state(times, qubit_idx=self.cfg_qubit_nr(), platf_cfg=self.cfg_openql_platform_fn()) s = swf.OpenQL_Sweep(openql_program=p, parameter_name='Time', unit='s', CCL=self.instr_CC.get_instr()) d = self.int_avg_det MC.set_sweep_function(s) MC.set_sweep_points(p.sweep_points) MC.set_detector_function(d) MC.run('T1_2nd_exc_state_' + self.msmt_suffix) a = ma.T1_Analysis(auto=True, close_fig=True) return a.T1 def measure_ramsey(self, times=None, MC=None, artificial_detuning: float = None, freq_qubit: float = None, label: str = '', prepare_for_timedomain=True, analyze=True, close_fig=True, update=True, detector=False, double_fit=False, test_beating=True): # docstring from parent class # N.B. this is a good example for a generic timedomain experiment using # the CCL transmon. if MC is None: MC = self.instr_MC.get_instr() # default timing if times is None: # funny default is because there is no real time sideband modulation stepsize = max((self.T2_star() * 4 / 61) // (abs(self.cfg_cycle_time())) * abs(self.cfg_cycle_time()), 40e-9) times = np.arange(0, self.T2_star() * 4, stepsize) if artificial_detuning is None: # artificial_detuning = 0 # raise ImplementationError("Artificial detuning does not work, currently uses real detuning") # artificial_detuning = 3/times[-1] artificial_detuning = 5 / times[-1] # append the calibration points, times are for location in plot dt = times[1] - times[0] times = np.concatenate([times, (times[-1] + 1 * dt, times[-1] + 2 * dt, times[-1] + 3 * dt, times[-1] + 4 * dt)]) if prepare_for_timedomain: self.prepare_for_timedomain() # adding 'artificial' detuning by detuning the qubit LO if freq_qubit is None: freq_qubit = self.freq_qubit() # this should have no effect if artificial detuning = 0. This is a bug, # this is real detuning, not artificial detuning old_frequency = self.instr_LO_mw.get_instr().get('frequency') self.instr_LO_mw.get_instr().set( 'frequency', freq_qubit - self.mw_freq_mod.get() + artificial_detuning) p = sqo.Ramsey(times, qubit_idx=self.cfg_qubit_nr(), platf_cfg=self.cfg_openql_platform_fn()) s = swf.OpenQL_Sweep(openql_program=p, CCL=self.instr_CC.get_instr(), parameter_name='Time', unit='s') MC.set_sweep_function(s) MC.set_sweep_points(times) d = self.int_avg_det MC.set_detector_function(d) MC.run('Ramsey' + label + self.msmt_suffix) # Restore old frequency value self.instr_LO_mw.get_instr().set('frequency', old_frequency) if analyze: a = ma.Ramsey_Analysis(auto=True, close_fig=True, freq_qubit=freq_qubit, artificial_detuning=artificial_detuning) if test_beating and a.fit_res.chisqr > 0.4: logging.warning('Found double frequency in Ramsey: large ' 'deviation found in single frequency fit.' 'Trying double frequency fit.') double_fit = True if update: self.T2_star(a.T2_star['T2_star']) if double_fit: b = ma.DoubleFrequency() res = { 'T2star1': b.tau1, 'T2star2': b.tau2, 'frequency1': b.f1, 'frequency2': b.f2 } return res else: res = { 'T2star': a.T2_star['T2_star'], 'frequency': a.qubit_frequency, } return res def measure_complex_ramsey(self, times=None, MC=None, freq_qubit: float = None, label: str = '', prepare_for_timedomain=True, analyze=True, close_fig=True, update=True, detector=False, double_fit=False, test_beating=True): # docstring from parent class # N.B. this is a good example for a generic timedomain experiment using # the CCL transmon. if MC is None: MC = self.instr_MC.get_instr() # readout must use IQ data old_ro_type = self.ro_acq_weight_type() self.ro_acq_weight_type('optimal IQ') # default timing if times is None: # funny default is because there is no real time sideband # modulation stepsize = max((self.T2_star() * 4 / 61) // (abs(self.cfg_cycle_time())) * abs(self.cfg_cycle_time()), 40e-9) times = np.arange(0, self.T2_star() * 4, stepsize) # append the calibration points, times are for location in plot dt = times[1] - times[0] times = np.concatenate([np.repeat(times, 2), (times[-1] + 1 * dt, times[-1] + 2 * dt, times[-1] + 3 * dt, times[-1] + 4 * dt)]) if prepare_for_timedomain: self.prepare_for_timedomain() # adding 'artificial' detuning by detuning the qubit LO if freq_qubit is None: freq_qubit = self.freq_qubit() # # this should have no effect if artificial detuning = 0. This is a bug, # This is real detuning, not artificial detuning p = sqo.complex_Ramsey(times, qubit_idx=self.cfg_qubit_nr(), platf_cfg=self.cfg_openql_platform_fn()) s = swf.OpenQL_Sweep(openql_program=p, CCL=self.instr_CC.get_instr(), parameter_name='Time', unit='s') MC.set_sweep_function(s) MC.set_sweep_points(times) d = self.int_avg_det MC.set_detector_function(d) MC.run('complex_Ramsey' + label + self.msmt_suffix) self.ro_acq_weight_type(old_ro_type) if analyze: a = ma2.ComplexRamseyAnalysis(label='complex_Ramsey', close_figs=True) if update: fit_res = a.fit_dicts['exp_fit']['fit_res'] fit_frequency = fit_res.params['frequency'].value freq_qubit = self.freq_qubit() self.freq_qubit(freq_qubit + fit_frequency) # if test_beating and a.fit_res.chisqr > 0.4: # logging.warning('Found double frequency in Ramsey: large ' # 'deviation found in single frequency fit.' # 'Trying double frequency fit.') # double_fit = True # if update: # self.T2_star(a.T2_star['T2_star']) # if double_fit: # b = ma.DoubleFrequency() # res = { # 'T2star1': b.tau1, # 'T2star2': b.tau2, # 'frequency1': b.f1, # 'frequency2': b.f2 # } # return res # else: # res = { # 'T2star': a.T2_star['T2_star'], # 'frequency': a.qubit_frequency, # } # return res def measure_echo(self, times=None, MC=None, analyze=True, close_fig=True, update=True, label: str = '', prepare_for_timedomain=True): # docstring from parent class # N.B. this is a good example for a generic timedomain experiment using # the CCL transmon. if MC is None: MC = self.instr_MC.get_instr() # default timing if times is None: # funny default is because there is no real time sideband # modulation stepsize = max((self.T2_echo()*2/61)//(abs(self.cfg_cycle_time())) * abs(self.cfg_cycle_time()), 20e-9) times = np.arange(0, self.T2_echo()*4, stepsize*2) # append the calibration points, times are for location in plot dt = times[1] - times[0] times = np.concatenate([times, (times[-1]+1*dt, times[-1]+2*dt, times[-1]+3*dt, times[-1]+4*dt)]) mw_lutman = self.instr_LutMan_MW.get_instr() # # Checking if pulses are on 20 ns grid if not all([np.round(t*1e9) % (2*self.cfg_cycle_time()*1e9) == 0 for t in times]): raise ValueError('timesteps must be multiples of 40e-9') # # Checking if pulses are locked to the pulse modulation if not all([np.round(t/1*1e9) % (2/self.mw_freq_mod.get()*1e9) == 0 for t in times]) and\ mw_lutman.cfg_sideband_mode() != 'real-time': raise ValueError( 'timesteps must be multiples of 2 modulation periods') if prepare_for_timedomain: self.prepare_for_timedomain() mw_lutman.load_phase_pulses_to_AWG_lookuptable() p = sqo.echo(times, qubit_idx=self.cfg_qubit_nr(), platf_cfg=self.cfg_openql_platform_fn()) s = swf.OpenQL_Sweep(openql_program=p, CCL=self.instr_CC.get_instr(), parameter_name="Time", unit="s") d = self.int_avg_det MC.set_sweep_function(s) MC.set_sweep_points(times) MC.set_detector_function(d) MC.run('echo'+label+self.msmt_suffix) if analyze: # N.B. v1.5 analysis a = ma.Echo_analysis_V15(label='echo', auto=True, close_fig=True) if update: self.T2_echo(a.fit_res.params['tau'].value) return a def measure_flipping(self, number_of_flips=np.arange(0, 61, 2), equator=True, MC=None, analyze=True, close_fig=True, update=False, ax='x', angle='180'): """ Measurement for fine-tuning of the pi and pi/2 pulse amplitudes. Executes sequence pi (repeated N-times) - pi/2 - measure with variable number N. In this way the error in the amplitude of the MW pi pulse accumulate allowing for fine tuning. Alternatively N repetitions of the pi pulse can be replaced by 2N repetitions of the pi/2-pulse Args: number_of_flips (array): number of pi pulses to apply. It is recommended to use only even numbers, since then the expected signal has a sine shape. Otherwise it has -1^N * sin shape which will not be correctly analyzed. equator (bool); specify whether to apply the final pi/2 pulse. Setting to False makes the sequence first-order insensitive to pi-pulse amplitude errors. ax (str {'x', 'y'}): axis arour which the pi pulses are to be performed. Possible values 'x' or 'y' angle (str {'90', '180'}): specifies whether to apply pi or pi/2 pulses. Possible values: '180' or '90' update (bool): specifies whether to update parameter controlling MW pulse amplitude. This parameter is mw_vsm_G_amp in VSM case or mw_channel_amp in no-VSM case. Update is performed only if change by more than 0.2% (0.36 deg) is needed. """ if MC is None: MC = self.instr_MC.get_instr() # allow flipping only with pi/2 or pi, and x or y pulses assert angle in ['90','180'] assert ax.lower() in ['x', 'y'] # append the calibration points, times are for location in plot nf = np.array(number_of_flips) dn = nf[1] - nf[0] nf = np.concatenate([nf, (nf[-1]+1*dn, nf[-1]+2*dn, nf[-1]+3*dn, nf[-1]+4*dn) ]) self.prepare_for_timedomain() p = sqo.flipping(number_of_flips=nf, equator=equator, qubit_idx=self.cfg_qubit_nr(), platf_cfg=self.cfg_openql_platform_fn(), ax=ax.lower(), angle=angle) s = swf.OpenQL_Sweep(openql_program=p, unit='#', CCL=self.instr_CC.get_instr()) d = self.int_avg_det MC.set_sweep_function(s) MC.set_sweep_points(nf) MC.set_detector_function(d) MC.run('flipping_'+ax+angle+self.msmt_suffix) if analyze: a = ma2.FlippingAnalysis( options_dict={'scan_label': 'flipping'}) if update: # choose scale factor based on simple goodness-of-fit comparison # This method gives priority to the line fit: # the cos fit will only be chosen if its chi^2 relative to the # chi^2 of the line fit is at least 10% smaller if (a.fit_res['line_fit'].chisqr - a.fit_res['cos_fit'].chisqr)/a.fit_res['line_fit'].chisqr \ > 0.1: scale_factor = a._get_scale_factor_cos() else: scale_factor = a._get_scale_factor_line() if abs(scale_factor-1) < 1e-3: print('Pulse amplitude accurate within 0.1%. Amplitude not updated.') return a if angle == '180': if self.cfg_with_vsm(): amp_old = self.mw_vsm_G_amp() self.mw_vsm_G_amp(scale_factor*amp_old) else: amp_old = self.mw_channel_amp() self.mw_channel_amp(scale_factor*amp_old) elif angle == '90': amp_old = self.mw_amp90_scale() self.mw_amp90_scale(scale_factor*amp_old) print('Pulse amplitude for {}-{} pulse changed from {:.3f} to {:.3f}'.format( ax, angle, amp_old, scale_factor*amp_old)) return a def flipping_GBT(self, nr_sequence: int = 2): ''' This function is to measure flipping sequence for whaterver nr_of times a function needs to be run to calibrate the Pi and Pi/2 Pulse. Right now this method will always return true no matter what Later we can add a condition as a check. ''' for i in range(nr_sequence): a = self.measure_flipping(update=True) scale_factor = a._get_scale_factor_line() if abs(1-scale_factor)<0.0005: return True else: return False def measure_motzoi(self, motzoi_amps=None, prepare_for_timedomain: bool = True, MC=None, analyze=True, close_fig=True): """ Sweeps the amplitude of the DRAG coefficients looking for leakage reduction and optimal correction for the phase error due to stark shift resulting from transition to higher qubit states. In this measurement the two-pulse sequence are applied: X180-Y90 and Y180-X90 and the amplitude of the gaussian-derivative component of the MW pulse is sweeped. When the DRAG coefficient is adjusted correctly the two sequences yield the same result. Refs: Motzoi PRL 103, 110501 (2009) Chow PRA 82, 040305(R) (2010) Lucero PRA 82, 042339 (2010) Args: motzoi_amps (array): DRAG coefficients to sweep over. In VSM case the amplitude is adjusted by varying attenuation of the derivative channel for the relevant module. In no-VSM the DRAG parameter is adjusted by reloading of the waveform on the AWG. Returns: float: value of the DRAG parameter for which the two sequences yield the same result error is mimimized. """ using_VSM = self.cfg_with_vsm() MW_LutMan = self.instr_LutMan_MW.get_instr() AWG = MW_LutMan.AWG.get_instr() if MC is None: MC = self.instr_MC.get_instr() if prepare_for_timedomain: self.prepare_for_timedomain() p = sqo.motzoi_XY( qubit_idx=self.cfg_qubit_nr(), platf_cfg=self.cfg_openql_platform_fn()) self.instr_CC.get_instr().eqasm_program(p.filename) d = self.get_int_avg_det(single_int_avg=True, values_per_point=2, values_per_point_suffex=['yX', 'xY'], always_prepare=True) if using_VSM: VSM = self.instr_VSM.get_instr() if motzoi_amps is None: motzoi_amps = np.linspace(0.1, 1.0, 31) mod_out = self.mw_vsm_mod_out() ch_in = self.mw_vsm_ch_in() D_par = VSM.parameters['mod{}_ch{}_derivative_amp'.format( mod_out, ch_in)] swf_func = wrap_par_to_swf(D_par, retrieve_value=True) else: if self._using_QWG(): if motzoi_amps is None: motzoi_amps = np.linspace(-.3, .3, 31) swf_func = swf.QWG_lutman_par(LutMan=MW_LutMan, LutMan_parameter=MW_LutMan.mw_motzoi) else: if motzoi_amps is None: motzoi_amps = np.linspace(-.3, .3, 31) swf_func = swf.lutman_par(LutMan=MW_LutMan, LutMan_parameter=MW_LutMan.mw_motzoi) MC.set_sweep_function(swf_func) MC.set_sweep_points(motzoi_amps) MC.set_detector_function(d) MC.run('Motzoi_XY'+self.msmt_suffix) if analyze: if self.ro_acq_weight_type() == 'optimal': a = ma2.Intersect_Analysis( options_dict={'ch_idx_A': 0, 'ch_idx_B': 1}, normalized_probability=True) else: # if statement required if 2 channels readout logging.warning( 'It is recommended to do this with optimal weights') a = ma2.Intersect_Analysis( options_dict={'ch_idx_A': 0, 'ch_idx_B': 1}, normalized_probability=False) return a ########################################################################## # measure_ functions (CCLight_Transmon specific) ########################################################################## def measure_photon_number_splitting(self, freqs, powers, MC=None, analyze: bool = True, close_fig: bool = True): """ Mesures the CW qubit spectrosopy as a function of the RO pulse power to find a photon splitting. Refs: Schuster Nature 445, 515–518 (2007) (note that in the paper RO resonator has lower frequency than the qubit) Args: freqs (array): list of freqencies to sweep over powers (array): powers of the readout pulse to sweep over. The power is adjusted by changing the amplitude of the UHFQC output channels. Thereby the range of powers is limited by the dynamic range of mixers. """ self.prepare_for_continuous_wave() if MC is None: MC = self.instr_MC.get_instr() # Snippet here to create and upload the CCL instructions CCL = self.instr_CC.get_instr() CCL.stop() p = sqo.CW_RO_sequence(qubit_idx=self.cfg_qubit_nr(), platf_cfg=self.cfg_openql_platform_fn()) CCL.eqasm_program(p.filename) # CCL gets started in the int_avg detector spec_source = self.instr_spec_source.get_instr() spec_source.on() MC.set_sweep_function(spec_source.frequency) MC.set_sweep_points(freqs) ro_lm = self.instr_LutMan_RO.get_instr() m_amp_par = ro_lm.parameters[ 'M_amp_R{}'.format(self.cfg_qubit_nr())] s2 = swf.lutman_par_dB_attenuation_UHFQC_dig_trig( LutMan=ro_lm, LutMan_parameter=m_amp_par) MC.set_sweep_function_2D(s2) MC.set_sweep_points_2D(powers) self.int_avg_det_single._set_real_imag(False) MC.set_detector_function(self.int_avg_det_single) label = 'Photon_number_splitting' MC.run(name=label+self.msmt_suffix, mode='2D') spec_source.off() if analyze: ma.TwoD_Analysis(label=label, close_fig=close_fig, normalize=True) def measure_resonator_frequency_dac_scan(self, freqs, dac_values, MC=None, analyze: bool = True, close_fig: bool = True, fluxChan=None, label=''): """ Performs the resonator spectroscopy as a function of the current applied to the flux bias line. Args: freqs (array): list of freqencies to sweep over dac_values (array): list of the DAC values (current values) to sweep over fluxChan (str): channel of the instrument controlling the flux to sweep. By default the channel used is specified by self.fl_dc_ch. analyze (bool): indicates whether to generate colormaps of the measured data label (str): suffix to append to the measurement label Relevant qubit parameters: instr_FluxCtrl (str): instrument controlling the current bias fluxChan (str): chanel of the flux control instrument corresponding to the qubit """ self.prepare_for_continuous_wave() if MC is None: MC = self.instr_MC.get_instr() # Snippet here to create and upload the CCL instructions CCL = self.instr_CC.get_instr() CCL.stop() p = sqo.CW_RO_sequence(qubit_idx=self.cfg_qubit_nr(), platf_cfg=self.cfg_openql_platform_fn()) CCL.eqasm_program(p.filename) # CCL gets started in the int_avg detector MC.set_sweep_function(swf.Heterodyne_Frequency_Sweep_simple( MW_LO_source=self.instr_LO_ro.get_instr(), IF=self.ro_freq_mod())) MC.set_sweep_points(freqs) if 'ivvi' in self.instr_FluxCtrl().lower(): IVVI = self.instr_FluxCtrl.get_instr() dac_par = IVVI.parameters['dac{}'.format(self.fl_dc_ch())] else: # Assume the flux is controlled using an SPI rack fluxcontrol = self.instr_FluxCtrl.get_instr() if fluxChan == None: dac_par = fluxcontrol.parameters[(self.fl_dc_ch())] else: dac_par = fluxcontrol.parameters[(fluxChan)] MC.set_sweep_function_2D(dac_par) MC.set_sweep_points_2D(dac_values) self.int_avg_det_single._set_real_imag(False) MC.set_detector_function(self.int_avg_det_single) MC.run(name='Resonator_dac_scan'+self.msmt_suffix+label, mode='2D') if analyze: ma.TwoD_Analysis(label='Resonator_dac_scan', close_fig=close_fig) def measure_qubit_frequency_dac_scan(self, freqs, dac_values, mode='pulsed_marked', MC=None, analyze=True, fluxChan=None, close_fig=True, nested_resonator_calibration=False, nested_resonator_calibration_use_min=False, resonator_freqs=None, trigger_idx= None): """ Performs the qubit spectroscopy while changing the current applied to the flux bias line. Args: freqs (array): MW drive frequencies to sweep over dac_values (array): values of the current to sweep over mode (str {'pulsed_mixer', 'CW', 'pulsed_marked'}): specifies the spectroscopy mode (cf. measure_spectroscopy method) fluxChan (str): Fluxchannel that is varied. Defaults to self.fl_dc_ch nested_resonator_calibration (bool): specifies whether to track the RO resonator frequency (which itself is flux-dependent) nested_resonator_calibration_use_min (bool): specifies whether to use the resonance minimum in the nested routine resonator_freqs (array): manual specifications of the frequencies over in which to search for RO resonator in the nested routine analyze (bool): indicates whether to generate colormaps of the measured data label (str): suffix to append to the measurement label Relevant qubit parameters: instr_FluxCtrl (str): instrument controlling the current bias fluxChan (str): chanel of the flux control instrument corresponding to the qubit """ if mode == 'pulsed_mixer': old_channel_amp = self.mw_channel_amp() self.mw_channel_amp(1) self.prepare_for_timedomain() self.mw_channel_amp(old_channel_amp) elif mode == 'CW' or mode == 'pulsed_marked': self.prepare_for_continuous_wave() else: logging.error('Mode {} not recognized'.format(mode)) if MC is None: MC = self.instr_MC.get_instr() if trigger_idx is None: trigger_idx = self.cfg_qubit_nr() # Snippet here to create and upload the CCL instructions CCL = self.instr_CC.get_instr() if mode == 'pulsed_marked': p = sqo.pulsed_spec_seq_marked( qubit_idx=self.cfg_qubit_nr(), spec_pulse_length=self.spec_pulse_length(), platf_cfg=self.cfg_openql_platform_fn(), trigger_idx=trigger_idx) else: p = sqo.pulsed_spec_seq( qubit_idx=self.cfg_qubit_nr(), spec_pulse_length=self.spec_pulse_length(), platf_cfg=self.cfg_openql_platform_fn()) CCL.eqasm_program(p.filename) # CCL gets started in the int_avg detector if 'ivvi' in self.instr_FluxCtrl().lower(): IVVI = self.instr_FluxCtrl.get_instr() if fluxChan is None: dac_par = IVVI.parameters['dac{}'.format(self.fl_dc_ch())] else: dac_par = IVVI.parameters[fluxChan] else: # Assume the flux is controlled using an SPI rack fluxcontrol = self.instr_FluxCtrl.get_instr() if fluxChan == None: dac_par = fluxcontrol.parameters[(self.fl_dc_ch())] else: dac_par = fluxcontrol.parameters[(fluxChan)] if mode == 'pulsed_mixer': spec_source = self.instr_spec_source_2.get_instr() spec_source.on() else: spec_source = self.instr_spec_source.get_instr() spec_source.on() # if mode == 'pulsed_marked': # spec_source.pulsemod_state('On') MC.set_sweep_function(spec_source.frequency) MC.set_sweep_points(freqs) if nested_resonator_calibration: res_updating_dac_par = swf.Nested_resonator_tracker( qubit=self, nested_MC=self.instr_nested_MC.get_instr(), freqs=resonator_freqs, par=dac_par, use_min=nested_resonator_calibration_use_min, reload_sequence=True, sequence_file=p, cc=CCL) MC.set_sweep_function_2D(res_updating_dac_par) else: MC.set_sweep_function_2D(dac_par) MC.set_sweep_points_2D(dac_values) self.int_avg_det_single._set_real_imag(False) self.int_avg_det_single.always_prepare = True MC.set_detector_function(self.int_avg_det_single) MC.run(name='Qubit_dac_scan'+self.msmt_suffix, mode='2D') if analyze: return ma.TwoD_Analysis(label='Qubit_dac_scan', close_fig=close_fig) def measure_spectroscopy_CW(self, freqs, MC=None, analyze=True, close_fig=True, label='', prepare_for_continuous_wave=True): """ Does a CW spectroscopy experiment by sweeping the frequency of a microwave source. Relevant qubit parameters: instr_spec_source (RohdeSchwarz_SGS100A): instrument used to apply CW excitation spec_pow (float): power of the MW excitation at the output of the spec_source (dBm) label (str): suffix to append to the measurement label """ UHFQC = self.instr_acquisition.get_instr() if prepare_for_continuous_wave: self.prepare_for_continuous_wave() if MC is None: MC = self.instr_MC.get_instr() # Starting specmode if set in config if self.cfg_spec_mode(): UHFQC.spec_mode_on(IF=self.ro_freq_mod(), ro_amp=self.ro_pulse_amp_CW()) # Snippet here to create and upload the CCL instructions CCL = self.instr_CC.get_instr() p = sqo.pulsed_spec_seq( qubit_idx=self.cfg_qubit_nr(), spec_pulse_length=self.spec_pulse_length(), platf_cfg=self.cfg_openql_platform_fn()) CCL.eqasm_program(p.filename) # CCL gets started in the int_avg detector spec_source = self.instr_spec_source.get_instr() spec_source.on() # Set marker mode off for CW: if not spec_source.get_idn()['model']=='E8257D': spec_source.pulsemod_state('Off') MC.set_sweep_function(spec_source.frequency) MC.set_sweep_points(freqs) if self.cfg_spec_mode(): print('Enter loop') MC.set_detector_function(self.UHFQC_spec_det) else: self.int_avg_det_single._set_real_imag(False) MC.set_detector_function(self.int_avg_det_single) MC.run(name='CW_spectroscopy'+self.msmt_suffix+label) # Stopping specmode if self.cfg_spec_mode(): UHFQC.spec_mode_off() self._prep_ro_pulse(upload=True) if analyze: ma.Homodyne_Analysis(label=self.msmt_suffix, close_fig=close_fig) def measure_spectroscopy_pulsed_marked(self, freqs, MC=None, analyze=True, close_fig=True, label='', prepare_for_continuous_wave=True, trigger_idx = None): """ Performs a spectroscopy experiment by triggering the spectroscopy source with a CCLight trigger. TODO: set the """ UHFQC = self.instr_acquisition.get_instr() if prepare_for_continuous_wave: self.prepare_for_continuous_wave() if MC is None: MC = self.instr_MC.get_instr() # Starting specmode if set in config if self.cfg_spec_mode(): UHFQC.spec_mode_on(IF=self.ro_freq_mod(), ro_amp=self.ro_pulse_amp_CW()) wait_time_ns = self.spec_wait_time()*1e9 if trigger_idx is None: trigger_idx = self.cfg_qubit_nr() # Snippet here to create and upload the CCL instructions CCL = self.instr_CC.get_instr() p = sqo.pulsed_spec_seq_marked( qubit_idx=self.cfg_qubit_nr(), spec_pulse_length=self.spec_pulse_length(), platf_cfg=self.cfg_openql_platform_fn(), cc=self.instr_CC(), trigger_idx=trigger_idx if (CCL.name.upper() == 'CCL' or CCL.name.upper() == 'CC') else 15, wait_time_ns=wait_time_ns) CCL.eqasm_program(p.filename) # CCL gets started in the int_avg detector spec_source = self.instr_spec_source.get_instr() spec_source.on() # Set marker mode off for CW: spec_source.pulsemod_state('On') MC.set_sweep_function(spec_source.frequency) MC.set_sweep_points(freqs) if self.cfg_spec_mode(): MC.set_detector_function(self.UHFQC_spec_det) else: self.int_avg_det_single._set_real_imag(False) MC.set_detector_function(self.int_avg_det_single) MC.run(name='pulsed_marker_spectroscopy'+self.msmt_suffix+label) # Stopping specmode if self.cfg_spec_mode(): UHFQC.spec_mode_off() self._prep_ro_pulse(upload=True) if analyze: ma.Qubit_Spectroscopy_Analysis(label=self.msmt_suffix, close_fig=close_fig, qb_name=self.name) def measure_spectroscopy_pulsed_mixer(self, freqs, MC=None, analyze=True, close_fig=True, label='', prepare_for_timedomain=True): """ Performs pulsed spectroscopy by modulating a cw pulse with a square which is generated by an AWG. Uses the self.mw_LO as spec source, as that usually is the LO of the AWG/QWG mixer. Is considered as a time domain experiment as it utilizes the AWG Relevant parameters: spec_pow (float): power of the LO fed into the mixer spec_amp (float): amplitude of the square waveform used to generate microwave tone spec_pulse_length (float): length of the spectroscopy pulse. The length is controlled by the qisa file, which indicates how many 20 ns long square pulses should be triggered back-to-back """ UHFQC = self.instr_acquisition.get_instr() if MC is None: MC = self.instr_MC.get_instr() # Starting specmode if set in config if self.cfg_spec_mode(): UHFQC.spec_mode_on(IF=self.ro_freq_mod(), ro_amp=self.ro_pulse_amp_CW()) # Save current value of mw_channel_amp to make this measurement # independent of the value. old_channel_amp = self.mw_channel_amp() self.mw_channel_amp(1) if prepare_for_timedomain: self.prepare_for_timedomain() # Snippet here to create and upload the CCL instructions CCL = self.instr_CC.get_instr() p = sqo.pulsed_spec_seq( qubit_idx=self.cfg_qubit_nr(), spec_pulse_length=self.spec_pulse_length(), platf_cfg=self.cfg_openql_platform_fn()) CCL.eqasm_program(p.filename) # CCL gets started in the int_avg detector spec_source = self.instr_spec_source_2.get_instr() # spec_source.on() # Set marker mode off for mixer CW: MC.set_sweep_function(spec_source.frequency) MC.set_sweep_points(freqs) if self.cfg_spec_mode(): print('Enter loop') MC.set_detector_function(self.UHFQC_spec_det) else: self.int_avg_det_single._set_real_imag(False) MC.set_detector_function(self.int_avg_det_single) # d = self.int_avg_det # MC.set_detector_function(d) MC.run(name='pulsed_mixer_spectroscopy'+self.msmt_suffix+label) self.mw_channel_amp(old_channel_amp) # Stopping specmode if self.cfg_spec_mode(): UHFQC.spec_mode_off() self._prep_ro_pulse(upload=True) if analyze: ma.Qubit_Spectroscopy_Analysis(label=self.msmt_suffix, close_fig=close_fig, qb_name=self.name) def measure_anharmonicity(self, freqs_01=None, freqs_12=None, f_01_power=None, f_12_power=None, MC=None, spec_source_2=None, mode='pulsed_marked',step_size:int= 1e6): """ Measures the qubit spectroscopy as a function of frequency of the two driving tones. The qubit transitions are observed when frequency of one drive matches the qubit frequency, or when sum of frequencies matches energy difference between ground and second excited state. Consequently frequency of 01 and 12 transitions can be extracted simultaneously yoielding anharmonicity measurement. Typically a good guess for the 12 transition frequencies is f01 + alpha where alpha is the anharmonicity and typically ~ -300 MHz Args: freqs_01: frequencies of the first qubit drive freqs_12: frequencies of the second qubit drive f_01_power: power of the first qubit drive. By default the power is set to self.spec_pow f_12_power: power of the second qubit drive. By default the power is set to self.spec_pow. Likely it needs to be increased by 10-20 dB to yield meaningful result spec_source_2: instrument used to apply second MW drive. By default instrument specified by self.instr_spec_source_2 is used mode (str): if pulsed_marked uses pulsed spectroscopy sequence assuming that the sources are pulsed using a marker. Otherwise, uses CW spectroscopy. """ # f_anharmonicity = np.mean(freqs_01) - np.mean(freqs_12) # if f_01_power == None: # f_01_power = self.spec_pow() # if f_12_power == None: # f_12_power = f_01_power+20 if freqs_01 is None: freqs_01 = self.freq_qubit()+np.arange(-20e6, 20.1e6, step_size) if freqs_12 is None: freqs_12 = self.freq_qubit() + self.anharmonicity() + \ np.arange(-20e6, 20.1e6, 1e6) f_anharmonicity = np.mean(freqs_01) - np.mean(freqs_12) if f_01_power == None: f_01_power = self.spec_pow() if f_12_power == None: f_12_power = f_01_power+5 print('f_anharmonicity estimation', f_anharmonicity) print('f_12 estimations', np.mean(freqs_12)) CCL = self.instr_CC.get_instr() if mode == 'pulsed_marked': p = sqo.pulsed_spec_seq_marked( qubit_idx=self.cfg_qubit_nr(), spec_pulse_length=self.spec_pulse_length(), platf_cfg=self.cfg_openql_platform_fn(), trigger_idx=0, trigger_idx_2=9) else: p = sqo.pulsed_spec_seq( qubit_idx=self.cfg_qubit_nr(), spec_pulse_length=self.spec_pulse_length(), platf_cfg=self.cfg_openql_platform_fn()) CCL.eqasm_program(p.filename) if MC is None: MC = self.instr_MC.get_instr() if spec_source_2 is None: spec_source_2 = self.instr_spec_source_2.get_instr() spec_source = self.instr_spec_source.get_instr() self.prepare_for_continuous_wave() self.int_avg_det_single._set_real_imag(False) spec_source.on() if mode == 'pulsed_marked': spec_source.pulsemod_state('On') else: spec_source.pulsemod_state('Off') spec_source.power(f_01_power) spec_source_2.on() if mode == 'pulsed_marked': spec_source_2.pulsemod_state('On') else: spec_source_2.pulsemod_state('Off') spec_source_2.power(f_12_power) MC.set_sweep_function(wrap_par_to_swf( spec_source.frequency, retrieve_value=True)) MC.set_sweep_points(freqs_01) MC.set_sweep_function_2D(wrap_par_to_swf( spec_source_2.frequency, retrieve_value=True)) MC.set_sweep_points_2D(freqs_12) MC.set_detector_function(self.int_avg_det_single) MC.run_2D(name='Two_tone_'+self.msmt_suffix) ma.TwoD_Analysis(auto=True) spec_source.off() spec_source_2.off() ma.Three_Tone_Spectroscopy_Analysis( label='Two_tone', f01=np.mean(freqs_01), f12=np.mean(freqs_12)) def measure_anharmonicity_GBT(self, freqs_01=None, freqs_12=None, f_01_power=None, f_12_power=None, MC=None, spec_source_2=None, mode='pulsed_marked'): """ Measures the qubit spectroscopy as a function of frequency of the two driving tones. The qubit transitions are observed when frequency of one drive matches the qubit frequency, or when sum of frequencies matches energy difference between ground and second excited state. Consequently frequency of 01 and 12 transitions can be extracted simultaneously yoielding anharmonicity measurement. Typically a good guess for the 12 transition frequencies is f01 + alpha where alpha is the anharmonicity and typically ~ -300 MHz Args: freqs_01: frequencies of the first qubit drive freqs_12: frequencies of the second qubit drive f_01_power: power of the first qubit drive. By default the power is set to self.spec_pow f_12_power: power of the second qubit drive. By default the power is set to self.spec_pow. Likely it needs to be increased by 10-20 dB to yield meaningful result spec_source_2: instrument used to apply second MW drive. By default instrument specified by self.instr_spec_source_2 is used mode (str): if pulsed_marked uses pulsed spectroscopy sequence assuming that the sources are pulsed using a marker. Otherwise, uses CW spectroscopy. """ if freqs_01 is None: freqs_01 = self.freq_qubit()+np.arange(-30e6, 30.1e6, 0.5e6) if freqs_12 is None: freqs_12 = self.freq_qubit() + self.anharmonicity() + \ np.arange(-30e6, 30.1e6, 0.5e6) f_anharmonicity = np.mean(freqs_01) - np.mean(freqs_12) if f_01_power == None: f_01_power = self.spec_pow() if f_12_power == None: f_12_power = f_01_power+20 print('f_anharmonicity estimation', f_anharmonicity) print('f_12 estimations', np.mean(freqs_12)) CCL = self.instr_CC.get_instr() p = sqo.pulsed_spec_seq_marked( qubit_idx=self.cfg_qubit_nr(), spec_pulse_length=self.spec_pulse_length(), platf_cfg=self.cfg_openql_platform_fn(), trigger_idx=0) CCL.eqasm_program(p.filename) if MC is None: MC = self.instr_MC.get_instr() if spec_source_2 is None: spec_source_2 = self.instr_spec_source_2.get_instr() spec_source = self.instr_spec_source.get_instr() old_spec_pow = self.spec_pow() self.prepare_for_continuous_wave() self.int_avg_det_single._set_real_imag(False) spec_source.on() if mode == 'pulsed_marked': spec_source.pulsemod_state('On') else: spec_source.pulsemod_state('Off') spec_source.power(f_01_power) spec_source_2.on() if mode == 'pulsed_marked': spec_source_2.pulsemod_state('On') else: spec_source_2.pulsemod_state('Off') spec_source_2.power(f_12_power) MC.set_sweep_function(wrap_par_to_swf( spec_source.frequency, retrieve_value=True)) MC.set_sweep_points(freqs_01) MC.set_sweep_function_2D(wrap_par_to_swf( spec_source_2.frequency, retrieve_value=True)) MC.set_sweep_points_2D(freqs_12) MC.set_detector_function(self.int_avg_det_single) MC.run_2D(name='Two_tone_'+self.msmt_suffix) ma.TwoD_Analysis(auto=True) spec_source.off() spec_source_2.off() self.spec_pow(old_spec_pow) # if analyze: # a = ma.Three_Tone_Spectroscopy_Analysis(label='Two_tone', f01=np.mean(freqs_01), f12=np.mean(freqs_12)) # if update: # self.anharmonicity(a.anharm) # return a.T1 ma_obj = ma.Three_Tone_Spectroscopy_Analysis_test( label='Two_tone', f01=np.mean(freqs_01), f12=np.mean(freqs_12)) rel_change = (abs(self.anharmonicity()) - ma_obj.Anharm_dict['anharmonicity'])/self.anharmonicity() threshold_for_change = 0.1 if np.abs(rel_change) > threshold_for_change: return False else: return True def measure_photon_nr_splitting_from_bus(self, f_bus, freqs_01=None, powers=np.arange(-10, 10, 1), MC=None, spec_source_2=None): """ Measures photon splitting of the qubit due to photons in the bus resonators. Specifically it is a CW qubit pectroscopy with the second variable-power CW tone applied at frequency f_bus. Refs: Schuster Nature 445, 515–518 (2007) (note that in the paper RO resonator has lower frequency than the qubit) Args: f_bus: bus frequency at which variable-power CW tone is applied freqs_01: range of frequencies of the CW qubit MW drive. If not specified range -60 MHz to +5 MHz around freq_qubit fill be used. powers: sweeped powers of the bus CW drive. spec_source_2: sepcifies instrument used to apply bus MW drive. By default instr_spec_source_2 is used. """ if freqs_01 is None: freqs_01 = np.arange(self.freq_qubit()-60e6, self.freq_qubit()+5e6, 0.7e6) self.prepare_for_continuous_wave() if MC is None: MC = self.instr_MC.get_instr() CCL = self.instr_CC.get_instr() if spec_source_2 is None: spec_source_2 = self.instr_spec_source_2.get_instr() spec_source = self.instr_spec_source.get_instr() p = sqo.pulsed_spec_seq( qubit_idx=self.cfg_qubit_nr(), spec_pulse_length=self.spec_pulse_length(), platf_cfg=self.cfg_openql_platform_fn()) CCL.eqasm_program(p.filename) self.int_avg_det_single._set_real_imag(False) spec_source.on() spec_source.power(self.spec_pow()) spec_source_2.on() spec_source_2.frequency(f_bus) MC.set_sweep_function(wrap_par_to_swf( spec_source.frequency, retrieve_value=True)) MC.set_sweep_points(freqs_01) MC.set_sweep_function_2D(wrap_par_to_swf( spec_source_2.power, retrieve_value=True)) MC.set_sweep_points_2D(powers) MC.set_detector_function(self.int_avg_det_single) MC.run_2D(name='Photon_nr_splitting'+self.msmt_suffix) ma.TwoD_Analysis(auto=True) spec_source.off() spec_source_2.off() def measure_ssro_vs_frequency_amplitude( self, freqs=None, amps_rel=np.linspace(0, 1, 11), nr_shots=4092*4, nested_MC=None, analyze=True, use_optimal_weights=False, label='SSRO_freq_amp_sweep'): """ Measures SNR and readout fidelities as a function of the readout pulse amplitude and frequency. Resonator depletion pulses are automatically scaled. Weights are not optimized - routine is intended to be used with SSB weights. Args: freqs (array): readout freqencies to loop over amps_rel (array): readout pulse amplitudes to loop over. Value of 1 indicates amplitude currently specified in the qubit object. nr_shots (int): total number of measurements in qubit ground and excited state """ warnings.warn('FIXME: Does not make use of the SSRO detector') if nested_MC is None: nested_MC = self.instr_nested_MC.get_instr() if freqs is None: freqs = np.linspace(self.ro_freq()-4e6, self.ro_freq()+2e6, 11) self.prepare_for_timedomain() RO_lutman = self.instr_LutMan_RO.get_instr() old_ro_prepare_state = self.cfg_prepare_ro_awg() self.ro_acq_digitized(False) self.cfg_prepare_ro_awg(False) sweep_function = swf.lutman_par_depletion_pulse_global_scaling( LutMan=RO_lutman, resonator_numbers=[self.cfg_qubit_nr()], optimization_M_amps=[self.ro_pulse_amp()], optimization_M_amp_down0s=[self.ro_pulse_down_amp0()], optimization_M_amp_down1s=[self.ro_pulse_down_amp1()], upload=True ) def measure_ssro_vs_TWPA_frequency_power( self, pump_source, freqs, powers, nr_shots=4092*4, nested_MC=None, analyze=True): """ Measures the SNR and readout fidelities as a function of the TWPA pump frequency and power. Args: pump_source (RohdeSchwarz_SGS100A): object controlling the MW source serving as TWPA pump freqs (array): TWPA pump frequencies to sweep over powers (array): list of TWPA pump powers to sweep over nr_shots (int): number of single-shot measurements used to estimate SNR and redout fidelities """ warnings.warn('FIXME: Does not make use of the SSRO detector') if nested_MC is None: nested_MC = self.instr_nested_MC.get_instr() self.prepare_for_timedomain() RO_lutman = self.instr_LutMan_RO.get_instr() old_ro_prepare_state = self.cfg_prepare_ro_awg() self.ro_acq_digitized(False) self.cfg_prepare_ro_awg(False) d = det.Function_Detector( self.measure_ssro, msmt_kw={ 'nr_shots': nr_shots, 'analyze': True, 'SNR_detector': True, 'cal_residual_excitation': True, 'prepare': False, 'disable_metadata': True }, result_keys=['SNR', 'F_d', 'F_a'] ) nested_MC.set_sweep_function(pump_source.frequency) nested_MC.set_sweep_points(freqs) nested_MC.set_detector_function(d) nested_MC.set_sweep_function_2D(pump_source.power) nested_MC.set_sweep_points_2D(powers) label = 'SSRO_freq_amp_sweep' + self.msmt_suffix nested_MC.run(label, mode='2D') self.cfg_prepare_ro_awg(old_ro_prepare_state) if analyze: ma.TwoD_Analysis(label=label, plot_all=True, auto=True) def measure_ssro_vs_pulse_length(self, lengths=np.arange(100e-9, 1501e-9, 100e-9), nr_shots=4092*4, nested_MC=None, analyze=True, label_suffix: str = ''): """ Measures the SNR and readout fidelities as a function of the duration of the readout pulse. For each pulse duration transients are measured and optimal weights calculated. Args: lengths (array): durations of the readout pulse for which SNR is measured nr_shots (int): number of single-shot measurements used to estimate SNR and redout fidelities """ warnings.warn('FIXME: Does not make use of the SSRO detector') if nested_MC is None: nested_MC = self.instr_nested_MC.get_instr() self.ro_acq_digitized(False) self.prepare_for_timedomain() RO_lutman = self.instr_LutMan_RO.get_instr() sweep_function = swf.lutman_par_UHFQC_dig_trig( LutMan=RO_lutman, LutMan_parameter=RO_lutman['M_length_R{}'.format( self.cfg_qubit_nr())] ) d = det.Function_Detector( self.calibrate_optimal_weights, msmt_kw={ 'analyze': True, }, result_keys=['SNR', 'F_d', 'F_a', 'relaxation', 'excitation'] ) # nested_MC.set_sweep_function(sweep_function) nested_MC.set_sweep_function(self.ro_pulse_length) nested_MC.set_sweep_points(lengths) nested_MC.set_detector_function(d) label = 'SSRO_length_sweep' + self.msmt_suffix + label_suffix nested_MC.run(label) if analyze: ma.MeasurementAnalysis(label=label, plot_all=False, auto=True) def measure_transients_CCL_switched(self, MC=None, analyze: bool = True, cases=('off', 'on'), prepare: bool = True, depletion_analysis: bool = True, depletion_analysis_plot: bool = True, depletion_optimization_window=None): # docstring from parent class if MC is None: MC = self.instr_MC.get_instr() self.prepare_for_timedomain() # off/on switching is achieved by turning the MW source on and # off as this is much faster than recompiling/uploading transients = [] for i, pulse_comb in enumerate(cases): p = sqo.off_on( qubit_idx=self.cfg_qubit_nr(), pulse_comb=pulse_comb, initialize=False, platf_cfg=self.cfg_openql_platform_fn()) self.instr_CC.get_instr().eqasm_program(p.filename) s = swf.OpenQL_Sweep(openql_program=p, CCL=self.instr_CC.get_instr(), parameter_name='Transient time', unit='s', upload=prepare) MC.set_sweep_function(s) if 'UHFQC' in self.instr_acquisition(): sampling_rate = 1.8e9 else: raise NotImplementedError() MC.set_sweep_points( np.arange(self.input_average_detector.nr_samples) / sampling_rate) MC.set_detector_function(self.input_average_detector) data = MC.run( 'Measure_transients{}_{}'.format(self.msmt_suffix, i)) dset = data['dset'] transients.append(dset.T[1:]) if analyze: ma.MeasurementAnalysis() if depletion_analysis: a = ma.Input_average_analysis( IF=self.ro_freq_mod(), optimization_window=depletion_optimization_window, plot=depletion_analysis_plot) return a else: return [np.array(t, dtype=np.float64) for t in transients] def measure_dispersive_shift_pulsed(self, freqs=None, MC=None, analyze: bool = True, prepare: bool = True): """ Measures the RO resonator spectroscopy with the qubit in ground and excited state. Specifically, performs two experiments. Applies sequence: - initialize qubit in ground state ( wait) - (only in the second experiment) apply a (previously tuned up) pi pulse - apply readout pulse and measure This sequence is repeated while sweeping ro_freq. Args: freqs (array): sweeped range of ro_freq """ # docstring from parent class if MC is None: MC = self.instr_MC.get_instr() if freqs is None: if self.freq_res() is None: raise ValueError( "Qubit has no resonator frequency.\ \nUpdate freq_res parameter.") else: freqs = self.freq_res()+np.arange(-10e6, 5e6, .1e6) if 'optimal' in self.ro_acq_weight_type(): raise NotImplementedError( "Change readout demodulation to SSB.") self.prepare_for_timedomain() # off/on switching is achieved by turning the MW source on and # off as this is much faster than recompiling/uploading f_res = [] for i, pulse_comb in enumerate(['off', 'on']): p = sqo.off_on( qubit_idx=self.cfg_qubit_nr(), pulse_comb=pulse_comb, initialize=False, platf_cfg=self.cfg_openql_platform_fn()) self.instr_CC.get_instr().eqasm_program(p.filename) # CCL gets started in the int_avg detector MC.set_sweep_function(swf.Heterodyne_Frequency_Sweep_simple( MW_LO_source=self.instr_LO_ro.get_instr(), IF=self.ro_freq_mod())) MC.set_sweep_points(freqs) self.int_avg_det_single._set_real_imag(False) MC.set_detector_function(self.int_avg_det_single) MC.run(name='Resonator_scan_'+pulse_comb+self.msmt_suffix) if analyze: ma.MeasurementAnalysis() a = ma.Homodyne_Analysis( label=self.msmt_suffix, close_fig=True) # fit converts to Hz f_res.append(a.fit_results.params['f0'].value*1e9) if analyze: a = ma2.Dispersive_shift_Analysis() self.dispersive_shift(a.qoi['dispersive_shift']) # Dispersive shift from 'hanger' fit #print('dispersive shift is {} MHz'.format((f_res[1]-f_res[0])*1e-6)) # Dispersive shift from peak finder print('dispersive shift is {} MHz'.format( a.qoi['dispersive_shift']*1e-6)) return True def measure_error_fraction(self, MC=None, analyze: bool = True, nr_shots: int = 2048*4, sequence_type='echo', prepare: bool = True, feedback=False, depletion_time=None, net_gate='pi'): """ This performs a multiround experiment, the repetition rate is defined by the ro_duration which can be changed by regenerating the configuration file. The analysis counts single errors. The definition of an error is adapted automatically by choosing feedback or the net_gate. it requires high SNR single shot readout and a calibrated threshold. """ self.ro_acq_digitized(True) if MC is None: MC = self.instr_MC.get_instr() # plotting really slows down SSRO (16k shots plotting is slow) old_plot_setting = MC.live_plot_enabled() MC.live_plot_enabled(False) MC.soft_avg(1) # don't want to average single shots if prepare: self.prepare_for_timedomain() # off/on switching is achieved by turning the MW source on and # off as this is much faster than recompiling/uploading p = sqo.RTE( qubit_idx=self.cfg_qubit_nr(), sequence_type=sequence_type, platf_cfg=self.cfg_openql_platform_fn(), net_gate=net_gate, feedback=feedback) self.instr_CC.get_instr().eqasm_program(p.filename) else: p = None # object needs to exist for the openql_sweep to work s = swf.OpenQL_Sweep(openql_program=p, CCL=self.instr_CC.get_instr(), parameter_name='shot nr', unit='#', upload=prepare) MC.set_sweep_function(s) MC.set_sweep_points(np.arange(nr_shots)) d = self.int_log_det MC.set_detector_function(d) exp_metadata = {'feedback': feedback, 'sequence_type': sequence_type, 'depletion_time': depletion_time, 'net_gate': net_gate} suffix = 'depletion_time_{}_ro_pulse_{}_feedback_{}_net_gate_{}'.format( depletion_time, self.ro_pulse_type(), feedback, net_gate) MC.run( 'RTE_{}_{}'.format(self.msmt_suffix, suffix), exp_metadata=exp_metadata) MC.live_plot_enabled(old_plot_setting) if analyze: a = ma2.Single_Qubit_RoundsToEvent_Analysis( t_start=None, t_stop=None, options_dict={'typ_data_idx': 0, 'scan_label': 'RTE'}, extract_only=True) return {'error fraction': a.proc_data_dict['frac_single']} def measure_msmt_induced_dephasing(self, MC=None, sequence='ramsey', label: str = '', verbose: bool = True, analyze: bool = True, close_fig: bool = True, update: bool = True, cross_target_qubits: list = None, multi_qubit_platf_cfg=None, target_qubit_excited=False, extra_echo=False): # docstring from parent class # Refs: # Schuster PRL 94, 123602 (2005) # Gambetta PRA 74, 042318 (2006) if MC is None: MC = self.instr_MC.get_instr() if cross_target_qubits is None: platf_cfg = self.cfg_openql_platform_fn() else: platf_cfg = multi_qubit_platf_cfg self.prepare_for_timedomain() self.instr_LutMan_MW.get_instr().load_phase_pulses_to_AWG_lookuptable() if cross_target_qubits is None: qubits = [self.cfg_qubit_nr()] else: qubits = [] for cross_target_qubit in cross_target_qubits: qubits.append(cross_target_qubit.cfg_qubit_nr()) qubits.append(self.cfg_qubit_nr()) # angles = np.arange(0, 421, 20) angles = np.concatenate( [np.arange(0, 101, 20),
np.arange(140, 421, 20)
numpy.arange
#!/usr/bin/env python3 import os import io import sys import re import numpy as np from collections import OrderedDict # # ----------- Type Registry ----------- # from ..conversion import convert_dims, convert_device, convert_dtype _read_functions = {} _write_functions = {} def is_list(x): if isinstance(x, list) or isinstance(x, tuple): return True return False def register_read_function(ext, func, type=""): global _read_functions if is_list(ext): for ent in ext: register_read_function(ent, func, type) else: _read_functions[ext] = (type, func) def register_write_function(ext, func, type=""): global _write_functions if is_list(ext): for ent in ext: register_write_function(ent, func, type) else: _write_functions[ext] = (type, func) # Memory filesystems _filesystems = [] def register_file_system(filesystem): global _filesystems if filesystem not in _filesystems: _filesystems.append(filesystem) def unregister_file_system(filesystem): global _filesystems if filesystem in _filesystems: _filesystems.remove(filesystem) def _open(filename, mode): global _filesystems if 'w' in mode: for fs in _filesystems: if fs.includes(filename): if 'a' in mode: raise NotImplementedError if 'b' in mode: data = io.BytesIO() else: data = io.StringIO() data.close = lambda: None fs[filename] = data return data if 'r' in mode: for fs in _filesystems: if fs.includes(filename): if 'b' in mode: data = io.BytesIO(fs[filename]) else: data = io.StringIO(fs[filename]) return data return open(filename, mode) def _open_file_for_reading(filename, binary=True): global _filesystems for fs in _filesystems: if fs.includes(filename): data = fs[filename] return io.BytesIO(data) return open(filename, "r" if not binary else "rb") def _write_file(filename, data, binary=True): global _filesystems for fs in _filesystems: if fs.includes(filename): fs[filename] = data return open(filename, "w" if not binary else "wb").write(data) def _is_filesystem_file(filename): global _filesystems for fs in _filesystems: if fs.includes(filename): return True return False def mkdirs(path): global _filesystems for fs in _filesystems: if fs.includes(path): fs.mkdir(path) return from pathlib import Path Path(path).mkdir(parents=True, exist_ok=True) return path def exists(filename): global _filesystems for fs in _filesystems: if filename in fs: return True return os.path.exists(filename) # # ----------- Proxy Functions ----------- # def read(file, *args, **kwargs): global _read_functions from .file import File # Make sure file is a file file = File(file) # Get extension ext = file.extension() if ext not in _read_functions: raise Exception(f"Don't know how to read extension '{ext}'") # Get type and function type, func = _read_functions[ext] # Process arguments for specific type if "image" in type: alpha = kwargs.pop("alpha", None) if "data" in type: dtype = kwargs.pop("dtype", None) dims = kwargs.pop("dims", "hwc") device = kwargs.pop("device", "numpy") # Low-level read value = func(file.abs().str(), *args, **kwargs) # Post-process if "image" in type: # Ensure we have three dimensions (hwc) if len(value.shape) == 2: value = np.expand_dims(value, 2) # Correct the alpha channel if alpha=True or alpha=False is given if alpha is True: if value.shape[2] == 1: value = np.concatenate((value, np.ones(value.shape, dtype=value.dtype)), axis=2) if value.shape[2] == 3: value = np.concatenate((value, np.ones((value.shape[0], value.shape[1], 1), dtype=value.dtype)), axis=2) if alpha is False: if value.shape[2] == 2: value = value[:, :, 0:1] if value.shape[2] == 4: value = value[:, :, 0:3] if "data" in type: value = convert_dtype(value, dtype) value = convert_dims(value, "hwc", dims) value = convert_device(value, device) return value def write(file, data, *args, **kwargs): global _write_functions from .file import File # Make sure file is a file file = File(file) ext = file.extension() if ext is None: ext='txt' # If we don't have an extension, we assume a text file if ext not in _write_functions: raise Exception(f"Don't know how to write extension '{ext}'") type, func = _write_functions[ext] if "data" in type: data = convert_device(data, "numpy") if "dims" in kwargs: dims = kwargs.pop("dims") data = convert_dims(data, dims, "hwc") value = func(file.abs().str(), data, *args, **kwargs) return value # # ----------- Pickle (.p) ----------- # def read_pickle(filename): f = _open_file_for_reading(filename) import pickle return pickle.load(f) register_read_function('p', read_pickle) def write_pickle(filename, data): f = io.BytesIO() import pickle pickle.dump(data, f) _write_file(filename, f.getvalue()) register_write_function('p', write_pickle) # # ----------- Numpy (.np, .npy) ----------- # def read_numpy(filename): f = _open_file_for_reading(filename) return
np.load(f, allow_pickle=True)
numpy.load
#------------------------------------------------------------------------------- # # Spherical Harmonic Coefficients. # # Author: <NAME> <<EMAIL>> # #------------------------------------------------------------------------------- # Copyright (C) 2018 EOX IT Services GmbH # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies of this Software or works derived from this Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. #------------------------------------------------------------------------------- # pylint: disable=too-few-public-methods,abstract-method from numpy import ( inf, array, zeros, dot, digitize, argsort, abs as aabs, stack, ) from ..time_util import decimal_year_to_mjd2000, mjd2000_to_decimal_year class SHCoefficients(object): """ Abstract base class for the spherical harmonic coefficients. """ def __init__(self, is_internal=True, **kwargs): self.is_internal = is_internal self.validity = self._get_converted_validity(**kwargs) @staticmethod def _get_converted_validity(validity_start=None, validity_end=None, to_mjd2000=None, **_): """ Get validity range converted to MJD2000 using the optionally provided conversion function. """ def _get_converted_value_or_default(value, default, conversion_function): if value is None: value = default if conversion_function is not None: value = conversion_function(value) return value return ( _get_converted_value_or_default(validity_start, -inf, to_mjd2000), _get_converted_value_or_default(validity_end, +inf, to_mjd2000), ) def is_valid(self, time): """ Check if the time is within the coefficients validity range. """ validity_start, validity_end = self.validity return (validity_start <= time) & (time <= validity_end) @property def degree(self): """ Get [maximum] model degree. """ raise NotImplementedError @property def min_degree(self): """ Get minimum model degree. Below this degree all model coefficients are zero. """ raise NotImplementedError def __call__(self, time, **parameters): """ Return the matrix of the full model coefficients. """ raise NotImplementedError class CombinedSHCoefficients(SHCoefficients): """ Model composed of multiple coefficient sets. """ def __init__(self, *items): if len(items) < 1: raise ValueError( "The composed model must be composed from at least one " "coefficient set." ) item = items[0] is_internal = item.is_internal validity_start, validity_end = item.validity degree = item.degree min_degree = item.min_degree for item in items[1:]: if is_internal != item.is_internal: raise ValueError( "Mixing of external and internal coefficient sets!" ) new_start, new_end = item.validity validity_start = max(validity_start, new_start) validity_end = min(validity_end, new_end) degree = max(degree, item.degree) min_degree = min(min_degree, item.min_degree) SHCoefficients. __init__( self, is_internal=is_internal, validity_start=validity_start, validity_end=validity_end, ) self._degree = degree self._min_degree = min_degree self._items = items @property def degree(self): return self._degree @property def min_degree(self): return self._min_degree def __call__(self, time, **parameters): max_degree = parameters.get("max_degree", -1) degree = self.degree if max_degree < 0 else min(self.degree, max_degree) coeff_full = zeros((coeff_size(degree), 2)) for item in self._items: item_coeff, item_degree = item(time, **parameters) coeff_full[:coeff_size(item_degree), :] += item_coeff return coeff_full, degree class SparseSHCoefficients(SHCoefficients): """ Base class for sparse spherical harmonic coefficients. """ def __init__(self, indices, coefficients, **kwargs): SHCoefficients.__init__(self, **kwargs) n_idx, m_idx = indices[..., 0], indices[..., 1] self._degree = n_idx.max() self._min_degree = n_idx.min() self._index = stack(( aabs(m_idx) + (n_idx*(n_idx + 1))//2, (m_idx < 0).astype('int'), n_idx, ), 1) self._coeff = coefficients @property def degree(self): return self._degree @property def min_degree(self): return self._min_degree def _subset(self, min_degree, max_degree): """ Get subset of the coefficients for the give min. and max. degrees. """ default_max_degree = self._degree default_min_degree = self._min_degree #degree = self._degree index = self._index coeff = self._coeff if max_degree < 0: max_degree = default_max_degree if min_degree < 0: min_degree = default_min_degree if min_degree > default_min_degree or max_degree < default_max_degree: idx, = ( (index[:, 2] <= max_degree) & (index[:, 2] >= min_degree) ).nonzero() coeff = coeff[idx] index = index[idx] degree = default_max_degree if index.shape[0] > 0: degree = index[:, 2].max() else: degree = 0 else: degree = default_max_degree return degree, coeff, index[:, 0], index[:, 1] class SparseSHCoefficientsConstant(SparseSHCoefficients): """ Time invariant sparse spherical harmonic coefficients. """ def __init__(self, indices, coefficients, **kwargs): SparseSHCoefficients.__init__(self, indices, coefficients, **kwargs) def __call__(self, time, **parameters): degree, coeff, index, kind = self._subset( parameters.get("min_degree", -1), parameters.get("max_degree", -1) ) coeff_full = zeros((coeff_size(degree), 2)) coeff_full[index, kind] = coeff return coeff_full, degree class SparseSHCoefficientsTimeDependent(SparseSHCoefficients): """ Time dependent sparse spherical harmonic coefficients evaluated by piecewise linear interpolation of a time series of coefficients snapshots. """ def __init__(self, indices, coefficients, times, **kwargs): order = argsort(times) kwargs['validity_start'] = kwargs.get('validity_start', times[order[0]]) kwargs['validity_end'] = kwargs.get('validity_end', times[order[-1]]) self._times = _convert(times[order], kwargs.get("to_mjd2000")) SparseSHCoefficients.__init__( self, indices, coefficients[:, order], **kwargs ) def __call__(self, time, **parameters): degree, coeff, index, kind = self._subset( parameters.get("min_degree", -1), parameters.get("max_degree", -1) ) coeff_full = zeros((coeff_size(degree), 2)) coeff_full[index, kind] = self._interpolate_coefficients(time, coeff) return coeff_full, degree def _interpolate_coefficients(self, time, coeff): """ Return interpolated coefficients. """ idx, basis = self._interpolation_basis(time) return
dot(coeff[:, idx], basis)
numpy.dot
import importlib from functools import partial import numpy as np from highway_env import utils def finite_mdp(env, time_quantization=1., horizon=10.): """ Time-To-Collision (TTC) representation of the state. The state reward is defined from a occupancy grid over different TTCs and lanes. The grid cells encode the probability that the ego-vehicle will collide with another vehicle if it is located on a given lane in a given duration, under the hypothesis that every vehicles observed will maintain a constant velocity (including the ego-vehicle) and not change lane (excluding the ego-vehicle). For instance, in a three-lane road with a vehicle on the left lane with collision predicted in 5s the grid will be: [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] The TTC-state is a coordinate (lane, time) within this grid. If the ego-vehicle has the ability to change its velocity, an additional layer is added to the occupancy grid to iterate over the different velocity choices available. Finally, this state is flattened for compatibility with the FiniteMDPEnv environment. :param AbstractEnv env: an environment :param time_quantization: the time quantization used in the state representation [s] :param horizon: the horizon on which the collisions are predicted [s] """ # Compute TTC grid grid = compute_ttc_grid(env, time_quantization, horizon) # Compute current state grid_state = (env.vehicle.speed_index(), env.vehicle.lane_index[2], 0) state = np.ravel_multi_index(grid_state, grid.shape) # Compute transition function transition_model_with_grid = partial(transition_model, grid=grid) transition =
np.fromfunction(transition_model_with_grid, grid.shape + (env.action_space.n,), dtype=int)
numpy.fromfunction
""" Creates dataset of SEoEi Author(s): <NAME> (<EMAIL>) """ import os import numpy as np from matplotlib import pyplot as plt #plt.switch_backend('Qt5Agg') import math from scipy.interpolate import splev, splprep, interp1d from scipy.integrate import cumtrapz import sys sys.path.append("../") from utils import visualize def get_sf_params(variables, alpha, beta): ''' alpha : control nonlinearity beta : control number of categories ''' params = [] for v in variables: # v = [s, t] # Set [m, n1, n2, n3] params.append([4+math.floor(v[0]+v[1])%beta, alpha*v[0], alpha*(v[0]+v[1]), alpha*(v[0]+v[1])]) return np.array(params) def r(phi, m, n1, n2, n3): # a = b = 1, m1 = m2 = m return ( abs(math.cos(m * phi / 4)) ** n2 + abs(math.sin(m * phi / 4)) ** n3 ) ** (-1/n1) def interpolate(Q, N, k, D=20, resolution=1000): ''' Interpolate N points whose concentration is based on curvature. ''' res, fp, ier, msg = splprep(Q.T, u=None, k=k, s=1e-6, per=0, full_output=1) tck, u = res uu = np.linspace(u.min(), u.max(), resolution) x, y = splev(uu, tck, der=0) dx, dy = splev(uu, tck, der=1) ddx, ddy = splev(uu, tck, der=2) cv = np.abs(ddx*dy - dx*ddy)/(dx*dx + dy*dy)**1.5 + D cv_int = cumtrapz(cv, uu, initial=0) fcv = interp1d(cv_int, uu) cv_int_samples = np.linspace(0, cv_int.max(), N) u_new = fcv(cv_int_samples) x_new, y_new = splev(u_new, tck, der=0) return x_new, y_new, fp, ier def gen_superformula(m, n1, n2, n3, num_points=64): phis = np.linspace(0, 2*np.pi, num_points*4)#, endpoint=False) S = [(r(phi, m, n1, n2, n3) * math.cos(phi), r(phi, m, n1, n2, n3) * math.sin(phi)) for phi in phis] S = np.array(S) # Scale the heights to 1.0 mn = np.min(S[:,1]) mx = np.max(S[:,1]) h = mx-mn S /= h x_new, y_new, fp, ier = interpolate(S, N=num_points, k=3) S = np.vstack((x_new, y_new)).T return S def gen_ellipse(a, b, num_points=16): phis = np.linspace(0, 2*np.pi, num_points) E = [(a * math.cos(phi), b * math.sin(phi)) for phi in phis] return np.array(E) def filt_se(superformula, ellipses): N = ellipses.shape[0] R_sf = np.linalg.norm(superformula, axis=-1) Rs_sf = np.tile(np.expand_dims(R_sf, axis=0), (N, 1)) Rs_el = np.linalg.norm(ellipses, axis=-1) # The radii of ellipse should be smaller than those of the superformula at the same angle feas_ind = np.all(Rs_sf > Rs_el, axis=-1) return feas_ind def build_data(s_points=64, e_points=16): n_s = 1000 n_eo = 11 n_ei = 1 # Superformulas vars_sf = np.random.uniform(1.0, 10.0, size=(n_s, 2)) params = get_sf_params(vars_sf, 1.0, 1) superformulas = [] for param in params: try: superformula = gen_superformula(param[0], param[1], param[2], param[3], num_points=s_points) superformulas.append(superformula) except ValueError: print('Unable to interpolate.') superformulas = np.array(superformulas) X = [] count_s = 0 for (i, superformula) in enumerate(superformulas): # Ellipses vars_eo =
np.random.uniform(0.05, 0.5, (1000, 2))
numpy.random.uniform
# CREATED: 10/14/16 12:35 PM by <NAME> <<EMAIL>> ''' Utility functions ================= ''' from contextlib import contextmanager import logging import os import glob from .scaper_exceptions import ScaperError import scipy import numpy as np import soundfile @contextmanager def _close_temp_files(tmpfiles): ''' Utility function for creating a context and closing all temporary files once the context is exited. For correct functionality, all temporary file handles created inside the context must be appended to the ```tmpfiles``` list. Parameters ---------- tmpfiles : list List of temporary file handles ''' yield for t in tmpfiles: try: t.close() os.unlink(t.name) except: pass @contextmanager def _set_temp_logging_level(level): ''' Utility function for temporarily changing the logging level using contexts. Parameters ---------- level : str or int The desired temporary logging level. For allowed values see: https://docs.python.org/2/library/logging.html#logging-levels ''' logger = logging.getLogger() current_level = logger.level logger.setLevel(level) yield logger.setLevel(current_level) # TODO: this needs some formalization AUDIO_FORMATS = {f.lower() for f in soundfile.available_formats()} AUDIO_FORMATS |= {'m4a', 'mp3'} def _get_sorted_files(folder_path, max_depth=None): ''' Return a list of absolute paths to all valid files contained within the folder specified by ```folder_path```. Parameters ---------- folder_path : str Path to the folder to scan for files. Returns ------- files : list List of absolute paths to all valid files contained within ```folder_path```. ''' # Ensure path points to valid folder _validate_folder_path(folder_path) # Get folder contents and filter for valid files # Note, we sort the list to ensure consistent behavior across operating # systems. files = [] for root, dirs, fs in os.walk(folder_path): depth = os.path.relpath(root, folder_path).count(os.sep) if max_depth is None or depth <= max_depth: files.extend([os.path.join(root, f) for f in fs if os.path.splitext(f)[1].strip('.') in AUDIO_FORMATS]) files.sort() return files def _validate_folder_path(folder_path): ''' Validate that a provided path points to a valid folder. Parameters ---------- folder_path : str Path to a folder. Raises ------ ScaperError If ```folder_path``` does not point to a valid folder. ''' if not os.path.isdir(folder_path): raise ScaperError( 'Folder path "{:s}" does not point to a valid folder'.format( str(folder_path))) def _populate_label_list(folder_path, label_list, max_depth=None): ''' Given a path to a folder and a list, add the names of all subfolders contained in this folder (excluding folders whose name starts with '.') to the provided list. This is used in scaper to populate the lists of valid foreground and background labels, which are determined by the names of the folders contained in ```fg_path`` and ```bg_path``` provided during initialization. Parameters ---------- folder_path : str Path to a folder label_list : list List to which label (subfolder) names will be added. See Also -------- _validate_folder_path : Validate that a provided path points to a valid folder. ''' # get all unique labels from available files new_label_list = {os.path.relpath(os.path.dirname(f), folder_path) for f in _get_sorted_files(folder_path, max_depth)} label_list.extend(list(new_label_list)) # ensure consistent ordering of labels label_list.sort() def _trunc_norm(mu, sigma, trunc_min, trunc_max): ''' Return a random value sampled from a truncated normal distribution with mean ```mu``` and standard deviation ```sigma``` whose values are limited between ```trunc_min``` and ```trunc_max```. Parameters ---------- mu : float The mean of the truncated normal distribution sig : float The standard deviation of the truncated normal distribution trunc_min : float The minimum value allowed for the distribution (lower boundary) trunc_max : float The maximum value allowed for the distribution (upper boundary) Returns ------- value : float A random value sampled from the truncated normal distribution defined by ```mu```, ```sigma```, ```trunc_min``` and ```trunc_max```. ''' # By default truncnorm expects a (lower boundary) and b (upper boundary) # values for a standard normal distribution (mu=0, sigma=1), so we need # to recompute a and b given the user specified parameters. a, b = (trunc_min - mu) / float(sigma), (trunc_max - mu) / float(sigma) return scipy.stats.truncnorm.rvs(a, b, mu, sigma) def max_polyphony(ann): ''' Given an annotation of sound events, compute the maximum polyphony, i.e. the maximum number of simultaneous events at any given point in time. Only foreground events are taken into consideration for computing the polyphony. Parameters ---------- ann : JAMS.Annotation Returns ------- polyphony : int Maximum number of simultaneous events at any point in the annotation. ''' # If there are no foreground events the polyphony is 0 roles = [obs.value['role'] for obs in ann.data] if 'foreground' not in roles: return 0 else: # Keep only foreground events int_time, int_val = ann.to_interval_values() int_time_clean = [] for t, v in zip(int_time, int_val): if v['role'] == 'foreground': int_time_clean.append(t) int_time_clean = np.asarray(int_time_clean) # Sort and reshape arrivals = np.sort(int_time_clean[:, 0]).reshape(-1, 1) departures = np.sort(int_time_clean[:, 1]).reshape(-1, 1) # Onsets are +1, offsets are -1 arrivals = np.concatenate( (arrivals, np.ones(arrivals.shape)), axis=1) departures = np.concatenate( (departures, -np.ones(departures.shape)), axis=1) # Merge arrivals and departures and sort entry_log =
np.concatenate((arrivals, departures), axis=0)
numpy.concatenate
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Dec 30 12:05:47 2020 @author: peter """ # a script to analyse the steps data. import numpy as np import pandas as pd from pathlib import Path import tifffile import scipy.stats import matplotlib.pyplot as plt import scipy.ndimage as ndimage import cancer_functions as canf import f.ephys_functions as ef import f.general_functions as gf import f.plotting_functions as pf # ============================================================================= # dire = '/home/peter/data/Firefly/cancer/20201228' # day = '20201228' # # def get_steps_dataframe(dire,day): # files = Path(dire).glob('./**/*.tif') # smr_files = [] # tif_files = [] # # for f in files: # # meta = canf.load_tif_metadata(f) # if len(meta) != 1301: # continue # # #search parents for smr file from deepest to shallowest # start = f.parts.index(day) # for i in range(len(f.parts)-1,start+1,-1): # direc = Path(*f.parts[:i]) # smr = [f for f in direc.glob('*.smr')] # if len(smr) != 0: # break # # smr_files.append([str(s) for s in smr]) # tif_files.append(str(f)) # # # max_len = max([len(x) for x in smr_files]) # # df = pd.DataFrame() # # df['tif_file'] = tif_files # # for i in range(max_len): # files = [] # for j in range(len(smr_files)): # try: # files.append(smr_files[j][i]) # except IndexError: # files.append(np.NaN) # # df[f'SMR_file_{i}'] = files # # return df # # df = get_steps_dataframe(dire,day) # # df.to_csv('/home/peter/data/Firefly/cancer/analysis/steps_20201230.csv') # ============================================================================= def load_steps_ephys2(stack_fname, ephys_fname): stack = tifffile.imread(stack_fname) n_frames = len(stack) if Path(ephys_fname).is_file(): ephys_dict = ef.load_ephys_parse( ephys_fname, analog_names=["LED", "vcVm", "vcIm"], event_names=["CamDown"] ) e_start = [ float(str(ephys_dict["ephys_start"][1])[i * 2 : (i + 1) * 2]) for i in range(3) ] e_start[-1] += (float(ephys_dict["ephys_start"][2]) / 10) / 1000 e_start = canf.lin_time(e_start) meta = canf.load_tif_metadata(stack_fname) frames, times = canf.get_all_frame_times(meta) cam = ephys_dict["CamDown_times"] cam_id = np.argmin(np.abs(cam + e_start - times[0])) if not cam_check_steps(cam, cam_id, times, n_frames): if cam_check_steps(cam, cam_id - 1, times, n_frames): print("sub 1") cam_id -= 1 elif cam_check_steps(cam, cam_id + 1, times, n_frames): print("plus 1") cam_id += 1 elif cam_check_steps(cam, cam_id - 2, times, n_frames): print("sub 2") cam_id -= 2 else: raise ValueError("possible bad segment") cam = cam[cam_id : cam_id + n_frames] # slice all sliced_cam = np.reshape(cam, (13, 100)) stack = np.reshape(stack, (13, 100) + stack.shape[-2:]) T_approx = 3 * 10**-3 # extract LED powers (use slightly longer segment) idx1, idx2 = ef.time_to_idx( ephys_dict["LED"], [cam[0] - T_approx * 5, cam[-1] + T_approx * 5] ) LED_power = canf.get_LED_powers(ephys_dict["LED"][idx1:idx2], cam, T_approx) # return LED and vm on corect segment idx1, idx2 = ef.time_to_idx(ephys_dict["LED"], [cam[0] - T_approx, cam[-1]]) LED = canf.slice_all_ephys(ephys_dict["LED"], sliced_cam) idx1, idx2 = ef.time_to_idx(ephys_dict["vcVm"], [cam[0] - T_approx, cam[-1]]) vcVm = canf.slice_all_ephys(ephys_dict["vcVm"], sliced_cam) idx1, idx2 = ef.time_to_idx(ephys_dict["vcVm"], [cam[0] - T_approx, cam[-1]]) vcIm = canf.slice_all_ephys(ephys_dict["vcIm"], sliced_cam) if LED_power[0] < LED_power[1]: blue = 0 else: blue = 1 result_dict = { "cam": cam, "LED": LED, "im": np.mean(stack[:, blue::2], 0), "LED_powers": LED_power, "stack": stack, "vcVm": vcVm, "vcIm": vcIm, "blue_idx": blue, "tif_file": stack_fname, "smr_file": ephys_fname, } return result_dict df = pd.read_csv("/home/peter/data/Firefly/cancer/analysis/steps_20201230_sorted.csv") def cam_check_steps(cam, cam_id, times, n_frames): try: diff = cam[cam_id : cam_id + n_frames] - times except ValueError: return False if diff.max() - diff.min() < 3 * 10**-3: return True else: return False mean_fs = [] mean_vs = [] mean_is = [] mean_rs = [] fits = [] sens = [] for data in df.itertuples(): s = data.tif_file trial_string = "_".join(Path(s).parts[Path(s).parts.index("cancer") : -1]) df.loc[data.Index, "trial_string"] = trial_string trial_save = Path( "/home/peter/data/Firefly/cancer/analysis/full", "steps_analysis/data", trial_string, ) if not trial_save.is_dir(): trial_save.mkdir(parents=True) stack_fname = data.tif_file ephys_fname = data.SMR_file result_dict = load_steps_ephys2(stack_fname, ephys_fname) for key in result_dict.keys(): np.save(Path(trial_save, f"{trial_string}_{key}.npy"), result_dict[key]) tifffile.imsave( Path( "/home/peter/data/Firefly/cancer/analysis/full", "steps_analysis/ims", f"{trial_string}_im.tif", ), gf.to_8_bit(result_dict["im"]), ) _, roi = gf.read_roi_file( Path( "/home/peter/data/Firefly/cancer/analysis/full", "steps_analysis/rois", f"{trial_string}_roi.roi", ), im_dims=result_dict["im"].shape[-2:], ) roi2 = np.logical_xor(ndimage.binary_erosion(roi, iterations=4), roi) stack = result_dict["stack"] bl = result_dict["blue_idx"] print(bl) # blue start is high for some reason, exclude stack[:, bl, ...] = stack[:, bl + 2, ...] image = np.mean(stack[0, ...], axis=0) interped_stack = canf.process_ratio_stacks(stack) # now get the time courses t_courses = gf.t_course_from_roi(interped_stack, roi) # use linear fit for bleaching sta = np.mean(t_courses[..., :5], -1) sto =
np.mean(t_courses[..., -5:], -1)
numpy.mean
#!/usr/bin/env python # -*- coding: utf-8 -*- ### CR - 20 (The Fake Ronaldo) import numpy as np import cv2 import collections import serial from picamera.array import PiRGBArray from picamera import PiCamera import time, math import imutils nondet = 10 whitemax = 0 lol = 4 lol2 = 5 greenmax = 0 val = False cnt_blue = 0 blue_detected = False blue_fre = True frequency_map = {} centres = [] def blur(img,kernel_size): ram = cv2.medianBlur(img,kernel_size,0) test = cv2.GaussianBlur(ram,(kernel_size,kernel_size),0) return test def canny(img,low_threshold,high_threshold): return cv2.Canny(img,low_threshold,high_threshold) def extract_lines(img, lines, color=[255, 0, 0], thickness=2): # X cordinates of corresponding lane left_x = collections.defaultdict(list) right_x = collections.defaultdict(list) top_x = collections.defaultdict(list) # Y cordinates of corresponding lane left_y = collections.defaultdict(list) right_y = collections.defaultdict(list) top_y = collections.defaultdict(list) try: for line in lines: for x1,y1,x2,y2 in line: # Calculate slope slope = (y2-y1)*1.0/(x2-x1) # Grouping together slopes of variation 4 # If abs(slope) is less than 20 deg it is in the top category if math.fabs(slope) < math.tan(np.pi/9): top_x[int(math.atan(slope)*60/np.pi)].extend([x1,x2]) top_y[int(math.atan(slope)*60/np.pi)].extend([y1,y2]) # If slope is less than -20 deg it is in the left category elif slope < math.tan(-np.pi/9) and slope > math.tan(-np.pi*4/9): left_x[int(math.atan(slope)*60/np.pi)].extend([x1,x2]) left_y[int(math.atan(slope)*60/np.pi)].extend([y1,y2]) # If slope is greater than 20 deg it is in the right category elif slope > math.tan(np.pi/9) and slope < math.tan(np.pi*4/9): right_x[int(math.atan(slope)*60/np.pi)].extend([x1,x2]) right_y[int(math.atan(slope)*60/np.pi)].extend([y1,y2]) except TypeError: pass max_y = img.shape[0] min_y = 0 eqns = [None for i in range(3)] # Use the slope for the angle that has the maximum occurence and square fits # the points to get an approximate line equation that passes through all the point # Left try: _, left_slope = max((len(v),k) for k,v in left_x.items()) lef_l = np.poly1d(np.polyfit(left_y[left_slope],left_x[left_slope],1)) left_x_st = int(lef_l(max_y)) left_x_en = int(lef_l(min_y)) cv2.line(img,(left_x_st,max_y),(left_x_en,min_y),[255,0,0],thickness) eqns[0]=lef_l except: left_slope = None print("left ignored") # Right try: _, right_slope = max((len(v),k) for k,v in right_x.items()) rig_l = np.poly1d(np.polyfit(right_y[right_slope],right_x[right_slope],1)) right_x_st = int(rig_l(max_y)) right_x_en = int(rig_l(min_y)) cv2.line(img,(right_x_st,max_y),(right_x_en,min_y),[0,255,0],thickness) eqns[1]=rig_l except: right_slope = None print("right ignored") # Top try: _, top_slope = max((len(v),k) for k,v in top_x.items()) top_l = np.poly1d(np.polyfit(top_y[top_slope],top_x[top_slope],1)) top_x_st = int(top_l(max_y)) top_x_en = int(top_l(min_y)) cv2.line(img,(top_x_st,max_y),(top_x_en,min_y),[0,0,255],thickness) eqns[2]=top_l except: top_slope = None print("top ignored") return eqns,img def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap): # Extracts the hough lines lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap) # An empty black image line_img =
np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
numpy.zeros
''' Created on 29 Sep 2014 @author: edwin ''' import pickle, logging import numpy as np from scipy.sparse import coo_matrix class DataHandler(object): ''' classdocs ''' #default values #################### scores = np.array([3, 4]) K = 0 N = 0 nclasses = 2 nu0 = np.array([50.0, 50.0]) alpha0 = np.array([[2, 1], [1, 2]]) phi0 = np.array([1, 1]) gamma0 = np.array([[2, 1], [1, 2]]) a0 = 3 b0 = 1 #################################### uselowerbound = False crowdlabels = None table_format = False targetidxmap = None targetidxs = None max_targetid = 0 trainids = None goldlabels = None goldsubtypes = None output_file = None confmat_file = None input_file = None gold_file = None hyperparam_file = None def __init__(self): ''' Constructor ''' def create_target_idx_map(self): self.max_targetid = np.max(self.targetidxs) # largest original ID value blanks = np.zeros(len(self.targetidxs)) # only need 1D so set all to zero idxList = list(range(len(self.targetidxs))) # new local idxs tIdxMap = coo_matrix(( idxList, (self.targetidxs,blanks)), shape=(self.max_targetid+1,1) ) self.N = len(self.targetidxs) self.targetidxmap = tIdxMap.tocsr() # maps Original IDs to new local idxs def loadCrowdLabels(self, scores): ''' Loads labels from crowd in sparse list format, i.e. 3 columns, classifier ID, object ID, score. ''' pyFileExists = False try: with open(self.input_file+'.dat','r') as inFile: crowdLabels, self.targetidxs, K = pickle.load(inFile) pyFileExists = True except Exception: logging.info('Will try to load a CSV file...') crowdLabels = np.genfromtxt(self.input_file, delimiter=',', \ skip_header=1,usecols=[0,1,2]) self.targetidxs, crowdLabels[:,1] = np.unique(crowdLabels[:,1],return_inverse=True) kIdxs, crowdLabels[:,0] = np.unique(crowdLabels[:,0],return_inverse=True) K = len(kIdxs) unmappedScores = np.round(crowdLabels[:,2]) for i,s in enumerate(scores): print(np.sum(unmappedScores==s)) crowdLabels[(unmappedScores==s),2] = i self.create_target_idx_map() self.crowdlabels = crowdLabels self.K = K print(crowdLabels.shape) # if not pyFileExists: # try: # with open(self.input_file+'.dat', 'wb') as outFile: # pickle.dump((crowdLabels,self.targetidxs,K), outFile) # except Exception: # logging.error('Could not save the input data as a Python object file.') def loadCrowdTable(self, scores): ''' Loads crowd labels in a table format ''' unmappedScores = np.round(np.genfromtxt(self.input_file, delimiter=',')) self.K = unmappedScores.shape[1] self.targetidxs = np.arange(unmappedScores.shape[0]) self.create_target_idx_map() self.crowdlabels =
np.empty((self.N,self.K))
numpy.empty
