prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
import hashlib import math import numpy as np import pprint import pytest import random import re import subprocess import sys import tempfile import json from catboost import ( CatBoost, CatBoostClassifier, CatBoostRegressor, CatBoostError, EFstrType, FeaturesData, Pool, cv, sum_models, train,) from catboost.eval.catboost_evaluation import CatboostEvaluation, EvalType from catboost.utils import eval_metric, create_cd, get_roc_curve, select_threshold from catboost.utils import DataMetaInfo, TargetStats, compute_training_options import os.path from pandas import read_table, DataFrame, Series, Categorical from six import PY3 from six.moves import xrange from catboost_pytest_lib import ( DelayedTee, binary_path, data_file, local_canonical_file, permute_dataset_columns, remove_time_from_json, test_output_path, generate_random_labeled_set ) if sys.version_info.major == 2: import cPickle as pickle else: import _pickle as pickle pytest_plugins = "list_plugin", fails_on_gpu = pytest.mark.fails_on_gpu EPS = 1e-5 BOOSTING_TYPE = ['Ordered', 'Plain'] OVERFITTING_DETECTOR_TYPE = ['IncToDec', 'Iter'] NONSYMMETRIC = ['Lossguide', 'Depthwise'] TRAIN_FILE = data_file('adult', 'train_small') TEST_FILE = data_file('adult', 'test_small') CD_FILE = data_file('adult', 'train.cd') NAN_TRAIN_FILE = data_file('adult_nan', 'train_small') NAN_TEST_FILE = data_file('adult_nan', 'test_small') NAN_CD_FILE = data_file('adult_nan', 'train.cd') CLOUDNESS_TRAIN_FILE = data_file('cloudness_small', 'train_small') CLOUDNESS_TEST_FILE = data_file('cloudness_small', 'test_small') CLOUDNESS_CD_FILE = data_file('cloudness_small', 'train.cd') QUERYWISE_TRAIN_FILE = data_file('querywise', 'train') QUERYWISE_TEST_FILE = data_file('querywise', 'test') QUERYWISE_CD_FILE = data_file('querywise', 'train.cd') QUERYWISE_CD_FILE_WITH_GROUP_WEIGHT = data_file('querywise', 'train.cd.group_weight') QUERYWISE_CD_FILE_WITH_GROUP_ID = data_file('querywise', 'train.cd.query_id') QUERYWISE_CD_FILE_WITH_SUBGROUP_ID = data_file('querywise', 'train.cd.subgroup_id') QUERYWISE_TRAIN_PAIRS_FILE = data_file('querywise', 'train.pairs') QUERYWISE_TRAIN_PAIRS_FILE_WITH_PAIR_WEIGHT = data_file('querywise', 'train.pairs.weighted') QUERYWISE_TEST_PAIRS_FILE = data_file('querywise', 'test.pairs') AIRLINES_5K_TRAIN_FILE = data_file('airlines_5K', 'train') AIRLINES_5K_TEST_FILE = data_file('airlines_5K', 'test') AIRLINES_5K_CD_FILE = data_file('airlines_5K', 'cd') SMALL_CATEGORIAL_FILE = data_file('small_categorial', 'train') SMALL_CATEGORIAL_CD_FILE = data_file('small_categorial', 'train.cd') BLACK_FRIDAY_TRAIN_FILE = data_file('black_friday', 'train') BLACK_FRIDAY_TEST_FILE = data_file('black_friday', 'test') BLACK_FRIDAY_CD_FILE = data_file('black_friday', 'cd') OUTPUT_MODEL_PATH = 'model.bin' OUTPUT_COREML_MODEL_PATH = 'model.mlmodel' OUTPUT_CPP_MODEL_PATH = 'model.cpp' OUTPUT_PYTHON_MODEL_PATH = 'model.py' OUTPUT_JSON_MODEL_PATH = 'model.json' OUTPUT_ONNX_MODEL_PATH = 'model.onnx' PREDS_PATH = 'predictions.npy' PREDS_TXT_PATH = 'predictions.txt' FIMP_NPY_PATH = 'feature_importance.npy' FIMP_TXT_PATH = 'feature_importance.txt' OIMP_PATH = 'object_importances.txt' JSON_LOG_PATH = 'catboost_info/catboost_training.json' TARGET_IDX = 1 CAT_FEATURES = [0, 1, 2, 4, 6, 8, 9, 10, 11, 12, 16] model_diff_tool = binary_path("catboost/tools/model_comparator/model_comparator") np.set_printoptions(legacy='1.13') class LogStdout: def __init__(self, file): self.log_file = file def __enter__(self): self.saved_stdout = sys.stdout sys.stdout = self.log_file return self.saved_stdout def __exit__(self, exc_type, exc_value, exc_traceback): sys.stdout = self.saved_stdout self.log_file.close() def compare_canonical_models(model, diff_limit=0): return local_canonical_file(model, diff_tool=[model_diff_tool, '--diff-limit', str(diff_limit)]) def map_cat_features(data, cat_features): result = [] for i in range(data.shape[0]): result.append([]) for j in range(data.shape[1]): result[i].append(str(data[i, j]) if j in cat_features else data[i, j]) return result def _check_shape(pool, object_count, features_count): return np.shape(pool.get_features()) == (object_count, features_count) def _check_data(data1, data2): return np.all(np.isclose(data1, data2, rtol=0.001, equal_nan=True)) def _count_lines(afile): with open(afile, 'r') as f: num_lines = sum(1 for line in f) return num_lines def _generate_nontrivial_binary_target(num, seed=20181219, prng=None): ''' Generate binary vector with non zero variance :param num: :return: ''' if prng is None: prng = np.random.RandomState(seed=seed) def gen(): return prng.randint(0, 2, size=num) if num <= 1: return gen() y = gen() # 0/1 labels while y.min() == y.max(): y = gen() return y def _generate_random_target(num, seed=20181219, prng=None): if prng is None: prng = np.random.RandomState(seed=seed) return prng.random_sample((num,)) def set_random_weight(pool, seed=20181219, prng=None): if prng is None: prng = np.random.RandomState(seed=seed) pool.set_weight(prng.random_sample(pool.num_row())) if pool.num_pairs() > 0: pool.set_pairs_weight(prng.random_sample(pool.num_pairs())) def verify_finite(result): inf = float('inf') for r in result: assert(r == r) assert(abs(r) < inf) def append_param(metric_name, param): return metric_name + (':' if ':' not in metric_name else ';') + param # returns (features DataFrame, cat_feature_indices) def load_pool_features_as_df(pool_file, cd_file, target_idx): data = read_table(pool_file, header=None, dtype=str) data.drop([target_idx], axis=1, inplace=True) return (data, Pool(pool_file, column_description=cd_file).get_cat_feature_indices()) # Test cases begin here ######################################################## def test_load_file(): assert _check_shape(Pool(TRAIN_FILE, column_description=CD_FILE), 101, 17) def test_load_list(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) cat_features = pool.get_cat_feature_indices() data = map_cat_features(pool.get_features(), cat_features) label = pool.get_label() assert _check_shape(Pool(data, label, cat_features), 101, 17) def test_load_ndarray(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) cat_features = pool.get_cat_feature_indices() data = np.array(map_cat_features(pool.get_features(), cat_features)) label = np.array(pool.get_label()) assert _check_shape(Pool(data, label, cat_features), 101, 17) @pytest.mark.parametrize('dataset', ['adult', 'adult_nan', 'querywise']) def test_load_df_vs_load_from_file(dataset): train_file, cd_file, target_idx, other_non_feature_columns = { 'adult': (TRAIN_FILE, CD_FILE, TARGET_IDX, []), 'adult_nan': (NAN_TRAIN_FILE, NAN_CD_FILE, TARGET_IDX, []), 'querywise': (QUERYWISE_TRAIN_FILE, QUERYWISE_CD_FILE, 2, [0, 1, 3, 4]) }[dataset] pool1 = Pool(train_file, column_description=cd_file) data = read_table(train_file, header=None) labels = DataFrame(data.iloc[:, target_idx], dtype=np.float32) data.drop([target_idx] + other_non_feature_columns, axis=1, inplace=True) cat_features = pool1.get_cat_feature_indices() pool2 = Pool(data, labels, cat_features) assert _check_data(pool1.get_features(), pool2.get_features()) assert _check_data([float(label) for label in pool1.get_label()], pool2.get_label()) def test_load_series(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) data = read_table(TRAIN_FILE, header=None) labels = Series(data.iloc[:, TARGET_IDX]) data.drop([TARGET_IDX], axis=1, inplace=True) data = Series(list(data.values)) cat_features = pool.get_cat_feature_indices() pool2 = Pool(data, labels, cat_features) assert _check_data(pool.get_features(), pool2.get_features()) assert [int(label) for label in pool.get_label()] == pool2.get_label() def test_pool_cat_features(): pool = Pool(TRAIN_FILE, column_description=CD_FILE) assert np.all(pool.get_cat_feature_indices() == CAT_FEATURES) def test_pool_cat_features_as_strings(): df = DataFrame(data=[[1, 2], [3, 4]], columns=['col1', 'col2']) pool = Pool(df, cat_features=['col2']) assert np.all(pool.get_cat_feature_indices() == [1]) data = [[1, 2, 3], [4, 5, 6]] pool = Pool(data, feature_names=['col1', 'col2', 'col3'], cat_features=['col2', 'col3']) assert np.all(pool.get_cat_feature_indices() == [1, 2]) data = [[1, 2, 3], [4, 5, 6]] with pytest.raises(CatBoostError): Pool(data, cat_features=['col2', 'col3']) def test_load_generated(): pool_size = (100, 10) prng = np.random.RandomState(seed=20181219) data = np.round(prng.normal(size=pool_size), decimals=3) label = _generate_nontrivial_binary_target(pool_size[0], prng=prng) pool = Pool(data, label) assert _check_data(pool.get_features(), data) assert _check_data(pool.get_label(), label) def test_load_dumps(): pool_size = (100, 10) prng = np.random.RandomState(seed=20181219) data = prng.randint(10, size=pool_size) labels = _generate_nontrivial_binary_target(pool_size[0], prng=prng) pool1 = Pool(data, labels) lines = [] for i in range(len(data)): line = [str(labels[i])] + [str(x) for x in data[i]] lines.append('\t'.join(line)) text = '\n'.join(lines) with open('test_data_dumps', 'w') as f: f.write(text) pool2 = Pool('test_data_dumps') assert _check_data(pool1.get_features(), pool2.get_features()) assert pool1.get_label() == [int(label) for label in pool2.get_label()] def test_dataframe_with_pandas_categorical_columns(): df = DataFrame() df['num_feat_0'] = [0, 1, 0, 2, 3, 1, 2] df['num_feat_1'] = [0.12, 0.8, 0.33, 0.11, 0.0, 1.0, 0.0] df['cat_feat_2'] = Series(['A', 'B', 'A', 'C', 'A', 'A', 'A'], dtype='category') df['cat_feat_3'] = Series(['x', 'x', 'y', 'y', 'y', 'x', 'x']) df['cat_feat_4'] = Categorical( ['large', 'small', 'medium', 'large', 'small', 'small', 'medium'], categories=['small', 'medium', 'large'], ordered=True ) df['cat_feat_5'] = [0, 1, 0, 2, 3, 1, 2] labels = [0, 1, 1, 0, 1, 0, 1] model = CatBoostClassifier(iterations=2) model.fit(X=df, y=labels, cat_features=[2, 3, 4, 5]) pred = model.predict(df) preds_path = test_output_path(PREDS_TXT_PATH) np.savetxt(preds_path, np.array(pred), fmt='%.8f') return local_canonical_file(preds_path) # feature_matrix is (doc_count x feature_count) def get_features_data_from_matrix(feature_matrix, cat_feature_indices, order='C'): object_count = len(feature_matrix) feature_count = len(feature_matrix[0]) cat_feature_count = len(cat_feature_indices) num_feature_count = feature_count - cat_feature_count result_num = np.empty((object_count, num_feature_count), dtype=np.float32, order=order) result_cat = np.empty((object_count, cat_feature_count), dtype=object, order=order) for object_idx in xrange(object_count): num_feature_idx = 0 cat_feature_idx = 0 for feature_idx in xrange(len(feature_matrix[object_idx])): if (cat_feature_idx < cat_feature_count) and (cat_feature_indices[cat_feature_idx] == feature_idx): # simplified handling of transformation to bytes for tests result_cat[object_idx, cat_feature_idx] = ( feature_matrix[object_idx, feature_idx] if isinstance(feature_matrix[object_idx, feature_idx], bytes) else str(feature_matrix[object_idx, feature_idx]).encode('utf-8') ) cat_feature_idx += 1 else: result_num[object_idx, num_feature_idx] = float(feature_matrix[object_idx, feature_idx]) num_feature_idx += 1 return FeaturesData(num_feature_data=result_num, cat_feature_data=result_cat) def get_features_data_from_file(data_file, drop_columns, cat_feature_indices, order='C'): data_matrix_from_file = read_table(data_file, header=None, dtype=str) data_matrix_from_file.drop(drop_columns, axis=1, inplace=True) return get_features_data_from_matrix(np.array(data_matrix_from_file), cat_feature_indices, order) def compare_flat_index_and_features_data_pools(flat_index_pool, features_data_pool): assert flat_index_pool.shape == features_data_pool.shape cat_feature_indices = flat_index_pool.get_cat_feature_indices() num_feature_count = flat_index_pool.shape[1] - len(cat_feature_indices) flat_index_pool_features = flat_index_pool.get_features() features_data_pool_features = features_data_pool.get_features() for object_idx in xrange(flat_index_pool.shape[0]): num_feature_idx = 0 cat_feature_idx = 0 for flat_feature_idx in xrange(flat_index_pool.shape[1]): if ( (cat_feature_idx < len(cat_feature_indices)) and (cat_feature_indices[cat_feature_idx] == flat_feature_idx) ): # simplified handling of transformation to bytes for tests assert (flat_index_pool_features[object_idx][flat_feature_idx] == features_data_pool_features[object_idx][num_feature_count + cat_feature_idx]) cat_feature_idx += 1 else: assert np.isclose( flat_index_pool_features[object_idx][flat_feature_idx], features_data_pool_features[object_idx][num_feature_idx], rtol=0.001, equal_nan=True ) num_feature_idx += 1 @pytest.mark.parametrize('order', ['C', 'F'], ids=['order=C', 'order=F']) def test_from_features_data_vs_load_from_files(order): pool_from_files = Pool(TRAIN_FILE, column_description=CD_FILE) features_data = get_features_data_from_file( data_file=TRAIN_FILE, drop_columns=[TARGET_IDX], cat_feature_indices=pool_from_files.get_cat_feature_indices(), order=order ) pool_from_features_data = Pool(data=features_data) compare_flat_index_and_features_data_pools(pool_from_files, pool_from_features_data) def test_features_data_with_empty_objects(): fd = FeaturesData( cat_feature_data=np.empty((0, 4), dtype=object) ) assert fd.get_object_count() == 0 assert fd.get_feature_count() == 4 assert fd.get_num_feature_count() == 0 assert fd.get_cat_feature_count() == 4 assert fd.get_feature_names() == [''] * 4 fd = FeaturesData( num_feature_data=np.empty((0, 2), dtype=np.float32), num_feature_names=['f0', 'f1'] ) assert fd.get_object_count() == 0 assert fd.get_feature_count() == 2 assert fd.get_num_feature_count() == 2 assert fd.get_cat_feature_count() == 0 assert fd.get_feature_names() == ['f0', 'f1'] fd = FeaturesData( cat_feature_data=np.empty((0, 2), dtype=object), num_feature_data=np.empty((0, 3), dtype=np.float32) ) assert fd.get_object_count() == 0 assert fd.get_feature_count() == 5 assert fd.get_num_feature_count() == 3 assert fd.get_cat_feature_count() == 2 assert fd.get_feature_names() == [''] * 5 def test_features_data_names(): # empty specification of names fd = FeaturesData( cat_feature_data=np.array([[b'amazon', b'bing'], [b'ebay', b'google']], dtype=object), num_feature_data=np.array([[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], dtype=np.float32), ) assert fd.get_feature_names() == [''] * 5 # full specification of names fd = FeaturesData( cat_feature_data=np.array([[b'amazon', b'bing'], [b'ebay', b'google']], dtype=object), cat_feature_names=['shop', 'search'], num_feature_data=np.array([[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], dtype=np.float32), num_feature_names=['weight', 'price', 'volume'] ) assert fd.get_feature_names() == ['weight', 'price', 'volume', 'shop', 'search'] # partial specification of names fd = FeaturesData( cat_feature_data=np.array([[b'amazon', b'bing'], [b'ebay', b'google']], dtype=object), num_feature_data=np.array([[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], dtype=np.float32), num_feature_names=['weight', 'price', 'volume'] ) assert fd.get_feature_names() == ['weight', 'price', 'volume', '', ''] # partial specification of names fd = FeaturesData( cat_feature_data=np.array([[b'amazon', b'bing'], [b'ebay', b'google']], dtype=object), cat_feature_names=['shop', 'search'], num_feature_data=np.array([[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], dtype=np.float32), ) assert fd.get_feature_names() == ['', '', '', 'shop', 'search'] def compare_pools_from_features_data_and_generic_matrix( features_data, generic_matrix, cat_features_indices, feature_names=None ): pool1 = Pool(data=features_data) pool2 = Pool(data=generic_matrix, cat_features=cat_features_indices, feature_names=feature_names) assert _check_data(pool1.get_features(), pool2.get_features()) assert pool1.get_cat_feature_indices() == pool2.get_cat_feature_indices() assert pool1.get_feature_names() == pool2.get_feature_names() @pytest.mark.parametrize('order', ['C', 'F'], ids=['order=C', 'order=F']) def test_features_data_good(order): # 0 objects compare_pools_from_features_data_and_generic_matrix( FeaturesData(cat_feature_data=np.empty((0, 4), dtype=object, order=order)), np.empty((0, 4), dtype=object), cat_features_indices=[0, 1, 2, 3] ) # 0 objects compare_pools_from_features_data_and_generic_matrix( FeaturesData( cat_feature_data=np.empty((0, 2), dtype=object, order=order), cat_feature_names=['cat0', 'cat1'], num_feature_data=np.empty((0, 3), dtype=np.float32, order=order), ), np.empty((0, 5), dtype=object), cat_features_indices=[3, 4], feature_names=['', '', '', 'cat0', 'cat1'] ) compare_pools_from_features_data_and_generic_matrix( FeaturesData( cat_feature_data=np.array([[b'amazon', b'bing'], [b'ebay', b'google']], dtype=object, order=order) ), [[b'amazon', b'bing'], [b'ebay', b'google']], cat_features_indices=[0, 1] ) compare_pools_from_features_data_and_generic_matrix( FeaturesData( num_feature_data=np.array([[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], dtype=np.float32, order=order) ), [[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], cat_features_indices=[] ) compare_pools_from_features_data_and_generic_matrix( FeaturesData( cat_feature_data=np.array([[b'amazon', b'bing'], [b'ebay', b'google']], dtype=object, order=order), num_feature_data=np.array([[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], dtype=np.float32, order=order) ), [[1.0, 2.0, 3.0, b'amazon', b'bing'], [22.0, 7.1, 10.2, b'ebay', b'google']], cat_features_indices=[3, 4] ) compare_pools_from_features_data_and_generic_matrix( FeaturesData( cat_feature_data=np.array([[b'amazon', b'bing'], [b'ebay', b'google']], dtype=object, order=order), cat_feature_names=['shop', 'search'] ), [[b'amazon', b'bing'], [b'ebay', b'google']], cat_features_indices=[0, 1], feature_names=['shop', 'search'] ) compare_pools_from_features_data_and_generic_matrix( FeaturesData( num_feature_data=np.array([[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], dtype=np.float32, order=order), num_feature_names=['weight', 'price', 'volume'] ), [[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], cat_features_indices=[], feature_names=['weight', 'price', 'volume'] ) compare_pools_from_features_data_and_generic_matrix( FeaturesData( cat_feature_data=np.array([[b'amazon', b'bing'], [b'ebay', b'google']], dtype=object, order=order), cat_feature_names=['shop', 'search'], num_feature_data=np.array([[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], dtype=np.float32, order=order), num_feature_names=['weight', 'price', 'volume'] ), [[1.0, 2.0, 3.0, b'amazon', b'bing'], [22.0, 7.1, 10.2, b'ebay', b'google']], cat_features_indices=[3, 4], feature_names=['weight', 'price', 'volume', 'shop', 'search'] ) def test_features_data_bad(): # empty with pytest.raises(CatBoostError): FeaturesData() # names w/o data with pytest.raises(CatBoostError): FeaturesData(cat_feature_data=[[b'amazon', b'bing']], num_feature_names=['price']) # bad matrix type with pytest.raises(CatBoostError): FeaturesData( cat_feature_data=[[b'amazon', b'bing']], num_feature_data=np.array([1.0, 2.0, 3.0], dtype=np.float32) ) # bad matrix shape with pytest.raises(CatBoostError): FeaturesData(num_feature_data=np.array([[[1.0], [2.0], [3.0]]], dtype=np.float32)) # bad element type with pytest.raises(CatBoostError): FeaturesData( cat_feature_data=np.array([b'amazon', b'bing'], dtype=object), num_feature_data=np.array([1.0, 2.0, 3.0], dtype=np.float64) ) # bad element type with pytest.raises(CatBoostError): FeaturesData(cat_feature_data=np.array(['amazon', 'bing'])) # bad names type with pytest.raises(CatBoostError): FeaturesData( cat_feature_data=np.array([[b'google'], [b'reddit']], dtype=object), cat_feature_names=[None, 'news_aggregator'] ) # bad names length with pytest.raises(CatBoostError): FeaturesData( cat_feature_data=np.array([[b'google'], [b'bing']], dtype=object), cat_feature_names=['search_engine', 'news_aggregator'] ) # no features with pytest.raises(CatBoostError): FeaturesData( cat_feature_data=np.array([[], [], []], dtype=object), num_feature_data=np.array([[], [], []], dtype=np.float32) ) # number of objects is different with pytest.raises(CatBoostError): FeaturesData( cat_feature_data=np.array([[b'google'], [b'bing']], dtype=object), num_feature_data=np.array([1.0, 2.0, 3.0], dtype=np.float32) ) def test_predict_regress(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoost({'iterations': 2, 'loss_function': 'RMSE', 'task_type': task_type, 'devices': '0'}) model.fit(train_pool) assert(model.is_fitted()) output_model_path = test_output_path(OUTPUT_MODEL_PATH) model.save_model(output_model_path) return compare_canonical_models(output_model_path) def test_predict_sklearn_regress(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostRegressor(iterations=2, learning_rate=0.03, task_type=task_type, devices='0') model.fit(train_pool) assert(model.is_fitted()) output_model_path = test_output_path(OUTPUT_MODEL_PATH) model.save_model(output_model_path) return compare_canonical_models(output_model_path) def test_predict_sklearn_class(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=2, learning_rate=0.03, loss_function='Logloss:border=0.5', task_type=task_type, devices='0') model.fit(train_pool) assert(model.is_fitted()) output_model_path = test_output_path(OUTPUT_MODEL_PATH) model.save_model(output_model_path) return compare_canonical_models(output_model_path) def test_predict_class_raw(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=2, task_type=task_type, devices='0') model.fit(train_pool) pred = model.predict(test_pool) preds_path = test_output_path(PREDS_PATH) np.save(preds_path, np.array(pred)) return local_canonical_file(preds_path) def test_raw_predict_equals_to_model_predict(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=10, task_type=task_type, devices='0') model.fit(train_pool, eval_set=test_pool) assert(model.is_fitted()) pred = model.predict(test_pool, prediction_type='RawFormulaVal') assert np.all(np.isclose(model.get_test_eval(), pred, rtol=1.e-6)) @pytest.mark.parametrize('problem', ['Classifier', 'Regressor']) def test_predict_and_predict_proba_on_single_object(problem): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) if problem == 'Classifier': model = CatBoostClassifier(iterations=2) else: model = CatBoostRegressor(iterations=2) model.fit(train_pool) test_data = read_table(TEST_FILE, header=None) test_data.drop([TARGET_IDX], axis=1, inplace=True) pred = model.predict(test_data) if problem == 'Classifier': pred_probabilities = model.predict_proba(test_data) random.seed(0) for i in xrange(3): # just some indices test_object_idx = random.randrange(test_data.shape[0]) assert pred[test_object_idx] == model.predict(test_data.values[test_object_idx]) if problem == 'Classifier': assert np.array_equal(pred_probabilities[test_object_idx], model.predict_proba(test_data.values[test_object_idx])) def test_model_pickling(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=10, task_type=task_type, devices='0') model.fit(train_pool, eval_set=test_pool) pred = model.predict(test_pool, prediction_type='RawFormulaVal') model_unpickled = pickle.loads(pickle.dumps(model)) pred_new = model_unpickled.predict(test_pool, prediction_type='RawFormulaVal') assert all(pred_new == pred) def test_fit_from_file(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoost({'iterations': 2, 'loss_function': 'RMSE', 'task_type': task_type, 'devices': '0'}) model.fit(train_pool) predictions1 = model.predict(train_pool) model.fit(TRAIN_FILE, column_description=CD_FILE) predictions2 = model.predict(train_pool) assert all(predictions1 == predictions2) assert 'train_finish_time' in model.get_metadata() @fails_on_gpu(how='assert 0.019921323750168085 < EPS, where 0.019921323750168085 = abs((0.03378972364589572 - 0.053711047396063805))') @pytest.mark.parametrize('order', ['C', 'F'], ids=['order=C', 'order=F']) def test_fit_from_features_data(order, task_type): pool_from_files = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoost({'iterations': 2, 'loss_function': 'RMSE', 'task_type': task_type, 'devices': '0'}) model.fit(pool_from_files) assert(model.is_fitted()) predictions_from_files = model.predict(pool_from_files) features_data = get_features_data_from_file( data_file=TRAIN_FILE, drop_columns=[TARGET_IDX], cat_feature_indices=pool_from_files.get_cat_feature_indices(), order=order ) model.fit(X=features_data, y=pool_from_files.get_label()) predictions_from_features_data = model.predict(Pool(features_data)) for prediction1, prediction2 in zip(predictions_from_files, predictions_from_features_data): assert abs(prediction1 - prediction2) < EPS def test_fit_from_empty_features_data(task_type): model = CatBoost({'iterations': 2, 'loss_function': 'RMSE', 'task_type': task_type, 'devices': '0'}) with pytest.raises(CatBoostError): model.fit( X=FeaturesData(num_feature_data=np.empty((0, 2), dtype=np.float32)), y=np.empty((0), dtype=np.int32) ) def test_coreml_import_export(task_type): train_pool = Pool(QUERYWISE_TRAIN_FILE, column_description=QUERYWISE_CD_FILE) test_pool = Pool(QUERYWISE_TEST_FILE, column_description=QUERYWISE_CD_FILE) model = CatBoost(params={'loss_function': 'RMSE', 'iterations': 20, 'thread_count': 8, 'task_type': task_type, 'devices': '0'}) model.fit(train_pool) output_coreml_model_path = test_output_path(OUTPUT_COREML_MODEL_PATH) model.save_model(output_coreml_model_path, format="coreml") canon_pred = model.predict(test_pool) coreml_loaded_model = CatBoostRegressor() coreml_loaded_model.load_model(output_coreml_model_path, format="coreml") assert all(canon_pred == coreml_loaded_model.predict(test_pool)) return compare_canonical_models(output_coreml_model_path) def test_coreml_import_export_one_hot_features(task_type): train_pool = Pool(SMALL_CATEGORIAL_FILE, column_description=SMALL_CATEGORIAL_CD_FILE) model = CatBoost(params={'loss_function': 'RMSE', 'iterations': 2, 'task_type': task_type, 'devices': '0', 'one_hot_max_size': 4}) model.fit(train_pool) output_coreml_model_path = test_output_path(OUTPUT_COREML_MODEL_PATH) model.save_model(output_coreml_model_path, format="coreml", pool=train_pool) pred = model.predict(train_pool) coreml_loaded_model = CatBoostRegressor() coreml_loaded_model.load_model(output_coreml_model_path, format="coreml") assert all(pred == coreml_loaded_model.predict(train_pool)) return compare_canonical_models(output_coreml_model_path) @pytest.mark.parametrize('pool', ['adult', 'higgs']) def test_convert_model_to_json(task_type, pool): train_pool = Pool(data_file(pool, 'train_small'), column_description=data_file(pool, 'train.cd')) test_pool = Pool(data_file(pool, 'test_small'), column_description=data_file(pool, 'train.cd')) converted_model_path = test_output_path("converted_model.bin") model = CatBoost({'iterations': 20, 'task_type': task_type, 'devices': '0'}) model.fit(train_pool) output_model_path = test_output_path(OUTPUT_MODEL_PATH) output_json_model_path = test_output_path(OUTPUT_JSON_MODEL_PATH) model.save_model(output_model_path) model.save_model(output_json_model_path, format="json") model2 = CatBoost() model2.load_model(output_json_model_path, format="json") model2.save_model(converted_model_path) pred1 = model.predict(test_pool) pred2 = model2.predict(test_pool) assert _check_data(pred1, pred2) subprocess.check_call((model_diff_tool, output_model_path, converted_model_path, '--diff-limit', '0.000001')) return compare_canonical_models(converted_model_path) def test_coreml_cbm_import_export(task_type): train_pool = Pool(QUERYWISE_TRAIN_FILE, column_description=QUERYWISE_CD_FILE) test_pool = Pool(QUERYWISE_TEST_FILE, column_description=QUERYWISE_CD_FILE) model = CatBoost(params={'loss_function': 'RMSE', 'iterations': 20, 'thread_count': 8, 'task_type': task_type, 'devices': '0'}) model.fit(train_pool) canon_pred = model.predict(test_pool) output_coreml_model_path = test_output_path(OUTPUT_COREML_MODEL_PATH) model.save_model(output_coreml_model_path, format="coreml") coreml_loaded_model = CatBoost() coreml_loaded_model.load_model(output_coreml_model_path, format="coreml") output_model_path = test_output_path(OUTPUT_MODEL_PATH) coreml_loaded_model.save_model(output_model_path) cbm_loaded_model = CatBoost() cbm_loaded_model.load_model(output_model_path) assert all(canon_pred == cbm_loaded_model.predict(test_pool)) return compare_canonical_models(output_coreml_model_path) def test_cpp_export_no_cat_features(task_type): train_pool = Pool(QUERYWISE_TRAIN_FILE, column_description=QUERYWISE_CD_FILE) model = CatBoost({'iterations': 2, 'loss_function': 'RMSE', 'task_type': task_type, 'devices': '0'}) model.fit(train_pool) output_cpp_model_path = test_output_path(OUTPUT_CPP_MODEL_PATH) model.save_model(output_cpp_model_path, format="cpp") return local_canonical_file(output_cpp_model_path) def test_cpp_export_with_cat_features(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoost({'iterations': 20, 'task_type': task_type, 'devices': '0'}) model.fit(train_pool) output_cpp_model_path = test_output_path(OUTPUT_CPP_MODEL_PATH) model.save_model(output_cpp_model_path, format="cpp") return local_canonical_file(output_cpp_model_path) @pytest.mark.parametrize('iterations', [2, 40]) def test_export_to_python_no_cat_features(task_type, iterations): train_pool = Pool(QUERYWISE_TRAIN_FILE, column_description=QUERYWISE_CD_FILE) model = CatBoost({'iterations': iterations, 'loss_function': 'RMSE', 'task_type': task_type, 'devices': '0'}) model.fit(train_pool) output_python_model_path = test_output_path(OUTPUT_PYTHON_MODEL_PATH) model.save_model(output_python_model_path, format="python") return local_canonical_file(output_python_model_path) @pytest.mark.parametrize('iterations', [2, 40]) def test_export_to_python_with_cat_features(task_type, iterations): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoost({'iterations': iterations, 'task_type': task_type, 'devices': '0'}) model.fit(train_pool) output_python_model_path = test_output_path(OUTPUT_PYTHON_MODEL_PATH) model.save_model(output_python_model_path, format="python", pool=train_pool) return local_canonical_file(output_python_model_path) def test_export_to_python_with_cat_features_from_pandas(task_type): model = CatBoost({'iterations': 5, 'task_type': task_type, 'devices': '0'}) X = DataFrame([[1, 2], [3, 4]], columns=['Num', 'Categ']) y = [1, 0] cat_features = [1] model.fit(X, y, cat_features) output_python_model_path = test_output_path(OUTPUT_PYTHON_MODEL_PATH) model.save_model(output_python_model_path, format="python", pool=X) return local_canonical_file(output_python_model_path) @pytest.mark.parametrize('problem_type', ['binclass', 'multiclass', 'regression']) def test_onnx_export(problem_type): if problem_type == 'binclass': loss_function = 'Logloss' train_path = TRAIN_FILE cd_path = CD_FILE elif problem_type == 'multiclass': loss_function = 'MultiClass' train_path = CLOUDNESS_TRAIN_FILE cd_path = CLOUDNESS_CD_FILE elif problem_type == 'regression': loss_function = 'RMSE' train_path = TRAIN_FILE cd_path = CD_FILE else: raise Exception('Unsupported problem_type: %s' % problem_type) train_pool = Pool(train_path, column_description=cd_path) model = CatBoost( { 'task_type': 'CPU', # TODO(akhropov): GPU results are unstable, difficult to compare models 'loss_function': loss_function, 'iterations': 5, 'depth': 4, # onnx format export does not yet support categorical features so ignore them 'ignored_features': train_pool.get_cat_feature_indices() } ) model.fit(train_pool) output_onnx_model_path = test_output_path(OUTPUT_ONNX_MODEL_PATH) model.save_model( output_onnx_model_path, format="onnx", export_parameters={ 'onnx_domain': 'ai.catboost', 'onnx_model_version': 1, 'onnx_doc_string': 'test model for problem_type %s' % problem_type, 'onnx_graph_name': 'CatBoostModel_for_%s' % problem_type } ) return compare_canonical_models(output_onnx_model_path) def test_predict_class(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=2, learning_rate=0.03, task_type=task_type, devices='0') model.fit(train_pool) pred = model.predict(test_pool, prediction_type="Class") preds_path = test_output_path(PREDS_PATH) np.save(preds_path, np.array(pred)) return local_canonical_file(preds_path) def test_zero_learning_rate(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=2, learning_rate=0, task_type=task_type, devices='0') with pytest.raises(CatBoostError): model.fit(train_pool) def test_predict_class_proba(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=2, learning_rate=0.03, task_type=task_type, devices='0') model.fit(train_pool) pred = model.predict_proba(test_pool) preds_path = test_output_path(PREDS_PATH) np.save(preds_path, np.array(pred)) return local_canonical_file(preds_path) @fails_on_gpu(how='assert 0.031045619651137835 < EPS, where 0.031045619651137835 = <function amax at ...') @pytest.mark.parametrize('function_name', ['predict', 'predict_proba']) def test_predict_funcs_from_features_data(function_name, task_type): function = getattr(CatBoostClassifier, function_name) train_pool_from_files = Pool(TRAIN_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=10, learning_rate=0.03, task_type=task_type, devices='0') model.fit(train_pool_from_files) test_pool_from_files = Pool(TEST_FILE, column_description=CD_FILE) predictions_from_files = function(model, test_pool_from_files) train_features_data, test_features_data = [ get_features_data_from_file( data_file=data_file, drop_columns=[TARGET_IDX], cat_feature_indices=train_pool_from_files.get_cat_feature_indices() ) for data_file in [TRAIN_FILE, TEST_FILE] ] model.fit(X=train_features_data, y=train_pool_from_files.get_label()) predictions_from_features_data = function(model, test_features_data) for prediction1, prediction2 in zip(predictions_from_files, predictions_from_features_data): assert np.max(np.abs(prediction1 - prediction2)) < EPS # empty empty_test_features_data = FeaturesData( num_feature_data=np.empty((0, test_features_data.get_num_feature_count()), dtype=np.float32), cat_feature_data=np.empty((0, test_features_data.get_cat_feature_count()), dtype=object) ) empty_predictions = function(model, empty_test_features_data) assert len(empty_predictions) == 0 def test_no_cat_in_predict(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=2, learning_rate=0.03, task_type=task_type, devices='0') model.fit(train_pool) pred1 = model.predict(map_cat_features(test_pool.get_features(), train_pool.get_cat_feature_indices())) pred2 = model.predict(Pool(map_cat_features(test_pool.get_features(), train_pool.get_cat_feature_indices()), cat_features=train_pool.get_cat_feature_indices())) assert _check_data(pred1, pred2) def test_save_model(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model = CatBoost({'task_type': task_type, 'devices': '0'}) model.fit(train_pool) output_model_path = test_output_path(OUTPUT_MODEL_PATH) model.save_model(output_model_path) model2 = CatBoost() model2.load_model(output_model_path) pred1 = model.predict(test_pool) pred2 = model2.predict(test_pool) assert _check_data(pred1, pred2) def test_multiclass(task_type): pool = Pool(CLOUDNESS_TRAIN_FILE, column_description=CLOUDNESS_CD_FILE) classifier = CatBoostClassifier(iterations=2, loss_function='MultiClass', thread_count=8, task_type=task_type, devices='0') classifier.fit(pool) output_model_path = test_output_path(OUTPUT_MODEL_PATH) classifier.save_model(output_model_path) new_classifier = CatBoostClassifier() new_classifier.load_model(output_model_path) pred = new_classifier.predict_proba(pool) preds_path = test_output_path(PREDS_PATH) np.save(preds_path, np.array(pred)) return local_canonical_file(preds_path) def test_multiclass_classes_count_missed_classes(task_type): prng = np.random.RandomState(seed=0) pool = Pool(prng.random_sample(size=(100, 10)), label=prng.choice([1, 3], size=100)) classifier = CatBoostClassifier(classes_count=4, iterations=2, loss_function='MultiClass', thread_count=8, task_type=task_type, devices='0') classifier.fit(pool) output_model_path = test_output_path(OUTPUT_MODEL_PATH) classifier.save_model(output_model_path) new_classifier = CatBoostClassifier() new_classifier.load_model(output_model_path) pred = new_classifier.predict_proba(pool) classes = new_classifier.predict(pool) assert pred.shape == (100, 4) assert np.array(classes).all() in [1, 3] preds_path = test_output_path(PREDS_PATH) np.save(preds_path, np.array(pred)) return local_canonical_file(preds_path) @pytest.mark.parametrize('label_type', ['string', 'int']) def test_multiclass_custom_class_labels(label_type, task_type): if label_type == 'int': train_labels = [1, 2] elif label_type == 'string': train_labels = ['Class1', 'Class2'] prng = np.random.RandomState(seed=0) train_pool = Pool(prng.random_sample(size=(100, 10)), label=prng.choice(train_labels, size=100)) test_pool = Pool(prng.random_sample(size=(50, 10))) classifier = CatBoostClassifier(iterations=2, loss_function='MultiClass', thread_count=8, task_type=task_type, devices='0') classifier.fit(train_pool) output_model_path = test_output_path(OUTPUT_MODEL_PATH) classifier.save_model(output_model_path) new_classifier = CatBoostClassifier() new_classifier.load_model(output_model_path) pred = new_classifier.predict_proba(test_pool) classes = new_classifier.predict(test_pool) assert pred.shape == (50, 2) assert all(((class1 in train_labels) for class1 in classes)) preds_path = test_output_path(PREDS_TXT_PATH) np.savetxt(preds_path, np.array(pred), fmt='%.8f') return local_canonical_file(preds_path) def test_multiclass_custom_class_labels_from_files(task_type): labels = ['a', 'b', 'c', 'd'] cd_path = test_output_path('cd.txt') np.savetxt(cd_path, [[0, 'Target']], fmt='%s', delimiter='\t') prng = np.random.RandomState(seed=0) train_path = test_output_path('train.txt') np.savetxt(train_path, generate_random_labeled_set(100, 10, labels, prng=prng), fmt='%s', delimiter='\t') test_path = test_output_path('test.txt') np.savetxt(test_path, generate_random_labeled_set(25, 10, labels, prng=prng), fmt='%s', delimiter='\t') train_pool = Pool(train_path, column_description=cd_path) test_pool = Pool(test_path, column_description=cd_path) classifier = CatBoostClassifier(iterations=2, loss_function='MultiClass', thread_count=8, task_type=task_type, devices='0') classifier.fit(train_pool) output_model_path = test_output_path(OUTPUT_MODEL_PATH) classifier.save_model(output_model_path) new_classifier = CatBoostClassifier() new_classifier.load_model(output_model_path) pred = new_classifier.predict_proba(test_pool) classes = new_classifier.predict(test_pool) assert pred.shape == (25, 4) assert all(((class1 in labels) for class1 in classes)) preds_path = test_output_path(PREDS_TXT_PATH) np.savetxt(preds_path, np.array(pred), fmt='%.8f') return local_canonical_file(preds_path) def test_class_names(task_type): class_names = ['Small', 'Medium', 'Large'] prng = np.random.RandomState(seed=0) train_pool = Pool(prng.random_sample(size=(100, 10)), label=prng.choice(class_names, size=100)) test_pool = Pool(prng.random_sample(size=(25, 10))) classifier = CatBoostClassifier( iterations=2, loss_function='MultiClass', class_names=class_names, thread_count=8, task_type=task_type, devices='0' ) classifier.fit(train_pool) output_model_path = test_output_path(OUTPUT_MODEL_PATH) classifier.save_model(output_model_path) new_classifier = CatBoostClassifier() new_classifier.load_model(output_model_path) pred = new_classifier.predict_proba(test_pool) classes = new_classifier.predict(test_pool) assert pred.shape == (25, 3) assert all(((class1 in class_names) for class1 in classes)) assert sorted(classifier.classes_) == sorted(class_names) preds_path = test_output_path(PREDS_TXT_PATH) np.savetxt(preds_path, np.array(pred), fmt='%.8f') return local_canonical_file(preds_path) def test_inconsistent_labels_and_class_names(): class_names = ['Small', 'Medium', 'Large'] prng = np.random.RandomState(seed=0) train_pool = Pool(prng.random_sample(size=(100, 10)), label=prng.choice([0, 1, 2], size=100)) classifier = CatBoostClassifier( iterations=2, loss_function='MultiClass', class_names=class_names, ) with pytest.raises(CatBoostError): classifier.fit(train_pool) @pytest.mark.parametrize( 'features_dtype', ['str', 'np.float32'], ids=['features_dtype=str', 'features_dtype=np.float32'] ) def test_querywise(features_dtype, task_type): train_pool = Pool(QUERYWISE_TRAIN_FILE, column_description=QUERYWISE_CD_FILE) test_pool = Pool(QUERYWISE_TEST_FILE, column_description=QUERYWISE_CD_FILE) model = CatBoost(params={'loss_function': 'QueryRMSE', 'iterations': 2, 'thread_count': 8, 'task_type': task_type, 'devices': '0'}) model.fit(train_pool) pred1 = model.predict(test_pool) df = read_table(QUERYWISE_TRAIN_FILE, delimiter='\t', header=None) train_query_id = df.loc[:, 1] train_target = df.loc[:, 2] train_data = df.drop([0, 1, 2, 3, 4], axis=1).astype(eval(features_dtype)) df = read_table(QUERYWISE_TEST_FILE, delimiter='\t', header=None) test_data = df.drop([0, 1, 2, 3, 4], axis=1).astype(eval(features_dtype)) model.fit(train_data, train_target, group_id=train_query_id) pred2 = model.predict(test_data) assert _check_data(pred1, pred2) def test_group_weight(task_type): train_pool = Pool(QUERYWISE_TRAIN_FILE, column_description=QUERYWISE_CD_FILE_WITH_GROUP_WEIGHT) test_pool = Pool(QUERYWISE_TEST_FILE, column_description=QUERYWISE_CD_FILE_WITH_GROUP_WEIGHT) model = CatBoost(params={'loss_function': 'YetiRank', 'iterations': 10, 'thread_count': 8, 'task_type': task_type, 'devices': '0'}) model.fit(train_pool) pred1 = model.predict(test_pool) df = read_table(QUERYWISE_TRAIN_FILE, delimiter='\t', header=None) train_query_weight = df.loc[:, 0] train_query_id = df.loc[:, 1] train_target = df.loc[:, 2] train_data = df.drop([0, 1, 2, 3, 4], axis=1).astype(str) df = read_table(QUERYWISE_TEST_FILE, delimiter='\t', header=None) test_query_weight = df.loc[:, 0] test_query_id = df.loc[:, 1] test_data = Pool(df.drop([0, 1, 2, 3, 4], axis=1).astype(np.float32), group_id=test_query_id, group_weight=test_query_weight) model.fit(train_data, train_target, group_id=train_query_id, group_weight=train_query_weight) pred2 = model.predict(test_data) assert _check_data(pred1, pred2) def test_zero_baseline(task_type): pool = Pool(TRAIN_FILE, column_description=CD_FILE) baseline = np.zeros(pool.num_row()) pool.set_baseline(baseline) model = CatBoostClassifier(iterations=2, learning_rate=0.03, task_type=task_type, devices='0') model.fit(pool) output_model_path = test_output_path(OUTPUT_MODEL_PATH) model.save_model(output_model_path) return compare_canonical_models(output_model_path) def test_ones_weight(task_type): pool = Pool(TRAIN_FILE, column_description=CD_FILE) weight = np.ones(pool.num_row()) pool.set_weight(weight) model = CatBoostClassifier(iterations=2, learning_rate=0.03, task_type=task_type, devices='0') model.fit(pool) output_model_path = test_output_path(OUTPUT_MODEL_PATH) model.save_model(output_model_path) return compare_canonical_models(output_model_path) def test_non_ones_weight(task_type): pool = Pool(TRAIN_FILE, column_description=CD_FILE) weight = np.arange(1, pool.num_row() + 1) pool.set_weight(weight) model = CatBoostClassifier(iterations=2, learning_rate=0.03, task_type=task_type, devices='0') model.fit(pool) output_model_path = test_output_path(OUTPUT_MODEL_PATH) model.save_model(output_model_path) return compare_canonical_models(output_model_path) def test_ones_weight_equal_to_nonspecified_weight(task_type): train_pool = Pool(TRAIN_FILE, column_description=CD_FILE) test_pool = Pool(TEST_FILE, column_description=CD_FILE) model = CatBoostClassifier(iterations=2, learning_rate=0.03, task_type=task_type, devices='0') predictions = [] for set_weights in [False, True]: if set_weights: weight = np.ones(train_pool.num_row()) train_pool.set_weight(weight) model.fit(train_pool) predictions.append(model.predict(test_pool)) assert _check_data(predictions[0], predictions[1]) def test_py_data_group_id(task_type): train_pool_from_files = Pool(QUERYWISE_TRAIN_FILE, column_description=QUERYWISE_CD_FILE_WITH_GROUP_ID) test_pool_from_files = Pool(QUERYWISE_TEST_FILE, column_description=QUERYWISE_CD_FILE_WITH_GROUP_ID) model = CatBoost( params={'loss_function': 'QueryRMSE', 'iterations': 2, 'thread_count': 4, 'task_type': task_type, 'devices': '0'} ) model.fit(train_pool_from_files) predictions_from_files = model.predict(test_pool_from_files) train_df = read_table(QUERYWISE_TRAIN_FILE, delimiter='\t', header=None) train_target = train_df.loc[:, 2] raw_train_group_id = train_df.loc[:, 1] train_data = train_df.drop([0, 1, 2, 3, 4], axis=1).astype(np.float32) test_df = read_table(QUERYWISE_TEST_FILE, delimiter='\t', header=None) test_data = Pool(test_df.drop([0, 1, 2, 3, 4], axis=1).astype(np.float32)) for group_id_func in (int, str, lambda id: 'myid_' + str(id)): train_group_id = [group_id_func(group_id) for group_id in raw_train_group_id] model.fit(train_data, train_target, group_id=train_group_id) predictions_from_py_data = model.predict(test_data) assert _check_data(predictions_from_files, predictions_from_py_data) def test_py_data_subgroup_id(task_type): train_pool_from_files = Pool(QUERYWISE_TRAIN_FILE, column_description=QUERYWISE_CD_FILE_WITH_SUBGROUP_ID) test_pool_from_files = Pool(QUERYWISE_TEST_FILE, column_description=QUERYWISE_CD_FILE_WITH_SUBGROUP_ID) model = CatBoost( params={'loss_function': 'QueryRMSE', 'iterations': 2, 'thread_count': 4, 'task_type': task_type, 'devices': '0'} ) model.fit(train_pool_from_files) predictions_from_files = model.predict(test_pool_from_files) train_df = read_table(QUERYWISE_TRAIN_FILE, delimiter='\t', header=None) train_group_id = train_df.loc[:, 1] raw_train_subgroup_id = train_df.loc[:, 4] train_target = train_df.loc[:, 2] train_data = train_df.drop([0, 1, 2, 3, 4], axis=1).astype(np.float32) test_df = read_table(QUERYWISE_TEST_FILE, delimiter='\t', header=None) test_data = Pool(test_df.drop([0, 1, 2, 3, 4], axis=1).astype(np.float32)) for subgroup_id_func in (int, str, lambda id: 'myid_' + str(id)): train_subgroup_id = [subgroup_id_func(subgroup_id) for subgroup_id in raw_train_subgroup_id] model.fit(train_data, train_target, group_id=train_group_id, subgroup_id=train_subgroup_id) predictions_from_py_data = model.predict(test_data) assert _check_data(predictions_from_files, predictions_from_py_data) def test_fit_data(task_type): pool = Pool(CLOUDNESS_TRAIN_FILE, column_description=CLOUDNESS_CD_FILE) eval_pool = Pool(CLOUDNESS_TEST_FILE, column_description=CLOUDNESS_CD_FILE) base_model = CatBoostClassifier(iterations=2, learning_rate=0.03, loss_function="MultiClass", task_type=task_type, devices='0') base_model.fit(pool) baseline = np.array(base_model.predict(pool, prediction_type='RawFormulaVal')) eval_baseline = np.array(base_model.predict(eval_pool, prediction_type='RawFormulaVal')) eval_pool.set_baseline(eval_baseline) model = CatBoostClassifier(iterations=2, learning_rate=0.03, loss_function="MultiClass") data = map_cat_features(pool.get_features(), pool.get_cat_feature_indices()) model.fit(data, pool.get_label(), pool.get_cat_feature_indices(), sample_weight=np.arange(1, pool.num_row() + 1), baseline=baseline, use_best_model=True, eval_set=eval_pool) pred = model.predict_proba(eval_pool) preds_path = test_output_path(PREDS_PATH) np.save(preds_path,
np.array(pred)
numpy.array
# -*- coding: utf-8 -*- import tellurium as te import random import numpy as np import copy import analysis class ReactionType: UNIUNI = 0 BIUNI = 1 UNIBI = 2 BIBI = 3 class RegulationType: DEFAULT = 0 INHIBITION = 1 ACTIVATION = 2 INIHIBITION_ACTIVATION = 3 class Reversibility: IRREVERSIBLE = 0 REVERSIBLE = 1 class RP: UniUni = 0.75 BiUni = 0.1 UniBi = 0.1 BiBI = 0.05 class RLP: Default = 0.7 Inhib = 0.125 Activ = 0.125 Inhibactiv = 0.05 class REVP: Irreversible = 0. Reversible = 1. #def pickRateLawType(): # rt = np.random.random() # if rt < RateLawProb.default: # return 0 # elif rt < RateLawProb.default + RateLawProb.inhib: # return 1 # elif rt < RateLawProb.default + RateLawProb.inhib + RateLawProb.activ: # return 2 # return 3 def pickReactionType(): rt1 =
np.random.random()
numpy.random.random
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import datetime from reda.importers.eit_version_2010 import _average_swapped_current_injections def _extract_adc_data(mat, **kwargs): """Extract adc-channel related data (i.e., data that is captured for all 48 channels of the 40-channel medusa system """ md = mat['MD'].squeeze() frequencies = mat['MP']['fm'].take(0) # it seems that there exist different file formats under this same official # version. if md['fm'].size == frequencies.size: use_v = 0 else: use_v = 1 # print('@@@') # import IPython # IPython.embed() # exit() # Labview epoch epoch = datetime.datetime(1904, 1, 1) def convert_epoch(x): timestamp = epoch + datetime.timedelta(seconds=x.astype(float)) return timestamp dfl = [] # loop over frequencies for f_id in range(0, frequencies.size): frequency = frequencies[f_id] if use_v == 0: def get_field(key): return md[key][f_id] elif use_v == 1: def get_field(key): indices = np.where( md['fm'].take(0) == frequencies[f_id]) return md[key].take(0)[indices] # def get_field(key): # indices = np.where(md['fm'].take(f_id) == frequencies[f_id]) # return md[key].take(f_id)[indices] timestamp = np.atleast_2d( [convert_epoch(x) for x in get_field('Time')] ).T.squeeze() column_names = ['ch{:02}'.format(i) for i in range(48)] ab = get_field('cni') index_pairs = [ (channel, 'Ug3_{}'.format(i)) for channel in column_names for i in range(3) ] Ug3 = get_field('Ug3') ug3_reshaped = Ug3.reshape([Ug3.shape[0], Ug3.shape[1] * 3]) df = pd.DataFrame( ug3_reshaped, index=pd.MultiIndex.from_arrays( [ ab[:, 0], ab[:, 1],
np.ones(ab.shape[0])
numpy.ones
import cv2 import sys import os sys.path.append('..') import numpy as np from maskrcnn_benchmark.structures.bounding_box import BoxList from preprocess.colors import get_colors from maskrcnn_benchmark.structures.image_list import ImageList from maskrcnn_benchmark.structures.segmentation_mask import SegmentationMask, Polygons from maskrcnn_benchmark.structures.bounding_box import BoxList from pycocotools import mask as maskUtils import openslide as ops import random import itertools from maskrcnn_benchmark.utils.miscellaneous import maskToPolygons import pdb def vis_bbox(bboxlist, imagelist, normalize = [102.9801, 115.9465, 122.7717] ): if isinstance(imagelist, ImageList): images = [] for i, bbox in enumerate(bboxlist): if bbox.mode != 'xyxy': bbox = bbox.convert('xyxy') image = imagelist.tensors[i].numpy() image =
np.squeeze(image)
numpy.squeeze
"""Code for the bootstrap uncertainty quantification (BUQ) algorithm.""" import time import logging import numpy as np import pandas as pd import buq import models import tests def import_time_series_data(): """Import time series data for model, without any time slicing.""" ts_data = pd.read_csv('data/demand_wind.csv', index_col=0) ts_data.index = pd.to_datetime(ts_data.index) return ts_data def bootstrap_sample_weeks(data, num_weeks_per_season): """Create bootstrap sample by sampling weeks from different meteorological seasons. Parameters: ----------- data (pandas DataFrame) : demand and wind data num_weeks_per_season (int) : number of weeks sampled from each season Returns: -------- output (pandas DataFrame) : the bootstrap sample """ # Sample weeks from the meteorological seasons bins = [[12, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]] sample_length = 4*num_weeks_per_season*7*24 output = np.zeros(shape=(sample_length, data.shape[1])) k = 0 for block in range(num_weeks_per_season): for bin_num in range(4): year = np.random.choice(list(data.index.year.unique())) data_sel = data[(data.index.year == year)& (data.index.month.isin(bins[bin_num]))] num_days = data_sel.shape[0]/24 possible_startdays = np.arange(num_days - 7 + 1) sample_index = (24*np.random.choice(possible_startdays) + np.arange(7*24)) sample = data_sel.iloc[sample_index] output[k:k+sample.shape[0]] = sample.values k = k + sample.shape[0] # Change output from numpy array to pandas DataFrame if data.shape[1] == 2: output_columns = ['demand', 'wind'] if data.shape[1] == 6: output_columns = ['demand_region2', 'demand_region4', 'demand_region5', 'wind_region2', 'wind_region5', 'wind_region6'] index = pd.to_datetime(np.arange(sample_length), origin='2020', unit='h') # Dummy datetime index output = pd.DataFrame(output, index=index, columns=output_columns) return output def bootstrap_sample_months(data, num_years): """"Create hypothetical years by block bootstrapping months. Parameters: ----------- data (pandas DataFrame) : demand and wind data num_years (int) : number of years of the output sample Returns: -------- output (pandas DataFrame) : the bootstrap sample """ years_np = np.zeros(shape=(8760*num_years, data.shape[1])) num_years_inp = data.values.shape[0]/8760 # Create each year individually and input them for year_num in range(num_years): year_np = np.zeros(shape=(8760, data.shape[1])) lims = [0, 744, 1416, 2160, 2880, 3624, 4344, 5088, 5832, 6552, 7296, 8016, 8760] # List of years from which months are taken month_years = np.array([int(num_years_inp*np.random.rand(1)) for month in range(12)]) # Input the sampled months for month in range(12): llim, rlim = lims[month], lims[month+1] yrstart = 8760 * month_years[month] year_np[llim:rlim] = data.values[yrstart+llim:yrstart+rlim] # Input the year into the years array years_np[8760*year_num:8760*(year_num+1)] = year_np # Change output from numpy array to pandas DataFrame output_columns = ['demand_region2', 'demand_region4', 'demand_region5', 'wind_region2', 'wind_region5', 'wind_region6'] index = pd.to_datetime(np.arange(years_np.shape[0]), origin='2020', unit='h') # Dummy datetime index output = pd.DataFrame(years_np, index=index, columns=output_columns) return output def run_simulation(model_name_in_paper, ts_data, run_id=0): """Run Calliope model with demand & wind data. Parameters: ----------- model_name_in_paper (str) : 'LP_planning', 'MILP_planning' or 'operation' ts_data (pandas DataFrame) : demand & wind time series data run_id (int or str) : unique id, useful if running in parallel Returns: -------- results (pandas DataFrame) : model outputs """ start = time.time() if model_name_in_paper == 'LP_planning': model = models.SixRegionModel(ts_data=ts_data, run_mode='plan', baseload_integer=False, baseload_ramping=False, allow_unmet=True, run_id=run_id) elif model_name_in_paper == 'MILP_planning': model = models.SixRegionModel(ts_data=ts_data, run_mode='plan', baseload_integer=True, baseload_ramping=False, allow_unmet=True, run_id=run_id) elif model_name_in_paper == 'operation': model = models.SixRegionModel(ts_data=ts_data, run_mode='operate', baseload_integer=False, baseload_ramping=True, allow_unmet=True, run_id=run_id) else: raise ValueError('Invalid model name.') # Run model and save results model.run() finish = time.time() tests.test_output_consistency_6_region(model, run_mode=( 'operate' if model_name_in_paper == 'operation' else 'plan' )) results = model.get_summary_outputs() results.loc['time'] = finish - start return results def run_years_simulation(model_name_in_paper, startyear, endyear, run_id=0): """Run model with certain years of data.""" ts_data = import_time_series_data() ts_data = ts_data.loc[str(startyear):str(endyear)] results = run_simulation(model_name_in_paper, ts_data=ts_data, run_id=run_id) return results def run_bootstrap_simulation(model_name_in_paper, scheme, num_blocks_per_bin, run_id=0): """Run model with bootstrap sampled data Parameters: ----------- model_name_in_paper (str) : 'LP_planning', 'MILP_planning' or 'operation' scheme: either 'months' or 'weeks' -- scheme used to create bootstrap samples num_blocks_per_bin: either the number of months sampled from each calendar month, or the number of weeks sampled from each season Returns: -------- results (pandas DataFrame) : model outputs """ ts_data = import_time_series_data() # Create bootstrap sample and run model if scheme == 'months': sample = buq.bootstrap_sample_months(ts_data, num_blocks_per_bin) elif scheme == 'weeks': sample = buq.bootstrap_sample_weeks(ts_data, num_blocks_per_bin) else: raise ValueError('Must be either months or weeks scheme') results = run_simulation(model_name_in_paper, ts_data=sample, run_id=run_id) return results def run_buq_algorithm(model_name_in_paper, point_sample_length, bootstrap_scheme, num_blocks_per_bin, num_bootstrap_samples): """Run through BUQ algorithm once to estimate standard deviation. Parameters: ----------- model_name_in_paper (str) : 'LP_planning', 'MILP_planning' or 'operation' point_sample_length (int) : length of sample used to determine point estimate (in hours), used only for rescaling boostrap scheme (str) : bootstrap scheme for calculating standard deviation: 'months' or 'weeks' num_blocks_per_bin (int) : number of months from each calendar month or number of weeks from each season num_bootstrap_samples (int) : number of bootstrap samples over which to calculate the standard deviation Returns: -------- point_estimate_stdev (pandas DataFrame) : estimates for the standard deviation of each model output """ if bootstrap_scheme == 'weeks': bootstrap_sample_length = num_blocks_per_bin * 4 * 7 * 24 elif bootstrap_scheme == 'months': bootstrap_sample_length = num_blocks_per_bin * 8760 # Calculate variance across bootstrap samples logging.info('Starting bootstrap samples') # Run model for each bootstrap sample run_index = np.arange(num_bootstrap_samples) for sample_num in run_index: logging.info('\n\nCalculating bootstrap sample %s', sample_num+1) results = run_bootstrap_simulation(model_name_in_paper, bootstrap_scheme, num_blocks_per_bin) if sample_num == 0: outputs = pd.DataFrame(columns=
np.arange(num_bootstrap_samples)
numpy.arange
import csv import numpy as np from sklearn.metrics import r2_score FILE_NAME = r"external/GSM3153400_scTrioSeq2Met_CRC11_NC_418.singleC.cpg.txt" START_INDEX = 6500000 END_INDEX = 6700000 POSITION_INDEX = 0 STRAND_INDEX = "2" chr16 = [] pos_dict = {} def main(): with open(FILE_NAME) as f: csv_file = csv.DictReader(f, delimiter="\t") for line in csv_file.reader: if line[0] == "chr16": pos = int(line[1]) others = [int(i) for i in line[4:-3]] if line[3] == "-": pos -= 1 if pos not in pos_dict: pos_dict[pos] = np.array(others) else: pos_dict[pos] += np.array(others) data_array = np.array([np.insert(pos_dict[pos], 0, pos) for pos in pos_dict]) indexes = np.where( np.logical_and(data_array[:, POSITION_INDEX] > START_INDEX, data_array[:, POSITION_INDEX] < END_INDEX)) pmd = data_array[indexes] ratio = pmd[:, 2] / pmd[:, 1] # pmd_with_ratio = np.column_stack((pmd, ratio)) # pmd_with_ratio[:,0] = pmd_with_ratio[:,0].astype(np.int) r2 = [] for index in range(ratio.size): print(index) ratio_copy = np.copy(ratio) value = ratio_copy[index] ratio_copy_deleted =
np.delete(ratio_copy, index)
numpy.delete
# voronoiVis.py # script to generate a tetrahedra/cone for 2D Voronoi visualization # Author PKR, UPENN, MARCH 2019 # add loading paths import sys, os sys.path.append(os.path.join(sys.path[0],'ONI')) sys.path.append(os.path.join(sys.path[0],'Legacy')) import numpy as np from vispy import app, gloo from binLoad import binLoad from loadLocB import loadLocB from vispy.util.transforms import translate, perspective, rotate # using cython code here from polyArea import PolyArea from scipy import spatial as sp import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.cm as cm from matplotlib.colors import ListedColormap, LinearSegmentedColormap ## SET FILE LOCATION HERE #FileLoc = '//entropy.lgads.lakadamyali.group/Data3/peter/Melina/MelinagfptauA3_gfpnanogerm_1hrDMSOtreatedSTORM.1543953593043.locb' FileLoc = '//entropy.lgads.lakadamyali.group/Data3/peter/hMSC-MeHA-Glass.bin' OutDict = binLoad(FileLoc) #OutDict = loadLocB(FileLoc) # Pull out X Y coordinates Pos = OutDict['Localizations'][:,0:2] #keys = ['rawPosition_x','rawPosition_y'] #,'rawPosition_z'] #rawPosCol = [OutDict['Localization_Matrix_Mapping'].get(key) for key in keys] #Pos = OutDict['Localization_Results'][:,rawPosCol] maxes = np.amax(Pos,axis=0) mines = np.amin(Pos,axis=0) width = np.max(maxes-mines) pointz = 2*((Pos-mines)/width)-1 # flip y-axis to match insight3 convention pointz[:,1] = -pointz[:,1] #pointz = 2*(np.random.rand(1000000,2)-0.5) uPos = np.unique(pointz,axis=0) # make sure points are unique pointz = uPos nPoints = uPos.shape[0] Area = PolyArea(uPos*width/2) # find min/max values for normalization minima = min(-np.log(Area)) maxima = max(-np.log(Area)) print(minima) print(maxima) ## SET PARAMETERS HERE: pix2nm = 116 barWidth = 2000 maxima = 7 minima = 3 ## Creating a modified jet color map here jjet = cm.get_cmap('jet',240) ojet = jjet(np.linspace(0,1,240)) fadeLen = 16 djet = np.zeros([fadeLen,4]) # create an nx4 array of dark colors for ii in range(0,fadeLen): djet[ii,:] = (ii/fadeLen)*ojet[0,:] djet[ii,3] = 1 newjet = np.vstack((djet,ojet)) njetcmp = ListedColormap(newjet) # normalize chosen colormap norm = mpl.colors.Normalize(vmin=minima, vmax=maxima, clip=True) mapper = cm.ScalarMappable(norm=norm, cmap=njetcmp) color = np.zeros((nPoints,4)) color = mapper.to_rgba(-np.log(Area)) # VBO Code for Voronoi Display # note the 'color' and 'v_color' in vertex vertex = """ uniform mat4 u_model; // Model matrix uniform mat4 u_view; // View matrix uniform mat4 u_projection; // Projection matrix uniform vec4 u_color; // mask color for edge plotting attribute vec3 a_position; attribute vec4 a_color; varying vec4 v_color; void main() { gl_Position = u_projection * u_view * u_model * vec4(a_position, 1.0); v_color = a_color * u_color; } """ # note the varying 'v_color', it must has the same name as in the vertex. fragment = """ varying vec4 v_color; void main() { gl_FragColor = v_color; } """ # helper functions for generating polygons, scale bar def genVIC(points,tri=32,color=None): N = points.shape[0] V = np.zeros((N*(tri+1),3),dtype=np.float32) I = np.zeros((N*(tri),3),dtype=np.uint32) C = np.ones((N*(tri+1),4),dtype=np.float32) npi = np.pi V[::tri+1,0:2] = points starts = np.arange(0,N*(tri+1),tri+1) ends = np.arange(tri,N*(tri+1),tri+1) I[::tri,:] = np.stack((starts,ends,starts+1),axis=-1) for ii in range(0,tri): adjust = [np.cos(2*npi*ii/(tri-1))/64,np.sin(2*npi*ii/(tri-1))/64] V[ii+1::tri+1,0:2] = points+adjust V[ii+1::tri+1,2] = -0.1 for ii in range(0,tri-1): I[ii+1::tri,:] = np.stack((starts,starts+ii+1,starts+ii+2),axis=-1) # we'll put color logic in later, do random for now if color is None: color = np.random.rand(N,4) color[:,3] = 1 C[::tri+1,:] = color for ii in range(0,tri): C[ii+1::tri+1,:] = C[::tri+1,:] return V, I, C def genScaleBar(dim, center): # bottom right, bottom left, top left, top right rect = {0:[1,-1],1:[-1,-1],2:[-1,1],3:[1,1]} N = 4 V = np.zeros((N,3),dtype=np.float32) I = np.zeros((N-2,3),dtype=np.uint32) C = np.ones((N,4),dtype=np.float32) for ii in range(0,N): V[ii,0] = center[0]+rect[ii][0]*dim[0]/2 V[ii,1] = center[1]+rect[ii][1]*dim[1]/2 V[:,2] = 0.002 # raise scale bar above voronoi cones I[0,:] = [0, 1, 2] I[1,:] = [2, 3, 0] return V,I,C class Canvas(app.Canvas): """ build canvas class for this demo """ def __init__(self): """ initialize the canvas """ app.Canvas.__init__(self, size=(512, 512), title='SR Voronoi Visualizer', keys='interactive') self.tri=16 # 16 edges for each point self.shrinkage = width/2 # define vertices, indices, color V,I,C = genVIC(pointz,self.tri,color) self.BarStart = V.shape[0] # set initial scale and center point self.centerpos = [0,0] self.scale = 1 # hard-coded bar coordinates in the mean time self.BarCenter = [0.9, -0.9] self.BarDim = [barWidth/pix2nm/self.shrinkage, 0.05/np.sqrt(self.scale)] bV,bI,bC = genScaleBar(self.BarDim,self.BarCenter) bI = bI+self.BarStart # bind to data V = np.vstack((V,bV)) I = np.vstack((I,bI)) C = np.vstack((C,bC)) # shader program tet = gloo.Program(vert=vertex, frag=fragment)#, count=V.shape[0]) self.I = gloo.IndexBuffer(I) self.V = gloo.VertexBuffer(V) self.C = gloo.VertexBuffer(C) tet['a_position'] = self.V tet['a_color'] = self.C # intialize transformation matrix self.view =
np.eye(4, dtype=np.float32)
numpy.eye
import sys import numpy as np from itertools import combinations from pyemto.utilities.utils import rotation_matrix import spglib as spg try: from pymatgen import Lattice, Structure from pymatgen.vis.structure_vtk import StructureVis from pymatgen.symmetry.analyzer import SpacegroupAnalyzer from pymatgen.analysis.structure_matcher import StructureMatcher from pymatgen.util.coord import get_angle except ImportError: # pymatgen has not been installed raise ImportError('emto_input_generator requires pymatgen>=4.4.0 to be installed!') import os import pyemto import pyemto.common.common as common class EMTO: """This class can be used to create EMTO input files from an arbitrary structure. What is needed as input: -primitive lattice vectors, -basis vectors, -list of atomic species that occupy the basis sites. """ def __init__(self, folder=None, EMTOdir=None): """ """ if folder is None: self.folder = os.getcwd() else: self.folder = folder if EMTOdir is None: self.EMTOdir = '/home/EMTO' else: self.EMTOdir = EMTOdir self.sg2ibz = {1:14, 2:14, 3:12, 4:12, 5:13, 6:12, 7:12, 8:13, 9:13, 10:12, 11:12, 12:13, 13:12, 14:12, 15:13, 16:8, 17:8, 18:8, 19:8, 20:9, 21:9, 22:11, 23:10, 24:10, 25:8, 26:8, 27:8, 28:8, 29:8, 30:8, 31:8, 32:8, 33:8, 34:8, 35:9, 36:9, 37:9, 38:9, 39:9, 40:9, 41:9, 42:11, 43:11, 44:10, 45:10, 46:10, 47:8, 48:8, 49:8, 50:8, 51:8, 52:8, 53:8, 54:8, 55:8, 56:8, 57:8, 58:8, 59:8, 60:8, 61:8, 62:8, 63:9, 64:9, 65:9, 66:9, 67:9, 68:9, 69:11, 70:11, 71:10, 72:10, 73:10, 74:10, 75:5, 76:5, 77:5, 78:5, 79:6, 80:6, 81:5, 82:6, 83:5, 84:5, 85:5, 86:5, 87:6, 88:6, 89:5, 90:5, 91:5, 92:5, 93:5, 94:5, 95:5, 96:5, 97:6, 98:6, 99:5, 100:5, 101:5, 102:5, 103:5, 104:5, 105:5, 106:5, 107:6, 108:6, 109:6, 110:6, 111:5, 112:5, 113:5, 114:5, 115:5, 116:5, 117:5, 118:5, 119:6, 120:6, 121:6, 122:6, 123:5, 124:5, 125:5, 126:5, 127:5, 128:5, 129:5, 130:5, 131:5, 132:5, 133:5, 134:5, 135:5, 136:5, 137:5, 138:5, 139:6, 140:6, 141:6, 142:6, 143:4, 144:4, 145:4, 146:7, 147:4, 148:7, 149:4, 150:4, 151:4, 152:4, 153:4, 154:4, 155:7, 156:4, 157:4, 158:4, 159:4, 160:7, 161:7, 162:4, 163:4, 164:4, 165:4, 166:7, 167:7, 168:4, 169:4, 170:4, 171:4, 172:4, 173:4, 174:4, 175:4, 176:4, 177:4, 178:4, 179:4, 180:4, 181:4, 182:4, 183:4, 184:4, 185:4, 186:4, 187:4, 188:4, 189:4, 190:4, 191:4, 192:4, 193:4, 194:4, 195:1, 196:2, 197:3, 198:1, 199:3, 200:1, 201:1, 202:2, 203:2, 204:3, 205:1, 206:3, 207:1, 208:1, 209:2, 210:2, 211:3, 212:1, 213:1, 214:3, 215:1, 216:2, 217:3, 218:1, 219:2, 220:3, 221:1, 222:1, 223:1, 224:1, 225:2, 226:2, 227:2, 228:2, 229:3, 230:3} self.sg2bl = {1:'simple triclinic', 2:'simple triclinic', 3:'simple monoclinic', 4:'simple monoclinic', 5:'base-centered monoclinic', 6:'simple monoclinic', 7:'simple monoclinic', 8:'base-centered monoclinic', 9:'base-centered monoclinic', 10:'simple monoclinic', 11:'simple monoclinic', 12:'base-centered monoclinic', 13:'simple monoclinic', 14:'simple monoclinic', 15:'base-centered monoclinic', 16:'simple orthorhombic', 17:'simple orthorhombic', 18:'simple orthorhombic', 19:'simple orthorhombic', 20:'base-centered orthorhombic', 21:'base-centered orthorhombic', 22:'face-centered orthorhombic', 23:'body-centered orthorhombic', 24:'body-centered orthorhombic', 25:'simple orthorhombic', 26:'simple orthorhombic', 27:'simple orthorhombic', 28:'simple orthorhombic', 29:'simple orthorhombic', 30:'simple orthorhombic', 31:'simple orthorhombic', 32:'simple orthorhombic', 33:'simple orthorhombic', 34:'simple orthorhombic', 35:'base-centered orthorhombic', 36:'base-centered orthorhombic', 37:'base-centered orthorhombic', 38:'base-centered orthorhombic', 39:'base-centered orthorhombic', 40:'base-centered orthorhombic', 41:'base-centered orthorhombic', 42:'face-centered orthorhombic', 43:'face-centered orthorhombic', 44:'body-centered orthorhombic', 45:'body-centered orthorhombic', 46:'body-centered orthorhombic', 47:'simple orthorhombic', 48:'simple orthorhombic', 49:'simple orthorhombic', 50:'simple orthorhombic', 51:'simple orthorhombic', 52:'simple orthorhombic', 53:'simple orthorhombic', 54:'simple orthorhombic', 55:'simple orthorhombic', 56:'simple orthorhombic', 57:'simple orthorhombic', 58:'simple orthorhombic', 59:'simple orthorhombic', 60:'simple orthorhombic', 61:'simple orthorhombic', 62:'simple orthorhombic', 63:'base-centered orthorhombic', 64:'base-centered orthorhombic', 65:'base-centered orthorhombic', 66:'base-centered orthorhombic', 67:'base-centered orthorhombic', 68:'base-centered orthorhombic', 69:'face-centered orthorhombic', 70:'face-centered orthorhombic', 71:'body-centered orthorhombic', 72:'body-centered orthorhombic', 73:'body-centered orthorhombic', 74:'body-centered orthorhombic', 75:'simple tetragonal', 76:'simple tetragonal', 77:'simple tetragonal', 78:'simple tetragonal', 79:'body-centered tetragonal', 80:'body-centered tetragonal', 81:'simple tetragonal', 82:'body-centered tetragonal', 83:'simple tetragonal', 84:'simple tetragonal', 85:'simple tetragonal', 86:'simple tetragonal', 87:'body-centered tetragonal', 88:'body-centered tetragonal', 89:'simple tetragonal', 90:'simple tetragonal', 91:'simple tetragonal', 92:'simple tetragonal', 93:'simple tetragonal', 94:'simple tetragonal', 95:'simple tetragonal', 96:'simple tetragonal', 97:'body-centered tetragonal', 98:'body-centered tetragonal', 99:'simple tetragonal', 100:'simple tetragonal', 101:'simple tetragonal', 102:'simple tetragonal', 103:'simple tetragonal', 104:'simple tetragonal', 105:'simple tetragonal', 106:'simple tetragonal', 107:'body-centered tetragonal', 108:'body-centered tetragonal', 109:'body-centered tetragonal', 110:'body-centered tetragonal', 111:'simple tetragonal', 112:'simple tetragonal', 113:'simple tetragonal', 114:'simple tetragonal', 115:'simple tetragonal', 116:'simple tetragonal', 117:'simple tetragonal', 118:'simple tetragonal', 119:'body-centered tetragonal', 120:'body-centered tetragonal', 121:'body-centered tetragonal', 122:'body-centered tetragonal', 123:'simple tetragonal', 124:'simple tetragonal', 125:'simple tetragonal', 126:'simple tetragonal', 127:'simple tetragonal', 128:'simple tetragonal', 129:'simple tetragonal', 130:'simple tetragonal', 131:'simple tetragonal', 132:'simple tetragonal', 133:'simple tetragonal', 134:'simple tetragonal', 135:'simple tetragonal', 136:'simple tetragonal', 137:'simple tetragonal', 138:'simple tetragonal', 139:'body-centered tetragonal', 140:'body-centered tetragonal', 141:'body-centered tetragonal', 142:'body-centered tetragonal', 143:'hexagonal', 144:'hexagonal', 145:'hexagonal', 146:'rhombohedral', 147:'hexagonal', 148:'rhombohedral', 149:'hexagonal', 150:'hexagonal', 151:'hexagonal', 152:'hexagonal', 153:'hexagonal', 154:'hexagonal', 155:'rhombohedral', 156:'hexagonal', 157:'hexagonal', 158:'hexagonal', 159:'hexagonal', 160:'rhombohedral', 161:'rhombohedral', 162:'hexagonal', 163:'hexagonal', 164:'hexagonal', 165:'hexagonal', 166:'rhombohedral', 167:'rhombohedral', 168:'hexagonal', 169:'hexagonal', 170:'hexagonal', 171:'hexagonal', 172:'hexagonal', 173:'hexagonal', 174:'hexagonal', 175:'hexagonal', 176:'hexagonal', 177:'hexagonal', 178:'hexagonal', 179:'hexagonal', 180:'hexagonal', 181:'hexagonal', 182:'hexagonal', 183:'hexagonal', 184:'hexagonal', 185:'hexagonal', 186:'hexagonal', 187:'hexagonal', 188:'hexagonal', 189:'hexagonal', 190:'hexagonal', 191:'hexagonal', 192:'hexagonal', 193:'hexagonal', 194:'hexagonal', 195:'simple cubic', 196:'face-centered cubic', 197:'body-centered cubic', 198:'simple cubic', 199:'body-centered cubic', 200:'simple cubic', 201:'simple cubic', 202:'face-centered cubic', 203:'face-centered cubic', 204:'body-centered cubic', 205:'simple cubic', 206:'body-centered cubic', 207:'simple cubic', 208:'simple cubic', 209:'face-centered cubic', 210:'face-centered cubic', 211:'body-centered cubic', 212:'simple cubic', 213:'simple cubic', 214:'body-centered cubic', 215:'simple cubic', 216:'face-centered cubic', 217:'body-centered cubic', 218:'simple cubic', 219:'face-centered cubic', 220:'body-centered cubic', 221:'simple cubic', 222:'simple cubic', 223:'simple cubic', 224:'simple cubic', 225:'face-centered cubic', 226:'face-centered cubic', 227:'face-centered cubic', 228:'face-centered cubic', 229:'body-centered cubic', 230:'body-centered cubic'} # BMDL, KSTR, SHAPE, KGRN and KFCD class instances self.input_system = pyemto.System(folder=self.folder, EMTOdir=self.EMTOdir) # self.fit_angle_tol = 5e-6 self.fit_norm_ratio_tol = 5e-6 return def calc_ws_radius(self, struct): bohr2angst = 0.52917721 vol_unit = struct.volume/struct.num_sites sws = (3*vol_unit/4.0/np.pi)**(1.0/3)/bohr2angst return sws def make_basis_array(self, struct): """Returns a 2D numpy array of the basis atom coordinates in !!Cartesian!! coordinates. """ len_basis = struct.num_sites emto_basis = np.zeros((len_basis, 3)) for i in range(len_basis): emto_basis[i, :] = struct.sites[i].coords return emto_basis def make_sites_array(self, struct): len_basis = struct.num_sites emto_sites = [] for i in range(len_basis): emto_sites.append(struct.sites[i].specie.number) return emto_sites def make_cpa_sites_array(self, struct): len_basis = struct.num_sites self.atoms_cpa = [] self.concs_cpa = [] self.splts_cpa = [] self.fixs_cpa = [] for i in range(len_basis): atom_number = struct.sites[i].specie.number for j in range(len(self.pmg_species)): if atom_number == self.pmg_species[j]: self.atoms_cpa.append(self.species[j]) self.concs_cpa.append(self.concs[j]) self.splts_cpa.append(self.splts[j]) self.fixs_cpa.append(self.fixs[j]) break def get_equivalent_sites(self): """Find all the sites that have exactly the same species, concentrations, and magnetic moments""" splt_tol = 1e-6 conc_tol = 1e-6 species_sorted = [] splts_sorted = [] concs_sorted = [] for i in range(len(self.species)): tmp1 = [] tmp2 = [] tmp3 = [] ind_sorted = np.argsort(self.species[i]) for ind in ind_sorted: tmp1.append(self.species[i][ind]) tmp2.append(self.splts[i][ind]) tmp3.append(self.concs[i][ind]) species_sorted.append(tmp1) splts_sorted.append(tmp2) concs_sorted.append(tmp3) eqv_sites = np.zeros((len(species_sorted), len(species_sorted)), dtype=np.int) + 9999 for i in range(len(species_sorted)-1): for j in range(i+1, len(species_sorted)): eqv_sites[i,j] = 1 if len(species_sorted[i]) != len(species_sorted[j]): # Sites i and j contain different amound of atoms. # For now, take them to be non-equivalent, although # they could still be equivalent in the case that # some element has been split into two or more parts # concentration-wise (whole and the parts should have # identical magnetic moments). eqv_sites[i, j] = 0 else: for a1, a2, splt1, splt2, conc1, conc2 in zip(species_sorted[i], species_sorted[j], splts_sorted[i], splts_sorted[j], concs_sorted[i], concs_sorted[j]): if a1 != a2 or np.abs(splt1 - splt2) > splt_tol or np.abs(conc1 - conc2) > conc_tol: # Some pair of atoms (in the sorted lists) were not # the same => sites i and j are not equivalent. eqv_sites[i, j] = 0 break output_sites = np.ones(len(species_sorted), dtype=np.int) * 9999 next_available = 1 for i in range(len(species_sorted)-1): if output_sites[i] == 9999: output_sites[i] = next_available next_available += 1 for j in range(i+1, len(species_sorted)): if eqv_sites[i, j] == 1: output_sites[j] = output_sites[i] if output_sites[-1] == 9999: output_sites[-1] = next_available return output_sites def prepare_input_files(self, prims=None, basis=None, latpath=None, coords_are_cartesian=False, latname=None, species=None, find_primitive=True, concs=None, splts=None, its=None, ws_wsts=None, make_supercell=None, fixs=None, **kwargs): if prims is None: sys.exit('EMTO.init_structure(): \'prims\' has to be given!') if basis is None: sys.exit('EMTO.init_structure(): \'basis\' has to be given!') if latpath is None: self.latpath = os.getcwd() else: self.latpath = latpath if latname is None: self.latname = 'structure' else: self.latname = latname self.prims = np.array(prims) self.basis = np.array(basis) self.len_basis = len(self.basis[:, 0]) if species is None: sys.exit('EMTO.init_structure(): \'species\' has to be given!') else: self.species = [] for i in range(len(species)): if isinstance(species[i], list): tmp = [] for j in range(len(species[i])): tmp.append(species[i][j]) self.species.append(tmp) else: self.species.append([species[i]]) if splts is None: # Assume a zero moments array self.splts = [] for i in range(len(self.species)): if isinstance(self.species[i], list): tmp = [] for j in range(len(self.species[i])): tmp.append(0.0) self.splts.append(tmp) else: self.splts.append([0.0]) else: self.splts = [] for i in range(len(splts)): if isinstance(splts[i], list): tmp = [] for j in range(len(splts[i])): tmp.append(splts[i][j]) self.splts.append(tmp) else: self.splts.append([splts[i]]) if fixs is None: # Assume a zero moments array self.fixs = [] for i in range(len(self.species)): if isinstance(self.species[i], list): tmp = [] for j in range(len(self.species[i])): tmp.append('N') self.fixs.append(tmp) else: self.fixs.append(['N']) else: self.fixs = [] for i in range(len(fixs)): if isinstance(fixs[i], list): tmp = [] for j in range(len(fixs[i])): tmp.append(fixs[i][j]) self.fixs.append(tmp) else: self.fixs.append([fixs[i]]) if concs is None: # Assume a zero moments array self.concs = [] for i in range(len(self.species)): if isinstance(self.species[i], list): tmp = [] for j in range(len(self.species[i])): tmp.append(1.0/len(self.species[i])) self.concs.append(tmp) else: self.concs.append([1.0]) else: self.concs = [] for i in range(len(concs)): if isinstance(concs[i], list): tmp = [] tmp_sum = 0.0 for j in range(len(concs[i])): tmp.append(concs[i][j]) tmp_sum += concs[i][j] print(tmp_sum) if tmp_sum < 1.1: if np.abs(tmp_sum - 1.0) > 1.e-6: sys.exit('Concentrations {0} for site {1} do not add up to 1.0!!!'.format(concs[i], i+1)) else: if np.abs(tmp_sum - 100.0) > 1.e-3: sys.exit('Concentrations {0} for site {1} do not add up to 100!!!'.format(concs[i], i+1)) self.concs.append(tmp) else: self.concs.append([concs[i]]) # Check that all species, concs, and splts arrays have the same dimensions for a, b in combinations([self.basis, self.species, self.concs, self.splts, self.fixs], 2): if len(a) != len(b): print(a, 'len = ', len(a)) print(b, 'len = ', len(b)) sys.exit('The above input arrays have inconsistent lengths!!!') for a, b in combinations([self.species, self.concs, self.splts, self.fixs], 2): for sublist1, sublist2 in zip(a, b): if len(sublist1) != len(sublist2): print(sublist1, 'len = ', len(sublist1)) print(sublist2, 'len = ', len(sublist2)) sys.exit('The above input array elements have inconsistent lengths!!!') self.find_primitive = find_primitive if self.find_primitive: self.pmg_species = self.get_equivalent_sites() else: self.pmg_species = np.linspace(1, len(self.species), len(self.species), dtype=np.int) # self.coords_are_cartesian = coords_are_cartesian self.ibz = None self.make_supercell = make_supercell # self.pmg_input_lattice = Lattice(self.prims) self.pmg_input_struct = Structure(self.pmg_input_lattice, self.pmg_species, self.basis, coords_are_cartesian=self.coords_are_cartesian) # if self.make_supercell is not None: self.pmg_input_struct.make_supercell(self.make_supercell) # self.sws = self.calc_ws_radius(self.pmg_input_struct) # self.finder = SpacegroupAnalyzer(self.pmg_input_struct, symprec=0.0001, angle_tolerance=0.0001) self.stm = StructureMatcher(ltol=0.001, stol=0.001, angle_tol=0.001, attempt_supercell=True) # print("Input structure information:") print(self.pmg_input_struct) print("Volume: ", self.pmg_input_struct.volume) print("Lattice vectors:") print(self.pmg_input_struct.lattice.matrix) print("") # # spglib spg_cell = ( self.pmg_input_lattice.matrix, self.pmg_input_struct.frac_coords, self.pmg_species ) self.spg_space_group = spg.get_spacegroup(spg_cell) self.spg_space_group_number = int(self.spg_space_group.split()[-1].lstrip('(').rstrip(')')) self.spg_space_group_symbol = self.spg_space_group self.spg_prim_lat, self.spg_prim_pos, self.spg_prim_species = spg.standardize_cell(spg_cell, to_primitive=True) self.prim_struct = Structure(Lattice(self.spg_prim_lat), self.spg_prim_species, self.spg_prim_pos) self.spg_ibz = self.sg2ibz[self.spg_space_group_number] self.ibz = self.spg_ibz mesh = [kwargs['nkx'], kwargs['nky'], kwargs['nkz']] #print() #print('#'*60) mapping, grid = spg.get_ir_reciprocal_mesh(mesh, spg_cell, is_time_reversal=True, is_shift=(0, 0, 0)) uniques, counts = np.unique(mapping, return_counts=True) all_weights = [] kpoints = [] weights = [] for xx in mapping: all_weights.append(counts[np.argwhere(uniques == xx).flatten()[0]]) for xx, yy in zip(uniques, counts): kpoints.append(grid[np.argwhere(mapping == xx).flatten()[0]]) weights.append(yy) #for xx, yy, zz in zip(mapping, grid, all_weights): # print(xx, yy, zz) #print() #for kp, ww in zip(kpoints, weights): # print(kp, ww) #print() #print('NKVEC = ', len(kpoints)) #print('#'*60) #print() #print(spg_prim_pos) #print(spg_prim_species) # #print("Detected standard conventional structure:") #print(self.conv_struct) #print("Volume: ",self.conv_struct.volume) #print("Lattice vectors:") #print(self.conv_struct.lattice.matrix) #print("") print("Detected standardized structure:") print(self.prim_struct) print("Volume: ", self.prim_struct.volume) print("Lattice vectors:") print(self.prim_struct.lattice.matrix) print("") # self.primaa = self.prim_struct.lattice.matrix[0, :] self.primbb = self.prim_struct.lattice.matrix[1, :] self.primcc = self.prim_struct.lattice.matrix[2, :] self.output_basis = self.make_basis_array(self.prim_struct) # Below we calculate the transformation that maps # self.primaX to lattice vectors used by EMTO. # This transform depends on the type of the Bravais lattice, # so each case must be treated separately. if self.spg_ibz == 1: norm_tmp = np.linalg.norm(self.primaa) self.output_prima = self.primaa/norm_tmp self.output_primb = self.primbb/norm_tmp self.output_primc = self.primcc/norm_tmp # Apply transformation on the basis atoms self.output_basis = self.output_basis/norm_tmp self.output_boa = 0.0 self.output_coa = 0.0 self.output_alpha = 0.0 self.output_beta = 0.0 self.output_gamma = 0.0 self.emto_prima = np.array([1, 0, 0]) self.emto_primb = np.array([0, 1, 0]) self.emto_primc = np.array([0, 0, 1]) self.emto_basis = self.output_basis elif self.spg_ibz == 2: norm_tmp = 2*self.primaa[1] self.output_prima = self.primcc/norm_tmp self.output_primb = self.primaa/norm_tmp self.output_primc = self.primbb/norm_tmp # Apply transformation on the basis atoms self.output_basis = self.output_basis/norm_tmp self.output_boa = 0.0 self.output_coa = 0.0 self.output_alpha = 0.0 self.output_beta = 0.0 self.output_gamma = 0.0 self.emto_prima = np.array([0.5, 0.5, 0]) self.emto_primb = np.array([0, 0.5, 0.5]) self.emto_primc = np.array([0.5, 0, 0.5]) self.emto_basis = self.output_basis elif self.spg_ibz == 3: norm_tmp = 2*self.primaa[1] self.output_prima = self.primcc/norm_tmp self.output_primb = self.primaa/norm_tmp self.output_primc = self.primbb/norm_tmp # Apply transformation on the basis atoms self.output_basis = self.output_basis/norm_tmp self.output_boa = 0.0 self.output_coa = 0.0 self.output_alpha = 0.0 self.output_beta = 0.0 self.output_gamma = 0.0 self.emto_prima = np.array([0.5, 0.5, -0.5]) self.emto_primb = np.array([-0.5, 0.5, 0.5]) self.emto_primc = np.array([0.5, -0.5, 0.5]) self.emto_basis = self.output_basis elif self.spg_ibz == 4: rot1 = rotation_matrix([0.0, 0.0, 1.0], 0./180*np.pi) self.output_prima = np.dot(rot1, self.primaa) self.output_primb = np.dot(rot1, self.primbb) self.output_primc = np.dot(rot1, self.primcc) for i in range(len(self.output_basis[:, 0])): self.output_basis[i, :] = np.dot(rot1, self.output_basis[i, :]) self.output_boa = 0.0 self.output_coa = self.output_primc[2] self.output_alpha = 0.0 self.output_beta = 0.0 self.output_gamma = 0.0 # EMTO convention: self.emto_prima = np.array([1., 0, 0]) self.emto_primb = np.array([-0.5, np.sqrt(3.)/2, 0]) self.emto_primc = np.array([0., 0, self.output_coa]) self.emto_basis = self.output_basis elif self.spg_ibz == 5: norm_tmp = self.primaa[0] self.output_prima = self.primaa/norm_tmp self.output_primb = self.primbb/norm_tmp self.output_primc = self.primcc/norm_tmp # Apply transformation on the basis atoms self.output_basis = self.output_basis/norm_tmp self.output_boa = 0.0 self.output_coa = self.output_primc[2] self.output_alpha = 0.0 self.output_beta = 0.0 self.output_gamma = 0.0 self.emto_prima = np.array([1.0, 0.0, 0.0]) self.emto_primb = np.array([0.0, 1.0, 0.0]) self.emto_primc = np.array([0.0, 0.0, self.output_coa]) self.emto_basis = self.output_basis elif self.spg_ibz == 6: self.output_prima = self.primbb self.output_primb = self.primcc self.output_primc = self.primaa # Apply transformation on the basis atoms self.output_basis = self.output_basis self.output_boa = 0.0 self.output_coa = 2*self.output_prima[2] self.output_alpha = 0.0 self.output_beta = 0.0 self.output_gamma = 0.0 self.emto_prima = np.array([0.5, -0.5, self.output_coa/2]) self.emto_primb = np.array([0.5, 0.5, -self.output_coa/2]) self.emto_primc = np.array([-0.5, 0.5, self.output_coa/2]) self.emto_basis = self.output_basis elif self.spg_ibz == 7: alpha = self.prim_struct.lattice.alpha kulma = np.arctan((self.primaa[0]+self.primbb[0]+self.primcc[0])/ (self.primaa[2]+self.primbb[2]+self.primcc[2])) rot1 = rotation_matrix([0.0, -1.0, 0.0], kulma) rot2 = np.array([[-np.sqrt(3.0)/2, -0.5, 0.0], [0.5, -np.sqrt(3.0)/2, 0.0], [0.0, 0.0, 1.0]]) self.output_prima = np.dot(rot2, np.dot(rot1, self.primaa)) self.output_primb = np.dot(rot2, np.dot(rot1, self.primbb)) self.output_primc = np.dot(rot2, np.dot(rot1, self.primcc)) scale_a = self.output_prima[1] print('scale_a = ',scale_a) self.output_prima = self.output_prima/scale_a self.output_primb = self.output_primb/scale_a self.output_primc = self.output_primc/scale_a # Apply transformation on the basis atoms for i in range(len(self.output_basis[:, 0])): self.output_basis[i,:] = np.dot(rot2, np.dot(rot1, self.output_basis[i, :]))/scale_a self.output_boa = 1.0 self.output_coa = self.output_prima[2] self.output_alpha = 0.0 self.output_beta = 0.0 self.output_gamma = 0.0 self.emto_prima = np.array([0.0, 1.0, self.output_coa]) self.emto_primb = np.array([-np.sqrt(3.)/2, -0.5, self.output_coa]) self.emto_primc = np.array([np.sqrt(3.)/2, -0.5, self.output_coa]) self.emto_basis = self.output_basis elif self.spg_ibz == 8: if (np.abs(self.primaa[0]) < np.abs(self.primbb[1])) and \ (np.abs(self.primbb[1]) < np.abs(self.primcc[2])): norm_tmp = self.primaa[0] self.output_prima = self.primaa/norm_tmp self.output_primb = self.primbb/norm_tmp self.output_primc = self.primcc/norm_tmp # Apply transformation on the basis atoms self.output_basis = self.output_basis/norm_tmp elif np.abs(np.abs(self.primaa[0]) - np.abs(self.primbb[1])) < 1.e-6 and \ np.abs(self.primbb[1]) < np.abs(self.primcc[2]): norm_tmp = self.primaa[0] self.output_prima = self.primaa/norm_tmp self.output_primb = self.primbb/norm_tmp self.output_primc = self.primcc/norm_tmp # Apply transformation on the basis atoms self.output_basis = self.output_basis/norm_tmp elif np.abs(self.primaa[0]) < np.abs(self.primcc[2]): norm_tmp = self.primcc[2] rot1 = rotation_matrix([0.0, 0.0, 1.0], -90./180*np.pi) rot2 = rotation_matrix([-1.0, 0.0, 0.0], 90./180*np.pi) self.output_prima = np.dot(rot2, np.dot(rot1, self.primbb))/norm_tmp self.output_primb = np.dot(rot2, np.dot(rot1, self.primcc))/norm_tmp self.output_primc = np.dot(rot2, np.dot(rot1, self.primaa))/norm_tmp print(self.output_prima) print(self.output_primb) print(self.output_primc) # Apply transformation on the basis atoms for i in range(len(self.output_basis[:, 0])): self.output_basis[i,:] = np.dot(rot2, np.dot(rot1, self.output_basis[i, :]))/norm_tmp else: norm_tmp = self.primaa[0] self.output_prima = self.primaa/norm_tmp self.output_primb = self.primbb/norm_tmp self.output_primc = self.primcc/norm_tmp # Apply transformation on the basis atoms self.output_basis = self.output_basis/norm_tmp # self.output_boa = self.output_primb[1] self.output_coa = self.output_primc[2] self.output_alpha = 0.0 self.output_beta = 0.0 self.output_gamma = 0.0 self.emto_prima = np.array([1.0, 0.0, 0.0]) self.emto_primb = np.array([0.0, self.output_boa, 0.0]) self.emto_primc = np.array([0.0, 0.0 ,self.output_coa]) self.emto_basis = self.output_basis elif self.spg_ibz == 9: if np.abs(self.primbb[1] - 0.5) < 1e-12 and \ np.abs(self.primcc[1] + 0.5) < 1e-12: rot1 = rotation_matrix([0.0, 1.0, 0.0], 90./180*np.pi) self.output_prima = np.dot(rot1, self.primaa) self.output_primb = np.dot(rot1, self.primbb) self.output_primc = np.dot(rot1, self.primcc) # Redefine lattice vectors tmp = np.copy(self.output_prima) self.output_prima[:] = self.output_primc[:] self.output_primc[:] = tmp # Mirror along the xy-plane self.output_primc *= -1 # Scale lattice vectors so that a1 and a2 x-components are 0.5 norm_tmp = 2*self.output_prima[0] self.output_prima /= norm_tmp self.output_primb /= norm_tmp self.output_primc /= norm_tmp # Apply transformation on the basis atoms for i in range(len(self.output_basis[:, 0])): self.output_basis[i,:] = np.dot(rot1, self.output_basis[i, :]) for i in range(len(self.output_basis[:, 0])): self.output_basis[i,2] *= -1 self.output_basis /= norm_tmp #print(self.output_prima) #print(self.output_primb) #print(self.output_primc) else: norm_tmp = 2*self.primaa[0] self.output_prima = self.primaa/norm_tmp self.output_primb = self.primbb/norm_tmp self.output_primc = self.primcc/norm_tmp # Apply transformation on the basis atoms self.output_basis = self.output_basis/norm_tmp self.output_boa = 2*self.output_primb[1] self.output_coa = self.output_primc[2] self.output_alpha = 0.0 self.output_beta = 0.0 self.output_gamma = 0.0 # EMTO convention: self.emto_prima = np.array([0.5, -self.output_boa/2, 0]) self.emto_primb = np.array([0.5, self.output_boa/2, 0]) self.emto_primc = np.array([0, 0, self.output_coa]) self.emto_basis = self.output_basis elif self.spg_ibz == 10: self.output_prima = np.zeros_like(self.primaa) self.output_primb = np.zeros_like(self.primbb) self.output_primc = np.zeros_like(self.primcc) self.output_prima[0] = self.primaa[1] self.output_prima[1] = self.primaa[0] self.output_prima[2] = self.primaa[2] self.output_primb[0] = self.primcc[1] self.output_primb[1] = self.primcc[0] self.output_primb[2] = self.primcc[2] self.output_primc[0] = self.primbb[1] self.output_primc[1] = self.primbb[0] self.output_primc[2] = self.primbb[2] norm_tmp = 2*self.output_prima[0] self.output_prima /= norm_tmp self.output_primb /= norm_tmp self.output_primc /= norm_tmp # Apply transformation on the basis atoms basis_tmp = np.copy(self.output_basis) self.output_basis[:, 0] = basis_tmp[:, 1] self.output_basis[:, 1] = basis_tmp[:, 0] self.output_basis = self.output_basis/norm_tmp self.output_boa = 2*self.output_primc[1] self.output_coa = 2*self.output_primc[2] self.output_alpha = 0.0 self.output_beta = 0.0 self.output_gamma = 0.0 self.emto_prima = np.array([0.5, -self.output_boa/2, self.output_coa/2]) self.emto_primb = np.array([0.5, self.output_boa/2, -self.output_coa/2]) self.emto_primc = np.array([-0.5, self.output_boa/2, self.output_coa/2]) self.emto_basis = self.output_basis elif self.spg_ibz == 11: rot1 = rotation_matrix([1, 1, 1], 120./180*np.pi) self.output_prima = np.dot(rot1, self.primaa) self.output_primb = np.dot(rot1, self.primbb) self.output_primc = np.dot(rot1, self.primcc) norm_tmp = 2*self.output_prima[0] self.output_prima /= norm_tmp self.output_primb /= norm_tmp self.output_primc /= norm_tmp # Apply transformation on the basis atoms for i in range(len(self.output_basis[:, 0])): self.output_basis[i, :] = np.dot(rot1, self.output_basis[i, :]) self.output_basis /= norm_tmp self.output_boa = 2*self.output_primc[1] self.output_coa = 2*self.output_primc[2] self.output_alpha = 0.0 self.output_beta = 0.0 self.output_gamma = 0.0 # EMTO convention: self.emto_prima = np.array([0.5, 0, self.output_coa/2]) self.emto_primb = np.array([0.5, self.output_boa/2, 0]) self.emto_primc = np.array([0, self.output_boa/2, self.output_coa/2]) self.emto_basis = self.output_basis elif self.spg_ibz == 12: bc_norm = np.linalg.norm(self.primaa) # Rotate 90 degreen counter clockwise around the x-axis rot1 = rotation_matrix([1, 0, 0], -90./180*np.pi) self.output_prima = np.dot(rot1, self.primaa/bc_norm) self.output_primb = np.dot(rot1, self.primcc/bc_norm) self.output_primc = np.dot(rot1, self.primbb/bc_norm) # Mirror a3 from negative z-axis to positive side self.output_primc *= -1.0 # spg uses gamma > 90, so we redefine the a3 lattice vector so that # gamma < 90: self.output_primb[0] *= -1.0 gamma = get_angle(self.output_prima, self.output_primb) y_fac = self.output_primb[1] shift = np.abs(2*self.output_primb[0]) # # Apply transformation on the basis atoms for i in range(len(self.output_basis[:, 0])): self.output_basis[i, :] = np.dot(rot1, self.output_basis[i, :])/bc_norm # Transform basis because self.output_primc was mirrored: for i in range(len(self.output_basis[:, 0])): self.output_basis[i, 2] *= -1.0 # Transform basis because gamma was changed above: for i in range(len(self.output_basis[:, 0])): #self.output_basis[i, :] = np.dot(shift_mat, self.output_basis[i, :]) if self.output_basis[i, 1] > 0: self.output_basis[i, 0] += shift * np.abs(self.output_basis[i, 1] / y_fac) else: self.output_basis[i, 0] -= shift * np.abs(self.output_basis[i, 1] / y_fac) self.output_boa = np.linalg.norm(self.output_primb) self.output_coa = np.linalg.norm(self.output_primc) self.output_alpha = 0.0 self.output_beta = 0.0 self.output_gamma = gamma self.emto_prima = np.array([1.0, 0, 0]) self.emto_primb = np.array([self.output_boa*np.cos(np.radians(self.output_gamma)), self.output_boa*np.sin(np.radians(self.output_gamma)), 0]) self.emto_primc = np.array([0, 0, self.output_coa]) self.emto_basis = self.output_basis elif self.spg_ibz == 13: gamma = get_angle(self.primcc, self.primaa+self.primbb) switch_x_y = np.array([[0, -1, 0], [1, 0, 0], [0, 0, 1]]) rot1 = np.array([[1.0,0.0,0.0], [0.0,np.cos(np.radians(180-gamma)),-np.sin(np.radians(180-gamma))], [0.0,np.sin(np.radians(180-gamma)),np.cos(np.radians(180-gamma))]]) rot2 = np.array([[0.0,0.0,1.0], [0.0,1.0,0.0], [-1.0,0.0,0.0]]) bc_norm = np.linalg.norm(self.primaa+self.primbb) self.output_prima = np.dot(rot2, np.dot(rot1, np.dot(switch_x_y, self.primcc)))/bc_norm self.output_primb = np.dot(rot2, np.dot(rot1, np.dot(switch_x_y, self.primaa)))/bc_norm self.output_primc = np.dot(rot2, np.dot(rot1, np.dot(switch_x_y, self.primbb)))/bc_norm # Apply transformation on the basis atoms for i in range(len(self.output_basis[:, 0])): self.output_basis[i, :] = np.dot(rot2, np.dot(rot1, np.dot(switch_x_y, self.output_basis[i, :])))/bc_norm self.output_boa = np.abs(self.output_prima[1]) self.output_coa = np.abs(2*self.output_primc[2]) self.output_alpha = 0.0 self.output_beta = 0.0 self.output_gamma = gamma self.emto_prima = np.array([0.0, -self.output_boa, 0]) self.emto_primb = np.array([0.5*np.sin(np.radians(self.output_gamma)), -0.5*np.cos(np.radians(self.output_gamma)), -self.output_coa/2]) self.emto_primc = np.array([0.5*np.sin(np.radians(self.output_gamma)), -0.5*np.cos(np.radians(self.output_gamma)), self.output_coa/2]) self.emto_basis = self.output_basis elif self.spg_ibz == 14: norm_tmp = self.primaa[0] self.output_prima = self.primaa/norm_tmp self.output_primb = self.primbb/norm_tmp self.output_primc = self.primcc/norm_tmp # Apply transformation on the basis atoms self.output_basis = self.output_basis/norm_tmp # This could be tested, should be OK: #self.output_boa = np.sqrt(self.output_primb[0]**2+self.output_primb[1]**2) self.output_boa = self.prim_struct.lattice.b/self.prim_struct.lattice.a self.output_coa = self.prim_struct.lattice.c/self.prim_struct.lattice.a self.output_alpha = self.prim_struct.lattice.alpha self.output_beta = self.prim_struct.lattice.beta self.output_gamma = self.prim_struct.lattice.gamma self.emto_prima = np.array([1.0, 0, 0]) self.emto_primb = np.array([self.output_boa*np.cos(np.radians(self.output_gamma)), self.output_boa*np.sin(np.radians(self.output_gamma)), 0]) self.emto_primc = np.array([self.output_coa*np.cos(np.radians(self.output_beta)), self.output_coa*(np.cos(np.radians(self.output_alpha)) - np.cos(np.radians(self.output_beta)) * np.cos(np.radians(self.output_gamma))) / np.sin(np.radians(self.output_gamma)), self.output_coa*np.sqrt(1 - np.cos(np.radians(self.output_gamma))**2 - np.cos(np.radians(self.output_alpha))**2 - np.cos(np.radians(self.output_beta))**2 + 2*np.cos(np.radians(self.output_alpha))* np.cos(np.radians(self.output_beta))* np.cos(np.radians(self.output_gamma)))/np.sin(np.radians(self.output_gamma))]) self.emto_basis = self.output_basis self.output_sites = self.make_sites_array(self.prim_struct) self.output_lattice = Lattice(np.array([self.emto_prima, self.emto_primb, self.emto_primc])) self.output_struct = Structure(self.output_lattice, self.output_sites, self.emto_basis, coords_are_cartesian=True) # # Print EMTO structure information print("") print("Generated EMTO structure:") print(self.output_struct) print("Volume: ", self.output_struct.volume) print("WS-rad: ", self.sws) print("Lattice vectors:") print(self.output_struct.lattice.matrix) print("Basis vectors:") for i in range(len(self.output_struct.sites)): print(self.output_struct.sites[i].coords) print("") # Print symmetry information print("spglib reports the following information:") print("The spacegroup symbol of input structure: {}".format(self.spg_space_group)) print("The spacegroup number of input structure: {}".format(self.spg_space_group_number)) print("The Bravais lattice of input structure : {}".format(self.sg2bl[self.spg_space_group_number])) print("Number of basis atoms : {}".format(self.prim_struct.num_sites)) print("EMTO IBZ : {}".format(self.spg_ibz)) print("") emto_cell = ( self.output_lattice.matrix, self.output_struct.frac_coords, self.output_sites ) self.emto_space_group = spg.get_spacegroup(emto_cell) self.emto_space_group_number = int(self.emto_space_group.split()[-1].lstrip('(').rstrip(')')) self.emto_space_group_symbol = self.emto_space_group self.emto_prim_lat, self.emto_prim_pos, self.emto_prim_species = spg.standardize_cell(emto_cell, to_primitive=True) self.emto_struct = Structure(Lattice(self.emto_prim_lat), self.emto_prim_species, self.emto_prim_pos) self.emto_ibz = self.sg2ibz[self.emto_space_group_number] print("spglib reports the following information:") print("The spacegroup symbol of EMTO structure : {}".format(self.emto_space_group)) print("The spacegroup number of EMTO structure : {}".format(self.emto_space_group_number)) print("The Bravais lattice of EMTO structure : {}".format(self.sg2bl[self.emto_space_group_number])) print("Number of basis atoms : {}".format(self.output_struct.num_sites)) print("EMTO IBZ : {}".format(self.emto_ibz)) print("") print(self.prim_struct) print(self.emto_struct) should_exit = False if (self.spg_space_group != self.emto_space_group): print("Input and output spacegroups are different!!!") should_exit = True if (self.spg_ibz != self.emto_ibz): print("Input and output IBZ are different!!!") should_exit = True if should_exit: sys.exit("Structure conversion went wrong! Check the symmetry information above.") # fitted_angles = [get_angle(self.output_prima, self.emto_prima), get_angle(self.output_primb, self.emto_primb), get_angle(self.output_primc, self.emto_primc)] for i, angle in enumerate(fitted_angles): #print(angle) if angle > self.fit_angle_tol: sys.exit('Error: Angle between lattice vectors {0} is {1} > {2}!!!'.format(i+1, angle, self.fit_angle_tol)) fitted_ratios = [np.linalg.norm(self.output_prima) / np.linalg.norm(self.emto_prima), np.linalg.norm(self.output_primb) / np.linalg.norm(self.emto_primb), np.linalg.norm(self.output_primc) / np.linalg.norm(self.emto_primc)] for i, ratio in enumerate(fitted_ratios): #print(ratio) if np.abs(ratio - 1.0) > self.fit_norm_ratio_tol: sys.exit('Error: Ratio between lattice vector {0} norms is {1} > {2}!!!'.format(i+1, ratio, self.fit_norm_ratio_tol)) print('Structure similarity check (input vs. output for EMTO):') fit1 = self.stm.fit_anonymous(self.pmg_input_struct, self.prim_struct) fit2 = self.stm.fit(self.pmg_input_struct, self.prim_struct) fit3 = self.stm.fit_anonymous(self.prim_struct, self.output_struct) fit4 = self.stm.fit(self.prim_struct, self.output_struct) fit5 = self.stm.fit_anonymous(self.pmg_input_struct, self.output_struct) fit6 = self.stm.fit(self.pmg_input_struct, self.output_struct) print('Input -> spglib (sites only) ?: ', fit1) print('Input -> spglib (sites+chemistry)?: ', fit2) print('spglib -> EMTO (sites only) ?: ', fit3) print('spglib -> EMTO (sites+chemistry)?: ', fit4) print('Input -> EMTO (sites only) ?: ', fit5) print('Input -> EMTO (sites+chemistry)?: ', fit6) print("") if not all([fit1, fit2, fit3, fit4, fit5, fit6]): sys.exit('Some structures are not identical (check for False above) !!!') # Generate EMTO structure input files self.input_system.lattice.set_values(jobname_lat=self.latname, latpath=self.latpath, lat=common.ibz_to_lat(self.ibz), latparams=[1.0, self.output_boa, self.output_coa], latvectors=[self.output_alpha, self.output_beta, self.output_gamma], basis=self.output_basis, EMTOdir=self.EMTOdir, **kwargs) # Finally, save atoms, splts, and concs of the output structure to be read by init_bulk function. self.make_cpa_sites_array(self.output_struct) # # Prepare KGRN, KFCD, and SLURM input files next. if self.ibz is None: sys.exit('self.ibz == None! Run create_structure_input() to generate IBZ \n'+ 'for your structure.') # Construct an index array to keep track of the number of atoms in each site. if self.atoms_cpa is None: sys.exit('EMTO.init_bulk(): \'self.atoms_cpa\' does not exist!!! (Did you run init_structure?)') else: index_array = np.ones(len(self.atoms_cpa), dtype='int32') for i in range(len(self.atoms_cpa)): if isinstance(self.atoms_cpa[i], list): index_array[i] = len(self.atoms_cpa[i]) else: index_array[i] = 1 index_len = np.sum(index_array) atoms_flat = [] for i in range(len(self.atoms_cpa)): if isinstance(self.atoms_cpa[i], list): for j in range(len(self.atoms_cpa[i])): atoms_flat.append(self.atoms_cpa[i][j]) else: atoms_flat.append(self.atoms_cpa[i]) self.KGRN_atoms = np.array(atoms_flat) if self.splts_cpa is None: sys.exit('EMTO.init_bulk(): \'self.splts_cpa\' does not exist!!! (Did you run init_structure?)') else: splts_flat = [] for i in range(len(self.splts_cpa)): if isinstance(self.splts_cpa[i], list): for j in range(len(self.splts_cpa[i])): splts_flat.append(self.splts_cpa[i][j]) else: splts_flat.append(self.splts_cpa[i]) self.KGRN_splts = np.array(splts_flat) if self.fixs_cpa is None: sys.exit('EMTO.init_bulk(): \'self.fixs_cpa\' does not exist!!! (Did you run init_structure?)') else: fixs_flat = [] for i in range(len(self.fixs_cpa)): if isinstance(self.fixs_cpa[i], list): for j in range(len(self.fixs_cpa[i])): fixs_flat.append(self.fixs_cpa[i][j]) else: fixs_flat.append(self.fixs_cpa[i]) self.KGRN_fixs = np.array(fixs_flat) if self.concs_cpa is None: sys.exit('EMTO.init_bulk(): \'self.concs_cpa\' does not exist!!! (Did you run init_structure?)') else: concs_flat = [] for i in range(len(self.concs_cpa)): if isinstance(self.concs_cpa[i], list): for j in range(len(self.concs_cpa[i])): concs_flat.append(self.concs_cpa[i][j]) else: concs_flat.append(self.concs_cpa[i]) self.KGRN_concs =
np.array(concs_flat)
numpy.array
import collections import itertools import numpy as np # adapted from github.com/janelia-flyem/gala def smallest_int_dtype(number, *, signed=False, min_dtype=np.int8): """Return the smallest numpy integer dtype that can represent `number`. Parameters ---------- number : int The minimum number to be represented by dtype. signed : bool, optional Whether a signed dtype is required. min_dtype : numpy dtype, optional Specify a minimum dtype in case `number` is not the absolute maximum that the user wants to represent. Returns ------- dtype : numpy dtype The required data type. Examples -------- >>> smallest_int_dtype(8) <class 'numpy.uint8'> >>> smallest_int_dtype(2**9) <class 'numpy.uint16'> >>> smallest_int_dtype(2**17) <class 'numpy.uint32'> >>> smallest_int_dtype(2**33) <class 'numpy.uint64'> >>> smallest_int_dtype(8, signed=True) <class 'numpy.int8'> >>> smallest_int_dtype(8, signed=True, min_dtype=np.int16) <class 'numpy.int16'> >>> smallest_int_dtype(-2**9) <class 'numpy.int16'> >>> smallest_int_dtype(-2**17) <class 'numpy.int32'> >>> smallest_int_dtype(-2**33) <class 'numpy.int64'> """ if number < 0: signed = True number = abs(number) if not signed: if number <= np.iinfo(np.uint8).max: dtype = np.uint8 elif number <= np.iinfo(np.uint16).max: dtype = np.uint16 elif number <= np.iinfo(np.uint32).max: dtype = np.uint32 else: # number <= np.iinfo(np.uint64).max: dtype = np.uint64 else: if np.iinfo(np.int8).min <= number <= np.iinfo(np.int8).max: dtype = np.int8 elif np.iinfo(np.int16).min <= number <= np.iinfo(np.int16).max: dtype = np.int16 elif np.iinfo(np.int32).min <= number <= np.iinfo(np.int32).max: dtype = np.int32 else: # if np.iinfo(np.int64).min <= number <= np.iinfo(np.int64).max: dtype = np.int64 if np.iinfo(dtype).max < np.iinfo(min_dtype).max: dtype = min_dtype return dtype # adapted from github.com/janelia-flyem/gala def pad(ar, vals, *, axes=None): """Pad an array with values in `vals` along `axes`. Parameters ---------- ar : array, shape (M, N, ...) The input array. vals : int or iterable of int, shape (K,) The values to pad with. axes : int in {0, ..., `ar.ndim`}, or iterable thereof, optional The axes of `ar` to pad. If None, pad along all axes. Returns ------- ar2 : array, shape (M+2K, N+2K, ...) The padded array. Examples -------- >>> ar = np.array([4, 5, 6]) >>> pad(ar, 0) array([0, 4, 5, 6, 0]) >>> pad(ar, [0, 1]) array([1, 0, 4, 5, 6, 0, 1]) >>> ar = np.array([[4, 5, 6]]) >>> pad(ar, 0) array([[0, 0, 0, 0, 0], [0, 4, 5, 6, 0], [0, 0, 0, 0, 0]]) >>> pad(ar, 0, axes=1) array([[0, 4, 5, 6, 0]]) """ if axes is None: axes = list(range(ar.ndim)) if not isinstance(vals, collections.Iterable): vals = [vals] if not isinstance(axes, collections.Iterable): axes = [axes] p = len(vals) newshape = np.array(ar.shape) for ax in axes: newshape[ax] += 2*p vals = np.reshape(vals, (p,) + (1,) * (ar.ndim-1)) new_dtype = ar.dtype if np.issubdtype(new_dtype, np.integer): maxval = max([np.max(vals), np.max(ar)]) minval = min([np.min(vals), np.min(ar)]) signed = (minval < 0) maxval = max(abs(minval), maxval) new_dtype = smallest_int_dtype(maxval, signed=signed, min_dtype=new_dtype) ar2 = np.empty(newshape, dtype=new_dtype) center = np.ones(newshape, dtype=bool) for ax in axes: ar2.swapaxes(0, ax)[p-1::-1,...] = vals ar2.swapaxes(0, ax)[-p:,...] = vals center.swapaxes(0, ax)[p-1::-1,...] = False center.swapaxes(0, ax)[-p:,...] = False ar2[center] = ar.ravel() return ar2 def raveled_steps_to_neighbors(shape, connectivity=1, *, order='C', spacing=1, return_distances=True): """Return raveled coordinate steps for given array shape and neighborhood. Parameters ---------- shape : tuple of int The array shape. connectivity : {1, ..., len(shape)}, optional The n-dimensional connectivity. See `scipy.ndimage.generate_binary_structure` for more. order : {'C', 'F'}, optional The ordering of the array, either C or Fortran. spacing : float, or array-like of float, shape `len(shape)` The spacing of the pixels along each dimension. return_distances : bool, optional If True (default), return also the Euclidean distance to each neighbor. Returns ------- steps : array of int, shape (K,) Each value in `steps` moves from a central pixel to a `connectivity`-neighbor in an array of shape `shape`. distances : array of float, shape (K,), optional The Euclidean distance corresponding to each step. This is only returned if `return_distances` is True. Examples -------- >>> raveled_steps_to_neighbors((5,), 1) (array([ 1, -1]), array([1., 1.])) >>> raveled_steps_to_neighbors((2, 3), 2, return_distances=False) array([ 3, 1, -3, -1, 4, 2, -2, -4]) >>> raveled_steps_to_neighbors((2, 3), 1, order='F')[0] array([ 2, 1, -2, -1]) Using `spacing` we can obtain different distance values along different axes: >>> raveled_steps_to_neighbors((3, 4, 5), spacing=[5, 1, 1]) (array([ 20, 5, 1, -20, -5, -1]), array([5., 1., 1., 5., 1., 1.])) """ spacing = np.ones(len(shape), dtype=float) * spacing if order == 'C': dims = shape[-1:0:-1] else: dims = shape[:-1] stepsizes = np.cumprod((1,) + dims)[::-1] steps = [stepsizes, -stepsizes] distances = [spacing, spacing] for nhops in range(2, connectivity + 1): prod = np.array(list(itertools.product(*[[1, -1]] * nhops))) multisteps = np.array(list(itertools.combinations(stepsizes, nhops))).T dhopsq = np.array(list(itertools.combinations(spacing ** 2, nhops))).T steps.append((prod @ multisteps).ravel()) distances.append(np.sqrt(np.abs(prod) @ dhopsq).ravel()) if return_distances: return (np.concatenate(steps).astype(int),
np.concatenate(distances)
numpy.concatenate
from matplotlib import pyplot as plt from PIL import Image import numpy as np from os import path from itertools import product # --------------- Questão 1 --------------- # original_img = np.array(Image.open(path.join(path.curdir, "original_lena.jpg")).convert("L")) # --------------- Questão 2 --------------- # summed_img = original_img + 30 summed_img[summed_img <= 30] = 255 Image.fromarray(summed_img).save(path.join(path.curdir, "summed_lena.jpg")) subtracted_img = original_img - 70 subtracted_img[subtracted_img >= (255 - 70)] = 0 Image.fromarray(subtracted_img).save(path.join(path.curdir, "subtracted_lena.jpg")) multiplied_img = original_img.copy() multiplied_img[multiplied_img > int(255 / 1.2)] = 255 multiplied_img[multiplied_img < 255] = np.array(multiplied_img[multiplied_img < 255] * 1.2, dtype="uint8") Image.fromarray(multiplied_img).save(path.join(path.curdir, "multiplied_lena.jpg")) divided_img = original_img // 4 Image.fromarray(divided_img).save(path.join(path.curdir, "divided_lena.jpg")) # ------------- Questão 3 & 4 ------------- # plt.figure() plt.imshow(original_img, cmap="gray", clim=(0, 255)) plt.axis("off") plt.title("Original image") fig, ax = plt.subplots(2, 2) ax[0, 0].imshow(summed_img, cmap="gray", clim=(0, 255)) ax[0, 0].set_title("Summed image") ax[0, 0].set_axis_off() ax[0, 1].imshow(subtracted_img, cmap="gray", clim=(0, 255)) ax[0, 1].set_title("Subtracted image") ax[0, 1].set_axis_off() ax[1, 0].imshow(multiplied_img, cmap="gray", clim=(0, 255)) ax[1, 0].set_title("Multiplied image") ax[1, 0].set_axis_off() ax[1, 1].imshow(divided_img, cmap="gray", clim=(0, 255)) ax[1, 1].set_title("Divided image") ax[1, 1].set_axis_off() fig.tight_layout() plt.show() plt.figure() plt.hist(original_img.ravel(), bins=256) plt.title("Original image") plt.xlabel("Grayscale value") plt.xlabel("Pixel count") plt.xlim(-2, 260) fig, ax = plt.subplots(2, 2) ax[0, 0].hist(summed_img.ravel(), bins=256) ax[0, 0].set_title("Summed image") ax[0, 0].set_xlabel("Grayscale value") ax[0, 0].set_ylabel("Pixel count") ax[0, 0].set_xlim(-5, 260) ax[0, 1].hist(subtracted_img.ravel(), bins=256) ax[0, 1].set_title("Subtracted image") ax[0, 1].set_xlabel("Grayscale value") ax[0, 1].set_ylabel("Pixel count") ax[0, 1].set_xlim(-5, 260) ax[1, 0].hist(multiplied_img.ravel(), bins=256) ax[1, 0].set_title("Multiplied image") ax[1, 0].set_xlabel("Grayscale value") ax[1, 0].set_ylabel("Pixel count") ax[1, 0].set_xlim(-5, 260) ax[1, 1].hist(divided_img.ravel(), bins=256) ax[1, 1].set_title("Divided image") ax[1, 1].set_xlabel("Grayscale value") ax[1, 1].set_ylabel("Pixel count") ax[1, 1].set_xlim(-5, 260) fig.tight_layout() plt.show() # --------------- Questão 5 --------------- # def maximum_error(img_1, img_2): return np.max(np.abs((img_1.astype("int32") - img_2.astype("int32")))) def mean_absolute_error(img_1, img_2): return np.sum(np.abs((img_1.astype("int32") - img_2.astype("int32")))) / np.prod(img_1.shape) def mean_square_error(img_1, img_2): return np.sum(np.square(img_1.astype("int32") - img_2.astype("int32"))) / np.prod(img_1.shape) def root_mean_square_error(img_1, img_2): return np.sqrt(mean_square_error(img_1, img_2)) def normalized_mean_square_error(img_1, img_2): return np.sum(np.square(img_1.astype("int32") - img_2.astype("int32"))) / np.sum(np.square(img_1.astype("int32"))) def peak_signal_to_noise_ratio(img_1, img_2): return 20 * np.log10(255 / root_mean_square_error(img_1, img_2)) def signal_to_noise_ratio(img_1, img_2): return 10 * np.log10(1 / normalized_mean_square_error(img_1, img_2)) def covariance(img_1, img_2): return np.sum( np.multiply(img_1.astype("int32") - np.mean(img_1), img_2.astype("int32") - np.mean(img_2)) ) / np.prod(img_1.shape) def correlation_coeficient(img_1, img_2): return np.sum( np.multiply(img_1.astype("int32") - np.mean(img_1), img_2.astype("int32") - np.mean(img_2)) ) / np.sqrt( np.sum(np.square(img_1.astype("int32") - np.mean(img_1))) * np.sum(np.square(img_2.astype("int32") -
np.mean(img_2)
numpy.mean
import numpy as np from scipy.optimize import least_squares import pandas as pd from lib.logger import Logger import json, math logger = Logger('./calibration', clear_log=True) # y,x,z #pixel ray directions [center-center][left-center][right-center][center-bottom][center-top] # width, height # 539 959, 0 959, 1079 959, 539 0, 539 1919 indices = { 'center': [(539, 959), (539, 960), (540, 959), (540, 960)], 'left': [(0, 959), (0, 960)], 'left_half': [(269, 959), (269, 960)], 'right': [(1079, 959), (1079, 960)], 'right_half': [(810, 959), (810, 960)], 'top': [(539, 1919), (540, 1919)], 'top_half': [(539, 1440), (540, 1440)], 'bottom': [(539, 0), (540, 0)], 'bottom_half': [(539, 479), (540, 479)], 'top_left_half': [(269, 1440)], 'top_right_half': [(810, 1440)], 'bottom_left_half': [(269, 479)], 'bottom_right_half': [(810, 479)], } idx = [(539, 959), ]#,(0, 959), (1079, 959), (539, 0), (539, 1919)] cams = [] for i in [1,2,3,4,5]: rays =pd.read_csv('data/scalarFlow/calib20190813/{}_rays.txt'.format(i), sep=' ', skiprows=1, header=None, names=['pY','pX','dY','dX','dZ'], index_col=(0,1)) cam = {} for key, idx in indices.items(): tmp = [] try: for id in idx: ray = rays.loc[id] tmp.append({'start': np.asarray([ray['pX'],ray['pY'],0.0]), 'dir': np.asarray([ray['dX'],ray['dY'],ray['dZ']]), }) cam[key] = tmp except: print('[W]: could not access index {} for cam {}, key {}'.format(id,i, key)) cams.append(cam) #https://math.stackexchange.com/questions/2598811/calculate-the-point-closest-to-multiple-rays def to_ray(pos, start, dir): t = np.dot(dir, pos-start)/np.dot(dir,dir) return pos - (start + t*dir) def dist_to_ray(pos, start, dir): dist = no.linalg.norm(to_ray(pos, start, dir)) def f(x, rays): e = [] for ray in rays: e += list(to_ray(x, ray['start'], ray['dir'])) return e def angle_between(a, b): return np.arccos(np.dot(a, b)/(np.linalg.norm(a)*np.linalg.norm(b))) #https://en.wikipedia.org/wiki/Slerp def slerp(v1, v2, t): O = angle_between(v1, v2) sO = np.sin(O) return np.sin((1-t)*O)/sO * v1 + np.sin(t*O)/sO * v2 deg_to_rad = np.pi/180 rad_to_deg = 180/np.pi cam_order = [0,1,2,3,4] #[0, 4, 3, 2, 1] #mapping of ray calibration files to recorded sequences? #i=0 cam_rays = [] cam_params = [] cam_json = {str(_):{} for _ in cam_order} for i in range(len(cams)): cam = cams[cam_order[i]] params = {'rotation':None, 'position':None, 'position_error':None, 'forward':None, 'right':None, 'up':None, 'fov_horizontal':None, 'fov_vertical':None} print('cam', i+1) if 'center' in cam: c_rays = [ray['dir'] for ray in cam['center']] c = slerp(slerp(c_rays[0],c_rays[1], 0.5), slerp(c_rays[2],c_rays[3], 0.5), 0.5) c /= np.linalg.norm(c) fwd = c t_y = np.arctan(c[0]/c[2]) t_x = np.arctan(c[1]/np.linalg.norm([c[0], c[2]])) print('\trot:', t_x*rad_to_deg,t_y*rad_to_deg,0.0) print('\tfwd: {} (center ray)'.format(c)) params['rotation']=[t_x*rad_to_deg,t_y*rad_to_deg,0.0] params['forward']=list(fwd) if 'left' in cam and 'right' in cam: l = slerp(cam['left'][0]['dir'],cam['left'][1]['dir'], 0.5) r = slerp(cam['right'][0]['dir'],cam['right'][1]['dir'], 0.5) up =
np.cross(l, r)
numpy.cross
import numpy as np import numexpr as ne import numba from scipy import optimize as sio from scipy import ndimage as scnd @numba.jit def get_flat_dpc(data4D_flat): CentralDisk = np.mean(data4D_flat,axis=0) beam_x,beam_y,_ = st.util.sobel_circle(CentralDisk) yy, xx = np.mgrid[0:data4D_flat.shape[1],0:data4D_flat.shape[2]] YCom = np.zeros(data4D_flat.shape[0],dtype=np.float) XCom = np.zeros(data4D_flat.shape[0],dtype=np.float) for ii in numba.prange(data4D_flat.shape[0]): cbed = data4D_flat[ii,:,:] YCom[ii] = (np.sum(np.multiply(yy,cbed))/np.sum(cbed)) - beam_y XCom[ii] = (np.sum(np.multiply(xx,cbed))/np.sum(cbed)) - beam_x return XCom,YCom def cart2pol(x, y): rho = ne.evaluate("((x**2) + (y**2)) ** 0.5") phi = ne.evaluate("arctan2(y, x)") return (rho, phi) def pol2cart(rho, phi): x = ne.evaluate("rho * cos(phi)") y = ne.evaluate("rho * sin(phi)") return (x, y) def angle_fun(angle,rho_dpc,phi_dpc): x_dpc,y_dpc = pol2cart(rho_dpc,(phi_dpc + (angle*((np.pi)/180)))) charge = np.gradient(x_dpc)[1] + np.gradient(y_dpc)[0] angle_sum = np.sum(np.abs(charge)) return angle_sum def optimize_angle(x_dpc,y_dpc,adf_stem): flips = np.zeros(4,dtype=bool) flips[2:4] = True chg_sums = np.zeros(4,dtype=x_dpc.dtype) angles = np.zeros(4,dtype=x_dpc.dtype) x0 = 90 for ii in range(2): to_flip = flips[2*ii] if to_flip: xdpcf = np.flip(x_dpc) else: xdpcf = x_dpc rho_dpc,phi_dpc = cart2pol(xdpcf,y_dpc) x = sio.minimize(angle_fun,x0,args=(rho_dpc,phi_dpc)) min_x = x.x sol1 = min_x - 90 sol2 = min_x + 90 chg_sums[int(2*ii)] = np.sum(charge_dpc(xdpcf,y_dpc,sol1)*adf_stem) chg_sums[int(2*ii+1)] = np.sum(charge_dpc(xdpcf,y_dpc,sol2)*adf_stem) angles[int(2*ii)] = sol1 angles[int(2*ii+1)] = sol2 angle = (-1)*angles[chg_sums==np.amin(chg_sums)][0] final_flip = flips[chg_sums==np.amin(chg_sums)][0] return angle, final_flip def corrected_dpc(x_dpc,y_dpc,angle,flipper): if flipper: xdpcf = np.fliplr(x_dpc) else: xdpcf = np.copy(x_dpc) rho_dpc,phi_dpc = cart2pol(xdpcf,y_dpc) x_dpc2,y_dpc2 = pol2cart(rho_dpc,(phi_dpc - (angle*((np.pi)/180)))) return x_dpc2,y_dpc2 def potential_dpc(x_dpc,y_dpc,angle=0): if angle==0: potential = integrate_dpc(x_dpc,y_dpc) else: rho_dpc,phi_dpc = cart2pol(x_dpc,y_dpc) x_dpc,y_dpc = pol2cart(rho_dpc,phi_dpc + (angle*((np.pi)/180))) potential = integrate_dpc(x_dpc,y_dpc) return potential def charge_dpc(x_dpc,y_dpc,angle=0): if angle==0: charge = np.gradient(x_dpc)[1] + np.gradient(y_dpc)[0] else: rho_dpc,phi_dpc = cart2pol(x_dpc,y_dpc) x_dpc,y_dpc = pol2cart(rho_dpc,phi_dpc + (angle*((np.pi)/180))) charge = np.gradient(x_dpc)[1] + np.gradient(y_dpc)[0] return charge def integrate_dpc(xshift, yshift, fourier_calibration=1): #Initialize matrices size_array = np.asarray(np.shape(xshift)) x_mirrored = np.zeros(2*size_array,dtype=np.float64) y_mirrored = np.zeros(2*size_array,dtype=np.float64) #Generate antisymmetric X arrays x_mirrored[0:size_array[0],0:size_array[1]] = np.fliplr(np.flipud(0 - xshift)) x_mirrored[0:size_array[0],size_array[1]:(2*size_array[1])] = np.fliplr(0 - xshift) x_mirrored[size_array[0]:(2*size_array[0]),0:size_array[1]] = np.flipud(xshift) x_mirrored[size_array[0]:(2*size_array[0]),size_array[1]:(2*size_array[1])] = xshift #Generate antisymmetric Y arrays y_mirrored[0:size_array[0],0:size_array[1]] = np.fliplr(np.flipud(0 - yshift)) y_mirrored[0:size_array[0],size_array[1]:(2*size_array[1])] = np.fliplr(yshift) y_mirrored[size_array[0]:(2*size_array[0]),0:size_array[1]] = np.flipud(0 - yshift) y_mirrored[size_array[0]:(2*size_array[0]),size_array[1]:(2*size_array[1])] = yshift #Calculated Fourier transform of antisymmetric matrices x_mirr_ft = np.fft.fft2(x_mirrored) y_mirr_ft = np.fft.fft2(y_mirrored) #Calculated inverse Fourier space calibration qx = np.mean(np.diff((np.arange(-size_array[1],size_array[1], 1))/ (2*fourier_calibration*size_array[1]))) qy = np.mean(np.diff((np.arange(-size_array[0],size_array[0], 1))/ (2*fourier_calibration*size_array[0]))) #Calculate mirrored CPM integrand mirr_ft = (x_mirr_ft + ((1j)*y_mirr_ft))/(qx + ((1j)*qy)) mirr_int = np.fft.ifft2(mirr_ft) #Select integrand from antisymmetric matrix integrand = np.abs(mirr_int[size_array[0]:(2*size_array[0]),size_array[1]:(2*size_array[1])]) return integrand def centerCBED(data4D_flat, x_cen, y_cen): image_size = np.asarray(data4D_flat.shape[1:3]) fourier_cal_y = (np.linspace((-image_size[0]/2), ((image_size[0]/2) - 1), image_size[0]))/image_size[0] fourier_cal_x = (np.linspace((-image_size[1]/2), ((image_size[1]/2) - 1), image_size[1]))/image_size[1] [fourier_mesh_x, fourier_mesh_y] = np.meshgrid(fourier_cal_x, fourier_cal_y) move_pixels = np.flip(image_size/2) -
np.asarray((x_cen,y_cen))
numpy.asarray
import warnings import math import numpy as np import quaternionic import pytest def test_to_scalar_part(Rs): assert np.array_equal(Rs.to_scalar_part, Rs.ndarray[..., 0]) def test_from_scalar_part(): scalars = np.random.rand(17, 8, 3) q = quaternionic.array.from_scalar_part(scalars) assert q.shape[-1] == 4 assert q.shape[:-1] == scalars.shape assert np.array_equal(q.to_scalar_part, scalars) def test_to_vector_part(Rs): assert np.array_equal(Rs.to_vector_part, Rs.ndarray[..., 1:]) def test_from_vector_part(): vec = np.random.rand(17, 8, 5, 3) q = quaternionic.array.from_vector_part(vec) assert q.shape[-1] == 4 assert q.shape[:-1] == vec.shape[:-1] assert np.array_equal(q.to_vector_part, vec) def test_to_rotation_matrix(Rs, eps, array): one, x, y, z = tuple(array(np.eye(4))) zero = 0.0 * one Rs = array(Rs.ndarray) def quat_mat(quat): return np.array([(quat * v * quat.inverse).vector for v in [x, y, z]]).T def quat_mat_vec(quats): mat_vec = np.array([(quats * v * np.reciprocal(quats)).vector for v in [x, y, z]]) return np.transpose(mat_vec, tuple(range(mat_vec.ndim))[1:-1]+(-1, 0)) with np.errstate(invalid='raise'): with pytest.raises((FloatingPointError, ZeroDivisionError)): zero.to_rotation_matrix for R in Rs: # Test correctly normalized rotors: assert np.allclose(quat_mat(R), R.to_rotation_matrix, atol=2*eps) # Test incorrectly normalized rotors: assert np.allclose(quat_mat(R), (1.1*R).to_rotation_matrix, atol=2*eps) Rs0 = Rs.copy() Rs0[Rs.shape[0]//2] = zero with np.errstate(invalid='raise'): with pytest.raises((FloatingPointError, ZeroDivisionError)): Rs0.to_rotation_matrix # Test correctly normalized rotors: assert np.allclose(quat_mat_vec(Rs), Rs.to_rotation_matrix, atol=2*eps) # Test incorrectly normalized rotors: assert np.allclose(quat_mat_vec(Rs), (1.1*Rs).to_rotation_matrix, atol=2*eps) # Simply test that this function succeeds and returns the right shape assert (Rs.reshape((2, 5, 10, 4))).to_rotation_matrix.shape == (2, 5, 10, 3, 3) def test_from_rotation_matrix(Rs, eps): from scipy import linalg for nonorthogonal in [True, False]: if nonorthogonal: rot_mat_eps = 10*eps else: rot_mat_eps = 5*eps for i, R1 in enumerate(Rs): R2 = quaternionic.array.from_rotation_matrix(R1.to_rotation_matrix, nonorthogonal=nonorthogonal) d = quaternionic.distance.rotation.intrinsic(R1, R2) assert d < rot_mat_eps, (i, R1, R2, d) # Can't use allclose here; we don't care about rotor sign Rs2 = quaternionic.array.from_rotation_matrix(Rs.to_rotation_matrix, nonorthogonal=nonorthogonal) for R1, R2 in zip(Rs, Rs2): d = quaternionic.distance.rotation.intrinsic(R1, R2) assert d < rot_mat_eps, (R1, R2, d) # Can't use allclose here; we don't care about rotor sign Rs3 = Rs.reshape((2, 5, 10, 4)) Rs4 = quaternionic.array.from_rotation_matrix(Rs3.to_rotation_matrix) for R3, R4 in zip(Rs3.flattened, Rs4.flattened): d = quaternionic.distance.rotation.intrinsic(R3, R4) assert d < rot_mat_eps, (R3, R4, d) # Can't use allclose here; we don't care about rotor sign def test_to_transformation_matrix(Rs, eps, array): one, x, y, z = tuple(array(np.eye(4))) zero = 0.0 * one Rs = array(Rs.ndarray) def quat_mat(quat): return np.array([(quat * v * np.conjugate(quat)).ndarray for v in [one, x, y, z]]).T def quat_mat_vec(quats): mat_vec = np.array([(quats * v * np.conjugate(quats)).ndarray for v in [one, x, y, z]]) return np.transpose(mat_vec, tuple(range(mat_vec.ndim))[1:-1]+(-1, 0)) # Test individual quaternions for R in Rs: # Test correctly normalized rotors: assert np.allclose(quat_mat(R), R.to_transformation_matrix, atol=2*eps) # Test incorrectly normalized rotors: for scale in [0.0, 0.123, 0.5, 1.1, 2.3]: assert np.allclose(scale**2*quat_mat(R), (scale*R).to_transformation_matrix, atol=2*eps) # Test vectorized quaternions # Test correctly normalized rotors: assert np.allclose(quat_mat_vec(Rs), Rs.to_transformation_matrix, atol=2*eps) # Test incorrectly normalized rotors: for scale in [0.0, 0.123, 0.5, 1.1, 2.3]: assert np.allclose(scale**2*quat_mat_vec(Rs), (scale*Rs).to_transformation_matrix, atol=2*eps) # Simply test that this function succeeds and returns the right shape assert (Rs.reshape((2, 5, 10, 4))).to_transformation_matrix.shape == (2, 5, 10, 4, 4) def test_to_rotation_vector(): np.random.seed(1234) n_tests = 1000 vecs = np.random.uniform(high=math.pi/math.sqrt(3), size=n_tests*3).reshape((n_tests, 3)) quats = np.zeros(vecs.shape[:-1]+(4,)) quats[..., 1:] = vecs[...] quats = quaternionic.array(quats) quats = np.exp(quats/2) quat_vecs = quats.to_rotation_vector assert np.allclose(quat_vecs, vecs) def test_from_rotation_vector(): np.random.seed(1234) n_tests = 1000 vecs = np.random.uniform(high=math.pi/math.sqrt(3), size=n_tests*3).reshape((n_tests, 3)) quats = np.zeros(vecs.shape[:-1]+(4,)) quats[..., 1:] = vecs[...] quats = quaternionic.array(quats) quats = np.exp(quats/2) quat_vecs = quats.to_rotation_vector quats2 = quaternionic.array.from_rotation_vector(quat_vecs) assert np.allclose(quats, quats2) def test_from_spherical_coordinates(): one, x, y, z = tuple(quaternionic.array(np.eye(4))) zero = 0.0 * one np.random.seed(1843) random_angles = [[np.random.uniform(-np.pi, np.pi), np.random.uniform(-np.pi, np.pi)] for i in range(5000)] for vartheta, varphi in random_angles: q = quaternionic.array.from_spherical_coordinates(vartheta, varphi) assert abs((np.exp(quaternionic.array(0, 0, 0, varphi / 2.)) * np.exp(quaternionic.array(0, 0, vartheta / 2., 0))) - q) < 1.e-15 xprime = q * x * q.inverse yprime = q * y * q.inverse zprime = q * z * q.inverse nhat = quaternionic.array( 0.0, math.sin(vartheta)*math.cos(varphi), math.sin(vartheta)*math.sin(varphi), math.cos(vartheta) ) thetahat = quaternionic.array( 0.0, math.cos(vartheta)*math.cos(varphi), math.cos(vartheta)*math.sin(varphi), -math.sin(vartheta) ) phihat = quaternionic.array(0.0, -math.sin(varphi), math.cos(varphi), 0.0) assert abs(xprime - thetahat) < 1.e-15 assert abs(yprime - phihat) < 1.e-15 assert abs(zprime - nhat) < 1.e-15 assert np.max(np.abs( quaternionic.array.from_spherical_coordinates(random_angles) - quaternionic.array([quaternionic.array.from_spherical_coordinates(vartheta, varphi) for vartheta, varphi in random_angles]) )) < 1.e-15 def test_to_spherical_coordinates(Rs): one, x, y, z = tuple(quaternionic.array(np.eye(4))) zero = 0.0 * one np.random.seed(1843) # First test on rotors that are precisely spherical-coordinate rotors random_angles = [[np.random.uniform(0, np.pi), np.random.uniform(0, 2*np.pi)] for i in range(5000)] for vartheta, varphi in random_angles: vartheta2, varphi2 = (quaternionic.array.from_spherical_coordinates(vartheta, varphi)).to_spherical_coordinates varphi2 = (varphi2 + 2*np.pi) if varphi2 < 0 else varphi2 assert abs(vartheta - vartheta2) < 1e-12, ((vartheta, varphi), (vartheta2, varphi2)) assert abs(varphi - varphi2) < 1e-12, ((vartheta, varphi), (vartheta2, varphi2)) # Now test that arbitrary rotors rotate z to the appropriate location for R in Rs: vartheta, varphi = R.to_spherical_coordinates R2 = quaternionic.array.from_spherical_coordinates(vartheta, varphi) assert (R*z*R.inverse - R2*z*R2.inverse).abs < 4e-15, (R, R2, (vartheta, varphi)) def test_from_euler_angles(): np.random.seed(1843) random_angles = [[np.random.uniform(-np.pi, np.pi), np.random.uniform(-np.pi, np.pi), np.random.uniform(-np.pi, np.pi)] for i in range(5000)] for alpha, beta, gamma in random_angles: assert abs((np.exp(quaternionic.array(0, 0, 0, alpha / 2.)) * np.exp(quaternionic.array(0, 0, beta / 2., 0)) * np.exp(quaternionic.array(0, 0, 0, gamma / 2.)) ) - quaternionic.array.from_euler_angles(alpha, beta, gamma)) < 1.e-15 assert np.max(np.abs(quaternionic.array.from_euler_angles(random_angles) - quaternionic.array([quaternionic.array.from_euler_angles(alpha, beta, gamma) for alpha, beta, gamma in random_angles]))) < 1.e-15 def test_to_euler_angles(eps, array): np.random.seed(1843) random_angles = [[np.random.uniform(-np.pi, np.pi), np.random.uniform(-np.pi, np.pi), np.random.uniform(-np.pi, np.pi)] for i in range(5000)] for alpha, beta, gamma in random_angles: R1 = array.from_euler_angles(alpha, beta, gamma) R2 = array.from_euler_angles(*list(R1.to_euler_angles)) d = quaternionic.distance.rotation.intrinsic(R1, R2) assert d < 6e3*eps, ((alpha, beta, gamma), R1, R2, d) # Can't use allclose here; we don't care about rotor sign q0 = array(0, 0.6, 0.8, 0) assert q0.norm == 1.0 assert abs(q0 - array.from_euler_angles(*list(q0.to_euler_angles))) < 1.e-15 def test_from_euler_phases(eps, array): np.random.seed(1843) random_angles = [[np.random.uniform(-np.pi, 2 * np.pi), np.random.uniform(0, np.pi), np.random.uniform(-np.pi, 2 * np.pi)] for i in range(5000)] for alpha, beta, gamma in random_angles: R1 = array.from_euler_angles(alpha, beta, gamma) R2 = array.from_euler_phases([np.exp(1j * alpha), np.exp(1j * beta), np.exp(1j * gamma)]) d = quaternionic.distance.rotation.intrinsic(R1, R2) assert d < 8*eps, ((alpha, beta, gamma), R1, R2, d) # Can't use allclose here; we don't care about rotor sign def test_to_euler_phases(eps, array): np.random.seed(1843) random_angles = [ [np.random.uniform(-np.pi, 2 * np.pi), np.random.uniform(0, np.pi), np.random.uniform(-np.pi, 2 * np.pi)] for _ in range(5000) ] for alpha, beta, gamma in random_angles: z1 = array.from_euler_angles(alpha, beta, gamma).to_euler_phases z2 = np.array([np.exp(1j * alpha), np.exp(1j * beta), np.exp(1j * gamma)]) assert abs(z1[0] - z2[0]) < 5*eps, (alpha, beta, gamma, z1, z2) assert abs(z1[1] - z2[1]) < 5*eps, (alpha, beta, gamma, z1, z2) assert abs(z1[2] - z2[2]) < 5*eps, (alpha, beta, gamma, z1, z2) random_angles = tuple( [np.random.uniform(-np.pi, 2 * np.pi), 0.0, np.random.uniform(-np.pi, 2 * np.pi)] for _ in range(50) ) for alpha, beta, gamma in random_angles: R1 = array.from_euler_angles(alpha, beta, gamma) R1.x = 0.0 R1.y = 0.0 z1 = R1.to_euler_phases z2 = np.array([np.exp(1j * alpha), np.exp(1j * beta), np.exp(1j * gamma)]) assert abs(z1[1] - 1) < 5*eps, (alpha, beta, gamma, z1, z2) assert abs(z1[1] - z2[1]) < 5*eps, (alpha, beta, gamma, z1, z2) assert abs(z1[0]*z1[2] - z2[0]*z2[2]) < 5*eps, (alpha, beta, gamma, z1, z2) random_angles = tuple( [np.random.uniform(-np.pi, 2 * np.pi), np.pi, np.random.uniform(-np.pi, 2 * np.pi)] for _ in range(50) ) for alpha, beta, gamma in random_angles: R1 = array.from_euler_angles(alpha, beta, gamma) R1.w = 0.0 R1.z = 0.0 z1 = R1.to_euler_phases z2 = np.array([np.exp(1j * alpha), np.exp(1j * beta), np.exp(1j * gamma)]) assert abs(z1[1] - -1) < 5*eps, (alpha, beta, gamma, z1, z2) assert abs(z1[1] - z2[1]) < 5*eps, (alpha, beta, gamma, z1, z2) assert abs(z1[0]*z1[2].conjugate() - z2[0]*z2[2].conjugate()) < 5*eps, (alpha, beta, gamma, z1, z2) def test_to_angular_velocity(): import math import numpy as np import quaternionic t0 = 0.0 t2 = 10_000.0 Omega_orb = 2 * math.pi * 100 / t2 Omega_prec = 2 * math.pi * 10 / t2 alpha = 0.125 * math.pi alphadot = 2 * alpha / t2 nu = 0.2 * alpha Omega_nu = Omega_prec R0 = np.exp(-1.1 * alpha * quaternionic.x / 2) def R(t): return (R0 * np.exp(Omega_prec * t * quaternionic.z / 2) * np.exp((alpha + alphadot * t) * quaternionic.x / 2) * np.exp(-Omega_prec * t * quaternionic.z / 2) * np.exp(Omega_orb * t * quaternionic.z / 2) * np.exp(nu * np.cos(Omega_nu * t) * quaternionic.y / 2)) def Rdot(t): R_dynamic = R0.inverse * R(t) R_prec = np.exp(Omega_prec * t * quaternionic.z / 2) R_nu = np.exp(nu * np.cos(Omega_nu * t) * quaternionic.y / 2) return R0 * (0.5 * Omega_prec * quaternionic.z * R_dynamic + 0.5 * alphadot * R_prec * quaternionic.x * R_prec.conj() * R_dynamic + 0.5 * (Omega_orb - Omega_prec) * R_dynamic * R_nu.inverse * quaternionic.z * R_nu + 0.5 * (-Omega_nu * nu * np.sin(Omega_nu * t)) * R_dynamic * quaternionic.y) def Omega_tot(_, t): Rotor = R(t) RotorDot = Rdot(t) return (2 * RotorDot * Rotor.inverse).vector t = np.linspace(t0, t2/100, num=10_000) R_approx = R(t).to_angular_velocity(t, t_new=None, axis=0) R_exact = Omega_tot(None, t) assert np.max(np.linalg.norm(R_approx - R_exact, axis=1)) < 5e-13 t = np.linspace(t0, t2/100, num=10_000) t_new = np.linspace(t0, t2/100, num=103) R_approx = R(t).to_angular_velocity(t, t_new=t_new, axis=0) R_exact = Omega_tot(None, t_new) assert np.max(np.linalg.norm(R_approx - R_exact, axis=1)) < 5e-13 def test_from_angular_velocity(): import math import numpy as np import quaternionic t0 = 0.0 t2 = 10_000.0 Omega_orb = 2 * math.pi * 100 / t2 Omega_prec = 2 * math.pi * 10 / t2 alpha = 0.125 * math.pi alphadot = 2 * alpha / t2 nu = 0.2 * alpha Omega_nu = Omega_prec R0 = np.exp(-1.1 * alpha * quaternionic.x / 2) def R(t): return (R0 * np.exp(Omega_prec * t * quaternionic.z / 2) * np.exp((alpha + alphadot * t) * quaternionic.x / 2) * np.exp(-Omega_prec * t * quaternionic.z / 2) * np.exp(Omega_orb * t * quaternionic.z / 2) * np.exp(nu * np.cos(Omega_nu * t) * quaternionic.y / 2)) def Rdot(t): R_dynamic = R0.inverse * R(t) R_prec = np.exp(Omega_prec * t * quaternionic.z / 2) R_nu = np.exp(nu * np.cos(Omega_nu * t) * quaternionic.y / 2) return R0 * (0.5 * Omega_prec * quaternionic.z * R_dynamic + 0.5 * alphadot * R_prec * quaternionic.x * R_prec.conj() * R_dynamic + 0.5 * (Omega_orb - Omega_prec) * R_dynamic * R_nu.inverse * quaternionic.z * R_nu + 0.5 * (-Omega_nu * nu * np.sin(Omega_nu * t)) * R_dynamic * quaternionic.y) def Omega_tot(_, t): Rotor = R(t) RotorDot = Rdot(t) return (2 * RotorDot * Rotor.inverse).vector t = np.linspace(t0, t2/10, num=1_000) # Test raisers with pytest.raises(ValueError): R_approx = quaternionic.array.from_angular_velocity([1+2j, 3+4j], t, R0=R(t0), tolerance=1e-6) with pytest.raises(ValueError): R_approx = quaternionic.array.from_angular_velocity(np.random.rand(17, 2), t, R0=R(t0), tolerance=1e-6) # Test with exact Omega function R_approx = quaternionic.array.from_angular_velocity(Omega_tot, t, R0=R(t0), tolerance=1e-6) R_exact = R(t) # phi_Delta = np.array([quaternionic.distance.rotation.intrinsic(e, a) for e, a in zip(R_exact, R_approx)]) phi_Delta = quaternionic.distance.rotation.intrinsic(R_exact, R_approx) assert np.max(phi_Delta) < 1e-4, np.max(phi_Delta) # Test with exact Omega function R_approx = quaternionic.array.from_angular_velocity(Omega_tot, t, R0=None, tolerance=1e-6) R_exact = R(t) * R(t0).inverse # phi_Delta = np.array([quaternionic.distance.rotation.intrinsic(e, a) for e, a in zip(R_exact, R_approx)]) phi_Delta = quaternionic.distance.rotation.intrinsic(R_exact, R_approx) assert np.max(phi_Delta) < 1e-4, np.max(phi_Delta) # Test with explicit values, given at the moments output above v = np.array([Omega_tot(None, ti) for ti in t]) R_approx = quaternionic.array.from_angular_velocity(v, t, R0=R(t0), tolerance=1e-6) R_exact = R(t) phi_Delta = quaternionic.distance.rotation.intrinsic(R_exact, R_approx) assert np.max(phi_Delta) < 1e-4, np.max(phi_Delta) def test_to_minimal_rotation(): import math import numpy as np import quaternionic t = np.linspace(0.0, 100.0, num=1_000) ω = (5 * 2 * np.pi) / (t[-1] - t[0]) # Test basic removal of rotation about z q = np.exp((ω * t / 2) * quaternionic.z) q_minimal_rotation = q.to_minimal_rotation(t, t_new=None, axis=0, iterations=2) qa = q * quaternionic.z * q.inverse qb = q_minimal_rotation * quaternionic.z * q_minimal_rotation.inverse assert np.max((qa - qb).norm) < 1e-16 assert np.max((q_minimal_rotation - quaternionic.one).norm) < 1e-16 # Test same with t_new t_new = np.linspace(0.0, 100.0, num=1_005) ω = (5 * 2 * np.pi) / (t[-1] - t[0]) q = np.exp((ω * t / 2) * quaternionic.z) q_new = np.exp((ω * t_new / 2) * quaternionic.z) q_minimal_rotation = q.to_minimal_rotation(t, t_new=t_new, axis=0, iterations=2) qa = q_new * quaternionic.z * q_new.inverse qb = q_minimal_rotation * quaternionic.z * q_minimal_rotation.inverse assert t_new.shape[0] == q_minimal_rotation.shape[0] assert np.max((qa - qb).norm) < 1e-16 assert np.max((q_minimal_rotation - quaternionic.one).norm) < 1e-16 # Test rotation onto uniform rotation in x-y plane q = quaternionic.array( np.stack( ( np.ones(t.size), np.cos(ω*t), np.sin(ω*t), np.zeros(t.size) ), axis=1 ) / np.sqrt(2) ) q_minimal_rotation = q.to_minimal_rotation(t) qa = q * quaternionic.z * q.inverse qb = q_minimal_rotation * quaternionic.z * q_minimal_rotation.inverse assert np.max((qa - qb).norm) < 1e-16 assert np.max(abs(ω - np.linalg.norm(q_minimal_rotation.to_angular_velocity(t), axis=1))) < 1e-8 assert np.max(abs(q_minimal_rotation.to_angular_velocity(t)[:, :2])) < 1e-8 def test_random(): q = quaternionic.array.random() assert isinstance(q, quaternionic.array) assert q.dtype == np.float64 assert q.shape == (4,) q = quaternionic.array.random(tuple()) assert isinstance(q, quaternionic.array) assert q.dtype == np.float64 assert q.shape == (4,) q = quaternionic.array.random(17) assert isinstance(q, quaternionic.array) assert q.dtype == np.float64 assert q.shape == (17, 4) q = quaternionic.array.random((17, 3)) assert isinstance(q, quaternionic.array) assert q.dtype == np.float64 assert q.shape == (17, 3, 4) q = quaternionic.array.random((17, 3, 4)) assert isinstance(q, quaternionic.array) assert q.dtype == np.float64 assert q.shape == (17, 3, 4) q = quaternionic.array.random((17, 3, 4), normalize=True) assert np.max(np.abs(1 - q.abs)) < 4 *
np.finfo(float)
numpy.finfo
import math import random import numpy as np from .bamboo import Bamboo from .builder import INTERNODE from .builder import build_internode from .warp_internode import WarpInternode from ..utils.warp_tools import get_image_size, calc_expand_size_and_matrix, warp_bbox, clip_bbox, filter_bbox __all__ = ['Warp', 'WarpPerspective', 'WarpResize', 'WarpScale', 'WarpStretch', 'WarpRotate', 'WarpShear', 'WarpTranslate'] @INTERNODE.register_module() class Warp(Bamboo): def __init__(self, internodes, ccs=True, **kwargs): assert len(internodes) > 0 self.internode = WarpInternode(ccs=ccs) self.internodes = [] self.ccs = ccs for cfg in internodes: cfg['ccs'] = False self.internodes.append(build_internode(cfg)) def __call__(self, data_dict): data_dict['warp_matrix'] = np.eye(3) data_dict['warp_size'] = get_image_size(data_dict['image']) super(Warp, self).__call__(data_dict) data_dict['warp_tmp_matrix'] = data_dict.pop('warp_matrix') data_dict['warp_tmp_size'] = data_dict.pop('warp_size') data_dict = self.internode(data_dict) return data_dict def reverse(self, **kwargs): return kwargs def __repr__(self): split_str = [i.__repr__() for i in self.internodes] bamboo_str = type(self).__name__ + '(' for i in range(len(split_str)): bamboo_str += '\n ' + split_str[i].replace('\n', '\n ') bamboo_str += '\n ccs={}'.format(self.ccs) bamboo_str = '{}\n)'.format(bamboo_str) return bamboo_str def rper(self): return 'Warp(not available)' @INTERNODE.register_module() class WarpPerspective(WarpInternode): def __init__(self, distortion_scale=0.5, **kwargs): super(WarpPerspective, self).__init__(**kwargs) self.distortion_scale = distortion_scale @staticmethod def get_params(width, height, distortion_scale): """Get parameters for ``perspective`` for a random perspective transform. Args: width : width of the image. height : height of the image. Returns: List containing [top-left, top-right, bottom-right, bottom-left] of the original image, List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image. """ half_height = int(height / 2) half_width = int(width / 2) topleft = (random.randint(0, int(distortion_scale * half_width)), random.randint(0, int(distortion_scale * half_height))) topright = (random.randint(width - int(distortion_scale * half_width) - 1, width - 1), random.randint(0, int(distortion_scale * half_height))) botright = (random.randint(width - int(distortion_scale * half_width) - 1, width - 1), random.randint(height - int(distortion_scale * half_height) - 1, height - 1)) botleft = (random.randint(0, int(distortion_scale * half_width)), random.randint(height - int(distortion_scale * half_height) - 1, height - 1)) startpoints = [(0, 0), (width - 1, 0), (width - 1, height - 1), (0, height - 1)] endpoints = [topleft, topright, botright, botleft] # endpoints = [(83, 18), (605, 25), (605, 397), (139, 341)] return startpoints, endpoints @staticmethod def build_matrix(startpoints, endpoints): matrix = [] for p1, p2 in zip(startpoints, endpoints): matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]]) matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]]) A = np.array(matrix) B = np.array(endpoints).flatten() c, _, _, _ = np.linalg.lstsq(A, B, rcond=None) c = c.tolist() + [1] c = np.matrix(c).reshape(3, 3) return np.array(c) def __call__(self, data_dict): if 'warp_size' in data_dict.keys(): size = data_dict['warp_size'] else: size = get_image_size(data_dict['image']) width, height = size startpoints, endpoints = self.get_params(width, height, self.distortion_scale) M = self.build_matrix(startpoints, endpoints) if self.expand: # print(startpoints, endpoints) xx = [e[0] for e in endpoints] yy = [e[1] for e in endpoints] nw = max(xx) - min(xx) nh = max(yy) - min(yy) E = np.eye(3) E[0, 2] = -min(xx) E[1, 2] = -min(yy) M = E @ M size = (nw, nh) # print(size, 'new') data_dict['warp_tmp_matrix'] = M data_dict['warp_tmp_size'] = size super(WarpPerspective, self).__call__(data_dict) return data_dict def __repr__(self): return 'WarpPerspective(distortion_scale={}, {})'.format(self.distortion_scale, super(WarpPerspective, self).__repr__()) @INTERNODE.register_module() class WarpResize(WarpInternode): def __init__(self, size, keep_ratio=True, short=False, **kwargs): super(WarpResize, self).__init__(**kwargs) assert len(size) == 2 assert size[0] > 0 and size[1] > 0 self.size = size self.keep_ratio = keep_ratio self.short = short def build_matrix(self, img_size): w, h = img_size C = np.eye(3) C[0, 2] = -w / 2 C[1, 2] = -h / 2 R = np.eye(3) if self.keep_ratio: if self.short: r = max(self.size[0] / w, self.size[1] / h) else: r = min(self.size[0] / w, self.size[1] / h) R[0, 0] = r R[1, 1] = r ow = (self.size[0] - R[0, 0] * w) / 2 oh = (self.size[1] - R[1, 1] * h) / 2 else: R[0, 0] = self.size[0] / w R[1, 1] = self.size[1] / h ow = 0 oh = 0 CI = np.eye(3) # if self.center: # CI[0, 2] = self.size[0] / 2 # CI[1, 2] = self.size[1] / 2 # else: CI[0, 2] = self.size[0] / 2 - ow CI[1, 2] = self.size[1] / 2 - oh return CI @ R @ C def calc_scale(self, size): w, h = size tw, th = self.size rw, rh = tw / w, th / h if self.keep_ratio: if self.short: r = max(rh, rw) scale = (r, r) else: r = min(rh, rw) scale = (r, r) else: scale = (rw, rh) return scale def __call__(self, data_dict): if 'warp_size' in data_dict.keys(): size = data_dict['warp_size'] else: size = get_image_size(data_dict['image']) M = self.build_matrix(size) if self.keep_ratio and (self.expand or self.short): _, new_size = calc_expand_size_and_matrix(M, size) size = new_size else: size = self.size # print(M, 'M1') data_dict['warp_tmp_matrix'] = M data_dict['warp_tmp_size'] = size super(WarpResize, self).__call__(data_dict) return data_dict def reverse(self, **kwargs): if 'resize_and_padding_reverse_flag' not in kwargs.keys(): return kwargs if 'ori_size' in kwargs.keys(): h, w = kwargs['ori_size'] h, w = int(h), int(w) M = self.build_matrix((w, h)) # print(M, 'M2', type(M)) # print(np.matrix(M).I) M = np.array(np.matrix(M).I) if 'bbox' in kwargs.keys(): boxes = warp_bbox(kwargs['bbox'], M) boxes = clip_bbox(boxes, (w, h)) keep = filter_bbox(boxes) kwargs['bbox'] = boxes[keep] if 'bbox_meta' in kwargs.keys(): kwargs['bbox_meta'].filter(keep) return kwargs def __repr__(self): return 'WarpResize(size={}, keep_ratio={}, short={}, {})'.format(self.size, self.keep_ratio, self.short, super(WarpResize, self).__repr__()) @INTERNODE.register_module() class WarpScale(WarpInternode): def __init__(self, r, **kwargs): super(WarpScale, self).__init__(**kwargs) assert len(r) == 2 assert r[0] <= r[1] and r[0] > 0 self.r = tuple(r) @staticmethod def build_matrix(r, img_size): w, h = img_size C = np.eye(3) C[0, 2] = -w / 2 C[1, 2] = -h / 2 R = np.eye(3) R[0, 0] = r R[1, 1] = r CI = np.eye(3) CI[0, 2] = w / 2 CI[1, 2] = h / 2 return CI @ R @ C def __call__(self, data_dict): if 'warp_size' in data_dict.keys(): size = data_dict['warp_size'] else: size = get_image_size(data_dict['image']) r = random.uniform(*self.r) M = self.build_matrix(r, size) data_dict['warp_tmp_matrix'] = M data_dict['warp_tmp_size'] = size super(WarpScale, self).__call__(data_dict) return data_dict def __repr__(self): return 'WarpScale(r={}, {})'.format(self.r, super(WarpScale, self).__repr__()) @INTERNODE.register_module() class WarpStretch(WarpInternode): def __init__(self, rw, rh, **kwargs): super(WarpStretch, self).__init__(**kwargs) assert len(rw) == 2 and len(rh) == 2 assert rw[0] <= rw[1] and rw[0] > 0 assert rh[0] <= rh[1] and rh[0] > 0 self.rw = tuple(rw) self.rh = tuple(rh) @staticmethod def build_matrix(rs, img_size): w, h = img_size C = np.eye(3) C[0, 2] = -w / 2 C[1, 2] = -h / 2 R = np.eye(3) R[0, 0] = rs[0] R[1, 1] = rs[1] CI = np.eye(3) CI[0, 2] = w / 2 CI[1, 2] = h / 2 return CI @ R @ C def __call__(self, data_dict): if 'warp_size' in data_dict.keys(): size = data_dict['warp_size'] else: size = get_image_size(data_dict['image']) rw = random.uniform(*self.rw) rh = random.uniform(*self.rh) M = self.build_matrix((rw, rh), size) data_dict['warp_tmp_matrix'] = M data_dict['warp_tmp_size'] = size super(WarpStretch, self).__call__(data_dict) return data_dict def __repr__(self): return 'WarpStretch(rw={}, rh={}, {})'.format(self.rw, self.rh, super(WarpStretch, self).__repr__()) @INTERNODE.register_module() class WarpRotate(WarpInternode): def __init__(self, angle, **kwargs): super(WarpRotate, self).__init__(**kwargs) assert -180 < angle[0] <= 180 assert -180 < angle[1] <= 180 assert angle[0] <= angle[1] self.angle = angle @staticmethod def build_matrix(angle, img_size): w, h = img_size angle = math.radians(angle) C = np.eye(3) C[0, 2] = -w / 2 C[1, 2] = -h / 2 R = np.eye(3) R[0, 0] = round(math.cos(angle), 15) R[0, 1] = -round(math.sin(angle), 15) R[1, 0] = round(math.sin(angle), 15) R[1, 1] = round(math.cos(angle), 15) CI = np.eye(3) CI[0, 2] = w / 2 CI[1, 2] = h / 2 return CI @ R @ C def __call__(self, data_dict): angle = random.uniform(self.angle[0], self.angle[1]) if angle != 0: if 'warp_size' in data_dict.keys(): size = data_dict['warp_size'] else: size = get_image_size(data_dict['image']) M = self.build_matrix(angle, size) if self.expand: E, new_size = calc_expand_size_and_matrix(M, size) M = E @ M size = new_size data_dict['warp_tmp_matrix'] = M data_dict['warp_tmp_size'] = size super(WarpRotate, self).__call__(data_dict) return data_dict def __repr__(self): return 'WarpRotate(angle={}, {})'.format(self.angle, super(WarpRotate, self).__repr__()) @INTERNODE.register_module() class WarpShear(WarpInternode): def __init__(self, ax, ay, **kwargs): super(WarpShear, self).__init__(**kwargs) assert len(ax) == 2 and len(ay) == 2 assert ax[0] <= ax[1] assert ay[0] <= ay[1] self.ax = tuple(ax) self.ay = tuple(ay) @staticmethod def build_matrix(angles, img_size): w, h = img_size ax, ay = math.radians(angles[0]), math.radians(angles[1]) C = np.eye(3) C[0, 2] = -w / 2 C[1, 2] = -h / 2 S = np.eye(3) S[0, 1] = math.tan(ax) S[1, 0] = math.tan(ay) CI = np.eye(3) CI[0, 2] = w / 2 CI[1, 2] = h / 2 return CI @ S @ C def __call__(self, data_dict): if 'warp_size' in data_dict.keys(): size = data_dict['warp_size'] else: size = get_image_size(data_dict['image']) shear = (random.uniform(*self.ax), random.uniform(*self.ay)) M = self.build_matrix(shear, size) if self.expand: E, new_size = calc_expand_size_and_matrix(M, size) M = E @ M size = new_size data_dict['warp_tmp_matrix'] = M data_dict['warp_tmp_size'] = size super(WarpShear, self).__call__(data_dict) return data_dict def __repr__(self): return 'WarpShear(ax={}, ay={}, {})'.format(self.ax, self.ay, super(WarpShear, self).__repr__()) @INTERNODE.register_module() class WarpTranslate(WarpInternode): def __init__(self, rw, rh, **kwargs): super(WarpTranslate, self).__init__(**kwargs) assert len(rw) == 2 and len(rh) == 2 assert rw[0] <= rw[1] assert rh[0] <= rh[1] self.rw = tuple(rw) self.rh = tuple(rh) @staticmethod def build_matrix(translations): T =
np.eye(3)
numpy.eye