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ TODO: - Speed tests, need to be certain the looping on all telescopes is not killing performance - Introduce new weighting schemes - Make intersect_lines code more readable """ import numpy as np import itertools import astropy.units as u from ctapipe.reco.reco_algorithms import Reconstructor from ctapipe.io.containers import ReconstructedShowerContainer from ctapipe.coordinates import NominalFrame, HorizonFrame from ctapipe.coordinates import TiltedGroundFrame, project_to_ground from ctapipe.instrument import get_atmosphere_profile_functions __all__ = [ 'HillasIntersection' ] class HillasIntersection(Reconstructor): """ This class is a simple re-implementation of Hillas parameter based event reconstruction. e.g. https://arxiv.org/abs/astro-ph/0607333 In this case the Hillas parameters are all constructed in the shared angular ( Nominal) system. Direction reconstruction is performed by extrapolation of the major axes of the Hillas parameters in the nominal system and the weighted average of the crossing points is taken. Core reconstruction is performed by performing the same procedure in the tilted ground system. The height of maximum is reconstructed by the projection os the image centroid onto the shower axis, taking the weighted average of all images. Uncertainties on the positions are provided by taking the spread of the crossing points, however this means that no uncertainty can be provided for multiplicity 2 events. """ def __init__(self, atmosphere_profile_name="paranal"): # We need a conversion function from height above ground to depth of maximum # To do this we need the conversion table from CORSIKA _ = get_atmosphere_profile_functions(atmosphere_profile_name) self.thickness_profile, self.altitude_profile = _ def predict(self, hillas_parameters, tel_x, tel_y, array_direction): """ Parameters ---------- hillas_parameters: dict Dictionary containing Hillas parameters for all telescopes in reconstruction tel_x: dict Dictionary containing telescope position on ground for all telescopes in reconstruction tel_y: dict Dictionary containing telescope position on ground for all telescopes in reconstruction array_direction: HorizonFrame Pointing direction of the array Returns ------- ReconstructedShowerContainer: """ src_x, src_y, err_x, err_y = self.reconstruct_nominal(hillas_parameters) core_x, core_y, core_err_x, core_err_y = self.reconstruct_tilted( hillas_parameters, tel_x, tel_y) err_x *= u.rad err_y *= u.rad nom = NominalFrame(x=src_x * u.rad, y=src_y * u.rad, array_direction=array_direction) horiz = nom.transform_to(HorizonFrame()) result = ReconstructedShowerContainer() result.alt, result.az = horiz.alt, horiz.az tilt = TiltedGroundFrame(x=core_x * u.m, y=core_y * u.m, pointing_direction=array_direction) grd = project_to_ground(tilt) result.core_x = grd.x result.core_y = grd.y x_max = self.reconstruct_xmax(nom.x, nom.y, tilt.x, tilt.y, hillas_parameters, tel_x, tel_y, 90 * u.deg - array_direction.alt) result.core_uncert = np.sqrt(core_err_x * core_err_x + core_err_y * core_err_y) * u.m result.tel_ids = [h for h in hillas_parameters.keys()] result.average_size = np.mean([h.intensity for h in hillas_parameters.values()]) result.is_valid = True src_error = np.sqrt(err_x * err_x + err_y * err_y) result.alt_uncert = src_error.to(u.deg) result.az_uncert = src_error.to(u.deg) result.h_max = x_max result.h_max_uncert = np.nan result.goodness_of_fit = np.nan return result def reconstruct_nominal(self, hillas_parameters, weighting="Konrad"): """ Perform event reconstruction by simple Hillas parameter intersection in the nominal system Parameters ---------- hillas_parameters: dict Hillas parameter objects weighting: string Specify image weighting scheme used (HESS or Konrad style) Returns ------- Reconstructed event position in the nominal system """ if len(hillas_parameters) < 2: return None # Throw away events with < 2 images # Find all pairs of Hillas parameters combos = itertools.combinations(list(hillas_parameters.values()), 2) hillas_pairs = list(combos) # Copy parameters we need to a numpy array to speed things up h1 = list( map( lambda h: [h[0].psi.to(u.rad).value, h[0].x.value, h[0].y.value, h[0].intensity], hillas_pairs ) ) h1 = np.array(h1) h1 = np.transpose(h1) h2 = list( map(lambda h: [h[1].psi.to(u.rad).value, h[1].x.value, h[1].y.value, h[1].intensity], hillas_pairs) ) h2 = np.array(h2) h2 = np.transpose(h2) # Perform intersection sx, sy = self.intersect_lines(h1[1], h1[2], h1[0], h2[1], h2[2], h2[0]) if weighting == "Konrad": weight_fn = self.weight_konrad elif weighting == "HESS": weight_fn = self.weight_HESS # Weight by chosen method weight = weight_fn(h1[3], h2[3]) # And sin of interception angle weight *= self.weight_sin(h1[0], h2[0]) # Make weighted average of all possible pairs x_pos = np.average(sx, weights=weight) y_pos = np.average(sy, weights=weight) var_x = np.average((sx - x_pos) ** 2, weights=weight) var_y = np.average((sy - y_pos) ** 2, weights=weight) # Copy into nominal coordinate return x_pos, y_pos, np.sqrt(var_x), np.sqrt(var_y) def reconstruct_tilted(self, hillas_parameters, tel_x, tel_y, weighting="Konrad"): """ Core position reconstruction by image axis intersection in the tilted system Parameters ---------- hillas_parameters: dict Hillas parameter objects tel_x: dict Telescope X positions, tilted system tel_y: dict Telescope Y positions, tilted system weighting: str Weighting scheme for averaging of crossing points Returns ------- (float, float, float, float): core position X, core position Y, core uncertainty X, core uncertainty X """ if len(hillas_parameters) < 2: return None # Throw away events with < 2 images h = list() tx = list() ty = list() # Need to loop here as dict is unordered for tel in hillas_parameters.keys(): h.append(hillas_parameters[tel]) tx.append(tel_x[tel]) ty.append(tel_y[tel]) # Find all pairs of Hillas parameters hillas_pairs = list(itertools.combinations(h, 2)) tel_x = list(itertools.combinations(tx, 2)) tel_y = list(itertools.combinations(ty, 2)) tx = np.zeros((len(tel_x), 2)) ty = np.zeros((len(tel_y), 2)) for i, _ in enumerate(tel_x): tx[i][0], tx[i][1] = tel_x[i][0].value, tel_x[i][1].value ty[i][0], ty[i][1] = tel_y[i][0].value, tel_y[i][1].value tel_x = np.array(tx) tel_y = np.array(ty) # Copy parameters we need to a numpy array to speed things up h1 = map(lambda h: [h[0].psi.to(u.rad).value, h[0].intensity], hillas_pairs) h1 = np.array(list(h1)) h1 = np.transpose(h1) h2 = map(lambda h: [h[1].psi.to(u.rad).value, h[1].intensity], hillas_pairs) h2 = np.array(list(h2)) h2 = np.transpose(h2) # Perform intersection cx, cy = self.intersect_lines(tel_x[:, 0], tel_y[:, 0], h1[0], tel_x[:, 1], tel_y[:, 1], h2[0]) if weighting == "Konrad": weight_fn = self.weight_konrad elif weighting == "HESS": weight_fn = self.weight_HESS # Weight by chosen method weight = weight_fn(h1[1], h2[1]) # And sin of interception angle weight *= self.weight_sin(h1[0], h2[0]) # Make weighted average of all possible pairs x_pos = np.average(cx, weights=weight) y_pos = np.average(cy, weights=weight) var_x = np.average((cx - x_pos) ** 2, weights=weight) var_y = np.average((cy - y_pos) ** 2, weights=weight) return x_pos, y_pos, np.sqrt(var_x), np.sqrt(var_y) def reconstruct_xmax(self, source_x, source_y, core_x, core_y, hillas_parameters, tel_x, tel_y, zen): """ Geometrical depth of shower maximum reconstruction, assuming the shower maximum lies at the image centroid Parameters ---------- source_x: float Source X position in nominal system source_y: float Source Y position in nominal system core_x: float Core X position in nominal system core_y: float Core Y position in nominal system hillas_parameters: dict Dictionary of hillas parameters objects tel_x: dict Dictionary of telescope X positions tel_y: dict Dictionary of telescope X positions zen: float Zenith angle of shower Returns ------- float: Estimated depth of shower maximum """ cog_x = list() cog_y = list() amp = list() tx = list() ty = list() # Loops over telescopes in event for tel in hillas_parameters.keys(): cog_x.append(hillas_parameters[tel].x.to(u.rad).value) cog_y.append(hillas_parameters[tel].y.to(u.rad).value) amp.append(hillas_parameters[tel].intensity) tx.append(tel_x[tel].to(u.m).value) ty.append(tel_y[tel].to(u.m).value) height = get_shower_height(source_x.to(u.rad).value, source_y.to(u.rad).value, np.array(cog_x), np.array(cog_y), core_x.to(u.m).value, core_y.to(u.m).value, np.array(tx), np.array(ty)) weight = np.array(amp) mean_height = np.sum(height * weight) / np.sum(weight) # This value is height above telescope in the tilted system, # we should convert to height above ground mean_height *= np.cos(zen) # Add on the height of the detector above sea level mean_height += 2100 # TODO: replace with instrument info if mean_height > 100000 or np.isnan(mean_height): mean_height = 100000 mean_height *= u.m # Lookup this height in the depth tables, the convert Hmax to Xmax x_max = self.thickness_profile(mean_height.to(u.km)) # Convert to slant depth x_max /= np.cos(zen) return x_max @staticmethod def intersect_lines(xp1, yp1, phi1, xp2, yp2, phi2): """ Perform intersection of two lines. This code is borrowed from read_hess. Parameters ---------- xp1: ndarray X position of first image yp1: ndarray Y position of first image phi1: ndarray Rotation angle of first image xp2: ndarray X position of second image yp2: ndarray Y position of second image phi2: ndarray Rotation angle of second image Returns ------- ndarray of x and y crossing points for all pairs """ sin_1 = np.sin(phi1) cos_1 = np.cos(phi1) a1 = sin_1 b1 = -1 * cos_1 c1 = yp1 * cos_1 - xp1 * sin_1 sin_2 = np.sin(phi2) cos_2 = np.cos(phi2) a2 = sin_2 b2 = -1 * cos_2 c2 = yp2 * cos_2 - xp2 * sin_2 det_ab = (a1 * b2 - a2 * b1) det_bc = (b1 * c2 - b2 * c1) det_ca = (c1 * a2 - c2 * a1) # if math.fabs(det_ab) < 1e-14 : # /* parallel */ # return 0,0 xs = det_bc / det_ab ys = det_ca / det_ab return xs, ys @staticmethod def weight_konrad(p1, p2): return (p1 * p2) / (p1 + p2) @staticmethod def weight_hess(p1, p2): return 1 / ((1 / p1) + (1 / p2)) @staticmethod def weight_sin(phi1, phi2): return np.abs(np.sin(np.fabs(phi1 - phi2))) def get_shower_height(source_x, source_y, cog_x, cog_y, core_x, core_y, tel_pos_x, tel_pos_y): """ Function to calculate the depth of shower maximum geometrically under the assumption that the shower maximum lies at the brightest point of the camera image. Parameters ---------- source_x: float Event source position in nominal frame source_y: float Event source position in nominal frame core_x: float Event core position in telescope tilted frame core_y: float Event core position in telescope tilted frame zen: float Zenith angle of event Returns ------- float: Depth of maximum of air shower """ # Calculate displacement of image centroid from source position (in rad) disp = np.sqrt(np.power(cog_x - source_x, 2) + np.power(cog_y - source_y, 2)) # Calculate impact parameter of the shower impact = np.sqrt(np.power(tel_pos_x - core_x, 2) +
np.power(tel_pos_y - core_y, 2)
numpy.power
import matplotlib import math import cv2 import numpy as np # 格子地図クラス class GridMap: def __init__(self, map_name, resolution=[0.05, 0.05, math.pi/12], origin=[0.0, 0.0, 0.0], obstacle_thresh=254): # マップ名 self.map_name = map_name # マップ画像 self.map_image = cv2.imread('map/' + map_name + '.png', cv2.IMREAD_GRAYSCALE) # マップデータ(座標系合わせ後) self.map_data = self.map_image.T[:, ::-1] # 解像度 (m/pixel) self.resolution = np.array(resolution) # セルの数 self.cell_num = np.array([self.map_image.shape[0], self.map_image.shape[1], 24]) # マップ内の最小の姿勢 self.pose_min = np.array(origin) # マップ内の最大の姿勢 self.pose_max = self.cell_num*self.resolution + self.pose_min # 障害物閾値 self.obstacle_thresh = obstacle_thresh # 価値関数の初期化 self.value_data = self.init_value(self.cell_num, self.map_name) # 価値関数参照 def value(self, pose): index = self.to_index(pose) value = self.value_data[index] return value # 姿勢を整数のインデックスに変換 def to_index(self, pose): index =
np.floor((pose - self.pose_min)/self.resolution)
numpy.floor
import os import time import numpy as np import argparse import functools from PIL import Image from PIL import ImageDraw import paddle import paddle.fluid as fluid import reader from mobilenet_ssd import mobile_net from utility import add_arguments, print_arguments parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('dataset', str, 'pascalvoc', "coco and pascalvoc.") add_arg('use_gpu', bool, True, "Whether use GPU.") add_arg('image_path', str, '', "The image used to inference and visualize.") add_arg('model_dir', str, '', "The model path.") add_arg('nms_threshold', float, 0.45, "NMS threshold.") add_arg('confs_threshold', float, 0.2, "Confidence threshold to draw bbox.") add_arg('resize_h', int, 300, "The resized image height.") add_arg('resize_w', int, 300, "The resized image height.") add_arg('mean_value_B', float, 127.5, "Mean value for B channel which will be subtracted.") #123.68 add_arg('mean_value_G', float, 127.5, "Mean value for G channel which will be subtracted.") #116.78 add_arg('mean_value_R', float, 127.5, "Mean value for R channel which will be subtracted.") #103.94 # yapf: enable def infer(args, data_args, image_path, model_dir): image_shape = [3, data_args.resize_h, data_args.resize_w] if 'coco' in data_args.dataset: num_classes = 91 elif 'pascalvoc' in data_args.dataset: num_classes = 21 image = fluid.layers.data(name='image', shape=image_shape, dtype='float32') locs, confs, box, box_var = mobile_net(num_classes, image, image_shape) nmsed_out = fluid.layers.detection_output( locs, confs, box, box_var, nms_threshold=args.nms_threshold) place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) # yapf: disable if model_dir: def if_exist(var): return os.path.exists(os.path.join(model_dir, var.name)) fluid.io.load_vars(exe, model_dir, predicate=if_exist) # yapf: enable infer_reader = reader.infer(data_args, image_path) feeder = fluid.DataFeeder(place=place, feed_list=[image]) def infer(): data = infer_reader() nmsed_out_v = exe.run(fluid.default_main_program(), feed=feeder.feed([[data]]), fetch_list=[nmsed_out], return_numpy=False) nmsed_out_v =
np.array(nmsed_out_v[0])
numpy.array
import sys import time import scipy.special import numpy as np #============================================================================== # Helper functions defines here #============================================================================== def init(): """ Intialize parameters that will be used in the program. Parameters ---------- None Returns ---------- dataset: ndarray The whole dataset read from the input file. outFileName: String Name of output file. iterNum: int Number of iteration. burninNum: int Burn-in number of iterations. obsNum: int Number of observations, e.g., number of population. SNPNum: int Number of single nucleotide polymorphisms (SNPs). PhenoNum: int Number of phenotype types. MAF: float Minor Allele Frequency, should be less than 1. """ if len(sys.argv) != 9: print("Number of arguments don't meet program's requirements.", "Please Check again!") print("You should specify inputFileName, outputFileName, iterNum,", "burninNum, obsNum, \n\tSNPNum, PhenoNum, MAF in the arguments.") print("Here is an example: ") print(">>> python np_bhit.py input.txt output.npy 30000 29000 200 100 1 0.5") quit() dataset = np.loadtxt(sys.argv[1]) outFileName = sys.argv[2] iterNum = int(sys.argv[3]) burninNum = int(sys.argv[4]) obsNum = int(sys.argv[5]) SNPNum = int(sys.argv[6]) PhenoNum = int(sys.argv[7]) MAF = float(sys.argv[8]) return dataset, outFileName, iterNum, burninNum, obsNum, SNPNum, PhenoNum, MAF def unique(arr, return_counts=True): """ Find the unique elements of an array. Return the sorted unique elements of an array, and the number of times each unique value comes up in the input array if `return_counts` is True. Parameters ---------- arr: array_like Input array. return_counts: bool If True, also return the number of times each unique item appears in `arr`. Returns ---------- unique: ndarray The sorted unique values. unique_counts: ndarray The number of times each of the unique values comes up in the original array. """ arr = np.asanyarray(arr) orig_shape, orig_dtype = arr.shape, arr.dtype # Must reshape to a contiguous 2D array for this to work... arr = arr.reshape(orig_shape[0], -1) arr = np.ascontiguousarray(arr) if arr.dtype.char in (np.typecodes['AllInteger'] + np.typecodes['Datetime'] + 'S'): # Optimization: Creating a view of your data with a np.void data type of # size the number of bytes in a full row. Handles any type where items # have a unique binary representation, i.e. 0 is only 0, not +0 and -0. dtype = np.dtype((np.void, arr.dtype.itemsize * arr.shape[1])) else: dtype = [('f{i}'.format(i=i), arr.dtype) for i in range(arr.shape[1])] try: consolidated = arr.view(dtype) except TypeError: # There's no good way to do this for object arrays, etc... msg = 'The axis argument to unique is not supported for dtype {dt}' raise TypeError(msg.format(dt=arr.dtype)) def reshape_uniq(uniq): uniq = uniq.view(orig_dtype) uniq = uniq.reshape(-1, *orig_shape[1:]) uniq = np.swapaxes(uniq, 0, 0) return uniq tmp = np.asanyarray(consolidated).flatten() if tmp.size == 0: if not return_counts: output = tmp else: output = (tmp,) output += (np.empty(0, np.intp),) else: tmp.sort() aux = tmp flag = np.concatenate(([True], aux[1:] != aux[:-1])) if not return_counts: output = aux[flag] else: output = (aux[flag],) idx = np.concatenate(np.nonzero(flag) + ([tmp.size],)) output += (np.diff(idx),) if not return_counts: return reshape_uniq(output) else: uniq = reshape_uniq(output[0]) return (uniq,) + output[1:] def logLikeCont(contArr): """ Calculate logarithmic likelihood of only continuous variates given the data array. Variates are assumed to be independent if there is only one column, and from a multivariate Gaussian distribution if there are multiple columns. Parameters ---------- contArr: array_like Input array. Returns ---------- logProb: float Logarithmic likelihood of continuous variates. """ Y = np.asanyarray(contArr) obsNum, varNum = Y.shape logProb = 0 if varNum == 0: pass elif varNum == 1: sigma = 1 mean = np.average(Y) nuVar = NU0 * sigma**2 nuVar += (obsNum-1) * np.var(Y) nuVar += KAPPA0*obsNum/(KAPPA0+obsNum) * (mean-MU0)**2 logProb = -1*np.log(2*np.pi)*obsNum/2 + np.log(KAPPA0/(KAPPA0 + obsNum)) / 2 + scipy.special.gammaln((NU0+obsNum)/2) logProb += (-1*scipy.special.gammaln(NU0/2) + np.log(NU0*sigma**2/2)*NU0/2 - np.log(nuVar/2) * (NU0+obsNum)/2) # The below code was not fully tested. else: means = np.average(Y, axis=0) lambda_arr = np.diag([1]*varNum) diff = np.array(means - MU0)[:,None] lambdaN = (lambda_arr + KAPPA0 * obsNum / (KAPPA0+obsNum) * diff.dot(diff.transpose())) lambdaN += (obsNum-1)*np.cov(Y, rowvar=False, bias=False) logProb = (-np.log(np.pi) * obsNum * varNum / 2 + np.log(KAPPA0/ (KAPPA0 + obsNum) * varNum / 2)) logProb += np.log(np.linalg.det(lambda_arr)) * NU0/2 logProb -= np.log(np.linalg.det(lambdaN)) * (NU0+obsNum)/2 logProb += np.sum(scipy.special.gammaln((NU0+obsNum)/2 - np.arange(varNum)/2) - scipy.special.gammaln(NU0/2 - np.arange(varNum)/2)) return logProb def logLikeDisc(discArr): """ Calculate logarithmic likelihood of only discrete variates given the data array. Variates are assumed to be independent if there is only one column, and from a joint Dirichlet distribution if there are multiple columns. Parameters ---------- discArr: array_like Input array. Returns ---------- logProb: float Logarithmic likelihood of discrete variates. """ X = np.asanyarray(discArr) uniqueArr, N = unique(X) alpha = Odds[uniqueArr-1] alpha = np.prod(alpha, axis=1) n_plus_alpha = N + alpha logProb = np.sum(scipy.special.gammaln(n_plus_alpha) - scipy.special.gammaln(alpha)) logProb -= scipy.special.gammaln(np.sum(n_plus_alpha)) return logProb def logLikeDepe(discArr, contArr): """ Calculate logarithmic likelihood of partitions with both continuous and discrete variates by finding the continous rows corresponding to unique discrete observations and calculating the probability those continous observations came from a single multivariate Gaussian distribution. Parameters ---------- discArr: array_like Input discrete array. contArr: array_like Input continous array. Returns ---------- logProb: float Logarithmic likelihood. """ X = np.asanyarray(discArr) Y = np.asanyarray(contArr) variations = unique(X, return_counts=False) logProb = 0 for v in variations: corres_row = np.prod((X==v), axis=1) corres_Y = Y[corres_row==1] logProb += logLikeCont(corres_Y) logProb += logLikeDisc(X) return logProb def metroHast(iterNum, burninNum): """ The Metropolis–Hastings algorithm is a Markov chain Monte Carlo (MCMC) method for obtaining a sequence of random samples from a probability distribution for which direct sampling is difficult. The reult returned is the final probability matrix for each covariate. Parameters ---------- iterNum: number Number of iteration of MCMC. burninNum: number Number of burn-in of MCMC. Returns ---------- mhResult: ndarray Final partition matrix for each covariate. Ix: ndarray Final index vector. """ Ix = np.arange(TotalNum) Dx = Ix[:SNPNum] Cx = Ix[SNPNum:TotalNum] iN = np.zeros([TotalNum, TotalNum+1]) # Uncomment if you want to trace probabilities. # trace = np.zeros(iterNum) # trace[0] += np.sum([logLikDisc(Genotype[:, Dx==col]) for col in range(SNPNum)]) # trace[0] += np.sum([logLikCont(Phenotype[:, Cx==col]) for col in range(SNPNum,TotalNum)]) # Main Metropolis-Hastings loop. for i in range(1, iterNum): # Select an index, then change it to another index randomly. while True: # Sort the number to ensure changing from small index to big one. x, y = np.sort(np.random.choice(Ix, 2, False)) k = np.where(Ix == x)[0] if len(k) > 1: k = np.random.choice(k, 1) Iy = np.array(Ix) Iy[k] = y tmp1 = np.where(Ix == x)[0] tmp2 = np.where(Iy == y)[0] if (len(tmp1)>1 or len(tmp2)>1): break # Create the proposed indicator vector. Dy = Iy[:SNPNum] Cy = Iy[SNPNum:TotalNum] Cxx = Phenotype[:,Cx == x] Cxy = Phenotype[:,Cx == y] Cyx = Phenotype[:,Cy == x] Cyy = Phenotype[:,Cy == y] Dxx = Genotype[:,Dx == x] Dxy = Genotype[:,Dx == y] Dyx = Genotype[:,Dy == x] Dyy = Genotype[:,Dy == y] # Calculate log likelihoods. old_prob = 0 new_prob = 0 # Likelihood of current partition x. if Cxx.size != 0: if Dxx.size != 0: old_prob += logLikeDepe(Dxx, Cxx) else: old_prob += logLikeCont(Cxx) elif Dxx.size != 0: old_prob += logLikeDisc(Dxx) # Likelihood of current partition x. if Cxy.size != 0: if Dxy.size != 0: old_prob += logLikeDepe(Dxy, Cxy) else: old_prob += logLikeCont(Cxy) elif Dxy.size != 0: old_prob += logLikeDisc(Dxy) # Likelihood of proposed partition y. if Cyx.size != 0: if Dyx.size != 0: new_prob += logLikeDepe(Dyx, Cyx) else: new_prob += logLikeCont(Cyx) elif Dyx.size != 0: new_prob += logLikeDisc(Dyx) # Likelihood of proposed partition y. if Cyy.size != 0: if Dyy.size != 0: new_prob += logLikeDepe(Dyy, Cyy) else: new_prob += logLikeCont(Cyy) elif Dyy.size != 0: new_prob += logLikeDisc(Dyy) # Uncomment if you want to trace probabilities. # trace[i] = trace[i-1] # Check if proposal is accepted, if so, update everything. accept = np.log(np.random.rand()) <= min(0, new_prob-old_prob) if accept: Ix = np.array(Iy) Cx = np.array(Cy) Dx =
np.array(Dy)
numpy.array
# -*- coding: utf-8 -*- """ Created on Tue Dec 29 16:24:16 2020 @author: mclea """ import numpy as np import matplotlib.pyplot as plt from scipy.signal import convolve2d from mpl_toolkits.mplot3d import Axes3D from scipy.interpolate import griddata from matplotlib import cm import kernprof from line_profiler import LineProfiler from scipy.sparse import csr_matrix import time def restrict(A): """ Creates a new grid of points which is half the size of the original grid in each dimension. """ n = A.shape[0] m = A.shape[1] new_n = int((n-2)/2+2) new_m = int((m-2)/2+2) new_array = np.zeros((new_n, new_m)) for i in range(1, new_n-1): for j in range(1, new_m-1): ii = int((i-1)*2)+1 jj = int((j-1)*2)+1 # print(i, j, ii, jj) new_array[i,j] = np.average(A[ii:ii+2, jj:jj+2]) new_array = set_BC(new_array) return new_array def interpolate_array(A): """ Creates a grid of points which is double the size of the original grid in each dimension. Uses linear interpolation between grid points. """ n = A.shape[0] m = A.shape[1] new_n = int((n-2)*2 + 2) new_m = int((m-2)*2 + 2) new_array = np.zeros((new_n, new_m)) i = (
np.indices(A.shape)
numpy.indices
# Forward: given model/pde parameters λ -> u(t, x) import time, sys, os, json import numpy as np import tensorflow as tf import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from mpl_toolkits.mplot3d import Axes3D # from plotting import newfig, savefig # from mpl_toolkits.axes_grid1 import make_axes_locatable # from pyDOE import lhs # from scipy.interpolate import griddata # import scipy.io sys.path.insert(0, '../../Utilities/') # for plotting # from plotting import newfig, savefig # np.random.seed(1234) # tf.set_random_seed(1234) class PhysicsInformedNN: # Initialize the class def __init__(self, xb, yb, x0, xe, y0, ye, boundaryU, boundaryU_, xf_grid, yf_grid, layers, lowerbound, upperbound, mix): self.mix = mix self.xb = xb self.yb = yb self.x0 = x0 self.xe = xe self.y0 = y0 self.ye = ye self.ul = boundaryU[0] self.ur = boundaryU[1] self.ub = boundaryU[2] self.ut = boundaryU[3] if self.mix: self.ul_x = boundaryU_[0] self.ur_x = boundaryU_[1] self.ub_y = boundaryU_[2] self.ut_y = boundaryU_[3] self.xf_grid = xf_grid self.yf_grid = yf_grid self.lowerbound = lowerbound self.upperbound = upperbound self.layers = layers # Initialize NN self.weights, self.biases = self.initialize_NN(layers) # shape: (N_b, 1) self.xb_tf = tf.placeholder(tf.float32, shape=[None, self.xb.shape[1]]) self.yb_tf = tf.placeholder(tf.float32, shape=[None, self.yb.shape[1]]) self.x0_tf = tf.placeholder(tf.float32, shape=[None, self.x0.shape[1]]) self.xe_tf = tf.placeholder(tf.float32, shape=[None, self.xe.shape[1]]) self.y0_tf = tf.placeholder(tf.float32, shape=[None, self.y0.shape[1]]) self.ye_tf = tf.placeholder(tf.float32, shape=[None, self.ye.shape[1]]) self.ul_tf = tf.placeholder(tf.float32, shape=[None, self.ul.shape[1]]) self.ur_tf = tf.placeholder(tf.float32, shape=[None, self.ur.shape[1]]) self.ub_tf = tf.placeholder(tf.float32, shape=[None, self.ub.shape[1]]) self.ut_tf = tf.placeholder(tf.float32, shape=[None, self.ut.shape[1]]) if self.mix: self.ul_x_tf = tf.placeholder(tf.float32, shape=[None, self.ul_x.shape[1]]) self.ur_x_tf = tf.placeholder(tf.float32, shape=[None, self.ur_x.shape[1]]) self.ub_y_tf = tf.placeholder(tf.float32, shape=[None, self.ub_y.shape[1]]) self.ut_y_tf = tf.placeholder(tf.float32, shape=[None, self.ut_y.shape[1]]) # shape: (N_f * N_f, 1) because in net_all: X = tf.concat([x,y],1) self.xf_grid_tf = tf.placeholder(tf.float32, shape=[None, self.xf_grid.shape[1]]) self.yf_grid_tf = tf.placeholder(tf.float32, shape=[None, self.yf_grid.shape[1]]) self.lr_tf = tf.placeholder(tf.float32) # tf Graphs: u, u_x, u_y, f = net_all(x, y) self.ul_pred, self.ul_x_pred, _, _ = self.net_all(self.x0_tf, self.yb_tf) self.ur_pred, self.ur_x_pred, _, _ = self.net_all(self.xe_tf, self.yb_tf) self.ub_pred, _, self.ub_y_pred, _ = self.net_all(self.xb_tf, self.y0_tf) self.ut_pred, _, self.ut_y_pred, _ = self.net_all(self.xb_tf, self.ye_tf) # used in predict (only call net_all once) self.uf_pred, _, _, self.f_pred = self.net_all(self.xf_grid_tf, self.yf_grid_tf) # Loss: boundary(u, u_x, u_y) + PDE (f = u_xx + u_yy = 0) if not self.mix: # purely u for boundary condition self.loss = tf.reduce_mean(tf.square(self.ul_tf - self.ul_pred)) + \ tf.reduce_mean(tf.square(self.ur_tf - self.ur_pred)) + \ tf.reduce_mean(tf.square(self.ub_tf - self.ub_pred)) + \ tf.reduce_mean(tf.square(self.ut_tf - self.ut_pred)) + \ tf.reduce_mean(tf.square(self.f_pred)) else: # mix of u and u_x, u_y for boundary condition self.loss = tf.reduce_mean(tf.square(self.ul_x_tf - self.ul_x_pred)) + \ tf.reduce_mean(tf.square(self.ur_tf - self.ur_pred)) + \ tf.reduce_mean(tf.square(self.ub_tf - self.ub_pred)) + \ tf.reduce_mean(tf.square(self.ut_y_tf - self.ut_y_pred)) + \ tf.reduce_mean(tf.square(self.f_pred)) # tf.reduce_mean: computes the mean of elements across dimensions of a tensor # Optimizers: # return a minimization Op (a graph node that performs computation on tensors) -> updates weights and biases self.train_op_Adam = tf.train.AdamOptimizer(learning_rate = self.lr_tf).minimize(self.loss) # tf session: initiates a tf Graph (defines computations) that processes tensors through operations + allocates resources + holds intermediate values self.sess = tf.Session() # variables now hold the values from declarations: tf.Variable(tf.zeros(...)), tf.Variable(tf.random_normal(...)), etc init = tf.global_variables_initializer() self.sess.run(init) # required to initialize the variables def initialize_NN(self, layers): weights = [] biases = [] num_layers = len(layers) for l in range(0, num_layers-1): # tf.Variable: for trainable variables/mutable tensor values that persist across multiple sesssion.run() # https://towardsdatascience.com/understanding-fundamentals-of-tensorflow-program-and-why-it-is-necessary-94cf5b60e255 weights.append(self.xavier_init(size=[layers[l], layers[l+1]])) biases.append(tf.Variable(tf.zeros([1, layers[l+1]], dtype=tf.float32), dtype=tf.float32)) # all zeros return weights, biases def xavier_init(self, size): # https://towardsdatascience.com/weight-initialization-in-neural-networks-a-journey-from-the-basics-to-kaiming-954fb9b47c79 # Want each layer's activation outputs to have stddev around 1 -> repeat matrix mult across as many layers without activations exploding or vanishing in_dim = size[0] out_dim = size[1] xavier_stddev = np.sqrt(2/(in_dim + out_dim)) # random values from a truncated normal distribution (values whose magnitude>2 staddev from mean are dropped and re-picked) # Shape of the output tensor: [layers[l], layers[l+1]] return tf.Variable(tf.truncated_normal([in_dim, out_dim], stddev=xavier_stddev), dtype=tf.float32) def neural_net(self, X, weights, biases): num_layers = len(weights) + 1 H = 2.0*(X - self.lowerbound)/(self.upperbound - self.lowerbound) - 1 # Initializing first input: mapping to [-1, 1] for l in range(0, num_layers-2): W = weights[l] b = biases[l] H = tf.tanh(tf.add(tf.matmul(H, W), b)) # passing along networks # NOTE: H*W=(50, 20) + B(1, 20) -> tf does broadcasting: B becomes (50, 20) W = weights[-1] b = biases[-1] Y = tf.add(tf.matmul(H, W), b) # passed 5 times in total return Y def net_all(self, x, y): X = tf.concat([x, y], 1) # input # x = [[-0.5], [0.5]] # y = [[0], [1]] # [[-0.5, 0] # [0.5, 1]] u = self.neural_net(X, self.weights, self.biases) u_x = tf.gradients(u, x)[0] u_xx = tf.gradients(u_x, x)[0] u_y = tf.gradients(u, y)[0] u_yy = tf.gradients(u_y, y)[0] f = u_xx + u_yy # f = u_xx + u_yy = 0 return u, u_x, u_y, f def callback(self, loss): print('Loss:', loss) def train(self, lr): # one iteration: uses all training data from tf_dict and updates weights and biases tf_dict = { self.x0_tf: self.x0, self.xe_tf: self.xe, self.xb_tf: self.xb, self.y0_tf: self.y0, self.ye_tf: self.ye, self.yb_tf: self.yb, self.ul_tf: self.ul, self.ur_tf: self.ur, self.ub_tf: self.ub, self.ut_tf: self.ut, self.xf_grid_tf: self.xf_grid, self.yf_grid_tf: self.yf_grid, self.lr_tf: lr} if self.mix: tf_dict.update({ self.ul_x_tf: self.ul_x, self.ur_x_tf: self.ur_x, self.ub_y_tf: self.ub_y, self.ut_y_tf: self.ut_y }) # feeding training examples during training and running the minimization Op of self.loss self.sess.run(self.train_op_Adam, tf_dict) loss_value = self.sess.run(self.loss, tf_dict) return loss_value def predict(self, x_grid, y_grid): # tf.concat([x, y], 1) tf_dict = {self.xf_grid_tf: x_grid, self.yf_grid_tf: y_grid} u, f = self.sess.run([self.uf_pred, self.f_pred], tf_dict) return u, f def contourPlot(xtest_mesh, ytest_mesh, u_test, u_pred, N_test, i): fig = plt.figure(figsize=(6.0, 5.3)) gs = gridspec.GridSpec(nrows=2, ncols=3, figure=fig, width_ratios=[6, 6, 0.6], height_ratios=[1, 1], wspace=0.41, hspace=0.33) ax = fig.add_subplot(gs[0, 0]) cset1 = ax.contourf(xtest_mesh, ytest_mesh, np.reshape(u_test, (N_test, N_test)), levels=30, cmap='winter') plt.gca().set(xlabel='$x$', ylabel='$y$', title='Exact') # $: mathematical font like latex ax = fig.add_subplot(gs[0, 1]) cset2 = ax.contourf(xtest_mesh, ytest_mesh, np.reshape(u_pred, (N_test, N_test)), levels=30, cmap='winter') plt.gca().set(xlabel='$x$', ylabel='$y$', title='Prediction') ax = fig.add_subplot(gs[0, 2]) fig.colorbar(cset2, cax=ax) ax = fig.add_subplot(gs[1, 0:2]) cset3 = ax.contourf(xtest_mesh, ytest_mesh, np.reshape(np.abs(u_pred-u_test), (N_test, N_test)), levels=30, cmap='autumn') plt.gca().set(xlabel='$x$', ylabel='$y$', title='|Prediction - Exact|') ax = fig.add_subplot(gs[1, 2]) fig.colorbar(cset3, cax=ax) plt.suptitle(f'Snapshot at Iteration = {i+1}') fig.subplots_adjust(left=0.09, right=0.89, bottom=0.08, top=0.90) plt.savefig(f'{dirpath}/forward_2d_contour_iter{i+1}_new.pdf') plt.close(fig) with open(f'{dirpath}/forward_2d_contour_upred_iter{i+1}.json', 'w') as f: json.dump(u_pred.tolist(), f) def axisToGrid(x, y): # [[0] [0.5] [1]] (N, 1) x_mesh, y_mesh = np.meshgrid(x, y) # [[0 0.5 1] [0 0.5 1] [0 0.5 1]], [[0 0 0] [0.5 0.5 0.5] [1 1 1]] (N, N) x_grid = np.reshape(x_mesh.flatten(), (-1, 1)) # [[0] [0.5] [1] [0] [0.5] [1] [0] [0.5] [1]] # (N * N, 1) y_grid = np.reshape(y_mesh.flatten(), (-1, 1)) # [[0] [0] [0] [0.5] [0.5] [0.5] [1] [1] [1]] # (N * N, 1) return x_mesh, y_mesh, x_grid, y_grid # net_all: X = tf.concat([x,y],1) if __name__ == "__main__": # u_xx + u_yy = 0, x in [0, 1], y in [0, 1] # u(0, y) = -y^2 ## left (u) # u(1, y) = 1 - y^2 + 3y ## right (u) # u(x, 0) = x^2 ## bottom (u) # u(x, 1) = x^2 - 1 + 3x ## top (u) # u_x(0, y) = 2x + 3y = 3y ## left (du/dx) # u_x(1, y) = 2x + 3y = 2 + 3y ## right (du/dx) # u_y(x, 0) = -2y + 3x = 3x ## bottom (du/dy) # u_y(x, 1) = -2y + 3x = -2 + 3x ## top (du/dy) # analytical solution: u(x, y) = x^2 - y^2 + 3xy # NOTE: du/dn (normal direction) for boundary condition: # 1) additional information # 2) makes sense this way: u=temperature, fixed boundary temperatue, du/dn indicates influx/outflux # NOTE: need at least one edge to be u(x, y), otherwise solution have arbitrary constant # NOTE: Boundary condition can have order > 1 ########################### ## PART 1: setting parameters and getting accurate data for evaluation # 4-layer deep NN with 20 neurons/layer & hyperbolic tangent act. func. layers = [2, 50, 50, 50, 1] mix = True # mix of boundary conditions (u, u_x, u_y) # Domain bounds lowerbound = np.array([0, 0]) upperbound = np.array([1, 1]) ########################### ## PART 2:setting training and testing data from full analytical solution for uniform grid # boundary condition N_b = 20 xb = np.reshape(np.linspace(lowerbound[0], upperbound[0], N_b), (-1, 1)) # [[0] [0.5] [1]] (N_b, 1) yb = np.reshape(np.linspace(lowerbound[1], upperbound[1], N_b), (-1, 1)) x0 = 0 * yb + lowerbound[0] # left edge # [[0] [0] [0]] xe = 0 * yb + upperbound[0] # right edge y0 = 0 * xb + lowerbound[1] # bottom edge ye = 0 * xb + upperbound[1] # top edge ul = -1 * yb**2 # u(0, y) ur = 1 - yb**2 + 3 * yb # u(1, y) ub = xb**2 # u(x, 0) ut = xb**2 - 1 + 3 * xb # u(x, 1) ul_x = 3 * yb # u_x(0, y) ur_x = 2 + 3 * yb # u_x(1, y) ub_y = 3 * xb # u_y(x, 0) ut_y = -2 + 3 * xb # u_y(x, 1) # collocation points for enforcing f=0 from uniform grid # NOTE: want PDE satisfied at positions arbitrarily close to boundary -> include boundary points in collocation points # NOTE: Generally, want interval of training point < smallest characteristic of solution (fluctuation) (dense enough to capture all landscape within domain) # NOTE: To estimate the density: can estimate fluctuation frequency from f (known), geometry (sharp region higher frequency), prior knowledge N_f = 30 # along one axis xf = np.reshape(np.linspace(lowerbound[0], upperbound[0], N_f), (-1, 1)) # (N_f, 1) yf = np.reshape(np.linspace(lowerbound[1], upperbound[1], N_f), (-1, 1)) # (N_f, 1) _, _, xf_grid, yf_grid = axisToGrid(xf, yf) # (N_f * N_f, 1) # testing data N_test = 50 # NOTE: different from collocation points xtest = np.reshape(np.linspace(lowerbound[0], upperbound[0], N_test), (-1, 1)) # (N_test, 1) ytest = np.reshape(np.linspace(lowerbound[1], upperbound[1], N_test), (-1, 1)) # (N_test, 1) xtest_mesh, ytest_mesh, xtest_grid, ytest_grid = axisToGrid(xtest, ytest) # # (N_test, N_test), (N_test * N_test, 1) u_test = xtest_grid**2 - ytest_grid**2 + 3 * xtest_grid * ytest_grid # (N_test * N_test, 1) ########################### ## PART 3: forming the network, training, predicting model = PhysicsInformedNN(xb, yb, x0, xe, y0, ye, [ul, ur, ub, ut], [ul_x, ur_x, ub_y, ut_y], xf_grid, yf_grid, layers, lowerbound, upperbound, mix) start_time = time.time() # settings for plots dirpath = f'./main/2d/forward_2d_figures/{start_time}' # where figures are stored os.mkdir(dirpath) ticksize = 8.5 plt.rcParams['xtick.labelsize'] = ticksize plt.rcParams['ytick.labelsize'] = ticksize plt.rcParams['axes.labelsize'] = 9.5 plt.rcParams['axes.titlesize'] = 10.5 plt.rcParams['lines.markersize'] = 4 plt.rcParams['legend.handlelength'] = 0.4 annotatesize = 9.5 # Plot 1. Boundary Point, Collocation Point fig = plt.figure(figsize=(4.2, 2.9)) bc, = plt.plot(np.concatenate((x0,xe,xb,xb)), np.concatenate((yb,yb,y0,ye)), 'H', c='#ffa96b', label = 'Boundary Point', clip_on=False) cp, = plt.plot(xf_grid, yf_grid, '.', c='#81c9fc', label = 'Collocation Point', clip_on=False) plt.gca().set(xlim=(0, 1), ylim=(0, 1), xlabel='x', ylabel='y', title='Training Data') plt.figlegend(handles=[bc, cp], loc='center right', bbox_to_anchor=(0.5, 0., 0.5, 0.5), fontsize=ticksize, framealpha=0.9) fig.subplots_adjust(left=0.11, right=0.67, bottom=0.13, top=0.92) plt.savefig(f'{dirpath}/trainingdata.pdf') plt.close(fig) dataDict = { 'boundary points':{ 'N_b': N_b, 'xb': xb.tolist(), 'yb': yb.tolist(), 'x0': x0.tolist(), 'xe': xe.tolist(), 'y0': y0.tolist(), 'ye': ye.tolist(), 'ul': ul.tolist(), 'ur': ur.tolist(), 'ub': ub.tolist(), 'ut': ut.tolist(), 'ul_x': ul_x.tolist(), 'ur_x': ur_x.tolist(), 'ub_y': ub_y.tolist(), 'ut_y': ut.tolist(), }, 'collocation points':{ 'N_f': N_f, 'xf_grid': xf_grid.tolist(), 'yf_grid': yf_grid.tolist(), }, 'testing data':{ "N_test": N_test, "xtest_mesh": xtest_mesh.tolist(), "ytest_mesh": ytest_mesh.tolist(), "u_test": u_test.tolist() } } with open(f'{dirpath}/data.json', 'w') as f: json.dump(dataDict, f) # Note: loss around 10^-3/-4 should be about good loss_values, u_preds, f_preds = ([] for i in range(3)) N_iter = 10000 loss_value_step = 10 pred_step = 100 contour_step = 1000 # if not pred_step's multiple, graph every least common multiple (pred_step, contour_step) for i in range(N_iter): lr = 10**-3 * 2**(-i/10000) if i <= 60000 else 10**-3 * 2**(-60000/10000) # 0.00002210/0.00001563 # learning rate decay loss_value = model.train(lr) # from last iteration if (i+1) % loss_value_step == 0: # start with i=9 and end with i=8999 (last iter) loss_values.append(float(loss_value)) print('Iter: %d, Loss: %.3e, Time: %.2f, Learning Rate: %.8f' % (i+1, loss_value, time.time() - start_time, lr)) if (i+1) % pred_step == 0: # start with i=999 and end with i=8999 (last iter) u_pred, f_pred = model.predict(xtest_grid, ytest_grid) u_preds.append(u_pred) # (N_test * N_test, 1) f_preds.append(f_pred) # (N_test * N_test, 1) if (i+1) % contour_step == 0: # start with i=2999 and end with i=8999 (last iter) ## Plot 2. u (Exact, Preidction) vs (x,y) and |u_pred-u_test| vs (x,y): contour contourPlot(xtest_mesh, ytest_mesh, u_test, u_pred, N_test, i) training_time = time.time() - start_time u_preds = np.array(u_preds) f_preds = np.array(f_preds) u_pred, f_pred = model.predict(xtest_grid, ytest_grid) # NOTE: what is important is the function u_pred resembles, not so much the parameters (weights & biases) # NOTE: if no analytical solution, find numerical method/other method to verify -> directly use network ########################### ## PART 4: calculating errors error_u = np.linalg.norm(u_pred - u_test, 2) / np.linalg.norm(u_test, 2) # scalar print('Error u: %e' % (error_u)) ########################### ## PART 5: Plotting # Plot 3. loss vs. iteration fig = plt.figure(figsize=(6.8, 6)) plt.ticklabel_format(axis='x', style="sci", scilimits=(3,3)) x_coords = loss_value_step * (np.array(range(len(loss_values))) + 1) plt.semilogy(x_coords, loss_values) # linear X axis, logarithmic y axis(log scaling on the y axis) plt.gca().set(xlabel='Iteration', ylabel='Loss', title='Loss during Training') init_tuple = (loss_value_step, loss_values[0]) plt.annotate('(%d, %.3e)' % init_tuple, xy=init_tuple, fontsize=annotatesize, ha='left') last_tuple = (N_iter, loss_values[-1]) plt.annotate('(%d, %.3e)' % last_tuple, xy=last_tuple, fontsize=annotatesize, ha='right', va='top') plt.plot([init_tuple[0], last_tuple[0]], [init_tuple[1], last_tuple[1]], '.', c='#3B75AF') fig.subplots_adjust(left=0.1, right=0.98, bottom=0.07, top=0.95) # NOTE: Oscillation: actually very small nummerical difference because of small y scale # 1. overshoot (fixed -> decaying learning rate) # 2. Adam: gradient descent + momentum (sometime parameter change makes the loss go up) plt.savefig(f'{dirpath}/forward_2d_loss.pdf') plt.close(fig) with open(f'{dirpath}/forward_2d_loss.json', 'w') as f: json.dump({"x_coords": x_coords.tolist(), "loss_values": loss_values}, f) # Plot 4. MSE between u_pred and u_test vs. iteration fig = plt.figure(figsize=(6, 6)) plt.ticklabel_format(axis='x', style="sci", scilimits=(3,3)) x_coords = pred_step * (np.array(range(len(u_preds))) + 1) u_mses = [((u_pred - u_test)**2).mean(axis=0) for u_pred in u_preds] #[[mse1] [mse2] [mse3]] u_mses =
np.array(u_mses)
numpy.array
''' Name: color_segmentation.py Version: 1.0 Summary: K-means color clustering based segmentation. This is achieved by converting the source image to a desired color space and running K-means clustering on only the desired channels, with the pixels being grouped into a desired number of clusters. Author: <NAME> Author-email: <EMAIL> Created: 2018-05-29 USAGE: python3 demo_color_seg.py -p ~/plant-image-analysis/test/ -ft JPG ''' # import the necessary packages import os import glob import argparse from sklearn.cluster import KMeans from skimage.feature import peak_local_max from skimage.morphology import watershed, medial_axis from skimage import img_as_float, img_as_ubyte, img_as_bool, img_as_int from skimage import measure from skimage.segmentation import clear_border from scipy.spatial import distance as dist from scipy import optimize from scipy import ndimage import math import numpy as np import argparse import cv2 import matplotlib.pyplot as plt import matplotlib.patches as mpatches import warnings warnings.filterwarnings("ignore") import concurrent.futures import multiprocessing from multiprocessing import Pool from contextlib import closing MBFACTOR = float(1<<20) # generate foloder to store the output results def mkdir(path): # import module import os # remove space at the beginning path=path.strip() # remove slash at the end path=path.rstrip("\\") # path exist? # True # False isExists=os.path.exists(path) # process if not isExists: # construct the path and folder #print path + ' folder constructed!' # make dir os.makedirs(path) return True else: # if exists, return #print path+' path exists!' return False def color_cluster_seg(image, args_colorspace, args_channels, args_num_clusters, min_size): # Change image color space, if necessary. colorSpace = args_colorspace.lower() if colorSpace == 'hsv': image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) elif colorSpace == 'ycrcb' or colorSpace == 'ycc': image = cv2.cvtColor(image, cv2.COLOR_BGR2YCrCb) elif colorSpace == 'lab': image = cv2.cvtColor(image, cv2.COLOR_BGR2LAB) else: colorSpace = 'bgr' # set for file naming purposes # Keep only the selected channels for K-means clustering. if args_channels != 'all': channels = cv2.split(image) channelIndices = [] for char in args_channels: channelIndices.append(int(char)) image = image[:,:,channelIndices] if len(image.shape) == 2: image.reshape(image.shape[0], image.shape[1], 1) (width, height, n_channel) = image.shape #print("image shape: \n") #print(width, height, n_channel) # Flatten the 2D image array into an MxN feature vector, where M is the number of pixels and N is the dimension (number of channels). reshaped = image.reshape(image.shape[0] * image.shape[1], image.shape[2]) # Perform K-means clustering. if args_num_clusters < 2: print('Warning: num-clusters < 2 invalid. Using num-clusters = 2') #define number of cluster numClusters = max(2, args_num_clusters) # clustering method kmeans = KMeans(n_clusters = numClusters, n_init = 40, max_iter = 500).fit(reshaped) # get lables pred_label = kmeans.labels_ # Reshape result back into a 2D array, where each element represents the corresponding pixel's cluster index (0 to K - 1). clustering = np.reshape(np.array(pred_label, dtype=np.uint8), (image.shape[0], image.shape[1])) # Sort the cluster labels in order of the frequency with which they occur. sortedLabels = sorted([n for n in range(numClusters)],key = lambda x: -np.sum(clustering == x)) # Initialize K-means grayscale image; set pixel colors based on clustering. kmeansImage = np.zeros(image.shape[:2], dtype=np.uint8) for i, label in enumerate(sortedLabels): kmeansImage[clustering == label] = int(255 / (numClusters - 1)) * i ret, thresh = cv2.threshold(kmeansImage,0,255,cv2.THRESH_BINARY | cv2.THRESH_OTSU) thresh_cleaned = clear_border(thresh) if np.count_nonzero(thresh) > 0: thresh_cleaned_bw = clear_border(thresh) else: thresh_cleaned_bw = thresh nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(thresh_cleaned, connectivity = 8) # stats[0], centroids[0] are for the background label. ignore # cv2.CC_STAT_LEFT, cv2.CC_STAT_TOP, cv2.CC_STAT_WIDTH, cv2.CC_STAT_HEIGHT sizes = stats[1:, cv2.CC_STAT_AREA] Coord_left = stats[1:, cv2.CC_STAT_LEFT] Coord_top = stats[1:, cv2.CC_STAT_TOP] Coord_width = stats[1:, cv2.CC_STAT_WIDTH] Coord_height = stats[1:, cv2.CC_STAT_HEIGHT] Coord_centroids = centroids #print("Coord_centroids {}\n".format(centroids[1][1])) #print("[width, height] {} {}\n".format(width, height)) nb_components = nb_components - 1 #min_size = 70 max_size = width*height*0.1 img_thresh =
np.zeros([width, height], dtype=np.uint8)
numpy.zeros
#!/usr/bin/env python3 from pprint import pformat from threading import Event from celery import Celery, group, chain from celery.exceptions import SoftTimeLimitExceeded from tools import (sanity_check, calc_indiv, calc_comb, update_cube_cache) from utils.api import api_request, get_api_creds from utils.order import cancel_order, place_order, target_orders from utils.reconcile import reconcile_balances, reconcile_order from utils.regression import regression from database import * import numpy as np # Replacing datetime.time (Do not move) from time import time, sleep CELERY_BROKER_URL = os.getenv('CELERY_BROKER_URL') CELERY_RESULT_BACKEND = CELERY_BROKER_URL celery = Celery('trader', backend=CELERY_RESULT_BACKEND, broker=CELERY_BROKER_URL) celery.conf.broker_transport_options = {'fanout_prefix': True} celery.conf.broker_transport_options = {'fanout_patterns': True} celery.conf.worker_prefetch_multiplier = 1 celery.conf.task_time_limit = 1800 celery.conf.task_soft_time_limit = 12000 log = logging.getLogger(__name__) logging.basicConfig(level=logging.DEBUG) stopevent = Event() class SqlAlchemyTask(celery.Task): """An abstract Celery Task that ensures that the connection the the database is closed on task completion""" abstract = True def after_return(self, status, retval, task_id, args, kwargs, einfo): db_session.close() db_session.remove() @celery.task(base=SqlAlchemyTask) def place_orders(cube_id, orders): try: cube = Cube.query.get(cube_id) log.debug(f'{cube} Placing Orders') for order in orders: # Arguments: cube_id, ex_pair_id, side, amount, price place_order(cube_id, order[2], order[3], order[0], order[1]) update_cube_cache(cube_id, False) except SoftTimeLimitExceeded: update_cube_cache(cube_id, False) ## To do: error handling @celery.task(base=SqlAlchemyTask) def cancel_orders(cube_id, ex, orders): try: cube = Cube.query.get(cube_id) log.debug(f'{cube} Canceling Orders') for order in orders: cancel_order(cube_id, ex.id, order['order_id'], order['base'], order['quote'] ) update_cube_cache(cube_id, False) except SoftTimeLimitExceeded: update_cube_cache(cube_id, False) ## To do: error handling #### Not implemented yet # @celery.task(base=SqlAlchemyTask) # def unrecognized_activity(cube_id): # try: # # Possible theft of key and malicious trading activity # # Delete all open orders and force update # cube = Cube.query.get(cube_id) # log.debug(f'{cube} Unrecognized Activity') # for conn in cube.connections.values(): # ex = conn.exchange # creds = get_api_creds(cube, ex) # args = {**creds, **{'type': 'open'}} # orders = api_request(cube, 'GET', ex.name, '/orders', args) # if orders: # cancel_orders.delay(cube_id, ex, orders) # db_session.add(cube) # db_session.commit() # except SoftTimeLimitExceeded: # update_cube_cache(cube_id, False) # ## To do: error handling @celery.task(base=SqlAlchemyTask) def trigger_rebalance(cube_id): try: cube = Cube.query.get(cube_id) log.debug(f'{cube} Rebalance triggered') cube.reallocated_at = datetime.utcnow() for b in cube.balances: b.target = None db_session.add(cube) db_session.commit() except SoftTimeLimitExceeded: update_cube_cache(cube_id, False) ## To do: error handling def get_start_timestamp(cube, db_tx): if db_tx: log.debug(f'{cube} Tranasactions exist, updating from {db_tx.timestamp}') return int(float(db_tx.timestamp)) + 1 else: log.debug(f'{cube} Transactions do not exist, updating from account start') return int(datetime.timestamp(cube.created_at) * 1000) # Convert to milliseconds def import_trades(cube, ex, creds, since): now = time() * 1000 days = 10 trades = pd.DataFrame() url = '/trades' if ex.name in ['Binance', 'Liquid']: while since < now: new_trades = pd.DataFrame() for bal in cube.balances: ex_pairs = ExPair.query.filter_by( exchange_id=ex.id, active=True ).filter(or_( ExPair.base_currency_id == bal.currency_id, ExPair.quote_currency_id == bal.currency_id, )).all() for ex_pair in ex_pairs: args = {**creds, **{ 'base': ex_pair.base_symbol, 'quote': ex_pair.quote_symbol, 'limit': 1000, 'since': since } } binance_trades = api_request(cube, 'GET', ex.name, url, args) binance_trades = pd.read_json(binance_trades) new_trades = new_trades.append(binance_trades) sleep(1) if not new_trades.empty: new_trades = new_trades.sort_index() new_trades.timestamp = new_trades.timestamp.astype(np.int64)//10**6 since = int(new_trades.iloc[-1].timestamp) + 1 trades = trades.append(new_trades) elif since < now: # 10 days in milliseconds since = since + 24 * 60 * 60 * days * 1000 else: break else: while since < now: args = {**creds, **{'since': since}} new_trades = api_request(cube, 'GET', ex.name, url, args) new_trades = pd.read_json(new_trades) if not new_trades.empty: new_trades.timestamp = new_trades.timestamp.astype(np.int64)//10**6 since = new_trades.iloc[-1].timestamp + 1 trades = trades.append(new_trades) elif since < now: # 10 days in milliseconds since = since + 24 * 60 * 60 * days * 1000 else: break if not trades.empty: # Adjustments to dataframe to match table structure fee = trades['fee'].apply(pd.Series) try: fee = fee.drop(['type'], axis=1) except: pass try: fee = fee.rename(index=str, columns={'rate': 'fee_rate', 'cost': 'fee_amount', 'currency': 'fee_currency'}) except: pass trades = pd.concat([trades, fee], axis=1) trades = trades.rename(index=str, columns={'id': 'tx_id', 'order': 'order_id', 'amount': 'base_amount', 'cost': 'quote_amount'}) symbol = trades['symbol'].str.split('/', n=1, expand=True) trades['base_symbol'] = symbol[0] trades['quote_symbol'] = symbol[1] trades['trade_type'] = trades['type'] trades['type'] = trades['side'] trades.drop(['side', 'symbol', 'fee'], axis=1, inplace=True) _, i =
np.unique(trades.columns, return_index=True)
numpy.unique
""" Set of programs to read and interact with output from Bifrost """ # import builtin modules import os import functools import weakref from glob import glob import warnings import time import ast # import external public modules import numpy as np from scipy import interpolate from scipy.ndimage import map_coordinates # import internal modules from .load_quantities import * from .load_arithmetic_quantities import * from . import load_fromfile_quantities from .tools import * from . import document_vars from . import file_memory whsp = ' ' class BifrostData(object): """ Reads data from Bifrost simulations in native format. Parameters ---------- file_root - string Basename for all file names (without underscore!). Snapshot number will be added afterwards, and directory will be added before. snap - integer, optional Snapshot number. If None, will read first snapshot in sequence. meshfile - string, optional File name (including full path) for file with mesh. If set to None (default), a uniform mesh will be created. fdir - string, optional Directory where simulation files are. Must be a real path. verbose - bool, optional If True, will print out more diagnostic messages dtype - string, optional Data type for reading variables. Default is 32 bit float. big_endian - string, optional If True, will read variables in big endian. Default is False (reading in little endian). ghost_analyse - bool, optional If True, will read data from ghost zones when this is saved to files. Default is never to read ghost zones. cstagop - bool, optional Use true only if data is too big to load. Danger: it will do quantity operations without correcting the stagger mesh. lowbus - bool, optional Use True only if data is too big to load. It will do cstagger operations layer by layer using threads (slower). numThreads - integer, optional number of threads for certain operations that use parallelism. fast - whether to read data "fast", by only reading the requested data. implemented as a flag, with False as default, for backwards compatibility; some previous codes may have assumed non-requested data was read. To avoid issues, just ensure you use get_var() every time you want to have data, and don't assume things exist (e.g. self.bx) unless you do get_var for that thing (e.g. get_var('bx')). Examples -------- This reads snapshot 383 from simulation "cb24bih", whose file root is "cb24bih", and is found at directory /data/cb24bih: >>> a = BifrostData("cb24bih", snap=383, fdir="/data/cb24bih") Scalar variables do not need de-staggering and are available as memory map (only loaded to memory when needed), e.g.: >>> a.r.shape (504, 504, 496) Composite variables need to be obtained by get_var(): >>> vx = a.get_var("ux") """ snap = None def __init__(self, file_root, snap=None, meshfile=None, fdir='.', fast=False, verbose=True, dtype='f4', big_endian=False, cstagop=True, ghost_analyse=False, lowbus=False, numThreads=1, params_only=False, sel_units=None, use_relpath=False, stagger_kind = 'stagger', iix=None, iiy=None, iiz=None): """ Loads metadata and initialises variables. """ self.fdir = fdir if use_relpath else os.path.abspath(fdir) self.verbose = verbose self.cstagop = cstagop self.lowbus = lowbus self.numThreads = numThreads self.file_root = os.path.join(self.fdir, file_root) self.root_name = file_root self.meshfile = meshfile self.ghost_analyse = ghost_analyse self.stagger_kind = stagger_kind self.sel_units = sel_units self.numThreads = numThreads self.fast = fast self._fast_skip_flag = False if fast else None # None-> never skip setattr(self, document_vars.LOADING_LEVEL, -1) # tells how deep we are into loading a quantity now. # endianness and data type if big_endian: self.dtype = '>' + dtype else: self.dtype = '<' + dtype self.hion = False self.heion = False try: tmp = find_first_match("%s*idl" % file_root, fdir) except IndexError: try: tmp = find_first_match("%s*idl.scr" % file_root, fdir) except IndexError: try: tmp = find_first_match("mhd.in", fdir) except IndexError: raise ValueError(("(EEE) init: no .idl or mhd.in files " "found")) self.uni = Bifrost_units(filename=tmp, fdir=fdir) self.set_snap(snap, True, params_only=params_only) self.set_domain_iiaxes(iix=iix, iiy=iiy, iiz=iiz, internal=False) self.genvar() self.transunits = False self.cross_sect = cross_sect_for_obj(self) if 'tabinputfile' in self.params.keys(): tabfile = os.path.join(self.fdir, self.get_param('tabinputfile').strip()) if os.access(tabfile, os.R_OK): self.rhoee = Rhoeetab(tabfile=tabfile, fdir=fdir, radtab=True) document_vars.create_vardict(self) document_vars.set_vardocs(self) def _set_snapvars(self, firstime=False): """ Sets list of avaible variables """ self.snapvars = ['r', 'px', 'py', 'pz', 'e'] self.auxvars = self.get_param('aux', error_prop=True).split() if self.do_mhd: self.snapvars += ['bx', 'by', 'bz'] self.hionvars = [] self.heliumvars = [] if self.get_param('do_hion', default=0) > 0: self.hionvars = ['hionne', 'hiontg', 'n1', 'n2', 'n3', 'n4', 'n5', 'n6', 'nh2'] self.hion = True if self.get_param('do_helium', default=0) > 0: self.heliumvars = ['nhe1', 'nhe2', 'nhe3'] self.heion = True self.compvars = ['ux', 'uy', 'uz', 's', 'ee'] self.simple_vars = self.snapvars + self.auxvars + self.hionvars + \ self.heliumvars self.auxxyvars = [] # special case for the ixy1 variable, lives in a separate file if 'ixy1' in self.auxvars: self.auxvars.remove('ixy1') self.auxxyvars.append('ixy1') self.vars2d = [] # special case for 2D variables, stored in a separate file for var in self.auxvars: if any(i in var for i in ('xy', 'yz', 'xz')): self.auxvars.remove(var) self.vars2d.append(var) def set_snap(self, snap, firstime=False, params_only=False): """ Reads metadata and sets variable memmap links for a given snapshot number. Parameters ---------- snap - integer or array Number of simulation snapshot to load. """ if snap is None: try: tmp = sorted(glob("%s*idl" % self.file_root))[0] snap_string = tmp.split( self.file_root + '_')[-1].split(".idl")[0] if snap_string.isdigit(): snap = int(snap_string) else: tmp = glob("%s.idl" % self.file_root) snap = 0 except Exception: try: tmp = sorted(glob("%s*idl.scr" % self.file_root))[0] snap = -1 except IndexError: try: tmp = glob("%s.idl" % self.file_root) snap = 0 except IndexError: raise ValueError(("(EEE) set_snap: snapshot not defined " "and no .idl files found")) def snap_str_from_snap(snap): if snap == 0: return '' else: return '_%03i' % snap self.snap = snap if np.shape(self.snap) != (): self.snap_str = [] for num in snap: self.snap_str.append(snap_str_from_snap(num)) else: self.snap_str = snap_str_from_snap(snap) self.snapInd = 0 self._read_params(firstime=firstime) # Read mesh for all snaps because meshfiles could differ self.__read_mesh(self.meshfile, firstime=firstime) # variables: lists and initialisation self._set_snapvars(firstime=firstime) # Do not call if params_only requested if(not params_only): self._init_vars(firstime=firstime) def _read_params(self, firstime=False): """ Reads parameter file (.idl) """ if np.shape(self.snap) == (): snap = [self.snap] snap_str = [self.snap_str] else: snap = self.snap snap_str = self.snap_str filename = [] self.paramList = [] for i, num in enumerate(snap): if num < 0: filename.append(self.file_root + '.idl.scr') elif num == 0: filename.append(self.file_root + '.idl') else: filename.append(self.file_root + snap_str[i] + '.idl') for file in filename: self.paramList.append(read_idl_ascii(file,firstime=firstime, obj=self)) # assign some parameters as attributes for params in self.paramList: for p in ['x', 'y', 'z', 'b']: try: setattr(self, 'n' + p, params['m' + p]) except KeyError: raise KeyError(('read_params: could not find ' 'm%s in idl file!' % p)) for p in ['dx', 'dy', 'dz', 'do_mhd']: try: setattr(self, p, params[p]) except KeyError: raise KeyError(('read_params: could not find ' '%s in idl file!' % p)) try: if params['boundarychk'] == 1: self.nzb = self.nz + 2 * self.nb else: self.nzb = self.nz except KeyError: self.nzb = self.nz # check if units are there, if not use defaults and print warning unit_def = {'u_l': 1.e8, 'u_t': 1.e2, 'u_r': 1.e-7, 'u_b': 1.121e3, 'u_ee': 1.e12} for unit in unit_def: if unit not in params: default = unit_def[unit] if hasattr(self, 'uni'): default = getattr(self.uni, unit, default) if getattr(self, 'verbose', True): print("(WWW) read_params:"" %s not found, using " "default of %.3e" % (unit, default), 2*whsp, end="\r", flush=True) params[unit] = default self.params = {} for key in self.paramList[0]: self.params[key] = np.array( [self.paramList[i][key] for i in range(0, len(self.paramList)) \ if key in self.paramList[i].keys()]) # the if statement is required in case extra params in # self.ParmList[0] self.time = self.params['t'] if self.sel_units=='cgs': self.time *= self.uni.uni['t'] def get_param(self, param, default=None, warning=None, error_prop=None): ''' get param via self.params[param][self.snapInd]. if param not in self.params.keys(), then the following kwargs may play a role: default: None (default) or any value. return this value (eventually) instead. (check warning and error_prop first.) warning: None (default) or any Warning or string. if not None, do warnings.warn(warning). error_prop: None (default), True, or any Exception object. None --> ignore this kwarg. True --> raise the original KeyError caused by trying to get self.params[param]. else --> raise error_prop from None. ''' try: p = self.params[param] except KeyError as err_triggered: if (warning is not None) and (self.verbose): warnings.warn(warning) if error_prop is not None: if isinstance(error_prop, BaseException): raise error_prop from None # "from None" --> show just this error, not also err_triggered elif error_prop: raise err_triggered return default else: p = p[self.snapInd] return p def __read_mesh(self, meshfile, firstime=False): """ Reads mesh file """ if meshfile is None: meshfile = os.path.join( self.fdir, self.get_param('meshfile', error_prop=True).strip()) if os.path.isfile(meshfile): f = open(meshfile, 'r') for p in ['x', 'y', 'z']: dim = int(f.readline().strip('\n').strip()) assert dim == getattr(self, 'n' + p) # quantity setattr(self, p, np.array( [float(v) for v in f.readline().strip('\n').split()])) # quantity "down" setattr(self, p + 'dn', np.array( [float(v) for v in f.readline().strip('\n').split()])) # up derivative of quantity setattr(self, 'd%sid%sup' % (p, p), np.array( [float(v) for v in f.readline().strip('\n').split()])) # down derivative of quantity setattr(self, 'd%sid%sdn' % (p, p), np.array( [float(v) for v in f.readline().strip('\n').split()])) f.close() if self.ghost_analyse: # extend mesh to cover ghost zones self.z = np.concatenate((self.z[0] - np.linspace( self.dz * self.nb, self.dz, self.nb), self.z, self.z[-1] + np.linspace( self.dz, self.dz * self.nb, self.nb))) self.zdn = np.concatenate((self.zdn[0] - np.linspace( self.dz * self.nb, self.dz, self.nb), self.zdn, (self.zdn[-1] + np.linspace( self.dz, self.dz * self.nb, self.nb)))) self.dzidzup = np.concatenate((
np.repeat(self.dzidzup[0], self.nb)
numpy.repeat
# -*- coding: utf-8 -*- """ Current funcionatilities: - Lifting line theory - generate field pressures for Abaqus or other softwares - air properties calculator - Reynolds calculator Created on Mon Jul 20 17:26:19 2015 @author: <NAME> """ from __future__ import print_function from __future__ import absolute_import import math import numpy as np #class Wing(): # def __init__(self, alpha_L_0_root, c_D_xfoil, N=10, b=10., taper=1., # chord_root=1, alpha_root=0., V=1.): # self.alpha_L_0_root = alpha_L_0_root # self.c_D_xfoil = c_D_xfoil # self.N = N # self.b = b # self.taper = taper # self.chord_root = chord_root # self.alpha_root = alpha_root # self.V = V #============================================================================== # Functions that calculate aerodynamic properties based on already calcualted # aerodynamic properties from other modules #============================================================================== def LLT_calculator(alpha_L_0_root, c_D_xfoil, N=10, b=10., taper=1., chord_root=1, alpha_root=0., V=1.): """ Calculate the coefficients for a Wing. TODO : - Include elliptical wing - When alpha_L_0_root = zero, nan! - Include non rectangular wings - something else? """ def x_theta_converter(input, b, Output='x'): """Converts cartesian coordinate in a polar coordinate.""" if Output == 'x': output = -(b/2) *
np.cos(input)
numpy.cos
"""Tests for optional shape and type annotation features.""" import jax import numpy as onp import pytest from jax import numpy as jnp from typing_extensions import Annotated from jax_dataclasses import EnforcedAnnotationsMixin, pytree_dataclass @pytree_dataclass class MnistStruct(EnforcedAnnotationsMixin): image: Annotated[ jnp.ndarray, (28, 28), jnp.floating, ] label: Annotated[ jnp.ndarray, (10,), jnp.integer, ] @pytree_dataclass class MnistStructPartial(EnforcedAnnotationsMixin): image_shape_only: Annotated[ jnp.ndarray, (28, 28), ] label_dtype_only: Annotated[ jnp.ndarray, jnp.integer, ] def test_valid(): data = MnistStruct( image=onp.zeros((28, 28), dtype=onp.float32), label=onp.zeros((10,), dtype=onp.uint8), ) assert data.get_batch_axes() == () data = MnistStruct( image=onp.zeros((5, 28, 28), dtype=onp.float32), label=onp.zeros((5, 10), dtype=onp.uint8), ) assert data.get_batch_axes() == (5,) data = MnistStruct( image=onp.zeros((5, 7, 28, 28), dtype=onp.float32), label=onp.zeros((5, 7, 10), dtype=onp.uint8), ) assert data.get_batch_axes() == (5, 7) data = MnistStructPartial( image_shape_only=onp.zeros((7, 28, 28), dtype=onp.float32), label_dtype_only=onp.zeros((70), dtype=onp.int32), ) assert data.get_batch_axes() == (7,) def test_shape_mismatch(): with pytest.raises(AssertionError): MnistStruct( image=
onp.zeros((7, 32, 32), dtype=onp.float32)
numpy.zeros
import numpy as np from tqdm import tqdm from scipy.stats import rankdata from random import choice from collections import defaultdict from tensorflow.keras.callbacks import Callback from tensorflow.keras.losses import binary_crossentropy import tensorflow as tf from random import choices EPSILON = 1e-6 from rdflib import Graph, URIRef, Literal, Namespace import rdflib from rdflib.namespace import XSD, RDF UNIT = Namespace('http://qudt.org/vocab/unit#') from tqdm import tqdm import spacy VEC_SIZE = 300 def isint(value): try: int(value) return True except ValueError: return False class LiteralConverter: def __init__(self,g,padding_value=0): self.g = g self.non_literal_entities = set(g.subjects()) | set([o for o in g.objects() if isinstance(o,URIRef)]) self.literal_predicates = set([p for p,o in g.predicate_objects() if isinstance(o,Literal)]) self.padding_value = padding_value self.lang_models = {'xx':spacy.load('xx_ent_wiki_sm'),'en':spacy.load('en_core_web_md')} def _process_string_literal(self,x): doc = self.lang_models['en'](str(x)) v = doc.vector if len(v) < 1: v = self.padding_value*np.ones((VEC_SIZE,)) return v def _process_literal(self,x): if hasattr(x,'datatype') and (x.datatype == XSD['float'] or x.datatype == XSD['double']): return [float(x)] if hasattr(x,'datatype') and x.datatype == XSD['date']: return URIRef('http://examples.org/date/%s' % str(x)) if hasattr(x,'datatype') and x.datatype == XSD['boolean']: return [1] if bool(x) else [0] if len(str(x)) == 4 and isint(x): return URIRef('http://examples.org/date/%s' % str(x)) if hasattr(x,'datatype') and (x.datatype is None or x.datatype == XSD['string']): return self._process_string_literal(x) return None def fit(self): out = defaultdict(dict) vec_or_num = {} array_ps = set() for i,e in tqdm(enumerate(self.non_literal_entities),total=len(self.non_literal_entities),desc='Processing literals'): for j,p in enumerate(self.literal_predicates): tmp = set(self.g.objects(subject = e, predicate = p / RDF.value)) | set(self.g.objects(subject = e, predicate = p)) unit = set(self.g.objects(subject = e, predicate = p / UNIT.units)) for t in tmp: t = self._process_literal(t) if t is None: continue elif isinstance(t,URIRef): self.g.add((e,p,t)) else: out[p][e] = t if p not in vec_or_num: vec_or_num[p] = len(t) s=sum(i for k,i in vec_or_num.items()) self.literals = {} for e in self.non_literal_entities: tmp = [] for p in self.literal_predicates: if not p in vec_or_num: continue if e in out[p]: tmp.append(np.asarray(out[p][e]).reshape((1,-1))) else: tmp.append(self.padding_value*np.ones((1,vec_or_num[p]))) tmp = np.concatenate(tmp,axis=1).reshape((-1,)) assert len(tmp) == s self.literals[e] = tmp def transform(self,entities): return np.asarray([self.literals[e] for e in entities]) def fit_transform(self,entities): if not hasattr(self,'literals'): self.fit() return self.transform(entities) def load_kg(path): out = [] with open(path,'r') as f: for l in f: l = l.strip().split() out.append(l) return out def generate_negative(kg, N, negative=2, check_kg=False, corrupt_head=True, corrupt_tail=True): # false triples: assert corrupt_head or corrupt_tail R = np.repeat(np.asarray([p for _,p,_ in kg]).reshape((-1,1)),negative,axis=0) fs = np.random.randint(0,N,size=(negative*len(kg),1)) fo = np.random.randint(0,N,size=(negative*len(kg),1)) negative_kg = np.stack([fs,R,fo],axis=1) return negative_kg def oversample_data(kgs,x=None,y=None,testing=False): if testing: kgs = [list(kg)[:len(y)] for kg in kgs] else: kgs = [list(kg) for kg in kgs] if y is not None: m = max(max(map(len,kgs)),len(y)) else: m = max(map(len,kgs)) out = [] for kg in kgs: out.append(choices(kg, k=m)) if x is not None and y is not None: k = np.ceil(m/len(y)) y = np.repeat(y,k,axis=0)[:m] x = np.repeat(x,k,axis=0)[:m,:] for s in np.split(x,3,axis=1): out.append(s.reshape((-1,))) return [np.squeeze(np.asarray(o)) for o in out], np.asarray(y) else: return [np.squeeze(np.asarray(o)) for o in out] def pad(kg,bs): kg = list(kg) while len(kg) % bs != 0: kg.append(choice(kg)) return np.asarray(kg) def mrr(target, scores): scores = sorted(scores, key=lambda x: x[1], reverse=True) labels = [x for x,_ in scores] return 1/(1+labels.index(target)) def hits(target, scores, k=10): scores = sorted(scores, key=lambda x: x[1], reverse=True) labels = [x for x,_ in scores][:k] return int(target in labels) def gen_tail_data(test_data,num_entities,bs,filter_t): for s,p,o in test_data: candiate_objects = list(range(num_entities)) candiate_objects.remove(o) for oi in filter_t[(s,p)]: candiate_objects.remove(oi) subjects = np.asarray([[int(s)]]*(len(candiate_objects)+1)) predicates = np.asarray([[int(p)]]*(len(candiate_objects)+1)) objects = np.asarray([[int(o)]] + [[ent_id] for ent_id in candiate_objects]) triples = np.concatenate((subjects,predicates,objects),axis=-1) yield triples.reshape((-1,3)) def gen_head_data(test_data,num_entities,bs,filter_h): for s,p,o in test_data: candiate_subjects = list(range(num_entities)) candiate_subjects.remove(s) for si in filter_h[(p,o)]: candiate_subjects.remove(si) objects = np.asarray([[int(o)]]*(len(candiate_subjects)+1)) predicates = np.asarray([[int(p)]]*(len(candiate_subjects)+1)) subjects = np.asarray([[int(s)]] + [[ent_id] for ent_id in candiate_subjects]) triples = np.concatenate((subjects,predicates,objects),axis=-1) yield triples.reshape((-1,3)) def validate(model, test_data, num_entities, bs, filtering_triples = None): filter_h = defaultdict(set) filter_t = defaultdict(set) for s,p,o in filtering_triples: filter_h[(p,o)].add(s) filter_t[(s,p)].add(o) c_1, c_3, c_10 = 0,0,0 mean_ranks = [] for t in tqdm(gen_tail_data(test_data,num_entities,bs,filter_t),total=len(test_data)): res = np.asarray(model.predict(t)).reshape((-1,)) r = rankdata(res,'max') target_rank = r[0] num_candidate = len(res) real_rank = num_candidate - target_rank + 1 c_1 += 1 if target_rank == num_candidate else 0 c_3 += 1 if target_rank + 3 > num_candidate else 0 c_10 += 1 if target_rank + 10 > num_candidate else 0 mean_ranks.append(real_rank) tail_hit_at_1 = c_1 / float(len(test_data)) tail_hit_at_3 = c_3 / float(len(test_data)) tail_hit_at_10 = c_10 / float(len(test_data)) tail_avg_rank =
np.mean(mean_ranks)
numpy.mean
import numpy as np import pickle import time from random import uniform import torch from torchvision import datasets import torchvision class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKCYAN = '\033[96m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' def prepro(x): """ preprocessing for images only""" return x.astype(np.float).ravel() / 255 def softmax(x): exp_vals = np.exp(x - np.max(x, axis=1, keepdims=True)) probs = exp_vals / np.sum(exp_vals, axis=1, keepdims=True) return probs def relu(x): return np.maximum(0, x) def drelu(inputs, dinputs): dinputs[inputs <= 0] = 0 return dinputs def optimize(model, grad_buffer, lr): """ Vanilla Stochastic Gradient Descent """ for k, v in model.items(): model[k] -= lr * grad_buffer[k] def init_grad_buffer(model): grad_buffer = {} for k, v in model.items(): grad_buffer[f'{k}'] =
np.zeros_like(v)
numpy.zeros_like