""" Functions for visualizing flow cytometry data. Functions in this module are divided in two categories: - Simple Plot Functions, with a signature similar to the following:: plot_fxn(data_list, channels, parameters, savefig) where `data_list` is a NxD FCSData object or numpy array, or a list of such, `channels` specifies the channel or channels to use for the plot, `parameters` are function-specific parameters, and `savefig` indicates whether to save the figure to an image file. Note that `hist1d`, `violin`, and `violin_dose_response` use `channel` instead of `channels`, since they use a single channel, and `density2d` only accepts one FCSData object or numpy array as its first argument. Simple Plot Functions do not create a new figure or axis, so they can be called directly to plot in a previously created axis if desired. If `savefig` is not specified, the plot is maintained in the current axis when the function returns. This allows for further modifications to the axis by direct calls to, for example, ``plt.xlabel``, ``plt.title``, etc. However, if `savefig` is specified, the figure is closed after being saved. In this case, the function may include keyword parameters `xlabel`, `ylabel`, `xlim`, `ylim`, `title`, and others related to legend or color, which allow the user to modify the axis prior to saving. The following functions in this module are Simple Plot Functions: - ``hist1d`` - ``violin`` - ``violin_dose_response`` - ``density2d`` - ``scatter2d`` - ``scatter3d`` - Complex Plot Functions, which create a figure with several axes, and use one or more Simple Plot functions to populate the axes. They always include a `savefig` argument, which indicates whether to save the figure to a file. If `savefig` is not specified, the plot is maintained in the newly created figure when the function returns. However, if `savefig` is specified, the figure is closed after being saved. The following functions in this module are Complex Plot Functions: - ``density_and_hist`` - ``scatter3d_and_projections`` """ import packaging import packaging.version import collections import numpy as np import scipy.ndimage.filters import matplotlib import matplotlib.scale import matplotlib.transforms import matplotlib.ticker import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.font_manager import FontProperties import warnings # expose the collections module abstract base classes (ABCs) in both # Python 2 and 3 try: # python 3 collectionsAbc = collections.abc except AttributeError: # python 2 collectionsAbc = collections cmap_default = plt.get_cmap('Spectral_r') savefig_dpi = 250 ### # CUSTOM TRANSFORMS ### class _InterpolatedInverseTransform(matplotlib.transforms.Transform): """ Class that inverts a given transform class using interpolation. Parameters ---------- transform : matplotlib.transforms.Transform Transform class to invert. It should be a monotonic transformation. smin : float Minimum value to transform. smax : float Maximum value to transform. resolution : int, optional Number of points to use to evaulate `transform`. Default is 1000. Methods ------- transform_non_affine(x) Apply inverse transformation to a Nx1 numpy array. Notes ----- Upon construction, this class generates an array of `resolution` points between `smin` and `smax`. Next, it evaluates the specified transformation on this array, and both the original and transformed arrays are stored. When calling ``transform_non_affine(x)``, these two arrays are used along with ``np.interp()`` to inverse-transform ``x``. Note that `smin` and `smax` are also transformed and stored. When using ``transform_non_affine(x)``, any values in ``x`` outside the range specified by `smin` and `smax` transformed are masked. """ # ``input_dims``, ``output_dims``, and ``is_separable`` are required by # matplotlib. input_dims = 1 output_dims = 1 is_separable = True def __init__(self, transform, smin, smax, resolution=1000): # Call parent's constructor matplotlib.transforms.Transform.__init__(self) # Store transform object self._transform = transform # Generate input array self._s_range = np.linspace(smin, smax, resolution) # Evaluate provided transformation and store result self._x_range = transform.transform_non_affine(self._s_range) # Transform bounds and store self._xmin = transform.transform_non_affine(smin) self._xmax = transform.transform_non_affine(smax) if self._xmin > self._xmax: self._xmax, self._xmin = self._xmin, self._xmax def transform_non_affine(self, x, mask_out_of_range=True): """ Transform a Nx1 numpy array. Parameters ---------- x : array Data to be transformed. mask_out_of_range : bool, optional Whether to mask input values out of range. Return ------ array or masked array Transformed data. """ # Mask out-of-range values if mask_out_of_range: x_masked = np.ma.masked_where((x < self._xmin) | (x > self._xmax), x) else: x_masked = x # Calculate s and return return np.interp(x_masked, self._x_range, self._s_range) def inverted(self): """ Get an object representing an inverse transformation to this class. Since this class implements the inverse of a given transformation, this function just returns the original transformation. Return ------ matplotlib.transforms.Transform Object implementing the reverse transformation. """ return self._transform class _LogicleTransform(matplotlib.transforms.Transform): """ Class implementing the Logicle transform, from scale to data values. Relevant parameters can be specified manually, or calculated from a given FCSData object. Parameters ---------- T : float Maximum range of data values. If `data` is None, `T` defaults to 262144. If `data` is not None, specifying `T` overrides the default value that would be calculated from `data`. M : float (Asymptotic) number of decades in display scale units. If `data` is None, `M` defaults to 4.5. If `data` is not None, specifying `M` overrides the default value that would be calculated from `data`. W : float Width of linear range in display scale units. If `data` is None, `W` defaults to 0.5. If `data` is not None, specifying `W` overrides the default value that would be calculated from `data`. data : FCSData or numpy array or list of FCSData or numpy array Flow cytometry data from which a set of T, M, and W parameters will be generated. channel : str or int Channel of `data` from which a set of T, M, and W parameters will be generated. `channel` should be specified if `data` is multidimensional. Methods ------- transform_non_affine(s) Apply transformation to a Nx1 numpy array. Notes ----- Logicle scaling combines the advantages of logarithmic and linear scaling. It is useful when data spans several orders of magnitude (when logarithmic scaling would be appropriate) and a significant number of datapoints are negative. Logicle scaling is implemented using the following equation:: x = T * 10**(-(M-W)) * (10**(s-W) \ - (p**2)*10**(-(s-W)/p) + p**2 - 1) This equation transforms data ``s`` expressed in "display scale" units into ``x`` in "data value" units. Parameters in this equation correspond to the class properties. ``p`` and ``W`` are related as follows:: W = 2*p * log10(p) / (p + 1) If a FCSData object or list of FCSData objects is specified along with a channel, the following default logicle parameters are used: T is taken from the largest ``data[i].range(channel)[1]`` or the largest element in ``data[i]`` if ``data[i].range()`` is not available, M is set to the largest of 4.5 and ``4.5 / np.log10(262144) * np.log10(T)``, and W is taken from ``(M - log10(T / abs(r))) / 2``, where ``r`` is the minimum negative event. If no negative events are present, W is set to zero. References ---------- .. [1] <NAME>, <NAME>, <NAME>, "A New Logicle Display Method Avoids Deceptive Effects of Logarithmic Scaling for Low Signals and Compensated Data," Cytometry Part A 69A:541-551, 2006, PMID 16604519. """ # ``input_dims``, ``output_dims``, and ``is_separable`` are required by # matplotlib. input_dims = 1 output_dims = 1 is_separable = True # Locator objects need this object to store the logarithm base used as an # attribute. base = 10 def __init__(self, T=None, M=None, W=None, data=None, channel=None): matplotlib.transforms.Transform.__init__(self) # If data is included, try to obtain T, M and W from it if data is not None: # Convert to list if necessary if not isinstance(data, list): data = [data] # Obtain T, M, and W if not specified # If elements of data have ``.range()``, use it to determine the # max data value. Else, use the maximum value in the array. if T is None: T = 0 for d in data: # Extract channel if d.ndim > 1: if channel is None: msg = "if multidimensional data is provided, a" msg += " channel should be specified" raise ValueError(msg) else: y = d[:, channel] else: y = d if hasattr(y, 'range') and hasattr(y.range, '__call__'): Ti = y.range(0)[1] else: Ti = np.max(y) T = Ti if Ti > T else T if M is None: M = max(4.5, 4.5 / np.log10(262144) * np.log10(T)) if W is None: W = 0 for d in data: # Extract channel if d.ndim > 1: if channel is None: msg = "if multidimensional data is provided, a" msg += " channel should be specified" raise ValueError(msg) else: y = d[:, channel] else: y = d # If negative events are present, use minimum. if np.any(y < 0): r = np.min(y) Wi = (M - np.log10(T / abs(r))) / 2 W = Wi if Wi > W else W else: # Default parameter values if T is None: T = 262144 if M is None: M = 4.5 if W is None: W = 0.5 # Check that property values are valid if T <= 0: raise ValueError("T should be positive") if M <= 0: raise ValueError("M should be positive") if W < 0: raise ValueError("W should not be negative") # Store parameters self._T = T self._M = M self._W = W # Calculate dependent parameter p # It is not possible to analytically obtain ``p`` as a function of W # only, so ``p`` is calculated numerically using a root finding # algorithm. The initial estimate provided to the algorithm is taken # from the asymptotic behavior of the equation as ``p -> inf``. This # results in ``W = 2*log10(p)``. p0 = 10**(W / 2.) # Functions to provide to the root finding algorithm def W_f(p): return 2*p / (p + 1) * np.log10(p) def W_root(p, W_target): return W_f(p) - W_target # Find solution sol = scipy.optimize.root(W_root, x0=p0, args=(W)) # Solution should be unique assert sol.success assert len(sol.x) == 1 # Store solution self._p = sol.x[0] @property def T(self): """ Maximum range of data. """ return self._T @property def M(self): """ (Asymptotic) number of decades in display scale units. """ return self._M @property def W(self): """ Width of linear range in display scale units. """ return self._W def transform_non_affine(self, s): """ Apply transformation to a Nx1 numpy array. Parameters ---------- s : array Data to be transformed in display scale units. Return ------ array or masked array Transformed data, in data value units. """ T = self._T M = self._M W = self._W p = self._p # Calculate x return T * 10**(-(M-W)) * (10**(s-W) - (p**2)*10**(-(s-W)/p) + p**2 - 1) def inverted(self): """ Get an object implementing the inverse transformation. Return ------ _InterpolatedInverseTransform Object implementing the reverse transformation. """ return _InterpolatedInverseTransform(transform=self, smin=0, smax=self._M) ### # CUSTOM TICK LOCATORS AND FORMATTERS ### class _LogicleLocator(matplotlib.ticker.Locator): """ Determine the tick locations for logicle axes. Parameters ---------- transform : _LogicleTransform transform object subs : array, optional Subtick values, as multiples of the main ticks. If None, do not use subticks. """ def __init__(self, transform, subs=None): self._transform = transform if subs is None: self._subs = [1.0] else: self._subs = subs self.numticks = 15 def set_params(self, subs=None, numticks=None): """ Set parameters within this locator. Parameters ---------- subs : array, optional Subtick values, as multiples of the main ticks. numticks : array, optional Number of ticks. """ if numticks is not None: self.numticks = numticks if subs is not None: self._subs = subs def __call__(self): """ Return the locations of the ticks. """ # Note, these are untransformed coordinates vmin, vmax = self.axis.get_view_interval() return self.tick_values(vmin, vmax) def tick_values(self, vmin, vmax): """ Get a set of tick values properly spaced for logicle axis. """ # Extract base from transform object b = self._transform.base # The logicle domain is divided into two regions: A "linear" region, # which may include negative numbers, and a "logarithmic" region, which # only includes positive numbers. These two regions are separated by a # value t, given by the logicle equations. An illustration is given # below. # # -t ==0== t ========> # lin log # # vmin and vmax can be anywhere in this domain, meaning that both should # be greater than -t. # # The logarithmic region will only have major ticks at integral log # positions. The linear region will have a major tick at zero, and one # major tick at the largest absolute integral log value in screen # inside this region. Subticks will be added at multiples of the # integral log positions. # If the linear range is too small, create new transformation object # with slightly wider linear range. Otherwise, the number of decades # below will be infinite if self._transform.W == 0 or \ self._transform.M / self._transform.W > self.numticks: self._transform = _LogicleTransform( T=self._transform.T, M=self._transform.M, W=self._transform.M / self.numticks) # Calculate t t = - self._transform.transform_non_affine(0) # Swap vmin and vmax if necessary if vmax < vmin: vmin, vmax = vmax, vmin # Calculate minimum and maximum limits in scale units vmins = self._transform.inverted().transform_non_affine(vmin) vmaxs = self._transform.inverted().transform_non_affine(vmax) # Check whether linear or log regions are present has_linear = has_log = False if vmin <= t: has_linear = True if vmax > t: has_log = True else: has_log = True # Calculate number of ticks in linear and log regions # The number of ticks is distributed by the fraction that each region # occupies in scale units if has_linear: fraction_linear = (min(vmaxs, 2*self._transform.W) - vmins) / \ (vmaxs - vmins) numticks_linear = np.round(self.numticks*fraction_linear) else: numticks_linear = 0 if has_log: fraction_log = (vmaxs - max(vmins, 2*self._transform.W)) / \ (vmaxs - vmins) numticks_log = np.round(self.numticks*fraction_log) else: numticks_log = 0 # Calculate extended ranges and step size for tick location # Extended ranges take into account discretization. if has_log: # The logarithmic region's range will include from the decade # immediately below the lower end of the region to the decade # immediately above the upper end. # Note that this may extend the logarithmic region to the left. log_ext_range = [np.floor(np.log(max(vmin, t)) / np.log(b)), np.ceil(np.log(vmax) / np.log(b))] # Since a major tick will be located at the lower end of the # extended range, make sure that it is not too close to zero. if vmin <= 0: zero_s = self._transform.inverted().\ transform_non_affine(0) min_tick_space = 1./self.numticks while True: min_tick_s = self._transform.inverted().\ transform_non_affine(b**log_ext_range[0]) if (min_tick_s - zero_s)/(vmaxs - vmins) < min_tick_space \ and ((log_ext_range[0] + 1) < log_ext_range[1]): log_ext_range[0] += 1 else: break # Number of decades in the extended region log_decades = log_ext_range[1] - log_ext_range[0] # The step is at least one decade. if numticks_log > 1: log_step = max(np.floor(float(log_decades)/(numticks_log-1)), 1) else: log_step = 1 else: # Linear region only linear_range = [vmin, vmax] # Initial step size will be one decade below the maximum whole # decade in the range linear_step = _base_down( linear_range[1] - linear_range[0], b) / b # Reduce the step size according to specified number of ticks while (linear_range[1] - linear_range[0])/linear_step > \ numticks_linear: linear_step *= b # Get extended range by discretizing the region limits vmin_ext = np.floor(linear_range[0]/linear_step)*linear_step vmax_ext = np.ceil(linear_range[1]/linear_step)*linear_step linear_range_ext = [vmin_ext, vmax_ext] # Calculate major tick positions major_ticklocs = [] if has_log: # Logarithmic region present # If a linear region is present, add the negative of the lower limit # of the extended log region and zero. Then, add ticks for each # logarithmic step as calculated above. if has_linear: major_ticklocs.append(- b**log_ext_range[0]) major_ticklocs.append(0) # Use nextafter to pick the next floating point number, and try to # include the upper limit in the generated range. major_ticklocs.extend(b ** (np.arange( log_ext_range[0], np.nextafter(log_ext_range[1], np.inf), log_step))) else: # Only linear region present # Draw ticks according to linear step calculated above. # Use nextafter to pick the next floating point number, and try to # include the upper limit in the generated range. major_ticklocs.extend(np.arange( linear_range_ext[0], np.nextafter(linear_range_ext[1], np.inf), linear_step)) major_ticklocs = np.array(major_ticklocs) # Add subticks if requested subs = self._subs if (subs is not None) and (len(subs) > 1 or subs[0] != 1.0): ticklocs = [] if has_log: # Subticks for each major tickloc present for major_tickloc in major_ticklocs: ticklocs.extend(subs * major_tickloc) # Subticks from one decade below the lowest major_ticklocs_pos = major_ticklocs[major_ticklocs > 0] if len(major_ticklocs_pos): tickloc_next_low = np.min(major_ticklocs_pos)/b ticklocs.append(tickloc_next_low) ticklocs.extend(subs * tickloc_next_low) # Subticks for the negative linear range if vmin < 0: ticklocs.extend([(-ti) for ti in ticklocs if ti < -vmin ]) else: ticklocs = list(major_ticklocs) # If zero is present, add ticks from a decade below the lowest if (vmin < 0) and (vmax > 0): major_ticklocs_nonzero = major_ticklocs[ np.nonzero(major_ticklocs)] tickloc_next_low = np.min(np.abs(major_ticklocs_nonzero))/b ticklocs.append(tickloc_next_low) ticklocs.extend(subs * tickloc_next_low) ticklocs.append(-tickloc_next_low) ticklocs.extend(subs * - tickloc_next_low) else: # Subticks not requested ticklocs = major_ticklocs # Remove ticks outside requested range ticklocs = [t for t in ticklocs if (t >= vmin) and (t <= vmax)] return self.raise_if_exceeds(np.array(ticklocs)) def view_limits(self, vmin, vmax): """ Try to choose the view limits intelligently. """ b = self._transform.base if vmax < vmin: vmin, vmax = vmax, vmin if not matplotlib.ticker.is_decade(abs(vmin), b): if vmin < 0: vmin = -_base_up(-vmin, b) else: vmin = _base_down(vmin, b) if not matplotlib.ticker.is_decade(abs(vmax), b): if vmax < 0: vmax = -_base_down(-vmax, b) else: vmax = _base_up(vmax, b) if vmin == vmax: if vmin < 0: vmin = -_base_up(-vmin, b) vmax = -_base_down(-vmax, b) else: vmin = _base_down(vmin, b) vmax = _base_up(vmax, b) result = matplotlib.transforms.nonsingular(vmin, vmax) return result class _ViolinAutoLocator(matplotlib.ticker.MaxNLocator): """ Default linear tick locator aware of min and max violins. Parameters ---------- min_tick_loc : int or float, optional Location of min violin tick. Default is None. max_tick_loc : int or float, optional Location of max violin tick. Default is None. data_lim_min : int or float, optional Location of lower boundary of data, at or below which ticks are not illustrated. Default is None. Other parameters ---------------- See matplotlib.ticker.MaxNLocator. Notes ----- The `nbins` default is 'auto' and the `steps` default is (1, 2, 2.5, 5, 10) to emulate matplotlib.ticker.AutoLocator, which subclasses matplotlib.ticker.MaxNLocator and installs nice defaults. """ default_params = matplotlib.ticker.MaxNLocator.default_params.copy() # use defaults from matplotlib.ticker.AutoLocator default_params['nbins'] = 'auto' default_params['steps'] = (1, 2, 2.5, 5, 10) # add parameters specific to violin plots default_params.update({'min_tick_loc' : None, 'max_tick_loc' : None, 'data_lim_min' : None}) def set_params(self, **kwargs): if 'min_tick_loc' in kwargs: self._min_tick_loc = kwargs.pop('min_tick_loc') if 'max_tick_loc' in kwargs: self._max_tick_loc = kwargs.pop('max_tick_loc') if 'data_lim_min' in kwargs: self._data_lim_min = kwargs.pop('data_lim_min') matplotlib.ticker.MaxNLocator.set_params(self, **kwargs) def tick_values(self, vmin, vmax): locs = list(matplotlib.ticker.MaxNLocator.tick_values(self, vmin=vmin, vmax=vmax)) # if `data_lim_min` is specified, remove all ticks at or below it if self._data_lim_min is not None: locs = [loc for loc in locs if loc > self._data_lim_min] # add min and max violin ticks as appropriate if self._max_tick_loc is not None: locs.insert(0, self._max_tick_loc) if self._min_tick_loc is not None: locs.insert(0, self._min_tick_loc) locs = np.array(locs) return self.raise_if_exceeds(locs) class _ViolinLogLocator(matplotlib.ticker.LogLocator): """ Default log tick locator aware of min, max, and zero violins. Parameters ---------- min_tick_loc : int or float, optional Location of min violin tick. Default is None. max_tick_loc : int or float, optional Location of max violin tick. Default is None. zero_tick_loc : int or float, optional Location of zero violin tick. Default is None. data_lim_min : int or float, optional Location of lower boundary of data, at or below which ticks are not illustrated. Default is None. Other parameters ---------------- See matplotlib.ticker.LogLocator. """ def __init__(self, min_tick_loc=None, max_tick_loc=None, zero_tick_loc=None, data_lim_min=None, **kwargs): self._min_tick_loc = min_tick_loc self._max_tick_loc = max_tick_loc self._zero_tick_loc = zero_tick_loc self._data_lim_min = data_lim_min matplotlib.ticker.LogLocator.__init__(self, **kwargs) def set_params(self, **kwargs): if 'min_tick_loc' in kwargs: self._min_tick_loc = kwargs.pop('min_tick_loc') if 'max_tick_loc' in kwargs: self._max_tick_loc = kwargs.pop('max_tick_loc') if 'zero_tick_loc' in kwargs: self._zero_tick_loc = kwargs.pop('zero_tick_loc') if 'data_lim_min' in kwargs: self._data_lim_min = kwargs.pop('data_lim_min') matplotlib.ticker.LogLocator.set_params(self, **kwargs) def tick_values(self, vmin, vmax): locs = list(matplotlib.ticker.LogLocator.tick_values(self, vmin=vmin, vmax=vmax)) # if `data_lim_min` is specified, remove all ticks at or below it if self._data_lim_min is not None: locs = [loc for loc in locs if loc > self._data_lim_min] # add min, max, and zero violin ticks as appropriate if self._zero_tick_loc is not None: locs.insert(0, self._zero_tick_loc) if self._max_tick_loc is not None: locs.insert(0, self._max_tick_loc) if self._min_tick_loc is not None: locs.insert(0, self._min_tick_loc) locs = np.array(locs) return self.raise_if_exceeds(locs) class _ViolinScalarFormatter(matplotlib.ticker.ScalarFormatter): """ Default linear tick formatter aware of min and max violins. Parameters ---------- min_tick_loc : int or float, optional Location of min violin tick. Default is None. max_tick_loc : int or float, optional Location of max violin tick. Default is None. min_tick_label : str, optional Label of min violin tick. Default='Min'. max_tick_label : str, optional Label of max violin tick. Default='Max'. Other parameters ---------------- See matplotlib.ticker.ScalarFormatter. """ def __init__(self, min_tick_loc=None, max_tick_loc=None, min_tick_label='Min', max_tick_label='Max', **kwargs): self._min_tick_loc = min_tick_loc self._max_tick_loc = max_tick_loc self._min_tick_label = min_tick_label self._max_tick_label = max_tick_label matplotlib.ticker.ScalarFormatter.__init__(self, **kwargs) def __call__(self, x, pos=None): if self._min_tick_loc is not None and x == self._min_tick_loc: return self._min_tick_label if self._max_tick_loc is not None and x == self._max_tick_loc: return self._max_tick_label return matplotlib.ticker.ScalarFormatter.__call__(self, x=x, pos=pos) class _ViolinLogFormatterSciNotation(matplotlib.ticker.LogFormatterSciNotation): """ Default log tick formatter aware of min, max, and zero violins. Parameters ---------- min_tick_loc : int or float, optional Location of min violin tick. Default is None. max_tick_loc : int or float, optional Location of max violin tick. Default is None. zero_tick_loc : int or float, optional Location of zero violin tick. Default is None. min_tick_label : str, optional Label of min violin tick. Default='Min'. max_tick_label : str, optional Label of max violin tick. Default='Max'. zero_tick_label : str, optional Label of zero violin tick. Default is generated by matplotlib.ticker.LogFormatterSciNotation with x=0. Other parameters ---------------- See matplotlib.ticker.LogFormatterSciNotation. """ def __init__(self, min_tick_loc=None, max_tick_loc=None, zero_tick_loc=None, min_tick_label='Min', max_tick_label='Max', zero_tick_label=None, **kwargs): self._min_tick_loc = min_tick_loc self._max_tick_loc = max_tick_loc self._zero_tick_loc = zero_tick_loc self._min_tick_label = min_tick_label self._max_tick_label = max_tick_label if zero_tick_label is None: self._zero_tick_label = \ matplotlib.ticker.LogFormatterSciNotation.__call__(self, x=0) else: self._zero_tick_label = zero_tick_label matplotlib.ticker.LogFormatterSciNotation.__init__(self, **kwargs) def __call__(self, x, pos=None): if self._min_tick_loc is not None and x == self._min_tick_loc: return self._min_tick_label if self._max_tick_loc is not None and x == self._max_tick_loc: return self._max_tick_label if self._zero_tick_loc is not None and x == self._zero_tick_loc: return self._zero_tick_label return matplotlib.ticker.LogFormatterSciNotation.__call__(self, x=x, pos=pos) ### # CUSTOM SCALES ### def _base_down(x, base=10): """ Floor `x` to the nearest lower ``base^n``, where ``n`` is an integer. Parameters ---------- x : float Number to calculate the floor from. base : float, optional Base used to calculate the floor. Return ------ float The nearest lower ``base^n`` from `x`, where ``n`` is an integer. """ if x == 0.0: return -base lx = np.floor(np.log(x) / np.log(base)) return base ** lx def _base_up(x, base=10): """ Ceil `x` to the nearest higher ``base^n``, where ``n`` is an integer. Parameters ---------- x : float Number to calculate the ceiling from. base : float, optional Base used to calculate the ceiling. Return ------ float The nearest higher ``base^n`` from `x`, where ``n`` is an integer. """ if x == 0.0: return base lx = np.ceil(
np.log(x)
numpy.log
from bisect import bisect_left, bisect_right import numpy from datetime import date, datetime import pytz from affine import Affine from netCDF4 import num2date, date2num, Variable from pyproj import Proj import six from trefoil.geometry.bbox import BBox from trefoil.utilities.window import Window from trefoil.netcdf.utilities import get_ncattrs from trefoil.netcdf.crs import PROJ4_GEOGRAPHIC class CoordinateVariable(object): """ Wraps a one-dimensional variable with the same name as a dimension (http://www.unidata.ucar.edu/software/netcdf/docs/BestPractices.html). """ def __init__(self, input): """ A Coordinate Variable can be created from a netCDF dataset variable or a numpy array. :param input: variable in a netCDF dataset or a numpy array """ self._ncattrs = dict() if isinstance(input, Variable): self.values = input[:] for attr in input.ncattrs(): if not attr == '_FillValue': self._ncattrs[attr] = input.getncattr(attr) else: self.values = input[:].copy() def __len__(self): return self.values.shape[0] def is_ascending_order(self): return self.values[0] < self.values[1] def indices_for_range(self, start, stop): """ Returns the indices in this variable for the start and stop values :param start: start value :param stop: stop value :return: start and stop indices """ assert stop > start if start > self.values.max(): return self.values.size - 1, self.values.size - 1 elif stop < self.values.min(): return 0, 0 if self.is_ascending_order(): start_index = min(self.values.searchsorted(start), self.values.size - 1) # Need to move 1 index to the left unless we matched an index closely (allowing for precision errors) if start_index > 0 and not numpy.isclose(start, self.values[start_index]): start_index -= 1 stop_index = min(self.values.searchsorted(stop), self.values.size - 1) if not numpy.isclose(stop, self.values[stop_index]) and stop < self.values[stop_index]: stop_index -= 1 return start_index, stop_index else: # If values are not ascending, they need to be reversed temp = self.values[::-1] start_index = min(temp.searchsorted(start), temp.size - 1) if start_index > 0 and not numpy.isclose(start, temp[start_index]): start_index -= 1 stop_index = min(temp.searchsorted(stop), temp.size - 1) if not numpy.isclose(stop, temp[stop_index]) and stop < temp[stop_index]: stop_index -= 1 size = self.values.size - 1 return max(size - stop_index, 0), max(size - start_index, 0) def slice_by_range(self, start, stop): """ Slices a subset of values between start and stop values. :param start: start value :param stop: stop value :return: sliced view of self.values. Make sure to copy this before altering it! """ assert stop > start if start >= self.values.max() or stop <= self.values.min(): return numpy.array([]) start_index, stop_index = self.indices_for_range(start, stop) return self.values[start_index:stop_index+1] def add_to_dataset(self, dataset, name, is_unlimited=False, **kwargs): """ :param dataset: name of the dataset to add the dimension and variable to :param name: name of the dimension and variable :param is_unlimited: set the dimension as unlimited :param kwargs: creation options for output variable. Should be limited to compression info. :return: the newly created variable """ if name in dataset.variables: raise Exception("Variable already exists in dataset") if name in dataset.dimensions: dimension = dataset.dimensions[name] if is_unlimited != dimension.isunlimited() or len(self) != len(dimension): raise Exception("Dimension already exists in dataset, but has different size") else: dimension_length = None if is_unlimited else len(self) dataset.createDimension(name, dimension_length) if 'fill_value' not in kwargs: fill_value = getattr(self.values, 'fill_value', None) if fill_value is not None: kwargs['fill_value'] = fill_value if self.values.dtype.char == 'S': variable = dataset.createVariable(name, 'string', (name,), **kwargs) # Have to write each index at a time, and cast to string. Not optimal but seems to be the only way allowed by netCDF4. for index, value in enumerate(self.values): variable[index] = str(value) else: variable = dataset.createVariable(name, self.values.dtype, (name,), **kwargs) variable[:] = self.values[:] for att, value in six.iteritems(self._ncattrs): variable.setncattr(att, value) return variable class BoundsCoordinateVariable(CoordinateVariable): """ Wraps a two-dimensional variable representing bounds. Shape is always (N, 2). Useful for representing time ranges, etc. Example: http://www.cgd.ucar.edu/cms/eaton/netcdf/CF-20010629.htm#grid_ex4 """ def is_ascending_order(self): return self.values[0][0] < self.values[1][0] def indices_for_range(self, start, stop): raise NotImplementedError("Not yet implemented") def add_to_dataset(self, dataset, name, is_unlimited=False, **kwargs): """ :param dataset: name of the dataset to add the dimension and variable to :param name: name of the dimension and variable. Note: a new dimension for the bounds '_bnds' will be created. :param is_unlimited: set the dimension as unlimited :param kwargs: creation options for output variable. Should be limited to compression info. :return: the newly created variable """ if name in dataset.variables: raise Exception("Variable already exists in dataset") bounds_dimension_name = '_bnds' if bounds_dimension_name in dataset.dimensions: if len(dataset.dimensions[bounds_dimension_name]) != 2: raise ValueError('Bounds dimension _bnds is already present in dataset and not of size 2') else: dataset.createDimension(bounds_dimension_name, 2) if name in dataset.dimensions: dimension = dataset.dimensions[name] if is_unlimited != dimension.isunlimited() or len(self) != len(dimension): raise Exception("Dimension already exists in dataset, but has different size") else: dimension_length = None if is_unlimited else len(self) dataset.createDimension(name, dimension_length) fill_value = getattr(self.values, 'fill_value', None) if fill_value is not None: kwargs['fill_value'] = fill_value variable = dataset.createVariable(name, self.values.dtype, (name,bounds_dimension_name), **kwargs) variable[:] = self.values[:] for att, value in six.iteritems(self._ncattrs): variable.setncattr(att, value) return variable class SpatialCoordinateVariable(CoordinateVariable): """ Abstracts properties for a given spatial dimension (e.g., longitude). Assumes that pixels follow a regular grid, and that dimension values represent centroids """ @property def min(self): return self.values.min() @property def max(self): return self.values.max() @property def pixel_size(self): return float(abs(self.values[1] - self.values[0])) @property def edges(self): """ Return coordinates of pixel edges from the min to the max """ pixel_size = self.pixel_size if self.is_ascending_order(): temp = numpy.append(self.values, self.values[-1] + pixel_size) else: temp = numpy.append(self.values[0] + pixel_size, self.values) return temp - (pixel_size / 2.0) def get_offset_for_subset(self, coordinate_variable): """ Find the offset index of coordinate_variable within this coordinate variable. This assumes that coordinate_variable is a subset of this one, and that coordinates and projections match. """ assert len(coordinate_variable) <= self.values.shape[0] #TODO: make this a fuzzy match within a certain decimal precision return list(self.values).index(coordinate_variable.values[0]) class SpatialCoordinateVariables(object): """ Encapsulates x and y coordinates with projection information """ def __init__(self, x, y, projection): assert isinstance(x, SpatialCoordinateVariable) assert isinstance(y, SpatialCoordinateVariable) if projection is not None: assert isinstance(projection, Proj) self.x = x self.y = y self.projection = projection @property def shape(self): return (len(self.y), len(self.x)) @property def bbox(self): half_x_pixel_size = self.x.pixel_size / 2.0 half_y_pixel_size = self.y.pixel_size / 2.0 return BBox( ( self.x.min - half_x_pixel_size, self.y.min - half_y_pixel_size, self.x.max + half_x_pixel_size, self.y.max + half_y_pixel_size ), self.projection ) @property def affine(self): bbox = self.bbox return Affine( self.x.pixel_size, 0, # Not used bbox.xmin, 0, # Not used self.y.values[1] - self.y.values[0], # Negative if y is descending bbox.ymin if self.y.is_ascending_order() else bbox.ymax ) @classmethod def from_dataset(cls, dataset, x_name='longitude', y_name='latitude', projection=None): """ Return a SpatialCoordinateVariables object for a dataset :param dataset: netCDF dataset :param x_varname: name of the x dimension :param y_varname: name of the y dimension :param projection: pyproj Proj object :return: CoordinateVariables instance """ #TODO: detect x and y names, and projection if projection is None and x_name == 'longitude': projection = Proj(PROJ4_GEOGRAPHIC) return cls( SpatialCoordinateVariable(dataset.variables[x_name]), SpatialCoordinateVariable(dataset.variables[y_name]), projection ) @staticmethod def from_bbox(bbox, x_size, y_size, dtype='float32', y_ascending=False): """ Return a SpatialCoordinateVariables object from BBox and dimensions :param bbox: instance of a BBox, must have a projection :param x_size: number of pixels in x dimension (width or number of columns) :param y_size: number of pixels in y dimension (height or number of rows) :param dtype: data type (string or numpy dtype object) of values :param y_ascending: by default, y values are anchored from top left and are descending; if True, this inverts that order :return: CoordinateVariables instance, assuming that rows are ordered in decreasing value """ assert isinstance(bbox, BBox) if not bbox.projection: raise ValueError('bbox projection must be defined') x_pixel_size = (bbox.xmax - bbox.xmin) / float(x_size) y_pixel_size = (bbox.ymax - bbox.ymin) / float(y_size) x_arr = numpy.arange(x_size, dtype=dtype) x_arr *= x_pixel_size x_arr += (bbox.xmin + x_pixel_size / 2.0) if y_ascending: y_arr =
numpy.arange(y_size, dtype=dtype)
numpy.arange
import numpy as np X_METER_PER_PIXEL = 3.7/700 Y_METER_PER_PIXEL = 30/720 to_meters = np.array([[X_METER_PER_PIXEL, 0], [0, Y_METER_PER_PIXEL]]) def in_meters(point): return np.dot(point, to_meters) class Lanes: def __init__(self, left, right): self.left = left self.right = right def distance_from_center(self, center): center = in_meters(center) center_x, center_y = center right_x = self.right.meters.p(center_y) left_x = self.left.meters.p(center_y) return ((right_x + left_x)/2 - center_x) def lane_distance(self, y): _, y = in_meters((0, y)) return (self.right.meters.p(y) - self.left.meters.p(y)) def lanes_parallel(self, height, samples=50): distance_per_sample = height // samples distances = [] for y in range(0, height, distance_per_sample): distances.append(self.lane_distance(y)) std2 = 2*np.std(distances) mean = np.mean(distances) arr =
np.array(distances)
numpy.array
"""Tests for the array padding functions. """ import pytest import numpy as np from numpy.testing import assert_array_equal, assert_allclose, assert_equal from numpy.lib.arraypad import _as_pairs _numeric_dtypes = ( np.sctypes["uint"] + np.sctypes["int"] + np.sctypes["float"] + np.sctypes["complex"] ) _all_modes = { 'constant': {'constant_values': 0}, 'edge': {}, 'linear_ramp': {'end_values': 0}, 'maximum': {'stat_length': None}, 'mean': {'stat_length': None}, 'median': {'stat_length': None}, 'minimum': {'stat_length': None}, 'reflect': {'reflect_type': 'even'}, 'symmetric': {'reflect_type': 'even'}, 'wrap': {}, 'empty': {} } class TestAsPairs(object): def test_single_value(self): """Test casting for a single value.""" expected = np.array([[3, 3]] * 10) for x in (3, [3], [[3]]): result = _as_pairs(x, 10) assert_equal(result, expected) # Test with dtype=object obj = object() assert_equal( _as_pairs(obj, 10), np.array([[obj, obj]] * 10) ) def test_two_values(self): """Test proper casting for two different values.""" # Broadcasting in the first dimension with numbers expected = np.array([[3, 4]] * 10) for x in ([3, 4], [[3, 4]]): result = _as_pairs(x, 10) assert_equal(result, expected) # and with dtype=object obj = object() assert_equal( _as_pairs(["a", obj], 10), np.array([["a", obj]] * 10) ) # Broadcasting in the second / last dimension with numbers assert_equal( _as_pairs([[3], [4]], 2), np.array([[3, 3], [4, 4]]) ) # and with dtype=object assert_equal( _as_pairs([["a"], [obj]], 2), np.array([["a", "a"], [obj, obj]]) ) def test_with_none(self): expected = ((None, None), (None, None), (None, None)) assert_equal( _as_pairs(None, 3, as_index=False), expected ) assert_equal( _as_pairs(None, 3, as_index=True), expected ) def test_pass_through(self): """Test if `x` already matching desired output are passed through.""" expected = np.arange(12).reshape((6, 2)) assert_equal( _as_pairs(expected, 6), expected ) def test_as_index(self): """Test results if `as_index=True`.""" assert_equal( _as_pairs([2.6, 3.3], 10, as_index=True), np.array([[3, 3]] * 10, dtype=np.intp) ) assert_equal( _as_pairs([2.6, 4.49], 10, as_index=True), np.array([[3, 4]] * 10, dtype=np.intp) ) for x in (-3, [-3], [[-3]], [-3, 4], [3, -4], [[-3, 4]], [[4, -3]], [[1, 2]] * 9 + [[1, -2]]): with pytest.raises(ValueError, match="negative values"): _as_pairs(x, 10, as_index=True) def test_exceptions(self): """Ensure faulty usage is discovered.""" with pytest.raises(ValueError, match="more dimensions than allowed"): _as_pairs([[[3]]], 10) with pytest.raises(ValueError, match="could not be broadcast"): _as_pairs([[1, 2], [3, 4]], 3) with pytest.raises(ValueError, match="could not be broadcast"): _as_pairs(np.ones((2, 3)), 3) class TestConditionalShortcuts(object): @pytest.mark.parametrize("mode", _all_modes.keys()) def test_zero_padding_shortcuts(self, mode): test = np.arange(120).reshape(4, 5, 6) pad_amt = [(0, 0) for _ in test.shape] assert_array_equal(test, np.pad(test, pad_amt, mode=mode)) @pytest.mark.parametrize("mode", ['maximum', 'mean', 'median', 'minimum',]) def test_shallow_statistic_range(self, mode): test = np.arange(120).reshape(4, 5, 6) pad_amt = [(1, 1) for _ in test.shape] assert_array_equal(np.pad(test, pad_amt, mode='edge'), np.pad(test, pad_amt, mode=mode, stat_length=1)) @pytest.mark.parametrize("mode", ['maximum', 'mean', 'median', 'minimum',]) def test_clip_statistic_range(self, mode): test = np.arange(30).reshape(5, 6) pad_amt = [(3, 3) for _ in test.shape] assert_array_equal(np.pad(test, pad_amt, mode=mode), np.pad(test, pad_amt, mode=mode, stat_length=30)) class TestStatistic(object): def test_check_mean_stat_length(self): a = np.arange(100).astype('f') a = np.pad(a, ((25, 20), ), 'mean', stat_length=((2, 3), )) b = np.array( [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., 98., 98., 98., 98., 98., 98., 98., 98., 98., 98., 98., 98., 98., 98., 98., 98., 98., 98., 98., 98. ]) assert_array_equal(a, b) def test_check_maximum_1(self): a = np.arange(100) a = np.pad(a, (25, 20), 'maximum') b = np.array( [99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99] ) assert_array_equal(a, b) def test_check_maximum_2(self): a = np.arange(100) + 1 a = np.pad(a, (25, 20), 'maximum') b = np.array( [100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100] ) assert_array_equal(a, b) def test_check_maximum_stat_length(self): a = np.arange(100) + 1 a = np.pad(a, (25, 20), 'maximum', stat_length=10) b = np.array( [10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100] ) assert_array_equal(a, b) def test_check_minimum_1(self): a = np.arange(100) a = np.pad(a, (25, 20), 'minimum') b = np.array( [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) assert_array_equal(a, b) def test_check_minimum_2(self): a = np.arange(100) + 2 a = np.pad(a, (25, 20), 'minimum') b = np.array( [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] ) assert_array_equal(a, b) def test_check_minimum_stat_length(self): a = np.arange(100) + 1 a = np.pad(a, (25, 20), 'minimum', stat_length=10) b = np.array( [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91] ) assert_array_equal(a, b) def test_check_median(self): a = np.arange(100).astype('f') a = np.pad(a, (25, 20), 'median') b = np.array( [49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5] ) assert_array_equal(a, b) def test_check_median_01(self): a = np.array([[3, 1, 4], [4, 5, 9], [9, 8, 2]]) a = np.pad(a, 1, 'median') b = np.array( [[4, 4, 5, 4, 4], [3, 3, 1, 4, 3], [5, 4, 5, 9, 5], [8, 9, 8, 2, 8], [4, 4, 5, 4, 4]] ) assert_array_equal(a, b) def test_check_median_02(self): a = np.array([[3, 1, 4], [4, 5, 9], [9, 8, 2]]) a = np.pad(a.T, 1, 'median').T b = np.array( [[5, 4, 5, 4, 5], [3, 3, 1, 4, 3], [5, 4, 5, 9, 5], [8, 9, 8, 2, 8], [5, 4, 5, 4, 5]] ) assert_array_equal(a, b) def test_check_median_stat_length(self): a = np.arange(100).astype('f') a[1] = 2. a[97] = 96. a = np.pad(a, (25, 20), 'median', stat_length=(3, 5)) b = np.array( [ 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 0., 2., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95., 96., 96., 98., 99., 96., 96., 96., 96., 96., 96., 96., 96., 96., 96., 96., 96., 96., 96., 96., 96., 96., 96., 96., 96.] ) assert_array_equal(a, b) def test_check_mean_shape_one(self): a = [[4, 5, 6]] a = np.pad(a, (5, 7), 'mean', stat_length=2) b = np.array( [[4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6]] ) assert_array_equal(a, b) def test_check_mean_2(self): a = np.arange(100).astype('f') a = np.pad(a, (25, 20), 'mean') b = np.array( [49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5] ) assert_array_equal(a, b) @pytest.mark.parametrize("mode", [ "mean", "median", "minimum", "maximum" ]) def test_same_prepend_append(self, mode): """ Test that appended and prepended values are equal """ # This test is constructed to trigger floating point rounding errors in # a way that caused gh-11216 for mode=='mean' a = np.array([-1, 2, -1]) + np.array([0, 1e-12, 0], dtype=np.float64) a = np.pad(a, (1, 1), mode)
assert_equal(a[0], a[-1])
numpy.testing.assert_equal
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for slim.data.tfexample_decoder.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.slim.python.slim.data import tfexample_decoder from tensorflow.core.example import example_pb2 from tensorflow.core.example import feature_pb2 from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import image_ops from tensorflow.python.ops import lookup_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.platform import test class TFExampleDecoderTest(test.TestCase): def _EncodedFloatFeature(self, ndarray): return feature_pb2.Feature(float_list=feature_pb2.FloatList( value=ndarray.flatten().tolist())) def _EncodedInt64Feature(self, ndarray): return feature_pb2.Feature(int64_list=feature_pb2.Int64List( value=ndarray.flatten().tolist())) def _EncodedBytesFeature(self, tf_encoded): with self.test_session(): encoded = tf_encoded.eval() def BytesList(value): return feature_pb2.BytesList(value=[value]) return feature_pb2.Feature(bytes_list=BytesList(encoded)) def _BytesFeature(self, ndarray): values = ndarray.flatten().tolist() for i in range(len(values)): values[i] = values[i].encode('utf-8') return feature_pb2.Feature(bytes_list=feature_pb2.BytesList(value=values)) def _StringFeature(self, value): value = value.encode('utf-8') return feature_pb2.Feature(bytes_list=feature_pb2.BytesList(value=[value])) def _Encoder(self, image, image_format): assert image_format in ['jpeg', 'JPEG', 'png', 'PNG', 'raw', 'RAW'] if image_format in ['jpeg', 'JPEG']: tf_image = constant_op.constant(image, dtype=dtypes.uint8) return image_ops.encode_jpeg(tf_image) if image_format in ['png', 'PNG']: tf_image = constant_op.constant(image, dtype=dtypes.uint8) return image_ops.encode_png(tf_image) if image_format in ['raw', 'RAW']: return constant_op.constant(image.tostring(), dtype=dtypes.string) def GenerateImage(self, image_format, image_shape): """Generates an image and an example containing the encoded image. Args: image_format: the encoding format of the image. image_shape: the shape of the image to generate. Returns: image: the generated image. example: a TF-example with a feature key 'image/encoded' set to the serialized image and a feature key 'image/format' set to the image encoding format ['jpeg', 'JPEG', 'png', 'PNG', 'raw']. """ num_pixels = image_shape[0] * image_shape[1] * image_shape[2] image = np.linspace( 0, num_pixels - 1, num=num_pixels).reshape(image_shape).astype(np.uint8) tf_encoded = self._Encoder(image, image_format) example = example_pb2.Example(features=feature_pb2.Features(feature={ 'image/encoded': self._EncodedBytesFeature(tf_encoded), 'image/format': self._StringFeature(image_format) })) return image, example.SerializeToString() def DecodeExample(self, serialized_example, item_handler, image_format): """Decodes the given serialized example with the specified item handler. Args: serialized_example: a serialized TF example string. item_handler: the item handler used to decode the image. image_format: the image format being decoded. Returns: the decoded image found in the serialized Example. """ serialized_example = array_ops.reshape(serialized_example, shape=[]) decoder = tfexample_decoder.TFExampleDecoder( keys_to_features={ 'image/encoded': parsing_ops.FixedLenFeature( (), dtypes.string, default_value=''), 'image/format': parsing_ops.FixedLenFeature( (), dtypes.string, default_value=image_format), }, items_to_handlers={'image': item_handler}) [tf_image] = decoder.decode(serialized_example, ['image']) return tf_image def RunDecodeExample(self, serialized_example, item_handler, image_format): tf_image = self.DecodeExample(serialized_example, item_handler, image_format) with self.test_session(): decoded_image = tf_image.eval() # We need to recast them here to avoid some issues with uint8. return decoded_image.astype(np.float32) def testDecodeExampleWithJpegEncoding(self): image_shape = (2, 3, 3) image, serialized_example = self.GenerateImage( image_format='jpeg', image_shape=image_shape) decoded_image = self.RunDecodeExample( serialized_example, tfexample_decoder.Image(), image_format='jpeg') # Need to use a tolerance of 1 because of noise in the jpeg encode/decode self.assertAllClose(image, decoded_image, atol=1.001) def testDecodeExampleWithJPEGEncoding(self): test_image_channels = [1, 3] for channels in test_image_channels: image_shape = (2, 3, channels) image, serialized_example = self.GenerateImage( image_format='JPEG', image_shape=image_shape) decoded_image = self.RunDecodeExample( serialized_example, tfexample_decoder.Image(channels=channels), image_format='JPEG') # Need to use a tolerance of 1 because of noise in the jpeg encode/decode self.assertAllClose(image, decoded_image, atol=1.001) def testDecodeExampleWithNoShapeInfo(self): test_image_channels = [1, 3] for channels in test_image_channels: image_shape = (2, 3, channels) _, serialized_example = self.GenerateImage( image_format='jpeg', image_shape=image_shape) tf_decoded_image = self.DecodeExample( serialized_example, tfexample_decoder.Image( shape=None, channels=channels), image_format='jpeg') self.assertEqual(tf_decoded_image.get_shape().ndims, 3) def testDecodeExampleWithPngEncoding(self): test_image_channels = [1, 3, 4] for channels in test_image_channels: image_shape = (2, 3, channels) image, serialized_example = self.GenerateImage( image_format='png', image_shape=image_shape) decoded_image = self.RunDecodeExample( serialized_example, tfexample_decoder.Image(channels=channels), image_format='png') self.assertAllClose(image, decoded_image, atol=0) def testDecodeExampleWithPNGEncoding(self): test_image_channels = [1, 3, 4] for channels in test_image_channels: image_shape = (2, 3, channels) image, serialized_example = self.GenerateImage( image_format='PNG', image_shape=image_shape) decoded_image = self.RunDecodeExample( serialized_example, tfexample_decoder.Image(channels=channels), image_format='PNG') self.assertAllClose(image, decoded_image, atol=0) def testDecodeExampleWithRawEncoding(self): image_shape = (2, 3, 3) image, serialized_example = self.GenerateImage( image_format='raw', image_shape=image_shape) decoded_image = self.RunDecodeExample( serialized_example, tfexample_decoder.Image(shape=image_shape), image_format='raw') self.assertAllClose(image, decoded_image, atol=0) def testDecodeExampleWithRAWEncoding(self): image_shape = (2, 3, 3) image, serialized_example = self.GenerateImage( image_format='RAW', image_shape=image_shape) decoded_image = self.RunDecodeExample( serialized_example, tfexample_decoder.Image(shape=image_shape), image_format='RAW') self.assertAllClose(image, decoded_image, atol=0) def testDecodeExampleWithJpegEncodingAt16BitCausesError(self): image_shape = (2, 3, 3) unused_image, serialized_example = self.GenerateImage( image_format='jpeg', image_shape=image_shape) # decode_raw support uint16 now so ValueError will be thrown instead. with self.assertRaisesRegexp( ValueError, 'true_fn and false_fn must have the same type: uint16, uint8'): unused_decoded_image = self.RunDecodeExample( serialized_example, tfexample_decoder.Image(dtype=dtypes.uint16), image_format='jpeg') def testDecodeExampleWithStringTensor(self): tensor_shape = (2, 3, 1) np_array = np.array([[['ab'], ['cd'], ['ef']], [['ghi'], ['jkl'], ['mnop']]]) example = example_pb2.Example(features=feature_pb2.Features(feature={ 'labels': self._BytesFeature(np_array), })) serialized_example = example.SerializeToString() with self.test_session(): serialized_example = array_ops.reshape(serialized_example, shape=[]) keys_to_features = { 'labels': parsing_ops.FixedLenFeature( tensor_shape, dtypes.string, default_value=constant_op.constant( '', shape=tensor_shape, dtype=dtypes.string)) } items_to_handlers = {'labels': tfexample_decoder.Tensor('labels'),} decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) [tf_labels] = decoder.decode(serialized_example, ['labels']) labels = tf_labels.eval() labels = labels.astype(np_array.dtype) self.assertTrue(np.array_equal(np_array, labels)) def testDecodeExampleWithFloatTensor(self): np_array = np.random.rand(2, 3, 1).astype('f') example = example_pb2.Example(features=feature_pb2.Features(feature={ 'array': self._EncodedFloatFeature(np_array), })) serialized_example = example.SerializeToString() with self.test_session(): serialized_example = array_ops.reshape(serialized_example, shape=[]) keys_to_features = { 'array': parsing_ops.FixedLenFeature(np_array.shape, dtypes.float32) } items_to_handlers = {'array': tfexample_decoder.Tensor('array'),} decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) [tf_array] = decoder.decode(serialized_example, ['array']) self.assertAllEqual(tf_array.eval(), np_array) def testDecodeExampleWithInt64Tensor(self): np_array = np.random.randint(1, 10, size=(2, 3, 1)) example = example_pb2.Example(features=feature_pb2.Features(feature={ 'array': self._EncodedInt64Feature(np_array), })) serialized_example = example.SerializeToString() with self.test_session(): serialized_example = array_ops.reshape(serialized_example, shape=[]) keys_to_features = { 'array': parsing_ops.FixedLenFeature(np_array.shape, dtypes.int64) } items_to_handlers = {'array': tfexample_decoder.Tensor('array'),} decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) [tf_array] = decoder.decode(serialized_example, ['array']) self.assertAllEqual(tf_array.eval(), np_array) def testDecodeExampleWithVarLenTensor(self): np_array = np.array([[[1], [2], [3]], [[4], [5], [6]]]) example = example_pb2.Example(features=feature_pb2.Features(feature={ 'labels': self._EncodedInt64Feature(np_array), })) serialized_example = example.SerializeToString() with self.test_session(): serialized_example = array_ops.reshape(serialized_example, shape=[]) keys_to_features = { 'labels': parsing_ops.VarLenFeature(dtype=dtypes.int64), } items_to_handlers = {'labels': tfexample_decoder.Tensor('labels'),} decoder = tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) [tf_labels] = decoder.decode(serialized_example, ['labels']) labels = tf_labels.eval() self.assertAllEqual(labels, np_array.flatten()) def testDecodeExampleWithFixLenTensorWithShape(self): np_array =
np.array([[1, 2, 3], [4, 5, 6]])
numpy.array
import cv2 import numpy as np def draw(scale, width, div, grad1, color1, color2, color3, lines, angle, pad, grad2, color4, color5): assert scale > 0 and scale % 2 == 1 assert 0 < width assert 0 < div assert 0 <= grad1 <= 100 assert 0 <= color1[0] <= 255 and 0 <= color1[1] <= 255 and 0 <= color1[2] <= 255 assert 0 <= color2[0] <= 255 and 0 <= color2[1] <= 255 and 0 <= color2[2] <= 255 assert 0 <= color3[0] <= 255 and 0 <= color3[1] <= 255 and 0 <= color3[2] <= 255 assert 0 < lines assert 0 <= angle < 360 assert 0 <= pad assert 0 <= grad2 <= 100 assert 0 <= color4[0] <= 255 and 0 <= color4[1] <= 255 and 0 <= color4[2] <= 255 assert 0 <= color5[0] <= 255 and 0 <= color5[1] <= 255 and 0 <= color5[2] <= 255 x = __draw1(scale, width, div, grad1, color1, color2, color3) x = __draw2(x, lines) x = __draw3(x, angle) x = __draw4(x, scale, pad, grad2, color4, color5) return np.clip(x, 0, 255).astype(np.uint8) def __draw1(scale, width, div, grad1, color1, color2, color3): width = width*scale grad1 = (grad1*width) // 100 x0 = np.zeros((1, width, 3), dtype=np.uint8) x0[:] = color1 x1 = np.zeros((1, width, 3), dtype=np.uint8) x1[:] = color2 one = np.ones((grad1,), dtype=np.float32) one_to_zero = np.linspace( 1, 0, width-grad1, endpoint=False, dtype=np.float32) one_to_zero = one_to_zero*one_to_zero * \ (3-2*one_to_zero) # 3rd order interpolation gradation = np.r_[one, one_to_zero] gradation = gradation[None, :, None] x = x0 * gradation + x1 * (1-gradation) pos = np.arange(width) mask_width = pos // div mask_width[mask_width < scale] = scale mask_width[(mask_width > mask_width[-1]-scale) & (mask_width < mask_width[-1])] = mask_width[-1] - scale pos_in_segment = ((pos * div) % width) // div mask = (pos_in_segment <= mask_width) x[:, mask, :] = color3 return x def __draw2(x, lines): width = x.shape[1] pos = np.arange(width) mask = ((pos*lines) // width) % 2 == 0 xx = np.zeros((width, width, 3), dtype=np.float32) xx[mask] = x xx[~mask] = x[:, ::-1] return xx def __draw3(x, angle): # add alpha channel x = cv2.cvtColor(x, cv2.COLOR_BGR2BGRA) # rotate coarsely if angle < 90: pass elif angle < 180: angle -= 90 x = cv2.rotate(x, cv2.ROTATE_90_COUNTERCLOCKWISE) elif angle < 270: angle -= 180 x = cv2.rotate(x, cv2.ROTATE_180) elif angle < 360: angle -= 270 x = cv2.rotate(x, cv2.ROTATE_90_CLOCKWISE) # rotate finely if angle > 0: adjust = np.sqrt(2) * np.sin(angle/180*np.pi + np.pi/4) trans = cv2.getRotationMatrix2D((0, 0), angle, 1) width = x.shape[1] trans[1, 2] = width*np.sin(angle/180*np.pi) x = cv2.warpAffine(x, trans, (int(adjust*width)+1, int(adjust*width)+1), flags=cv2.INTER_NEAREST) return x def __draw4(x, scale, pad, grad2, color3, color4): x_width = x.shape[1] pad = pad*scale width = x_width+pad*2 grad2 = (grad2*width) // 100 bk1 = np.zeros((width, width, 3), dtype=np.float32) bk1[:] = color3 bk2 =
np.zeros((width, width, 3), dtype=np.float32)
numpy.zeros
import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import griddata import osmnx as ox import networkx as nx from analogistics.chart.chart_3D_surface import createFigureWith3Dsurface from analogistics.supply_chain.P8_performance_assessment.utilities_movements import getCoverageStats from analogistics.clean import cleanUsingIQR from sklearn.metrics import mean_squared_error from sklearn import cluster from sklearn.mixture import GaussianMixture def mercatorProjection(latitude: float, longitude: float): """ Return the Mercator projection coordinates of given latitude and longitude Args: latitude (float): Latitude of a point. longitude (float): Longitude of a point. Returns: x (TYPE): Mercator X coordinate. y (TYPE): Mercator Y coordinate. """ R = 6378.14 # earth's ray e = 0.0167 # earth's eccentricity lon_rad = (np.pi / 180) * longitude lat_rad = (np.pi / 180) * latitude x = R * lon_rad y = R * np.log(((1 - e * np.sin(lat_rad)) / (1 + e * np.sin(lat_rad))) ** (e / 2) * np.tan(np.pi / 4 + lat_rad / 2)) return x, y def optimalLocationRectangularDistance(D_filtered: pd.DataFrame, latCol: str, lonCol: str, weightCol: str): """ this function returns the optimal location based on rectangular distances Args: D_filtered (pd.DataFrame): Input dataframe. latCol (str): Column name containing latitude. lonCol (str): Column name containing longitude. weightCol (str): Column name containing weight (e.g. production quantity or flows). Returns: lat_optimal (TYPE): Optimal latitude. lon_optimal (TYPE): Optimal longitude. """ # optimal location op_w = sum(D_filtered[weightCol]) / 2 # identify the median of the sum of weights # identify optimal latitude if len(D_filtered) > 1: # when there are more than a single point D_filtered = D_filtered.sort_values(by=latCol, ascending=True) # sort by latitude D_filtered['X_cumsum'] = D_filtered[weightCol].cumsum() # calculate the cumulated sum # identify the LATITUDE closer to the optimal location D_opt_x_max = D_filtered[D_filtered['X_cumsum'] >= op_w].iloc[0] D_opt_x_min = D_filtered[D_filtered['X_cumsum'] < op_w].iloc[-1] x_array = [D_opt_x_min['X_cumsum'], D_opt_x_max['X_cumsum']] y_array = [D_opt_x_min[latCol], D_opt_x_max[latCol]] lat_optimal = np.interp(op_w, x_array, y_array) # identify the LONGITUDE closer to the optimal location D_filtered = D_filtered.sort_values(by=lonCol, ascending=True) # sort by latitude D_filtered['Y_cumsum'] = D_filtered[weightCol].cumsum() # calculate the cumulated sum D_opt_x_max = D_filtered[D_filtered['Y_cumsum'] >= op_w].iloc[0] D_opt_x_min = D_filtered[D_filtered['Y_cumsum'] < op_w].iloc[-1] x_array = [D_opt_x_min['Y_cumsum'], D_opt_x_max['Y_cumsum']] y_array = [D_opt_x_min[lonCol], D_opt_x_max[lonCol]] lon_optimal = np.interp(op_w, x_array, y_array) else: # with a single point take the coordinates of the point lat_optimal = float(D_filtered.iloc[0][latCol]) lon_optimal = float(D_filtered.iloc[0][lonCol]) return lat_optimal, lon_optimal def optimalLocationGravityProblem(D_filtered: pd.DataFrame, latCol: str, lonCol: str, weightCol: str): """ this dunction calculate the optimal location with squared euclidean distances Args: D_filtered (pd.DataFrame): Input dataframe. latCol (str): Column name containing latitude. lonCol (str): Column name containing longitude. weightCol (str): Column name containing weight (e.g. production quantity or flows). Returns: lat_optimal (TYPE): Optimal latitude. lon_optimal (TYPE): Optimal longitude. """ D_filtered_notnan = D_filtered.dropna(subset=[latCol, lonCol, weightCol]) D_filtered_notnan = D_filtered_notnan[D_filtered_notnan[weightCol] > 0] if len(D_filtered_notnan) > 0: lat_optimal = sum(D_filtered_notnan[latCol] * D_filtered_notnan[weightCol]) / sum(D_filtered_notnan[weightCol]) lon_optimal = sum(D_filtered_notnan[lonCol] * D_filtered_notnan[weightCol]) / sum(D_filtered_notnan[weightCol]) else: lat_optimal = lon_optimal = 0 return lat_optimal, lon_optimal def optimalLocationEuclideanDistance(D_filtered: pd.DataFrame, latCol: str, lonCol: str, weightCol: str): """ this function calculates the optimal location with euclidean distances using the kuhn procedure Args: D_filtered (pd.DataFrame): Input dataframe. latCol (str): Column name containing latitude. lonCol (str): Column name containing longitude. weightCol (str): Column name containing weight (e.g. production quantity or flows). Returns: lat_optimal (TYPE): Optimal latitude. lon_optimal (TYPE): Optimal longitude. """ def _funcGKuhn(wi, xj_1, yj_1, ai, bi): # implements the function g in the kuhn procedure for euclidean distances return wi / ((xj_1 - ai) ** 2 + (yj_1 - bi) ** 2) # remove null values D_filtered_notnan = D_filtered.dropna(subset=[latCol, lonCol, weightCol]) # identify the first solution of the gravity problem lat_optimal_0, lon_optimal_0 = optimalLocationGravityProblem(D_filtered_notnan, latCol, lonCol, weightCol) xj_1 = lon_optimal_0 yj_1 = lat_optimal_0 wi = D_filtered_notnan[weightCol] ai = D_filtered_notnan[lonCol] bi = D_filtered_notnan[latCol] # iterates Kuhn procedure to approximate the solution diff_x = 1 # a latitude degree is about 111 km while diff_x > 0.01: lon_optimal_j = sum(_funcGKuhn(wi, xj_1, yj_1, ai, bi) * ai) / sum(_funcGKuhn(wi, xj_1, yj_1, ai, bi)) diff_x = np.abs(xj_1 - lon_optimal_j) # print(diff_x) xj_1 = lon_optimal_j # iterates Kuhn procedure to approximate the solution diff_x = 1 while diff_x > 0.01: lat_optimal_j = sum(_funcGKuhn(wi, xj_1, yj_1, ai, bi) * bi) / sum(_funcGKuhn(wi, xj_1, yj_1, ai, bi)) diff_x = np.abs(yj_1 - lat_optimal_j) # print(diff_x) yj_1 = lat_optimal_j return lat_optimal_j, lon_optimal_j def func_rectangularDistanceCost(x: float, y: float, x_opt: float, y_opt: float, wi: float) -> float: """ return cost values with rectangular distances Args: x (float): X coordinate. y (float): Y coordinate. x_opt (float): X coordinate of the optimal location. y_opt (float): Y coordinate of the optimal location. wi (float): weight (e.g. flow). Returns: float: Cost value. """ return (np.abs(x - x_opt) + np.abs(y - y_opt)) * wi def func_gravityDistanceCost(x: float, y: float, x_opt: float, y_opt: float, wi: float) -> float: """ return cost values with squared euclidean distances Args: x (float): X coordinate. y (float): Y coordinate. x_opt (float): X coordinate of the optimal location. y_opt (float): Y coordinate of the optimal location. wi (float): weight (e.g. flow). Returns: float: Cost value. """ return ((x - x_opt) ** 2 + (y - y_opt) ** 2) * wi def func_euclideanDistanceCost(x: float, y: float, x_opt: float, y_opt: float, wi: float) -> float: """ return cost values with euclidean distance Args: x (float): X coordinate. y (float): Y coordinate. x_opt (float): X coordinate of the optimal location. y_opt (float): Y coordinate of the optimal location. wi (float): weight (e.g. flow). Returns: float: Cost value. """ return np.sqrt((x - x_opt) ** 2 + (y - y_opt) ** 2) * wi def defineDistanceTableEstimator(D_mov: pd.DataFrame, lonCol_From_mov: str, latCol_From_mov: str, lonCol_To_mov: str, latCol_To_mov: str, G: nx.graph, cleanOutliersCoordinates: bool = False, capacityField: str = 'QUANTITY'): """ Args: D_mov (pd.DataFrame): Inpud dataframe. lonCol_From_mov (str): name of the D_mov dataframe with longitude of the loading node. latCol_From_mov (str): name of the D_mov dataframe with latitude of the loading node. lonCol_To_mov (str): name of the D_mov dataframe with longitude of the discharging node. latCol_To_mov (str): name of the D_mov dataframe with latitude of the loading node. G (nx.graph): road graph obtained with osmnx. cleanOutliersCoordinates (bool, optional): is true to remove outliers in latitude and longitude. Defaults to False. capacityField (str, optional): field of quantity to measure the coverage statistics on it. Defaults to 'QUANTITY'. Returns: D_dist (TYPE): DESCRIPTION. df_coverages (TYPE): DESCRIPTION. """ # clean data and get coverages analysisFieldList = [lonCol_From_mov, latCol_From_mov, lonCol_To_mov, latCol_To_mov] coverages, _ = getCoverageStats(D_mov, analysisFieldList, capacityField=capacityField) D_dist = D_mov[[lonCol_From_mov, latCol_From_mov, lonCol_To_mov, latCol_To_mov]].drop_duplicates().dropna().reset_index() if cleanOutliersCoordinates: D_dist, coverages_outl = cleanUsingIQR(D_dist, [lonCol_From_mov, latCol_From_mov, lonCol_To_mov, latCol_To_mov]) coverages = (coverages[0] * coverages_outl[0], coverages[1] * coverages_outl[1]) df_coverages = pd.DataFrame(coverages) D_dist['REAL_DISTANCE'] = np.nan D_dist['MERCATOR_X_FROM'] = np.nan D_dist['MERCATOR_Y_FROM'] = np.nan D_dist['MERCATOR_X_TO'] = np.nan D_dist['MERCATOR_Y_TO'] = np.nan for index, row in D_dist.iterrows(): # get the coordinates lonFrom = row[lonCol_From_mov] latFrom = row[latCol_From_mov] lonTo = row[lonCol_To_mov] latTo = row[latCol_To_mov] # get the closest node on the graph node_from = ox.get_nearest_node(G, (latFrom, lonFrom), method='euclidean') node_to = ox.get_nearest_node(G, (latTo, lonTo), method='euclidean') length = nx.shortest_path_length(G=G, source=node_from, target=node_to, weight='length') D_dist['REAL_DISTANCE'].loc[index] = length # convert into mercator coordinates x_merc_from, y_merc_from = mercatorProjection(latFrom, lonFrom) x_merc_to, y_merc_to = mercatorProjection(latTo, lonTo) D_dist['MERCATOR_X_FROM'].loc[index] = x_merc_from D_dist['MERCATOR_Y_FROM'].loc[index] = y_merc_from D_dist['MERCATOR_X_TO'].loc[index] = x_merc_to D_dist['MERCATOR_Y_TO'].loc[index] = y_merc_to D_dist['EUCLIDEAN_DISTANCE'] = 1000 * func_euclideanDistanceCost(D_dist['MERCATOR_X_FROM'], D_dist['MERCATOR_Y_FROM'], D_dist['MERCATOR_X_TO'], D_dist['MERCATOR_Y_TO'], 1) D_dist['RECTANGULAR_DISTANCE'] = 1000 * func_rectangularDistanceCost(D_dist['MERCATOR_X_FROM'], D_dist['MERCATOR_Y_FROM'], D_dist['MERCATOR_X_TO'], D_dist['MERCATOR_Y_TO'], 1) D_dist['GRAVITY_DISTANCE'] = 1000 * func_gravityDistanceCost(D_dist['MERCATOR_X_FROM'], D_dist['MERCATOR_Y_FROM'], D_dist['MERCATOR_X_TO'], D_dist['MERCATOR_Y_TO'], 1) error_euclidean = mean_squared_error(D_dist['REAL_DISTANCE'], D_dist['EUCLIDEAN_DISTANCE']) error_rectangular = mean_squared_error(D_dist['REAL_DISTANCE'], D_dist['RECTANGULAR_DISTANCE']) error_gravity = mean_squared_error(D_dist['REAL_DISTANCE'], D_dist['GRAVITY_DISTANCE']) print(f"MSE EUCLIDEAN: {
np.round(error_euclidean,2)
numpy.round
# -*- coding: utf-8 -*- import logging import pandas as pd import numpy as np import pprint from pcnaDeep.data.utils import deduce_transition, find_daugs from pcnaDeep.data.annotate import findM from sklearn.cluster import KMeans from sklearn.preprocessing import MinMaxScaler def list_dist(a, b): """Count difference between elements of two lists. Args: a (list): classifications with method A b (list): classifications with method B """ count = 0 assert len(a) == len(b) for i in range(len(a)): if a[i] != b[i]: count += 1 if a[i] == 'G1/G2' and (b[i] in ['G1', 'G2', 'G1*', 'G2*']): count -= 1 return count def get_rsv_input_gt(track, gt_name='predicted_class', G2_trh=200, no_cls_GT=False): """Deduce essential input of resolver from a ground truth. """ logger = logging.getLogger('pcna.Resolver.resolveGroundTruth') track['lineageId'] = track['trackId'] if 'emerging' not in track.columns: track['emerging'] = 0 if 'BF_mean' not in track.columns: track['BF_mean'] = 0 if 'BF_std' not in track.columns: track['BF_std'] = 0 # resolve classification, if supplied if not no_cls_GT: track['Probability of G1/G2'] = 0 track['Probability of S'] = 0 track['Probability of M'] = 0 track.loc[track[gt_name].str.contains('G'), 'Probability of G1/G2'] = 1 track.loc[track[gt_name] == 'E', 'Probability of G1/G2'] = 1 track.loc[track[gt_name] == 'S', 'Probability of S'] = 1 track.loc[track[gt_name] == 'M', 'Probability of M'] = 1 track.loc[track[gt_name] == 'S', 'predicted_class'] = 'S' track.loc[track[gt_name].str.contains('G'), 'predicted_class'] = 'G1/G2' track.loc[track[gt_name] == 'E', 'predicted_class'] = 'E' track.loc[track[gt_name] == 'M', 'predicted_class'] = 'M' track.loc[track[gt_name] == 'E', 'emerging'] = 1 ann = {'track': [], 'mitosis_parent': [], 'm_entry': [], 'm_exit': []} mt_dic = {} imprecise_m = [] for i in np.unique(track['trackId']): sub = track[track['trackId'] == i] ann['track'].append(i) par = list(sub['parentTrackId'])[0] if par: par_lin = list(track.loc[track['trackId'] == par, 'lineageId'])[0] track.loc[track['trackId'] == i, 'lineageId'] = par_lin track.loc[track['parentTrackId'] == i, 'lineageId'] = par_lin m_exit = findM(sub[gt_name].tolist(), 'begin') if m_exit is None: m_exit = sub['frame'].iloc[0] logger.warning('Mitosis exit not found for daughter: ' + str(i)) imprecise_m.append(i) else: m_exit = sub['frame'].iloc[m_exit] if par not in mt_dic.keys(): mt_dic[par] = {'daug': {i: {'dist': 0, 'm_exit': m_exit}}, 'div': -1} else: mt_dic[par]['daug'][i] = {'dist': 0, 'm_exit': m_exit} ann['mitosis_parent'].append(int(par)) ann['m_entry'].append(None) ann['m_exit'].append(int(m_exit)) else: ann['mitosis_parent'].append(None) ann['m_entry'].append(None) ann['m_exit'].append(None) ann = pd.DataFrame(ann, dtype=int) for i in mt_dic.keys(): par_sub = track[track['trackId'] == i] m_entry = findM(par_sub[gt_name].tolist(), 'end') if m_entry is None: logger.warning('Mitosis entry not found for parent: ' + str(i) + '. Will not resolve this M phase.') else: m_entry = par_sub['frame'].iloc[m_entry] mt_dic[i]['div'] = m_entry ann.loc[ann['track'] == i, 'm_entry'] = m_entry # Note resolver only takes predicted class G1/G2, no G1 or G2; # Resolver classifies G1 or G2 based on intensity, so first mask intensity and background intensity, # then recover from table joining track_masked = track.copy() if 'mean_intensity' not in track_masked.columns: track_masked['mean_intensity'] = 0 track_masked.loc[track_masked[gt_name] == 'G2', 'mean_intensity'] = G2_trh + 1 if 'background_mean' not in track_masked.columns: track_masked['background_mean'] = 0 track_masked.loc[track_masked[gt_name].str.contains('G'), gt_name] = 'G1/G2' track_masked['predicted_class'] = track_masked[gt_name] logger.debug(pprint.pformat(mt_dic)) return track_masked, ann, mt_dic, imprecise_m def resolve_from_gt(track, gt_name='predicted_class', extra_gt=None, G2_trh=None, no_cls_GT=False, minG=1, minS=1, minM=1, minLineage=0): """Resolve cell cycle phase from the ground truth. Wrapper of `get_rsv_input_gt()`. Args: track (pandas.DataFrame): data frame of each object each row, must have following columns: - trackId, frame, parentTrackId, <ground truth classification column> gt_name (str): refers to the column in track that corresponds to ground truth classification. extra_gt (str): refers to the column in track that has G2 ground truth if `gt_name` does not. See notes below. G2_trh (int): intensity threshold for classifying G2 phase (for arrest tracks only). no_cls_GT (bool): Set to `true` if no classification ground truth is provided. Will resolve based on current classifications. minG (int): minimum G phase frame length (default 1). minS (int): minimum S phase frame length (default 1). minM (int): minimum M phase frame length (default 1). minLineage (int): minimum lineage frame length to resolve (default 0, resolve all tracks). Note: - If do not want G2 to be classified based on thresholding, rather, based on ground truth classification. Simply leave `G2_trh=None` and the threshold will be calculated as the smallest average intensity of G2 phase in labeled tracks (outlier smaller than mena - 3*sd excluded). - If the ground truth column does not contain `G2` instances, tell the program to look at an extra partially G2 ground truth column like `resolved_class` to extract information. This may be useful when `predicted_class` has been corrected from the Correction Interface which only contains G1/G2 but not G2. In this case, you can also assign `resolved_class` as the ground truth classification column. Both will work. - If `mean_intensity` or `background_mean` column is not in the table, will set the threshold to 100. - Use at own risk if the input classification in not reliable. """ if G2_trh is None: if 'mean_intensity' in track.columns: if 'G2' not in list(track[gt_name]): assert 'G2' in list(track[extra_gt]), 'G2 not found in either gt_name or extra_gt columns.' G2_tracks = track.loc[track[extra_gt] == 'G2'] else: G2_tracks = track.loc[track[gt_name] == 'G2'] avgs = [] for i in np.unique(G2_tracks['trackId']): sub = G2_tracks[G2_tracks['trackId'] == i] avgs.append(np.mean(sub['mean_intensity'] - sub['background_mean'])) avgs = np.array(avgs) avgs = avgs[avgs >= (np.mean(avgs) - np.std(avgs) * 3)] G2_trh = int(np.floor(np.min(avgs))) - 1 elif 'mean_intensity' not in track.columns or 'background_mean' not in track.columns: G2_trh = 100 # dummy threshold else: raise ValueError('Must provide a G2 intensity threshold or provide G2 ground truth classification.') print('Using G2 intensity threshold: ' + str(G2_trh)) track_masked, ann, mt_dic, imprecise_m = get_rsv_input_gt(track, gt_name, G2_trh=G2_trh, no_cls_GT=no_cls_GT) r = Resolver(track_masked, ann, mt_dic, maxBG=minG, minS=minS, minM=minM, minLineage=minLineage, impreciseExit=imprecise_m, G2_trh=G2_trh) rsTrack, phase = r.doResolve() rsTrack = rsTrack[['trackId', 'frame', 'resolved_class', 'name']] if 'resolved_class' in track.columns: del track['resolved_class'] if 'name' in track.columns: del track['name'] rsTrack = track.merge(rsTrack, on=['trackId','frame']) return rsTrack, phase class Resolver: def __init__(self, track, ann, mt_dic, maxBG=25, minS=20, minM=10, minLineage=10, impreciseExit=None, G2_trh=100): """Resolve cell cycle duration, identity G1 or G2. Args: - pcnaDeep.tracker outputs: track (pandas.DataFrame): tracked object table; ann (pandas.DataFrame): track annotation table; mt_dic (dict): mitosis information lookup dictionary; impreciseExit (list): list of tracks which M-G1 transition not clearly labeled. - GPR algorithm parameters for searching S/M phase: maxBG (float): maximum background class appearance allowed within target phase; minS (float): minimum target S phase length; minM (float): minimum target M phase length. - Options: minLineage (int): minimum lineage length to record in the output phase table. G2_trh (int): G2 intensity threshold for classifying arrested G1/G2 tracks. Background subtracted. """ if impreciseExit is None: impreciseExit = [] self.logger = logging.getLogger('pcna.Resolver') self.impreciseExit = impreciseExit self.track = track self.ann = ann self.maxBG = maxBG self.minS = minS self.mt_dic = mt_dic self.minM = minM self.rsTrack = None self.minLineage = minLineage self.unresolved = [] self.mt_unresolved = [] self.arrest = {} # trackId : arrest phase self.G2_trh = G2_trh self.phase = pd.DataFrame(columns=['track', 'type', 'G1', 'S', 'M', 'G2', 'parent']) def doResolve(self): """Main function of class resolver. Returns: pandas.DataFrame: tracked object table with additional column 'resolved_class'. pandas.DataFrame: phase table with cell cycle durations. """ self.logger.info('Resolving cell cycle phase...') track = self.track.copy() rt = pd.DataFrame() for i in np.unique(track['lineageId']): d = track[track['lineageId'] == i] t = self.resolveLineage(d, i) rt = rt.append(t) rt = rt.sort_values(by=['trackId', 'frame']) self.rsTrack = rt.copy() self.check_trans_integrity() self.mt_unresolved = list(np.unique(self.mt_unresolved)) if self.mt_unresolved: self.logger.warning('Sequential mitosis without S phase; Ignore tracks: ' + str(self.mt_unresolved)[1:-1]) if self.unresolved: self.logger.warning('Numerous classification change after resolving, check: ' + str(self.unresolved)[1:-1]) self.resolveArrest(self.G2_trh) phase = self.doResolvePhase() self.getAnn() return self.rsTrack, phase def check_trans_integrity(self): """Check track transition integrity. If transition other than G1->S; S->G2, G2->M, M->G1 found, do not resolve. """ for t in np.unique(self.rsTrack['trackId']): if t not in self.mt_unresolved and t not in self.unresolved: sub = self.rsTrack[self.rsTrack['trackId'] == t] rcls = list(sub['resolved_class']) for i in range(1,sub.shape[0]): if rcls[i-1] != rcls[i]: trs = '-'.join([rcls[i-1], rcls[i]]) if trs not in ['G1-S','S-G2','G2-M','M-G1']: self.logger.warning('Wrong transition ' + trs + ' in track: ' + str(t)) return def getAnn(self): """Add an annotation column to tracked object table The annotation format is track ID - (parentTrackId, optional) - resolved_class """ ann = [] cls_col = 'resolved_class' if cls_col not in self.track.columns: print('Phase not resolved yet. Using predicted phase classifications.') cls_col = 'predicted_class' track_id = list(self.track['trackId']) parent_id = list(self.track['parentTrackId']) cls_lb = list(self.track[cls_col]) for i in range(self.track.shape[0]): inform = [str(track_id[i]), str(parent_id[i]), cls_lb[i]] if inform[1] == '0': del inform[1] ann.append('-'.join(inform)) self.track['name'] = ann return def resolveArrest(self, G2_trh=None): """Determine G1/G2 arrest tracks. - If `G2_trh` is supplied, determine G2 based on background-subtracted mean of the track (averaged across frames). - If `G2_trh` is not supplied, assign G1 or G2 classification according to 2-center K-mean. Args: G2_trh (int): int between 1-255, above the threshold will be classified as G2. """ trk = self.rsTrack[self.rsTrack['trackId'].isin(list(self.arrest.keys()))].copy() intensity = [] ids = [] for i in self.arrest.keys(): sub = trk[trk['trackId'] == i] if self.arrest[i] == 'S': continue corrected_mean = np.mean(sub['mean_intensity'] - sub['background_mean']) intensity.append(corrected_mean) ids.append(i) if G2_trh is None: self.logger.warning('No G2 threshold provided, using KMean clustering to distinguish arrested G1/G2 track.') X = np.expand_dims(np.array(intensity), axis=1) X = MinMaxScaler().fit_transform(X) y = list(KMeans(2).fit_predict(X)) else: if G2_trh < 1 or G2_trh > 255: raise ValueError('G2 threshold must be within the interval: 1~255.') y = [] for i in range(len(ids)): if intensity[i] > G2_trh: y.append(1) else: y.append(0) for i in range(len(ids)): if y[i] == 0: self.arrest[ids[i]] = 'G1' self.rsTrack.loc[self.rsTrack['trackId'] == ids[i], 'resolved_class'] = 'G1*' else: self.arrest[ids[i]] = 'G2' self.rsTrack.loc[self.rsTrack['trackId'] == ids[i], 'resolved_class'] = 'G2*' return def resolveLineage(self, lineage, main): """Resolve all tracks in a lineage recursively main (int): the parent track ID of current search """ info = self.ann.loc[self.ann['track'] == main] m_entry = info['m_entry'].values[0] m_exit = info['m_exit'].values[0] if len(np.unique(lineage['trackId'])) == 1: rsd = self.resolveTrack(lineage.copy(), m_entry=m_entry, m_exit=m_exit) return rsd else: out = pd.DataFrame() lg = lineage[lineage['trackId'] == main] out = out.append(self.resolveTrack(lg.copy(), m_entry=m_entry, m_exit=m_exit)) daugs = self.mt_dic[main]['daug'] for i in list(daugs.keys()): out = out.append( self.resolveLineage(lineage[lineage['trackId'].isin(find_daugs(lineage, i) + [i])].copy(), i)) return out def resolveTrack(self, trk, m_entry=None, m_exit=None): """Resolve single track. Args: trk (pandas.DataFrame): track table m_entry (int): time of mitosis entry corresponding to 'frame' column in table m_exit (int): time of mitosis exit corresponding to 'frame' column in table If no m time supplied, only treat as G1/G2/S track. Arrested track not resolved, return full G1/G2 list. Returns: pandas.DataFrame table with addition column of resolved class """ UNRESOLVED_FRACTION = 0.2 # after resolving the class, if more than x% class has been corrected, label with resolved_class = ['G1/G2' for _ in range(trk.shape[0])] if trk.shape[0] == 0: raise ValueError('Track not found!') #return None track_id = trk['trackId'].tolist()[0] cls = list(trk['predicted_class']) if list(np.unique(cls)) == ['S']: trk['resolved_class'] = 'S' self.arrest[track_id] = 'S' return trk confid = np.array(trk[['Probability of G1/G2', 'Probability of S', 'Probability of M']]) out = deduce_transition(l=cls, tar='S', confidence=confid, min_tar=self.minS, max_res=self.maxBG, casual_end=False) flag = False if not (out is None or out[0] == out[1]): flag = True a = (out[0], np.min((out[1] + 1, len(resolved_class) - 1))) resolved_class[a[0]:a[1] + 1] = ['S' for _ in range(a[0], a[1] + 1)] if a[0] > 0: resolved_class[:a[0]] = ['G1' for _ in range(a[0])] if a[1] < len(resolved_class) - 1: resolved_class[a[1]:] = ['G2' for _ in range(len(resolved_class) - a[1])] frame = trk['frame'].tolist() if m_exit is not None: emerging = trk['emerging'].tolist() if 1 in emerging: exit_idx = int(np.min((frame.index(m_exit), emerging.index(1)))) # Emerging classification refers to G1 else: exit_idx = frame.index(m_exit) resolved_class[:exit_idx + 1] = ['M' for _ in range(exit_idx + 1)] i = exit_idx + 1 while i < len(resolved_class): if resolved_class[i] == 'G1/G2': resolved_class[i] = 'G1' else: break i += 1 if m_entry is not None: resolved_class[frame.index(m_entry):] = ['M' for _ in range(len(resolved_class) - frame.index(m_entry))] i = frame.index(m_entry) - 1 while i >= 0: if resolved_class[i] == 'G1/G2': resolved_class[i] = 'G2' else: break i -= 1 if not flag and m_exit is not None and m_entry is not None: resolved_class = cls.copy() self.mt_unresolved.extend([track_id] + find_daugs(self.track, track_id)) if m_exit is None and m_entry is None: # some tracks begin/end with mitosis and not associated during refinement. In this case, override any # classification at terminal. Only track ends/begin with M will be kept, otherwise override with G1/G2. # WARNING: this can leads to false negative mt_out_begin = deduce_transition(l=cls, tar='M', confidence=confid, min_tar=1, max_res=self.maxBG) mt_out_end = deduce_transition(l=cls[::-1], tar='M', confidence=confid[::-1, :], min_tar=1, max_res=self.maxBG) if mt_out_end is not None: # check if out and end interval overlaps compare = (len(cls)-mt_out_end[1]-1, len(cls)-mt_out_end[0]-1) if mt_out_begin is not None: if compare[0] == mt_out_begin[0] and compare[1] == mt_out_begin[1]: # if overlap, assign larger index one to None if mt_out_end[0] < mt_out_begin[0]: mt_out_begin = None else: mt_out_end = None if mt_out_begin is not None and mt_out_end is None: if mt_out_begin[0] == 0: resolved_class[mt_out_begin[0]: mt_out_begin[1] + 1] = ['M' for _ in range(mt_out_begin[0], mt_out_begin[1] + 1)] # if followed with G1/G2 only, change to G1 if
np.unique(resolved_class[mt_out_begin[1] + 1:])
numpy.unique
import numpy as np from hmmlearn import hmm def states_probability(a, states, initial=1.0): return initial * np.product(a[states[:-1], states[1:]]) def forward_algorithm(a, b, observations, initial_probs=None): state_n, _ = a.shape current_probs = initial_probs if initial_probs is None: current_probs = np.full(state_n, 1.0 / state_n, dtype=np.float64) for observation in observations: observation_probs = b[:, observation] current_probs = (a @ current_probs) * observation_probs return current_probs.sum() class HMMGMMClassifier: def __init__(self): self.models = None self.unique_labels = None def fit(self, features, labels, *args, **kwargs): self.unique_labels = np.unique(labels) self.models = [] for unique_label in self.unique_labels: relevant_ixs = (labels == unique_label).nonzero()[0] relevant_data = [] for relevant_ix in relevant_ixs: row = features[relevant_ix] relevant_data.append(row) lengths = np.array([len(data) for data in relevant_data]) concat =
np.vstack(relevant_data)
numpy.vstack
# -*- coding: utf-8 -*- u""" .. _glow: xrtGlow -- an interactive 3D beamline viewer -------------------------------------------- The beamline created in xrtQook can be interactively viewed in an OpenGL based widget xrtGlow. It visualizes beams, footprints, surfaces, apertures and screens. The brightness represents intensity and the color represents an auxiliary user-selected distribution, typically energy. A virtual screen can be put at any position and dragged by mouse with simultaneous observation of the beam distribution on it. See two example screenshots below (click to expand and read the captions). The primary purpose of xrtGlow is to demonstrate the alignment correctness given the fact that xrtQook can automatically calculate several positional and angular parameters. See aslo :ref:`Notes on using xrtGlow <glow_notes>`. +-------------+-------------+ | |glow1| | |glow2| | +-------------+-------------+ .. |glow1| imagezoom:: _images/xrtGlow1.png :alt: &ensp;A view of xrtQook with embedded xrtGlow. Visible is a virtual screen draggable by mouse, a curved mirror surface with a footprint on it and the color (energy) distribution on the virtual screen. The scale along the beamline is compressed by a factor of 100. .. |glow2| imagezoom:: _images/xrtGlow2.png :loc: upper-right-corner :alt: &ensp; xrtGlow with three double-paraboloid lenses. The scaling on this image is isotropic. The source (on the left) is a parallel geometric source. The coloring is by axial divergence (red=0), showing the effect of refractive focusing. """ from __future__ import print_function __author__ = "<NAME>, <NAME>" import sys import os import numpy as np from functools import partial import matplotlib as mpl # import inspect import re import copy # import time from collections import OrderedDict from ...backends import raycing from ...backends.raycing import sources as rsources from ...backends.raycing import screens as rscreens from ...backends.raycing import oes as roes from ...backends.raycing import apertures as rapertures from ...backends.raycing import materials as rmats from ..commons import qt from ..commons import gl from ...plotter import colorFactor, colorSaturation _DEBUG_ = False # If False, exceptions inside the module are ignored class xrtGlow(qt.QWidget): def __init__(self, arrayOfRays, parent=None, progressSignal=None): super(xrtGlow, self).__init__() self.parentRef = parent self.cAxisLabelSize = 10 mplFont = {'size': self.cAxisLabelSize} mpl.rc('font', **mplFont) self.setWindowTitle('xrtGlow') iconsDir = os.path.join(os.path.dirname(os.path.abspath(__file__)), '_icons') self.setWindowIcon(qt.QIcon(os.path.join(iconsDir, 'icon-GLow.ico'))) self.populateOEsList(arrayOfRays) self.segmentsModel = self.initSegmentsModel() self.segmentsModelRoot = self.segmentsModel.invisibleRootItem() self.populateSegmentsModel(arrayOfRays) self.fluxDataModel = qt.QStandardItemModel() for colorField in raycing.allBeamFields: self.fluxDataModel.appendRow(qt.QStandardItem(colorField)) self.customGlWidget = xrtGlWidget(self, arrayOfRays, self.segmentsModelRoot, self.oesList, self.beamsToElements, progressSignal) self.customGlWidget.rotationUpdated.connect(self.updateRotationFromGL) self.customGlWidget.scaleUpdated.connect(self.updateScaleFromGL) self.customGlWidget.histogramUpdated.connect(self.updateColorMap) self.customGlWidget.setContextMenuPolicy(qt.CustomContextMenu) self.customGlWidget.customContextMenuRequested.connect(self.glMenu) self.makeNavigationPanel() self.makeTransformationPanel() self.makeColorsPanel() self.makeGridAndProjectionsPanel() self.makeScenePanel() mainLayout = qt.QHBoxLayout() sideLayout = qt.QVBoxLayout() tabs = qt.QTabWidget() tabs.addTab(self.navigationPanel, "Navigation") tabs.addTab(self.transformationPanel, "Transformations") tabs.addTab(self.colorOpacityPanel, "Colors") tabs.addTab(self.projectionPanel, "Grid/Projections") tabs.addTab(self.scenePanel, "Scene") sideLayout.addWidget(tabs) self.canvasSplitter = qt.QSplitter() self.canvasSplitter.setChildrenCollapsible(False) self.canvasSplitter.setOrientation(qt.Horizontal) mainLayout.addWidget(self.canvasSplitter) sideWidget = qt.QWidget() sideWidget.setLayout(sideLayout) self.canvasSplitter.addWidget(self.customGlWidget) self.canvasSplitter.addWidget(sideWidget) self.setLayout(mainLayout) self.customGlWidget.oesList = self.oesList toggleHelp = qt.QShortcut(self) toggleHelp.setKey(qt.Key_F1) toggleHelp.activated.connect(self.customGlWidget.toggleHelp) fastSave = qt.QShortcut(self) fastSave.setKey(qt.Key_F5) fastSave.activated.connect(partial(self.saveScene, '_xrtScnTmp_.npy')) fastLoad = qt.QShortcut(self) fastLoad.setKey(qt.Key_F6) fastLoad.activated.connect(partial(self.loadScene, '_xrtScnTmp_.npy')) startMovie = qt.QShortcut(self) startMovie.setKey(qt.Key_F7) startMovie.activated.connect(self.startRecordingMovie) toggleScreen = qt.QShortcut(self) toggleScreen.setKey(qt.Key_F3) toggleScreen.activated.connect(self.customGlWidget.toggleVScreen) self.dockToQook = qt.QShortcut(self) self.dockToQook.setKey(qt.Key_F4) self.dockToQook.activated.connect(self.toggleDock) tiltScreen = qt.QShortcut(self) tiltScreen.setKey(qt.CTRL + qt.Key_T) tiltScreen.activated.connect(self.customGlWidget.switchVScreenTilt) def makeNavigationPanel(self): self.navigationLayout = qt.QVBoxLayout() centerCBLabel = qt.QLabel('Center view at:') self.centerCB = qt.QComboBox() self.centerCB.setMaxVisibleItems(48) for key in self.oesList.keys(): self.centerCB.addItem(str(key)) # centerCB.addItem('customXYZ') self.centerCB.currentIndexChanged['QString'].connect(self.centerEl) self.centerCB.setCurrentIndex(0) layout = qt.QHBoxLayout() layout.addWidget(centerCBLabel) layout.addWidget(self.centerCB) layout.addStretch() self.navigationLayout.addLayout(layout) self.oeTree = qt.QTreeView() self.oeTree.setModel(self.segmentsModel) self.oeTree.setContextMenuPolicy(qt.CustomContextMenu) self.oeTree.customContextMenuRequested.connect(self.oeTreeMenu) self.oeTree.resizeColumnToContents(0) self.navigationLayout.addWidget(self.oeTree) self.navigationPanel = qt.QWidget(self) self.navigationPanel.setLayout(self.navigationLayout) def makeTransformationPanel(self): self.zoomPanel = qt.QGroupBox(self) self.zoomPanel.setFlat(False) self.zoomPanel.setTitle("Log scale") zoomLayout = qt.QVBoxLayout() fitLayout = qt.QHBoxLayout() scaleValidator = qt.QDoubleValidator() scaleValidator.setRange(0, 7, 7) self.zoomSliders = [] self.zoomEditors = [] for iaxis, axis in enumerate(['x', 'y', 'z']): axLabel = qt.QLabel(axis) axEdit = qt.QLineEdit() axSlider = qt.glowSlider(self, qt.Horizontal, qt.glowTopScale) axSlider.setRange(0, 7, 0.01) value = 1 if iaxis == 1 else 3 axSlider.setValue(value) axEdit.setText("{0:.2f}".format(value)) axEdit.setValidator(scaleValidator) axEdit.editingFinished.connect( partial(self.updateScaleFromQLE, axSlider)) axSlider.valueChanged.connect( partial(self.updateScale, iaxis, axEdit)) self.zoomSliders.append(axSlider) self.zoomEditors.append(axEdit) layout = qt.QHBoxLayout() axLabel.setMinimumWidth(12) layout.addWidget(axLabel) axEdit.setMaximumWidth(48) layout.addWidget(axEdit) layout.addWidget(axSlider) zoomLayout.addLayout(layout) for iaxis, axis in enumerate(['x', 'y', 'z', 'all']): fitX = qt.QPushButton("fit {}".format(axis)) dim = [iaxis] if iaxis < 3 else [0, 1, 2] fitX.clicked.connect(partial(self.fitScales, dim)) fitLayout.addWidget(fitX) zoomLayout.addLayout(fitLayout) self.zoomPanel.setLayout(zoomLayout) self.rotationPanel = qt.QGroupBox(self) self.rotationPanel.setFlat(False) self.rotationPanel.setTitle("Rotation (deg)") rotationLayout = qt.QVBoxLayout() fixedViewsLayout = qt.QHBoxLayout() # rotModeCB = qt.QCheckBox('Use Eulerian rotation') # rotModeCB.setCheckState(2) # rotModeCB.stateChanged.connect(self.checkEulerian) # rotationLayout.addWidget(rotModeCB, 0, 0) rotValidator = qt.QDoubleValidator() rotValidator.setRange(-180., 180., 9) self.rotationSliders = [] self.rotationEditors = [] for iaxis, axis in enumerate(['pitch (Rx)', 'roll (Ry)', 'yaw (Rz)']): axLabel = qt.QLabel(axis) axEdit = qt.QLineEdit("0.") axEdit.setValidator(rotValidator) axSlider = qt.glowSlider(self, qt.Horizontal, qt.glowTopScale) axSlider.setRange(-180, 180, 0.01) axSlider.setValue(0) axEdit.editingFinished.connect( partial(self.updateRotationFromQLE, axSlider)) axSlider.valueChanged.connect( partial(self.updateRotation, iaxis, axEdit)) self.rotationSliders.append(axSlider) self.rotationEditors.append(axEdit) layout = qt.QHBoxLayout() axLabel.setMinimumWidth(64) layout.addWidget(axLabel) axEdit.setMaximumWidth(48) layout.addWidget(axEdit) layout.addWidget(axSlider) rotationLayout.addLayout(layout) for axis, angles in zip(['Side', 'Front', 'Top', 'Isometric'], [[[0.], [0.], [0.]], [[0.], [0.], [90.]], [[0.], [90.], [0.]], [[0.], [35.264], [-45.]]]): setView = qt.QPushButton(axis) setView.clicked.connect(partial(self.updateRotationFromGL, angles)) fixedViewsLayout.addWidget(setView) rotationLayout.addLayout(fixedViewsLayout) self.rotationPanel.setLayout(rotationLayout) self.transformationPanel = qt.QWidget(self) transformationLayout = qt.QVBoxLayout() transformationLayout.addWidget(self.zoomPanel) transformationLayout.addWidget(self.rotationPanel) transformationLayout.addStretch() self.transformationPanel.setLayout(transformationLayout) def fitScales(self, dims): for dim in dims: dimMin = np.min(self.customGlWidget.footprintsArray[:, dim]) dimMax = np.max(self.customGlWidget.footprintsArray[:, dim]) newScale = 1.9 * self.customGlWidget.aPos[dim] /\ (dimMax - dimMin) * self.customGlWidget.maxLen self.customGlWidget.tVec[dim] = -0.5 * (dimMin + dimMax) self.customGlWidget.scaleVec[dim] = newScale self.updateScaleFromGL(self.customGlWidget.scaleVec) def makeColorsPanel(self): self.opacityPanel = qt.QGroupBox(self) self.opacityPanel.setFlat(False) self.opacityPanel.setTitle("Opacity") opacityLayout = qt.QVBoxLayout() self.opacitySliders = [] self.opacityEditors = [] for iaxis, (axis, rstart, rend, rstep, val) in enumerate(zip( ('Line opacity', 'Line width', 'Point opacity', 'Point size'), (0, 0, 0, 0), (1., 20., 1., 20.), (0.001, 0.01, 0.001, 0.01), (0.2, 2., 0.25, 3.))): axLabel = qt.QLabel(axis) opacityValidator = qt.QDoubleValidator() axSlider = qt.glowSlider(self, qt.Horizontal, qt.glowTopScale) axSlider.setRange(rstart, rend, rstep) axSlider.setValue(val) axEdit = qt.QLineEdit() opacityValidator.setRange(rstart, rend, 5) self.updateOpacity(iaxis, axEdit, val) axEdit.setValidator(opacityValidator) axEdit.editingFinished.connect( partial(self.updateOpacityFromQLE, axSlider)) axSlider.valueChanged.connect( partial(self.updateOpacity, iaxis, axEdit)) self.opacitySliders.append(axSlider) self.opacityEditors.append(axEdit) layout = qt.QHBoxLayout() axLabel.setMinimumWidth(80) layout.addWidget(axLabel) axEdit.setMaximumWidth(48) layout.addWidget(axEdit) layout.addWidget(axSlider) opacityLayout.addLayout(layout) self.opacityPanel.setLayout(opacityLayout) self.colorPanel = qt.QGroupBox(self) self.colorPanel.setFlat(False) self.colorPanel.setTitle("Color") colorLayout = qt.QVBoxLayout() self.mplFig = mpl.figure.Figure(dpi=self.logicalDpiX()*0.8) self.mplFig.patch.set_alpha(0.) self.mplFig.subplots_adjust(left=0.15, bottom=0.15, top=0.92) self.mplAx = self.mplFig.add_subplot(111) self.mplFig.suptitle("") self.drawColorMap('energy') self.paletteWidget = qt.FigCanvas(self.mplFig) self.paletteWidget.setSizePolicy(qt.QSizePolicy.Maximum, qt.QSizePolicy.Maximum) self.paletteWidget.span = mpl.widgets.RectangleSelector( self.mplAx, self.updateColorSelFromMPL, drawtype='box', useblit=True, rectprops=dict(alpha=0.4, facecolor='white'), button=1, interactive=True) layout = qt.QHBoxLayout() self.colorControls = [] colorCBLabel = qt.QLabel('Color Axis:') colorCB = qt.QComboBox() colorCB.setMaxVisibleItems(48) colorCB.setModel(self.fluxDataModel) colorCB.setCurrentIndex(colorCB.findText('energy')) colorCB.currentIndexChanged['QString'].connect(self.changeColorAxis) self.colorControls.append(colorCB) layout.addWidget(colorCBLabel) layout.addWidget(colorCB) layout.addStretch() colorLayout.addLayout(layout) colorLayout.addWidget(self.paletteWidget) layout = qt.QHBoxLayout() for icSel, cSelText in enumerate(['Color Axis min', 'Color Axis max']): if icSel > 0: layout.addStretch() selLabel = qt.QLabel(cSelText) selValidator = qt.QDoubleValidator() selValidator.setRange(-1.0e20 if icSel == 0 else self.customGlWidget.colorMin, self.customGlWidget.colorMax if icSel == 0 else 1.0e20, 5) selQLE = qt.QLineEdit() selQLE.setValidator(selValidator) selQLE.setText('{0:.6g}'.format( self.customGlWidget.colorMin if icSel == 0 else self.customGlWidget.colorMax)) selQLE.editingFinished.connect( partial(self.updateColorAxis, icSel)) selQLE.setMaximumWidth(80) self.colorControls.append(selQLE) layout.addWidget(selLabel) layout.addWidget(selQLE) colorLayout.addLayout(layout) layout = qt.QHBoxLayout() for icSel, cSelText in enumerate(['Selection min', 'Selection max']): if icSel > 0: layout.addStretch() selLabel = qt.QLabel(cSelText) selValidator = qt.QDoubleValidator() selValidator.setRange(self.customGlWidget.colorMin, self.customGlWidget.colorMax, 5) selQLE = qt.QLineEdit() selQLE.setValidator(selValidator) selQLE.setText('{0:.6g}'.format( self.customGlWidget.colorMin if icSel == 0 else self.customGlWidget.colorMax)) selQLE.editingFinished.connect( partial(self.updateColorSelFromQLE, icSel)) selQLE.setMaximumWidth(80) self.colorControls.append(selQLE) layout.addWidget(selLabel) layout.addWidget(selQLE) colorLayout.addLayout(layout) selSlider = qt.glowSlider(self, qt.Horizontal, qt.glowTopScale) rStep = (self.customGlWidget.colorMax - self.customGlWidget.colorMin) / 100. rValue = (self.customGlWidget.colorMax + self.customGlWidget.colorMin) * 0.5 selSlider.setRange(self.customGlWidget.colorMin, self.customGlWidget.colorMax, rStep) selSlider.setValue(rValue) selSlider.sliderMoved.connect(self.updateColorSel) self.colorControls.append(selSlider) colorLayout.addWidget(selSlider) layout = qt.QHBoxLayout() axLabel = qt.QLabel("Intensity cut-off") axEdit = qt.QLineEdit("0.01") cutValidator = qt.QDoubleValidator() cutValidator.setRange(0, 1, 3) axEdit.setValidator(cutValidator) axEdit.editingFinished.connect(self.updateCutoffFromQLE) axLabel.setMinimumWidth(144) layout.addWidget(axLabel) axEdit.setMaximumWidth(48) layout.addWidget(axEdit) layout.addStretch() colorLayout.addLayout(layout) layout = qt.QHBoxLayout() explLabel = qt.QLabel("Color bump height, mm") explEdit = qt.QLineEdit("0.0") explValidator = qt.QDoubleValidator() explValidator.setRange(-1000, 1000, 3) explEdit.setValidator(explValidator) explEdit.editingFinished.connect(self.updateExplosionDepth) explLabel.setMinimumWidth(144) layout.addWidget(explLabel) explEdit.setMaximumWidth(48) layout.addWidget(explEdit) layout.addStretch() colorLayout.addLayout(layout) # axSlider = qt.glowSlider( # self, qt.Horizontal, qt.glowTopScale) # axSlider.setRange(0, 1, 0.001) # axSlider.setValue(0.01) # axSlider.valueChanged.connect(self.updateCutoff) # colorLayout.addWidget(axSlider, 3+3, 0, 1, 2) glNormCB = qt.QCheckBox('Global Normalization') glNormCB.setChecked(True) glNormCB.stateChanged.connect(self.checkGNorm) colorLayout.addWidget(glNormCB) self.glNormCB = glNormCB iHSVCB = qt.QCheckBox('Intensity as HSV Value') iHSVCB.setChecked(False) iHSVCB.stateChanged.connect(self.checkHSV) colorLayout.addWidget(iHSVCB) self.iHSVCB = iHSVCB self.colorPanel.setLayout(colorLayout) self.colorOpacityPanel = qt.QWidget(self) colorOpacityLayout = qt.QVBoxLayout() colorOpacityLayout.addWidget(self.colorPanel) colorOpacityLayout.addWidget(self.opacityPanel) colorOpacityLayout.addStretch() self.colorOpacityPanel.setLayout(colorOpacityLayout) def makeGridAndProjectionsPanel(self): self.gridPanel = qt.QGroupBox(self) self.gridPanel.setFlat(False) self.gridPanel.setTitle("Show coordinate grid") self.gridPanel.setCheckable(True) self.gridPanel.toggled.connect(self.checkDrawGrid) scaleValidator = qt.QDoubleValidator() scaleValidator.setRange(0, 7, 7) xyzGridLayout = qt.QVBoxLayout() self.gridSliders = [] self.gridEditors = [] for iaxis, axis in enumerate(['x', 'y', 'z']): axLabel = qt.QLabel(axis) axEdit = qt.QLineEdit("0.9") axEdit.setValidator(scaleValidator) axSlider = qt.glowSlider(self, qt.Horizontal, qt.glowTopScale) axSlider.setRange(0, 10, 0.01) axSlider.setValue(0.9) axEdit.editingFinished.connect( partial(self.updateGridFromQLE, axSlider)) axSlider.valueChanged.connect( partial(self.updateGrid, iaxis, axEdit)) self.gridSliders.append(axSlider) self.gridEditors.append(axEdit) layout = qt.QHBoxLayout() axLabel.setMinimumWidth(20) layout.addWidget(axLabel) axEdit.setMaximumWidth(48) layout.addWidget(axEdit) layout.addWidget(axSlider) xyzGridLayout.addLayout(layout) checkBox = qt.QCheckBox('Fine grid') checkBox.setChecked(False) checkBox.stateChanged.connect(self.checkFineGrid) xyzGridLayout.addWidget(checkBox) self.checkBoxFineGrid = checkBox self.gridControls = [] projectionLayout = qt.QVBoxLayout() checkBox = qt.QCheckBox('Perspective') checkBox.setChecked(True) checkBox.stateChanged.connect(self.checkPerspect) self.checkBoxPerspective = checkBox projectionLayout.addWidget(self.checkBoxPerspective) self.gridControls.append(self.checkBoxPerspective) self.gridControls.append(self.gridPanel) self.gridControls.append(self.checkBoxFineGrid) self.gridPanel.setLayout(xyzGridLayout) self.projVisPanel = qt.QGroupBox(self) self.projVisPanel.setFlat(False) self.projVisPanel.setTitle("Projections visibility") projVisLayout = qt.QVBoxLayout() self.projLinePanel = qt.QGroupBox(self) self.projLinePanel.setFlat(False) self.projLinePanel.setTitle("Projections opacity") self.projectionControls = [] for iaxis, axis in enumerate(['Side (YZ)', 'Front (XZ)', 'Top (XY)']): checkBox = qt.QCheckBox(axis) checkBox.setChecked(False) checkBox.stateChanged.connect(partial(self.projSelection, iaxis)) self.projectionControls.append(checkBox) projVisLayout.addWidget(checkBox) self.projLinePanel.setEnabled(False) self.projVisPanel.setLayout(projVisLayout) projLineLayout = qt.QVBoxLayout() self.projectionOpacitySliders = [] self.projectionOpacityEditors = [] for iaxis, axis in enumerate( ['Line opacity', 'Line width', 'Point opacity', 'Point size']): axLabel = qt.QLabel(axis) projectionValidator = qt.QDoubleValidator() axSlider = qt.glowSlider(self, qt.Horizontal, qt.glowTopScale) if iaxis in [0, 2]: axSlider.setRange(0, 1., 0.001) axSlider.setValue(0.1) axEdit = qt.QLineEdit("0.1") projectionValidator.setRange(0, 1., 5) else: axSlider.setRange(0, 20, 0.01) axSlider.setValue(1.) axEdit = qt.QLineEdit("1") projectionValidator.setRange(0, 20., 5) axEdit.setValidator(projectionValidator) axEdit.editingFinished.connect( partial(self.updateProjectionOpacityFromQLE, axSlider)) axSlider.valueChanged.connect( partial(self.updateProjectionOpacity, iaxis, axEdit)) self.projectionOpacitySliders.append(axSlider) self.projectionOpacityEditors.append(axEdit) layout = qt.QHBoxLayout() axLabel.setMinimumWidth(80) layout.addWidget(axLabel) axEdit.setMaximumWidth(48) layout.addWidget(axEdit) layout.addWidget(axSlider) projLineLayout.addLayout(layout) self.projLinePanel.setLayout(projLineLayout) self.projectionPanel = qt.QWidget(self) projectionLayout.addWidget(self.gridPanel) projectionLayout.addWidget(self.projVisPanel) projectionLayout.addWidget(self.projLinePanel) projectionLayout.addStretch() self.projectionPanel.setLayout(projectionLayout) def makeScenePanel(self): sceneLayout = qt.QVBoxLayout() self.sceneControls = [] for iCB, (cbText, cbFunc) in enumerate(zip( ['Enable antialiasing', 'Enable blending', 'Depth test for Lines', 'Depth test for Points', 'Invert scene color', 'Use scalable font', 'Show Virtual Screen label', 'Virtual Screen for Indexing', 'Show lost rays', 'Show local axes'], [self.checkAA, self.checkBlending, self.checkLineDepthTest, self.checkPointDepthTest, self.invertSceneColor, self.checkScalableFont, self.checkShowLabels, self.checkVSColor, self.checkShowLost, self.checkShowLocalAxes])): aaCheckBox = qt.QCheckBox(cbText) aaCheckBox.setChecked(iCB in [1, 2]) aaCheckBox.stateChanged.connect(cbFunc) self.sceneControls.append(aaCheckBox) sceneLayout.addWidget(aaCheckBox) axLabel = qt.QLabel('Font Size') axSlider = qt.glowSlider(self, qt.Horizontal, qt.glowTopScale) axSlider.setRange(1, 20, 0.5) axSlider.setValue(5) axSlider.valueChanged.connect(self.updateFontSize) layout = qt.QHBoxLayout() layout.addWidget(axLabel) layout.addWidget(axSlider) sceneLayout.addLayout(layout) labelPrec = qt.QComboBox() for order in range(5): labelPrec.addItem("{}mm".format(10**-order)) labelPrec.setCurrentIndex(1) labelPrec.currentIndexChanged['int'].connect(self.setLabelPrec) aaLabel = qt.QLabel('Label Precision') layout = qt.QHBoxLayout() aaLabel.setMinimumWidth(100) layout.addWidget(aaLabel) labelPrec.setMaximumWidth(120) layout.addWidget(labelPrec) layout.addStretch() sceneLayout.addLayout(layout) oeTileValidator = qt.QIntValidator() oeTileValidator.setRange(1, 20) for ia, axis in enumerate(['OE tessellation X', 'OE tessellation Y']): axLabel = qt.QLabel(axis) axEdit = qt.QLineEdit("2") axEdit.setValidator(oeTileValidator) axEdit.editingFinished.connect(partial(self.updateTileFromQLE, ia)) layout = qt.QHBoxLayout() axLabel.setMinimumWidth(100) layout.addWidget(axLabel) axEdit.setMaximumWidth(48) layout.addWidget(axEdit) layout.addStretch() sceneLayout.addLayout(layout) self.scenePanel = qt.QWidget(self) sceneLayout.addStretch() self.scenePanel.setLayout(sceneLayout) def toggleDock(self): if self.parentRef is not None: self.parentRef.catchViewer() self.parentRef = None def initSegmentsModel(self, isNewModel=True): newModel = qt.QStandardItemModel() newModel.setHorizontalHeaderLabels(['Rays', 'Footprint', 'Surface', 'Label']) if isNewModel: headerRow = [] for i in range(4): child = qt.QStandardItem("") child.setEditable(False) child.setCheckable(True) child.setCheckState(2 if i < 2 else 0) headerRow.append(child) newModel.invisibleRootItem().appendRow(headerRow) newModel.itemChanged.connect(self.updateRaysList) return newModel def updateOEsList(self, arrayOfRays): self.oesList = None self.beamsToElements = None self.populateOEsList(arrayOfRays) self.updateSegmentsModel(arrayOfRays) self.oeTree.resizeColumnToContents(0) self.centerCB.blockSignals(True) tmpIndex = self.centerCB.currentIndex() for i in range(self.centerCB.count()): self.centerCB.removeItem(0) for key in self.oesList.keys(): self.centerCB.addItem(str(key)) # self.segmentsModel.layoutChanged.emit() try: self.centerCB.setCurrentIndex(tmpIndex) except: # analysis:ignore pass self.centerCB.blockSignals(False) self.customGlWidget.arrayOfRays = arrayOfRays self.customGlWidget.beamsDict = arrayOfRays[1] self.customGlWidget.oesList = self.oesList self.customGlWidget.beamsToElements = self.beamsToElements # self.customGlWidget.newColorAxis = True # self.customGlWidget.populateVerticesArray(self.segmentsModelRoot) self.changeColorAxis(None) self.customGlWidget.positionVScreen() self.customGlWidget.glDraw() def populateOEsList(self, arrayOfRays): self.oesList = OrderedDict() self.beamsToElements = OrderedDict() oesList = arrayOfRays[2] for segment in arrayOfRays[0]: if segment[0] == segment[2]: oesList[segment[0]].append(segment[1]) oesList[segment[0]].append(segment[3]) for segOE, oeRecord in oesList.items(): if len(oeRecord) > 2: # DCM elNames = [segOE+'_Entrance', segOE+'_Exit'] else: elNames = [segOE] for elName in elNames: self.oesList[elName] = [oeRecord[0]] # pointer to object if len(oeRecord) < 3 or elName.endswith('_Entrance'): center = list(oeRecord[0].center) is2ndXtal = False else: is2ndXtal = True # center = arrayOfRays[1][oeRecord[3]].wCenter gb = self.oesList[elName][0].local_to_global( rsources.Beam(nrays=2), returnBeam=True, is2ndXtal=is2ndXtal) center = [gb.x[0], gb.y[0], gb.z[0]] for segment in arrayOfRays[0]: ind = oeRecord[1]*2 if str(segment[ind]) == str(segOE): if len(oeRecord) < 3 or\ (elName.endswith('Entrance') and str(segment[3]) == str(oeRecord[2])) or\ (elName.endswith('Exit') and str(segment[3]) == str(oeRecord[3])): if len(self.oesList[elName]) < 2: self.oesList[elName].append( str(segment[ind+1])) self.beamsToElements[segment[ind+1]] =\ elName break else: self.oesList[elName].append(None) self.oesList[elName].append(center) self.oesList[elName].append(is2ndXtal) def createRow(self, text, segMode): newRow = [] for iCol in range(4): newItem = qt.QStandardItem(str(text) if iCol == 0 else "") newItem.setCheckable(True if (segMode == 3 and iCol == 0) or (segMode == 1 and iCol > 0) else False) if newItem.isCheckable(): newItem.setCheckState(2 if iCol < 2 else 0) newItem.setEditable(False) newRow.append(newItem) return newRow def updateSegmentsModel(self, arrayOfRays): def copyRow(item, row): newRow = [] for iCol in range(4): oldItem = item.child(row, iCol) newItem = qt.QStandardItem(str(oldItem.text())) newItem.setCheckable(oldItem.isCheckable()) if newItem.isCheckable(): newItem.setCheckState(oldItem.checkState()) newItem.setEditable(oldItem.isEditable()) newRow.append(newItem) return newRow newSegmentsModel = self.initSegmentsModel(isNewModel=False) newSegmentsModel.invisibleRootItem().appendRow( copyRow(self.segmentsModelRoot, 0)) for element, elRecord in self.oesList.items(): for iel in range(self.segmentsModelRoot.rowCount()): elItem = self.segmentsModelRoot.child(iel, 0) elName = str(elItem.text()) if str(element) == elName: elRow = copyRow(self.segmentsModelRoot, iel) for segment in arrayOfRays[0]: if segment[3] is not None: endBeamText = "to {}".format( self.beamsToElements[segment[3]]) if str(segment[1]) == str(elRecord[1]): if elItem.hasChildren(): for ich in range(elItem.rowCount()): if str(elItem.child(ich, 0).text()) ==\ endBeamText: elRow[0].appendRow( copyRow(elItem, ich)) break else: elRow[0].appendRow(self.createRow( endBeamText, 3)) else: elRow[0].appendRow(self.createRow( endBeamText, 3)) newSegmentsModel.invisibleRootItem().appendRow(elRow) break else: elRow = self.createRow(str(element), 1) for segment in arrayOfRays[0]: if str(segment[1]) == str(elRecord[1]) and\ segment[3] is not None: endBeamText = "to {}".format( self.beamsToElements[segment[3]]) elRow[0].appendRow(self.createRow(endBeamText, 3)) newSegmentsModel.invisibleRootItem().appendRow(elRow) self.segmentsModel = newSegmentsModel self.segmentsModelRoot = self.segmentsModel.invisibleRootItem() self.oeTree.setModel(self.segmentsModel) def populateSegmentsModel(self, arrayOfRays): for element, elRecord in self.oesList.items(): newRow = self.createRow(element, 1) for segment in arrayOfRays[0]: cond = str(segment[1]) == str(elRecord[1]) # or\ # str(segment[0])+"_Entrance" == element if cond: try: # if segment[3] is not None: endBeamText = "to {}".format( self.beamsToElements[segment[3]]) newRow[0].appendRow(self.createRow(endBeamText, 3)) except: # analysis:ignore continue self.segmentsModelRoot.appendRow(newRow) def drawColorMap(self, axis): xv, yv = np.meshgrid(np.linspace(0, colorFactor, 200), np.linspace(0, 1, 200)) xv = xv.flatten() yv = yv.flatten() self.im = self.mplAx.imshow(mpl.colors.hsv_to_rgb(np.vstack(( xv, np.ones_like(xv)*colorSaturation, yv)).T).reshape(( 200, 200, 3)), aspect='auto', origin='lower', extent=(self.customGlWidget.colorMin, self.customGlWidget.colorMax, 0, 1)) self.mplAx.set_xlabel(axis) self.mplAx.set_ylabel('Intensity') def updateColorMap(self, histArray): if histArray[0] is not None: size = len(histArray[0]) histImage = np.zeros((size, size, 3)) colorMin = self.customGlWidget.colorMin colorMax = self.customGlWidget.colorMax hMax = np.float(np.max(histArray[0])) intensity = np.float64(np.array(histArray[0]) / hMax) histVals = np.int32(intensity * (size-1)) for col in range(size): histImage[0:histVals[col], col, :] = mpl.colors.hsv_to_rgb( (colorFactor * (histArray[1][col] - colorMin) / (colorMax - colorMin), colorSaturation, intensity[col])) self.im.set_data(histImage) try: topEl = np.where(intensity >= 0.5)[0] hwhm = (np.abs(histArray[1][topEl[0]] - histArray[1][topEl[-1]])) * 0.5 cntr = (histArray[1][topEl[0]] + histArray[1][topEl[-1]]) * 0.5 newLabel = u"{0:.3f}\u00b1{1:.3f}".format(cntr, hwhm) self.mplAx.set_title(newLabel, fontsize=self.cAxisLabelSize) except: # analysis:ignore pass self.mplFig.canvas.draw() self.mplFig.canvas.blit() self.paletteWidget.span.extents = self.paletteWidget.span.extents else: xv, yv = np.meshgrid(np.linspace(0, colorFactor, 200), np.linspace(0, 1, 200)) xv = xv.flatten() yv = yv.flatten() self.im.set_data(mpl.colors.hsv_to_rgb(np.vstack(( xv, np.ones_like(xv)*colorSaturation, yv)).T).reshape(( 200, 200, 3))) self.mplAx.set_title("") self.mplFig.canvas.draw() self.mplFig.canvas.blit() if self.paletteWidget.span.visible: self.paletteWidget.span.extents =\ self.paletteWidget.span.extents self.mplFig.canvas.blit() def checkGNorm(self, state): self.customGlWidget.globalNorm = True if state > 0 else False self.customGlWidget.populateVerticesArray(self.segmentsModelRoot) self.customGlWidget.glDraw() def checkHSV(self, state): self.customGlWidget.iHSV = True if state > 0 else False self.customGlWidget.populateVerticesArray(self.segmentsModelRoot) self.customGlWidget.glDraw() def checkDrawGrid(self, state): self.customGlWidget.drawGrid = True if state > 0 else False self.customGlWidget.glDraw() def checkFineGrid(self, state): self.customGlWidget.fineGridEnabled = True if state > 0 else False self.customGlWidget.glDraw() def checkPerspect(self, state): self.customGlWidget.perspectiveEnabled = True if state > 0 else False self.customGlWidget.glDraw() def checkAA(self, state): self.customGlWidget.enableAA = True if state > 0 else False self.customGlWidget.glDraw() def checkBlending(self, state): self.customGlWidget.enableBlending = True if state > 0 else False self.customGlWidget.glDraw() def checkLineDepthTest(self, state): self.customGlWidget.linesDepthTest = True if state > 0 else False self.customGlWidget.glDraw() def checkPointDepthTest(self, state): self.customGlWidget.pointsDepthTest = True if state > 0 else False self.customGlWidget.glDraw() def invertSceneColor(self, state): self.customGlWidget.invertColors = True if state > 0 else False self.customGlWidget.glDraw() def checkScalableFont(self, state): self.customGlWidget.useScalableFont = True if state > 0 else False self.customGlWidget.glDraw() def checkShowLabels(self, state): self.customGlWidget.showOeLabels = True if state > 0 else False self.customGlWidget.glDraw() def checkVSColor(self, state): self.customGlWidget.vScreenForColors = True if state > 0 else False self.customGlWidget.populateVerticesArray(self.segmentsModelRoot) self.customGlWidget.glDraw() def checkShowLost(self, state): self.customGlWidget.showLostRays = True if state > 0 else False self.customGlWidget.populateVerticesArray(self.segmentsModelRoot) self.customGlWidget.glDraw() def checkShowLocalAxes(self, state): self.customGlWidget.showLocalAxes = True if state > 0 else False self.customGlWidget.glDraw() def setSceneParam(self, iAction, state): self.sceneControls[iAction].setChecked(state) def setProjectionParam(self, iAction, state): self.projectionControls[iAction].setChecked(state) def setGridParam(self, iAction, state): self.gridControls[iAction].setChecked(state) def setLabelPrec(self, prec): self.customGlWidget.labelCoordPrec = prec self.customGlWidget.glDraw() def updateColorAxis(self, icSel): if icSel == 0: txt = re.sub(',', '.', str(self.colorControls[1].text())) if txt == "{0:.3f}".format(self.customGlWidget.colorMin): return newColorMin = float(txt) self.customGlWidget.colorMin = newColorMin self.colorControls[2].validator().setBottom(newColorMin) else: txt = re.sub(',', '.', str(self.colorControls[2].text())) if txt == "{0:.3f}".format(self.customGlWidget.colorMax): return newColorMax = float(txt) self.customGlWidget.colorMax = newColorMax self.colorControls[1].validator().setTop(newColorMax) self.changeColorAxis(None, newLimits=True) def changeColorAxis(self, selAxis, newLimits=False): if selAxis is None: selAxis = self.colorControls[0].currentText() self.customGlWidget.newColorAxis = False if\ self.customGlWidget.selColorMin is not None else True else: self.customGlWidget.getColor = getattr( raycing, 'get_{}'.format(selAxis)) self.customGlWidget.newColorAxis = True oldColorMin = self.customGlWidget.colorMin oldColorMax = self.customGlWidget.colorMax self.customGlWidget.populateVerticesArray(self.segmentsModelRoot) self.mplAx.set_xlabel(selAxis) if oldColorMin == self.customGlWidget.colorMin and\ oldColorMax == self.customGlWidget.colorMax and not newLimits: return self.customGlWidget.selColorMin = self.customGlWidget.colorMin self.customGlWidget.selColorMax = self.customGlWidget.colorMax extents = (self.customGlWidget.colorMin, self.customGlWidget.colorMax, 0, 1) self.im.set_extent(extents) self.mplFig.gca().ticklabel_format(useOffset=True) # self.mplFig.gca().autoscale_view() extents = list(extents) self.colorControls[1].setText( '{0:.3f}'.format(self.customGlWidget.colorMin)) self.colorControls[2].setText( '{0:.3f}'.format(self.customGlWidget.colorMax)) self.colorControls[3].setText( '{0:.3f}'.format(self.customGlWidget.colorMin)) self.colorControls[4].setText( '{0:.3f}'.format(self.customGlWidget.colorMax)) self.colorControls[3].validator().setRange( self.customGlWidget.colorMin, self.customGlWidget.colorMax, 5) self.colorControls[4].validator().setRange( self.customGlWidget.colorMin, self.customGlWidget.colorMax, 5) slider = self.colorControls[5] center = 0.5 * (extents[0] + extents[1]) newMin = self.customGlWidget.colorMin newMax = self.customGlWidget.colorMax newRange = (newMax - newMin) * 0.01 slider.setRange(newMin, newMax, newRange) slider.setValue(center) self.mplFig.canvas.draw() self.paletteWidget.span.active_handle = None self.paletteWidget.span.to_draw.set_visible(False) self.customGlWidget.glDraw() def updateColorSelFromMPL(self, eclick, erelease): try: extents = list(self.paletteWidget.span.extents) self.customGlWidget.selColorMin = np.min([extents[0], extents[1]]) self.customGlWidget.selColorMax = np.max([extents[0], extents[1]]) self.colorControls[3].setText( "{0:.3f}".format(self.customGlWidget.selColorMin)) self.colorControls[4].setText( "{0:.3f}".format(self.customGlWidget.selColorMax)) self.colorControls[3].validator().setTop( self.customGlWidget.selColorMax) self.colorControls[4].validator().setBottom( self.customGlWidget.selColorMin) slider = self.colorControls[5] center = 0.5 * (extents[0] + extents[1]) halfWidth = (extents[1] - extents[0]) * 0.5 newMin = self.customGlWidget.colorMin + halfWidth newMax = self.customGlWidget.colorMax - halfWidth newRange = (newMax - newMin) * 0.01 slider.setRange(newMin, newMax, newRange) slider.setValue(center) self.customGlWidget.populateVerticesArray(self.segmentsModelRoot) self.customGlWidget.glDraw() except: # analysis:ignore pass def updateColorSel(self, position): slider = self.sender() if isinstance(position, int): try: position /= slider.scale except: # analysis:ignore pass try: extents = list(self.paletteWidget.span.extents) width = np.abs(extents[1] - extents[0]) self.customGlWidget.selColorMin = position - 0.5*width self.customGlWidget.selColorMax = position + 0.5*width self.colorControls[3].setText('{0:.3f}'.format(position-0.5*width)) self.colorControls[4].setText('{0:.3f}'.format(position+0.5*width)) self.colorControls[3].validator().setTop(position + 0.5*width) self.colorControls[4].validator().setBottom(position - 0.5*width) newExtents = (position - 0.5*width, position + 0.5*width, extents[2], extents[3]) self.paletteWidget.span.extents = newExtents self.customGlWidget.populateVerticesArray(self.segmentsModelRoot) self.customGlWidget.glDraw() except: # analysis:ignore pass def updateColorSelFromQLE(self, icSel): try: editor = self.sender() txt = str(editor.text()) value = float(txt) extents = list(self.paletteWidget.span.extents) if icSel == 0: if txt == "{0:.3f}".format(self.customGlWidget.selColorMin): return if value < self.customGlWidget.colorMin: self.im.set_extent( [value, self.customGlWidget.colorMax, 0, 1]) self.customGlWidget.colorMin = value self.customGlWidget.selColorMin = value newExtents = (value, extents[1], extents[2], extents[3]) # self.colorControls[2].validator().setBottom(value) else: if txt == "{0:.3f}".format(self.customGlWidget.selColorMax): return if value > self.customGlWidget.colorMax: self.im.set_extent( [self.customGlWidget.colorMin, value, 0, 1]) self.customGlWidget.colorMax = value self.customGlWidget.selColorMax = value newExtents = (extents[0], value, extents[2], extents[3]) # self.colorControls[1].validator().setTop(value) center = 0.5 * (newExtents[0] + newExtents[1]) halfWidth = (newExtents[1] - newExtents[0]) * 0.5 newMin = self.customGlWidget.colorMin + halfWidth newMax = self.customGlWidget.colorMax - halfWidth newRange = (newMax - newMin) * 0.01 slider = self.colorControls[5] slider.setRange(newMin, newMax, newRange) slider.setValue(center) self.paletteWidget.span.extents = newExtents self.customGlWidget.populateVerticesArray(self.segmentsModelRoot) self.customGlWidget.glDraw() self.mplFig.canvas.draw() except: # analysis:ignore pass def projSelection(self, ind, state): self.customGlWidget.projectionsVisibility[ind] = state self.customGlWidget.glDraw() anyOf = False for proj in self.projectionControls: anyOf = anyOf or proj.isChecked() if anyOf: break self.projLinePanel.setEnabled(anyOf) def updateRotation(self, iax, editor, position): slider = self.sender() if isinstance(position, int): try: position /= slider.scale except: # analysis:ignore pass editor.setText("{0:.2f}".format(position)) self.customGlWidget.rotations[iax][0] = np.float32(position) self.customGlWidget.updateQuats() self.customGlWidget.glDraw() def updateRotationFromGL(self, actPos): for iaxis, (slider, editor) in\ enumerate(zip(self.rotationSliders, self.rotationEditors)): value = actPos[iaxis][0] slider.setValue(value) editor.setText("{0:.2f}".format(value)) def updateRotationFromQLE(self, slider): editor = self.sender() value = float(re.sub(',', '.', str(editor.text()))) slider.setValue(value) def updateScale(self, iax, editor, position): slider = self.sender() if isinstance(position, int): try: position /= slider.scale except: # analysis:ignore pass editor.setText("{0:.2f}".format(position)) self.customGlWidget.scaleVec[iax] = np.float32(np.power(10, position)) self.customGlWidget.glDraw() def updateScaleFromGL(self, scale): if isinstance(scale, (int, float)): scale = [scale, scale, scale] for iaxis, (slider, editor) in \ enumerate(zip(self.zoomSliders, self.zoomEditors)): value = np.log10(scale[iaxis]) slider.setValue(value) editor.setText("{0:.2f}".format(value)) def updateScaleFromQLE(self, slider): editor = self.sender() value = float(re.sub(',', '.', str(editor.text()))) slider.setValue(value) def updateFontSize(self, position): slider = self.sender() if isinstance(position, int): try: position /= slider.scale except: # analysis:ignore pass self.customGlWidget.fontSize = position self.customGlWidget.glDraw() def updateRaysList(self, item): if item.parent() is None: if item.row() == 0: if item.checkState != 1: model = item.model() column = item.column() model.blockSignals(True) parent = self.segmentsModelRoot try: for iChild in range(parent.rowCount()): if iChild > 0: cItem = parent.child(iChild, column) if cItem.isCheckable(): cItem.setCheckState( item.checkState()) if cItem.hasChildren(): for iGChild in range(cItem.rowCount()): gcItem = cItem.child(iGChild, 0) if gcItem.isCheckable(): gcItem.setCheckState( item.checkState()) finally: model.blockSignals(False) model.layoutChanged.emit() else: parent = self.segmentsModelRoot model = item.model() for iChild in range(parent.rowCount()): outState = item.checkState() if iChild > 0: cItem = parent.child(iChild, item.column()) if item.column() > 0: if cItem.checkState() != item.checkState(): outState = 1 break model.blockSignals(True) parent.child(0, item.column()).setCheckState(outState) model.blockSignals(False) model.layoutChanged.emit() else: parent = self.segmentsModelRoot model = item.model() for iChild in range(parent.rowCount()): outState = item.checkState() if iChild > 0: cItem = parent.child(iChild, item.column()) if cItem.hasChildren(): for iGChild in range(cItem.rowCount()): gcItem = cItem.child(iGChild, 0) if gcItem.isCheckable(): if gcItem.checkState() !=\ item.checkState(): outState = 1 break if outState == 1: break model.blockSignals(True) parent.child(0, item.column()).setCheckState(outState) model.blockSignals(False) model.layoutChanged.emit() if item.column() == 3: self.customGlWidget.labelsToPlot = [] for ioe in range(self.segmentsModelRoot.rowCount() - 1): if self.segmentsModelRoot.child(ioe + 1, 3).checkState() == 2: self.customGlWidget.labelsToPlot.append(str( self.segmentsModelRoot.child(ioe + 1, 0).text())) else: self.customGlWidget.populateVerticesArray(self.segmentsModelRoot) self.customGlWidget.glDraw() def oeTreeMenu(self, position): indexes = self.oeTree.selectedIndexes() level = 100 if len(indexes) > 0: level = 0 index = indexes[0] selectedItem = self.segmentsModel.itemFromIndex(index) while index.parent().isValid(): index = index.parent() level += 1 if level == 0: menu = qt.QMenu() menu.addAction('Center here', partial(self.centerEl, str(selectedItem.text()))) menu.exec_(self.oeTree.viewport().mapToGlobal(position)) else: pass def updateGrid(self, iax, editor, position): slider = self.sender() if isinstance(position, int): try: position /= slider.scale except: # analysis:ignore pass editor.setText("{0:.2f}".format(position)) if position != 0: self.customGlWidget.aPos[iax] = np.float32(position) self.customGlWidget.glDraw() def updateGridFromQLE(self, slider): editor = self.sender() value = float(re.sub(',', '.', str(editor.text()))) slider.setValue(value) def updateGridFromGL(self, aPos): for iaxis, (slider, editor) in\ enumerate(zip(self.gridSliders, self.gridEditors)): value = aPos[iaxis] slider.setValue(value) editor.setText("{0:.2f}".format(value)) def glMenu(self, position): menu = qt.QMenu() subMenuF = menu.addMenu('File') for actText, actFunc in zip(['Export to image', 'Save scene geometry', 'Load scene geometry'], [self.exportToImage, self.saveSceneDialog, self.loadSceneDialog]): mAction = qt.QAction(self) mAction.setText(actText) mAction.triggered.connect(actFunc) subMenuF.addAction(mAction) menu.addSeparator() mAction = qt.QAction(self) mAction.setText("Show Virtual Screen") mAction.setCheckable(True) mAction.setChecked(False if self.customGlWidget.virtScreen is None else True) mAction.triggered.connect(self.customGlWidget.toggleVScreen) menu.addAction(mAction) for iAction, actCnt in enumerate(self.sceneControls): if 'Virtual Screen' not in actCnt.text(): continue mAction = qt.QAction(self) mAction.setText(actCnt.text()) mAction.setCheckable(True) mAction.setChecked(bool(actCnt.checkState())) mAction.triggered.connect(partial(self.setSceneParam, iAction)) menu.addAction(mAction) menu.addSeparator() for iAction, actCnt in enumerate(self.gridControls): mAction = qt.QAction(self) if actCnt.staticMetaObject.className() == 'QCheckBox': actText = actCnt.text() actCheck = bool(actCnt.checkState()) else: actText = actCnt.title() actCheck = actCnt.isChecked() mAction.setText(actText) mAction.setCheckable(True) mAction.setChecked(actCheck) mAction.triggered.connect( partial(self.setGridParam, iAction)) if iAction == 0: # perspective menu.addAction(mAction) elif iAction == 1: # show grid subMenuG = menu.addMenu('Coordinate grid') subMenuG.addAction(mAction) elif iAction == 2: # fine grid subMenuG.addAction(mAction) menu.addSeparator() subMenuP = menu.addMenu('Projections') for iAction, actCnt in enumerate(self.projectionControls): mAction = qt.QAction(self) mAction.setText(actCnt.text()) mAction.setCheckable(True) mAction.setChecked(bool(actCnt.checkState())) mAction.triggered.connect( partial(self.setProjectionParam, iAction)) subMenuP.addAction(mAction) menu.addSeparator() subMenuS = menu.addMenu('Scene') for iAction, actCnt in enumerate(self.sceneControls): if 'Virtual Screen' in actCnt.text(): continue mAction = qt.QAction(self) mAction.setText(actCnt.text()) mAction.setCheckable(True) mAction.setChecked(bool(actCnt.checkState())) mAction.triggered.connect(partial(self.setSceneParam, iAction)) subMenuS.addAction(mAction) menu.addSeparator() menu.exec_(self.customGlWidget.mapToGlobal(position)) def exportToImage(self): saveDialog = qt.QFileDialog() saveDialog.setFileMode(qt.QFileDialog.AnyFile) saveDialog.setAcceptMode(qt.QFileDialog.AcceptSave) saveDialog.setNameFilter("BMP files (*.bmp);;JPG files (*.jpg);;JPEG files (*.jpeg);;PNG files (*.png);;TIFF files (*.tif)") # analysis:ignore saveDialog.selectNameFilter("JPG files (*.jpg)") if (saveDialog.exec_()): image = self.customGlWidget.grabFrameBuffer(withAlpha=True) filename = saveDialog.selectedFiles()[0] extension = str(saveDialog.selectedNameFilter())[-5:-1].strip('.') if not filename.endswith(extension): filename = "{0}.{1}".format(filename, extension) image.save(filename) def saveSceneDialog(self): saveDialog = qt.QFileDialog() saveDialog.setFileMode(qt.QFileDialog.AnyFile) saveDialog.setAcceptMode(qt.QFileDialog.AcceptSave) saveDialog.setNameFilter("Numpy files (*.npy)") # analysis:ignore if (saveDialog.exec_()): filename = saveDialog.selectedFiles()[0] extension = 'npy' if not filename.endswith(extension): filename = "{0}.{1}".format(filename, extension) self.saveScene(filename) def loadSceneDialog(self): loadDialog = qt.QFileDialog() loadDialog.setFileMode(qt.QFileDialog.AnyFile) loadDialog.setAcceptMode(qt.QFileDialog.AcceptOpen) loadDialog.setNameFilter("Numpy files (*.npy)") # analysis:ignore if (loadDialog.exec_()): filename = loadDialog.selectedFiles()[0] extension = 'npy' if not filename.endswith(extension): filename = "{0}.{1}".format(filename, extension) self.loadScene(filename) def saveScene(self, filename): params = dict() for param in ['aspect', 'cameraAngle', 'projectionsVisibility', 'lineOpacity', 'lineWidth', 'pointOpacity', 'pointSize', 'lineProjectionOpacity', 'lineProjectionWidth', 'pointProjectionOpacity', 'pointProjectionSize', 'coordOffset', 'cutoffI', 'drawGrid', 'aPos', 'scaleVec', 'tVec', 'cameraPos', 'rotations', 'visibleAxes', 'signs', 'selColorMin', 'selColorMax', 'colorMin', 'colorMax', 'fineGridEnabled', 'useScalableFont', 'invertColors', 'perspectiveEnabled', 'globalNorm', 'viewPortGL', 'iHSV']: params[param] = getattr(self.customGlWidget, param) params['size'] = self.geometry() params['sizeGL'] = self.canvasSplitter.sizes() params['colorAxis'] = str(self.colorControls[0].currentText()) try: np.save(filename, params) except: # analysis:ignore print('Error saving file') return print('Saved scene to {}'.format(filename)) def loadScene(self, filename): try: params = np.load(filename).item() except: # analysis:ignore print('Error loading file') return for param in ['aspect', 'cameraAngle', 'projectionsVisibility', 'lineOpacity', 'lineWidth', 'pointOpacity', 'pointSize', 'lineProjectionOpacity', 'lineProjectionWidth', 'pointProjectionOpacity', 'pointProjectionSize', 'coordOffset', 'cutoffI', 'drawGrid', 'aPos', 'scaleVec', 'tVec', 'cameraPos', 'rotations', 'visibleAxes', 'signs', 'selColorMin', 'selColorMax', 'colorMin', 'colorMax', 'fineGridEnabled', 'useScalableFont', 'invertColors', 'perspectiveEnabled', 'globalNorm', 'viewPortGL', 'iHSV']: setattr(self.customGlWidget, param, params[param]) self.setGeometry(params['size']) self.canvasSplitter.setSizes(params['sizeGL']) self.updateScaleFromGL(self.customGlWidget.scaleVec) self.blockSignals(True) self.updateRotationFromGL(self.customGlWidget.rotations) self.updateOpacityFromGL([self.customGlWidget.lineOpacity, self.customGlWidget.lineWidth, self.customGlWidget.pointOpacity, self.customGlWidget.pointSize]) for iax, checkBox in enumerate(self.projectionControls): checkBox.setChecked(self.customGlWidget.projectionsVisibility[iax]) self.gridPanel.setChecked(self.customGlWidget.drawGrid) self.checkBoxFineGrid.setChecked(self.customGlWidget.fineGridEnabled) self.checkBoxPerspective.setChecked( self.customGlWidget.perspectiveEnabled) self.updateProjectionOpacityFromGL( [self.customGlWidget.lineProjectionOpacity, self.customGlWidget.lineProjectionWidth, self.customGlWidget.pointProjectionOpacity, self.customGlWidget.pointProjectionSize]) self.updateGridFromGL(self.customGlWidget.aPos) self.sceneControls[4].setChecked(self.customGlWidget.invertColors) self.sceneControls[5].setChecked(self.customGlWidget.useScalableFont) self.sceneControls[4].setChecked(self.customGlWidget.invertColors) self.glNormCB.setChecked(self.customGlWidget.globalNorm) self.iHSVCB.setChecked(self.customGlWidget.iHSV) self.blockSignals(False) self.mplFig.canvas.draw() colorCB = self.colorControls[0] colorCB.setCurrentIndex(colorCB.findText(params['colorAxis'])) newExtents = list(self.paletteWidget.span.extents) newExtents[0] = params['selColorMin'] newExtents[1] = params['selColorMax'] try: self.paletteWidget.span.extents = newExtents except: # analysis:ignore pass self.updateColorSelFromMPL(0, 0) print('Loaded scene from {}'.format(filename)) def startRecordingMovie(self): # by F7 if self.generator is None: return startFrom = self.startFrom if hasattr(self, 'startFrom') else 0 for it in self.generator(*self.generatorArgs): self.bl.propagate_flow(startFrom=startFrom) rayPath = self.bl.export_to_glow() self.updateOEsList(rayPath) self.customGlWidget.glDraw() if self.isHidden(): self.show() image = self.customGlWidget.grabFrameBuffer(withAlpha=True) try: image.save(self.bl.glowFrameName) cNameSp = os.path.splitext(self.bl.glowFrameName) cName = cNameSp[0] + "_color" + cNameSp[1] self.mplFig.savefig(cName) except AttributeError: print('no glowFrameName was given!') print("Finished with the movie.") def centerEl(self, oeName): self.customGlWidget.coordOffset = list(self.oesList[str(oeName)][2]) self.customGlWidget.tVec = np.float32([0, 0, 0]) self.customGlWidget.populateVerticesArray(self.segmentsModelRoot) self.customGlWidget.glDraw() def updateCutoffFromQLE(self): try: editor = self.sender() value = float(re.sub(',', '.', str(editor.text()))) extents = list(self.paletteWidget.span.extents) self.customGlWidget.cutoffI = np.float32(value) self.customGlWidget.populateVerticesArray(self.segmentsModelRoot) newExtents = (extents[0], extents[1], self.customGlWidget.cutoffI, extents[3]) self.paletteWidget.span.extents = newExtents self.customGlWidget.glDraw() except: # analysis:ignore pass def updateExplosionDepth(self): try: editor = self.sender() value = float(re.sub(',', '.', str(editor.text()))) self.customGlWidget.depthScaler = np.float32(value) if self.customGlWidget.virtScreen is not None: self.customGlWidget.populateVScreen() self.customGlWidget.glDraw() except: # analysis:ignore pass def updateOpacity(self, iax, editor, position): slider = self.sender() if isinstance(position, int): try: position /= slider.scale except: # analysis:ignore if _DEBUG_: raise else: pass editor.setText("{0:.2f}".format(position)) if iax == 0: self.customGlWidget.lineOpacity = np.float32(position) elif iax == 1: self.customGlWidget.lineWidth = np.float32(position) elif iax == 2: self.customGlWidget.pointOpacity = np.float32(position) elif iax == 3: self.customGlWidget.pointSize = np.float32(position) self.customGlWidget.glDraw() def updateOpacityFromQLE(self, slider): editor = self.sender() value = float(str(editor.text())) slider.setValue(value) self.customGlWidget.glDraw() def updateOpacityFromGL(self, ops): for iaxis, (slider, editor, op) in\ enumerate(zip(self.opacitySliders, self.opacityEditors, ops)): slider.setValue(op) editor.setText("{0:.2f}".format(op)) def updateTileFromQLE(self, ia): editor = self.sender() value = float(str(editor.text())) self.customGlWidget.tiles[ia] = np.int(value) self.customGlWidget.glDraw() def updateProjectionOpacity(self, iax, editor, position): slider = self.sender() if isinstance(position, int): try: position /= slider.scale except: # analysis:ignore if _DEBUG_: raise else: pass editor.setText("{0:.2f}".format(position)) if iax == 0: self.customGlWidget.lineProjectionOpacity = np.float32(position) elif iax == 1: self.customGlWidget.lineProjectionWidth = np.float32(position) elif iax == 2: self.customGlWidget.pointProjectionOpacity = np.float32(position) elif iax == 3: self.customGlWidget.pointProjectionSize = np.float32(position) self.customGlWidget.glDraw() def updateProjectionOpacityFromQLE(self, slider): editor = self.sender() value = float(re.sub(',', '.', str(editor.text()))) slider.setValue(value) self.customGlWidget.glDraw() def updateProjectionOpacityFromGL(self, ops): for iaxis, (slider, editor, op) in\ enumerate(zip(self.projectionOpacitySliders, self.projectionOpacityEditors, ops)): slider.setValue(op) editor.setText("{0:.2f}".format(op)) class xrtGlWidget(qt.QGLWidget): rotationUpdated = qt.pyqtSignal(np.ndarray) scaleUpdated = qt.pyqtSignal(np.ndarray) histogramUpdated = qt.pyqtSignal(tuple) def __init__(self, parent, arrayOfRays, modelRoot, oesList, b2els, signal): qt.QGLWidget.__init__(self, parent) self.QookSignal = signal self.virtScreen = None self.virtBeam = None self.virtDotsArray = None self.virtDotsColor = None self.vScreenForColors = False self.globalColorIndex = None self.isVirtScreenNormal = False self.segmentModel = modelRoot self.vScreenSize = 0.5 self.setMinimumSize(400, 400) self.aspect = 1. self.depthScaler = 0. self.viewPortGL = [0, 0, 500, 500] self.perspectiveEnabled = True self.cameraAngle = 60 self.setMouseTracking(True) self.surfCPOrder = 4 self.oesToPlot = [] self.labelsToPlot = [] self.tiles = [2, 2] self.arrayOfRays = arrayOfRays self.beamsDict = arrayOfRays[1] self.oesList = oesList self.oeContour = dict() self.slitEdges = dict() self.beamsToElements = b2els self.slitThickness = 2. # mm self.contourWidth = 2 self.projectionsVisibility = [0, 0, 0] self.lineOpacity = 0.1 self.lineWidth = 1 self.pointOpacity = 0.1 self.pointSize = 1 self.linesDepthTest = True self.pointsDepthTest = False self.labelCoordPrec = 1 self.lineProjectionOpacity = 0.1 self.lineProjectionWidth = 1 self.pointProjectionOpacity = 0.1 self.pointProjectionSize = 1 self.coordOffset = [0., 0., 0.] self.enableAA = False self.enableBlending = True self.cutoffI = 0.01 self.getColor = raycing.get_energy self.globalNorm = True self.iHSV = False self.newColorAxis = True self.colorMin = -1e20 self.colorMax = 1e20 self.selColorMin = None self.selColorMax = None self.scaleVec = np.array([1e3, 1e1, 1e3]) self.maxLen = 1. self.showLostRays = False self.showLocalAxes = False self.populateVerticesArray(modelRoot) self.drawGrid = True self.fineGridEnabled = False self.showOeLabels = False self.aPos = [0.9, 0.9, 0.9] self.prevMPos = [0, 0] self.prevWC = np.float32([0, 0, 0]) self.coordinateGridLineWidth = 1 # self.fixedFontType = 'GLUT_BITMAP_TIMES_ROMAN' self.fixedFontType = 'GLUT_BITMAP_HELVETICA' self.fixedFontSize = '12' # 10, 12, 18 for Helvetica; 10, 24 for Roman self.fixedFont = getattr(gl, "{0}_{1}".format(self.fixedFontType, self.fixedFontSize)) self.useScalableFont = False self.fontSize = 5 self.scalableFontType = gl.GLUT_STROKE_ROMAN # self.scalableFontType = gl.GLUT_STROKE_MONO_ROMAN self.scalableFontWidth = 1 self.useFontAA = False self.tVec = np.array([0., 0., 0.]) self.cameraTarget = [0., 0., 0.] self.cameraPos = np.float32([3.5, 0., 0.]) self.isEulerian = False self.rotations = np.float32([[0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]]) self.textOrientation = [0.5, 0.5, 0.5, 0.5] self.updateQuats() pModelT = np.identity(4) self.visibleAxes = np.argmax(np.abs(pModelT), axis=1) self.signs = np.ones_like(pModelT) self.invertColors = False self.showHelp = False # self.glDraw() def eulerToQ(self, rotMatrXYZ): hPitch = np.radians(rotMatrXYZ[0][0]) * 0.5 hRoll = np.radians(rotMatrXYZ[1][0]) * 0.5 hYaw = np.radians(rotMatrXYZ[2][0]) * 0.5 cosPitch = np.cos(hPitch) sinPitch = np.sin(hPitch) cosRoll = np.cos(hRoll) sinRoll = np.sin(hRoll) cosYaw = np.cos(hYaw) sinYaw = np.sin(hYaw) return [cosPitch*cosRoll*cosYaw - sinPitch*sinRoll*sinYaw, sinRoll*sinYaw*cosPitch + sinPitch*cosRoll*cosYaw, sinRoll*cosPitch*cosYaw - sinPitch*sinYaw*cosRoll, sinYaw*cosPitch*cosRoll + sinPitch*sinRoll*cosYaw] def qToVec(self, quat): angle = 2 * np.arccos(quat[0]) q2v = np.sin(angle * 0.5) qbt1 = quat[1] / q2v if q2v != 0 else 0 qbt2 = quat[2] / q2v if q2v != 0 else 0 qbt3 = quat[3] / q2v if q2v != 0 else 0 return [np.degrees(angle), qbt1, qbt2, qbt3] def rotateZYX(self): if self.isEulerian: gl.glRotatef(*self.rotations[0]) gl.glRotatef(*self.rotations[1]) gl.glRotatef(*self.rotations[2]) else: gl.glRotatef(*self.rotationVec) def updateQuats(self): self.qRot = self.eulerToQ(self.rotations) self.rotationVec = self.qToVec(self.qRot) self.qText = self.qToVec( self.quatMult([self.qRot[0], -self.qRot[1], -self.qRot[2], -self.qRot[3]], self.textOrientation)) def vecToQ(self, vec, alpha): """ Quaternion from vector and angle""" return np.insert(vec*np.sin(alpha*0.5), 0, np.cos(alpha*0.5)) def rotateVecQ(self, vec, q): qn = np.copy(q) qn[1:] *= -1 return self.quatMult(self.quatMult( q, self.vecToQ(vec, np.pi*0.25)), qn)[1:] def setPointSize(self, pSize): self.pointSize = pSize self.glDraw() def setLineWidth(self, lWidth): self.lineWidth = lWidth self.glDraw() def populateVerticesOnly(self, segmentsModelRoot): if segmentsModelRoot is None: return self.segmentModel = segmentsModelRoot # signal = self.QookSignal self.verticesArray = None self.footprintsArray = None self.oesToPlot = [] self.labelsToPlot = [] self.footprints = dict() colorsRays = None alphaRays = None colorsDots = None alphaDots = None globalColorsDots = None globalColorsRays = None verticesArrayLost = None colorsRaysLost = None footprintsArrayLost = None colorsDotsLost = None maxLen = 1. tmpMax = -1.0e12 * np.ones(3) tmpMin = -1. * tmpMax if self.newColorAxis: newColorMax = -1e20 newColorMin = 1e20 # self.selColorMax = newColorMax # self.selColorMin = newColorMin else: newColorMax = self.colorMax newColorMin = self.colorMin # totalOEs = range(segmentsModelRoot.rowCount() - 2) for ioe in range(segmentsModelRoot.rowCount() - 1): ioeItem = segmentsModelRoot.child(ioe + 1, 0) # try: # if signal is not None: # signalStr = "Plotting beams for {}, %p% done.".format( # str(ioeItem.text())) # signal.emit((float(ioe) / float(totalOEs), # signalStr)) # except: # pass if segmentsModelRoot.child(ioe + 1, 2).checkState() == 2: self.oesToPlot.append(str(ioeItem.text())) self.footprints[str(ioeItem.text())] = None if segmentsModelRoot.child(ioe + 1, 3).checkState() == 2: self.labelsToPlot.append(str(ioeItem.text())) try: startBeam = self.beamsDict[ self.oesList[str(ioeItem.text())][1]] # lostNum = self.oesList[str(ioeItem.text())][0].lostNum # good = startBeam.state > 0 good = (startBeam.state == 1) | (startBeam.state == 2) if len(startBeam.state[good]) > 0: for tmpCoord, tAxis in enumerate(['x', 'y', 'z']): axMin = np.min(getattr(startBeam, tAxis)[good]) axMax = np.max(getattr(startBeam, tAxis)[good]) if axMin < tmpMin[tmpCoord]: tmpMin[tmpCoord] = axMin if axMax > tmpMax[tmpCoord]: tmpMax[tmpCoord] = axMax newColorMax = max(np.max( self.getColor(startBeam)[good]), newColorMax) newColorMin = min(np.min( self.getColor(startBeam)[good]), newColorMin) except: # analysis:ignore if _DEBUG_: raise else: continue if self.newColorAxis: if newColorMin != self.colorMin: self.colorMin = newColorMin self.selColorMin = self.colorMin if newColorMax != self.colorMax: self.colorMax = newColorMax self.selColorMax = self.colorMax if ioeItem.hasChildren(): for isegment in range(ioeItem.rowCount()): segmentItem0 = ioeItem.child(isegment, 0) if segmentItem0.checkState() == 2: endBeam = self.beamsDict[ self.oesList[str(segmentItem0.text())[3:]][1]] # good = startBeam.state > 0 good = (startBeam.state == 1) | (startBeam.state == 2) if len(startBeam.state[good]) == 0: continue intensity = startBeam.Jss + startBeam.Jpp intensityAll = intensity / np.max(intensity[good]) good = np.logical_and(good, intensityAll >= self.cutoffI) goodC = np.logical_and( self.getColor(startBeam) <= self.selColorMax, self.getColor(startBeam) >= self.selColorMin) good = np.logical_and(good, goodC) if self.vScreenForColors and\ self.globalColorIndex is not None: good = np.logical_and(good, self.globalColorIndex) globalColorsRays = np.repeat( self.globalColorArray[good], 2, axis=0) if\ globalColorsRays is None else np.concatenate( (globalColorsRays, np.repeat(self.globalColorArray[good], 2, axis=0))) else: if self.globalNorm: alphaMax = 1. else: if len(intensity[good]) > 0: alphaMax = np.max(intensity[good]) else: alphaMax = 1. alphaMax = alphaMax if alphaMax != 0 else 1. alphaRays = np.repeat(intensity[good] / alphaMax, 2).T\ if alphaRays is None else np.concatenate( (alphaRays.T, np.repeat(intensity[good] / alphaMax, 2).T)) colorsRays = np.repeat(np.array(self.getColor( startBeam)[good]), 2).T if\ colorsRays is None else np.concatenate( (colorsRays.T, np.repeat(np.array(self.getColor( startBeam)[good]), 2).T)) vertices = np.array( [startBeam.x[good] - self.coordOffset[0], endBeam.x[good] - self.coordOffset[0]]).flatten( 'F') vertices = np.vstack((vertices, np.array( [startBeam.y[good] - self.coordOffset[1], endBeam.y[good] - self.coordOffset[1]]).flatten( 'F'))) vertices = np.vstack((vertices, np.array( [startBeam.z[good] - self.coordOffset[2], endBeam.z[good] - self.coordOffset[2]]).flatten( 'F'))) self.verticesArray = vertices.T if\ self.verticesArray is None else\ np.vstack((self.verticesArray, vertices.T)) if self.showLostRays: try: lostNum = self.oesList[str( segmentItem0.text())[3:]][0].lostNum except: # analysis:ignore lostNum = 1e3 lost = startBeam.state == lostNum try: lostOnes = len(startBeam.x[lost]) * 2 except: # analysis:ignore lostOnes = 0 colorsRaysLost = lostOnes if colorsRaysLost is\ None else colorsRaysLost + lostOnes if lostOnes > 0: verticesLost = np.array( [startBeam.x[lost] - self.coordOffset[0], endBeam.x[lost] - self.coordOffset[0]]).flatten('F') verticesLost = np.vstack((verticesLost, np.array( # analysis:ignore [startBeam.y[lost] - self.coordOffset[1], endBeam.y[lost] - self.coordOffset[1]]).flatten('F'))) verticesLost = np.vstack((verticesLost, np.array( # analysis:ignore [startBeam.z[lost] - self.coordOffset[2], endBeam.z[lost] - self.coordOffset[2]]).flatten('F'))) verticesArrayLost = verticesLost.T if\ verticesArrayLost is None else\ np.vstack((verticesArrayLost, verticesLost.T)) # analysis:ignore if segmentsModelRoot.child(ioe + 1, 1).checkState() == 2: # good = startBeam.state > 0 good = (startBeam.state == 1) | (startBeam.state == 2) if len(startBeam.state[good]) == 0: continue intensity = startBeam.Jss + startBeam.Jpp try: intensityAll = intensity / np.max(intensity[good]) good = np.logical_and(good, intensityAll >= self.cutoffI) goodC = np.logical_and( self.getColor(startBeam) <= self.selColorMax, self.getColor(startBeam) >= self.selColorMin) good = np.logical_and(good, goodC) except: # analysis:ignore if _DEBUG_: raise else: continue if self.vScreenForColors and self.globalColorIndex is not None: good = np.logical_and(good, self.globalColorIndex) globalColorsDots = self.globalColorArray[good] if\ globalColorsDots is None else np.concatenate( (globalColorsDots, self.globalColorArray[good])) else: if self.globalNorm: alphaMax = 1. else: if len(intensity[good]) > 0: alphaMax = np.max(intensity[good]) else: alphaMax = 1. alphaMax = alphaMax if alphaMax != 0 else 1. alphaDots = intensity[good].T / alphaMax if\ alphaDots is None else np.concatenate( (alphaDots.T, intensity[good].T / alphaMax)) colorsDots = np.array(self.getColor( startBeam)[good]).T if\ colorsDots is None else np.concatenate( (colorsDots.T, np.array(self.getColor( startBeam)[good]).T)) vertices = np.array(startBeam.x[good] - self.coordOffset[0]) vertices = np.vstack((vertices, np.array( startBeam.y[good] - self.coordOffset[1]))) vertices = np.vstack((vertices, np.array( startBeam.z[good] - self.coordOffset[2]))) self.footprintsArray = vertices.T if\ self.footprintsArray is None else\ np.vstack((self.footprintsArray, vertices.T)) if self.showLostRays: try: lostNum = self.oesList[str(ioeItem.text())][0].lostNum except: # analysis:ignore lostNum = 1e3 lost = startBeam.state == lostNum try: lostOnes = len(startBeam.x[lost]) except: # analysis:ignore lostOnes = 0 colorsDotsLost = lostOnes if\ colorsDotsLost is None else\ colorsDotsLost + lostOnes if lostOnes > 0: verticesLost = np.array(startBeam.x[lost] - self.coordOffset[0]) verticesLost = np.vstack((verticesLost, np.array( startBeam.y[lost] - self.coordOffset[1]))) verticesLost = np.vstack((verticesLost, np.array( startBeam.z[lost] - self.coordOffset[2]))) footprintsArrayLost = verticesLost.T if\ footprintsArrayLost is None else\ np.vstack((footprintsArrayLost, verticesLost.T)) try: if self.colorMin == self.colorMax: if self.colorMax == 0: # and self.colorMin == 0 too self.colorMin, self.colorMax = -0.1, 0.1 else: self.colorMin = self.colorMax * 0.99 self.colorMax *= 1.01 if self.vScreenForColors and self.globalColorIndex is not None: self.raysColor = globalColorsRays elif colorsRays is not None: colorsRays = colorFactor * (colorsRays-self.colorMin) /\ (self.colorMax - self.colorMin) colorsRays = np.dstack((colorsRays, np.ones_like(alphaRays)*colorSaturation, # analysis:ignore alphaRays if self.iHSV else np.ones_like(alphaRays))) colorsRGBRays = np.squeeze(mpl.colors.hsv_to_rgb(colorsRays)) if self.globalNorm and len(alphaRays) > 0: alphaMax = np.max(alphaRays) else: alphaMax = 1. alphaMax = alphaMax if alphaMax != 0 else 1. alphaColorRays = np.array([alphaRays / alphaMax]).T self.raysColor = np.float32(np.hstack([colorsRGBRays, alphaColorRays])) if self.showLostRays: if colorsRaysLost is not None: lostColor = np.zeros((colorsRaysLost, 4)) lostColor[:, 0] = 0.5 lostColor[:, 3] = 0.25 self.raysColor = np.float32(np.vstack((self.raysColor, lostColor))) if verticesArrayLost is not None: self.verticesArray = np.float32(np.vstack(( self.verticesArray, verticesArrayLost))) except: # analysis:ignore if _DEBUG_: raise else: pass try: if self.colorMin == self.colorMax: if self.colorMax == 0: # and self.colorMin == 0 too self.colorMin, self.colorMax = -0.1, 0.1 else: self.colorMin = self.colorMax * 0.99 self.colorMax *= 1.01 if self.vScreenForColors and self.globalColorIndex is not None: self.dotsColor = globalColorsDots elif colorsDots is not None: colorsDots = colorFactor * (colorsDots-self.colorMin) /\ (self.colorMax - self.colorMin) colorsDots = np.dstack((colorsDots, np.ones_like(alphaDots)*colorSaturation, # analysis:ignore alphaDots if self.iHSV else np.ones_like(alphaDots))) colorsRGBDots = np.squeeze(mpl.colors.hsv_to_rgb(colorsDots)) if self.globalNorm and len(alphaDots) > 0: alphaMax = np.max(alphaDots) else: alphaMax = 1. alphaMax = alphaMax if alphaMax != 0 else 1. alphaColorDots = np.array([alphaDots / alphaMax]).T self.dotsColor = np.float32(np.hstack([colorsRGBDots, alphaColorDots])) if self.showLostRays: if colorsDotsLost is not None: lostColor = np.zeros((colorsDotsLost, 4)) lostColor[:, 0] = 0.5 lostColor[:, 3] = 0.25 self.dotsColor = np.float32(np.vstack((self.dotsColor, lostColor))) if footprintsArrayLost is not None: self.footprintsArray = np.float32(np.vstack(( self.footprintsArray, footprintsArrayLost))) except: # analysis:ignore if _DEBUG_: raise else: pass tmpMaxLen = np.max(tmpMax - tmpMin) if tmpMaxLen > maxLen: maxLen = tmpMaxLen self.maxLen = maxLen self.newColorAxis = False def populateVerticesArray(self, segmentsModelRoot): self.populateVerticesOnly(segmentsModelRoot) self.populateVScreen() if self.vScreenForColors: self.populateVerticesOnly(segmentsModelRoot) def modelToWorld(self, coords, dimension=None): self.maxLen = self.maxLen if self.maxLen != 0 else 1. if dimension is None: return np.float32(((coords + self.tVec) * self.scaleVec) / self.maxLen) else: return np.float32(((coords[dimension] + self.tVec[dimension]) * self.scaleVec[dimension]) / self.maxLen) def worldToModel(self, coords): return np.float32(coords * self.maxLen / self.scaleVec - self.tVec) def drawText(self, coord, text, noScalable=False, alignment=None, useCaption=False): useScalableFont = False if noScalable else self.useScalableFont pView = gl.glGetIntegerv(gl.GL_VIEWPORT) pProjection = gl.glGetDoublev(gl.GL_PROJECTION_MATRIX) if not useScalableFont: gl.glRasterPos3f(*coord) for symbol in text: gl.glutBitmapCharacter(self.fixedFont, ord(symbol)) else: tLineWidth = gl.glGetDoublev(gl.GL_LINE_WIDTH) tLineAA = gl.glIsEnabled(gl.GL_LINE_SMOOTH) if self.useFontAA: gl.glEnable(gl.GL_LINE_SMOOTH) else: gl.glDisable(gl.GL_LINE_SMOOTH) gl.glLineWidth(self.scalableFontWidth) fontScale = self.fontSize / 12500. coordShift = np.zeros(3, dtype=np.float32) fontSizeLoc = np.float32(np.array([104.76, 119.05, 0])*fontScale) if alignment is not None: if alignment[0] == 'left': coordShift[0] = -fontSizeLoc[0] * len(text) else: coordShift[0] = fontSizeLoc[0] if alignment[1] == 'top': vOffset = 0.5 elif alignment[1] == 'bottom': vOffset = -1.5 else: vOffset = -0.5 coordShift[1] = vOffset * fontSizeLoc[1] if useCaption: textWidth = 0 for symbol in text.strip(" "): textWidth += gl.glutStrokeWidth(self.scalableFontType, ord(symbol)) gl.glPushMatrix() gl.glTranslatef(*coord) gl.glRotatef(*self.qText) gl.glTranslatef(*coordShift) gl.glScalef(fontScale, fontScale, fontScale) depthCounter = 1 spaceFound = False while not spaceFound: depthCounter += 1 for dy in [-1, 1]: for dx in [1, -1]: textShift = (depthCounter+0.5*dy) * 119.05*1.5 gl.glPushMatrix() textPos = [dx*depthCounter * 119.05*1.5 + (0 if dx > 0 else -1) * textWidth, dy*textShift, 0] gl.glTranslatef(*textPos) pModel = gl.glGetDoublev(gl.GL_MODELVIEW_MATRIX) bottomLeft = np.array(gl.gluProject( *[0, 0, 0], model=pModel, proj=pProjection, view=pView)[:-1]) topRight = np.array(gl.gluProject( *[textWidth, 119.05*2.5, 0], model=pModel, proj=pProjection, view=pView)[:-1]) gl.glPopMatrix() spaceFound = True for oeLabel in list(self.labelsBounds.values()): if not (bottomLeft[0] > oeLabel[1][0] or bottomLeft[1] > oeLabel[1][1] or topRight[0] < oeLabel[0][0] or topRight[1] < oeLabel[0][1]): spaceFound = False if spaceFound: self.labelsBounds[text] = [0]*2 self.labelsBounds[text][0] = bottomLeft self.labelsBounds[text][1] = topRight break if spaceFound: break gl.glPopMatrix() gl.glPushMatrix() gl.glTranslatef(*coord) gl.glRotatef(*self.qText) gl.glScalef(fontScale, fontScale, fontScale) captionPos = depthCounter * 119.05*1.5 gl.glBegin(gl.GL_LINE_STRIP) gl.glVertex3f(0, 0, 0) gl.glVertex3f(captionPos*dx, captionPos*dy, 0) gl.glVertex3f(captionPos*dx + textWidth*dx, captionPos*dy, 0) gl.glEnd() gl.glTranslatef(*textPos) for symbol in text.strip(" "): gl.glutStrokeCharacter(self.scalableFontType, ord(symbol)) gl.glPopMatrix() else: gl.glPushMatrix() gl.glTranslatef(*coord) gl.glRotatef(*self.qText) gl.glTranslatef(*coordShift) gl.glScalef(fontScale, fontScale, fontScale) for symbol in text: gl.glutStrokeCharacter(self.scalableFontType, ord(symbol)) gl.glPopMatrix() gl.glLineWidth(tLineWidth) if tLineAA: gl.glEnable(gl.GL_LINE_SMOOTH) else: gl.glDisable(gl.GL_LINE_SMOOTH) def setMaterial(self, mat): if mat == 'Cu': gl.glMaterialfv(gl.GL_FRONT_AND_BACK, gl.GL_AMBIENT, [0.3, 0.15, 0.15, 1]) gl.glMaterialfv(gl.GL_FRONT_AND_BACK, gl.GL_DIFFUSE, [0.4, 0.25, 0.15, 1]) gl.glMaterialfv(gl.GL_FRONT_AND_BACK, gl.GL_SPECULAR, [1., 0.7, 0.3, 1]) gl.glMaterialfv(gl.GL_FRONT_AND_BACK, gl.GL_EMISSION, [0.1, 0.1, 0.1, 1]) gl.glMaterialf(gl.GL_FRONT, gl.GL_SHININESS, 100) elif mat == 'magRed': gl.glMaterialfv(gl.GL_FRONT_AND_BACK, gl.GL_AMBIENT, [0.6, 0.1, 0.1, 1]) gl.glMaterialfv(gl.GL_FRONT_AND_BACK, gl.GL_DIFFUSE, [0.8, 0.1, 0.1, 1]) gl.glMaterialfv(gl.GL_FRONT_AND_BACK, gl.GL_SPECULAR, [1., 0.1, 0.1, 1]) gl.glMaterialfv(gl.GL_FRONT_AND_BACK, gl.GL_EMISSION, [0.1, 0.1, 0.1, 1]) gl.glMaterialf(gl.GL_FRONT, gl.GL_SHININESS, 100) elif mat == 'magBlue': gl.glMaterialfv(gl.GL_FRONT_AND_BACK, gl.GL_AMBIENT, [0.1, 0.1, 0.6, 1]) gl.glMaterialfv(gl.GL_FRONT_AND_BACK, gl.GL_DIFFUSE, [0.1, 0.1, 0.8, 1]) gl.glMaterialfv(gl.GL_FRONT_AND_BACK, gl.GL_SPECULAR, [0.1, 0.1, 1., 1]) gl.glMaterialfv(gl.GL_FRONT_AND_BACK, gl.GL_EMISSION, [0.1, 0.1, 0.1, 1]) gl.glMaterialf(gl.GL_FRONT, gl.GL_SHININESS, 100) elif mat == 'semiSi': gl.glMaterialfv(gl.GL_FRONT_AND_BACK, gl.GL_AMBIENT, [0.1, 0.1, 0.1, 0.75]) gl.glMaterialfv(gl.GL_FRONT_AND_BACK, gl.GL_DIFFUSE, [0.3, 0.3, 0.3, 0.75]) gl.glMaterialfv(gl.GL_FRONT_AND_BACK, gl.GL_SPECULAR, [1., 0.9, 0.8, 0.75]) gl.glMaterialfv(gl.GL_FRONT_AND_BACK, gl.GL_EMISSION, [0.1, 0.1, 0.1, 0.75]) gl.glMaterialf(gl.GL_FRONT, gl.GL_SHININESS, 100) else: gl.glMaterialfv(gl.GL_FRONT_AND_BACK, gl.GL_AMBIENT, [0.1, 0.1, 0.1, 1]) gl.glMaterialfv(gl.GL_FRONT_AND_BACK, gl.GL_DIFFUSE, [0.3, 0.3, 0.3, 1]) gl.glMaterialfv(gl.GL_FRONT_AND_BACK, gl.GL_SPECULAR, [1., 0.9, 0.8, 1]) gl.glMaterialfv(gl.GL_FRONT_AND_BACK, gl.GL_EMISSION, [0.1, 0.1, 0.1, 1]) gl.glMaterialf(gl.GL_FRONT, gl.GL_SHININESS, 100) def paintGL(self): def makeCenterStr(centerList, prec): retStr = '(' for dim in centerList: retStr += '{0:.{1}f}, '.format(dim, prec) return retStr[:-2] + ')' if self.invertColors: gl.glClearColor(1.0, 1.0, 1.0, 1.) else: gl.glClearColor(0.0, 0.0, 0.0, 1.) gl.glClear(gl.GL_COLOR_BUFFER_BIT | gl.GL_DEPTH_BUFFER_BIT) gl.glMatrixMode(gl.GL_PROJECTION) gl.glLoadIdentity() if self.perspectiveEnabled: gl.gluPerspective(self.cameraAngle, self.aspect, 0.001, 10000) else: orthoView = self.cameraPos[0]*0.45 gl.glOrtho(-orthoView*self.aspect, orthoView*self.aspect, -orthoView, orthoView, -100, 100) gl.glMatrixMode(gl.GL_MODELVIEW) gl.glLoadIdentity() gl.gluLookAt(self.cameraPos[0], self.cameraPos[1], self.cameraPos[2], self.cameraTarget[0], self.cameraTarget[1], self.cameraTarget[2], 0.0, 0.0, 1.0) if self.enableBlending: gl.glEnable(gl.GL_MULTISAMPLE) gl.glEnable(gl.GL_BLEND) gl.glBlendFunc(gl.GL_SRC_ALPHA, gl.GL_ONE_MINUS_SRC_ALPHA) # gl.glBlendFunc(gl.GL_SRC_ALPHA, GL_ONE) gl.glEnable(gl.GL_POINT_SMOOTH) gl.glHint(gl.GL_POINT_SMOOTH_HINT, gl.GL_NICEST) gl.glEnableClientState(gl.GL_VERTEX_ARRAY) gl.glEnableClientState(gl.GL_COLOR_ARRAY) gl.glPolygonMode(gl.GL_FRONT_AND_BACK, gl.GL_LINE) self.rotateZYX() pModel = np.array(gl.glGetDoublev(gl.GL_MODELVIEW_MATRIX))[:-1, :-1] self.visibleAxes = np.argmax(np.abs(pModel), axis=0) self.signs = np.sign(pModel) self.axPosModifier = np.ones(3) if self.enableAA: gl.glEnable(gl.GL_LINE_SMOOTH) gl.glHint(gl.GL_LINE_SMOOTH_HINT, gl.GL_NICEST) gl.glHint(gl.GL_POLYGON_SMOOTH_HINT, gl.GL_NICEST) # gl.glHint(GL_PERSPECTIVE_CORRECTION_HINT, gl.GL_NICEST) for dim in range(3): for iAx in range(3): self.axPosModifier[iAx] = (self.signs[iAx][2] if self.signs[iAx][2] != 0 else 1) if self.projectionsVisibility[dim] > 0: if self.lineProjectionWidth > 0 and\ self.lineProjectionOpacity > 0 and\ self.verticesArray is not None: projectionRays = self.modelToWorld( np.copy(self.verticesArray)) projectionRays[:, dim] =\ -self.aPos[dim] * self.axPosModifier[dim] self.drawArrays( 0, gl.GL_LINES, projectionRays, self.raysColor, self.lineProjectionOpacity, self.lineProjectionWidth) if self.pointProjectionSize > 0 and\ self.pointProjectionOpacity > 0: if self.footprintsArray is not None: projectionDots = self.modelToWorld( np.copy(self.footprintsArray)) projectionDots[:, dim] =\ -self.aPos[dim] * self.axPosModifier[dim] self.drawArrays( 0, gl.GL_POINTS, projectionDots, self.dotsColor, self.pointProjectionOpacity, self.pointProjectionSize) if self.virtDotsArray is not None: projectionDots = self.modelToWorld( np.copy(self.virtDotsArray)) projectionDots[:, dim] =\ -self.aPos[dim] * self.axPosModifier[dim] self.drawArrays( 0, gl.GL_POINTS, projectionDots, self.virtDotsColor, self.pointProjectionOpacity, self.pointProjectionSize) if self.enableAA: gl.glDisable(gl.GL_LINE_SMOOTH) if self.linesDepthTest: gl.glEnable(gl.GL_DEPTH_TEST) if self.enableAA: gl.glEnable(gl.GL_LINE_SMOOTH) gl.glHint(gl.GL_LINE_SMOOTH_HINT, gl.GL_NICEST) gl.glHint(gl.GL_POLYGON_SMOOTH_HINT, gl.GL_NICEST) if self.lineWidth > 0 and self.lineOpacity > 0 and\ self.verticesArray is not None: self.drawArrays(1, gl.GL_LINES, self.verticesArray, self.raysColor, self.lineOpacity, self.lineWidth) if self.linesDepthTest: gl.glDisable(gl.GL_DEPTH_TEST) if self.enableAA: gl.glDisable(gl.GL_LINE_SMOOTH) gl.glEnable(gl.GL_DEPTH_TEST) gl.glPolygonMode(gl.GL_FRONT_AND_BACK, gl.GL_FILL) if len(self.oesToPlot) > 0: # Surfaces of optical elements gl.glEnableClientState(gl.GL_NORMAL_ARRAY) gl.glEnable(gl.GL_NORMALIZE) self.addLighting(3.) for oeString in self.oesToPlot: try: oeToPlot = self.oesList[oeString][0] is2ndXtal = self.oesList[oeString][3] if isinstance(oeToPlot, roes.OE): self.plotOeSurface(oeToPlot, is2ndXtal) elif isinstance(oeToPlot, rscreens.HemisphericScreen): self.setMaterial('semiSi') self.plotHemiScreen(oeToPlot) elif isinstance(oeToPlot, rscreens.Screen): self.setMaterial('semiSi') self.plotScreen(oeToPlot) if isinstance(oeToPlot, (rapertures.RectangularAperture, rapertures.RoundAperture)): self.setMaterial('Cu') self.plotAperture(oeToPlot) else: continue except: # analysis:ignore if _DEBUG_: raise else: continue gl.glDisable(gl.GL_LIGHTING) gl.glDisable(gl.GL_NORMALIZE) gl.glDisableClientState(gl.GL_NORMAL_ARRAY) gl.glDisable(gl.GL_DEPTH_TEST) if self.enableAA: gl.glEnable(gl.GL_LINE_SMOOTH) gl.glHint(gl.GL_LINE_SMOOTH_HINT, gl.GL_NICEST) gl.glEnable(gl.GL_DEPTH_TEST) if len(self.oesToPlot) > 0: for oeString in self.oesToPlot: oeToPlot = self.oesList[oeString][0] if isinstance(oeToPlot, (rsources.BendingMagnet, rsources.Wiggler, rsources.Undulator)): self.plotSource(oeToPlot) # elif isinstance(oeToPlot, rscreens.HemisphericScreen): # self.plotHemiScreen(oeToPlot) # elif isinstance(oeToPlot, rscreens.Screen): # self.plotScreen(oeToPlot) # elif isinstance(oeToPlot, roes.OE): # self.drawOeContour(oeToPlot) # elif isinstance(oeToPlot, rapertures.RectangularAperture): # self.drawSlitEdges(oeToPlot) else: continue if self.virtScreen is not None: gl.glEnable(gl.GL_LINE_SMOOTH) gl.glHint(gl.GL_LINE_SMOOTH_HINT, gl.GL_NICEST) gl.glHint(gl.GL_POLYGON_SMOOTH_HINT, gl.GL_NICEST) self.plotScreen(self.virtScreen, [self.vScreenSize]*2, [1, 0, 0, 1], plotFWHM=True) # if not self.enableAA: # gl.glDisable(gl.GL_LINE_SMOOTH) gl.glDisable(gl.GL_DEPTH_TEST) gl.glPolygonMode(gl.GL_FRONT_AND_BACK, gl.GL_LINE) if self.pointsDepthTest: gl.glEnable(gl.GL_DEPTH_TEST) if self.pointSize > 0 and self.pointOpacity > 0: if self.footprintsArray is not None: self.drawArrays(1, gl.GL_POINTS, self.footprintsArray, self.dotsColor, self.pointOpacity, self.pointSize) if self.virtDotsArray is not None: self.drawArrays(1, gl.GL_POINTS, self.virtDotsArray, self.virtDotsColor, self.pointOpacity, self.pointSize) gl.glDisableClientState(gl.GL_VERTEX_ARRAY) gl.glDisableClientState(gl.GL_COLOR_ARRAY) if self.enableAA: gl.glDisable(gl.GL_LINE_SMOOTH) if self.pointsDepthTest: gl.glDisable(gl.GL_DEPTH_TEST) # oeLabels = OrderedDict() self.labelsBounds = OrderedDict() if len(self.labelsToPlot) > 0: if self.invertColors: gl.glColor4f(0.0, 0.0, 0.0, 1.) else: gl.glColor4f(1.0, 1.0, 1.0, 1.) gl.glLineWidth(1) # for oeKey, oeValue in self.oesList.items(): for oeKey in self.labelsToPlot: oeValue = self.oesList[oeKey] oeCenterStr = makeCenterStr(oeValue[2], self.labelCoordPrec) oeCoord = np.array(oeValue[2]) oeCenterStr = ' {0}: {1}mm'.format( oeKey, oeCenterStr) oeLabelPos = self.modelToWorld(oeCoord - self.coordOffset) self.drawText(oeLabelPos, oeCenterStr, useCaption=True) if self.showOeLabels and self.virtScreen is not None: vsCenterStr = ' {0}: {1}mm'.format( 'Virtual Screen', makeCenterStr(self.virtScreen.center, self.labelCoordPrec)) try: pModel = gl.glGetDoublev(gl.GL_MODELVIEW_MATRIX) pProjection = gl.glGetDoublev(gl.GL_PROJECTION_MATRIX) pView = gl.glGetIntegerv(gl.GL_VIEWPORT) m1 = self.modelToWorld( self.virtScreen.frame[1] - self.coordOffset) m2 = self.modelToWorld( self.virtScreen.frame[2] - self.coordOffset) scr1 = gl.gluProject( *m1, model=pModel, proj=pProjection, view=pView)[0] scr2 = gl.gluProject( *m2, model=pModel, proj=pProjection, view=pView)[0] lblCenter = self.virtScreen.frame[1] if scr1 > scr2 else\ self.virtScreen.frame[2] except: # analysis:ignore if _DEBUG_: raise else: lblCenter = self.virtScreen.center vsLabelPos = self.modelToWorld(lblCenter - self.coordOffset) if self.invertColors: gl.glColor4f(0.0, 0.0, 0.0, 1.) else: gl.glColor4f(1.0, 1.0, 1.0, 1.) gl.glLineWidth(1) self.drawText(vsLabelPos, vsCenterStr) if len(self.oesToPlot) > 0 and self.showLocalAxes: # Local axes for oeString in self.oesToPlot: try: oeToPlot = self.oesList[oeString][0] is2ndXtal = self.oesList[oeString][3] if hasattr(oeToPlot, 'local_to_global'): self.drawLocalAxes(oeToPlot, is2ndXtal) except: if _DEBUG_: raise else: continue gl.glEnable(gl.GL_DEPTH_TEST) if self.drawGrid: # Coordinate grid box self.drawCoordinateGrid() gl.glFlush() self.drawDirectionAxes() if self.showHelp: self.drawHelp() if self.enableBlending: gl.glDisable(gl.GL_MULTISAMPLE) gl.glDisable(gl.GL_BLEND) gl.glDisable(gl.GL_POINT_SMOOTH) gl.glFlush() def quatMult(self, qf, qt): return [qf[0]*qt[0]-qf[1]*qt[1]-qf[2]*qt[2]-qf[3]*qt[3], qf[0]*qt[1]+qf[1]*qt[0]+qf[2]*qt[3]-qf[3]*qt[2], qf[0]*qt[2]-qf[1]*qt[3]+qf[2]*qt[0]+qf[3]*qt[1], qf[0]*qt[3]+qf[1]*qt[2]-qf[2]*qt[1]+qf[3]*qt[0]] def drawCoordinateGrid(self): def populateGrid(grids): axisLabelC = [] axisLabelC.extend([np.vstack( (self.modelToWorld(grids, 0), np.ones(len(grids[0]))*self.aPos[1]*self.axPosModifier[1], np.ones(len(grids[0]))*-self.aPos[2]*self.axPosModifier[2] ))]) axisLabelC.extend([np.vstack( (np.ones(len(grids[1]))*self.aPos[0]*self.axPosModifier[0], self.modelToWorld(grids, 1), np.ones(len(grids[1]))*-self.aPos[2]*self.axPosModifier[2] ))]) zAxis = np.vstack( (np.ones(len(grids[2]))*-self.aPos[0]*self.axPosModifier[0], np.ones(len(grids[2]))*self.aPos[1]*self.axPosModifier[1], self.modelToWorld(grids, 2))) xAxisB = np.vstack( (self.modelToWorld(grids, 0), np.ones(len(grids[0]))*-self.aPos[1]*self.axPosModifier[1], np.ones(len(grids[0]))*-self.aPos[2]*self.axPosModifier[2])) yAxisB = np.vstack( (np.ones(len(grids[1]))*-self.aPos[0]*self.axPosModifier[0], self.modelToWorld(grids, 1), np.ones(len(grids[1]))*-self.aPos[2]*self.axPosModifier[2])) zAxisB = np.vstack( (np.ones(len(grids[2]))*-self.aPos[0]*self.axPosModifier[0], np.ones(len(grids[2]))*-self.aPos[1]*self.axPosModifier[1], self.modelToWorld(grids, 2))) xAxisC = np.vstack( (self.modelToWorld(grids, 0), np.ones(len(grids[0]))*-self.aPos[1]*self.axPosModifier[1], np.ones(len(grids[0]))*self.aPos[2]*self.axPosModifier[2])) yAxisC = np.vstack( (np.ones(len(grids[1]))*-self.aPos[0]*self.axPosModifier[0], self.modelToWorld(grids, 1), np.ones(len(grids[1]))*self.aPos[2]*self.axPosModifier[2])) axisLabelC.extend([np.vstack( (np.ones(len(grids[2]))*self.aPos[0]*self.axPosModifier[0], np.ones(len(grids[2]))*-self.aPos[1]*self.axPosModifier[1], self.modelToWorld(grids, 2)))]) xLines = np.vstack( (axisLabelC[0], xAxisB, xAxisB, xAxisC)).T.flatten().reshape( 4*xAxisB.shape[1], 3) yLines = np.vstack( (axisLabelC[1], yAxisB, yAxisB, yAxisC)).T.flatten().reshape( 4*yAxisB.shape[1], 3) zLines = np.vstack( (zAxis, zAxisB, zAxisB, axisLabelC[2])).T.flatten().reshape( 4*zAxisB.shape[1], 3) return axisLabelC, np.vstack((xLines, yLines, zLines)) def drawGridLines(gridArray, lineWidth, lineOpacity, figType): gl.glEnableClientState(gl.GL_VERTEX_ARRAY) gl.glEnableClientState(gl.GL_COLOR_ARRAY) gl.glPolygonMode(gl.GL_FRONT_AND_BACK, gl.GL_LINE) gridColor = np.ones((len(gridArray), 4)) * lineOpacity gridArrayVBO = gl.vbo.VBO(np.float32(gridArray)) gridArrayVBO.bind() gl.glVertexPointerf(gridArrayVBO) gridColorArray = gl.vbo.VBO(np.float32(gridColor)) gridColorArray.bind() gl.glColorPointerf(gridColorArray) gl.glLineWidth(lineWidth) gl.glDrawArrays(figType, 0, len(gridArrayVBO)) gridArrayVBO.unbind() gridColorArray.unbind() gl.glDisableClientState(gl.GL_VERTEX_ARRAY) gl.glDisableClientState(gl.GL_COLOR_ARRAY) def getAlignment(point, hDim, vDim=None): pView = gl.glGetIntegerv(gl.GL_VIEWPORT) pModel = gl.glGetDoublev(gl.GL_MODELVIEW_MATRIX) pProjection = gl.glGetDoublev(gl.GL_PROJECTION_MATRIX) sp0 = np.array(gl.gluProject( *point, model=pModel, proj=pProjection, view=pView)) pointH = np.copy(point) pointH[hDim] *= 1.1 spH = np.array(gl.gluProject(*pointH, model=pModel, proj=pProjection, view=pView)) pointV = np.copy(point) if vDim is None: vAlign = 'middle' else: pointV[vDim] *= 1.1 spV = np.array(gl.gluProject(*pointV, model=pModel, proj=pProjection, view=pView)) vAlign = 'top' if spV[1] - sp0[1] > 0 else 'bottom' hAlign = 'left' if spH[0] - sp0[0] < 0 else 'right' return (hAlign, vAlign) back = np.array([[-self.aPos[0], self.aPos[1], -self.aPos[2]], [-self.aPos[0], self.aPos[1], self.aPos[2]], [-self.aPos[0], -self.aPos[1], self.aPos[2]], [-self.aPos[0], -self.aPos[1], -self.aPos[2]]]) side = np.array([[self.aPos[0], -self.aPos[1], -self.aPos[2]], [-self.aPos[0], -self.aPos[1], -self.aPos[2]], [-self.aPos[0], -self.aPos[1], self.aPos[2]], [self.aPos[0], -self.aPos[1], self.aPos[2]]]) bottom = np.array([[self.aPos[0], -self.aPos[1], -self.aPos[2]], [self.aPos[0], self.aPos[1], -self.aPos[2]], [-self.aPos[0], self.aPos[1], -self.aPos[2]], [-self.aPos[0], -self.aPos[1], -self.aPos[2]]]) back[:, 0] *= self.axPosModifier[0] side[:, 1] *= self.axPosModifier[1] bottom[:, 2] *= self.axPosModifier[2] # Calculating regular grids in world coordinates limits = np.array([-1, 1])[:, np.newaxis] * np.array(self.aPos) allLimits = limits * self.maxLen / self.scaleVec - self.tVec\ + self.coordOffset axisGridArray = [] gridLabels = [] precisionLabels = [] if self.fineGridEnabled: fineGridArray = [] for iAx in range(3): m2 = self.aPos[iAx] / 0.9 dx1 = np.abs(allLimits[:, iAx][0] - allLimits[:, iAx][1]) / m2 order = np.floor(np.log10(dx1)) m1 = dx1 * 10**-order if (m1 >= 1) and (m1 < 2): step = 0.2 * 10**order elif (m1 >= 2) and (m1 < 4): step = 0.5 * 10**order else: step = 10**order if step < 1: decimalX = int(np.abs(order)) + 1 if m1 < 4 else\ int(np.abs(order)) else: decimalX = 0 gridX = np.arange(np.int(allLimits[:, iAx][0]/step)*step, allLimits[:, iAx][1], step) gridX = gridX if gridX[0] >= allLimits[:, iAx][0] else\ gridX[1:] gridLabels.extend([gridX]) precisionLabels.extend([np.ones_like(gridX)*decimalX]) axisGridArray.extend([gridX - self.coordOffset[iAx]]) if self.fineGridEnabled: fineStep = step * 0.2 fineGrid = np.arange( np.int(allLimits[:, iAx][0]/fineStep)*fineStep, allLimits[:, iAx][1], fineStep) fineGrid = fineGrid if\ fineGrid[0] >= allLimits[:, iAx][0] else fineGrid[1:] fineGridArray.extend([fineGrid - self.coordOffset[iAx]]) axisL, axGrid = populateGrid(axisGridArray) if self.fineGridEnabled: tmp, fineAxGrid = populateGrid(fineGridArray) if self.invertColors: gl.glColor4f(0.0, 0.0, 0.0, 1.) else: gl.glColor4f(1.0, 1.0, 1.0, 1.) for iAx in range(3): if not (not self.perspectiveEnabled and iAx == self.visibleAxes[2]): tAlign = None midp = int(len(axisL[iAx][0, :])/2) if iAx == self.visibleAxes[1]: # Side plane, if self.useScalableFont: tAlign = getAlignment(axisL[iAx][:, midp], self.visibleAxes[0]) else: axisL[iAx][self.visibleAxes[2], :] *= 1.05 # depth axisL[iAx][self.visibleAxes[0], :] *= 1.05 # side if iAx == self.visibleAxes[0]: # Bottom plane, left-right if self.useScalableFont: tAlign = getAlignment(axisL[iAx][:, midp], self.visibleAxes[2], self.visibleAxes[1]) else: axisL[iAx][self.visibleAxes[1], :] *= 1.05 # height axisL[iAx][self.visibleAxes[2], :] *= 1.05 # side if iAx == self.visibleAxes[2]: # Bottom plane, left-right if self.useScalableFont: tAlign = getAlignment(axisL[iAx][:, midp], self.visibleAxes[0], self.visibleAxes[1]) else: axisL[iAx][self.visibleAxes[1], :] *= 1.05 # height axisL[iAx][self.visibleAxes[0], :] *= 1.05 # side for tick, tText, pcs in list(zip(axisL[iAx].T, gridLabels[iAx], precisionLabels[iAx])): valueStr = "{0:.