'''Module with classes and methods to analyse and process exported geomodel grids Created on 21/03/2014 @author: <NAME> (some parts originally developed by <NAME>) ''' import numpy as np #import pynoddy import subprocess import os.path import platform try: import matplotlib.pyplot as plt except ImportError: print("\n\n\tMatplotlib not installed - plotting functions will not work!\n\n\n") # import mpl_toolkits # from matplotlib.ticker import MultipleLocator, FormatStrFormatter # to convert python variable types to cpp types import ctypes # to create array from numpy.ctypeslib import ndpointer # to create folder import os # read out and change xml file (here only used to read out model boundary information) import geomodeller_xml_obj as GO class GeoGrid(): """Object definition for exported geomodel grids""" def __init__(self, **kwds): """GeoGrid contains methods to load, analyse, and process exported geomodel grids **Optional Keywords**: - *grid_filename* = string : filename of exported grid - *delxyz_filename* = string : file with model discretisation - *dimensions_filename* = string : file with model dimension (coordinates) """ if kwds.has_key('grid_filename'): self.grid_filename = kwds['grid_filename'] if kwds.has_key('delxyz_filename'): self.delxyz_filename = kwds['delxyz_filename'] if kwds.has_key('dimensions_filename'): self.dimensions_filename = kwds['dimensions_filename'] def __add__(self, G_other): """Combine grid with another GeoGrid if regions are overlapping""" # check overlap print (self.ymin, self.ymax) print (G_other.ymin, G_other.ymax) if (G_other.ymin < self.ymax and G_other.ymin > self.ymin): print("Grids overlapping in y-direction between %.0f and %.0f" % (G_other.ymin, self.ymax)) def load_grid(self): """Load exported grid, discretisation and dimensions from file""" if not hasattr(self, 'grid_filename'): raise AttributeError("Grid filename is not defined!") self.grid = np.loadtxt(self.grid_filename, delimiter = ',', dtype='int', unpack=False) if hasattr(self, 'delxyz_filename'): self.load_delxyz(self.delxyz_filename) self.adjust_gridshape() if hasattr(self, 'dimensions_filename'): self.load_dimensions(self.dimensions_filename) def load_delxyz(self, delxyz_filename): """Load grid discretisation from file""" del_lines = open(delxyz_filename, 'r').readlines() d0 = del_lines[0].split("*") self.delx = np.array([float(d0[1]) for _ in range(int(d0[0]))]) d1 = del_lines[1].split("*") self.dely = np.array([float(d1[1]) for _ in range(int(d1[0]))]) d2 = del_lines[2].split(",")[:-1] self.delz = np.array([float(d) for d in d2]) (self.nx, self.ny, self.nz) = (len(self.delx), len(self.dely), len(self.delz)) (self.extent_x, self.extent_y, self.extent_z) = (sum(self.delx), sum(self.dely), sum(self.delz)) def set_delxyz(self, delxyz): """Set delx, dely, delz arrays explicitly and update additional attributes **Arguments**: - *delxyz* = (delx-array, dely-array, delz-array): arrays with cell dimensions """ self.delx, self.dely, self.delz = delxyz (self.nx, self.ny, self.nz) = (len(self.delx), len(self.dely), len(self.delz)) (self.extent_x, self.extent_y, self.extent_z) = (sum(self.delx), sum(self.dely), sum(self.delz)) def set_basename(self, name): """Set basename for grid exports, etc. **Arguments**: - *name* = string: basename """ self.basename = name def load_dimensions(self, dimensions_filename): """Load project dimensions from file""" dim = [float(d) for d in open(dimensions_filename, 'r').readlines()[1].split(",")] (self.xmin, self.xmax, self.ymin, self.ymax, self.zmin, self.zmax) = dim # calculate cell centre positions in real world coordinates def define_regular_grid(self, nx, ny, nz): """Define a regular grid from defined project boundaries and given discretisations""" self.nx = nx self.ny = ny self.nz = nz self.delx = np.ones(nx) * (self.xmax - self.xmin) / nx self.dely = np.ones(ny) * (self.ymax - self.ymin) / ny self.delz = np.ones(nz) * (self.zmax - self.zmin) / nz # create (empty) grid object self.grid = np.ndarray((nx, ny, nz)) # update model extent (self.extent_x, self.extent_y, self.extent_z) = (sum(self.delx), sum(self.dely), sum(self.delz)) def define_irregular_grid(self, delx, dely, delz): """Set irregular grid according to delimter arrays in each direction""" self.delx = delx self.dely = dely self.delz = delz self.nx = len(delx) self.ny = len(dely) self.nz = len(delz) # create (empty) grid object self.grid = np.ndarray((self.nx, self.ny, self.nz)) # update model extent (self.extent_x, self.extent_y, self.extent_z) = (sum(self.delx), sum(self.dely), sum(self.delz)) def get_dimensions_from_geomodeller_xml_project(self, xml_filename): """Get grid dimensions from Geomodeller project **Arguments**: - *xml_filename* = string: filename of Geomodeller XML file """ # Note: this implementation is based on the Geomodeller API # The boundaries could theoretically also be extracted from the XML file # directly, e.g. using the geomodeller_xml_obj module - but this would # require an additional module being loaded, so avoid here! filename_ctypes = ctypes.c_char_p(xml_filename) # get model boundaries #Detection of operative system: if platform.system() == "Linux": lib = ctypes.CDLL('./libgeomod.so') #linux elif platform.system() == "Windows": lib = ctypes.windll.LoadLibrary(os.path.dirname(os.path.abspath(__file__)) + os.path.sep +"libgeomodwin_leak6.dll") #windows else: print("Your operative system is not supported") lib.get_model_bounds.restype = ndpointer(dtype=ctypes.c_int, shape=(6,)) boundaries = lib.get_model_bounds(filename_ctypes) (self.xmin, self.xmax, self.ymin, self.ymax, self.zmin, self.zmax) = boundaries self.extent_x = self.xmax - self.xmin self.extent_y = self.ymax - self.ymin self.extent_z = self.zmax - self.zmin # f def update_from_geomodeller_project(self, xml_filename): """Update grid properties directly from Geomodeller project **Arguments**: - *xml_filename* = string: filename of Geomodeller XML file """ filename_ctypes = ctypes.c_char_p(xml_filename) #print filename_ctypes # create cell position list with [x0, y0, z0, ... xn, yn, zn] cell_position = [] ids = [] # check if cell centers are defined - if not, do so! if not hasattr(self, 'cell_centers_x'): if cell_position == []: self.determine_cell_centers() for k in range(self.nz): for j in range(self.ny): for i in range(self.nx): cell_position.append(self.cell_centers_x[i]) cell_position.append(self.cell_centers_y[j]) cell_position.append(self.cell_centers_z[k]) ids.append((i,j,k)) # prepare variables for cpp function #print cell_position coord_ctypes = (ctypes.c_double * len(cell_position))(*cell_position) coord_len = len(cell_position) # call cpp function #Detection of operative system: if platform.system() == "Linux": lib = ctypes.CDLL('./libgeomod.so') #linux elif platform.system() == "Windows": lib = ctypes.windll.LoadLibrary(os.path.dirname(os.path.abspath(__file__)) + os.path.sep +"libgeomodwin_leak6.dll") #windows else: print("Your operative system is not supported") #print coord_len lib.compute_irregular_grid.restype = ndpointer(dtype=ctypes.c_int, shape=(coord_len/3,)) # This is the function wich needs GPU!!! formations_raw = lib.compute_irregular_grid(filename_ctypes, coord_ctypes, coord_len) # re-sort formations into array # print formations_raw for i in range(len(formations_raw)): self.grid[ids[i][0],ids[i][1],ids[i][2]] = formations_raw[i] def set_densities(self, densities): """Set layer densities **Arguments**: - *densities* = dictionary of floats: densities for geology ids """ self.densities = densities def set_sus(self, sus): """Set layer susceptibilities **Arguments**: - *us* = dictionary of floats: magnetic susceptibilities for geology ids """ self.sus = sus def write_noddy_files(self, **kwds): """Create Noddy block model files (for grav/mag calculation) **Optional keywords**: - *gps_range* = float : set GPS range (default: 1200.) Method generates the files required to run the forward gravity/ magnetics response from the block model: - model.g00 = file with basic model information - model.g12 = discretised geological (block) model - base.his = Noddy history file with some basic settings """ self.gps_range = kwds.get("gps_range", 1200.) if not hasattr(self, 'basename'): self.basename = "geogrid" f_g12 = open(self.basename + ".g12", 'w') f_g01 = open(self.basename + ".g00", 'w') # method = 'numpy' # using numpy should be faster - but it messes up the order... possible to fix? # if method == 'standard': # i = 0 # j = 0 # k = 0 # self.block = np.ndarray((self.nx,self.ny,self.nz)) # for line in f.readlines(): # if line == '\n': # # next z-slice # k += 1 # # reset x counter # i = 0 # continue # l = [int(l1) for l1 in line.strip().split("\t")] # self.block[i,:,self.nz-k-1] = np.array(l)[::-1] # i += 1 if not hasattr(self, "unit_ids"): self.determine_geology_ids() #======================================================================= # # create file with base settings (.g00) #======================================================================= f_g01.write("VERSION = 7.11\n") f_g01.write("FILE PREFIX = " + self.basename + "\r\n") import time t = time.localtime() # get current time f_g01.write("DATE = %d/%d/%d\n" % (t.tm_mday, t.tm_mon, t.tm_year)) f_g01.write("TIME = %d:%d:%d\n" % (t.tm_hour, t.tm_min, t.tm_sec)) f_g01.write("UPPER SW CORNER (X Y Z) = %.1f %.1f %.1f\n" % (self.xmin - self.gps_range, self.ymin - self.gps_range, self.zmax)) f_g01.write("LOWER NE CORNER (X Y Z) = %.1f %.1f %.1f\n" % (self.xmax + self.gps_range, self.ymax + self.gps_range, self.zmin)) f_g01.write("NUMBER OF LAYERS = %d\n" % self.nz) for k in range(self.nz): f_g01.write("\tLAYER %d DIMENSIONS (X Y) = %d %d\n" % (k, self.nx + 2 * (self.gps_range / self.delx[0]), self.ny + 2 * (self.gps_range / self.dely[0]))) f_g01.write("NUMBER OF CUBE SIZES = %d\n" % self.nz) for k in range(self.nz): f_g01.write("\tCUBE SIZE FOR LAYER %d = %d\n" % (k, self.delx[0])) f_g01.write("CALCULATION RANGE = %d\n" % (self.gps_range / self.delx[0])) f_g01.write("""INCLINATION OF EARTH MAG FIELD = -67.00 INTENSITY OF EARTH MAG FIELD = 63000.00 DECLINATION OF VOL. WRT. MAG NORTH = 0.00 DENSITY CALCULATED = Yes SUSCEPTIBILITY CALCULATED = Yes REMANENCE CALCULATED = No ANISOTROPY CALCULATED = No INDEXED DATA FORMAT = Yes """) f_g01.write("NUM ROCK TYPES = %d\n" % len(self.unit_ids)) for i in self.unit_ids: f_g01.write("ROCK DEFINITION Layer %d = %d\n" % (i, i)) f_g01.write("\tDensity = %f\n" % self.densities[int(i)]) f_g01.write("\tSus = %f\n" % self.sus[int(i)]) #======================================================================= # Create g12 file #======================================================================= # write geology blocks to file for k in range(self.nz): # this worked for geophysics, but not for re-import with pynoddy: # for val in self.grid[:,:,k].ravel(order = 'A'): # f_g12.write("%d\t" % val) for i in range(self.nx): for val in self.grid[i,:,k]: f_g12.write("%d\t" % val) f_g12.write("\r\n") # f_g12.write(['%d\t' % i for i in self.grid[:,:,k].ravel()]) f_g12.write("\r\n") f_g12.close() f_g01.close() #======================================================================= # # create noddy history file for base settings #======================================================================= import pynoddy.history history = self.basename + "_base.his" nm = pynoddy.history.NoddyHistory('simple_two_faults.his') #print nm # add stratigraphy # create dummy names and layers for base stratigraphy layer_names = [] layer_thicknesses = [] for i in self.unit_ids: layer_names.append('Layer %d' % i) layer_thicknesses.append(500) strati_options = {'num_layers' : len(self.unit_ids), 'layer_names' : layer_names, 'layer_thickness' : layer_thicknesses} nm.add_event('stratigraphy', strati_options, ) # set grid origin and extent: nm.set_origin(self.xmin, self.ymin, self.zmin) nm.set_extent(self.extent_x, self.extent_y, self.extent_z) nm.write_history(history) def analyse_geophysics(self, densities, **kwds): """Simulate potential-fields and use for model analysis It is possible to directly define filter for processing of gravity **Arguments**: - *model_dir*: directory containing sub-directories with uncertainty runs (uncertainty_run_01, etc.); **Optional keywords**: - *grav_min* = float : reject models with a grav value lower than this - *grav_max* = float : reject models with a grav value larger than this """ #os.chdir(model_dir) all_gravs = [] all_gravs_filtered = [] all_mags = [] all_mags_filtered = [] all_probs = {} all_probs_filtered = {} i_all = 0 i_filtered = 0 used_grids = [] used_grids_filtered = [] f = self #for f in os.listdir(model_dir): # if os.path.splitext(f)[1] == ".pkl" and "Sandstone" in f: #=================================================================== # Load grid #=================================================================== # grid_file = open(os.path.join(model_dir, f), "r") # grid_ori = pickle.load(grid_file) # grid_file.close() #=================================================================== # Extract subgrid #=================================================================== # subrange = (40,200,30,250,0,80) grid = self # grid = grid_ori # substitute 0 with something else in grid ids tmp_grid = np.zeros_like(grid.grid) tmp_grid[grid.grid == 0] += 1 #print tmp_grid.shape # grid.set_basename(self.split(".")[0]) # print "Basename" # print grid.basename grid.grid += tmp_grid # n_cells = np.prod(grid.grid.shape) grid.determine_geology_ids() #=================================================================== # # set densities and magnetic susceptibilities #=================================================================== #densities = dens #densities = {0: 0.1, # 1: 2610, # 2: 2920, # 3: 3100, # 4: 2920, # 5: 2610} sus = {0: 0.001, 1: 0.001, 2: 0.001, 3: 0.1, 4: 0.001, 5: 0.001} grid.set_densities(densities) grid.set_sus(sus) # print grid grid.write_noddy_files(gps_range = 0.0) # print grid.unit_ids sim_type = "ANOM_FROM_BLOCK" history = grid.basename + "_base.his" output_name = grid.basename #import pdb #pdb.set_trace() # save grid as vtk for testing: # grid_ori.export_to_vtk(vtk_filename = grid.basename) #=================================================================== # Run gravity forward modeling #=================================================================== out = subprocess.Popen(['noddy.exe', history, output_name, sim_type], shell=True, stderr=subprocess.PIPE, stdout=subprocess.PIPE).stdout.read() #=================================================================== # Initiate probability grids #=================================================================== if i_all == 0: vals = grid.unit_ids for val in vals: if not all_probs.has_key(val): all_probs[val] = np.zeros_like(grid.grid, dtype = "float") all_probs_filtered[val] = np.zeros_like(grid.grid, dtype = "float") #=================================================================== # Create plot and store data #=================================================================== self.geophys = pynoddy.output.NoddyGeophysics(grid.basename) #return geophys """ #================================================= # Check gravity constraints #================================================= filter_val = True if kwds.has_key("grav_max"): if np.max(geophys.grv_data) > kwds['grav_max']: filter_val = False if kwds.has_key("grav_min"): if np.min(geophys.grv_data) < kwds['grav_min']: filter_val = False if filter_val: all_gravs_filtered.append(geophys.grv_data) all_mags_filtered.append(geophys.mag_data) used_grids_filtered.append("%s/%s" % (model_dir, grid.basename)) # test_grid = np.zeros_like(grid.grid) for val in vals: all_probs_filtered[val] += (grid.grid == val) # test_grid += grid.grid == val # check probability # assert(np.sum(test_grid) == n_cells) i_filtered += 1 all_gravs.append(geophys.grv_data) all_mags.append(geophys.mag_data) used_grids.append("%s/%s" % (model_dir, grid.basename)) # test_grid = np.zeros_like(grid.grid) for val in vals: all_probs[val] += (grid.grid == val) # test_grid += grid.grid == val # assert(np.sum(test_grid) == n_cells) i_all += 1 #=================================================================== # Export to vtk for test #=================================================================== # grid_out = pynoddy.output.NoddyOutput(grid.basename) # grid_out.export_to_vtk(vtk_filename = grid.basename) #======================================================================= # Analyse statistics for all simulated grids #======================================================================= # all_gravs = np.array(all_gravs) return all_gravs, all_mags, used_grids, all_probs, i_all,\ all_gravs_filtered, all_mags_filtered, used_grids_filtered, all_probs_filtered, i_filtered # f_all = open("all_gravs.pkl", 'w') # pickle.dump(all_gravs, f_all) # f_all.close() # return all_gravs """ def set_dimensions(self, **kwds): """Set model dimensions, if no argument provided: xmin = 0, max = sum(delx) and accordingly for y,z **Optional keywords**: - *dim* = (xmin, xmax, ymin, ymax, zmin, zmax) : set dimensions explicitly """ if kwds.has_key("dim"): (self.xmin, self.xmax, self.ymin, self.ymax, self.zmin, self.zmax) = kwds['dim'] else: self.xmin, self.ymin, self.zmin = (0., 0., 0.) self.xmax, self.ymax, self.zmax = (sum(self.delx), sum(self.dely), sum(self.delz)) def determine_cell_centers(self): """Determine cell centers for all coordinate directions in "real-world" coordinates""" if not hasattr(self, 'xmin'): raise AttributeError("Please define grid dimensions first") sum_delx = np.cumsum(self.delx) sum_dely = np.cumsum(self.dely) sum_delz = np.cumsum(self.delz) self.cell_centers_x = np.array([sum_delx[i] - self.delx[i] / 2. for i in range(self.nx)]) + self.xmin self.cell_centers_y = np.array([sum_dely[i] - self.dely[i] / 2. for i in range(self.ny)]) + self.ymin self.cell_centers_z = np.array([sum_delz[i] - self.delz[i] / 2. for i in range(self.nz)]) + self.zmin def determine_cell_boundaries(self): """Determine cell boundaries for all coordinates in "real-world" coordinates""" if not hasattr(self, 'xmin'): raise AttributeError("Please define grid dimensions first") sum_delx = np.cumsum(self.delx) sum_dely = np.cumsum(self.dely) sum_delz = np.cumsum(self.delz) self.boundaries_x = np.ndarray((self.nx+1)) self.boundaries_x[0] = 0 self.boundaries_x[1:] = sum_delx self.boundaries_y = np.ndarray((self.ny+1)) self.boundaries_y[0] = 0 self.boundaries_y[1:] = sum_dely self.boundaries_z = np.ndarray((self.nz+1)) self.boundaries_z[0] = 0 self.boundaries_z[1:] = sum_delz # create a list with all bounds self.bounds = [self.boundaries_y[0], self.boundaries_y[-1], self.boundaries_x[0], self.boundaries_x[-1], self.boundaries_z[0], self.boundaries_z[-1]] def adjust_gridshape(self): """Reshape numpy array to reflect model dimensions""" self.grid = np.reshape(self.grid, (self.nz, self.ny, self.nx)) self.grid = np.swapaxes(self.grid, 0, 2) # self.grid = np.swapaxes(self.grid, 0, 1) def plot_section(self, direction, cell_pos='center', **kwds): """Plot a section through the model in a given coordinate direction **Arguments**: - *direction* = 'x', 'y', 'z' : coordinate direction for section position - *cell_pos* = int/'center','min','max' : cell position, can be given as value of cell id, or as 'center' (default), 'min', 'max' for simplicity **Optional Keywords**: - *cmap* = mpl.colormap : define colormap for plot (default: jet) - *alpha* = define the transparencie for the plot (default: 1) - *colorbar* = bool: attach colorbar (default: True) - *geomod_coord* = bool: Plotting geomodeller coordinates instead voxels (default: False) - *contour* = bool : Plotting contour of the layers contact - *plot layer* = array: Layer Number you want to plot in the contour plot - *rescale* = bool: rescale color bar to range of visible slice (default: False) - *ve* = float : vertical exageration (for plots in x,y-direction) - *figsize* = (x,y) : figsize settings for plot - *ax* = matplotlib.axis : add plot to this axis (default: new axis) if axis is defined, the axis is returned and the plot not shown Note: if ax is passed, colorbar is False per default! - *savefig* = bool : save figure to file (default: show) - *fig_filename* = string : filename to save figure """ #TO DO: # Fix colorbar max and min # - Colorbar in contourplots colorbar = kwds.get('colorbar', True) cmap = kwds.get('cmap', 'jet') alpha = kwds.get('alpha', 1) rescale = kwds.get('rescale', False) ve = kwds.get('ve', 1.) figsize = kwds.get('figsize', (8,4)) geomod_coord = kwds.get('geomod_coord', False) contour = kwds.get('contour', False) linewidth = kwds.get("linewidth", 1) levels = kwds.get("plot_layer", None) if not kwds.has_key('ax'): colorbar = kwds.get('colorbar', True) # create new axis for plot fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) else: colorbar = False ax = kwds['ax'] if direction == 'x': if type(cell_pos) == str: # decipher cell position if cell_pos == 'center' or cell_pos == 'centre': pos = self.nx / 2 elif cell_pos == 'min': pos = 0 elif cell_pos == 'max': pos = self.nx else: pos = cell_pos grid_slice = self.grid[pos,:,:] grid_slice = grid_slice.transpose() #print grid_slice aspect = self.extent_z/self.extent_x * ve if geomod_coord: ax.set_xticks(np.linspace(0,self.ny-1,6, endpoint = True, dtype = int)) ax.set_yticks(np.linspace(0,self.nz-1,6, endpoint = True, dtype = int)) ax.set_xticklabels(np.linspace(self.ymin,self.ymax,6,dtype = int, endpoint = True )) ax.set_yticklabels(np.linspace(self.zmin,self.zmax,6,dtype = int, endpoint = True )) ax.set_ylabel("z[m]") ax.set_xlabel("y[m]") else: ax.set_ylabel("z[voxels]") ax.set_xlabel("y[voxels]") if contour: ry = np.arange(self.nz) rx = np.arange(self.ny) elif direction == 'y': if type(cell_pos) == str: # decipher cell position if cell_pos == 'center' or cell_pos == 'centre': pos = self.ny / 2 elif cell_pos == 'min': pos = 0 elif cell_pos == 'max': pos = self.ny else: pos = cell_pos grid_slice = self.grid[:,pos,:] grid_slice = grid_slice.transpose() aspect = self.extent_z/self.extent_y * ve if geomod_coord: #print np.linspace(0,self.extent_x,11), np.linspace(0,self.extent_x,11, endpoint = True) ax.set_xticks(np.linspace(0,self.nx-1,6, endpoint = True, dtype = int)) ax.set_yticks(np.linspace(0,self.nz-1,6, endpoint = True, dtype = int)) ax.set_xticklabels(np.linspace(self.xmin,self.xmax,6, endpoint = True, dtype = int)) ax.set_yticklabels(np.linspace(self.zmin,self.zmax,6, dtype = int,endpoint = True )) #ax.invert_yaxis ax.set_ylabel("z[m]") ax.set_xlabel("x[m]") else: ax.set_ylabel("z[voxels]") ax.set_xlabel("x[voxels]") if contour: ry = np.arange(self.nz) rx = np.arange(self.nx) elif direction == 'z' : if type(cell_pos) == str: # decipher cell position if cell_pos == 'center' or cell_pos == 'centre': pos = self.nz / 2 elif cell_pos == 'min': pos = 0 elif cell_pos == 'max': pos = self.nz else: pos = cell_pos grid_slice = self.grid[:,:,pos].transpose() aspect = 1. # setting labels if geomod_coord: # print self.xmin, self.xmax, self.ymin, self.ymax, self.zmin, self.zmax # print np.linspace(self.xmin,self.xmax,6, endpoint = False, dtype = int) # print np.linspace(0,self.extent_y,6, endpoint = False, dtype = int) ax.set_xticks(np.linspace(0,self.nx-1,6,dtype = int, endpoint = True )) ax.set_yticks(np.linspace(0,self.ny-1,6, endpoint = True, dtype = int)) ax.set_xticklabels(np.linspace(self.xmin,self.xmax,6,dtype = int, endpoint = True )) ax.set_yticklabels(np.linspace(self.ymin,self.ymax,6,dtype = int, endpoint = True )) ax.set_ylabel("y[m]") ax.set_xlabel("x[m]") else: ax.set_ylabel("y[voxels]") ax.set_xlabel("x[voxels]") if contour: ry = np.arange(self.ny) rx = np.arange(self.nx) if not hasattr(self, 'unit_ids'): self.determine_geology_ids() if rescale: vmin = np.min(grid_slice) vmax = np.max(grid_slice) else: # use global range for better comparison vmin = min(self.unit_ids) vmax = max(self.unit_ids) if contour: Rx, Ry = np.meshgrid(rx, ry) #print np.amax(grid_slice) im = ax.contour(Rx, Ry, grid_slice, int(
np.amax(grid_slice)
numpy.amax
import pickle import matplotlib.pyplot as plt import numpy as np np.set_printoptions(suppress=True) """ Load recordings """ indxs = {} logged_state_names = [ 'time_step', 'episode_id', 'veh_id', 'trace', 'glob_x', 'speed', 'act_long', 'min_delta_x', 'att_real'] index = 0 for item_name in logged_state_names: indxs[item_name] = index index += 1 real_collections = {} ima_collections = {} collision_logs = {} runtimes = {} model_names = ['mlp_05', 'lstm_05', 'latent_mlp_22', 'neural_045', 'neural_idm_367'] mc_run_name = 'rwse' for model_name in model_names: exp_dir = './src/evaluation/mc_collections/'+ mc_run_name + '/' + model_name with open(exp_dir+'/real_collection.pickle', 'rb') as handle: real_collections[model_name] = pickle.load(handle) with open(exp_dir+'/ima_collection.pickle', 'rb') as handle: ima_collections[model_name] = pickle.load(handle) with open(exp_dir+'/runtime.pickle', 'rb') as handle: runtimes[model_name] = pickle.load(handle) try: with open(exp_dir+'/collision_log.pickle', 'rb') as handle: collision_logs[model_name] = pickle.load(handle) except: collision_logs[model_name] = [] model_paper_name = {} # model names used for paper klplot_legend_names = {} names = ['MLP', 'LSTM', 'Latent-MLP', 'CVAE', 'NIDM'] for i, model_name in enumerate(model_names): model_paper_name[model_name] = names[i] names = ['Headway', 'Speed', 'Long. Acceleration'] for i, _name in enumerate(['min_delta_x', 'speed', 'act_long']): klplot_legend_names[_name] = names[i] def kl(p, q): p = np.asarray(p, dtype=np.float) q = np.asarray(q, dtype=np.float) return np.sum(p*np.log(p/q)) def get_state_kl(trajs, bins): """ Returns kl divergence for two historgrams formed of piecewise uniform rectacngles with n bins of equal width. """ EPSILON = 1e-7# to avoid zeros true_traj, pred_traj = trajs pred_hist, bin_edges = np.histogram(pred_traj, bins) true_hist, _ = np.histogram(true_traj, bin_edges) pred_hist = pred_hist + EPSILON true_hist = true_hist + EPSILON bin_width = 1/pred_hist.sum() pred_prob = pred_hist*bin_width bin_width = 1/true_hist.sum() true_prob = true_hist*bin_width kl_val = kl(true_prob, pred_prob) return kl_val """ Each trajectory snippet is rollout_len time steps long """ rollout_len = 100 snips_true = {} snips_pred = {} for model_name in model_names: snips_true[model_name] = [] # shape: (car_count, traces_n, rollout_len, 8) snips_pred[model_name] = [] # shape: (car_count, 1, rollout_len, 9) for model_name in model_names: for epis_id, epis_dic in real_collections[model_name].items(): for veh_id, veh_dic in real_collections[model_name][epis_id].items(): _true =
np.array(real_collections[model_name][epis_id][veh_id])
numpy.array
import pytest import gpmap from epistasis import models import numpy as np import pandas as pd import os def test__genotypes_to_X(test_data): # Make sure function catches bad genotype passes d = test_data[0] gpm = gpmap.GenotypePhenotypeMap(genotype=d["genotype"], phenotype=d["phenotype"]) # Duplicated g = list(gpm.genotype) g.extend(g) # not in gpmap b = list(gpm.genotype) b.append("stupid") bad_genotypes = [g,b] for bad in bad_genotypes: with pytest.raises(ValueError): models.base._genotypes_to_X(bad,gpm,order=1,model_type="local") # Sample through various model comobos allowed = {"local":set([0,1]), "global":set([-1,1])} for d in test_data: gpm = gpmap.GenotypePhenotypeMap(genotype=d["genotype"], phenotype=d["phenotype"]) for i in range(1,gpm.length+1,1): for model_type in ["local","global"]: X = models.base._genotypes_to_X(gpm.genotype, gpm, order=i, model_type=model_type) assert X.shape[0] == len(gpm.genotype) assert set(np.unique(X)).issubset(allowed[model_type]) def test_arghandler_decorator(): class Yo: def _a(self,data=5,method=None): return data def _b(self,data=None,method=None): return 6 @models.base.arghandler def test_method(self,a=None,b=None,**kwargs): return a, b @models.base.arghandler def bad_method(self,c=None,d=None,**kwargs): return c, d yo = Yo() assert yo.test_method() == (None,6) assert yo.test_method(a=5) == (5,6) assert yo.test_method(a=10) == (10,6) assert yo.test_method(b=10) == (None,6) with pytest.raises(AttributeError): yo.bad_method() ### Tests for AbstractModel: # AbstractModel cannot be instantiated on its own, as it is designed to be a # mixin with sklearn classes. Many methods have to be defined in subclass # (.fit, .predict, etc.) These will not be tested here, but instead in the # subclass tests. For methods defined here that are never redefined in subclass # (._X, .add_gpm, etc.) we test using the simplest mixed/subclass # (EpistasisLinearRegression). def test_abstractmodel_predict_to_df(test_data): """ Test basic functionality. Real test of values will be done on .predict for subclasses. """ m = models.linear.EpistasisLinearRegression() d = test_data[0] gpm = gpmap.GenotypePhenotypeMap(genotype=d["genotype"], phenotype=d["phenotype"]) m.add_gpm(gpm) # This should fail -- no fit run with pytest.raises(Exception): df = m.predict_to_df() m.fit() # This should work df = m.predict_to_df() assert type(df) is type(pd.DataFrame()) assert len(df) == len(d["genotype"]) # Create and fit a new model. m = models.linear.EpistasisLinearRegression() gpm = gpmap.GenotypePhenotypeMap(genotype=d["genotype"], phenotype=d["phenotype"]) # No gpm added -- should fail with pytest.raises(RuntimeError): m.predict_to_df() m.add_gpm(gpm) m.fit() df = m.predict_to_df(genotypes=d["genotype"][0]) assert len(df) == 1 bad_stuff = [1,{},[1,2],"STUPID",["STUPID","IS","REAL"]] for b in bad_stuff: with pytest.raises(ValueError): print(f"Trying bad genotypes {b}") m.predict_to_df(genotypes=b) df = m.predict_to_df(genotypes=d["genotype"][:3]) assert len(df) == 3 def test_abstractmodel_predict_to_csv(test_data,tmp_path): m = models.linear.EpistasisLinearRegression() d = test_data[0] gpm = gpmap.GenotypePhenotypeMap(genotype=d["genotype"], phenotype=d["phenotype"]) m.add_gpm(gpm) m.fit() csv_file = os.path.join(tmp_path,"tmp.csv") m.predict_to_csv(filename=csv_file) assert os.path.exists(csv_file) df = pd.read_csv(csv_file) assert len(df) == len(d["genotype"]) # Make sure genotypes pass works m.predict_to_csv(filename=csv_file,genotypes=d["genotype"][0]) assert os.path.exists(csv_file) df = pd.read_csv(csv_file) assert len(df) == 1 def test_abstractmodel_predict_to_excel(test_data,tmp_path): m = models.linear.EpistasisLinearRegression() d = test_data[0] gpm = gpmap.GenotypePhenotypeMap(genotype=d["genotype"], phenotype=d["phenotype"]) m.add_gpm(gpm) m.fit() excel_file = os.path.join(tmp_path,"tmp.xlsx") m.predict_to_excel(filename=excel_file) assert os.path.exists(excel_file) df = pd.read_excel(excel_file) assert len(df) == len(d["genotype"]) # Make sure genotypes pass works m.predict_to_excel(filename=excel_file,genotypes=d["genotype"][0]) assert os.path.exists(excel_file) df = pd.read_excel(excel_file) assert len(df) == 1 def test_abstractmodel_add_gpm(test_data): d = test_data[0] gpm = gpmap.GenotypePhenotypeMap(genotype=d["genotype"], phenotype=d["phenotype"]) m = models.linear.EpistasisLinearRegression() bad_gpm = [1,None,"test",[],{}] for b in bad_gpm: with pytest.raises(TypeError): m.add_gpm(b) m.add_gpm(gpm) # Test genotype_column arg d = test_data[0] gpm = gpmap.GenotypePhenotypeMap(genotype=d["genotype"], phenotype=d["phenotype"]) m = models.linear.EpistasisLinearRegression() bad_genotype_column = [1,None,[],{},(1,)] for b in bad_genotype_column: with pytest.raises(TypeError): print(f"trying {b}") m.add_gpm(gpm,genotype_column=b) with pytest.raises(KeyError): m.add_gpm(gpm,genotype_column="not_a_column") m.add_gpm(gpm,genotype_column="genotype") assert m.genotype_column == "genotype" # Test phenotype_column arg d = test_data[0] gpm = gpmap.GenotypePhenotypeMap(genotype=d["genotype"]) m = models.linear.EpistasisLinearRegression() # Shouldn't work b/c no float column with pytest.raises(ValueError): m.add_gpm(gpm) # Shouldn't work because there is no column with that name gpm = gpmap.GenotypePhenotypeMap(genotype=d["genotype"], phenotype=d["phenotype"]) with pytest.raises(KeyError): m.add_gpm(gpm,phenotype_column="not_real") # Shouldn't work because column is not numeric gpm = gpmap.GenotypePhenotypeMap(genotype=d["genotype"], phenotype=d["genotype"]) with pytest.raises(ValueError): m.add_gpm(gpm,phenotype_column="phenotype") # Make sure it gets right column (first float that is not reserved) gpm = gpmap.GenotypePhenotypeMap(genotype=d["genotype"], coolness=d["phenotype"], something_else=d["phenotype"]) m.add_gpm(gpm) assert m.phenotype_column == "coolness" # Test uncertainty_column arg. # Do default = None gpm = gpmap.GenotypePhenotypeMap(genotype=d["genotype"], phenotype=d["phenotype"]) m.add_gpm(gpm) assert m.uncertainty_column == "epi_zero_uncertainty" unc = np.array(m.gpm.data.loc[:,"epi_zero_uncertainty"]) assert len(np.unique(unc)) == 1 assert np.isclose(unc[0],np.min(gpm.data.loc[:,m.phenotype_column])*1e-6) # pass missing column gpm = gpmap.GenotypePhenotypeMap(genotype=d["genotype"], phenotype=d["phenotype"], coolness=d["phenotype"], not_float=d["genotype"]) # Send in same as phenotype with pytest.raises(ValueError): m.add_gpm(gpm,uncertainty_column="phenotype") # send in not there with pytest.raises(KeyError): m.add_gpm(gpm,uncertainty_column="not_there") # send in not float with pytest.raises(ValueError): m.add_gpm(gpm,uncertainty_column="not_float") # Shoud work m.add_gpm(gpm,uncertainty_column="coolness") assert m.uncertainty_column == "coolness" # Check final output assert m.gpm is gpm assert m.Xcolumns is not None assert m.epistasis is not None assert m._previous_X is None def test_gpm_getter(test_data): d = test_data[0] gpm = gpmap.GenotypePhenotypeMap(genotype=d["genotype"], phenotype=d["phenotype"]) m = models.linear.EpistasisLinearRegression() assert m.gpm is None m.add_gpm(gpm) assert m.gpm is gpm def test_results_getter(test_data): d = test_data[0] gpm = gpmap.GenotypePhenotypeMap(genotype=d["genotype"], phenotype=d["phenotype"]) m = models.linear.EpistasisLinearRegression() m.add_gpm(gpm) assert m.results is None m.fit() assert isinstance(m.results,pd.DataFrame) def test_column_getters(test_data): d = test_data[0] gpm = gpmap.GenotypePhenotypeMap(genotype=d["genotype"], phenotype=d["phenotype"], uncertainty=d["phenotype"]) m = models.linear.EpistasisLinearRegression() assert m.genotype_column is None assert m.phenotype_column is None assert m.uncertainty_column is None m.add_gpm(gpm,uncertainty_column="uncertainty") assert m.genotype_column == "genotype" assert m.phenotype_column == "phenotype" assert m.uncertainty_column == "uncertainty" def test__X_arghandler(test_data): m = models.linear.EpistasisLinearRegression() with pytest.raises(ValueError): m._X() d = test_data[0] gpm = gpmap.GenotypePhenotypeMap(genotype=d["genotype"], phenotype=d["phenotype"], uncertainty=d["phenotype"]) m.add_gpm(gpm) # Make sure calling _X() naked-ly populates previous_X assert m._previous_X is None X = m._X() assert m._previous_X is X # If we access after having run, make sure X is the same object assert X is m._X() # Should wipe out previous_X and force recalculation. m.add_gpm(gpm) assert X is not m._X() # Get x for single genotype. should work. should not update _previous_X X = m._X(d["genotype"][0]) assert len(X) == 1 assert X is not m._previous_X # Get x for two genotypes. should work and not update _previous_X X = m._X(d["genotype"][0:2]) assert len(X) == 2 assert X is not m._previous_X # Get x for two genotypes. should work and not update _previous_X X = m._X(np.array(d["genotype"][0:2])) assert len(X) == 2 assert X is not m._previous_X # Just keep the array, do not update previous_X hack = np.ones((1,1)) X = m._X(data=hack) assert X is hack assert X is not m._previous_X # pass in bad genotypes with pytest.raises(ValueError): X = m._X("NOT_A_GENOTYPE") with pytest.raises(ValueError): X = m._X([d["genotype"][0],"NOT_A_GENOTYPE"]) # pass in general badness bad_passes = [np.ones((1,1,1)),[],"stupid",1,1.1,()] for b in bad_passes: with pytest.raises(ValueError): m._X(b) def test__y_arghandler(test_data): m = models.linear.EpistasisLinearRegression() with pytest.raises(ValueError): m._y() d = test_data[0] gpm = gpmap.GenotypePhenotypeMap(genotype=d["genotype"], coolness=d["phenotype"], uncertainty=d["phenotype"]) m.add_gpm(gpm,phenotype_column="coolness") assert np.array_equal(m._y(),d["phenotype"]) # pass in general badness bad_passes = [np.ones((1,1,1)),[],"stupid",1,1.1,()] for b in bad_passes: with pytest.raises(TypeError): print(f"trying {b}") m._y(b) y = m._y([1.0]) assert np.array_equal(y,[1.0]) def test__yerr_arghandler(test_data): m = models.linear.EpistasisLinearRegression() with pytest.raises(ValueError): m._yerr() d = test_data[0] gpm = gpmap.GenotypePhenotypeMap(genotype=d["genotype"], coolness=d["phenotype"], uncertainty=d["phenotype"]) m.add_gpm(gpm,phenotype_column="coolness",uncertainty_column="uncertainty") assert np.array_equal(m._yerr(),d["phenotype"]) # pass in general badness bad_passes = [np.ones((1,1,1)),[],"stupid",1,1.1,()] for b in bad_passes: with pytest.raises(TypeError): print(f"trying {b}") m._yerr(b) y = m._yerr([1.0]) assert np.array_equal(y,[1.0]) def test__thetas_arghandler(test_data): m = models.linear.EpistasisLinearRegression() d = test_data[0] gpm = gpmap.GenotypePhenotypeMap(genotype=d["genotype"], coolness=d["phenotype"], uncertainty=d["phenotype"]) m.add_gpm(gpm,phenotype_column="coolness",uncertainty_column="uncertainty") # No thetas calcualted yet with pytest.raises(RuntimeError): m._thetas() m.fit() # Get thetas, calcualted t = m._thetas() assert len(t) == 4 # pass in general badness bad_passes = [
np.ones((1,1,1))
numpy.ones
#!/usr/bin/python3 from __future__ import print_function import sys import numpy as np import banalg import matplotlib.pyplot as plt from mnist import MNIST from sklearn.decomposition import PCA from os import path #================= # Plot Cumulative Regret #================= def plot(title, regret, labels): """ @param title: graph title @param regret: T+1 x len(bandits) cumulative regret @param labels: label[i] for bandits[i] Plots regret curve. """ plt.title(title) T = regret.shape[0] t = np.arange(T) for i, l in enumerate(labels): plt.plot(t, regret[:, i], label=l) plt.xlim(0, T) plt.xlabel("Time") plt.ylabel("Cumulative Regret") plt.legend() plt.show() #================= # General Bandit Alg #================= def run(T, bandits, contexts, rewards, contexts_test, rewards_test, posthocs, postMat): """ @param bandits: list of initialized bandit algorithms @param contexts: TxdF of PCA'd MNIST images @param rewards: Txn 1-hot labels @return floor(T/Trec)+1 x len(bandits) test class error vectors """ # Define constants cum_regret = np.zeros((T+1, len(bandits))) indices = np.arange(contexts.shape[0]) np.random.shuffle(indices) for t in range(T): ind = indices[t] if t % 10 == 0: print("Round: %d" % t) for i in range(len(bandits)): print("Bandit %d Regret %f" % (i, cum_regret[t, i])) # Choose arm for each bandit I_t = [] for bandit in bandits: I_t.append(bandit.choice(t, contexts[ind, :])) # Update bandits for i, bandit in enumerate(bandits): # Assume pi_star is perfect, reward=1 regret = 1 - rewards[ind, I_t[i]] cum_regret[t+1, i] = cum_regret[t, i] + regret bandit.update(contexts[ind, :], I_t[i], rewards[ind, I_t[i]], posthocs[ind, :]) # Finished, return error array print("Finished T=%d rounds!" % T) return cum_regret VAL_SIZE = 10000 def gen_context(mndata, dF, trueTest=True): print("Loading Training Set...") images, labels = mndata.load_training() if trueTest: print("Loading Test Set...") images_test, labels_test = mndata.load_testing() else: print("Loading Validation Set...") images_test = images[len(images) - VAL_SIZE:len(images)] images = images[0:len(images) - VAL_SIZE] labels_test = labels[len(labels) - VAL_SIZE:len(labels)] labels = labels[0:len(labels) - VAL_SIZE] # Format labels labels = np.array(labels) labels_test = np.array(labels_test) Ttrain = len(labels) Ttest = len(labels_test) print("T_train=%d" % Ttrain) print("T_val=%d" % Ttest) n = labels.max() + 1 # Create 1-hot rewards rewards = np.zeros((Ttrain, n)) rewards[np.arange(labels.size),labels] = 1 rewards_test = np.zeros((Ttest, n)) rewards_test[np.arange(labels_test.size),labels_test] = 1 # PCA Contexts images = np.array(images) images_test =
np.array(images_test)
numpy.array
""" Provides the class `LdaCgsViewer`. """ from __future__ import division from __future__ import absolute_import from builtins import zip from builtins import str from builtins import range from builtins import object import numpy as np from vsm.spatial import H, JS_dist, KL_div from vsm.structarr import * from vsm.split import split_corpus from vsm.exceptions import * from .types import * from .labeleddata import * from .wrappers import * __all__ = [ 'LdaCgsViewer' ] class LdaCgsViewer(object): """A class for viewing a topic model estimated by one of vsm's LDA classes using CGS. """ def __init__(self, corpus, model): """ Initialize LdaCgsViewer. :param corpus: Source of observed data. :type corpus: :class:`Corpus` :param model: An LDA model estimated by a CGS. :type model: LdaCgsSeq """ self.corpus = corpus self.model = model self._phi = None self._theta = None self._H_phi = None self._H_theta = None self._labels = None @property def _doc_label_name(self): return doc_label_name(self.model.context_type) def _res_doc_type(self, doc): return res_doc_type(self.corpus, self.model.context_type, self._doc_label_name, doc) def _res_word_type(self, word): return res_word_type(self.corpus, word) @property def labels(self): """Returns the list of document labels.""" if self._labels is None: self._labels = self.corpus.view_metadata(self.model.context_type) self._labels = self._labels[self._doc_label_name] return self._labels @property def phi(self): """Returns the word by topic matrix from the model as a right stochastic matrix (the columns phi_i are probability distributions). """ if self._phi is None: self._phi = self.model.word_top / self.model.word_top.sum(0) return self._phi @property def theta(self): """Returns the topic by document matrix from the model as a right stochastic matrix (the columns theta_i are probability distributions. """ if self._theta is None: self._theta = self.model.top_doc / self.model.top_doc.sum(0) return self._theta @property def H_phi(self): """Returns the entropies of the columns of phi (i.e., topics) """ if self._H_phi is None: self._H_phi = H(self.phi.T) return self._H_phi @property def H_theta(self): """Returns the entropies of the columns of theta. """ if self._H_theta is None: self._H_theta = H(self.theta.T) return self._H_theta def topic_entropies(self, print_len=10): """Returns the entropies of the topics of the model as an array sorted by entropy. """ H_phi = self.H_phi k_arr = enum_sort(H_phi).view(LabeledColumn) k_arr.col_header = 'Topic Entropies' k_arr.subcol_headers = ['Index', 'Entropy'] k_arr.col_len = print_len return k_arr[::-1] def doc_entropies(self, print_len=10, label_fn=def_label_fn, as_strings=True): """Returns the entropies of the distributions over topics as an array sorted by entropy. """ if as_strings: md = self.corpus.view_metadata(self.model.context_type) docs = label_fn(md) d_arr = enum_sort(self.H_theta, indices=docs, field_name='doc') else: d_arr = enum_sort(self.H_theta) d_arr = d_arr.view(LabeledColumn) d_arr.col_header = 'Document Entropies' d_arr.subcol_headers = ['Document', 'Entropy'] d_arr.col_len = print_len return d_arr[::-1] def topic_oscillations(self, print_len=10, div_fn=KL_div): """Returns the oscillation in the divergences of documents from each topic k, represented as a categorical distribution over topics with mass concentrated at index k. Oscillation is computed as the difference between the maximum and the minimum of the divergences. Returns an array sorted by descending oscillation. """ topic_indices = np.arange(self.model.K) pseudo_docs = np.diag(
np.ones(self.model.K, dtype='d')
numpy.ones
from collections import OrderedDict from datetime import date import numpy as np from Constants import Constants from DCN_Experiments import DCN_Experiments from PS_Manager import PS_Manager from PS_Treated_Generator import PS_Treated_Generator from TARNet_Experiments import TARNet_Experiments from Utils import Utils from dataloader import DataLoader class Experiments: def __init__(self, running_mode): self.dL = DataLoader() self.running_mode = running_mode self.np_covariates_X_train = None self.np_covariates_X_test = None self.np_covariates_T_train = None self.np_covariates_T_test = None def run_all_experiments(self, train_path, test_path, iterations, ps_model_type): device = Utils.get_device() print(device) results_list = [] run_parameters = self.__get_run_parameters() print(str(run_parameters["summary_file_name"])) file1 = open(run_parameters["summary_file_name"], "a") for iter_id in range(iterations): print("--" * 20) print("iter_id: {0}".format(iter_id)) print("Jobs - NN") print("--" * 20) input_nodes = run_parameters["input_nodes"] self.np_covariates_X_train, self.np_covariates_X_test, self.np_covariates_X_val, \ self.np_covariates_T_train, \ self.np_covariates_T_test, self.np_covariates_T_val \ = self.__load_data(train_path, test_path, iter_id) # get propensity score for classifier training and testing ps_score_list_train, ps_score_list_val, ps_score_list_test, ps_model = \ self.__get_ps_model(ps_model_type, iter_id, run_parameters["input_nodes"], device) run_parameters["consolidated_file_path"] = self.get_consolidated_file_name(ps_model_type) print("--->>Train size: ") data_loader_dict_train = self.dL.prepare_tensor_for_DCN(self.np_covariates_X_train, self.np_covariates_T_train, ps_score_list_train, run_parameters["is_synthetic"]) print("--->>Validation size: ") data_loader_dict_val = self.dL.prepare_tensor_for_DCN(self.np_covariates_X_val, self.np_covariates_T_val, ps_score_list_val, run_parameters["is_synthetic"]) print("--->>Test size: ") data_loader_dict_test = self.dL.prepare_tensor_for_DCN(self.np_covariates_X_test, self.np_covariates_T_test, ps_score_list_test, run_parameters["is_synthetic"]) n_treated_original = data_loader_dict_train["treated_data"][0].shape[0] n_control_original = data_loader_dict_train["control_data"][0].shape[0] # Execute PM GAN ps_t = PS_Treated_Generator(data_loader_dict_train, data_loader_dict_val, ps_model, ps_model_type) balanced_dataset_dict = ps_t.simulate_treated_semi_supervised(input_nodes, iter_id, device) tensor_treated_balanced_dcn = balanced_dataset_dict["tensor_treated_balanced_dcn"] tensor_control_balanced_dcn = balanced_dataset_dict["tensor_control_balanced_dcn"] n_treated_balanced_dcn = balanced_dataset_dict["n_treated_balanced_dcn"] n_control_balanced_dcn = balanced_dataset_dict["n_control_balanced_dcn"] tensor_balanced_tarnet = balanced_dataset_dict["tensor_balanced_tarnet"] n_total_balanced_tarnet = balanced_dataset_dict["n_total_balanced_tarnet"] n_treated_balanced_tarnet = balanced_dataset_dict["n_treated_balanced_tarnet"] print("---" * 20) print("-----------> !! Supervised Training(DCN Models ) !!<-----------") # run DCN Models tensor_treated_train_original = \ Utils.create_tensors_from_tuple(data_loader_dict_train["treated_data"]) tensor_control_train_original = \ Utils.create_tensors_from_tuple(data_loader_dict_train["control_data"]) model_save_paths = { "Model_DCN_PD_shared": run_parameters["Model_DCN_PD_shared"].format(iter_id), "Model_DCN_PD_y1": run_parameters["Model_DCN_PD_y1"].format(iter_id), "Model_DCN_PD_y0": run_parameters["Model_DCN_PD_y0"].format(iter_id), "Model_DCN_PD_02_shared": run_parameters["Model_DCN_PD_02_shared"].format(iter_id), "Model_DCN_PD_02_y1": run_parameters["Model_DCN_PD_02_y1"].format(iter_id), "Model_DCN_PD_02_y0": run_parameters["Model_DCN_PD_02_y0"].format(iter_id), "Model_DCN_PD_05_shared": run_parameters["Model_DCN_PD_05_shared"].format(iter_id), "Model_DCN_PD_05_y1": run_parameters["Model_DCN_PD_05_y1"].format(iter_id), "Model_DCN_PD_05_y0": run_parameters["Model_DCN_PD_05_y0"].format(iter_id), "Model_DCN_PM_GAN_shared": run_parameters["Model_DCN_PM_GAN_shared"].format(iter_id), "Model_DCN_PM_GAN_y1": run_parameters["Model_DCN_PM_GAN_y1"].format(iter_id), "Model_DCN_PM_GAN_y0": run_parameters["Model_DCN_PM_GAN_y0"].format(iter_id), "Model_DCN_PM_GAN_02_shared": run_parameters["Model_DCN_PM_GAN_02_shared"].format(iter_id), "Model_DCN_PM_GAN_02_y1": run_parameters["Model_DCN_PM_GAN_02_y1"].format(iter_id), "Model_DCN_PM_GAN_02_y0": run_parameters["Model_DCN_PM_GAN_02_y0"].format(iter_id), "Model_DCN_PM_GAN_05_shared": run_parameters["Model_DCN_PM_GAN_05_shared"].format(iter_id), "Model_DCN_PM_GAN_05_y1": run_parameters["Model_DCN_PM_GAN_05_y1"].format(iter_id), "Model_DCN_PM_GAN_05_y0": run_parameters["Model_DCN_PM_GAN_05_y0"].format(iter_id), "Model_DCN_PM_GAN_PD_shared": run_parameters["Model_DCN_PM_GAN_PD_shared"].format(iter_id), "Model_DCN_PM_GAN_PD_y1": run_parameters["Model_DCN_PM_GAN_PD_y1"].format(iter_id), "Model_DCN_PM_GAN_PD_y0": run_parameters["Model_DCN_PM_GAN_PD_y0"].format(iter_id) } dcn_experiments = DCN_Experiments(input_nodes, device) dcn_pd_models_eval_dict = dcn_experiments.evaluate_DCN_Model(tensor_treated_train_original, tensor_control_train_original, n_treated_original, n_control_original, tensor_treated_balanced_dcn, tensor_control_balanced_dcn, n_treated_balanced_dcn, n_control_balanced_dcn, data_loader_dict_val, data_loader_dict_test, model_save_paths) print("---" * 20) print("-----------> !! Supervised Evaluation(DCN Models) !! <-----------") print("---" * 20) print("--> 1. Model 1: DCN - PD Supervised Training Evaluation: ") dcn_pd_eval = dcn_pd_models_eval_dict["dcn_pd_eval_dict"] dcn_pd_ate_pred, dcn_pd_att_pred, dcn_pd_bias_att, dcn_pd_atc_pred, dcn_pd_policy_value, \ dcn_pd_policy_risk, dcn_pd_err_fact = \ self.__process_evaluated_metric( dcn_pd_eval["yf_list"], dcn_pd_eval["e_list"], dcn_pd_eval["T_list"], dcn_pd_eval["y1_hat_list"], dcn_pd_eval["y0_hat_list"], dcn_pd_eval["ITE_dict_list"], dcn_pd_eval["predicted_ITE"], run_parameters["DCN_PD"], iter_id) print("---" * 20) print("--> 2. Model 2: DCN - PD(Dropout 0.5) Supervised Training Evaluation: ") dcn_pd_05_eval_dict = dcn_pd_models_eval_dict["dcn_pd_05_eval_dict"] dcn_pd_05_ate_pred, dcn_pd_05_att_pred, dcn_pd_05_bias_att, dcn_pd_05_atc_pred, \ dcn_pd_05_policy_value, \ dcn_pd_05_policy_risk, dcn_pd_05_err_fact = \ self.__process_evaluated_metric( dcn_pd_05_eval_dict["yf_list"], dcn_pd_05_eval_dict["e_list"], dcn_pd_05_eval_dict["T_list"], dcn_pd_05_eval_dict["y1_hat_list"], dcn_pd_05_eval_dict["y0_hat_list"], dcn_pd_05_eval_dict["ITE_dict_list"], dcn_pd_05_eval_dict["predicted_ITE"], run_parameters["DCN_PD_05"], iter_id) print("---" * 20) print("--> 3. Model 3: PM GAN - No dropout Supervised Training Evaluation: ") dcn_pm_gan_eval = dcn_pd_models_eval_dict["dcn_pm_gan_eval_dict"] dcn_pm_gan_ate_pred, dcn_pm_gan_att_pred, dcn_pm_gan_bias_att, dcn_pm_gan_atc_pred, \ dcn_pm_gan_policy_value, dcn_pm_gan_policy_risk, dcn_pm_gan_err_fact = \ self.__process_evaluated_metric( dcn_pm_gan_eval["yf_list"], dcn_pm_gan_eval["e_list"], dcn_pm_gan_eval["T_list"], dcn_pm_gan_eval["y1_hat_list"], dcn_pm_gan_eval["y0_hat_list"], dcn_pm_gan_eval["ITE_dict_list"], dcn_pm_gan_eval["predicted_ITE"], run_parameters["DCN_PM_GAN"], iter_id) print("---" * 20) print("--> 4. Model 4: PM GAN - dropout 0.5 Supervised Training Evaluation: ") dcn_pm_gan_eval_05 = dcn_pd_models_eval_dict["dcn_pm_gan_eval_drp_05_dict"] dcn_pm_gan_05_ate_pred, dcn_pm_gan_05_att_pred, dcn_pm_gan_05_bias_att, dcn_pm_gan_05_atc_pred, \ dcn_pm_gan_05_policy_value, dcn_pm_gan_05_policy_risk, dcn_pm_gan_05_err_fact = \ self.__process_evaluated_metric( dcn_pm_gan_eval_05["yf_list"], dcn_pm_gan_eval_05["e_list"], dcn_pm_gan_eval_05["T_list"], dcn_pm_gan_eval_05["y1_hat_list"], dcn_pm_gan_eval_05["y0_hat_list"], dcn_pm_gan_eval_05["ITE_dict_list"], dcn_pm_gan_eval_05["predicted_ITE"], run_parameters["DCN_PM_GAN_05"], iter_id) print("---" * 20) print("--> 5. Model 5: PM GAN - PD Supervised Training Evaluation: ") dcn_pm_gan_eval_pd = dcn_pd_models_eval_dict["dcn_pm_gan_eval_pd_dict"] dcn_pm_gan_pd_ate_pred, dcn_pm_gan_pd_att_pred, dcn_pm_gan_pd_bias_att, dcn_pm_gan_pd_atc_pred, \ dcn_pm_gan_pd_policy_value, dcn_pm_gan_pd_policy_risk, dcn_pm_gan_pd_err_fact = \ self.__process_evaluated_metric( dcn_pm_gan_eval_pd["yf_list"], dcn_pm_gan_eval_pd["e_list"], dcn_pm_gan_eval_pd["T_list"], dcn_pm_gan_eval_pd["y1_hat_list"], dcn_pm_gan_eval_pd["y0_hat_list"], dcn_pm_gan_eval_pd["ITE_dict_list"], dcn_pm_gan_eval_pd["predicted_ITE"], run_parameters["DCN_PM_GAN_PD"], iter_id) print("---" * 20) print("---" * 20) # run TARNet Models print("-----------> !! Supervised Training(TARNet Models) !!<-----------") tarnet_experiments = TARNet_Experiments(input_nodes, device) tarnet_experiments_models_eval_dict = tarnet_experiments.evaluate_TARNet_Model( data_loader_dict_train["treated_data"], data_loader_dict_train["control_data"], tensor_balanced_tarnet, data_loader_dict_val, data_loader_dict_test, n_total_balanced_tarnet, n_treated_balanced_tarnet) print("---" * 20) print("---> !! Supervised Evaluation(TARNet Models) !! <---") print("---" * 20) print("--> 1. Model 1: TARNet Supervised Training Evaluation: ") tarnet_eval = tarnet_experiments_models_eval_dict["tarnet_eval_dict"] tarnet_ate_pred, tarnet_att_pred, tarnet_bias_att, tarnet_atc_pred, \ tarnet_policy_value, tarnet_policy_risk, tarnet_err_fact = \ self.__process_evaluated_metric( tarnet_eval["yf_list"], tarnet_eval["e_list"], tarnet_eval["T_list"], tarnet_eval["y1_hat_list"], tarnet_eval["y0_hat_list"], tarnet_eval["ITE_dict_list"], tarnet_eval["predicted_ITE"], run_parameters["TARNET"], iter_id) print("--> 2. Model 2: TARNet PM GAN Supervised Training Evaluation: ") tarnet_pm_gan_eval = tarnet_experiments_models_eval_dict["tarnet_pm_gan_eval_dict"] tarnet_pm_gan_ate_pred, tarnet_pm_gan_att_pred, tarnet_pm_gan_bias_att, tarnet_pm_gan_atc_pred, \ tarnet_pm_gan_policy_value, tarnet_pm_gan_policy_risk, tarnet_pm_gan_err_fact = \ self.__process_evaluated_metric( tarnet_pm_gan_eval["yf_list"], tarnet_pm_gan_eval["e_list"], tarnet_pm_gan_eval["T_list"], tarnet_pm_gan_eval["y1_hat_list"], tarnet_pm_gan_eval["y0_hat_list"], tarnet_pm_gan_eval["ITE_dict_list"], tarnet_pm_gan_eval["predicted_ITE"], run_parameters["TARNET"], iter_id) print("---" * 20) result_dict = OrderedDict() result_dict["iter_id"] = iter_id result_dict["dcn_pd_ate_pred"] = dcn_pd_ate_pred result_dict["dcn_pd_att_pred"] = dcn_pd_att_pred result_dict["dcn_pd_bias_att"] = dcn_pd_bias_att result_dict["dcn_pd_atc_pred"] = dcn_pd_atc_pred result_dict["dcn_pd_policy_value"] = dcn_pd_policy_value result_dict["dcn_pd_policy_risk"] = dcn_pd_policy_risk result_dict["dcn_pd_err_fact"] = dcn_pd_err_fact result_dict["dcn_pd_05_ate_pred"] = dcn_pd_05_ate_pred result_dict["dcn_pd_05_att_pred"] = dcn_pd_05_att_pred result_dict["dcn_pd_05_bias_att"] = dcn_pd_05_bias_att result_dict["dcn_pd_05_atc_pred"] = dcn_pd_05_atc_pred result_dict["dcn_pd_05_policy_value"] = dcn_pd_05_policy_value result_dict["dcn_pd_05_policy_risk"] = dcn_pd_05_policy_risk result_dict["dcn_pd_05_err_fact"] = dcn_pd_05_err_fact result_dict["dcn_pm_gan_ate_pred"] = dcn_pm_gan_ate_pred result_dict["dcn_pm_gan_att_pred"] = dcn_pm_gan_att_pred result_dict["dcn_pm_gan_bias_att"] = dcn_pm_gan_bias_att result_dict["dcn_pm_gan_atc_pred"] = dcn_pm_gan_atc_pred result_dict["dcn_pm_gan_policy_value"] = dcn_pm_gan_policy_value result_dict["dcn_pm_gan_policy_risk"] = dcn_pm_gan_policy_risk result_dict["dcn_pm_gan_err_fact"] = dcn_pm_gan_err_fact result_dict["dcn_pm_gan_05_att_pred"] = dcn_pm_gan_05_ate_pred result_dict["dcn_pm_gan_05_att_pred"] = dcn_pm_gan_05_att_pred result_dict["dcn_pm_gan_05_bias_att"] = dcn_pm_gan_05_bias_att result_dict["dcn_pm_gan_05_atc_pred"] = dcn_pm_gan_05_atc_pred result_dict["dcn_pm_gan_05_policy_value"] = dcn_pm_gan_05_policy_value result_dict["dcn_pm_gan_05_policy_risk"] = dcn_pm_gan_05_policy_risk result_dict["dcn_pm_gan_05_err_fact"] = dcn_pm_gan_05_err_fact result_dict["dcn_pm_gan_pd_att_pred"] = dcn_pm_gan_pd_ate_pred result_dict["dcn_pm_gan_pd_att_pred"] = dcn_pm_gan_pd_att_pred result_dict["dcn_pm_gan_pd_bias_att"] = dcn_pm_gan_pd_bias_att result_dict["dcn_pm_gan_pd_atc_pred"] = dcn_pm_gan_pd_atc_pred result_dict["dcn_pm_gan_pd_policy_value"] = dcn_pm_gan_pd_policy_value result_dict["dcn_pm_gan_pd_policy_risk"] = dcn_pm_gan_pd_policy_risk result_dict["dcn_pm_gan_pd_err_fact"] = dcn_pm_gan_pd_err_fact result_dict["tarnet_ate_pred"] = tarnet_ate_pred result_dict["tarnet_att_pred"] = tarnet_att_pred result_dict["tarnet_bias_att"] = tarnet_bias_att result_dict["tarnet_atc_pred"] = tarnet_atc_pred result_dict["tarnet_policy_value"] = tarnet_policy_value result_dict["tarnet_policy_risk"] = tarnet_policy_risk result_dict["tarnet_err_fact"] = tarnet_err_fact result_dict["tarnet_pm_gan_ate_pred"] = tarnet_pm_gan_ate_pred result_dict["tarnet_pm_gan_att_pred"] = tarnet_pm_gan_att_pred result_dict["tarnet_pm_gan_bias_att"] = tarnet_pm_gan_bias_att result_dict["tarnet_pm_gan_atc_pred"] = tarnet_pm_gan_atc_pred result_dict["tarnet_pm_gan_policy_value"] = tarnet_pm_gan_policy_value result_dict["tarnet_pm_gan_policy_risk"] = tarnet_pm_gan_policy_risk result_dict["tarnet_pm_gan_err_fact"] = tarnet_pm_gan_err_fact file1.write("\nToday's date: {0}\n".format(date.today())) file1.write("Iter: {0}, bias_att_DCN_PD: {1}, bias_att_DCN_PD(0.5): {2}, " "bias_att_DCN_PM_GAN: {3}, " "bias_att_DCN_PM_GAN_05: {4}, bias_att_DCN_PM_GAN(PD): {5}, " "policy_risk_DCN_PD: {6}, " "policy_risk_DCN_PD(0.5): {7}, policy_risk_DCN_PM_GAN: {8}, " "policy_risk_PM_GAN_05: {9}, policy_risk_PM_GAN(PD): {10}, " .format(iter_id, dcn_pd_bias_att, dcn_pd_05_bias_att, dcn_pm_gan_bias_att, dcn_pm_gan_05_bias_att, dcn_pm_gan_pd_bias_att, dcn_pd_policy_risk, dcn_pd_05_policy_risk, dcn_pm_gan_policy_risk, dcn_pm_gan_05_policy_risk, dcn_pm_gan_pd_policy_risk)) results_list.append(result_dict) bias_att_set_DCN_PD = [] policy_risk_set_DCN_PD = [] bias_att_set_DCN_PD_05 = [] policy_risk_set_DCN_PD_05 = [] bias_att_DCN_PM_GAN = [] policy_risk_set_DCN_PM_GAN = [] bias_att_DCN_PM_GAN_05 = [] policy_risk_set_DCN_PM_GAN_05 = [] bias_att_DCN_PM_GAN_PD = [] policy_risk_set_DCN_PM_GAN_PD = [] bias_att_tarnet = [] policy_risk_set_tarnet = [] bias_att_tarnet_PM_GAN = [] policy_risk_set_tarnet_PM_GAN = [] for result in results_list: bias_att_set_DCN_PD.append(result["dcn_pd_bias_att"]) policy_risk_set_DCN_PD.append(result["dcn_pd_policy_risk"]) bias_att_set_DCN_PD_05.append(result["dcn_pd_05_bias_att"]) policy_risk_set_DCN_PD_05.append(result["dcn_pd_05_policy_risk"]) bias_att_DCN_PM_GAN.append(result["dcn_pm_gan_bias_att"]) policy_risk_set_DCN_PM_GAN.append(result["dcn_pm_gan_policy_risk"]) bias_att_DCN_PM_GAN_05.append(result["dcn_pm_gan_05_bias_att"]) policy_risk_set_DCN_PM_GAN_05.append(result["dcn_pm_gan_05_policy_risk"]) bias_att_DCN_PM_GAN_PD.append(result["dcn_pm_gan_pd_bias_att"]) policy_risk_set_DCN_PM_GAN_PD.append(result["dcn_pm_gan_pd_policy_risk"]) bias_att_tarnet.append(result["tarnet_bias_att"]) policy_risk_set_tarnet.append(result["tarnet_policy_risk"]) bias_att_tarnet_PM_GAN.append(result["tarnet_pm_gan_bias_att"]) policy_risk_set_tarnet_PM_GAN.append(result["tarnet_pm_gan_policy_risk"]) bias_att_DCN_PD_mean = np.mean(np.array(bias_att_set_DCN_PD)) bias_att_DCN_PD_std = np.std(bias_att_set_DCN_PD) policy_risk_set_DCN_PD_mean = np.mean(np.array(policy_risk_set_DCN_PD)) policy_risk_set_DCN_PD_std = np.std(policy_risk_set_DCN_PD) bias_att_DCN_PD_mean_05 = np.mean(np.array(bias_att_set_DCN_PD_05)) bias_att_DCN_PD_std_05 = np.std(bias_att_set_DCN_PD_05) policy_risk_set_DCN_PD_mean_05 = np.mean(np.array(policy_risk_set_DCN_PD_05)) policy_risk_set_DCN_PD_std_05 = np.std(policy_risk_set_DCN_PD_05) bias_att_DCN_PM_GAN_mean = np.mean(np.array(bias_att_DCN_PM_GAN)) bias_att_DCN_PM_GAN_std = np.std(bias_att_DCN_PM_GAN) policy_risk_set_DCN_PM_GAN_mean = np.mean(np.array(policy_risk_set_DCN_PM_GAN)) policy_risk_set_DCN_PM_GAN_std = np.std(policy_risk_set_DCN_PM_GAN) bias_att_DCN_PM_GAN_05_mean = np.mean(np.array(bias_att_DCN_PM_GAN_05)) bias_att_DCN_PM_GAN_05_std = np.std(bias_att_DCN_PM_GAN_05) policy_risk_DCN_PM_GAN_05_mean = np.mean(np.array(policy_risk_set_DCN_PM_GAN_05)) policy_risk_DCN_PM_GAN_05_std = np.std(policy_risk_set_DCN_PM_GAN_05) bias_att_DCN_PM_GAN_mean_PD = np.mean(np.array(bias_att_DCN_PM_GAN_PD)) bias_att_DCN_PM_GAN_std_PD = np.std(bias_att_DCN_PM_GAN_PD) policy_risk_DCN_PM_GAN_mean_PD = np.mean(np.array(policy_risk_set_DCN_PM_GAN_PD)) policy_risk_DCN_PM_GAN_std_PD = np.std(policy_risk_set_DCN_PM_GAN_PD) bias_att_tarnet_mean = np.mean(np.array(bias_att_tarnet)) bias_att_tarnet_std = np.std(bias_att_tarnet) policy_risk_tarnet_mean = np.mean(np.array(policy_risk_set_tarnet)) policy_risk_tarnet_std = np.std(policy_risk_set_tarnet) bias_att_tarnet_PM_GAN_mean = np.mean(np.array(bias_att_tarnet_PM_GAN)) bias_att_tarnet_PM_GAN_std = np.std(bias_att_tarnet_PM_GAN) policy_risk_tarnet_PM_GAN_mean = np.mean(np.array(policy_risk_set_tarnet_PM_GAN)) policy_risk_tarnet_PM_GAN_std = np.std(policy_risk_set_tarnet_PM_GAN) print("###" * 20) print("----------------- !!DCN Models(Results) !! ------------------------") print("--" * 20) print("Model 1: DCN_PD") print("DCN_PD, Bias: {0}, SD: {1}" .format(bias_att_DCN_PD_mean, bias_att_DCN_PD_std)) print("DCN_PD, Policy Risk: {0}, SD: {1}" .format(policy_risk_set_DCN_PD_mean, policy_risk_set_DCN_PD_std)) print("--" * 20) print("Model 2: DCN_PD(0.5)") print("DCN_PD(0.5), Bias: {0}, SD: {1}" .format(bias_att_DCN_PD_mean_05, bias_att_DCN_PD_std_05)) print("DCN_PD(0.5), Policy Risk: {0}, SD: {1}" .format(policy_risk_set_DCN_PD_mean_05, policy_risk_set_DCN_PD_std_05)) print("--" * 20) print("Model 3: DCN PM GAN") print("DCN PM GAN, Bias: {0}, SD: {1}" .format(bias_att_DCN_PM_GAN_mean, bias_att_DCN_PM_GAN_std)) print("DCN PM GAN, Policy Risk: {0}, SD: {1}" .format(policy_risk_set_DCN_PM_GAN_mean, policy_risk_set_DCN_PM_GAN_std)) print("--" * 20) print("Model 4: DCN PM GAN Dropout 0.5") print("DCN PM GAN Dropout 0.5, Bias: {0}, SD: {1}" .format(bias_att_DCN_PM_GAN_05_mean, bias_att_DCN_PM_GAN_05_std)) print("DCN PM GAN Dropout 0.5, Policy Risk: {0}, SD: {1}" .format(policy_risk_DCN_PM_GAN_05_mean, policy_risk_DCN_PM_GAN_05_std)) print("--" * 20) print("Model 5: DCN PM GAN(PD)") print("DCN PM GAN(PD), Bias: {0}, SD: {1}" .format(bias_att_DCN_PM_GAN_mean_PD, bias_att_DCN_PM_GAN_std_PD)) print("DCN PM GAN(PD), Policy Risk: {0}, SD: {1}" .format(policy_risk_DCN_PM_GAN_mean_PD, policy_risk_DCN_PM_GAN_std_PD)) print("--" * 20) print("###" * 20) print("----------------- !!TARNet Models(Results) !! ------------------------") print("--" * 20) print("Model 1: TARNET") print("TARNET, Bias: {0}, SD: {1}" .format(bias_att_tarnet_mean, bias_att_tarnet_std)) print("TARNET, Policy Risk: {0}, SD: {1}" .format(policy_risk_tarnet_mean, policy_risk_tarnet_std)) print("--" * 20) print("Model 2: TARNET PM GAN") print("TARNET PM GAN, Bias: {0}, SD: {1}" .format(bias_att_tarnet_PM_GAN_mean, bias_att_tarnet_PM_GAN_std)) print("TARNET PM GAN, Policy Risk: {0}, SD: {1}" .format(policy_risk_tarnet_PM_GAN_mean, policy_risk_tarnet_PM_GAN_std)) print("--" * 3) print("###" * 3) file1.write("\n########") file1.write("\nDCN Models") file1.write("\n------") file1.write("\nModel 1: DCN_PD") file1.write("\nDCN_PD, Bias att: {0}, SD: {1}" .format(bias_att_DCN_PD_mean, bias_att_DCN_PD_std)) file1.write("\nDCN_PD, Policy Risk: {0}, SD: {1}" .format(policy_risk_set_DCN_PD_mean, policy_risk_set_DCN_PD_std)) file1.write("\n------") file1.write("\nModel 2: DCN_PD(0.5)") file1.write("\nDCN_PD(0.5), Bias att: {0}, SD: {1}" .format(bias_att_DCN_PD_mean_05, bias_att_DCN_PD_std_05)) file1.write("\nDCN_PD(0.5), Policy Risk: {0}, SD: {1}" .format(policy_risk_set_DCN_PD_mean_05, policy_risk_set_DCN_PD_std_05)) file1.write("\n------") file1.write("\nModel 3: DCN PM GAN") file1.write("\nDCN PM GAN, Bias att: {0}, SD: {1}" .format(bias_att_DCN_PM_GAN_mean, bias_att_DCN_PM_GAN_std)) file1.write("\nDCN PM GAN, Policy Risk: {0}, SD: {1}" .format(policy_risk_set_DCN_PM_GAN_mean, policy_risk_set_DCN_PM_GAN_std)) file1.write("\n------") file1.write("\nModel 4: DCN PM GAN Dropout 0.5") file1.write("\nDCN PM GAN Dropout 0.5, Bias att: {0}, SD: {1}" .format(bias_att_DCN_PM_GAN_05_mean, bias_att_DCN_PM_GAN_05_std)) file1.write("\nDCN PM GAN Dropout 0.5, Policy Risk: {0}, SD: {1}" .format(policy_risk_DCN_PM_GAN_05_mean, policy_risk_DCN_PM_GAN_05_std)) file1.write("\n------") file1.write("\nModel 5: DCN PM GAN PD") file1.write("\nDCN PM GAN Dropout PD, Bias att: {0}, SD: {1}" .format(bias_att_DCN_PM_GAN_mean_PD, bias_att_DCN_PM_GAN_std_PD)) file1.write("\nDCN PM GAN Dropout PD, Policy Risk: {0}, SD: {1}" .format(policy_risk_DCN_PM_GAN_mean_PD, policy_risk_DCN_PM_GAN_std_PD)) file1.write("\n------") file1.write("\n########") file1.write("\nTARNET Models") file1.write("\n------") file1.write("\nModel 1: TARNET") file1.write("\nTARNET, Bias att: {0}, SD: {1}" .format(bias_att_tarnet_mean, bias_att_tarnet_std)) file1.write("\nTARNET, Policy Risk: {0}, SD: {1}" .format(policy_risk_tarnet_mean, policy_risk_tarnet_std)) file1.write("\n------") file1.write("\nModel 2: TARNET PM GAN") file1.write("\nTARNET PM GAN, Bias att: {0}, SD: {1}" .format(bias_att_tarnet_PM_GAN_mean, bias_att_tarnet_PM_GAN_std)) file1.write("\nTARNET PM GAN, Policy Risk: {0}, SD: {1}" .format(policy_risk_tarnet_PM_GAN_mean, policy_risk_tarnet_PM_GAN_std)) file1.write("\n--" * 3) file1.write("\n###" * 3) Utils.write_to_csv(run_parameters["consolidated_file_path"], results_list) def __get_run_parameters(self): run_parameters = {} if self.running_mode == "original_data": run_parameters["input_nodes"] = 17 # run_parameters["consolidated_file_path"] = "./MSE/Results_consolidated.csv" # NN run_parameters["nn_prop_file"] = "./MSE/NN_Prop_score_{0}.csv" # ite files DCN run_parameters["DCN_PD"] = "./MSE/ITE/ITE_DCN_PD_iter_{0}.csv" run_parameters["DCN_PD_02"] = "./MSE/ITE/ITE_DCN_PD_02_iter_{0}.csv" run_parameters["DCN_PD_05"] = "./MSE/ITE/ITE_DCN_PD_05_iter_{0}.csv" run_parameters["DCN_PM_GAN"] = "./MSE/ITE/ITE_DCN_PM_GAN_iter_{0}.csv" run_parameters["DCN_PM_GAN_02"] = "./MSE/ITE/ITE_DCN_PM_GAN_dropout_02_iter_{0}.csv" run_parameters["DCN_PM_GAN_05"] = "./MSE/ITE/ITE_DCN_PM_GAN_dropout_05_iter_{0}.csv" run_parameters["DCN_PM_GAN_PD"] = "./MSE/ITE/ITE_DCN_PM_GAN_dropout_PD_iter_{0}.csv" # model paths DCN run_parameters["Model_DCN_PD_shared"] = "./Models/DCN_PD/DCN_PD_shared_iter_{0}.pth" run_parameters["Model_DCN_PD_y1"] = "./Models/DCN_PD/DCN_PD_y1_iter_{0}.pth" run_parameters["Model_DCN_PD_y0"] = "./Models/DCN_PD/DCN_PD_y2_iter_{0}.pth" run_parameters["Model_DCN_PD_02_shared"] = "./Models/DCN_PD_02/DCN_PD_02_shared_iter_{0}.pth" run_parameters["Model_DCN_PD_02_y1"] = "./Models/DCN_PD_02/DCN_PD_02_y1_iter_{0}.pth" run_parameters["Model_DCN_PD_02_y0"] = "./Models/DCN_PD_02/DCN_PD_02_y2_iter_{0}.pth" run_parameters["Model_DCN_PD_05_shared"] = "./Models/DCN_PD_05/DCN_PD_05_shared_iter_{0}.pth" run_parameters["Model_DCN_PD_05_y1"] = "./Models/DCN_PD_05/DCN_PD_05_y1_iter_{0}.pth" run_parameters["Model_DCN_PD_05_y0"] = "./Models/DCN_PD_05/DCN_PD_05_y2_iter_{0}.pth" run_parameters["Model_DCN_PM_GAN_shared"] = "./Models/PM_GAN/DCN_PM_GAN_shared_iter_{0}.pth" run_parameters["Model_DCN_PM_GAN_y1"] = "./Models/PM_GAN/DCN_PM_GAN_iter_y1_{0}.pth" run_parameters["Model_DCN_PM_GAN_y0"] = "./Models/PM_GAN/DCN_PM_GAN_iter_y0_{0}.pth" run_parameters[ "Model_DCN_PM_GAN_02_shared"] = "./Models/PM_GAN_DR_02/DCN_PM_GAN_dropout_02_shared_iter_{0}.pth" run_parameters["Model_DCN_PM_GAN_02_y1"] = "./Models/PM_GAN_DR_02/DCN_PM_GAN_dropout_02_y1_iter_{0}.pth" run_parameters["Model_DCN_PM_GAN_02_y0"] = "./Models/PM_GAN_DR_02/DCN_PM_GAN_dropout_02_y0_iter_{0}.pth" run_parameters[ "Model_DCN_PM_GAN_05_shared"] = "./Models/PM_GAN_DR_05/DCN_PM_GAN_dropout_05_shared_iter_{0}.pth" run_parameters["Model_DCN_PM_GAN_05_y1"] = "./Models/PM_GAN_DR_05/DCN_PM_GAN_dropout_05_y1_iter_{0}.pth" run_parameters["Model_DCN_PM_GAN_05_y0"] = "./Models/PM_GAN_DR_05/DCN_PM_GAN_dropout_05_y0_iter_{0}.pth" run_parameters[ "Model_DCN_PM_GAN_PD_shared"] = "./Models/PM_GAN_PD/DCN_PM_GAN_dropout_PD_shared_iter_{0}.pth" run_parameters["Model_DCN_PM_GAN_PD_y1"] = "./Models/PM_GAN_PD/DCN_PM_GAN_dropout_PD_y1_iter_{0}.pth" run_parameters["Model_DCN_PM_GAN_PD_y0"] = "./Models/PM_GAN_PD/DCN_PM_GAN_dropout_PD_y0_iter_{0}.pth" run_parameters["TARNET"] = "./MSE/ITE/ITE_TARNET_iter_{0}.csv" run_parameters["TARNET_PM_GAN"] = "./MSE/ITE/ITE_TARNET_PM_GAN_iter_{0}.csv" run_parameters["summary_file_name"] = "Details_original.txt" run_parameters["is_synthetic"] = False elif self.running_mode == "synthetic_data": run_parameters["input_nodes"] = 75 run_parameters["consolidated_file_path"] = "./MSE_Augmented/Results_consolidated.csv" run_parameters["is_synthetic"] = True return run_parameters def __load_data(self, train_path, test_path, iter_id): if self.running_mode == "original_data": return self.dL.load_train_test_jobs(train_path, test_path, iter_id) elif self.running_mode == "synthetic_data": return self.dL.load_train_test_jobs(train_path, test_path, iter_id) def __get_ps_model(self, ps_model_type, iter_id, input_nodes, device): ps_train_set = self.dL.convert_to_tensor(self.np_covariates_X_train, self.np_covariates_T_train) ps_val_set = self.dL.convert_to_tensor(self.np_covariates_X_val, self.np_covariates_T_val) ps_test_set = self.dL.convert_to_tensor(self.np_covariates_X_test, self.np_covariates_T_test) ps_manager = PS_Manager() if ps_model_type == Constants.PS_MODEL_NN: return ps_manager.get_propensity_scores(ps_train_set, ps_val_set, ps_test_set, iter_id, input_nodes, device) elif ps_model_type == Constants.PS_MODEL_LR: return ps_manager.get_propensity_scores_using_LR(self.np_covariates_X_train, self.np_covariates_T_train, self.np_covariates_X_val, self.np_covariates_X_test, regularized=False) elif ps_model_type == Constants.PS_MODEL_LR_Lasso: return ps_manager.get_propensity_scores_using_LR(self.np_covariates_X_train, self.np_covariates_T_train, self.np_covariates_X_val, self.np_covariates_X_test, regularized=True) @staticmethod def cal_policy_val(t, yf, eff_pred): # policy_val(t[e>0], yf[e>0], eff_pred[e>0], compute_policy_curve) if np.any(np.isnan(eff_pred)): return np.nan, np.nan policy = eff_pred > 0 treat_overlap = (policy == t) * (t > 0) control_overlap = (policy == t) * (t < 1) if np.sum(treat_overlap) == 0: treat_value = 0 else: treat_value = np.mean(yf[treat_overlap]) if np.sum(control_overlap) == 0: control_value = 0 else: control_value = np.mean(yf[control_overlap]) pit = np.mean(policy) policy_value = pit * treat_value + (1 - pit) * control_value return policy_value def __process_evaluated_metric(self, y_f, e, T, y1_hat, y0_hat, ite_dict, predicted_ITE_list, ite_csv_path, iter_id): y1_hat_np = np.array(y1_hat) y0_hat_np = np.array(y0_hat) e_np = np.array(e) t_np = np.array(T) np_y_f = np.array(y_f) y1_hat_np_b = 1.0 * (y1_hat_np > 0.5) y0_hat_np_b = 1.0 * (y0_hat_np > 0.5) err_fact = np.mean(np.abs(y1_hat_np_b - np_y_f)) att = np.mean(np_y_f[t_np > 0]) - np.mean(np_y_f[(1 - t_np + e_np) > 1]) eff_pred = y0_hat_np - y1_hat_np eff_pred[t_np > 0] = -eff_pred[t_np > 0] ate_pred = np.mean(eff_pred[e_np > 0]) atc_pred = np.mean(eff_pred[(1 - t_np + e_np) > 1]) att_pred = np.mean(eff_pred[(t_np + e_np) > 1]) bias_att =
np.abs(att_pred - att)
numpy.abs
from graphmix import Graph import numpy as np import scipy.sparse as sp import os import sys import math import argparse import pickle as pkl import networkx as nx ''' Usage example: (in Dir Hetu/) python ./tests/test_DistGCN/prepare_data_GCN15d.py --size 8 --replication 2 --dataset Reddit ''' def coo_slice(a, row_range, col_range): a = a.tocoo() condition = np.where((a.row >= row_range[0]) & (a.row < row_range[1]) & ( a.col >= col_range[0]) & (a.col < col_range[1])) return sp.coo_matrix((a.data[condition], (a.row[condition]-row_range[0], a.col[condition]-col_range[0])), shape=(row_range[1]-row_range[0], col_range[1]-col_range[0])) def get_adj_matrix_all(A, replication, size, dir_name): node_count = A.shape[0] n_per_proc = math.ceil(float(node_count) / (size // replication)) stages = size // (replication ** 2) col_block = stages*n_per_proc row_block = math.ceil(float(node_count)/(size//replication)) for rank in range(size): rank_row = rank // replication # i rank_col = rank % replication # j col_start = int(col_block*rank_col) col_end = int(col_block*(rank_col+1)) if col_end > node_count: col_end = node_count row_start = int(row_block*rank_row) row_end = int(row_block*(rank_row+1)) if row_end > node_count: row_end = node_count a = coo_slice(A.tocoo(), row_range=(row_start, row_end), col_range=(col_start, col_end)) sp.save_npz(dir_name+"adj_part"+str(rank)+".npz", a) print("adj_part: rank = %d" % rank, a.shape, len(a.data)) def get_inputs(H, replication, rank, size): node_count = H.shape[0] rank_row = rank // replication # i row_block = math.ceil(float(node_count)/(size//replication)) row_start = int(row_block*rank_row) row_end = int(row_block*(rank_row+1)) if row_end > node_count: row_end = node_count h = H[row_start:row_end, :] print("inputs_part: rank = %d" % rank, h.shape) return h def parse_index_file(filename): index = [] for line in open(filename): index.append(int(line.strip())) return index def normalize(mx): """Row-normalize sparse matrix""" rowsum = np.array(mx.sum(1)) r_inv = np.power(rowsum, -1).flatten() r_inv[np.isinf(r_inv)] = 0. r_mat_inv = sp.diags(r_inv) mx = r_mat_inv.dot(mx) return mx def check_sparsity(adj): if args.size == -1: return adj = adj.tocoo() node_count = adj.shape[0] block_num = args.size//args.replication p = math.ceil(float(node_count)/(args.size//args.replication)) starts = list(range(0, node_count, p)) ends = list(range(p, node_count, p))+[node_count] sparsity = np.zeros(shape=(block_num, block_num), dtype=int) for i in range(block_num): for j in range(block_num): sparsity[i, j] = np.where((adj.row >= starts[i]) & (adj.row < ends[i]) & ( adj.col >= starts[j]) & (adj.col < ends[j]))[0].shape[0] print(sparsity) def load_data(args): dataset = args.dataset data_dir = './tests/test_DistGCN/datasets/%s/' % dataset # ---load data--- if dataset == "Reddit": adj = sp.load_npz(data_dir+'raw/reddit_graph.npz') inputs = np.load(data_dir+'raw/reddit_data.npz') x, y = inputs['feature'], inputs['label'] elif dataset == 'Proteins': adj = sp.load_npz(data_dir+'protein_adj.npz') y = np.load(data_dir+'protein_labels.npy') y = y.astype(int) np.random.seed(123) bounds = np.sqrt(6.0 / (132534 + 602)) x = np.random.uniform(low=-bounds, high=bounds, size=[132534, 602]).astype(np.float32) elif dataset == 'Arch': adj = sp.load_npz(data_dir+'arch_adj.npz') y = np.random.randint(10, size=adj.shape[0]) np.random.seed(123) bounds = np.sqrt(6.0 / (adj.shape[0] + 602)) x = np.random.uniform(low=-bounds, high=bounds, size=[adj.shape[0], 602]).astype(np.float32) elif dataset == 'Products': adj = sp.load_npz(data_dir+'products_adj.npz') x = np.load(data_dir+'products_feat.npy') y = np.load(data_dir+'products_label.npy').astype(np.int) elif dataset == 'Youtube': adj = np.load(data_dir+'youtube_coo.npy', allow_pickle=True).item() np.random.seed(123) bounds = np.sqrt(6.0 / (adj.shape[0] + 602)) x = np.random.uniform(low=-bounds, high=bounds, size=[adj.shape[0], 602]).astype(np.float32) y = np.load(data_dir+'youtube_label.npy') graph = Graph(edge_index=np.vstack( [adj.row, adj.col]), num_nodes=x.shape[0]) # ---preprocess graph--- graph.add_self_loop() normed_val = graph.gcn_norm(True) node_count = graph.num_nodes # ---construct adj,x,y--- edge_index = graph.edge_index adj = sp.coo_matrix( (normed_val, (edge_index[0], edge_index[1])), shape=(node_count, node_count)) # ---check block sparsity--- print('Sparsity before reordering:') check_sparsity(adj) if args.shuffle == 1: print("Shuffle the graph...") order = np.random.permutation(node_count) adj = adj.tocsr()[:, order][order] x = x[order, :] y = y[order] print('Sparsity after Shuffle:') check_sparsity(adj) print('node_count = %d, num_features = %d, num_classes = %d, edge_count = %d' % ( adj.shape[0], x.shape[1], np.max(y)+1, len(adj.data))) return adj, x, y def prepare_data(args, prepare_all_data=False): dataset, replication, size = args.dataset, args.replication, args.size print("Preparing data...") adj_all, input_all, label_all = load_data(args) if prepare_all_data: size_set = [1, 2, 4, 8, 4, 8] replication_set = [1, 1, 1, 1, 2, 2] else: size_set = [size] replication_set = [replication] for i in range(len(size_set)): replication, size = replication_set[i], size_set[i] print("size=%d, replication=%s, dataset=%s" % (size, replication, dataset)) if size == 1: # whole graph for single GPU replication = 1 dir_name = "./tests/test_DistGCN/data_GCN15d/%s_whole_graph/" % dataset if not os.path.exists(dir_name): os.makedirs(dir_name) adj_all = adj_all.tocoo() sp.save_npz(dir_name+"adj_whole.npz", adj_all) print("adj_whole: ", adj_all.shape, len(adj_all.data))
np.save(dir_name+"input_whole.npy", input_all)
numpy.save
""" 利用 SMO 算法实现的线性 SVM 和非线性 SVM. """ import numpy as np from functools import partial class LinearSVC(object): def __init__(self, C=0.6, tol=1e-3, max_iter=50): self.C = C self.tol = tol self.max_iter = max_iter self.err_cache = None self.alphas = None self.intercept_ = 0.0 def fit(self, X, y): self.X = X self.y = y self.alphas = np.zeros(X.shape[0]) self.err_cache =
np.zeros((X.shape[0], 2))
numpy.zeros
#!/usr/bin/env python # Copyright 2014-2018 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: <NAME> <<EMAIL>> # ''' UCCSD analytical nuclear gradients ''' import time import ctypes import numpy from pyscf import lib from functools import reduce from pyscf.lib import logger from pyscf.cc import ccsd from pyscf.cc import _ccsd from pyscf.cc import uccsd_rdm from pyscf.scf import ucphf from pyscf.grad import rhf as rhf_grad from pyscf.grad import ccsd as ccsd_grad # # Note: only works with canonical orbitals # Non-canonical formula refers to JCP, 95, 2639 # def kernel(mycc, t1=None, t2=None, l1=None, l2=None, eris=None, atmlst=None, mf_grad=None, d1=None, d2=None, verbose=logger.INFO): if eris is not None: if (abs(eris.focka - numpy.diag(eris.focka.diagonal())).max() > 1e-3 or abs(eris.fockb - numpy.diag(eris.fockb.diagonal())).max() > 1e-3): raise RuntimeError('UCCSD gradients does not support NHF (non-canonical HF)') if t1 is None: t1 = mycc.t1 if t2 is None: t2 = mycc.t2 if l1 is None: l1 = mycc.l1 if l2 is None: l2 = mycc.l2 if mf_grad is None: mf_grad = mycc._scf.nuc_grad_method() log = logger.new_logger(mycc, verbose) time0 = time.clock(), time.time() log.debug('Build uccsd rdm1 intermediates') if d1 is None: d1 = uccsd_rdm._gamma1_intermediates(mycc, t1, t2, l1, l2) time1 = log.timer_debug1('rdm1 intermediates', *time0) log.debug('Build uccsd rdm2 intermediates') fdm2 = lib.H5TmpFile() if d2 is None: d2 = uccsd_rdm._gamma2_outcore(mycc, t1, t2, l1, l2, fdm2, True) time1 = log.timer_debug1('rdm2 intermediates', *time1) mol = mycc.mol mo_a, mo_b = mycc.mo_coeff mo_ea, mo_eb = mycc._scf.mo_energy nao, nmoa = mo_a.shape nmob = mo_b.shape[1] nocca = numpy.count_nonzero(mycc.mo_occ[0] > 0) noccb = numpy.count_nonzero(mycc.mo_occ[1] > 0) nvira = nmoa - nocca nvirb = nmob - noccb with_frozen = not (mycc.frozen is None or mycc.frozen is 0) moidx = mycc.get_frozen_mask() OA_a, VA_a, OF_a, VF_a = ccsd_grad._index_frozen_active(moidx[0], mycc.mo_occ[0]) OA_b, VA_b, OF_b, VF_b = ccsd_grad._index_frozen_active(moidx[1], mycc.mo_occ[1]) log.debug('symmetrized rdm2 and MO->AO transformation') # Roughly, dm2*2 is computed in _rdm2_mo2ao mo_active = (mo_a[:,numpy.hstack((OA_a,VA_a))], mo_b[:,numpy.hstack((OA_b,VA_b))]) _rdm2_mo2ao(mycc, d2, mo_active, fdm2) # transform the active orbitals time1 = log.timer_debug1('MO->AO transformation', *time1) hf_dm1a, hf_dm1b = mycc._scf.make_rdm1(mycc.mo_coeff, mycc.mo_occ) hf_dm1 = hf_dm1a + hf_dm1b if atmlst is None: atmlst = range(mol.natm) offsetdic = mol.offset_nr_by_atom() diagidx = numpy.arange(nao) diagidx = diagidx*(diagidx+1)//2 + diagidx de = numpy.zeros((len(atmlst),3)) Imata = numpy.zeros((nao,nao)) Imatb =
numpy.zeros((nao,nao))
numpy.zeros
import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import re import os from train_until import * import spacy import tensorflow as tf from dnc.memory import KMemory nlp = spacy.load('en') anno_file = './dataset/MSR_en.csv' dict_file = './dataset/MSR_en_dict.csv' w2v_dict_file = './dataset/MSR_enW2V_dict.csv' video_dir = './dataset/YouTubeClips/' word2v_emb_file = './dataset/MSR_enW2V.npy' def get_dataset(path='./dataset/'): feat_files = [re.match('features_(\d+)_(\d+)\.npy', f) for f in os.listdir(path=path)] feat_files_tup = [] for f in feat_files: if f is not None: feat_files_tup.append(( os.path.join(path, f.string), int(f.group(1)), int(f.group(2)) )) # (file_name, start_id, end_id) feat_files_tup.sort(key=lambda x: x[1]) # sort by start data id. return feat_files_tup def plotVideo(feat): def fun(x, y, arr): if y < arr.shape[0] and x < arr.shape[1]: return arr[y, x] return 0 feat = feat.tolist() # increase number of frame to 10 time, so we can see it better on plot. feat10 = [] for f in feat: for _ in range(5): feat10.append(f) feat10 = np.array(feat10) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') x = np.arange(0, feat10.shape[1], 1) # feat size y = np.arange(0, feat10.shape[0], 1) # feat num X, Y = np.meshgrid(x, y) zs = np.array([fun(x, y, feat10) for x, y in zip(np.ravel(X), np.ravel(Y))]) Z = zs.reshape(X.shape) ax.plot_surface(X, Y, Z) # ax.plot_wireframe(X, Y, Z) ax.set_xlabel('FC6 Feature') ax.set_ylabel('Video Frame') ax.set_zlabel('Feature Value') # fig.imshow(feat10) plt.show() def onehot_vec2id(nparr): result = [] for batch in nparr: batch_vec = [] for step in batch: batch_vec.append(step.argmax()) result.append(batch_vec) return np.array(result) data, lexicon_dict = load(anno_file, w2v_dict_file) dataset = get_dataset() d100 = np.load(dataset[0][0]).tolist() k100 = list(d100.keys()) v_feat_means = [] feat_dic = {'some_word': ['CNN feature']} for key in k100: v_feature = d100[key] if type(v_feature) is list: v_feature = np.array(v_feature) if len(v_feature.shape) < 2: continue v_feat_means.append(v_feature.mean(axis=0)) # for anno in data[10:40]: # output_str = [str(i) for i in nlp(anno['Description'][:-5])] # print(output_str) # input('waiting...') v_feat_means =
np.array(v_feat_means)
numpy.array
import numpy as np from astropy.convolution import convolve def smooth(x, window_len=9, window='hanning'): """ Smooth the data using a window with requested size. This method is based on the convolution of a scaled window with the signal. The signal is prepared by introducing reflected copies of the signal (with the window size) in both ends so that transient parts are minimized in the begining and end part of the output signal. Parameters ---------- x : array_like the input signal window_len : int The length of the smoothing window window : str The type of window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman' 'flat' window will produce a moving average smoothing. Returns ------- out : The smoothed signal Example ------- >>> t=linspace(-2,2,0.1) >>> x=sin(t)+randn(len(t))*0.1 >>> y=smooth(x) See Also -------- numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve scipy.signal.lfilter TODO: the window parameter could be the window itself if an array instead of a string """ if isinstance(x, list): x = np.array(x) if x.ndim != 1: raise ValueError("smooth only accepts 1 dimension arrays.") if len(x) < window_len: print("length of x: ", len(x)) print("window_len: ", window_len) raise ValueError("Input vector needs to be bigger than window size.") if window_len < 3: return x if (window_len % 2) == 0: window_len = window_len + 1 if window not in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']: raise ValueError( "Window is on of 'flat', 'hanning', \ 'hamming', 'bartlett', 'blackman'") if window == 'flat': # moving average w = np.ones(window_len, 'd') else: w = eval('np.'+window+'(window_len)') y = convolve(x, w/w.sum(), normalize_kernel=False, boundary='extend') # return the smoothed signal return y def blurImage(im, n, ny=None, ftype='boxcar'): """ Smooths a 2D image by convolving with a filter Parameters ---------- im : array_like The array to smooth n, ny : int The size of the smoothing kernel ftype : str The type of smoothing kernel. Either 'boxcar' or 'gaussian' Returns ------- res: array_like The smoothed vector with shape the same as im """ from scipy import signal n = int(n) if not ny: ny = n else: ny = int(ny) # keep track of nans nan_idx = np.isnan(im) im[nan_idx] = 0 g = signal.boxcar(n) / float(n) if 'box' in ftype: if im.ndim == 1: g = signal.boxcar(n) / float(n) elif im.ndim == 2: g = signal.boxcar(n) / float(n) g = np.tile(g, (1, ny, 1)) g = g / g.sum() g = np.squeeze(g) # extra dim introduced in np.tile above elif im.ndim == 3: # mutlidimensional binning g = signal.boxcar(n) / float(n) g = np.tile(g, (1, ny, 1)) g = g / g.sum() elif 'gaussian' in ftype: x, y = np.mgrid[-n:n+1, 0-ny:ny+1] g = np.exp(-(x**2/float(n) + y**2/float(ny))) g = g / g.sum() if np.ndim(im) == 1: g = g[n, :] if np.ndim(im) == 3: g = np.tile(g, (1, ny, 1)) improc = signal.convolve(im, g, mode='same') improc[nan_idx] = np.nan return improc def count_to(n): """By example: # 0 1 2 3 4 5 6 7 8 n = [0, 0, 3, 0, 0, 2, 0, 2, 1] res = [0, 1, 2, 0, 1, 0, 1, 0] That is, it is equivalent to something like this : hstack((arange(n_i) for n_i in n)) This version seems quite a bit faster, at least for some possible inputs, and at any rate it encapsulates a task in a function. """ if n.ndim != 1: raise Exception("n is supposed to be 1d array.") n_mask = n.astype(bool) n_cumsum = np.cumsum(n) ret = np.ones(n_cumsum[-1]+1, dtype=int) ret[n_cumsum[n_mask]] -= n[n_mask] ret[0] -= 1 return np.cumsum(ret)[:-1] def repeat_ind(n: np.array): """ Examples -------- >>> n = [0, 0, 3, 0, 0, 2, 0, 2, 1] >>> res = repeat_ind(n) >>> res = [2, 2, 2, 5, 5, 7, 7, 8] That is the input specifies how many times to repeat the given index. It is equivalent to something like this : hstack((zeros(n_i,dtype=int)+i for i, n_i in enumerate(n))) But this version seems to be faster, and probably scales better, at any rate it encapsulates a task in a function. """ if n.ndim != 1: raise Exception("n is supposed to be 1d array.") res = [[idx]*a for idx, a in enumerate(n) if a != 0] return np.concatenate(res) def rect(r, w, deg=False): """ Convert from polar (r,w) to rectangular (x,y) x = r cos(w) y = r sin(w) """ # radian if deg=0; degree if deg=1 if deg: w = np.pi * w / 180.0 return r * np.cos(w), r * np.sin(w) def polar(x, y, deg=False): """ Converts from rectangular coordinates to polar ones Parameters ---------- x, y : array_like, list_like The x and y coordinates deg : int radian if deg=0; degree if deg=1 Returns ------- p : array_like The polar version of x and y """ if deg: return np.hypot(x, y), 180.0 * np.arctan2(y, x) / np.pi else: return np.hypot(x, y), np.arctan2(y, x) def bwperim(bw, n=4): """ perim = bwperim(bw, n=4) Find the perimeter of objects in binary images. A pixel is part of an object perimeter if its value is one and there is at least one zero-valued pixel in its neighborhood. By default the neighborhood of a pixel is 4 nearest pixels, but if `n` is set to 8 the 8 nearest pixels will be considered. Parameters ---------- bw : A black-and-white image n : Connectivity. Must be 4 or 8 (default: 8) Returns ------- perim : A boolean image """ if n not in (4, 8): raise ValueError('mahotas.bwperim: n must be 4 or 8') rows, cols = bw.shape # Translate image by one pixel in all directions north = np.zeros((rows, cols)) south = np.zeros((rows, cols)) west = np.zeros((rows, cols)) east = np.zeros((rows, cols)) north[:-1, :] = bw[1:, :] south[1:, :] = bw[:-1, :] west[:, :-1] = bw[:, 1:] east[:, 1:] = bw[:, :-1] idx = (north == bw) & \ (south == bw) & \ (west == bw) & \ (east == bw) if n == 8: north_east = np.zeros((rows, cols)) north_west = np.zeros((rows, cols)) south_east = np.zeros((rows, cols)) south_west =
np.zeros((rows, cols))
numpy.zeros