{1}f}".format(tText, int(pcs)) self.drawText(tick, valueStr, alignment=tAlign) # if not self.enableAA: # gl.glDisable(gl.GL_LINE_SMOOTH) gl.glEnable(gl.GL_LINE_SMOOTH) gl.glHint(gl.GL_LINE_SMOOTH_HINT, gl.GL_NICEST) gl.glHint(gl.GL_POINT_SMOOTH_HINT, gl.GL_NICEST) tLineWidth = gl.glGetDoublev(gl.GL_LINE_WIDTH) drawGridLines(np.vstack((back, side, bottom)), self.coordinateGridLineWidth * 2, 0.75, gl.GL_QUADS) drawGridLines(axGrid, self.coordinateGridLineWidth, 0.5, gl.GL_LINES) if self.fineGridEnabled: drawGridLines(fineAxGrid, self.coordinateGridLineWidth, 0.25, gl.GL_LINES) gl.glDisable(gl.GL_LINE_SMOOTH) gl.glLineWidth(tLineWidth) def drawArrays(self, tr, geom, vertices, colors, lineOpacity, lineWidth): if vertices is None or colors is None: return if bool(tr): vertexArray = gl.vbo.VBO(self.modelToWorld(vertices)) else: vertexArray = gl.vbo.VBO(vertices) vertexArray.bind() gl.glVertexPointerf(vertexArray) pureOpacity = np.copy(colors[:, 3]) colors[:, 3] = np.float32(pureOpacity * lineOpacity) colorArray = gl.vbo.VBO(colors) colorArray.bind() gl.glColorPointerf(colorArray) if geom == gl.GL_LINES: gl.glLineWidth(lineWidth) else: gl.glPointSize(lineWidth) gl.glDrawArrays(geom, 0, len(vertices)) colors[:, 3] = pureOpacity colorArray.unbind() vertexArray.unbind() def plotSource(self, oe): # gl.glEnable(gl.GL_MAP2_VERTEX_3) # gl.glEnable(gl.GL_MAP2_NORMAL) nPeriods = int(oe.Np) if hasattr(oe, 'Np') else 0.5 if hasattr(oe, 'L0'): lPeriod = oe.L0 maghL = 0.25 * lPeriod * 0.5 else: try: lPeriod = (oe.Theta_max - oe.Theta_min) * oe.ro * 1000 except AttributeError: if _DEBUG_: raise else: lPeriod = 500. maghL = lPeriod maghH = 10 * 0.5 maghW = 10 * 0.5 surfRot = [[0, 0, 0, 1], [180, 0, 1, 0], [-90, 0, 1, 0], [90, 0, 1, 0], [-90, 1, 0, 0], [90, 1, 0, 0]] surfTrans = np.array([[0, 0, maghH], [0, 0, -maghH], [-maghW, 0, 0], [maghW, 0, 0], [0, maghL, 0], [0, -maghL, 0]]) surfScales = np.array([[maghW*2, maghL*2, 0], [maghW*2, maghL*2, 0], [0, maghL*2, maghH*2], [0, maghL*2, maghH*2], [maghW*2, 0, maghH*2], [maghW*2, 0, maghH*2]]) # deltaX = 1. / 2. # float(self.tiles[0]) # deltaY = 1. / 2. # float(self.tiles[1]) magToggle = True gl.glLineWidth(1) gl.glPushMatrix() gl.glTranslatef(*(self.modelToWorld(np.array(oe.center) - self.coordOffset))) gl.glRotatef(np.degrees(oe.pitch * self.scaleVec[2] / self.scaleVec[1]), 1, 0, 0) yaw = oe.yaw try: az = oe.bl.azimuth except: # analysis:ignore if _DEBUG_: raise else: az = 0 gl.glRotatef(np.degrees((yaw-az) * self.scaleVec[0] / self.scaleVec[1]), 0, 0, 1) gl.glTranslatef(*(-1. * self.modelToWorld(np.array(oe.center) - self.coordOffset))) for period in range(int(nPeriods) if nPeriods > 0.5 else 1): for hp in ([0, 0.5] if nPeriods > 0.5 else [0.25]): pY = list(oe.center)[1] - lPeriod * (0.5 * nPeriods - period - hp) magToggle = not magToggle for gap in [maghH*1.25, -maghH*1.25]: cubeCenter = np.array([oe.center[0], pY, oe.center[2]+gap]) # self.setMaterial('magRed' if magToggle else 'magBlue') magColor = [0.7, 0.1, 0.1, 1.] if magToggle \ else [0.1, 0.1, 0.7, 1.] magToggle = not magToggle for surf in range(6): gl.glPushMatrix() gl.glTranslatef(*(self.modelToWorld( cubeCenter + surfTrans[surf] - self.coordOffset))) gl.glScalef(*(self.modelToWorld(surfScales[surf] - self.tVec))) gl.glRotatef(*surfRot[surf]) gl.glPolygonMode(gl.GL_FRONT_AND_BACK, gl.GL_FILL) gl.glBegin(gl.GL_QUADS) gl.glColor4f(*magColor) gl.glVertex3f(-0.5, -0.5, 0) gl.glVertex3f(-0.5, 0.5, 0) gl.glVertex3f(0.5, 0.5, 0) gl.glVertex3f(0.5, -0.5, 0) gl.glEnd() gl.glPolygonMode(gl.GL_FRONT_AND_BACK, gl.GL_LINE) gl.glBegin(gl.GL_QUADS) gl.glColor4f(0, 0, 0, 1.) gl.glVertex3f(-0.5, -0.5, 0) gl.glVertex3f(-0.5, 0.5, 0) gl.glVertex3f(0.5, 0.5, 0) gl.glVertex3f(0.5, -0.5, 0) gl.glEnd() # for i in range(2): # xGridOe = np.linspace(-0.5 + i*deltaX, # -0.5 + (i+1)*deltaX, # self.surfCPOrder) # for k in range(2): # yGridOe = np.linspace(-0.5 + k*deltaY, # -0.5 + (k+1)*deltaY, # self.surfCPOrder) # xv, yv = np.meshgrid(xGridOe, yGridOe) # xv = xv.flatten() # yv = yv.flatten() # zv = np.zeros_like(xv) # # surfCP = np.vstack((xv, yv, zv)).T # surfNorm = np.vstack((np.zeros_like(xv), # np.zeros_like(xv), # np.ones_like(zv), # np.ones_like(zv))).T # # gl.glMap2f(gl.GL_MAP2_VERTEX_3, 0, 1, 0, 1, # surfCP.reshape( # self.surfCPOrder, # self.surfCPOrder, 3)) # # gl.glMap2f(gl.GL_MAP2_NORMAL, 0, 1, 0, 1, # surfNorm.reshape( # self.surfCPOrder, # self.surfCPOrder, 4)) # # gl.glMapGrid2f(self.surfCPOrder, 0.0, 1.0, # self.surfCPOrder, 0.0, 1.0) # # gl.glEvalMesh2(gl.GL_FILL, 0, # self.surfCPOrder, # 0, self.surfCPOrder) gl.glPopMatrix() gl.glPopMatrix() # gl.glDisable(gl.GL_MAP2_VERTEX_3) # gl.glDisable(gl.GL_MAP2_NORMAL) def plotCurvedMesh(self, x, y, z, a, b, c, shift): surfCP = np.vstack((x - self.coordOffset[0] - shift[0], y - self.coordOffset[1] - shift[1], z - self.coordOffset[2] - shift[2])).T gl.glMap2f(gl.GL_MAP2_VERTEX_3, 0, 1, 0, 1, self.modelToWorld(surfCP.reshape( self.surfCPOrder, self.surfCPOrder, 3))) surfNorm = np.vstack((a, b, c, np.ones_like(a))).T gl.glMap2f(gl.GL_MAP2_NORMAL, 0, 1, 0, 1, surfNorm.reshape( self.surfCPOrder, self.surfCPOrder, 4)) gl.glMapGrid2f(self.surfCPOrder, 0.0, 1.0, self.surfCPOrder, 0.0, 1.0) gl.glEvalMesh2(gl.GL_FILL, 0, self.surfCPOrder, 0, self.surfCPOrder) def plotOeSurface(self, oe, is2ndXtal): def getThickness(element): thickness = 0 if isinstance(oe, roes.Plate): if oe.t is not None: return oe.t if hasattr(oe, "material"): if oe.material is not None: thickness = 10. if hasattr(oe.material, "t"): thickness = oe.material.t if oe.material.t is not None\ else thickness elif isinstance(oe.material, rmats.Multilayer): if oe.material.substrate is not None: if hasattr(oe.material.substrate, 't'): if oe.material.substrate.t is not None: thickness = oe.material.substrate.t return thickness thickness = getThickness(oe) self.setMaterial('Si') gl.glEnable(gl.GL_MAP2_VERTEX_3) gl.glEnable(gl.GL_MAP2_NORMAL) # Top and Bottom Surfaces nsIndex = int(is2ndXtal) if is2ndXtal: xLimits = list(oe.limPhysX2) # xLimits = list(oe.limOptX2) if\ # oe.limOptX2 is not None else oe.limPhysX2 if np.any(np.abs(xLimits) == raycing.maxHalfSizeOfOE): if oe.footprint is not None: xLimits = oe.footprint[nsIndex][:, 0] yLimits = list(oe.limPhysY2) # yLimits = list(oe.limOptY2) if\ # oe.limOptY2 is not None else oe.limPhysY2 if np.any(np.abs(yLimits) == raycing.maxHalfSizeOfOE): if oe.footprint is not None: yLimits = oe.footprint[nsIndex][:, 1] else: xLimits = list(oe.limPhysX) # xLimits = list(oe.limOptX) if\ # oe.limOptX is not None else oe.limPhysX if np.any(np.abs(xLimits) == raycing.maxHalfSizeOfOE): if oe.footprint is not None: xLimits = oe.footprint[nsIndex][:, 0] yLimits = list(oe.limPhysY) # yLimits = list(oe.limOptY) if\ # oe.limOptY is not None else oe.limPhysY if np.any(np.abs(yLimits) == raycing.maxHalfSizeOfOE): if oe.footprint is not None: yLimits = oe.footprint[nsIndex][:, 1] localTiles = np.array(self.tiles) if oe.shape == 'round': rX = np.abs((xLimits[1] - xLimits[0]))*0.5 rY = np.abs((yLimits[1] - yLimits[0]))*0.5 cX = (xLimits[1] + xLimits[0])*0.5 cY = (yLimits[1] + yLimits[0])*0.5 xLimits = [0, 1.] yLimits = [0, 2*np.pi] localTiles[1] *= 3 for i in range(localTiles[0]): deltaX = (xLimits[1] - xLimits[0]) /\ float(localTiles[0]) xGridOe = np.linspace(xLimits[0] + i*deltaX, xLimits[0] + (i+1)*deltaX, self.surfCPOrder) + oe.dx for k in range(localTiles[1]): deltaY = (yLimits[1] - yLimits[0]) /\ float(localTiles[1]) yGridOe = np.linspace(yLimits[0] + k*deltaY, yLimits[0] + (k+1)*deltaY, self.surfCPOrder) xv, yv = np.meshgrid(xGridOe, yGridOe) if oe.shape == 'round': xv, yv = rX*xv*np.cos(yv)+cX, rY*xv*np.sin(yv)+cY xv = xv.flatten() yv = yv.flatten() if is2ndXtal: zExt = '2' else: zExt = '1' if hasattr(oe, 'local_z1') else '' local_z = getattr(oe, 'local_r{}'.format(zExt)) if\ oe.isParametric else getattr(oe, 'local_z{}'.format(zExt)) local_n = getattr(oe, 'local_n{}'.format(zExt)) xv = np.copy(xv) yv = np.copy(yv) zv = np.zeros_like(xv) if oe.isParametric: xv, yv, zv = oe.xyz_to_param(xv, yv, zv) zv = local_z(xv, yv) nv = local_n(xv, yv) gbT = rsources.Beam(nrays=len(xv)) if oe.isParametric: xv, yv, zv = oe.param_to_xyz(xv, yv, zv) gbT.x = xv gbT.y = yv gbT.z = zv gbT.a = nv[0] * np.ones_like(zv) gbT.b = nv[1] * np.ones_like(zv) gbT.c = nv[2] * np.ones_like(zv) if thickness > 0: gbB = rsources.Beam(copyFrom=gbT) if isinstance(oe, roes.LauePlate): gbB.z[:] = gbT.z - thickness gbB.a = -gbT.a gbB.b = -gbT.b gbB.c = -gbT.c else: gbB.z[:] = -thickness gbB.a[:] = 0 gbB.b[:] = 0 gbB.c[:] = -1. oe.local_to_global(gbB, is2ndXtal=is2ndXtal) oe.local_to_global(gbT, is2ndXtal=is2ndXtal) if hasattr(oe, '_nCRL'): cShift = oe.centerShift nSurf = oe._nCRL else: cShift = np.zeros(3) nSurf = 1 for iSurf in range(nSurf): dC = cShift * iSurf self.plotCurvedMesh(gbT.x, gbT.y, gbT.z, gbT.a, gbT.b, gbT.c, dC) if thickness > 0 and\ not isinstance(oe, roes.DoubleParaboloidLens): self.plotCurvedMesh(gbB.x, gbB.y, gbB.z, gbB.a, gbB.b, gbB.c, dC) # Side faces if isinstance(oe, roes.Plate): self.setMaterial('semiSi') if thickness > 0: for ie, yPos in enumerate(yLimits): for i in range(localTiles[0]): if oe.shape == 'round': continue deltaX = (xLimits[1] - xLimits[0]) /\ float(localTiles[0]) xGridOe = np.linspace(xLimits[0] + i*deltaX, xLimits[0] + (i+1)*deltaX, self.surfCPOrder) + oe.dx edgeX = xGridOe edgeY = np.ones_like(xGridOe)*yPos edgeZ = np.zeros_like(xGridOe) if oe.isParametric: edgeX, edgeY, edgeZ = oe.xyz_to_param( edgeX, edgeY, edgeZ) edgeZ = local_z(edgeX, edgeY) if oe.isParametric: edgeX, edgeY, edgeZ = oe.param_to_xyz( edgeX, edgeY, edgeZ) gridZ = None for zTop in edgeZ: gridZ = np.linspace(-thickness, zTop, self.surfCPOrder) if\ gridZ is None else np.concatenate(( gridZ, np.linspace(-thickness, zTop, self.surfCPOrder))) gridX = np.repeat(edgeX, len(edgeZ)) gridY = np.ones_like(gridX) * yPos xN = np.zeros_like(gridX) yN = (1 if ie == 1 else -1)*np.ones_like(gridX) zN = np.zeros_like(gridX) faceBeam = rsources.Beam(nrays=len(gridX)) faceBeam.x = gridX faceBeam.y = gridY faceBeam.z = gridZ faceBeam.a = xN faceBeam.b = yN faceBeam.c = zN oe.local_to_global(faceBeam, is2ndXtal=is2ndXtal) self.plotCurvedMesh(faceBeam.x, faceBeam.y, faceBeam.z, faceBeam.a, faceBeam.b, faceBeam.c, [0]*3) for ie, xPos in enumerate(xLimits): if ie == 0 and oe.shape == 'round': continue for i in range(localTiles[1]): deltaY = (yLimits[1] - yLimits[0]) /\ float(localTiles[1]) yGridOe = np.linspace(yLimits[0] + i*deltaY, yLimits[0] + (i+1)*deltaY, self.surfCPOrder) edgeY = yGridOe edgeX = np.ones_like(yGridOe)*xPos edgeZ = np.zeros_like(xGridOe) if oe.shape == 'round': edgeX, edgeY = rX*edgeX*np.cos(edgeY)+cX,\ rY*edgeX*np.sin(edgeY)+cY if oe.isParametric: edgeX, edgeY, edgeZ = oe.xyz_to_param( edgeX, edgeY, edgeZ) edgeZ = local_z(edgeX, edgeY) if oe.isParametric: edgeX, edgeY, edgeZ = oe.param_to_xyz( edgeX, edgeY, edgeZ) zN = 0 gridZ = None for zTop in edgeZ: gridZ = np.linspace(-thickness, zTop, self.surfCPOrder) if\ gridZ is None else np.concatenate(( gridZ, np.linspace(-thickness, zTop, self.surfCPOrder))) gridY = np.repeat(edgeY, len(edgeZ)) if oe.shape == 'round': yN = (gridY-cY) / rY gridX = np.repeat(edgeX, len(edgeZ)) xN = (gridX-cX) / rX else: gridX = np.repeat(edgeX, len(edgeZ)) yN = np.zeros_like(gridX) xN = (1 if ie == 1 else -1) * np.ones_like(gridX) zN = np.zeros_like(gridX) faceBeam = rsources.Beam(nrays=len(gridX)) faceBeam.x = gridX faceBeam.y = gridY faceBeam.z = gridZ faceBeam.a = xN faceBeam.b = yN faceBeam.c = zN oe.local_to_global(faceBeam, is2ndXtal=is2ndXtal) self.plotCurvedMesh(faceBeam.x, faceBeam.y, faceBeam.z, faceBeam.a, faceBeam.b, faceBeam.c, [0]*3) gl.glDisable(gl.GL_MAP2_VERTEX_3) gl.glDisable(gl.GL_MAP2_NORMAL) # Contour # xBound = np.linspace(xLimits[0], xLimits[1], # self.surfCPOrder*(localTiles[0]+1)) # yBound = np.linspace(yLimits[0], yLimits[1], # self.surfCPOrder*(localTiles[1]+1)) # if oe.shape == 'round': # oeContour = [0] # oneEdge = [0] # else: # oeContour = [0]*4 # oneEdge = [0]*4 # oeContour[0] = np.array([xBound, # yBound[0]*np.ones_like(xBound)]) # bottom # oeContour[1] = np.array([xBound[-1]*np.ones_like(yBound), # yBound]) # left # oeContour[2] = np.array([np.flip(xBound, 0), # yBound[-1]*np.ones_like(xBound)]) # top # oeContour[3] = np.array([xBound[0]*np.ones_like(yBound), # np.flip(yBound, 0)]) # right # # for ie, edge in enumerate(oeContour): # if oe.shape == 'round': # edgeX, edgeY = rX*np.cos(yBound)+cX, rY*np.sin(yBound)+cY # else: # edgeX = edge[0, :] # edgeY = edge[1, :] # edgeZ = np.zeros_like(edgeX) # # if oe.isParametric: # edgeX, edgeY, edgeZ = oe.xyz_to_param(edgeX, edgeY, # edgeZ) # # edgeZ = local_z(edgeX, edgeY) # if oe.isParametric: # edgeX, edgeY, edgeZ = oe.param_to_xyz( # edgeX, edgeY, edgeZ) # edgeBeam = rsources.Beam(nrays=len(edgeX)) # edgeBeam.x = edgeX # edgeBeam.y = edgeY # edgeBeam.z = edgeZ # # oe.local_to_global(edgeBeam, is2ndXtal=is2ndXtal) # oneEdge[ie] = np.vstack((edgeBeam.x - self.coordOffset[0], # edgeBeam.y - self.coordOffset[1], # edgeBeam.z - self.coordOffset[2])).T # # self.oeContour[oe.name] = oneEdge # def drawOeContour(self, oe): # gl.glEnable(gl.GL_MAP1_VERTEX_3) # gl.glLineWidth(self.contourWidth) # gl.glColor4f(0.0, 0.0, 0.0, 1.0) # cpo = self.surfCPOrder # for ie in range(len(self.oeContour[oe.name])): # edge = self.oeContour[oe.name][ie] # nTiles = self.tiles[0] if ie in [0, 2] else self.tiles[1] # nTiles = self.tiles[1]*3 if oe.shape == 'round' else nTiles # for tile in range(nTiles+1): # gl.glMap1f(gl.GL_MAP1_VERTEX_3, 0, 1, # self.modelToWorld(edge[tile*cpo:(tile+1)*cpo+1, :])) # gl.glMapGrid1f(cpo, 0.0, 1.0) # gl.glEvalMesh1(gl.GL_LINE, 0, cpo) # # gl.glDisable(gl.GL_MAP1_VERTEX_3) # def drawSlitEdges(self, oe): # gl.glPolygonMode(gl.GL_FRONT_AND_BACK, gl.GL_LINE) # gl.glLineWidth(self.contourWidth) # gl.glColor4f(0.0, 0.0, 0.0, 1.0) # gl.glBegin(gl.GL_QUADS) # for edge in self.modelToWorld(np.array(self.slitEdges[oe.name]) - # np.array(self.coordOffset)): # gl.glVertex3f(*edge[0, :]) # gl.glVertex3f(*edge[1, :]) # gl.glVertex3f(*edge[3, :]) # gl.glVertex3f(*edge[2, :]) # # gl.glVertex3f(*edge[0, :]) # gl.glVertex3f(*edge[1, :]) # gl.glVertex3f(*edge[5, :]) # gl.glVertex3f(*edge[4, :]) # # gl.glVertex3f(*edge[5, :]) # gl.glVertex3f(*edge[1, :]) # gl.glVertex3f(*edge[3, :]) # gl.glVertex3f(*edge[7, :]) # # gl.glVertex3f(*edge[4, :]) # gl.glVertex3f(*edge[5, :]) # gl.glVertex3f(*edge[7, :]) # gl.glVertex3f(*edge[6, :]) # # gl.glVertex3f(*edge[0, :]) # gl.glVertex3f(*edge[4, :]) # gl.glVertex3f(*edge[6, :]) # gl.glVertex3f(*edge[2, :]) # # gl.glVertex3f(*edge[2, :]) # gl.glVertex3f(*edge[3, :]) # gl.glVertex3f(*edge[7, :]) # gl.glVertex3f(*edge[6, :]) # gl.glEnd() def plotAperture(self, oe): surfCPOrder = self.surfCPOrder gl.glEnable(gl.GL_MAP2_VERTEX_3) gl.glEnable(gl.GL_MAP2_NORMAL) plotVolume = False # slitT = self.slitThickness if oe.shape == 'round': r = oe.r isBeamStop = len(re.findall('Stop', str(type(oe)))) > 0 if isBeamStop: limits = [[0, r, 0, 2*np.pi]] else: wf = max(r*0.25, 2.5) limits = [[r, r+wf, 0, 2*np.pi]] tiles = self.tiles[1] * 5 else: try: left, right, bottom, top = oe.spotLimits except: # analysis:ignore if _DEBUG_: raise else: left, right, bottom, top = 0, 0, 0, 0 for akind, d in zip(oe.kind, oe.opening): if akind.startswith('l'): left = d elif akind.startswith('r'): right = d elif akind.startswith('b'): bottom = d elif akind.startswith('t'): top = d w = right - left h = top - bottom wf = max(min(w, h)*0.5, 2.5) limits = [] for akind, d in zip(oe.kind, oe.opening): if akind.startswith('l'): limits.append([left-wf, left, bottom-wf, top+wf]) elif akind.startswith('r'): limits.append([right, right+wf, bottom-wf, top+wf]) elif akind.startswith('b'): limits.append([left-wf, right+wf, bottom-wf, bottom]) elif akind.startswith('t'): limits.append([left-wf, right+wf, top, top+wf]) tiles = self.tiles[1] if not plotVolume: for xMin, xMax, yMin, yMax in limits: xGridOe = np.linspace(xMin, xMax, surfCPOrder) deltaY = (yMax - yMin) / float(tiles) for k in range(tiles): yMinT = yMin + k*deltaY yMaxT = yMinT + deltaY yGridOe = np.linspace(yMinT, yMaxT, surfCPOrder) xv, yv = np.meshgrid(xGridOe, yGridOe) if oe.shape == 'round': xv, yv = xv*np.cos(yv), xv*np.sin(yv) xv = xv.flatten() yv = yv.flatten() gbT = rsources.Beam(nrays=len(xv)) gbT.x = xv gbT.y = np.zeros_like(xv) gbT.z = yv gbT.a = np.zeros_like(xv) gbT.b = np.ones_like(xv) gbT.c = np.zeros_like(xv) oe.local_to_global(gbT) for surf in [1, -1]: self.plotCurvedMesh(gbT.x, gbT.y, gbT.z, gbT.a, gbT.b[:]*surf, gbT.c, [0, 0, 0]) # else: # self.slitEdges[oe.name] = [] # for iface, face in enumerate(limits): # dT = slitT if iface < 2 else -slitT # Slit thickness # # front # xGridOe = np.linspace(face[0], face[1], surfCPOrder) # zGridOe = np.linspace(face[2], face[3], surfCPOrder) # yGridOe = np.linspace(0, -dT, surfCPOrder) # xVert, yVert, zVert = np.meshgrid([face[0], face[1]], # [0, -dT], # [face[2], face[3]]) # bladeVertices = np.vstack((xVert.flatten(), # yVert.flatten(), # zVert.flatten())).T # gbt = rsources.Beam(nrays=8) # gbt.x = bladeVertices[:, 0] # gbt.y = bladeVertices[:, 1] # gbt.z = bladeVertices[:, 2] # oe.local_to_global(gbt) # # self.slitEdges[oe.name].append(np.vstack((gbt.x, gbt.y, # gbt.z)).T) # # xv, zv = np.meshgrid(xGridOe, zGridOe) # xv = xv.flatten() # zv = zv.flatten() # # gbT = rsources.Beam(nrays=len(xv)) # gbT.x = xv # gbT.y = np.zeros_like(xv) # gbT.z = zv # # gbT.a = np.zeros_like(xv) # gbT.b = np.ones_like(xv) # gbT.c = np.zeros_like(xv) # # oe.local_to_global(gbT) # # for ysurf in [0, dT]: # nsurf = 1. if (dT > 0 and ysurf != 0) or\ # (ysurf == 0 and dT < 0) else -1. # self.plotCurvedMesh(gbT.x, gbT.y, gbT.z, # gbT.a, gbT.b[:]*nsurf, gbT.c, # [0, ysurf, 0]) # # # side # zv, yv = np.meshgrid(zGridOe, yGridOe) # zv = zv.flatten() # yv = yv.flatten() # # gbT = rsources.Beam(nrays=len(yv)) # gbT.y = yv # gbT.x = np.zeros_like(yv) # gbT.z = zv # # gbT.a = np.ones_like(yv) # gbT.b = np.zeros_like(yv) # gbT.c = np.zeros_like(yv) # # oe.local_to_global(gbT) # # for isurf, xsurf in enumerate([face[0], face[1]]): # nsurf = 1. if isurf == 0 else -1 # self.plotCurvedMesh(gbT.x, gbT.y, gbT.z, # gbT.a[:]*nsurf, gbT.b, gbT.c, # [xsurf, 0, 0]) # # # top # xv, yv = np.meshgrid(xGridOe, yGridOe) # xv = xv.flatten() # yv = yv.flatten() # # gbT = rsources.Beam(nrays=len(yv)) # gbT.x = xv # gbT.y = yv # gbT.z = np.zeros_like(xv) # # gbT.a = np.zeros_like(yv) # gbT.b = np.zeros_like(yv) # gbT.c = np.ones_like(yv) # # oe.local_to_global(gbT) # # for isurf, zsurf in enumerate([face[2], face[3]]): # nsurf = 1. if isurf == 0 else -1 # self.plotCurvedMesh(gbT.x, gbT.y, gbT.z, # gbT.a, gbT.b, gbT.c[:]*nsurf, # [0, 0, zsurf]) gl.glDisable(gl.GL_MAP2_VERTEX_3) gl.glDisable(gl.GL_MAP2_NORMAL) def plotScreen(self, oe, dimensions=None, frameColor=None, plotFWHM=False): scAbsZ = np.linalg.norm(oe.z * self.scaleVec) scAbsX = np.linalg.norm(oe.x * self.scaleVec) if dimensions is not None: vScrHW = dimensions[0] vScrHH = dimensions[1] else: vScrHW = self.vScreenSize vScrHH = self.vScreenSize dX = vScrHW * np.array(oe.x) * self.maxLen / scAbsX dZ = vScrHH * np.array(oe.z) * self.maxLen / scAbsZ vScreenBody = np.zeros((4, 3)) vScreenBody[0, :] = vScreenBody[1, :] = oe.center - dX vScreenBody[2, :] = vScreenBody[3, :] = oe.center + dX vScreenBody[0, :] -= dZ vScreenBody[1, :] += dZ vScreenBody[2, :] += dZ vScreenBody[3, :] -= dZ gl.glPolygonMode(gl.GL_FRONT_AND_BACK, gl.GL_FILL) gl.glBegin(gl.GL_QUADS) # if self.invertColors: # gl.glColor4f(0.0, 0.0, 0.0, 0.2) # else: # gl.glColor4f(1.0, 1.0, 1.0, 0.2) for i in range(4): gl.glVertex3f(*self.modelToWorld(vScreenBody[i, :] - self.coordOffset)) gl.glEnd() if frameColor is not None: self.virtScreen.frame = vScreenBody gl.glPolygonMode(gl.GL_FRONT_AND_BACK, gl.GL_LINE) gl.glLineWidth(2) gl.glBegin(gl.GL_QUADS) gl.glColor4f(*frameColor) for i in range(4): gl.glVertex3f(*self.modelToWorld(vScreenBody[i, :] - self.coordOffset)) gl.glEnd() if plotFWHM: gl.glLineWidth(1) gl.glDisable(gl.GL_LINE_SMOOTH) if self.invertColors: gl.glColor4f(0.0, 0.0, 0.0, 1.) else: gl.glColor4f(1.0, 1.0, 1.0, 1.) startVec = np.array([0, 1, 0]) destVec = np.array(oe.y / self.scaleVec) rotVec = np.cross(startVec, destVec) rotAngle = np.degrees(np.arccos( np.dot(startVec, destVec) / np.linalg.norm(startVec) / np.linalg.norm(destVec))) rotVecGL = np.float32(np.hstack((rotAngle, rotVec))) pView = gl.glGetIntegerv(gl.GL_VIEWPORT) pModel = gl.glGetDoublev(gl.GL_MODELVIEW_MATRIX) pProjection = gl.glGetDoublev(gl.GL_PROJECTION_MATRIX) scr = np.zeros((3, 3)) for iAx in range(3): scr[iAx] = np.array(gl.gluProject( *(self.modelToWorld(vScreenBody[iAx] - self.coordOffset)), model=pModel, proj=pProjection, view=pView)) vFlip = 2. if scr[0, 1] > scr[1, 1] else 0. hFlip = 2. if scr[1, 0] > scr[2, 0] else 0. for iAx, text in enumerate(oe.FWHMstr): fontScale = self.fontSize / 12500. coord = self.modelToWorld( (vScreenBody[iAx + 1] + vScreenBody[iAx + 2]) * 0.5 - self.coordOffset) coordShift = np.zeros(3, dtype=np.float32) if iAx == 0: # Horizontal Label coordShift[0] = (hFlip - 1.) * fontScale *\ len(text) * 104.76 * 0.5 coordShift[2] = fontScale * 200. else: # Vertical Label coordShift[0] = fontScale * 200. coordShift[2] = (vFlip - 1.) * fontScale *\ len(text) * 104.76 * 0.5 gl.glPushMatrix() gl.glTranslatef(*coord) gl.glRotatef(*rotVecGL) gl.glTranslatef(*coordShift) gl.glRotatef(180.*(vFlip*0.5), 1, 0, 0) gl.glRotatef(180.*(hFlip*0.5), 0, 0, 1) if iAx > 0: gl.glRotatef(-90, 0, 1, 0) if iAx == 0: # Horizontal Label to half height gl.glTranslatef(0, 0, -50. * fontScale) else: # Vertical Label to half height gl.glTranslatef(-50. * fontScale, 0, 0) gl.glRotatef(90, 1, 0, 0) gl.glScalef(fontScale, fontScale, fontScale) for symbol in text: gl.glutStrokeCharacter( gl.GLUT_STROKE_MONO_ROMAN, ord(symbol)) gl.glPopMatrix() gl.glEnable(gl.GL_LINE_SMOOTH) def plotHemiScreen(self, oe, dimensions=None): try: rMajor = oe.R except: # analysis:ignore rMajor = 1000. if dimensions is not None: rMinor = dimensions else: rMinor = self.vScreenSize if rMinor > rMajor: rMinor = rMajor yVec = np.array(oe.x) sphereCenter = np.array(oe.center) gl.glPolygonMode(gl.GL_FRONT_AND_BACK, gl.GL_FILL) if self.invertColors: gl.glColor4f(0.0, 0.0, 0.0, 0.2) else: gl.glColor4f(1.0, 1.0, 1.0, 0.2) gl.glEnable(gl.GL_MAP2_VERTEX_3) dAngle = np.arctan2(rMinor, rMajor) xLimits = [-dAngle + yVec[0], dAngle + yVec[0]] yLimits = [-dAngle + yVec[2], dAngle + yVec[2]] for i in range(self.tiles[0]): deltaX = (xLimits[1] - xLimits[0]) /\ float(self.tiles[0]) xGridOe = np.linspace(xLimits[0] + i*deltaX, xLimits[0] + (i+1)*deltaX, self.surfCPOrder) for k in range(self.tiles[1]): deltaY = (yLimits[1] - yLimits[0]) /\ float(self.tiles[1]) yGridOe = np.linspace(yLimits[0] + k*deltaY, yLimits[0] + (k+1)*deltaY, self.surfCPOrder) xv, yv = np.meshgrid(xGridOe, yGridOe) xv = xv.flatten() yv = yv.flatten() ibp = rsources.Beam(nrays=len(xv)) ibp.x[:] = sphereCenter[0] ibp.y[:] = sphereCenter[1] ibp.z[:] = sphereCenter[2] ibp.b[:] = yVec[1] ibp.a = xv ibp.c = yv ibp.state[:] = 1 gbp = oe.expose_global(beam=ibp) surfCP = np.vstack((gbp.x - self.coordOffset[0], gbp.y - self.coordOffset[1], gbp.z - self.coordOffset[2])).T gl.glMap2f(gl.GL_MAP2_VERTEX_3, 0, 1, 0, 1, self.modelToWorld(surfCP.reshape( self.surfCPOrder, self.surfCPOrder, 3))) gl.glMapGrid2f(self.surfCPOrder, 0.0, 1.0, self.surfCPOrder, 0.0, 1.0) gl.glEvalMesh2(gl.GL_FILL, 0, self.surfCPOrder, 0, self.surfCPOrder) gl.glDisable(gl.GL_MAP2_VERTEX_3) def addLighting(self, pos): spot = 60 exp = 30 ambient = [0.2, 0.2, 0.2, 1] diffuse = [0.5, 0.5, 0.5, 1] specular = [1.0, 1.0, 1.0, 1] gl.glEnable(gl.GL_LIGHTING) # corners = [[-pos, pos, pos, 1], [-pos, -pos, -pos, 1], # [-pos, pos, -pos, 1], [-pos, -pos, pos, 1], # [pos, pos, -pos, 1], [pos, -pos, pos, 1], # [pos, pos, pos, 1], [pos, -pos, -pos, 1]] corners = [[0, 0, pos, 1], [0, pos, 0, 1], [pos, 0, 0, 1], [-pos, 0, 0, 1], [0, -pos, 0, 1], [0, 0, -pos, 1]] gl.glLightModeli(gl.GL_LIGHT_MODEL_TWO_SIDE, 0) for iLight in range(len(corners)): light = gl.GL_LIGHT0 + iLight gl.glEnable(light) gl.glLightfv(light, gl.GL_POSITION, corners[iLight]) gl.glLightfv(light, gl.GL_SPOT_DIRECTION, np.array(corners[len(corners)-iLight-1])/pos) gl.glLightfv(light, gl.GL_SPOT_CUTOFF, spot) gl.glLightfv(light, gl.GL_SPOT_EXPONENT, exp) gl.glLightfv(light, gl.GL_AMBIENT, ambient) gl.glLightfv(light, gl.GL_DIFFUSE, diffuse) gl.glLightfv(light, gl.GL_SPECULAR, specular) # gl.glBegin(gl.GL_LINES) # glVertex4f(*corners[iLight]) # glVertex4f(*corners[len(corners)-iLight-1]) # gl.glEnd() def toggleHelp(self): self.showHelp = not self.showHelp self.glDraw() def drawHelp(self): hHeight = 300 hWidth = 500 pView = gl.glGetIntegerv(gl.GL_VIEWPORT) gl.glViewport(0, self.viewPortGL[3]-hHeight, hWidth, hHeight) gl.glMatrixMode(gl.GL_PROJECTION) gl.glLoadIdentity() gl.glOrtho(-1, 1, -1, 1, -1, 1) gl.glMatrixMode(gl.GL_MODELVIEW) gl.glLoadIdentity() gl.glPolygonMode(gl.GL_FRONT_AND_BACK, gl.GL_FILL) gl.glBegin(gl.GL_QUADS) if self.invertColors: gl.glColor4f(1.0, 1.0, 1.0, 0.9) else: gl.glColor4f(0.0, 0.0, 0.0, 0.9) backScreen = [[1, 1], [1, -1], [-1, -1], [-1, 1]] for corner in backScreen: gl.glVertex3f(corner[0], corner[1], 0) gl.glEnd() if self.invertColors: gl.glColor4f(0.0, 0.0, 0.0, 1.0) else: gl.glColor4f(1.0, 1.0, 1.0, 1.0) gl.glLineWidth(3) gl.glPolygonMode(gl.GL_FRONT_AND_BACK, gl.GL_LINE) gl.glBegin(gl.GL_QUADS) backScreen = [[1, 1], [1, -1], [-1, -1], [-1, 1]] for corner in backScreen: gl.glVertex3f(corner[0], corner[1], 0) gl.glEnd() helpList = [ 'F1: Open/Close this help window', 'F3: Add/Remove Virtual Screen', 'F4: Dock/Undock xrtGlow if launched from xrtQook', 'F5/F6: Quick Save/Load Scene'] if hasattr(self, 'generator'): helpList += ['F7: Start recording movie'] helpList += [ 'LeftMouse: Rotate the Scene', 'SHIFT+LeftMouse: Translate in perpendicular to the shortest view axis', # analysis:ignore 'ALT+LeftMouse: Translate in parallel to the shortest view axis', # analysis:ignore 'CTRL+LeftMouse: Drag Virtual Screen', 'ALT+WheelMouse: Scale Virtual Screen', 'CTRL+SHIFT+LeftMouse: Translate the Beamline around Virtual Screen', # analysis:ignore ' (with Beamline along the longest view axis)', # analysis:ignore 'CTRL+ALT+LeftMouse: Translate the Beamline around Virtual Screen', # analysis:ignore ' (with Beamline along the shortest view axis)', # analysis:ignore 'CTRL+T: Toggle Virtual Screen orientation (vertical/normal to the beam)', # analysis:ignore 'WheelMouse: Zoom the Beamline', 'CTRL+WheelMouse: Zoom the Scene'] for iLine, text in enumerate(helpList): self.drawText([-1. + 0.05, 1. - 2. * (iLine + 1) / float(len(helpList)+1), 0], text, True) gl.glFlush() gl.glViewport(*pView) def drawCone(self, z, r, nFacets, color): phi = np.linspace(0, 2*np.pi, nFacets) xp = r * np.cos(phi) yp = r * np.sin(phi) base = np.vstack((xp, yp, np.zeros_like(xp))) coneVertices = np.hstack((np.array([0, 0, z]).reshape(3, 1), base)).T gridColor = np.zeros((len(coneVertices), 4)) gridColor[:, color] = 1 gridColor[:, 3] = 0.75 gridArray = gl.vbo.VBO(np.float32(coneVertices)) gridArray.bind() gl.glVertexPointerf(gridArray) gridColorArray = gl.vbo.VBO(np.float32(gridColor)) gridColorArray.bind() gl.glColorPointerf(gridColorArray) gl.glDrawArrays(gl.GL_TRIANGLE_FAN, 0, len(gridArray)) gridArray.unbind() gridColorArray.unbind() def drawLocalAxes(self, oe, is2ndXtal): def drawArrow(color, arrowArray, yText='hkl'): gridColor = np.zeros((len(arrowArray) - 1, 4)) gridColor[:, 3] = 0.75 if color == 4: gridColor[:, 0] = 1 gridColor[:, 1] = 1 elif color == 5: gridColor[:, 0] = 1 gridColor[:, 1] = 0.5 else: gridColor[:, color] = 1 gl.glPolygonMode(gl.GL_FRONT_AND_BACK, gl.GL_FILL) gl.glEnableClientState(gl.GL_VERTEX_ARRAY) gl.glEnableClientState(gl.GL_COLOR_ARRAY) gridArray = gl.vbo.VBO(np.float32(arrowArray[1:, :])) gridArray.bind() gl.glVertexPointerf(gridArray) gridColorArray = gl.vbo.VBO(np.float32(gridColor)) gridColorArray.bind() gl.glColorPointerf(gridColorArray) gl.glDrawArrays(gl.GL_TRIANGLE_FAN, 0, len(gridArray)) gridArray.unbind() gridColorArray.unbind() gl.glDisableClientState(gl.GL_VERTEX_ARRAY) gl.glDisableClientState(gl.GL_COLOR_ARRAY) gl.glEnable(gl.GL_LINE_SMOOTH) gl.glHint(gl.GL_LINE_SMOOTH_HINT, gl.GL_NICEST) gl.glBegin(gl.GL_LINES) colorVec = [0, 0, 0, 0.75] if color == 4: colorVec[0] = 1 colorVec[1] = 1 elif color == 5: colorVec[0] = 1 colorVec[1] = 0.5 else: colorVec[color] = 1 gl.glColor4f(*colorVec) gl.glVertex3f(*arrowArray[0, :]) gl.glVertex3f(*arrowArray[1, :]) gl.glEnd() gl.glColor4f(*colorVec) gl.glRasterPos3f(*arrowArray[1, :]) if color == 0: axSymb = 'Z' elif color == 1: axSymb = 'Y' elif color == 2: axSymb = 'X' elif color == 4: axSymb = yText else: axSymb = '' for symbol in " {}".format(axSymb): gl.glutBitmapCharacter(self.fixedFont, ord(symbol)) gl.glDisable(gl.GL_LINE_SMOOTH) z, r, nFacets = 0.25, 0.02, 20 phi = np.linspace(0, 2*np.pi, nFacets) xp = np.insert(r * np.cos(phi), 0, [0., 0.]) yp = np.insert(r * np.sin(phi), 0, [0., 0.]) zp = np.insert(z*0.8*np.ones_like(phi), 0, [0., z]) crPlaneZ = None yText = None if hasattr(oe, 'local_n'): material = None if hasattr(oe, 'material'): material = oe.material if is2ndXtal: zExt = '2' if hasattr(oe, 'material2'): material = oe.material2 else: zExt = '1' if hasattr(oe, 'local_n1') else '' if raycing.is_sequence(material): material = material[oe.curSurface] local_n = getattr(oe, 'local_n{}'.format(zExt)) normals = local_n(0, 0) if len(normals) > 3: crPlaneZ = np.array(normals[:3], dtype=np.float) crPlaneZ /= np.linalg.norm(crPlaneZ) if material not in [None, 'None']: if hasattr(material, 'hkl'): hklSeparator = ',' if np.any(np.array( material.hkl) >= 10) else '' yText = '[{0[0]}{1}{0[1]}{1}{0[2]}]'.format( list(material.hkl), hklSeparator) # yText = '{}'.format(list(material.hkl)) cb = rsources.Beam(nrays=nFacets+2) cb.a[:] = cb.b[:] = cb.c[:] = 0. cb.a[0] = cb.b[1] = cb.c[2] = 1. if crPlaneZ is not None: # Adding asymmetric crystal orientation asAlpha = np.arccos(crPlaneZ[2]) acpX = np.array([0., 0., 1.], dtype=np.float) if asAlpha == 0 else\ np.cross(np.array([0., 0., 1.], dtype=np.float), crPlaneZ) acpX /= np.linalg.norm(acpX) cb.a[3] = acpX[0] cb.b[3] = acpX[1] cb.c[3] = acpX[2] cb.state[:] = 1 if isinstance(oe, (rscreens.HemisphericScreen, rscreens.Screen)): cb.x[:] += oe.center[0] cb.y[:] += oe.center[1] cb.z[:] += oe.center[2] oeNormX = oe.x oeNormY = oe.y else: if is2ndXtal: oe.local_to_global(cb, is2ndXtal=is2ndXtal) else: oe.local_to_global(cb) oeNormX = np.array([cb.a[0], cb.b[0], cb.c[0]]) oeNormY = np.array([cb.a[1], cb.b[1], cb.c[1]]) scNormX = oeNormX * self.scaleVec scNormY = oeNormY * self.scaleVec scNormX /= np.linalg.norm(scNormX) scNormY /= np.linalg.norm(scNormY) scNormZ = np.cross(scNormX, scNormY) scNormZ /= np.linalg.norm(scNormZ) for iAx in range(3): if iAx == 0: xVec = scNormX yVec = scNormY zVec = scNormZ elif iAx == 2: xVec = scNormY yVec = scNormZ zVec = scNormX else: xVec = scNormZ yVec = scNormX zVec = scNormY dX = xp[:, np.newaxis] * xVec dY = yp[:, np.newaxis] * yVec dZ = zp[:, np.newaxis] * zVec coneCP = self.modelToWorld(np.vstack(( cb.x - self.coordOffset[0], cb.y - self.coordOffset[1], cb.z - self.coordOffset[2])).T) + dX + dY + dZ drawArrow(iAx, coneCP) if crPlaneZ is not None: # drawAsymmetricPlane: crPlaneX = np.array([cb.a[3], cb.b[3], cb.c[3]]) crPlaneNormX = crPlaneX * self.scaleVec crPlaneNormX /= np.linalg.norm(crPlaneNormX) crPlaneNormZ = self.rotateVecQ( scNormZ, self.vecToQ(crPlaneNormX, asAlpha)) crPlaneNormZ /= np.linalg.norm(crPlaneNormZ) crPlaneNormY = np.cross(crPlaneNormX, crPlaneNormZ) crPlaneNormY /= np.linalg.norm(crPlaneNormY) color = 4 dX = xp[:, np.newaxis] * crPlaneNormX dY = yp[:, np.newaxis] * crPlaneNormY dZ = zp[:, np.newaxis] * crPlaneNormZ coneCP = self.modelToWorld(np.vstack(( cb.x - self.coordOffset[0], cb.y - self.coordOffset[1], cb.z - self.coordOffset[2])).T) + dX + dY + dZ drawArrow(color, coneCP, yText) def drawDirectionAxes(self): arrowSize = 0.05 axisLen = 0.1 tLen = (arrowSize + axisLen) * 2 gl.glLineWidth(1.) pView = gl.glGetIntegerv(gl.GL_VIEWPORT) gl.glViewport(0, 0, int(150*self.aspect), 150) gl.glMatrixMode(gl.GL_PROJECTION) gl.glLoadIdentity() if self.perspectiveEnabled: gl.gluPerspective(60, self.aspect, 0.001, 10) else: gl.glOrtho(-tLen*self.aspect, tLen*self.aspect, -tLen, tLen, -1, 1) gl.glMatrixMode(gl.GL_MODELVIEW) gl.glLoadIdentity() gl.gluLookAt(.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0) gl.glEnable(gl.GL_LINE_SMOOTH) gl.glHint(gl.GL_LINE_SMOOTH_HINT, gl.GL_NICEST) gl.glHint(gl.GL_POLYGON_SMOOTH_HINT, gl.GL_NICEST) gl.glHint(gl.GL_POINT_SMOOTH_HINT, gl.GL_NICEST) gl.glEnableClientState(gl.GL_VERTEX_ARRAY) gl.glEnableClientState(gl.GL_COLOR_ARRAY) self.rotateZYX() gl.glPolygonMode(gl.GL_FRONT_AND_BACK, gl.GL_FILL) for iAx in range(3): if not (not self.perspectiveEnabled and 2-iAx == self.visibleAxes[2]): gl.glPushMatrix() trVec = np.zeros(3, dtype=np.float32) trVec[2-iAx] = axisLen gl.glTranslatef(*trVec) if iAx == 1: gl.glRotatef(-90, 1.0, 0.0, 0.0) elif iAx == 2: gl.glRotatef(90, 0.0, 1.0, 0.0) self.drawCone(arrowSize, 0.02, 20, iAx) gl.glPopMatrix() gl.glDisableClientState(gl.GL_VERTEX_ARRAY) gl.glDisableClientState(gl.GL_COLOR_ARRAY) gl.glPolygonMode(gl.GL_FRONT_AND_BACK, gl.GL_LINE) gl.glBegin(gl.GL_LINES) for iAx in range(3): if not (not self.perspectiveEnabled and 2-iAx == self.visibleAxes[2]): colorVec = [0, 0, 0, 0.75] colorVec[iAx] = 1 gl.glColor4f(*colorVec) gl.glVertex3f(0, 0, 0) trVec = np.zeros(3, dtype=np.float32) trVec[2-iAx] = axisLen gl.glVertex3f(*trVec) gl.glColor4f(*colorVec) gl.glEnd() if not (not self.perspectiveEnabled and self.visibleAxes[2] == 2): gl.glColor4f(1, 0, 0, 1) gl.glRasterPos3f(0, 0, axisLen*1.5) for symbol in " {} (mm)".format('Z'): gl.glutBitmapCharacter(self.fixedFont, ord(symbol)) if not (not self.perspectiveEnabled and self.visibleAxes[2] == 1): gl.glColor4f(0, 0.75, 0, 1) gl.glRasterPos3f(0, axisLen*1.5, 0) for symbol in " {} (mm)".format('Y'): gl.glutBitmapCharacter(self.fixedFont, ord(symbol)) if not (not self.perspectiveEnabled and self.visibleAxes[2] == 0): gl.glColor4f(0, 0.5, 1, 1) gl.glRasterPos3f(axisLen*1.5, 0, 0) for symbol in " {} (mm)".format('X'): gl.glutBitmapCharacter(self.fixedFont, ord(symbol)) # gl.glFlush() gl.glViewport(*pView) gl.glColor4f(1, 1, 1, 1) gl.glDisable(gl.GL_LINE_SMOOTH) def initializeGL(self): gl.glutInit() gl.glutInitDisplayMode(gl.GLUT_RGBA | gl.GLUT_DOUBLE | gl.GLUT_DEPTH) gl.glViewport(*self.viewPortGL) def resizeGL(self, widthInPixels, heightInPixels): self.viewPortGL = [0, 0, widthInPixels, heightInPixels] gl.glViewport(*self.viewPortGL) self.aspect = np.float32(widthInPixels)/np.float32(heightInPixels) def populateVScreen(self): if any([prop is None for prop in [self.virtBeam, self.selColorMax, self.selColorMin]]): return startBeam = self.virtBeam try: vColorArray = self.getColor(startBeam) except AttributeError: if _DEBUG_: raise else: return good = (startBeam.state == 1) | (startBeam.state == 2) intensity = startBeam.Jss + startBeam.Jpp intensityAll = intensity / np.max(intensity[good]) good = np.logical_and(good, intensityAll >= self.cutoffI) goodC = np.logical_and( vColorArray <= self.selColorMax, vColorArray >= self.selColorMin) good = np.logical_and(good, goodC) if len(vColorArray[good]) == 0: return self.globalColorIndex = good if self.vScreenForColors else None if self.globalNorm: alphaMax = 1. else: if len(intensity[good]) > 0: alphaMax = np.max(intensity[good]) else: alphaMax = 1. alphaMax = alphaMax if alphaMax != 0 else 1. # alphaDots = intensity[good].T / alphaMax # colorsDots = np.array(vColorArray[good]).T alphaDots = intensity.T / alphaMax colorsDots = np.array(vColorArray).T if self.colorMin == self.colorMax: if self.colorMax == 0: # and self.colorMin == 0 too self.colorMin, self.colorMax = -0.1, 0.1 else: self.colorMin = self.colorMax * 0.99 self.colorMax *= 1.01 colorsDots = colorFactor * (colorsDots-self.colorMin) /\ (self.colorMax-self.colorMin) depthDots = copy.deepcopy(colorsDots[good]) * self.depthScaler colorsDots = np.dstack((colorsDots, np.ones_like(alphaDots)*colorSaturation, alphaDots if self.iHSV else np.ones_like(alphaDots))) deltaY = self.virtScreen.y * depthDots[:, np.newaxis] vertices = np.array( startBeam.x[good] - deltaY[:, 0] - self.coordOffset[0]) vertices = np.vstack((vertices, np.array( startBeam.y[good] - deltaY[:, 1] - self.coordOffset[1]))) vertices = np.vstack((vertices, np.array( startBeam.z[good] - deltaY[:, 2] - self.coordOffset[2]))) self.virtDotsArray = vertices.T colorsRGBDots = np.squeeze(mpl.colors.hsv_to_rgb(colorsDots)) if self.globalNorm and len(alphaDots[good]) > 0: alphaMax = np.max(alphaDots[good]) else: alphaMax = 1. alphaColorDots = np.array([alphaDots / alphaMax]).T if self.vScreenForColors: self.globalColorArray = np.float32(np.hstack([colorsRGBDots, alphaColorDots])) self.virtDotsColor = np.float32(np.hstack([colorsRGBDots[good], alphaColorDots[good]])) histogram = np.histogram(np.array( vColorArray[good]), range=(self.colorMin, self.colorMax), weights=intensity[good], bins=100) self.histogramUpdated.emit(histogram) locBeam = self.virtScreen.expose(self.virtScreen.beamToExpose) lbi = intensity[good] self.virtScreen.FWHMstr = [] for axis in ['x', 'z']: goodlb = getattr(locBeam, axis)[good] histAxis = np.histogram(goodlb, weights=lbi, bins=100) hMax = np.max(histAxis[0]) hNorm = histAxis[0] / hMax topEl = np.where(hNorm >= 0.5)[0] fwhm = np.abs(histAxis[1][topEl[0]] - histAxis[1][topEl[-1]]) order = np.floor(np.log10(fwhm)) if fwhm > 0 else -10 if order >= 2: units = "m" mplier = 1e-3 elif order >= -1: units = "mm" mplier = 1. elif order >= -4: units = "um" mplier = 1e3 else: # order >= -7: units = "nm" mplier = 1e6 self.virtScreen.FWHMstr.append( "FWHM({0}) = {1:.3f}{2}".format( str(axis).upper(), fwhm*mplier, units)) def createVScreen(self): try: self.virtScreen = rscreens.Screen( bl=list(self.oesList.values())[0][0].bl) self.virtScreen.center = self.worldToModel(np.array([0, 0, 0])) +\ self.coordOffset self.positionVScreen() if self.vScreenForColors: self.populateVerticesOnly(self.segmentModel) self.glDraw() except: # analysis:ignore if _DEBUG_: raise else: self.clearVScreen() def positionVScreen(self): if self.virtScreen is None: return cntr = self.virtScreen.center tmpDist = 1e12 totalDist = 1e12 cProj = None for segment in self.arrayOfRays[0]: if segment[3] is None: continue try: beamStartTmp = self.beamsDict[segment[1]] beamEndTmp = self.beamsDict[segment[3]] bStart0 = beamStartTmp.wCenter bEnd0 = beamEndTmp.wCenter beam0 = bEnd0 - bStart0 # Finding the projection of the VScreen.center on segments cProjTmp = bStart0 + np.dot(cntr-bStart0, beam0) /\ np.dot(beam0, beam0) * beam0 s = 0 for iDim in range(3): s += np.floor(np.abs(np.sign(cProjTmp[iDim] - bStart0[iDim]) + np.sign(cProjTmp[iDim] - bEnd0[iDim]))*0.6) dist = np.linalg.norm(cProjTmp-cntr) if dist < tmpDist: if s == 0: tmpDist = dist beamStart0 = beamStartTmp bStartC = bStart0 bEndC = bEnd0 cProj = cProjTmp else: if np.linalg.norm(bStart0-cntr) < totalDist: totalDist = np.linalg.norm(bStart0-cntr) self.virtScreen.center = cProjTmp self.virtScreen.beamStart = bStart0 self.virtScreen.beamEnd = bEnd0 self.virtScreen.beamToExpose = beamStartTmp except: # analysis:ignore if _DEBUG_: raise else: continue if cProj is not None: self.virtScreen.center = cProj self.virtScreen.beamStart = bStartC self.virtScreen.beamEnd = bEndC self.virtScreen.beamToExpose = beamStart0 if self.isVirtScreenNormal: vsX = [self.virtScreen.beamToExpose.b[0], -self.virtScreen.beamToExpose.a[0], 0] vsY = [self.virtScreen.beamToExpose.a[0], self.virtScreen.beamToExpose.b[0], self.virtScreen.beamToExpose.c[0]] vsZ = np.cross(vsX/np.linalg.norm(vsX), vsY/np.linalg.norm(vsY)) else: vsX = 'auto' vsZ = 'auto' self.virtScreen.set_orientation(vsX, vsZ) try: self.virtBeam = self.virtScreen.expose_global( self.virtScreen.beamToExpose) self.populateVScreen() except: # analysis:ignore self.clearVScreen() def toggleVScreen(self): if self.virtScreen is None: self.createVScreen() else: self.clearVScreen() def clearVScreen(self): self.virtScreen = None self.virtBeam = None self.virtDotsArray = None self.virtDotsColor = None if self.globalColorIndex is not None: self.globalColorIndex = None self.populateVerticesOnly(self.segmentModel) self.histogramUpdated.emit((None, None)) self.glDraw() def switchVScreenTilt(self): self.isVirtScreenNormal = not self.isVirtScreenNormal self.positionVScreen() self.glDraw() def mouseMoveEvent(self, mEvent): pView = gl.glGetIntegerv(gl.GL_VIEWPORT) mouseX = mEvent.x() mouseY = pView[3] - mEvent.y() ctrlOn = bool(int(mEvent.modifiers()) & int(qt.ControlModifier)) altOn = bool(int(mEvent.modifiers()) & int(qt.AltModifier)) shiftOn = bool(int(mEvent.modifiers()) & int(qt.ShiftModifier)) if mEvent.buttons() == qt.LeftButton: gl.glMatrixMode(gl.GL_MODELVIEW) gl.glLoadIdentity() gl.gluLookAt(self.cameraPos[0], self.cameraPos[1], self.cameraPos[2], self.cameraTarget[0], self.cameraTarget[1], self.cameraTarget[2], 0.0, 0.0, 1.0) self.rotateZYX() pModel = gl.glGetDoublev(gl.GL_MODELVIEW_MATRIX) gl.glMatrixMode(gl.GL_PROJECTION) gl.glLoadIdentity() if self.perspectiveEnabled: gl.gluPerspective(self.cameraAngle, self.aspect, 0.01, 100) else: orthoView = self.cameraPos[0]*0.45 gl.glOrtho(-orthoView*self.aspect, orthoView*self.aspect, -orthoView, orthoView, -100, 100) pProjection = gl.glGetDoublev(gl.GL_PROJECTION_MATRIX) if mEvent.modifiers() == qt.NoModifier: self.rotations[2][0] += np.float32( self.signs[2][1] * (mouseX - self.prevMPos[0]) * 36. / 90.) self.rotations[1][0] -= np.float32( (mouseY - self.prevMPos[1]) * 36. / 90.) for ax in range(2): if self.rotations[self.visibleAxes[ax+1]][0] > 180: self.rotations[self.visibleAxes[ax+1]][0] -= 360 if self.rotations[self.visibleAxes[ax+1]][0] < -180: self.rotations[self.visibleAxes[ax+1]][0] += 360 self.updateQuats() self.rotationUpdated.emit(self.rotations) elif shiftOn: for iDim in range(2): mStart = np.zeros(3) mEnd = np.zeros(3) mEnd[self.visibleAxes[iDim]] = 1. # mEnd = -1 * mStart pStart = np.array(gl.gluProject( *mStart, model=pModel, proj=pProjection, view=pView)[:-1]) pEnd = np.array(gl.gluProject( *mEnd, model=pModel, proj=pProjection, view=pView)[:-1]) pScr = np.array([mouseX, mouseY]) prevPScr = np.array(self.prevMPos) bDir = pEnd - pStart pProj = pStart + np.dot(pScr - pStart, bDir) /\ np.dot(bDir, bDir) * bDir pPrevProj = pStart + np.dot(prevPScr - pStart, bDir) /\ np.dot(bDir, bDir) * bDir self.tVec[self.visibleAxes[iDim]] += np.dot( pProj - pPrevProj, bDir) / np.dot(bDir, bDir) *\ self.maxLen / self.scaleVec[self.visibleAxes[iDim]] if ctrlOn and self.virtScreen is not None: self.virtScreen.center[self.visibleAxes[iDim]] -=\ np.dot( pProj - pPrevProj, bDir) / np.dot(bDir, bDir) *\ self.maxLen / self.scaleVec[self.visibleAxes[iDim]] if ctrlOn and self.virtScreen is not None: v0 = self.virtScreen.center self.positionVScreen() self.tVec -= self.virtScreen.center - v0 elif altOn: mStart = np.zeros(3) mEnd = np.zeros(3) mEnd[self.visibleAxes[2]] = 1. # mEnd = -1 * mStart pStart = np.array(gl.gluProject( *mStart, model=pModel, proj=pProjection, view=pView)[:-1]) pEnd = np.array(gl.gluProject( *mEnd, model=pModel, proj=pProjection, view=pView)[:-1]) pScr = np.array([mouseX, mouseY]) prevPScr = np.array(self.prevMPos) bDir = pEnd - pStart pProj = pStart + np.dot(pScr - pStart, bDir) /\ np.dot(bDir, bDir) * bDir pPrevProj = pStart + np.dot(prevPScr - pStart, bDir) /\ np.dot(bDir, bDir) * bDir self.tVec[self.visibleAxes[2]] += np.dot( pProj - pPrevProj, bDir) / np.dot(bDir, bDir) *\ self.maxLen / self.scaleVec[self.visibleAxes[2]] if ctrlOn and self.virtScreen is not None: self.virtScreen.center[self.visibleAxes[2]] -=\ np.dot(pProj - pPrevProj, bDir) / np.dot(bDir, bDir) *\ self.maxLen / self.scaleVec[self.visibleAxes[2]] v0 = self.virtScreen.center self.positionVScreen() self.tVec -= self.virtScreen.center - v0 elif ctrlOn: if self.virtScreen is not None: worldPStart = self.modelToWorld( self.virtScreen.beamStart - self.coordOffset) worldPEnd = self.modelToWorld( self.virtScreen.beamEnd - self.coordOffset) worldBDir = worldPEnd - worldPStart normPEnd = worldPStart + np.dot( np.ones(3) - worldPStart, worldBDir) /\ np.dot(worldBDir, worldBDir) * worldBDir normPStart = worldPStart + np.dot( -1. * np.ones(3) - worldPStart, worldBDir) /\ np.dot(worldBDir, worldBDir) * worldBDir normBDir = normPEnd - normPStart normScale = np.sqrt(np.dot(normBDir, normBDir) / np.dot(worldBDir, worldBDir)) if np.dot(normBDir, worldBDir) < 0: normPStart, normPEnd = normPEnd, normPStart pStart = np.array(gl.gluProject( *normPStart, model=pModel, proj=pProjection, view=pView)[:-1]) pEnd = np.array(gl.gluProject( *normPEnd, model=pModel, proj=pProjection, view=pView)[:-1]) pScr =
np.array([mouseX, mouseY])
numpy.array
# Modelling input and assumptions # Copyright (c) 2019, 2020 <NAME>, The Australian National University # Licensed under the MIT Licence # Correspondence: <EMAIL> import numpy as np from Optimisation import scenario Nodel = np.array(['FNQ', 'NSW', 'NT', 'QLD', 'SA', 'TAS', 'VIC', 'WA']) PVl = np.array(['NSW']*7 + ['FNQ']*1 + ['QLD']*2 + ['FNQ']*3 + ['SA']*6 + ['TAS']*0 + ['VIC']*1 + ['WA']*1 + ['NT']*1) Windl = np.array(['NSW']*8 + ['FNQ']*1 + ['QLD']*2 + ['FNQ']*2 + ['SA']*8 + ['TAS']*4 + ['VIC']*4 + ['WA']*3 + ['NT']*1) resolution = 0.5 MLoad = np.genfromtxt('Data/electricity.csv', delimiter=',', skip_header=1, usecols=range(4, 4+len(Nodel))) # EOLoad(t, j), MW for i in ['evan', 'erigid', 'earticulated', 'enonfreight', 'ebus', 'emotorcycle', 'erail', 'eair', 'ewater', 'ecooking', 'emanufacturing', 'emining']: MLoad += np.genfromtxt('Data/{}.csv'.format(i), delimiter=',', skip_header=1, usecols=range(4, 4+len(Nodel))) DSP = 0.8 if scenario>=31 else 0 MLoad += (1 - DSP) * np.genfromtxt('Data/ecar.csv', delimiter=',', skip_header=1, usecols=range(4, 4+len(Nodel))) MLoadD = DSP * np.genfromtxt('Data/ecar.csv', delimiter=',', skip_header=1, usecols=range(4, 4+len(Nodel))) TSPV = np.genfromtxt('Data/pv.csv', delimiter=',', skip_header=1, usecols=range(4, 4+len(PVl))) # TSPV(t, i), MW TSWind = np.genfromtxt('Data/wind.csv', delimiter=',', skip_header=1, usecols=range(4, 4+len(Windl))) # TSWind(t, i), MW assets = np.genfromtxt('Data/hydrobio.csv', dtype=None, delimiter=',', encoding=None)[1:, 1:].astype(np.float) CHydro, CBio = [assets[:, x] * pow(10, -3) for x in range(assets.shape[1])] # CHydro(j), MW to GW CBaseload = np.array([0, 0, 0, 0, 0, 1.0, 0, 0]) # 24/7, GW CPeak = CHydro + CBio - CBaseload # GW cars = np.genfromtxt('Data/cars.csv', dtype=None, delimiter=',', encoding=None)[1:, 1:].astype(np.float) CDP = DSP * cars[:, 0] * 9.6 * pow(10, -6) # kW to GW CDS = DSP * cars[:, 0] * 77 * 0.75 * pow(10, -6) # kWh to GWh # FQ, NQ, NS, NV, AS, SW, only TV constrained CDC6max = 3 * 0.63 # GW DCloss = np.array([1500, 1000, 1000, 800, 1200, 2400, 400]) * 0.03 * pow(10, -3) efficiency = 0.8 efficiencyD = 0.8 factor = np.genfromtxt('Data/factor.csv', delimiter=',', usecols=1) firstyear, finalyear, timestep = (2020, 2029, 1) if scenario<=17: node = Nodel[scenario % 10] MLoad, MLoadD = [x[:, np.where(Nodel==node)[0]] for x in (MLoad, MLoadD)] TSPV = TSPV[:, np.where(PVl==node)[0]] TSWind = TSWind[:, np.where(Windl==node)[0]] CHydro, CBio, CBaseload, CPeak, CDP, CDS = [x[np.where(Nodel==node)[0]] for x in (CHydro, CBio, CBaseload, CPeak, CDP, CDS)] if node=='QLD': MLoad, MLoadD, CDP, CDS = [x / 0.9 for x in (MLoad, MLoadD, CDP, CDS)] Nodel, PVl, Windl = [x[np.where(x==node)[0]] for x in (Nodel, PVl, Windl)] if scenario>=21: coverage = [np.array(['NSW', 'QLD', 'SA', 'TAS', 'VIC']), np.array(['NSW', 'QLD', 'SA', 'TAS', 'VIC', 'WA']), np.array(['NSW', 'NT', 'QLD', 'SA', 'TAS', 'VIC']), np.array(['NSW', 'NT', 'QLD', 'SA', 'TAS', 'VIC', 'WA']), np.array(['FNQ', 'NSW', 'QLD', 'SA', 'TAS', 'VIC']), np.array(['FNQ', 'NSW', 'QLD', 'SA', 'TAS', 'VIC', 'WA']), np.array(['FNQ', 'NSW', 'NT', 'QLD', 'SA', 'TAS', 'VIC']), np.array(['FNQ', 'NSW', 'NT', 'QLD', 'SA', 'TAS', 'VIC', 'WA'])][scenario % 10 - 1] MLoad, MLoadD = [x[:, np.where(np.in1d(Nodel, coverage)==True)[0]] for x in (MLoad, MLoadD)] TSPV = TSPV[:, np.where(np.in1d(PVl, coverage)==True)[0]] TSWind = TSWind[:, np.where(np.in1d(Windl, coverage)==True)[0]] CHydro, CBio, CBaseload, CPeak, CDP, CDS = [x[np.where(np.in1d(Nodel, coverage)==True)[0]] for x in (CHydro, CBio, CBaseload, CPeak, CDP, CDS)] if 'FNQ' not in coverage: MLoad[:, np.where(coverage=='QLD')[0][0]] /= 0.9 MLoadD[:, np.where(coverage=='QLD')[0][0]] /= 0.9 CDP[np.where(coverage == 'QLD')[0]] /= 0.9 CDS[np.where(coverage == 'QLD')[0]] /= 0.9 Nodel, PVl, Windl = [x[np.where(np.in1d(x, coverage)==True)[0]] for x in (Nodel, PVl, Windl)] intervals, nodes = MLoad.shape years = int(resolution * intervals / 8760) pzones, wzones = (TSPV.shape[1], TSWind.shape[1]) pidx, widx, sidx = (pzones, pzones + wzones, pzones + wzones + nodes) energy = (MLoad + MLoadD).sum() * pow(10, -9) * resolution / years # PWh p.a. contingency = list(0.25 * (MLoad + MLoadD).max(axis=0) * pow(10, -3)) # MW to GW GBaseload = np.tile(CBaseload, (intervals, 1)) * pow(10, 3) # GW to MW class Solution: """A candidate solution of decision variables CPV(i), CWind(i), CPHP(j), S-CPHS(j)""" def __init__(self, x): self.x = x self.MLoad, self.MLoadD = (MLoad, MLoadD) self.intervals, self.nodes = (intervals, nodes) self.resolution = resolution self.CPV = list(x[: pidx]) # CPV(i), GW self.CWind = list(x[pidx: widx]) # CWind(i), GW self.GPV = TSPV *
np.tile(self.CPV, (intervals, 1))
numpy.tile
import visualization.panda.world as wd import robot_sim.end_effectors.gripper.robotiq85.robotiq85 as rtq85 import robot_sim.robots.ur3_dual.ur3_dual as ur3ds import basis.robot_math as rm import numpy as np import modeling.collision_model as cm import modeling.geometric_model as gm import motion.probabilistic.rrt_connect as rrtc import copy import open3d as o3d import random from skimage.measure import LineModelND, ransac import research_posemake_many as pose import math import socket import robot_con.ur.program_builder as pb import pickle import time import sympy as sp from scipy.optimize import basinhopping import motion.optimization_based.incremental_nik as inik rotatedegree = 5 endthreshold = 3 objpointrange = [300, 900, -400, 800, 1051, 1500] objpos_finalmax_lft = np.array([250, 250, 1600]) objpos_finalmax_rgt = np.array([250, -250, 1600]) ## ToDo : Change the param according to the object ## param(acrylic board) ---------------------------------- objpath = "./research_flippingboard2_mm.stl" l = 300 w = 300 h = 40 M = 4.0 g = 9.8 myu0 = 0.5 myu1 = 0.4 vmax = 30 anglemax = 20 timestep = 1.0 thetathreshold = 50 # limitdegree = 70 limitdegree = 90 + math.degrees(math.atan(h / l)) + 10 print(limitdegree) objpos_start = np.array([.381, .250, 1.1], dtype=float) pushpose_pre = np.array([15.46510215, -124.31216495, -22.21501633, -68.25934326, 108.02513127, 39.89826658]) pushrot = np.array([[0.02974146, -0.74159545, 0.67018776], [0.06115005, -0.66787857, -0.74175392], [0.99768538, 0.06304286, 0.02548492]]) ## --------------------------------------------------------- ## param(stainless box) ---------------------------------------- # objpath = "./objects/TCbox.stl" # l = 300 # w = 400 # h = 150 # M = 6.0 # g = 9.8 # myu0 = 0.4 # myu1 = 0.1 # vmax = 30 # anglemax = 20 # timestep = 1.0 # thetathreshold = 49 # # limitdegree = 125 # limitdegree = 90 + math.degrees(math.atan(h / l)) + 10 # print(limitdegree) # # objpos_start = np.array([381, 250, 1035], dtype=float) # pushpose_pre = np.array([15.46510215, -124.31216495, -22.21501633, -68.25934326, 108.02513127, 39.89826658]) # pushrot = np.array([[ 0.02974146, -0.74159545, 0.67018776], # [ 0.06115005, -0.66787857, -0.74175392], # [ 0.99768538, 0.06304286, 0.02548492]]) ## ------------------------------------------------------------- ## param(plywood board) ---------------------------------------- # objpath = "./objects/400×500×44.stl" # l = 500 # w = 400 # h = 44 # M = 6.4 # g = 9.8 # myu0 = 0.6 # myu1 = 0.3 # vmax = 45 # anglemax = 20 # timestep = 1.0 # thetathreshold = 57 # # limitdegree = 100 # limitdegree = 90 + math.degrees(math.atan(h / l)) + 10 # print(limitdegree) # # objpos_start = np.array([240, 140-30, 1035], dtype=float) # pushpose_pre = np.array([12.840271549966547, -92.64224433679576, -39.088370300126584, 112.36556622471164, -92.64626048802772, 35.67784488430386]) # pushrot = np.array([[ 0.02437668, 0.74389354, 0.66785341], # [-0.16925718, 0.66147852, -0.73061493], # [-0.98527041, -0.09522902, 0.14203398]]) ## -------------------------------------------------------------- Mg = [0, -M * g] pulleypos = np.array([580, 370, 2500]) ropetoppos = np.array([.25, 0, 2.5]) rotate_axis = np.array([1, 0, 0]) ## calibration_matrix 2020-0818 calibration_matrix = np.array([[3.95473025e-02, -8.94575014e-01, -4.45164638e-01, 7.62553715e+02], [-9.98624616e-01, -2.00371608e-02, -4.84498644e-02, 6.67240739e+01], [3.44222026e-02, 4.46468426e-01, -8.94137045e-01, 2.12149540e+03], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) def gethangedpos(objpos, objrot): ## ベニヤ板の場合 hangedpos = copy.copy(objpos) + (w / 2) * objrot[:, 0] + l * objrot[:, 1] + h * objrot[:, 2] return hangedpos def getobjcenter(objpos, objrot): ## ベニヤ板の場合 objcenter = copy.copy(objpos) + (w / 2) * objrot[:, 0] + (l / 2) * objrot[:, 1] + (h / 2) * objrot[:, 2] return objcenter def getrotatecenter(objpos, objrot): ## ベニヤ板の場合 rotatecenter = copy.copy(objpos) + (w / 2) * objrot[:, 0] return rotatecenter def getrotatecenter_after(objpos, objrot): ## ベニヤ板の場合 rotatecenter = copy.copy(objpos) + (w / 2) * objrot[:, 0] + h * objrot[:, 2] return rotatecenter def getrefpoint(objpos, objrot): ## ベニヤ板の場合 refpoint = copy.copy(objpos) + h * objrot[:, 2] return refpoint def getpointcloudkinect(pointrange=[]): pcd = client.getpcd() pcd2 = np.ones((len(pcd), 4)) pcd2[:, :3] = pcd newpcd = np.dot(calibration_matrix, pcd2.T).T[:, :3] if len(pointrange) > 0: x0, x1, y0, y1, z0, z1 = pointrange newpcd = np.array([x for x in newpcd if (x0 < x[0] < x1) and (y0 < x[1] < y1) and (z0 < x[2] < z1)]) return newpcd ## 2020_0722作成 def getpointcloudkinectforrope_up(rbt, armname, initialpoint, pointrange): # pcd = client.getpcd() # pcd2 = np.ones((len(pcd), 4)) # pcd2[:, :3] = pcd # newpcd = np.dot(calibration_matrix, pcd2.T).T[:, :3] newpcd = getpointcloudkinect(pointrange) finalpoint = rbt.get_gl_tcp(manipulator_name=armname)[0] tostartvec = copy.copy(initialpoint - finalpoint) newpcd = np.array([x for x in newpcd if x[2] < 1700]) newpcd = np.array([x for x in newpcd if rm.angle_between_vectors(tostartvec, x - finalpoint) < math.radians(30)]) return newpcd def getpointcloudkinectforrope_down(rbt, armname, pointrange=[]): # pcd = client.getpcd() # pcd2 = np.ones((len(pcd), 4)) # pcd2[:, :3] = pcd # newpcd = np.dot(calibration_matrix, pcd2.T).T[:, :3] newpcd = getpointcloudkinect(pointrange) initialpoint = rbt.get_gl_tcp(manipulator_name=armname)[0] # eepos_under = copy.copy(initialpoint) # eepos_under[2] -= 250 # refvec = copy.copy(eepos_under - initialpoint) base.pggen.plotSphere(base.render, pos=initialpoint, radius=10, rgba=[1, 0, 0, 1]) minuszaxis = np.array([0, 0, -1]) newpcd = np.array([x for x in newpcd if 1100 < x[2] < initialpoint[2]]) newpcd = np.array([x for x in newpcd if rm.angle_between_vectors(minuszaxis, x - initialpoint) < math.radisn(40)]) return newpcd ## RANSACでロープを検出 def doRANSAC(newpcd, threshold): model_robust, inliers = ransac(newpcd, LineModelND, min_samples=100, residual_threshold=threshold, max_trials=1000) outliers = inliers == False ## 検出した直線の表示 ropeline = [] # ロープの点群のみ取り出す for i, eachpoint in enumerate(newpcd): if inliers[i] == True: # base.pggen.plotSphere(base.render, pos=newpcd[numberofrope], radius=10, rgba=[1, 0, 0, .5]) ropeline.append(newpcd[i]) return ropeline ## リストを昇順に並べ替える(デフォルト:z座標) def ascendingorder(array, axis=2): array = np.asarray(array) array_ascend = array[array[:, axis].argsort(), :] return array_ascend ## リストをz座標で降順に並べ替える def descendingorder(array, axis): array_ascend = ascendingorder(array, axis) array_descend = array_ascend[::-1] return array_descend def create_candidate_points(arm_name, initialhandpos, obstacles=None, limitation=None): if arm_name == "lft_arm": pointlistrange = np.array([.15, .3, .05, .3, 1.3, initialhandpos[2]]) elif arm_name == "rgt_arm": pointlistrange = np.array([.15, .3, -.2, -.05, 1.3, initialhandpos[2]]) if obstacles is not None and arm_name == "lft": for obs in obstacles: ## 3dモデルを点群化し、原点に配置 obs_points = obs.sample_surface(8000) homomat = obs.get_homomat() obs_points_converted = np.ones((len(obs_points), 4)) obs_points_converted[:, :3] = obs_points obs_points_converted = np.dot(homomat, obs_points_converted.T).T[:, :3] zmax = max(obs_points_converted[:, 2]) + .15 pointlistrange[4] = zmax # print("pointrange", pointlistrange) if limitation is not None: pointlistrange[3] = limitation points = [] number = 30 for i in range(number): x = random.uniform(pointlistrange[0], pointlistrange[1]) y = random.uniform(pointlistrange[2], pointlistrange[3]) z = random.uniform(pointlistrange[4], pointlistrange[5]) point = [x, y, z] # print("point", point) points.append(point) return points ## 始点での把持姿勢を探索 def decidestartpose(armname, ropelinesorted, predefined_grasps, fromjnt, startpointid): IKpossiblelist_start = [] while True: objpos_initial = ropelinesorted[startpointid] objrot_initial = np.eye(3) objmat4_initial = rm.homomat_from_posrot(objpos_initial, objrot_initial) obj_initial = copy.deepcopy(ropeobj) # ->早川:変数の定義はどこですか?また、obj.copy()を使ってください. obj_initial.set_rgba(rgba=[1, 0, 0, .5]) obj_initial.set_homomat(objmat4_initial) for i, eachgrasp in enumerate(predefined_grasps): prejawwidth, prehndfc, prehndpos, prehndrotmat = eachgrasp prehndhomomat = rm.homomat_from_posrot(prehndpos, prehndrotmat) hndmat4_initial = np.dot(objmat4_initial, prehndhomomat) eepos_initial = rm.homomat_transform_points(objmat4_initial, prehndfc)[:3] eerot_initial = hndmat4_initial[:3, :3] start = robot_s.ik(component_name=armname, tgt_pos=eepos_initial, tgt_rotmat=eerot_initial, seed_jnt_values=fromjnt) if start is not None: original_jnt_values = robot_s.get_jnt_values(component_name=armname) robot_s.fk(component_name=armname, jnt_values=start) objrelmat = robot_s.cvt_gl_to_loc_tcp(armname, objpos_initial, objrot_initial) ## 衝突検出 cd_result = robot_s.is_collided(obscmlist) if not cd_result: IKpossiblelist_start.append([start, objrelmat, i]) robot_s.fk(component_name=armname, jnt_values=original_jnt_values) if len(IKpossiblelist_start) > 0: return IKpossiblelist_start, objpos_initial, objrot_initial, startpointid startpointid = startpointid + 1 if startpointid == len(ropelinesorted): print("始点が存在しませんでした") return [False, False, False, False] print("startpointid = ", startpointid) ## 終点での把持姿勢を探索(終点を1つにしたとき) def decidegoalpose_onepoint(arm_name, IKpossiblelist_start, hold_pos_final, predefined_grasps, obscmlist): IKpossiblelist_startgoal = [] objrot_final = np.eye(3) objmat4_final = rm.homomat_from_posrot(hold_pos_final, objrot_final) # obj_final = copy.deepcopy(ropeobj) # obj_final.set_rgba(rgba=[1, 0, 0, .5]) # obj_final.set_homomat(objmat4_final) for i in IKpossiblelist_start: prejawwidth, prehndfc, prehndpos, prehndrotmat = predefined_grasps[i[2]] prehndhomomat = rm.homomat_from_posrot(prehndpos, prehndrotmat) hndmat4_final = np.dot(objmat4_final, prehndhomomat) eepos_final = rm.homomat_transform_points(objmat4_final, prehndfc)[:3] eerot_final = hndmat4_final[:3, :3] fromjnt = i[0] goal = robot_s.ik(component_name=arm_name, tgt_pos=eepos_final, tgt_rotmat=eerot_final, seed_jnt_values=fromjnt) # gm.gen_frame(pos=eepos_final, rotmat=eerot_final).attach_to(base) # robot_s.fk(arm_name, fromjnt) # robot_s.gen_meshmodel().attach_to(base) # base.run() if goal is not None: original_jnt_values = robot_s.get_jnt_values(component_name=arm_name) robot_s.fk(component_name=arm_name, jnt_values=goal) cd_result = robot_s.is_collided(obscmlist) if not cd_result: IKpossiblelist_startgoal.append([i[0], goal, i[1], [2]]) robot_s.fk(component_name=arm_name, jnt_values=original_jnt_values) if len(IKpossiblelist_startgoal) > 0: return IKpossiblelist_startgoal else: print("終点での姿勢が存在しません") return False ## 最初の一回の引き動作のみ def getsuitablegoalpos_first(arm_name, IKpossiblelist_start, objpos_initial, objpos_finallist, predefined_grasps): ## 重み w_length = 1 w_FT = 1 w_manip = 1 pullinglengthlist = [] for i, selected_objpos_final in enumerate(objpos_finallist): pullinglength = np.linalg.norm(objpos_initial - selected_objpos_final) pullinglengthlist.append(pullinglength) pullinglength_ref = min(pullinglengthlist) ## 評価要素を計算 totalIKpossiblelist_startgoal = [] costlist = [] assessment_value_list = [] for i, selected_objpos_final in enumerate(objpos_finallist): ## pullinglength pullinglength = pullinglengthlist[i] pullinglength_cost = 1 - pullinglength_ref / pullinglength ## FT zaxis = np.array([0, 0, 1]) tostartvec = objpos_initial - selected_objpos_final theta = rm.angle_between_vectors(rm.unit_vector(tostartvec), zaxis) FT_cost = math.cos(theta) ## manipulability IKpossiblelist_startgoal = decidegoalpose_onepoint(arm_name, IKpossiblelist_start, objpos_initial, selected_objpos_final, predefined_grasps, obscmlist) if IKpossiblelist_startgoal is not False and IKpossiblelist_start is not False: manipulability_cost = len(IKpossiblelist_startgoal) / len(IKpossiblelist_start) else: manipulability_cost = -100 ## 各コストのリスト costlist.append([pullinglength_cost, FT_cost, manipulability_cost]) ## 使用可能なIKのリスト totalIKpossiblelist_startgoal.append(IKpossiblelist_startgoal) ## tostartvec, togoalvecのリスト # veclist.append([tostartvec, togoalvec]) ## 評価関数値のリスト assessment_value = w_length * pullinglength_cost + w_manip * manipulability_cost + w_FT * FT_cost ## [assessment_value, chosen_objpos_final] assessment_value_list.append([assessment_value, i]) assessment_value_list = descendingorder(assessment_value_list, axis=0) print("assessment_value_list", assessment_value_list) return assessment_value_list, totalIKpossiblelist_startgoal, costlist def getsuitablegoalpos_second(arm_name, IKpossiblelist_start, objpos_initial, objpos_finallist, predefined_grasps, predictlist): # objpos_final_under = np.array([250, 0, 1650]) ## 重み w_length = 1 w_FT = 0 w_manip = 0 pullinglengthlist = [] for i, use_objpos_final in enumerate(objpos_finallist): pullinglength = np.linalg.norm(objpos_initial - use_objpos_final) pullinglengthlist.append(pullinglength) pullinglength_ref = min(pullinglengthlist) ## 評価要素を計算 totalIKpossiblelist_startgoal = [] costlist = [] ## 各点における予測値の要素を計算 elements_for_predictlist = [] for i, use_objpos_final in enumerate(objpos_finallist): flag = 0 togoalvec = copy.copy(use_objpos_final - objpos_initial) d_next = np.linalg.norm(objpos_initial - use_objpos_final) d_before, theta_before, theta_beforebefore = predictlist ## 次の角度の予測値 theta_next = theta_before + (theta_before - theta_beforebefore) * (d_next / d_before) if theta_next > thetathreshold: d_next = (thetathreshold - theta_before) * (d_before / (theta_before - theta_beforebefore)) use_objpos_final = copy.copy(objpos_initial) + d_next * rm.unit_vector(togoalvec) togoalvec = copy.copy(use_objpos_final - objpos_initial) flag = 1 elements_for_predictlist.append([d_next, theta_next, use_objpos_final, flag, togoalvec]) ## 評価値の計算 value_plus_element = [] for i, eachpos in enumerate(objpos_finallist): use_element = elements_for_predictlist[i] use_objpos_final = use_element[2] ## pullinglength pullinglength = pullinglengthlist[i] pullinglength_cost = 1 - pullinglength_ref / pullinglength print("length cost = ", pullinglength_cost) ## FT zaxis = np.array([0, 0, 1]) togoalvec = use_element[4] tostartvec = copy.copy(togoalvec) * (-1) degree = rm.angle_between_vectors(rm.unit_vector(tostartvec), zaxis) FT_cost = math.cos(degree) print("force cost = ", FT_cost) ## 予測位置での物体の情報 obj_predict = copy.deepcopy(obj) objectpos = copy.copy(objpos_start) objectrot = rm.rotmat_from_axangle(rotate_axis, math.radians(use_element[1])) objmat_predict = rm.homomat_from_posrot(objectpos, objectrot) obj_predict.set_rotmat(objmat_predict) ## 予測位置での物体を障害物として追加 obscmlist.append(obj_predict) pickle.dump(obscmlist, open("obscmlist.pickle", "wb")) ## manipulability IKpossiblelist_startgoal = decidegoalpose_onepoint(arm_name, IKpossiblelist_start, objpos_initial, use_objpos_final, predefined_grasps, obscmlist) if IKpossiblelist_startgoal is not False and IKpossiblelist_start is not False: manipulability_cost = len(IKpossiblelist_startgoal) / len(IKpossiblelist_start) else: manipulability_cost = -100 obscmlist.pop(-1) print("manipulation cost = ", manipulability_cost) ## 各コストのリスト costlist.append([pullinglength_cost, FT_cost, manipulability_cost]) ## 使用可能なIKのリスト totalIKpossiblelist_startgoal.append(IKpossiblelist_startgoal) ## 評価関数値のリスト assessment_value = w_length * pullinglength_cost + w_manip * manipulability_cost + w_FT * FT_cost ## value_plus_element : [assessment_value, i, d_next, theta_next, use_objpos_final, flag, togoalvec] value_plus_element.append([assessment_value, i] + use_element) # ## [assessment_value, chosen_objpos_final] # assessment_value_list.append([assessment_value, i]) # assessment_value_list = descendingorder(assessment_value_list, axis=0) value_plus_element = descendingorder(value_plus_element, axis=0) assessment_value_list = value_plus_element[:, :2] ## assessment_value, i print("assessment_value_list", assessment_value_list) elements_for_predictlist = value_plus_element[:, 2:6] ## d_next, theta_next, use_objpos_final, flag togoalveclist = value_plus_element[:, 6] ## togoalvec return assessment_value_list, totalIKpossiblelist_startgoal, costlist, elements_for_predictlist, togoalveclist ## 終点での把持姿勢を探索(0203作成:左右で引く方向を変換) def decidegoalpose(arm_name, IKpossiblelist_start, objpos_initial, predefined_grasps, objpos_final=np.array([260, 0, 1200]), diff=None, label="down"): # tic = time.time() IKpossiblelist_startgoal = [] # if label == "down": # if arm_name == "lft": # hold_pos_final = np.array([260, 100, 1400]) # else: # hold_pos_final = np.array([260, -100, 1400]) objrot_final = np.eye(3) tostartvec = objpos_initial - objpos_final ## 終点から始点への方向ベクトル(非正規化) togoalvec = objpos_final - objpos_initial ## 始点から終点への方向ベクトル(非正規化) togoalvec_len = np.linalg.norm(togoalvec) togoalvec_normalize = rm.unit_vector(togoalvec) pullinglength = copy.copy(togoalvec_len) if label == "down": if diff is not None: ## 一回目の引き動作のための条件 if diff < togoalvec_len: print("pass") pullinglength = copy.copy(diff) while True: if label == "down": objpos_final = objpos_initial + pullinglength * togoalvec_normalize else: pass togoalvec = objpos_final - objpos_initial print("hold_pos_final", objpos_final) objmat4_final = rm.homomat_from_posrot(objpos_final, objrot_final) obj_final = copy.deepcopy(ropeobj) obj_final.set_rgba([1, 0, 0, .5]) obj_final.set_rotmat(objmat4_final) for i in IKpossiblelist_start: prejawwidth, prehndfc, prehndpos, prehndrotmat = predefined_grasps[i[2]] prehndhomomat = rm.homomat_from_posrot(prehndpos, prehndrotmat) hndmat4_final = np.dot(objmat4_final, prehndhomomat) eepos_final = rm.homomat_transform_points(objmat4_final, prehndfc)[:3] eerot_final = hndmat4_final[:3, :3] # goal = robot_s.numik(eepos_final, eerot_final, arm_name) fromjnt = i[0] goal = robot_s.ik(component_name=arm_name, tgt_pos=eepos_final, tgt_rotmat=eerot_final, seed_jnt_values=fromjnt) if goal is not None: original_jnt_values = robot_s.get_jnt_values(component_name=arm_name) robot_s.fk(component_name=arm_name, jnt_values=goal) cd_result = robot_s.is_collided(obscmlist) if not cd_result: IKpossiblelist_startgoal.append([i[0], goal, i[1], [2]]) robot_s.fk(manipulator_name=arm_name, jnt_values=original_jnt_values) if len(IKpossiblelist_startgoal) > 0: print(str(pullinglength) + "mm引きます") return IKpossiblelist_startgoal, objpos_final, tostartvec, togoalvec pullinglength -= 1 if pullinglength < 0: print("終点が存在しません") return [False, False, False, False] ## 中継点での把持姿勢を探索 def decidemidpose(arm_name, IKpossiblelist_startgoal, handdir, objpos_final=None): centerflag = 0 if objpos_final is not None: if objpos_final[1] == 0: centerflag = 1 print("中継点での姿勢を探索します") IKpossiblelist = [] for i in IKpossiblelist_startgoal: direction = rm.unit_vector(handdir[i[3]]) * (-1) distance = .08 while True: if objpos_final is None or centerflag == 1: ## 終点が中心のとき(hold_pos_final = Noneを設定)終点からの中継点も計算 ## 始点に対する中継点の経路 midpathstart = robot_inik_solver.gen_rel_linear_motion_with_given_conf(arm_name, i[0], direction, distance, obscmlist, type="source") midpathgoal = robot_inik_solver.gen_rel_linear_motion_with_given_conf(arm_name, i[1], direction, distance, obscmlist, type="source") if len(midpathstart) > 0 and len(midpathgoal) > 0: # robot_s.movearmfk(midpath[-1], arm_name) # mideepos, mideerot = robot_s.getee(arm_name) midpathstart = midpathstart[::-1] midjntstart = copy.copy(midpathstart[0]) midjntgoal = copy.copy(midpathgoal[0]) #### list[startjnt, goaljnt, midjntlist, midpathlist, objrelmat, id] IKpossiblelist.append( [i[0], i[1], [midjntstart, midjntgoal], [midpathstart, midpathgoal], i[2], i[3]]) break else: distance -= 1 if distance <= 30: print(str(i[3]) + "番目の姿勢は中継点が見つかりません") break else: ## 始点に対する中継点の経路 midpathstart = robot_inik_solver.gen_rel_linear_motion_with_given_conf(arm_name, i[0], direction, distance, [], type="source") if len(midpathstart) > 0: midpathstart = midpathstart[::-1] midjntstart = copy.copy(midpathstart[0]) goaljnt = i[1] #### list[startjnt, goaljnt, midjntlist, midpathlist, objrelmat, id] IKpossiblelist.append([i[0], i[1], [midjntstart, goaljnt], [midpathstart, []], i[2], i[3]]) break else: distance -= 1 if distance <= 30: print(str(i[3]) + "番目の姿勢は始点に対する中継点が見つかりません") break return IKpossiblelist def ropepullingmotion(IKpossiblelist, togoalvec, ctcallback, theta=None, theta_next=None): for i in range(len(IKpossiblelist)): useid = random.randint(0, len(IKpossiblelist) - 1) use_startjnt = IKpossiblelist[useid][0] use_objrelmat = IKpossiblelist[useid][4] pullinglength = np.linalg.norm(togoalvec) print("pullinglength : ", pullinglength) togoalvec_copy = copy.copy(togoalvec) direction = rm.unit_vector(togoalvec_copy) obstacles_forpullingrope = copy.deepcopy(obscmlist) if theta is not None and theta_next is not None: currentobj = copy.deepcopy(obj) currentrot = rm.rotmat_from_axangle(rotate_axis, theta) currentmat = rm.homomat_from_posrot(objpos_start, currentrot) currentobj.set_homomat(currentmat) nextobj = copy.deepcopy(obj) nextrot = rm.rotmat_from_axangle(rotate_axis, theta_next) nextmat = rm.homomat_from_posrot(objpos_start, nextrot) nextobj.set_homomat(nextmat) i = 0.1 while True: appendobj = copy.deepcopy(obj) appendrot = rm.rotmat_from_euler(rotate_axis, theta + i) appendmat = rm.homomat_from_posrot(objpos_start, appendrot) appendobj.set_homomat(appendmat) obstacles_forpullingrope.append(appendobj) i += 0.1 if theta + i >= theta_next: break ropepulling = robot_inik_solver.gen_rel_linear_motion_with_given_conf(arm_name, use_startjnt, direction, pullinglength, obstacles_forpullingrope, type="source") ropepulling = ctcallback.getLinearPrimitive(use_startjnt, direction, pullinglength, [ropeobj], [use_objrelmat], obstacles_forpullingrope, type="source") if len(ropepulling) > 0: print("ropepulling motion planning success!") return ropepulling, IKpossiblelist[useid], useid print("ropepulling motion not found!") return [False, False, False] # return ropepulling, IKpossiblelist[useid], useid