# routines for comparing gravities with asteroseismic sample from apogee.utils import apload from apogee.utils import apselect from astropy.io import fits #from holtz.gal import isochrones #from holtz.gal import stars from tools import match from tools import plots from tools import fit from apogee.utils import bitmask try: from apogee.aspcap import cal except: pass from apogee.aspcap import err from apogee.speclib import isochrones import pdb import matplotlib.pyplot as plt import numpy as np import os import astropy from scipy import interpolate def rcrgb(allstar,apokasc='APOKASC_cat_v3.6.0.fits',logg='LOGG_SYD_SCALING',rclim=np.array([2.38,3.5]),out='rcrgbsep') : ''' asteroseismic log g comparisons for input allStar structure ''' gd=apselect.select(allstar,badval=['STAR_BAD'],logg=[0,3.8],teff=[3500,5500],raw=True) allstar=allstar[gd] # match ASPCAP with APOKASC, and get RC/RGB stars apokasc=fits.open(os.environ['APOGEE_DIR']+'/data/apokasc/'+apokasc)[1].data # strip off .XXXX if we have it, e.g. from calibration fields where we have added .FIELD apogee_id = np.array(np.core.defchararray.split(allstar['APOGEE_ID'],'.').tolist())[:,0] i1,i2=match.match(apogee_id,apokasc['2MASS_ID']) rgb=np.where(apokasc['CONS_EVSTATES'][i2] == 'RGB')[0] rc=np.where(apokasc['CONS_EVSTATES'][i2] == 'RC')[0] notrc=np.where(apokasc['CONS_EVSTATES'][i2] != 'RC')[0] rc2=np.where((apokasc['CONS_EVSTATES'][i2] == '2CL') & (apokasc[logg][i2] > -1))[0] rc2cl=np.where((apokasc['CONS_EVSTATES'][i2] == 'RC/2CL') & (apokasc[logg][i2] > -1))[0] rcall=np.append(rc,rc2) rcall=np.append(rcall,rc2cl) rc=i1[rc] rgb=i1[rgb] rc2=i1[rc2] rc2cl=i1[rc2cl] rcall=i1[rcall] # 2D fit for RGB Teff as f(log g, [M/H]) fig,ax=plots.multi(3,2,figsize=(12,8)) fit2d=fit.fit2d(allstar['FPARAM'][rgb,1]-2.5,allstar['FPARAM'][rgb,3],allstar['FPARAM'][rgb,0],plot=ax[0,0],xt='log g - 2.5',yt='[M/H]',zt='Teff') rgbfit=fit2d.parameters #histogram of RC logg values ax[1,0].hist(allstar['FPARAM'][rc,1],color='b',bins=np.arange(0,5,0.05),log=True) ax[1,0].set_xlim(1.5,3.5) ax[1,0].set_ylim(0.1,1000) ax[1,0].set_xlabel('log g') #ax[1,0].hist(allstar['FPARAM'][rgb,1],color='r',bins=np.arange(0,5,0.05)) print('RC min log g: ',allstar['FPARAM'][rc,1].min()) print('RC max log g: ',allstar['FPARAM'][rc,1].max()) # limit log g range for RC plots.plotl(ax[1,0],[rclim[0],rclim[0]],[0,1000],color='k') plots.plotl(ax[1,0],[rclim[1],rclim[1]],[0,1000],color='k') rclogg = np.where((allstar['FPARAM'][rc,1] > rclim[0]) & (allstar['FPARAM'][rc,1]<rclim[1]))[0] rgblogg = np.where((allstar['FPARAM'][rgb,1] > rclim[0]) & (allstar['FPARAM'][rgb,1]<rclim[1]))[0] dt=allstar['FPARAM'][:,0]-fit2d(allstar['FPARAM'][:,1]-2.5,allstar['FPARAM'][:,3]) nbest=10000 for dtcrit in range(-500,500) : rcbd = np.where((dt[rc[rclogg]] < dtcrit))[0] rgbbd = np.where(dt[rgb[rgblogg]] > dtcrit)[0] nbd=len(rcbd)+len(rgbbd) if nbd < nbest : dtbest=dtcrit nbest=nbd dtcrit=dtbest rcbd = np.where((dt[rc[rclogg]] < dtcrit))[0] rgbbd = np.where(dt[rgb[rgblogg]] > dtcrit)[0] print('dtcrit: ',dtcrit) print('bad fractions (rc, rgb): ',float(len(rcbd))/len(rclogg),float(len(rgbbd))/len(rgblogg)) dt=allstar['FPARAM'][:,0]-(rgbfit[0]+rgbfit[1]*(allstar['FPARAM'][:,1]-2.5)+rgbfit[2]*allstar['FPARAM'][:,3]) cn=allstar['FPARAM'][:,4]-allstar['FPARAM'][:,5] plots.plotc(ax[0,1],dt[rc],allstar['FPARAM'][rc,1],allstar['FPARAM'][rc,3],marker='s',xr=[-500,500],yr=[4,1],size=20,zr=[-2.0,0.5],xt='dt',yt='log g',zt='[M/H]',colorbar=True) plots.plotc(ax[0,1],dt[rgb],allstar['FPARAM'][rgb,1],allstar['FPARAM'][rgb,3],marker='o',xr=[-500,500],yr=[4,1],size=20,zr=[-2.0,0.5]) plots.plotl(ax[0,1],[-500,500],[rclim[0],rclim[0]],color='k') plots.plotl(ax[0,1],[-500,500],[rclim[1],rclim[1]],color='k') ax[1,1].hist(dt[rc],color='b',bins=np.arange(-500,500,10)) ax[1,1].hist(dt[rgb],color='r',bins=np.arange(-500,500,10)) ax[1,1].hist(dt[rc2],color='g',bins=np.arange(-500,500,10)) ax[1,1].hist(dt[rc2cl],color='m',bins=np.arange(-500,500,10)) ax[1,1].set_xlabel('dt') # plot dt vs C/N #plots.plotc(ax[0,2],dt[rc[rclogg]],cn[rc[rclogg]],allstar['FPARAM'][rc[rclogg],1],marker='s',xr=[-500,500],yr=[-1.0,0.5],zr=[2,4],size=20,xt='dt',yt='[C/N]',zt='log g',colorbar=True) #plots.plotc(ax[1,2],dt[rgb[rgblogg]],cn[rgb[rgblogg]],allstar['FPARAM'][rgb[rgblogg],1],marker='o',xr=[-500,500],yr=[-1.0,0.5],zr=[2,4],size=20,xt='dt',yt='[C/N]',zt='log g',colorbar=True) plots.plotc(ax[0,2],dt[rc[rclogg]],cn[rc[rclogg]],allstar['FPARAM'][rc[rclogg],3],marker='s',xr=[-500,500],yr=[-1.0,0.5],zr=[-1.5,0.5],size=20,xt='dt',yt='[C/N]',zt='[M/H]',colorbar=True) plots.plotc(ax[1,2],dt[rgb[rgblogg]],cn[rgb[rgblogg]],allstar['FPARAM'][rgb[rgblogg],3],marker='o',xr=[-500,500],yr=[-1.0,0.5],zr=[-1.5,0.5],size=20,xt='dt',yt='[C/N]',zt='[M/H]',colorbar=True) cnslopebest=-0.2/100. cnintbest=0. nbest=10000 slopearray=np.arange(cnslopebest-20*0.0001,cnslopebest+20*0.0001,0.0001) intarray=np.arange(cnintbest-10*0.02,cnintbest+10*0.02,0.02) offarray=np.arange(-0.9,-0.3,0.01) x=np.array([-200,400]) for cnslope in slopearray : for cnoff in offarray : for cnint in intarray : cnfit=np.array([cnint,cnoff,cnslope]) rgbbd=np.where(cn[rgb[rgblogg]] > cnfit[0]+cnfit[1]*allstar['FPARAM'][rgb[rgblogg],3]+cnfit[2]*dt[rgb[rgblogg]])[0] rcbd= np.where(cn[rc[rclogg]] < cnfit[0]+cnfit[1]*allstar['FPARAM'][rc[rclogg],3]+cnfit[2]*dt[rc[rclogg]])[0] nbd=float(len(rcbd))/len(rclogg)+float(len(rgbbd))/len(rgblogg) if nbd < nbest : cnfitbest=cnfit nbest=nbd print(nbest) cnfit=cnfitbest x=np.array([-200,400]) for i in [0,1] : for j in [2] : ax[i,j].plot(x,cnfit[0]+cnfit[1]*0.+x*cnfit[2]) ax[i,j].plot(x,cnfit[0]+cnfit[1]*(-0.5)+x*cnfit[2]) ax[i,j].plot(x,cnfit[0]+cnfit[1]*0.5+x*cnfit[2]) rcbd = np.where((cn[rc[rclogg]] < cnfit[0]+cnfit[1]*allstar['FPARAM'][rc[rclogg],3]+cnfit[2]*dt[rc[rclogg]]))[0] rgbbd = np.where((cn[rgb[rgblogg]] > cnfit[0]+cnfit[1]*allstar['FPARAM'][rgb[rgblogg],3]+cnfit[2]*dt[rgb[rgblogg]]))[0] ax[0,2].text(0.98,0.98,'RC bad: {:5.3f}'.format(float(len(rcbd))/len(rclogg)),transform=ax[0,2].transAxes,va='top',ha='right') ax[1,2].text(0.98,0.98,'RGB bad: {:5.3f}'.format(float(len(rgbbd))/len(rgblogg)),transform=ax[1,2].transAxes,va='top',ha='right') print('bad fractions (rc, rgb): ',float(len(rcbd))/len(rclogg),float(len(rgbbd))/len(rgblogg),len(rcbd),len(rclogg),len(rgbbd),len(rgblogg)) plt.tight_layout() if out is not None : plt.savefig(out+'.png') plt.close(fig) fig,ax=plots.multi(2,1) plots.plotp(ax[0],allstar['FPARAM'][rgb,0],allstar['FPARAM'][rgb,1],color='r',xr=[5500,3500],yr=[4,1],xt='Teff',yt='log g') plots.plotp(ax[0],allstar['FPARAM'][rc,0],allstar['FPARAM'][rc,1],color='b') plots.plotp(ax[0],allstar['FPARAM'][rc2,0],allstar['FPARAM'][rc2,1],color='g') plots.plotp(ax[0],allstar['FPARAM'][rc2cl,0],allstar['FPARAM'][rc2cl,1],color='m') x = -0.08 - 0.5*allstar['FPARAM'][:,3] - 0.0039*dt plots.plotp(ax[1],x[rgb],cn[rgb],color='r',xt='-0.08-0.5[M/H]-0.0039 dt',yt='[C/N]',xr=[-2.5,1.5],yr=[-2,1],nxtick=5) plots.plotp(ax[1],x[rc],cn[rc],color='b') plots.plotp(ax[1],x[rc2],cn[rc2],color='g') plots.plotp(ax[1],x[rc2cl],cn[rc2cl],color='m') ax[1].plot([-2,1.5],[-2,1.5]) fig.tight_layout() if out is not None : plt.savefig(out+'_hr.pdf') plt.close(fig) return {'rclim' : rclim, 'rgbsep' : rgbfit, 'cnsep' : cnfit} def rcrgb_plot(a,out=None) : """ Plot logg classification from bitmask """ b=bitmask.ParamBitMask() rgb=np.where((a['PARAMFLAG'][:,1] & b.getval('LOGG_CAL_RGB')) > 0)[0] rc=np.where((a['PARAMFLAG'][:,1] & b.getval('LOGG_CAL_RC')) > 0)[0] ms=np.where((a['PARAMFLAG'][:,1] & b.getval('LOGG_CAL_MS')) > 0)[0] rgb_ms=np.where((a['PARAMFLAG'][:,1] & b.getval('LOGG_CAL_RGB_MS')) > 0)[0] fig,ax = plots.multi(1,1) plots.plotp(ax,a['FPARAM'][rgb,0],a['FPARAM'][rgb,1],color='r',size=1, xr=[8000,3000],yr=[6,-1],xt='$T_{eff}$',yt='log g') plots.plotp(ax,a['FPARAM'][rc,0],a['FPARAM'][rc,1],color='b',size=1) plots.plotp(ax,a['FPARAM'][ms,0],a['FPARAM'][ms,1],color='g',size=1) plots.plotp(ax,a['FPARAM'][rgb_ms,0],a['FPARAM'][rgb_ms,1],color='m',size=1) if out is not None : fig.savefig(out+'.png') plt.close() def dwarf(allstar,mhrange=[-2.5,1.0],loggrange=[3.8,5.5],teffrange=[3000,7500],apokasc_cat='APOKASC_cat_v4.4.2.fits',out='logg',calib=False) : """ logg calibration for dwarfs, from asteroseismic and isochrones """ if calib : param = 'PARAM' else : param = 'FPARAM' gd=apselect.select(allstar,badval=['STAR_BAD'],mh=mhrange,logg=loggrange,teff=teffrange,raw=True) allstar=allstar[gd] try: gd=np.where(allstar['VISIT'] == 0)[0] allstar=allstar[gd] except: pass # match ASPCAP with APOKASC, and get RC/RGB stars apokasc=fits.open(os.environ['APOGEE_DIR']+'/data/apokasc/'+apokasc_cat)[1].data # strip off .XXXX if we have it, e.g. from calibration fields where we have added .FIELD apogee_id = np.array(np.core.defchararray.split(allstar['APOGEE_ID'],'.').tolist())[:,0] i1,i2=match.match(apogee_id,apokasc['2MASS_ID']) # now get isochrone logg from lower main sequence isologg=isochrone(allstar,snrbd=50) isochrone_id = np.array(np.core.defchararray.split(isologg['APOGEE_ID'],'.').tolist())[:,0] j1,j2=match.match(apogee_id,isochrone_id) # plots of gravity differences fig,ax=plots.multi(2,2) plots.plotc(ax[0,0],allstar[param][i1,1],allstar[param][i1,1]-apokasc['LOGG_DW'][i2],allstar[param][i1,0],yr=[-1,1], xt='log g',yt=r'$\Delta$logg',zt='Teff',colorbar=True,xr=[3,6],zr=[4000,7000]) plots.plotc(ax[0,1],allstar[param][i1,3],allstar[param][i1,1]-apokasc['LOGG_DW'][i2],allstar[param][i1,0],yr=[-1,1], xt='[M/H]',yt=r'$\Delta$logg',zt='Teff',colorbar=True,xr=[-2,0.5],zr=[4000,7000]) plots.plotc(ax[1,0],allstar[param][i1,0],allstar[param][i1,1]-apokasc['LOGG_DW'][i2],10.**allstar[param][i1,2],yr=[-1,1], xt='Teff',yt=r'$\Delta$logg',zt='vmicro',colorbar=True,xr=[3000,8000],zr=[0.5,2.5]) plots.plotc(ax[1,1],allstar[param][i1,0],allstar[param][i1,1]-apokasc['LOGG_DW'][i2],allstar[param][i1,3],yr=[-1,1], xt='Teff',yt=r'$\Delta$logg',zt='[M/H]',colorbar=True,xr=[3000,8000],zr=[-2,0.5]) # only add main sequence in Teff plot plots.plotc(ax[1,1],allstar[param][j1,0],allstar[param][j1,1]-isologg['ISOLOGG'][j2],allstar[param][j1,3],zr=[-2,0.5]) plt.tight_layout() # 2D fit as f(Teff,[M/H]), using both APOKASC and isochrone log g gd=np.where(apokasc['LOGG_DW'][i2] > -99)[0] tfit=allstar[param][i1[gd],0] mhfit=allstar[param][i1[gd],3] diff=allstar[param][i1[gd],1]-apokasc['LOGG_DW'][i2[gd]] snrfit=allstar['SNR'][i1[gd]] # do fit from high S/N, but get uncertainties from all gd=np.where(allstar['SNR'][j1] > 300)[0] msfit = fit.fit2d(np.append(tfit,allstar[param][j1[gd],0]), np.append(mhfit,allstar[param][j1[gd],3]), np.append(diff,allstar[param][j1[gd],1]-isologg['ISOLOGG'][j2[gd]]),degree=1,reject=0.3) # for uncertainties, all all S/N tfit=np.append(tfit,allstar[param][j1,0]) mhfit=np.append(mhfit,allstar[param][j1,3]) diff=np.append(diff,allstar[param][j1,1]-isologg['ISOLOGG'][j2]) snrfit=np.append(snrfit,allstar['SNR'][j1]) mserrpar = err.errfit(tfit,np.clip(snrfit,0.,249.),mhfit,diff-msfit(tfit,mhfit), out=out+'_ms',title='log g',zr=[0,0.2]) #mserrpar=np.zeros([4]) # plot the relation tfit=np.arange(teffrange[0],teffrange[1],10) mhfit=tfit*0. plots.plotl(ax[1,1],tfit,msfit(tfit,mhfit),color='orange',linewidth=1.5) mhfit=tfit*0-1. plots.plotl(ax[1,1],tfit,msfit(tfit,mhfit),color='c',linewidth=1.5) mhfit=tfit*0+0.5 plots.plotl(ax[1,1],tfit,msfit(tfit,mhfit),color='r',linewidth=1.5) ax[1,1].grid() if out is not None: fig.savefig(out+'_dwarfs.png') plt.close() # HR diagram plot color coded by asteroseismic gravity differences hrfig,hrax=plots.multi(1,2,hspace=0.001) gd=np.where(apokasc['APOKASC2_LOGG'][i2] > -99)[0] plots.plotc(hrax[0],allstar[param][i1[gd],0],allstar[param][i1[gd],1],allstar[param][i1[gd],1]-apokasc['APOKASC2_LOGG'][i2[gd]], xr=[8000,3000],yr=[6,0],zr=[-0.5,0.5],colorbar=True,zt=r'$\Delta$ logg',xt='Teff',yt='logg') plots.plotc(hrax[0],allstar[param][j1,0],allstar[param][j1,1],allstar[param][j1,1]-isologg['ISOLOGG'][j2],zr=[-0.5,0.5]) plots.plotc(hrax[1],allstar[param][i1[gd],0],apokasc['APOKASC2_LOGG'][i2[gd]],allstar[param][i1[gd],1]-apokasc['APOKASC2_LOGG'][i2[gd]], xr=[8000,3000],yr=[6,0],zr=[-0.5,0.5],colorbar=True,zt=r'$\Delta$ logg',xt='Teff',yt='APOKASC logg') # use asteroseismic logg on y axis gd=np.where(apokasc['LOGG_DW'][i2] > -99)[0] plots.plotc(hrax[0],allstar[param][i1[gd],0],allstar[param][i1[gd],1],allstar[param][i1[gd],1]-apokasc['LOGG_DW'][i2[gd]], xr=[8000,3000],yr=[6,0],zr=[-0.5,0.5]) plots.plotc(hrax[1],allstar[param][i1[gd],0],apokasc['LOGG_DW'][i2[gd]],allstar[param][i1[gd],1]-apokasc['LOGG_DW'][i2[gd]], xr=[8000,3000],yr=[6,0],zr=[-0.5,0.5]) if out is not None: hrfig.savefig(out+'_all.png') plt.close() return {'calloggmin' : loggrange[0], 'calloggmax' : loggrange[1], 'loggmin' : loggrange[0], 'loggmax' : loggrange[1], 'mhmin' : mhrange[0], 'mhmax' : mhrange[1], 'temin': teffrange[0], 'temax' : teffrange[1], 'msfit' : msfit.parameters, 'errpar' : mserrpar } def apokasc(allstar,apokasc_cat='APOKASC_cat_v4.4.2.fits',raw=True,plotcal=False,out='loggcomp',calloggrange=[-1.,3.8],loggrange=[-1.,3.8],mhrange=[-2.5,0.5],teffrange=[3500,5500],calteffrange=[3000,6000],calib=False) : ''' asteroseismic log g comparisons for input allStar structure ''' if calib : param = 'PARAM' else : param = 'FPARAM' gd=apselect.select(allstar,badval=['STAR_BAD'],mh=mhrange,logg=loggrange,teff=teffrange,raw=True) allstar=allstar[gd] # match ASPCAP with APOKASC, and get RC/RGB stars apokasc=fits.open(os.environ['APOGEE_DIR']+'/data/apokasc/'+apokasc_cat)[1].data # strip off .XXXX if we have it, e.g. from calibration fields where we have added .FIELD apogee_id = np.array(np.core.defchararray.split(allstar['APOGEE_ID'],'.').tolist())[:,0] i1,i2=match.match(apogee_id,apokasc['2MASS_ID']) try: print('trying APOKASC2 catalog tags...') logg='APOKASC2_LOGG' rgb=np.where((apokasc['CONS_EVSTATES'][i2] == 'RGB') & (apokasc[logg][i2] > -1))[0] rc=np.where((apokasc['CONS_EVSTATES'][i2] == 'RC') & (apokasc[logg][i2] > -1))[0] notrc=np.where(apokasc['CONS_EVSTATES'][i2] != 'RC')[0] rc2=np.where((apokasc['CONS_EVSTATES'][i2] == '2CL') & (apokasc[logg][i2] > -1))[0] rc2cl=np.where((apokasc['CONS_EVSTATES'][i2] == 'RC/2CL') & (apokasc[logg][i2] > -1))[0] # use LOGG_DW if we have it dw=np.where((apokasc[logg][i2] < -99) & (apokasc['LOGG_DW'][i2] >-99) )[0] apokasc[logg][i2[dw]] = apokasc['LOGG_DW'][i2[dw]] rgb=np.append(rgb,dw) except : # DR14 used APOKASC_cat_v3.6.0 print('trying older APOKASC catalog tags...') logg='LOGG_SYD_SCALING' rgb=np.where((apokasc['CONS_EVSTATES'][i2] == 'RGB') & (apokasc[logg][i2] > -1))[0] rc=np.where((apokasc['CONS_EVSTATES'][i2] == 'RC') & (apokasc[logg][i2] > -1))[0] notrc=np.where(apokasc['CONS_EVSTATES'][i2] != 'RC')[0] rc2=np.where((apokasc['CONS_EVSTATES'][i2] == '2CL') & (apokasc[logg][i2] > -1))[0] rc2cl=np.where((apokasc['CONS_EVSTATES'][i2] == 'RC/2CL') & (apokasc[logg][i2] > -1))[0] rcall=np.append(rc,rc2) rcall=np.append(rcall,rc2cl) # Do some 2D fits for RGB stars fig,ax=plots.multi(2,1,figsize=(12,6)) # linear in logg and [M/H] rgbfit = fit.fit2d(allstar['FPARAM'][i1[rgb],1],allstar['FPARAM'][i1[rgb],3], allstar[param][i1[rgb],1]-apokasc[logg][i2[rgb]],zr=[-1,0.5],gdrange=[-2,2],yr=[-3,1],xr=[1,4],degree=1, plot=ax[0],yt='[M/H]',xt='log g',zt='$\Delta log g$',reject=0.3) # cubic in logg, linear in [M/H] data=allstar[param][i1[rgb],1]-apokasc[logg][i2[rgb]] design=np.ones([5,len(rgb)]) design[1,:]=allstar['FPARAM'][i1[rgb],1] design[2,:]=allstar['FPARAM'][i1[rgb],1]**2 design[3,:]=allstar['FPARAM'][i1[rgb],1]**3 design[4,:]=allstar['FPARAM'][i1[rgb],3] params=fit.linear(data,design)[0] rgbrms=(allstar[param][i1[rgb],1]-rgbfit(allstar['FPARAM'][i1[rgb],1],allstar['FPARAM'][i1[rgb],3])-apokasc[logg][i2[rgb]]).std() ax[0].text(0.98,0.98,'rms: {:5.3f}'.format(rgbrms),transform=ax[0].transAxes,va='top',ha='right') rgberrpar = err.errfit(allstar[param][i1[rgb],0],allstar['SNR'][i1[rgb]],allstar[param][i1[rgb],3], allstar[param][i1[rgb],1]-rgbfit(allstar['FPARAM'][i1[rgb],1],allstar['FPARAM'][i1[rgb],3])-apokasc[logg][i2[rgb]], out=out+'_rgb',title='log g',zr=[0,0.2]) loggmin=allstar['FPARAM'][i1[rgb],1].min() loggmax=allstar['FPARAM'][i1[rgb],1].max() # RC fits # linear in logg and [M/H] rcfit = fit.fit2d(allstar['FPARAM'][i1[rc],1],allstar['FPARAM'][i1[rc],3], allstar[param][i1[rc],1]-apokasc[logg][i2[rc]],zr=[-1,0.5],gdrange=[-2,2],yr=[-3,1],xr=[1,4],degree=1, plot=ax[1],yt='[M/H]',xt='log g',zt='$\Delta log g$',reject=0.3) # quadratic in logg rcfit2 = fit.fit1d(allstar['FPARAM'][i1[rcall],1], allstar[param][i1[rcall],1]-apokasc[logg][i2[rcall]],zr=[-1,0.5],yr=[-3,1],xr=[1,4],degree=2,reject=0.3) rcrms=(allstar[param][i1[rc],1]-rcfit(allstar['FPARAM'][i1[rc],1],allstar['FPARAM'][i1[rc],3])-apokasc[logg][i2[rc]]).std() rcerrpar = err.errfit(allstar[param][i1[rc],0],allstar['SNR'][i1[rc]],allstar[param][i1[rc],3], allstar[param][i1[rc],1]-rcfit(allstar['FPARAM'][i1[rc],1],allstar['FPARAM'][i1[rc],3])-apokasc[logg][i2[rc]], out=out+'_rc',title='log g',zr=[0,0.2]) ax[1].text(0.98,0.98,'rms: {:5.3f}'.format(rcrms),transform=ax[1].transAxes,va='top',ha='right') fig.tight_layout() if out is not None : fig.savefig(out+'.png') plt.close() # set up plots if raw and plotcal : fig,ax=plots.multi(2,3,hspace=0.5,wspace=0.001,figsize=(12,12)) else : fig,tmpax=plots.multi(1,4,hspace=0.5,wspace=0.001,figsize=(8,10)) fig2,ax2=plots.multi(1,1) # diff color-coded by gravity as f([M/H]) # diff color-coded by [M/H] as f(log g) # RGB and RC as f(log g) if raw : if plotcal: tmpax=ax[:,0] plots.plotc(tmpax[0],allstar['FPARAM'][i1,3],allstar[param][i1,1]-apokasc[logg][i2], allstar['FPARAM'][i1,1],zr=[0,5],xr=[-2.5,0.5],yr=[-0.75,0.75],xt='[M/H]',yt='ASPCAP-seismic log g',zt='log g',size=15,colorbar=True) plots.plotc(tmpax[1],allstar['FPARAM'][i1[rgb],1],allstar[param][i1[rgb],1]-apokasc[logg][i2[rgb]], allstar['FPARAM'][i1[rgb],3],xr=[0,5],zr=[-2.5,0.5],yr=[-0.75,0.75],zt='[M/H]',yt='ASPCAP-seismic log g',xt='log g',size=15,colorbar=True) loggfit=np.arange(1,3.5,0.01) mhfit=loggfit*0. plots.plotl(tmpax[1],loggfit,rgbfit(loggfit,mhfit),color='orange',linewidth=1.5) plots.plotl(tmpax[1],loggfit,params[0]+params[1]*loggfit+params[2]*loggfit**2+params[3]*loggfit**3+params[4]*mhfit,color='orange',linewidth=1.5) mhfit=loggfit*0-2. plots.plotl(tmpax[1],loggfit,rgbfit(loggfit,mhfit),color='b',linewidth=1.5) plots.plotl(tmpax[1],loggfit,params[0]+params[1]*loggfit+params[2]*loggfit**2+params[3]*loggfit**3+params[4]*mhfit,color='b',linewidth=1.5) mhfit=loggfit*0-1. plots.plotl(tmpax[1],loggfit,rgbfit(loggfit,mhfit),color='c',linewidth=1.5) plots.plotl(tmpax[1],loggfit,params[0]+params[1]*loggfit+params[2]*loggfit**2+params[3]*loggfit**3+params[4]*mhfit,color='c',linewidth=1.5) mhfit=loggfit*0+0.5 plots.plotl(tmpax[1],loggfit,rgbfit(loggfit,mhfit),color='r',linewidth=1.5) plots.plotl(tmpax[1],loggfit,params[0]+params[1]*loggfit+params[2]*loggfit**2+params[3]*loggfit**3+params[4]*mhfit,color='r',linewidth=1.5) tmpax[0].grid() tmpax[1].grid() iax=tmpax[2] plots.plotp(iax,allstar['FPARAM'][i1[rgb],1],allstar[param][i1[rgb],1]-apokasc[logg][i2[rgb]], xr=[0,5],yr=[-0.5,0.5],xt='seismic log g',yt='ASPCAP-seismic log g',label=[0.9,0.8,'RGB'],color='r',size=5) plots.plotp(iax,allstar['FPARAM'][i1[rc],1],allstar[param][i1[rc],1]-apokasc[logg][i2[rc]], xr=[0,5],yr=[-0.5,0.5],xt='seismic log g',yt='ASPCAP-seismic log g',label=[0.9,0.6,'RC'],color='b',size=5) plots.plotp(iax,allstar['FPARAM'][i1[rc2],1],allstar[param][i1[rc2],1]-apokasc[logg][i2[rc2]], xr=[0,5],yr=[-0.5,0.5],xt='seismic log g',yt='ASPCAP-seismic log g',label=[0.9,0.6,'RC'],color='g',size=5) plots.plotp(iax,allstar['FPARAM'][i1[rc2cl],1],allstar[param][i1[rc2cl],1]-apokasc[logg][i2[rc2cl]], xr=[0,5],yr=[-0.5,0.5],xt='seismic log g',yt='ASPCAP-seismic log g',label=[0.9,0.6,'RC'],color='m',size=5) # single plot as f(Teff) iax=ax2 plots.plotp(iax,allstar['FPARAM'][i1[rgb],0],allstar[param][i1[rgb],1]-apokasc[logg][i2[rgb]], xr=[4500,5200],yr=[-0.5,0.5],xt='Teff',yt='ASPCAP-seismic log g',label=[0.9,0.8,'RGB'],color='r',size=5) plots.plotp(iax,allstar['FPARAM'][i1[rc],0],allstar[param][i1[rc],1]-apokasc[logg][i2[rc]], xr=[4500,5200],yr=[-0.5,0.5],xt='Teff',yt='ASPCAP-seismic log g',label=[0.9,0.6,'RC'],color='b',size=5) plots.plotp(iax,allstar['FPARAM'][i1[rc2],0],allstar[param][i1[rc2],1]-apokasc[logg][i2[rc2]], xr=[4500,5200],yr=[-0.5,0.5],xt='Teff',yt='ASPCAP-seismic log g',label=[0.9,0.6,'RC'],color='g',size=15) plots.plotp(iax,allstar['FPARAM'][i1[rc2cl],0],allstar[param][i1[rc2cl],1]-apokasc[logg][i2[rc2cl]], xr=[4500,5200],yr=[-0.5,0.5],xt='Teff',yt='ASPCAP-seismic log g',label=[0.9,0.6,'RC'],color='m',size=5) loggfit=np.arange(2.5,3.5,0.01) mhfit=loggfit*0. plots.plotl(tmpax[2],loggfit,rcfit(loggfit,mhfit),color='g',linewidth=2) plots.plotl(tmpax[2],loggfit,rcfit2(loggfit),color='k',linewidth=2) tmpax[2].grid() #plots.plotp(tmpax[3],allstar['FPARAM'][i1[rgb],0],allstar[param][i1[rgb],1]-apokasc[logg][i2[rgb]], # xr=[3500,7000],yr=[-0.75,0.75],xt='Teff',yt='ASPCAP-seismic log g',label=[0.9,0.8,'RGB'],color='r',size=15) plots.plotc(tmpax[3],allstar['FPARAM'][i1[rgb],0],allstar[param][i1[rgb],1]-apokasc[logg][i2[rgb]],allstar[param][i1[rgb],3], xr=[3500,7000],yr=[-0.75,0.75],xt='Teff',yt='ASPCAP-seismic log g',label=[0.9,0.8,'RGB'],zr=[-2,0.5],size=15,colorbar=True) plots.plotp(tmpax[3],allstar['FPARAM'][i1[rc],0],allstar[param][i1[rc],1]-apokasc[logg][i2[rc]], xr=[3500,7000],yr=[-0.75,0.75],xt='Teff',yt='ASPCAP-seismic log g',label=[0.9,0.6,'RC'],color='b',size=15) plots.plotp(tmpax[3],allstar['FPARAM'][i1[rc2],0],allstar[param][i1[rc2],1]-apokasc[logg][i2[rc2]], xr=[3500,7000],yr=[-0.75,0.75],xt='Teff',yt='ASPCAP-seismic log g',label=[0.9,0.6,'RC'],color='g',size=15) plots.plotp(tmpax[3],allstar['FPARAM'][i1[rc2cl],0],allstar[param][i1[rc2cl],1]-apokasc[logg][i2[rc2cl]], xr=[3500,7000],yr=[-0.75,0.75],xt='Teff',yt='ASPCAP-seismic log g',label=[0.9,0.6,'RC'],color='m',size=15) tmpax[3].grid() #plots.plotc(tmpax[3],allstar['FPARAM'][i1[rgb],1],allstar['PARAM'][i1[rgb],1]-allstar['FPARAM'][i1[rgb],1], # allstar['FPARAM'][i1[rgb],3],xr=[0,5],yr=[-1,1],xt='seismic log g',yt='corrected-raw log g',label=[0.1,0.9,'allstar (Kurucz)'],zr=[-2,0.5]) if plotcal : if raw: tmpax=ax[:,1] param=allstar['FPARAM'][:,1]-rgbfit(allstar['FPARAM'][:,1],allstar['FPARAM'][:,3]) param[i1[rc]]=allstar['FPARAM'][i1[rc],1]-rcfit(allstar['FPARAM'][i1[rc],1],allstar['FPARAM'][i1[rc],3]) plots.plotc(tmpax[0],allstar['FPARAM'][i1,3],param[i1]-apokasc[logg][i2], allstar['FPARAM'][i1,1],zr=[0,5],xr=[-2.5,0.5],yr=[-0.75,0.75],xt='[M/H]',colorbar=True,zt='log g',size=15) plots.plotc(tmpax[1],allstar['FPARAM'][i1,1],param[i1]-apokasc[logg][i2], allstar['FPARAM'][i1,3],xr=[1,4],zr=[-2.5,0.5],yr=[-0.75,0.75],zt='[M/H]',colorbar=True,xt='log g',size=15) plots.plotp(tmpax[2],allstar['FPARAM'][i1[rgb],1],param[i1[rgb]]-apokasc[logg][i2[rgb]], xr=[1,4],yr=[-0.75,0.75],xt='log g',color='r',size=15) plots.plotp(tmpax[2],allstar['FPARAM'][i1[rc],1],param[i1[rc]]-apokasc[logg][i2[rc]], xr=[1,4],yr=[-0.75,0.75],xt='log g',color='b',size=15) plots.plotp(tmpax[2],allstar['FPARAM'][i1[rc2],1],param[i1[rc2]]-apokasc[logg][i2[rc2]], xr=[1,4],yr=[-0.75,0.75],xt='log g',color='g',size=15) plots.plotp(tmpax[2],allstar['FPARAM'][i1[rc2cl],1],param[i1[rc2cl]]-apokasc[logg][i2[rc2cl]], xr=[1,4],yr=[-0.75,0.75],xt='log g',color='m',size=15) #plots.plotc(tmpax[3],allstar['FPARAM'][i1[rc],1],allstar['PARAM'][i1[rc],1]-allstar['FPARAM'][i1[rc],1], # allstar['FPARAM'][i1[rc],3],xr=[0,5],yr=[-1,1],xt='seismic log g',zr=[-2,0.5]) fig.tight_layout() if out is not None : fig.savefig(out+'_b.png') plt.close(fig) fig2.savefig(out+'_c.png') plt.close(fig2) return {'calloggmin' : calloggrange[0], 'calloggmax' : calloggrange[1], 'loggmin' : loggmin, 'loggmax' : loggmax, 'mhmin' : mhrange[0], 'mhmax' : mhrange[1], 'calteffmin': calteffrange[0], 'calteffmax' : calteffrange[1], 'rgbfit' : rgbfit.parameters, 'rgbfit2' : params, 'rcfit' : rcfit.parameters, 'rcfit2' : rcfit2.parameters, 'rgbrms' : rgbrms, 'rcrms' : rcrms , 'rgberrpar': rgberrpar, 'rcerrpar': rcerrpar} def isochrone(allstar,snrbd=300) : """ logg correction for cool dwarfs based on isochrones returns structured array with APOGEE_ID, ISOLOGG """ print('getting isochrone log g') # restrict the sample to good high S/N stars aspcapmask=bitmask.AspcapBitMask() starmask=bitmask.StarBitMask() gd=np.where( ((allstar['ASPCAPFLAG']&aspcapmask.badval()) == 0) & ((allstar['STARFLAG']&starmask.badval()) == 0) & (allstar['SNR']>=snrbd) ) [0] allstar=allstar[gd] if 'TARGFLAGS' in allstar.columns.names : badtarg=['YOUNG','EMBEDDED','EXTENDED','M31','M33','EMISSION','RRLYR','DSPH','MAGCLOUD'] else : badtarg = None gd=apselect.select(allstar,raw=True,teff=[3000,5000],logg=[4.0,5.5],badtarg=badtarg) allstar=allstar[gd] print(len(allstar)) # loop through isochrones, reading, finding matches, and calculating expected isochrone logg given Teff first=True for z in np.arange(-1.0,0.3,0.1) : if z<-0.01 : name='zm{:02d}'.format(int(abs(z)*10)) else :name='zp{:02d}'.format(int(abs(z)*10)) j=np.where(abs(allstar['FPARAM'][:,3]-z) <0.05)[0] if len(j) > 0: print(z,len(j),name) isodata=isochrones.read(os.environ['ISOCHRONE_DIR']+'/'+name+'.dat',agerange=[9.29,9.31]) mdiff = isodata['mini'][0:-1]-isodata['mini'][1:] use=np.where(abs(mdiff) < 1.e-8)[0] if len(use) > 0 : use=use[0] else : use=len(isodata) if use < 10 : pdb.set_trace() gd=np.where(isodata['logg'][0:use]>4)[0] f = interpolate.interp1d(isodata['teff'][gd], isodata['logg'][gd],bounds_error=False) isologg = f(allstar['FPARAM'][j,0]) if first : out_id=allstar['APOGEE_ID'][j] out_isologg=isologg first= False else : out_id=np.append(out_id,allstar['APOGEE_ID'][j]) out_isologg=np.append(out_isologg,isologg) # output structured array outtype=np.dtype([('APOGEE_ID',out_id.dtype),('ISOLOGG',isologg.dtype)]) outdata=np.empty(len(out_id),dtype=outtype) outdata['APOGEE_ID']=out_id outdata['ISOLOGG']=out_isologg return outdata def clusters(allstar,xr=[-2.75,0.5],yr=[-1.,1.],zr=[3500,5500],apokasc='APOKASC_cat_v3.6.0.fits',firstgen=False) : ''' Compare ASPCAP gravities in clusters to physical gravities ''' fig,ax=plots.multi(1,2,hspace=0.001) # put APOKASC underneath apokasc=fits.open(os.environ['APOGEE_DIR']+'/data/apokasc/'+apokasc)[1].data # strip off .XXXX if we have it, e.g. from calibration fields where we have added .FIELD apogee_id = np.array(np.core.defchararray.split(allstar['APOGEE_ID'],'.').tolist())[:,0] i1,i2=match.match(apogee_id,apokasc['2MASS_ID']) plots.plotc(ax[0],allstar['FPARAM'][i1,3],allstar['FPARAM'][i1,1]-apokasc['LOGG_SYD_SCALING'][i2],allstar['FPARAM'][i1,0],zr=zr) plots.plotc(ax[1],allstar['PARAM'][i1,3],allstar['PARAM'][i1,1]-apokasc['LOGG_SYD_SCALING'][i2],allstar['PARAM'][i1,0],zr=zr) # physical gravities clust=apselect.clustdata() itext=0 out=open('clust.txt','w') for cluster in ['M92','M15','M53','M2','M13','M3','M5','N2420','M67','N6819','N6791'] : i=np.where(clust.name == cluster) dist=clust[i].dist*1000. mh=clust[i].mh mass=clust[i].giant_mass ejk=0.452*clust[i].ebv ah=1.55*clust[i].ebv age=np.log10(clust[i].age*1.e9) name=clust[i].name ytext=0.85-itext%3*0.15 if mass > 0 : # get cluster members j=np.array(apselect.clustmember(allstar,cluster,raw=True,firstgen=firstgen)) # calculate physical gravities lum=10.**(-0.4*(allstar['H'][j]-ah+isochrones.bc(allstar['FPARAM'][j,0],filt='h',agerange=[age-0.05,age+0.05])-(5*np.log10(dist)-5)-4.74))*astropy.constants.L_sun.cgs.value logg=np.log10(4*np.pi*astropy.constants.G.cgs.value*mass*astropy.constants.M_sun.cgs.value*astropy.constants.sigma_sb.cgs.value*allstar['FPARAM'][j,0]**4/lum) plots.plotc(ax[0],allstar['FPARAM'][j,3]*0+mh,allstar['FPARAM'][j,1]-logg,allstar['FPARAM'][j,0],xr=xr,yr=yr,zr=zr,yt='ASPCAP-physical log g') ax[0].text(0.9,0.1,'raw',transform=ax[0].transAxes,ha='right') plots.plotp(ax[0],allstar['FPARAM'][j,3]*0+mh,allstar['FPARAM'][j,1]-logg,color='k') plots.plotp(ax[0],mh[0],np.median(allstar['FPARAM'][j,1]-logg),size=40,color='r') ax[0].text(mh[0],ytext,name[0],ha='center') out.write('{:<20s}{:8.3f}{:8.3f}{:8.3f}\n'.format(clust[i].name[0],clust[i].dist[0],clust[i].ebv[0],mass[0])) gd=np.where((allstar['PARAM'][j,3]>-9)&(allstar['PARAM'][j,1]>-9))[0] axim=plots.plotc(ax[1],allstar['PARAM'][j[gd],3]*0+mh,allstar['PARAM'][j[gd],1]-logg[gd],allstar['PARAM'][j[gd],0],xr=xr,yr=yr,zr=zr,xt='[M/H]',yt='ASPCAP-physical log g') ax[1].text(0.9,0.1,'calibrated',transform=ax[1].transAxes,ha='right') plots.plotp(ax[1],mh[0],np.median(allstar['PARAM'][j[gd],1]-logg[gd]),size=40) # apply a temperature correction for the physical gravities logg_new=np.log10(4*np.pi*astropy.constants.G.cgs.value*mass*astropy.constants.M_sun.cgs.value*astropy.constants.sigma_sb.cgs.value*(allstar['FPARAM'][j,0]-100.*allstar['FPARAM'][j,3])**4/lum) plots.plotp(ax[1],mh[0],np.median(allstar['PARAM'][j,1]-logg_new),size=40,color='b') # use a photometric temperature logg_phot=np.log10(4*np.pi*astropy.constants.G.cgs.value*mass*astropy.constants.M_sun.cgs.value*astropy.constants.sigma_sb.cgs.value*stars.ghb(allstar['J'][j]-allstar['K'][j]-ejk,allstar['FPARAM'][j,3])[0]**4/lum) plots.plotp(ax[1],mh[0],np.median(allstar['PARAM'][j,1]-logg_phot),size=40,color='g') ax[1].text(mh[0],ytext,name[0],ha='center') itext+=1 # Now adding the colorbar cbaxes = fig.add_axes([0.9, 0.1, 0.03, 0.8]) cb = plt.colorbar(axim, cax = cbaxes) out.close() def dr13dr12() : ''' ASPCAP compared with physical and asteroseismic log g, DR13/DR12/l30i ''' apokasc=fits.open(os.environ['APOGEE_DIR']+'/data/apokasc/'+apokasc)[1].data j=np.where(apokasc['LOGG_SYD_SCALING'] > -1)[0] apokasc=apokasc[j] dr12load=apload.ApLoad(dr='dr12') dr12=dr12load.allStar()[1].data dr13load=apload.ApLoad(dr='dr13') dr13=dr13load.allStar()[1].data dr13load.aspcap='l30i' dr13load.results='l30i' l30i=dr13load.allStar()[1].data fig,ax =plots.multi(3,2,wspace=0.001,hspace=0.001) # physical gravities clust=apselect.clustdata() for cluster in ['M92','M15','M53','M2','M13','M3','M5'] : i=np.where(clust.name == cluster) dist=clust[i].dist*1000. mh=clust[i].mh mass=0.85 #DR12 j=apselect.clustmember(dr12,cluster,raw=True) lum=10.**(-0.4*(dr12['H'][j]+isochrones.bc(dr12['FPARAM'][j,0],filt='h',agerange=[10,10.1])-(5*np.log10(dist)-5)-4.74))*astropy.constants.L_sun.cgs.value logg=np.log10(4*np.pi*astropy.constants.G.cgs.value*mass*astropy.constants.M_sun.cgs.value*astropy.constants.sigma_sb.cgs.value*dr12['FPARAM'][j,0]**4/lum) plots.plotc(ax[0,0],dr12['FPARAM'][j,3]*0+mh,dr12['FPARAM'][j,1]-logg,dr12['FPARAM'][j,0],xr=[-2.75,-1.],yr=[-2,2],zr=[3500,5500],yt='ASPCAP-physical log g',label=[0.1,0.9,'DR2 raw']) plots.plotc(ax[1,0],dr12['PARAM'][j,3]*0+mh,dr12['PARAM'][j,1]-logg,dr12['PARAM'][j,0],xr=[-2.75,-1.],yr=[-2,2],zr=[3500,5500],xt='[M/H]',yt='ASPCAP-physical log g',label=[0.1,0.9,'DR12 cal']) #DR13 j=apselect.clustmember(dr13,cluster,raw=True) lum=10.**(-0.4*(dr13['H'][j]+isochrones.bc(dr13['FPARAM'][j,0],filt='h',agerange=[10,10.1])-(5*np.log10(dist)-5)-4.74))*astropy.constants.L_sun.cgs.value logg=np.log10(4*np.pi*astropy.constants.G.cgs.value*mass*astropy.constants.M_sun.cgs.value*astropy.constants.sigma_sb.cgs.value*dr13['FPARAM'][j,0]**4/lum) plots.plotc(ax[0,1],dr13['FPARAM'][j,3]*0+mh,dr13['FPARAM'][j,1]-logg,dr13['FPARAM'][j,0],xr=[-2.75,-1.],yr=[-2,2],zr=[3500,5500],label=[0.1,0.9,'DR13 raw']) plots.plotc(ax[1,1],dr13['PARAM'][j,3]*0+mh,dr13['PARAM'][j,1]-logg,dr13['PARAM'][j,0],xr=[-2.75,-1.],yr=[-2,2],zr=[3500,5500],label=[0.1,0.9,'DR13 cal'],xt='[M/H]') #l30i j=apselect.clustmember(l30i,cluster,raw=True) lum=10.**(-0.4*(l30i['H'][j]+isochrones.bc(l30i['FPARAM'][j,0],filt='h',agerange=[10,10.1])-(5*np.log10(dist)-5)-4.74))*astropy.constants.L_sun.cgs.value logg=np.log10(4*np.pi*astropy.constants.G.cgs.value*mass*astropy.constants.M_sun.cgs.value*astropy.constants.sigma_sb.cgs.value*l30i['FPARAM'][j,0]**4/lum) plots.plotc(ax[0,2],l30i['FPARAM'][j,3]*0+mh,l30i['FPARAM'][j,1]-logg,l30i['FPARAM'][j,0],xr=[-2.75,-1.],yr=[-2,2],zr=[3500,5500],label=[0.1,0.9,'l30i raw']) plots.plotc(ax[1,2],l30i['PARAM'][j,3]*0+mh,l30i['PARAM'][j,1]-logg,l30i['PARAM'][j,0],xr=[-2.75,-1.],yr=[-2,2],zr=[3500,5500],label=[0.1,0.9,'l30i cal'],xt='[M/H]') plt.show() pdb.set_trace() # plots vs asterseismic fig,ax =plots.multi(3,2,wspace=0.001,hspace=0.001) i1,i2=match.match(dr13['APOGEE_ID'],apokasc['2MASS_ID']) plots.plotc(ax[0,0],dr13['FPARAM'][i1,3],dr13['FPARAM'][i1,1]-apokasc['LOGG_SYD_SCALING'][i2],dr13['FPARAM'][i1,0],xr=[-2.5,1.],yr=[-2,2],zr=[3500,5500],xt='[M/H]',label=[0.1,0.9,'DR13 raw']) plots.plotc(ax[1,0],dr13['PARAM'][i1,3],dr13['PARAM'][i1,1]-apokasc['LOGG_SYD_SCALING'][i2],dr13['PARAM'][i1,0],xr=[-2.5,1.],yr=[-2,2],zr=[3500,5500],xt='[M/H]',yt='ASPCAP-seismic log g',label=[0.1,0.9,'DR13 cal']) i1,i2=match.match(dr12['APOGEE_ID'],apokasc['2MASS_ID']) plots.plotc(ax[0,1],dr12['FPARAM'][i1,3],dr12['FPARAM'][i1,1]-apokasc['LOGG_SYD_SCALING'][i2],dr12['FPARAM'][i1,0],xr=[-2.5,1.],yr=[-2,2],zr=[3500,5500],label=[0.1,0.9,'DR12 raw']) plots.plotc(ax[1,1],dr12['PARAM'][i1,3],dr12['PARAM'][i1,1]-apokasc['LOGG_SYD_SCALING'][i2],dr12['PARAM'][i1,0],xr=[-2.5,1.],yr=[-2,2],zr=[3500,5500],xt='[M/H]',label=[0.1,0.9,'DR12 cal']) i1,i2=match.match(l30i['APOGEE_ID'],apokasc['2MASS_ID']) plots.plotc(ax[0,2],l30i['FPARAM'][i1,3],l30i['FPARAM'][i1,1]-apokasc['LOGG_SYD_SCALING'][i2],l30i['FPARAM'][i1,0],xr=[-2.5,1.],yr=[-2,2],zr=[3500,5500],label=[0.1,0.9,'l30i raw']) plots.plotc(ax[1,2],l30i['PARAM'][i1,3],l30i['PARAM'][i1,1]-apokasc['LOGG_SYD_SCALING'][i2],l30i['PARAM'][i1,0],xr=[-2.5,1.],yr=[-2,2],zr=[3500,5500],xt='[M/H]',label=[0.1,0.9,'l30i cal']) plt.show() def kurucz_marcs(logg='LOGG_SYD_SCALING',apokasc='APOKASC_cat_v3.6.0.fits') : ''' asteroseismic log g comparisons for Kurucz and MARCS results ''' # read APOKASC apokasc=fits.open('APOKASC_cat_v3.6.0.fits')[1].data #j=np.where((apokasc['TEFF_FIT'] < 4000) & (apokasc[logg] > -500))[0] #j=np.where((apokasc['CONS_EVSTATES'] == 'RGB'))[0] #apokasc=apokasc[j] # read DR13 and l30i dr13load=apload.ApLoad(dr='dr13') dr13=dr13load.allStar()[1].data dr13load.aspcap='l30i' dr13load.results='l30i' l30i=dr13load.allStar()[1].data # define axes fig=plt.figure() ax1=fig.add_subplot(211) ax2=fig.add_subplot(212) #ax3=fig.add_subplot(223) #ax4=fig.add_subplot(224) # match l30i with APOKASC i1,i2=match.match(l30i['APOGEE_ID'],apokasc['2MASS_ID']) warn=np.where(l30i['ASPCAPFLAG'][i1] & bitmask.aspcapflagval('ATMOS_HOLE_WARN'))[0] bad=np.where(l30i['ASPCAPFLAG'][i1] & bitmask.aspcapflagval('ATMOS_HOLE_BAD'))[0] rgb=
np.where(apokasc['CONS_EVSTATES'][i2] == 'RGB')
numpy.where
import h5py import pickle import numpy as np def load_weights(): fff = h5py.File('Mybase/mask_rcnn_coco.h5','r') #打开h5文件 #print(list(f.keys())) mydict = {} mydict['global_step:0'] = 1000 ########res1######## dset = fff['conv1'] a = dset['conv1'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn_conv1'] a = dset['bn_conv1'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_0/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ########res2######## dset = fff['res2a_branch1'] a = dset['res2a_branch1'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2a_branch1'] a = dset['bn2a_branch1'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2a_branch2a'] a = dset['res2a_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2a_branch2a'] a = dset['bn2a_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2a_branch2b'] a = dset['res2a_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2a_branch2b'] a = dset['bn2a_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2a_branch2c'] a = dset['res2a_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2a_branch2c'] a = dset['bn2a_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ################################ dset = fff['res2b_branch2a'] a = dset['res2b_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2b_branch2a'] a = dset['bn2b_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2b_branch2b'] a = dset['res2b_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2b_branch2b'] a = dset['bn2b_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2b_branch2c'] a = dset['res2b_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2b_branch2c'] a = dset['bn2b_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res2c_branch2a'] a = dset['res2c_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2c_branch2a'] a = dset['bn2c_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2c_branch2b'] a = dset['res2c_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2c_branch2b'] a = dset['bn2c_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2c_branch2c'] a = dset['res2c_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2c_branch2c'] a = dset['bn2c_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ########res3######## dset = fff['res3a_branch1'] a = dset['res3a_branch1'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3a_branch1'] a = dset['bn3a_branch1'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3a_branch2a'] a = dset['res3a_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3a_branch2a'] a = dset['bn3a_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3a_branch2b'] a = dset['res3a_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3a_branch2b'] a = dset['bn3a_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3a_branch2c'] a = dset['res3a_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3a_branch2c'] a = dset['bn3a_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ################################ dset = fff['res3b_branch2a'] a = dset['res3b_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3b_branch2a'] a = dset['bn3b_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3b_branch2b'] a = dset['res3b_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3b_branch2b'] a = dset['bn3b_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3b_branch2c'] a = dset['res3b_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3b_branch2c'] a = dset['bn3b_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res3c_branch2a'] a = dset['res3c_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3c_branch2a'] a = dset['bn3c_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3c_branch2b'] a = dset['res3c_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3c_branch2b'] a = dset['bn3c_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3c_branch2c'] a = dset['res3c_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3c_branch2c'] a = dset['bn3c_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res3d_branch2a'] a = dset['res3d_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3d_branch2a'] a = dset['bn3d_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3d_branch2b'] a = dset['res3d_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3d_branch2b'] a = dset['bn3d_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3d_branch2c'] a = dset['res3d_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3d_branch2c'] a = dset['bn3d_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ########res4######## dset = fff['res4a_branch1'] a = dset['res4a_branch1'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4a_branch1'] a = dset['bn4a_branch1'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4a_branch2a'] a = dset['res4a_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4a_branch2a'] a = dset['bn4a_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4a_branch2b'] a = dset['res4a_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4a_branch2b'] a = dset['bn4a_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4a_branch2c'] a = dset['res4a_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4a_branch2c'] a = dset['bn4a_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ################################ dset = fff['res4b_branch2a'] a = dset['res4b_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4b_branch2a'] a = dset['bn4b_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4b_branch2b'] a = dset['res4b_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4b_branch2b'] a = dset['bn4b_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4b_branch2c'] a = dset['res4b_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4b_branch2c'] a = dset['bn4b_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4c_branch2a'] a = dset['res4c_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4c_branch2a'] a = dset['bn4c_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4c_branch2b'] a = dset['res4c_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4c_branch2b'] a = dset['bn4c_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4c_branch2c'] a = dset['res4c_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4c_branch2c'] a = dset['bn4c_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4d_branch2a'] a = dset['res4d_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4d_branch2a'] a = dset['bn4d_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4d_branch2b'] a = dset['res4d_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4d_branch2b'] a = dset['bn4d_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4d_branch2c'] a = dset['res4d_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4d_branch2c'] a = dset['bn4d_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4e_branch2a'] a = dset['res4e_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4e_branch2a'] a = dset['bn4e_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4e_branch2b'] a = dset['res4e_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4e_branch2b'] a = dset['bn4e_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4e_branch2c'] a = dset['res4e_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4e_branch2c'] a = dset['bn4e_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4f_branch2a'] a = dset['res4f_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4f_branch2a'] a = dset['bn4f_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4f_branch2b'] a = dset['res4f_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4f_branch2b'] a = dset['bn4f_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4f_branch2c'] a = dset['res4f_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4f_branch2c'] a = dset['bn4f_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4g_branch2a'] a = dset['res4g_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4g_branch2a'] a = dset['bn4g_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4g_branch2b'] a = dset['res4g_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4g_branch2b'] a = dset['bn4g_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4g_branch2c'] a = dset['res4g_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4g_branch2c'] a = dset['bn4g_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4h_branch2a'] a = dset['res4h_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4h_branch2a'] a = dset['bn4h_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4h_branch2b'] a = dset['res4h_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4h_branch2b'] a = dset['bn4h_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4h_branch2c'] a = dset['res4h_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4h_branch2c'] a = dset['bn4h_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4i_branch2a'] a = dset['res4i_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4i_branch2a'] a = dset['bn4i_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4i_branch2b'] a = dset['res4i_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4i_branch2b'] a = dset['bn4i_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4i_branch2c'] a = dset['res4i_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4i_branch2c'] a = dset['bn4i_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4j_branch2a'] a = dset['res4j_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4j_branch2a'] a = dset['bn4j_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4j_branch2b'] a = dset['res4j_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4j_branch2b'] a = dset['bn4j_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4j_branch2c'] a = dset['res4j_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4j_branch2c'] a = dset['bn4j_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4k_branch2a'] a = dset['res4k_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4k_branch2a'] a = dset['bn4k_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4k_branch2b'] a = dset['res4k_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4k_branch2b'] a = dset['bn4k_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4k_branch2c'] a = dset['res4k_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4k_branch2c'] a = dset['bn4k_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4l_branch2a'] a = dset['res4l_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4l_branch2a'] a = dset['bn4l_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4l_branch2b'] a = dset['res4l_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4l_branch2b'] a = dset['bn4l_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4l_branch2c'] a = dset['res4l_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4l_branch2c'] a = dset['bn4l_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4m_branch2a'] a = dset['res4m_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4m_branch2a'] a = dset['bn4m_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4m_branch2b'] a = dset['res4m_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4m_branch2b'] a = dset['bn4m_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4m_branch2c'] a = dset['res4m_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4m_branch2c'] a = dset['bn4m_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4n_branch2a'] a = dset['res4n_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4n_branch2a'] a = dset['bn4n_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_13/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_13/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_13/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4n_branch2b'] a = dset['res4n_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4n_branch2b'] a = dset['bn4n_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_13/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_13/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_13/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4n_branch2c'] a = dset['res4n_branch2c'] b =
np.array(a['kernel:0'], dtype=np.float32)
numpy.array
"""timeresp_test.py - test time response functions""" from copy import copy from distutils.version import StrictVersion import numpy as np import pytest import scipy as sp import control as ct from control import StateSpace, TransferFunction, c2d, isctime, ss2tf, tf2ss from control.exception import slycot_check from control.tests.conftest import slycotonly from control.timeresp import (_default_time_vector, _ideal_tfinal_and_dt, forced_response, impulse_response, initial_response, step_info, step_response) class TSys: """Struct of test system""" def __init__(self, sys=None, call_kwargs=None): self.sys = sys self.kwargs = call_kwargs if call_kwargs else {} def __repr__(self): """Show system when debugging""" return self.sys.__repr__() class TestTimeresp: @pytest.fixture def tsystem(self, request): """Define some test systems""" """continuous""" A = np.array([[1., -2.], [3., -4.]]) B = np.array([[5.], [7.]]) C = np.array([[6., 8.]]) D = np.array([[9.]]) siso_ss1 = TSys(StateSpace(A, B, C, D, 0)) siso_ss1.t = np.linspace(0, 1, 10) siso_ss1.ystep = np.array([9., 17.6457, 24.7072, 30.4855, 35.2234, 39.1165, 42.3227, 44.9694, 47.1599, 48.9776]) siso_ss1.X0 = np.array([[.5], [1.]]) siso_ss1.yinitial = np.array([11., 8.1494, 5.9361, 4.2258, 2.9118, 1.9092, 1.1508, 0.5833, 0.1645, -0.1391]) ss1 = siso_ss1.sys """D=0, continuous""" siso_ss2 = TSys(StateSpace(ss1.A, ss1.B, ss1.C, 0, 0)) siso_ss2.t = siso_ss1.t siso_ss2.ystep = siso_ss1.ystep - 9 siso_ss2.initial = siso_ss1.yinitial - 9 siso_ss2.yimpulse = np.array([86., 70.1808, 57.3753, 46.9975, 38.5766, 31.7344, 26.1668, 21.6292, 17.9245, 14.8945]) """System with unspecified timebase""" siso_ss2_dtnone = TSys(StateSpace(ss1.A, ss1.B, ss1.C, 0, None)) siso_ss2_dtnone.t = np.arange(0, 10, 1.) siso_ss2_dtnone.ystep = np.array([0., 86., -72., 230., -360., 806., -1512., 3110., -6120., 12326.]) siso_tf1 = TSys(TransferFunction([1], [1, 2, 1], 0)) siso_tf2 = copy(siso_ss1) siso_tf2.sys = ss2tf(siso_ss1.sys) """MIMO system, contains ``siso_ss1`` twice""" mimo_ss1 = copy(siso_ss1) A = np.zeros((4, 4)) A[:2, :2] = siso_ss1.sys.A A[2:, 2:] = siso_ss1.sys.A B = np.zeros((4, 2)) B[:2, :1] = siso_ss1.sys.B B[2:, 1:] = siso_ss1.sys.B C = np.zeros((2, 4)) C[:1, :2] = siso_ss1.sys.C C[1:, 2:] = siso_ss1.sys.C D = np.zeros((2, 2)) D[:1, :1] = siso_ss1.sys.D D[1:, 1:] = siso_ss1.sys.D mimo_ss1.sys = StateSpace(A, B, C, D) """MIMO system, contains ``siso_ss2`` twice""" mimo_ss2 = copy(siso_ss2) A = np.zeros((4, 4)) A[:2, :2] = siso_ss2.sys.A A[2:, 2:] = siso_ss2.sys.A B = np.zeros((4, 2)) B[:2, :1] = siso_ss2.sys.B B[2:, 1:] = siso_ss2.sys.B C = np.zeros((2, 4)) C[:1, :2] = siso_ss2.sys.C C[1:, 2:] = siso_ss2.sys.C D = np.zeros((2, 2)) mimo_ss2.sys = StateSpace(A, B, C, D, 0) """discrete""" siso_dtf0 = TSys(TransferFunction([1.], [1., 0.], 1.)) siso_dtf0.t = np.arange(4) siso_dtf0.yimpulse = [0., 1., 0., 0.] siso_dtf1 = TSys(TransferFunction([1], [1, 1, 0.25], True)) siso_dtf1.t = np.arange(0, 5, 1) siso_dtf1.ystep = np.array([0. , 0. , 1. , 0. , 0.75]) siso_dtf2 = TSys(TransferFunction([1], [1, 1, 0.25], 0.2)) siso_dtf2.t = np.arange(0, 5, 0.2) siso_dtf2.ystep = np.array( [0. , 0. , 1. , 0. , 0.75 , 0.25 , 0.5625, 0.375 , 0.4844, 0.4219, 0.457 , 0.4375, 0.4482, 0.4424, 0.4456, 0.4438, 0.4448, 0.4443, 0.4445, 0.4444, 0.4445, 0.4444, 0.4445, 0.4444, 0.4444]) """Time step which leads to rounding errors for time vector length""" num = [-0.10966442, 0.12431949] den = [1., -1.86789511, 0.88255018] dt = 0.12493963338370018 siso_dtf3 = TSys(TransferFunction(num, den, dt)) siso_dtf3.t = np.linspace(0, 9*dt, 10) siso_dtf3.ystep = np.array( [ 0. , -0.1097, -0.1902, -0.2438, -0.2729, -0.2799, -0.2674, -0.2377, -0.1934, -0.1368]) """dtf1 converted statically, because Slycot and Scipy produce different realizations, wich means different initial condtions,""" siso_dss1 = copy(siso_dtf1) siso_dss1.sys = StateSpace([[-1., -0.25], [ 1., 0.]], [[1.], [0.]], [[0., 1.]], [[0.]], True) siso_dss1.X0 = [0.5, 1.] siso_dss1.yinitial = np.array([1., 0.5, -0.75, 0.625, -0.4375]) siso_dss2 = copy(siso_dtf2) siso_dss2.sys = tf2ss(siso_dtf2.sys) mimo_dss1 = TSys(StateSpace(ss1.A, ss1.B, ss1.C, ss1.D, True)) mimo_dss1.t =
np.arange(0, 5, 0.2)
numpy.arange
#! /usr/bin/env python import ray import time import rospy import cv2 import tf import os import atexit import json import random import signal import subprocess import sys import traceback import numpy as np import random from geometry_msgs.msg import PointStamped import image_geometry from gym import utils from gym import spaces from sensor_msgs.msg import JointState sys.path.insert(0, '/home/arl/env/src') import abb_rob_env def launch_gazebo(): ros_port = random.randint(10000, 14000) gazebo_port = ros_port + 1 print("Initializing new gazebo instance...") # Create a new server process and start the client. gazebo_process = subprocess.Popen(['/home/arl/env/src/abb_irb120_gazebo/gazeboSimulation0.sh', str(gazebo_port), str(ros_port)], preexec_fn=os.setsid, stdout=open(os.devnull, "w")) gazebo_pgid = os.getpgid(gazebo_process.pid) print("Launched Gazebo Process with PGID " + str(gazebo_pgid)) return ros_port, gazebo_port, gazebo_pgid def launch_moveit(ros_port, gazebo_port): print("Initializing new moveit instance...") moveit_process = subprocess.Popen( ['/home/arl/env/src/abb_irb120_gazebo/moveitSimulation0.sh', str(gazebo_port), str(ros_port)], preexec_fn=os.setsid, stdout=open(os.devnull, "w")) moveit_pgid = os.getpgid(moveit_process.pid) print("Launched MoveIt Process with PGID " + str(moveit_pgid)) return moveit_pgid class ABBReachEnv(abb_rob_env.Abbenv, utils.EzPickle): def __init__(self, env_config): #print("Entered Reach Env") #The last element of the pose encodes the sine of the angle between 90 and -90 degrees #need to check limits and normalize it+ sin encoding of rot limit XYZlim = 0.8 # limits for states, don't use for goals X_max = 1.1 # limit for both goals in x Ylim = 0.50 # limit for both goals in y Zlim = 1.0 # upper limit for both goals in z NZlim = -0.1 # lower limit for both goals in z self.observation_space = spaces.Dict({'achieved': spaces.Box(low=np.tile(np.array([-0.3, -Ylim, NZlim, -0.1, -0.1]),(5,1)), high=np.tile(np.array([X_max, Ylim, Zlim, 1.1, 1.1]),(5,1)), dtype=np.float32), 'desired': spaces.Box(low=np.array([-0.3, -Ylim, NZlim, -0.1, -0.1]), high=np.array([X_max, Ylim, Zlim, 1.1, 1.1]), dtype=np.float32), 'image': spaces.Box(low=0, high=1.1, shape=(234, 234, 4), dtype=np.float32), 'states': spaces.Box(low=np.array([-XYZlim, -XYZlim, 0, -1.1, -0.1]), high=np.array([XYZlim, XYZlim, XYZlim, 1.1, 1.1]), dtype=np.float32), }) self.action_space = spaces.Box(low=np.array([-1, -1, -1, -1, -1]), high=np.array([1, 1, 1, 1, 1]), dtype=np.float32) if env_config["worker_number"] > 0: self.index = env_config["worker_number"] self.ros_port, self.gazebo_port, self.gazebo_pgid = launch_gazebo() file = open("gazebo_process_" + str(self.index) + ".txt", "w") file.write(str(self.gazebo_pgid)) file.close() file = open("ros_port_" + str(self.index) + ".txt", "w") file.write(str(self.ros_port)) file.close() #print('PORT NUMBER',self.ros_port) os.environ['ROS_MASTER_URI'] = "http://localhost:" + str(self.ros_port) + '/' os.environ['GAZEBO_MASTER_URI'] = "http://localhost:" + str(self.gazebo_port) + '/' rospy.wait_for_service('/gazebo/get_world_properties') self.moveit_pgid = launch_moveit(self.ros_port, self.gazebo_port) file = open("moveit_process_" + str(self.index) + ".txt", "w") file.write(str(self.moveit_pgid)) file.close() time.sleep(5) #print("Entered Reach Env") rospy.init_node('env', anonymous=True) self.cam_model = image_geometry.PinholeCameraModel() self.get_params() # intializing robot env abb_rob_env.Abbenv.__init__(self) utils.EzPickle.__init__(self) # calling setup env. #print("Call env setup") self.pose = np.array([0, 0, 0]) self._env_setup(initial_qpos=self.init_pos) #print("Exit Reach Env") def get_params(self): # get configuration parameters """ self.n_actions = rospy.get_param('/fetch/n_actions') self.has_object = rospy.get_param('/fetch/has_object') self.block_gripper = rospy.get_param('/fetch/block_gripper') self.n_substeps = rospy.get_param('/fetch/n_substeps') self.gripper_extra_height = rospy.get_param('/fetch/gripper_extra_height') self.target_in_the_air = rospy.get_param('/fetch/target_in_the_air') self.target_offset = rospy.get_param('/fetch/target_offset') self.obj_range = rospy.get_param('/fetch/obj_range') self.target_range = rospy.get_param('/fetch/target_range') self.distance_threshold = rospy.get_param('/fetch/distance_threshold') self.init_pos = rospy.get_param('/fetch/init_pos') self.reward_type = rospy.get_param('/fetch/reward_type') """ #from has_object to target range not used except target in the air self.n_actions = 5 self.has_object = True self.block_gripper = False self.n_substeps = 20 self.gripper_extra_height = 0.2 self.target_in_the_air = True self.target_offset = 0.0 self.obj_range = 0.5 self.target_range = 0.15 self.distance_threshold = 0.01 self.reward_type = "sparse" self.init_pos = { 'joint0': 0.0, 'joint1': 0.0, 'joint2': 0.0, 'joint3': 0.0, 'joint4': 0.0, 'joint5': 0.0 } def _set_action(self, action): # Take action assert action.shape == (self.n_actions,) action_w_gripper_state = action.copy() # ensure that we don't change the action outside of this scope self.pose += np.array(action_w_gripper_state[0:3]) * 0.05 #print(self.pose) self.pose = np.around(self.pose, decimals=5) action_w_gripper_state = np.around(action_w_gripper_state, decimals=5) self.set_trajectory_ee([self.pose[0], self.pose[1], self.pose[2], np.arcsin(action_w_gripper_state[3]), action_w_gripper_state[4]]) def _get_obs(self): ################################################################################################### #getting the image for the current observation the image should be a numpy array encoding a RGB-D stack image = self.get_stacked_image() ################################################################################################### # The pose of the end effector consists of the end effector 3D translation and rotation about the Z axis # in addition to an indication of the aperature of the gripper and command success grip_pose, grip_state = self.get_ee_pose() grip_pos_array = np.array([grip_pose.pose.position.x, grip_pose.pose.position.y, grip_pose.pose.position.z]) grip_rpy = self.get_ee_rpy() grip_rot_array = np.array([np.sin(grip_rpy.y)]) self.pose = np.array([grip_pose.pose.position.x, grip_pose.pose.position.y, grip_pose.pose.position.z]) #Check whether to add success or if the gripper is opened or closed only self.gripper_success_only = False if self.gripper_success_only: gripper_state = np.array([grip_state[1]]) #is task reached? bnghyar el reach emta? else: gripper_state = np.array([grip_state[0]]) #is gripper open? obs = np.concatenate([ grip_pos_array, grip_rot_array, gripper_state]) #Get the object poses from the simulator and sample achieved goals object_pos = self.get_model_states() achieved_goal = self._sample_achieved_goal(object_pos) return { 'image': image/255, 'states': obs.copy(), 'desired': self.goal.copy(), 'achieved': achieved_goal.copy(), } def _is_done(self, observations): #print("ana f distance l is done") d = self.goal_distance(observations['achieved'], self.goal) #hwa msh kda hena kul showia hy3od y sample random object msh hyb2a el desired? if d < self.distance_threshold: done = (d < self.distance_threshold).astype(np.float32) else: done = (d < self.distance_threshold).astype(np.float32) return bool(done) def _compute_reward(self, observations, done): #3mora by2olak tamam #print("ana f distance l reward") d = self.goal_distance(observations['achieved'], self.goal) #if self.reward_type == 'sparse': # #print(d < self.distance_threshold) # if d < self.distance_threshold: # return (d < self.distance_threshold).astype(np.float32) # else: # #print(-0.05 * ((d > self.distance_threshold).astype(np.float32))) # return -0.05 * ((d > self.distance_threshold).astype(np.float32)) #else: # assert False # return -d if self.reward_type == 'sparse': c = np.array(d < self.distance_threshold) #can be squeezed if needed check c = np.where(c == False, -0.05, 1) #print("reward = "+str(c)) return float(c) else: #print("reward = "+str(-d)) return -d def compute_reward(self, achieved_goal, goal, info): #print("ana f distance l rewardzzzz") # Compute distance between goal and the achieved goal. d = self.goal_distance(achieved_goal, goal) if self.reward_type == 'sparse': c = np.array(d < self.distance_threshold) #can be squeezed if needed check c = np.where(c == False, -0.05, 1) return c else: return -d def _set_init_pose(self): """Sets the Robot in its init pose""" self.gazebo.unpauseSim() gripper_target =
np.array([0.498, 0.005, 0.431])
numpy.array
""" Testing group-level finite difference. """ import unittest import numpy as np from numpy.testing import assert_almost_equal from six import PY3 from openmdao.api import Problem, Group, Component, IndepVarComp, ExecComp from openmdao.test.simple_comps import SimpleComp, SimpleArrayComp from openmdao.test.util import assert_rel_error if PY3: def py3fix(s): return s.replace('<type', '<class') else: def py3fix(s): return s class TestSrcIndices(unittest.TestCase): def test_src_indices(self): size = 10 root = Group() root.add('P1', IndepVarComp('x', np.zeros(size))) root.add('C1', ExecComp('y = x * 2.', y=np.zeros(size//2), x=np.zeros(size//2))) root.add('C2', ExecComp('y = x * 3.', y=np.zeros(size//2), x=np.zeros(size//2))) root.connect('P1.x', "C1.x", src_indices=list(range(size//2))) root.connect('P1.x', "C2.x", src_indices=list(range(size//2, size))) prob = Problem(root) prob.setup(check=False) root.P1.unknowns['x'][0:size//2] += 1.0 root.P1.unknowns['x'][size//2:size] -= 1.0 prob.run() assert_rel_error(self, root.C1.params['x'], np.ones(size//2), 0.0001) assert_rel_error(self, root.C2.params['x'], -np.ones(size//2), 0.0001) def test_array_to_scalar(self): root = Group() root.add('P1', IndepVarComp('x', np.array([2., 3.]))) root.add('C1', SimpleComp()) root.add('C2', ExecComp('y = x * 3.', y=0., x=0.)) root.connect('P1.x', 'C1.x', src_indices=[0,]) root.connect('P1.x', 'C2.x', src_indices=[1,]) prob = Problem(root) prob.setup(check=False) prob.run() self.assertAlmostEqual(root.C1.params['x'], 2.) self.assertAlmostEqual(root.C2.params['x'], 3.) def test_subarray_to_promoted_var(self): root = Group() P = root.add('P', IndepVarComp('x', np.array([1., 2., 3., 4., 5.]))) G = root.add('G', Group()) C = root.add('C', SimpleComp()) A = G.add('A', SimpleArrayComp()) G2 = G.add('G2', Group()) A2 = G2.add('A2', SimpleArrayComp()) root.connect('P.x', 'G.A.x', src_indices=[0,1]) root.connect('P.x', 'C.x', src_indices=[2,]) root.connect('P.x', 'G.G2.A2.x', src_indices=[3, 4]) prob = Problem(root) prob.setup(check=False) prob.run() assert_rel_error(self, root.G.A.params['x'], np.array([1., 2.]), 0.0001) self.assertAlmostEqual(root.C.params['x'], 3.) assert_rel_error(self, root.G.G2.A2.params['x'], np.array([4., 5.]), 0.0001) # now try the same thing with promoted var root = Group() P = root.add('P', IndepVarComp('x', np.array([1., 2., 3., 4., 5.]))) G = root.add('G', Group()) C = root.add('C', SimpleComp()) A = G.add('A', SimpleArrayComp(), promotes=['x', 'y']) G2 = G.add('G2', Group()) A2 = G2.add('A2', SimpleArrayComp(), promotes=['x', 'y']) root.connect('P.x', 'G.x', src_indices=[0,1]) root.connect('P.x', 'C.x', src_indices=[2,]) root.connect('P.x', 'G.G2.x', src_indices=[3, 4]) prob = Problem(root) prob.setup(check=False) prob.run() assert_rel_error(self, root.G.A.params['x'], np.array([1., 2.]), 0.0001) self.assertAlmostEqual(root.C.params['x'], 3.) assert_rel_error(self, root.G.G2.A2.params['x'], np.array([4., 5.]), 0.0001) def test_src_indices_connect_error(self): root = Group() P = root.add('P', IndepVarComp('x', np.array([1., 2., 3., 4., 5.]))) G = root.add('G', Group()) C = root.add('C', SimpleComp()) A = G.add('A', SimpleArrayComp()) root.connect('P.x', 'G.A.x', src_indices=[0]) root.connect('P.x', 'C.x', src_indices=[2,]) prob = Problem(root) with self.assertRaises(Exception) as cm: prob.setup(check=False) expected = py3fix("Size 1 of the indexed sub-part of source 'P.x' " "must be the same as size 2 of target 'G.A.x'.") self.assertTrue(expected in str(cm.exception)) # now try the same thing with promoted var root = Group() P = root.add('P', IndepVarComp('x', np.array([1., 2., 3., 4., 5.]))) G = root.add('G', Group()) C = root.add('C', SimpleComp()) A = G.add('A', SimpleArrayComp(), promotes=['x', 'y']) root.connect('P.x', 'G.x', src_indices=[0,1,2]) root.connect('P.x', 'C.x', src_indices=[2,]) prob = Problem(root) with self.assertRaises(Exception) as cm: prob.setup(check=False) expected = py3fix("Size 3 of the indexed sub-part of source 'P.x' " "must be the same as size 2 of target 'G.A.x' (G.x).") self.assertTrue(expected in str(cm.exception)) def test_inner_connection(self): class Squarer(Component): def __init__(self, size): super(Squarer, self).__init__() self.add_param(name='input:x', val=np.zeros(size), desc='x') self.add_output(name='output:x2', val=
np.zeros(size)
numpy.zeros
import numpy as np from sfsimodels.models.abstract_models import PhysicalObject from sfsimodels.models.systems import TwoDSystem from sfsimodels.functions import interp_left, interp2d, interp3d from .fns import remove_close_items, build_ele2_node_array import hashlib def sort_slopes(sds): """Sort slopes from bottom to top then right to left""" sds = np.array(sds) scores = sds[:, 0, 1] + sds[:, 1, 1] * 1e6 inds = np.argsort(scores) return sds[inds] def adjust_slope_points_for_removals(sds, x, removed_y, retained_y): for sd in sds: for i in range(2): if sd[0][i] == x and sd[1][i] == removed_y: sd[1][i] = retained_y def adj_slope_by_layers(xm, ym, sgn=1): """ Given mesh coordinates, adjust the mesh to be match the slope by adjust each layer bottom left and top right coords of mesh are the slope Parameters ---------- xm ym x_slope - NOT needed y_slope Returns ------- """ # TODO use centroid formula - and use o3plot to get ele-coords ym = sgn * np.array(ym) xm = sgn * np.array(xm) if sgn == -1: xm = xm[::-1] ym = ym[::-1] nh = len(ym[0]) - 1 # dy = min([(ym[0][-1] - ym[0][0]) / nh, (ym[-1][-1] - ym[-1][0]) / nh, 0.2]) dy1 = min([(ym[-1][-1] - ym[-1][0]) / nh]) dy0 = 0.2 y0s = ym[0][0] + np.arange(nh + 1) * dy0 y1s = ym[-1][-1] - np.arange(nh + 1) * dy1 y1s = y1s[::-1] for i in range(nh + 1): ym[:, i] = np.interp(xm[:, i], [xm[0][0], xm[-1][-1]], [y0s[i], y1s[i]]) xm[:, i] = xm[:, 0] y_centres_at_xns = (ym[1:] + ym[:-1]) / 2 y_centres = (y_centres_at_xns[:, 1:] + y_centres_at_xns[:, :-1]) / 2 # get x-coordinates of centres of relevant elements included_ele = [] dy_inds = len(ym[0, :]) - 1 for i in range(0, dy_inds): # account for shift before assessing position of centroid xcens = (xm[1:, i] + xm[:-1, i]) / 2 + 0.375 * (xm[1:, -1] - xm[:-1, -1]) y_surf_at_x_cens = np.interp(xcens, [xm[0][0], xm[-1][-1]], [ym[0][0], ym[-1][-1]]) inds = np.where(y_centres[:, i] < y_surf_at_x_cens) if len(inds[0]): included_ele.append(inds[0][0]) else: included_ele.append(len(y_surf_at_x_cens)) included_ele.append(len(y_surf_at_x_cens)) new_xm = xm new_ym = ym for j in range(1, nh + 1): new_ym[included_ele[0], j] += dy1 for i in range(1, dy_inds + 1): x_ind_adj = included_ele[i - 1] x_ind_adj_next = included_ele[i] if x_ind_adj == x_ind_adj_next: continue # shift by half of the ele dx = (xm[x_ind_adj + 1, i] - xm[x_ind_adj, i]) * 0.5 dxs = np.interp(xm[x_ind_adj:x_ind_adj_next, i], [xm[x_ind_adj, i], xm[x_ind_adj_next, i]], [dx, 0]) new_xm[x_ind_adj:x_ind_adj_next, i] = xm[x_ind_adj:x_ind_adj_next, i] + dxs for j in range(i + 1, nh + 1): new_ym[x_ind_adj_next, j] += dy1 if sgn == -1: new_xm = new_xm[::-1] new_ym = new_ym[::-1] return new_xm * sgn, new_ym * sgn def calc_centroid(xs, ys): import numpy as np x0 = np.array(xs) y0 = np.array(ys) x1 = np.roll(xs, 1, axis=-1) y1 = np.roll(ys, 1, axis=-1) a = x0 * y1 - x1 * y0 xc = np.sum((x0 + x1) * a, axis=-1) yc = np.sum((y0 + y1) * a, axis=-1) area = 0.5 * np.sum(a, axis=-1) xc /= (6.0 * area) yc /= (6.0 * area) return xc, yc def calc_mesh_centroids(fem): x_inds = [] y_inds = [] if hasattr(fem.y_nodes[0], '__len__'): # can either have varying y-coordinates or single set n_y = len(fem.y_nodes[0]) else: n_y = 0 import numpy as np for xx in range(len(fem.soil_grid)): x_ele = [xx, xx + 1, xx + 1, xx] x_inds += [x_ele for i in range(n_y - 1)] for yy in range(len(fem.soil_grid[xx])): y_ele = [yy, yy, yy + 1, yy + 1] y_inds.append(y_ele) n_eles = len(np.array(x_inds)) x_inds = np.array(x_inds).flatten() y_inds = np.array(y_inds).flatten() x0 = np.array(fem.x_nodes[x_inds, y_inds]) y0 = np.array(fem.y_nodes[x_inds, y_inds]) x0 = x0.reshape((n_eles, 4)) y0 = y0.reshape((n_eles, 4)) x1 = np.roll(x0, 1, axis=-1) y1 = np.roll(y0, 1, axis=-1) a = x0 * y1 - x1 * y0 xc = np.sum((x0 + x1) * a, axis=-1) yc = np.sum((y0 + y1) * a, axis=-1) area = 0.5 * np.sum(a, axis=-1) xc /= (6.0 * area) yc /= (6.0 * area) return xc.reshape(len(fem.soil_grid), len(fem.soil_grid[0])), yc.reshape(len(fem.soil_grid), len(fem.soil_grid[0])) class FiniteElementVary2DMeshConstructor(object): # maybe FiniteElementVertLine2DMesh _soils = None x_index_to_sp_index = None _inactive_value = 1000000 def __init__(self, tds, dy_target, x_scale_pos=None, x_scale_vals=None, dp: int = None, fd_eles=0, auto_run=True, use_3d_interp=False, smooth_surf=False, force_x2d=False, min_scale=0.5, max_scale=2.0, allowable_slope=0.25, smooth_ratio=1.): """ Builds a finite element mesh of a two-dimension system Parameters ---------- tds: TwoDSystem A two dimensional system of models dy_target: float Target height of elements x_scale_pos: array_like x-positions used to provide scale factors for element widths x_scale_vals: array_like scale factors for element widths dp: int Number of decimal places fd_eles: int if =0 then elements corresponding to the foundation are removed, else provide element id smooth_surf: bool if true then changes in angle of the slope must be less than 90 degrees, builds VaryXY mesh """ self.min_scale = min_scale self.max_scale = max_scale self.allowable_slope = allowable_slope self.smooth_ratio = smooth_ratio assert isinstance(tds, TwoDSystem) self.tds = tds self.dy_target = dy_target if x_scale_pos is None: x_scale_pos = [0, tds.width] if x_scale_vals is None: x_scale_vals = [1., 1.] self.x_scale_pos = np.array(x_scale_pos) self.x_scale_vals = np.array(x_scale_vals) self.dp = dp self.xs = list(self.tds.x_sps) self.smooth_surf = smooth_surf self.xs.append(tds.width) self.xs = np.array(self.xs) inds = np.where(np.array(tds.x_surf) <= tds.width) self.x_surf = np.array(tds.x_surf)[inds] if tds.width not in self.x_surf: self.x_surf = np.insert(self.x_surf, len(self.x_surf), tds.width) self.y_surf = np.interp(self.x_surf, tds.x_surf, tds.y_surf) self.y_surf_at_sps = np.interp(self.xs, tds.x_surf, tds.y_surf) self._soils = [] self._soil_hashes = [] for i in range(len(self.tds.sps)): for yy in range(1, self.tds.sps[i].n_layers + 1): sl = self.tds.sps[i].layer(yy) if sl.unique_hash not in self._soil_hashes: self._soil_hashes.append(sl.unique_hash) self._soils.append(sl) self.y_surf_at_xcs = None self.yd = None self.xcs_sorted = None self.sds = None self.y_blocks = None self.y_coords_at_xcs = None self.x_nodes = None self.y_nodes = None self.x_nodes2d = None self._femesh = None if auto_run: self.get_special_coords_and_slopes() # Step 1 self.set_init_y_blocks() self.adjust_blocks_to_be_consistent_with_slopes() self.trim_grid_to_target_dh() self.build_req_y_node_positions() self.set_x_nodes() if use_3d_interp: self.build_y_coords_grid_via_3d_interp() else: self.build_y_coords_grid_via_propagation() if self.dp is not None: self.set_to_decimal_places() if smooth_surf: self.adjust_for_smooth_surface() self.set_soil_ids_to_vary_xy_grid() elif force_x2d: self.x_nodes2d = self.x_nodes[:, np.newaxis] * np.ones_like(self.y_nodes) self.set_soil_ids_to_vary_xy_grid() else: self.set_soil_ids_to_vary_y_grid() self.create_mesh() if smooth_surf: self.femesh.tidy_unused_mesh() if not fd_eles: self.exclude_fd_eles() def get_special_coords_and_slopes(self): """Find the coordinates, layer boundaries and surface slopes that should be maintained in the FE mesh""" fd_coords = [] x_off = 0.0 yd = {} for i in range(len(self.x_surf)): yd[self.x_surf[i]] = [] if self.tds.width not in yd: yd[self.tds.width] = [] sds = [] # slope dict (stored left-to-right and bottom-to-top) for i in range(len(self.tds.bds)): x_bd = self.tds.x_bds[i] bd = self.tds.bds[i] fd_centre_x = x_bd + bd.x_fd y_surf = np.interp(fd_centre_x, self.x_surf, self.y_surf) if bd.fd.width > self.dy_target: fd_coords.append(fd_centre_x) x_left = fd_centre_x - bd.fd.width / 2 x_right = fd_centre_x + bd.fd.width / 2 if x_left not in yd: yd[x_left] = [] yd[x_left] += [y_surf, -bd.fd.depth + y_surf] if x_right not in yd: yd[x_right] = [] yd[x_right] += [y_surf, -bd.fd.depth + y_surf] sds.append([[x_left, x_right], [y_surf, y_surf]]) sds.append([[x_left, x_right], [-bd.fd.depth + y_surf, -bd.fd.depth + y_surf]]) for i in range(len(self.tds.sps)): x_curr = self.tds.x_sps[i] if x_curr > self.tds.width: continue if i == len(self.tds.sps) - 1: x_next = self.tds.width else: x_next = self.tds.x_sps[i + 1] - x_off # get important x-coordinates that are between two soil profiles if x_curr not in yd: yd[x_curr] = [] if x_next not in yd and x_next < self.tds.width: yd[x_next] = [] x_coords = np.array(list(yd)) inds = np.where((x_coords >= x_curr) & (x_coords <= x_next)) xs = np.sort(x_coords[inds]) y_surf_at_xs = np.interp(xs, self.x_surf, self.y_surf) y_curr_surf = y_surf_at_xs[0] # Depths from defined soil profile int_yy = [] angles = [] for yy in range(1, self.tds.sps[i].n_layers + 1): # if self.tds.sps[i].layer_depth(yy) >= 0: y = -self.tds.sps[i].layer_depth(yy) + y_curr_surf if -y < self.tds.height: int_yy.append(y) angles.append(self.tds.sps[i].x_angles[yy - 1]) angles = np.array(angles) if xs[0] not in yd: yd[xs[0]] = [] for j in range(len(xs) - 1): x0 = xs[j] x_next = xs[j + 1] if x_next not in yd: yd[x_next] = [] x0_diff = x0 - x_curr xn_diff = x_next - x_curr if y_surf_at_xs[j] not in yd[x0]: yd[x0].append(y_surf_at_xs[j]) if y_surf_at_xs[j + 1] not in yd[x_next]: yd[x_next].append(y_surf_at_xs[j + 1]) for k in range(len(int_yy)): if angles[k] is None or np.isnan(angles[k]): continue y_curr = int_yy[k] + angles[k] * x0_diff if y_curr < y_surf_at_xs[j] and y_curr not in yd[x0]: yd[x0].append(y_curr) y_next = int_yy[k] + angles[k] * xn_diff if y_next < y_surf_at_xs[j + 1] and y_next not in yd[x_next]: yd[x_next].append(y_next) if y_curr <= y_surf_at_xs[j] and y_next <= y_surf_at_xs[j + 1]: sds.append([[x0, x_next], [y_curr, y_next]]) for x in yd: yd[x].append(-self.tds.height) yd[x].append(np.interp(x, self.x_surf, self.y_surf)) yd[x] = list(set(yd[x])) yd[x].sort() xcs = list(yd) xcs.sort() xcs = np.array(xcs) for i in range(len(xcs) - 1): xs = np.array([xcs[i], xcs[i + 1]]) slope = [list(xs), list(np.interp(xs, self.x_surf, self.y_surf))] if abs(slope[1][1] - slope[1][0]) / (slope[0][1] - slope[0][0]) > 0.8: continue if slope not in sds: sds.append(slope) y_surf_max = max(self.y_surf) # remove coordinates that are too close min_y = self.dy_target * self.min_scale tol = self.dy_target * self.min_scale for x in yd: yd[x], pairs = remove_close_items(yd[x], tol=tol) for pair in pairs: adjust_slope_points_for_removals(sds, x, pair[0], pair[1]) self.y_surf_at_xcs = {} for x in yd: self.y_surf_at_xcs[x] = yd[x][-1] if y_surf_max not in yd[x] and abs(y_surf_max - max(yd[x])) > tol: yd[x] = np.insert(yd[x], len(yd[x]), y_surf_max) yd[x] = np.array(yd[x]) self.yd = yd x_act = list(self.yd) x_act.sort() self.xcs_sorted = np.array(x_act) self.sds = sort_slopes(sds) def set_init_y_blocks(self): """For each significant vertical line, assign initial number of elements between each special y-coordinate""" xcs = self.xcs_sorted y_steps = [] y_blocks = {} # Step 1: Define an initial set of y_node coordinates at each x-special-position h_target = self.dy_target yd_init_inds = [] for i in range(len(xcs)): xc0 = xcs[i] y_blocks[xc0] = [] y_steps.append([]) yd_init_inds.append([0]) for j in range(1, len(self.yd[xc0])): h_diff = -(self.yd[xc0][j - 1] - self.yd[xc0][j]) n_blocks = int(np.round(h_diff / h_target)) if n_blocks == 0: n_blocks = 1 y_blocks[xc0].append(n_blocks) n_blocks = [sum(y_blocks[xcs]) for xcs in y_blocks] n_max = max(n_blocks) # Step 2: make sure that each column has same number of temp y positions # - first check if n_blocks less than maximum, # - if less then add extra elements to the largest thickness for i in range(len(xcs)): xc0 = xcs[i] if len(y_steps[i]) < n_max: n_extra = n_max - n_blocks[i] # number of blocks to add h_diffs = np.diff(self.yd[xc0]) # thickness of each zone for nn in range(n_extra): dh_options = h_diffs / (np.array(y_blocks[xc0]) + 1) # index of the zone with thickest average element, where new element will be added ind_max = np.argmax(dh_options) y_blocks[xc0][ind_max] += 1 self.y_blocks = y_blocks def adjust_blocks_to_be_consistent_with_slopes(self): """Change the number of elements between special y-coords to try to maintain defined slopes""" min_dh = self.min_scale * self.dy_target max_dh = self.max_scale * self.dy_target xcs = list(self.yd) xcs.sort() xcs = np.array(xcs) yd_list = [self.yd[xc] for xc in xcs] # yd_list = list(self.yd.values()) # Step 3: For each defined slope, check that the grid is consistent with the slope # - cycle through moving left to right and bot to top # - if not consistent then change thickness of elements in zones above and below on right side. mdirs = [1, -1] # TODO: alternative between forward and reverse add dd = 0 mdir = mdirs[dd] old_hash = '' for pp in range(100): sds = self.sds[::mdir] csum_y_blocks = [np.cumsum(self.y_blocks[xcs]) for xcs in self.y_blocks] fblocks = np.array([j for i in csum_y_blocks for j in i], dtype=int) new_hash = hashlib.md5(fblocks).hexdigest() if new_hash == old_hash: break old_hash = new_hash for qq, sd in enumerate(sds): csum_y_blocks = [np.cumsum(self.y_blocks[xcs]) for xcs in self.y_blocks] if mdir == 1: x0 = sd[0][0] x1 = sd[0][1] y0 = sd[1][0] y1 = sd[1][1] else: x0 = sd[0][1] x1 = sd[0][0] y0 = sd[1][1] y1 = sd[1][0] ind_x0 = int(np.argmin(abs(xcs - x0))) ind_x1 = int(np.argmin(abs(xcs - x1))) ind_y0 = int(np.argmin(abs(np.array(yd_list[ind_x0]) - y0))) ind_y1 = int(np.argmin(abs(np.array(yd_list[ind_x1]) - y1))) x1_c = xcs[ind_x1] y1_c = yd_list[ind_x1][ind_y1] nb0 = csum_y_blocks[ind_x0][ind_y0 - 1] nb1 = csum_y_blocks[ind_x1][ind_y1 - 1] sgn = int(np.sign(y1 - y0)) dh_dzone = y1 - y0 slope = dh_dzone / (x1 - x0) if abs(slope) < self.allowable_slope and nb0 == nb1: continue if abs(slope) > self.allowable_slope and self.smooth_surf: # TODO: and on surface and n1 - n0 sign is same y_surf0 = np.interp(x0, self.x_surf, self.y_surf) y_surf1 = np.interp(x1, self.x_surf, self.y_surf) if np.isclose(y_surf0, y0, atol=self.dy_target*0.1) and np.isclose(y_surf1, y1, atol=self.dy_target*0.1): if nb1 >= nb1 and slope > 0: continue if nb1 <= nb1 and slope < 0: continue diff_nb = nb1 - nb0 y1_below = yd_list[ind_x1][ind_y1 - 1] if y1_c == self.y_surf_at_xcs[x1_c]: # surface y1_above = None try: x_next = xcs[ind_x1 + 1] y_next_surf = self.y_surf_at_xcs[x_next] ind_y_next = int(np.argmin(abs(np.array(yd_list[ind_x1 + 1]) - y_next_surf))) nb_next = csum_y_blocks[ind_x1 + 1][ind_y_next - 1] except IndexError: x_next = None y_next_surf = None ind_y_next = None else: y1_above = yd_list[ind_x1][ind_y1 + 1] x_next = None y_next_surf = None ind_y_next = None while sgn != np.sign(diff_nb) and diff_nb != 0: nb_below = self.y_blocks[x1_c][ind_y1 - 1] if nb_below + np.sign(diff_nb) * -1 == 0: break new_dh_below = (y1_c - y1_below) / (nb_below + np.sign(diff_nb) * -1) if not (min_dh < new_dh_below < max_dh): break nb1 += np.sign(diff_nb) * -1 if y1_c != self.y_surf_at_xcs[x1_c]: nb_above = self.y_blocks[x1_c][ind_y1] if nb_above + np.sign(diff_nb) * 1 == 0: break new_dh_above = (y1_above - y1_c) / (nb_above + np.sign(diff_nb) * 1) if not (min_dh < new_dh_above < max_dh): break self.y_blocks[x1_c][ind_y1] += np.sign(diff_nb) * 1 else: # check slope of surface is appropriate a = 1 # new_dh_next = (y_next_surf - y1_above) / (nb_next - (nb_above + np.sign(diff_nb) * 1)) # if not (min_dh < new_dh_above < max_dh): # break self.y_blocks[x1_c][ind_y1 - 1] += np.sign(diff_nb) * -1 diff_nb = nb1 - nb0 approx_grid_slope = (dh_dzone - diff_nb * self.dy_target) / (x1 - x0) if sgn != np.sign(approx_grid_slope): pass # this can be an issue if it cannot be adjusted if sgn * approx_grid_slope > self.allowable_slope: nn = 0 while sgn * approx_grid_slope > self.allowable_slope: nn += 1 # if no issues then adjust blocks self.y_blocks[x1_c][ind_y1 - 1] += sgn * 1 nb1 += sgn * 1 diff_nb = nb1 - nb0 if y1_c != self.y_surf_at_xcs[x1_c]: self.y_blocks[x1_c][ind_y1] += sgn * -1 approx_grid_slope = (dh_dzone - diff_nb * self.dy_target) / (x1 - x0) if nn > 10: raise ValueError diff_nb = nb1 - nb0 if diff_nb: # if zero then slope matches the line # else check if an adjustment is possible nnn = abs(diff_nb) for nn in range(nnn): diff_nb = nb1 - nb0 if diff_nb == 0: break nb_sgn = np.sign(diff_nb) approx_new_slope = (dh_dzone - (diff_nb - nb_sgn * (nn + 1)) * self.dy_target) / (x1 - x0) if sgn * approx_new_slope > self.allowable_slope: break nb_below = self.y_blocks[x1_c][ind_y1 - 1] new_nb_below = nb_below + nb_sgn * -1 use_2_below = False if new_nb_below == 0: # try bring from even lower layer nb_2_below = self.y_blocks[x1_c][ind_y1 - 2] new_nb_2_below = nb_2_below + nb_sgn * -1 y1_2_below = yd_list[ind_x1][ind_y1 - 2] new_dh_2_below = (y1_below - y1_2_below) / new_nb_2_below if min_dh < new_dh_2_below < max_dh: use_2_below = True else: break else: new_dh_below = (y1_c - y1_below) / (nb_below + nb_sgn * -1) if not (min_dh < new_dh_below < max_dh): break if y1_above is not None: nb_above = self.y_blocks[x1_c][ind_y1] new_dh_above = (y1_above - y1_c) / (nb_above + nb_sgn * 1) if not (min_dh < new_dh_above < max_dh): break elif y_next_surf is not None: if abs(nb_next - (nb1 + nb_sgn * -1)) < 2: pass else: new_dh_on_next_surf = (y_next_surf - y1_c) / (nb_next - (nb1 + nb_sgn * -1)) if not (min_dh < new_dh_on_next_surf < max_dh): break # if no issues then adjust blocks if use_2_below: self.y_blocks[x1_c][ind_y1 - 2] += nb_sgn * -1 else: self.y_blocks[x1_c][ind_y1 - 1] += nb_sgn * -1 nb1 += nb_sgn * -1 if y1_above is not None: self.y_blocks[x1_c][ind_y1] += nb_sgn * 1 # Step 5: Set the total number of blocks to be equal to the column that uses the maximum number of # blocks used to get to the surface n_blocks = np.array([sum(self.y_blocks[xc]) for xc in xcs]) y_surfs = np.interp(xcs, self.x_surf, self.y_surf) nbs_at_surf = [] surf_inds = [] for i in range(len(xcs)): x0 = xcs[i] nbs = np.cumsum(self.y_blocks[x0]) nbs = np.insert(nbs, 0, 0) surf_inds.append(np.where(self.yd[x0] >= y_surfs[i] - 0.01)[0][0]) nbs_at_surf.append(nbs[np.where(self.yd[x0] >= y_surfs[i] - 0.01)][0]) # inds = np.where(np.interp(xcs, self.x_surf, self.y_surf) == h_max)[0] i_max = np.argmax(nbs_at_surf) # maximum number of blocks at top n_max = nbs_at_surf[i_max] # create null nodes for i in range(len(xcs)): x0 = xcs[i] if n_blocks[i] != n_max: n_extra = n_max - n_blocks[i] # TODO: could improve this by minus eles more evenly from zones if n_extra: if surf_inds[i] == len(self.y_blocks[x0]): self.y_blocks[x0].append(0) self.yd[x0] = np.insert(self.yd[x0], len(self.yd[x0]), self.yd[x0][-1]) self.y_blocks[x0][-1] += n_extra assert min(self.y_blocks[x0][:surf_inds[i]]) > 0, (x0, self.yd[x0], self.y_blocks[x0][-1]) def trim_grid_to_target_dh(self): """Check mesh for potential thin layers and try to remove rows of elements to get elements close to target dh""" xcs = self.xcs_sorted opt_low = self.dy_target * (self.min_scale + 1) / 2 opt_high = self.dy_target * (self.max_scale + 1) / 2 y_surfs_at_xcs = np.interp(xcs, self.x_surf, self.y_surf) # try to trim mesh to be closer to target dh # First try to remove blocks opts_tried = [] for nn in range(10): y_coords_at_xcs = [list(self.yd[xc]) for xc in xcs] y_node_nums_at_xcs = [list(np.cumsum(self.y_blocks[xcs])) for xcs in self.y_blocks] for i in range(len(y_node_nums_at_xcs)): y_node_nums_at_xcs[i].insert(0, 0) if y_node_nums_at_xcs[i][-2] == y_node_nums_at_xcs[i][-1]: y_coords_at_xcs[i] = y_coords_at_xcs[i][:-1] y_node_nums_at_xcs[i] = y_node_nums_at_xcs[i][:-1] av_dhs = [] min_dhs = [] for i in range(len(y_node_nums_at_xcs)): av_dhs.append([]) for j in range(len(y_node_nums_at_xcs[i]) - 1): if (i, j) in opts_tried or y_coords_at_xcs[i][j + 1] > y_surfs_at_xcs[i]: av_dhs[i].append(1000) continue nb = y_node_nums_at_xcs[i][j + 1] - y_node_nums_at_xcs[i][j] av_dhs[i].append((y_coords_at_xcs[i][j + 1] - y_coords_at_xcs[i][j]) / nb) min_dhs.append(min(av_dhs[i])) if min(min_dhs) < self.dy_target: # favour slightly larger elements - could use opt_low x_ind = min_dhs.index(min(min_dhs)) y_ind = av_dhs[x_ind].index(min_dhs[x_ind]) nb_lowest_p = y_node_nums_at_xcs[x_ind][y_ind] # range where element could be removed nb_highest_p = y_node_nums_at_xcs[x_ind][y_ind + 1] if nb_lowest_p >= nb_highest_p: opts_tried.append((x_ind, y_ind)) continue hzone_p = y_coords_at_xcs[x_ind][y_ind + 1] - y_coords_at_xcs[x_ind][y_ind] found_opt = 0 max_new_dhs = [] for opt in range(nb_lowest_p, nb_highest_p): max_new_dh = hzone_p / (nb_highest_p - nb_lowest_p - 1) for w in range(len(y_node_nums_at_xcs)): y_ind = interp_left(opt, y_node_nums_at_xcs[w]) if y_ind == len(y_node_nums_at_xcs[w]) - 1: y_ind -= 1 nb_low = y_node_nums_at_xcs[w][y_ind] nb_high = y_node_nums_at_xcs[w][y_ind + 1] hzone = y_coords_at_xcs[w][y_ind + 1] - y_coords_at_xcs[w][y_ind] new_dh = hzone / (nb_high - nb_low - 1) if max_new_dh < new_dh: max_new_dh = new_dh max_new_dhs.append(max_new_dh) max_new_dh = min(max_new_dhs) yind = max_new_dhs.index(max_new_dh) + nb_lowest_p if max_new_dh < opt_high: for w in range(len(y_node_nums_at_xcs)): y_ind = interp_left(yind, y_node_nums_at_xcs[w]) if y_ind == len(y_node_nums_at_xcs[w]) - 1: y_ind -= 1 self.y_blocks[xcs[w]][y_ind] -= 1 found_opt = 1 if not found_opt: opts_tried.append((x_ind, y_ind)) else: break # Then try to add blocks opts_tried = [] for nn in range(20): y_coords_at_xcs = [list(self.yd[xc]) for xc in xcs] y_node_nums_at_xcs = [list(np.cumsum(self.y_blocks[xcs])) for xcs in self.y_blocks] for i in range(len(y_node_nums_at_xcs)): y_node_nums_at_xcs[i].insert(0, 0) if y_node_nums_at_xcs[i][-2] == y_node_nums_at_xcs[i][-1]: y_coords_at_xcs[i] = y_coords_at_xcs[i][:-1] y_node_nums_at_xcs[i] = y_node_nums_at_xcs[i][:-1] av_dhs = [] max_dhs = [] for i in range(len(y_node_nums_at_xcs)): av_dhs.append([]) for j in range(len(y_node_nums_at_xcs[i]) - 1): if (i, j) in opts_tried or y_coords_at_xcs[i][j + 1] > y_surfs_at_xcs[i]: av_dhs[i].append(-1) continue nb = y_node_nums_at_xcs[i][j + 1] - y_node_nums_at_xcs[i][j] av_dhs[i].append((y_coords_at_xcs[i][j + 1] - y_coords_at_xcs[i][j]) / nb) max_dhs.append(max(av_dhs[i])) if max(max_dhs) > opt_high: x_ind = max_dhs.index(max(max_dhs)) y_ind = av_dhs[x_ind].index(max_dhs[x_ind]) nb_lowest = y_node_nums_at_xcs[x_ind][y_ind] # range where element could be added nb_highest = y_node_nums_at_xcs[x_ind][y_ind + 1] if nb_highest <= nb_lowest: opts_tried.append((x_ind, y_ind)) continue hzone_p = y_coords_at_xcs[x_ind][y_ind + 1] - y_coords_at_xcs[x_ind][y_ind] found_opt = 0 min_new_dhs = [] for opt in range(nb_lowest, nb_highest): min_new_dh = hzone_p / (nb_highest - nb_lowest + 1) for w in range(len(y_node_nums_at_xcs)): y_ind = interp_left(opt, y_node_nums_at_xcs[w]) nb_low = y_node_nums_at_xcs[w][y_ind] nb_high = y_node_nums_at_xcs[w][y_ind + 1] hzone = y_coords_at_xcs[w][y_ind + 1] - y_coords_at_xcs[w][y_ind] new_dh = hzone / (nb_high - nb_low + 1) if min_new_dh > new_dh: min_new_dh = new_dh min_new_dhs.append(min_new_dh) min_new_dh = max(min_new_dhs) yind = min_new_dhs.index(min_new_dh) + nb_lowest if min_new_dh > opt_low: for w in range(len(y_node_nums_at_xcs)): y_ind0 = interp_left(yind, y_node_nums_at_xcs[w]) # y_ind1 = interp_left(nb_highest, y_node_nums_at_xcs[w]) self.y_blocks[xcs[w]][y_ind0] += 1 found_opt = 1 if not found_opt: opts_tried.append((x_ind, y_ind)) else: break smallest = 0 for xcs in self.y_blocks: if self.y_blocks[xcs][-1] < smallest: smallest = self.y_blocks[xcs][-1] if smallest != 0: for xcs in self.y_blocks: self.y_blocks[xcs][-1] += abs(smallest) min_h = 1e6 max_h = 0 for xcs in self.y_blocks: if max(self.y_blocks[xcs]) > max_h: max_h = max(self.y_blocks[xcs]) if min(self.y_blocks[xcs]) < min_h: min_h = min(self.y_blocks[xcs]) print('min_h: ', min_h) print('max_h: ', max_h) def build_req_y_node_positions(self): """ Creates lists of required positions and number of elements for each significant vertical line Note: It also tries to make sure that steps in slopes are horizontal """ min_dh = self.min_scale * self.dy_target max_dh = self.max_scale * self.dy_target xcs = self.xcs_sorted # Step 1: build lists containing required y element numbers and y-coords req_y_coords_at_xcs = [list(self.yd[xc]) for xc in xcs] y_node_nums_at_xcs = [list(np.cumsum(self.y_blocks[xcs])) for xcs in self.y_blocks] for i in range(len(y_node_nums_at_xcs)): y_node_nums_at_xcs[i].insert(0, 0) if y_node_nums_at_xcs[i][-2] == y_node_nums_at_xcs[i][-1]: req_y_coords_at_xcs[i] = req_y_coords_at_xcs[i][:-1] y_node_nums_at_xcs[i] = y_node_nums_at_xcs[i][:-1] # Step 2: For each slope that has a step, add additional requirement that slope does not decrease during step # sds = self.sds # for sd in sds: # x0 = sd[0][0] # x1 = sd[0][1] # y0 = sd[1][0] # y1 = sd[1][1] # ind_x0 = int(np.argmin(abs(xcs - x0))) # ind_x1 = int(np.argmin(abs(xcs - x1))) # ind_y0 = int(np.argmin(abs(np.array(req_y_coords_at_xcs[ind_x0]) - y0))) # ind_y1 = int(np.argmin(abs(np.array(req_y_coords_at_xcs[ind_x1]) - y1))) # y0_c = req_y_coords_at_xcs[ind_x0][ind_y0] # nb0 = y_node_nums_at_xcs[ind_x0][ind_y0] # nb1 = y_node_nums_at_xcs[ind_x1][ind_y1] # if nb0 != nb1: # diff_nb = nb1 - nb0 # new_nb = y_node_nums_at_xcs[ind_x1][ind_y1] - diff_nb # if new_nb not in y_node_nums_at_xcs[ind_x1]: # dh_upper = (req_y_coords_at_xcs[ind_x1][ind_y1] - y0_c) / diff_nb # if ind_y1 - 2 < 0: # nb_lower = nb1 - diff_nb # else: # nb_lower = nb1 - y_node_nums_at_xcs[ind_x1][ind_y1 - 1] - diff_nb # dh_lower = (y0_c - req_y_coords_at_xcs[ind_x1][ind_y1 - 1]) / nb_lower # if min_dh < dh_upper < max_dh and min_dh < dh_lower < max_dh: # y_node_nums_at_xcs[ind_x1].append(new_nb) # y_node_nums_at_xcs[ind_x1].sort() # req_y_coords_at_xcs[ind_x1].append(y0_c) # req_y_coords_at_xcs[ind_x1].sort() # Step 3: Build node number lists req_y_nodes = [] for i, xc0 in enumerate(xcs): req_y_nodes.append(list(np.array(y_node_nums_at_xcs[i]) + 1)) req_y_nodes[i][0] = 0 req_y_nodes[i] = np.array(req_y_nodes[i]) req_y_coords_at_xcs[i] = np.array(req_y_coords_at_xcs[i]) for j in range(len(req_y_coords_at_xcs[i]) - 1): if req_y_coords_at_xcs[i][-1 - j] == req_y_coords_at_xcs[i][-2 - j]: # print(req_y_nodes[i]) n_eles = req_y_nodes[i][-1 - j] - req_y_nodes[i][-2 - j] dh = self.dy_target * n_eles req_y_coords_at_xcs[i][-1 - j] += n_eles # print(req_y_coords_at_xcs[i]) # raise ValueError self.req_y_nodes = req_y_nodes self.req_y_coords_at_xcs = req_y_coords_at_xcs def build_y_coords_at_xcs(self): """Creates the y-coordinates for each node along each significant vertical line""" xcs = self.xcs_sorted req_y_nodes = self.req_y_nodes y_coords_at_xcs = self.req_y_coords_at_xcs # max_nbs = np.max(req_y_nodes) nbs_at_surf = [] for i, xc0 in enumerate(xcs): nbs_at_surf.append(req_y_nodes[i][np.where(y_coords_at_xcs[i] >= self.y_surf_at_xcs[xc0])][0]) # lower the y coordinates of unused to be inline with the right hand used blocks for i, xc0 in enumerate(xcs[::-1]): print(i, xc0, nbs_at_surf[-i], nbs_at_surf[-1 - i]) if i == 0: continue if nbs_at_surf[-1 - i] < nbs_at_surf[-i]: # if there are more blocks in one to right diff_nbs = nbs_at_surf[-i] - nbs_at_surf[-1 - i] min_h = self.y_surf_at_xcs[xc0] + diff_nbs * self.dy_target * 0.5 if nbs_at_surf[-i] in req_y_nodes[-1 - i]: ind = np.argmin(abs(nbs_at_surf[-i] - req_y_nodes[-1 - i])) y_coords_at_xcs[-1 - i][ind] = max([self.y_surf_at_xcs[xcs[-i]], min_h]) else: ind = np.where(req_y_nodes[-1 - i] > nbs_at_surf[-i])[0][0] req_y_nodes[-1 - i] = np.insert(req_y_nodes[-1 - i], ind, nbs_at_surf[-i]) y_coords_at_xcs[-1 - i] = np.insert(y_coords_at_xcs[-1 - i], ind, self.y_surf_at_xcs[xcs[-i]]) ind = np.where(req_y_nodes[-1 - i] >= nbs_at_surf[-1 - i])[0][0] if req_y_nodes[-1 - i][ind] != req_y_nodes[-1 - i][-1]: # if there are blocks above the surface y_coords_at_xcs[-1 - i][ind + 1:] = np.interp(req_y_nodes[-1 - i][ind + 1:], req_y_nodes[-i], y_coords_at_xcs[-i]) # Step 4: position additional nodes to be consistent with previous column - otherwise equally spaced y_nodes = [] for i, xc0 in enumerate(xcs): if i == 0: # first column just interpolate y_nodes.append(np.interp(np.arange(req_y_nodes[i][-1] + 1), req_y_nodes[i], y_coords_at_xcs[i])) continue new_y_vals = [] for j in range(len(y_nodes[i - 1])): if j not in req_y_nodes[i]: # if it exceeds surface of left column then interpolate the rest if 1 == 0: # if y_nodes[i - 1][j] >= self.y_surf_at_xcs[xcs[i - 1]]: pass # if y_nodes[i-1][j] >= self.y_surf_at_xcs[xcs[i-1]]: # node_nums = [x for x in req_y_nodes[i]] # y_poses = [x for x in y_coords_at_xcs[i]] # for nn in range(len(new_y_vals)): # if nn not in node_nums: # node_nums.append(nn) # y_poses.append(new_y_vals[nn]) # # node_nums.sort() # y_poses.sort() # yys = np.interp(np.arange(j, req_y_nodes[i][-1] + 1), node_nums, y_poses) # new_y_vals += list(yys) # break else: # get next and previous req points and check the slope of each of the those back to left col ind_below = interp_left(j, req_y_nodes[i]) req_n_below = req_y_nodes[i][ind_below] req_n_above = req_y_nodes[i][ind_below + 1] # sf is slope below plus slope above times j / (ind_above - ind_below) dh_dzone_below = y_coords_at_xcs[i][ind_below] - y_nodes[i - 1][req_n_below] dh_dzone_above = y_coords_at_xcs[i][ind_below + 1] - y_nodes[i - 1][req_n_above] dh = dh_dzone_below + (dh_dzone_above - dh_dzone_below) / (req_n_above - req_n_below) * ( j - req_n_below) new_y_vals.append(y_nodes[i - 1][j] + dh) else: ind = np.where(req_y_nodes[i] == j)[0][0] new_y_vals.append(y_coords_at_xcs[i][ind]) new_y_vals = np.array(new_y_vals) # adjust positions to ensure element thickness is appropriate for j in range(len(req_y_nodes[i]) - 1): ys = new_y_vals[req_y_nodes[i][j]:req_y_nodes[i][j + 1] + 1] diffs = np.diff(ys) if len(diffs): min_h = min(diffs) max_h = max(diffs) # h_block = ys[0] - ys[-1] nbs = req_y_nodes[i][j + 1] - req_y_nodes[i][j] uni_ys = np.interp(np.arange(req_y_nodes[i][j], req_y_nodes[i][j + 1] + 1), req_y_nodes[i], y_coords_at_xcs[i]) uni_h = min(np.diff(uni_ys)) if min_h / max_h < 0.7: x = 0.7 - min_h / max_h new_ys = (1 - x) * ys + x * uni_ys new_y_vals[req_y_nodes[i][j]:req_y_nodes[i][j + 1] + 1] = new_ys if nbs_at_surf[i] == req_y_nodes[i][j] and min_h < self.dy_target: h0 = new_y_vals[req_y_nodes[i][j]] hs = h0 + np.arange(0, nbs + 1) * self.dy_target new_y_vals[req_y_nodes[i][j]:req_y_nodes[i][j + 1] + 1] = hs y_nodes.append(new_y_vals) y_nodes = np.array(y_nodes) # For each surface slope adjust steps so that they are not pointed against slope for i, xc0 in enumerate(xcs): if i == len(xcs) - 1: break surf_at_xc = self.y_surf_at_xcs[xc0] ind_yc = np.argmin(abs(y_nodes[i] - surf_at_xc)) if ind_yc == len(y_nodes[i]) - 1: continue surf_at_next_xc = self.y_surf_at_xcs[xcs[i + 1]] ind_nc = np.argmin(abs(y_nodes[i + 1] - surf_at_next_xc)) if ind_nc == ind_yc: continue diff_nb = ind_nc - ind_yc # assert diff_nb > 0 # currently only supports smoothing forward next_slope = surf_at_next_xc - surf_at_xc # trim either half the block or min_dh if next_slope > 0 and diff_nb > 0: ind_yc2 = np.where(y_nodes[i + 1] > surf_at_xc)[0][0] ind_yc2 = max(ind_yc2, ind_yc + 1) curr_col_ys = list(y_nodes[i][ind_yc2 - 1: ind_nc + 1]) next_ys = list(y_nodes[i + 1][ind_yc2 - 1: ind_nc + 1]) # y_nodes[i][ind_yc: ind_nc] = (next_ys - next_ys[0]) * 0.5 + next_ys[0] av_dh = next_slope / diff_nb update_unused = 0 for kk in range(1, len(next_ys)): a = curr_col_ys[kk] - next_ys[kk] new_dh = next_ys[kk] - curr_col_ys[kk - 1] if new_dh < self.dy_target * 0.5: next_ys[kk] = curr_col_ys[kk - 1] + self.dy_target * 0.5 if (curr_col_ys[kk] - next_ys[kk]) / av_dh > 0.2: update_unused = 1 if update_unused: y_nodes[i][ind_yc2: ind_nc + 1] = next_ys[1:] # elif next_slope < 0 and diff_nb < 0: # next_ys = y_nodes[i+1][ind_yc+1: ind_nc + 1] # # y_nodes[i][ind_yc: ind_nc] = (next_ys - next_ys[0]) * 0.5 + next_ys[0] # y_nodes[i][ind_yc+1: ind_nc + 1] = next_ys self.y_coords_at_xcs = y_nodes[:, ::-1] # invert y-values def build_y_coords_grid_via_propagation(self): """Interpolates the position of all nodes based on the y-coordinates along the significant lines""" if self.y_coords_at_xcs is None: self.build_y_coords_at_xcs() if self.x_nodes is None: self.set_x_nodes() self.y_nodes = interp2d(self.x_nodes, np.array(self.xcs_sorted), self.y_coords_at_xcs) def build_y_coords_grid_via_3d_interp(self): """Interpolates the position of all nodes based on the coordinates of the significant positions""" if self.x_nodes is None: self.set_x_nodes() y_node_nums = np.arange(0, self.req_y_nodes[0][-1] + 1) ys = [] for i in range(len(self.x_nodes)): ys.append( interp3d(self.x_nodes[i], y_node_nums, self.xcs_sorted, self.req_y_nodes, self.req_y_coords_at_xcs)) self.y_nodes = np.array(ys) def set_x_nodes(self): """Determine optimal position of node x-coordinates""" dxs = [0] x_start = 0 x_scale_curr = self.x_scale_vals[0] for xx in range(1, len(self.xcs_sorted)): x_shift = self.xcs_sorted[xx] - self.xcs_sorted[xx - 1] extra_inds = np.where( (self.xcs_sorted[xx] > self.x_scale_pos) & (self.x_scale_pos > self.xcs_sorted[xx - 1])) x_cps = [self.xcs_sorted[xx - 1]] x_scales = [x_scale_curr] for i in extra_inds[0]: x_cps.append(self.x_scale_pos[i]) x_scales.append(self.x_scale_vals[i]) x_scales = np.array(x_scales) x_cps.append(self.xcs_sorted[xx]) zone_widths = np.diff(x_cps) n_eles =
np.sum(zone_widths / (x_scales * self.dy_target))
numpy.sum
""" BRL util functions """ import numpy as np from scipy.stats import norm import pdb COLORS = ['g','k','r','b','c','m','y','burlywood','chartreuse','0.8','0.6', '0.4', '0.2'] MARKER = ['-','x-', '-.','+-','*-','d-','o-','x-','s-','2-','3-'] T_chain = 5000 T_loop = 5000 T_grid5 = 10000 T_grid10 = 20000 T_minimaze = 30000 T_maze = 40000 T_movingmaze = 200 DTYPE = np.float64 EVAL_RUNS = 10 EVAL_NUM = 100 EVAL_STEPS = 50 EVAL_EPS = 0.0 color2num = dict( gray=30, red=31, green=32, yellow=33, blue=34, magenta=35, cyan=36, white=37, crimson=38 ) def colorize(string, color, bold=False, highlight = False): attr = [] num = color2num[color] if highlight: num += 10 attr.append(unicode(num)) if bold: attr.append('1') return '\x1b[%sm%s\x1b[0m' % (';'.join(attr), string) def discrete_phi(state, action, dim, anum): """Linear function approximation for tabular case """ phi = np.zeros(dim, dtype=np.float) phi[state*anum+action] = 1.0 return phi def img_preprocess(org_img): """Atari games image preprocessing similar to DQN paper """ imgGray = cv2.cvtColor( org_img, cv2.COLOR_RGB2GRAY ) resizedImg = cv2.resize(np.reshape(imgGray, org_img.shape[:-1]), (84, 110)) cropped = resizedImg[18:102,:] cropped = cropped.astype(np.float32) cropped *= (1.0/255.0) return cropped def rbf(state, action, dim, const=1.0): """Radial Basis Function used in KTD paper (https://www.jair.org/index.php/jair/article/view/10675/25513) """ n = dim c1 = np.reshape(np.array([-np.pi/4.0, 0.0, np.pi/4.0]),(3,1)) # For inverted pendulum c2 = np.reshape(np.array([-1.0,0.0,1.0]), (1,3)) # For inverted pendulum basis = np.exp(-0.5*(c1-state[0])**2)*np.exp(-0.5*(c2-state[1])**2) basis = np.append(basis.flatten(), const) phi = np.zeros(3*n, dtype=np.float32) phi[action*n:(action+1)*n] = basis return phi def plot_IQR(T, data, labels, x_label='x', y_label='y', x_vals = None, title=None, save=False, legend=(True, 'upper right'), shadow=True, pic_name = None, colors=None, smoothed=False): import matplotlib.pyplot as plt """Plot with interquartile T : True finite-time horizon data : data to plot labels : labels to display in legend x_label : x-axis label y_label : y-axis label x_vals : x values. If not given (None), it is determined with T. title : title name to plot save : True to save the plot rather than display shadow : fill between 25% and 75% legend : Tuple with - legend[0] is True if you want to display a legend. legend[1] = a tuple for anchor location. pic_name : a name of an image file of the plot """ prop_cycle = plt.rcParams['axes.prop_cycle'] colors = prop_cycle.by_key()['color'] plot_err = [] f, ax = plt.subplots() N = data.shape[-1] if len(data.shape) == 2: data = data[np.newaxis,:] if x_vals == None: x_vals = range(0,T, int(T/N)) if N != x_vals: x_vals = x_vals[:(N-len(x_vals))] for (i,y) in enumerate(data): if smoothed: tmp_y = [] for yi in y: tmp_y.append(smoothing(yi,4)) y = np.array(tmp_y) m, ids25, ids75 = iqr(y) tmp, = ax.plot(x_vals, m, MARKER[i+2], color=colors[i], markeredgecolor = colors[i], markerfacecolor='None', label=labels[i], linewidth=2.0) plot_err.append(tmp) if shadow: ax.fill_between(x_vals, list(ids75), list(ids25), facecolor=colors[i], alpha=0.3) if legend[0]: ax.legend(plot_err, labels ,loc=legend[1], shadow=False, fancybox=True, framealpha=0.5, prop={'family':'Times New Roman', 'size':16})#, bbox_to_anchor=legend[1]) ax.tick_params(axis='both',which='major',labelsize=11) ax.set_xlabel(x_label,fontsize=14, fontname="Times New Roman") ax.set_ylabel(y_label,fontsize=14, fontname="Times New Roman") ax.grid() if title: ax.set_title(title,fontsize=15,fontname="Times New Roman") if save: f.savefig(pic_name, bbox_inches='tight', pad_inches=0) else: plt.show() return f, ax def plot_sd(T, data, labels, x_label='x', y_label='y', x_vals = None, title=None, save=False, legend=(True, 'upper right', (1.0, 1.0)), shadow=True, pic_name = None, colors=None, smoothed=False, figure=None): import matplotlib.pyplot as plt """Plot with interquartile T : True finite-time horizon data : data to plot labels : labels to display in legend x_label : x-axis label y_label : y-axis label x_vals : x values. If not given (None), it is determined with T. title : title name to plot save : True to save the plot rather than display shadow : fill between 25% and 75% legend : Tuple with - legend[0] is True if you want to display a legend. legend[1] = a tuple for anchor location. pic_name : a name of an image file of the plot """ if colors is None: prop_cycle = plt.rcParams['axes.prop_cycle'] colors = prop_cycle.by_key()['color'] #if not(colors): # colors = ['g','k','c','b','m','r','y','burlywood','chartreuse','0.8','--', '-.', ':'] if figure: f, ax, plegend = figure else: f, ax = plt.subplots() plegend = [] N = data.shape[-1] if len(data.shape) == 2: data = data[np.newaxis,:] if x_vals is None: x_vals = range(0,T, int(T/N)) if N != len(x_vals): x_vals = x_vals[:(N-len(x_vals))] for (i,y) in enumerate(data): if smoothed: tmp_y = [] for yi in y: tmp_y.append(smoothing(yi,4)) y =
np.array(tmp_y)
numpy.array
from mri_modules.utils import * import os import numpy as np import cv2 import shutil from skimage.measure import marching_cubes_lewiner as marching_cubes import stl from stl import mesh import tensorflow as tf from tensorflow.keras.models import load_model import skimage.transform import nibabel as nib import h5py import scipy from mri_modules.load_in_arrays import * import time import random import tensorflow.keras as keras import tensorflow.keras.backend as K import nilearn import SimpleITK as sitk import imregpoc from math import pi import sys from skimage.morphology import convex_hull_image start_time = time.time() def binarize(array, min_): binary = array.copy() binary[array < min_] = 0 binary[array >= min_] = 1 return binary def dilate_up(array, size, stacked = True): if stacked: binary = np.squeeze(array.copy()[0], axis = 3) else: binary = array.copy() binary[binary > 0] = 1 kernel = scipy.ndimage.generate_binary_structure(3, 1) blew_up = scipy.ndimage.binary_dilation(binary.astype('uint8'), kernel, iterations=size) if stacked: return np.stack([np.stack([blew_up], axis = 3)]) else: return blew_up def translate_3d(array, translation): original_array = array.copy() array_translated = array.copy() array_translated[:] = 0 for z,Slice in enumerate(original_array): for y,line in enumerate(Slice): for x,pixel in enumerate(line): try: array_translated[z+translation[0]][y+translation[1]][x+translation[2]] = pixel except: pass return array_translated def touching_island(reference, array, stacked = True): if stacked: array = np.squeeze(array.copy()[0], axis = 3) array[array > 0] = 1 reference = np.squeeze(reference.copy()[0], axis = 3) reference[reference > 0] = 1 else: array[array > 0] = 1 reference[reference > 0] = 1 masked = array.copy() masked[:] = 0 touching_structure_3d =[[[0,0,0], [0,1,0], [0,0,0]], [[0,1,0], [1,1,1], [0,1,0]], [[0,0,0], [0,1,0], [0,0,0]]] markers, num_features = scipy.ndimage.measurements.label(array, touching_structure_3d) reference_idx = np.unique(markers[reference == 1]) for idx in reference_idx: masked[markers == idx] = 1 masked[array == 0] = 0 if stacked: return np.stack([np.stack([masked], axis = 3)]) else: return masked def biggest_island(input_array, stacked = True): if stacked: masked = np.squeeze(input_array.copy()[0], axis = 3) binary = np.squeeze(input_array.copy()[0], axis = 3) binary[:] = 0 binary[np.squeeze(input_array[0], axis = 3) > 0] = 1 else: masked = input_array.copy() binary = input_array.copy() binary[:] = 0 binary[input_array > 0] = 1 touching_structure_3d =[[[0,0,0], [0,1,0], [0,0,0]], [[0,1,0], [1,1,1], [0,1,0]], [[0,0,0], [0,1,0], [0,0,0]]] markers,_ = scipy.ndimage.measurements.label(binary,touching_structure_3d) markers[binary == 0] = 0 counts = np.bincount(markers.ravel()) counts[0] = 0 noise_idx = np.where(counts != np.max(counts)) noise = np.isin(markers, noise_idx) binary[noise] = 0 masked[binary == 0] = 0 if stacked: return np.stack([np.stack([masked], axis = 3)]) else: return masked def combine_zeros(arrays): combined = arrays[0].copy() for array in arrays: combined[array < 0.1] = 0 return combined def adaptive_threshold(array, course, precise, blur_precision = 0, stacked = True): if stacked: thresholded_array = np.squeeze(array.copy()[0], axis = 3) thresholded_array = thresholded_array*255 thresholded_array[thresholded_array > 255] = 255 else: thresholded_array = array.copy() thresholded_array = thresholded_array*255 thresholded_array[thresholded_array > 255] = 255 blurred = scipy.ndimage.gaussian_filter(thresholded_array, blur_precision) adap = [] for image in blurred: thresh = cv2.adaptiveThreshold(image.astype('uint8'), 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, course, 2) thresh2 = cv2.adaptiveThreshold(image.astype('uint8'), 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, precise, 2) thresh3 = thresh.copy() thresh3[:] = 255 thresh3[thresh2 == 0] = 0 thresh3[thresh == 0] = 0 adap.append(thresh3) adap = np.stack(adap) thresholded_array[adap == 0] = 0 if stacked: return np.stack([np.stack([thresholded_array/255], axis = 3)]) else: return thresholded_array/255 def generate_stl(array_3d, stl_file_path, stl_resolution): array = array_3d.copy() verts, faces, norm, val = marching_cubes(array, 0.01, step_size = stl_resolution, allow_degenerate=True) mesh = stl.mesh.Mesh(np.zeros(faces.shape[0], dtype=stl.mesh.Mesh.dtype)) for i, f in enumerate(faces): for j in range(3): mesh.vectors[i][j] = verts[f[j],:] if not stl_file_path.endswith(".stl"): stl_file_path += ".stl" if not os.path.exists(os.path.dirname(stl_file_path)): os.makedirs(os.path.dirname(stl_file_path)) mesh.save(stl_file_path) def find_median_grayscale(array): zero_pixels = float(np.count_nonzero(array==0)) single_dimensional = array.flatten().tolist() single_dimensional.extend(np.full((1, int(zero_pixels)), 1000).flatten().tolist()) return np.median(single_dimensional) def locate_bounds(array, stacked = True): if stacked: left = np.squeeze(array.copy()[0], axis = 3).shape[2] right = 0 low = np.squeeze(array.copy()[0], axis = 3).shape[1] high = 0 shallow = np.squeeze(array.copy()[0], axis = 3).shape[0] deep = 0 array_3d = np.squeeze(array.copy()[0], axis = 3) else: left = array.copy().shape[2] right = 0 low = array.copy().shape[1] high = 0 shallow = array.copy().shape[0] deep = 0 array_3d = array.copy() for z,Slice in enumerate(array_3d): for y,line in enumerate(Slice): for x,pixel in enumerate(line): if pixel > 0: if z > deep: deep = z if z < shallow: shallow = z if y > high: high = y if y < low: low = y if x > right: right = x if x < left: left = x return [left,right,low,high,shallow,deep] def pad(array): padded = [] for image in array: padded.append(image) padded.append(np.zeros((array.shape[1],array.shape[2]))) padded.append(np.zeros((array.shape[1],array.shape[2]))) final = translate_3d(np.stack(padded), [1,1,1]) return final def write_images(array, test_folder_path): if not os.path.exists(test_folder_path): os.makedirs(test_folder_path) for n,image in enumerate(array): file_name = str(str(n) +'.png') cv2.imwrite(os.path.join(test_folder_path, file_name), image*255) def circle_highlighted(reference, binary, color): circled = reference.copy() binary = binary.copy() binary[binary > 0] = 1 for n, image in enumerate(binary): contours, _ = cv2.findContours(image.astype('uint8'),cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(circled[n], contours, -1,color, 1) return circled def preprocess_data(path,rescale_factor = None,translation = None): print(path) image_data, valid = load_dicom_folder(path, updating_labels = False) print(image_data.shape) print(valid) print(np.max(image_data)) print("oofoofoofoofofofofofof") '''if "t2" in path.lower(): image_data = np.rot90(image_data, axes = (2,1)).T''' image_data = image_data/np.max(image_data) blank_unscaled_array = image_data.copy() blank_unscaled_array[:] = 0 z_zoom = image_size/image_data.shape[0] y_zoom = image_size/image_data.shape[1] x_zoom = image_size/image_data.shape[2] print(z_zoom, y_zoom, x_zoom) rescaled_blank = skimage.transform.rescale(blank_unscaled_array, (z_zoom, y_zoom, x_zoom)) image_data = np.stack([np.stack([image_data], axis = 3)]) if rescale_factor is None: bounds_finder = image_data.copy() bounds_finder = adaptive_threshold(bounds_finder, 101, 45, 1) bounds_finder = biggest_island(bounds_finder) bounds = locate_bounds(bounds_finder) [left,right,low,high,shallow,deep] = bounds x_size = abs(left-right) y_size = abs(low-high) z_size = abs(shallow-deep) max_size = np.max([x_size, y_size, z_size]) rescale_factor = (image_size*0.8)/max_size backscale_factor = 1/rescale_factor image_data = skimage.transform.rescale(np.squeeze(image_data.copy()[0], axis = 3), (rescale_factor, rescale_factor, rescale_factor)) if translation is None: bounds_finder = image_data.copy() bounds_finder = adaptive_threshold(bounds_finder, 101, 45, 1, stacked = False) bounds_finder = biggest_island(bounds_finder, stacked = False) bounds = locate_bounds(np.stack([np.stack([bounds_finder], axis = 3)])) else: bounds=translation print("\n\nbounds:",bounds,"\n\n") [left,right,low,high,shallow,deep] = bounds image_data = translate_3d(image_data, [-shallow,-low,-left]) rescaled_array = rescaled_blank.copy() for z,Slice in enumerate(image_data): for y,line in enumerate(Slice): for x,pixel in enumerate(line): try: rescaled_array[z][y][x] = pixel except: pass return rescaled_array, rescale_factor,bounds def ConvNetsemantic(x,y,z): inputs = keras.layers.Input((x,y,z, 3)) p0 = inputs c1, p1 = down_block(p0, 8, 0.1) #128 -> 64 print(p1.shape) c2, p2 = down_block(p1, 16, 0.1) #64 -> 32 c3, p3 = down_block(p2, 32, 0.2) #32 -> 16 c4, p4 = down_block(p3, 64, 0.3) #16->8 c5, p5 = down_block(p4, 128, 0.3) #16->8 c6, p6 = down_block(p5, 256, 0.3) #16->8 c7, p7 = down_block(p6, 512, 0.3) #16->8 bn = bottleneck(p7, 1024, 0.4) print(bn.shape) u1 = up_block(bn, c7, 512, 0.3) #8 -> 16 u2 = up_block(u1, c6, 256, 0.2) #16 -> 32 u3 = up_block(u2, c5, 128, 0.1) #32 -> 64 u4 = up_block(u3, c4, 64, 0.1) #64 -> 128 u5 = up_block(u4, c3, 32, 0.1) #64 -> 128 u6 = up_block(u5, c2, 16, 0.1) #64 -> 128 u7 = up_block(u6, c1, 8, 0.1) #64 -> 128 outputs = tf.keras.layers.Conv3D(4, (1, 1, 1),padding='same', activation="softmax")(u7) #outputs = keras.layers.Conv3D(1, (1, 1, 1), padding="same", activation="relu")(u4) print("out") print(outputs.shape) model = keras.models.Model(inputs, outputs) return model def register(fixed_image, moving_image, orig, transform = None): if transform is None: resamples = [] metrics = [] transforms = [] for i in range (1,10): ImageSamplingPercentage = 1 initial_transform = sitk.CenteredTransformInitializer(fixed_image, moving_image, sitk.ScaleVersor3DTransform(), sitk.CenteredTransformInitializerFilter.MOMENTS) registration_method = sitk.ImageRegistrationMethod() registration_method.SetMetricAsMattesMutualInformation(numberOfHistogramBins=200) registration_method.SetMetricSamplingStrategy(registration_method.RANDOM) registration_method.SetMetricSamplingPercentage(float(ImageSamplingPercentage)/100) registration_method.SetInterpolator(sitk.sitkLinear) registration_method.SetOptimizerAsGradientDescent(learningRate=0.001, numberOfIterations=10**5, convergenceMinimumValue=1e-6, convergenceWindowSize=100) #Once registration_method.SetOptimizerScalesFromPhysicalShift() registration_method.SetInitialTransform(initial_transform) #registration_method.SetShrinkFactorsPerLevel(shrinkFactors = [4,2,1]) #registration_method.SetSmoothingSigmasPerLevel(smoothingSigmas = [2,1,0]) #registration_method.SmoothingSigmasAreSpecifiedInPhysicalUnitsOn() transform = registration_method.Execute(fixed_image, moving_image) #print(transform) print("number:",i) print(registration_method.GetMetricValue()) metrics.append(registration_method.GetMetricValue()) resamples.append(sitk.Resample(orig, fixed_image, transform, sitk.sitkLinear, 0.0, moving_image.GetPixelID())) transforms.append(transform) print(np.min(metrics)) return sitk.GetArrayFromImage(resamples[metrics.index(np.min(metrics))]),transforms[metrics.index(np.min(metrics))] else: return sitk.GetArrayFromImage(sitk.Resample(orig, fixed_image, transform, sitk.sitkLinear, 0.0, moving_image.GetPixelID())),transform def adaptive_threshold(array, course, precise, blur_precision = 0, stacked = True): if stacked: thresholded_array = np.squeeze(array.copy()[0], axis = 3) thresholded_array = thresholded_array*255 thresholded_array[thresholded_array > 255] = 255 else: thresholded_array = array.copy() thresholded_array = thresholded_array*255 thresholded_array[thresholded_array > 255] = 255 blurred = scipy.ndimage.gaussian_filter(thresholded_array, blur_precision) adap = [] for image in blurred: thresh = cv2.adaptiveThreshold(image.astype('uint8'), 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, course, 2) thresh2 = cv2.adaptiveThreshold(image.astype('uint8'), 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, precise, 2) thresh3 = thresh.copy() thresh3[:] = 255 thresh3[thresh2 == 0] = 0 thresh3[thresh == 0] = 0 adap.append(thresh3) adap = np.stack(adap) thresholded_array[adap == 0] = 0 if stacked: return np.stack([np.stack([thresholded_array/255], axis = 3)]) else: return thresholded_array/255 def convex_border(array, thickness): contour_only = array.copy() binary = array.copy() contour_only[:] = 0 binary[:] = 0 binary[array > 0] = 255 cont = [] for n, image in enumerate(binary): contours, _ = cv2.findContours(image.astype('uint8'),cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) for contour in contours: hull = cv2.convexHull(contour) cv2.drawContours(contour_only[n], [hull], -1, 200, thickness) return contour_only def convex_hull(array): contour_only = array.copy() binary = array.copy() hull = [] binary[:] = 0 binary[array > 0.05] = 255 cont = [] for n, image in enumerate(binary): convex = np.array(convex_hull_image(image.astype('uint8')),dtype="float64") hull.append(convex) return np.stack(hull) def fill_holes_binary(array, sense): binary = array.copy() binary_original = array.copy() binary_original[:] = 0 binary_original[array > 0] = 1 binary[:] = 0 binary[array == 0] = 1 touching_structure_2d = [[0,1,0], [1,1,1], [0,1,0]] denoised = [] for n,image in enumerate(binary): markers, num_features = scipy.ndimage.measurements.label(image,touching_structure_2d) omit = markers[0][0] flat = markers.ravel() binc = np.bincount(flat) binc_not = np.bincount(flat[flat == omit]) noise_idx2 = np.where(binc > sense) noise_idx1 = np.where(binc == np.max(binc_not)) mask1 = np.isin(markers, noise_idx1) mask2 = np.isin(markers, noise_idx2) image[mask1] = 0 image[mask2] = 0 denoised.append(image) denoised = np.stack(denoised) binary_original[denoised == 1] = 1 return binary_original def convex_shape(input_array): #binary = adaptive_threshold(input_array, 101, 45, 1, stacked = False) #binary[input_array < 0.1] = 0 binary = np.array(input_array > 0.1,dtype = "float64") binary = biggest_island(binary, stacked = False) binary = convex_hull(binary) binary = biggest_island(binary, stacked = False) return binary def trim(flair,t1,t2): flair_cut = flair.copy() t1_cut = t1.copy() t1_cut[:] = 0 t2_cut = t2.copy() t2_cut[:] = 0 for n,image in enumerate(flair): if np.max(flair) > 0 and np.max(t1) > 0 and np.max(t2) > 0: flair_cut[n] = flair[n] t1_cut[n] = t1[n] t2_cut[n] = t2[n] return flair_cut, t1_cut, t2_cut def normalize(flair,t1,t2): flair = flair/np.max(flair) blank_unscaled_array = flair.copy() blank_unscaled_array[:] = 0 z_zoom = image_size/flair.shape[0] y_zoom = image_size/flair.shape[1] x_zoom = image_size/flair.shape[2] image_data1 = skimage.transform.rescale(flair, (z_zoom, y_zoom, x_zoom)) original_array1 = image_data1.copy() original_array1[:] = 0 image_data = np.stack([np.stack([flair], axis = 3)]) original_unscaled_array = image_data.copy() bounds = locate_bounds(image_data) [left,right,low,high,shallow,deep] = bounds x_size = abs(left-right) y_size = abs(low-high) z_size = abs(shallow-deep) max_size = np.max([x_size, y_size, z_size]) image_data = translate_3d(np.squeeze(image_data.copy()[0], axis = 3), [-shallow,-low,-left]) rescale_factor = (image_size*0.8)/max_size print("rescale factor:", rescale_factor) backscale_factor = 1/rescale_factor image_data = skimage.transform.rescale(image_data, (rescale_factor, rescale_factor, rescale_factor)) original_scaled_down = image_data.copy() for z,Slice in enumerate(image_data): for y,line in enumerate(Slice): for x,pixel in enumerate(line): try: original_array1[z][y][x] = pixel except: pass flair = original_array1.copy() ########################### T1CE #################################### t1 = t1/np.max(t1) image_data = translate_3d(t1, [-shallow,-low,-left]) image_data = skimage.transform.rescale(image_data, (rescale_factor, rescale_factor, rescale_factor)) original_array1[:] = 0 for z,Slice in enumerate(image_data): for y,line in enumerate(Slice): for x,pixel in enumerate(line): try: original_array1[z][y][x] = pixel except: pass t1ce = original_array1.copy() ########################### T2 #################################### t2 = t2/np.max(t2) image_data = translate_3d(t2, [-shallow,-low,-left]) image_data = skimage.transform.rescale(image_data, (rescale_factor, rescale_factor, rescale_factor)) original_array1[:] = 0 for z,Slice in enumerate(image_data): for y,line in enumerate(Slice): for x,pixel in enumerate(line): try: original_array1[z][y][x] = pixel except: pass t2 = original_array1.copy() return flair,t1ce,t2 def ConvNetTumor(x,y,z): inputs = keras.layers.Input((x,y,z, 1)) p0 = inputs c1, p1 = down_block(p0, 16, 0.1) #128 -> 64 print(p1.shape) c2, p2 = down_block(p1, 32, 0.1) #64 -> 32 c3, p3 = down_block(p2, 64, 0.2) #32 -> 16 c4, p4 = down_block(p3, 128, 0.3) #16->8 bn = bottleneck(p4, 256, 0.4) print(bn.shape) u1 = up_block(bn, c4, 128, 0.3) #8 -> 16 u2 = up_block(u1, c3, 64, 0.2) #16 -> 32 u3 = up_block(u2, c2, 32, 0.1) #32 -> 64 u4 = up_block(u3, c1, 16, 0.1) #64 -> 128 outputs = tf.keras.layers.Conv3D(1, (1, 1, 1),padding='same', activation="sigmoid")(u4) #outputs = keras.layers.Conv3D(1, (1, 1, 1), padding="same", activation="relu")(u4) print("out") print(outputs.shape) model = keras.models.Model(inputs, outputs) return model def ConvNetbinary(x,y,z): inputs = keras.layers.Input((x,y,z, 3)) p0 = inputs c1, p1 = down_block(p0, 4, 0.1) #128 -> 64 print(p1.shape) c2, p2 = down_block(p1, 8, 0.1) #64 -> 32 c3, p3 = down_block(p2, 16, 0.2) #32 -> 16 c4, p4 = down_block(p3, 32, 0.3) #16->8 c5, p5 = down_block(p4, 64, 0.3) #16->8 c6, p6 = down_block(p5, 128, 0.3) #16->8 c7, p7 = down_block(p6, 256, 0.3) #16->8 bn = bottleneck(p7, 512, 0.4) print(bn.shape) u1 = up_block(bn, c7, 256, 0.3) #8 -> 16 u2 = up_block(u1, c6, 128, 0.2) #16 -> 32 u3 = up_block(u2, c5, 64, 0.1) #32 -> 64 u4 = up_block(u3, c4, 32, 0.1) #64 -> 128 u5 = up_block(u4, c3, 16, 0.1) #64 -> 128 u6 = up_block(u5, c2, 8, 0.1) #64 -> 128 u7 = up_block(u6, c1, 4, 0.1) #64 -> 128 outputs = tf.keras.layers.Conv3D(1, (1, 1, 1),padding='same', activation="sigmoid")(u7) #outputs = keras.layers.Conv3D(1, (1, 1, 1), padding="same", activation="relu")(u4) print("out") print(outputs.shape) model = keras.models.Model(inputs, outputs) return model def down_block_e(x, filters, dropout, kernel_size=(3, 3, 3), padding="same", strides=1): print(x.shape) c = keras.layers.Conv3D(filters, kernel_size, padding=padding, strides=strides, activation="elu", input_shape = x.shape[1:], kernel_initializer='he_normal')(x) c = keras.layers.Dropout(dropout)(c) c = keras.layers.Conv3D(filters, kernel_size, padding=padding, strides=strides, activation="elu", input_shape = c.shape[1:], kernel_initializer='he_normal')(c) p = keras.layers.MaxPool3D(pool_size = (2, 2, 2))(c) return c, p def up_block_e(x, skip, filters, dropout,kernel_size=(3, 3, 3), padding="same", strides=1): us = keras.layers.UpSampling3D((2, 2, 2))(x) concat = keras.layers.Concatenate()([us, skip]) c = keras.layers.Conv3D(filters, kernel_size, padding=padding, strides=strides, activation="elu", input_shape = concat.shape[1:], kernel_initializer='he_normal')(concat) c = keras.layers.Dropout(dropout)(c) c = keras.layers.Conv3D(filters, kernel_size, padding=padding, strides=strides, activation="elu", input_shape = c.shape[1:], kernel_initializer='he_normal')(c) return c def bottleneck_e(x, filters, dropout, kernel_size=(3, 3, 3), padding="same", strides=1): c = keras.layers.Conv3D(filters, kernel_size, padding=padding, strides=strides, activation="elu", input_shape = x.shape[1:], kernel_initializer='he_normal')(x) c = keras.layers.Dropout(dropout) (c) c = keras.layers.Conv3D(filters, kernel_size, padding=padding, strides=strides, activation="elu", input_shape = c.shape[1:], kernel_initializer='he_normal')(c) return c def ConvNetSemantic64(x,y,z): inputs = keras.layers.Input((x,y,z, 3)) p0 = inputs c1, p1 = down_block_e(p0, 16, 0.1) #128 -> 64 print(p1.shape) c2, p2 = down_block_e(p1, 32, 0.1) #64 -> 32 c3, p3 = down_block_e(p2, 64, 0.2) #32 -> 16 c4, p4 = down_block_e(p3, 128, 0.3) #16->8 c5, p5 = down_block_e(p4, 256, 0.3) #16->8 c6, p6 = down_block_e(p5, 512, 0.3) #16->8 bn = bottleneck_e(p6, 1024, 0.4) print(bn.shape) u1 = up_block_e(bn, c6, 512, 0.3) #8 -> 16 u2 = up_block_e(u1, c5, 256, 0.2) #16 -> 32 u3 = up_block_e(u2, c4, 128, 0.1) #32 -> 64 u4 = up_block_e(u3, c3, 64, 0.1) #64 -> 128 u5 = up_block_e(u4, c2, 32, 0.1) #64 -> 128 u6 = up_block_e(u5, c1, 16, 0.1) #64 -> 128 outputs = tf.keras.layers.Conv3D(4, (1, 1, 1),padding='same', activation="softmax")(u6) #outputs = keras.layers.Conv3D(1, (1, 1, 1), padding="same", activation="relu")(u4) print("out") print(outputs.shape) model = keras.models.Model(inputs, outputs) return model def down_block(x, filters, dropout, kernel_size=(3, 3, 3), padding="same", strides=1): print(x.shape) c = keras.layers.Conv3D(filters, kernel_size, padding=padding, strides=strides, activation="relu", input_shape = x.shape[1:], kernel_initializer='he_normal')(x) c = keras.layers.Dropout(dropout)(c) c = keras.layers.Conv3D(filters, kernel_size, padding=padding, strides=strides, activation="relu", input_shape = c.shape[1:], kernel_initializer='he_normal')(c) p = keras.layers.MaxPool3D(pool_size = (2, 2, 2))(c) return c, p def up_block(x, skip, filters, dropout,kernel_size=(3, 3, 3), padding="same", strides=1): us = keras.layers.UpSampling3D((2, 2, 2))(x) concat = keras.layers.Concatenate()([us, skip]) c = keras.layers.Conv3D(filters, kernel_size, padding=padding, strides=strides, activation="relu", input_shape = concat.shape[1:], kernel_initializer='he_normal')(concat) c = keras.layers.Dropout(dropout)(c) c = keras.layers.Conv3D(filters, kernel_size, padding=padding, strides=strides, activation="relu", input_shape = c.shape[1:], kernel_initializer='he_normal')(c) return c def bottleneck(x, filters, dropout, kernel_size=(3, 3, 3), padding="same", strides=1): c = keras.layers.Conv3D(filters, kernel_size, padding=padding, strides=strides, activation="relu", input_shape = x.shape[1:], kernel_initializer='he_normal')(x) c = keras.layers.Dropout(dropout) (c) c = keras.layers.Conv3D(filters, kernel_size, padding=padding, strides=strides, activation="relu", input_shape = c.shape[1:], kernel_initializer='he_normal')(c) return c def ConvNetRough(x,y,z): inputs = keras.layers.Input((x,y,z, 1)) p0 = inputs c1, p1 = down_block(p0, 32, 0.1) #128 -> 64 print(p1.shape) c2, p2 = down_block(p1, 64, 0.1) #64 -> 32 c3, p3 = down_block(p2, 128, 0.2) #32 -> 16 bn = bottleneck(p3, 256, 0.4) print(bn.shape) u1 = up_block(bn, c3, 128, 0.3) #16 -> 32 u2 = up_block(u1, c2, 64, 0.2) #16 -> 64 u3 = up_block(u2, c1, 32, 0.1) #32 -> 128 outputs = tf.keras.layers.Conv3D(1, (1, 1, 1),padding='same', activation="sigmoid")(u3) print("out") print(outputs.shape) model = keras.models.Model(inputs, outputs) return model output_image_path = "C:/Users/JiangQin/Documents/python/ct to tumor identifier project/image ct visualizations/Machine Learning 2 models test" image_size = 128 brain_seg_model_top = "C:/Users/JiangQin/Documents/c++/build-MRImage3D-Desktop_Qt_5_15_0_MSVC2015_64bit-Debug/models/flair_brain_top.h5" brain_seg_model_top2 = "C:/Users/JiangQin/Documents/c++/build-MRImage3D-Desktop_Qt_5_15_0_MSVC2015_64bit-Debug/models/flair_brain_top.h5" brain_seg_model_front = "C:/Users/JiangQin/Documents/c++/build-MRImage3D-Desktop_Qt_5_15_0_MSVC2015_64bit-Debug/models/flair_brain_front.h5" brain_seg_model_side = "C:/Users/JiangQin/Documents/c++/build-MRImage3D-Desktop_Qt_5_15_0_MSVC2015_64bit-Debug/models/flair_brain_side.h5" brain_seg_model_edges = "C:/Users/JiangQin/Documents/c++/build-MRImage3D-Desktop_Qt_5_15_0_MSVC2015_64bit-Debug/models/flair_brain_edges.h5" tumor_seg_model = "C:/Users/JiangQin/Documents/c++/build-MRImage3D-Desktop_Qt_5_15_0_MSVC2015_64bit-Debug/models/flair_tumor.h5" input_path = "C:/Users/JiangQin/Documents/data/raw ct files/QIN GBM Treatment Response" output_path = "C:/Users/JiangQin/Documents/data/raw ct files/QIN GBM Treatment Response/loaded arrays 2" input_path = "C:/Users/JiangQin/Documents/data/raw ct files/ACRIN-DSC-MR-Brain" path = "C:/Users/JiangQin/Documents/data/raw ct files/ACRIN-DSC-MR-Brain/Clinical data/ACRIN-DSC-MR-Brain TCIA Anonymized" path2 = "C:/Users/JiangQin/Documents/data/raw ct files/ACRIN-DSC-MR-Brain/Clinical data/ACRIN-DSC-MR-Brain-HB TCIA Anonymized" alphabet = ["A","B","C","D"] def load_sets(input_path,clinical_data_path,datasets=[]): bru = 0 oof=0 valid_indexes = [] scans = [] for set_ in os.listdir(input_path): set_path = input_path + "/" + set_ scans = [] scan_dates = [] try: set_num = int(set_[-3:]) for scan in os.listdir(set_path): flair = None t1 = None t2 = None scan_path = set_path + '/' + scan if os.path.isdir(scan_path): for mri in os.listdir(scan_path): if "t2" in mri.lower() and "cor" not in mri.lower() and "sag" not in mri.lower() and "trace" not in mri.lower() and os.path.isdir(scan_path + "/" + mri): if t2!=None: bru+=1 t2 = mri if "t1" in mri.lower() and "cor" not in mri.lower() and "sag" not in mri.lower() and "post" in mri.lower() and os.path.isdir(scan_path + "/" + mri): if t1!=None: bru+=1 t1 = mri if "flair" in mri.lower() and "cor" not in mri.lower() and "sag" not in mri.lower() and "t1" not in mri.lower() and os.path.isdir(scan_path + "/" + mri): if flair!=None: bru+=1 flair = mri if flair is not None and t1 is not None and t2 is not None: date = dicom.read_file(scan_path + "/" + flair+"/"+os.listdir(scan_path + "/" + flair)[0]).ClinicalTrialTimePointID found = False valid = False for i in range(0,14): try: if i >= 10: ia=alphabet[i%10] else: ia=i data = [] blub = open(os.path.join(clinical_data_path,str("M"+str(ia))+".csv")).read() lines = blub.split("\n") del lines[0] del lines[-1] for n,line in enumerate(lines): chars = line.split(",") data.append([]) for char in chars: try: data[n].append(int(char)) except: data[n].append(0) data = np.stack(data) sets = data[:,0] dates = data[:,8] if int(date) == data[:,8][sets.tolist().index(set_num)]: print("uhh") if data[:,43][sets.tolist().index(set_num)] != 0: current_time = i progression = int(data[:,43][sets.tolist().index(set_num)]) zones = np.stack([int(x) for x in list(data[:,31:40][sets.tolist().index(set_num)])])-1 found = True break except Exception as e: pass if found: try: print("found") if current_time-1 >= 10: ia=alphabet[(current_time-1)%10] else: ia=current_time-1 data = [] blub = open(os.path.join(clinical_data_path,str("M"+str(ia))+".csv")).read() lines = blub.split("\n") del lines[0] del lines[-1] for n,line in enumerate(lines): chars = line.split(",") data.append([]) for char in chars: try: data[n].append(int(char)) except: data[n].append(0) data = np.stack(data) sets = data[:,0] older_date = data[:,8][sets.tolist().index(set_num)] for scan in os.listdir(set_path): flair_old = None t1_old = None t2_old = None scan_path_old = set_path + '/' + scan if os.path.isdir(scan_path_old): for mri in os.listdir(scan_path_old): if "t2" in mri.lower() and "cor" not in mri.lower() and "sag" not in mri.lower() and "trace" not in mri.lower() and os.path.isdir(scan_path_old + "/" + mri): if t2_old!=None: bru+=1 t2_old = mri if "t1" in mri.lower() and "cor" not in mri.lower() and "sag" not in mri.lower() and "post" in mri.lower() and os.path.isdir(scan_path_old + "/" + mri): if t1_old!=None: bru+=1 t1_old = mri if "flair" in mri.lower() and "cor" not in mri.lower() and "sag" not in mri.lower() and "t1" not in mri.lower() and os.path.isdir(scan_path_old + "/" + mri): if flair_old!=None: bru+=1 flair_old = mri if flair_old is not None and t1_old is not None and t2_old is not None: date = dicom.read_file(scan_path_old + "/" + flair_old+"/"+os.listdir(scan_path_old + "/" + flair_old)[0]).ClinicalTrialTimePointID old_zones = np.stack([int(x) for x in list(data[:,31:40][sets.tolist().index(set_num)])])-1 if int(older_date) == int(date): if not np.array_equal(zones,old_zones): print(zones,old_zones) oof+=1 datasets.append([[scan_path_old + "/" + flair_old,scan_path_old + "/" + t1_old,scan_path_old + "/" + t2_old], [scan_path + "/" + flair,scan_path + "/" + t1,scan_path + "/" + t2], progression]) break except Exception as e: print(e) pass except Exception as e: print("bub",e) pass print(oof) return datasets sets = load_sets(input_path,path) sets = load_sets(input_path,path2,sets) binary_model_path = "C:/Users/JiangQin/Documents/python/ct to tumor identifier project/code files/Saved models/Tumor seg binary with t1ce t2 flair/Model 16.h5" binary_model_path2 = "C:/Users/JiangQin/Documents/c++/build-MRImage3D-Desktop_Qt_5_15_0_MSVC2015_64bit-Debug/models/flair_tumor.h5" binary_model_path3 = "C:/Users/JiangQin/Documents/c++/build-MRImage3D-Desktop_Qt_5_15_0_MSVC2015_64bit-Debug/models/Model 34.h5" semantic_model_path = "C:/Users/JiangQin/Documents/python/ct to tumor identifier project/code files/Saved models/Tumor seg semantic 64x with t1ce t2 flair/Model 81.h5" brain_seg_t1_path = "C:/Users/JiangQin/Documents/python/ct to tumor identifier project/code files/Saved models/Brain Seg OASIS 36 top view/Model 51 (2).h5" start = 8 responses = np.stack([0,0,0,0]) print(len(sets)) print("hmmm") input() for Set in range(start, len(sets)): print("\n\nSet " + str(Set) + "\n\n") for i in range(0,10): print("\nGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG\n") print(sets[Set]) old_mr_path_flair = sets[Set][0][0] flair,factor,translate = preprocess_data(old_mr_path_flair) flair_binary = np.array(flair >0.1,dtype = "float64") write_images(flair_binary, output_image_path) flair_binary_image_og = sitk.GetImageFromArray(flair_binary) old_mr_path_t1 = sets[Set][0][1] t1,_,_ = preprocess_data(old_mr_path_t1,factor,translate) old_mr_path_t2 = sets[Set][0][2] t2,_,_ = preprocess_data(old_mr_path_t2,factor,translate) write_images(np.stack([flair,t1,t2],axis=-1), output_image_path) write_images(np.stack([flair,t1,t2],axis=-1), output_image_path+"/treatment eval testing/"+str(Set)+"/image_full") ##flair brain seg print("tranformed arrays",np.max(flair),np.max(t1),np.max(t2)) segmentations = [] brain_seg_top = load_model(brain_seg_model_top) brain_mask_top = brain_seg_top.predict(np.stack([np.stack([flair], axis = -1)])) binary_brain_top = binarize(brain_mask_top, 0.5) binary_brain_top_top_ized = np.squeeze(binary_brain_top.copy()[0], axis = -1) segmentations.append(binary_brain_top_top_ized) print("segmented brain") binary_brain_wo_median_combined = combine_zeros(segmentations) median_flair = find_median_grayscale(flair[binary_brain_wo_median_combined > 0]) segmentations = [] brain_seg_top = load_model(brain_seg_model_top) new_array_top = np.stack([np.stack([flair], axis = -1)])/(median_flair/0.2) brain_mask_top = brain_seg_top.predict(new_array_top) binary_brain_top = binarize(brain_mask_top, 0.7) binary_brain_top_top_ized = np.squeeze(binary_brain_top.copy()[0], axis = -1) segmentations.append(binary_brain_top_top_ized) binary_brain_final_combined2 = combine_zeros(segmentations) ##t1 brain seg segmentations = [] model_path = "C:/Users/JiangQin/Documents/python/ct to tumor identifier project/code files/Saved models/Brain Seg OASIS 36 top view/Model 51 (2).h5" brain_seg = ConvNetRough(128,128,128) brain_seg.load_weights(model_path) brain_mask_top = brain_seg.predict(np.stack([np.stack([t1], axis = -1)])) binary_brain_top = binarize(brain_mask_top, 0.5) binary_brain_top_top_ized = np.squeeze(binary_brain_top.copy()[0], axis = -1) segmentations.append(binary_brain_top_top_ized) print("segmented brain") print(np.stack([np.stack([t1], axis = -1)]).shape) binary_brain_wo_median_combined = combine_zeros(segmentations) only_brain_t1 = t1.copy() only_brain_t1[binary_brain_wo_median_combined == 0] = 0 median_t1 = find_median_grayscale(only_brain_t1) segmentations = [] model_path = "C:/Users/JiangQin/Documents/python/ct to tumor identifier project/code files/Saved models/Brain Seg OASIS 36 top view/Model 51 (2).h5" brain_seg = ConvNetRough(128,128,128) brain_seg.load_weights(model_path) brain_mask_top = brain_seg.predict(np.stack([np.stack([t1/(median_t1/0.3)], axis = -1)])) binary_brain_top = binarize(brain_mask_top, 0.5) binary_brain_top_top_ized = np.squeeze(binary_brain_top.copy()[0], axis = -1) segmentations.append(binary_brain_top_top_ized) binary_brain_final_combined1 = combine_zeros(segmentations) #write_images(binary_brain_final_combined1, output_image_path+"/treatment eval testing/"+str(Set)+"/imageblub") #input("HUDADAWUBUDAWUP") ##t2 brain seg segmentations = [] brain_seg_top = load_model(brain_seg_model_top) brain_mask_top = brain_seg_top.predict(np.stack([np.stack([t2], axis = -1)])) binary_brain_top = binarize(brain_mask_top, 0.5) binary_brain_top_top_ized = np.squeeze(binary_brain_top.copy()[0], axis = -1) segmentations.append(binary_brain_top_top_ized) print("segmented brain") binary_brain_wo_median_combined = combine_zeros(segmentations) median = find_median_grayscale(t2[binary_brain_wo_median_combined > 0]) segmentations = [] brain_seg_top = load_model(brain_seg_model_top) new_array_top = np.stack([np.stack([t2], axis = -1)])/(median/0.2) brain_mask_top = brain_seg_top.predict(new_array_top) binary_brain_top = binarize(brain_mask_top, 0.7) binary_brain_top_top_ized = np.squeeze(binary_brain_top.copy()[0], axis = -1) segmentations.append(binary_brain_top_top_ized) binary_brain_final_combined = binary_brain_final_combined2.copy()#combine_zeros(segmentations) binary_brain_final_combined[binary_brain_final_combined1 > 0] = 1 #binary_brain_final_combined[binary_brain_final_combined1 < 1] = 0 write_images(binary_brain_final_combined, output_image_path+"/treatment eval testing/"+str(Set)+"/imageblub") #------------- flair[binary_brain_final_combined==0] = 0 t1[binary_brain_final_combined==0] = 0 t2[binary_brain_final_combined==0] = 0 flair,t1,t2 = normalize(flair,t1,t2) t1 /=(find_median_grayscale(t1)/0.2) t2 /=(find_median_grayscale(t2)/0.2) flair /=(find_median_grayscale(flair)/0.2) write_images(np.stack([flair,t1,t2],axis=-1), output_image_path+"/treatment eval testing/"+str(Set)+"/image_brain") only_brain = np.stack([flair,t1,t2],axis = -1) only_brain = skimage.transform.rescale(only_brain, (0.5,0.5,0.5,1)) write_images(only_brain, output_image_path+"/treatment eval testing/"+str(Set)+"/imagebraib") tumor_seg_binary = load_model(binary_model_path2) tumor_mask = tumor_seg_binary.predict(np.stack([np.stack([flair/(median_flair/0.3)],axis=-1)])) tumor_binary = np.squeeze(tumor_mask[0] > 0.9, axis = -1) tumor_seg_channeled = ConvNetSemantic64(64,64,64) tumor_seg_channeled.load_weights(semantic_model_path) tumor_mask = tumor_seg_channeled.predict(np.stack([only_brain])) print(tumor_mask.shape) print(
np.max(tumor_mask)
numpy.max
import argparse import datetime import itertools import os import statistics from collections import Counter import numpy import pandas import plotly.express as px import plotly.graph_objs as go import plotly.io as pio import scipy import statsmodels.api as sm from jsonlines import jsonlines from nltk import AnnotationTask, interval_distance, binary_distance from scipy.signal import find_peaks from scipy.stats import kendalltau, pearsonr, spearmanr from sklearn.metrics import matthews_corrcoef px.defaults.height = 1000 sentiment_columns = ["sentiment", "textblob_sentiment", "vader_sentiment"] parser = argparse.ArgumentParser( description='Annotations statistical analysis and comparisons with the Story output predictions.') parser.add_argument('--batch-stats', required=False, type=str, help="CSV of the prediction batch stats.") parser.add_argument('--position-stats', required=False, type=str, help="The per sentence prediction output.") parser.add_argument('--annotation-stats', required=False, nargs='+', type=str, help="CSV of the prediction batch stats.") parser.add_argument('--mturk-sentence-annotations', required=False, nargs='+', type=str, help="CSV export from Mechanical Turk.") parser.add_argument('--firebase-sentence-annotations', required=False, type=str, help="JSONL export of sentence annotations from Firebase.") parser.add_argument("--no-html-plots", default=False, action="store_true", help="Don't save plots to HTML") parser.add_argument("--no-pdf-plots", default=False, action="store_true", help="Don't save plots to PDF") parser.add_argument('--output-dir', required=True, type=str, help="CSV containing the vector output.") parser.add_argument('--peak-prominence-weighting', required=False, type=int, default=1.0, help="The peak prominence weighting.") parser.add_argument('--peak-width', default=1.0, type=float, help="How wide must a peak be to be included. 1.0 allow a single point sentence to be a peak.") parser.add_argument('--min-time', type=int, default=150, help="Min time in seconds.") parser.add_argument('--exclude-worker-ids', type=str, nargs="+", required=False, help="A list of workers to exclude from the task.") args = parser.parse_args() genre_other = ["fantasy", "fable", "science_fiction", "fairytale"] genre_categories = ['Answer.crime.on', 'Answer.erotic_fiction.on', 'Answer.fable.on', 'Answer.fairytale.on', 'Answer.fan_fiction.on', 'Answer.fantasy.on', 'Answer.folktale.on', 'Answer.historical_fiction.on', 'Answer.horror.on', 'Answer.humor.on', 'Answer.legend.on', 'Answer.magic_realism.on', 'Answer.meta_fiction.on', 'Answer.mystery.on', 'Answer.mythology.on', 'Answer.mythopoeia.on', 'Answer.other.on', 'Answer.realistic_fiction.on', 'Answer.science_fiction.on', 'Answer.swashbuckler.on', 'Answer.thriller.on'] other_col = 'Answer.other.on' story_id_col = 'Answer.storyId' worker_id_col = 'WorkerId' annotation_columns = ['Answer.doxaResonance', 'Answer.doxaSurprise', 'Answer.doxaSuspense', 'Answer.readerEmotionalResonance', 'Answer.readerSurprise', 'Answer.readerSuspense', 'Answer.storyInterest', 'Answer.storySentiment'] genre_column = "genre" def ensure_dir(file_path): directory = os.path.dirname(file_path) if not os.path.exists(directory): print(f"Create directory: {directory}") os.makedirs(directory) annotation_stats_columns = ['Answer.doxaResonance', 'Answer.doxaSurprise', 'Answer.doxaSuspense', 'Answer.readerEmotionalResonance', 'Answer.readerSurprise', 'Answer.readerSuspense', 'Answer.storyInterest', 'Answer.storySentiment', ] annotation_story_id_column = 'Input.story_id' def label_bucket(row, attribute="measure"): to_label = row[attribute] if to_label in sentiment_columns: return "sentiment" elif "_l1" in to_label: return "l1" elif "_l2" in to_label: return "l2" elif "_l1" in to_label: return "l1" elif "_entropy" in to_label: return "entropy" else: return "other" def prediction_peaks(args, annotation_df, position_df): ensure_dir(f"{args['output_dir']}/prediction_peaks/") ensure_dir(f"{args['output_dir']}/prediction_peaks/self_correlation/") ensure_dir(f"{args['output_dir']}/prediction_peaks/annotation_correlation/") ensure_dir(f"{args['output_dir']}/prediction_peaks/annotation_correlation/heatmap/") ensure_dir(f"{args['output_dir']}/prediction_peaks/annotation_correlation/scatter/") ensure_dir(f"{args['output_dir']}/prediction_peaks/multi/") ensure_dir(f"{args['output_dir']}/prediction_peaks/scatter/") ensure_dir(f"{args['output_dir']}/prediction_peaks/box/") position_df["sentence_text"] = position_df["sentence_text"].astype(str) peaks_list = [] peaks_summary_list = [] story_ids = position_df["story_id"].unique() columns = extract_position_measure_columns(position_df) columns = list(set(columns).difference({"sentence_num"})) columns.sort() group_to_column_dict = {} for column_groups in ['l1', 'l2', 'entropy', 'baseline', 'sentiment']: column_list = [] for i, pred in enumerate(columns): if column_groups not in pred and column_groups != "baseline" or ( column_groups is "baseline" and "overlap" not in pred and "embedding" not in pred): continue column_list.append(pred) group_to_column_dict[column_groups] = column_list column_group_dict = {} for k, v in group_to_column_dict.items(): for c in v: column_group_dict[c] = k prom_dict = {} for y_axis_group, y_axis_columns in group_to_column_dict.items(): prom_data = [] for c in y_axis_columns: prom_data.extend(position_df[c].tolist()) prominence_threshold = statistics.stdev(prom_data) * args["peak_prominence_weighting"] prom_dict[y_axis_group] = prominence_threshold print(f"Peak prominance {prominence_threshold}") for story_id in story_ids: peak_story_row = position_df.loc[position_df["story_id"] == story_id] peak_story_row = peak_story_row.sort_values(by=["sentence_num"]) for m in columns: # print(story_df[["sentence_num","sentence_text",c]]) x = peak_story_row[m].to_list() peak_list, summary_dict = find_and_extract_peaks(peak_story_row, "peak", x, m, prominence=prom_dict[column_group_dict[c]], width=args["peak_width"]) peaks_list.extend(peak_list) peaks_summary_list.append(summary_dict) x_inverted = [x_n * -1.0 for x_n in x] trough_list, summary_dict = find_and_extract_peaks(peak_story_row, "trough", x_inverted, m, prominence=prom_dict[column_group_dict[c]], width=args["peak_width"]) peaks_list.extend(trough_list) peaks_summary_list.append(summary_dict) peaks_df = pandas.DataFrame(peaks_list) peaks_df.to_csv(f"{args['output_dir']}/prediction_peaks/peaks.csv") print(peaks_df.columns) peaks_summary_df = pandas.DataFrame(peaks_summary_list) peaks_summary_df.to_csv(f"{args['output_dir']}/prediction_peaks/peaks_summary.csv") print(peaks_summary_df.columns) peaks_df['c'] = peaks_df.apply(lambda row: label_bucket(row), axis=1) peaks_summary_df['c'] = peaks_summary_df.apply(lambda row: label_bucket(row), axis=1) for c in peaks_df['c'].unique(): display_df = peaks_df.loc[peaks_df['c'] == c] for m in ["prominences", "widths"]: fig = px.box(display_df, y=m, x="measure", color="type", notched=True) export_plots(args, f"/prediction_peaks/box/{m}_{c}_box", fig) fig = px.scatter(display_df, x="prominences", y="widths", color="type", hover_name="sentence_text") export_plots(args, f"/prediction_peaks/scatter/{c}_peak", fig) # Calculate summary statistics for the peaks for c in peaks_summary_df['c'].unique(): display_df = peaks_summary_df.loc[peaks_summary_df['c'] == c] for m in ["num_of_peaks", "prominence", "width", "importance"]: fig = px.box(display_df, y=m, x="measure", color="type", notched=True) export_plots(args, f"/prediction_peaks/box/{m}_{c}_summary", fig) for m in ["peak", "trough"]: bubble_df = display_df.loc[display_df["type"] == m] fig = px.scatter(bubble_df, x="num_of_peaks", y="width", size="prominence", color="measure", size_max=100, hover_name="story_id") export_plots(args, f"/prediction_peaks/scatter/{c}_{m}_summary", fig) for c in columns: for t in ["peak", "trough"]: plot_df = peaks_summary_df.loc[peaks_summary_df["type"] == t] plot_df = plot_df.loc[plot_df["measure"] == c] fig = px.parallel_coordinates(plot_df, dimensions=["num_of_peaks", "width", "prominence", "importance"], color="story_id", color_continuous_scale=px.colors.diverging.Tealrose, ) export_plots(args, f"/prediction_peaks/multi/{c}_{t}_parallel_summary", fig) polar_list = [] for index, row in plot_df.iterrows(): print(row) for c in ["num_of_peaks", "prominence", "width", "importance"]: polar_list.append( {"story_id": row["story_id"], "type": row["type"], "measure": row["measure"], "theta": c, "r": row[c]}) if len(polar_list) == 0: continue # plot_polar_df = pandas.DataFrame(polar_list) # print(plot_polar_df) # fig = px.line_polar(plot_polar_df, r="r", theta="theta", # color="story_id", line_close=True) export_plots(args, f"/prediction_peaks/multi/{c}_{t}_polar", fig) full_table_list = [] for m in ["num_of_peaks", "width", "prominence", "importance"]: for m2 in ["num_of_peaks", "width", "prominence", "importance"]: for t in ["peak", "trough"]: for t2 in ["peak", "trough"]: table_list = [] pear_corr = [] ken_corr = [] spear_corr = [] for c in columns: pear_corr_ann = [] ken_corr_ann = [] spear_corr_ann = [] for c2 in columns: type_x_df = peaks_summary_df.loc[peaks_summary_df["type"] == t] x_df = type_x_df.loc[type_x_df["measure"] == c] x_list = list(x_df[m]) type_y_df = peaks_summary_df.loc[peaks_summary_df["type"] == t2] y_df = type_y_df.loc[type_y_df["measure"] == c2] y_list = list(y_df[m2]) kendall, pearson, spearman = calculate_correlation(c, c2, table_list, x_list, y_list, measure=m, measure2=m2, disc=t, disc2=t2) pear_corr_ann.append(pearson) spear_corr_ann.append(spearman) ken_corr_ann.append(kendall) pear_corr.append(pear_corr_ann) ken_corr.append(ken_corr_ann) spear_corr.append(spear_corr_ann) full_table_list.extend(table_list) export_correlations(args, f"/prediction_peaks/self_correlation/{m}_{m2}_{t}_{t2}_", columns, columns, ken_corr, pear_corr, spear_corr, table_list) full_table_df = pandas.DataFrame(full_table_list) full_table_df.to_csv(f"{args['output_dir']}/prediction_peaks/self_correlation/all_correlation.csv") agg_annotation_df = aggregate_annotations_df(annotation_df) annotation_measures = list(agg_annotation_df['name'].unique()) annotation_measures.sort() story_ids = annotation_df[annotation_story_id_column].unique() story_ids = [int(s) for s in story_ids] story_ids.sort() full_table_list = [] for m in ["num_of_peaks", "width", "prominence", "importance"]: for t in ["peak", "trough"]: for b in peaks_df['c'].unique(): table_list = [] pear_corr = [] ken_corr = [] spear_corr = [] peaks_group_df = peaks_summary_df.loc[peaks_summary_df["c"] == b] columns_in_group = list(set(columns).intersection(set(peaks_group_df["measure"].unique()))) for c in sorted(columns_in_group): pear_corr_ann = [] ken_corr_ann = [] spear_corr_ann = [] prediction_list = [] for am in annotation_measures: x_list = [] y_list = [] for story_id in story_ids: agg_story_row = agg_annotation_df.loc[agg_annotation_df["story_id"] == story_id] peak_story_row = peaks_group_df.loc[peaks_group_df["story_id"] == story_id] if len(agg_story_row) == 0 or len(peak_story_row) == 0: continue pred_dict = {} pred_dict["story_id"] = story_id pred_dict["z"] = am pred_row = agg_story_row.loc[agg_story_row["name"] == am] y = float(pred_row.iloc[0]["mean"]) type_x_df = peak_story_row.loc[peak_story_row["type"] == t] x_df = type_x_df.loc[type_x_df["measure"] == c] x = float(x_df[m]) pred_dict["x"] = x x_list.append(x) pred_dict["y"] = y y_list.append(y) prediction_list.append(pred_dict) if len(x_list) >= 2 and len(y_list) >= 2: kendall, pearson, spearman = calculate_correlation(c, am, table_list, x_list, y_list, measure=m, measure2="mean", disc=t) print(c, am, kendall, pearson, spearman) else: kendall = pearson = spearman = 0.0 pear_corr_ann.append(pearson) spear_corr_ann.append(spearman) ken_corr_ann.append(kendall) pear_corr.append(pear_corr_ann) ken_corr.append(ken_corr_ann) spear_corr.append(spear_corr_ann) point_df = pandas.DataFrame(data=prediction_list) fig = px.scatter(point_df, x="x", y="y", color="z", trendline="lowess", hover_name="story_id") export_plots(args, f"/prediction_peaks/annotation_correlation/scatter/{b}_{m}_{t}_{c}_", fig) full_table_list.extend(table_list) export_correlations(args, f"/prediction_peaks/annotation_correlation//heatmap/{b}_{m}_{t}_", annotation_stats_columns, columns_in_group, ken_corr, pear_corr, spear_corr, table_list) full_table_df = pandas.DataFrame(full_table_list) full_table_df.to_csv(f"{args['output_dir']}/prediction_peaks/annotation_correlation/all_correlation.csv") def find_and_extract_peaks(story_df, type, x, c, prominence=1.0, width=1.0): story_peak_summary = {} peaks, peaks_meta = find_peaks(x, width=width, prominence=prominence) print(story_df.columns) print(type, prominence, width, peaks, peaks_meta) peak_list = [dict(zip(peaks_meta, i)) for i in zip(*peaks_meta.values())] sentence_ids = story_df["sentence_id"].to_list() story_peak_summary["story_id"] = story_df["story_id"].unique()[0] story_peak_summary["type"] = type story_peak_summary["num_of_peaks"] = len(peak_list) story_peak_summary["prominence"] = 0.0 story_peak_summary["width"] = 0.0 story_peak_summary["importance"] = 0.0 story_peak_summary["story_length"] = len(sentence_ids) story_peak_summary["measure"] = c for index, peak in zip(peaks, peak_list): sentence_id = sentence_ids[index] row = story_df.loc[story_df["sentence_id"] == sentence_id] peak["story_id"] = int(row["story_id"]) peak["sentence_id"] = int(row["sentence_id"]) peak["sentence_num"] = int(row["sentence_num"]) peak["sentence_text"] = row["sentence_text"].values[0] peak["type"] = type peak["measure"] = c story_peak_summary["prominence"] += peak["prominences"] story_peak_summary["width"] += peak["widths"] story_peak_summary["importance"] += peak["prominences"] * peak["widths"] if len(peak_list) == 0: row = story_df.loc[story_df["sentence_id"] == sentence_ids[0]] peak = {} peak["story_id"] = int(row["story_id"]) peak["sentence_id"] = int(row["sentence_id"]) peak["sentence_num"] = int(row["sentence_num"]) peak["sentence_text"] = row["sentence_text"] peak["type"] = type peak["measure"] = c peak["widths"] = 0.0 peak["prominences"] = 0.0 peak["num_of_peaks"] = 0 peak_list.append(peak) return peak_list, story_peak_summary def genres_per_story(args, annotation_df): ensure_dir(f"{args['output_dir']}/genres/") story_ids = annotation_df[story_id_col].unique() annotation_no_others_df = annotation_df.loc[annotation_df[other_col] == False] story_genre_data = [] for story_id in story_ids: story_df = annotation_no_others_df.loc[annotation_no_others_df[story_id_col] == story_id] story_genre_dict = {} for c in genre_categories: c_true_df = story_df.loc[story_df[c] == True] if not c_true_df.empty: story_genre_dict[c] = len(c_true_df) story_genre_counter = Counter(story_genre_dict) story_genre_list = story_genre_counter.most_common(1) if len(story_genre_list) > 0: story_genre, _ = story_genre_list[0] story_genre = story_genre.replace("Answer.", "").replace(".on", "") if story_genre not in genre_other: story_genre = "other" else: story_genre = "other" story_genre_data.append({"story_id": story_id, "genre": story_genre}) genre_df = pandas.DataFrame(data=story_genre_data) genre_sum_df = genre_df.groupby('genre', as_index=False).count().rename(columns={"story_id": "count"}) fig = px.bar(genre_sum_df, x="genre", y="count") export_plots(args, "/genres/bar", fig) return genre_df def inter_annotator_agreement(merged_sentence_df, args): print("Calculate Interannotator Agreement") ensure_dir(f"{args['output_dir']}/agreement/") # Calculate inter-annotator agreement. measure_cols = ["suspense","duration_milliseconds"] agreement_list = [] worker_agreement_list = [] story_agreement_list = [] for c in measure_cols: agreement_dict = {} agreement_triples = [] for i, row in merged_sentence_df.iterrows(): value = row[c] agreement_triples.append((str(row["worker_id"]), str(row["sentence_id"]), int(value))) print(f"Pairs for agreement: {len(agreement_triples)}") dist = interval_distance t = AnnotationTask(data=agreement_triples, distance=dist) agreement_dict["alpha"] = t.alpha() worker_ids = merged_sentence_df["worker_id"].unique() kendall_list = [] pearson_list = [] spearman_list = [] worker_items = [] for story_id in merged_sentence_df["story_id"].unique(): story_agreement_triples = [] story_agreement_dict = {"story_id": story_id} story_agreement_dict["measure"] = c x_list = [] y_list = [] story_df = merged_sentence_df.loc[merged_sentence_df["story_id"] == story_id] story_sentences = story_df["sentence_id"].unique() story_workers = story_df["worker_id"].unique() for worker in story_workers: for sentence in story_sentences: sentence_df = story_df.loc[story_df["sentence_id"] == sentence] worker_value = sentence_df.loc[sentence_df["worker_id"] == worker][c].values story_agreement_dict["num_of_workers"] = len(sentence_df["worker_id"].unique()) story_agreement_triples.append((str(worker), str(sentence), int(worker_value[0]))) exclude_df = sentence_df.loc[sentence_df["worker_id"] != worker] mean_value = exclude_df.groupby("sentence_id", as_index=False).mean()[c].values if len(mean_value) > 0 and len(worker_value) > 0: x_list.append(float(worker_value[0])) y_list.append(float(mean_value[0])) if len(x_list) >= 2 and len(y_list) == len(x_list): story_agreement_dict["num_of_judgements"] = len(x_list) kendall, kendall_p_value = kendalltau(x_list, y_list) if not numpy.isnan(kendall): story_agreement_dict["kendall"] = kendall story_agreement_dict["kendall_p_value"] = kendall_p_value pearson, pearson_p_value = pearsonr(x_list, y_list) if not numpy.isnan(pearson): story_agreement_dict["pearson"] = pearson story_agreement_dict["pearson_p_value"] = pearson_p_value spearman, spearman_p_value = spearmanr(x_list, y_list) if not numpy.isnan(spearman): story_agreement_dict["spearman"] = spearman story_agreement_dict["spearman"] = spearman_p_value summary_statistics(x_list, c, story_agreement_dict) if len(story_agreement_triples) > 0 and len(set([t[0] for t in story_agreement_triples])) > 1: t = AnnotationTask(data=story_agreement_triples, distance=dist) story_agreement_dict["alpha"] = t.alpha() story_agreement_list.append(story_agreement_dict) for worker in worker_ids: worker_agreement_triples = [] worker_dict = {"worker_id": worker} x_list = [] y_list = [] worker_df = merged_sentence_df.loc[merged_sentence_df["worker_id"] == worker] worker_sentences = worker_df["sentence_id"].unique() worker_dict["num_of_stories"] = len(worker_df["story_id"].unique()) exclude_df = merged_sentence_df.loc[merged_sentence_df["worker_id"] != worker] means_df = exclude_df.groupby("sentence_id", as_index=False).mean() for sentence in worker_sentences: mean_col = c mean_value = means_df.loc[means_df["sentence_id"] == sentence][mean_col].values worker_value = worker_df.loc[worker_df["sentence_id"] == sentence][mean_col].values if len(mean_value) == 1 and len(worker_value) == 1: worker_agreement_triples.append((str(worker), str(sentence), int(worker_value))) worker_agreement_triples.append((str("other"), str(sentence), int(round(float(mean_value),0)))) x_list.append(float(worker_value)) y_list.append(float(mean_value)) if len(x_list) >= 2 and len(y_list) == len(x_list): worker_dict["num_of_judgements"] = len(x_list) diff = [x - y for x, y in zip(x_list, y_list)] nobs, minmax, mean, variance, skew, kurtosis = scipy.stats.describe(diff) worker_dict["diff_mean"] = mean worker_dict["diff_var"] = variance abs_diff = [abs(x) for x in diff] nobs, minmax, mean, variance, skew, kurtosis = scipy.stats.describe(abs_diff) worker_dict[f"abs_diff_mean"] = mean worker_dict[f"abs_diff_var"] = variance kendall, kendall_p_value = kendalltau(x_list, y_list) if not numpy.isnan(kendall): kendall_list.append(kendall) worker_dict["kendall"] = kendall pearson, pearson_p_value = pearsonr(x_list, y_list) if not numpy.isnan(pearson): pearson_list.append(pearson) worker_dict["pearson"] = pearson worker_dict["pearson_p_value"] = pearson_p_value spearman, spearman_p_value = spearmanr(x_list, y_list) if not numpy.isnan(spearman): spearman_list.append(spearman) worker_dict["spearman"] = spearman worker_dict["spearman_p_value"] = spearman_p_value worker_items.append(len(x_list)) t = AnnotationTask(data=worker_agreement_triples, distance=dist) worker_dict["alpha"] = t.alpha() summary_statistics(x_list, c, worker_dict) worker_dict["measure"] = c worker_agreement_list.append(worker_dict) total_items = float(sum(worker_items)) probabilities = [p / total_items for p in worker_items] agreement_dict[f"kendall_1_vs_all"] = sum([i * p for i, p in zip(kendall_list, probabilities)]) agreement_dict[f"spearman_1_vs_all"] = sum([i * p for i, p in zip(spearman_list, probabilities)]) agreement_dict[f"pearson_1_vs_all"] = sum([i * p for i, p in zip(pearson_list, probabilities)]) agreement_dict["measure"] = c agreement_list.append(agreement_dict) agreement_df = pandas.DataFrame(data=agreement_list) agreement_df.to_csv(f"{args['output_dir']}/agreement/agreement.csv") worker_agreement_df = pandas.DataFrame(data=worker_agreement_list) worker_agreement_df = worker_agreement_df.sort_values(by=["alpha"], ascending=False) worker_agreement_df.to_csv(f"{args['output_dir']}/agreement/worker_agreement.csv") story_agreement_df = pandas.DataFrame(data=story_agreement_list) story_agreement_df = story_agreement_df.sort_values(by=["alpha"], ascending=False) story_agreement_df.to_csv(f"{args['output_dir']}/agreement/story_agreement.csv") def plot_annotator_sentences(merged_sentence_df, args): print(f"Plot the annotator sentences to get a visualisation of the peaks in the annotations.") ensure_dir(f"{args['output_dir']}/consensus/") judgement_data_list = [] story_ids = merged_sentence_df["story_id"].unique() for story_id in story_ids: print(story_id) story_df = merged_sentence_df.loc[merged_sentence_df["story_id"] == story_id] story_df = story_df.groupby(['story_id', 'sentence_id', 'sentence_num', 'worker_id'], as_index=False).first() if len(story_df) > 0: print(story_df) worker_ids = story_df["worker_id"].unique() data = [] for worker_id in worker_ids: worker_df = story_df.loc[story_df["worker_id"] == worker_id] sel_col_df = worker_df[['story_id', 'sentence_id', 'sentence_num', 'worker_id', 'suspense']] judgement_data_list.append(sel_col_df) if len(worker_df) > 0: worker_df = worker_df.sort_values(by=["sentence_num"]) value_series = [] value_series.append(100) for s in worker_df["suspense"][1:]: value = relative_to_abs_plot(s) value_series.append(value_series[-1] + value) trace = go.Scatter( x=worker_df["sentence_num"], y=value_series, mode='lines+markers', name=f"{worker_id}", ) data.append(trace) median_df = story_df.groupby(["story_id", "sentence_id", "sentence_num"], as_index=False)[ ['suspense']].median().round(0) median_df["worker_id"] = "median" mean_df = story_df.groupby(["story_id", "sentence_id", "sentence_num"], as_index=False)[ ['suspense']].mean() mean_df["worker_id"] = "mean" value_series = [] value_series.append(100) for s in median_df["suspense"][1:]: value = relative_to_abs_plot(s) value_series.append(value_series[-1] + value) trace = go.Scatter( x=median_df["sentence_num"], y=value_series, mode='lines+markers', name=f"median", ) data.append(trace) layout = go.Layout( title=f'Sentence Annotation Plot {story_id}', hovermode='closest', xaxis=dict( # title='Position', ), yaxis=dict( title=f"Suspense", ), showlegend=True, legend=dict( orientation="h") ) fig = go.Figure(data=data, layout=layout) judgement_data_list.append(median_df) judgement_data_list.append(mean_df) export_plots(args, f"/annotation_plots/{story_id}", fig) for c in judgement_data_list: print(c.columns) judgement_df = pandas.concat(judgement_data_list) judgement_df.to_csv(f"{args['output_dir']}/consensus/judgement.csv") def relative_to_abs_plot(s): if s == 1: value = -25 elif s == 2: value = -5 elif s == 3: value = 0 elif s == 4: value = 5 elif s == 5: value = 25 else: value = 0 return value def sentence_annotation_stats_and_agreement(args, mturk_df, firebase_data): sentence_stats_columns = ['suspense','duration_milliseconds','sentence_len'] ensure_dir(f"{args['output_dir']}/sentence_annotations_stats/") mturk_df = mturk_df.loc[mturk_df["AssignmentStatus"].isin(["Submitted","Approved"])] mturk_df = calculate_task_time(args, mturk_df) story_level_data = [] sentence_level_data = [] for f in firebase_data: story_dict = {} story_dict["firebase_id"] = f["id"] story_dict["firebase_collection"] = f["collection"] document = f["document"] for k in set(document.keys()).difference(set(["training_annotations","sentence_annotations"])): story_dict[k] = document[k] for sent in document["sentence_annotations"]: sent_dict = {**sent, **story_dict} print(sent_dict) sentence_level_data.append(sent_dict) for stats_column in sentence_stats_columns: stat_data = [s[stats_column] for s in document["sentence_annotations"]] summary_statistics(stat_data, stats_column, story_dict) print(story_dict) story_level_data.append(story_dict) story_annotation_df = pandas.DataFrame(data=story_level_data) sentence_annotation_df = pandas.DataFrame(data=sentence_level_data) merged_story_df = pandas.merge(story_annotation_df, mturk_df, left_on='assignment_id', right_on='AssignmentId', how='inner') merged_sentence_df = pandas.merge(sentence_annotation_df, mturk_df, left_on='assignment_id', right_on='AssignmentId', how='inner') #merged_story_df = merged_story_df.fillna(value=0) #merged_sentence_df = merged_sentence_df.fillna(value=0) inter_annotator_agreement(merged_sentence_df, args) plot_annotator_sentences(merged_sentence_df, args) merged_story_df.to_csv(f"{args['output_dir']}/sentence_annotations_stats/mturk_story.csv") merged_sentence_df.to_csv(f"{args['output_dir']}/sentence_annotations_stats/mturk_sentence.csv") def summary_statistics(stat_data, stats_column, story_dict): nobs, minmax, mean, variance, skew, kurtosis = scipy.stats.describe(stat_data) story_dict[f"{stats_column}_num"] = nobs story_dict[f"{stats_column}_min"], story_dict[f"{stats_column}_max"] = minmax story_dict[f"{stats_column}_var"] = variance story_dict[f"{stats_column}_skew"] = skew story_dict[f"{stats_column}_kurt"] = kurtosis story_dict[f"{stats_column}_perc_25"] = numpy.percentile(stat_data, 0.25) story_dict[f"{stats_column}_perc_50"] = numpy.percentile(stat_data, 0.50) story_dict[f"{stats_column}_perc_75"] = numpy.percentile(stat_data, 0.75) if stats_column == "suspense": stats, ref_dict = sm.tools.categorical(numpy.asarray(stat_data), dictnames=True, drop=True) stats_summed = numpy.sum(stats, axis=0) for k, v in ref_dict.items(): story_dict[f"{stats_column}_cat_{v}"] = stats_summed[k] def calculate_task_time(args, mturk_df): suspiciously_quick = [] task_time_taken = [] accept_time_col = mturk_df['AcceptTime'] submit_time_col = mturk_df['SubmitTime'] for accept_time, submit_time in zip(accept_time_col, submit_time_col): mturk_date_format = "%Y-%m-%d %H:%M:%S%z" accept_time = datetime.datetime.strptime(accept_time, mturk_date_format) submit_time = datetime.datetime.strptime(submit_time, mturk_date_format) time_taken = submit_time - accept_time task_time_taken.append(time_taken) if time_taken.seconds < args["min_time"]: suspiciously_quick.append(True) else: suspiciously_quick.append(False) mturk_df = mturk_df.assign(too_quick=pandas.Series(suspiciously_quick)) mturk_df = mturk_df.assign(total_task_duration=pandas.Series(task_time_taken)) return mturk_df def story_stats_correlation(args): annotation_df = None position_df = None pred_df = None mturk_df = None dfs = [] if args["mturk_sentence_annotations"] is not None and len(args["mturk_sentence_annotations"]) > 0: for filename in args["mturk_sentence_annotations"]: dfs.append(pandas.read_csv(filename)) mturk_df = pandas.concat(dfs, ignore_index=True) firebase_data = [] if args["firebase_sentence_annotations"] is not None and len(args["firebase_sentence_annotations"]) > 0: with jsonlines.open(args["firebase_sentence_annotations"]) as reader: for obj in reader: firebase_data.append(obj) dfs = [] if args["annotation_stats"] is not None and len(args["annotation_stats"]) > 0: for filename in args["annotation_stats"]: dfs.append(pandas.read_csv(filename)) annotation_df = pandas.concat(dfs, ignore_index=True) annotation_df = annotation_df.fillna(value=0.0) annotation_df = map_to_binary_answers(annotation_df) annotation_df = check_quality(annotation_df) if args["batch_stats"] is not None and len(args["batch_stats"]) > 0: pred_df = pandas.read_csv(args["batch_stats"]) pred_df = pred_df.fillna(value=0.0) story_ids = pred_df["story_id"].to_list() story_ids.sort() if args["position_stats"] is not None and len(args["position_stats"]) > 0: position_df = pandas.read_csv(args["position_stats"]) position_df = position_df.fillna(value=0.0) print(mturk_df.columns) if args["exclude_worker_ids"] is not None and len(args["exclude_worker_ids"]) > 0: mturk_df = mturk_df[~mturk_df["WorkerId"].isin(args["exclude_worker_ids"])] if annotation_df is not None: genres_per_story_df = genres_per_story(args, annotation_df) annotation_correlation(args, annotation_df, genres_per_story_df) if mturk_df is not None and len(firebase_data): sentence_annotation_stats_and_agreement(args, mturk_df, firebase_data) if annotation_df is not None and position_df is not None: prediction_peaks(args, annotation_df, position_df) if position_df is not None: prediction_position_correlation(args, position_df) if pred_df is not None: prediction_correlation(args, pred_df) if annotation_df is not None and pred_df is not None: prediction_annotation_correlation(args, annotation_df, pred_df) def prediction_position_correlation(args, position_df): ensure_dir(f"{args['output_dir']}/prediction_sentence_correlation/") ensure_dir(f"{args['output_dir']}/prediction_sentence_correlation/box/") ensure_dir(f"{args['output_dir']}/prediction_sentence_correlation/scatter/") ensure_dir(f"{args['output_dir']}/prediction_sentence_correlation/heatmap/") # print(position_df) columns = extract_position_measure_columns(position_df) hor_list = [] for sent_id in position_df["sentence_id"].unique(): sent_id = int(sent_id) sent_df = position_df.loc[position_df["sentence_id"] == sent_id] for c in list(columns): hor_dict = {} hor_dict["sentence_id"] = sent_id hor_dict["story_id"] = int(sent_df["story_id"]) hor_dict["value"] = float(sent_df[c]) hor_dict["measure"] = c hor_list.append(hor_dict) point_df = pandas.DataFrame(data=hor_list) point_df['c'] = point_df.apply(lambda row: label_bucket(row), axis=1) for c in point_df['c'].unique(): display_df = point_df.loc[point_df['c'] == c] fig = px.box(display_df, y="value", x="measure", notched=True) export_plots(args, f"/prediction_sentence_correlation/box/{c}_box", fig) pear_corr = [] ken_corr = [] spear_corr = [] table_list = [] for c1 in columns: prediction_list = [] pear_corr_ann = [] ken_corr_ann = [] spear_corr_ann = [] for c2 in columns: if "Unnamed" in c1 or "Unnamed" in c2: continue # print(c1, c2) x_series = list(position_df[c1]) y_series = list(position_df[c2]) sentence_ids = list(position_df["sentence_id"]) sentence_text = list(position_df["sentence_text"]) x_list = [] y_list = [] for s, t, x, y in zip(sentence_ids, sentence_text, x_series, y_series): try: x = float(x) y = float(y) x_list.append(x) y_list.append(y) pred_dict = {} pred_dict["z"] = c2 pred_dict["x"] = x pred_dict["y"] = y pred_dict["sentence_id"] = s pred_dict["sentence_text"] = t prediction_list.append(pred_dict) except: pass kendall, pearson, spearman = calculate_correlation(c1, c2, table_list, x_list, y_list) pear_corr_ann.append(pearson) spear_corr_ann.append(spearman) ken_corr_ann.append(kendall) pear_corr.append(pear_corr_ann) ken_corr.append(ken_corr_ann) spear_corr.append(spear_corr_ann) point_df = pandas.DataFrame(data=prediction_list) fig = px.scatter(point_df, x="x", y="y", title=f"{c1}", color="z", trendline="lowess", hover_name="sentence_text", color_discrete_sequence=px.colors.cyclical.IceFire, ) export_plots(args, f"/prediction_sentence_correlation/scatter/{c1}", fig) export_correlations(args, "/prediction_sentence_correlation/heatmap/", columns, columns, ken_corr, pear_corr, spear_corr, table_list) def export_correlations(args, base, columns, columns2, ken_corr, pear_corr, spear_corr, table_list): for corr_type, d in zip(["pearson", "spearman", "kendall"], [pear_corr, spear_corr, ken_corr]): # print(measure, d, pred_measures, annotation_stats_columns) fig = go.Figure(data=go.Heatmap( z=d, x=columns, y=columns2 )) export_plots(args, f"{base}_{corr_type}_heatmap", fig) measure_correlation = pandas.DataFrame(table_list) measure_correlation.to_csv(f"{args['output_dir']}/{base}_corr.csv") def calculate_correlation(c1, c2, table_list, x_list, y_list, measure="value", measure2="value", disc=None, disc2=None): pearson, pearson_p_value = pearsonr(x_list, y_list) table_list.append( {"c1": c1, "c2": c2, "type": "pearson", "correlation": pearson, "p_value": pearson_p_value, "measure": measure, "measure_2": measure2, "disc": disc, "disc_2": disc2}) kendall, kendall_p_value = kendalltau(x_list, y_list, nan_policy="omit") table_list.append( {"c1": c1, "c2": c2, "type": "kendall", "correlation": kendall, "p_value": kendall_p_value, "measure": measure, "measure_2": measure2, "disc": disc, "disc_2": disc2}) spearman, spearman_p_value = spearmanr(x_list, y_list) table_list.append( {"c1": c1, "c2": c2, "type": "spearman", "correlation": spearman, "p_value": spearman_p_value, "measure": measure, "measure_2": measure2, "disc": disc, "disc_2": disc2}) return kendall, pearson, spearman def export_plots(args, file, fig): ensure_dir(f"{args['output_dir']}/{file}") if not args["no_html_plots"]: file_path = f"{args['output_dir']}/{file}.html" print(f"Save plot: {file_path}") pio.write_html(fig, file_path) if not args["no_pdf_plots"]: file_path = f"{args['output_dir']}/{file}.pdf" print(f"Save plot pdf: {file_path}") pio.write_image(fig, file_path) def extract_position_measure_columns(position_df): columns = list(set(list(position_df.columns)).difference( {"name", "story_id", "sentence_id", "sentence_text", "steps", "Unnamed: 0"})) columns.sort() columns = [c for c in columns if not c.endswith('_1') and not c.endswith('_2') and not c.endswith('_3') and not c.endswith('_4')] return columns def map_likert_to_bin(row, col): if row[col] < 3: return -1 else: # if row[col] > 3: return 1 def map_to_binary_answers(annotation_df, cols=annotation_stats_columns): for col in cols: annotation_df[f'{col}_bin'] = annotation_df.apply(lambda row: map_likert_to_bin(row, col), axis=1) print(annotation_df[[f'{col}', f'{col}_bin']]) return annotation_df def annotation_correlation(args, annotation_df, genres_per_story_df): ensure_dir(f"{args['output_dir']}/annotation_correlation/") ensure_dir(f"{args['output_dir']}/annotation_correlation/multi/") ensure_dir(f"{args['output_dir']}/annotation_correlation/heatmap/") ensure_dir(f"{args['output_dir']}/annotation_correlation/scatter/") ensure_dir(f"{args['output_dir']}/annotation_correlation/agreement/") for genre in genre_other + ["other", "all"]: if genre != "all": genre_rows_df = genres_per_story_df.loc[genres_per_story_df['genre'] == genre] annotation_genre_filtered_df = pandas.merge(annotation_df, genre_rows_df, left_on=story_id_col, right_on="story_id", how='inner') else: annotation_genre_filtered_df = annotation_df story_ids = annotation_genre_filtered_df[story_id_col].unique() story_worker_pairs_dict = {} for story_id in story_ids: workers_for_story_df = annotation_genre_filtered_df.loc[ annotation_genre_filtered_df[story_id_col] == story_id] workers_for_story = workers_for_story_df[worker_id_col].unique() story_worker_pairs_dict[story_id] = list(itertools.combinations(workers_for_story, 2)) annotator_agreement = [] for col in annotation_columns + [f"{c}_bin" for c in annotation_columns]: agreement_dict = {"measure": col} x_list = [] y_list = [] for story_id, pairs in story_worker_pairs_dict.items(): if pairs is None or len(pairs) == 0: continue story_df = annotation_genre_filtered_df.loc[annotation_genre_filtered_df[story_id_col] == story_id] for worker_1, worker_2 in pairs: worker_1_values = story_df.loc[story_df[worker_id_col] == worker_1][col].values worker_2_values = story_df.loc[story_df[worker_id_col] == worker_2][col].values x_list.append(worker_1_values[0]) y_list.append(worker_2_values[0]) phi = matthews_corrcoef(x_list, y_list) agreement_dict["phi"] = phi triples = [] for idx, row in annotation_genre_filtered_df.iterrows(): worker = row[worker_id_col] story = row[story_id_col] metrics_col = row[col] triples.append((str(worker), str(story), int(metrics_col))) if "_bin" in col: dist = binary_distance else: dist = interval_distance t = AnnotationTask(data=triples, distance=dist) agreement_dict["alpha"] = t.alpha() worker_ids = annotation_genre_filtered_df[worker_id_col].unique() kendall_list = [] pearson_list = [] spearman_list = [] worker_items = [] for worker in worker_ids: x_list = [] y_list = [] worker_df = annotation_genre_filtered_df.loc[annotation_genre_filtered_df[worker_id_col] == worker] worker_stories = worker_df[story_id_col].unique() exclude_df = annotation_genre_filtered_df.loc[annotation_genre_filtered_df[worker_id_col] != worker] means_df = exclude_df.groupby(story_id_col, as_index=False).mean() for story in worker_stories: mean_value = means_df.loc[means_df[story_id_col] == story][col].values worker_value = worker_df.loc[worker_df[story_id_col] == story][col].values if len(mean_value) > 0 and len(worker_value) > 0: if len(worker_value) > 1: worker_value = worker_value[0] x_list.append(float(worker_value)) y_list.append(float(mean_value)) if len(x_list) >= 2 and len(y_list) == len(x_list): kendall, _ = kendalltau(x_list, y_list) if not