def RRTmotion(startjoint, goaljoint, ctcallback, obscmlist, expanddis, maxtime): tic = time.time() smoother = sm.Smoother() pathplanner = rrtc.RRTConnect(start=startjoint, goal=goaljoint, ctcallback=ctcallback, starttreesamplerate=30, endtreesamplerate=30, expanddis=expanddis, maxiter=2000, maxtime=maxtime) path, _ = pathplanner.planning(obscmlist) if path is not False: path = smoother.pathsmoothing(path, pathplanner) return path else: return False def preprocess_point_cloud(pcd, voxel_size): print(":: Estimate normal with search radius %.3f." % 10) o3d.geometry.PointCloud.estimate_normals(pcd, o3d.geometry.KDTreeSearchParamHybrid(radius=10, max_nn=30)) radius_feature = voxel_size * 5 print(":: Compute FPFH feature with search radius %.3f." % radius_feature) pcd_fpfh = o3d.registration.compute_fpfh_feature(pcd, o3d.geometry.KDTreeSearchParamHybrid(radius=10, max_nn=100)) return pcd, pcd_fpfh def execute_global_registration(source_down, target_down, source_fpfh, target_fpfh, voxel_size): distance_threshold = 30 print(":: RANSAC registration on downsampled point clouds.") print(" Since the downsampling voxel size is %.3f," % voxel_size) print(" we use a liberal distance threshold %.3f." % distance_threshold) result = o3d.registration.registration_ransac_based_on_feature_matching( source_down, target_down, source_fpfh, target_fpfh, distance_threshold, o3d.registration.TransformationEstimationPointToPoint(False), 4, [ o3d.registration.CorrespondenceCheckerBasedOnEdgeLength(0.9), o3d.registration.CorrespondenceCheckerBasedOnDistance(distance_threshold)], o3d.registration.RANSACConvergenceCriteria(4000000, 500)) return result def refine_registration(source, target, result_ransac): distance_threshold = 30 print(":: Point-to-plane ICP registration is applied on original point") print(" clouds to refine the alignment. This time we use a strict") print(" distance threshold %.3f." % distance_threshold) result = o3d.registration.registration_icp( source, target, distance_threshold, result_ransac.transformation, o3d.registration.TransformationEstimationPointToPlane()) return result def objectfitting(newpcd, fitobjpcd, refpoint_fitting): samplepoint = copy.copy(newpcd) targetpoint = sample_volume(fitobjpcd, 20000) targetpointnew = copy.copy(targetpoint) while True: targetpoint = targetpointnew voxel_size = 30 source = o3d.geometry.PointCloud() source.points = o3d.utility.Vector3dVector(samplepoint) target = o3d.geometry.PointCloud() target.points = o3d.utility.Vector3dVector(targetpoint) source_down, source_fpfh = preprocess_point_cloud(source, voxel_size) target_down, target_fpfh = preprocess_point_cloud(target, voxel_size) print("RANSAC start") result_ransac = execute_global_registration(source_down, target_down, source_fpfh, source_fpfh, voxel_size) print(result_ransac) print("ICP start") result_icp = refine_registration(source, target, result_ransac) print(result_icp) transformation = result_icp.transformation transmatrix = np.linalg.inv(transformation) # print("transmatrix = ", transmatrix) targetpointnew = np.concatenate((targetpoint, np.ones((targetpoint.shape[0], 1))), axis=1) targetpointnew = np.dot(transmatrix, targetpointnew.T) targetpointnew = targetpointnew.T[:, :3] ## refpointを変換し、z座標で降順に並べる refpoint_fitting = np.dot(transmatrix, refpoint_fitting.T).T refpoint_fitting = descendingorder(refpoint_fitting, axis=2) print("diff:", abs(refpoint_fitting[0][2] - refpoint_fitting[1][2])) print("refpoint", refpoint_fitting) # for i in refpoint_fitting: # base.pggen.plotSphere(base.render, pos=i[:3], radius=15, rgba=[1,1,0,1]) # break toppoints_zdiff = abs(refpoint_fitting[0][2] - refpoint_fitting[1][2]) toppoints_length = abs(refpoint_fitting[0] - refpoint_fitting[1]) if 0 < toppoints_zdiff < 10 and 300 < np.linalg.norm(toppoints_length) < 450: print("----------- fitting end ------------") break return targetpointnew, refpoint_fitting def getobjaxis(targetpointnew, refpoint_fitting, flag=0): ## 点群の重心を求める cog = np.mean(targetpointnew, axis=0) ## 法線推定 targetpcd = o3d.geometry.PointCloud() targetpcd.points = o3d.utility.Vector3dVector(targetpointnew) o3d.geometry.PointCloud.estimate_normals(targetpcd, o3d.geometry.KDTreeSearchParamHybrid(radius=10, max_nn=30)) print("has normals?", targetpcd.has_normals()) normal_array = np.asarray(targetpcd.normals) normal_array_use = np.array([x for x in normal_array if (x[2] > 0)]) ## 法線ベクトルを求める zaxis_obj = np.mean(normal_array_use, axis=0) normz = np.linalg.norm(zaxis_obj) zaxis_obj /= normz ## 床面からの傾きを求める zaxis = np.array([0, 0, 1]) norm1 = np.linalg.norm(zaxis) norm2 = np.linalg.norm(zaxis_obj) dot = np.dot(zaxis, zaxis_obj) theta = math.acos(dot / (norm1 * norm2)) * 180 / math.pi norm1 = np.linalg.norm(refpoint_fitting[0][:3] - refpoint_fitting[2][:3]) norm2 = np.linalg.norm(refpoint_fitting[0][:3] - refpoint_fitting[3][:3]) if norm1 < norm2: yaxis_obj = refpoint_fitting[0][:3] - refpoint_fitting[2][:3] else: yaxis_obj = refpoint_fitting[0][:3] - refpoint_fitting[3][:3] normy = np.linalg.norm(yaxis_obj) yaxis_obj /= normy xaxis_obj = np.cross(yaxis_obj, zaxis_obj) normx = np.linalg.norm(xaxis_obj) xaxis_obj /= normx return xaxis_obj, yaxis_obj, zaxis_obj, theta, cog def getobjposandrot(zaxis_obj): objpos_initial = copy.copy(objpos_start) theta = rm.degree_betweenvector(zaxis_obj, [0, 0, 1]) objrot_initial = rm.rodrigues(rotate_axis, theta) return objpos_initial, objrot_initial def getobjposandrot_after(cog, xaxis_obj, yaxis_obj, zaxis_obj): ## ベニヤ板の場合 objpos_initial = copy.copy(cog) objpos_initial -= (w / 2) * xaxis_obj objpos_initial -= (l / 2) * yaxis_obj objpos_initial -= (h / 2) * zaxis_obj objrot_initial = np.empty((0, 3)) objrot_initial = np.append(objrot_initial, np.array([xaxis_obj]), axis=0) objrot_initial = np.append(objrot_initial, np.array([yaxis_obj]), axis=0) objrot_initial = np.append(objrot_initial, np.array([zaxis_obj]), axis=0) objrot_initial = objrot_initial.T return objpos_initial, objrot_initial def getlimitdegree(objpos, rotateaxis): objpos_vertical = copy.copy(objpos) objrot_vertical = rm.rodrigues(rotateaxis, 90) criteriapoint = getrefpoint(objpos_vertical, objrot_vertical) i = 0 n = [0, 0, 1] ## 地面の法線ベクトル rotatecenter = getrotatecenter_after(objpos_vertical, objrot_vertical) while True: objpos_after = copy.copy(objpos) objrot_after = rm.rodrigues(rotateaxis, 90 + i) refpoint = getrefpoint(objpos_after, objrot_after) objpos_after += criteriapoint - refpoint hangedpos_after = gethangedpos(objpos_after, objrot_after) objcenter = getobjcenter(objpos_after, objrot_after) # a0 = sp.Symbol('a0') t = sp.Symbol('t') fx = sp.Symbol('fx') fy = sp.Symbol('fy') fz = sp.Symbol('fz') T = np.dot(t, rm.unit_vector(pulleypos - hangedpos_after)) F = np.array([fx, fy, fz]) rt = hangedpos_after - rotatecenter rg = objcenter - rotatecenter force_equation = Mg + F + T print("force_equation : ", force_equation) moment_equation = np.dot(rotateaxis, np.cross(rg, Mg) + np.cross(rt, T)) print("moment_equation : ", moment_equation) answer = sp.solve([force_equation[0], force_equation[1], force_equation[2], moment_equation]) print("answer = ", answer) if len(answer) != 0: if answer[t] > 0 and answer[fz] > 0: if answer[fx] ** 2 + answer[fy] ** 2 < answer[fz] ** 2: break i += 1 return i + 90 def getpushingpath(theta, rotateaxis): ## Objective Function def func(p): f1, f0, t, alpha0, alpha1 = p n1 = np.array([-math.sin(math.radians(theta)), math.cos(math.radians(theta))]) l1 = np.array([math.cos(math.radians(theta)), math.sin(math.radians(theta))]) n0 = np.array([0, 1]) l0 = np.array([1, 0]) F1 = np.dot(f1, n1) + np.dot(alpha1 * myu1 * f1, l1) F0 = np.dot(f0, n0) + np.dot(alpha0 * myu0 * f0, l0) T = t * t_dir opt = 150 * np.dot(F1, F1) + np.dot(T, T) + np.dot(F0, F0) return opt ## Constraints def force_eq1(p): f1, f0, t, alpha0, alpha1 = p n1 = np.array([-math.cos(math.radians(theta)), math.sin(math.radians(theta))]) l1 = np.array([math.sin(math.radians(theta)), math.cos(math.radians(theta))]) n0 = np.array([0, 1]) l0 = np.array([1, 0]) F1 = np.dot(f1, n1) + np.dot(alpha1 * myu1 * f1, l1) F0 = np.dot(f0, n0) + np.dot(alpha0 * myu0 * f0, l0) T = t * t_dir return T + Mg + F0 + F1 def torque_eq1(p): f1, f0, t, alpha0, alpha1 = p n1 = np.array([-math.cos(math.radians(theta)), math.sin(math.radians(theta))]) l1 = np.array([math.sin(math.radians(theta)), math.cos(math.radians(theta))]) # r1_3d = copy.copy(objpos) + rdir * rot[:, 1] r1_3d = chosenpos r1 = np.array([r1_3d[1], r1_3d[2]]) F1 = np.dot(f1, n1) + np.dot(alpha1 * myu1 * f1, l1) return np.cross(rt, t * t_dir) + np.cross(rg, Mg) + np.cross(r1, F1) def f1ineq(p): f1, f0, t, alpha0, alpha1 = p n1 = np.array([-math.cos(math.radians(theta)), math.sin(math.radians(theta))]) l1 = np.array([math.sin(math.radians(theta)), math.cos(math.radians(theta))]) # r1 = copy.copy(objpos) + r * rot[:, 1] F1 = np.dot(f1, n1) + np.dot(alpha1 * myu1 * f1, l1) return 30 ** 2 - np.dot(F1, F1) pushpath_total = [] pushpos_total = [] obj_total = [] hangedpos_total = [] pushposlist1 = [] pushposlist2 = [] degreelist1 = [] degreelist2 = [] i = 0 endflag = 0 pos_i = [] pos_iminus1 = [] pushpose_iminus1 = [pushpose_pre] while True: print("theta = ", theta) if theta <= 90: degreelist1.append(theta) else: degreelist2.append(theta) box = copy.deepcopy(obj) objpos = copy.copy(objpos_start) rot = rm.rodrigues(rotateaxis, theta) rot_ver = rm.rodrigues(rotateaxis, 90) refpos_ver = getrefpoint(objpos_start, rot_ver) if theta > 90: refpos = getrefpoint(objpos, rot) objpos += refpos_ver - refpos mat = rm.homobuild(objpos, rot) box.setMat(base.pg.np4ToMat4(mat)) box.setColor(.8, .6, .3, .1) obj_total.append(box) # box.reparentTo(base.render) pushposlist = [] nextpushlenlist = [] for num in range(10): pushpos = copy.copy(objpos) + (w / 2) * rot[:, 0] + (l - 10 - num * 10) * rot[:, 1] pushposlist.append(pushpos) # base.pggen.plotSphere(base.render, pos=pushpos, radius=5, rgba=[0, 1, 0, 1]) ## ------ for plotting arrow ---------------------------------------------- # if i == 1: # print("pre to pos : ", np.linalg.norm(pushpos - pos_iminus1[0])) # nextpushlenlist.append(np.linalg.norm(pushpos - pos_iminus1[0])) # base.pggen.plotArrow(base.render, spos=pos_iminus1[0], epos=pushpos, # length=np.linalg.norm(pushpos - pos_iminus1[0]), thickness=1.0, rgba=[0, 0, 1, 1]) # elif i >= 2: # print("pre to pos : ", np.linalg.norm(pushpos - pos_i[0])) # nextpushlenlist.append(np.linalg.norm(pushpos - pos_i[0])) # base.pggen.plotArrow(base.render, spos=pos_i[0], epos=pushpos, # length=np.linalg.norm(pushpos - pos_i[0]), thickness=1.0, rgba=[0, 0, 1, 1]) # base.pggen.plotSphere(base.render, pos=pushpos, rgba=[0,1,0,1], radius=5) ## -------------------------------------------------------------------------- hangedpos = gethangedpos(objpos, rot) hangedpos_total.append(hangedpos) # base.pggen.plotSphere(base.render, pos=hangedpos, radius=10, rgba=[0,1,0,1]) rotatecenter = getrotatecenter(objpos, rot) # base.pggen.plotSphere(base.render, pos=rotatecenter, radius=10, rgba=[0,0,1,1]) if theta > 90: rotatecenter = getrotatecenter_after(objpos, rot) objcenter = getobjcenter(objpos, rot) # base.pggen.plotSphere(base.render, pos=objcenter, radius=10, rgba=[1,0,0,1]) rg_3d = objcenter - rotatecenter rt_3d = hangedpos - rotatecenter rg = np.array([rg_3d[1], rg_3d[2]]) rt = np.array([rt_3d[1], rt_3d[2]]) optimizationlist = np.empty((0, 2)) t_dir_3d = pulleypos - hangedpos t_dir = rm.unit_vector([t_dir_3d[1], t_dir_3d[2]]) bounds = ((0, 30), (0, np.inf), (0, np.inf), (-1, 1), (-1, 1)) conds = ({'type': 'eq', 'fun': force_eq1}, {'type': 'eq', 'fun': torque_eq1}, {'type': 'ineq', 'fun': f1ineq}) p0 = [30, 30, 30, 0, 0] minimizer_kwargs = {"method": "SLSQP", "constraints": conds, "bounds": bounds} for chosenpos in pushposlist: if i == 0: o = basinhopping(func, p0, minimizer_kwargs=minimizer_kwargs) value = func(o.x) print(o.x) optimizationlist = np.append(optimizationlist, np.array([np.array([chosenpos, value])]), axis=0) elif i == 1: if np.linalg.norm(chosenpos - pos_iminus1[0]) <= vmax * timestep: o = basinhopping(func, p0, minimizer_kwargs=minimizer_kwargs) value = func(o.x) print(o.x) optimizationlist = np.append(optimizationlist, np.array([np.array([chosenpos, value])]), axis=0) else: vec_current = rm.unit_vector(chosenpos - pos_i[0]) vec_previous = rm.unit_vector(pos_i[0] - pos_iminus1[0]) angle = rm.degree_betweenvector(vec_current, vec_previous) print("angle=", angle) # if np.linalg.norm(chosenpos - pos_iminus1[0]) * 0.001 <= vmax * timestep and angle <= anglemax: if np.linalg.norm(chosenpos - pos_i[0]) <= vmax * timestep and angle <= anglemax: o = basinhopping(func, p0, minimizer_kwargs=minimizer_kwargs) value = func(o.x) print(o.x) optimizationlist = np.append(optimizationlist, np.array([np.array([chosenpos, value])]), axis=0) ## sorting the pushposlist by value optimizationlist = ascendingorder(optimizationlist, axis=1) for j, eachpos in enumerate(optimizationlist): maximumvaluepos = eachpos[0] # if i == 0: # pos_iminus1 = [maximumvaluepos] # elif i == 1: # pos_i = [maximumvaluepos] # else: # pos_iminus1[0] = pos_i[0] # pos_i[0] = maximumvaluepos ## kinematic constraint pushpose = robot_s.ik("lft_arm", maximumvaluepos, pushrot, seed_jnt_values=pushpose_iminus1[0]) if pushpose is not None: if i == 0: pos_iminus1 = [maximumvaluepos] pushpose_iminus1 = [pushpose] pushpos_total.append(maximumvaluepos) break else: vec = rm.unit_vector(maximumvaluepos - pos_iminus1[0]) length = np.linalg.norm(maximumvaluepos - pos_iminus1[0]) pushpath = ctcallback_lft.getLinearPrimitivenothold(pushpose_iminus1[0], vec, length, obscmlist, type="source") if len(pushpath) > 0: if i == 1: pos_i = [maximumvaluepos] else: pos_iminus1 = pos_i[0] pos_i = [maximumvaluepos] pushpose_iminus1 = [pushpose] pushpath_total.append(pushpath) pushpos_total.append(maximumvaluepos) break # if theta <= 90: # pushposlist1.append(eachpos[0]) # else: # pushposlist2.append(eachpos[0]) # break if endflag == 1: break ## renew theta rotatedegree = 5 if 90 <= theta + rotatedegree < 95: rotatedegree = 90 - theta if theta + rotatedegree > limitdegree: rotatedegree = limitdegree - theta endflag = 1 theta += rotatedegree i += 1 return pushpath_total, pushpos_total, obj_total, hangedpos_total def getforce(armname): if armname == "rgt": rgtarm_ftsocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) rgtarm_ftsocket.connect(uc.rgtarm_ftsocket_ipad) targetftsocket = rgtarm_ftsocket else: lftarm_ftsocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) lftarm_ftsocket.connect(uc.lftarm_ftsocket_ipad) targetftsocket = lftarm_ftsocket rawft = targetftsocket.recv(1024) rawft_letter = str(rawft) rawft_letter_split = rawft_letter.split("(")[1].split(")")[0].split(" , ") rawft_final = [float(i) for i in rawft_letter_split] print("force ", rawft_final) def getforcenorm(force_array): force_norm = force_array[0] * force_array[0] + force_array[1] * force_array[1] + force_array[2] * force_array[2] # force_norm = np.linalg.norm(force_array) force_norm = math.sqrt(force_norm) return force_norm targetftsocket.close() return getforcenorm(rawft_final) def zeroforce(armname): pblder = pb.ProgramBuilder() pblder.loadprog("zerosensor.script") progzerosensor = pblder.ret_program_to_run() if armname == "lft": uc.lftarm.send_program(progzerosensor) elif armname == "rgt": uc.rgtarm.send_program(progzerosensor) if __name__ == "__main__": base = wd.World(cam_pos=[7, 0, 2.2], lookat_pos=[0, 0, .7]) gm.gen_frame().attach_to(base) board = cm.gen_box(extent=[.4, .5, .01]) # RANSAC用 rtq85_s = rtq85.Robotiq85() robot_s = ur3ds.UR3Dual() robot_inik_solver = inik.IncrementalNIK(robot_s) ## 物体の読み込み ropeobj = cm.CollisionModel(initor="./research_box_mm.stl") obj = cm.CollisionModel(initor=objpath) ## 事前定義把持とハンド姿勢の呼び出し handpose = pose.PoseMaker() predefined_grasps_lft, handdirlist_lft = handpose.lftgrasppose() # 予備の把持姿勢と把持方向 predefined_grasps_rgt, handdirlist_rgt = handpose.rgtgrasppose() # for grasp_pose in predefined_grasps_rgt: # jawwidth, gl_jaw_center_pos, hnd_pos, hnd_rotmat = grasp_pose # gm.gen_frame(hnd_pos, hnd_rotmat).attach_to(base) # base.run() # objects test = copy.deepcopy(obj) rotmat = rm.rotmat_from_axangle(rotate_axis, math.radians(45)) homomat = rm.homomat_from_posrot(objpos_start, rotmat) test.set_homomat(homomat) test.set_rgba([.8, .6, .3, .4]) test.attach_to(base) next = copy.deepcopy(obj) rotmat = rm.rotmat_from_axangle(rotate_axis, math.radians(58)) homomat = rm.homomat_from_posrot(objpos_start, rotmat) next.set_homomat(homomat) next.set_rgba([0, 1, 0, .4]) next.attach_to(base) obscmlist = [] obscmlist.append(test) obscmlist.append(next) # ## 確認用の者 右手の引き動作と対象物の移動 arm_name = 'rgt_arm' rgt_jnt_values = np.radians( np.array([-16.40505261, -52.96523856, 91.11206022, 36.08211617, 132.71248608, 67.39504932])) robot_s.fk(component_name=arm_name, jnt_values=rgt_jnt_values) robot_s.gen_meshmodel().attach_to(base) # rgt_pos, rgt_rotmat = robot_s.get_gl_tcp(hnd_name=arm_name) # ropelinesorted = [] # dir = rm.unit_vector(ropetoppos - rgt_pos) # path = inik_solver.gen_rel_linear_motion(hnd_name=arm_name, # goal_tcp_pos=rgt_pos, # goal_tcp_rotmat=rgt_rotmat, # direction=-dir, # distance=.15, # type='source') # # for conf in path: # # robot_s.fk(arm_name, conf) # # robot_s.gen_meshmodel().attach_to(base) # # base.run() # robot_s.fk(hnd_name=arm_name, jnt_values=path[-1]) # # robot_s.gen_meshmodel().attach_to(base) # # base.run() # rgt_pos, rgt_rotmat = robot_s.get_gl_tcp(hnd_name=arm_name) # counter = 0 # while True: # rgt_append_pos = rgt_pos + dir * counter * 1e-3 # ropelinesorted.append(rgt_append_pos) # counter += 1 # if rgt_append_pos[2] > 1.7: # break # ropelinesorted = ropelinesorted[::-1] # for rope_point in ropelinesorted: # gm.gen_sphere(rope_point).attach_to(base) # # base.run() # # # 左手の引き動作 # startpointid = 0 # 1.7 # hold_pos_final = np.array([.25, -.15, 1.4]) # 仮設置 # arm_name = "rgt_arm" # IKpossiblelist_start, hold_pos_init, hold_rot_init, startpointid = decidestartpose(ropelinesorted, # arm_name, # predefined_grasps_rgt, # robot_s.rgt_arm.homeconf, # startpointid) # # for data in IKpossiblelist_start: # # robot_s.fk(arm_name, data[0]) # # robot_s.gen_meshmodel().attach_to(base) # # base.run() # IKpossiblelist_startgoal = decidegoalpose_onepoint(arm_name, # IKpossiblelist_start, # hold_pos_final, # predefined_grasps_rgt, # obscmlist) # rgtstart = IKpossiblelist_startgoal[0][0] # rgtgoal = IKpossiblelist_startgoal[0][1] # robot_s.fk(arm_name, rgtstart) # rgtstart_pos, rgtstart_rotmat = robot_s.get_gl_tcp(arm_name) # robot_s.gen_meshmodel().attach_to(base) # robot_s.fk(arm_name, rgtgoal) # robot_s.gen_meshmodel().attach_to(base) # # base.run() # # dir = rm.unit_vector(hold_pos_final - ropelinesorted[0]) # length = np.linalg.norm(hold_pos_final - ropelinesorted[0]) # path = inik_solver.gen_rel_linear_motion(arm_name, rgtstart_pos, rgtstart_rotmat, dir, length, [], # type="source") # for conf in path: # robot_s.fk(arm_name, conf) # robot_s.gen_meshmodel().attach_to(base) # # base.run() ## ------ シミュレーション用 ------ ropelinesorted = [] for i in range(200): ropelinesorted.append(np.array([.25, 0, 1.65 - i * 1e3])) # ropelinesorted = np.load('RopeVertex_test.npy') np.save('RopeVertex_test.npy', ropelinesorted) ## ------------------------------ ## ------ 実際のロープの点群 ------ # pointrange = [.1, .4, -.15, .15, 1.2, 1.8] # newpcd = getpointcloudkinect(pointrange) # ropelinesorted = doRANSAC(newpcd, 5) # np.save('RopeVertex_data.npy', ropelinesorted) # ----------------------- ## todo プッシングのシミュレーションの際はコメントアウト ## 開始(右手で引く) startpointid = 0 endflag = 0 while True: arm_name = 'rgt_arm' print("startpointid", startpointid) IKpossiblelist_start_rgt, objpos_initial_rgt, objrot_initial_rgt, startpointid = decidestartpose(arm_name, ropelinesorted, predefined_grasps_rgt, robot_s.rgt_arm.homeconf, startpointid) objpos_finallist_rgt = create_candidate_points(arm_name=arm_name, initialhandpos=objpos_initial_rgt) np.save('finalposlist.npy', objpos_finallist_rgt) # for point in objpos_finallist_rgt: # gm.gen_sphere(pos=point).attach_to(base) # base.run() assessment_value_list_rgt, totalIKpossiblelist_startgoal_rgt, costlist_rgt = \ getsuitablegoalpos_first(arm_name, IKpossiblelist_start_rgt, objpos_initial_rgt, objpos_finallist_rgt, predefined_grasps_rgt) for i, each_assessment_value_list in enumerate(assessment_value_list_rgt): useid = each_assessment_value_list[1] ## 評価値が高いものから順に選択 print("useid", useid) IKpossiblelist_startgoal_rgt = totalIKpossiblelist_startgoal_rgt[int(useid)] togoalvec_rgt = objpos_finallist_rgt[int(useid)] - objpos_initial_rgt tostartvec_rgt = copy.copy(togoalvec_rgt) * (-1) use_objpos_final_rgt = copy.copy(objpos_initial_rgt) + togoalvec_rgt IKpossiblelist_rgt = decidemidpose(arm_name, IKpossiblelist_startgoal_rgt, handdirlist_rgt, objpos_final=use_objpos_final_rgt) ropepulling_rgt, usingposelist_rgt, usingposeid_rgt = ropepullingmotion(IKpossiblelist_rgt, togoalvec_rgt, ctcallback_rgt) print("ropepulling_rgt", ropepulling_rgt) gotoinitialrgtpoint = RRTmotion(rbt.initjnts[3:9], usingposelist_rgt[2][0], ctcallback_rgt, obscmlist, 30, 10) if len(ropepulling_rgt) > 0 and gotoinitialrgtpoint is not False: endflag = 1 ## はじめにロープを引く長さ d_0 = np.linalg.norm(objpos_initial_rgt - use_objpos_final_rgt) theta_0 = 0 theta_1 = 0 break if endflag == 1: break startpointid += 1 # if startpointid == len(ropelinesorted): ## 終点に対する中継点と、経路を保存 keeplist = [usingposelist_rgt[2][1], usingposelist_rgt[3][1], tostartvec_rgt] pickle.dump(keeplist, open("keeplist.pickle", "wb")) # # ------------------------------------------------------------------------------- # ## todo プッシングのシミュレーションの際はコメントアウト ### todo pushingのシミュレーション用 ## 実環境上 # newpcd = getpointcloudkinect(objpointrange) # base.pg.genPntsnp(newpcd).reparentTo(base.render) # # base.run() # refpoint_fitting = np.array([[-200, -250, 0, 1], # [-200, 250, 0, 1], # [200, 250, 0, 1], # [200, -250, 0, 1]]) # targetpointnew, refpoint_fitting = objectfitting(newpcd, board, refpoint_fitting) # xaxis_obj, yaxis_obj, zaxis_obj, theta, cog = getobjaxis(targetpointnew, refpoint_fitting) # objpos_initial_board, objrot_initial_board = getobjposandrot(zaxis_obj) # objmat4 = rm.homobuild(objpos_initial_board, objrot_initial_board) # currentobj = copy.deepcopy(obj) # currentobj.setMat(base.pg.np4ToMat4(objmat4)) # currentobj.setColor(1, 0, 0, .5) # currentobj.reparentTo(base.render) # print(theta) # base.run() # pickle.dump(currentobj, open("obj.pickle", "wb")) ## シミュレータ上 # theta_sim = [66] # theta = theta_sim[0] # # experimentlist = [[gotoinitialrgtpoint + usingposelist_rgt[3][0], 85, 0, "rgt", "gotoinitialrgtpoint", 2.0]] # # hold_pos_init = copy.copy(objpos_start) # hold_rot_init = rm.rodrigues(rotate_axis, theta) # # test = copy.deepcopy(obj) # # mat = rm.homobuild(hold_pos_init, hold_rot_init) # # test.setMat(base.pg.np4ToMat4(mat)) # # test.reparentTo(base.render) # # robot_s.movearmfk(pushpose_pre, "lft") # # rbtmg.genmnp(robot_s, togglejntscoord=False).reparentTo(base.render) # # base.run() # # ## pushingの動作計画 # # limitdegree = getlimitdegree(hold_pos_init, rotate_axis) # limitdegree = 100 # ## test # pushpath_total, pushpos_total, obj_total, hangedpos_total = getpushingpath_first(obj, hold_pos_init, hold_rot_init, theta, rotate_axis) # print("pushpath_total", pushpath_total) # # obj_ver = copy.deepcopy(obj_total[-1]) # objmat4_ver = obj_ver.gethomomat() # objpos_ver = objmat4_ver[:3, 3] # objrot_ver = objmat4_ver[:3, :3] # # pushpos = pushpos_total[-1] # pushpath_total2, pushpos_total2, obj_total2, hangedpos_total2 = getpushingpath_second(obj_ver, objpos_ver, objrot_ver, pushpos, limitdegree, rotate_axis) # print("pushpath_total2", pushpath_total2) # # # pushpath_all = np.concatenate([pushpath_total, pushpath_total2]) # # pushpos_all = np.concatenate([pushpos_total, pushpos_total2]) # # obj_all = np.concatenate([obj_total, obj_total2]) # # looselength_all = np.concatenate([looselength_total, looselength_total2]) # pushpath_all = list(pushpath_total) + list(pushpath_total2) # pushpos_all = list(pushpos_total) + list(pushpos_total2) # obj_all = list(obj_total) + list(obj_total2) # hangedpos_all = list(hangedpos_total) + list(hangedpos_total2) # # pickle.dump(obj_all[0], open("obj.pickle", "wb")) # pickle.dump([pushpath_all, pushpos_all, obj_all, hangedpos_all], open("pushinglist.pickle", "wb")) ## todo pushingのシミュレーション用 # base.run() ### シミュレーション & 実機 ### Order of "experimentlist":[path, startjawwidth, endjawwidth, arm_name, pathlable, timepathstep] predictlist = [d_0, theta_1, theta_0] experimentlist = [[gotoinitialrgtpoint + usingposelist_rgt[3][0], 85, 0, "rgt", "gotoinitialrgtpoint", 2.0], [ropepulling_rgt, 0, 0, "rgt", "ropepulling_rgt", 1.0]] ## シミュレーション用 theta_sim = [0] pushstartpoint = [0] motioncounter = [0] pathcounter = [0] activelist = experimentlist[pathcounter[0]] ## ロープ引きの際のカウンタ pullingcounter = [0] pullingcounter_rgt = [0] pullingcounter_lft = [0] forcelist = [] ropepullingforcelist = [] used_pushpathlist = [] ## 押し動作の際のカウンタ forcecounter = [0] pushcounter = [0] forceflag = [0] stopflag = [0] rbtmnpani = [None] objmnpani = [None] pntani = [None] finalposani = [None] endpoint = [1000] ropepullingflag = [1] pushingflag = [0] ropeloosningflag = [0] ropepullendflag = [0] rgtregraspflag = [0] onearmflag = [0] pushendflag = [0] getgoalcounter = [0] # obj_current = None finalpos = [None] rot = rm.rodrigues(rotate_axis, theta_sim[0]) mat = rm.homobuild(objpos_start, rot) obj_current = copy.deepcopy(obj) obj_current.setMat(base.pg.np4ToMat4(mat)) pickle.dump(obj_current, open("obj.pickle", "wb")) def updatemotionsec(activelist, rbtmnp, objmnp, motioncounter, rbt, pnt, finalpos, task): if motioncounter[0] < len(activelist[0]): if rbtmnp[0] is not None: rbtmnp[0].detachNode() if objmnp[0] is not None: objmnp[0].detachNode() if pnt[0] is not None: pnt[0].detachNode() if finalpos[0] is not None: finalpos[0].detachNode() ## ロボットの表示 pose = activelist[0][motioncounter[0]] armname = activelist[3] rbt.movearmfk(pose, armname) rbtmnp[0] = rbtmg.genmnp(rbt) rbtmnp[0].reparentTo(base.render) ## ロープの点群の表示 # rope = np.load('RopeVertex_test.npy') ## テスト用 rope =
np.load('RopeVertex_data.npy')
numpy.load
import numpy as np from ..field import Field def large_poisson(lam, thresh=1e6): """ Draw samples from a Poisson distribution, taking care of large values of `lam`. At large values of `lam` the distribution automatically switches to the corresponding normal distribution. This switch is independently decided for each expectation value in the `lam` array. Parameters ---------- lam : array_like Expectation value for the Poisson distribution. Must be >= 0. thresh : float The threshold at which the distribution switched from a Poisson to a normal distribution. Returns ------- array_like The drawn samples from the Poisson or normal distribution, depending on the expectation value. """ large = lam > thresh small = ~large # Use normal approximation if the number of photons is large n = np.zeros(len(lam)) n[large] = np.round(lam[large] + np.random.normal(size=
np.sum(large)
numpy.sum
import numpy as np import matplotlib.pyplot as plt import sys # class for plot axis limitation class SetAxisLimit: def __init__(self): pass def idx_bndry(self, xbl, xbr): # calculate indices of grid boundaries xzn0 = np.asarray(self.xzn0) xlm = np.abs(xzn0 - xbl) xrm = np.abs(xzn0 - xbr) idxl = int(np.where(xlm == xlm.min())[0][0]) idxr = int(np.where(xrm == xrm.min())[0][0]) return idxl, idxr def set_plt_axis(self, LAXIS, xbl, xbr, ybu, ybd, to_plot): # calculate INDICES for grid boundaries if LAXIS == 1: idxl, idxr = self.idx_bndry(xbl, xbr) # replace NaN with zero and infinity with large finite numbers to_plot = np.nan_to_num(to_plot) # hack for nan_to_num() got an unexpected keyword argument 'num,posif,negif' to_plot_tmp = [] for data in to_plot: data_tmp = [] for value in data: if (value > 1.e50): data_tmp.append(1.e50) elif (value < -1.e50): data_tmp.append(-1.e50) else: data_tmp.append(value) to_plot_tmp.append(data_tmp) to_plot = to_plot_tmp number_of_curves = len(to_plot) # print(number_of_curves) if (number_of_curves == 1): # limit x/y axis if LAXIS == 0: plt.axis([self.xzn0[0], self.xzn0[-1], np.min(to_plot[0][0:-1]), np.max(to_plot[0][0:-1])]) if LAXIS == 1: plt.axis([xbl, xbr, np.min(to_plot[0][idxl:idxr]), np.max(to_plot[0][idxl:idxr])]) if (number_of_curves == 2): # limit x/y axis by global min/max from all terms if LAXIS == 0: minx = np.min([np.min(to_plot[0][0:-1]), np.min(to_plot[1][0:-1])]) maxx = np.max([np.max(to_plot[0][0:-1]), np.max(to_plot[1][0:-1])]) plt.axis([self.xzn0[0], self.xzn0[-1], minx, maxx]) if LAXIS == 1: minx = np.min([np.min(to_plot[0][idxl:idxr]), np.min(to_plot[1][idxl:idxr])]) maxx = np.max([np.max(to_plot[0][idxl:idxr]), np.max(to_plot[1][idxl:idxr])]) plt.axis([xbl, xbr, minx, maxx]) if (number_of_curves == 3): # limit x/y axis by global min/max from all terms if LAXIS == 0: minx = np.min([np.min(to_plot[0][0:-1]), np.min(to_plot[1][0:-1]), \ np.min(to_plot[2][0:-1])]) maxx = np.max([np.max(to_plot[0][0:-1]), np.max(to_plot[1][0:-1]), \ np.max(to_plot[2][0:-1])]) plt.axis([self.xzn0[0], self.xzn0[-1], minx, maxx]) if LAXIS == 1: minx = np.min([np.min(to_plot[0][idxl:idxr]), np.min(to_plot[1][idxl:idxr]), \ np.min(to_plot[2][idxl:idxr])]) maxx = np.max([np.max(to_plot[0][idxl:idxr]), np.max(to_plot[1][idxl:idxr]), \ np.max(to_plot[2][idxl:idxr])]) plt.axis([xbl, xbr, minx, maxx]) if (number_of_curves == 4): # limit x/y axis by global min/max from all terms if LAXIS == 0: minx = np.min([np.min(to_plot[0][0:-1]), np.min(to_plot[1][0:-1]), \ np.min(to_plot[2][0:-1]), np.min(to_plot[3][0:-1])]) maxx = np.max([
np.max(to_plot[0][0:-1])
numpy.max
"""GaussianKDE module.""" import numpy as np from scipy.special import ndtr from scipy.stats import gaussian_kde from copulas import EPSILON, random_state, store_args, validate_random_state from copulas.optimize import bisect, chandrupatla from copulas.univariate.base import BoundedType, ParametricType, ScipyModel class GaussianKDE(ScipyModel): """A wrapper for gaussian Kernel density estimation. It was implemented in scipy.stats toolbox. gaussian_kde is slower than statsmodels but allows more flexibility. When a sample_size is provided the fit method will sample the data, and mask the real information. Also, ensure the number of entries will be always the value of sample_size. Args: sample_size(int): amount of parameters to sample """ PARAMETRIC = ParametricType.NON_PARAMETRIC BOUNDED = BoundedType.UNBOUNDED MODEL_CLASS = gaussian_kde @store_args def __init__(self, sample_size=None, random_state=None, bw_method=None, weights=None): self.random_state = validate_random_state(random_state) self._sample_size = sample_size self.bw_method = bw_method self.weights = weights def _get_model(self): dataset = self._params['dataset'] self._sample_size = self._sample_size or len(dataset) return gaussian_kde(dataset, bw_method=self.bw_method, weights=self.weights) def _get_bounds(self): X = self._params['dataset'] lower = np.min(X) - (5 * np.std(X)) upper = np.max(X) + (5 * np.std(X)) return lower, upper def probability_density(self, X): """Compute the probability density for each point in X. Arguments: X (numpy.ndarray): Values for which the probability density will be computed. It must have shape (n, 1). Returns: numpy.ndarray: Probability density values for points in X. Raises: NotFittedError: if the model is not fitted. """ self.check_fit() return self._model.evaluate(X) @random_state def sample(self, n_samples=1): """Sample values from this model. Argument: n_samples (int): Number of values to sample Returns: numpy.ndarray: Array of shape (n_samples, 1) with values randomly sampled from this model distribution. Raises: NotFittedError: if the model is not fitted. """ self.check_fit() return self._model.resample(size=n_samples)[0] def cumulative_distribution(self, X): """Compute the cumulative distribution value for each point in X. Arguments: X (numpy.ndarray): Values for which the cumulative distribution will be computed. It must have shape (n, 1). Returns: numpy.ndarray: Cumulative distribution values for points in X. Raises: NotFittedError: if the model is not fitted. """ self.check_fit() X = np.array(X) stdev = np.sqrt(self._model.covariance[0, 0]) lower = ndtr((self._get_bounds()[0] - self._model.dataset) / stdev)[0] uppers = ndtr((X[:, None] - self._model.dataset) / stdev) return (uppers - lower).dot(self._model.weights) def percent_point(self, U, method='chandrupatla'): """Compute the inverse cumulative distribution value for each point in U. Arguments: U (numpy.ndarray): Values for which the cumulative distribution will be computed. It must have shape (n, 1) and values must be in [0,1]. method (str): Whether to use the `chandrupatla` or `bisect` solver. Returns: numpy.ndarray: Inverse cumulative distribution values for points in U. Raises: NotFittedError: if the model is not fitted. """ self.check_fit() if len(U.shape) > 1: raise ValueError(f'Expected 1d array, got {(U, )}.') if np.any(U > 1.0) or np.any(U < 0.0): raise ValueError('Expected values in range [0.0, 1.0].') is_one = U >= 1.0 - EPSILON is_zero = U <= EPSILON is_valid = ~(is_zero | is_one) lower, upper = self._get_bounds() def _f(X): return self.cumulative_distribution(X) - U[is_valid] X = np.zeros(U.shape) X[is_one] = float('inf') X[is_zero] = float('-inf') if is_valid.any(): lower = np.full(U[is_valid].shape, lower) upper = np.full(U[is_valid].shape, upper) if method == 'bisect': X[is_valid] = bisect(_f, lower, upper) else: X[is_valid] = chandrupatla(_f, lower, upper) return X def _fit_constant(self, X): sample_size = self._sample_size or len(X) constant = np.unique(X)[0] self._params = { 'dataset': [constant] * sample_size, } def _fit(self, X): if self._sample_size: X = gaussian_kde(X, bw_method=self.bw_method, weights=self.weights).resample(self._sample_size) self._params = { 'dataset': X.tolist() } self._model = self._get_model() def _is_constant(self): return len(
np.unique(self._params['dataset'])
numpy.unique
# This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Test circuits and reference outputs for 2-qubit Clifford gate instructions. """ import numpy as np from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit # ========================================================================== # CX-gate # ========================================================================== def cx_gate_circuits_deterministic(final_measure=True): """CX-gate test circuits with deterministic counts.""" circuits = [] qr = QuantumRegister(2) if final_measure: cr = ClassicalRegister(2) regs = (qr, cr) else: regs = (qr, ) # CX01, |00> state circuit = QuantumCircuit(*regs) circuit.cx(qr[0], qr[1]) if final_measure: circuit.barrier(qr) circuit.measure(qr, cr) circuits.append(circuit) # CX10, |00> state circuit = QuantumCircuit(*regs) circuit.cx(qr[1], qr[0]) if final_measure: circuit.barrier(qr) circuit.measure(qr, cr) circuits.append(circuit) # CX01.(X^I), |10> state circuit = QuantumCircuit(*regs) circuit.x(qr[1]) circuit.barrier(qr) circuit.cx(qr[0], qr[1]) if final_measure: circuit.barrier(qr) circuit.measure(qr, cr) circuits.append(circuit) # CX10.(I^X), |01> state circuit = QuantumCircuit(*regs) circuit.x(qr[0]) circuit.barrier(qr) circuit.cx(qr[1], qr[0]) if final_measure: circuit.barrier(qr) circuit.measure(qr, cr) circuits.append(circuit) # CX01.(I^X), |11> state circuit = QuantumCircuit(*regs) circuit.x(qr[0]) circuit.barrier(qr) circuit.cx(qr[0], qr[1]) if final_measure: circuit.barrier(qr) circuit.measure(qr, cr) circuits.append(circuit) # CX10.(X^I), |11> state circuit = QuantumCircuit(*regs) circuit.x(qr[1]) circuit.barrier(qr) circuit.cx(qr[1], qr[0]) if final_measure: circuit.barrier(qr) circuit.measure(qr, cr) circuits.append(circuit) # CX01.(X^X), |01> state circuit = QuantumCircuit(*regs) circuit.x(qr) circuit.barrier(qr) circuit.cx(qr[0], qr[1]) if final_measure: circuit.barrier(qr) circuit.measure(qr, cr) circuits.append(circuit) # CX10.(X^X), |10> state circuit = QuantumCircuit(*regs) circuit.x(qr) circuit.barrier(qr) circuit.cx(qr[1], qr[0]) if final_measure: circuit.barrier(qr) circuit.measure(qr, cr) circuits.append(circuit) return circuits def cx_gate_counts_deterministic(shots, hex_counts=True): """CX-gate circuits reference counts.""" targets = [] if hex_counts: # CX01, |00> state targets.append({'0x0': shots}) # {"00": shots} # CX10, |00> state targets.append({'0x0': shots}) # {"00": shots} # CX01.(X^I), |10> state targets.append({'0x2': shots}) # {"00": shots} # CX10.(I^X), |01> state targets.append({'0x1': shots}) # {"00": shots} # CX01.(I^X), |11> state targets.append({'0x3': shots}) # {"00": shots} # CX10.(X^I), |11> state targets.append({'0x3': shots}) # {"00": shots} # CX01.(X^X), |01> state targets.append({'0x1': shots}) # {"00": shots} # CX10.(X^X), |10> state targets.append({'0x2': shots}) # {"00": shots} else: # CX01, |00> state targets.append({'00': shots}) # {"00": shots} # CX10, |00> state targets.append({'00': shots}) # {"00": shots} # CX01.(X^I), |10> state targets.append({'10': shots}) # {"00": shots} # CX10.(I^X), |01> state targets.append({'01': shots}) # {"00": shots} # CX01.(I^X), |11> state targets.append({'11': shots}) # {"00": shots} # CX10.(X^I), |11> state targets.append({'11': shots}) # {"00": shots} # CX01.(X^X), |01> state targets.append({'01': shots}) # {"00": shots} # CX10.(X^X), |10> state targets.append({'10': shots}) # {"00": shots} return targets def cx_gate_statevector_deterministic(): """CX-gate test circuits with deterministic counts.""" targets = [] # CX01, |00> state targets.append(np.array([1, 0, 0, 0])) # CX10, |00> state targets.append(np.array([1, 0, 0, 0])) # CX01.(X^I), |10> state targets.append(np.array([0, 0, 1, 0])) # CX10.(I^X), |01> state targets.append(np.array([0, 1, 0, 0])) # CX01.(I^X), |11> state targets.append(np.array([0, 0, 0, 1])) # CX10.(X^I), |11> state targets.append(np.array([0, 0, 0, 1])) # CX01.(X^X), |01> state targets.append(np.array([0, 1, 0, 0])) # CX10.(X^X), |10> state targets.append(np.array([0, 0, 1, 0])) return targets def cx_gate_unitary_deterministic(): """CX-gate circuits reference unitaries.""" targets = [] # CX01, |00> state targets.append(np.array([[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0]])) # CX10, |00> state targets.append(np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]])) # CX01.(X^I), |10> state targets.append(np.array([[0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1]])) # CX10.(I^X), |01> state targets.append(np.array([[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])) # CX01.(I^X), |11> state targets.append(np.array([[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [1, 0, 0, 0]])) # CX10.(X^I), |11> state targets.append(np.array([[0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0, 0]])) # CX01.(X^X), |01> state targets.append(np.array([[0, 0, 0, 1], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]])) # CX10.(X^X), |10> state targets.append(np.array([[0, 0, 0, 1], [0, 0, 1, 0], [1, 0, 0, 0], [0, 1, 0, 0]])) return targets def cx_gate_circuits_nondeterministic(final_measure=True): """CX-gate test circuits with non-deterministic counts.""" circuits = [] qr = QuantumRegister(2) if final_measure: cr = ClassicalRegister(2) regs = (qr, cr) else: regs = (qr, ) # CX01.(I^H), Bell state circuit = QuantumCircuit(*regs) circuit.h(qr[0]) circuit.barrier(qr) circuit.cx(qr[0], qr[1]) if final_measure: circuit.barrier(qr) circuit.measure(qr, cr) circuits.append(circuit) # CX10.(H^I), Bell state circuit = QuantumCircuit(*regs) circuit.h(qr[1]) circuit.barrier(qr) circuit.cx(qr[1], qr[0]) if final_measure: circuit.barrier(qr) circuit.measure(qr, cr) circuits.append(circuit) return circuits def cx_gate_counts_nondeterministic(shots, hex_counts=True): """CX-gate circuits reference counts.""" targets = [] if hex_counts: # CX01.(I^H), Bell state targets.append({'0x0': shots / 2, '0x3': shots / 2}) # CX10.(I^H), Bell state targets.append({'0x0': shots / 2, '0x3': shots / 2}) else: # CX01.(I^H), Bell state targets.append({'00': shots / 2, '11': shots / 2}) # CX10.(I^H), Bell state targets.append({'00': shots / 2, '11': shots / 2}) return targets def cx_gate_statevector_nondeterministic(): """CX-gate circuits reference statevectors.""" targets = [] # CX01.(I^H), Bell state targets.append(np.array([1, 0, 0, 1]) / np.sqrt(2)) # CX10.(I^H), Bell state targets.append(np.array([1, 0, 0, 1]) / np.sqrt(2)) return targets def cx_gate_unitary_nondeterministic(): """CX-gate circuits reference unitaries.""" targets = [] # CX01.(I^H), Bell state targets.append(np.array([[1, 1, 0, 0], [0, 0, 1, -1], [0, 0, 1, 1], [1, -1, 0, 0]]) / np.sqrt(2)) # CX10.(I^H), Bell state targets.append(np.array([[1, 0, 1, 0], [0, 1, 0, 1], [0, 1, 0, -1], [1, 0, -1, 0]]) / np.sqrt(2)) return targets # ========================================================================== # CZ-gate # ========================================================================== def cz_gate_circuits_deterministic(final_measure=True): """CZ-gate test circuits with deterministic counts.""" circuits = [] qr = QuantumRegister(2) if final_measure: cr = ClassicalRegister(2) regs = (qr, cr) else: regs = (qr, ) # CZ, |00> state circuit = QuantumCircuit(*regs) circuit.cz(qr[0], qr[1]) if final_measure: circuit.barrier(qr) circuit.measure(qr, cr) circuits.append(circuit) # CX10, |00> state circuit = QuantumCircuit(*regs) circuit.h(qr[0]) circuit.cz(qr[0], qr[1]) circuit.h(qr[0]) if final_measure: circuit.barrier(qr) circuit.measure(qr, cr) circuits.append(circuit) # CX01, |00> state circuit = QuantumCircuit(*regs) circuit.h(qr[1]) circuit.cz(qr[1], qr[0]) circuit.h(qr[1]) if final_measure: circuit.barrier(qr) circuit.measure(qr, cr) circuits.append(circuit) # (I^H).CZ.(X^H) = CX10.(X^I), |11> state circuit = QuantumCircuit(*regs) circuit.x(qr[1]) circuit.barrier(qr) circuit.h(qr[0]) circuit.barrier(qr) circuit.cz(qr[0], qr[1]) circuit.barrier(qr) circuit.h(qr[0]) if final_measure: circuit.barrier(qr) circuit.measure(qr, cr) circuits.append(circuit) # (H^I).CZ.(H^X) = CX01.(I^X), |11> state circuit = QuantumCircuit(*regs) circuit.x(qr[0]) circuit.barrier(qr) circuit.h(qr[1]) circuit.barrier(qr) circuit.cz(qr[0], qr[1]) circuit.barrier(qr) circuit.h(qr[1]) if final_measure: circuit.barrier(qr) circuit.measure(qr, cr) circuits.append(circuit) return circuits def cz_gate_counts_deterministic(shots, hex_counts=True): """CZ-gate circuits reference counts.""" targets = [] if hex_counts: # CZ, |00> state targets.append({'0x0': shots}) # CX10, |00> state targets.append({'0x0': shots}) # CX01, |00> state targets.append({'0x0': shots}) # (I^H).CZ.(X^H) = CX10.(X^I), |11> state targets.append({'0x3': shots}) # (H^I).CZ.(H^X) = CX01.(I^H), |11> state targets.append({'0x3': shots}) else: # CZ, |00> state targets.append({'00': shots}) # CX10, |00> state targets.append({'00': shots}) # CX01, |00> state targets.append({'00': shots}) # (I^H).CZ.(X^H) = CX10.(X^I), |11> state targets.append({'11': shots}) # (H^I).CZ.(H^X) = CX01.(I^H), |11> state targets.append({'11': shots}) return targets def cz_gate_statevector_deterministic(): """CZ-gate test circuits with deterministic counts.""" targets = [] # CZ, |00> state targets.append(np.array([1, 0, 0, 0])) # CX10, |00> state targets.append(np.array([1, 0, 0, 0])) # CX01, |00> state targets.append(np.array([1, 0, 0, 0])) # (I^H).CZ.(X^H) = CX10.(X^I), |11> state targets.append(
np.array([0, 0, 0, 1])
numpy.array
# Import packages import argparse import json import multiprocessing import os import pickle import sys from pathlib import Path import numpy as np import pyroomacoustics as pa import scipy as scipy import scipy.io.wavfile # Import original sources from config_path import get_paths from parallel_proc import process from utils import (ProgressBar, wav_format_to_float, wav_format_to_int16, write_wav) # PyroomacousticsでRIRのSimulationを実施 def acoustic_simulation(config_path, sim_info, config, check_empty_channels=False): # fs fs = sim_info["wav_frame_rate_mixed"] # 残響時間 rt60 = sim_info["rir_info_t60"] # 部屋の大きさ room_dim = np.array(sim_info["rir_info_room_dimension"]) # 残響時間から逆算 e_absorption, max_order = pa.inverse_sabine(rt60, room_dim) R = np.array(sim_info["rir_info_microphone_position"]) R = R.T # 音源位置の情報 speaker_locations = np.array(sim_info["rir_info_speaker_position"]) speaker_locations = speaker_locations.T n_sources = speaker_locations.shape[1] # 各音源をシミュレーションに追加する clean_data_path = sim_info["wav_dpath_original"] reverberant_conv_data = [] anechoic_conv_data = [] raw_data = [] temp_dtype = np.float64 for s in range(n_sources): # 最初にReverberantの場合について room = pa.ShoeBox(room_dim, fs=fs, max_order=max_order, absorption=e_absorption) room_anechoic = pa.ShoeBox(room_dim, fs=fs, max_order=0) # 用いるマイクロホンアレイの情報を設定する room.add_microphone_array(pa.MicrophoneArray(R, fs=room.fs)) room_anechoic.add_microphone_array(pa.MicrophoneArray(R, fs=room.fs)) _, clean_data = scipy.io.wavfile.read( config_path.output_path / clean_data_path[s] ) clean_data = wav_format_to_float(clean_data, dtype=temp_dtype) zero_mean = config["mixinfo_parameters"].get("remove_mean_sources", False) if zero_mean: clean_data = clean_data - clean_data.mean() filled_clean_data = np.zeros( (sim_info["wav_n_samples_mixed"]), dtype=temp_dtype ) clean_begin = sim_info["wav_offset"][s] clean_end = sim_info["wav_offset"][s] + sim_info["wav_n_samples_original"][s] filled_clean_data[clean_begin:clean_end] = clean_data norm = np.sqrt(np.average(np.square(filled_clean_data))) filled_clean_data /= norm raw_data.append(filled_clean_data.copy()) add_success = False while not add_success: try: room.add_source(speaker_locations[:, s], signal=filled_clean_data) room_anechoic.add_source( speaker_locations[:, s], signal=filled_clean_data ) add_success = True except Exception: add_success = False # room.add_source(speaker_locations[:, s], signal=filled_clean_data) room.simulate(snr=None) # room_anechoic.add_source(speaker_locations[:, s], signal=filled_clean_data) room_anechoic.simulate(snr=None) n_sample = np.shape(filled_clean_data)[0] # 畳み込んだ波形を取得する(チャンネル、サンプル) reverberant_signals = room.mic_array.signals[:, :n_sample].copy() anechoic_signals = room_anechoic.mic_array.signals[:, :n_sample].copy() weight = np.sqrt( 10 ** (np.float(sim_info["wav_snr_mixing"][s]) / 10.0) ) / np.sqrt(np.sum(np.square(reverberant_signals))) reverberant_conv_data.append(weight * reverberant_signals) anechoic_conv_data.append(weight * anechoic_signals) reverberant_mix = np.sum(reverberant_conv_data, axis=0) # Rescale mixed sources so as the maximum value is MAX * 0.9 upper_limit = config["mixinfo_parameters"]["wav_upper_limit"] mixed_max = np.max( [ np.max(
np.abs(data)
numpy.abs
# In order to manipulate the array import numpy as np # In order to load mat file from scipy.io import loadmat # In order to import the libsvm format dataset from sklearn.datasets import load_svmlight_file from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import Imputer from sklearn.preprocessing import Binarizer from collections import Counter from fetch.coil_2000 import fetch_coil_2000 from process.coil_2000 import convert_coil_2000 def abalone_19(): # Abalone dataset - Convert the ring = 19 to class 1 and the other to class 0 filename = '../../data/raw/mldata/uci-20070111-abalone.mat' matfile = loadmat(filename) sex_array = np.zeros(
np.ravel(matfile['int1'])
numpy.ravel
""" Unit and regression test for the get module of the molsysmt package. """ # Import package, test suite, and other packages as needed import molsysmt as msm import numpy as np # Get on molsysmt.MolSys def test_get_1(): molsys = msm.convert(msm.demo['TcTIM']['1tcd.msmpk'], to_form='molsysmt.MolSys') output = msm.get(molsys, target='atom', indices=[32,33,34], name=True) true_output = np.array(['N', 'CA', 'C'], dtype=object) assert
np.all(output == true_output)
numpy.all
''' Copyright (C) 2019-2021, <NAME> <<EMAIL>> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import os import sys import argparse import matplotlib.pyplot as plt import numpy as np import functools as ft from matplotlib import rcParams rcParams['font.family'] = 'serif' #rcParams['font.serif'] = 'Times New Roman' rcParams['font.serif'] = 'Linux Libertine O' rcParams['font.size'] = 14 def readr1(path: str) -> np.array: with open(path, 'rt') as f: data = f.readlines() data = list(filter(lambda x: 'r@1' in x, data)) data = list(map(lambda x: float(x.strip().split()[-1]), data)) data = np.array(data) * 100 return data class Curve: def svg(self, path: str): plt.savefig(path) class ExpR1Curve(Curve): tsize = 16 lsize = 14 def __init__(self): plt.figure(figsize=[5 * 5, 4.8], tight_layout=True) plt.subplot(1, 5, 1) plt.grid(True, linestyle=':') x = np.arange(0, 8) + 1 plt.plot(x, readr1('expr1/mnist.txt'), marker='.', color='tab:gray') plt.plot(x, readr1('expr1/mnist-d.txt'), marker='v', color='tab:blue') plt.plot(x, readr1('expr1/mnist-p.txt'), marker='*', color='tab:red') plt.legend(['Vanilla', 'EST', 'ACT']) plt.xlabel('Number of Epochs', size=self.lsize) plt.ylabel('Recall@1', size=self.lsize) plt.title('R@1 Curve of Defense Methods on MNIST', size=self.tsize) plt.subplot(1, 5, 2) plt.grid(True, linestyle=':') x = np.arange(0, 8) + 1 plt.plot(x, readr1('expr1/fashion.txt'), marker='.', color='tab:gray') plt.plot( x, readr1('expr1/fashion-d.txt'), marker='v', color='tab:blue') plt.plot(x, readr1('expr1/fashion-p.txt'), marker='*', color='tab:red') plt.legend(['Vanilla', 'EST', 'ACT']) plt.xlabel('Number of Epochs', size=self.lsize) plt.ylabel('Recall@1', size=self.lsize) plt.title('R@1 Curve of Defense Methods on Fashion', size=self.tsize) plt.subplot(1, 5, 3) plt.grid(True, linestyle=':') x = (np.arange(0, 15) + 1) * 10 plt.plot(x, readr1('expr1/cub.txt'), marker='.', color='tab:gray') plt.plot(x, readr1('expr1/cub-d.txt'), marker='v', color='tab:blue') plt.plot(x, readr1('expr1/cub-p.txt'), marker='*', color='tab:red') plt.legend(['Vanilla', 'EST', 'ACT'], loc='center right', bbox_to_anchor=(1.0, 0.7)) plt.xlabel('Number of Epochs', size=self.lsize) plt.ylabel('Recall@1', size=self.lsize) plt.title('R@1 Curve of Defense Methods on CUB', size=self.tsize) plt.subplot(1, 5, 4) plt.grid(True, linestyle=':') x = (np.arange(0, 15) + 1) * 10 plt.plot(x, readr1('expr1/cars.txt'), marker='.', color='tab:gray') plt.plot(x, readr1('expr1/cars-d.txt'), marker='v', color='tab:blue') plt.plot(x, readr1('expr1/cars-p.txt'), marker='*', color='tab:red') plt.legend(['Vanilla', 'EST', 'ACT'], loc='center right', bbox_to_anchor=(1.0, 0.7)) plt.xlabel('Number of Epochs', size=self.lsize) plt.ylabel('Recall@1', size=self.lsize) plt.title('R@1 Curve of Defense Methods on CARS', size=self.tsize) plt.subplot(1, 5, 5) plt.grid(True, linestyle=':') x = (
np.arange(0, 15)
numpy.arange
"""PyTorch related utility functions """ import logging import importlib import os import pdb import random import shutil import sys import time import traceback from typing import Union, List import numpy as np import torch # optional imports for less common libraries try: import torch_geometric _torch_geometric_exists = True except ImportError: _torch_geometric_exists = False def all_to_device(data, device): """Sends everything into a certain device """ if isinstance(data, dict): for k in data: data[k] = all_to_device(data[k], device) return data elif isinstance(data, list): data = [all_to_device(d, device) for d in data] return data elif isinstance(data, torch.Tensor): return data.to(device) elif _torch_geometric_exists and isinstance(data, torch_geometric.data.batch.Batch): return data.to(device) else: return data # Cannot be converted def to_numpy(tensor: Union[np.ndarray, torch.Tensor, List]) -> Union[np.ndarray, List]: """Wrapper around .detach().cpu().numpy() """ if isinstance(tensor, torch.Tensor): return tensor.detach().cpu().numpy() elif isinstance(tensor, np.ndarray): return tensor elif isinstance(tensor, list): return [to_numpy(l) for l in tensor] elif isinstance(tensor, str): return tensor elif tensor is None: return None else: raise NotImplementedError def all_isfinite(x): """Check the entire nested dictionary/list of tensors is finite (i.e. not nan or inf)""" if isinstance(x, torch.Tensor): return bool(torch.all(torch.isfinite(x))) elif isinstance(x, list): return all([all_isfinite(xi) for xi in x]) elif isinstance(x, list): return all([all_isfinite(x[k]) for k in x]) # If it reaches here, it's an unsupported type. Returns True for such cases return True def seed_numpy_fn(x): """Numpy random seeding function to pass into Pytorch's dataloader. This is required since numpy RNG is incompatible with fork https://pytorch.org/docs/stable/notes/faq.html#my-data-loader-workers-return-identical-random-numbers Example usage: DataLoader(..., worker_init_fn=seed_numpy_fn) """ seed = torch.initial_seed() % (2 ** 32) np.random.seed(seed) def setup_seed(seed, cudnn_deterministic=False): """ fix random seed for deterministic training """ torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) if cudnn_deterministic: torch.backends.cudnn.deterministic = True class CheckPointManager(object): """Manager for saving/managing pytorch checkpoints. Provides functionality similar to tf.Saver such as max_to_keep and keep_checkpoint_every_n_hours """ def __init__(self, save_path: str = None, max_to_keep=3, keep_checkpoint_every_n_hours=6.0): if max_to_keep <= 0: raise ValueError('max_to_keep must be at least 1') self._max_to_keep = max_to_keep self._keep_checkpoint_every_n_hours = keep_checkpoint_every_n_hours self._logger = logging.getLogger(self.__class__.__name__) self._checkpoints_permanent = [] # Will not be deleted self._checkpoints_buffer = [] # Those which might still be deleted self._next_save_time = time.time() self._best_score = None self._best_step = None if save_path is not None: self._ckpt_dir = os.path.dirname(save_path) self._save_path = save_path + '-{}.pth' self._checkpoints_fname = os.path.join(self._ckpt_dir, 'checkpoints.txt') os.makedirs(self._ckpt_dir, exist_ok=True) self._update_checkpoints_file() else: self._ckpt_dir = None self._save_path = None self._checkpoints_fname = None def _save_checkpoint(self, step, model, score, **kwargs): save_name = self._save_path.format(step) model_state_dict = {k: v for (k, v) in model.state_dict().items() if not v.is_sparse} state = {'state_dict': model_state_dict, 'step': step} for k in kwargs: if getattr(kwargs[k], 'state_dict', None) is not None: state[k] = kwargs[k].state_dict() else: state[k] = kwargs[k] # Note that loading of this variable is not supported torch.save(state, save_name) self._logger.info('Saved checkpoint: {}'.format(save_name)) self._checkpoints_buffer.append((save_name, time.time(), step)) if self._best_score is None or np.all(np.array(score) >=
np.array(self._best_score)
numpy.array
import torch from torch.optim import Adam, SGD from torch.nn.modules import MSELoss import numpy as np from experience_replay.exp_replay import ReplayBuffer, PrioritizedReplayBuffer, HindsightReplayBuffer, \ PrioritizedHindsightReplayBuffer from algorithms.dqn import DQN from algorithms.dqn_other import algo_DQN import gym import matplotlib.pyplot as plt from environments.acrobot_custom import CustomAcrobotEnv from environments.acrobot_simple import SimpleAcrobotEnv from environments.gridworld_2 import GridworldEnv from plotting import plot_per def update(algorithm, buffer, params, train_steps): batch = buffer.sample(params['batch_size']) if type(buffer) == ReplayBuffer or type(buffer) == HindsightReplayBuffer: obses_t, a, r, obses_tp1, dones = batch loss = algorithm.train(obses_t, a, r, obses_tp1, dones) elif type(buffer) == PrioritizedReplayBuffer or type(buffer) == PrioritizedHindsightReplayBuffer: obses_t, a, r, obses_tp1, dones, importance_weights, idxs = batch loss, losses = algorithm.per_train(obses_t, a, r, obses_tp1, dones, importance_weights) buffer.update_priorities(idxs, losses.numpy() + 1e-8) else: raise ValueError('?????') if isinstance(algorithm, algo_DQN): return loss # this func is not implemented for other_DWN algorithm.update_epsilon() if train_steps % params['target_network_interval'] == 0: algorithm.update_target_network() return loss def add_transitions_to_buffer(transitions, buffer, completion_reward=0.0, special_goal=False): if type(buffer) == ReplayBuffer or type(buffer) == PrioritizedReplayBuffer: if special_goal: for (f_t, g, a, r, f_tp1, _, done) in transitions: obs_t = np.hstack((f_t, g)) obs_tp1 = np.hstack((f_tp1, g)) buffer.add(obs_t, a, r, obs_tp1, done) else: for (f_t, g, a, r, f_tp1, done) in transitions: obs_t = np.hstack((f_t, g)) obs_tp1 = np.hstack((f_tp1, g)) buffer.add(obs_t, a, r, obs_tp1, done) if type(buffer) == HindsightReplayBuffer or type(buffer) == PrioritizedHindsightReplayBuffer: if special_goal: g_prime = transitions[-1][5] # Replace goal of every transition for i, (f_t, _, a, r, f_tp1, _, done) in enumerate(transitions): if i == len(transitions) - 1: r = completion_reward # Last transition has its reward replaced buffer.add(f_t, g_prime, a, r, f_tp1, done) else: g_prime = transitions[-1][4] # Replace goal of every transition for i, (f_t, _, a, r, f_tp1, done) in enumerate(transitions): if i == len(transitions) - 1: r = completion_reward # Last transition has its reward replaced buffer.add(f_t, g_prime, a, r, f_tp1, done) def test(algorithm, env, n_tests=10): episodes_length = [] is_goal = True for i in range(n_tests): # print(i, '/', n_tests, end='\r') if isinstance(env, GridworldEnv): obs_t, goal = env.perform_reset() elif is_goal: obs_t, goal = env.reset() else: obs_t = env.reset() goal = np.zeros_like(obs_t) t = 0 while True: # env.render() action = algorithm.predict(np.hstack((obs_t, goal)), eval=True) t += 1 if isinstance(env, GridworldEnv): obs_tp1, reward, done, _ = env.perform_step(action) elif is_goal: obs_tp1, reward, done, _, goal = env.step(action) else: obs_tp1, reward, done, _ = env.step(action) # termination condition if done: episodes_length.append(t) # print('Episode finished in', t, 'steps') break obs_t = obs_tp1 return np.mean(episodes_length) def main(params): np.random.seed(params['seed']) torch.manual_seed(params['seed']) # declare environment is_goal = True if params['environment'] == 'acrobot_simple': env = SimpleAcrobotEnv(stochastic=False, max_steps=400, mean_goal=-1.5) s, goal = env.reset() elif params['environment'] == 'windy_grid_world': env = GridworldEnv() s, goal = env.perform_reset() else: env = gym.make(params['environment']) s = env.reset() goal = s is_goal = False state_shape = s.shape[0] + goal.shape[0] # select type of experience replay using the parameters if params['buffer'] == ReplayBuffer: buffer = ReplayBuffer(params['buffer_size']) loss_function = params['loss_function']() elif params['buffer'] == PrioritizedReplayBuffer: buffer = PrioritizedReplayBuffer(params['buffer_size'], params['PER_alpha'], params['PER_beta']) loss_function = params['loss_function'](reduction='none') elif params['buffer'] == HindsightReplayBuffer: buffer = HindsightReplayBuffer(params['buffer_size']) loss_function = params['loss_function']() elif params['buffer'] == PrioritizedHindsightReplayBuffer: buffer = PrioritizedHindsightReplayBuffer(params['buffer_size'], params['PER_alpha'], params['PER_beta']) loss_function = params['loss_function'](reduction='none') else: raise ValueError('Buffer type not found.') # select learning algorithm using the parameters if params['algorithm'] == DQN: algorithm = DQN(state_shape, env.action_space.n, loss_function=loss_function, optimizer=params['optimizer'], lr=params['lr'], gamma=params['gamma'], epsilon_delta=1 / (params['epsilon_delta_end'] * params['train_steps']), epsilon_min=params['epsilon_min']) elif params['algorithm'] == algo_DQN: algorithm = algo_DQN() else: raise ValueError('Algorithm type not found.') losses = [] returns = [] train_steps = 0 episodes_length = [] episodes_length_test = [] print('Starting to train:', type(buffer)) test_lengths = test(algorithm, env) episodes_length_test.append(test_lengths) while train_steps < params['train_steps']: if isinstance(env, GridworldEnv): obs_t, goal = env.perform_reset() elif is_goal: obs_t, goal = env.reset() else: obs_t = env.reset() goal = np.zeros_like(obs_t) t = 0 episode_loss = [] episode_rewards = [] episode_transitions = [] while train_steps < params['train_steps']: # env.render() action = algorithm.predict(np.hstack((obs_t, goal))) t += 1 if isinstance(env, GridworldEnv): obs_tp1, reward, done, _ = env.perform_step(action) transition = (obs_t, goal, action, reward, obs_tp1, done) elif is_goal: obs_tp1, reward, done, _, gr = env.step(action) transition = (obs_t, goal, action, reward, obs_tp1, gr, done) else: obs_tp1, reward, done, _ = env.step(action) transition = (obs_t, goal, action, reward, obs_tp1, done) episode_transitions.append(transition) episode_rewards.append(reward) if len(buffer) >= params['batch_size']: loss = update(algorithm, buffer, params, train_steps) train_steps += 1 episode_loss.append(loss) if train_steps % params['test_every'] == 0: test_lengths = test(algorithm, env) episodes_length_test.append(test_lengths) # termination condition if done: episodes_length.append(t) break obs_t = obs_tp1 special_goal = isinstance(env, CustomAcrobotEnv) or isinstance(env, SimpleAcrobotEnv) add_transitions_to_buffer(episode_transitions, buffer, special_goal=special_goal) losses.append(np.mean(episode_loss)) returns.append(np.sum(episode_rewards)) env.close() return episodes_length_test, returns, losses def plot_results(er, per, her, pher, params, fig_name='figure'): er_returns = np.array([np.array(r) for (r, _, _) in er]) # er_returns = np.array([np.mean(np.array(r).reshape((-1, episode_avg)), axis=1) for (r, _, _) in er]) # er_returns = np.concatenate((np.zeros((er_returns.shape[0], 1)), er_returns), axis=1) x = np.arange(0, er_returns.shape[1] * params['test_every'], params['test_every']) y = np.mean(er_returns, axis=0) color = 'blue' plt.plot(x, y, color=color, label='Experience Replay') y_std = np.std(er_returns, axis=0) plt.fill_between(x, y + y_std, y - y_std, color=color, alpha=0.4) # plt.errorbar(x, y, yerr=np.std(er_returns, axis=0), capsize=5, ecolor=color, color=color, label='ER') if per is not None: per_returns = np.array([np.array(r) for (r, _, _) in per]) # per_returns = np.concatenate((np.zeros((er_returns.shape[0], 1)), per_returns), axis=1) y = np.mean(per_returns, axis=0) color = 'orange' plt.plot(x, y, color=color, label='Prioritized Experience Replay') # plt.errorbar(x, y, yerr=np.std(per_returns, axis=0), capsize=5, ecolor=color, color=color, label='PER') y_std = np.std(er_returns, axis=0) plt.fill_between(x, y + y_std, y - y_std, color=color, alpha=0.4) if her is not None: her_returns = np.array([
np.array(r)
numpy.array
# Copyright (c) SenseTime. All Rights Reserved. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np import torch.nn.functional as F from pysot.core.config import cfg from pysot.utils.anchor import Anchors from pysot.tracker.base_tracker import SiameseTracker class Modified_SiamRPNTracker(SiameseTracker): def __init__(self, model): super(Modified_SiamRPNTracker, self).__init__() self.score_size = (cfg.TRACK.INSTANCE_SIZE - cfg.TRACK.EXEMPLAR_SIZE) // \ cfg.ANCHOR.STRIDE + 1 + cfg.TRACK.BASE_SIZE self.anchor_num = len(cfg.ANCHOR.RATIOS) * len(cfg.ANCHOR.SCALES) hanning = np.hanning(self.score_size) window = np.outer(hanning, hanning) self.window = np.tile(window.flatten(), self.anchor_num) self.anchors = self.generate_anchor(self.score_size) self.model = model self.model.eval() def init(self, img, bbox): """ args: img(np.ndarray): BGR image bbox: (x, y, w, h) bbox """ self.center_pos = np.array([bbox[0]+(bbox[2]-1)/2, bbox[1]+(bbox[3]-1)/2]) self.size = np.array([bbox[2], bbox[3]]) self.size_list=[] self.size_list.append(np.array([bbox[2], bbox[3]])) self.size_list.append(np.array([bbox[2], bbox[3]])) self.size_list.append(np.array([bbox[2], bbox[3]])) self.center_pos_list=[] self.center_pos_list.append(np.array([bbox[0]+(bbox[2]-1)/2, bbox[1]+(bbox[3]-1)/2])) self.center_pos_list.append(np.array([bbox[0]+(bbox[2]-1)/2, bbox[1]+(bbox[3]-1)/2])) self.center_pos_list.append(np.array([bbox[0]+(bbox[2]-1)/2, bbox[1]+(bbox[3]-1)/2])) # calculate z crop size w_z = self.size[0] + cfg.TRACK.CONTEXT_AMOUNT * np.sum(self.size) h_z = self.size[1] + cfg.TRACK.CONTEXT_AMOUNT * np.sum(self.size) s_z = round(np.sqrt(w_z * h_z)) # calculate channle average self.channel_average = np.mean(img, axis=(0, 1)) # get crop z_crop = self.get_subwindow(img, self.center_pos, cfg.TRACK.EXEMPLAR_SIZE, s_z, self.channel_average) # self.model.template(z_crop) def generate_anchor(self, score_size): anchors = Anchors(cfg.ANCHOR.STRIDE, cfg.ANCHOR.RATIOS, cfg.ANCHOR.SCALES) anchor = anchors.anchors x1, y1, x2, y2 = anchor[:, 0], anchor[:, 1], anchor[:, 2], anchor[:, 3] anchor = np.stack([(x1+x2)*0.5, (y1+y2)*0.5, x2-x1, y2-y1], 1) total_stride = anchors.stride anchor_num = anchor.shape[0] anchor = np.tile(anchor, score_size * score_size).reshape((-1, 4)) ori = - (score_size // 2) * total_stride xx, yy = np.meshgrid([ori + total_stride * dx for dx in range(score_size)], [ori + total_stride * dy for dy in range(score_size)]) xx, yy = np.tile(xx.flatten(), (anchor_num, 1)).flatten(), \ np.tile(yy.flatten(), (anchor_num, 1)).flatten() anchor[:, 0], anchor[:, 1] = xx.astype(np.float32), yy.astype(np.float32) return anchor def _convert_bbox(self, delta, anchor): delta = delta.permute(1, 2, 3, 0).contiguous().view(4, -1) delta = delta.data.cpu().numpy() delta[0, :] = delta[0, :] * anchor[:, 2] + anchor[:, 0] delta[1, :] = delta[1, :] * anchor[:, 3] + anchor[:, 1] delta[2, :] = np.exp(delta[2, :]) * anchor[:, 2] delta[3, :] = np.exp(delta[3, :]) * anchor[:, 3] return delta def _convert_score(self, score): score = score.permute(1, 2, 3, 0).contiguous().view(2, -1).permute(1, 0) score = F.softmax(score, dim=1).data[:, 1].cpu().numpy() return score def _bbox_clip(self, cx, cy, width, height, boundary): cx = max(0, min(cx, boundary[1])) cy = max(0, min(cy, boundary[0])) width = max(10, min(width, boundary[1])) height = max(10, min(height, boundary[0])) return cx, cy, width, height def Get_Updated_Template(self,img, bbox): """ args: img(np.ndarray): BGR image bbox: (x, y, w, h) bbox """ self.center_pos = np.array([bbox[0] + (bbox[2] - 1) / 2, bbox[1] + (bbox[3] - 1) / 2]) self.size = np.array([bbox[2], bbox[3]]) # calculate z crop size w_z = self.size[0] + cfg.TRACK.CONTEXT_AMOUNT * np.sum(self.size) h_z = self.size[1] + cfg.TRACK.CONTEXT_AMOUNT * np.sum(self.size) s_z = round(np.sqrt(w_z * h_z)) # calculate channle average self.channel_average = np.mean(img, axis=(0, 1)) # get crop z_crop = self.get_subwindow(img, self.center_pos, cfg.TRACK.EXEMPLAR_SIZE, s_z, self.channel_average) return self.model.Get_Template(z_crop) #input a image and bbox output the feature which outputs from backbone; def track(self, img, zf): """ args: img(np.ndarray): BGR image return: bbox(list):[x, y, width, height] """ w_z = self.size[0] + cfg.TRACK.CONTEXT_AMOUNT * np.sum(self.size) h_z = self.size[1] + cfg.TRACK.CONTEXT_AMOUNT * np.sum(self.size) s_z = np.sqrt(w_z * h_z) w_z_list=[] h_z_list=[] s_z_list=[] w_z_list.append(self.size_list[0][0] + cfg.TRACK.CONTEXT_AMOUNT * np.sum(self.size_list[0])) w_z_list.append(self.size_list[1][0] + cfg.TRACK.CONTEXT_AMOUNT * np.sum(self.size_list[1])) w_z_list.append(self.size_list[2][0] + cfg.TRACK.CONTEXT_AMOUNT * np.sum(self.size_list[2])) h_z_list.append(self.size_list[0][1] + cfg.TRACK.CONTEXT_AMOUNT * np.sum(self.size_list[0])) h_z_list.append(self.size_list[1][1] + cfg.TRACK.CONTEXT_AMOUNT * np.sum(self.size_list[1])) h_z_list.append(self.size_list[2][1] + cfg.TRACK.CONTEXT_AMOUNT * np.sum(self.size_list[2])) s_z_list.append(w_z_list[0]*h_z_list[0]) s_z_list.append(w_z_list[1]*h_z_list[1]) s_z_list.append(w_z_list[2]*h_z_list[2]) scale_z = cfg.TRACK.EXEMPLAR_SIZE / s_z scale_z_list=[] scale_z_list.append(cfg.TRACK.EXEMPLAR_SIZE / s_z_list[0]) scale_z_list.append(cfg.TRACK.EXEMPLAR_SIZE / s_z_list[1]) scale_z_list.append(cfg.TRACK.EXEMPLAR_SIZE / s_z_list[2]) s_x = s_z * (cfg.TRACK.INSTANCE_SIZE / cfg.TRACK.EXEMPLAR_SIZE) x_crop = self.get_subwindow(img, self.center_pos, cfg.TRACK.INSTANCE_SIZE, round(s_x), self.channel_average) outputs = self.model.modified_track(x_crop,zf) score_list=[] score_list.append(self._convert_score(outputs['cls_list'][0])) score_list.append(self._convert_score(outputs['cls_list'][1])) score_list.append(self._convert_score(outputs['cls_list'][2])) score = self._convert_score(outputs['cls']) pred_bbox_list=[] pred_bbox_list.append(self._convert_bbox(outputs['loc_list'][0],self.anchors)) pred_bbox_list.append(self._convert_bbox(outputs['loc_list'][1],self.anchors)) pred_bbox_list.append(self._convert_bbox(outputs['loc_list'][2],self.anchors)) pred_bbox = self._convert_bbox(outputs['loc'], self.anchors) def change(r): return np.maximum(r, 1. / r) def sz(w, h): pad = (w + h) * 0.5 return np.sqrt((w + pad) * (h + pad)) # scale penalty s_c = change(sz(pred_bbox[2, :], pred_bbox[3, :]) / (sz(self.size[0]*scale_z, self.size[1]*scale_z))) s_c_list=[] s_c_list.append(change(sz(pred_bbox_list[0][2, :], pred_bbox_list[0][3, :]) / (sz(self.size_list[0][0]*scale_z_list[0], self.size_list[0][1]*scale_z_list[0])))) s_c_list.append(change(sz(pred_bbox_list[1][2, :], pred_bbox_list[1][3, :]) / (sz(self.size_list[1][0]*scale_z_list[1], self.size_list[1][1]*scale_z_list[1])))) s_c_list.append(change(sz(pred_bbox_list[2][2, :], pred_bbox_list[2][3, :]) / (sz(self.size_list[2][0]*scale_z_list[2], self.size_list[2][1]*scale_z_list[2])))) # aspect ratio penalty r_c = change((self.size[0]/self.size[1]) / (pred_bbox[2, :]/pred_bbox[3, :])) r_c_list=[] r_c_list.append(change((self.size_list[0][0]/self.size_list[0][1]) / (pred_bbox_list[0][2, :]/pred_bbox_list[0][3, :]))) r_c_list.append(change((self.size_list[1][0]/self.size_list[1][1]) / (pred_bbox_list[1][2, :]/pred_bbox_list[1][3, :]))) r_c_list.append(change((self.size_list[2][0]/self.size_list[2][1]) / (pred_bbox_list[2][2, :]/pred_bbox_list[2][3, :]))) penalty = np.exp(-(r_c * s_c - 1) * cfg.TRACK.PENALTY_K) penalty_list=[] penalty_list.append(np.exp(-(r_c_list[0] * s_c_list[0] - 1) * cfg.TRACK.PENALTY_K)) penalty_list.append(np.exp(-(r_c_list[1] * s_c_list[1] - 1) * cfg.TRACK.PENALTY_K)) penalty_list.append(np.exp(-(r_c_list[2] * s_c_list[2] - 1) * cfg.TRACK.PENALTY_K)) pscore = penalty * score pscore_list=[] pscore_list.append(penalty_list[0] * score_list[0]) pscore_list.append(penalty_list[1] * score_list[1]) pscore_list.append(penalty_list[2] * score_list[2]) # window penalty pscore = pscore * (1 - cfg.TRACK.WINDOW_INFLUENCE) + \ self.window * cfg.TRACK.WINDOW_INFLUENCE best_idx = np.argmax(pscore) best_idx_list=[] pscore_list[0]=pscore_list[0]*(1 - cfg.TRACK.WINDOW_INFLUENCE) + \ self.window * cfg.TRACK.WINDOW_INFLUENCE best_idx_list.append(np.argmax(pscore_list[0])) pscore_list[1]=pscore_list[1]*(1 - cfg.TRACK.WINDOW_INFLUENCE) + \ self.window * cfg.TRACK.WINDOW_INFLUENCE best_idx_list.append(np.argmax(pscore_list[1])) pscore_list[2]=pscore_list[2]*(1 - cfg.TRACK.WINDOW_INFLUENCE) + \ self.window * cfg.TRACK.WINDOW_INFLUENCE best_idx_list.append(np.argmax(pscore_list[2])) bbox = pred_bbox[:, best_idx] / scale_z bbox_list=[] bbox_list.append(pred_bbox_list[0][:,best_idx_list[0]]/scale_z_list[0]) bbox_list.append(pred_bbox_list[1][:,best_idx_list[1]]/scale_z_list[1]) bbox_list.append(pred_bbox_list[2][:,best_idx_list[2]]/scale_z_list[2]) lr = penalty[best_idx] * score[best_idx] * cfg.TRACK.LR lr_list=[] lr_list.append(penalty_list[0][best_idx_list[0]]*score_list[0][best_idx_list[0]]* cfg.TRACK.LR) lr_list.append(penalty_list[1][best_idx_list[1]]*score_list[1][best_idx_list[1]]* cfg.TRACK.LR) lr_list.append(penalty_list[2][best_idx_list[2]]*score_list[2][best_idx_list[2]]* cfg.TRACK.LR) cx = bbox[0] + self.center_pos[0] cy = bbox[1] + self.center_pos[1] cx_list=[] cy_list=[] cx_list.append(bbox_list[0][0] + self.center_pos_list[0][0]) cy_list.append(bbox_list[0][1] + self.center_pos_list[0][1]) cx_list.append(bbox_list[1][0] + self.center_pos_list[1][0]) cy_list.append(bbox_list[1][1] + self.center_pos_list[1][1]) cx_list.append(bbox_list[2][0] + self.center_pos_list[2][0]) cy_list.append(bbox_list[2][1] + self.center_pos_list[2][1]) # smooth bbox width = self.size[0] * (1 - lr) + bbox[2] * lr height = self.size[1] * (1 - lr) + bbox[3] * lr width_list=[] height_list=[] width_list.append(self.size_list[0][0] * (1 - lr_list[0]) + bbox_list[0][2] * lr_list[0]) height_list.append(self.size_list[0][1] * (1 - lr_list[0]) + bbox_list[0][3] * lr_list[0]) width_list.append(self.size_list[1][0] * (1 - lr_list[1]) + bbox_list[1][2] * lr_list[1]) height_list.append(self.size_list[1][1] * (1 - lr_list[1]) + bbox_list[1][3] * lr_list[1]) width_list.append(self.size_list[2][0] * (1 - lr_list[2]) + bbox_list[2][2] * lr_list[2]) height_list.append(self.size_list[2][1] * (1 - lr_list[2]) + bbox_list[2][3] * lr_list[2]) # clip boundary cx, cy, width, height = self._bbox_clip(cx, cy, width, height, img.shape[:2]) cx_list[0], cy_list[0], width_list[0], height_list[0] = self._bbox_clip(cx_list[0], cy_list[0], width_list[0], height_list[0], img.shape[:2]) cx_list[1], cy_list[1], width_list[1], height_list[1] = self._bbox_clip(cx_list[1], cy_list[1], width_list[1], height_list[1], img.shape[:2]) cx_list[2], cy_list[2], width_list[2], height_list[2] = self._bbox_clip(cx_list[2], cy_list[2], width_list[2], height_list[2], img.shape[:2]) # udpate state self.center_pos = np.array([cx, cy]) self.size = np.array([width, height]) self.center_pos_list[0]=np.array([cx_list[0],cx_list[0]]) self.size_list[0]=np.array([width_list[0], height_list[0]]) self.center_pos_list[1]=
np.array([cx_list[1],cx_list[1]])
numpy.array
""" Testing the QVM stablizer """ import sys import numpy as np from itertools import product from functools import reduce from pyquil.paulis import sI, sX, sY, sZ, PAULI_COEFF, PAULI_OPS from pyquil.quil import Program from pyquil.gates import H, S, CNOT, I from referenceqvm.qvm_stabilizer import QVM_Stabilizer from referenceqvm.stabilizer_utils import (pauli_stabilizer_to_binary_stabilizer, binary_stabilizer_to_pauli_stabilizer) from referenceqvm.stabilizer_utils import project_stabilized_state from referenceqvm.api import QVMConnection pauli_subgroup = [sI, sX, sY, sZ] five_qubit_code_generators = [sX(0) * sZ(1) * sZ(2) * sX(3) * sI(4), sI(0) * sX(1) * sZ(2) * sZ(3) * sX(4), sX(0) * sI(1) * sX(2) * sZ(3) * sZ(4), sZ(0) * sX(1) * sI(2) * sX(3) * sZ(4)] bell_stabilizer = [sZ(0) * sZ(1), sX(0) * sX(1)] def test_initialization(): """ Test if upon initialization the correct size tableau is set up """ num_qubits = 4 qvmstab = QVM_Stabilizer(num_qubits=num_qubits) assert qvmstab.num_qubits == num_qubits assert qvmstab.tableau.shape == (2 * num_qubits, 2 * num_qubits + 1) initial_tableau = np.hstack((np.eye(2 * num_qubits), np.zeros((2 * num_qubits, 1)))) assert np.allclose(initial_tableau, qvmstab.tableau) num_qubits = 6 qvmstab = QVM_Stabilizer(num_qubits=num_qubits) assert qvmstab.num_qubits == num_qubits assert qvmstab.tableau.shape == (2 * num_qubits, 2 * num_qubits + 1) initial_tableau = np.hstack((np.eye(2 * num_qubits), np.zeros((2 * num_qubits, 1)))) assert
np.allclose(initial_tableau, qvmstab.tableau)
numpy.allclose
import numpy as np import pandas as pd import rpy2.robjects as robjects from rpy2.robjects.packages import importr from rpy2.robjects import pandas2ri # Load R packages rstats = importr('stats') rmgcv = importr('mgcv') pandas2ri.activate() rbase = importr('base') #rutils = importr('utils') def pdframe2rdframe(data): ''' Converts a pandas DataFrame into an R dataframe :param data: Data to convert into an R dataframe pandas DataFrame :return: robjects.vectors.DataFrame ''' # This step is just to make sure pandas2ri.DataFrame works as expected assert isinstance(data, pd.DataFrame) data2 = pd.DataFrame({ci: [vi for vi in data[ci]] for ci in data.columns}) return pandas2ri.DataFrame(data2) def mgcv_fit(formula, data, family='gaussian', weights=None, method='REML', bam=False, chunk_size=1000): ''' Fit a Generalized Additive Model This function is a wrapper of the MGCV package in R. See its definition for more details https://www.rdocumentation.org/packages/mgcv/versions/1.8-28/topics/gam :param formula: R formula string :param data: Data to fit the model to pandas DataFrame :param family: Noise model distribution string. One of 'gaussian', 'binomial', 'poisson' (default 'gaussian'). :param weights: Observation weights numpy ndarray :param method: Smoothing parameter estimation method (see R MGCV documentation) string, one of 'GCV.Cp', 'GACV.Cp', 'REML', 'P-REML', 'ML', 'fREML' (default 'REML'). :param bam: If MGCV implementation for large datasets should be used Boolean :param chunk_size: Size of chunks in which the model matrix is created (Only used when bam=True). Integer :return: robjects.vectors.ListVector ''' assert isinstance(data, pd.DataFrame) # Define family if family == 'gaussian': rfamily = rstats.gaussian(link='identity') elif family == 'binomial': rfamily = rstats.binomial(link='logit') elif family == 'poisson': rfamily = rstats.poisson(link='log') else: raise NotImplementedError rdata = pdframe2rdframe(data) rformula = robjects.Formula(formula) if weights is None: if not bam: gam = rmgcv.gam(formula=rformula, data=rdata, family=rfamily, method=method) else: gam = rmgcv.bam(formula=rformula, data=rdata, family=rfamily, method=method, chunk_size=chunk_size) else: #TODO assert weights if not bam: gam = rmgcv.gam(formula=rformula, data=rdata, family=family, weights=weights, method=method) else: gam = rmgcv.bam(formula=rformula, data=rdata, family=family, weights=weights, method=method, chunk_size=chunk_size) return gam def mgcv_predict(gam, data, response_type='response'): ''' Make predictions using a fitted GAM model See R MGCV package :param gam: A gam model previously fitted robjects.vectors.ListVector :param data: Input data points where predictions are made pandas DataFrame :param response_type: Space or transformation in which the prediction is returned (see R MGCV documentation) string. One of 'response', 'link', 'lpmatrix'. :return: numpy ndarray of shape (n_data, ) with the posterior mean values. ''' assert isinstance(gam, robjects.vectors.ListVector) assert isinstance(data, pd.DataFrame) if response_type not in ['link', 'response', 'lpmatrix']: raise NotImplementedError rdata = pdframe2rdframe(data) return np.array(rmgcv.predict_gam(gam, newdata=rdata, type=response_type)) def mgcv_posterior_samples(gam, data, n_samples=100, response_type='inverse_link') -> np.ndarray: ''' Generate samples from the posterior distribution of a GAM See R MGCV package :param gam: A gam model previously fitted robjects.vectors.ListVector :param data: Input data points where simulations are generated Pandas DataFrame :param n_samples: Number of samples to generate Integer (default 100) :param response_type: Space or transformation in which the prediction is returned (see R MGCV documentation) String. One of 'response', 'link', 'inverse_link', 'lpmatrix'. :return: numpy ndarray of shape (n_samples, n_data) ''' assert isinstance(gam, robjects.vectors.ListVector) assert isinstance(data, pd.DataFrame) assert isinstance(n_samples, int) assert n_samples > 0 gam_coef = np.array(rstats.coef(gam)) gam_vcov = np.array(rstats.vcov(gam)) M = np.random.multivariate_normal(gam_coef, gam_vcov, size=n_samples) rdata = pdframe2rdframe(data) LP = np.array(rmgcv.predict_gam(gam, newdata=rdata, type='lpmatrix')) _post = np.dot(M, LP.T) if response_type == 'link': samples = _post elif response_type == 'inverse_link': family, link = get_family(gam), get_link(gam) if family == 'gaussian': assert link == 'identity' samples = _post elif family == 'binomial': assert link == 'logit' samples = 1. / (1. + np.exp(-_post)) else: #family == 'poisson' assert link == 'log' samples = np.exp(_post) elif response_type == 'response': #TODO the results accuracy of this case have not been tested yet family, link = get_family(gam), get_link(gam) if family == 'gaussian' and link == 'identity': ix_scale = get_names(gam).index('scale') #TODO check this line sigma_noise =