numpy.isnan(kendall)
numpy.isnan
#! /usr/bin/env python """ Module for generating an RBF approximation of temporal dynamics in POD basis space """ import numpy as np import scipy from scipy.spatial.distance import cdist from numpy.lib.scimath import sqrt as csqrt from scipy import interpolate import pod as pod import greedy as gdy import rom as rom import plotting as plo def compute_rbf(Zsnap_rbf, time_rbf, ep=0.05, beta=2.5, rbf_kernel='matern', msg=False): """ Compute the rbf system that includes the rbf interpolation matrix, the weights for the rbf interpolation, and the optimal scaling factor Input:: Zsnap_rbf: Dictionary of snapshots containing projected snapshots of every state variable time_rbf: Array of time points for the snapshots ep: Pre-specified minimum threshold of scaling factor beta: Secondary parameter for some IMQ rbf kernels Output:: Zcenter_gr: Interpolation Matrix weights_gr: RBF interpolation coefficients epsilon_gr: Optimal scaling factor based on fill distances """ # --- Recompute RBF system with optimized RBF centers soln_names = Zsnap_rbf.keys() rij = compute_radial_distances(Zsnap_rbf) epsilon = np.minimum(ep, estimate_epsilon_fill(rij)) A, Zcenter = compute_interp_matrix(Zsnap_rbf, Zsnap_rbf[list(Zsnap_rbf.keys())[0]].shape[1]-1, rbf_kernel=rbf_kernel, epsilon=epsilon, beta=beta) if msg: print("Epsilon specified = {0}, epsilon computed = {1}".format( ep, estimate_epsilon_fill(rij))) print("Epsilon used = {0}".format(epsilon)) print('Condition number of A: {0}'.format(np.linalg.cond(A))) return Zcenter, A, epsilon def compute_interp_matrix(Zsnap, Nt, rbf_kernel='matern', epsilon=0.05, beta=2.5): """ Build a radial basis function (RBF) interpolant using the entries in Zsnap to form the centers Zsnap is input on a solution component basis, e.g., Zsnap['h'] is a N_w['h'] x N_snap array of POD modes for the 'h' variable. For now assumes Nt is equal to N_snap-1 Input: :param: Zsnap -- dictionary of modes for all snapshots :param: Nt -- Total number of snapshots - 1 :param: component_keys -- which entries to use in building the components :param: rbf_kernel_flag -- type of kernel to use. 1 Gaussian Multiquadric otherwise Returns: Zcenter -- Composite [nw_total,Nt] array of evaluation points for RBF interpolant A -- [Nt,Nt] array containing the rbf kernel evaluations on the Zcenter vectors rij -- [Nt,Nt] array containing the euclidean distances between all paris of vectors in Zcenter """ component_keys = Zsnap.keys() # compute centers nw_sizes = [Zsnap[key].shape[0] for key in component_keys] nw_total = sum(nw_sizes) Zcenter = np.zeros((nw_total, Nt), 'd') offset = 0 for ii, key in enumerate(component_keys): # evaluation points are (t_0,t_1,...,t_{snap-1}) Zcenter[offset:offset+Zsnap[key].shape[0], :] = Zsnap[key][:, 0:-1] offset += Zsnap[key].shape[0] # distances between all of the evaluation points rij = rbf_norms(Zcenter, Zcenter) A = compute_kernel(rij, rbf_kernel, epsilon) return A, Zcenter def compute_kernel(rij, rbf_kernel='matern', epsilon=0.05): """ Compute Nc x Nc RBF kernel matrix, A = Phi(r,r) where Nc = # of RBF centers """ if rbf_kernel == 'gaussian': A = rbf_gaussian(rij, epsilon) elif rbf_kernel == 'inverseMQ': A = rbf_inverse_multiquadric(rij, epsilon, beta) elif rbf_kernel == 'matern': A = rbf_matern(rij, epsilon) elif rbf_kernel == 'matern1': A = rbf_matern1(rij, epsilon) elif rbf_kernel == 'MQ': A = rbf_multiquadric(rij, epsilon) return A def compute_radial_distances(Zsnap): """ Routine to compute the distance between data points """ component_keys = Zsnap.keys() nw_sizes = [Zsnap[key].shape[0] for key in component_keys] nw_total = sum(nw_sizes) Nt = Zsnap[list(Zsnap.keys())[0]].shape[1]-1 Zcenter = np.zeros((nw_total, Nt), 'd') offset = 0 for ii, key in enumerate(component_keys): # evaluation points are (t_0,t_1,...,t_{snap-1}) Zcenter[offset:offset+Zsnap[key].shape[0], :] = Zsnap[key][:, 0:-1] offset += Zsnap[key].shape[0] # distances between all of the evaluation points rij = rbf_norms(Zcenter, Zcenter) return rij def build_dFdt_multistep(Z_pod, times_pod, nw, flag=None): """ Compute RBF weights for different high order time discretization methods Available routines: 1) Explicit midpoint or LeapFrog scheme, 2) 2nd & 3rd order Adams Bashforth 3) Explicit 3rd order Nystrom method 4) 2nd and 3rd order extrapolated BDF methods ====== Input- Z_pod: dictionary of projected snapshots per component times_pod: array of normalized time points corresponding to snapshots nw: dictionary of number of POD modes per component flag: Denotes the selected time discretization scheme ====== Output- dZdata: Dictionary of time derivative of modal coefficients, size = [ nw[key] x Nt_pod-1 ] """ soln_names = nw.keys() dt_pod = times_pod[1:]-times_pod[0:-1] dZdata = {} for key in soln_names: dZdata[key] = np.zeros((nw[key], times_pod.size-1), 'd') for mode in range(nw[key]): if flag == 'LF': dZdata[key][mode, 0] = Z_pod[key][mode, 1]-Z_pod[key][mode, 0] dZdata[key][mode, 0] /= dt_pod[0] dZdata[key][mode, 1:] = Z_pod[key][mode, 2:] - \ Z_pod[key][mode, 0:-2] dZdata[key][mode, 1:] /= (dt_pod[1:]+dt_pod[0:-1]) elif flag == 'AB2': # Adams Bashforth Order 2 dZdata[key][mode, 0] = Z_pod[key][mode, 1]-Z_pod[key][mode, 0] dZdata[key][mode, 0] /= dt_pod[0] for inx in range(1, times_pod.size-1): dZdata[key][mode, inx] = 2. * \ (Z_pod[key][mode, inx+1]-Z_pod[key] [mode, inx])/(3.*dt_pod[inx]) dZdata[key][mode, inx] += dZdata[key][mode, inx-1]/3. elif flag == 'AB3': # Adams Bashforth Order 3 dZdata[key][mode, 0] = Z_pod[key][mode, 1]-Z_pod[key][mode, 0] dZdata[key][mode, 0] /= dt_pod[0] dZdata[key][mode, 1] = 2. * \ (Z_pod[key][mode, 2]-Z_pod[key][mode, 1])/(3.*dt_pod[1]) dZdata[key][mode, 1] += dZdata[key][mode, 0]/3. for inx in range(2, times_pod.size-1): dZdata[key][mode, inx] = 12 * \ (Z_pod[key][mode, inx+1]-Z_pod[key] [mode, inx])/(23.*dt_pod[inx]) dZdata[key][mode, inx] += 16.*dZdata[key][mode, inx-1]/23. - 5.*dZdata[key][mode, inx-2]/23. elif flag == 'NY3': # Explicit Nystrom (k=3) dZdata[key][mode, 0:2] = Z_pod[key][mode, 1:3] - \ Z_pod[key][mode, 0:2] dZdata[key][mode, 0:2] /= dt_pod[0:2] for inx in range(2, times_pod.size-1): dZdata[key][mode, inx] = 3. * \ (Z_pod[key][mode, inx+1] - Z_pod[key] [mode, inx-1]) / (7.*dt_pod[inx]) dZdata[key][mode, inx] += (2.*dZdata[key] [mode, inx-1] - dZdata[key][mode, inx-2])/7. elif flag == 'BDF-EP2': # Extrapolated BDF order 2 dZdata[key][mode, 0] = Z_pod[key][mode, 1]-Z_pod[key][mode, 0] dZdata[key][mode, 0] /= dt_pod[0] for inx in range(1, times_pod.size-1): dZdata[key][mode, inx] = .75*Z_pod[key][mode, inx+1] - Z_pod[key][mode, inx] \ + 0.25*Z_pod[key][mode, inx] dZdata[key][mode, inx] /= (dt_pod[inx]) dZdata[key][mode, inx] += 0.5*dZdata[key][mode, inx-1] elif flag == 'BDF-EP3': # Extrapolated BDF Order 3 dZdata[key][mode, 0:2] = Z_pod[key][mode, 1:3] - \ Z_pod[key][mode, 0:2] dZdata[key][mode, 0:2] /= dt_pod[0:2] # dZdata[key][mode,1] = 2.*(Z_pod[key][mode,2]-Z_pod[key][mode,1])/(3.*dt_pod[1]); # dZdata[key][mode,1] += dZdata[key][mode,0]/3. for inx in range(2, times_pod.size-1): dZdata[key][mode, inx] = 11.*Z_pod[key][mode, inx+1]/18. - Z_pod[key][mode, inx] \ + 0.5*Z_pod[key][mode, inx-1] - \ Z_pod[key][mode, inx-2]/9. dZdata[key][mode, inx] /= dt_pod[inx] dZdata[key][mode, inx] += dZdata[key][mode, inx-1] - dZdata[key][mode, inx-2]/3. else: dZdata[key][mode, :] = Z_pod[key][mode, 1:] - \ Z_pod[key][mode, 0:-1] dZdata[key][mode, :] /= dt_pod return dZdata def build_dFdt_weights_multistep(Z_pod, times_pod, nw, A, flag=None): """ Compute RBF weights for different high order time discretization methods Available routines: 1) Explicit midpoint or LeapFrog scheme, 2) 2nd & 3rd order Adams Bashforth 3) Explicit 3rd order Nystrom method 4) 2nd and 3rd order extrapolated BDF methods ====== Input- Z_pod: dictionary of projected snapshots per component times_pod: array of normalized time points corresponding to snapshots nw: dictionary of number of POD modes per component A: RBF interpolation matrix flag: Denotes the selected time discretization scheme ====== Output- W_p: dictionary of RBF interpolation coefficients, size = [ nw[key] x Nt_pod-1 ] """ W_p = {} soln_names = Z_pod.keys() dZdata = build_dFdt_multistep(Z_pod, times_pod, nw, flag=flag) for key in soln_names: W_p[key] = np.zeros((nw[key], times_pod.size-1), 'd') for mode in range(nw[key]): W_p[key][mode, :] = np.linalg.solve(A, dZdata[key][mode, :]) return W_p, dZdata def rbf_multiquadric(r, epsilon=1.0, beta=2.5): """ multiquadric """ return np.sqrt((epsilon*r)**2 + 1.0) # return np.sqrt((1.0/epsilon*r)**2 + 1.0) def rbf_inverse_multiquadric(r, epsilon=1.0, beta=2.5): """ inverse multiquadric """ return np.power((epsilon*r)**2 + 1, -beta) # return np.power(1.0 + (1.0/epsilon*r)**2,-beta) def rbf_gaussian(r, epsilon=1.0, beta=2.5): """ gaussian """ return np.exp(-(epsilon*r)**2) def rbf_matern(r, epsilon=1.0, beta=2.5): """ matern kernel, order 0 """ return np.exp(-epsilon*r) def rbf_matern1(r, epsilon=1.0, beta=2.5): """ matern kernel, order 1 """ return np.exp(-epsilon*r)*(1 + epsilon*r) def rbf_norms(x1, x2, kernel=None): """ Computes the distance matrix for vector arguments x1, x2 x1 : N x M_A matrix, M_A vectors in N-space x2 : N x M_B matrix, M_B vectors in N-space If kernel is None, returns euclidean distance, else returns 1D distance matrix for Exp Sin Sqd kernel """ if kernel is None: return scipy.spatial.distance.cdist(x1.T, x2.T, 'euclidean') else: assert x1.shape[1] == x2.shape[1], 'x1 and x2 dimensions donot match' DM = np.empty((x1.shape[0], x2.shape[0]), dtype=np.double) for i in np.arange(0, x1.shape[0]): for j in
np.arange(0, x2.shape[0])
numpy.arange
import numpy as np import librosa class Element(object): def __init__(self, num_mic=4, sampling_frequency=16000, fft_length=512, fft_shift=256, sound_speed=343, theta_step=1, frame_num=1000000): self.num_mic = num_mic self.mic_angle_vector = np.array([45, 315, 225, 135]) # self.mic_angle_vector = np.array([315, 45, 225, 135]) self.mic_diameter = 0.064 self.sampling_frequency = sampling_frequency self.fft_length = fft_length self.fft_shift = fft_shift self.sound_speed = sound_speed self.theta_step = theta_step self.frame_num = frame_num def get_sterring_vector(self, look_direction): ''' return: sv of shape (N//2+1,num_mic) ''' frequency_vector = librosa.fft_frequencies(self.sampling_frequency, self.fft_length) steering_vector = np.exp(1j * 2 * np.pi / self.sound_speed * self.mic_diameter / 2 * np.einsum("i,j->ij",frequency_vector, np.cos(
np.deg2rad(look_direction)
numpy.deg2rad
import unittest from pythran.tests import TestEnv import numpy import tempfile import os from pythran.typing import NDArray, List, Tuple @TestEnv.module class TestNumpyFunc0(TestEnv): def test_extended_sum0(self): self.run_test("def numpy_extended_sum0(a): import numpy ; return numpy.sum(a)", numpy.arange(120).reshape((3,5,4,2)), numpy_extended_sum0=[NDArray[int,:,:,:,:]]) def test_extended_sum1(self): self.run_test("def numpy_extended_sum1(a): import numpy ; return numpy.sum(a[1])", numpy.arange(120).reshape((3,5,4,2)), numpy_extended_sum1=[NDArray[int,:,:,:,:]]) def test_extended_sum2(self): self.run_test("def numpy_extended_sum2(a): import numpy ; return numpy.sum(a[1,0])", numpy.arange(120).reshape((3,5,4,2)), numpy_extended_sum2=[NDArray[int,:,:,:,:]]) def test_extended_sum3(self): self.run_test("def numpy_extended_sum3(a): import numpy ; return numpy.sum(a[1:-1])", numpy.arange(120).reshape((3,5,4,2)), numpy_extended_sum3=[NDArray[int,:,:,:,:]]) def test_extended_sum4(self): self.run_test("def numpy_extended_sum4(a): import numpy ; return numpy.sum(a[1:-1,0])", numpy.arange(120).reshape((3,5,4,2)), numpy_extended_sum4=[NDArray[int,:,:,:,:]]) def test_extended_sum5(self): self.run_test("def numpy_extended_sum5(a): import numpy ; return numpy.sum(a)", numpy.arange(120).reshape((3,5,4,2)), numpy_extended_sum5=[NDArray[int,:,:,:,:]]) def test_out_sum0(self): self.run_test("def numpy_out_sum0(a, b): import numpy ; return numpy.sum(a, axis=0, out=b)", numpy.arange(10).reshape((5,2)), numpy.zeros(2, dtype=int), numpy_out_sum0=[NDArray[int,:,:], NDArray[int,:]]) def test_out_sum1(self): self.run_test("def numpy_out_sum1(a, b): import numpy ; return numpy.sum(a, axis=0, out=b)", numpy.arange(10).reshape((5,2)), numpy.ones(2, dtype=int), numpy_out_sum1=[NDArray[int,:,:], NDArray[int,:]]) def test_out_sum2(self): self.run_test("def numpy_out_sum2(a, b): import numpy ; return numpy.sum(a, axis=1, out=b)", numpy.arange(10).reshape((5,2)), numpy.zeros(5, dtype=int), numpy_out_sum2=[NDArray[int,:,:], NDArray[int,:]]) def test_numpy_shape_as_function(self): self.run_test("def numpy_shape_as_function(a): import numpy ; return numpy.shape(a)", numpy.ones(3, numpy.int16), numpy_shape_as_function=[NDArray[numpy.int16,:]]) def test_numpy_size_as_function(self): self.run_test("def numpy_size_as_function(a): import numpy ; return numpy.size(a)", numpy.ones(3, numpy.int16), numpy_size_as_function=[NDArray[numpy.int16,:]]) def test_numpy_ndim_as_function(self): self.run_test("def numpy_ndim_as_function(a): import numpy ; return numpy.ndim(a)", numpy.ones(3, numpy.int16), numpy_ndim_as_function=[NDArray[numpy.int16,:]]) def test_frexp0(self): self.run_test("def np_frexp0(a): import numpy as np ; return np.frexp(a)", 1.5, np_frexp0=[float]) def test_frexp1(self): self.run_test("def np_frexp1(a): import numpy as np ; return np.frexp(a)", numpy.array([1.1,2.2,3.3]), np_frexp1=[NDArray[float,:]]) def test_frexp2(self): self.run_test("def np_frexp2(a): import numpy as np ; return np.frexp(a+a)", numpy.array([1.1,2.2,3.3]), np_frexp2=[NDArray[float,:]]) def test_ndindex0(self): self.run_test("def np_ndindex0(): import numpy as np ; return [x for x in np.ndindex(5,6)]", np_ndindex0=[]) def test_ndindex1(self): self.run_test("def np_ndindex1(a): import numpy as np ; return [x for x in np.ndindex(a)]", 3, np_ndindex1=[int]) def test_ndindex2(self): self.run_test("def np_ndindex2(n): import numpy as np ; return [x for x in np.ndindex((n,n))]", 3, np_ndindex2=[int]) def test_ndenumerate0(self): self.run_test("def np_ndenumerate0(a): import numpy as np ; return [x for x in np.ndenumerate(a)]", numpy.array([[1, 2], [3, 4]]), np_ndenumerate0=[NDArray[int,:,:]]) def test_ndenumerate1(self): self.run_test("def np_ndenumerate1(a): import numpy as np ; return [x for x in np.ndenumerate(a)]", numpy.array([1, 2, 3, 4]), np_ndenumerate1=[NDArray[int,:]]) def test_nansum0(self): self.run_test("def np_nansum0(a): import numpy as np ; return np.nansum(a)" , numpy.array([[1, 2], [3, numpy.nan]]), np_nansum0=[NDArray[float,:,:]]) def test_nansum1(self): self.run_test("def np_nansum1(a): import numpy as np ; return np.nansum(a)" , numpy.array([[1, 2], [numpy.NINF, numpy.nan]]), np_nansum1=[NDArray[float,:,:]]) def test_nansum2(self): self.run_test("def np_nansum2(a): import numpy as np ; return np.nansum(a)", [1., numpy.nan], np_nansum2=[List[float]]) def test_nanmin0(self): self.run_test("def np_nanmin0(a): import numpy as np ; return np.nanmin(a)" , numpy.array([[1, 2], [3, numpy.nan]]), np_nanmin0=[NDArray[float,:,:]]) def test_nanmin1(self): self.run_test("def np_nanmin1(a): import numpy as np ; return np.nanmin(a)" , numpy.array([[1, 2], [numpy.NINF, numpy.nan]]), np_nanmin1=[NDArray[float,:,:]]) def test_nanmax0(self): self.run_test("def np_nanmax0(a): import numpy as np ; return np.nanmax(a)" , numpy.array([[1, 2], [3, numpy.nan]]), np_nanmax0=[NDArray[float,:,:]]) def test_nanmax1(self): self.run_test("def np_nanmax1(a): import numpy as np ; return np.nanmax(a)" , numpy.array([[1, 2], [numpy.inf, numpy.nan]]) , np_nanmax1=[NDArray[float,:,:]]) def test_np_residual(self): self.run_test("""import numpy as np def np_residual(): nx, ny, nz= 75, 75, 100 hx, hy = 1./(nx-1), 1./(ny-1) P_left, P_right = 0, 0 P_top, P_bottom = 1, 0 P = np.ones((nx, ny, nz), np.float64) d2x = np.zeros_like(P) d2y = np.zeros_like(P) d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:-2]) / hx/hx d2x[0] = (P[1] - 2*P[0] + P_left)/hx/hx d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx d2y[:,1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,:-2])/hy/hy d2y[:,0] = (P[:,1] - 2*P[:,0] + P_bottom)/hy/hy d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2])/hy/hy return d2x + d2y + 5*np.cosh(P).mean()**2 """, np_residual=[]) def test_np_func2(self): self.run_test("""import numpy as np def np_func2(x): f = [x[0] * np.cos(x[1]) - 4, x[1]*x[0] - x[1] - 5] df = np.array([[np.cos(x[1]), -x[0] * np.sin(x[1])], [x[1], x[0] - 1]]) return f, df """, [1.0, 2.0, 3.0], np_func2=[List[float]]) def test_np_peval(self): self.run_test("""import numpy def np_peval(x, p): return p[0]*numpy.sin(2*numpy.pi*p[1]*x+p[2]) """, 12., [1.0, 2.0, 3.0], np_peval=[float, List[float]]) def test_np_residuals(self): self.run_test("""import numpy def np_residuals(): x = numpy.arange(0,6e-2,6e-2/30) A,k,theta = 10, 1.0/3e-2, numpy.pi/6 return A*numpy.sin(2*numpy.pi*k*x+theta) """, np_residuals=[]) def test_np_func_deriv(self): self.run_test("""import numpy def np_func_deriv(x, sign=1.0): dfdx0 = sign*(-2*x[0] + 2*x[1] + 2) dfdx1 = sign*(2*x[0] - 4*x[1]) return numpy.array([ dfdx0, dfdx1 ]) """, [-1.0, 1.0], -1.0, np_func_deriv=[List[float], float]) def test_np_func(self): self.run_test("""import numpy def np_func(x, sign=1.0): return sign*(2*x[0]*x[1] + 2*x[0] - x[0]**2 - 2*x[1]**2) """, [-1.0, 1.0], -1.0, np_func=[List[float], float]) def test_rosen_hess_p(self): self.run_test("""import numpy def np_rosen_hess_p(x, p): x = numpy.asarray(x) Hp = numpy.zeros_like(x) Hp[0] = (1200*x[0]**2 - 400*x[1] + 2)*p[0] - 400*x[0]*p[1] Hp[1:-1] = -400*x[:-2]*p[:-2]+(202+1200*x[1:-1]**2-400*x[2:])*p[1:-1] \ -400*x[1:-1]*p[2:] Hp[-1] = -400*x[-2]*p[-2] + 200*p[-1] return Hp """, numpy.array([1.3, 0.7, 0.8, 1.9, 1.2]), numpy.array([2.3, 1.7, 1.8, 2.9, 2.2]), np_rosen_hess_p=[NDArray[float,:], NDArray[float,:]]) def test_rosen_hess(self): self.run_test("""import numpy def np_rosen_hess(x): x = numpy.asarray(x) H = numpy.diag(-400*x[:-1],1) - numpy.diag(400*x[:-1],-1) diagonal = numpy.zeros_like(x) diagonal[0] = 1200*x[0]**2-400*x[1]+2 diagonal[-1] = 200 diagonal[1:-1] = 202 + 1200*x[1:-1]**2 - 400*x[2:] H = H + numpy.diag(diagonal) return H """, numpy.array([1.3, 0.7, 0.8, 1.9, 1.2]), np_rosen_hess=[NDArray[float,:]]) def test_rosen_der(self): self.run_test("""import numpy def np_rosen_der(x): xm = x[1:-1] xm_m1 = x[:-2] xm_p1 = x[2:] der = numpy.zeros_like(x) der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm) der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0]) der[-1] = 200*(x[-1]-x[-2]**2) return der """, numpy.array([1.3, 0.7, 0.8, 1.9, 1.2]), np_rosen_der=[NDArray[float,:]]) def test_rosen(self): self.run_test("import numpy\ndef np_rosen(x): return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)", numpy.array([1.3, 0.7, 0.8, 1.9, 1.2]), np_rosen=[NDArray[float,:]]) def test_nanargmax0(self): self.run_test("def np_nanargmax0(a): from numpy import nanargmax; return nanargmax(a)", numpy.array([[numpy.nan, 4], [2, 3]]), np_nanargmax0=[NDArray[float,:,:]]) def test_nanargmin0(self): self.run_test("def np_nanargmin0(a): from numpy import nanargmin ; return nanargmin(a)", numpy.array([[numpy.nan, 4], [2, 3]]), np_nanargmin0=[NDArray[float,:,:]]) def test_nan_to_num0(self): self.run_test("def np_nan_to_num0(a): import numpy as np ; return np.nan_to_num(a)", numpy.array([numpy.inf, -numpy.inf, numpy.nan, -128, 128]), np_nan_to_num0=[NDArray[float,:]]) def test_median0(self): self.run_test("def np_median0(a): from numpy import median ; return median(a)", numpy.array([[1, 2], [3, 4]]), np_median0=[NDArray[int,:,:]]) def test_median1(self): self.run_test("def np_median1(a): from numpy import median ; return median(a)", numpy.array([1, 2, 3, 4,5]), np_median1=[NDArray[int,:]]) def test_median2(self): self.run_test("def np_median2(a): from numpy import median ; return median(a, None)", numpy.array([1, 2, 3, 4,5]), np_median2=[NDArray[int,:]]) def test_median3(self): self.run_test("def np_median3(a): from numpy import median ; return median(a, 0)", numpy.array([[1, 2, 3], [4,5,6]]), np_median3=[NDArray[int,:,:]]) def test_median4(self): self.run_test("def np_median4(a): from numpy import median ; return median(a, 1)", numpy.array([[1, 2, 3], [4,5,6]]), np_median4=[NDArray[int,:,:]]) def test_median5(self): self.run_test("def np_median5(a): from numpy import median ; return median(a, -1)", numpy.array([[[1], [2], [3]], [[4],[5],[6]]]), np_median5=[NDArray[int,:,:,:]]) def test_median6(self): self.run_test("def np_median6(l): from numpy import median ; return l + median(l)", numpy.array([3, 1]), np_median6=[NDArray[int, :]]) def test_mean0(self): self.run_test("def np_mean0(a): from numpy import mean ; return mean(a)", numpy.array([[1, 2], [3, 4]]), np_mean0=[NDArray[int,:,:]]) def test_mean1(self): self.run_test("def np_mean1(a): from numpy import mean ; return mean(a, 1)", numpy.array([[1, 2], [3, 4.]]), np_mean1=[NDArray[float,:,:]]) def test_mean2(self): self.run_test("def np_mean2(a): from numpy import mean ; return mean(a)", numpy.array([[[1, 2], [3, 4.]]]), np_mean2=[NDArray[float,:,:,:]]) def test_mean3(self): self.run_test("def np_mean3(a): from numpy import mean ; return mean(a, 0)", numpy.array([[[1, 2], [3, 4.]]]), np_mean3=[NDArray[float,:,:,:]]) def test_mean4(self): self.run_test("def np_mean4(a): from numpy import mean ; return mean(a, 1)", numpy.array([[[1, 2], [3, 4.]]]), np_mean4=[NDArray[float,:,:,:]]) def test_mean5(self): self.run_test("def np_mean5(a): from numpy import mean ; return mean(a, 2)", numpy.array([[[1, 2], [3, 4.]]]), np_mean5=[NDArray[float,:,:,:]]) def test_var0(self): self.run_test("def np_var0(a): return a.var()", numpy.array([[1, 2], [3, 4]], dtype=float), np_var0=[NDArray[float,:,:]]) def test_var1(self): self.run_test("def np_var1(a): from numpy import var ; return var(a, 1)", numpy.array([[1, 2], [3, 4.]]), np_var1=[NDArray[float,:,:]]) def test_var2(self): self.run_test("def np_var2(a): from numpy import var ; return var(a)", numpy.array([[[1, 2], [3, 4.]]]), np_var2=[NDArray[float,:,:,:]]) def test_var3(self): self.run_test("def np_var3(a): from numpy import var ; return var(a, 0)", numpy.array([[[1, 2], [3, 4.]]]), np_var3=[NDArray[float,:,:,:]]) def test_var4(self): self.run_test("def np_var4(a): from numpy import var ; return var(a, 1)", numpy.array([[[1, 2], [3, 4.]]]), np_var4=[NDArray[float,:,:,:]]) def test_var5(self): self.run_test("def np_var5(a): from numpy import var ; return var(a, 2)", numpy.array([[[1, 2], [3, 4.]]]), np_var5=[NDArray[float,:,:,:]]) def test_var6(self): self.run_test("def np_var6(a): from numpy import var ; return var(1j * a)", numpy.array([[[1, 2], [3, 4.]]]), np_var6=[NDArray[float,:,:,:]]) def test_var7(self): self.run_test("def np_var7(a): from numpy import var ; return var(1j * a, 2)", numpy.array([[[1, 2], [3, 4.]]]), np_var7=[NDArray[float,:,:,:]]) def test_var8(self): self.run_test("def np_var8(a): from numpy import var ; return var(1j * a, 2)", numpy.array([[[1, 2], [3, 4]]]), np_var8=[NDArray[int,:,:,:]]) def test_var9(self): self.run_test("def np_var9(a): from numpy import var ; return var(1j * a)", numpy.array([[[1, 2], [3, 4]]]), np_var9=[NDArray[int,:,:,:]]) def test_std0(self): self.run_test("def np_std0(a): from numpy import std ; return std(a)", numpy.array([[[1, 2], [3, 4]]]), np_std0=[NDArray[int, :, :, :]]) def test_std1(self): self.run_test("def np_std1(a): from numpy import std ; return std(a, 0)", numpy.array([[[1, 2], [3, 4]]]), np_std1=[NDArray[int, :, :, :]]) def test_std2(self): self.run_test("def np_std2(a): from numpy import std ; return std(a, 1)", numpy.array([[[1, 2], [3, 4]]]), np_std2=[NDArray[int, :, :, :]]) def test_std3(self): self.run_test("def np_std3(a): from numpy import std ; return std(1j*a, 1)", numpy.array([[[1, 2], [3, 4]]]), np_std3=[NDArray[int, :, :, :]]) def test_logspace0(self): self.run_test("def np_logspace0(start, stop): from numpy import logspace ; start, stop = 3., 4. ; return logspace(start, stop, 4)", 3., 4., np_logspace0=[float, float]) def test_logspace1(self): self.run_test("def np_logspace1(start, stop): from numpy import logspace ; return logspace(start, stop, 4, False)", 3., 4., np_logspace1=[float, float]) def test_logspace2(self): self.run_test("def np_logspace2(start, stop): from numpy import logspace ; return logspace(start, stop, 4, True, 2.0)", 3., 4., np_logspace2=[float, float]) def test_lexsort0(self): self.run_test("def np_lexsort0(surnames): from numpy import lexsort ; first_names = ('Heinrich', 'Galileo', 'Gustav') ; return lexsort((first_names, surnames))", ('Hertz', 'Galilei', 'Hertz'), np_lexsort0=[Tuple[str, str, str]]) def test_lexsort1(self): self.run_test("def np_lexsort1(a): from numpy import lexsort ; b = [1,5,1,4,3,4,4] ; return lexsort((a,b))", [9,4,0,4,0,2,1], np_lexsort1=[List[int]]) def test_lexsort2(self): self.run_test("def np_lexsort2(a): from numpy import lexsort ; return lexsort((a+1,a-1))", numpy.array([1,5,1,4,3,4,4]), np_lexsort2=[NDArray[int,:]]) def test_issctype0(self): self.run_test("def np_issctype0(): from numpy import issctype, int32 ; a = int32 ; return issctype(a)", np_issctype0=[]) def test_issctype1(self): self.run_test("def np_issctype1(): from numpy import issctype ; a = list ; return issctype(a)", np_issctype1=[]) def test_issctype2(self): self.run_test("def np_issctype2(a): from numpy import issctype ; return issctype(a)", 3.1, np_issctype2=[float]) def test_isscalar0(self): self.run_test("def np_isscalar0(a): from numpy import isscalar ; return isscalar(a)", 3.1, np_isscalar0=[float]) def test_isscalar1(self): self.run_test("def np_isscalar1(a): from numpy import isscalar ; return isscalar(a)", [3.1], np_isscalar1=[List[float]]) def test_isscalar2(self): self.run_test("def np_isscalar2(a): from numpy import isscalar ; return isscalar(a)", '3.1', np_isscalar2=[str]) def test_isrealobj0(self): self.run_test("def np_isrealobj0(a): from numpy import isrealobj ; return isrealobj(a)", numpy.array([1,2,3.]), np_isrealobj0=[NDArray[float,:]]) def test_isrealobj1(self): self.run_test("def np_isrealobj1(a): from numpy import isrealobj ; return isrealobj(a)", numpy.array([1,2,3.,4 + 1j]).reshape((2,2)), np_isrealobj1=[NDArray[complex,:,:]]) def test_isreal0(self): self.run_test("def np_isreal0(a): from numpy import isreal ; return isreal(a)", numpy.array([1,2,3.]), np_isreal0=[NDArray[float,:]]) def test_isreal1(self): self.run_test("def np_isreal1(a): from numpy import isreal ; return isreal(a)", numpy.array([1,2,3.,4 + 1j]).reshape((2,2)), np_isreal1=[NDArray[complex,:,:]]) def test_iscomplex0(self): self.run_test("def np_iscomplex0(a): from numpy import iscomplex ; return iscomplex(a)", numpy.array([1, 2, 3.]), np_iscomplex0=[NDArray[float,:]]) def test_iscomplex1(self): self.run_test("def np_iscomplex1(a): from numpy import iscomplex ; return iscomplex(a)", numpy.array([1,2,3.,4 + 1j]).reshape((2,2)), np_iscomplex1=[NDArray[complex,:,:]]) def test_intersect1d0(self): self.run_test("def np_intersect1d0(a): from numpy import intersect1d ; b = [3, 1, 2, 1] ; return intersect1d(a,b)", [1, 3, 4, 3], np_intersect1d0=[List[int]]) def test_insert0(self): self.run_test("def np_insert0(a): from numpy import insert ; return insert(a, 1, 5)", numpy.array([[1, 1], [2, 2], [3, 3]]), np_insert0=[NDArray[int,:,:]]) def test_insert1(self): self.run_test("def np_insert1(a): from numpy import insert ; return insert(a, [1,2], [5,6])", numpy.array([[1, 1], [2, 2], [3, 3]]), np_insert1=[NDArray[int,:,:]]) def test_insert2(self): self.run_test("def np_insert2(a): from numpy import insert ; return insert(a, [1,1], [5.2,6])", numpy.array([[1, 1], [2, 2], [3, 3]]), np_insert2=[NDArray[int,:,:]]) def test_inner0(self): self.run_test("def np_inner0(x): from numpy import inner ; y = 3 ; return inner(x,y)", 2, np_inner0=[int]) def test_inner1(self): self.run_test("def np_inner1(x): from numpy import inner ; y = [2, 3] ; return inner(x,y)", [2, 3], np_inner1=[List[int]]) def test_indices0(self): self.run_test("def np_indices0(s): from numpy import indices ; return indices(s)", (2, 3), np_indices0=[Tuple[int, int]]) def test_identity0(self): self.run_test("def np_identity0(a): from numpy import identity ; return identity(a)", 3, np_identity0=[int]) def test_identity1(self): self.run_test("def np_identity1(a): from numpy import identity ;return identity(a)", 4, np_identity1=[int]) def test_tofile0(self): temp_name = tempfile.mkstemp()[1] x = numpy.random.randint(0,2**8,1000).astype(numpy.uint8) try: self.run_test("def np_tofile0(x,file): import numpy ; x.tofile(file); return numpy.fromfile(file)", x, temp_name, np_tofile0=[NDArray[numpy.uint8,:], str]) finally: os.remove(temp_name) def test_tofile1(self): temp_name = tempfile.mkstemp()[1] x = numpy.random.randint(0,2**16,1000).astype(numpy.uint16) try: self.run_test("def np_tofile1(x,file): import numpy ; x.tofile(file); return numpy.fromfile(file)", x, temp_name, np_tofile1=[NDArray[numpy.uint16,:], str]) finally: os.remove(temp_name) def test_tofile2(self): temp_name = tempfile.mkstemp()[1] x = numpy.random.randint(0,2**32,1000).astype(numpy.uint32) try: self.run_test("def np_tofile2(x,file): import numpy ; x.tofile(file); return numpy.fromfile(file)", x, temp_name, np_tofile2=[NDArray[numpy.uint32,:], str]) finally: os.remove(temp_name) def test_tofile3(self): temp_name = tempfile.mkstemp()[1] x = numpy.random.random(1000).astype(numpy.float32) try: self.run_test("def np_tofile3(x,file): import numpy ; x.tofile(file); return numpy.fromfile(file)", x, temp_name, np_tofile3=[NDArray[numpy.float32,:], str]) finally: os.remove(temp_name) def test_tofile4(self): temp_name = tempfile.mkstemp()[1] x = numpy.random.random(1000).astype(numpy.float64) try: self.run_test("def np_tofile4(x,file): import numpy ; x.tofile(file); return numpy.fromfile(file)", x, temp_name, np_tofile4=[NDArray[numpy.float64,:], str]) finally: os.remove(temp_name) def test_fromfile0(self): temp_name = tempfile.mkstemp()[1] x = numpy.random.randint(0,2**8,1000).astype(numpy.uint8) x.tofile(temp_name) try: self.run_test("def np_fromfile0(file): from numpy import fromfile, uint8 ; return fromfile(file, uint8)", temp_name, np_fromfile0=[str]) finally: os.remove(temp_name) def test_fromfile1(self): temp_name = tempfile.mkstemp()[1] x = numpy.random.randint(0,2**16,1000).astype(numpy.uint16) x.tofile(temp_name) try: self.run_test("def np_fromfile1(file): from numpy import fromfile, uint16 ; return fromfile(file, uint16)", temp_name, np_fromfile1=[str]) finally: os.remove(temp_name) def test_fromfile2(self): temp_name = tempfile.mkstemp()[1] x =
numpy.random.randint(0,2**32,1000)
numpy.random.randint
from .particle import Particle import numpy as np from scipy import constants # Globals epsilon_0 = constants.epsilon_0 pi = constants.pi class Charge(Particle): """Base class for a point electric charge Attributes: position: particle position, 1D numpy array of length 3 charge: electric charge in Coulomb. Methods: getPosition(): Returns numpy array """ def __init__( self, position, charge, velocity=[0, 0, 0], acceleration=[0, 0, 0], mass=np.inf, ): """Charge class initializer Args: position: position. units: meters. numpy array or a list. charge: electric charge. units: Coulombs. float. """ Particle.__init__(self, position, velocity, acceleration, mass) self.charge = charge @property def q(self): """Electric charge value in Coulomb""" return self.charge def field(self, fpos, type="analytical", h=0.001, component=None): """Electric field at a given position. Args: fpos: field position. numpy array or a list. type: type of field calculation. 'analytical' (default) or from gradient of potential. h: potential gradient spatial difference. component: 'x', 'y', 'z', or None (default) """ fpos = np.asarray(fpos) if not self.__verify3D__(fpos): raise TypeError( "Initializer argument must be a \ 1D numpy array or list of length 3" ) if np.array_equal(fpos, self.position): electric_field = fpos.astype(float) electric_field.fill(np.nan) return electric_field if type == "analytical": displacement = fpos - self.position electric_field = ( self.q * (4 * pi * epsilon_0) ** -1 * displacement * np.linalg.norm(displacement) ** -3 ) if type == "potential": potential_grid = np.empty([3, 3, 3], dtype=object) x =
np.linspace(fpos[0] - h, fpos[0] + h, 3)
numpy.linspace
import numpy as np import logging import itertools import operator from gelcoverage.tools.bed_reader import BedReader from gelcoverage.tools.bigwig_reader import BigWigReader import gelcoverage.constants as constants def find_gaps(coverages, start_position, coverage_threshold): """ Find continuous genomic positions under a given threshold coverage_threshold. :param coverages: list of depth of coverage values :param start_position: starting position of the coverages sequence :param coverage_threshold: the coverage threshold to determine gaps :return: the gaps start and end genomic coordinates in JSON-friendly format. Chromosome is not set as this information will be embedded within an exon-transcript-gene where the chromosome is available. """ end = start_position + len(coverages) open_gap = False current_gap = {} gaps = [] # Iterates through every coverage position for idx, value in enumerate(coverages): if value < coverage_threshold and not open_gap: open_gap = True current_gap[constants.GAP_START] = start_position + idx elif value >= coverage_threshold and open_gap: open_gap = False current_gap[constants.GAP_END] = start_position + idx - 1 current_gap[constants.GAP_LENGTH] = current_gap[constants.GAP_END] - current_gap[constants.GAP_START] + 1 gaps.append(current_gap) current_gap = {} # Closes the last gap when it extends until the last position if open_gap: current_gap[constants.GAP_END] = end current_gap[constants.GAP_LENGTH] = current_gap[constants.GAP_END] - current_gap[constants.GAP_START] + 1 gaps.append(current_gap) return gaps def compute_exon_level_statistics(coverages, gc_content): """ Computes coverage and GC content statistics :param coverages: list of depth of coverage values :param gc_content: the GC content for this sequence precomputed :return: the coverage and GC content exon statistics in JSON-friendly format """ stats = { constants.BASES: len(coverages) if coverages else 0, constants.AVERAGE: round(float(np.mean(coverages)), 3) if coverages else 0.0, constants.MEDIAN: round(float(np.median(coverages)), 3) if coverages else 0.0, constants.PERCENTILE75: round(float(np.percentile(coverages, 75)), 3) if coverages else 0.0, constants.PERCENTILE25: round(float(np.percentile(coverages, 25)), 3) if coverages else 0.0, constants.SD: round(float(np.std(coverages)), 3) if coverages else 0.0, constants.BASES_LT15X: int(np.sum(1 for x in coverages if x < 15)) if coverages else 0, constants.BASES_GTE15X: int(np.sum(1 for x in coverages if x >= 15)) if coverages else 0, constants.BASES_GTE30X: int(np.sum(1 for x in coverages if x >= 30)) if coverages else 0, constants.BASES_GTE50X: int(np.sum(1 for x in coverages if x >= 50) if coverages else 0) } stats[constants.LT15X] = round(float(stats[constants.BASES_LT15X]) / stats[constants.BASES], 5) \ if stats[constants.BASES] > 0 else 0.0 stats[constants.GTE15X] = round(float(stats[constants.BASES_GTE15X]) / stats[constants.BASES], 5) \ if stats[constants.BASES] > 0 else 0.0 stats[constants.GTE30X] = round(float(stats[constants.BASES_GTE30X]) / stats[constants.BASES], 5) \ if stats[constants.BASES] > 0 else 0.0 stats[constants.GTE50X] = round(float(stats[constants.BASES_GTE50X]) / stats[constants.BASES], 5) \ if stats[constants.BASES] > 0 else 0.0 if gc_content is not None: # GC content is not provided for padded exons stats[constants.GC_CONTENT] = gc_content return stats def compute_transcript_level_statistics(exons): """ Computes coverage and GC content statistics at gene level by aggregating the statistics at exon level. Median and percentiles are estimated by weighting the per-exon metric by the number of bases. :param exons: list of exon coverage and GC content statistics :return: the coverage and GC content gene statistics in JSON-friendly format """ exons_stats = [x[constants.STATISTICS] for x in exons] total_bases = int(np.sum([x[constants.BASES] for x in exons_stats])) if exons_stats else 0 bases_lt_15x = int(np.sum([x[constants.BASES_LT15X] for x in exons_stats])) if exons_stats else 0 bases_gte_15x = int(np.sum([x[constants.BASES_GTE15X] for x in exons_stats])) if exons_stats else 0 bases_gte_30x = int(np.sum([x[constants.BASES_GTE30X] for x in exons_stats])) if exons_stats else 0 bases_gte_50x = int(np.sum([x[constants.BASES_GTE50X] for x in exons_stats])) if exons_stats else 0 stats = { constants.BASES: total_bases, constants.AVERAGE: round(float(np.mean([x[constants.AVERAGE] for x in exons_stats])), 3) if exons_stats else 0.0, constants.MEDIAN: round(float(np.sum( [x[constants.MEDIAN] * x[constants.BASES] for x in exons_stats])) / total_bases, 3) if exons_stats else float(0.0), constants.PERCENTILE25: round(float(np.sum( [x[constants.PERCENTILE25] * x[constants.BASES] for x in exons_stats])) / total_bases, 3) if exons_stats else 0.0, constants.PERCENTILE75: round(float(np.sum( [x[constants.PERCENTILE75] * x[constants.BASES] for x in exons_stats])) / total_bases, 3) if exons_stats else 0.0, constants.SD: round(float(np.sum( [x[constants.SD] * x[constants.BASES] for x in exons_stats])) / total_bases, 3) if exons_stats else 0.0, constants.LT15X: round(float(bases_lt_15x) / total_bases, 5) if total_bases > 0 else 0.0, constants.GTE15X: round(float(bases_gte_15x) / total_bases, 5) if total_bases > 0 else 0.0, constants.GTE30X: round(float(bases_gte_30x) / total_bases, 5) if total_bases > 0 else 0.0, constants.GTE50X: round(float(bases_gte_50x) / total_bases, 5) if total_bases > 0 else 0.0, constants.BASES_LT15X: bases_lt_15x, constants.BASES_GTE15X: bases_gte_15x, constants.BASES_GTE30X: bases_gte_30x, constants.BASES_GTE50X: bases_gte_50x } try: stats[constants.GC_CONTENT] = round(float(np.sum( [x[constants.GC_CONTENT] * x[constants.BASES] for x in exons_stats]) / total_bases), 5) \ if exons_stats and total_bases > 0 else 0.0 except KeyError: # There is no GC content data to show (e.g.: the union transcript) pass return stats def compute_coding_region_statistics(genes): """ :param genes: :return: """ logging.info("Computing coding region statistics...") results = { constants.STATISTICS: None, constants.CHROMOSOMES: [] } # Avoids failing when no genes have been reported (might be related with wrong BAM and/or gene list) if len(genes) == 0: return results # Compute the stats aggregated for union transcript genes_stats = [x[constants.UNION_TRANSCRIPT][constants.STATISTICS] for x in genes] total_bases = int(np.sum([x[constants.BASES] for x in genes_stats])) if genes_stats else 0 bases_lt_15x = int(np.sum([x[constants.BASES_LT15X] for x in genes_stats])) if genes_stats else 0 bases_gte_15x = int(np.sum([x[constants.BASES_GTE15X] for x in genes_stats])) if genes_stats else 0 bases_gte_30x = int(np.sum([x[constants.BASES_GTE30X] for x in genes_stats])) if genes_stats else 0 bases_gte_50x = int(np.sum([x[constants.BASES_GTE50X] for x in genes_stats])) if genes_stats else 0 results[constants.STATISTICS] = { constants.BASES: total_bases, constants.AVERAGE: round(float(np.mean([x[constants.AVERAGE] for x in genes_stats])), 3) if genes_stats else 0.0, constants.MEDIAN: round(float(np.sum( [x[constants.MEDIAN] * x[constants.BASES] for x in genes_stats]) / total_bases), 3) if genes_stats and total_bases > 0 else 0.0, constants.PERCENTILE75: round(float(np.sum( [x[constants.PERCENTILE75] * x[constants.BASES] for x in genes_stats]) / total_bases), 3) if genes_stats and total_bases > 0 else 0.0, constants.PERCENTILE25: round(float(np.sum( [x[constants.PERCENTILE25] * x[constants.BASES] for x in genes_stats]) / total_bases), 3) if genes_stats and total_bases > 0 else 0.0, constants.SD: round(float(np.sum( [x[constants.SD] * x[constants.BASES] for x in genes_stats]) / total_bases), 3) if genes_stats and total_bases > 0 else 0.0, constants.LT15X: round(float(bases_lt_15x) / total_bases, 5) if total_bases > 0 else 0.0, constants.GTE15X: round(float(bases_gte_15x) / total_bases, 5) if total_bases > 0 else 0.0, constants.GTE30X: round(float(bases_gte_30x) / total_bases, 5) if total_bases > 0 else 0.0, constants.GTE50X: round(float(bases_gte_50x) / total_bases, 5) if total_bases > 0 else 0.0 } # Compute the stats disaggregated by chromosome chr2stats = [(x[constants.CHROMOSOME], x[constants.UNION_TRANSCRIPT][constants.STATISTICS]) for x in genes] def groupby_chromosome(list_of_tuples): it = itertools.groupby(list_of_tuples, operator.itemgetter(0)) for _chromosome, subiter in it: yield _chromosome, [item[1] for item in subiter] # Aggregates stats for all chromosomes chromosome_stats = dict(groupby_chromosome(chr2stats)) autosomes_stats = [] for chromosome, chr_stats in chromosome_stats.iteritems(): chr_total_bases = int(np.sum([x[constants.BASES] for x in chr_stats])) if chr_stats else 0 chr_bases_lt_15x = int(np.sum([x[constants.BASES_LT15X] for x in chr_stats])) if chr_stats else 0 chr_bases_gte_15x = int(np.sum([x[constants.BASES_GTE15X] for x in chr_stats])) if chr_stats else 0 chr_bases_gte_30x = int(np.sum([x[constants.BASES_GTE30X] for x in chr_stats])) if chr_stats else 0 chr_bases_gte_50x = int(np.sum([x[constants.BASES_GTE50X] for x in chr_stats])) if chr_stats else 0 formatted_chr_stats = { constants.CHROMOSOME: chromosome, constants.BASES: chr_total_bases, constants.AVERAGE: round(float(np.mean([x[constants.AVERAGE] for x in chr_stats])), 3) if chr_stats else 0.0, constants.MEDIAN: round(float(np.sum( [x[constants.MEDIAN] * x[constants.BASES] for x in chr_stats]) / chr_total_bases), 3) if chr_stats and chr_total_bases > 0 else 0.0, constants.PERCENTILE75: round(float(np.sum( [x[constants.PERCENTILE75] * x[constants.BASES] for x in chr_stats]) / chr_total_bases), 3) if chr_stats and chr_total_bases > 0 else 0.0, constants.PERCENTILE25: round(float(np.sum( [x[constants.PERCENTILE25] * x[constants.BASES] for x in chr_stats]) / chr_total_bases), 3) if chr_stats and chr_total_bases > 0 else 0.0, constants.SD: round(float(np.sum( [x[constants.SD] * x[constants.BASES] for x in chr_stats]) / chr_total_bases), 3) if chr_stats and chr_total_bases > 0 else 0.0, constants.LT15X: round(float(chr_bases_lt_15x) / chr_total_bases, 5) if chr_total_bases > 0 else 0.0, constants.GTE15X: round(float(chr_bases_gte_15x) / chr_total_bases, 5) if chr_total_bases > 0 else 0.0, constants.GTE30X: round(float(chr_bases_gte_30x) / chr_total_bases, 5) if chr_total_bases > 0 else 0.0, constants.GTE50X: round(float(chr_bases_gte_50x) / chr_total_bases, 5) if chr_total_bases > 0 else 0.0 } results[constants.CHROMOSOMES].append(formatted_chr_stats) logging.info("Coding region statistics for chromosome %s computed!" % chromosome) # Records stats for autosome if chromosome in constants.AUTOSOME_IDS: autosomes_stats.append(formatted_chr_stats) # Aggregates stats for autosomes autosomes_total_bases = int(np.sum([x[constants.BASES] for x in autosomes_stats])) if autosomes_stats else 0 autosomes_chr_stats = { constants.CHROMOSOME: constants.AUTOSOMES, constants.BASES: autosomes_total_bases, constants.AVERAGE: round(float(np.mean([x[constants.AVERAGE] for x in autosomes_stats])), 3) if autosomes_stats else 0.0, constants.MEDIAN: round(float(np.sum( [x[constants.MEDIAN] * x[constants.BASES] for x in autosomes_stats]) / autosomes_total_bases), 3) if autosomes_stats and autosomes_total_bases > 0 else 0.0, constants.PERCENTILE75: round(float(np.sum( [x[constants.PERCENTILE75] * x[constants.BASES] for x in autosomes_stats]) / autosomes_total_bases), 3) if autosomes_stats and autosomes_total_bases > 0 else 0.0, constants.PERCENTILE25: round(float(np.sum( [x[constants.PERCENTILE25] * x[constants.BASES] for x in autosomes_stats]) / autosomes_total_bases), 3) if autosomes_stats and autosomes_total_bases > 0 else 0.0, constants.SD: round(float(np.sum( [x[constants.SD] * x[constants.BASES] for x in autosomes_stats]) / autosomes_total_bases), 3) if autosomes_stats and autosomes_total_bases > 0 else 0.0, constants.LT15X: round(float(np.sum( [x[constants.LT15X] * x[constants.BASES] for x in autosomes_stats]) / autosomes_total_bases), 5) if autosomes_stats and autosomes_total_bases > 0 else 0.0, constants.GTE15X: round(float(np.sum( [x[constants.GTE15X] * x[constants.BASES] for x in autosomes_stats]) / autosomes_total_bases), 5) if autosomes_stats and autosomes_total_bases > 0 else 0.0, constants.GTE30X: round(float(np.sum( [x[constants.GTE30X] * x[constants.BASES] for x in autosomes_stats]) / autosomes_total_bases), 5) if autosomes_stats and autosomes_total_bases > 0 else 0.0, constants.GTE50X: round(float(np.sum( [x[constants.GTE50X] * x[constants.BASES] for x in autosomes_stats]) / autosomes_total_bases), 5) if autosomes_stats and autosomes_total_bases > 0 else 0.0 } results[constants.CHROMOSOMES].append(autosomes_chr_stats) logging.info("Coding region statistics computed!") return results def compute_whole_genome_statistics(bigwig_reader, bed_reader=None, chunk_size=100000): """ Iterates through the whole genome in a sliding window to obtain some metrics :type chunk_size: int :type bigwig_reader: BigWigReader :type bed_reader: BedReader :param bigwig_reader: :return: """ logging.info("Computing whole genome statistics...") results = { constants.STATISTICS: None, constants.CHROMOSOMES: [] } if bed_reader.is_null_bed: logging.info("Running on all chromosomes defined in the bigwig.") analysis_regions = bigwig_reader.get_chromosome_lengths() else: logging.info("Running on the regions provided in a bed file in --wg-region.") analysis_regions = bed_reader.get_regions_dictionary() # Iterates each chromosome chr_stats = {} autosomes_stats = [] for chromosome, regions in analysis_regions.iteritems(): chr_stats[chromosome] = { constants.RMSD: [], constants.AVERAGE: [], constants.BASES: [], constants.BASES_LT15X: [], constants.BASES_GTE15X: [], constants.BASES_GTE30X: [], constants.BASES_GTE50X: [], constants.MEDIAN: [], constants.PERCENTILE25: [], constants.PERCENTILE75: [], constants.SD: [] } # Iterates intervals in chunks of fixed size and stores the stats for each chunk for (start, end) in regions: logging.debug("Analysing region %s:%s-%s" % (chromosome, start, end)) current_start = start current_end = min(current_start + chunk_size, end) while current_start < current_end: logging.debug("Analysing chunk %s:%s-%s" % (chromosome, current_start, current_end)) coverages = bigwig_reader.read_bigwig_coverages(chromosome, current_start, current_end, strict=True) length = current_end - current_start chunk_mean = np.mean(coverages) if chunk_mean == 0: # As coverage values are positive values we infer that all values are zero # this may speed up things for missing long regions in the bigwig file, if any chunk_rmsd = 0 else: # Gets the squared root sum of squares of the deviation from the mean chunk_rmsd = np.sqrt((
np.sum([(x - chunk_mean) ** 2 for x in coverages])
numpy.sum
import math import numpy as np import spacy from gensim import models from gensim.corpora import Dictionary from gensim.matutils import sparse2full from gensim.models.tfidfmodel import TfidfModel # Text2Vec Class class Text2Vec: def __init__(self, doc_list): # Initialize self.doc_list = doc_list self.nlp, self.docs, self.docs_dict = self._preprocess(self.doc_list) # Functions to lemmatise docs def _keep_token(self, t): return (t.is_alpha and not (t.is_space or t.is_punct or t.is_stop or t.like_num)) def _lemmatize_doc(self, doc): return [t.lemma_ for t in doc if self._keep_token(t)] # Gensim to create a dictionary and filter out stop and infrequent words (lemmas). def _get_docs_dict(self, docs): docs_dict = Dictionary(docs) # CAREFUL: For small corpus please carefully modify the parameters for filter_extremes, or simply comment it out. # docs_dict.filter_extremes(no_below=5, no_above=0.2) docs_dict.compactify() return docs_dict # Preprocess docs def _preprocess(self, doc_list): # Load spacy model nlp = spacy.load('en_core_web_md') # lemmatise docs # docs = [self._lemmatize_doc(nlp(doc)) for doc in doc_list] docs = [[nlp(doc).text] for doc in doc_list] # Get docs dictionary docs_dict = self._get_docs_dict(docs) return nlp, docs, docs_dict # Gensim can again be used to create a bag-of-words representation of each document, # build the TF-IDF model, # and compute the TF-IDF vector for each document. def _get_tfidf(self): docs_corpus = [self.docs_dict.doc2bow(doc) for doc in self.docs] model_tfidf = TfidfModel(docs_corpus, id2word=self.docs_dict) docs_tfidf = model_tfidf[docs_corpus] docs_vecs = np.vstack([sparse2full(c, len(self.docs_dict)) for c in docs_tfidf]) return docs_vecs # Get avg w2v for one document def _document_vector(self, doc, docs_dict, nlp): # remove out-of-vocabulary words doc_vector = [nlp(word).vector for word in doc if word in docs_dict.token2id] return np.mean(doc_vector, axis=0) # Get a TF-IDF weighted Glove vector summary for document list # Input: a list of documents, Output: Matrix of vector for all the documents def tfidf_weighted_wv(self): # tf-idf docs_vecs = self._get_tfidf() # Load glove embedding vector for each TF-IDF term tfidf_emb_vecs = np.vstack([self.nlp(self.docs_dict[i]).vector for i in range(len(self.docs_dict))]) # To get a TF-IDF weighted Glove vector summary of each document, # we just need to matrix multiply docs_vecs with tfidf_emb_vecs docs_emb =
np.dot(docs_vecs, tfidf_emb_vecs)
numpy.dot
import numpy as np import scipy.io as sio import matplotlib.pyplot as plt from matplotlib import cm import spectral as spy from sklearn import metrics import time from sklearn import preprocessing import torch import MSSGU from utils import Draw_Classification_Map,distcorr,applyPCA,get_Samples_GT,GT_To_One_Hot from SegmentMap import SegmentMap import dcor device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # device = torch.device("cpu" ) for Neighbors in [0]: #0, 5,10,15,20 # for (FLAG, curr_train_ratio,Unet_Depth) in [ (1,0.05,1),(1,0.05,2),(1,0.05,3),(1,0.05,4), # (2,0.005,1),(2,0.005,2),(2,0.005,3),(2,0.005,4), # (3,0.005,1),(3,0.005,2),(3,0.005,3),(3,0.005,4)]: # for (FLAG, curr_train_ratio,Unet_Depth) in [ (1,5,4),(1,10,4),(1,15,4),(1,20,4),(1,25,4), # (2,5,4),(2,10,4),(2,15,4),(2,20,4),(2,25,4), # (3,5,4),(3,10,4),(3,15,4),(3,20,4),(3,25,4)]: for (FLAG, curr_train_ratio,Unet_Depth) in [(1,0.05,4)]: #(1,0.05,4),,(3,0.005,4)(2,0.005,4),(3,0.005,4)(2,0.005,4),(3,0.005,4) torch.cuda.empty_cache() OA_ALL = [];AA_ALL = [];KPP_ALL = [];AVG_ALL = [];Train_Time_ALL=[];Test_Time_ALL=[] samples_type = 'ratio' if curr_train_ratio < 1 else 'same_num' # Seed_List=[0,1,2,3,4,5,6,7,8,9] # Seed_List=[0,1,2,3,4] Seed_List = [0,] if FLAG == 1: # data_mat = sio.loadmat('..\\HyperImage_data\\indian\\Indian_pines_corrected.mat') data_mat = sio.loadmat('HyperImage_data\\indian\\Indian_pines_corrected.mat') data = data_mat['indian_pines_corrected'] # gt_mat = sio.loadmat('..\\HyperImage_data\\indian\\Indian_pines_gt.mat') gt_mat = sio.loadmat('HyperImage_data\\indian\\Indian_pines_gt.mat') gt = gt_mat['indian_pines_gt'] val_ratio = 0.01 class_count = 16 learning_rate = 5e-4 max_epoch =600 dataset_name = "indian_" pass if FLAG == 2: data_mat = sio.loadmat('..\\HyperImage_data\\paviaU\\PaviaU.mat') data = data_mat['paviaU'] gt_mat = sio.loadmat('..\\HyperImage_data\\paviaU\\Pavia_University_gt.mat') gt = gt_mat['pavia_university_gt'] val_ratio = 0.005 class_count = 9 learning_rate = 5e-4 max_epoch = 600 dataset_name = "paviaU_" pass if FLAG == 3: data_mat = sio.loadmat('..\\HyperImage_data\\Salinas\\Salinas_corrected.mat') data = data_mat['salinas_corrected'] gt_mat = sio.loadmat('..\\HyperImage_data\\Salinas\\Salinas_gt.mat') gt = gt_mat['salinas_gt'] val_ratio = 0.005 class_count = 16 learning_rate = 5e-4 max_epoch = 600 dataset_name = "salinas_" pass if FLAG == 4: data_mat = sio.loadmat('..\\HyperImage_data\\KSC\\KSC.mat') data = data_mat['KSC'] gt_mat = sio.loadmat('..\\HyperImage_data\\KSC\\KSC_gt.mat') gt = gt_mat['KSC_gt'] val_ratio = 0.01 class_count = 13 learning_rate = 5e-4 max_epoch = 600 dataset_name = "KSC_" pass if samples_type == 'same_num': val_ratio = 1 ######## train_ratio = curr_train_ratio cmap = cm.get_cmap('jet', class_count + 1) plt.set_cmap(cmap) m, n, d = data.shape orig_data=data height, width, bands = data.shape data =
np.reshape(data, [height * width, bands])
numpy.reshape
#!/usr/bin/env python # import random import numpy as np from copy import copy from bart_utils import empty, Tree, logsumexp, softmax, check_if_zero, get_children_id #from itertools import izip, count from itertools import count class Particle(Tree): def __init__(self, train_ids=np.arange(0, dtype='int'), param=empty(), settings=empty(), cache_tmp={}): Tree.__init__(self, train_ids, param, settings, cache_tmp) self.ancestry = [] self.nodes_processed_itr = [] self.grow_nodes_itr = [] self.log_sis_ratio_d = {} if cache_tmp: self.do_not_grow = False self.grow_nodes = [0] def process_node_id(self, data, param, settings, cache, node_id): if self.do_not_split[node_id]: log_sis_ratio = 0.0 else: log_psplit = np.log(self.compute_psplit(node_id, param)) train_ids = self.train_ids[node_id] left, right = get_children_id(node_id) if settings.verbose >= 4: print('train_ids for this node = %s' % train_ids) (do_not_split_node_id, feat_id_chosen, split_chosen, idx_split_global, log_sis_ratio, logprior_nodeid, \ train_ids_left, train_ids_right, cache_tmp, loglik_left, loglik_right) \ = self.prior_proposal(data, param, settings, cache, node_id, train_ids, log_psplit) if do_not_split_node_id: self.do_not_split[node_id] = True else: self.update_left_right_statistics(cache_tmp, node_id, logprior_nodeid, train_ids_left,\ train_ids_right, loglik_left, loglik_right, feat_id_chosen, split_chosen, \ idx_split_global, settings, param, data, cache) self.grow_nodes.append(left) self.grow_nodes.append(right) return (log_sis_ratio) def grow_next(self, data, param, settings, cache): """ grows just one node at a time (nodewise expansion) breaks after processing the first non do_not_grow node or when grow_nodes is empty Note that multiple nodes could be killed in a single grow_next call """ # FIXME: refactor without the do_not_grow option; it made sense for SMC paper, but not for PG do_not_grow = True log_sis_ratio = 0.0 nodes_processed = [] if not self.grow_nodes: if settings.verbose >= 2: print('None of the leaves can be grown any further: Current ' \ 'depth = %3d, Skipping grow_next' % self.depth) else: while True: # loop through current leaf nodes, process first "non do_not_grow" node and break; # if none of the nodes can be processed, do_not_grow = True remove_position = 0 # just pop the oldest node node_id = self.grow_nodes.pop(remove_position) nodes_processed.append(node_id) do_not_grow = do_not_grow and self.do_not_split[node_id] if self.do_not_split[node_id]: if settings.verbose >= 3: print('Skipping split at node_id %3d' % node_id) if not self.grow_nodes: break else: log_sis_ratio += self.process_node_id(data, param, settings, cache, node_id) break # you have processed a non do_not_grow node, take a break! self.loglik_current = self.compute_loglik() self.log_sis_ratio = log_sis_ratio self.do_not_grow = do_not_grow if nodes_processed: self.nodes_processed_itr.append(nodes_processed) def check_nodes_processed_itr(self, settings): tmp = set([]) for nodes in self.nodes_processed_itr: for node in nodes: if node in tmp: print('node = %s present multiple times in nodes_processed_itr = %s' % \ (node, self.nodes_processed_itr)) raise Exception else: tmp.add(node) def update_particle_weights(particles, log_weights, settings): for n, p in enumerate(particles): if settings.verbose >= 2: print('pid = %5d, log_sis_ratio = %f' % (n, p.log_sis_ratio)) log_weights[n] += p.log_sis_ratio weights_norm = softmax(log_weights) # normalized weights ess = 1. / np.sum(weights_norm ** 2) / settings.n_particles log_pd = logsumexp(log_weights) return (log_pd, ess, log_weights, weights_norm) def resample(particles, log_weights, settings, log_pd, ess, weights_norm, tree_pg): if ess <= settings.ess_threshold: if tree_pg: pid_list = resample_pids_basic(settings, settings.n_particles-1, weights_norm) random.shuffle(pid_list) # shuffle so that particle is assigned randomly pid_list.insert(0, 0) else: pid_list = resample_pids_basic(settings, settings.n_particles, weights_norm) log_weights = np.ones(settings.n_particles) * (log_pd -
np.log(settings.n_particles)
numpy.log
# future from __future__ import annotations # stdlib from typing import Any from typing import Dict from typing import List from typing import Optional from typing import Tuple from typing import Union # third party import numpy as np # relative from ...lib.numpy.array import capnp_deserialize from ...lib.numpy.array import capnp_serialize from ..common.serde.capnp import CapnpModule from ..common.serde.capnp import chunk_bytes from ..common.serde.capnp import combine_bytes from ..common.serde.capnp import get_capnp_schema from ..common.serde.capnp import serde_magic_header from ..common.serde.deserialize import _deserialize as deserialize from ..common.serde.serializable import serializable from ..common.serde.serialize import _serialize as serialize from .config import DEFAULT_FLOAT_NUMPY_TYPE from .config import DEFAULT_INT_NUMPY_TYPE from .passthrough import PassthroughTensor # type: ignore from .passthrough import is_acceptable_simple_type # type: ignore from .smpc import context @serializable(capnp_bytes=True) class FixedPrecisionTensor(PassthroughTensor): # __attr_allowlist__ = ("child", "_base", "_precision", "_scale") def __init__( self, value: Union[int, float, np.ndarray] = None, base: int = 2, precision: int = 16, ) -> None: self._base = base self._precision = precision self._scale = base**precision if value is not None: # TODO :Should modify to be compatiable with torch. super().__init__(self.encode(value)) else: super().__init__(None) def encode(self, value: Union[int, float, np.ndarray]) -> np.ndarray: encoded_value = np.array(self._scale * value, DEFAULT_INT_NUMPY_TYPE) return encoded_value @property def precision(self) -> int: """Get the precision for the FixedPrecisionTensor. Returns: int: precision. """ return self._precision @property def base(self) -> int: """Get the base for the FixedPrecisionTensor. Returns: int: base """ return self._base @property def scale(self) -> int: """Get the scale for the FixedPrecisionTensor. Returns: int: the scale. """ return self._scale def decode(self) -> Any: # relative from .smpc.share_tensor import ShareTensor value = self.child.child if isinstance(self.child, ShareTensor) else self.child correction = (value < 0).astype(DEFAULT_INT_NUMPY_TYPE) dividend = value // self._scale - correction remainder = value % self._scale remainder += ( (remainder == 0).astype(DEFAULT_INT_NUMPY_TYPE) * self._scale * correction ) value = ( dividend.astype(DEFAULT_FLOAT_NUMPY_TYPE) + remainder.astype(DEFAULT_FLOAT_NUMPY_TYPE) / self._scale ) return value def sanity_check( self, other: Union[FixedPrecisionTensor, int, float, np.ndarray] ) -> FixedPrecisionTensor: if isinstance(other, FixedPrecisionTensor): if self.base != other.base or self.precision != other.precision: raise ValueError( f"Base:{self.base,other.base} and Precision: " + f"{self.precision, other.precision} should be same for " + "computation on FixedPrecisionTensor" ) elif is_acceptable_simple_type(other): other = FixedPrecisionTensor( value=other, base=self.base, precision=self.precision ) else: raise ValueError(f"Invalid type for FixedPrecisionTensor: {type(other)}") return other def __add__(self, other: Any) -> FixedPrecisionTensor: res = FixedPrecisionTensor(base=self._base, precision=self._precision) if isinstance(other, np.ndarray) and other.dtype == np.dtype("bool"): res.child = self.child + other else: other = self.sanity_check(other) res.child = self.child + other.child return res def __sub__(self, other: Any) -> FixedPrecisionTensor: res = FixedPrecisionTensor(base=self._base, precision=self._precision) if isinstance(other, np.ndarray) and other.dtype == np.dtype("bool"): res.child = self.child - other else: other = self.sanity_check(other) res.child = self.child - other.child return res def __mul__(self, other: Any) -> FixedPrecisionTensor: res = FixedPrecisionTensor(base=self._base, precision=self._precision) if isinstance(other, np.ndarray) and other.dtype == np.dtype("bool"): res.child = self.child * other else: other = self.sanity_check(other) context.FPT_CONTEXT["seed_id_locations"] = context.SMPC_CONTEXT.get( "seed_id_locations", None ) res.child = self.child * other.child res = res / self.scale return res def __matmul__(self, other: Any) -> FixedPrecisionTensor: res = FixedPrecisionTensor(base=self._base, precision=self._precision) if isinstance(other, np.ndarray) and other.dtype ==
np.dtype("bool")
numpy.dtype
"""Tests for the atmos_flux_inversion package. Includes tests using random data, analytic solutions, and checks that different methods agree for simple problems. """ from __future__ import print_function, division import fractions import itertools import operator import os.path import atexit import pickle import math import sys try: from functools import reduce except ImportError: # reduce used to be a builtin pass import numpy as np import numpy.linalg as np_la import numpy.linalg as la import numpy.testing as np_tst import scipy.linalg import scipy.sparse import scipy.optimize # Import from scipy.linalg if not using dask from scipy.linalg import cholesky from scipy.sparse.linalg.interface import LinearOperator, MatrixLinearOperator import unittest2 import pyfftw import pandas as pd import xarray try: import sparse HAVE_SPARSE = True except ImportError: HAVE_SPARSE = False import atmos_flux_inversion.optimal_interpolation import atmos_flux_inversion.correlations import atmos_flux_inversion.covariances import atmos_flux_inversion.variational import atmos_flux_inversion.remapper import atmos_flux_inversion.wrapper import atmos_flux_inversion.linalg import atmos_flux_inversion.noise import atmos_flux_inversion.psas import atmos_flux_inversion.util from atmos_flux_inversion.linalg import tolinearoperator if os.path.exists(".pyfftw.pickle"): with open(".pyfftw.pickle", "rb") as wis_in: WISDOM = pickle.load(wis_in) if isinstance(WISDOM[0], str): WISDOM = [wis.encode("ascii") for wis in WISDOM] pyfftw.import_wisdom(WISDOM) del WISDOM, wis_in def save_wisdom(): """Save accumulated pyfftw wisdom. Saves in hidden file in current directory. Should help speed up subsequent test runs. """ with open(".pyfftw.pickle", "wb") as wis_out: pickle.dump(pyfftw.export_wisdom(), wis_out, 2) atexit.register(save_wisdom) del save_wisdom # If adding other inexact methods to the list tested, be sure to add # those to the `if "var" in name or "psas" in name` and # `if "psas" in name` tests as applicable. ALL_METHODS = ( atmos_flux_inversion.optimal_interpolation.simple, atmos_flux_inversion.optimal_interpolation.fold_common, atmos_flux_inversion.optimal_interpolation.save_sum, atmos_flux_inversion.optimal_interpolation.scipy_chol, atmos_flux_inversion.variational.simple, atmos_flux_inversion.variational.incremental, atmos_flux_inversion.variational.incr_chol, atmos_flux_inversion.psas.simple, atmos_flux_inversion.psas.fold_common, ) ITERATIVE_METHOD_START = 4 """Where the iterative methods start in the above list. Used to test failure modes for these solvers. """ PRECISE_DTYPE = np.float128 """The dtype used to represent analytic results. These are initialized as :class:`fractions.Fraction` then converted to this dtype for the comparison. """ ITERATIVE_STATE_TOLERANCE = 1e-3 ITERATIVE_COVARIANCE_TOLERANCE = 1e-1 EXACT_TOLERANCE = 1e-7 DTYPE = np.float64 """Default dtype for certain tests.""" def getname(method): """Descriptive name for the function. A name combining the function name and module. Parameters ---------- method: callable Returns ------- name: str """ module = method.__module__ group = module.split(".")[-1] variant = method.__name__ return "{group:s} ({variant:s})".format(group=group, variant=variant) def expectFailureIf(condition): """Mark a test as XFAIL based on condition. Wrapper to make :func:`unittest2.expectedFailure` conditional. Parameters ---------- condition: bool Returns ------- decorator: func """ if condition: return unittest2.expectedFailure return lambda fun: fun class TestInversionSimple(unittest2.TestCase): """Test inversions using simple cases.""" def test_scalar_equal_variance(self): """Test a direct measurement of a scalar state.""" bg = np.atleast_1d(2.) bg_cov = np.atleast_2d(1.) obs = np.atleast_1d(3.) obs_cov = np.atleast_2d(1.) obs_op = np.atleast_2d(1.) for method in ALL_METHODS: name = getname(method) with self.subTest(method=name): post, post_cov = method( bg, bg_cov, obs, obs_cov, obs_op) np_tst.assert_allclose(post, 2.5) np_tst.assert_allclose(post_cov, .5) def test_scalar_unequal_variance(self): """Test assimilation of a direct measurement fo a scalar state. Variances not equal. """ bg = np.atleast_1d(15.) bg_cov = np.atleast_2d(2.) obs = np.atleast_1d(14.) obs_cov = np.atleast_2d(1.) obs_op = np.atleast_2d(1.) for method in ALL_METHODS: with self.subTest(method=getname(method)): post, post_cov = method( bg, bg_cov, obs, obs_cov, obs_op) np_tst.assert_allclose( post, PRECISE_DTYPE(14 + fractions.Fraction(1, 3))) np_tst.assert_allclose( post_cov, PRECISE_DTYPE(fractions.Fraction(2, 3))) def test_multiple_priors(self): """Test doing multiple assimilations at once. Simple test. """ bg = np.array([[2., 3.]]) bg_cov = np.atleast_2d(1.) obs = np.array([[3., 4.]]) obs_cov = np.atleast_2d(1.) obs_op = np.atleast_2d(1.) for method in ALL_METHODS[:ITERATIVE_METHOD_START]: name = getname(method) with self.subTest(method=name): post, post_cov = method( bg, bg_cov, obs, obs_cov, obs_op) np_tst.assert_allclose(post, [[2.5, 3.5]]) np_tst.assert_allclose(post_cov, .5) def test_homework_one(self): """Verify that this can reproduce the answers to HW1. Make sure the answers here are within roundoff of the analytic solutions. """ bg = np.array((18., 15., 22.)) bg_var = np.array((2., 2., 2.)) bg_corr = np.array(((1, .5, .25), (.5, 1, .5), (.25, .5, 1))) obs = np.array((19., 14.)) obs_var = np.array((1., 1.)) obs_op = np.array(((1., 0., 0.), (0., 1., 0.))) bg_std = np.sqrt(bg_var) bg_cov = np.diag(bg_std).dot(bg_corr.dot(np.diag(bg_std))) # obs_std = np.sqrt(obs_var) # Assume no correlations between observations. obs_cov = np.diag(obs_var) for method in ALL_METHODS: # Setup for expected degradation of solutions name = getname(method) # The default for assert_allclose cov_rtol = state_rtol = EXACT_TOLERANCE with self.subTest(method=name): # Also tested above in scalar_unequal_variance with self.subTest(problem=3): state_college_index = 1 post, post_cov = method( bg[state_college_index], bg_cov[state_college_index, state_college_index], obs[state_college_index], obs_cov[state_college_index, state_college_index], obs_op[state_college_index, state_college_index]) np_tst.assert_allclose( post, np.asanyarray(14 + fractions.Fraction(1, 3), dtype=PRECISE_DTYPE), rtol=state_rtol) np_tst.assert_allclose( post_cov, np.asanyarray(fractions.Fraction(2, 3), dtype=PRECISE_DTYPE), rtol=cov_rtol) with self.subTest(problem=4): state_college_index = 1 post, post_cov = method( bg, bg_cov, obs[state_college_index], obs_cov[state_college_index, state_college_index], obs_op[state_college_index, :]) np_tst.assert_allclose( post, np.asanyarray((17 + fractions.Fraction(2, 3), 14 + fractions.Fraction(1, 3), 21 + fractions.Fraction(2, 3)), dtype=PRECISE_DTYPE), rtol=state_rtol) with self.subTest(problem=5): pittsburgh_index = 0 post, post_cov = method( bg, bg_cov, obs[pittsburgh_index], obs_cov[pittsburgh_index, pittsburgh_index], obs_op[pittsburgh_index, :]) np_tst.assert_allclose( post, np.asanyarray((18 + fractions.Fraction(2, 3), 15 + fractions.Fraction(1, 3), 22 + fractions.Fraction(1, 6)), PRECISE_DTYPE), rtol=state_rtol) with self.subTest(problem=7): state_college_index = 1 post, post_cov = method( bg, bg_cov, obs[state_college_index], 4 * obs_cov[state_college_index, state_college_index], obs_op[state_college_index, :]) np_tst.assert_allclose( post, np.asanyarray((17 + fractions.Fraction(5, 6), 14 + fractions.Fraction(2, 3), 21 + fractions.Fraction(5, 6)), dtype=PRECISE_DTYPE), rtol=state_rtol) with self.subTest(problem=8): post, post_cov = method( bg, bg_cov, obs, obs_cov, obs_op) # background correlations make this problem not # strictly linear, at least without doing # sequential inversions. Have not verified by hand np_tst.assert_allclose( post, np.asanyarray( (18 + fractions.Fraction(1, 2), 14 + fractions.Fraction(1, 2), 21 + fractions.Fraction(3, 4)), dtype=PRECISE_DTYPE), rtol=state_rtol) def test_sequential_assimilations(self): """Make sure this follows Bayes' rule.""" bg = np.array((18., 15., 22.)) bg_var = np.array((2., 2., 2.)) bg_corr = np.array(((1, .5, .25), (.5, 1, .5), (.25, .5, 1))) obs = np.array((19., 14.)) obs_var = np.array((1., 1.)) obs_op = np.array(((1., 0., 0.), (0., 1., 0.))) bg_std = np.sqrt(bg_var) bg_cov = np.diag(bg_std).dot(bg_corr.dot(np.diag(bg_std))) # obs_std = np.sqrt(obs_var) # Assume no correlations between observations. obs_cov = np.diag(obs_var) for method in ALL_METHODS: name = getname(method) if "var" in name.lower() or "psas" in name.lower(): state_rtol = ITERATIVE_STATE_TOLERANCE cov_rtol = ITERATIVE_COVARIANCE_TOLERANCE else: # The default for assert_allclose cov_rtol = state_rtol = EXACT_TOLERANCE with self.subTest(method=name): inter1, inter_cov1 = method( bg, bg_cov, obs[0], obs_cov[0, 0], obs_op[0, :]) post1, post_cov1 = method( inter1, inter_cov1, obs[1], obs_cov[1, 1], obs_op[1, :]) post2, post_cov2 = method( bg, bg_cov, obs, obs_cov, obs_op) np_tst.assert_allclose( post1, post2, rtol=state_rtol) if "psas" in name.lower(): # The second covariance isn't positive definite (one # positive entry) and no entry shares the order of # magnitude between the two. raise unittest2.SkipTest("Known Failure: PSAS Covariances") np_tst.assert_allclose( post_cov1, post_cov2, rtol=cov_rtol) def test_iterative_failures(self): """Test failure modes of iterative solvers.""" bg_stds = np.logspace(-8, 1, 10) bg_corr = scipy.linalg.toeplitz( np.arange(1, .9, -.01)) bg_cov = np.diag(bg_stds).dot(bg_corr).dot(np.diag(bg_stds)) bg_vals = np.arange(10) obs_op = np.eye(3, 10) obs_vals = 10 - np.arange(3) obs_cov = np.diag((10, 1e-3, 1e-6)) / 8 for method in ALL_METHODS[ITERATIVE_METHOD_START:]: name = getname(method) with self.subTest(method=name): with self.assertRaises( atmos_flux_inversion.ConvergenceError) as cxt_mgr: method(bg_vals, bg_cov, obs_vals, obs_cov, obs_op) conv_err = cxt_mgr.exception self.assertTrue(hasattr(conv_err, "guess")) self.assertTrue(hasattr(conv_err, "result")) self.assertIsInstance(conv_err.result, scipy.optimize.OptimizeResult) self.assertTrue(hasattr(conv_err, "hess_inv")) class TestGaussianNoise(unittest2.TestCase): """Test the properties of the gaussian noise.""" def test_ident_cov(self): """Test generation with identity as covariance.""" sample_shape = 3 cov = np.eye(sample_shape) noise = atmos_flux_inversion.noise.gaussian_noise(cov, int(1e6)) np_tst.assert_allclose(noise.mean(axis=0), np.zeros((sample_shape,)), rtol=1e-2, atol=1e-2) np_tst.assert_allclose(np.cov(noise.T), cov, rtol=1e-2, atol=1e-2) def test_shape(self): """Make sure the returned shapes are correct.""" sample_shape = (3,) sample_cov = np.eye(sample_shape[0]) for shape in ((), (6,), (2, 3)): with self.subTest(shape=shape): res = atmos_flux_inversion.noise.gaussian_noise( sample_cov, shape) self.assertEqual(res.shape, shape + sample_shape) with self.subTest(shape=5): res = atmos_flux_inversion.noise.gaussian_noise( sample_cov, 5) self.assertEqual(res.shape, (5,) + sample_shape) with self.subTest(shape=None): res = atmos_flux_inversion.noise.gaussian_noise( sample_cov, None) self.assertEqual(res.shape, sample_shape) def test_operator(self): """Test that the code works with operator covariances.""" diagonal = (1, .5, .3, .2, .1) sample_cov = atmos_flux_inversion.covariances.DiagonalOperator( diagonal) sample_shape = (len(diagonal),) noise = atmos_flux_inversion.noise.gaussian_noise(sample_cov, int(1e6)) np_tst.assert_allclose(noise.mean(axis=0), np.zeros(sample_shape), rtol=1e-2, atol=1e-2) np_tst.assert_allclose(np.cov(noise.T), np.diag(diagonal), rtol=1e-2, atol=1e-2) def test_kron_op(self): """Test that large kronecker operators don't break the handling.""" op1 = scipy.linalg.toeplitz(.6 ** np.arange(15)) diag = (1, .9, .8, .7, .6, .5, .4, .3, .2, .1) op2 = atmos_flux_inversion.covariances.DiagonalOperator(diag) combined = atmos_flux_inversion.util.kronecker_product(op1, op2) noise = atmos_flux_inversion.noise.gaussian_noise(combined, int(1e5)) np_tst.assert_allclose(noise.mean(axis=0), np.zeros(combined.shape[0]), rtol=1.1e-2, atol=1.1e-2) np_tst.assert_allclose(np.cov(noise.T), scipy.linalg.kron(op1, np.diag(diag)), rtol=3e-2, atol=3e-2) def test_off_diagonal(self): """Test that the code works with off-diagonal elements.""" sample_cov = scipy.linalg.toeplitz((1, .5, .25, .125)) sample_shape = (4,) noise = atmos_flux_inversion.noise.gaussian_noise(sample_cov, int(1e6)) np_tst.assert_allclose(noise.mean(axis=0), np.zeros(sample_shape), rtol=1e-2, atol=1e-2) np_tst.assert_allclose(np.cov(noise.T), sample_cov, rtol=1e-2, atol=1e-2) def test_slow_decay(self): """Test that the code handles slowly-decaying covariances.""" sample_cov = scipy.linalg.toeplitz(.8 ** np.arange(10)) sample_shape = (10,) noise = atmos_flux_inversion.noise.gaussian_noise(sample_cov, int(1e6)) np_tst.assert_allclose(noise.mean(axis=0), np.zeros(sample_shape), rtol=1e-2, atol=1e-2) np_tst.assert_allclose(np.cov(noise.T), sample_cov, rtol=1e-2, atol=1e-2) def test_fails(self): """Test that construction fails on invalid input.""" self.assertRaises(ValueError, atmos_flux_inversion.noise.gaussian_noise, np.ones(10)) self.assertRaises(ValueError, atmos_flux_inversion.noise.gaussian_noise, np.eye(3, 2)) class TestCorrelations(unittest2.TestCase): """Test the generation of correlation matrices.""" def test_far_correl(self): """Test the correlation between points far apart. Should be zero. """ for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction .__subclasses__()): with self.subTest(corr_class=corr_class.__name__): corr_fun = corr_class(1e-8) corr = corr_fun(1e8) self.assertAlmostEqual(corr, 0) def test_near_correl(self): """Test 2D correlation between near points. Should be one. """ for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction .__subclasses__()): with self.subTest(corr_class=corr_class.__name__): corr_fun = corr_class(1e8) corr = corr_fun(1e-8) self.assertAlmostEqual(corr, 1) def test_2d_np_fromfunction(self): """Test that the structure works with np.fromfunction. This is how the integration tests will get background covariances, so this needs to work. """ test_size = (int(15), int(20)) for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction .__subclasses__()): with self.subTest(corr_class=getname(corr_class)): corr_fun = corr_class(2.) corr = np.fromfunction(corr_fun.correlation_from_index, shape=test_size * 2, dtype=float) corr_mat = corr.reshape((np.prod(test_size),) * 2) # test postitive definite try: chol_upper = cholesky(corr_mat) except la.LinAlgError: self.fail("corr_mat not positive definite") # test symmetry np_tst.assert_allclose(chol_upper.T.dot(chol_upper), corr_mat, rtol=1e-4, atol=1e-4) def test_2d_make_matrix(self): """Test make_matrix for 2D correlations. Checks against original value. This test is really slow. """ # 30x25 Gaussian 10 not close test_nx = 30 test_ny = 20 test_points = test_ny * test_nx # TODO: speed up for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction. __subclasses__()): for dist in (1, 5, 10, 15): with self.subTest(corr_class=getname(corr_class), dist=dist): if ( corr_class == atmos_flux_inversion.correlations. GaussianCorrelation ): raise unittest2.SkipTest( "Gaussian({0:d}) correlations ill-conditioned". format(dist) ) corr_fun = corr_class(dist) corr_mat = atmos_flux_inversion.correlations.make_matrix( corr_fun, (test_ny, test_nx)) # Make sure diagonal elements are ones np_tst.assert_allclose(np.diag(corr_mat), 1, rtol=1e-6) # check if it matches the original np_tst.assert_allclose( corr_mat, np.fromfunction( corr_fun.correlation_from_index, (test_ny, test_nx, test_ny, test_nx) ).reshape((test_points, test_points)), # rtol=1e-13: Gaussian 10 and 15 fail # atol=1e-15: Gaussian 1 and 5 fail rtol=1e-5, atol=1e-6) # check if it actually is positive definite cholesky(corr_mat) def test_1d_np_fromfunction(self): """Test that the structure works with np.fromfunction. This is how the integration tests will get background covariances, so this needs to work. """ test_size = (200,) for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction .__subclasses__()): with self.subTest(corr_class=getname(corr_class)): # This fails with a correlation length of 5 corr_fun = corr_class(2.) corr = np.fromfunction(corr_fun.correlation_from_index, shape=test_size * 2, dtype=float) corr_mat = corr.reshape((np.prod(test_size),) * 2) # test postitive definite chol_upper = cholesky(corr_mat) # test symmetry np_tst.assert_allclose(chol_upper.T.dot(chol_upper), corr_mat, rtol=1e-4, atol=1e-4) def test_1d_make_matrix(self): """Test make_matrix for 1D correlations. Checks against original value. """ test_nt = 200 for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction. __subclasses__()): for dist in (1, 5, 10, 30): with self.subTest(corr_class=getname(corr_class), dist=dist): if ( corr_class == atmos_flux_inversion.correlations. GaussianCorrelation ): raise unittest2.SkipTest( "Gaussian({0:d}) correlations ill-conditioned". format(dist) ) corr_fun = corr_class(dist) corr_mat = atmos_flux_inversion.correlations.make_matrix( corr_fun, test_nt ) # Make sure diagonal elements are ones np_tst.assert_allclose(np.diag(corr_mat), 1, rtol=1e-6) # check if it matches the original np_tst.assert_allclose( corr_mat, np.fromfunction( corr_fun.correlation_from_index, (test_nt, test_nt) ).reshape((test_nt, test_nt)), # rtol=1e-13: Gaussian 10 and 15 fail # atol=1e-15: Gaussian 1 and 5 fail rtol=2e-7, atol=5e-7 ) # check if it actually is positive definite chol_upper = cholesky(corr_mat) # test symmetry np_tst.assert_allclose(chol_upper.T.dot(chol_upper), corr_mat, rtol=1e-4, atol=1e-4) def test_fft_correlation_structure(self): """Ensure the FFT-based operators satisfy conditions of correlation matrices. Checks for symmetry and ones on the diagonal. """ for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction. __subclasses__()): for test_shape in ((300,), (20, 30)): test_size = int(np.prod(test_shape, dtype=int)) for dist in (1, 3, 10, 30): for is_cyclic in (True, False): corr_fun = corr_class(dist) corr_op = ( atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_function(corr_fun, test_shape, is_cyclic)) # This is the fastest way to get column-major # order from da.eye. corr_mat = corr_op.dot(np.eye(test_size).T) with self.subTest( corr_class=getname(corr_class), dist=dist, test_shape=test_shape, is_cyclic=is_cyclic, test="symmetry"): np_tst.assert_allclose(corr_mat, corr_mat.T, rtol=1e-14, atol=1e-15) with self.subTest( corr_class=getname(corr_class), dist=dist, test_shape=test_shape, is_cyclic=is_cyclic, test="self-correlation"): np_tst.assert_allclose(np.diag(corr_mat), 1) def test_1d_fft_correlation_cyclic(self): """Test HomogeneousIsotropicCorrelation for cyclic 1D arrays. Check against `make_matrix` and ignore values near the edges of the domain where the two methods are different. """ test_nt = 512 test_lst = (np.zeros(test_nt), np.ones(test_nt), np.arange(test_nt), np.eye(100, test_nt)[-1]) for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction. __subclasses__()): for dist in (1, 3, 10): # Magic numbers # May need to increase for larger test_nt noncorr_dist = 20 + 8 * dist corr_fun = corr_class(dist) corr_mat = atmos_flux_inversion.correlations.make_matrix( corr_fun, test_nt) corr_op = ( atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_function(corr_fun, test_nt)) for i, test_vec in enumerate(test_lst): with self.subTest(corr_class=getname(corr_class), dist=dist, test_num=i, inverse="no"): np_tst.assert_allclose( corr_op.dot(test_vec)[noncorr_dist:-noncorr_dist], corr_mat.dot(test_vec)[noncorr_dist:-noncorr_dist], rtol=1e-3, atol=1.5e-3) for i, test_vec in enumerate(test_lst): with self.subTest(corr_class=getname(corr_class), dist=dist, test_num=i, inverse="yes"): if ((corr_class is atmos_flux_inversion.correlations. GaussianCorrelation and dist >= 3)): # Gaussian(3) has FFT less # well-conditioned than make_matrix raise unittest2.SkipTest( "Gaussian({0:d}) correlations ill-conditioned". format(dist)) elif ((corr_class is atmos_flux_inversion.correlations. BalgovindCorrelation and dist == 10)): # This one distance is problematic # Roughly 3% of the points disagree # for the last half of the tests # I have no idea why raise unittest2.SkipTest( "Balgovind(10) correlations weird") np_tst.assert_allclose( corr_op.solve( test_vec)[noncorr_dist:-noncorr_dist], la.solve( corr_mat, test_vec)[noncorr_dist:-noncorr_dist], rtol=1e-3, atol=2e-3 ) def test_1d_fft_correlation_acyclic(self): """Test HomogeneousIsotropicCorrelation for acyclic 1D arrays. Check against `make_matrix` and ignore values near the edges of the domain where the two methods are different. """ test_nt = 512 test_lst = (np.zeros(test_nt), np.ones(test_nt), np.arange(test_nt), np.eye(100, test_nt)[-1]) for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction. __subclasses__()): for dist in (1, 3, 10): # Magic numbers # May need to increase for larger test_nt corr_fun = corr_class(dist) corr_mat = atmos_flux_inversion.correlations.make_matrix( corr_fun, test_nt) corr_op = ( atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_function(corr_fun, test_nt, False)) for i, test_vec in enumerate(test_lst): with self.subTest(corr_class=getname(corr_class), dist=dist, test_num=i, inverse="no"): np_tst.assert_allclose( corr_op.dot(test_vec), corr_mat.dot(test_vec), rtol=1e-3, atol=1e-5) for i, test_vec in enumerate(test_lst): with self.subTest(corr_class=getname(corr_class), dist=dist, test_num=i, inverse="yes"): self.assertRaises( NotImplementedError, corr_op.solve, test_vec) def test_2d_fft_correlation_cyclic(self): """Test HomogeneousIsotropicCorrelation for cyclic 2D arrays. Check against `make_matrix` and ignore values near the edges where the two methods differ. """ test_shape = (20, 30) test_size = np.prod(test_shape) test_lst = (np.zeros(test_size), np.ones(test_size), np.arange(test_size), np.eye(10 * test_shape[0], test_size)[-1]) for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction. __subclasses__()): for dist in (1, 3): # Magic numbers # May need to increase for larger domains noncorr_dist = 20 + 8 * dist corr_fun = corr_class(dist) corr_mat = atmos_flux_inversion.correlations.make_matrix( corr_fun, test_shape) corr_op = ( atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_function(corr_fun, test_shape)) for i, test_vec in enumerate(test_lst): with self.subTest(corr_class=getname(corr_class), dist=dist, test_num=i, direction="forward"): np_tst.assert_allclose( corr_op.dot(test_vec).reshape(test_shape) [noncorr_dist:-noncorr_dist, noncorr_dist:-noncorr_dist], corr_mat.dot(test_vec).reshape(test_shape) [noncorr_dist:-noncorr_dist, noncorr_dist:-noncorr_dist], rtol=1e-3, atol=1e-5) for i, test_vec in enumerate(test_lst): with self.subTest(corr_class=getname(corr_class), dist=dist, test_num=i, direction="backward"): if ((corr_class is atmos_flux_inversion.correlations. GaussianCorrelation and dist >= 3)): # Gaussian(3) has FFT less # well-conditioned than make_matrix raise unittest2.SkipTest( "Gaussian({0:d}) correlations ill-conditioned". format(dist)) np_tst.assert_allclose( corr_op.solve( test_vec).reshape(test_shape) [noncorr_dist:-noncorr_dist, noncorr_dist:-noncorr_dist], la.solve( corr_mat, test_vec).reshape(test_shape) [noncorr_dist:-noncorr_dist, noncorr_dist:-noncorr_dist], rtol=1e-3, atol=1e-5) def test_2d_fft_correlation_acyclic(self): """Test HomogeneousIsotropicCorrelation for acyclic 2D arrays. Check against `make_matrix` and ignore values near the edges where the two methods differ. """ test_shape = (20, 30) test_size = np.prod(test_shape) test_lst = (np.zeros(test_size), np.ones(test_size), np.arange(test_size), np.eye(10 * test_shape[0], test_size)[-1]) for corr_class in ( atmos_flux_inversion.correlations.DistanceCorrelationFunction. __subclasses__()): for dist in (1, 3): # Magic numbers # May need to increase for larger domains corr_fun = corr_class(dist) corr_mat = atmos_flux_inversion.correlations.make_matrix( corr_fun, test_shape) corr_op = ( atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_function(corr_fun, test_shape, False)) for i, test_vec in enumerate(test_lst): with self.subTest(corr_class=getname(corr_class), dist=dist, test_num=i, direction="forward"): np_tst.assert_allclose( corr_op.dot(test_vec).reshape(test_shape), corr_mat.dot(test_vec).reshape(test_shape), rtol=1e-3, atol=1e-5) for i, test_vec in enumerate(test_lst): with self.subTest(corr_class=getname(corr_class), dist=dist, test_num=i, direction="backward"): self.assertRaises( NotImplementedError, corr_op.solve, test_vec) def test_homogeneous_from_array_cyclic(self): """Make sure cyclic from_array can be roundtripped. Also tests that odd state sizes work. """ test_size = 25 corr_class = atmos_flux_inversion.correlations.ExponentialCorrelation for dist in (1, 3, 5): with self.subTest(dist=dist): corr_fun = corr_class(dist) corr_op1 = ( atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_function(corr_fun, test_size, True)) first_column = corr_op1.dot(np.eye(test_size, 1)[:, 0]) corr_op2 = ( atmos_flux_inversion.correlations. HomogeneousIsotropicCorrelation. from_array(first_column)) np_tst.assert_allclose( corr_op1.dot(
np.eye(test_size)
numpy.eye
import numpy as np import matplotlib.pyplot as plt import cvxpy as cp ''' In order to append / modify a problem, you should: (a) Add a new target function and modify the target method (b) Add its analytical solution and modify the solve_analytical method (c) Add the new problem to AdmmCentralized class (if you want to use ADMM centralized), i.e., modify updates of x and z (d) Add the new problem to AdmmDistributedAgent class (if you want to use ADMM distributed), i.e., modify updates of x and z ''' class AdmmDistributed(object): # Class that prepares data for distributed training ''' Note that this class is a convenient way to test a distributed ADMM implementation. In real deployments, no agent has access to all data (as this class does) and hence, it is not possible to compute the global loss unless we split the regularizer term among all distributed agents. In a real deployment, also, the analytical solution is not available. Note that this function is provided just for illustration and testing purposes. ''' def __init__(self, data_in, data_out, problem, lam=0.1, rho=10, grad_steps=10, grad_mu=0.1): if type(data_in) is not list or type(data_out) is not list: raise RuntimeError('Data must be provided as a list of numpy arrays per agent') if len(data_in) is not len(data_out): raise RuntimeError('Input and output data lists must have the same number of elements') self.na = len(data_in) self.problem = problem # Problem to be solved # To store training values self.f = None # To store function values (global) # ADMM parameters self.lam = lam # Regularizer self.rho = rho # Quadratic weight self.grad_steps = grad_steps # Number of steps per iteration in gradient / subgradient method (if needed) self.grad_mu = grad_mu # Step size in gradient / subgradient method (if needed) # Store global data self.global_data_in = np.vstack(data_in) self.global_data_out = np.hstack(data_out) self.global_data_out = self.global_data_out.reshape([self.global_data_out.size, 1]) # Build ADMM agents self.agents = [AdmmDistributedAgent(data_in[i], data_out[i], self.global_data_in.shape[0], self.na, self.problem, lam=self.lam, rho=self.rho, grad_steps=self.grad_steps, grad_mu=self.grad_mu) for i in range(self.na)] # Analytical solution (for comparison purposes) self.fopt, self.xopt = self.solve_analytical() def function(self, x): # Global target function (this function is only for illustration purposes) return target(self.global_data_in, self.global_data_out, self.lam, x, self.problem, z=None, na=1) def solve_analytical(self): return solve_analytical(self.global_data_in, self.global_data_out, self.lam, self.problem) def train(self, niter): # Distributed ADMM training! for agent in self.agents: agent.initialize() # Initialize local values self.f = [] # Initialize global f value for iter in range(niter): # Update x (locally) for agent in self.agents: agent.x_update(agent.x[-1], agent.y[-1], agent.z[-1]) # Update z (globally!) sum_x = np.zeros_like(self.agents[0].x[-1]) sum_y = np.zeros_like(self.agents[0].y[-1]) for agent in self.agents: sum_x += agent.x[-1] sum_y += agent.y[-1] for agent in self.agents: agent.z_update(sum_x / self.na, sum_y / self.na, agent.z[-1]) # Update y (locally) for agent in self.agents: agent.y_update(agent.x[-1], agent.y[-1], agent.z[-1]) # Update global f: make use of z (global value, shared by all agents) self.f.append(self.function(self.agents[0].z[-1])) def plot(self): # Plot the losses using the global variable z and all the data plt.plot(10 * np.log10(np.square(np.array(self.f) - self.fopt) + np.finfo(float).eps), 'b', label='global') # Plot also the losses using the local terms, x and z (the actual values obtained: the gap is due to x != z) sum_f_local = np.sum(np.array([np.array(agent.f) for agent in self.agents]), axis=0) plt.plot(10 * np.log10(np.square(sum_f_local - self.fopt) + np.finfo(float).eps), 'r', label='local') plt.title('ADMM distributed global loss') plt.xlabel('Iteration') plt.ylabel('MSE') plt.legend(loc='best') plt.show() ''' for i, agent in enumerate(self.agents): plt.plot(agent.f, label=str(i)) plt.plot(self.f, label='Global value') plt.title('ADMM distributed function values: local and global') plt.xlabel('Iteration') plt.ylabel('Value') plt.legend(loc='best') plt.show() for i, agent in enumerate(self.agents): plt.plot(np.squeeze(np.array(agent.x)), label=str(i)) plt.title('ADMM distributed x') plt.xlabel('Iteration') plt.ylabel('x value') plt.legend(loc='best') plt.show() for i, agent in enumerate(self.agents): plt.plot(np.squeeze(np.array(agent.y)), label=str(i)) plt.title('ADMM distributed y') plt.xlabel('Iteration') plt.ylabel('y value') plt.legend(loc='best') plt.show() for i, agent in enumerate(self.agents): plt.plot(np.squeeze(np.array(agent.z)), label=str(i)) plt.title('ADMM distributed z') plt.xlabel('Iteration') plt.ylabel('z value') plt.legend(loc='best') plt.show() for i, agent in enumerate(self.agents): plt.plot(10 * np.log10( np.sum(np.square(np.squeeze(np.array(agent.z)) - np.squeeze(np.array(agent.x))), axis=1) + np.finfo( float).eps), label=str(i)) plt.title('ADMM distributed x-z convergence') plt.xlabel('Iteration') plt.ylabel('MSE') plt.legend(loc='best') plt.show() ''' class AdmmDistributedAgent(object): def __init__(self, local_data_in, local_data_out, d_tot, na, problem, lam=0.1, rho=10, grad_steps=10, grad_mu=0.001): self.ndata = local_data_in.shape[0] # Number of data points (local dataset) self.ndata_tot = d_tot # Number of data points (global dataset) self.data_dim = local_data_in.shape[1] # Number of features per data point self.data_in = local_data_in # Feature matrix self.data_out = local_data_out.reshape([self.ndata, 1]) # Labels / regression targets self.na = na # Number of agents cooperating self.problem = problem # Problem to be solved # To store training values self.x = None # To store x values (local) self.y = None # To store y values (local) self.z = None # To store z values (global) self.f = None # To store function values (local) # ADMM parameters self.lam = lam # Regularizer self.rho = rho # Quadratic weight self.grad_steps = grad_steps # Number of steps per iteration in gradient / subgradient method (if needed) self.grad_mu = grad_mu # Step size in gradient / subgradient method (if needed) def function(self, x, z): # Local target function return target(self.data_in, self.data_out, self.lam, x, self.problem, z=z, na=self.na, ntot=self.ndata_tot) def x_update(self, x, y, z): if self.problem is "lasso" or self.problem is "ridge": term1 = np.linalg.inv(2 / self.ndata_tot * self.data_in.T @ self.data_in + self.rho * np.eye(self.data_dim)) term2 = 2 / self.ndata_tot * self.data_in.T @ self.data_out + self.rho * (z - y) xnew = term1 @ term2 elif self.problem is "svm": # In this case, we use a subgradient approach for the hinge function for it in range(self.grad_steps): d = np.diag(np.squeeze(self.data_out)) @ self.data_in term1 = -1 / self.ndata_tot * np.sum(d[np.squeeze(d @ x < 1), :], axis=0).reshape([self.data_dim, 1]) x = x - self.grad_mu * (term1 + self.rho * (x - z + y)) xnew = x elif self.problem is "logistic": ## We use a gradient method for the logistic function for it in range(self.grad_steps): d = np.diag(np.squeeze(self.data_out)) @ self.data_in denominator = np.repeat(1 + np.exp(d @ x), self.data_dim, axis=1) term1 = -1 / self.ndata_tot * np.sum(d / denominator, axis=0).reshape([self.data_dim, 1]) x = x - self.grad_mu * (term1 + self.rho * (x - z + y)) xnew = x else: raise RuntimeError('Problem not recognized') self.x.append(xnew) def y_update(self, x, y, z): ynew = y + x - z self.y.append(ynew) # Update also the function value! self.f.append(self.function(x, z)) def z_update(self, x, y, z): # In this case, x and y are the average of local x and y values!! if self.problem is "lasso": q = x + y v = self.lam / (self.na * self.rho) znew = np.maximum(np.zeros_like(q), q - v) - np.maximum(np.zeros_like(q), - q - v) elif self.problem is "ridge" or self.problem is "svm" or self.problem is "logistic": znew = (x+y) * self.rho * self.na / (self.lam + self.rho * self.na) else: raise RuntimeError('Problem not recognized') self.z.append(znew) def initialize(self): # Initialize values self.x = [] # To store x values self.y = [] # To store y values self.z = [] # To store z values self.f = [] # To store target function values self.x.append(np.zeros((self.data_dim, 1))) self.y.append(np.zeros((self.data_dim, 1))) self.z.append(np.zeros((self.data_dim, 1))) self.f.append(self.function(self.x[-1], self.z[-1])) class AdmmCentralized(object): def __init__(self, data_in, data_out, problem, lam=0.1, rho=10, grad_steps=10, grad_mu=0.001): self.ndata = data_in.shape[0] # Number of data points self.data_dim = data_in.shape[1] # Number of features per data point self.data_in = data_in # Feature matrix self.data_out = data_out.reshape([self.ndata, 1]) # Labels / regression targets self.problem = problem # Problem to be solved # To store training values self.x = None # To store x values self.y = None # To store y values self.z = None # To store z values self.f = None # To store function values # ADMM parameters self.lam = lam # Regularizer self.rho = rho # Quadratic weight self.grad_steps = grad_steps # Number of steps per iteration in gradient / subgradient method (if needed) self.grad_mu = grad_mu # Step size in gradient / subgradient method (if needed) # Analytical solution (for comparison purposes) self.fopt, self.xopt = self.solve_analytical() def function(self, x): # Target function return target(self.data_in, self.data_out, self.lam, x, self.problem, z=None, na=1) def solve_analytical(self): return solve_analytical(self.data_in, self.data_out, self.lam, self.problem) def x_update(self, x, y, z): if self.problem is "lasso" or self.problem is "ridge": term1 = np.linalg.inv(2 / self.ndata * self.data_in.T @ self.data_in + self.rho * np.eye(self.data_dim)) term2 = 2 / self.ndata * self.data_in.T @ self.data_out + self.rho*(z-y) xnew = term1 @ term2 elif self.problem is "svm": # In this case, we use a subgradient approach for the hinge function for it in range(self.grad_steps): d = np.diag(np.squeeze(self.data_out)) @ self.data_in term1 = -1 / self.ndata * np.sum(d[np.squeeze(d @ x < 1), :], axis=0).reshape([self.data_dim, 1]) x = x - self.grad_mu * (term1 + self.rho * (x - z + y)) xnew = x elif self.problem is "logistic": ## We use a gradient method for the logistic function for it in range(self.grad_steps): d = np.diag(np.squeeze(self.data_out)) @ self.data_in denominator = np.repeat(1 + np.exp(d @ x), self.data_dim, axis=1) term1 = -1 / self.ndata * np.sum(d / denominator, axis=0).reshape([self.data_dim, 1]) x = x - self.grad_mu * (term1 + self.rho * (x - z + y)) xnew = x else: raise RuntimeError('Problem not recognized') self.x.append(xnew) def y_update(self, x, y, z): # Always the same, we update the function value here! ynew = y + x - z self.y.append(ynew) # Update also the function value! self.f.append(self.function(x)) def z_update(self, x, y, z): if self.problem is "lasso": q = x + y v = self.lam / self.rho znew = np.maximum(np.zeros_like(q), q - v) - np.maximum(np.zeros_like(q), - q - v) elif self.problem is "ridge" or self.problem is "svm" or self.problem is "logistic": znew = (x + y) * self.rho / (self.lam + self.rho) else: raise RuntimeError('Problem not recognized') self.z.append(znew) def initialize(self): self.x = [] # To store x values self.y = [] # To store y values self.z = [] # To store z values self.f = [] # To store target function values self.x.append(np.zeros((self.data_dim, 1))) self.y.append(np.zeros((self.data_dim, 1))) self.z.append(np.zeros((self.data_dim, 1))) self.f.append(self.function(self.x[-1])) def train(self, niter): # Train centralized ADMM # Initialize values self.initialize() # Iterate ADMM for iter in range(niter): self.x_update(self.x[-1], self.y[-1], self.z[-1]) # Update x self.z_update(self.x[-1], self.y[-1], self.z[-1]) # Update z self.y_update(self.x[-1], self.y[-1], self.z[-1]) # Update y (and store the function value!) def plot(self): ''' plt.plot(np.squeeze(np.array(self.x)), 'b', label='x') plt.plot(np.squeeze(np.array(self.y)), 'r', label='y') plt.plot(np.squeeze(np.array(self.z)), 'g', label='z') plt.title('ADMM centralized values') plt.xlabel('Iteration') plt.ylabel('Value') plt.legend(loc='best') plt.show() plt.plot(10 * np.log10(np.square(np.array(self.f)))) plt.title('ADMM centralized function') plt.xlabel('Iteration') plt.ylabel('MSE') plt.show() ''' plt.plot(10 * np.log10(np.square(np.array(self.f) - self.fopt) + np.finfo(float).eps)) plt.title('ADMM centralized loss') plt.xlabel('Iteration') plt.ylabel('MSE') plt.show() # Target functions (in distributed, x is local and z is global) def target(data_in, data_out, lam, x, problem, z=None, na=1, ntot=None): if problem is "lasso": return target_lasso(data_in, data_out, lam, x, z, na=na, ntot=ntot) elif problem is "svm": return target_svm(data_in, data_out, lam, x, z, na=na, ntot=ntot) elif problem is "ridge": return target_ridge(data_in, data_out, lam, x, z, na=na, ntot=ntot) elif problem is "logistic": return target_logistic(data_in, data_out, lam, x, z, na=na, ntot=ntot) else: raise RuntimeError('Problem not recognized') def target_lasso(data_in, data_out, lam, x, z, na=1, ntot=None): if ntot is None: ntot = data_in.shape[0] if z is None: return np.sum(np.square(data_in @ x - data_out)) / ntot + lam * np.sum(np.abs(x)) / na else: return np.sum(np.square(data_in @ x - data_out)) / ntot + lam * np.sum(
np.abs(z)
numpy.abs
""" .. module:: optimization_problems :synopsis: Optimization test problems for multi-modal and box-constrained global optimization .. moduleauthor:: <NAME> <<EMAIL>>, <NAME> <<EMAIL>> :Module: optimization_problems :Author: <NAME> <<EMAIL>>, <NAME> <<EMAIL>> """ import numpy as np import abc from abc import abstractmethod class OptimizationProblem(object): """Base class for optimization problems.""" __metaclass__ = abc.ABCMeta def __init__(self): self.dim = None self.lb = None self.ub = None self.int_var = None self.cont_var = None def __check_input__(self, x): if len(x) != self.dim: raise ValueError('Dimension mismatch') @abstractmethod def eval(self, record): # pragma: no cover pass # ========================= 2-dimensional ======================= class GoldsteinPrice(OptimizationProblem): def __init__(self): self.info = "2-dimensional Goldstein-Price function" self.min = 3.0 self.minimum = np.array([0, -1]) self.dim = 2 self.lb = -2.0 * np.ones(2) self.ub = 2.0 * np.ones(2) self.int_var = np.array([]) self.cont_var = np.arange(0, 2) def eval(self, x): """Evaluate the GoldStein Price function at x :param x: Data point :type x: numpy.array :return: Value at x :rtype: float """ self.__check_input__(x) x1 = x[0] x2 = x[1] fact1a = (x1 + x2 + 1) ** 2 fact1b = 19 - 14 * x1 + 3 * x1 ** 2 - \ 14 * x2 + 6 * x1 * x2 + 3 * x2 ** 2 fact1 = 1 + fact1a * fact1b fact2a = (2 * x1 - 3 * x2) ** 2 fact2b = 18 - 32 * x1 + 12 * x1 ** 2 + 48 * x2 - \ 36 * x1 * x2 + 27 * x2 ** 2 fact2 = 30 + fact2a * fact2b return fact1 * fact2 class SixHumpCamel(OptimizationProblem): """Six-hump camel function Details: https://www.sfu.ca/~ssurjano/camel6.html Global optimum: :math:`f(0.0898,-0.7126)=-1.0316` :ivar dim: Number of dimensions :ivar lb: Lower variable bounds :ivar ub: Upper variable bounds :ivar int_var: Integer variables :ivar cont_var: Continuous variables :ivar min: Global minimum value :ivar minimum: Global minimizer :ivar info: String with problem info """ def __init__(self): self.min = -1.0316 self.minimum = np.array([0.0898, -0.7126]) self.dim = 2 self.lb = -3.0 * np.ones(2) self.ub = 3.0 * np.ones(2) self.int_var = np.array([]) self.cont_var = np.arange(0, 2) self.info = "2-dimensional Six-hump function \nGlobal optimum: " +\ "f(0.0898, -0.7126) = -1.0316" def eval(self, x): """Evaluate the Six Hump Camel function at x :param x: Data point :type x: numpy.array :return: Value at x :rtype: float """ self.__check_input__(x) return (4.0 - 2.1*x[0]**2 + (x[0]**4)/3.0)*x[0]**2 + \ x[0]*x[1] + (-4 + 4*x[1]**2) * x[1]**2 class Branin(OptimizationProblem): """Branin function Details: http://www.sfu.ca/~ssurjano/branin.html Global optimum: :math:`f(-\\pi,12.275)=0.397887` :ivar dim: Number of dimensions :ivar lb: Lower variable bounds :ivar ub: Upper variable bounds :ivar int_var: Integer variables :ivar cont_var: Continuous variables :ivar min: Global minimum value :ivar minimum: Global minimizer :ivar info: String with problem info """ def __init__(self): self.min = 0.397887 self.minimum = np.array([-np.pi, 12.275]) self.dim = 2 self.lb = -3.0 * np.ones(2) self.ub = 3.0 * np.ones(2) self.int_var = np.array([]) self.cont_var = np.arange(0, 2) self.info = "2-dimensional Branin function \nGlobal optimum: " +\ "f(-pi, 12.275) = 0.397887" def eval(self, x): """Evaluate the Branin function at x :param x: Data point :type x: numpy.array :return: Value at x :rtype: float """ self.__check_input__(x) x1 = x[0] x2 = x[1] t = 1 / (8 * np.pi) s = 10 r = 6 c = 5 / np.pi b = 5.1 / (4 * np.pi ** 2) a = 1 term1 = a * (x2 - b * x1 ** 2 + c * x1 - r) ** 2 term2 = s * (1 - t) * np.cos(x1) return term1 + term2 + s # ========================= 3-dimensional ======================= class Hartman3(OptimizationProblem): """Hartman 3 function Details: http://www.sfu.ca/~ssurjano/hart3.html Global optimum: :math:`f(0.114614,0.555649,0.852547)=-3.86278` :ivar dim: Number of dimensions :ivar lb: Lower variable bounds :ivar ub: Upper variable bounds :ivar int_var: Integer variables :ivar cont_var: Continuous variables :ivar min: Global minimum value :ivar minimum: Global minimizer :ivar info: String with problem info """ def __init__(self): self.dim = 3 self.lb = np.zeros(3) self.ub = np.ones(3) self.int_var = np.array([]) self.cont_var = np.arange(0, 3) self.min = -3.86278 self.minimum = np.array([0.114614, 0.555649, 0.852547]) self.info = "3-dimensional Hartman function \nGlobal optimum: " +\ "f(0.114614,0.555649,0.852547) = -3.86278" def eval(self, x): """Evaluate the Hartman 3 function at x :param x: Data point :type x: numpy.array :return: Value at x :rtype: float """ self.__check_input__(x) alpha = np.array([1, 1.2, 3, 3.2]) A = np.array([[3.0, 10.0, 30.0], [0.1, 10.0, 35.0], [3.0, 10.0, 30.0], [0.1, 10.0, 35.0]]) P = np.array([[0.3689, 0.1170, 0.2673], [0.4699, 0.4387, 0.747], [0.1091, 0.8732, 0.5547], [0.0381, 0.5743, 0.8828]]) outer = 0 for ii in range(4): inner = 0 for jj in range(3): xj = x[jj] Aij = A[ii, jj] Pij = P[ii, jj] inner += Aij * ((xj-Pij) ** 2) outer += alpha[ii] * np.exp(-inner) return -outer # =========================6-dimensional ======================= class Hartman6(OptimizationProblem): """Hartman 6 function Details: http://www.sfu.ca/~ssurjano/hart6.html Global optimum: :math:`f(0.201,0.150,0.476,0.275,0.311,0.657)=-3.322` :ivar dim: Number of dimensions :ivar lb: Lower variable bounds :ivar ub: Upper variable bounds :ivar int_var: Integer variables :ivar cont_var: Continuous variables :ivar min: Global minimum value :ivar minimum: Global minimizer :ivar info: String with problem info """ def __init__(self): self.min = -3.32237 self.minimum = np.array([0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573]) self.dim = 6 self.lb = np.zeros(6) self.ub = np.ones(6) self.int_var = np.array([]) self.cont_var = np.arange(0, 6) self.info = "6-dimensional Hartman function \nGlobal optimum: " + \ "f(0.2016,0.15001,0.47687,0.27533,0.31165,0.657) = -3.3223" def eval(self, x): """Evaluate the Hartman 6 function at x :param x: Data point :type x: numpy.array :return: Value at x :rtype: float """ self.__check_input__(x) alpha = np.array([1.0, 1.2, 3.0, 3.2]) A = np.array([[10.0, 3.0, 17.0, 3.5, 1.7, 8.0], [0.05, 10.0, 17.0, 0.1, 8.0, 14.0], [3.0, 3.5, 1.7, 10.0, 17.0, 8.0], [17.0, 8.0, 0.05, 10.0, 0.1, 14.0]]) P = 1e-4 * np.array([[1312.0, 1696.0, 5569.0, 124.0, 8283.0, 5886.0], [2329.0, 4135.0, 8307.0, 3736.0, 1004.0, 9991.0], [2348.0, 1451.0, 3522.0, 2883.0, 3047.0, 6650.0], [4047.0, 8828.0, 8732.0, 5743.0, 1091.0, 381.0]]) outer = 0 for ii in range(4): inner = 0 for jj in range(6): xj = x[jj] Aij = A[ii, jj] Pij = P[ii, jj] inner += Aij * ((xj - Pij) ** 2) outer += alpha[ii] * np.exp(-inner) return -outer # ========================= n-dimensional ======================= class Rastrigin(OptimizationProblem): """Rastrigin function .. math:: f(x_1,\\ldots,x_n)=10n-\\sum_{i=1}^n (x_i^2 - 10 \\cos(2 \\pi x_i)) subject to .. math:: -5.12 \\leq x_i \\leq 5.12 Global optimum: :math:`f(0,0,...,0)=0` :ivar dim: Number of dimensions :ivar lb: Lower variable bounds :ivar ub: Upper variable bounds :ivar int_var: Integer variables :ivar cont_var: Continuous variables :ivar min: Global minimum value :ivar minimum: Global minimizer :ivar info: String with problem info """ def __init__(self, dim=10): self.dim = dim self.min = 0 self.minimum = np.zeros(dim) self.lb = -5.12 * np.ones(dim) self.ub = 5.12 * np.ones(dim) self.int_var = np.array([]) self.cont_var = np.arange(0, dim) self.info = str(dim) + "-dimensional Rastrigin function \n" + \ "Global optimum: f(0,0,...,0) = 0" def eval(self, x): """Evaluate the Rastrigin function at x :param x: Data point :type x: numpy.array :return: Value at x :rtype: float """ self.__check_input__(x) return 10 * self.dim + sum(x**2 - 10 * np.cos(2 * np.pi * x)) class Ackley(OptimizationProblem): """Ackley function .. math:: f(x_1,\\ldots,x_n) = -20\\exp\\left( -0.2 \\sqrt{\\frac{1}{n} \ \\sum_{j=1}^n x_j^2} \\right) -\\exp \\left( \\frac{1}{n} \ \\sum{j=1}^n \\cos(2 \\pi x_j) \\right) + 20 - e subject to .. math:: -15 \\leq x_i \\leq 20 Global optimum: :math:`f(0,0,...,0)=0` :ivar dim: Number of dimensions :ivar lb: Lower variable bounds :ivar ub: Upper variable bounds :ivar int_var: Integer variables :ivar cont_var: Continuous variables :ivar min: Global minimum value :ivar minimum: Global minimizer :ivar info: String with problem info """ def __init__(self, dim=10): self.dim = dim self.min = 0 self.minimum = np.zeros(dim) self.lb = -15 * np.ones(dim) self.ub = 20 * np.ones(dim) self.int_var = np.array([]) self.cont_var = np.arange(0, dim) self.info = str(dim) + "-dimensional Ackley function \n" +\ "Global optimum: f(0,0,...,0) = 0" def eval(self, x): """Evaluate the Ackley function at x :param x: Data point :type x: numpy.array :return: Value at x :rtype: float """ self.__check_input__(x) d = float(self.dim) return -20.0 * np.exp(-0.2*np.sqrt(np.sum(x**2) / d)) - \ np.exp(np.sum(np.cos(2.0*np.pi*x)) / d) + 20 + np.exp(1) class Michalewicz(OptimizationProblem): """Michalewicz function .. math:: f(x_1,\\ldots,x_n) = -\\sum_{i=1}^n \\sin(x_i) \\sin^{20} \\left( \\frac{ix_i^2}{\\pi} \\right) subject to .. math:: 0 \\leq x_i \\leq \\pi :ivar dim: Number of dimensions :ivar lb: Lower variable bounds :ivar ub: Upper variable bounds :ivar int_var: Integer variables :ivar cont_var: Continuous variables :ivar min: Global minimum value :ivar minimum: Global minimizer :ivar info: String with problem info """ def __init__(self, dim=10): self.dim = dim self.lb = np.zeros(dim) self.ub = np.pi * np.ones(dim) self.int_var = np.array([]) self.cont_var = np.arange(0, dim) self.info = str(dim) + "-dimensional Michalewicz function \n" + \ "Global optimum: ??" def eval(self, x): """Evaluate the Michalewicz function at x. :param x: Data point :type x: numpy.array :return: Value at x :rtype: float """ self.__check_input__(x) return -np.sum(np.sin(x) * ( np.sin(((1 + np.arange(self.dim)) * x**2)/np.pi)) ** 20) class Levy(OptimizationProblem): """Levy function Details: https://www.sfu.ca/~ssurjano/levy.html Global optimum: :math:`f(1,1,...,1)=0` :ivar dim: Number of dimensions :ivar lb: Lower variable bounds :ivar ub: Upper variable bounds :ivar int_var: Integer variables :ivar cont_var: Continuous variables :ivar min: Global minimum value :ivar minimum: Global minimizer :ivar info: String with problem info """ def __init__(self, dim=10): self.dim = dim self.min = 0.0 self.minimum = np.ones(dim) self.lb = -5 * np.ones(dim) self.ub = 5 * np.ones(dim) self.int_var = np.array([]) self.cont_var =
np.arange(0, dim)
numpy.arange
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Gaussian quadrature in 2D space """ import numpy as np class GaussianQuadrature(object): """ Abstract base class of GaussianQuadrature """ def __init__(self, order): """Constructor based on order of quadrature Parameters ---------- order : int Order of quadrature """ self.order = order self.quad_pts_1d, self.quad_wts_1d = list(map( np.array, np.polynomial.legendre.leggauss(order))) self.quad_pts, self.quad_wts = self.calculate_quadrature_points_and_weights() self.shape_at_quads = self.shape(self.quad_pts) self.shape_derivative_at_quads = self.shape_derivative(self.quad_pts) def shape(self, pts): """ Abstract shape function Parameters ---------- pts: np.ndarray Coordinates of the nodes """ raise NotImplementedError() def shape_derivative(self, pts): """ Abstract shape derivative function Parameters ---------- pts: np.ndarray Coordinates of the nodes """ raise NotImplementedError() def calculate_quadrature_points_and_weights(self): """ Calculate quadrature points and weights Parameters ---------- pts: np.ndarray Coordinates of the nodes Returns ------- pts : real quadrature points """ raise NotImplementedError() def number_of_quadrature_points(self): """ Get the number of quadrature points Returns ------- int Number of quadrature points """ return len(self.quad_pts) def values_at_quadrature_points(self, values): """ Get quadrature points Parameters ---------- values: numpy.array values at quadrature points Returns ------- numpy.array values of Gaussian quadrature points """ return self.shape_at_quads.dot(values) def integrate(self, vertices, values=None): """ Integrate values over a quad element Parameters ---------- vertices: numpy.array coordinates of vertices (or nodes) with values. The shape needs to be (:, 2) values: numpy.array, optional A value vector at vertices If it is not provided, the thrid column will be used as values Returns ------- float result of integration """ if values is None: values = vertices[:, 2] return self.quadrature_vector(vertices).dot(values) def quadrature_vector(self, vertices): """ Create a quadrature matrix for quadrature integration Taking a dot product this quadrature matrix and the values at the quadrature points will result in quadrature Parameters ---------- vertices: numpy.array coordinates of vertices (or nodes) with values. The shape needs to be (:, 2) Returns ------- numpy.array two-dimensional matrix of quadrature matrix """ jacobian = self.jacobian_det(vertices) return (self.quad_wts * jacobian).dot(self.shape_at_quads) def jacobian_det(self, vertices): """ Determinant of Jacobian at quadrature points Parameters ---------- vertices: numpy.array coordinates of vertices (or nodes) The shape needs to be (:, 2) or more columns. The values in the first two columns will be used. Returns ------- numpy.array array of determinant ant quadrature points """ jacobian = self.shape_derivative_at_quads.dot(vertices[:, :2]) return np.array([np.linalg.det(j) for j in jacobian]) def domain_size(self, vertices): """ Abstract method to calculate the size of the domain """ raise NotImplementedError() def average(self, vertices, values): """ Calculate the average of the value over the domain. Parameters ---------- vertices: numpy.array coordinates of vertices (or nodes) The shape needs to be (:, 2) or more columns. The values in the first two columns will be used. Returns ------- float the length of the line """ return (self.integrate(vertices, values) / self.domain_size(vertices)) class GaussianQuadratureLine2(GaussianQuadrature): """ Gaussian quadrature on line with two end points in 2-D space """ def __init__(self, order): """ Constructor Parameters ---------- order: int Order of Gaussian quadrature """ self.n_vertices = 2 super(GaussianQuadratureLine2, self).__init__(order) def calculate_quadrature_points_and_weights(self): return self.quad_pts_1d, self.quad_wts_1d def shape(self, pts): """ Shape functions Ordering is counter-clockwise direction Parameters ---------- pts: numpy.array Local coordinates. Returns ------- numpy.array matrix of shape function value at the given points """ return np.array([0.5 * (1.0 - pts), 0.5 * (1.0 + pts)]).transpose() def shape_derivative(self, pts): """ Derivatives of shape functions Parameters ---------- pts: numpy.array Local coordinates. The dimension is (-1, 2) Returns ------- numpy.array matrix of shape function derivative wrt xi value at (*, eta) """ return np.array([[-0.5, 0.5] for _ in range(len(pts))]) def jacobian_det(self, vertices): """ Determinant of Jacobian at quadrature points, 1-D version Parameters ---------- vertices: numpy.array coordinates of vertices (or nodes) The shape needs to be (-1, 2) or more columns. The values in the first two columns will be used. Returns ------- numpy.array array of determinant ant quadrature points """ l = self.domain_size(vertices) n_quad_pts = len(self.quad_pts) return np.ones((n_quad_pts)) * (l * 0.5) def domain_size(self, vertices): """ Size of domian, which is the length of the line in this case Parameters ---------- vertices: numpy.array coordinates of vertices (or nodes) The shape needs to be (2, 2) or more columns. The values in the first two columns will be used. Returns ------- float the length of the line """ return np.linalg.norm(vertices[1, :2] - vertices[0, :2]) def average(self, vertices, values): """ Integrate values over a quad element Parameters ---------- vertices: numpy.array coordinates of vertices (or nodes) with values. The shape needs to be (-1, 2) values: numpy.array The values at vertices Returns ------- average : float result of integration """ wts = self.quad_wts val_at_pts = self.shape_at_quads.dot(values) return np.sum(wts * val_at_pts) * 0.5 class GaussianQuadratureQuad4(GaussianQuadrature): """ Gaussian Quadrature for a quadrilateral with four nodes """ def __init__(self, order): """ Constructor Parameters ---------- order: int order of Gaussian quadrature between 2 and 5 """ self.n_vertices = 4 super(GaussianQuadratureQuad4, self).__init__(order) def calculate_quadrature_points_and_weights(self): """ Calculate quadrature points and weights """ quad_pts = np.array([(self.quad_pts_1d[i], self.quad_pts_1d[j]) for i in range(self.order) for j in range(self.order)]) wts = self.quad_wts_1d.reshape(self.order, -1) quad_wts = wts.dot(wts.transpose()).flatten() return quad_pts, quad_wts def domain_size(self, vertices): """ Size of domain, which is the area of the quadrilateral in this case. The area is calculated with shoelace equation. Parameters ---------- vertices: numpy.array coordinates of vertices (or nodes) The shape needs to be (4, 2) or more columns. The values in the first two columns will be used. Returns ------- ret_size: float the length of the line """ return 0.5 * np.abs(np.dot(vertices[:, 0], np.roll(vertices[:, 1], 1)) - np.dot(np.roll(vertices[:, 0], 1), vertices[:, 1])) def shape(self, pts): """ Shape functions Ordering is counter-clockwise direction Parameters ---------- pts: numpy.array Local coordinates. The dimension is (-1, 2) Returns ------- numpy.array matrix of shape function value at (xi, eta) """ return np.array([0.25 * (1.0 - pts[:, 0]) * (1.0 - pts[:, 1]), 0.25 * (1.0 + pts[:, 0]) * (1.0 - pts[:, 1]), 0.25 * (1.0 + pts[:, 0]) * (1.0 + pts[:, 1]), 0.25 * (1.0 - pts[:, 0]) * (1.0 + pts[:, 1])]).transpose() def shape_derivative(self, pts): """ Derivatives of shape functions Parameters ---------- pts: numpy.array Local coordinates. The dimension is (-1, 2) Returns ------- numpy.array matrix of shape function derivative wrt xi value at (*, eta) """ derivative = np.stack((np.array([-0.25 * (1.0 - pts[:, 1]), 0.25 * (1.0 - pts[:, 1]), 0.25 * (1.0 + pts[:, 1]), -0.25 * (1.0 + pts[:, 1])]).transpose(), np.array([-0.25 * (1.0 - pts[:, 0]), -0.25 * (1.0 + pts[:, 0]), 0.25 * (1.0 + pts[:, 0]), 0.25 * (1.0 - pts[:, 0])]).transpose())) return np.swapaxes(derivative, 0, 1) def jacobian(self, vertices, local_coord=None): """ Create a Jacobian matrix or matrixes at the given local coordinates Parameters ---------- vertices: numpy.array coordinates of vertices (or nodes) The shape needs to be (4, 2) or more columns. The values in the first two columns will be used. local_coord: numpy.array local coordinates where a Jacobian is calculated Returns ------- numpy.array Jacobian matrix """ if local_coord is None: return self.shape_derivative_at_quads.dot(vertices[:, :2]) else: return self.shape_derivative(local_coord).dot(vertices[:, :2]) class GaussianQuadratureTri3(GaussianQuadrature): """ Gaussian Quadrature for triangles with three nodes """ def __init__(self, order): """ Constructor Parameters ---------- order: int order of Gaussian quadrature between 2 and 5 """ super(GaussianQuadratureTri3, self).__init__(order) def calculate_quadrature_points_and_weights(self): """ Calculate quadrature points and weights """ if self.order == 2: quad_pts = np.array([[1. / 6., 1. / 6., 2. / 3.], [1. / 6., 2. / 3., 1. / 6.], [2. / 3., 1. / 6., 1. / 6.]]) quad_wts =
np.array([1. / 3., 1. / 3., 1. / 3.])
numpy.array
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/10-PHSEND103/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/10-PHSEND107/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/09-PCO2WB103/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/09-PCO2WB104/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/05-ADCPTB104/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/05-ADCPSI103/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/07-VEL3DC108/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/07-VEL3DC107/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/08-OPTAAD106/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/08-OPTAAC104/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #CSPP Data below elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_inst/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_wfp/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'corrected_dissolved_oxygen' var_list[2].name = 'seawater_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_inst/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_wfp/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3A-FLORTD104/streamed/flort_d_data_record' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/04-FLNTUA103/recovered_inst/dpc_flnturtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/03-FLCDRA103/recovered_wfp/dpc_flcdrtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2B-PHSENA108/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3C-PARADA102/streamed/parad_sa_sample' var_list[0].name = 'time' var_list[1].name = 'par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3D-SPKIRA102/streamed/spkir_data_record' var_list[0].name = 'time' var_list[1].name = 'spkir_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4A-NUTNRA102/streamed/nutnr_a_sample' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4F-PCO2WA102/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4B-VELPTD106/streamed/velpt_velocity_data' var_list[0].name = 'time' var_list[1].name = 'velpt_d_eastward_velocity' var_list[2].name = 'velpt_d_northward_velocity' var_list[3].name = 'velpt_d_upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[9].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' var_list[9].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_inst/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_wfp/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'DOSTA' and method == 'Streamed': #uframe_dataset_name = 'CE04OSPS/PC01B/4A-DOSTAD109/streamed/ctdpf_optode_sample' uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'seawater_pressure' #also use this for the '4A-DOSTAD109/streamed/ctdpf_optode_sample' stream var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4B-PHSENA106/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4D-PCO2WA105/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #Coastal Pioneer CSM Data Streams elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #WAVSS elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #FDCHP elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data =
np.array([])
numpy.array
import matplotlib as mpl import matplotlib.pyplot as plt plt.switch_backend('Agg') import seaborn as sns import numpy as np import skill_metrics as sm import pandas as pd import sys, getopt from os import path import json mpl.rc('font', size=10) sns.set() dbPath = '/home/scr/Projects/CMIP_backend/src/script/data/sites-stat.json' def taylor(stds, rmses, coefs, labels, title): try: fpath = './src/script/data/taylor-' + title + '.jpg' sm.taylor_diagram(np.array(stds), np.array(rmses), np.array(coefs), markerLabel = labels, markerLabelColor = 'r', markerSize = 6, markerLegend = 'on', colOBS = 'g', styleOBS = '-', markerobs = 'o', # tickRMS = np.arange(0,25,10), # tickSTD = np.arange(9,20,5), # tickCOR = intervalsCOR, showlabelsRMS = 'on', titleRMS = 'on', titleOBS = 'Fluxnet', rmslabelformat = ':.1f') # plt.title(title, y=1.06, fontsize='large', loc='center', horizontalalignment='center') plt.tight_layout() plt.savefig(fpath, format='jpg', transparent=False) plt.close('all') except Exception as instance: print(instance) def heatmap(df, title): try: fpath = './src/script/data/heatmap-' + title + '.jpg' fig, ax = plt.subplots(figsize=(8,5)) fmt = lambda x,pos: round(x,2) sns.heatmap(df, annot=True, fmt='.2f', linewidths=.5,ax=ax, cmap='YlGnBu') # plt.yticks(rotation=90) plt.tight_layout() # ax.set_xlabel('PFT') # ax.set_ylabel(title) fig.subplots_adjust(left=.15, bottom=.15) fig.text(0.515, 0.03, 'Observed ' + featureName + ' (kgC m-2 y-1)', ha="center", va="center") fig.text(0.03, 0.5, featureName + ' (kgC m-2 y-1)', ha="center", va="center", rotation=90) # plt.title(title) plt.savefig(fpath, format='jpg', transparent=False) plt.close('all') except Exception as instance: print(instance) def plotTaylor(): with open(dbPath) as load_f: stats = json.load(load_f) for stat in stats: title = featureName + '-' + stat['pft'] labels = ['Fluxnet', 'IBIS', 'Biome-BGC', 'LPJ', 'MODIS'] stds = np.concatenate((np.array(stat['avg_std'][4:]), np.array(stat['avg_std'][:4]))) rmses = np.concatenate((np.array([0]), np.array(stat['avg_rmse'][:4]))) coefs = np.concatenate((np.array([1]), np.array(stat['avg_coef'][:4]))) taylor(stds, rmses, coefs, labels, title) print('--------finished') def plotHeatmap(): with open(dbPath) as load_f: stats = json.load(load_f) meanDict = {} stdDict = {} coefDict = {} r2sDict = {} rmseDict = {} for stat in stats: stat['avg_coef'] = np.array(stat['avg_coef']) stat['avg_r2'] = np.array(stat['avg_r2']) stat['avg_nse'] = np.array(stat['avg_nse']) stat['avg_coef'][stat['avg_coef']>1]=1 stat['avg_r2'][stat['avg_r2']>1]=1 stat['avg_nse'][stat['avg_nse']>1]=1 stat['avg_coef'] = stat['avg_coef'].tolist() stat['avg_r2'] = stat['avg_r2'].tolist() stat['avg_nse'] = stat['avg_nse'].tolist() meanDict[stat['pft']] = stat['avg_mean'] stdDict[stat['pft']] = stat['avg_std'] coefDict[stat['pft']] = stat['avg_coef'] r2sDict[stat['pft']] = stat['avg_r2'] rmseDict[stat['pft']] = stat['avg_rmse'] pd_mean = pd.DataFrame(meanDict)*.365 pd_std = pd.DataFrame(stdDict) pd_coef = pd.DataFrame(coefDict) pd_r2s = pd.DataFrame(r2sDict) pd_rmse = pd.DataFrame(rmseDict) rowIndex = {0: 'IBIS', 1: 'Biome-BGC', 2: 'LPJ', 3: 'MODIS', 4: 'Fluxnet'} pd_mean.rename(index=rowIndex, inplace=True) pd_std.rename(index=rowIndex, inplace=True) pd_coef.rename(index=rowIndex, inplace=True) pd_r2s.rename(index=rowIndex, inplace=True) pd_rmse.rename(index=rowIndex, inplace=True) heatmap(pd_mean, featureName + '-mean') heatmap(pd_std, featureName + '-std') heatmap(pd_coef, featureName + '-coef') heatmap(pd_r2s, featureName + '-R2') heatmap(pd_rmse, featureName + '-rmse') print('--------finished') def plotBar(): with open(dbPath) as load_f: stats = json.load(load_f) meanDict = {} stdDict = {} coefDict = {} r2sDict = {} rmseDict = {} for stat in stats: stat['avg_coef'] =
np.array(stat['avg_coef'])
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Apr 29 08:55:24 2021 @author: llothar """ from sens_tape import tape import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use(['science','no-latex']) from shapely.geometry import Polygon from shapely.geometry import LineString from shapely.ops import unary_union from shapely.ops import unary_union, polygonize from sklearn.neighbors import RadiusNeighborsRegressor from sklearn.neighbors import KNeighborsRegressor from statistics_module import stats def myr2(x,y,data_x, data_y): try: x1 = np.max(data_x[data_x < x]) x2 = np.min(data_x[data_x > x]) loc1 = np.where(data_x == x1) loc2 = np.where(data_x == x2) y1 = data_y[loc1][-1] y2 = data_y[loc2][0] m = (y1-y2)/(x1-x2) b = (x1*y2 - x2*y1)/(x1-x2) y_inter = m * x + b return
np.power(y-y_inter, 2)
numpy.power
import numpy as np from decimer_segmentation.complete_structure import * def test_get_bounding_box_center(): # Determine the center of a given polygon bounding box test_bbox = np.array([[1, 1], [2, 1], [3, 1], [3, 0], [2, 0], [1, 0]]) expected_result = np.array([2, 0.5]) actual_result = get_bounding_box_center(test_bbox) for index in range(len(expected_result)): assert expected_result[index] == actual_result[index] def test_get_edge_line(): # Return intercept and slop for a linear function between 2 points in 2D Space test_linenode1 = [1, 6] test_linenode2 = [5, 8] expected_result = [0.5, 5.5] actual_result = get_edge_line(test_linenode1, test_linenode2) for index in range(len(expected_result)): assert expected_result[index] == actual_result[index] def test_get_euklidian_distance(): # Calculates euklidian distance between two given points in 2D Space test_distancepoint1 = [1, 6] test_distancepoint2 = [5, 8] expected_result = 4.47213595499958 actual_result = get_euklidian_distance(test_distancepoint1, test_distancepoint2) assert expected_result == actual_result def test_set_x_range(): # For the contour-based expansion, non-white pixels on the contours of the original polygon bounding box are detected test_distance = 3 test_eukl_distance = 4 test_image_array = np.array([[1,5]]) expected_result = [2.5, 2.75, 1., 0.25, 0.75, 0., 2., 2.25, 1.5, 1.75, 1.25, 0.5] actual_result = set_x_range(test_distance, test_eukl_distance, test_image_array) assert set(expected_result) == set(actual_result) def test_get_next_pixel_to_check(): # Returns the next pixel to check in the image test_bounding_box = np.array([[1,5], [2,4]]) test_node_index = 1 test_step = 4 test_image_shape = [2,4,6] expected_result = (3, 1) actual_result = get_next_pixel_to_check(test_bounding_box, test_node_index, test_step, test_image_shape) for index in range(len(expected_result)): assert expected_result[index] == actual_result[index] def test_adapt_x_values(): # Returns a bounding box where the nodes are altered depending on their relative position to bounding box centre test_bounding_box =
np.array([[1,5], [2,4]])
numpy.array
# Copyright 2018 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import itertools import numpy as np import pytest import cirq from cirq.protocols.act_on_protocol_test import DummyActOnArgs from cirq.testing import ( EqualsTester, assert_allclose_up_to_global_phase, ) _bools = (False, True) _paulis = (cirq.X, cirq.Y, cirq.Z) def _assert_not_mirror(gate) -> None: trans_x = gate.transform(cirq.X) trans_y = gate.transform(cirq.Y) trans_z = gate.transform(cirq.Z) right_handed = ( trans_x.flip ^ trans_y.flip ^ trans_z.flip ^ (trans_x.to.relative_index(trans_y.to) != 1) ) assert right_handed, 'Mirrors' def _assert_no_collision(gate) -> None: trans_x = gate.transform(cirq.X) trans_y = gate.transform(cirq.Y) trans_z = gate.transform(cirq.Z) assert trans_x.to != trans_y.to, 'Collision' assert trans_y.to != trans_z.to, 'Collision' assert trans_z.to != trans_x.to, 'Collision' def _all_rotations(): for ( pauli, flip, ) in itertools.product(_paulis, _bools): yield cirq.PauliTransform(pauli, flip) def _all_rotation_pairs(): for px, flip_x, pz, flip_z in itertools.product(_paulis, _bools, _paulis, _bools): if px == pz: continue yield cirq.PauliTransform(px, flip_x), cirq.PauliTransform(pz, flip_z) def _all_clifford_gates(): for trans_x, trans_z in _all_rotation_pairs(): yield cirq.SingleQubitCliffordGate.from_xz_map(trans_x, trans_z) @pytest.mark.parametrize('pauli,flip_x,flip_z', itertools.product(_paulis, _bools, _bools)) def test_init_value_error(pauli, flip_x, flip_z): with pytest.raises(ValueError): cirq.SingleQubitCliffordGate.from_xz_map((pauli, flip_x), (pauli, flip_z)) @pytest.mark.parametrize('trans_x,trans_z', _all_rotation_pairs()) def test_init_from_xz(trans_x, trans_z): gate = cirq.SingleQubitCliffordGate.from_xz_map(trans_x, trans_z) assert gate.transform(cirq.X) == trans_x assert gate.transform(cirq.Z) == trans_z _assert_not_mirror(gate) _assert_no_collision(gate) @pytest.mark.parametrize( 'trans1,trans2,from1', ( (trans1, trans2, from1) for trans1, trans2, from1 in itertools.product(_all_rotations(), _all_rotations(), _paulis) if trans1.to != trans2.to ), ) def test_init_from_double_map_vs_kwargs(trans1, trans2, from1): from2 = cirq.Pauli.by_relative_index(from1, 1) from1_str, from2_str = (str(frm).lower() + '_to' for frm in (from1, from2)) gate_kw = cirq.SingleQubitCliffordGate.from_double_map(**{from1_str: trans1, from2_str: trans2}) gate_map = cirq.SingleQubitCliffordGate.from_double_map({from1: trans1, from2: trans2}) # Test initializes the same gate assert gate_kw == gate_map # Test initializes what was expected assert gate_map.transform(from1) == trans1 assert gate_map.transform(from2) == trans2 _assert_not_mirror(gate_map) _assert_no_collision(gate_map) @pytest.mark.parametrize( 'trans1,from1', ((trans1, from1) for trans1, from1 in itertools.product(_all_rotations(), _paulis)), ) def test_init_from_double_invalid(trans1, from1): from2 = cirq.Pauli.by_relative_index(from1, 1) # Test throws on invalid arguments with pytest.raises(ValueError): cirq.SingleQubitCliffordGate.from_double_map({from1: trans1, from2: trans1}) @pytest.mark.parametrize('trans,frm', itertools.product(_all_rotations(), _paulis)) def test_init_from_single_map_vs_kwargs(trans, frm): from_str = str(frm).lower() + '_to' # pylint: disable=unexpected-keyword-arg gate_kw = cirq.SingleQubitCliffordGate.from_single_map(**{from_str: trans}) gate_map = cirq.SingleQubitCliffordGate.from_single_map({frm: trans}) assert gate_kw == gate_map @pytest.mark.parametrize( 'trans,frm', ( (trans, frm) for trans, frm in itertools.product(_all_rotations(), _paulis) if trans.to != frm ), ) def test_init_90rot_from_single(trans, frm): gate = cirq.SingleQubitCliffordGate.from_single_map({frm: trans}) assert gate.transform(frm) == trans _assert_not_mirror(gate) _assert_no_collision(gate) # Check that it decomposes to one gate assert len(gate.decompose_rotation()) == 1 # Check that this is a 90 degree rotation gate assert ( gate.merged_with(gate).merged_with(gate).merged_with(gate) == cirq.SingleQubitCliffordGate.I ) # Check that flipping the transform produces the inverse rotation trans_rev = cirq.PauliTransform(trans.to, not trans.flip) gate_rev = cirq.SingleQubitCliffordGate.from_single_map({frm: trans_rev}) assert gate**-1 == gate_rev @pytest.mark.parametrize( 'trans,frm', ( (trans, frm) for trans, frm in itertools.product(_all_rotations(), _paulis) if trans.to == frm and trans.flip ), ) def test_init_180rot_from_single(trans, frm): gate = cirq.SingleQubitCliffordGate.from_single_map({frm: trans}) assert gate.transform(frm) == trans _assert_not_mirror(gate) _assert_no_collision(gate) # Check that it decomposes to one gate assert len(gate.decompose_rotation()) == 1 # Check that this is a 180 degree rotation gate assert gate.merged_with(gate) == cirq.SingleQubitCliffordGate.I @pytest.mark.parametrize( 'trans,frm', ( (trans, frm) for trans, frm in itertools.product(_all_rotations(), _paulis) if trans.to == frm and not trans.flip ), ) def test_init_ident_from_single(trans, frm): gate = cirq.SingleQubitCliffordGate.from_single_map({frm: trans}) assert gate.transform(frm) == trans _assert_not_mirror(gate) _assert_no_collision(gate) # Check that it decomposes to zero gates assert len(gate.decompose_rotation()) == 0 # Check that this is an identity gate assert gate == cirq.SingleQubitCliffordGate.I @pytest.mark.parametrize( 'pauli,sqrt,expected', ( (cirq.X, False, cirq.SingleQubitCliffordGate.X), (cirq.Y, False, cirq.SingleQubitCliffordGate.Y), (cirq.Z, False, cirq.SingleQubitCliffordGate.Z), (cirq.X, True, cirq.SingleQubitCliffordGate.X_sqrt), (cirq.Y, True, cirq.SingleQubitCliffordGate.Y_sqrt), (cirq.Z, True, cirq.SingleQubitCliffordGate.Z_sqrt), ), ) def test_init_from_pauli(pauli, sqrt, expected): gate = cirq.SingleQubitCliffordGate.from_pauli(pauli, sqrt=sqrt) assert gate == expected def test_pow(): assert cirq.SingleQubitCliffordGate.X**-1 == cirq.SingleQubitCliffordGate.X assert cirq.SingleQubitCliffordGate.H**-1 == cirq.SingleQubitCliffordGate.H assert cirq.SingleQubitCliffordGate.X_sqrt == cirq.SingleQubitCliffordGate.X**0.5 assert cirq.SingleQubitCliffordGate.Y_sqrt == cirq.SingleQubitCliffordGate.Y**0.5 assert cirq.SingleQubitCliffordGate.Z_sqrt == cirq.SingleQubitCliffordGate.Z**0.5 assert cirq.SingleQubitCliffordGate.X_nsqrt == cirq.SingleQubitCliffordGate.X**-0.5 assert cirq.SingleQubitCliffordGate.Y_nsqrt == cirq.SingleQubitCliffordGate.Y**-0.5 assert cirq.SingleQubitCliffordGate.Z_nsqrt == cirq.SingleQubitCliffordGate.Z**-0.5 assert cirq.SingleQubitCliffordGate.X_sqrt**-1 == cirq.SingleQubitCliffordGate.X_nsqrt assert cirq.inverse(cirq.SingleQubitCliffordGate.X_nsqrt) == ( cirq.SingleQubitCliffordGate.X_sqrt ) with pytest.raises(TypeError): _ = cirq.SingleQubitCliffordGate.Z**0.25 def test_init_from_quarter_turns(): eq = cirq.testing.EqualsTester() eq.add_equality_group( cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.X, 0), cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.Y, 0), cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.Z, 0), cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.X, 4), cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.Y, 4), cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.Z, 4), cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.X, 8), cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.Y, 8), cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.Z, 8), cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.X, -4), cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.Y, -4), cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.Z, -4), ) eq.add_equality_group( cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.X, 1), cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.X, 5), cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.X, 9), cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.X, -3), ) eq.add_equality_group( cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.Y, 1), cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.Y, 5), cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.Y, 9), cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.Y, -3), ) eq.add_equality_group( cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.Z, 1), cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.Z, 5), cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.Z, 9), cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.Z, -3), ) eq.add_equality_group( cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.X, 2), cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.X, 6), ) eq.add_equality_group( cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.X, 3), cirq.SingleQubitCliffordGate.from_quarter_turns(cirq.X, 7), ) @pytest.mark.parametrize('gate', _all_clifford_gates()) def test_init_from_quarter_turns_reconstruct(gate): new_gate = functools.reduce( cirq.SingleQubitCliffordGate.merged_with, ( cirq.SingleQubitCliffordGate.from_quarter_turns(pauli, qt) for pauli, qt in gate.decompose_rotation() ), cirq.SingleQubitCliffordGate.I, ) assert gate == new_gate def test_init_invalid(): with pytest.raises(ValueError): cirq.SingleQubitCliffordGate.from_single_map() with pytest.raises(ValueError): cirq.SingleQubitCliffordGate.from_single_map({}) with pytest.raises(ValueError): cirq.SingleQubitCliffordGate.from_single_map( {cirq.X: (cirq.X, False)}, y_to=(cirq.Y, False) ) with pytest.raises(ValueError): cirq.SingleQubitCliffordGate.from_single_map( {cirq.X: (cirq.X, False), cirq.Y: (cirq.Y, False)} ) with pytest.raises(ValueError): cirq.SingleQubitCliffordGate.from_double_map() with pytest.raises(ValueError): cirq.SingleQubitCliffordGate.from_double_map({}) with pytest.raises(ValueError): cirq.SingleQubitCliffordGate.from_double_map({cirq.X: (cirq.X, False)}) with pytest.raises(ValueError): cirq.SingleQubitCliffordGate.from_double_map(x_to=(cirq.X, False)) with pytest.raises(ValueError): cirq.SingleQubitCliffordGate.from_single_map( {cirq.X: (cirq.Y, False), cirq.Y: (cirq.Z, False), cirq.Z: (cirq.X, False)} ) with pytest.raises(ValueError): cirq.SingleQubitCliffordGate.from_single_map( {cirq.X: (cirq.X, False), cirq.Y: (cirq.X, False)} ) def test_eq_ne_and_hash(): eq = EqualsTester() for trans_x, trans_z in _all_rotation_pairs(): gate_gen = lambda: cirq.SingleQubitCliffordGate.from_xz_map(trans_x, trans_z) eq.make_equality_group(gate_gen) @pytest.mark.parametrize( 'gate,rep', ( (cirq.SingleQubitCliffordGate.I, 'cirq.SingleQubitCliffordGate(X:+X, Y:+Y, Z:+Z)'), (cirq.SingleQubitCliffordGate.H, 'cirq.SingleQubitCliffordGate(X:+Z, Y:-Y, Z:+X)'), (cirq.SingleQubitCliffordGate.X, 'cirq.SingleQubitCliffordGate(X:+X, Y:-Y, Z:-Z)'), (cirq.SingleQubitCliffordGate.X_sqrt, 'cirq.SingleQubitCliffordGate(X:+X, Y:+Z, Z:-Y)'), ), ) def test_repr(gate, rep): assert repr(gate) == rep @pytest.mark.parametrize( 'gate,trans_y', ( (cirq.SingleQubitCliffordGate.I, (cirq.Y, False)), (cirq.SingleQubitCliffordGate.H, (cirq.Y, True)), (cirq.SingleQubitCliffordGate.X, (cirq.Y, True)), (cirq.SingleQubitCliffordGate.Y, (cirq.Y, False)), (cirq.SingleQubitCliffordGate.Z, (cirq.Y, True)), (cirq.SingleQubitCliffordGate.X_sqrt, (cirq.Z, False)), (cirq.SingleQubitCliffordGate.X_nsqrt, (cirq.Z, True)), (cirq.SingleQubitCliffordGate.Y_sqrt, (cirq.Y, False)), (cirq.SingleQubitCliffordGate.Y_nsqrt, (cirq.Y, False)), (cirq.SingleQubitCliffordGate.Z_sqrt, (cirq.X, True)), (cirq.SingleQubitCliffordGate.Z_nsqrt, (cirq.X, False)), ), ) def test_y_rotation(gate, trans_y): assert gate.transform(cirq.Y) == trans_y @pytest.mark.parametrize( 'gate,gate_equiv', ( (cirq.SingleQubitCliffordGate.I, cirq.X**0), (cirq.SingleQubitCliffordGate.H, cirq.H), (cirq.SingleQubitCliffordGate.X, cirq.X), (cirq.SingleQubitCliffordGate.Y, cirq.Y), (cirq.SingleQubitCliffordGate.Z, cirq.Z), (cirq.SingleQubitCliffordGate.X_sqrt, cirq.X**0.5), (cirq.SingleQubitCliffordGate.X_nsqrt, cirq.X**-0.5), (cirq.SingleQubitCliffordGate.Y_sqrt, cirq.Y**0.5), (cirq.SingleQubitCliffordGate.Y_nsqrt, cirq.Y**-0.5), (cirq.SingleQubitCliffordGate.Z_sqrt, cirq.Z**0.5), (cirq.SingleQubitCliffordGate.Z_nsqrt, cirq.Z**-0.5), ), ) def test_decompose(gate, gate_equiv): q0 = cirq.NamedQubit('q0') mat = cirq.Circuit(gate(q0)).unitary() mat_check = cirq.Circuit( gate_equiv(q0), ).unitary() assert_allclose_up_to_global_phase(mat, mat_check, rtol=1e-7, atol=1e-7) @pytest.mark.parametrize( 'gate,gate_equiv', ( (cirq.SingleQubitCliffordGate.I, cirq.X**0), (cirq.SingleQubitCliffordGate.H, cirq.H), (cirq.SingleQubitCliffordGate.X, cirq.X), (cirq.SingleQubitCliffordGate.Y, cirq.Y), (cirq.SingleQubitCliffordGate.Z, cirq.Z), (cirq.SingleQubitCliffordGate.X_sqrt, cirq.X**0.5), (cirq.SingleQubitCliffordGate.X_nsqrt, cirq.X**-0.5), (cirq.SingleQubitCliffordGate.Y_sqrt, cirq.Y**0.5), (cirq.SingleQubitCliffordGate.Y_nsqrt, cirq.Y**-0.5), (cirq.SingleQubitCliffordGate.Z_sqrt, cirq.Z**0.5), (cirq.SingleQubitCliffordGate.Z_nsqrt, cirq.Z**-0.5), ), ) def test_known_matrix(gate, gate_equiv): assert cirq.has_unitary(gate) mat = cirq.unitary(gate) mat_check = cirq.unitary(gate_equiv) assert_allclose_up_to_global_phase(mat, mat_check, rtol=1e-7, atol=1e-7) @pytest.mark.parametrize('gate', _all_clifford_gates()) def test_inverse(gate): assert gate == cirq.inverse(cirq.inverse(gate)) @pytest.mark.parametrize('gate', _all_clifford_gates()) def test_inverse_matrix(gate): q0 = cirq.NamedQubit('q0') mat = cirq.Circuit(gate(q0)).unitary() mat_inv = cirq.Circuit(cirq.inverse(gate)(q0)).unitary() assert_allclose_up_to_global_phase(mat, mat_inv.T.conj(), rtol=1e-7, atol=1e-7) def test_commutes_notimplemented_type(): with pytest.raises(TypeError): cirq.commutes(cirq.SingleQubitCliffordGate.X, 'X') assert cirq.commutes(cirq.SingleQubitCliffordGate.X, 'X', default='default') == 'default' with pytest.raises(TypeError): cirq.commutes(cirq.CliffordGate.X, 'X') assert cirq.commutes(cirq.CliffordGate.X, 'X', default='default') == 'default' @pytest.mark.parametrize( 'gate,other', itertools.product(_all_clifford_gates(), _all_clifford_gates()) ) def test_commutes_single_qubit_gate(gate, other): q0 = cirq.NamedQubit('q0') gate_op = gate(q0) other_op = other(q0) mat = cirq.Circuit( gate_op, other_op, ).unitary() mat_swap = cirq.Circuit( other_op, gate_op, ).unitary() commutes = cirq.commutes(gate, other) commutes_check = cirq.allclose_up_to_global_phase(mat, mat_swap) assert commutes == commutes_check # Test after switching order mat_swap = cirq.Circuit( gate.equivalent_gate_before(other)(q0), gate_op, ).unitary() assert_allclose_up_to_global_phase(mat, mat_swap, rtol=1e-7, atol=1e-7) @pytest.mark.parametrize('gate', _all_clifford_gates()) def test_parses_single_qubit_gate(gate): assert gate == cirq.read_json(json_text=(cirq.to_json(gate))) @pytest.mark.parametrize( 'gate,pauli,half_turns', itertools.product(_all_clifford_gates(), _paulis, (1.0, 0.25, 0.5, -0.5)), ) def test_commutes_pauli(gate, pauli, half_turns): # TODO(#4328) cirq.X**1 should be _PauliX instead of XPowGate pauli_gate = pauli if half_turns == 1 else pauli**half_turns q0 = cirq.NamedQubit('q0') mat = cirq.Circuit( gate(q0), pauli_gate(q0), ).unitary() mat_swap = cirq.Circuit( pauli_gate(q0), gate(q0), ).unitary() commutes = cirq.commutes(gate, pauli_gate) commutes_check =
np.allclose(mat, mat_swap)
numpy.allclose
from CHECLabPy.plotting.setup import Plotter from CHECLabPy.plotting.camera import CameraImage from CHECLabPy.utils.files import create_directory from CHECLabPy.utils.mapping import get_ctapipe_camera_geometry from sstcam_sandbox import get_plot, get_data from os.path import join from matplotlib import pyplot as plt from tqdm import tqdm import numpy as np import pandas as pd import warnings from CHECOnsky.calib import obtain_cleaning_mask from CHECLabPy.calib import TimeCalibrator from mpl_toolkits.axes_grid1 import make_axes_locatable from IPython import embed def colorbar(mappable, label): ax = mappable.axes fig = ax.figure divider = make_axes_locatable(ax) _ = divider.append_axes("right", size="10%", pad=0.15) cax = divider.append_axes("right", size="10%", pad=0.15) return fig.colorbar(mappable, label=label, cax=cax, aspect=20) class CameraMovie(Plotter): def __init__(self, mapping, output_path): super().__init__() self.fig = plt.figure(figsize=(8, 3)) self.ax_goldfish = self.fig.add_axes([0, 0, 0.4, 1]) self.ax_image = self.fig.add_axes([0.4, 0, 0.4, 1]) self.ax_cb = self.fig.add_axes([0.68, 0, 0.15, 1]) self.ax_image.patch.set_alpha(0) self.ax_cb.patch.set_alpha(0) self.ax_cb.axis('off') self.ci_image = CameraImage.from_mapping(mapping, ax=self.ax_image) self.ci_image.add_colorbar( "Pixel Amplitude (p.e.)", ax=self.ax_cb, pad=-0.5 ) self.ci_goldfish = CameraImage.from_mapping(mapping, ax=self.ax_goldfish) self.output_path = output_path self.source_point_image = None self.source_point_goldfish = None self.source_label_image = None self.source_label_goldfish = None self.alpha_line = None self.timestamp = None self.iframe = 0 def set_source_position(self, x_src, y_src): offset = 0.004 if self.source_point_image is None: self.source_point_image, = self.ax_image.plot( x_src, y_src, 'x', c='red' ) self.source_label_image = self.ax_image.text( x_src+offset, y_src+offset, "Mrk421", color='red', size=10 ) else: self.source_point_image.set_xdata(x_src) self.source_point_image.set_ydata(y_src) self.source_label_image.set_position((x_src+offset, y_src+offset)) if self.source_point_goldfish is None: self.source_point_goldfish, = self.ax_goldfish.plot( x_src, y_src, 'x', c='red' ) self.source_label_goldfish = self.ax_goldfish.text( x_src+offset, y_src+offset, "Mrk421", color='red', size=10 ) else: self.source_point_goldfish.set_xdata(x_src) self.source_point_goldfish.set_ydata(y_src) self.source_label_goldfish.set_position((x_src+offset, y_src+offset)) def set_timestamp(self, timestamp): timestamp_str = str(timestamp) timestamp_len = len(timestamp_str) missing = 29 - timestamp_len timestamp_str += "0" * missing if self.timestamp is None: self.timestamp = self.fig.text( 0.4, -0.1, timestamp_str, horizontalalignment='center', size=12 ) else: self.timestamp.set_text(timestamp_str) def set_image(self, image, min_=None, max_=None): self.ci_image.image = image self.ci_image.set_limits_minmax(min_, max_) def set_goldfish(self, slice, min_=None, max_=None): self.ci_goldfish.image = slice self.ci_goldfish.set_limits_minmax(min_, max_) def set_alpha_line(self, cog_x, cog_y, psi): y_min, y_max = self.ax_image.get_ylim() x_min = cog_x - (cog_y - y_min) / np.tan(psi) x_max = cog_x - (cog_y - y_max) / np.tan(psi) if self.alpha_line is None: self.alpha_line, = self.ax_image.plot( [x_min, x_max], [y_min, y_max], ls="--", c='red' ) else: self.alpha_line.set_xdata([x_min, x_max]) self.alpha_line.set_ydata([y_min, y_max]) def save_frame(self): path = self.output_path.format(self.iframe) self.fig.savefig(path, bbox_inches='tight') self.iframe += 1 def main(): path = get_data("d190717_alpha/wobble.h5") with pd.HDFStore(path, mode='r') as store: df = store['data'].loc[::4] mapping = store['mapping'] with warnings.catch_warnings(): warnings.simplefilter('ignore', UserWarning) mapping.metadata = store.get_storer('mapping').attrs.metadata tc = TimeCalibrator() geom = get_ctapipe_camera_geometry(mapping) n_row = df.index.size p_camera = CameraMovie(mapping, get_plot( "d190717_alpha/wobble_animation_goldfish/frames/{:04d}.png" )) for _, row in tqdm(df.iterrows(), total=n_row): timestamp = row['timestamp'] iobs = row['iobs'] iev = row['iev'] x_src = row['x_src'] y_src = row['y_src'] dl1 = row['dl1'].values time = row['dl1_pulse_time'].values r1 = row['r1'] x_cog = row['x_cog'] y_cog = row['y_cog'] psi = row['psi'] p_camera.set_source_position(x_src, y_src) n_pixels, n_samples = r1.shape shifted = tc(r1) mask = obtain_cleaning_mask(geom, dl1, time) if not mask.any(): msg = f"No pixels survived cleaning for: RUN {iobs} IEV {iev}" print(msg) continue # raise ValueError(msg) dl1_ma =
np.ma.masked_array(dl1, mask=~mask)
numpy.ma.masked_array