np.sqrt(gam[ix_scale])
numpy.sqrt
""" @author: <NAME> """ import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import scipy.io from scipy.interpolate import griddata from mpl_toolkits.mplot3d import Axes3D from pyDOE import lhs import time from plotting import newfig, savefig import matplotlib.gridspec as gridspec from mpl_toolkits.axes_grid1 import make_axes_locatable ############################################################################### ############################## Helper Functions ############################### ############################################################################### def initialize_NN(layers): weights = [] biases = [] num_layers = len(layers) for l in range(0,num_layers-1): W = xavier_init(size=[layers[l], layers[l+1]]) b = tf.Variable(tf.zeros([1,layers[l+1]], dtype=tf.float32), dtype=tf.float32) weights.append(W) biases.append(b) return weights, biases def xavier_init(size): in_dim = size[0] out_dim = size[1] xavier_stddev = np.sqrt(2/(in_dim + out_dim)) return tf.Variable(tf.truncated_normal([in_dim, out_dim], stddev=xavier_stddev, dtype=tf.float32), dtype=tf.float32) def neural_net(X, weights, biases): num_layers = len(weights) + 1 H = X for l in range(0,num_layers-2): W = weights[l] b = biases[l] H = tf.tanh(tf.add(tf.matmul(H, W), b)) W = weights[-1] b = biases[-1] Y = tf.add(tf.matmul(H, W), b) return Y ############################################################################### ################################ DeepHPM Class ################################ ############################################################################### class DeepHPM: def __init__(self, t, x, u, v, x0, u0, v0, tb, X_f, uv_layers, pde_layers, layers, lb_idn, ub_idn, lb_sol, ub_sol): # Domain Boundary self.lb_idn = lb_idn self.ub_idn = ub_idn self.lb_sol = lb_sol self.ub_sol = ub_sol # Init for Identification self.idn_init(t, x, u, v, uv_layers, pde_layers) # Init for Solution self.sol_init(x0, u0, v0, tb, X_f, layers) # tf session self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True)) init = tf.global_variables_initializer() self.sess.run(init) ########################################################################### ############################# Identifier ################################## ########################################################################### def idn_init(self, t, x, u, v, uv_layers, pde_layers): # Training Data for Identification self.t = t self.x = x self.u = u self.v = v # Layers for Identification self.uv_layers = uv_layers self.pde_layers = pde_layers # Initialize NNs for Identification self.u_weights, self.u_biases = initialize_NN(uv_layers) self.v_weights, self.v_biases = initialize_NN(uv_layers) self.pde_u_weights, self.pde_u_biases = initialize_NN(pde_layers) self.pde_v_weights, self.pde_v_biases = initialize_NN(pde_layers) # tf placeholders for Identification self.t_tf = tf.placeholder(tf.float32, shape=[None, 1]) self.x_tf = tf.placeholder(tf.float32, shape=[None, 1]) self.u_tf = tf.placeholder(tf.float32, shape=[None, 1]) self.v_tf = tf.placeholder(tf.float32, shape=[None, 1]) self.terms_tf = tf.placeholder(tf.float32, shape=[None, pde_layers[0]]) # tf graphs for Identification self.idn_u_pred, self.idn_v_pred = self.idn_net_uv(self.t_tf, self.x_tf) self.pde_u_pred, self.pde_v_pred = self.net_pde(self.terms_tf) self.idn_f_pred, self.idn_g_pred = self.idn_net_fg(self.t_tf, self.x_tf) # loss for Identification self.idn_uv_loss = tf.reduce_sum(tf.square(self.idn_u_pred - self.u_tf)) + \ tf.reduce_sum(tf.square(self.idn_v_pred - self.v_tf)) self.idn_fg_loss = tf.reduce_sum(tf.square(self.idn_f_pred)) + \ tf.reduce_sum(tf.square(self.idn_g_pred)) # Optimizer for Identification self.idn_uv_optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.idn_uv_loss, var_list = self.u_weights + self.u_biases + self.v_weights + self.v_biases, method = 'L-BFGS-B', options = {'maxiter': 50000, 'maxfun': 50000, 'maxcor': 50, 'maxls': 50, 'ftol': 1.0*np.finfo(float).eps}) self.idn_fg_optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.idn_fg_loss, var_list = self.pde_u_weights + self.pde_u_biases + self.pde_v_weights + self.pde_v_biases, method = 'L-BFGS-B', options = {'maxiter': 50000, 'maxfun': 50000, 'maxcor': 50, 'maxls': 50, 'ftol': 1.0*np.finfo(float).eps}) self.idn_uv_optimizer_Adam = tf.train.AdamOptimizer() self.idn_uv_train_op_Adam = self.idn_uv_optimizer_Adam.minimize(self.idn_uv_loss, var_list = self.u_weights + self.u_biases + self.v_weights + self.v_biases) self.idn_fg_optimizer_Adam = tf.train.AdamOptimizer() self.idn_fg_train_op_Adam = self.idn_fg_optimizer_Adam.minimize(self.idn_fg_loss, var_list = self.pde_u_weights + self.pde_u_biases + self.pde_v_weights + self.pde_v_biases) def idn_net_uv(self, t, x): X = tf.concat([t,x],1) H = 2*(X - self.lb_idn)/(self.ub_idn - self.lb_idn) - 1 u = neural_net(H, self.u_weights, self.u_biases) v = neural_net(H, self.v_weights, self.v_biases) return u, v def net_pde(self, terms): pde_u = neural_net(terms, self.pde_u_weights, self.pde_u_biases) pde_v = neural_net(terms, self.pde_v_weights, self.pde_v_biases) return pde_u, pde_v def idn_net_fg(self, t, x): u, v = self.idn_net_uv(t, x) u_t = tf.gradients(u, t)[0] v_t = tf.gradients(v, t)[0] u_x = tf.gradients(u, x)[0] v_x = tf.gradients(v, x)[0] u_xx = tf.gradients(u_x, x)[0] v_xx = tf.gradients(v_x, x)[0] terms = tf.concat([u,v,u_x,v_x,u_xx,v_xx],1) pde_u, pde_v = self.net_pde(terms) f = u_t - pde_u g = v_t - pde_v return f, g def idn_uv_train(self, N_iter): tf_dict = {self.t_tf: self.t, self.x_tf: self.x, self.u_tf: self.u, self.v_tf: self.v} start_time = time.time() for it in range(N_iter): self.sess.run(self.idn_uv_train_op_Adam, tf_dict) # Print if it % 10 == 0: elapsed = time.time() - start_time loss_value = self.sess.run(self.idn_uv_loss, tf_dict) print('It: %d, Loss: %.3e, Time: %.2f' % (it, loss_value, elapsed)) start_time = time.time() self.idn_uv_optimizer.minimize(self.sess, feed_dict = tf_dict, fetches = [self.idn_uv_loss], loss_callback = self.callback) def idn_fg_train(self, N_iter): tf_dict = {self.t_tf: self.t, self.x_tf: self.x} start_time = time.time() for it in range(N_iter): self.sess.run(self.idn_fg_train_op_Adam, tf_dict) # Print if it % 10 == 0: elapsed = time.time() - start_time loss_value = self.sess.run(self.idn_fg_loss, tf_dict) print('It: %d, Loss: %.3e, Time: %.2f' % (it, loss_value, elapsed)) start_time = time.time() self.idn_fg_optimizer.minimize(self.sess, feed_dict = tf_dict, fetches = [self.idn_fg_loss], loss_callback = self.callback) def idn_predict(self, t_star, x_star): tf_dict = {self.t_tf: t_star, self.x_tf: x_star} u_star = self.sess.run(self.idn_u_pred, tf_dict) v_star = self.sess.run(self.idn_v_pred, tf_dict) f_star = self.sess.run(self.idn_f_pred, tf_dict) g_star = self.sess.run(self.idn_g_pred, tf_dict) return u_star, v_star, f_star, g_star def predict_pde(self, terms_star): tf_dict = {self.terms_tf: terms_star} pde_u_star = self.sess.run(self.pde_u_pred, tf_dict) pde_v_star = self.sess.run(self.pde_v_pred, tf_dict) return pde_u_star, pde_v_star ########################################################################### ############################### Solver #################################### ########################################################################### def sol_init(self, x0, u0, v0, tb, X_f, layers): # Training Data for Solution X0 = np.concatenate((0*x0, x0), 1) # (0, x0) X_lb = np.concatenate((tb, 0*tb + self.lb_sol[1]), 1) # (tb, lb[1]) X_ub = np.concatenate((tb, 0*tb + self.ub_sol[1]), 1) # (tb, ub[1]) self.X_f = X_f # Collocation Points self.t0 = X0[:,0:1] # Initial Data (time) self.x0 = X0[:,1:2] # Initial Data (space) self.t_lb = X_lb[:,0:1] # Boundary Data (time) -- lower boundary self.x_lb = X_lb[:,1:2] # Boundary Data (space) -- lower boundary self.t_ub = X_ub[:,0:1] # Boundary Data (time) -- upper boundary self.x_ub = X_ub[:,1:2] # Boundary Data (space) -- upper boundary self.t_f = X_f[:,0:1] # Collocation Points (time) self.x_f = X_f[:,1:2] # Collocation Points (space) self.u0 = u0 # Boundary Data self.v0 = v0 # Boundary Data # Layers for Solution # self.layers = layers # Initialize NNs for Solution # self.u_weights_sol, self.u_biases_sol = initialize_NN(layers) # self.v_weights_sol, self.v_biases_sol = initialize_NN(layers) # tf placeholders for Solution self.t0_tf = tf.placeholder(tf.float32, shape=[None, 1]) self.x0_tf = tf.placeholder(tf.float32, shape=[None, 1]) self.u0_tf = tf.placeholder(tf.float32, shape=[None, 1]) self.v0_tf = tf.placeholder(tf.float32, shape=[None, 1]) self.t_lb_tf = tf.placeholder(tf.float32, shape=[None, 1]) self.x_lb_tf = tf.placeholder(tf.float32, shape=[None, 1]) self.t_ub_tf = tf.placeholder(tf.float32, shape=[None, 1]) self.x_ub_tf = tf.placeholder(tf.float32, shape=[None, 1]) self.t_f_tf = tf.placeholder(tf.float32, shape=[None, 1]) self.x_f_tf = tf.placeholder(tf.float32, shape=[None, 1]) # tf graphs for Solution self.u0_pred, self.v0_pred, _, _ = self.sol_net_uv(self.t0_tf, self.x0_tf) self.u_lb_pred, self.v_lb_pred, self.u_x_lb_pred, self.v_x_lb_pred = self.sol_net_uv(self.t_lb_tf, self.x_lb_tf) self.u_ub_pred, self.v_ub_pred, self.u_x_ub_pred, self.v_x_ub_pred = self.sol_net_uv(self.t_ub_tf, self.x_ub_tf) self.sol_f_pred, self.sol_g_pred = self.sol_net_fg(self.t_f_tf, self.x_f_tf) # loss for Solution self.sol_loss = tf.reduce_mean(tf.square(self.u0_tf - self.u0_pred)) + \ tf.reduce_mean(tf.square(self.v0_tf - self.v0_pred)) + \ tf.reduce_mean(tf.square(self.u_lb_pred - self.u_ub_pred)) + \ tf.reduce_mean(tf.square(self.v_lb_pred - self.v_ub_pred)) + \ tf.reduce_mean(tf.square(self.u_x_lb_pred - self.u_x_ub_pred)) + \ tf.reduce_mean(tf.square(self.v_x_lb_pred - self.v_x_ub_pred)) + \ tf.reduce_mean(tf.square(self.sol_f_pred)) + \ tf.reduce_mean(tf.square(self.sol_g_pred)) # Optimizer for Solution self.sol_optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.sol_loss, var_list = self.u_weights + self.u_biases + self.v_weights + self.v_biases, method = 'L-BFGS-B', options = {'maxiter': 50000, 'maxfun': 50000, 'maxcor': 50, 'maxls': 50, 'ftol': 1.0*np.finfo(float).eps}) self.sol_optimizer_Adam = tf.train.AdamOptimizer() self.sol_train_op_Adam = self.sol_optimizer_Adam.minimize(self.sol_loss, var_list = self.u_weights + self.u_biases + self.v_weights + self.v_biases) def sol_net_uv(self, t, x): X = tf.concat([t,x],1) H = 2*(X - self.lb_sol)/(self.ub_sol - self.lb_sol) - 1 u = neural_net(H, self.u_weights, self.u_biases) v = neural_net(H, self.v_weights, self.v_biases) u_x = tf.gradients(u, x)[0] v_x = tf.gradients(v, x)[0] return u, v, u_x, v_x def sol_net_fg(self, t, x): u, v, u_x, v_x = self.sol_net_uv(t,x) u_t = tf.gradients(u, t)[0] v_t = tf.gradients(v, t)[0] u_xx = tf.gradients(u_x, x)[0] v_xx = tf.gradients(v_x, x)[0] terms = tf.concat([u,v,u_x,v_x,u_xx,v_xx],1) pde_u, pde_v = self.net_pde(terms) f = u_t - pde_u g = v_t - pde_v # f = u_t + 0.5*v_xx + (u**2 + v**2)*v # g = v_t - 0.5*u_xx - (u**2 + v**2)*u return f, g def callback(self, loss): print('Loss: %e' % (loss)) def sol_train(self, N_iter): tf_dict = {self.t0_tf: self.t0, self.x0_tf: self.x0, self.u0_tf: self.u0, self.v0_tf: self.v0, self.t_lb_tf: self.t_lb, self.x_lb_tf: self.x_lb, self.t_ub_tf: self.t_ub, self.x_ub_tf: self.x_ub, self.t_f_tf: self.t_f, self.x_f_tf: self.x_f} start_time = time.time() for it in range(N_iter): self.sess.run(self.sol_train_op_Adam, tf_dict) # Print if it % 10 == 0: elapsed = time.time() - start_time loss_value = self.sess.run(self.sol_loss, tf_dict) print('It: %d, Loss: %.3e, Time: %.2f' % (it, loss_value, elapsed)) start_time = time.time() self.sol_optimizer.minimize(self.sess, feed_dict = tf_dict, fetches = [self.sol_loss], loss_callback = self.callback) def sol_predict(self, t_star, x_star): u_star = self.sess.run(self.u0_pred, {self.t0_tf: t_star, self.x0_tf: x_star}) v_star = self.sess.run(self.v0_pred, {self.t0_tf: t_star, self.x0_tf: x_star}) f_star = self.sess.run(self.sol_f_pred, {self.t_f_tf: t_star, self.x_f_tf: x_star}) g_star = self.sess.run(self.sol_g_pred, {self.t_f_tf: t_star, self.x_f_tf: x_star}) return u_star, v_star, f_star, g_star ############################################################################### ################################ Main Function ################################ ############################################################################### if __name__ == "__main__": # Doman bounds lb_idn = np.array([0.0, -5.0]) ub_idn = np.array([np.pi/2, 5.0]) lb_sol = np.array([0.0, -5.0]) ub_sol =
np.array([np.pi/2, 5.0])
numpy.array
#!/usr/bin/env python import itertools import numpy as np import pandas as pd import os import time import random import pickle from ELM import ELMClassifier from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split from sklearn.metrics import roc_curve, auc from sklearn.metrics import log_loss from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score from sklearn.metrics import roc_auc_score from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.model_selection import KFold features_check = { "base": { "features" : [1,2,3,4,5,6,7,8,9], "C" : 0.001, "n_hidden" : 50, "y_column_idx" : 10, "feature_file" : "../Datasets/features_extractions/base_(all).csv" }, "base_robust": { "features" : [2,6,8,9], "C" : 0.001, "n_hidden" : 10, "y_column_idx" : 10, "feature_file" : "../Datasets/features_extractions/base_(all).csv" }, "all": { "features" : [1,2,3,4,5,6,7,8,9,10,11,13,15], "C" : 50, "n_hidden" : 150, "y_column_idx" : 17, "feature_file" : "../Datasets/features_extractions/median_9_2_(25-75)_vt_include.csv" }, "novel": { "features" : [10,11,13,15], "C" : 0.004, "n_hidden" : 50, "y_column_idx" : 17, "feature_file" : "../Datasets/features_extractions/median_9_2_(25-75)_vt_include.csv" }, "hybrid_robust": { "features" : [2,6,8,9,10,11,13,15], "C" : 0.01, "n_hidden" : 100, "y_column_idx" : 17, "feature_file" : "../Datasets/features_extractions/median_9_2_(25-75)_vt_include.csv" } } model_name = "elm" features_to_check = ["base","base_robust","all","novel","hybrid_robust"] threshold = 0.5 learning_rate = 0.001 n_splits = 10 test_size = 0.25 path = os.path.dirname(os.path.abspath(__file__)) features_file_name = "../Datasets/features_extractions/median_9_2_(75-25)_vt_include.csv" features_file = os.path.join(path, features_file_name) for features_set in features_to_check: print("\n\nChecking features - %s" % (features_set)) features_file = os.path.join(path, features_check[features_set]["feature_file"]) y_column_idx = features_check[features_set]["y_column_idx"] n_hidden = features_check[features_set]["n_hidden"] train = pd.read_csv(features_file) ######## Append artificial data by number of consecutive characters feature ######## if 2 in features_check[features_set]["features"]: mal = train[train[train.columns[y_column_idx]]==1].sample(500).copy() mal["2"] = mal["2"].apply(lambda x:x*random.randint(3,9)) train = train.append(mal, ignore_index=True) ######################################## END ####################################### use_columns = features_check[features_set]["features"] use_columns.append(y_column_idx) train = train[train.columns[use_columns]] use_dataset = train.copy() use_dataset = np.asfarray(use_dataset.values,np.dtype('Float64')) # Normlize the dataset scaler = MinMaxScaler().fit(use_dataset[:, :-1]) dataset_norm = scaler.transform(use_dataset[:, :-1]) # Split features and labels X, y = use_dataset,
np.transpose([use_dataset[:, -1]])
numpy.transpose
#!/usr/bin/python3 #-*-coding:utf-8-*- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from args import * from pahelix.model_zoo.seq_vae_model import VAE from utils import * import paddle from paddle.io import Dataset import numpy as np import paddle.fluid as fluid import pdb import paddle.fluid.dygraph as dg import paddle.nn.functional as F import paddle.nn as nn from paddle.optimizer.lr import LRScheduler from visualdl import LogWriter import rdkit import pickle import os import json def train_epoch(model, data_loader, epoch, kl_weight, config, optimizer=None): """ tbd """ if optimizer is None: model.eval() else: model.train() kl_loss_values = [] recon_loss_values = [] loss_values = [] for batch_id, data in enumerate(data_loader()): # read batch data data_batch = data # forward kl_loss, recon_loss = model(data_batch) loss = kl_weight * kl_loss + recon_loss if optimizer is not None: loss.backward() optimizer.step() optimizer.clear_grad() # Log kl_loss_values.append(kl_loss.numpy()) recon_loss_values.append(recon_loss.numpy()) loss_values.append(loss.numpy()) lr = (optimizer.get_lr() if optimizer is not None else 0) if batch_id % 200 == 0 and batch_id > 0: print('batch:%s, kl_loss:%f, recon_loss:%f' % \ (batch_id, float(np.mean(kl_loss_values)), float(
np.mean(recon_loss_values)
numpy.mean
"""Distance-based metrics. """ import math import numpy as np from numba import njit import opfython.utils.constants as c import opfython.utils.decorator as d @d.avoid_zero_division @njit(cache=True) def additive_symmetric_distance(x, y): """Calculates the Additive Symmetric Distance (Symmetric Divergence). Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The Additive Symmetric Distance between x and y. """ dist = ((x - y) ** 2 * (x + y)) / (x * y) return 2 * np.sum(dist) @njit(cache=True) def average_euclidean_distance(x, y): """Calculates the Average Euclidean Distance. Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The Average Euclidean Distance between x and y. """ dist = squared_euclidean_distance(x, y) return (dist / x.shape[0]) ** 0.5 @d.avoid_zero_division @njit(cache=True) def bhattacharyya_distance(x, y): """Calculates the Bhattacharyya Distance. Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The Bhattacharyya Distance between x and y. """ dist = -math.log(np.sum((x * y) ** 0.5)) return dist @d.avoid_zero_division @njit(cache=True) def bray_curtis_distance(x, y): """Calculates the Bray-Curtis Distance (Sorensen Distance). Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The Bray-Curtis Distance between x and y. """ dist = np.sum(np.fabs(x - y)) / np.sum(x + y) return dist @d.avoid_zero_division @njit(cache=True) def canberra_distance(x, y): """Calculates the Canberra Distance. Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The Canberra Distance between x and y. """ dist = np.fabs(x - y) / (np.fabs(x) + np.fabs(y)) return np.sum(dist) @njit(cache=True) def chebyshev_distance(x, y): """Calculates the Chebyshev Distance (Maximum Value Distance, Lagrange, Chessboard Distance). Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The Chebyshev Distance between x and y. """ dist = np.fabs(x - y) return np.amax(dist) @d.avoid_zero_division @njit(cache=True) def chi_squared_distance(x, y): """Calculates the Chi-Squared Distance. Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The Chi-Squared Distance between x and y. """ dist = ((x - y) ** 2 / (x + y)) return 0.5 * np.sum(dist) @d.avoid_zero_division @njit(cache=True) def chord_distance(x, y): """Calculates the Chord Distance. Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The Chord Distance between x and y. """ dist = 2 - 2 * (np.sum(x * y) / (np.sum(x ** 2) ** 0.5 * np.sum(y ** 2) ** 0.5)) return dist ** 0.5 @d.avoid_zero_division @njit(cache=True) def clark_distance(x, y): """Calculates the Clark Distance. Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The Clark Distance between x and y. """ dist = ((x - y) / np.fabs(x + y)) ** 2 return np.sum(dist) ** 0.5 @d.avoid_zero_division @njit(cache=True) def cosine_distance(x, y): """Calculates the Cosine Distance. Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The cosine Distance between x and y. """ dist = 1 - (np.sum(x * y) / (np.sum(x ** 2) ** 0.5 * np.sum(y ** 2) ** 0.5)) return dist @d.avoid_zero_division @njit(cache=True) def dice_distance(x, y): """Calculates the Dice Distance. Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The Dice Distance between x and y. """ dist = 2 * np.sum(x * y) / (np.sum(x ** 2) + np.sum(y ** 2)) return 1 - dist @d.avoid_zero_division @njit(cache=True) def divergence_distance(x, y): """Calculates the Divergence Distance. Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The Divergence Distance between x and y. """ dist = (x - y) ** 2 / (x + y) ** 2 return 2 * np.sum(dist) @njit(cache=True) def euclidean_distance(x, y): """Calculates the Euclidean Distance (L2 Norm, Ruler Distance). Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The Euclidean Distance between x and y. """ dist = (x - y) ** 2 return np.sum(dist) ** 0.5 @njit(cache=True) def gaussian_distance(x, y, gamma=1): """Calculates the Gaussian Distance. Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The Gaussian Distance between x and y. """ dist = (x - y) ** 2 return math.exp(-gamma * np.sum(dist) ** 0.5) @njit(cache=True) def gower_distance(x, y): """Calculates the Gower Distance (Average Manhattan, Mean Character Distance). Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The Gower Distance between x and y. """ dist = np.fabs(x - y) return np.sum(dist) / x.shape[0] @njit(cache=True) def hamming_distance(x, y): """Calculates the Hamming Distance. Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The Hamming Distance between x and y. """ dist = np.count_nonzero(x != y) return dist @d.avoid_zero_division @njit(cache=True) def hassanat_distance(x, y): """Calculates the Hassanat Distance. Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The Hassanat Distance between x and y. """ # Creates an empty variable to hold each dimension's dist = np.zeros(x.shape[0]) # Creates a binary mask mask = np.minimum(x, y) >= 0 # Iterates through all dimensions for i in range(x.shape[0]): if mask[i] is True: dist[i] = 1 - (1 + np.minimum(x[i], y[i])) / (1 + np.maximum(x[i], y[i])) else: dist[i] = 1 - (1 + np.minimum(x[i], y[i]) + np.fabs(np.minimum(x[i], y[i]))) / (1 + np.maximum(x[i], y[i]) + np.fabs(np.minimum(x[i], y[i]))) return np.sum(dist) @njit(cache=True) def hellinger_distance(x, y): """Calculates the Hellinger Distance (Jeffries-Matusita Distance). Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The Hellinger Distance between x and y. """ dist = 2 * (x ** 0.5 - y ** 0.5) ** 2 return np.sum(dist) ** 0.5 @d.avoid_zero_division def jaccard_distance(x, y): """Calculates the Jaccard Distance. Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The Jaccard Distance between x and y. """ dist = np.sum((x - y) ** 2) / (np.sum(x ** 2) + np.sum(y ** 2) - np.sum(x * y)) return dist @d.avoid_zero_division @njit(cache=True) def jeffreys_distance(x, y): """Calculates the Jeffreys Distance (J-Divergence, KL2 Divergence). Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The Jeffreys Distance between x and y. """ dist = (x - y) * np.log(x / y) return np.sum(dist) @d.avoid_zero_division @njit(cache=True) def jensen_distance(x, y): """Calculates the Jensen Distance. Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The Jensen Distance between x and y. """ dist = (x * np.log(x) + y * np.log(y)) / 2 - ((x + y) / 2) * np.log((x + y) / 2) return 0.5 * np.sum(dist) @d.avoid_zero_division @njit(cache=True) def jensen_shannon_distance(x, y): """Calculates the Jensen-Shannon Distance. Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The Jensen-Shannon Distance between x and y. """ dist1 = x * np.log((2 * x) / (x + y)) dist2 = y * np.log((2 * y) / (x + y)) return 0.5 * (np.sum(dist1) + np.sum(dist2)) @d.avoid_zero_division @njit(cache=True) def k_divergence_distance(x, y): """Calculates the K Divergence Distance. Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The K Divergence Distance between x and y. """ dist = x * np.log((2 * x) / (x + y)) return np.sum(dist) @d.avoid_zero_division @njit(cache=True) def kulczynski_distance(x, y): """Calculates the Kulczynski Distance. Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The Kulczynski Distance between x and y. """ dist = np.sum(np.fabs(x - y)) / np.sum(np.minimum(x, y)) return dist @d.avoid_zero_division @njit(cache=True) def kullback_leibler_distance(x, y): """Calculates the Kullback-Leibler Distance (KL Divergence). Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The Kullback-Leibler Distance between x and y. """ dist = x * np.log(x / y) return
np.sum(dist)
numpy.sum
# -*- coding: utf-8 -*- """ Demand model of thermal loads """ import numpy as np import pandas as pd from cea.constants import HOURS_IN_YEAR, HOURS_PRE_CONDITIONING from cea.demand import demand_writers from cea.demand import hourly_procedure_heating_cooling_system_load, ventilation_air_flows_simple from cea.demand import latent_loads from cea.demand import sensible_loads, electrical_loads, hotwater_loads, refrigeration_loads, datacenter_loads from cea.demand import ventilation_air_flows_detailed, control_heating_cooling_systems from cea.demand.building_properties import get_thermal_resistance_surface from cea.demand.latent_loads import convert_rh_to_moisture_content from cea.utilities import reporting def calc_thermal_loads(building_name, bpr, weather_data, date_range, locator, use_dynamic_infiltration_calculation, resolution_outputs, loads_output, massflows_output, temperatures_output, config, debug): """ Calculate thermal loads of a single building with mechanical or natural ventilation. Calculation procedure follows the methodology of ISO 13790 The structure of ``usage_schedules`` is: .. code-block:: python :emphasize-lines: 2,4 { 'list_uses': ['ADMIN', 'GYM', ...], 'schedules': [ ([...], [...], [...], [...]), (), (), () ] } * each element of the 'list_uses' entry represents a building occupancy type. * each element of the 'schedules' entry represents the schedules for a building occupancy type. * the schedules for a building occupancy type are a 4-tuple (occupancy, electricity, domestic hot water, probability of use), with each element of the 4-tuple being a list of hourly values (HOURS_IN_YEAR values). Side effect include a number of files in two folders: * ``scenario/outputs/data/demand`` * ``${Name}.csv`` for each building * temporary folder (as returned by ``tempfile.gettempdir()``) * ``${Name}T.csv`` for each building daren-thomas: as far as I can tell, these are the only side-effects. :param building_name: name of building :type building_name: str :param bpr: a collection of building properties for the building used for thermal loads calculation :type bpr: BuildingPropertiesRow :param weather_data: data from the .epw weather file. Each row represents an hour of the year. The columns are: ``drybulb_C``, ``relhum_percent``, and ``windspd_ms`` :type weather_data: pandas.DataFrame :param locator: :param use_dynamic_infiltration_calculation: :returns: This function does not return anything :rtype: NoneType """ schedules, tsd = initialize_inputs(bpr, weather_data, locator) # CALCULATE ELECTRICITY LOADS tsd = electrical_loads.calc_Eal_Epro(tsd, schedules) # CALCULATE REFRIGERATION LOADS if refrigeration_loads.has_refrigeration_load(bpr): tsd = refrigeration_loads.calc_Qcre_sys(bpr, tsd, schedules) tsd = refrigeration_loads.calc_Qref(locator, bpr, tsd) else: tsd['DC_cre'] = tsd['Qcre_sys'] = tsd['Qcre'] = np.zeros(HOURS_IN_YEAR) tsd['mcpcre_sys'] = tsd['Tcre_sys_re'] = tsd['Tcre_sys_sup'] = np.zeros(HOURS_IN_YEAR) tsd['E_cre'] = np.zeros(HOURS_IN_YEAR) # CALCULATE PROCESS HEATING tsd['Qhpro_sys'] = schedules['Qhpro_W'] # in Wh # CALCULATE PROCESS COOLING tsd['Qcpro_sys'] = schedules['Qcpro_W'] # in Wh # CALCULATE DATA CENTER LOADS if datacenter_loads.has_data_load(bpr): tsd = datacenter_loads.calc_Edata(tsd, schedules) # end-use electricity tsd = datacenter_loads.calc_Qcdata_sys(bpr, tsd) # system need for cooling tsd = datacenter_loads.calc_Qcdataf(locator, bpr, tsd) # final need for cooling else: tsd['DC_cdata'] = tsd['Qcdata_sys'] = tsd['Qcdata'] = np.zeros(HOURS_IN_YEAR) tsd['mcpcdata_sys'] = tsd['Tcdata_sys_re'] = tsd['Tcdata_sys_sup'] = np.zeros(HOURS_IN_YEAR) tsd['Edata'] = tsd['E_cdata'] = np.zeros(HOURS_IN_YEAR) # CALCULATE SPACE CONDITIONING DEMANDS if np.isclose(bpr.rc_model['Af'], 0.0): # if building does not have conditioned area tsd['T_int'] = tsd['T_ext'] tsd['x_int'] = np.vectorize(convert_rh_to_moisture_content)(tsd['rh_ext'], tsd['T_int']) tsd['E_cs'] = tsd['E_hs'] = np.zeros(HOURS_IN_YEAR) tsd['Eaux_cs'] = tsd['Eaux_hs'] = tsd['Ehs_lat_aux'] = np.zeros(HOURS_IN_YEAR) print(f"building {bpr.name} does not have an air-conditioned area") else: # get hourly thermal resistances of external surfaces tsd['RSE_wall'], \ tsd['RSE_roof'], \ tsd['RSE_win'] = get_thermal_resistance_surface(bpr.architecture, weather_data) # calculate heat gains tsd = latent_loads.calc_Qgain_lat(tsd, schedules) tsd = calc_set_points(bpr, date_range, tsd, building_name, config, locator, schedules) # calculate the setpoints for every hour tsd = calc_Qhs_Qcs(bpr, tsd, use_dynamic_infiltration_calculation) # end-use demand latent and sensible + ventilation tsd = sensible_loads.calc_Qhs_Qcs_loss(bpr, tsd) # losses tsd = sensible_loads.calc_Qhs_sys_Qcs_sys(tsd) # system (incl. losses) tsd = sensible_loads.calc_temperatures_emission_systems(bpr, tsd) # calculate temperatures tsd = electrical_loads.calc_Eve(tsd) # calc auxiliary loads ventilation tsd = electrical_loads.calc_Eaux_Qhs_Qcs(tsd, bpr) # calc auxiliary loads heating and cooling tsd = calc_Qcs_sys(bpr, tsd) # final : including fuels and renewables tsd = calc_Qhs_sys(bpr, tsd) # final : including fuels and renewables # Positive loads tsd['Qcs_lat_sys'] = abs(tsd['Qcs_lat_sys']) tsd['DC_cs'] = abs(tsd['DC_cs']) tsd['Qcs_sys'] = abs(tsd['Qcs_sys']) tsd['Qcre_sys'] = abs(tsd['Qcre_sys']) # inverting sign of cooling loads for reporting and graphs tsd['Qcdata_sys'] = abs(tsd['Qcdata_sys']) # inverting sign of cooling loads for reporting and graphs # CALCULATE HOT WATER LOADS if hotwater_loads.has_hot_water_technical_system(bpr): tsd = electrical_loads.calc_Eaux_fw(tsd, bpr, schedules) tsd = hotwater_loads.calc_Qww(bpr, tsd, schedules) # end-use tsd = hotwater_loads.calc_Qww_sys(bpr, tsd) # system (incl. losses) tsd = electrical_loads.calc_Eaux_ww(tsd, bpr) # calc auxiliary loads tsd = hotwater_loads.calc_Qwwf(bpr, tsd) # final else: tsd = electrical_loads.calc_Eaux_fw(tsd, bpr, schedules) tsd['Qww'] = tsd['DH_ww'] = tsd['Qww_sys'] = np.zeros(HOURS_IN_YEAR) tsd['mcpww_sys'] = tsd['Tww_sys_re'] = tsd['Tww_sys_sup'] = np.zeros(HOURS_IN_YEAR) tsd['Eaux_ww'] = np.zeros(HOURS_IN_YEAR) tsd['NG_ww'] = tsd['COAL_ww'] = tsd['OIL_ww'] = tsd['WOOD_ww'] = np.zeros(HOURS_IN_YEAR) tsd['E_ww'] = np.zeros(HOURS_IN_YEAR) # CALCULATE SUM OF HEATING AND COOLING LOADS tsd = calc_QH_sys_QC_sys(tsd) # aggregated cooling and heating loads # CALCULATE ELECTRICITY LOADS PART 2/2 AUXILIARY LOADS + ENERGY GENERATION tsd = electrical_loads.calc_Eaux(tsd) # auxiliary totals tsd = electrical_loads.calc_E_sys(tsd) # system (incl. losses) tsd = electrical_loads.calc_Ef(bpr, tsd) # final (incl. self. generated) # WRITE SOLAR RESULTS write_results(bpr, building_name, date_range, loads_output, locator, massflows_output, resolution_outputs, temperatures_output, tsd, debug) return def calc_QH_sys_QC_sys(tsd): tsd['QH_sys'] = tsd['Qww_sys'] + tsd['Qhs_sys'] + tsd['Qhpro_sys'] tsd['QC_sys'] = tsd['Qcs_sys'] + tsd['Qcdata_sys'] + tsd['Qcre_sys'] + tsd['Qcpro_sys'] return tsd def write_results(bpr, building_name, date, loads_output, locator, massflows_output, resolution_outputs, temperatures_output, tsd, debug): if resolution_outputs == 'hourly': writer = demand_writers.HourlyDemandWriter(loads_output, massflows_output, temperatures_output) elif resolution_outputs == 'monthly': writer = demand_writers.MonthlyDemandWriter(loads_output, massflows_output, temperatures_output) else: raise Exception('error') if debug: print('Creating instant plotly visualizations of demand variable time series.') print('Behavior can be changed in cea.utilities.reporting code.') print('Writing detailed demand results of {} to .xls file.'.format(building_name)) reporting.quick_visualization_tsd(tsd, locator.get_demand_results_folder(), building_name) reporting.full_report_to_xls(tsd, locator.get_demand_results_folder(), building_name) else: writer.results_to_csv(tsd, bpr, locator, date, building_name) def calc_Qcs_sys(bpr, tsd): # GET SYSTEMS EFFICIENCIES energy_source = bpr.supply['source_cs'] scale_technology = bpr.supply['scale_cs'] efficiency_average_year = bpr.supply['eff_cs'] if scale_technology == "BUILDING": if energy_source == "GRID": # sum tsd['E_cs'] = abs(tsd['Qcs_sys']) / efficiency_average_year tsd['DC_cs'] = np.zeros(HOURS_IN_YEAR) elif energy_source == "NONE": tsd['E_cs'] = np.zeros(HOURS_IN_YEAR) tsd['DC_cs'] = np.zeros(HOURS_IN_YEAR) else: raise Exception('check potential error in input database of LCA infrastructure / COOLING') elif scale_technology == "DISTRICT": if energy_source == "GRID": tsd['DC_cs'] = tsd['Qcs_sys'] / efficiency_average_year tsd['E_cs'] = np.zeros(HOURS_IN_YEAR) elif energy_source == "NONE": tsd['DC_cs'] = np.zeros(HOURS_IN_YEAR) tsd['E_cs'] = np.zeros(HOURS_IN_YEAR) else: raise Exception('check potential error in input database of ALL IN ONE SYSTEMS / COOLING') elif scale_technology == "NONE": tsd['DC_cs'] = np.zeros(HOURS_IN_YEAR) tsd['E_cs'] = np.zeros(HOURS_IN_YEAR) else: raise Exception('check potential error in input database of LCA infrastructure / COOLING') return tsd def calc_Qhs_sys(bpr, tsd): """ it calculates final loads """ # GET SYSTEMS EFFICIENCIES # GET SYSTEMS EFFICIENCIES energy_source = bpr.supply['source_hs'] scale_technology = bpr.supply['scale_hs'] efficiency_average_year = bpr.supply['eff_hs'] if scale_technology == "BUILDING": if energy_source == "GRID": tsd['E_hs'] = tsd['Qhs_sys'] / efficiency_average_year tsd['DH_hs'] =
np.zeros(HOURS_IN_YEAR)
numpy.zeros
import torch import numpy as np import pandas as pd import matplotlib.pyplot as plt from waveml.metrics import RMSE, MSE, MAE, MAPE, MSLE, MBE, SAE, SSE from waveml.utils import to_tensor, to_array from sklearn.model_selection import KFold class Wave: def __init__(self, n_opt_rounds: int = 1000, learning_rate: float = 0.01, loss_function=MSE, verbose: int = 1): self.n_opt_rounds = int(n_opt_rounds) self.learning_rate = float(learning_rate) self.loss_function = loss_function self.verbose = int(verbose) self.fitted = False if self.n_opt_rounds < 1: raise ValueError(f"n_opt_rounds should belong to an [1;inf) interval, passed {self.n_opt_rounds}") if self.learning_rate <= 0: raise ValueError(f"learning rate should belong to a (0;inf) interval, passed {self.learning_rate}") if self.verbose < 0: raise ValueError(f"learning rate should belong to a [0;inf) interval, passed {self.verbose}") class WaveRegressor(Wave): """ Weighted average regression model """ def __init__(self, n_opt_rounds: int = 1000, learning_rate: float = 0.01, loss_function=MSE, verbose: int = 1): super().__init__(n_opt_rounds, learning_rate, loss_function, verbose) # Training process def fit(self, X: [pd.DataFrame, pd.Series, np.array, torch.Tensor, list], y: [pd.DataFrame, pd.Series, np.array, torch.Tensor, list], weights=None, eval_set=None, use_best_model=False) -> None: X_train_tensor, y_train_tensor, self.use_best_model = to_tensor(X), to_tensor(y), use_best_model self.train_losses, self.test_losses, self.weights_history = [], [], [] self.fitted = False if type(self.use_best_model) != bool: raise ValueError(f"use_best_model parameter should be bool, passed {self.use_best_model}") self.is_eval_set = True if eval_set != None else False if self.is_eval_set: X_test_tensor = to_tensor(eval_set[0]) y_test_tensor = to_tensor(eval_set[1]) n_features = X_train_tensor.shape[1] self.weights = to_tensor(weights) if weights != None else torch.tensor( [1 / n_features for i in range(n_features)] ) self.weights.requires_grad_() self.optimizer = torch.optim.Adam([self.weights], self.learning_rate) for i in range(self.n_opt_rounds): # clear gradient self.optimizer.zero_grad() # get train set error train_loss = self.__opt_func(X_segment=X_train_tensor, y_segment=y_train_tensor) # append train loss to train loss history self.train_losses.append(train_loss.item()) # create a train part of fit information train_output = f"train: {train_loss.item()}" # optimization of weights according to the function train_loss.backward() # create a test part of fit information test_output = "" if self.is_eval_set: # get test set error test_loss = self.__opt_func(X_segment=X_test_tensor, y_segment=y_test_tensor) # append test loss to test loss history self.test_losses.append(test_loss.item()) test_output = f"test: {test_loss.item()}" if self.verbose != 0: print(f"round: {i}", train_output, test_output) self.weights_history.append(self.weights) self.optimizer.step() self.fitted = True # Get a tensor of weights after training def get_weights(self) -> np.ndarray: if not self.fitted: raise AttributeError("Model has not been fitted yet. Use fit() method first.") if self.use_best_model: return self.weights_history[self.test_losses.index(min(self.test_losses))].detach().numpy() return self.weights_history[self.train_losses.index(min(self.train_losses))].detach().numpy() # Predict on on passed data with current weights def predict(self, X) -> np.ndarray: if not self.fitted: raise AttributeError("Model has not been fitted yet. Use fit() method first.") X = to_tensor(X) sum = torch.sum(X * self.get_weights(), 1) return sum.detach().numpy() def score(self, X_train, y_test): if not self.fitted: raise AttributeError("Model has not been fitted yet. Use fit() method first.") X_train_tensor, y_test_tensor = to_tensor(X_train), to_tensor(y_test) y_pred = self.predict(X_train_tensor) return self.loss_function(y_test_tensor, y_pred).item() def plot(self) -> None: if not self.fitted: raise AttributeError("Model has not been fitted yet. Use fit() method first.") plt.plot([i for i in range(self.n_opt_rounds)], self.train_losses) if self.is_eval_set: plt.plot([i for i in range(self.n_opt_rounds)], self.test_losses) plt.show() return # Function for weight optimization def __opt_func(self, X_segment, y_segment): y_true = y_segment y_pred = self.__inner_predict(X_segment) return self.loss_function(y_true, y_pred) def __inner_predict(self, X) -> torch.tensor: sum = torch.sum(X * self.weights, 1) return sum class WaveClassifier(WaveRegressor): """ Weighted average classification model """ def __init__(self, n_opt_rounds: int = 1000, learning_rate: float = 0.01, loss_function=MSE, verbose: int = 1, threshold: float = 0.5): super().__init__(n_opt_rounds, learning_rate, loss_function, verbose) self.threshold = threshold # Predict on on passed data with current weights def predict_proba(self, X: [pd.DataFrame, pd.Series, np.array, torch.Tensor, list]) -> np.ndarray: if not self.fitted: raise AttributeError("Model has not been fitted yet. Use fit() method first.") X = to_tensor(X) proba = (1 / (1 + torch.exp(-torch.sum(X * self.weights, 1)))).detach().numpy().reshape(-1, 1) inverse_proba = -proba + 1 return np.hstack([inverse_proba, proba]) def predict(self, X: [pd.DataFrame, pd.Series, np.array, torch.Tensor, list]) -> np.ndarray: y_pred = self.predict_proba(X)[:, 1] y_pred[y_pred < self.threshold] = 0 y_pred[y_pred >= self.threshold] = 1 return y_pred class WaveTransformer(Wave): """ Weighted average transformer, which performs a transformation over each feature separately """ def __init__(self, n_opt_rounds: int = 1000, learning_rate: float = 0.01, loss_function=MSE, regression: bool = True, verbose: int = 1, n_folds: int = 4, random_state: int = None, shuffle: bool = False): super().__init__(n_opt_rounds, learning_rate, loss_function, verbose) self.regression = regression self.shuffle = shuffle self.n_folds = n_folds self.random_state = random_state if n_folds < 2: raise ValueError(f"n_folds should belong to a [2;inf) interval, passed {self.verbose}") if n_folds < 0: raise ValueError(f"random_state should belong to a [0;inf) interval, passed {self.verbose}") self.n_folds = n_folds self.shuffle = shuffle self.random_state = int(random_state) if self.shuffle else None def __opt_func(self, X_segment, y_segment, weights): return self.loss_function(X_segment * weights[0] + weights[1], y_segment) def fit(self, X: [pd.DataFrame, pd.Series, np.array, torch.Tensor, list], y: [pd.DataFrame, pd.Series, np.array, torch.Tensor, list]): X_train_tensor, y_train_tensor = to_tensor(X), to_tensor(y) self.n_features = X_train_tensor.shape[1] self.weights = [] self.fitted = False for i in range(self.n_features): feature_weights = torch.tensor([]) X = X_train_tensor[:, i] kf = KFold(n_splits=self.n_folds, random_state=self.random_state, shuffle=self.shuffle) print("\nFeature:", i) f = 0 for train_index, test_index in kf.split(X): fold_weights = torch.tensor([1.0, 0.0]) fold_weights.requires_grad_() self.optimizer = torch.optim.Adam([fold_weights], self.learning_rate) X_train, X_test = X[train_index], X[test_index] y_train, y_test = y_train_tensor[train_index], y_train_tensor[test_index] for j in range(self.n_opt_rounds): self.optimizer.zero_grad() # get train set error train_loss = self.__opt_func(X_segment=X_train, y_segment=y_train, weights=fold_weights) # create a train part of fit information train_output = f"train: {train_loss.item()}" # optimization of weights according to the function if self.verbose >= 1: print("round:", j, train_output) train_loss.backward() self.optimizer.step() if self.verbose in [1, 2]: print(f"\tFold {f}:", self.__opt_func(X_segment=X_test, y_segment=y_test, weights=fold_weights).item()) f += 1 feature_weights = torch.cat([feature_weights, fold_weights]) feature_weights = feature_weights.reshape(-1, 2) self.weights.append(feature_weights) self.fitted = True return self def get_weights(self) -> np.ndarray: if not self.fitted: raise AttributeError("Model has not been fitted yet. Use fit() method first.") return torch.tensor(self.weights).detach().numpy() def transform(self, X) -> np.ndarray: X_tensor = to_tensor(X) if not self.fitted: raise AttributeError("Model has not been fitted yet. Use fit() method first.") for i in range(self.n_features): feature = X_tensor[:, i] w = self.weights[i].mean(dim=0) if self.regression: X_tensor[:, i] = feature * w[0] + w[1] else: (1 / (1 + torch.exp(-(feature * w[0] + w[1])))) return X_tensor.detach().numpy() def fit_transform(self, X: [pd.DataFrame, pd.Series, np.array, torch.Tensor, list], y: [pd.DataFrame, pd.Series, np.array, torch.Tensor, list]) -> np.ndarray: self.fit(X, y) return self.transform(X) class WaveEncoder: """ Categorical feature incoding model """ def __init__(self, encodeing_type: str, strategy: str = "mean"): self.encoding_types = ["catboost", "label", "target", "count"] self.encoding_type = encodeing_type.lower() if self.encoding_type not in self.encoding_types: raise ValueError(f"Given encodint type {self.encoding_type}, allowed {', '.join(self.encoding_types)}") self.strategy = strategy if self.strategy != None: self.strategies = {"mean": np.mean, "median": np.median, "sum": np.sum} self.strategy = self.strategy.lower() if self.strategy not in list(self.strategies.keys()): raise ValueError( f"Given strategy type {self.strategy}, allowed {', '.join(list(self.strategies.keys()))}") self.fitted = False def fit(self, X: [pd.DataFrame, pd.Series, np.array, torch.Tensor, list], y: [pd.DataFrame, pd.Series, np.array, torch.Tensor, list] = None, regression=True, cat_features=None) -> None: self.fitted = False self.regression = regression self.X = to_array(X) self.y = to_array(y) if type(y) != None else None self.n_features = X.shape[1] self.cat_features = cat_features if self.cat_features == None: self.cat_features = [i for i in range(self.n_features)] if self.encoding_type == "count": self.__count(self.X) if self.encoding_type == "target": self.__target(self.X, self.y) if self.encoding_type == "label": self.__label(self.X) def __count(self, X: np.ndarray) -> None: self.mappers = [] for i in range(len(self.cat_features)): counts = dict() feature = X[:, self.cat_features[i]] uniques = np.unique(feature) for unique in uniques: counts[unique] = len(feature[feature == unique]) self.mappers.append(counts) def __target(self, X: np.ndarray, y: np.ndarray) -> None: X_labeled = self.__label(X) if self.regression: self.mappers = [] for i in range(len(self.cat_features)): counts = dict() feature = X_labeled[:, self.cat_features[i]] uniques = np.unique(feature) for unique in uniques: counts[unique] = self.strategies.get(self.strategy)(y[feature == unique]) self.mappers.append(counts) else: self.mappers = [] for i in range(len(self.cat_features)): counts = dict() feature = X[:, self.cat_features[i]] uniques = np.unique(feature) for unique in uniques: counts[unique] = y[feature == unique].mean() self.mappers.append(counts) def __label(self, X: np.ndarray) -> None: self.mappers = [] for i in range(len(self.cat_features)): counts = dict() feature = X[:, self.cat_features[i]] uniques =
np.unique(feature)
numpy.unique
#!/usr/bin/env python # -*- coding: utf-8 -*- import time from typing import List, Optional, Tuple import cv2 import numpy as np from scipy.interpolate import griddata from line_mapper import LineMapper from digit_recognizer_2 import create_recognizer from solver import solve from sudoku.solver import load_image, cut_out_field, find_corners, perspective_transform_contour, \ extract_subcontour from utils import show_image, wait_windows, scale_image_target_height _GRID_LINES = 10 _VIZUALIZE = True # image = load_image("../images/big-numbers.jpg") # image = load_image("../images/slightly_blurry.jpg") # image = load_image("../images/sudoku.jpg") # image = load_image("../images/sudoku-rotated.jpg") # image = load_image("../images/sudoku-1.jpg") # image = load_image("../images/sudoku-2.jpg") # image = load_image("../images/sudoku-2-rotated.jpg") image = load_image("../images/warped.jpg") # image = load_image("tmp/003.jpg") # if _VIZUALIZE: # show_image("orig", image) image = scale_image_target_height(image, 640) t = time.time() # Extract the field, its contour and corners. field, field_contour, _, perspective_transform_matrix = cut_out_field(image) field_gray = cv2.cvtColor(field.image, cv2.COLOR_BGR2GRAY) if _VIZUALIZE: show_image("field_gray", field_gray) # Adjust brightness. field_gray_closed = cv2.morphologyEx( field_gray, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))) field_gray_adj = np.divide(field_gray, field_gray_closed) field_gray = cv2.normalize(field_gray_adj, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1) if _VIZUALIZE: show_image("field_gray adj", field_gray) # Binarize the field. bin_field = cv2.adaptiveThreshold( field_gray, maxValue=255, adaptiveMethod=cv2.ADAPTIVE_THRESH_MEAN_C, thresholdType=cv2.THRESH_BINARY_INV, blockSize=17, C=11) if _VIZUALIZE: show_image("bin_field", bin_field) # Find and remove numbers. Look for them on the binary image, erase from the grayscale image. cell_side = field.side // 9 contours, _ = cv2.findContours(bin_field, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE) for contour in contours: x, y, w, h = cv2.boundingRect(contour) if w > cell_side * 0.8 or w < 0.2 * cell_side: continue if h > cell_side * 0.9 or h < 0.2 * cell_side: continue # cv2.rectangle(field_viz, (x, y), (x + w, y + h), color=(0, 255, 0), thickness=-1) # cv2.rectangle(field_viz, (x, y), (x + w, y + h), color=(0, 0, 0), thickness=-1) # cv2.drawContours(field_viz, [contour], 0, color=(0, 255, 0), thickness=-1) cv2.drawContours(field_gray, [contour], 0, color=255, thickness=2) cv2.drawContours(field_gray, [contour], 0, color=255, thickness=-1) # field_gray = cv2.GaussianBlur(field_gray, (7, 7), 0) if _VIZUALIZE: show_image("field_gray no numbers", field_gray) # Apply the Sobel operator of 2nd degree to both directions. grad_x = cv2.Sobel(field_gray, ddepth=cv2.CV_64F, dx=2, dy=0, ksize=7, scale=1, delta=0, borderType=cv2.BORDER_DEFAULT) np.clip(grad_x, a_min=0, a_max=grad_x.max(), out=grad_x) grad_x = cv2.normalize(grad_x, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1) grad_y = cv2.Sobel(field_gray, ddepth=cv2.CV_64F, dx=0, dy=2, ksize=7, scale=1, delta=0, borderType=cv2.BORDER_DEFAULT) np.clip(grad_y, a_min=0, a_max=grad_y.max(), out=grad_y) grad_y = cv2.normalize(grad_y, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1) if _VIZUALIZE: show_image("grad_x", grad_x) show_image("grad_y", grad_y) # TODO adaptive window # TODO fast-and-simple first, fallback on more robust after? # Outline grid lines. # The horizontal one, on the left border. The vertical one, on the top border. def get_average_y_over_window(image, win_x: int, win_y: int, win_w: int, win_h: int) -> Optional[int]: window = image[win_y:win_y + win_h, win_x:win_x + win_w] xs, ys = np.meshgrid(np.arange(window.shape[1]), np.arange(window.shape[0])) xs_dist_weight = np.exp2(xs) pure_white = np.sum(window.shape[0] * window.shape[1] * 255 * xs_dist_weight) weighted_window = window * xs_dist_weight current_white = np.sum(weighted_window) frac = current_white / pure_white if frac < 0.0001: return None avg = np.sum(ys * weighted_window) / current_white return int(round(avg)) def detect_line(image, start_x, start_y, win_h, win_w, right_limit) -> Optional[List[Tuple[int, int]]]: """ Detects a horizontal white line. """ result: List[Tuple[int, int]] = [] win_x = start_x win_y = start_y - win_h // 2 lost_line = False while win_x < right_limit: current_win_w = win_w if win_x + current_win_w >= right_limit: break # Commented-out note: # Alternatively, try to use a smaller window. # However, it seems just stopping works better with line extrapolation later. # if win_x + current_win_w > right_limit: # current_win_w = right_limit - win_x # if current_win_w < 3: # break avg = get_average_y_over_window(image, win_x, win_y, current_win_w, win_h) if avg is None: print("EXPAND") win_y -= win_h // 2 avg = get_average_y_over_window(image, win_x, win_y, current_win_w, win_h * 2) if avg is None: print("LOST") lost_line = True win_x = win_x + current_win_w win_y = win_y + (avg - win_h // 2) result.append((win_x, win_y + win_h // 2)) if not lost_line: return result else: return None def detect_lines(work_image: np.ndarray, border_mapper: LineMapper, left_limit: int, right_limit: int) -> List[List[Tuple[int, int]]]: work_image_blur = cv2.GaussianBlur(work_image, (1, 25), 0) offset = cell_side // 6 # offset = 0 step = 1 win_w = cell_side // 4 detected_windows = [] for y in range(left_limit, right_limit + 1, step): x = border_mapper.map_x(y) + offset w = work_image_blur[y - 3:y + 3, x:x + win_w] pure_white = w.shape[0] * w.shape[1] * 255 current_white = np.sum(w) frac = current_white / pure_white if frac > 0.01: detected_windows.append((x, y, frac)) assert len(detected_windows) >= _GRID_LINES cluster_starts = [0] for i in range(1, len(detected_windows)): if detected_windows[i][1] - detected_windows[i - 1][1] > cell_side // 6: # print("---") cluster_starts.append(i) # print(detected_windows[i]) # print(cluster_starts) assert len(cluster_starts) == _GRID_LINES win_h = 5 win_w = cell_side // 4 result = [] for i in range(len(cluster_starts)): if i < len(cluster_starts) - 1: windows = detected_windows[cluster_starts[i]:cluster_starts[i + 1]] else: windows = detected_windows[cluster_starts[i]:] x, y, _ = max(windows, key=lambda w: w[2]) # if _VIZUALIZE: # cv2.rectangle(viz, (x, y - 3), (x + win_w, y + 3), color=(0, 255, 0), thickness=1) line = detect_line(work_image, x, y, win_h, win_w, right_limit) # Extrapolate the beginning and the end. points_to_fit = 3 xs = [p[0] for p in line[:points_to_fit + 1]] ys = [p[1] for p in line[:points_to_fit + 1]] a, b = np.polyfit(xs, ys, 1) x = 0 y = int(round(a * x + b)) line.insert(0, (x, y)) xs = [p[0] for p in line[-points_to_fit:]] ys = [p[1] for p in line[-points_to_fit:]] a, b = np.polyfit(xs, ys, 1) x = field_viz.shape[1] y = int(round(a * x + b)) line.append((x, y)) result.append(line) # break return result # Find the left and the top borders. # Recalculate the contour and the corners on the perspective transformed image. transformed_field_contour = perspective_transform_contour(field_contour, perspective_transform_matrix) top_left_idx, top_right_idx, bottom_right_idx, bottom_left_idx = find_corners(transformed_field_contour) # In the contour, points go counterclockwise. # Top border: top right -> top left # Right border: bottom right -> top right # Bottom border: bottom left -> bottom right # Left border: top left -> bottom left top_border = extract_subcontour(transformed_field_contour, top_right_idx, top_left_idx) # Change points order so they go from the top left corner. top_border = np.flip(top_border, axis=0) # Swap x and y. top_border = np.flip(top_border, axis=1) # right_border = extract_border(bottom_right_idx, top_right_idx) # bottom_border = extract_border(bottom_left_idx, bottom_right_idx) left_border = extract_subcontour(transformed_field_contour, top_left_idx, bottom_left_idx) field_viz = cv2.cvtColor(field_gray, cv2.COLOR_GRAY2BGR) cv2.rotate(field_viz, cv2.ROTATE_90_COUNTERCLOCKWISE, dst=field_viz) top_border_mapper = LineMapper(top_border) vertical_lines = detect_lines( cv2.rotate(grad_x, cv2.ROTATE_90_COUNTERCLOCKWISE), top_border_mapper, field.margin, field.margin + field.side ) assert len(vertical_lines) == _GRID_LINES vertical_lines_masks = np.zeros(shape=(_GRID_LINES, field.image.shape[0], field.image.shape[1]), dtype=np.uint8) for i, line in enumerate(vertical_lines): poly = [np.array(line, np.int32)] # if _VIZUALIZE: # for x, y in line: # cv2.circle(field_viz, (x, y), 0, (0, 0, 255), 2) # cv2.polylines(field_viz, poly, isClosed=False, color=(0, 0, 255), thickness=1) # Invert the index: the first in the rotated image is the last by the normal order. inv_i = _GRID_LINES - i - 1 cv2.polylines(vertical_lines_masks[inv_i], poly, isClosed=False, color=255, thickness=1) # TODO rotate lines before drawing vertical_lines_masks = np.rot90(vertical_lines_masks, k=-1, axes=(1, 2)) if _VIZUALIZE: cv2.rotate(field_viz, cv2.ROTATE_90_CLOCKWISE, dst=field_viz) left_border_mapper = LineMapper(left_border) horizontal_lines = detect_lines(grad_y, left_border_mapper, field.margin, field.margin + field.side) assert len(horizontal_lines) == _GRID_LINES horizontal_lines_masks = np.zeros(shape=(_GRID_LINES, field.image.shape[0], field.image.shape[1]), dtype=np.uint8) for i, line in enumerate(horizontal_lines): poly = [np.array(line, np.int32)] # if _VIZUALIZE: # for x, y in line: # cv2.circle(field_viz, (x, y), 0, (255, 255, 0), 2) # cv2.polylines(field_viz, poly, isClosed=False, color=(255, 255, 0), thickness=1) cv2.polylines(horizontal_lines_masks[i], poly, isClosed=False, color=255, thickness=1) # # TODO ? intersect one horizontal with all vertical intersection = np.zeros(shape=(field.image.shape[0], field.image.shape[1]), dtype=np.uint8) grid_points = np.zeros(shape=(_GRID_LINES, _GRID_LINES, 2), dtype=np.uint32) src_points = [] dst_points = [] for i_row in range(_GRID_LINES): for i_col in range(_GRID_LINES): np.bitwise_and(horizontal_lines_masks[i_row], vertical_lines_masks[i_col], out=intersection) intersection_points =
np.argwhere(intersection == 255)
numpy.argwhere
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT license. # # Helper methods to generate training, validation and test splits from the UCI HAR dataset. # Each split consists of a separate set of users. # Reference : https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition import numpy as np import os def generateIndicesForSplits(path='./HAR/UCI HAR Dataset/train/subject_train.txt'): f = open(path) subjects = [] for line in f: subject = line.strip().split() subjects.append(int(subject[0])) subjects = np.array(subjects) # get unique subjects numSubjects = np.unique(subjects) # shuffle amongst train subjects so that difficult/easy subjects spread in both val and train np.random.shuffle(numSubjects) l = len(numSubjects) splitRatio = 0.1 valSplit = int(l * splitRatio + 1) valSubjects = numSubjects[:valSplit] trainSubjects = numSubjects[valSplit:] trainSubjectIndices = [] valSubjectIndices = [] for i, subject in enumerate(subjects): if subject in trainSubjects: trainSubjectIndices.append(i) elif subject in valSubjects: valSubjectIndices.append(i) else: raise Exception("some bug in your code") # assert that train/val different for x in trainSubjectIndices: assert x not in valSubjectIndices trainSubjectIndices = np.array(trainSubjectIndices) valSubjectIndices = np.array(valSubjectIndices) # shuffle more, so that readings not grouped by a subject # therefore, no need to shuffle after slicing from read dataset, as we are shuffling here idx = np.arange(len(trainSubjectIndices)) np.random.shuffle(idx) trainSubjectIndices = trainSubjectIndices[idx] idx = np.arange(len(valSubjectIndices)) np.random.shuffle(idx) valSubjectIndices = valSubjectIndices[idx] assert len(trainSubjectIndices) + len(valSubjectIndices) == len(subjects) return trainSubjectIndices, valSubjectIndices def readData(extractedDir): INPUT_SIGNAL_TYPES = [ "body_acc_x_", "body_acc_y_", "body_acc_z_", "body_gyro_x_", "body_gyro_y_", "body_gyro_z_", "total_acc_x_", "total_acc_y_", "total_acc_z_" ] # Output classes to learn how to classify LABELS = [ "WALKING", "WALKING_UPSTAIRS", "WALKING_DOWNSTAIRS", "SITTING", "STANDING", "LAYING" ] DATASET_PATH = extractedDir + "/UCI HAR Dataset/" TRAIN = "train/" TEST = "test/" # Load "X" (the neural network's training and testing inputs) def load_X(X_signals_paths): X_signals = [] for signal_type_path in X_signals_paths: file = open(signal_type_path, 'r') # Read dataset from disk, dealing with text files' syntax X_signals.append( [np.array(serie, dtype=np.float32) for serie in [ row.replace(' ', ' ').strip().split(' ') for row in file ]] ) file.close() return np.transpose(np.array(X_signals), (1, 2, 0)) X_train_signals_paths = [ DATASET_PATH + TRAIN + "Inertial Signals/" + signal + "train.txt" for signal in INPUT_SIGNAL_TYPES ] X_test_signals_paths = [ DATASET_PATH + TEST + "Inertial Signals/" + signal + "test.txt" for signal in INPUT_SIGNAL_TYPES ] x_train_val_combined = load_X(X_train_signals_paths) x_test = load_X(X_test_signals_paths) # Load "y" (the neural network's training and testing outputs) def load_y(y_path): file = open(y_path, 'r') # Read dataset from disk, dealing with text file's syntax y_ = np.array( [elem for elem in [ row.replace(' ', ' ').strip().split(' ') for row in file ]], dtype=np.int32 ) file.close() # Substract 1 to each output class for friendly 0-based indexing return y_ - 1 y_train_path = DATASET_PATH + TRAIN + "y_train.txt" y_test_path = DATASET_PATH + TEST + "y_test.txt" y_train_val_combined = load_y(y_train_path) y_test = load_y(y_test_path) return x_train_val_combined, y_train_val_combined, x_test, y_test def one_hot(y, numOutput): y =
np.reshape(y, [-1])
numpy.reshape
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Simple peak fitting utility with PyMCA/SILX =========================================== Current fitting backends: PyMca_ or SILX_ .. _PyMca: https://github.com/vasole/pymca .. _SILX: https://github.com/silx-kit/silx """ from sloth.gui.jupyx import run_from_ipython import os import numpy as np HAS_SILX = False try: from silx.math.fit import fittheories, bgtheories from silx.math.fit.fitmanager import FitManager HAS_SILX = True except ImportError: pass HAS_PYMCA = False HAS_PYMCA5 = False try: from PyMca5.PyMcaMath.fitting import Specfit, SpecfitFunctions HAS_PYMCA5 = True except ImportError: try: from PyMca import Specfit, SpecfitFunctions HAS_PYMCA = True except ImportError: from sloth import NullClass Specfit = NullClass SpecfitFunctions = NullClass pass IN_IPYTHON = run_from_ipython() ############## # SILX BASED # ############## def fit_silx(x, y, theory=None, bkg=None): """fit a peak with using silx library Parameters ========== x, y: data 1D arrays theory : string [None] available theories: +---------------------+ | Gaussians | | Lorentz | | Area Gaussians | | Area Lorentz | | Pseudo-Voigt Line | | Area Pseudo-Voigt | | Split Gaussian | | Split Lorentz | | Split Pseudo-Voigt | | Step Down | | Step Up | | Slit | | Atan | | Hypermet | | Degree 2 Polynomial | | Degree 3 Polynomial | | Degree 4 Polynomial | | Degree 5 Polynomial | +---------------------+ bkg : string [None] available bkg theories: +---------------------+ | No Background | | Constant | | Linear | | Strip | | Snip | | Degree 2 Polynomial | | Degree 3 Polynomial | | Degree 4 Polynomial | | Degree 5 Polynomial | +---------------------+ Returns ======= yfit : fit array like x """ fit = FitManager() fit.loadtheories(fittheories) fit.loadbgtheories(bgtheories) fit.setdata(x=x, y=y) yfit = y _kwerror = False if (theory is None): print('fit theory not given! choose one of the following:') print('\n'.join(map(str, fit.theories.keys()))) _kwerror = True if (bkg is None): print('fit background not given! choose one of the following:') print('\n'.join(map(str, fit.bgtheories.keys()))) _kwerror = True if _kwerror: return yfit fit.settheory(theory) fit.setbackground(bkg) try: fit.estimate() fit.runfit() yfit = fit.gendata() except Exception: print('ERROR: fit_silx FAILED!!!') #print('FWHM: {0}'.format(fwhm(x,yfit,method='bin'))) return yfit ############### # PYMCA BASED # ############### def fit_splitpvoigt(x, y, dy=False, theory='Split Pseudo-Voigt', bkg='Constant', conf=None, npeaks=1, show_infos=True, show_res=True, plot=True, **kws): """simple wrapper to PyMca.Specfit the goal is to fit (automagically) a set of 1D data (x,y) with an asymmetric PseudoVoigt (splitpvoigt) function plus a constant background Parameters ---------- x, y : data arrays dy : boolean or float, False error bar on y. If dy==True: dy=np.sqrt(y) or give an explicit array theory : str, ['Split Pseudo-Voigt', 'Gaussians', 'Lorentz', 'Area Gaussians', 'Area Lorentz', 'Pseudo-Voigt Line', 'Area Pseudo-Voigt', 'Split Gaussian', 'Split Lorentz', 'Step Down', 'Step Up', 'Slit', 'Atan', 'Hypermet', 'Periodic Gaussians'] bkg : str, ['Constant', 'No Background', 'Linear', 'Internal'] conf : dictionary, None to tune Specfit configuration, default: 'FwhmPoints' : int(len(y)/5. 'Sensitivity' : 5. 'EtaFlag' : 1 (force eta between 0 and 1) 'WeightFlag' : 0 (do not weight by noise) 'AutoScaling' : 1 (auto scale y) 'AutoFwhm' : 1 (auto guess fwhm) npeaks : int, 1 limit the number of split-PseudoVoigt peaks to guess show_infos: boolean, True print information on the peakfit setup show_res : boolean, True print fit results to standard output plot : boolean, True plot data, fit and residual with PyMca (ScanWindow) Returns ------- PyMca.Specfit.Specfit, PyMca.ScanWindow.ScanWindow (None if plot=False) """ # default fit configuration fwhmpts_guess = int(len(y) / 10.) # guess 1/10 of points resides in fwhm iflat = int(len(y) / 5.) # guess 1/5 of points are flat or out of peak sens_guess =
np.mean(y[:iflat])
numpy.mean
import numpy as np from qtpy import QtGui import pyqtgraph as pg from __code._utilities.table_handler import TableHandler from __code.panoramic_stitching_for_tof.get import Get COLOR_LOCK = QtGui.QColor(62, 13, 244, 100) COLOR_UNLOCK = QtGui.QColor(255, 0, 0, 100) COLOR_LINE_SEGMENT = QtGui.QColor(255, 0, 255) LINE_SEGMENT_FONT = QtGui.QFont("Arial", 15) ROI_WIDTH, ROI_HEIGHT = 50, 50 HORIZONTAL_MARGIN = 100 VERTICAL_MARGIN = 100 class ImageHandler: def __init__(self, parent=None): self.parent = parent def update_contour_plot(self): if self.parent.contour_image_roi_id: self.parent.ui.image_view.removeItem(self.parent.contour_image_roi_id) o_table = TableHandler(table_ui=self.parent.ui.tableWidget) row_selected = o_table.get_row_selected() name_of_file_selected = o_table.get_item_str_from_cell(row=row_selected, column=0) offset_dictionary = self.parent.offset_dictionary roi = {'x0': offset_dictionary[name_of_file_selected]['xoffset'], 'y0': offset_dictionary[name_of_file_selected]['yoffset']} if row_selected == 0: _color = COLOR_LOCK else: _color = COLOR_UNLOCK if roi: _pen = QtGui.QPen() _pen.setColor(_color) _pen.setWidthF(0.01) _roi_id = pg.ROI([roi['x0'] + HORIZONTAL_MARGIN, roi['y0'] + VERTICAL_MARGIN], [self.parent.image_width, self.parent.image_height], pen=_pen, scaleSnap=True, movable=False) self.parent.ui.image_view.addItem(_roi_id) self.parent.contour_image_roi_id = _roi_id def update_current_panoramic_image(self): _view = self.parent.ui.image_view.getView() _view_box = _view.getViewBox() _state = _view_box.getState() first_update = False if self.parent.histogram_level is None: first_update = True _histo_widget = self.parent.ui.image_view.getHistogramWidget() self.parent.histogram_level = _histo_widget.getLevels() # data_dictionary = self.parent.data_dictionary data_dictionary = self.parent.coarse_images_dictionary offset_dictionary = self.parent.offset_dictionary max_yoffset, max_xoffset = self.get_max_offset() image_height = self.parent.image_height image_width = self.parent.image_width _color = None panoramic_image = None o_get = Get(parent=self.parent) list_folders = o_get.get_list_folders_according_to_offset_table() for _folder_index, _folder in enumerate(list_folders): if _folder_index == 0: panoramic_image = np.zeros((max_yoffset + image_height + 2*VERTICAL_MARGIN, max_xoffset + image_width + 2*HORIZONTAL_MARGIN)) _image = data_dictionary[_folder].data is_visible = offset_dictionary[_folder]['visible'] if not is_visible: continue if _folder_index == 0: panoramic_image[VERTICAL_MARGIN:image_height+VERTICAL_MARGIN, HORIZONTAL_MARGIN:image_width+HORIZONTAL_MARGIN] = _image else: xoffset = offset_dictionary[_folder]['xoffset'] yoffset = offset_dictionary[_folder]['yoffset'] panoramic_image[yoffset+VERTICAL_MARGIN: yoffset+image_height+VERTICAL_MARGIN, xoffset+HORIZONTAL_MARGIN: xoffset+image_width+HORIZONTAL_MARGIN] = \ _image self.parent.panoramic_images = panoramic_image _image = np.transpose(panoramic_image) # _image = self._clean_image(_image) self.parent.ui.image_view.setImage(_image) self.parent.current_live_image = _image _view_box.setState(_state) if not first_update: _histo_widget.setLevels(self.parent.histogram_level[0], self.parent.histogram_level[1]) def get_max_offset(self): offset_dictionary = self.parent.offset_dictionary list_xoffset = [offset_dictionary[_key]['xoffset'] for _key in offset_dictionary.keys()] list_yoffset = [offset_dictionary[_key]['yoffset'] for _key in offset_dictionary.keys()] return np.int(np.max(list_yoffset)), np.int(np.max(list_xoffset)) def update_from_to_roi(self, state=False): if self.parent.from_roi_id: self.parent.ui.image_view.removeItem(self.parent.from_roi_id) self.parent.ui.image_view.removeItem(self.parent.to_roi_id) self.parent.ui.image_view.removeItem(self.parent.from_label_id) self.parent.ui.image_view.removeItem(self.parent.to_label_id) self.parent.ui.image_view.removeItem(self.parent.from_roi_cross_id) self.parent.ui.image_view.removeItem(self.parent.to_roi_cross_id) if state: from_roi = self.parent.from_roi x = from_roi['x'] y = from_roi['y'] self.parent.from_roi_id = pg.ROI([x, y], [ROI_WIDTH, ROI_HEIGHT], scaleSnap=True) self.parent.ui.image_view.addItem(self.parent.from_roi_id) self.parent.from_roi_id.sigRegionChanged.connect(self.parent.from_roi_box_changed) to_roi = self.parent.to_roi x = to_roi['x'] y = to_roi['y'] self.parent.to_roi_id = pg.ROI([x, y], [ROI_WIDTH, ROI_HEIGHT], scaleSnap=True) self.parent.ui.image_view.addItem(self.parent.to_roi_id) self.parent.to_roi_id.sigRegionChanged.connect(self.parent.to_roi_box_changed) self.update_from_label() self.update_from_cross_line() self.update_to_label() self.update_to_cross_line() def update_validity_of_from_to_button(self): # check that from ROI is inside the selected image from_roi = self.parent.from_roi x = from_roi['x'] y = from_roi['y'] o_table = TableHandler(table_ui=self.parent.ui.tableWidget) row_selected = o_table.get_row_selected() name_of_file_selected = o_table.get_item_str_from_cell(row=row_selected, column=0) offset_dictionary = self.parent.offset_dictionary xoffset_of_selected_image = offset_dictionary[name_of_file_selected]['xoffset'] + HORIZONTAL_MARGIN yoffset_of_selected_image = offset_dictionary[name_of_file_selected]['yoffset'] + VERTICAL_MARGIN if (x < xoffset_of_selected_image) or (y < yoffset_of_selected_image) or \ (x > xoffset_of_selected_image + self.parent.image_width) or \ (y > yoffset_of_selected_image + self.parent.image_height): from_to_button_status = False from_to_error_label = True else: from_to_button_status = True from_to_error_label = False self.parent.ui.from_to_button.setEnabled(from_to_button_status) self.parent.ui.from_to_error_label.setVisible(from_to_error_label) def update_from_to_line_label_changed(self): from_to_roi = self.parent.from_to_roi x0 = from_to_roi['x0'] y0 = from_to_roi['y0'] x1 = from_to_roi['x1'] y1 = from_to_roi['y1'] self.parent.from_label_id.setPos(x1, y1) self.parent.to_label_id.setPos(x0, y0) def update_cross_line(self, roi_cross_id=None, roi=None): if roi_cross_id: self.parent.ui.image_view.removeItem(roi_cross_id) pos = [] adj = [] x = roi['x'] y = roi['y'] # vertical guide pos.append([x + ROI_WIDTH / 2, y - ROI_HEIGHT / 2]) pos.append([x + ROI_WIDTH / 2, y + ROI_HEIGHT + ROI_HEIGHT / 2]) adj.append([0, 1]) # horizontal guide pos.append([x - ROI_WIDTH / 2, y + ROI_HEIGHT / 2]) pos.append([x + ROI_WIDTH + ROI_WIDTH / 2, y + ROI_HEIGHT / 2]) adj.append([2, 3]) pos = np.array(pos) adj =
np.array(adj)
numpy.array