""" Dedalus script for Balanced Hasegawa-Wakatani equations From Majda PoP 2018 This script can be ran serially or in parallel, and uses the built-in analysis framework to save data snapshots in HDF5 files. The `merge_procs` command can be used to merge distributed analysis sets from parallel runs, and the `plot_slices.py` script can be used to plot the snapshots. To run, merge, and plot using 4 processes, for instance, you could use: $ mpiexec -n 4 python3 rayleigh_benard.py $ mpiexec -n 4 python3 -m dedalus merge_procs snapshots $ mpiexec -n 4 python3 plot_slices.py snapshots/*.h5 This script can restart the simulation from the last save of the original output to extend the integration. This requires that the output files from the original simulation are merged, and the last is symlinked or copied to `restart.h5`. To run the original example and the restart, you could use: $ mpiexec -n 4 python3 rayleigh_benard.py $ mpiexec -n 4 python3 -m dedalus merge_procs snapshots $ ln -s snapshots/snapshots_s2.h5 restart.h5 $ mpiexec -n 4 python3 rayleigh_benard.py The simulations should take a few process-minutes to run. """ import numpy as np from mpi4py import MPI import time import pathlib from dedalus import public as de from dedalus.extras import flow_tools from dedalus.core import operators import h5py import logging logger = logging.getLogger(__name__) comm = MPI.COMM_WORLD rank = comm.Get_rank() # Parameters Lx, Ly = (2*np.pi, 2*np.pi) Nx, Ny = (2048, 2048) Beta = 8.0 Viscosity = 1.5e-8 Friction = 1.2e-3 # Create bases and domain x_basis = de.Fourier('x', Nx, interval=(-Lx/2, Lx/2), dealias=3/2) y_basis = de.Fourier('y', Ny, interval=(-Ly/2, Ly/2), dealias=3/2) domain = de.Domain([x_basis, y_basis], grid_dtype=np.float64) # Set up k grid nx_global = np.array(list(range(Nx//2))) ny_global = np.array(list(range(Ny//2))+list(range(-Ny//2+1,0))) nyg_global, nxg_global = np.meshgrid(ny_global, nx_global) n2_global = nyg_global**2 + nxg_global**2 ky_global, kx_global = np.meshgrid(2*np.pi*ny_global/Ly, 2*np.pi*nx_global/Lx) k2_global = kx_global**2+ky_global**2 # Set up correlation function for the random forcing corr_func = np.logical_and(n2_global >= 14**2, n2_global <= 15**2)*1.0 # Inverse laplacian invlap = np.zeros(k2_global.shape) invlap[k2_global>0] = 1.0 / k2_global[k2_global>0] # Compute (lap^-1 C) (0), which is the second line invlap_corr_func = invlap * corr_func invlap_corr_total = np.sum(invlap_corr_func[nxg_global>0]*2) + np.sum(invlap_corr_func[nxg_global==0]) # Adjustment factor to match Bouchet choice -- old choice, incorrect #corr_func = (corr_func / invlap_corr_total) / (0.5 * Lx * Ly) # Adjustment factor to match Bouchet choice -- new choice, correct and leads to <v^2/2> = 1 corr_func = (corr_func / invlap_corr_total) # Set up sampling pattern for the random forcing function cshape = domain.dist.coeff_layout.local_shape(scales=1) cslice = domain.dist.coeff_layout.slices(scales=1) # Have to treat nx=0 case carefully, so split out the nx=0 forced modes nxg_local = nxg_global[cslice] nyg_local = nyg_global[cslice] corr_func_local = corr_func[cslice] forced_local = corr_func_local > 1e-16 # Check if any modes are forced at all forced_local_nxp = np.logical_and(forced_local, nxg_local > 0) num_forced_nxp = np.sum(forced_local_nxp) if num_forced_nxp > 0: forced_where = np.where(forced_local_nxp) forcing_amps = np.sqrt(corr_func_local[forced_where]) # In the nx=0 case, split into ny<0 and ny>0 modes forced_local_nx0 = np.logical_and(forced_local, nxg_local == 0) num_forced_nx0 = np.sum(forced_local_nx0)//2 if num_forced_nx0 > 0: forced_where_nx0p = np.where(np.logical_and(forced_local_nx0, nyg_local > 0)) forced_where_nx0m = np.where(np.logical_and(forced_local_nx0, nyg_local < 0)) forcing_amps_nx0 = np.sqrt(corr_func_local[forced_where_nx0p]) # Set up empty array for random force randomforce = np.zeros(cshape, dtype=np.complex) rng = np.random.default_rng() def forcing(deltaT): if num_forced_nxp > 0: noise_r = rng.standard_normal(num_forced_nxp) noise_i = rng.standard_normal(num_forced_nxp) randomforce[forced_where] = (noise_r+1j*noise_i)*forcing_amps if num_forced_nx0 > 0: noise_r = rng.standard_normal(num_forced_nx0) noise_i = rng.standard_normal(num_forced_nx0) randomforce[forced_where_nx0p] = (noise_r+1j*noise_i)*forcing_amps_nx0 randomforce[forced_where_nx0m] = (noise_r-1j*noise_i)*forcing_amps_nx0 return randomforce/np.sqrt(deltaT) forcing_func = operators.GeneralFunction(domain, 'c', forcing, args=[]) # Set up problem equations problem = de.IVP(domain, variables=['psi', 'vx', 'vy', 'q']) problem.parameters['Bt'] = Beta problem.parameters['Mu'] = Viscosity problem.parameters['Al'] = Friction problem.parameters['Sq2Al'] = np.sqrt(2.0*Friction) problem.parameters['Ly'] = Ly problem.parameters['Lx'] = Lx problem.parameters['forcing_func'] = forcing_func problem.substitutions['Lap(A)'] = "dx(dx(A)) + dy(dy(A))" problem.add_equation("dt(q) + Mu*Lap(Lap(q)) + Al*q - Bt*dy(psi) = -(vx*dx(q) + vy*dy(q)) + Sq2Al*forcing_func") problem.add_equation("q - Lap(psi) = 0", condition="(nx!=0) or (ny!=0)") problem.add_equation("psi = 0", condition="(nx==0) and (ny==0)") problem.add_equation("vy - dx(psi) = 0") problem.add_equation("vx + dy(psi) = 0") # Build solver solver = problem.build_solver(de.timesteppers.MCNAB2) logger.info('Solver built') timestep = 2e-5 max_timestep = 0.2 #snapshotStep = 0.0005 snapshotStep = 50.0 # Initial conditions or restart if not pathlib.Path('restart.h5').exists(): q = solver.state['q'] #ff = forcing(1.0) q['c'] = forcing(1.0)*np.sqrt(2.0*Friction) + np.logical_and(nxg_local==4, nyg_local==0)*1.5 # Timestepping and output dt = timestep stop_sim_time = 3600.1 fh_mode = 'overwrite' else: # Restart #write, last_dt = solver.load_state('restart.h5', -1) logger.info("Loading solver state from: restart.h5") with h5py.File('restart.h5', mode='r') as f: write = f['scales']['write_number'][-1] last_dt = f['scales']['timestep'][-1] solver.iteration = solver.inital_iteration = f['scales']['iteration'][-1] solver.sim_time = solver.initial_sim_time = f['scales']['sim_time'][-1] logger.info("Loading iteration: {}".format(solver.iteration)) logger.info("Loading write: {}".format(write)) logger.info("Loading sim time: {}".format(solver.sim_time)) logger.info("Loading timestep: {}".format(last_dt)) q = solver.state['q'] psi = solver.state['psi'] vx = solver.state['vx'] vy = solver.state['vy'] last_q = f['tasks']['q'][-1,:,:] # Note: I'm not really sure what the conventions for the DFT used in dedalus are, so I use numpy instead np_kx = np.fft.fftfreq(Nx, Lx/Nx/2/np.pi) np_ky = np.fft.rfftfreq(Ny, Ly/Ny/2/np.pi) np_kxg, np_kyg = np.meshgrid(np_kx, np_ky, indexing='ij') np_k2 = np_kxg**2 + np_kyg**2 invlap_np = np.zeros(np_k2.shape) invlap_np[np_k2>0] = -1.0 / np_k2[np_k2>0] last_qfft = np.fft.rfft2(last_q) last_psifft = invlap_np*last_qfft last_vxfft = 1j*np_kyg*last_psifft last_vyfft = -1j*np_kxg*last_psifft last_psi = np.fft.irfft2(last_psifft) last_vx =
np.fft.irfft2(last_vxfft)
numpy.fft.irfft2
import csv import cv2 import numpy as np import ntpath import time import pickle import sklearn from tqdm import tqdm from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Flatten, Dense, Lambda, Cropping2D, Convolution2D, Dropout ###################################################################################### ### Settings # use_datasets = [0,1,2] # Array to select which datasets to process use_datasets = [3] # Array to select which datasets to process nb_epochs = 7 # Number of epochs for neural network training batch_sz = 32 # Batch size for neural network test_sz = 0.20 # Fraction of images to use for test set steer_corr = 0.00 # Steering correction value (left, right camera) dropout_keep_rate = 0.7 # Dropout rate to keep neurons ### List of available datasets datasets = np.array([ 'data/Udacity/driving_log.csv', \ 'data/T1_Regular/driving_log.csv', \ 'data/T1_OtherDir/driving_log.csv', \ 'data/driving_log.csv'], \ dtype='str') datasets = datasets[use_datasets] ################################################################################ ### Function to read in image files and store them as pickle file def read_csvs(datasets, steer_corr): ### Open CSV files of provided datasets images = [] measurements = [] for csvpath in datasets: with open(csvpath) as csvfile: # with open('data/Udacity/driving_log.csv') as csvfile: print('Processing file "',csvpath,'"... ',sep='',end='') reader = csv.reader(csvfile, skipinitialspace=True) j = 0 for line in reader: if j == 0: lines_header = line j = j + 1 continue else: # Update image file paths for center, left and right cam line[0] = ntpath.split(csvpath)[0] + \ '/IMG/'+ntpath.split(line[0])[-1] # center line[1] = ntpath.split(csvpath)[0] + \ '/IMG/'+ntpath.split(line[1])[-1] # left line[2] = ntpath.split(csvpath)[0] + \ '/IMG/'+ntpath.split(line[2])[-1] # right # Add image path information images.extend([line[0],line[1],line[2]]) # Add steering angle information measurements.extend([ float(line[3]), float(line[3])+steer_corr, float(line[3])-steer_corr]) print('DONE!') print(' Total amount of datasets is now at',len(images), 'and',len(measurements),'steering infos') return images, measurements ################################################################################ ### Read in files images, steer = read_csvs(datasets, steer_corr) ### Split datasets between "train" and "test" dataset images_train, images_test, steer_train, steer_test = train_test_split( images, steer, test_size=test_sz, random_state=42) ################################################################################ ### Keras Neural Network # Print out print("\nStarting Keras") print(" 'X_train' and 'y_train' with {} elements\n".format(len(images_train))) print(" 'X_test' and 'y_test' with {} elements\n".format(len(images_test))) ################################################################################ ### Define generator function # Generator is used to read in image files during batch creation. Reason for # introducing this feature was memory limitations: model is now able to process # as many image files as needed! def generator(datasets, steer, batch_size): num_samples = len(datasets) while 1: # Loop forever so the generator never terminates datasets, steer = sklearn.utils.shuffle(datasets, steer) for offset in range(0, num_samples, int(batch_size/2)): # Half batch size is used, because images are augmented with # vertically rotated pictures --> multiplier of 2, but half as # many pictures should be read in one batch batch_datasets = datasets[offset:offset+int(batch_size/2)] batch_steers = steer[offset:offset+int(batch_size/2)] images = [] for batch_dataset in batch_datasets: image = cv2.cvtColor(cv2.imread(batch_dataset),cv2.COLOR_BGR2RGB) image_aug = cv2.flip(image,1) images.append(image) images.append(image_aug) angles = [] for batch_steer in batch_steers: angles.extend([float(batch_steer),float(batch_steer)*-1]) X_batch = np.array(images,dtype='float64') y_batch =
np.array(angles,dtype='float64')
numpy.array
""" Tools for DESI spectroperfectionism extractions implemented for a CPU """ import sys import numpy as np from numpy.polynomial.legendre import legvander, legval from numpy.polynomial import hermite_e as He import scipy.special import numba #------------------------------------------------------------------------- def evalcoeffs(psfdata, wavelengths, specmin=0, nspec=None): ''' evaluate PSF coefficients parameterized as Legendre polynomials Args: psfdata: PSF data from io.read_psf() of Gauss Hermite PSF file wavelengths: 1D array of wavelengths Options: specmin: first spectrum to include nspec: number of spectra to include (default: all) Returns a dictionary params[paramname] = value[nspec, nwave] The Gauss Hermite coefficients are treated differently: params['GH'] = value[i,j,nspec,nwave] The dictionary also contains scalars with the recommended spot size 2*(HSIZEX, HSIZEY)+1 and Gauss-Hermite degrees GHDEGX, GHDEGY (which is also derivable from the dimensions of params['GH']) ''' if nspec is None: nspec = psfdata['PSF']['COEFF'].shape[1] p = dict(WAVE=wavelengths) #- Evaluate X and Y which have different dimensionality from the #- PSF coefficients (and might have different WAVEMIN, WAVEMAX) meta = psfdata['XTRACE'].meta wavemin, wavemax = meta['WAVEMIN'], meta['WAVEMAX'] ww = (wavelengths - wavemin) * (2.0 / (wavemax - wavemin)) - 1.0 p['X'] = legval(ww, psfdata['XTRACE']['X'][specmin:specmin+nspec].T) meta = psfdata['YTRACE'].meta wavemin, wavemax = meta['WAVEMIN'], meta['WAVEMAX'] ww = (wavelengths - wavemin) * (2.0 / (wavemax - wavemin)) - 1.0 p['Y'] = legval(ww, psfdata['YTRACE']['Y'][specmin:specmin+nspec].T) #- Evaluate the remaining PSF coefficients with a shared dimensionality #- and WAVEMIN, WAVEMAX meta = psfdata['PSF'].meta wavemin, wavemax = meta['WAVEMIN'], meta['WAVEMAX'] ww = (wavelengths - wavemin) * (2.0 / (wavemax - wavemin)) - 1.0 L = np.polynomial.legendre.legvander(ww, meta['LEGDEG']) nparam = psfdata['PSF']['COEFF'].shape[0] ndeg = psfdata['PSF']['COEFF'].shape[2] nwave = L.shape[0] nghx = meta['GHDEGX']+1 nghy = meta['GHDEGY']+1 p['GH'] = np.zeros((nghx, nghy, nspec, nwave)) for name, coeff in zip(psfdata['PSF']['PARAM'], psfdata['PSF']['COEFF']): name = name.strip() coeff = coeff[specmin:specmin+nspec] if name.startswith('GH-'): i, j = map(int, name.split('-')[1:3]) p['GH'][i,j] = L.dot(coeff.T).T else: p[name] = L.dot(coeff.T).T #- Include some additional keywords that we'll need for key in ['HSIZEX', 'HSIZEY', 'GHDEGX', 'GHDEGY']: p[key] = meta[key] return p def calc_pgh(ispec, wavelengths, psfparams): ''' Calculate pixelated Gauss Hermite for all wavelengths of a single spectrum Args: ispec : integer spectrum number wavelengths : array of wavelengths to evaluate psfparams : dictionary of PSF parameters returned by evalcoeffs returns pGHx, pGHy where pGHx[ghdeg+1, nwave, nbinsx] contains the pixel-integrated Gauss-Hermite polynomial for all degrees at all wavelengths across nbinsx bins spaning the PSF spot, and similarly for pGHy. The core PSF will then be evaluated as PSFcore = sum_ij c_ij outer(pGHy[j], pGHx[i]) ''' #- shorthand p = psfparams #- spot size (ny,nx) nx = 2*p['HSIZEX']+1 ny = 2*p['HSIZEY']+1 nwave = len(wavelengths) # print('Spot size (ny,nx) = {},{}'.format(ny, nx)) # print('nwave = {}'.format(nwave)) #- x and y edges of bins that span the center of the PSF spot xedges = np.repeat(np.arange(nx+1) - nx//2 - 0.5, nwave).reshape(nx+1, nwave) yedges = np.repeat(np.arange(ny+1) - ny//2 - 0.5, nwave).reshape(ny+1, nwave) #- Shift to be relative to the PSF center and normalize #- by the PSF sigma (GHSIGX, GHSIGY). #- Note: x,y = 0,0 is center of pixel 0,0 not corner #- Dimensions: xedges[nx+1, nwave], yedges[ny+1, nwave] dx = (p['X'][ispec]+0.5)%1 - 0.5 dy = (p['Y'][ispec]+0.5)%1 - 0.5 xedges = ((xedges - dx)/p['GHSIGX'][ispec]) yedges = ((yedges - dy)/p['GHSIGY'][ispec]) # print('xedges.shape = {}'.format(xedges.shape)) # print('yedges.shape = {}'.format(yedges.shape)) #- Degree of the Gauss-Hermite polynomials ghdegx = p['GHDEGX'] ghdegy = p['GHDEGY'] #- Evaluate the Hermite polynomials at the pixel edges #- HVx[ghdegx+1, nwave, nx+1] #- HVy[ghdegy+1, nwave, ny+1] HVx = He.hermevander(xedges, ghdegx).T HVy = He.hermevander(yedges, ghdegy).T # print('HVx.shape = {}'.format(HVx.shape)) # print('HVy.shape = {}'.format(HVy.shape)) #- Evaluate the Gaussians at the pixel edges #- Gx[nwave, nx+1] #- Gy[nwave, ny+1] Gx = np.exp(-0.5*xedges**2).T / np.sqrt(2. * np.pi) # (nwave, nedges) Gy = np.exp(-0.5*yedges**2).T / np.sqrt(2. * np.pi) # print('Gx.shape = {}'.format(Gx.shape)) # print('Gy.shape = {}'.format(Gy.shape)) #- Combine into Gauss*Hermite GHx = HVx * Gx GHy = HVy * Gy #- Integrate over the pixels using the relationship # Integral{ H_k(x) exp(-0.5 x^2) dx} = -H_{k-1}(x) exp(-0.5 x^2) + const #- pGHx[ghdegx+1, nwave, nx] #- pGHy[ghdegy+1, nwave, ny] pGHx = np.zeros((ghdegx+1, nwave, nx)) pGHy = np.zeros((ghdegy+1, nwave, ny)) pGHx[0] = 0.5 * np.diff(scipy.special.erf(xedges/np.sqrt(2.)).T) pGHy[0] = 0.5 * np.diff(scipy.special.erf(yedges/np.sqrt(2.)).T) pGHx[1:] = GHx[:ghdegx,:,0:nx] - GHx[:ghdegx,:,1:nx+1] pGHy[1:] = GHy[:ghdegy,:,0:ny] - GHy[:ghdegy,:,1:ny+1] # print('pGHx.shape = {}'.format(pGHx.shape)) # print('pGHy.shape = {}'.format(pGHy.shape)) return pGHx, pGHy @numba.jit(nopython=True) def multispot(pGHx, pGHy, ghc): ''' TODO: Document ''' nx = pGHx.shape[-1] ny = pGHy.shape[-1] nwave = pGHx.shape[1] spots = np.zeros((nwave, ny, nx)) for iwave in range(nwave): for i in range(pGHx.shape[0]): px = pGHx[i,iwave] for j in range(0, pGHy.shape[0]): py = pGHy[j,iwave] c = ghc[i,j,iwave] #- c * outer(py, px) for iy in range(len(py)): for ix in range(len(px)): spots[iwave, iy, ix] += c * py[iy] * px[ix] return spots def get_spots(specmin, nspec, wavelengths, psfdata): '''Calculate PSF spots for the specified spectra and wavelengths Args: specmin: first spectrum to include nspec: number of spectra to evaluate spots for wavelengths: 1D array of wavelengths psfdata: PSF data from io.read_psf() of Gauss Hermite PSF file Returns: spots: 4D array[ispec, iwave, ny, nx] of PSF spots corners: (xc,yc) where each is 2D array[ispec,iwave] lower left corner of spot ''' nwave = len(wavelengths) p = evalcoeffs(psfdata, wavelengths, specmin, nspec) nx = 2*p['HSIZEX']+1 ny = 2*p['HSIZEY']+1 spots = np.zeros((nspec, nwave, ny, nx)) for ispec in range(nspec): pGHx, pGHy = calc_pgh(ispec, wavelengths, p) spots[ispec] = multispot(pGHx, pGHy, p['GH'][:,:,ispec,:]) #- ensure positivity and normalize #- TODO: should this be within multispot itself? spots = spots.clip(0.0) norm = np.sum(spots, axis=(2,3)) #- norm[nspec, nwave] = sum over each spot spots = (spots.T / norm.T).T #- transpose magic for numpy array broadcasting #- Define corners of spots #- extra 0.5 is because X and Y are relative to center of pixel not edge xc = np.floor(p['X'] - p['HSIZEX'] + 0.5).astype(int) yc = np.floor(p['Y'] - p['HSIZEY'] + 0.5).astype(int) corners = (xc, yc) return spots, corners, p @numba.jit def get_xyrange(ispec, nspec, iwave, nwave, spots, corners): """ Find xy ranges that these spectra cover Args: ispec: starting spectrum index nspec: number of spectra iwave: starting wavelength index nwave: number of wavelengths spots: 4D array[ispec, iwave, ny, nx] of PSF spots corners: (xc,yc) where each is 2D array[ispec,iwave] lower left corner of spot Returns (xmin, xmax, ymin, ymax) spots[ispec:ispec+nspec,iwave:iwave+nwave] touch pixels[ymin:ymax,xmin:xmax] """ ny, nx = spots.shape[2:4] xc = corners[0][ispec:ispec+nspec, iwave:iwave+nwave] yc = corners[1][ispec:ispec+nspec, iwave:iwave+nwave] xmin = np.min(xc) xmax = np.max(xc) + nx ymin = np.min(yc) ymax = np.max(yc) + ny return xmin, xmax, ymin, ymax @numba.jit def projection_matrix(ispec, nspec, iwave, nwave, spots, corners): ''' Create the projection matrix A for p = Af Args: ispec: starting spectrum index nspec: number of spectra iwave: starting wavelength index nwave: number of wavelengths spots: 4D array[ispec, iwave, ny, nx] of PSF spots corners: (xc,yc) where each is 2D array[ispec,iwave] lower left corner of spot Returns (A[iy, ix, ispec, iwave], (xmin, xmax, ymin, ymax)) Cast to 2D for using with linear algebra: nypix, nxpix, nspec, nwave = A.shape A2D = A.reshape((nypix*nxpix, nspec*nwave)) pix1D = A2D.dot(flux1D) ''' ny, nx = spots.shape[2:4] xc, yc = corners xmin, xmax, ymin, ymax = get_xyrange(ispec, nspec, iwave, nwave, spots, corners) A = np.zeros((ymax-ymin,xmax-xmin,nspec,nwave)) for i in range(nspec): for j in range(nwave): ixc = xc[ispec+i, iwave+j] - xmin iyc = yc[ispec+i, iwave+j] - ymin A[iyc:iyc+ny, ixc:ixc+nx, i, j] = spots[ispec+i,iwave+j] return A, (xmin, xmax, ymin, ymax) def get_spec_padding(ispec, nspec, bundlesize): """ Calculate padding needed for boundary spectra Args: ispec: starting spectrum index nspec: number of spectra to extract (not including padding) bundlesize: size of fiber bundles; padding not needed on their edges returns specmin, nspecpad """ #- if not at upper boundary, extract one additional spectrum if (ispec+nspec) % bundlesize == 0: nspecpad = nspec else: nspecpad = nspec + 1 #- if not at lower boundary, start one lower and extract one more if ispec % bundlesize == 0: specmin = ispec else: specmin = ispec-1 nspecpad += 1 assert nspecpad <= nspec+2 assert specmin >= ispec-1 assert specmin+nspecpad <= ispec+nspec+1 return specmin, nspecpad def get_resolution_diags(R, ndiag, ispec, nspec, nwave, wavepad): """Returns the diagonals of R in a form suited for creating scipy.sparse.dia_matrix Args: R: dense resolution matrix ndiag: number of diagonal elements to keep in the resolution matrix ispec: starting spectrum index relative to padding nspec: number of spectra to extract (not including padding) nwave: number of wavelengths to extract (not including padding) wavepad: number of extra wave bins to extract (and discard) on each end Returns: Rdiags (nspec, 2*ndiag+1, nwave): resolution matrix diagonals """ nwavetot = 2*wavepad + nwave Rdiags = np.zeros( (nspec, 2*ndiag+1, nwave) ) #- TODO: check indexing for i in np.arange(ispec, ispec+nspec): #- subregion of R for this spectrum ii = slice(nwavetot*i, nwavetot*(i+1)) Rx = R[ii, ii] #- subregion of non-padded wavelengths for this spectrum for j in range(wavepad,wavepad+nwave): # Rdiags dimensions [nspec, 2*ndiag+1, nwave] Rdiags[i-ispec, :, j-wavepad] = Rx[j-ndiag:j+ndiag+1, j] return Rdiags def ex2d_padded(image, imageivar, patch, spots, corners, pixpad_frac, regularize, model, psferr): """ Extracted a patch with border padding, but only return results for patch Args: image: full image (not trimmed to a particular xy range) imageivar: image inverse variance (same dimensions as image) ispec: starting spectrum index relative to `spots` indexing nspec: number of spectra to extract (not including padding) iwave: starting wavelength index nwave: number of wavelengths to extract (not including padding) spots: array[nspec, nwave, ny, nx] pre-evaluated PSF spots corners: tuple of arrays xcorners[nspec, nwave], ycorners[nspec, nwave] wavepad: number of extra wave bins to extract (and discard) on each end Options: bundlesize: size of fiber bundles; padding not needed on their edges """ ispec = patch.ispec - patch.bspecmin nspec = patch.nspectra_per_patch iwave = patch.iwave nwave = patch.nwavestep wavepad = patch.wavepad specmin, nspecpad = get_spec_padding(ispec, nspec, patch.bundlesize) #- Total number of wavelengths to be extracted, including padding nwavetot = nwave+2*wavepad #- Get the projection matrix for the full wavelength range with padding A4, xyrange = projection_matrix(specmin, nspecpad, iwave-wavepad, nwave+2*wavepad, spots, corners) xmin, xmax, ypadmin, ypadmax = xyrange #- But we only want to use the pixels covered by the original wavelengths #- TODO: this unnecessarily also re-calculates xranges xlo, xhi, ymin, ymax = get_xyrange(specmin, nspecpad, iwave, nwave, spots, corners) ypadlo = int((ymin - ypadmin) * (1 - pixpad_frac)) ypadhi = int((ymax - ypadmin) + (ypadmax - ymax) * (pixpad_frac)) A4 = A4[ypadlo:ypadhi] #- Number of image pixels in y and x ny, nx = A4.shape[0:2] ymin = ypadmin+ypadlo ymax = ypadmin+ypadhi #- Check dimensions assert A4.shape[2] == nspecpad assert A4.shape[3] == nwave + 2*wavepad #- Diagonals of R in a form suited for creating scipy.sparse.dia_matrix ndiag = spots.shape[2]//2 specslice = np.s_[ispec-specmin:ispec-specmin+nspec,wavepad:wavepad+nwave] if (0 <= ymin) & (ymin+ny <= image.shape[0]): xyslice = np.s_[ymin:ymin+ny, xmin:xmin+nx] patchpixels = image[xyslice] patchivar = imageivar[xyslice] fx, ivarfx, R = ex2d_patch(patchpixels, patchivar, A4, regularize=regularize) #- Select the non-padded spectra x wavelength core region specflux = fx[specslice] specivar = ivarfx[specslice] #- Diagonals of R in a form suited for creating scipy.sparse.dia_matrix Rdiags = get_resolution_diags(R, ndiag, ispec-specmin, nspec, nwave, wavepad) else: #- TODO: this zeros out the entire patch if any of it is off the edge #- of the image; we can do better than that fx = np.zeros((nspecpad, nwavetot)) specflux = np.zeros((nspec, nwave)) specivar = np.zeros((nspec, nwave)) Rdiags = np.zeros( (nspec, 2*ndiag+1, nwave) ) # xyslice = np.s_[ # max(0, ymin):min(ymin+ny, image.shape[0]), # max(0, xmin):min(xmin+nx, image.shape[1]) # ] xyslice = None patchivar = np.zeros((ny, nx)) patchpixels = np.zeros((ny, nx)) if np.any(np.isnan(specflux)): raise RuntimeError('Found NaN in extracted flux') Apadded = A4.reshape(ny*nx, nspecpad*nwavetot) Apatch = A4[:, :, ispec-specmin:ispec-specmin+nspec, wavepad:wavepad+nwave] Apatch = Apatch.reshape(ny*nx, nspec*nwave) pixmask_fraction = Apatch.T.dot(patchivar.ravel() == 0) pixmask_fraction = pixmask_fraction.reshape(nspec, nwave) modelpadded = Apadded.dot(fx.ravel()).reshape(ny, nx) modelivar = (modelpadded*psferr + 1e-32)**-2 ii = (modelivar > 0 ) & (patchivar > 0) totpix_ivar = np.zeros((ny, nx)) totpix_ivar[ii] = 1.0 / (1.0/modelivar[ii] + 1.0/patchivar[ii]) #- Weighted chi2 of pixels that contribute to each flux bin; #- only use unmasked pixels and avoid dividing by 0 chi = (patchpixels - modelpadded)*np.sqrt(totpix_ivar) psfweight = Apadded.T.dot(totpix_ivar.ravel() > 0) bad = psfweight == 0 #- Compute chi2pix and reshape chi2pix = (Apadded.T.dot(chi.ravel()**2) * ~bad) / (psfweight + bad) chi2pix = chi2pix.reshape(nspecpad, nwavetot)[specslice] if model: modelimage = Apatch.dot(specflux.ravel()).reshape(ny, nx) else: modelimage = None #- TODO: add chi2pix, pixmask_fraction, optionally modelimage; see specter result = dict( flux = specflux, ivar = specivar, Rdiags = Rdiags, modelimage = modelimage, xyslice = xyslice, pixmask_fraction = pixmask_fraction, chi2pix = chi2pix, ) return result #- Simplest form of A.T.dot( Diag(w).dot(A) ) def dotdot1(A, w): ''' return A.T.dot( Diag(w).dot(A) ) = (A.T * w).dot(A) ''' return (A.T * w).dot(A) #- 2x faster than dotdot1 by using sparse arrays def dotdot2(A, w): ''' return A.T.dot( Diag(w).dot(A) ) when A is sparse ''' import scipy.sparse W = scipy.sparse.spdiags(data=w, diags=[0,], m=len(w), n=len(w)) Ax = scipy.sparse.csc_matrix(A) return Ax.T.dot(W.dot(Ax)).toarray() #- 3x faster than dotdot1 by using numba and sparsity @numba.jit(nopython=True) def dotdot3(A, w): ''' return A.T.dot( Diag(w).dot(A) ) when A is sparse using numba ''' n, m = A.shape B = np.zeros((m,m)) for i in range(n): for j1 in range(m): Aw = w[i] * A[i,j1] if Aw != 0.0: for j2 in range(j1, m): tmp = Aw * A[i,j2] B[j1, j2] += tmp #- fill in other half for j1 in range(m-1): for j2 in range(j1+1, m): B[j2, j1] = B[j1, j2] return B @numba.jit(nopython=True) def dotall(p, w, A): '''Compute icov, y and fluxweight in the same loop(s) icov = A^T W A y = A^T W p fluxweight = (A^T W).sum(axis=1) Arguments: pixel_values: pixel values pixel_ivar: pixel weights A: projection matrix Returns: icov, y, fluxweight ''' n, m = A.shape icov = np.zeros((m,m)) y =
np.zeros(m)
numpy.zeros
from typing import Sequence, Tuple import numpy as np def create_rotation_matrix( image_orientation: Sequence[float], ) -> np.ndarray: """Builds a rotation matrix. Parameters ---------- image_orientation: Sequence[float] Cosines of the row direction (first triplet: horizontal, left to right, increasing column index) and the column direction (second triplet: vertical, top to bottom, increasing row index) direction expressed in the three-dimensional patient or slide coordinate system defined by the frame of reference Returns ------- numpy.ndarray 3 x 3 rotation matrix """ if len(image_orientation) != 6: raise ValueError('Argument "image_orientation" must have length 6.') row_cosines = np.array(image_orientation[:3], dtype=float) column_cosines = np.array(image_orientation[3:], dtype=float) n = np.cross(row_cosines.T, column_cosines.T) return np.column_stack([ row_cosines, column_cosines, n ]) def _create_affine_transformation_matrix( image_position: Sequence[float], image_orientation: Sequence[float], pixel_spacing: Sequence[float], ) -> np.ndarray: """Create affine matrix for transformation. The resulting transformation matrix maps the center of a pixel identified by zero-based integer indices into the frame of reference, i.e., an input value of (0, 0) represents the center of the top left hand corner pixel. See :dcm:`Equation C.7.6.2.1-1 <part03/sect_C.7.6.2.html#sect_C.7.6.2.1.1>`. Parameters ---------- image_position: Sequence[float] Position of the slice (image or frame) in the frame of reference, i.e., the offset of the top left hand corner pixel in the pixel matrix from the origin of the reference coordinate system along the X, Y, and Z axis image_orientation: Sequence[float] Cosines of the row direction (first triplet: horizontal, left to right, increasing column index) and the column direction (second triplet: vertical, top to bottom, increasing row index) direction expressed in the three-dimensional patient or slide coordinate system defined by the frame of reference pixel_spacing: Sequence[float] Spacing between pixels in millimeter unit along the column direction (first value: spacing between rows, vertical, top to bottom, increasing row index) and the rows direction (second value: spacing between columns: horizontal, left to right, increasing column index) Returns ------- numpy.ndarray 4 x 4 affine transformation matrix """ if not isinstance(image_position, Sequence): raise TypeError('Argument "image_position" must be a sequence.') if len(image_position) != 3: raise ValueError('Argument "image_position" must have length 3.') if not isinstance(image_orientation, Sequence): raise TypeError('Argument "image_orientation" must be a sequence.') if len(image_orientation) != 6: raise ValueError('Argument "image_orientation" must have length 6.') if not isinstance(pixel_spacing, Sequence): raise TypeError('Argument "pixel_spacing" must be a sequence.') if len(pixel_spacing) != 2: raise ValueError('Argument "pixel_spacing" must have length 2.') x_offset = float(image_position[0]) y_offset = float(image_position[1]) z_offset = float(image_position[2]) translation = np.array([x_offset, y_offset, z_offset], dtype=float) rotation = create_rotation_matrix(image_orientation) # Column direction (spacing between rows) column_spacing = float(pixel_spacing[0]) # Row direction (spacing between columns) row_spacing = float(pixel_spacing[1]) rotation[:, 0] *= row_spacing rotation[:, 1] *= column_spacing # 4x4 transformation matrix return np.row_stack( [ np.column_stack([ rotation, translation, ]), [0.0, 0.0, 0.0, 1.0] ] ) def _create_inv_affine_transformation_matrix( image_position: Sequence[float], image_orientation: Sequence[float], pixel_spacing: Sequence[float], spacing_between_slices: float = 1.0 ) -> np.ndarray: """Create affine matrix for inverse transformation. The resulting transformation matrix maps a frame of reference coordinate to pixel indices, where integer pixel index values represent the center of the pixel in the image, i.e., an output value of exactly (0.0, 0.0) represents the center of the top left hand corner pixel. Parameters ---------- image_position: Sequence[float] Position of the slice (image or frame) in the frame of reference, i.e., the offset of the top left hand corner pixel in the pixel matrix from the origin of the reference coordinate system along the X, Y, and Z axis image_orientation: Sequence[float] Cosines of the row direction (first triplet: horizontal, left to right, increasing column index) and the column direction (second triplet: vertical, top to bottom, increasing row index) direction expressed in the three-dimensional patient or slide coordinate system defined by the frame of reference pixel_spacing: Sequence[float] Spacing between pixels in millimeter unit along the column direction (first value: spacing between rows, vertical, top to bottom, increasing row index) and the rows direction (second value: spacing between columns: horizontal, left to right, increasing column index) spacing_between_slices: float, optional Distance (in the coordinate defined by the frame of reference) between neighboring slices. Default: 1 Raises ------ TypeError When `image_position`, `image_orientation`, or `pixel_spacing` is not a sequence. ValueError When `image_position`, `image_orientation`, or `pixel_spacing` has an incorrect length. """ if not isinstance(image_position, Sequence): raise TypeError('Argument "image_position" must be a sequence.') if len(image_position) != 3: raise ValueError('Argument "image_position" must have length 3.') if not isinstance(image_orientation, Sequence): raise TypeError('Argument "image_orientation" must be a sequence.') if len(image_orientation) != 6: raise ValueError('Argument "image_orientation" must have length 6.') if not isinstance(pixel_spacing, Sequence): raise TypeError('Argument "pixel_spacing" must be a sequence.') if len(pixel_spacing) != 2: raise ValueError('Argument "pixel_spacing" must have length 2.') x_offset = float(image_position[0]) y_offset = float(image_position[1]) z_offset = float(image_position[2]) translation = np.array([x_offset, y_offset, z_offset]) rotation = create_rotation_matrix(image_orientation) # Column direction (spacing between rows) column_spacing = float(pixel_spacing[0]) # Row direction (spacing between columns) row_spacing = float(pixel_spacing[1]) rotation[:, 0] *= row_spacing rotation[:, 1] *= column_spacing rotation[:, 2] *= spacing_between_slices inv_rotation = np.linalg.inv(rotation) # 4x4 transformation matrix return np.row_stack( [ np.column_stack([ inv_rotation, -np.dot(inv_rotation, translation) ]), [0.0, 0.0, 0.0, 1.0] ] ) class PixelToReferenceTransformer(object): """Class for transforming pixel indices to reference coordinates. This class facilitates the mapping of pixel indices to the pixel matrix of an image or an image frame (tile or plane) into the patient or slide coordinate system defined by the frame of reference. Pixel indices are (column, row) pairs of zero-based integer values, where the (0, 0) index is located at the **center** of the top left hand corner pixel of the pixel matrix. Reference coordinates are (x, y, z) triplets of floating-point values, where the (0.0, 0.0) point is located at the origin of the frame of reference. Examples -------- >>> import numpy as np >>> >>> # Create a transformer by specifying the reference space of >>> # an image >>> transformer = PixelToReferenceTransformer( ... image_position=[56.0, 34.2, 1.0], ... image_orientation=[1.0, 0.0, 0.0, 0.0, 1.0, 0.0], ... pixel_spacing=[0.5, 0.5]) >>> >>> # Use the transformer to convert coordinates >>> pixel_indices = np.array([[0, 10], [5, 5]]) >>> ref_coords = transformer(pixel_indices) >>> print(ref_coords) [[56. 39.2 1. ] [58.5 36.7 1. ]] Warning ------- This class shall not be used to map spatial coordinates (SCOORD) to 3D spatial coordinates (SCOORD3D). Use the :class:`highdicom.spatial.ImageToReferenceTransformer` class instead. """ def __init__( self, image_position: Sequence[float], image_orientation: Sequence[float], pixel_spacing: Sequence[float], ): """Construct transformation object. Parameters ---------- image_position: Sequence[float] Position of the slice (image or frame) in the frame of reference, i.e., the offset of the top left hand corner pixel in the pixel matrix from the origin of the reference coordinate system along the X, Y, and Z axis image_orientation: Sequence[float] Cosines of the row direction (first triplet: horizontal, left to right, increasing column index) and the column direction (second triplet: vertical, top to bottom, increasing row index) direction expressed in the three-dimensional patient or slide coordinate system defined by the frame of reference pixel_spacing: Sequence[float] Spacing between pixels in millimeter unit along the column direction (first value: spacing between rows, vertical, top to bottom, increasing row index) and the rows direction (second value: spacing between columns: horizontal, left to right, increasing column index) Raises ------ TypeError When any of the arguments is not a sequence. ValueError When any of the arguments has an incorrect length. """ self._affine = _create_affine_transformation_matrix( image_position=image_position, image_orientation=image_orientation, pixel_spacing=pixel_spacing ) @property def affine(self) -> np.ndarray: """numpy.ndarray: 4x4 affine transformation matrix""" return self._affine def __call__(self, indices: np.ndarray) -> np.ndarray: """Transform image pixel indices to frame of reference coordinates. Parameters ---------- indices: numpy.ndarray Array of (column, row) zero-based pixel indices in the range [0, Columns - 1] and [0, Rows - 1], respectively. Array of integer values with shape ``(n, 2)``, where *n* is the number of indices, the first column represents the `column` index and the second column represents the `row` index. The ``(0, 0)`` coordinate is located at the **center** of the top left pixel in the total pixel matrix. Returns ------- numpy.ndarray Array of (x, y, z) coordinates in the coordinate system defined by the frame of reference. Array has shape ``(n, 3)``, where *n* is the number of coordinates, the first column represents the `x` offsets, the second column represents the `y` offsets and the third column represents the `z` offsets Raises ------ ValueError When `indices` has incorrect shape. TypeError When `indices` don't have integer data type. """ if indices.shape[1] != 2: raise ValueError( 'Argument "indices" must be a two-dimensional array ' 'with shape [n, 2].' ) if indices.dtype.kind not in ('u', 'i'): raise TypeError( 'Argument "indices" must be a two-dimensional array ' 'of integers.' ) pixel_matrix_coordinates = np.row_stack([ indices.T.astype(float), np.zeros((indices.shape[0], ), dtype=float), np.ones((indices.shape[0], ), dtype=float), ]) reference_coordinates = np.dot(self._affine, pixel_matrix_coordinates) return reference_coordinates[:3, :].T class ReferenceToPixelTransformer(object): """Class for transforming reference coordinates to pixel indices. This class facilitates the mapping of coordinates in the patient or slide coordinate system defined by the frame of reference into the total pixel matrix. Reference coordinates are (x, y, z) triplets of floating-point values, where the (0.0, 0.0) point is located at the origin of the frame of reference. Pixel indices are (column, row) pairs of zero-based integer values, where the (0, 0) index is located at the **center** of the top left hand corner pixel of the pixel matrix. Examples -------- >>> transformer = ReferenceToPixelTransformer( ... image_position=[56.0, 34.2, 1.0], ... image_orientation=[1.0, 0.0, 0.0, 0.0, 1.0, 0.0], ... pixel_spacing=[0.5, 0.5] ... ) >>> >>> ref_coords = np.array([[56., 39.2, 1. ], [58.5, 36.7, 1.]]) >>> pixel_indices = transformer(ref_coords) >>> print(pixel_indices) [[ 0 10 0] [ 5 5 0]] Warning ------- This class shall not be used to map 3D spatial coordinates (SCOORD3D) to spatial coordinates (SCOORD). Use the :class:`highdicom.spatial.ReferenceToImageTransformer` class instead. """ def __init__( self, image_position: Sequence[float], image_orientation: Sequence[float], pixel_spacing: Sequence[float], spacing_between_slices: float = 1.0 ): """Construct transformation object. Builds an inverse of an affine transformation matrix for mapping coordinates from the frame of reference into the two dimensional pixel matrix. Parameters ---------- image_position: Sequence[float] Position of the slice (image or frame) in the frame of reference, i.e., the offset of the top left hand corner pixel in the pixel matrix from the origin of the reference coordinate system along the X, Y, and Z axis image_orientation: Sequence[float] Cosines of the row direction (first triplet: horizontal, left to right, increasing column index) and the column direction (second triplet: vertical, top to bottom, increasing row index) direction expressed in the three-dimensional patient or slide coordinate system defined by the frame of reference pixel_spacing: Sequence[float] Spacing between pixels in millimeter unit along the column direction (first value: spacing between rows, vertical, top to bottom, increasing row index) and the rows direction (second value: spacing between columns: horizontal, left to right, increasing column index) spacing_between_slices: float, optional Distance (in the coordinate defined by the frame of reference) between neighboring slices. Default: 1 Raises ------ TypeError When `image_position`, `image_orientation` or `pixel_spacing` is not a sequence. ValueError When `image_position`, `image_orientation` or `pixel_spacing` has an incorrect length. """ self._affine = _create_inv_affine_transformation_matrix( image_position=image_position, image_orientation=image_orientation, pixel_spacing=pixel_spacing, spacing_between_slices=spacing_between_slices ) @property def affine(self) -> np.ndarray: """numpy.ndarray: 4 x 4 affine transformation matrix""" return self._affine def __call__(self, coordinates: np.ndarray) -> np.ndarray: """Transform frame of reference coordinates into image pixel indices. Parameters ---------- coordinates: numpy.ndarray Array of (x, y, z) coordinates in the coordinate system defined by the frame of reference. Array has shape ``(n, 3)``, where *n* is the number of coordinates, the first column represents the *X* offsets, the second column represents the *Y* offsets and the third column represents the *Z* offsets Returns ------- numpy.ndarray Array of (column, row) zero-based indices at pixel resolution. Array of integer values with shape ``(n, 2)``, where *n* is the number of indices, the first column represents the `column` index and the second column represents the `row` index. The ``(0, 0)`` coordinate is located at the **center** of the top left pixel in the total pixel matrix. Note ---- The returned pixel indices may be negative if `coordinates` fall outside of the total pixel matrix. Raises ------ ValueError When `indices` has incorrect shape. """ if coordinates.shape[1] != 3: raise ValueError( 'Argument "coordinates" must be a two-dimensional array ' 'with shape [n, 3].' ) reference_coordinates = np.row_stack([ coordinates.T.astype(float), np.ones((coordinates.shape[0], ), dtype=float) ]) pixel_matrix_coordinates = np.dot(self._affine, reference_coordinates) return np.around(pixel_matrix_coordinates[:3, :].T).astype(int) class ImageToReferenceTransformer(object): """Class for transforming coordinates from image to reference space. This class facilitates the mapping of image coordinates in the pixel matrix of an image or an image frame (tile or plane) into the patient or slide coordinate system defined by the frame of reference. For example, this class may be used to map spatial coordinates (SCOORD) to 3D spatial coordinates (SCOORD3D). Image coordinates are (column, row) pairs of floating-point values, where the (0.0, 0.0) point is located at the top left corner of the top left hand corner pixel of the pixel matrix. Image coordinates have pixel units at sub-pixel resolution. Reference coordinates are (x, y, z) triplets of floating-point values, where the (0.0, 0.0) point is located at the origin of the frame of reference. Reference coordinates have millimeter units. Examples -------- >>> transformer = ImageToReferenceTransformer( ... image_position=[56.0, 34.2, 1.0], ... image_orientation=[1.0, 0.0, 0.0, 0.0, 1.0, 0.0], ... pixel_spacing=[0.5, 0.5] ... ) >>> >>> image_coords = np.array([[0.0, 10.0], [5.0, 5.0]]) >>> ref_coords = transformer(image_coords) >>> print(ref_coords) [[55.75 38.95 1. ] [58.25 36.45 1. ]] Warning ------- This class shall not be used for pixel indices. Use the class:`highdicom.spatial.PixelToReferenceTransformer` class instead. """ def __init__( self, image_position: Sequence[float], image_orientation: Sequence[float], pixel_spacing: Sequence[float] ): """Construct transformation object. Parameters ---------- image_position: Sequence[float] Position of the slice (image or frame) in the frame of reference, i.e., the offset of the top left hand corner pixel in the pixel matrix from the origin of the reference coordinate system along the X, Y, and Z axis image_orientation: Sequence[float] Cosines of the row direction (first triplet: horizontal, left to right, increasing column index) and the column direction (second triplet: vertical, top to bottom, increasing row index) direction expressed in the three-dimensional patient or slide coordinate system defined by the frame of reference pixel_spacing: Sequence[float] Spacing between pixels in millimeter unit along the column direction (first value: spacing between rows, vertical, top to bottom, increasing row index) and the rows direction (second value: spacing between columns: horizontal, left to right, increasing column index) Raises ------ TypeError When any of the arguments is not a sequence. ValueError When any of the arguments has an incorrect length. """ affine = _create_affine_transformation_matrix( image_position=image_position, image_orientation=image_orientation, pixel_spacing=pixel_spacing ) correction_affine = np.array([ [1.0, 0.0, 0.0, -0.5], [0.0, 1.0, 0.0, -0.5], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0], ]) self._affine = np.dot(affine, correction_affine) @property def affine(self) -> np.ndarray: """numpy.ndarray: 4x4 affine transformation matrix""" return self._affine def __call__(self, coordinates: np.ndarray) -> np.ndarray: """Transform image coordinates to frame of reference coordinates. Parameters ---------- coordinates: numpy.ndarray Array of (column, row) coordinates at sub-pixel resolution in the range [0, Columns] and [0, Rows], respectively. Array of floating-point values with shape ``(n, 2)``, where *n* is the number of coordinates, the first column represents the `column` values and the second column represents the `row` values. The ``(0.0, 0.0)`` coordinate is located at the top left corner of the top left hand corner pixel in the total pixel matrix. Returns ------- numpy.ndarray Array of (x, y, z) coordinates in the coordinate system defined by the frame of reference. Array has shape ``(n, 3)``, where *n* is the number of coordinates, the first column represents the *X* offsets, the second column represents the *Y* offsets and the third column represents the *Z* offsets Raises ------ ValueError When `coordinates` has incorrect shape. """ if coordinates.shape[1] != 2: raise ValueError( 'Argument "coordinates" must be a two-dimensional array ' 'with shape [n, 2].' ) image_coordinates = np.row_stack([ coordinates.T.astype(float), np.zeros((coordinates.shape[0], ), dtype=float), np.ones((coordinates.shape[0], ), dtype=float), ]) reference_coordinates =
np.dot(self._affine, image_coordinates)
numpy.dot
import matplotlib.pyplot as plt import torch import torch.nn import numpy as np from mpl_toolkits.basemap import Basemap from metpy.plots import colortables import cv2 def downsample(x, pool=25): x = torch.from_numpy(x[np.newaxis]) xlr = torch.nn.AvgPool2d(pool, stride=pool)(x) return xlr.detach().numpy()[0] def flow_quiver_plot(u, v, x=None, y=None, ax=None, down=25, vmin=None, vmax=None, latlon=False, size=10, cmap='jet', colorbar=False): intensity = (u**2 + v**2) ** 0.5 u_l = downsample(u, down) v_l = downsample(v, down) intensity_l = ( u_l ** 2 + v_l**2 ) ** 0.5 #intensity_l = ( u_l ** 2 + v_l**2 ) ** 0.25 u_l = u_l #/ intensity_l v_l = v_l #/ intensity_l if (x is None) or (y is None): x = np.arange(0, u_l.shape[1]) * down + down/2. y = np.arange(0, v_l.shape[0]) * down + down/2. X, Y = np.meshgrid(x, y) else: x = downsample(x, down) y = downsample(y, down) X, Y = x, y #if X.shape[0] != u_l.shape[0]: #Y = cv2.resize(Y, dsize=v_l.shape, interpolation=cv2.INTER_LINEAR) #X = cv2.resize(X, dsize=u_l.shape, interpolation=cv2.INTER_LINEAR) if not ax: ratio = 1.*u.shape[0] / u.shape[1] hi = int(ratio * size) wi = int(size) fig = plt.figure(figsize=(wi,hi), frameon=False) ax = fig.add_axes([0, 0, 1, 1]) ax.axis('off') if vmax is None: vmax =
np.nanmax(intensity)
numpy.nanmax
#Differential Photometry script written in April 2019 by SKB, MP, KWD for WIYN 0.9m HDI data #This script calculates photometry and differential photometry for all stars in an image and takes target positions to pull out differential photometry of target stars. Auto calculates comparison stars based on lowest percentile of variability of stars in the image. # Script is run through a shell jupyter notebook script. #Initially created by <NAME> as a juypter notebook 2018 #Turned into modular form by <NAME> April 2019 #Modified by <NAME>, <NAME>, <NAME> April 2019 # python 2/3 compatibility from __future__ import print_function # numerical python import numpy as np # file management tools import glob import os # good module for timing tests import time # plotting stuff import matplotlib.pyplot as plt import matplotlib.cm as cm # ability to read/write fits files from astropy.io import fits # fancy image combination technique from astropy.stats import sigma_clip # median absolute deviation: for photometry from astropy.stats import mad_std # photometric utilities from photutils import DAOStarFinder,aperture_photometry, CircularAperture, CircularAnnulus, Background2D, MedianBackground # periodograms from astropy.stats import LombScargle from regions import read_ds9, write_ds9 from astropy.wcs import WCS import warnings import pandas as pd from astropy.coordinates import SkyCoord from astropy import units as u from astropy.visualization import ZScaleInterval import numpy.ma as ma warnings.filterwarnings("ignore") np.set_printoptions(suppress=True) def construct_astrometry(hdr_wcs): ''' construct_astrometry make the pixel to RA/Dec conversion (and back) from the header of an astrometry.net return inputs ------------------------------ hdr_wcs : header with astrometry information, typically from astrometry.net returns ------------------------------ w : the WCS instance ''' # initialize the World Coordinate System w = WCS(naxis=2) # specify the pixel to RA/Dec conversion w.wcs.ctype = ["RA---TAN", "DEC--TAN"] w.wcs.cd = np.array([[hdr_wcs['CD1_1'],hdr_wcs['CD1_2']],[hdr_wcs['CD2_1'],hdr_wcs['CD2_2']]]) w.wcs.crpix = [hdr_wcs['CRPIX1'], hdr_wcs['CRPIX2']] w.wcs.crval = [hdr_wcs['CRVAL1'],hdr_wcs['CRVAL2']] w.wcs.cunit = [hdr_wcs['CUNIT1'],hdr_wcs['CUNIT2']] w.wcs.latpole = hdr_wcs['LATPOLE'] #w.wcs.lonpole = hdr_wcs['LONPOLE'] w.wcs.theta0 = hdr_wcs['LONPOLE'] w.wcs.equinox = hdr_wcs['EQUINOX'] # calculate the RA/Dec to pixel conversion w.wcs.fix() w.wcs.cdfix() w.wcs.set() # return the instance return w def StarFind(imname, FWHM, nsigma): ''' StarFind find all stars in a .fits image inputs ---------- imname: name of .fits image to open. FWHM: fwhm of stars in field nsigma: number of sigma above background above which to select sources. (~3 to 4 is a good estimate) outputs -------- xpos: x positions of sources ypos: y positions of sources nstars: number of stars found in image ''' #open image im,hdr=fits.getdata(imname, header=True) im = np.array(im).astype('float') #determine background bkg_sigma = mad_std(im) print('begin: DAOStarFinder') daofind = DAOStarFinder(fwhm=FWHM, threshold=nsigma*bkg_sigma, exclude_border=True) sources = daofind(im) #x and y positions xpos = sources['xcentroid'] ypos = sources['ycentroid'] #number of stars found nstars = len(xpos) print('found ' + str(nstars) + ' stars') return xpos, ypos, nstars def makeApertures(xpos, ypos, aprad,skybuff, skywidth): ''' makeApertures makes a master list of apertures and the annuli inputs --------- xpos: list - x positions of stars in image ypos: list - y positions of stars in image aprad: float - aperture radius skybuff: float - sky annulus inner radius skywidth: float - sky annulus outer radius outputs -------- apertures: list - list of aperture positions and radius annulus_apertures: list - list of annuli positions and radius see: https://photutils.readthedocs.io/en/stable/api/photutils.CircularAperture.html#photutils.CircularAperture for more details ''' # make the master list of apertures apertures = CircularAperture((xpos, ypos), r=aprad) annulus_apertures = CircularAnnulus((xpos, ypos), r_in=aprad+skybuff, r_out=aprad+skybuff+skywidth) apers = [apertures, annulus_apertures] return apertures, annulus_apertures def apertureArea(apertures): ''' returns the area of the aperture''' return apertures.area() ### should be apertures def backgroundArea(back_aperture): '''returns the area of the annuli''' return back_aperture.area() ### should be annulus_apertures def doPhotometry(imglist, xpos, ypos, aprad, skybuff, skywidth,timekey='MJD-OBS',verbose=1): ''' doPhotomoetry* determine the flux for each star from aperture photometry inputs ------- imglist: list - list of .fits images xpos, ypos: lists - lists of x and y positions of stars aprad, skybuff, skywidth: floats - aperture, sky annuli inner, sky annuli outer radii outputs ------- Times: list - time stamps of each observation from the .fits header Photometry: list - aperture photometry flux values found at each xpos, ypos position ''' #number of images nimages = len(imglist) nstars = len(xpos) print('Found {} images'.format(nimages)) #create lists for timestamps and flux values Times = np.zeros(nimages) Photometry = np.zeros((nimages,nstars)) print('making apertures') #make the apertures around each star apertures, annulus_apertures = makeApertures(xpos, ypos, aprad, skybuff, skywidth) #plot apertures plt.figure(figsize=(12,12)) interval = ZScaleInterval() vmin, vmax = interval.get_limits(fits.getdata(imglist[0])) plt.imshow(fits.getdata(imglist[0]), vmin=vmin,vmax=vmax, origin='lower') apertures.plot(color='white', lw=2) #annulus_apertures.plot(color='red', lw=2) plt.title('apertures') plt.show() #determine area of apertures area_of_ap = apertureArea(apertures) #determine area of annuli area_of_background = backgroundArea(annulus_apertures) checknum = np.linspace(0,nimages,10).astype(int) #go through each image and run aperture photometry for ind in np.arange(nimages): if ((ind in checknum) & (verbose==1)): print('running aperture photometry on image: ', ind ) if (verbose>1): print('running aperture photometry on image: ', ind ) #open image data_image, hdr = fits.getdata(imglist[ind], header=True) #find time stamp and append to list Times[ind] = hdr[timekey] #do photometry phot_table = aperture_photometry(data_image, (apertures,annulus_apertures)) #determine flux: (aperture flux) - [(area of aperture * annuli flux)/area of background ] flux0 = np.array(phot_table['aperture_sum_0']) - (area_of_ap/area_of_background)*np.array(phot_table['aperture_sum_1']) #append to list Photometry[ind,:] = flux0 return Times,Photometry def doPhotometryError(imglist,xpos, ypos,aprad, skybuff, skywidth, flux0, GAIN=1.3, manual = False, **kwargs): ''' doPhotometryError determine error in photometry from background noise two options: - use sigma clipping and use whole background - manually input background box positions as kwargs inputs -------- imglist: list - list of .fits images xpos, ypos: lists - lists of x and y positions of stars aprad, skybuff, skywidth: floats - aperture, sky annuli inner, sky annuli outer radii flux0: list - aperture photometry found from doPhotometry() function GAIN: float - average gain manual: boolean - switch between manually inputting box (True) or using sigma clipping (False) if True -- must have kwargs manual = False is default **kwargs kwargs[xboxcorner]: float - x edge of box in pixel coords kwargs[yboxcorner]: float - y edge of box in pixel coords kwargs[boxsize]: float - size of box in pixel coords ''' # find number of images in list nimages = len(imglist) nstars = len(xpos) print('Found {} images'.format(nimages)) #make apertures apertures, annulus_apertures = makeApertures(xpos, ypos, aprad, skybuff, skywidth) #find areas of apertures and annuli area_of_ap = apertureArea(apertures) area_of_background = backgroundArea(annulus_apertures) checknum = np.linspace(0,nimages,10).astype(int) #find error in photometry ePhotometry = np.zeros((nimages,nstars)) for ind in np.arange(nimages): #open images im = fits.getdata(imglist[ind]) if ind in checknum: print('running error analysis on image ', ind) #determine variance in background if manual == True: #manual method -- choose back size skyvar = np.std(im[kwargs['xboxcorner']:kwargs['xboxcorner']+kwargs['boxsize'],kwargs['yboxcorner']:kwargs['yboxcorner']+kwargs['boxsize']])**2. err1 = skyvar*(area_of_ap)**2./(kwargs['boxsize']*kwargs['boxsize']) # uncertainty in mean sky brightness if manual == False: #automatic method -- use sigma clipping filtered_data = sigma_clip(im, sigma=3) skyvar = np.std(filtered_data)**2. err1 = skyvar*(area_of_ap)**2./(np.shape(im[0])[0]*np.shape(im[1])[0]) # uncertainty in mean sky brightness err2 = area_of_ap * skyvar # scatter in sky values err3 = flux0[ind]/GAIN # Poisson error print ('Scatter in sky values: ',err2**0.5,', uncertainty in mean sky brightness: ',err1**0.5) # sum souces of error in quadrature errtot = (err1 + err2 + err3)**0.5 #append to list ePhotometry[ind,:] = errtot return ePhotometry def mask(Photometry, ePhotometry, sn_thresh=3.): Photometry_mask1 = ma.masked_where(Photometry <= 0, Photometry) sn = Photometry_mask1 / ePhotometry Photometry_mask2 = ma.masked_where(sn < sn_thresh, Photometry_mask1) ePhotometry_mask1 = ma.masked_where(Photometry <= 0, ePhotometry) sn = Photometry_mask1 / ePhotometry ePhotometry_mask2 = ma.masked_where(sn < sn_thresh, ePhotometry_mask1) return Photometry_mask2, ePhotometry_mask2 # detrend all stars def detrend(idx, Photometry_initial, ePhotometry, nstars, sn_thresh): ''' detrend detrend the background for each night so we don't have to worry about changes in background noise levels inputs ------- photometry: list - list of flux values from aperture photometry ephotometry: list - list of flux errors from aperture photometry nstars: float - number of stars in the field outputs -------- finalPhot: list - final aperture photometry of sources with bad sources replaced with nans. << this is the list you want to use from now on. >> cPhotometry: list - detrended aperture photometry ''' sn = Photometry_initial / ePhotometry Photometry_mask1 = ma.masked_where(Photometry_initial <= 0, Photometry_initial) Photometry_mask2 = ma.masked_where(sn < sn_thresh, Photometry_mask1) #mask out target stars m = np.zeros_like(Photometry_mask2) m[:,idx] = 1 Photometry_initial_mask3 = ma.masked_array(Photometry_mask2, m) med_val = np.median(Photometry_initial_mask3, axis=0) c = np.zeros_like(Photometry_initial_mask3) c[:,med_val<=0] = 1 # get median flux value for each star (find percent change) cPhotometry = ma.masked_array(Photometry_initial_mask3, c) cPhotometry = cPhotometry / med_val # do a check for outlier photometry? for night in np.arange(len(cPhotometry)): # remove large-scale image-to-image variation to find best stars cPhotometry[night] = cPhotometry[night] / ma.median(cPhotometry[night]) # eliminate stars with outliers from consideration cPhotometry_mask = ma.masked_where( ((cPhotometry < 0.5) | (cPhotometry > 1.5)), cPhotometry) return Photometry_initial_mask3, cPhotometry_mask def plotPhotometry(Times,cPhotometry): '''plot detrended photometry''' plt.figure() for ind in np.arange(np.shape(cPhotometry)[1]): plt.scatter(Times-np.nanmin(Times),cPhotometry[:,ind],s=1.,color='black') # make the ranges a bit more general plt.xlim(-0.1,1.1*np.max(Times-np.nanmin(Times))) plt.ylim(np.nanmin(cPhotometry),np.nanmax(cPhotometry)) plt.xlabel('Observation Time [days]') plt.ylabel('Detrended Flux') plt.show() def CaliforniaCoast(Photometry,cPhotometry,comp_num=9,flux_bins=6): """ Find the least-variable stars as a function of star brightness* (it's called California Coast because the plot looks like California and we are looking for edge values: the coast) inputs -------------- Photometry : input Photometry catalog cPhotometry : input detrended Photometry catalog flux_bins : (default=10) maximum number of flux bins comp_num : (default=5) minimum number of comparison stars to use outputs -------------- BinStars : dictionary of stars in each of the flux partitions LeastVariable : dictionary of least variable stars in each of the flux partitions """ tmpX = np.nanmedian(Photometry,axis=0) tmpY = np.nanstd(cPhotometry, axis=0) xvals = tmpX[(np.isfinite(tmpX) & np.isfinite(tmpY))] yvals = tmpY[(np.isfinite(tmpX) & np.isfinite(tmpY))] kept_vals = np.where((np.isfinite(tmpX) & np.isfinite(tmpY)))[0] #print('Keep',kept_vals) # make the bins in flux, equal in percentile flux_percents = np.linspace(0.,100.,flux_bins) print('Bin Percentiles to check:',flux_percents) # make the dictionary to return the best stars LeastVariable = {} BinStars = {} for bin_num in range(0,flux_percents.size-1): # get the flux boundaries for this bin min_flux = np.percentile(xvals,flux_percents[bin_num]) max_flux = np.percentile(xvals,flux_percents[bin_num+1]) #print('Min/Max',min_flux,max_flux) # select the stars meeting the criteria w = np.where( (xvals >= min_flux) & (xvals < max_flux))[0] BinStars[bin_num] = kept_vals[w] # now look at the least variable X stars nstars = w.size #print('Number of stars in bin {}:'.format(bin_num),nstars) # organize stars by flux uncertainty binStarsX = xvals[w] binStarsY = yvals[w] # mininum Y stars in the bin: lowestY = kept_vals[w[binStarsY.argsort()][0:comp_num]] #print('Best {} stars in bin {}:'.format(comp_num,bin_num),lowestY) LeastVariable[bin_num] = lowestY return BinStars,LeastVariable def findComparisonStars(Photometry, cPhotometry, accuracy_threshold = 0.2, plot=True,comp_num=6): #0.025 ''' findComparisonStars* finds stars that are similar over the various nights to use as comparison stars inputs -------- Photometry: list - photometric values taken from detrend() function. cPhotometry: list - detrended photometric values from detrend() function accuracy_threshold: float - level of accuracy in fluxes between various nights plot: boolean - True/False plot various stars and highlight comparison stars outputs -------- most_accurate: list - list of indices of the locations in Photometry which have the best stars to use as comparisons ''' BinStars,LeastVariable = CaliforniaCoast(Photometry,cPhotometry,comp_num=comp_num) star_err = ma.std(cPhotometry, axis=0) if plot: xvals = np.log10(ma.median(Photometry,axis=0)) yvals = np.log10(ma.std(cPhotometry, axis=0)) plt.figure() plt.scatter(xvals,yvals,color='black',s=1.) plt.xlabel('log Median Flux per star') plt.ylabel('log De-trended Standard Deviation') plt.text(np.nanmin(np.log10(ma.median(Photometry,axis=0))),np.nanmin(np.log10(star_err[star_err>0.])),\ 'Less Variable',color='red',ha='left',va='bottom') plt.text(np.nanmax(np.log10(ma.median(Photometry,axis=0))),np.nanmax(np.log10(star_err[star_err>0.])),\ 'More Variable',color='red',ha='right',va='top') for k in LeastVariable.keys(): plt.scatter(xvals[LeastVariable[k]],yvals[LeastVariable[k]],color='red') # this is the middle key for safety middle_key = np.array(list(LeastVariable.keys()))[len(LeastVariable.keys())//2] # but now let's select the brightest one best_key = np.array(list(LeastVariable.keys()))[-1] return LeastVariable[best_key] def runDifferentialPhotometry(photometry, ephotometry, nstars, most_accurate, sn_thresh): ''' runDifferentialPhotometry as the name says! inputs ---------- Photometry: list - list of photometric values from detrend() function ePhotometry: list - list of photometric error values nstars: float - number of stars most_accurate: list - list of indices of non variable comparison stars outputs --------- dPhotometry: list - differential photometry list edPhotometry: list - scaling factors to photometry error tePhotometry: list - differential photometry error ''' Photometry = ma.masked_where(photometry <= 0, photometry) ePhotometry = ma.masked_where(photometry <= 0, ephotometry) #number of nights of photometry nimages = len(Photometry) #range of number of nights imgindex = np.arange(0,nimages,1) #create lists for diff photometry dPhotometry = ma.ones([nimages, len(Photometry[0])]) edPhotometry = ma.ones([nimages, len(Photometry[0])]) eedPhotometry = ma.ones([nimages, len(Photometry[0])]) tePhotometry = ma.ones([nimages, len(Photometry[0])]) checknum = np.linspace(0,nstars,10).astype(int) for star in np.arange(nstars): if star in checknum: print('running differential photometry on star: ', star+1, '/', nstars) starPhotometry = Photometry[:,star] starPhotometryerr = ePhotometry[:,star] #create temporary photometry list for each comparison star tmp_phot = ma.ones([nimages,len(most_accurate)]) #go through comparison stars and determine differential photometry for ind, i in enumerate(most_accurate): #pull out each star's photometry + error Photometry for each night and place in list compStarPhotometry = Photometry[:,i] #calculate differential photometry tmp = starPhotometry*
ma.median(compStarPhotometry)
numpy.ma.median
### All utility function to obtain perturbation mask import numpy as np import itertools import random import math from utils import * import os import time import scipy.io as scio import datetime import re import matplotlib.pyplot as plt import pylab import os import csv from skimage import transform, filters from textwrap import wrap import cv2 import sys from PIL import Image def Get_blurred_img(input_img, img_label, model, resize_shape=(224, 224), Gaussian_param = [51, 50], Median_param = 11, blur_type= 'Gaussian', use_cuda = 1): ######################## # Generate blurred images as the baseline # Parameters: # ------------- # input_img: the original input image # img_label: the classification target that you want to visualize (img_label=-1 means the top 1 classification label) # model: the model that you want to visualize # resize_shape: the input size for the given model # Gaussian_param: parameters for Gaussian blur # Median_param: parameters for median blur # blur_type: Gaussian blur or median blur or mixed blur # use_cuda: use gpu (1) or not (0) #################################################### original_img = cv2.imread(input_img, 1) original_img = cv2.resize(original_img, resize_shape) img =
np.float32(original_img)
numpy.float32
""" setinit: this routine creates local directories and makes topo, qinit, and aux DEMs to be used by setrun.py If you have other files, modify this and/or your setrun.py accordingly. """ import numpy as np import dclaw.topotools as gt import os #import pylab #import pdb cdir = os.path.abspath(os.environ['PWD']) #---create local directories for data if they do not exist---------- indatadir=os.path.join(cdir,'init_data') topodir = os.path.join(cdir,indatadir,'topo') auxdir = os.path.join(cdir,indatadir,'aux') qinitdir = os.path.join(cdir,indatadir,'qinit') if not os.path.isdir(indatadir): execstr = 'mkdir '+indatadir os.system(execstr) if not os.path.isdir(topodir): execstr = 'mkdir '+topodir os.system(execstr) if not os.path.isdir(auxdir): execstr = 'mkdir '+auxdir os.system(execstr) if not os.path.isdir(qinitdir): execstr = 'mkdir '+qinitdir os.system(execstr) #------------------------------------------------------------------------ #---------------- functions for flume geometry to build DEMs ------------ def zero(X,Y): yind1 = np.where((Y[:,0]>=-0.5)&(Y[:,0]<=0.0))[0] yind2 = np.where((Y[:,0]>=2.0)&(Y[:,0]<=2.5))[0] xind = np.where((X[0,:]>=-15.0)&(X[0,:]<=90.0))[0] Z = np.zeros(np.shape(X)) return Z def wallzero(X,Y): yind1 = np.where((Y[:,0]>=-0.5)&(Y[:,0]<=0.0))[0] yind2 = np.where((Y[:,0]>=2.0)&(Y[:,0]<=2.5))[0] xind = np.where((X[0,:]>=-15.0)&(X[0,:]<=82.5))[0] xhopperind = np.where((X[0,:]>=-15.0)&(X[0,:]<=0.0))[0] Z = np.zeros(np.shape(X)) Z[np.ix_(yind1,xind)] = 1.6 Z[np.ix_(yind2,xind)] = 1.6 Z[np.ix_(yind1,xhopperind)] = 2.5 Z[np.ix_(yind2,xhopperind)] = 2.5 return Z def zero_backstop(X,Y): yind1 = np.where((Y[:,0]>=-0.5)&(Y[:,0]<=0.0))[0] yind2 = np.where((Y[:,0]>=2.0)&(Y[:,0]<=2.5))[0] xind = np.where((X[0,:]>=-15.0)&(X[0,:]<=90.0))[0] xbackstopind = np.where(X[0,:]<=-4.0)[0] ybackstopind = np.where((Y[:,0]>=-0.5)&(Y[:,0]<=2.5))[0] Z = np.zeros(np.shape(X)) Z[np.ix_(ybackstopind,xbackstopind)] = 2.5 return Z def wallzero_backstop(X,Y): yind1 = np.where((Y[:,0]>=-0.5)&(Y[:,0]<=0.0))[0] yind2 = np.where((Y[:,0]>=2.0)&(Y[:,0]<=2.5))[0] xind = np.where((X[0,:]>=-15.0)&(X[0,:]<=82.5))[0] xhopperind = np.where((X[0,:]>=-15.0)&(X[0,:]<=0.0))[0] Z = np.zeros(np.shape(X)) xbackstopind = np.where(X[0,:]<=-4.0)[0] ybackstopind = np.where((Y[:,0]>=-0.5)&(Y[:,0]<=2.5))[0] Z[np.ix_(yind1,xind)] = 1.6 Z[np.ix_(yind2,xind)] = 1.6 Z[np.ix_(yind1,xhopperind)] = 2.5 Z[np.ix_(yind2,xhopperind)] = 2.5 Z[np.ix_(ybackstopind,xbackstopind)] = 2.5 return Z def flume_eta(X,Y): hopperlen = 4.7 hmax = 1.9 hoppertop = 3.3 topangle = 17.0*np.pi/180.0 flumeangle = 31.0*np.pi/180.0 x0 = -hopperlen x2 = -hmax*np.cos(0.5*np.pi - flumeangle) x1 = x2 - hoppertop*np.cos(flumeangle-topangle) x3 = 0.0 y2 = hmax*np.sin(0.5*np.pi - flumeangle) y1 = y2 - hoppertop*np.sin(flumeangle-topangle) slope0 = y1/(x1-x0) slope1 = (y2-y1)/(x2-x1) slope2 = -y2/(x3-x2) yind = np.where((Y[:,0]<=2.0)&(Y[:,0]>=0.0))[0] x0ind = np.where((X[0,:]>=x0)&(X[0,:]<x1))[0] x1ind = np.where((X[0,:]>=x1)&(X[0,:]<x2))[0] x2ind = np.where((X[0,:]>=x2)&(X[0,:]<x3))[0] #pdb.set_trace() Z=np.zeros(np.shape(X)) Z[np.ix_(yind,x0ind)] = (X[np.ix_(yind,x0ind)]-x0)*slope0 Z[np.ix_(yind,x1ind)] = y1+(X[np.ix_(yind,x1ind)]-x1)*slope1 Z[np.ix_(yind,x2ind)] = -(x3-X[
np.ix_(yind,x2ind)
numpy.ix_
# Copyright (c) Scanlon Materials Theory Group # Distributed under the terms of the MIT License. """ Module containing the base class for high-symmetry k-point path determination. """ import numpy as np import seekpath import spglib from pymatgen.core.structure import Structure from pymatgen.symmetry.analyzer import SpacegroupAnalyzer class Kpath: r"""Base class providing helper functions for generating k-point paths. This class should not be used directly. Instead, one of the :obj:`~sumo.symmetry.brad_crack_kpath.BradCrackKpath`, :obj:`~sumo.symmetry.seekpath_kpath.SeekpathKpath`, or :obj:`~sumo.symmetry.custom_kpath.CustomKpath`, subclasses should be used. The main use of this parent object is for standardisation across the differing k-point path generation classes. Args: structure (:obj:`~pymatgen.core.structure.Structure`): The structure. symprec (:obj:`float`, optional): The tolerance for determining the crystal symmetry. Attributes: prim (:obj:`~pymatgen.core.structure.Structure`): The standardised primitive cell structure for the generated k-point path. conv (:obj:`~pymatgen.core.structure.Structure`): The standardised conventional cell structure. """ def __init__(self, structure, symprec=1e-3): self.structure = structure # use sym as a quick way to access the cell data sym = SpacegroupAnalyzer(structure, symprec=symprec) self._spg_data = sym.get_symmetry_dataset() # make primitive and conventional cell from seekpath output std = spglib.refine_cell(sym._cell, symprec=symprec) self._seek_data = seekpath.get_path(std) prim_lattice = self._seek_data["primitive_lattice"] prim_scaled_positions = self._seek_data["primitive_positions"] prim_numbers = self._seek_data["primitive_types"] prim_atoms = [sym._unique_species[i - 1] for i in prim_numbers] self.prim = Structure(prim_lattice, prim_atoms, prim_scaled_positions) conv_lattice = self._seek_data["conv_lattice"] conv_scaled_positions = self._seek_data["conv_positions"] conv_numbers = self._seek_data["conv_types"] conv_atoms = [sym._unique_species[i - 1] for i in conv_numbers] self.conv = Structure(conv_lattice, conv_atoms, conv_scaled_positions) def correct_structure(self, atol=1e-8): """Determine if the structure matches the standard primitive structure. The standard primitive will be different between seekpath and pymatgen high-symmetry paths, but this is handled by the specific subclasses. Args: atol (:obj:`float`, optional): Absolute tolerance used to compare the input structure with the primitive standard structure. Returns: bool: ``True`` if the structure is the same as the standard primitive, otherwise ``False``. """ return np.allclose( self.structure.lattice.matrix, self.prim.lattice.matrix, atol=atol ) def get_kpoints(self, line_density=20, cart_coords=False, phonopy=False): r"""Return a list of k-points and labels along the high-symmetry path. The format of the returned data will be different if phonopy is ``True`` or ``False``. This is because phonopy requires the labels and kpoints to be provided in a different format than kgen. Adapted from :obj:`pymatgen.symmetry.bandstructure.HighSymmKpath.get_kpoints`. Args: line_density (:obj:`int`, optional): Density of k-points along the path. cart_coords (:obj:`bool`, optional): Whether the k-points are returned in cartesian or reciprocal coordinates. Defaults to ``False`` (fractional coordinates). phonopy (:obj:`bool`, optional): Format the k-points and labels for use with phonopy. Defaults to ``False``. Returns: tuple: A :obj:`tuple` of the k-points along the high-symmetry path, and k-point labels. Returned as ``(kpoints, labels)``. If ``phonopy == False``, then: * ``kpoints`` is a :obj:`numpy.ndarray` of the k-point coordinates along the high-symmetry path. For example:: [[0, 0, 0], [0.25, 0, 0], [0.5, 0, 0], [0.5, 0, 0.25], [0.5, 0, 0.5]] * ``labels`` is a :obj:`list` of the high symmetry labels for each k-point (will be an empty :obj:`str` if the k-point has no label). For example:: ['\Gamma', '', 'X', '', 'Y'] If ``phonopy == True``, then: * ``kpoints`` is a :obj:`list` of :obj:`numpy.ndarray` containing the k-points for each branch of the band structure. This means that the first and last k-points of a particular branch may be repeated. For example:: [[[0, 0, 0], [0.25, 0, 0], [0.5, 0, 0]], [[0.5, 0, 0], [0.5, 0, 0.25], [0.5, 0, 0.5]]] * ``labels`` is a :obj:`list` of the high symmetry labels. For example:: ['\Gamma', 'X', 'Y'] """ list_k_points = [] sym_point_labels = [] recip_lattice = self.structure.lattice.reciprocal_lattice for b in self.path: for i in range(1, len(b)): start =
np.array(self.kpoints[b[i - 1]])
numpy.array
from EP_N_Env import * import math import random import numpy as np import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from pdb import set_trace as bp Tensor = torch.FloatTensor def get_input_optimizer(input_array): # this line to show that input is a parameter that requires a gradient optimizer = optim.Adam([input_array.requires_grad_()], lr=8e-2) return optimizer class Ave_D_Loss(nn.Module): def __init__(self, net, loads, N_node_in, N_node_out): super(Ave_D_Loss, self).__init__() self.net = net.eval() # loads should be 1 X N_node self.load_mtx = loads self.load_mtx.requires_grad = False self.N_node_in = N_node_in self.N_node_out = N_node_out def forward(self, in_x): # X source X dest # loads dest x_portion = torch.nn.functional.softmax(in_x, dim=2) x_final = x_portion ave_delay = -1*self.net(self.load_mtx.view(-1).unsqueeze(0), x_portion.view(-1).unsqueeze(0)) return x_final, ave_delay class Critic(nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.linear1 = nn.Linear(input_size, hidden_size) self.linear2 = nn.Linear(hidden_size, int(hidden_size/2)) self.linear3 = nn.Linear(int(hidden_size/2), output_size) def forward(self, stt, act): x = torch.cat([stt, act], 1) x = F.relu(self.linear1(x)) x = F.relu(self.linear2(x)) x = self.linear3(x) return x class Agent(object): def __init__(self, **kwargs): for key, value in kwargs.items(): setattr(self, key, value) s_dim = self.env.observation_shape a_dim = self.env.action_shape self.N_in = self.env.N_node_in self.N_out = self.env.N_node_out self.N_mid = self.env.N_node_mid self.N_init = 1000 self.critic = Critic(a_dim+s_dim, 256*2, 1) self.critic_target = Critic(a_dim+s_dim, 256*2, 1) self.critic_optim = optim.Adam(self.critic.parameters(), lr = self.critic_lr) self.buffer = [] self.critic_target.load_state_dict(self.critic.state_dict()) def act(self, s0): s0 = torch.tensor(s0, dtype=torch.float).unsqueeze(0) load_temp = Variable(Tensor(s0), requires_grad=False) x_init = Tensor(np.random.normal(0.0, 1.0, (self.N_init, self.N_in*self.N_out, self.N_mid))) x_init = torch.nn.functional.softmax(x_init, dim=2) d_temp_a = -1*self.critic(load_temp.unsqueeze(0).repeat(self.N_init, 1, 1).view(self.N_init, -1), x_init.view(self.N_init, -1)) D_loss_i = Ave_D_Loss(self.critic_target, load_temp, self.N_in, self.N_out) init_n_min = torch.argmin(d_temp_a, dim=0) x_chosen = x_init[init_n_min] x = Variable(x_chosen, requires_grad = True) optimizer = get_input_optimizer(x) opt_step = 0 while opt_step < 100: opt_step = opt_step + 1 def closure(): optimizer.zero_grad() x_temp, d_temp = D_loss_i(x) d_temp.backward() delay_temp = d_temp.item() optimizer.step(closure) x2 = torch.nn.functional.softmax(x, dim=2) x2 = x2.detach().numpy() return x2 def put(self, *transition): if len(self.buffer)== self.capacity: self.buffer.pop(0) self.buffer.append(transition) def clear(self): self.buffer.clear() def learn(self): if len(self.buffer) < self.batch_size: return samples = random.sample(self.buffer, self.batch_size) s0, a0, r1, s1 = zip(*samples) s0 = torch.tensor(s0, dtype=torch.float) s0 = s0.unsqueeze(1) s0 = s0.view(self.batch_size, -1) a0 = torch.tensor(a0, dtype=torch.float).view(self.batch_size,-1) r1 = torch.tensor(r1, dtype=torch.float).view(self.batch_size,-1) s1 = torch.tensor(s1, dtype=torch.float) def critic_learn(): y_pred = self.critic(s0, a0) loss_fn = nn.MSELoss() loss = loss_fn(y_pred, r1) self.critic_optim.zero_grad() loss.backward() self.critic_optim.step() def soft_update(net_target, net, tau): for target_param, param in zip(net_target.parameters(), net.parameters()): target_param.data.copy_(target_param.data * (1.0 - tau) + param.data * tau) critic_learn() soft_update(self.critic_target, self.critic, self.tau) def Run_Simulation(rand_seed_n): rep_time = 1 N_in = 4 N_out = 16 N_mid = 8 N_pair = 4 env = EP_Env(N_in, N_out, N_mid, N_pair, rep_time, rand_seed_n*10) s0 = env.initial_state() s_mean = np.mean(s0) s_std = np.std(s0) s_max = np.max(s0) RL_delays = np.zeros((10000, N_pair)) O_delays = np.zeros((10000, N_pair)) E_delays =
np.zeros((10000, N_pair))
numpy.zeros
#!/bin/env python3 import cv2 import numpy as np import time def get_triangulation_indices(points): """Get indices triples for every triangle """ # Bounding rectangle bounding_rect = (*points.min(axis=0), *points.max(axis=0)) # Triangulate all points subdiv = cv2.Subdiv2D(bounding_rect) #import pdb;pdb.set_trace() pt_list = [(int(p[0]),int(p[1])) for p in points] subdiv.insert(pt_list) # Iterate over all triangles for x1, y1, x2, y2, x3, y3 in subdiv.getTriangleList(): # Get index of all points yield [(points==point).all(axis=1).nonzero()[0][0] for point in [(x1,y1), (x2,y2), (x3,y3)]] def crop_to_triangle(img, triangle): """Crop image to triangle """ # Get bounding rectangle bounding_rect = cv2.boundingRect(triangle) # Crop image to bounding box img_cropped = img[bounding_rect[1]:bounding_rect[1] + bounding_rect[3], bounding_rect[0]:bounding_rect[0] + bounding_rect[2]] # Move triangle to coordinates in cropped image triangle_cropped = [(point[0]-bounding_rect[0], point[1]-bounding_rect[1]) for point in triangle] return triangle_cropped, img_cropped def transform(src_img, src_points, dst_img, dst_points): """Transforms source image to target image, overwriting the target image. """ src_points = np.array(src_points, np.int32) dst_points =
np.array(dst_points, np.int32)
numpy.array
import numpy as np from EOkit.EOkit import lib from EOkit.array_utils import check_type, check_contig from cffi import FFI ffi = FFI() def single_sav_golay(y_input, window_size, order, deriv=0, delta=1): """Run a single Savitzky-golay filter on 1D data. The Savitzky-golay smoother fits a polynomial to sliding windows of data using a least squares fit. The implementation I have used is similar to that found in the SciPy cookbook: https://scipy.github.io/old-wiki/pages/Cookbook/SavitzkyGolay. Parameters ---------- y_input : ndarray of type float, size (N) The inputs that are to be smoothed. window_size : int The size of the sliding window. Generally, the larger the window of data points, the smoother the resultant data. order : int Order of polynomial to fit the data with. Needs to be less than window_size - 1. deriv : int, optional Order of the derivative to smooth, by default 0 delta : int, optional The spacing of the samples to which the filter is applied, by default 1 Returns ------- ndarray of type float, size (N) Smoothed data at y inputs. Examples -------- Below is a simple example of how to use the Savitzky-golay smoother. >>> data_len = 1000 >>> vci = (np.sin(np.arange(0, data_len, 1., dtype=float)) >>> + np.random.standard_normal(data_len) * 2)) >>> rust_smoothed_data = sav_golay.single_sav_golay(vci, 7, 2, 0, 1) References ---------- .. [1] <NAME>, <NAME>, Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 1964, 36 (8), pp 1627-1639. """ # TODO! Condense all this stuff into a function accross the smoothers. data_len = len(y_input) result = np.empty(data_len, dtype=np.float64) result = check_contig(result) y_input = check_contig(y_input) y_input_ptr = ffi.cast("double *", y_input.ctypes.data) result_ptr = ffi.cast("double *", result.ctypes.data) lib.rust_single_sav_golay( y_input_ptr, result_ptr, result.size, window_size, order, deriv, delta ) return result def multiple_sav_golays(y_inputs, window_size, order, deriv=0, delta=1, n_threads=-1): """Run many Savitzky-golay smoothers on 1D data in a multithread manner. This runs an identical algorithm to the single_sav_golay function. However, this functions takes a list of y_inputs. Rust is then used under the hood to multithread each Savitzky-golay smoother as a task leading to faster computation for pixel-based problems! I have used a list here as apposed to a 2-D array so that arrays of different lengths can be supplied. Parameters ---------- y_inputs : list of ndarrays of type float, size (N) A list of numpy arrays containing the values to be smoothed. window_size : int The size of the sliding window. Generally, the larger the window of data points, the smoother the resultant data. order : int Order of polynomial to fit the data with. Needs to be less than window_size - 1. deriv : int, optional Order of the derivative to smooth, by default 0 delta : int, optional The spacing of the samples to which the filter is applied, by default 1 n_threads : int, optional Amount of worker threads spawned to complete the task. The default is -1 which uses all logical processor cores. To tone this down, use something between 1 and the number of processor cores you have. Setting this value to a number larger than the amount of logical cores you have will most likely degreade performance, by default -1 Returns ------- list of ndarrays of type float, size (N) A list of numpy arrays containing the smoothed data at y_inputs. References ---------- .. [1] <NAME>, <NAME>, Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 1964, 36 (8), pp 1627-1639. """ index_runner = 0 start_indices = [0] for y_input in y_inputs[:-1]: length_of_input = len(y_input) index_runner += length_of_input start_indices.append(index_runner) start_indices = np.array(start_indices, dtype=np.uint64) y_input_array =
np.concatenate(y_inputs)
numpy.concatenate
import os import pytest import torch import ignite.distributed as idist from ignite.exceptions import NotComputableError from ignite.metrics import TopKCategoricalAccuracy def test_zero_div(): acc = TopKCategoricalAccuracy(2) with pytest.raises( NotComputableError, match=r"TopKCategoricalAccuracy must have at least one example before it can be computed" ): acc.compute() def test_compute(): acc = TopKCategoricalAccuracy(2) y_pred = torch.FloatTensor([[0.2, 0.4, 0.6, 0.8], [0.8, 0.6, 0.4, 0.2]]) y = torch.ones(2).long() acc.update((y_pred, y)) assert isinstance(acc.compute(), float) assert acc.compute() == 0.5 acc.reset() y_pred = torch.FloatTensor([[0.4, 0.8, 0.2, 0.6], [0.8, 0.6, 0.4, 0.2]]) y = torch.ones(2).long() acc.update((y_pred, y)) assert isinstance(acc.compute(), float) assert acc.compute() == 1.0 def top_k_accuracy(y_true, y_pred, k=5, normalize=True): import numpy as np # Taken from # https://github.com/scikit-learn/scikit-learn/blob/4685cb5c50629aba4429f6701585f82fc3eee5f7/ # sklearn/metrics/classification.py#L187 if len(y_true.shape) == 2: y_true =
np.argmax(y_true, axis=1)
numpy.argmax