""" Generate figures for the DeepCytometer paper for v7 of the pipeline. Partly deprecated by klf14_b6ntac_exp_0110_paper_figures_v8.py: * Some figures have been updated to have v8 of the pipeline in the paper. Code cannibalised from: * klf14_b6ntac_exp_0097_full_slide_pipeline_v7.py """ """ This file is part of Cytometer Copyright 2021 Medical Research Council SPDX-License-Identifier: Apache-2.0 Author: <NAME> <<EMAIL>> """ # script name to identify this experiment experiment_id = 'klf14_b6ntac_exp_0099_paper_figures' # cross-platform home directory from pathlib import Path home = str(Path.home()) import os import sys sys.path.extend([os.path.join(home, 'Software/cytometer')]) # json_annotation_files_dict here needs to have the same files as in # klf14_b6ntac_exp_0098_full_slide_size_analysis_v7.py # SQWAT: list of annotation files json_annotation_files_dict = {} json_annotation_files_dict['sqwat'] = [ 'KLF14-B6NTAC 36.1d PAT 99-16 C1 - 2016-02-11 11.48.31.json', 'KLF14-B6NTAC-MAT-16.2d 214-16 C1 - 2016-02-17 16.02.46.json', 'KLF14-B6NTAC-MAT-17.1a 44-16 C1 - 2016-02-01 11.14.17.json', 'KLF14-B6NTAC-MAT-17.1e 48-16 C1 - 2016-02-01 16.27.05.json', 'KLF14-B6NTAC-MAT-18.2a 57-16 C1 - 2016-02-03 09.10.17.json', 'KLF14-B6NTAC-PAT-37.3c 414-16 C1 - 2016-03-15 17.15.41.json', 'KLF14-B6NTAC-MAT-18.1d 53-16 C1 - 2016-02-02 14.32.03.json', 'KLF14-B6NTAC-MAT-17.2b 65-16 C1 - 2016-02-04 10.24.22.json', 'KLF14-B6NTAC-MAT-17.2g 69-16 C1 - 2016-02-04 16.15.05.json', 'KLF14-B6NTAC 37.1a PAT 106-16 C1 - 2016-02-12 16.21.00.json', 'KLF14-B6NTAC-36.1b PAT 97-16 C1 - 2016-02-10 17.38.06.json', # 'KLF14-B6NTAC-PAT-37.2d 411-16 C1 - 2016-03-15 12.42.26.json', 'KLF14-B6NTAC-MAT-17.2a 64-16 C1 - 2016-02-04 09.17.52.json', 'KLF14-B6NTAC-MAT-16.2f 216-16 C1 - 2016-02-18 10.28.27.json', 'KLF14-B6NTAC-MAT-17.1d 47-16 C1 - 2016-02-01 15.25.53.json', 'KLF14-B6NTAC-MAT-16.2e 215-16 C1 - 2016-02-18 09.19.26.json', 'KLF14-B6NTAC 36.1g PAT 102-16 C1 - 2016-02-11 17.20.14.json', 'KLF14-B6NTAC-37.1g PAT 112-16 C1 - 2016-02-16 13.33.09.json', 'KLF14-B6NTAC-38.1e PAT 94-16 C1 - 2016-02-10 12.13.10.json', 'KLF14-B6NTAC-MAT-18.2d 60-16 C1 - 2016-02-03 13.13.57.json', 'KLF14-B6NTAC-MAT-18.2g 63-16 C1 - 2016-02-03 16.58.52.json', 'KLF14-B6NTAC-MAT-18.2f 62-16 C1 - 2016-02-03 15.46.15.json', 'KLF14-B6NTAC-MAT-18.1b 51-16 C1 - 2016-02-02 09.59.16.json', 'KLF14-B6NTAC-MAT-19.2c 220-16 C1 - 2016-02-18 17.03.38.json', 'KLF14-B6NTAC-MAT-18.1f 55-16 C1 - 2016-02-02 16.14.30.json', 'KLF14-B6NTAC-PAT-36.3b 412-16 C1 - 2016-03-15 14.37.55.json', 'KLF14-B6NTAC-MAT-16.2c 213-16 C1 - 2016-02-17 14.51.18.json', 'KLF14-B6NTAC-PAT-37.4a 417-16 C1 - 2016-03-16 15.55.32.json', 'KLF14-B6NTAC 36.1e PAT 100-16 C1 - 2016-02-11 14.06.56.json', 'KLF14-B6NTAC-MAT-18.1c 52-16 C1 - 2016-02-02 12.26.58.json', 'KLF14-B6NTAC-MAT-18.2b 58-16 C1 - 2016-02-03 11.10.52.json', 'KLF14-B6NTAC-36.1a PAT 96-16 C1 - 2016-02-10 16.12.38.json', 'KLF14-B6NTAC-PAT-39.2d 454-16 C1 - 2016-03-17 14.33.38.json', 'KLF14-B6NTAC 36.1c PAT 98-16 C1 - 2016-02-11 10.45.00.json', 'KLF14-B6NTAC-MAT-18.2e 61-16 C1 - 2016-02-03 14.19.35.json', 'KLF14-B6NTAC-MAT-19.2g 222-16 C1 - 2016-02-25 15.13.00.json', 'KLF14-B6NTAC-PAT-37.2a 406-16 C1 - 2016-03-14 12.01.56.json', 'KLF14-B6NTAC 36.1j PAT 105-16 C1 - 2016-02-12 14.33.33.json', 'KLF14-B6NTAC-37.1b PAT 107-16 C1 - 2016-02-15 11.43.31.json', 'KLF14-B6NTAC-MAT-17.1c 46-16 C1 - 2016-02-01 14.02.04.json', 'KLF14-B6NTAC-MAT-19.2f 217-16 C1 - 2016-02-18 11.48.16.json', 'KLF14-B6NTAC-MAT-17.2d 67-16 C1 - 2016-02-04 12.34.32.json', 'KLF14-B6NTAC-MAT-18.3c 218-16 C1 - 2016-02-18 13.12.09.json', 'KLF14-B6NTAC-PAT-37.3a 413-16 C1 - 2016-03-15 15.54.12.json', 'KLF14-B6NTAC-MAT-19.1a 56-16 C1 - 2016-02-02 17.23.31.json', 'KLF14-B6NTAC-37.1h PAT 113-16 C1 - 2016-02-16 15.14.09.json', 'KLF14-B6NTAC-MAT-18.3d 224-16 C1 - 2016-02-26 11.13.53.json', 'KLF14-B6NTAC-PAT-37.2g 415-16 C1 - 2016-03-16 11.47.52.json', 'KLF14-B6NTAC-37.1e PAT 110-16 C1 - 2016-02-15 17.33.11.json', 'KLF14-B6NTAC-MAT-17.2f 68-16 C1 - 2016-02-04 15.05.54.json', 'KLF14-B6NTAC 36.1h PAT 103-16 C1 - 2016-02-12 10.15.22.json', # 'KLF14-B6NTAC-PAT-39.1h 453-16 C1 - 2016-03-17 11.38.04.json', 'KLF14-B6NTAC-MAT-16.2b 212-16 C1 - 2016-02-17 12.49.00.json', 'KLF14-B6NTAC-MAT-17.1f 49-16 C1 - 2016-02-01 17.51.46.json', 'KLF14-B6NTAC-PAT-36.3d 416-16 C1 - 2016-03-16 14.44.11.json', 'KLF14-B6NTAC-MAT-16.2a 211-16 C1 - 2016-02-17 11.46.42.json', 'KLF14-B6NTAC-38.1f PAT 95-16 C1 - 2016-02-10 14.41.44.json', 'KLF14-B6NTAC-PAT-36.3a 409-16 C1 - 2016-03-15 10.18.46.json', 'KLF14-B6NTAC-MAT-19.2b 219-16 C1 - 2016-02-18 15.41.38.json', 'KLF14-B6NTAC-MAT-17.1b 45-16 C1 - 2016-02-01 12.23.50.json', 'KLF14-B6NTAC 36.1f PAT 101-16 C1 - 2016-02-11 15.23.06.json', 'KLF14-B6NTAC-MAT-18.1e 54-16 C1 - 2016-02-02 15.26.33.json', 'KLF14-B6NTAC-37.1d PAT 109-16 C1 - 2016-02-15 15.19.08.json', 'KLF14-B6NTAC-MAT-18.2c 59-16 C1 - 2016-02-03 11.56.52.json', 'KLF14-B6NTAC-PAT-37.2f 405-16 C1 - 2016-03-14 10.58.34.json', 'KLF14-B6NTAC-PAT-37.2e 408-16 C1 - 2016-03-14 16.23.30.json', 'KLF14-B6NTAC-MAT-19.2e 221-16 C1 - 2016-02-25 14.00.14.json', # 'KLF14-B6NTAC-PAT-37.2c 407-16 C1 - 2016-03-14 14.13.54.json', # 'KLF14-B6NTAC-PAT-37.2b 410-16 C1 - 2016-03-15 11.24.20.json', 'KLF14-B6NTAC-PAT-37.4b 419-16 C1 - 2016-03-17 10.22.54.json', 'KLF14-B6NTAC-37.1c PAT 108-16 C1 - 2016-02-15 14.49.45.json', 'KLF14-B6NTAC-MAT-18.1a 50-16 C1 - 2016-02-02 09.12.41.json', 'KLF14-B6NTAC 36.1i PAT 104-16 C1 - 2016-02-12 12.14.38.json', 'KLF14-B6NTAC-PAT-37.2h 418-16 C1 - 2016-03-16 17.01.17.json', 'KLF14-B6NTAC-MAT-17.2c 66-16 C1 - 2016-02-04 11.46.39.json', 'KLF14-B6NTAC-MAT-18.3b 223-16 C2 - 2016-02-26 10.35.52.json', 'KLF14-B6NTAC-37.1f PAT 111-16 C2 - 2016-02-16 11.26 (1).json', 'KLF14-B6NTAC-PAT 37.2b 410-16 C4 - 2020-02-14 10.27.23.json', 'KLF14-B6NTAC-PAT 37.2c 407-16 C4 - 2020-02-14 10.15.57.json', # 'KLF14-B6NTAC-PAT 37.2d 411-16 C4 - 2020-02-14 10.34.10.json' ] # GWAT: list of annotation files json_annotation_files_dict['gwat'] = [ 'KLF14-B6NTAC-36.1a PAT 96-16 B1 - 2016-02-10 15.32.31.json', 'KLF14-B6NTAC-36.1b PAT 97-16 B1 - 2016-02-10 17.15.16.json', 'KLF14-B6NTAC-36.1c PAT 98-16 B1 - 2016-02-10 18.32.40.json', 'KLF14-B6NTAC 36.1d PAT 99-16 B1 - 2016-02-11 11.29.55.json', 'KLF14-B6NTAC 36.1e PAT 100-16 B1 - 2016-02-11 12.51.11.json', 'KLF14-B6NTAC 36.1f PAT 101-16 B1 - 2016-02-11 14.57.03.json', 'KLF14-B6NTAC 36.1g PAT 102-16 B1 - 2016-02-11 16.12.01.json', 'KLF14-B6NTAC 36.1h PAT 103-16 B1 - 2016-02-12 09.51.08.json', # 'KLF14-B6NTAC 36.1i PAT 104-16 B1 - 2016-02-12 11.37.56.json', 'KLF14-B6NTAC 36.1j PAT 105-16 B1 - 2016-02-12 14.08.19.json', 'KLF14-B6NTAC 37.1a PAT 106-16 B1 - 2016-02-12 15.33.02.json', 'KLF14-B6NTAC-37.1b PAT 107-16 B1 - 2016-02-15 11.25.20.json', 'KLF14-B6NTAC-37.1c PAT 108-16 B1 - 2016-02-15 12.33.10.json', 'KLF14-B6NTAC-37.1d PAT 109-16 B1 - 2016-02-15 15.03.44.json', 'KLF14-B6NTAC-37.1e PAT 110-16 B1 - 2016-02-15 16.16.06.json', 'KLF14-B6NTAC-37.1g PAT 112-16 B1 - 2016-02-16 12.02.07.json', 'KLF14-B6NTAC-37.1h PAT 113-16 B1 - 2016-02-16 14.53.02.json', 'KLF14-B6NTAC-38.1e PAT 94-16 B1 - 2016-02-10 11.35.53.json', 'KLF14-B6NTAC-38.1f PAT 95-16 B1 - 2016-02-10 14.16.55.json', 'KLF14-B6NTAC-MAT-16.2a 211-16 B1 - 2016-02-17 11.21.54.json', 'KLF14-B6NTAC-MAT-16.2b 212-16 B1 - 2016-02-17 12.33.18.json', 'KLF14-B6NTAC-MAT-16.2c 213-16 B1 - 2016-02-17 14.01.06.json', 'KLF14-B6NTAC-MAT-16.2d 214-16 B1 - 2016-02-17 15.43.57.json', 'KLF14-B6NTAC-MAT-16.2e 215-16 B1 - 2016-02-17 17.14.16.json', 'KLF14-B6NTAC-MAT-16.2f 216-16 B1 - 2016-02-18 10.05.52.json', # 'KLF14-B6NTAC-MAT-17.1a 44-16 B1 - 2016-02-01 09.19.20.json', 'KLF14-B6NTAC-MAT-17.1b 45-16 B1 - 2016-02-01 12.05.15.json', 'KLF14-B6NTAC-MAT-17.1c 46-16 B1 - 2016-02-01 13.01.30.json', 'KLF14-B6NTAC-MAT-17.1d 47-16 B1 - 2016-02-01 15.11.42.json', 'KLF14-B6NTAC-MAT-17.1e 48-16 B1 - 2016-02-01 16.01.09.json', 'KLF14-B6NTAC-MAT-17.1f 49-16 B1 - 2016-02-01 17.12.31.json', 'KLF14-B6NTAC-MAT-17.2a 64-16 B1 - 2016-02-04 08.57.34.json', 'KLF14-B6NTAC-MAT-17.2b 65-16 B1 - 2016-02-04 10.06.00.json', 'KLF14-B6NTAC-MAT-17.2c 66-16 B1 - 2016-02-04 11.14.28.json', 'KLF14-B6NTAC-MAT-17.2d 67-16 B1 - 2016-02-04 12.20.20.json', 'KLF14-B6NTAC-MAT-17.2f 68-16 B1 - 2016-02-04 14.01.40.json', 'KLF14-B6NTAC-MAT-17.2g 69-16 B1 - 2016-02-04 15.52.52.json', 'KLF14-B6NTAC-MAT-18.1a 50-16 B1 - 2016-02-02 08.49.06.json', 'KLF14-B6NTAC-MAT-18.1b 51-16 B1 - 2016-02-02 09.46.31.json', 'KLF14-B6NTAC-MAT-18.1c 52-16 B1 - 2016-02-02 11.24.31.json', 'KLF14-B6NTAC-MAT-18.1d 53-16 B1 - 2016-02-02 14.11.37.json', # 'KLF14-B6NTAC-MAT-18.1e 54-16 B1 - 2016-02-02 15.06.05.json', 'KLF14-B6NTAC-MAT-18.2a 57-16 B1 - 2016-02-03 08.54.27.json', 'KLF14-B6NTAC-MAT-18.2b 58-16 B1 - 2016-02-03 09.58.06.json', 'KLF14-B6NTAC-MAT-18.2c 59-16 B1 - 2016-02-03 11.41.32.json', 'KLF14-B6NTAC-MAT-18.2d 60-16 B1 - 2016-02-03 12.56.49.json', 'KLF14-B6NTAC-MAT-18.2e 61-16 B1 - 2016-02-03 14.02.25.json', 'KLF14-B6NTAC-MAT-18.2f 62-16 B1 - 2016-02-03 15.00.17.json', 'KLF14-B6NTAC-MAT-18.2g 63-16 B1 - 2016-02-03 16.40.37.json', 'KLF14-B6NTAC-MAT-18.3b 223-16 B1 - 2016-02-25 16.53.42.json', 'KLF14-B6NTAC-MAT-18.3c 218-16 B1 - 2016-02-18 12.51.46.json', 'KLF14-B6NTAC-MAT-18.3d 224-16 B1 - 2016-02-26 10.48.56.json', 'KLF14-B6NTAC-MAT-19.1a 56-16 B1 - 2016-02-02 16.57.46.json', 'KLF14-B6NTAC-MAT-19.2b 219-16 B1 - 2016-02-18 14.21.50.json', 'KLF14-B6NTAC-MAT-19.2c 220-16 B1 - 2016-02-18 16.40.48.json', 'KLF14-B6NTAC-MAT-19.2e 221-16 B1 - 2016-02-25 13.15.27.json', 'KLF14-B6NTAC-MAT-19.2f 217-16 B1 - 2016-02-18 11.23.22.json', 'KLF14-B6NTAC-MAT-19.2g 222-16 B1 - 2016-02-25 14.51.57.json', 'KLF14-B6NTAC-PAT-36.3a 409-16 B1 - 2016-03-15 09.24.54.json', 'KLF14-B6NTAC-PAT-36.3b 412-16 B1 - 2016-03-15 14.11.47.json', 'KLF14-B6NTAC-PAT-36.3d 416-16 B1 - 2016-03-16 14.22.04.json', # 'KLF14-B6NTAC-PAT-37.2a 406-16 B1 - 2016-03-14 11.46.47.json', 'KLF14-B6NTAC-PAT-37.2b 410-16 B1 - 2016-03-15 11.12.01.json', 'KLF14-B6NTAC-PAT-37.2c 407-16 B1 - 2016-03-14 12.54.55.json', 'KLF14-B6NTAC-PAT-37.2d 411-16 B1 - 2016-03-15 12.01.13.json', 'KLF14-B6NTAC-PAT-37.2e 408-16 B1 - 2016-03-14 16.06.43.json', 'KLF14-B6NTAC-PAT-37.2f 405-16 B1 - 2016-03-14 09.49.45.json', 'KLF14-B6NTAC-PAT-37.2g 415-16 B1 - 2016-03-16 11.04.45.json', 'KLF14-B6NTAC-PAT-37.2h 418-16 B1 - 2016-03-16 16.42.16.json', 'KLF14-B6NTAC-PAT-37.3a 413-16 B1 - 2016-03-15 15.31.26.json', 'KLF14-B6NTAC-PAT-37.3c 414-16 B1 - 2016-03-15 16.49.22.json', 'KLF14-B6NTAC-PAT-37.4a 417-16 B1 - 2016-03-16 15.25.38.json', 'KLF14-B6NTAC-PAT-37.4b 419-16 B1 - 2016-03-17 09.10.42.json', 'KLF14-B6NTAC-PAT-38.1a 90-16 B1 - 2016-02-04 17.27.42.json', 'KLF14-B6NTAC-PAT-39.1h 453-16 B1 - 2016-03-17 11.15.50.json', 'KLF14-B6NTAC-PAT-39.2d 454-16 B1 - 2016-03-17 12.16.06.json' ] ######################################################################################################################## ## Explore training/test data of different folds ######################################################################################################################## import pickle import numpy as np import pandas as pd import matplotlib.pyplot as plt os.environ['KERAS_BACKEND'] = 'tensorflow' import keras.backend as K import cytometer import cytometer.data import tensorflow as tf # limit number of GPUs os.environ['CUDA_VISIBLE_DEVICES'] = '1' LIMIT_GPU_MEMORY = False # limit GPU memory used if LIMIT_GPU_MEMORY: from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.9 set_session(tf.Session(config=config)) # specify data format as (n, row, col, channel) K.set_image_data_format('channels_last') DEBUG = False '''Directories and filenames''' # data paths klf14_root_data_dir = os.path.join(home, 'Data/cytometer_data/klf14') klf14_training_dir = os.path.join(klf14_root_data_dir, 'klf14_b6ntac_training') klf14_training_data_dir = os.path.join(klf14_root_data_dir, 'klf14_b6ntac_training') klf14_training_non_overlap_data_dir = os.path.join(klf14_root_data_dir, 'klf14_b6ntac_training_non_overlap') figures_dir = os.path.join(home, 'GoogleDrive/Research/20190727_cytometer_paper/figures') saved_models_dir = os.path.join(klf14_root_data_dir, 'saved_models') ndpi_dir = os.path.join(home, 'scan_srv2_cox/Maz Yon') metainfo_dir = os.path.join(home, 'Data/cytometer_data/klf14') saved_kfolds_filename = 'klf14_b6ntac_exp_0079_generate_kfolds.pickle' saved_extra_kfolds_filename = 'klf14_b6ntac_exp_0094_generate_extra_training_images.pickle' # original dataset used in pipelines up to v6 + extra "other" tissue images kfold_filename = os.path.join(saved_models_dir, saved_extra_kfolds_filename) with open(kfold_filename, 'rb') as f: aux = pickle.load(f) file_svg_list = aux['file_list'] idx_test_all = aux['idx_test'] idx_train_all = aux['idx_train'] # correct home directory file_svg_list = [x.replace('/users/rittscher/rcasero', home) for x in file_svg_list] file_svg_list = [x.replace('/home/rcasero', home) for x in file_svg_list] # number of images n_im = len(file_svg_list) # CSV file with metainformation of all mice metainfo_csv_file = os.path.join(metainfo_dir, 'klf14_b6ntac_meta_info.csv') metainfo = pd.read_csv(metainfo_csv_file) # HACK: If file_svg_list_extra is used above, this block will not work but you don't need it # for the loop before that calculates the rows of Table MICE with the breakdown of # cells/other/background objects by mouse # # loop the folds to get the ndpi files that correspond to testing of each fold, ndpi_files_test_list = {} for i_fold in range(len(idx_test_all)): # list of .svg files for testing file_svg_test = np.array(file_svg_list)[idx_test_all[i_fold]] # list of .ndpi files that the .svg windows came from file_ndpi_test = [os.path.basename(x).replace('.svg', '') for x in file_svg_test] file_ndpi_test = np.unique([x.split('_row')[0] for x in file_ndpi_test]) # add to the dictionary {file: fold} for file in file_ndpi_test: ndpi_files_test_list[file] = i_fold if DEBUG: # list of NDPI files for key in ndpi_files_test_list.keys(): print(key) # init dataframe to aggregate training numbers of each mouse table = pd.DataFrame(columns=['Cells', 'Other', 'Background', 'Windows', 'Windows with cells']) # loop files with hand traced contours for i, file_svg in enumerate(file_svg_list): print('file ' + str(i) + '/' + str(len(file_svg_list) - 1) + ': ' + os.path.basename(file_svg)) # read the ground truth cell contours in the SVG file. This produces a list [contour_0, ..., contour_N-1] # where each contour_i = [(X_0, Y_0), ..., (X_P-1, X_P-1)] cell_contours = cytometer.data.read_paths_from_svg_file(file_svg, tag='Cell', add_offset_from_filename=False, minimum_npoints=3) other_contours = cytometer.data.read_paths_from_svg_file(file_svg, tag='Other', add_offset_from_filename=False, minimum_npoints=3) brown_contours = cytometer.data.read_paths_from_svg_file(file_svg, tag='Brown', add_offset_from_filename=False, minimum_npoints=3) background_contours = cytometer.data.read_paths_from_svg_file(file_svg, tag='Background', add_offset_from_filename=False, minimum_npoints=3) contours = cell_contours + other_contours + brown_contours + background_contours # make a list with the type of cell each contour is classified as contour_type = [np.zeros(shape=(len(cell_contours),), dtype=np.uint8), # 0: white-adipocyte np.ones(shape=(len(other_contours),), dtype=np.uint8), # 1: other types of tissue np.ones(shape=(len(brown_contours),), dtype=np.uint8), # 1: brown cells (treated as "other" tissue) np.zeros(shape=(len(background_contours),), dtype=np.uint8)] # 0: background contour_type = np.concatenate(contour_type) print('Cells: ' + str(len(cell_contours)) + '. Other: ' + str(len(other_contours)) + '. Brown: ' + str(len(brown_contours)) + '. Background: ' + str(len(background_contours))) # create dataframe for this image df_common = cytometer.data.tag_values_with_mouse_info(metainfo=metainfo, s=os.path.basename(file_svg), values=[i,], values_tag='i', tags_to_keep=['id', 'ko_parent', 'sex']) # mouse ID as a string id = df_common['id'].values[0] sex = df_common['sex'].values[0] ko = df_common['ko_parent'].values[0] # row to add to the table df = pd.DataFrame( [(sex, ko, len(cell_contours), len(other_contours) + len(brown_contours), len(background_contours), 1, int(len(cell_contours)>0))], columns=['Sex', 'Genotype', 'Cells', 'Other', 'Background', 'Windows', 'Windows with cells'], index=[id]) if id in table.index: num_cols = ['Cells', 'Other', 'Background', 'Windows', 'Windows with cells'] table.loc[id, num_cols] = (table.loc[id, num_cols] + df.loc[id, num_cols]) else: table = table.append(df, sort=False, ignore_index=False, verify_integrity=True) # alphabetical order by mouse IDs table = table.sort_index() # total number of sampled windows print('Total number of windows = ' + str(np.sum(table['Windows']))) print('Total number of windows with cells = ' + str(np.sum(table['Windows with cells']))) # total number of "Other" and background areas print('Total number of Other areas = ' + str(np.sum(table['Other']))) print('Total number of Background areas = ' + str(np.sum(table['Background']))) # aggregate by sex and genotype idx_f = table['Sex'] == 'f' idx_m = table['Sex'] == 'm' idx_pat = table['Genotype'] == 'PAT' idx_mat = table['Genotype'] == 'MAT' print('f PAT: ' + str(np.sum(table.loc[idx_f * idx_pat, 'Cells']))) print('f MAT: ' + str(np.sum(table.loc[idx_f * idx_mat, 'Cells']))) print('m PAT: ' + str(np.sum(table.loc[idx_m * idx_pat, 'Cells']))) print('m MAT: ' + str(np.sum(table.loc[idx_m * idx_mat, 'Cells']))) # find folds that test images belong to for i_file, ndpi_file_kernel in enumerate(ndpi_files_test_list): # fold where the current .ndpi image was not used for training i_fold = ndpi_files_test_list[ndpi_file_kernel] print('File ' + str(i_file) + '/' + str(len(ndpi_files_test_list) - 1) + ': ' + ndpi_file_kernel + '. Fold = ' + str(i_fold)) # mean and std of mouse weight weight_f_mat = [22.07, 26.39, 30.65, 24.28, 27.72] weight_f_pat = [31.42, 29.25, 27.18, 23.69, 21.20] weight_m_mat = [46.19, 40.87, 40.02, 41.98, 34.52, 36.08] weight_m_pat = [36.55, 40.77, 36.98, 36.11] print('f MAT: mean = ' + str(np.mean(weight_f_mat)) + ', std = ' + str(np.std(weight_f_mat))) print('f PAT: mean = ' + str(np.mean(weight_f_pat)) + ', std = ' + str(np.std(weight_f_pat))) print('m MAT: mean = ' + str(np.mean(weight_m_mat)) + ', std = ' + str(np.std(weight_m_mat))) print('m PAT: mean = ' + str(np.mean(weight_m_pat)) + ', std = ' + str(np.std(weight_m_pat))) ######################################################################################################################## ## Statistics of hand traced white adipocytes ######################################################################################################################## import shapely import cytometer.utils import scipy rectangle_sides_ratios = [] areas = [] perimeters = [] sphericities = [] # loop files with hand traced contours for i, file_svg in enumerate(file_svg_list): print('file ' + str(i) + '/' + str(len(file_svg_list) - 1) + ': ' + os.path.basename(file_svg)) # read the ground truth cell contours in the SVG file. This produces a list [contour_0, ..., contour_N-1] # where each contour_i = [(X_0, Y_0), ..., (X_P-1, X_P-1)] cell_contours = cytometer.data.read_paths_from_svg_file(file_svg, tag='Cell', add_offset_from_filename=False, minimum_npoints=3) # compute contour properties for j, cell_contour in enumerate(cell_contours): poly_cell = shapely.geometry.Polygon(cell_contour) x, y = poly_cell.minimum_rotated_rectangle.exterior.coords.xy edge_length = (shapely.geometry.Point(x[0], y[0]).distance(shapely.geometry.Point(x[1], y[1])), shapely.geometry.Point(x[1], y[1]).distance(shapely.geometry.Point(x[2], y[2]))) rectangle_sides_ratio = np.max(edge_length) / np.min(edge_length) area = poly_cell.area perimeter = poly_cell.length inv_compactness = poly_cell.length ** 2 / (4 * np.pi * area) sphericity = cytometer.utils.sphericity(poly_cell) # if j == 58: # raise ValueError('foo: ' + str(j)) # if (inv_compactness) < 2.2 and (inv_compactness) > 2.15: # raise ValueError('foo: ' + str(j)) rectangle_sides_ratios.append(rectangle_sides_ratio) areas.append(area) perimeters.append(perimeter) sphericities.append(sphericity) # compactness measure inv_compactnesses = list(np.array(perimeters)**2 / (4 * np.pi * np.array(areas))) print('Max rectangle sides ratio: ' + str(np.max(rectangle_sides_ratios))) print('Min area: ' + str(np.min(areas))) print('Max area: ' + str(np.max(areas))) print('Min perimeter: ' + str(np.min(perimeters))) print('Max perimeter: ' + str(np.max(perimeters))) print('Min sphericity: ' + str(np.min(sphericities))) print('Max sphericity: ' + str(np.max(sphericities))) print('Min inv_compactness: ' + str(np.min(inv_compactnesses))) print('Max inv_compactness: ' + str(np.max(inv_compactnesses))) if DEBUG: plt.clf() plt.hist(rectangle_sides_ratios, bins=100) plt.clf() plt.boxplot(rectangle_sides_ratios) plt.ylabel('Rectangle sides ratio') q = scipy.stats.mstats.hdquantiles(rectangle_sides_ratios, prob=[0.98], axis=0) plt.plot([0.75, 1.25], [q, q], 'r', 'LineWidth', 2) plt.xlim(0.5, 1.5) plt.legend(['$Q_{98\%}$ = ' + '%.2f' %q]) plt.clf() plt.boxplot(areas) plt.ylabel('Pixel$^2$') q = scipy.stats.mstats.hdquantiles(areas, prob=[0.98], axis=0) plt.plot([0.75, 1.25], [q, q], 'r', 'LineWidth', 2) plt.xlim(0.5, 1.5) plt.legend(['$Q_{98\%}$ = ' + '%.0f' %q]) plt.clf() plt.boxplot(inv_compactnesses) plt.ylabel('Compatncess$^{-1}$ ratio') q = scipy.stats.mstats.hdquantiles(inv_compactnesses, prob=[0.98], axis=0) plt.plot([0.75, 1.25], [q, q], 'r', 'LineWidth', 2) plt.xlim(0.5, 1.5) plt.legend(['$Q_{98\%}$ = ' + '%.2f' %q]) plt.clf() plt.boxplot(sphericities) plt.ylabel('Sphericity') q = scipy.stats.mstats.hdquantiles(sphericities, prob=[0.02], axis=0) plt.plot([0.75, 1.25], [q, q], 'r', 'LineWidth', 2) plt.xlim(0.5, 1.5) plt.legend(['$Q_{2\%}$ = ' + '%.2f' %q]) ######################################################################################################################## ## Plots of get_next_roi_to_process(): Adaptive Block Algorithm # # Note: the quantitative comparison versus uniform tiling is provided in klf14_b6ntac_exp_0105_adaptive_blocks_analysis.py ######################################################################################################################## import pickle import cytometer.utils # Filter out INFO & WARNING messages os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # # limit number of GPUs # os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' os.environ['KERAS_BACKEND'] = 'tensorflow' import time import openslide import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Rectangle from scipy.signal import fftconvolve from cytometer.utils import rough_foreground_mask import PIL from keras import backend as K LIMIT_GPU_MEMORY = False # limit GPU memory used if LIMIT_GPU_MEMORY: import tensorflow as tf from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.95 set_session(tf.Session(config=config)) DEBUG = False SAVE_FIGS = False root_data_dir = os.path.join(home, 'Data/cytometer_data/klf14') data_dir = os.path.join(home, 'scan_srv2_cox/Maz Yon') training_dir = os.path.join(home, root_data_dir, 'klf14_b6ntac_training') figures_dir = os.path.join(home, 'GoogleDrive/Research/20190727_cytometer_paper/figures') saved_models_dir = os.path.join(root_data_dir, 'saved_models') results_dir = os.path.join(root_data_dir, 'klf14_b6ntac_results') annotations_dir = os.path.join(home, 'Data/cytometer_data/aida_data_Klf14_v7/annotations') # k-folds file saved_extra_kfolds_filename = 'klf14_b6ntac_exp_0094_generate_extra_training_images.pickle' # model names dmap_model_basename = 'klf14_b6ntac_exp_0086_cnn_dmap' contour_model_basename = 'klf14_b6ntac_exp_0091_cnn_contour_after_dmap' classifier_model_basename = 'klf14_b6ntac_exp_0095_cnn_tissue_classifier_fcn' correction_model_basename = 'klf14_b6ntac_exp_0089_cnn_segmentation_correction_overlapping_scaled_contours' # full resolution image window and network expected receptive field parameters fullres_box_size = np.array([2751, 2751]) receptive_field = np.array([131, 131]) # rough_foreground_mask() parameters downsample_factor = 8.0 dilation_size = 25 component_size_threshold = 1e6 hole_size_treshold = 8000 # contour parameters contour_downsample_factor = 0.1 bspline_k = 1 # block_split() parameters in downsampled image block_len = np.ceil((fullres_box_size - receptive_field) / downsample_factor) block_overlap = np.ceil((receptive_field - 1) / 2 / downsample_factor).astype(np.int) # segmentation parameters min_cell_area = 1500 max_cell_area = 100e3 min_mask_overlap = 0.8 phagocytosis = True min_class_prop = 0.5 correction_window_len = 401 correction_smoothing = 11 batch_size = 16 # segmentation correction parameters # load list of images, and indices for training vs. testing indices saved_kfolds_filename = os.path.join(saved_models_dir, saved_extra_kfolds_filename) with open(saved_kfolds_filename, 'rb') as f: aux = pickle.load(f) file_svg_list = aux['file_list'] idx_test_all = aux['idx_test'] idx_train_all = aux['idx_train'] # correct home directory file_svg_list = [x.replace('/users/rittscher/rcasero', home) for x in file_svg_list] file_svg_list = [x.replace('/home/rcasero', home) for x in file_svg_list] # loop the folds to get the ndpi files that correspond to testing of each fold ndpi_files_test_list = {} for i_fold in range(len(idx_test_all)): # list of .svg files for testing file_svg_test = np.array(file_svg_list)[idx_test_all[i_fold]] # list of .ndpi files that the .svg windows came from file_ndpi_test = [os.path.basename(x).replace('.svg', '') for x in file_svg_test] file_ndpi_test = np.unique([x.split('_row')[0] for x in file_ndpi_test]) # add to the dictionary {file: fold} for file in file_ndpi_test: ndpi_files_test_list[file] = i_fold # File 4/19: KLF14-B6NTAC-MAT-17.1c 46-16 C1 - 2016-02-01 14.02.04. Fold = 2 i_file = 4 # File 10/19: KLF14-B6NTAC-36.1a PAT 96-16 C1 - 2016-02-10 16.12.38. Fold = 5 i_file = 10 ndpi_file_kernel = list(ndpi_files_test_list.keys())[i_file] # for i_file, ndpi_file_kernel in enumerate(ndpi_files_test_list): # fold where the current .ndpi image was not used for training i_fold = ndpi_files_test_list[ndpi_file_kernel] print('File ' + str(i_file) + '/' + str(len(ndpi_files_test_list) - 1) + ': ' + ndpi_file_kernel + '. Fold = ' + str(i_fold)) # make full path to ndpi file ndpi_file = os.path.join(data_dir, ndpi_file_kernel + '.ndpi') contour_model_file = os.path.join(saved_models_dir, contour_model_basename + '_model_fold_' + str(i_fold) + '.h5') dmap_model_file = os.path.join(saved_models_dir, dmap_model_basename + '_model_fold_' + str(i_fold) + '.h5') classifier_model_file = os.path.join(saved_models_dir, classifier_model_basename + '_model_fold_' + str(i_fold) + '.h5') correction_model_file = os.path.join(saved_models_dir, correction_model_basename + '_model_fold_' + str(i_fold) + '.h5') # name of file to save annotations annotations_file = os.path.basename(ndpi_file) annotations_file = os.path.splitext(annotations_file)[0] annotations_file = os.path.join(annotations_dir, annotations_file + '_exp_0097.json') # name of file to save areas and contours results_file = os.path.basename(ndpi_file) results_file = os.path.splitext(results_file)[0] results_file = os.path.join(results_dir, results_file + '_exp_0097.npz') # rough segmentation of the tissue in the image lores_istissue0, im_downsampled = rough_foreground_mask(ndpi_file, downsample_factor=downsample_factor, dilation_size=dilation_size, component_size_threshold=component_size_threshold, hole_size_treshold=hole_size_treshold, return_im=True) if DEBUG: plt.clf() plt.imshow(im_downsampled) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_histology_i_file_' + str(i_file) + '.png'), bbox_inches='tight') plt.clf() plt.imshow(im_downsampled) plt.contour(lores_istissue0, colors='k') plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_rough_mask_i_file_' + str(i_file) + '.png'), bbox_inches='tight') # segmentation copy, to keep track of what's left to do lores_istissue = lores_istissue0.copy() # open full resolution histology slide im = openslide.OpenSlide(ndpi_file) # pixel size assert(im.properties['tiff.ResolutionUnit'] == 'centimeter') xres = 1e-2 / float(im.properties['tiff.XResolution']) yres = 1e-2 / float(im.properties['tiff.YResolution']) # # init empty list to store area values and contour coordinates # areas_all = [] # contours_all = [] # keep extracting histology windows until we have finished step = -1 time_0 = time_curr = time.time() while np.count_nonzero(lores_istissue) > 0: # next step (it starts from 0) step += 1 time_prev = time_curr time_curr = time.time() print('File ' + str(i_file) + '/' + str(len(ndpi_files_test_list) - 1) + ': step ' + str(step) + ': ' + str(np.count_nonzero(lores_istissue)) + '/' + str(np.count_nonzero(lores_istissue0)) + ': ' + "{0:.1f}".format(100.0 - np.count_nonzero(lores_istissue) / np.count_nonzero(lores_istissue0) * 100) + '% completed: ' + 'step time ' + "{0:.2f}".format(time_curr - time_prev) + ' s' + ', total time ' + "{0:.2f}".format(time_curr - time_0) + ' s') ## Code extracted from: ## get_next_roi_to_process() # variables for get_next_roi_to_process() seg = lores_istissue.copy() downsample_factor = downsample_factor max_window_size = fullres_box_size border = np.round((receptive_field - 1) / 2) # convert to np.array so that we can use algebraic operators max_window_size = np.array(max_window_size) border = np.array(border) # convert segmentation mask to [0, 1] seg = (seg != 0).astype('int') # approximate measures in the downsampled image (we don't round them) lores_max_window_size = max_window_size / downsample_factor lores_border = border / downsample_factor # kernels that flipped correspond to top line and left line. They need to be pre-flipped # because the convolution operation internally flips them (two flips cancel each other) kernel_top = np.zeros(shape=np.round(lores_max_window_size - 2 * lores_border).astype('int')) kernel_top[int((kernel_top.shape[0] - 1) / 2), :] = 1 kernel_left = np.zeros(shape=np.round(lores_max_window_size - 2 * lores_border).astype('int')) kernel_left[:, int((kernel_top.shape[1] - 1) / 2)] = 1 if DEBUG: plt.clf() plt.imshow(kernel_top) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_kernel_top_i_file_' + str(i_file) + '.png'), bbox_inches='tight') plt.imshow(kernel_left) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_kernel_left_i_file_' + str(i_file) + '.png'), bbox_inches='tight') seg_top = np.round(fftconvolve(seg, kernel_top, mode='same')) seg_left = np.round(fftconvolve(seg, kernel_left, mode='same')) # window detections detection_idx = np.nonzero(seg_left * seg_top) # set top-left corner of the box = top-left corner of first box detected lores_first_row = detection_idx[0][0] lores_first_col = detection_idx[1][0] # first, we look within a window with the maximum size lores_last_row = detection_idx[0][0] + lores_max_window_size[0] - 2 * lores_border[0] lores_last_col = detection_idx[1][0] + lores_max_window_size[1] - 2 * lores_border[1] # second, if the segmentation is smaller than the window, we reduce the window size window = seg[lores_first_row:int(np.round(lores_last_row)), lores_first_col:int(np.round(lores_last_col))] idx = np.any(window, axis=1) # reduce rows size last_segmented_pixel_len = np.max(np.where(idx)) lores_last_row = detection_idx[0][0] + np.min((lores_max_window_size[0] - 2 * lores_border[0], last_segmented_pixel_len)) idx = np.any(window, axis=0) # reduce cols size last_segmented_pixel_len = np.max(np.where(idx)) lores_last_col = detection_idx[1][0] + np.min((lores_max_window_size[1] - 2 * lores_border[1], last_segmented_pixel_len)) # save coordinates for plot (this is only for a figure in the paper and doesn't need to be done in the real # implementation) lores_first_col_bak = lores_first_col lores_first_row_bak = lores_first_row lores_last_col_bak = lores_last_col lores_last_row_bak = lores_last_row # add a border around the window lores_first_row = np.max([0, lores_first_row - lores_border[0]]) lores_first_col = np.max([0, lores_first_col - lores_border[1]]) lores_last_row = np.min([seg.shape[0], lores_last_row + lores_border[0]]) lores_last_col = np.min([seg.shape[1], lores_last_col + lores_border[1]]) # convert low resolution indices to high resolution first_row = np.int(np.round(lores_first_row * downsample_factor)) last_row = np.int(np.round(lores_last_row * downsample_factor)) first_col = np.int(np.round(lores_first_col * downsample_factor)) last_col = np.int(np.round(lores_last_col * downsample_factor)) # round down indices in downsampled segmentation lores_first_row = int(lores_first_row) lores_last_row = int(lores_last_row) lores_first_col = int(lores_first_col) lores_last_col = int(lores_last_col) # load window from full resolution slide tile = im.read_region(location=(first_col, first_row), level=0, size=(last_col - first_col, last_row - first_row)) tile = np.array(tile) tile = tile[:, :, 0:3] # interpolate coarse tissue segmentation to full resolution istissue_tile = lores_istissue[lores_first_row:lores_last_row, lores_first_col:lores_last_col] istissue_tile = cytometer.utils.resize(istissue_tile, size=(last_col - first_col, last_row - first_row), resample=PIL.Image.NEAREST) if DEBUG: plt.clf() plt.imshow(tile) plt.imshow(istissue_tile, alpha=0.5) plt.contour(istissue_tile, colors='k') plt.title('Yellow: Tissue. Purple: Background') plt.axis('off') # clear keras session to prevent each segmentation iteration from getting slower. Note that this forces us to # reload the models every time K.clear_session() # segment histology, split into individual objects, and apply segmentation correction labels, labels_class, todo_edge, \ window_im, window_labels, window_labels_corrected, window_labels_class, index_list, scaling_factor_list \ = cytometer.utils.segmentation_pipeline6(tile, dmap_model=dmap_model_file, contour_model=contour_model_file, correction_model=correction_model_file, classifier_model=classifier_model_file, min_cell_area=min_cell_area, mask=istissue_tile, min_mask_overlap=min_mask_overlap, phagocytosis=phagocytosis, min_class_prop=min_class_prop, correction_window_len=correction_window_len, correction_smoothing=correction_smoothing, return_bbox=True, return_bbox_coordinates='xy', batch_size=batch_size) # downsample "to do" mask so that the rough tissue segmentation can be updated lores_todo_edge = PIL.Image.fromarray(todo_edge.astype(np.uint8)) lores_todo_edge = lores_todo_edge.resize((lores_last_col - lores_first_col, lores_last_row - lores_first_row), resample=PIL.Image.NEAREST) lores_todo_edge = np.array(lores_todo_edge) # update coarse tissue mask (this is only necessary here to plot figures for the paper. In the actual code, # the coarse mask gets directly updated, without this intermediate step) seg_updated = seg.copy() seg_updated[lores_first_row:lores_last_row, lores_first_col:lores_last_col] = lores_todo_edge if DEBUG: plt.clf() fig = plt.imshow(seg, cmap='Greys') plt.contour(seg_left * seg_top > 0, colors='r') rect = Rectangle((lores_first_col, lores_first_row), lores_last_col - lores_first_col, lores_last_row - lores_first_row, alpha=0.5, facecolor='g', edgecolor='g', zorder=2) fig.axes.add_patch(rect) rect2 = Rectangle((lores_first_col_bak, lores_first_row_bak), lores_last_col_bak - lores_first_col_bak, lores_last_row_bak - lores_first_row_bak, alpha=1.0, facecolor=None, fill=False, edgecolor='g', lw=1, zorder=3) fig.axes.add_patch(rect2) plt.scatter(detection_idx[1][0], detection_idx[0][0], color='k', s=5, zorder=3) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_fftconvolve_i_file_' + str(i_file) + '_step_' + str(step) + '.png'), bbox_inches='tight') if DEBUG: plt.clf() fig = plt.imshow(seg, cmap='Greys') plt.contour(seg_left * seg_top > 0, colors='r') plt.contour(seg_updated, colors='w', zorder=4) rect = Rectangle((lores_first_col, lores_first_row), lores_last_col - lores_first_col, lores_last_row - lores_first_row, alpha=0.5, facecolor='g', edgecolor='g', zorder=2) fig.axes.add_patch(rect) rect2 = Rectangle((lores_first_col_bak, lores_first_row_bak), lores_last_col_bak - lores_first_col_bak, lores_last_row_bak - lores_first_row_bak, alpha=1.0, facecolor=None, fill=False, edgecolor='g', lw=3, zorder=3) fig.axes.add_patch(rect2) plt.scatter(detection_idx[1][0], detection_idx[0][0], color='k', s=5, zorder=3) plt.axis('off') plt.tight_layout() plt.xlim(int(lores_first_col - 50), int(lores_last_col + 50)) plt.ylim(int(lores_last_row + 50), int(lores_first_row - 50)) plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_fftconvolve_detail_i_file_' + str(i_file) + '_step_' + str(step) + '.png'), bbox_inches='tight') # update coarse tissue mask for next iteration lores_istissue[lores_first_row:lores_last_row, lores_first_col:lores_last_col] = lores_todo_edge ######################################################################################################################## ## Show examples of what each deep CNN do (code cannibilised from the "inspect" scripts of the networks) ######################################################################################################################## import pickle import warnings # other imports import numpy as np import cv2 import matplotlib.pyplot as plt os.environ['KERAS_BACKEND'] = 'tensorflow' import keras import keras.backend as K import cytometer.data import cytometer.utils import cytometer.model_checkpoint_parallel import tensorflow as tf import skimage from PIL import Image, ImageDraw import math LIMIT_GPU_MEMORY = False # limit GPU memory used if LIMIT_GPU_MEMORY: from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.9 set_session(tf.Session(config=config)) # specify data format as (n, row, col, channel) K.set_image_data_format('channels_last') DEBUG = False '''Directories and filenames''' # data paths klf14_root_data_dir = os.path.join(home, 'Data/cytometer_data/klf14') klf14_training_dir = os.path.join(klf14_root_data_dir, 'klf14_b6ntac_training') klf14_training_non_overlap_data_dir = os.path.join(klf14_root_data_dir, 'klf14_b6ntac_training_non_overlap') figures_dir = os.path.join(home, 'GoogleDrive/Research/20190727_cytometer_paper/figures') saved_models_dir = os.path.join(klf14_root_data_dir, 'saved_models') saved_kfolds_filename = 'klf14_b6ntac_exp_0079_generate_kfolds.pickle' # model names dmap_model_basename = 'klf14_b6ntac_exp_0086_cnn_dmap' contour_model_basename = 'klf14_b6ntac_exp_0091_cnn_contour_after_dmap' classifier_model_basename = 'klf14_b6ntac_exp_0095_cnn_tissue_classifier_fcn' correction_model_basename = 'klf14_b6ntac_exp_0089_cnn_segmentation_correction_overlapping_scaled_contours' '''Load folds''' # load list of images, and indices for training vs. testing indices contour_model_kfold_filename = os.path.join(saved_models_dir, saved_kfolds_filename) with open(contour_model_kfold_filename, 'rb') as f: aux = pickle.load(f) svg_file_list = aux['file_list'] idx_test_all = aux['idx_test'] idx_train_all = aux['idx_train'] if DEBUG: for i, file in enumerate(svg_file_list): print(str(i) + ': ' + file) # correct home directory svg_file_list = [x.replace('/home/rcasero', home) for x in svg_file_list] # KLF14-B6NTAC-36.1b PAT 97-16 C1 - 2016-02-10 17.38.06_row_017204_col_019444.tif (fold 5 for testing. No .svg) # KLF14-B6NTAC-36.1b PAT 97-16 C1 - 2016-02-10 17.38.06_row_009644_col_061660.tif (fold 5 for testing. No .svg) # KLF14-B6NTAC 36.1c PAT 98-16 C1 - 2016-02-11 10.45.00_row_019228_col_015060.svg (fold 7 for testing. With .svg) # find which fold the testing image belongs to np.where(['36.1c' in x for x in svg_file_list]) idx_test_all[7] # TIFF files that correspond to the SVG files (without augmentation) im_orig_file_list = [] for i, file in enumerate(svg_file_list): im_orig_file_list.append(file.replace('.svg', '.tif')) im_orig_file_list[i] = os.path.join(os.path.dirname(im_orig_file_list[i]) + '_augmented', 'im_seed_nan_' + os.path.basename(im_orig_file_list[i])) # check that files exist if not os.path.isfile(file): # warnings.warn('i = ' + str(i) + ': File does not exist: ' + os.path.basename(file)) warnings.warn('i = ' + str(i) + ': File does not exist: ' + file) if not os.path.isfile(im_orig_file_list[i]): # warnings.warn('i = ' + str(i) + ': File does not exist: ' + os.path.basename(im_orig_file_list[i])) warnings.warn('i = ' + str(i) + ': File does not exist: ' + im_orig_file_list[i]) '''Inspect model results''' # for i_fold, idx_test in enumerate(idx_test_all): i_fold = 7; idx_test = idx_test_all[i_fold] print('Fold ' + str(i_fold) + '/' + str(len(idx_test_all)-1)) '''Load data''' # split the data list into training and testing lists im_test_file_list, im_train_file_list = cytometer.data.split_list(im_orig_file_list, idx_test) # load the test data (im, dmap, mask) test_dataset, test_file_list, test_shuffle_idx = \ cytometer.data.load_datasets(im_test_file_list, prefix_from='im', prefix_to=['im', 'dmap', 'mask', 'contour'], nblocks=1, shuffle_seed=None) # fill in the little gaps in the mask kernel = np.ones((3, 3), np.uint8) for i in range(test_dataset['mask'].shape[0]): test_dataset['mask'][i, :, :, 0] = cv2.dilate(test_dataset['mask'][i, :, :, 0].astype(np.uint8), kernel=kernel, iterations=1) # load dmap model, and adjust input size saved_model_filename = os.path.join(saved_models_dir, dmap_model_basename + '_model_fold_' + str(i_fold) + '.h5') dmap_model = keras.models.load_model(saved_model_filename) if dmap_model.input_shape[1:3] != test_dataset['im'].shape[1:3]: dmap_model = cytometer.utils.change_input_size(dmap_model, batch_shape=test_dataset['im'].shape) # estimate dmaps pred_dmap = dmap_model.predict(test_dataset['im'], batch_size=4) if DEBUG: for i in range(test_dataset['im'].shape[0]): plt.clf() plt.subplot(221) plt.imshow(test_dataset['im'][i, :, :, :]) plt.axis('off') plt.subplot(222) plt.imshow(test_dataset['dmap'][i, :, :, 0]) plt.axis('off') plt.subplot(223) plt.imshow(test_dataset['mask'][i, :, :, 0]) plt.axis('off') plt.subplot(224) plt.imshow(pred_dmap[i, :, :, 0]) plt.axis('off') # KLF14-B6NTAC 36.1c PAT 98-16 C1 - 2016-02-11 10.45.00_row_019228_col_015060.svg i = 2 if DEBUG: plt.clf() plt.imshow(test_dataset['im'][i, :, :, :]) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') plt.clf() plt.imshow(test_dataset['dmap'][i, :, :, 0]) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'dmap_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') plt.clf() plt.imshow(pred_dmap[i, :, :, 0]) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'pred_dmap_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') # load dmap to contour model, and adjust input size saved_model_filename = os.path.join(saved_models_dir, contour_model_basename + '_model_fold_' + str(i_fold) + '.h5') contour_model = keras.models.load_model(saved_model_filename) if contour_model.input_shape[1:3] != pred_dmap.shape[1:3]: contour_model = cytometer.utils.change_input_size(contour_model, batch_shape=pred_dmap.shape) # estimate contours pred_contour = contour_model.predict(pred_dmap, batch_size=4) if DEBUG: plt.clf() plt.imshow(test_dataset['contour'][i, :, :, 0]) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'contour_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') plt.clf() plt.imshow(pred_contour[i, :, :, 0]) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'pred_contour_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') # load classifier model, and adjust input size saved_model_filename = os.path.join(saved_models_dir, classifier_model_basename + '_model_fold_' + str(i_fold) + '.h5') classifier_model = keras.models.load_model(saved_model_filename) if classifier_model.input_shape[1:3] != test_dataset['im'].shape[1:3]: classifier_model = cytometer.utils.change_input_size(classifier_model, batch_shape=test_dataset['im'].shape) # estimate pixel-classification pred_class = classifier_model.predict(test_dataset['im'], batch_size=4) if DEBUG: plt.clf() plt.imshow(pred_class[i, :, :, 0]) plt.contour(pred_class[i, :, :, 0] > 0.5, colors='r', linewidhts=3) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'pred_class_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') plt.clf() plt.imshow(pred_class[i, :, :, 0] > 0.5) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'pred_class_thresh_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') ## plot of classifier ground truth # print('file ' + str(i) + '/' + str(len(file_svg_list) - 1)) # init output im_array_all = [] out_class_all = [] out_mask_all = [] contour_type_all = [] file_tif = os.path.join(klf14_training_dir, os.path.basename(im_test_file_list[i])) file_tif = file_tif.replace('im_seed_nan_', '') # change file extension from .svg to .tif file_svg = file_tif.replace('.tif', '.svg') # open histology training image im = Image.open(file_tif) # make array copy im_array = np.array(im) # read the ground truth cell contours in the SVG file. This produces a list [contour_0, ..., contour_N-1] # where each contour_i = [(X_0, Y_0), ..., (X_P-1, X_P-1)] cell_contours = cytometer.data.read_paths_from_svg_file(file_svg, tag='Cell', add_offset_from_filename=False, minimum_npoints=3) other_contours = cytometer.data.read_paths_from_svg_file(file_svg, tag='Other', add_offset_from_filename=False, minimum_npoints=3) brown_contours = cytometer.data.read_paths_from_svg_file(file_svg, tag='Brown', add_offset_from_filename=False, minimum_npoints=3) background_contours = cytometer.data.read_paths_from_svg_file(file_svg, tag='Background', add_offset_from_filename=False, minimum_npoints=3) contours = cell_contours + other_contours + brown_contours + background_contours # make a list with the type of cell each contour is classified as contour_type = [np.zeros(shape=(len(cell_contours),), dtype=np.uint8), # 0: white-adipocyte np.ones(shape=(len(other_contours),), dtype=np.uint8), # 1: other types of tissue np.ones(shape=(len(brown_contours),), dtype=np.uint8), # 1: brown cells (treated as "other" tissue) np.zeros(shape=(len(background_contours),), dtype=np.uint8)] # 0: background contour_type = np.concatenate(contour_type) contour_type_all.append(contour_type) print('Cells: ' + str(len(cell_contours))) print('Other: ' + str(len(other_contours))) print('Brown: ' + str(len(brown_contours))) print('Background: ' + str(len(background_contours))) # initialise arrays for training out_class = np.zeros(shape=im_array.shape[0:2], dtype=np.uint8) out_mask = np.zeros(shape=im_array.shape[0:2], dtype=np.uint8) # loop ground truth cell contours for j, contour in enumerate(contours): plt.plot([p[0] for p in contour], [p[1] for p in contour]) plt.text(contour[0][0], contour[0][1], str(j)) if DEBUG: plt.clf() plt.subplot(121) plt.imshow(im_array) plt.plot([p[0] for p in contour], [p[1] for p in contour]) xy_c = (np.mean([p[0] for p in contour]), np.mean([p[1] for p in contour])) plt.scatter(xy_c[0], xy_c[1]) # rasterise current ground truth segmentation cell_seg_gtruth = Image.new("1", im_array.shape[0:2][::-1], "black") # I = 32-bit signed integer pixels draw = ImageDraw.Draw(cell_seg_gtruth) draw.polygon(contour, outline="white", fill="white") cell_seg_gtruth = np.array(cell_seg_gtruth, dtype=np.bool) # we are going to save the ground truth segmentation of the cell that we are going to later use in the figures if j == 106: cell_seg_gtruth_106 = cell_seg_gtruth.copy() if DEBUG: plt.subplot(122) plt.cla() plt.imshow(im_array) plt.contour(cell_seg_gtruth.astype(np.uint8)) # add current object to training output and mask out_mask[cell_seg_gtruth] = 1 out_class[cell_seg_gtruth] = contour_type[j] if DEBUG: plt.clf() aux = (1- out_class).astype(np.float32) aux = np.ma.masked_where(out_mask < 0.5, aux) plt.imshow(aux) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'class_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') ## Segmentation correction CNN # segmentation parameters min_cell_area = 1500 max_cell_area = 100e3 min_mask_overlap = 0.8 phagocytosis = True min_class_prop = 0.5 correction_window_len = 401 correction_smoothing = 11 batch_size = 2 # segment histology labels, labels_class, _ \ = cytometer.utils.segment_dmap_contour_v6(im_array, contour_model=contour_model, dmap_model=dmap_model, classifier_model=classifier_model, border_dilation=0) labels = labels[0, :, :] labels_class = labels_class[0, :, :, 0] if DEBUG: plt.clf() plt.imshow(labels) if DEBUG: plt.clf() plt.imshow(labels) plt.clf() aux = skimage.segmentation.find_boundaries(labels, mode='thick') kernel = np.ones((3, 3), np.uint8) aux = cv2.dilate(aux.astype(np.uint8), kernel=kernel, iterations=1) plt.imshow(aux) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'watershed_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') # remove labels that touch the edges, that are too small or too large, don't overlap enough with the tissue mask, # are fully surrounded by another label or are not white adipose tissue labels, todo_edge = cytometer.utils.clean_segmentation( labels, min_cell_area=min_cell_area, max_cell_area=max_cell_area, remove_edge_labels=True, mask=None, min_mask_overlap=min_mask_overlap, phagocytosis=phagocytosis, labels_class=labels_class, min_class_prop=min_class_prop) if DEBUG: plt.clf() plt.imshow(im_array) plt.contour(labels, levels=np.unique(labels), colors='k') plt.contourf(labels == 0) plt.clf() aux = skimage.segmentation.find_boundaries(labels, mode='thick') kernel = np.ones((3, 3), np.uint8) aux = cv2.dilate(aux.astype(np.uint8), kernel=kernel, iterations=1) plt.imshow(aux) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'cleaned_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') # split image into individual labels im_array = np.expand_dims(im_array, axis=0) labels = np.expand_dims(labels, axis=0) labels_class = np.expand_dims(labels_class, axis=0) cell_seg_gtruth_106 = np.expand_dims(cell_seg_gtruth_106, axis=0) window_mask = None (window_labels, window_im, window_labels_class, window_cell_seg_gtruth_106), index_list, scaling_factor_list \ = cytometer.utils.one_image_per_label_v2((labels, im_array, labels_class, cell_seg_gtruth_106.astype(np.uint8)), resize_to=(correction_window_len, correction_window_len), resample=(Image.NEAREST, Image.LINEAR, Image.NEAREST, Image.NEAREST), only_central_label=True, return_bbox=True) # load correction model saved_model_filename = os.path.join(saved_models_dir, correction_model_basename + '_model_fold_' + str(i_fold) + '.h5') correction_model = keras.models.load_model(saved_model_filename) if correction_model.input_shape[1:3] != window_im.shape[1:3]: correction_model = cytometer.utils.change_input_size(correction_model, batch_shape=window_im.shape) # multiply image by mask window_im_masked = cytometer.utils.quality_model_mask( np.expand_dims(window_labels, axis=-1), im=window_im, quality_model_type='-1_1') # process (histology * mask) to estimate which pixels are underestimated and which overestimated in the segmentation window_im_masked = correction_model.predict(window_im_masked, batch_size=batch_size) # compute the correction to be applied to the segmentation correction = (window_im[:, :, :, 0].copy() * 0).astype(np.float32) correction[window_im_masked[:, :, :, 0] >= 0.5] = 1 # the segmentation went too far correction[window_im_masked[:, :, :, 0] <= -0.5] = -1 # the segmentation fell short if DEBUG: j = 0 plt.clf() plt.imshow(correction[j, :, :]) # plt.contour(window_labels[j, ...], colors='r', linewidths=1) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'pred_correction_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') plt.clf() plt.imshow(correction[j, :, :]) plt.contour(window_labels[j, ...], colors='r', linewidths=1) plt.contour(window_cell_seg_gtruth_106[j, ...], colors='w', linewidths=1) plt.axis('off') plt.tight_layout() plt.savefig( os.path.join(figures_dir, 'pred_correction_gtruth_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') # correct segmentation (full operation) window_im = window_im.astype(np.float32) window_im /= 255.0 window_labels_corrected = cytometer.utils.correct_segmentation( im=window_im, seg=window_labels, correction_model=correction_model, model_type='-1_1', smoothing=correction_smoothing, batch_size=batch_size) if DEBUG: # plot input to and output from Correction CNN examples for j in [13, 15, 18]: plt.clf() plt.imshow(window_im[j, :, :, :]) plt.contour(window_labels[j, ...], colors='g', linewidths=4) plt.axis('off') plt.tight_layout() plt.savefig( os.path.join(figures_dir, 'correction_input_j_' + str(j) + '_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') plt.savefig( os.path.join(figures_dir, 'correction_input_j_' + str(j) + '_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.svg')), bbox_inches='tight') plt.clf() plt.imshow(window_im[j, :, :, :]) plt.contour(window_labels_corrected[j, ...], colors='r', linewidths=4) plt.axis('off') plt.tight_layout() plt.savefig( os.path.join(figures_dir, 'correction_output_j_' + str(j) + '_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') plt.savefig( os.path.join(figures_dir, 'correction_output_j_' + str(j) + '_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.svg')), bbox_inches='tight') # convert overlap labels in cropped images to contours (points), and add cropping window offset so that the # contours are in the tile-window coordinates offset_xy = np.array(index_list)[:, [2, 3]] # index_list: [i, lab, x0, y0, xend, yend] contours = cytometer.utils.labels2contours(window_labels, offset_xy=offset_xy, scaling_factor_xy=scaling_factor_list) contours_corrected = cytometer.utils.labels2contours(window_labels_corrected, offset_xy=offset_xy, scaling_factor_xy=scaling_factor_list) # crop contours that overflow the edges for j in range(len(contours_corrected)): contours_corrected[j] = np.clip(contours_corrected[j], a_min=0, a_max=1000) if DEBUG: # plot corrected overlapping contours all together ax = plt.clf() plt.imshow(labels[0, :, :] * 0) for j in range(len(contours_corrected)): plt.fill(contours_corrected[j][:, 1], contours_corrected[j][:, 0], edgecolor=(0.993248, 0.906157, 0.143936, 1.0), fill=False, lw=1.5) plt.axis('off') plt.tight_layout() plt.savefig( os.path.join(figures_dir, 'corrected_contours_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') plt.savefig( os.path.join(figures_dir, 'corrected_contours_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.svg')), bbox_inches='tight') if DEBUG: j = 0 plt.clf() plt.imshow(window_im[j, ...]) plt.contour(window_labels[j, ...], colors='r', linewidths=3) plt.text(185, 210, '+1', fontsize=30) plt.text(116, 320, '-1', fontsize=30) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'im_for_correction_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') plt.clf() plt.imshow(window_im[j, ...]) plt.contour(window_labels_corrected[j, ...], colors='g', linewidths=3) plt.text(185, 210, '+1', fontsize=30) plt.text(116, 320, '-1', fontsize=30) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'corrected_seg_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') aux = np.array(contours[j]) plt.plot(aux[:, 0], aux[:, 1]) ######################################################################################################################## ## Check whether manual correction of pipeline results makes a difference # For this experiment, we corrected by hand on AIDA the automatic segmentations produced by the pipeline, # and compared the segmentation error. ######################################################################################################################## import matplotlib.pyplot as plt import cytometer.data from shapely.geometry import Polygon import openslide import numpy as np import scipy.stats import pandas as pd from mlxtend.evaluate import permutation_test from statsmodels.stats.multitest import multipletests import math # directories klf14_root_data_dir = os.path.join(home, 'Data/cytometer_data/klf14') annotations_dir = os.path.join(home, 'Data/cytometer_data/aida_data_Klf14_v7/annotations') ndpi_dir = os.path.join(home, 'scan_srv2_cox/Maz Yon') figures_dir = os.path.join(home, 'GoogleDrive/Research/20190727_cytometer_paper/figures') metainfo_dir = os.path.join(home, 'Data/cytometer_data/klf14') DEBUG = False depot = 'sqwat' # depot = 'gwat' permutation_sample_size = 9 # the factorial of this number is the number of repetitions in the permutation tests # list of annotation files for this depot json_annotation_files = json_annotation_files_dict[depot] # modify filenames to select the particular segmentation we want (e.g. the automatic ones, or the manually refined ones) json_pipeline_annotation_files = [x.replace('.json', '_exp_0097_corrected_monolayer_left.json') for x in json_annotation_files] json_pipeline_annotation_files = [os.path.join(annotations_dir, x) for x in json_pipeline_annotation_files] # modify filenames to select the particular segmentation we want (e.g. the automatic ones, or the manually refined ones) json_refined_annotation_files = [x.replace('.json', '_exp_0097_refined_left.json') for x in json_annotation_files] json_refined_annotation_files = [os.path.join(annotations_dir, x) for x in json_refined_annotation_files] # CSV file with metainformation of all mice metainfo_csv_file = os.path.join(metainfo_dir, 'klf14_b6ntac_meta_info.csv') metainfo = pd.read_csv(metainfo_csv_file) # make sure that in the boxplots PAT comes before MAT metainfo['sex'] = metainfo['sex'].astype(pd.api.types.CategoricalDtype(categories=['f', 'm'], ordered=True)) metainfo['ko_parent'] = metainfo['ko_parent'].astype(pd.api.types.CategoricalDtype(categories=['PAT', 'MAT'], ordered=True)) metainfo['genotype'] = metainfo['genotype'].astype(pd.api.types.CategoricalDtype(categories=['KLF14-KO:WT', 'KLF14-KO:Het'], ordered=True)) quantiles = np.linspace(0, 1, 11) quantiles = quantiles[1:-1] pipeline_area_q_all = [] refined_area_q_all = [] pipeline_area_mean_all = [] refined_area_mean_all = [] id_all = [] for i_file, (json_pipeline_annotation_file, json_refined_annotation_file) in enumerate(zip(json_pipeline_annotation_files, json_refined_annotation_files)): # create dataframe for this image df_common = cytometer.data.tag_values_with_mouse_info(metainfo=metainfo, s=os.path.basename(json_pipeline_annotation_file), values=[i_file, ], values_tag='i_file', tags_to_keep=['id', 'ko_parent', 'genotype', 'sex', 'BW', 'gWAT', 'SC']) # mouse ID as a string id = df_common['id'].values[0] # we have only refined some of the segmentations for testing if not id in ['16.2a', '16.2b', '16.2c', '16.2d', '16.2e', '16.2f', '17.1a', '17.1b', '17.1c', '17.1d', '17.1e', '17.1f', '17.2a', '17.2b', '17.2c', '17.2d', '17.2f', '17.2g', '18.1a', '18.1b', '18.1c', '18.1d']: continue print('File ' + str(i_file) + '/' + str(len(json_annotation_files)-1) + ': ') if os.path.isfile(json_pipeline_annotation_file): print('\t' + os.path.basename(json_pipeline_annotation_file)) else: print('\t' + os.path.basename(json_pipeline_annotation_file) + ' ... missing') if os.path.isfile(json_refined_annotation_file): print('\t' + os.path.basename(json_refined_annotation_file)) else: print('\t' + os.path.basename(json_refined_annotation_file) + ' ... missing') # ndpi file that corresponds to this .json file ndpi_file = json_pipeline_annotation_file.replace('_exp_0097_corrected_monolayer_left.json', '.ndpi') ndpi_file = ndpi_file.replace(annotations_dir, ndpi_dir) # open full resolution histology slide im = openslide.OpenSlide(ndpi_file) # pixel size assert (im.properties['tiff.ResolutionUnit'] == 'centimeter') xres = 1e-2 / float(im.properties['tiff.XResolution']) # m yres = 1e-2 / float(im.properties['tiff.YResolution']) # m # ko = df_common['ko_parent'].values[0] # genotype = df_common['genotype'].values[0] # sex = df_common['sex'].values[0] # bw = df_common['BW'].values[0] # gwat = df_common['gWAT'].values[0] # sc = df_common['SC'].values[0] # read contours from AIDA annotations pipeline_contours = cytometer.data.aida_get_contours(json_pipeline_annotation_file, layer_name='White adipocyte.*') refined_contours = cytometer.data.aida_get_contours(json_refined_annotation_file, layer_name='White adipocyte.*') # compute area of each contour pipeline_areas = [Polygon(c).area * xres * yres for c in pipeline_contours] # (um^2) refined_areas = [Polygon(c).area * xres * yres for c in refined_contours] # (um^2) # compute HD quantiles pipeline_area_q = scipy.stats.mstats.hdquantiles(pipeline_areas, prob=quantiles, axis=0) refined_area_q = scipy.stats.mstats.hdquantiles(refined_areas, prob=quantiles, axis=0) # compute average cell size pipeline_area_mean = np.mean(pipeline_areas) refined_area_mean = np.mean(refined_areas) pipeline_area_q_all.append(pipeline_area_q) refined_area_q_all.append(refined_area_q) pipeline_area_mean_all.append(pipeline_area_mean) refined_area_mean_all.append(refined_area_mean) id_all.append(id) print('Removed cells: %.2f' % (1 - len(refined_areas) / len(pipeline_areas))) print((np.array(pipeline_area_q) - np.array(refined_area_q)) * 1e12) if DEBUG: plt.clf() plt.plot(quantiles, pipeline_area_q * 1e12, label='Pipeline', linewidth=3) plt.plot(quantiles, refined_area_q * 1e12, label='Refined', linewidth=3) plt.tick_params(axis='both', which='major', labelsize=14) plt.xlabel('Quantiles', fontsize=14) plt.ylabel('Area ($\mu m^2$)', fontsize=14) plt.legend(fontsize=12) # convert the list of vectors into a matrix pipeline_area_q_all = np.vstack(pipeline_area_q_all) refined_area_q_all = np.vstack(refined_area_q_all) refined_area_mean_all = np.array(refined_area_mean_all) pipeline_area_mean_all = np.array(pipeline_area_mean_all) if DEBUG: plt.clf() pipeline_area_q_mean = np.mean(pipeline_area_q_all, axis=0) for i in range(pipeline_area_q_all.shape[0]): plt.plot(quantiles, 100 * (refined_area_q_all[i, :] - pipeline_area_q_all[i, :]) / pipeline_area_q_mean, label=id_all[i], linewidth=3) plt.tick_params(axis='both', which='major', labelsize=14) plt.xlabel('Quantiles', fontsize=14) plt.ylabel('Area change with refinement (%)', fontsize=14) plt.legend(fontsize=12) plt.tight_layout() if DEBUG: plt.clf() plt.boxplot(100 * (refined_area_mean_all - pipeline_area_mean_all) / pipeline_area_mean_all, labels=['Mean size']) plt.tick_params(axis='both', which='major', labelsize=14) plt.ylabel('Area change with refinement (%)', fontsize=14) plt.tight_layout() ######################################################################################################################## ## Plots of segmented full slides with quantile colourmaps ######################################################################################################################## # This is done in klf14_b6ntac_exp_0098_full_slide_size_analysis_v7 ######################################################################################################################## ## Analysis of time and blocks that took to compute full slide segmentation from the server logs ######################################################################################################################## # The results were noted down in klf14_b6ntac_exp_0097_full_slide_pipeline_v7_logs.csv. This file is in the GoogleDrive # directory with the rest of the paper. import numpy as np import pandas as pd import matplotlib.pyplot as plt import openslide import statsmodels.api as sm import scipy.stats DEBUG = False '''Directories and filenames''' # data paths klf14_root_data_dir = os.path.join(home, 'Data/cytometer_data/klf14') saved_models_dir = os.path.join(klf14_root_data_dir, 'saved_models') ndpi_dir = os.path.join(home, 'scan_srv2_cox/Maz Yon') annotations_dir = os.path.join(home, 'Data/cytometer_data/aida_data_Klf14_v7/annotations') times_dir = os.path.join(home, 'GoogleDrive/Research/20190727_cytometer_paper') # load filenames, number of blocks and time it took to segment them times_file = 'klf14_b6ntac_exp_0097_full_slide_pipeline_v7_logs.csv' times_file = os.path.join(times_dir, times_file) times_df = pd.read_csv(times_file) # read rough masks of the files in the dataframe, to measure the tissue area in each for i, file in enumerate(times_df['File']): # filename of the coarse tissue mask coarse_mask_file = os.path.join(annotations_dir, file + '_rough_mask.npz') # load coarse tissue mask with np.load(coarse_mask_file) as data: mask = data['lores_istissue0'] if DEBUG: plt.clf() plt.imshow(mask) # open full resolution histology slide to get pixel size ndpi_file = os.path.join(ndpi_dir, file + '.ndpi') im = openslide.OpenSlide(ndpi_file) # pixel size assert (im.properties['tiff.ResolutionUnit'] == 'centimeter') xres = 1e-2 / float(im.properties['tiff.XResolution']) yres = 1e-2 / float(im.properties['tiff.YResolution']) # scaling factor to get pixel size in the coarse mask k = np.array(im.dimensions) / mask.shape[::-1] # add tissue area to the dataframe. Calculations for full resolution slide, even though they # are computed from the coarse mask times_df.loc[i, 'tissue_area_pix'] = np.count_nonzero(mask) * k[0] * k[1] times_df.loc[i, 'tissue_area_mm2'] = times_df.loc[i, 'tissue_area_pix'] * xres * yres * 1e6 if DEBUG: # plot tissue area vs. time to compute plt.clf() plt.scatter(times_df['tissue_area_mm2'], times_df['Blocks Time (s)']) # fit linear model model = sm.formula.ols('Q("Blocks Time (s)") ~ tissue_area_mm2', data=times_df).fit() print(model.summary()) # Pearson coefficient rho, rho_p = scipy.stats.pearsonr(times_df['tissue_area_mm2'], times_df['Blocks Time (s)']) print('Pearson coeff = ' + str(rho)) print('p-val = ' + str(rho_p)) # tissue area print('Tissue area') print('min = ' + str(np.min(times_df['tissue_area_mm2'])) + ' mm2 = ' + str(np.min(times_df['tissue_area_pix']) * 1e-6) + ' Mpix') print('max = ' + str(np.max(times_df['tissue_area_mm2'])) + ' mm2 = ' + str(np.max(times_df['tissue_area_pix']) * 1e-6) + ' Mpix') # corresponding time to compute print('Time to compute') time_pred = model.predict(times_df['tissue_area_mm2']) print('min = ' + str(np.min(time_pred) / 3600) + ' h') print('max = ' + str(np.max(time_pred) / 3600) + ' h') tissue_area_mm2_q1 = scipy.stats.mstats.hdquantiles(times_df['tissue_area_mm2'], prob=0.25, axis=0) tissue_area_mm2_q2 = scipy.stats.mstats.hdquantiles(times_df['tissue_area_mm2'], prob=0.5, axis=0) tissue_area_mm2_q3 = scipy.stats.mstats.hdquantiles(times_df['tissue_area_mm2'], prob=0.75, axis=0) aux_df = times_df.loc[0:2, :].copy() aux_df.loc[0, 'tissue_area_mm2'] = tissue_area_mm2_q1 aux_df.loc[1, 'tissue_area_mm2'] = tissue_area_mm2_q2 aux_df.loc[2, 'tissue_area_mm2'] = tissue_area_mm2_q3 tissue_time_pred_q = model.predict(aux_df) print('q1 = ' + str(tissue_area_mm2_q1) + ' mm2 -> ' + str(tissue_time_pred_q[0] / 3600) + ' h') print('q2 = ' + str(tissue_area_mm2_q2) + ' mm2 -> ' + str(tissue_time_pred_q[1] / 3600) + ' h') print('q3 = ' + str(tissue_area_mm2_q3) + ' mm2 -> ' + str(tissue_time_pred_q[2] / 3600) + ' h') ######################################################################################################################## ## Segmentation validation ######################################################################################################################## # This is done in klf14_b6ntac_exp_0096_pipeline_v7_validation.py ######################################################################################################################## ## Time that it takes to do Auto vs. Corrected segmentation ######################################################################################################################## import numpy as np import time import pandas as pd import pickle import matplotlib.pyplot as plt import cytometer.data import cytometer.utils from PIL import Image, ImageDraw, ImageEnhance DEBUG = False # data paths klf14_root_data_dir = os.path.join(home, 'Data/cytometer_data/klf14') saved_models_dir = os.path.join(klf14_root_data_dir, 'saved_models') metainfo_dir = os.path.join(home, 'Data/cytometer_data/klf14') times_dir = os.path.join(home, 'GoogleDrive/Research/20190727_cytometer_paper') saved_kfolds_filename = 'klf14_b6ntac_exp_0079_generate_kfolds.pickle' saved_extra_kfolds_filename = 'klf14_b6ntac_exp_0094_generate_extra_training_images.pickle' # model names dmap_model_basename = 'klf14_b6ntac_exp_0086_cnn_dmap' contour_model_basename = 'klf14_b6ntac_exp_0091_cnn_contour_after_dmap' classifier_model_basename = 'klf14_b6ntac_exp_0095_cnn_tissue_classifier_fcn' correction_model_basename = 'klf14_b6ntac_exp_0089_cnn_segmentation_correction_overlapping_scaled_contours' # training window length training_window_len = 401 # segmentation parameters min_cell_area = 1500 max_cell_area = 100e3 min_mask_overlap = 0.8 phagocytosis = True # min_class_prop = 0.5 # correction_window_len = 401 # correction_smoothing = 11 batch_size = 2 '''Load folds''' # load list of images, and indices for training vs. testing indices saved_kfolds_filename = os.path.join(saved_models_dir, saved_kfolds_filename) with open(saved_kfolds_filename, 'rb') as f: aux = pickle.load(f) file_svg_list = aux['file_list'] idx_test_all = aux['idx_test'] idx_train_all = aux['idx_train'] # correct home directory file_svg_list = [x.replace('/users/rittscher/rcasero', home) for x in file_svg_list] file_svg_list = [x.replace('/home/rcasero', home) for x in file_svg_list] # number of images n_im = len(file_svg_list) # number of folds n_folds = len(idx_test_all) # CSV file with metainformation of all mice metainfo_csv_file = os.path.join(metainfo_dir, 'klf14_b6ntac_meta_info.csv') metainfo = pd.read_csv(metainfo_csv_file) # # correct home directory in file paths # file_svg_list = cytometer.data.change_home_directory(list(file_svg_list), '/home/rcasero', home, check_isfile=True) # file_svg_list = cytometer.data.change_home_directory(list(file_svg_list), '/users/rittscher/rcasero', home, check_isfile=True) ## compute and save results (you can skip this section if this has been done before, and go straight where you load the ## results) # load data computed in 0096 validation script data_filename = os.path.join(saved_models_dir, 'klf14_b6ntac_exp_0096_pipeline_v7_validation' + '_data.npz') with np.load(data_filename) as data: im_array_all = data['im_array_all'] rough_mask_all = data['rough_mask_all'] out_class_all = 1 - data['out_class_all'] # encode as 0: other, 1: WAT out_mask_all = data['out_mask_all'] # init dataframes df_manual_all = pd.DataFrame() df_auto_all = pd.DataFrame() # init time vectors time_auto = [] time_corrected = [] for i_fold in range(len(idx_test_all)): # start timer t0 = time.time() ''' Get the images/masks/classification that were not used for training of this particular fold ''' print('# Fold ' + str(i_fold) + '/' + str(len(idx_test_all) - 1)) # test and training image indices. These indices refer to file_list idx_test = idx_test_all[i_fold] # list of test files (used later for the dataframe) file_list_test = np.array(file_svg_list)[idx_test] print('## len(idx_test) = ' + str(len(idx_test))) # split data into training and testing im_array_test = im_array_all[idx_test, :, :, :] rough_mask_test = rough_mask_all[idx_test, :, :] out_class_test = out_class_all[idx_test, :, :, :] out_mask_test = out_mask_all[idx_test, :, :] ''' Segmentation into non-overlapping objects ''' # names of contour, dmap and tissue classifier models contour_model_filename = \ os.path.join(saved_models_dir, contour_model_basename + '_model_fold_' + str(i_fold) + '.h5') dmap_model_filename = \ os.path.join(saved_models_dir, dmap_model_basename + '_model_fold_' + str(i_fold) + '.h5') classifier_model_filename = \ os.path.join(saved_models_dir, classifier_model_basename + '_model_fold_' + str(i_fold) + '.h5') # segment histology pred_seg_test, pred_class_test, _ \ = cytometer.utils.segment_dmap_contour_v6(im_array_test, dmap_model=dmap_model_filename, contour_model=contour_model_filename, classifier_model=classifier_model_filename, border_dilation=0, batch_size=batch_size) if DEBUG: i = 0 plt.clf() plt.subplot(221) plt.cla() plt.imshow(im_array_test[i, :, :, :]) plt.axis('off') plt.subplot(222) plt.cla() plt.imshow(im_array_test[i, :, :, :]) plt.contourf(pred_class_test[i, :, :, 0].astype(np.float32), alpha=0.5) plt.axis('off') plt.subplot(223) plt.cla() plt.imshow(im_array_test[i, :, :, :]) plt.contour(pred_seg_test[i, :, :], levels=np.unique(pred_seg_test[i, :, :]), colors='k') plt.axis('off') plt.subplot(224) plt.cla() plt.imshow(im_array_test[i, :, :, :]) plt.contourf(pred_class_test[i, :, :, 0].astype(np.float32), alpha=0.5) plt.contour(pred_seg_test[i, :, :], levels=np.unique(pred_seg_test[i, :, :]), colors='k') plt.axis('off') plt.tight_layout() # clean segmentation: remove labels that are too small or that don't overlap enough with # the rough foreground mask pred_seg_test, _ \ = cytometer.utils.clean_segmentation(pred_seg_test, min_cell_area=min_cell_area, max_cell_area=max_cell_area, remove_edge_labels=False, mask=rough_mask_test, min_mask_overlap=min_mask_overlap, phagocytosis=phagocytosis, labels_class=None) # record processing time time_auto.append((time.time() - t0) / im_array_test.shape[0]) if DEBUG: plt.clf() aux = np.stack((rough_mask_test[i, :, :],) * 3, axis=2) plt.imshow(im_array_test[i, :, :, :] * aux) plt.contour(pred_seg_test[i, ...], levels=np.unique(pred_seg_test[i, ...]), colors='k') plt.axis('off') ''' Split image into individual labels and correct segmentation to take overlaps into account ''' (window_seg_test, window_im_test, window_class_test, window_rough_mask_test), index_list, scaling_factor_list \ = cytometer.utils.one_image_per_label_v2((pred_seg_test, im_array_test, pred_class_test[:, :, :, 0].astype(np.uint8), rough_mask_test.astype(np.uint8)), resize_to=(training_window_len, training_window_len), resample=(Image.NEAREST, Image.LINEAR, Image.NEAREST, Image.NEAREST), only_central_label=True) # correct segmentations correction_model_filename = os.path.join(saved_models_dir, correction_model_basename + '_model_fold_' + str(i_fold) + '.h5') window_seg_corrected_test = cytometer.utils.correct_segmentation(im=window_im_test, seg=window_seg_test, correction_model=correction_model_filename, model_type='-1_1', batch_size=batch_size, smoothing=11) # record processing time time_corrected.append((time.time() - t0 - time_auto[-1]) / im_array_test.shape[0]) # save for later use times_file = os.path.join(times_dir, 'klf14_b6ntac_exp_0099_time_comparison_auto_corrected.npz') np.savez(times_file, time_auto=time_auto, time_corrected=time_corrected) # compute what proportion of time the algorithm spends on the Auto segmentatiom vs. corrected segmentation time_auto_ratio = np.array(time_auto) / (np.array(time_auto) + np.array(time_corrected)) print('Time Auto ratio:') print('mean = ' + str(100 * np.mean(time_auto_ratio)) + ' %') print('std = ' + str(100 * np.std(time_auto_ratio)) + ' %') print('Ratio of total time to Auto') print('mean = ' + 'x' + str(np.mean(1 / time_auto_ratio))) print('std = ' + 'x' + str(np.std(1 / time_auto_ratio))) time_corrected_ratio = np.array(time_corrected) / (np.array(time_auto) + np.array(time_corrected)) print('Time Corrected ratio:') print('mean = ' + str(100 * np.mean(time_corrected_ratio)) + ' %') print('std = ' + str(100 * np.std(time_corrected_ratio)) + ' %') ######################################################################################################################## ## Cell populations from automatically segmented images in two depots: SQWAT and GWAT. ## This section needs to be run for each of the depots. But the results are saved, so in later sections, it's possible ## to get all the data together ### USED IN PAPER ######################################################################################################################## import matplotlib.pyplot as plt import cytometer.data from shapely.geometry import Polygon import openslide import numpy as np import scipy.stats import pandas as pd from mlxtend.evaluate import permutation_test from statsmodels.stats.multitest import multipletests import math # directories klf14_root_data_dir = os.path.join(home, 'Data/cytometer_data/klf14') annotations_dir = os.path.join(home, 'Data/cytometer_data/aida_data_Klf14_v8/annotations') ndpi_dir = os.path.join(home, 'scan_srv2_cox/Maz Yon') figures_dir = os.path.join(home, 'GoogleDrive/Research/20190727_cytometer_paper/figures') metainfo_dir = os.path.join(home, 'Data/cytometer_data/klf14') DEBUG = False permutation_sample_size = 9 # the factorial of this number is the number of repetitions in the permutation tests for depot in ['sqwat', 'gwat']: # list of annotation files for this depot json_annotation_files = json_annotation_files_dict[depot] # modify filenames to select the particular segmentation we want (e.g. the automatic ones, or the manually refined ones) json_annotation_files = [x.replace('.json', '_exp_0097_corrected.json') for x in json_annotation_files] json_annotation_files = [os.path.join(annotations_dir, x) for x in json_annotation_files] # CSV file with metainformation of all mice metainfo_csv_file = os.path.join(metainfo_dir, 'klf14_b6ntac_meta_info.csv') metainfo = pd.read_csv(metainfo_csv_file) # make sure that in the boxplots PAT comes before MAT metainfo['sex'] = metainfo['sex'].astype(pd.api.types.CategoricalDtype(categories=['f', 'm'], ordered=True)) metainfo['ko_parent'] = metainfo['ko_parent'].astype(pd.api.types.CategoricalDtype(categories=['PAT', 'MAT'], ordered=True)) metainfo['genotype'] = metainfo['genotype'].astype(pd.api.types.CategoricalDtype(categories=['KLF14-KO:WT', 'KLF14-KO:Het'], ordered=True)) quantiles = np.linspace(0, 1, 11) quantiles = quantiles[1:-1] # compute areas of the rough masks filename_rough_mask_area = os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_rough_mask_area_' + depot + '.npz') id_all = [] rough_mask_area_all = [] for i_file, json_file in enumerate(json_annotation_files): print('File ' + str(i_file) + '/' + str(len(json_annotation_files)-1) + ': ' + os.path.basename(json_file)) if not os.path.isfile(json_file): print('Missing file') # continue # open full resolution histology slide ndpi_file = json_file.replace('_exp_0097_corrected.json', '.ndpi') ndpi_file = os.path.join(ndpi_dir, os.path.basename(ndpi_file)) im = openslide.OpenSlide(ndpi_file) # pixel size assert (im.properties['tiff.ResolutionUnit'] == 'centimeter') xres = 1e-2 / float(im.properties['tiff.XResolution']) yres = 1e-2 / float(im.properties['tiff.YResolution']) # load mask rough_mask_file = json_file.replace('_exp_0097_corrected.json', '_rough_mask.npz') rough_mask_file = os.path.join(annotations_dir, rough_mask_file) if not os.path.isfile(rough_mask_file): print('No mask: ' + rough_mask_file) aux = np.load(rough_mask_file) lores_istissue0 = aux['lores_istissue0'] if DEBUG: foo = aux['im_downsampled'] foo = PIL.Image.fromarray(foo) foo = foo.resize(tuple((np.round(np.array(foo.size[0:2]) / 4)).astype(np.int))) plt.imshow(foo) plt.title(os.path.basename(ndpi_file)) # compute scaling factor between downsampled mask and original image size_orig = np.array(im.dimensions) # width, height size_downsampled = np.array(lores_istissue0.shape)[::-1] # width, height downsample_factor = size_orig / size_downsampled # width, height # create dataframe for this image rough_mask_area = np.count_nonzero(lores_istissue0) * (xres * downsample_factor[0]) * (yres * downsample_factor[1]) # m^2 df_common = cytometer.data.tag_values_with_mouse_info(metainfo=metainfo, s=os.path.basename(json_file), values=[rough_mask_area,], values_tag='SC_rough_mask_area', tags_to_keep=['id', 'ko_parent', 'sex']) # mouse ID as a string id = df_common['id'].values[0] # correct area because most slides contain two slices, but some don't if depot == 'sqwat' and not (id in ['16.2d', '17.1e', '17.2g', '16.2e', '18.1f', '37.4a', '37.2e']): # two slices in the slide, so slice area is approx. one half rough_mask_area /= 2 elif depot == 'gwat' and not (id in ['36.1d', '16.2a', '16.2b', '16.2c', '16.2d', '16.2e', '17.1b', '17.1d', '17.1e', '17.1f', '17.2c', '17.2d', '17.2f', '17.2g', '18.1b', '18.1c', '18.1d', '18.2a', '18.2c', '18.2d', '18.2f', '18.2g', '18.3c', '19.1a', '19.2e', '19.2f', '19.2g', '36.3d', '37.2e', '37.2f', '37.2g', '37.2h', '37.3a', '37.4a', '37.4b', '39.2d']): # two slices in the slide, so slice area is approx. one half rough_mask_area /= 2 # add to output id_all.append(id) rough_mask_area_all.append(rough_mask_area) # save results np.savez_compressed(filename_rough_mask_area, id_all=id_all, rough_mask_area_all=rough_mask_area_all) # load or compute area quantiles filename_quantiles = os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_area_quantiles_' + depot + '.npz') if os.path.isfile(filename_quantiles): with np.load(filename_quantiles) as aux: area_mean_all = aux['area_mean_all'] area_q_all = aux['area_q_all'] id_all = aux['id_all'] ko_all = aux['ko_all'] genotype_all = aux['genotype_all'] sex_all = aux['sex_all'] else: area_mean_all = [] area_q_all = [] id_all = [] ko_all = [] genotype_all = [] sex_all = [] bw_all = [] gwat_all = [] sc_all = [] for i_file, json_file in enumerate(json_annotation_files): print('File ' + str(i_file) + '/' + str(len(json_annotation_files)-1) + ': ' + os.path.basename(json_file)) if not os.path.isfile(json_file): print('Missing file') continue # ndpi file that corresponds to this .json file ndpi_file = json_file.replace('_exp_0097_corrected.json', '.ndpi') ndpi_file = ndpi_file.replace(annotations_dir, ndpi_dir) # open full resolution histology slide im = openslide.OpenSlide(ndpi_file) # pixel size assert (im.properties['tiff.ResolutionUnit'] == 'centimeter') xres = 1e-2 / float(im.properties['tiff.XResolution']) # m yres = 1e-2 / float(im.properties['tiff.YResolution']) # m # create dataframe for this image df_common = cytometer.data.tag_values_with_mouse_info(metainfo=metainfo, s=os.path.basename(json_file), values=[i_file,], values_tag='i_file', tags_to_keep=['id', 'ko_parent', 'genotype', 'sex', 'BW', 'gWAT', 'SC']) # mouse ID as a string id = df_common['id'].values[0] ko = df_common['ko_parent'].values[0] genotype = df_common['genotype'].values[0] sex = df_common['sex'].values[0] bw = df_common['BW'].values[0] gwat = df_common['gWAT'].values[0] sc = df_common['SC'].values[0] # read contours from AIDA annotations contours = cytometer.data.aida_get_contours(os.path.join(annotations_dir, json_file), layer_name='White adipocyte.*') # compute area of each contour areas = [Polygon(c).area * xres * yres for c in contours] # (um^2) # compute average area of all contours area_mean = np.mean(areas) # compute HD quantiles area_q = scipy.stats.mstats.hdquantiles(areas, prob=quantiles, axis=0) # append to totals area_mean_all.append(area_mean) area_q_all.append(area_q) id_all.append(id) ko_all.append(ko) genotype_all.append(genotype) sex_all.append(sex) bw_all.append(bw) gwat_all.append(gwat) sc_all.append(sc) # reorder from largest to smallest final area value area_mean_all = np.array(area_mean_all) area_q_all = np.array(area_q_all) id_all = np.array(id_all) ko_all = np.array(ko_all) genotype_all = np.array(genotype_all) sex_all = np.array(sex_all) bw_all = np.array(bw_all) gwat_all = np.array(gwat_all) sc_all = np.array(sc_all) idx = np.argsort(area_q_all[:, -1]) idx = idx[::-1] # sort from larger to smaller area_mean_all = area_mean_all[idx] area_q_all = area_q_all[idx, :] id_all = id_all[idx] ko_all = ko_all[idx] genotype_all = genotype_all[idx] sex_all = sex_all[idx] bw_all = bw_all[idx] gwat_all = gwat_all[idx] sc_all = sc_all[idx] np.savez_compressed(filename_quantiles, area_mean_all=area_mean_all, area_q_all=area_q_all, id_all=id_all, ko_all=ko_all, genotype_all=genotype_all, sex_all=sex_all, bw_all=bw_all, gwat_all=gwat_all, sc_all=sc_all) if DEBUG: plt.clf() for i in range(len(area_q_all)): # plot if ko_all[i] == 'PAT': color = 'g' elif ko_all[i] == 'MAT': color = 'r' else: raise ValueError('Unknown ko value: ' + ko) if sex_all[i] == 'f': plt.subplot(121) plt.plot(quantiles, area_q_all[i] * 1e12 * 1e-3, color=color) elif sex_all[i] == 'm': plt.subplot(122) plt.plot(quantiles, area_q_all[i] * 1e12 * 1e-3, color=color) else: raise ValueError('Unknown sex value: ' + sex) legend_f = [i + ' ' + j.replace('KLF14-KO:', '') for i, j in zip(id_all[sex_all == 'f'], genotype_all[sex_all == 'f'])] legend_m = [i + ' ' + j.replace('KLF14-KO:', '') for i, j in zip(id_all[sex_all == 'm'], genotype_all[sex_all == 'm'])] plt.subplot(121) plt.title('Female', fontsize=14) plt.tick_params(labelsize=14) plt.xlabel('Quantile', fontsize=14) plt.ylabel('Area ($10^{3}\ \mu m^2$)', fontsize=14) plt.legend(legend_f, fontsize=12) plt.subplot(122) plt.title('Male', fontsize=14) plt.tick_params(labelsize=14) plt.xlabel('Quantile', fontsize=14) plt.legend(legend_m, fontsize=12) # DEBUG: # area_q_all = np.vstack((area_q_all, area_q_all)) # id_all = np.hstack((id_all, id_all)) # ko_all = np.hstack((ko_all, ko_all)) # genotype_all = np.hstack((genotype_all, genotype_all)) # sex_all = np.hstack((sex_all, sex_all)) # compute variability of area values for each quantile area_q_f_pat = area_q_all[(sex_all == 'f') * (ko_all == 'PAT'), :] area_q_m_pat = area_q_all[(sex_all == 'm') * (ko_all == 'PAT'), :] area_q_f_mat = area_q_all[(sex_all == 'f') * (ko_all == 'MAT'), :] area_q_m_mat = area_q_all[(sex_all == 'm') * (ko_all == 'MAT'), :] area_interval_f_pat = scipy.stats.mstats.hdquantiles(area_q_f_pat, prob=[0.025, 0.25, 0.5, 0.75, 0.975], axis=0) area_interval_m_pat = scipy.stats.mstats.hdquantiles(area_q_m_pat, prob=[0.025, 0.25, 0.5, 0.75, 0.975], axis=0) area_interval_f_mat = scipy.stats.mstats.hdquantiles(area_q_f_mat, prob=[0.025, 0.25, 0.5, 0.75, 0.975], axis=0) area_interval_m_mat = scipy.stats.mstats.hdquantiles(area_q_m_mat, prob=[0.025, 0.25, 0.5, 0.75, 0.975], axis=0) area_q_f_pat_wt = area_q_all[(sex_all == 'f') * (ko_all == 'PAT') * (genotype_all == 'KLF14-KO:WT'), :] area_q_m_pat_wt = area_q_all[(sex_all == 'm') * (ko_all == 'PAT') * (genotype_all == 'KLF14-KO:WT'), :] area_q_f_mat_wt = area_q_all[(sex_all == 'f') * (ko_all == 'MAT') * (genotype_all == 'KLF14-KO:WT'), :] area_q_m_mat_wt = area_q_all[(sex_all == 'm') * (ko_all == 'MAT') * (genotype_all == 'KLF14-KO:WT'), :] area_interval_f_pat_wt = scipy.stats.mstats.hdquantiles(area_q_f_pat_wt, prob=[0.025, 0.25, 0.5, 0.75, 0.975], axis=0) area_interval_m_pat_wt = scipy.stats.mstats.hdquantiles(area_q_m_pat_wt, prob=[0.025, 0.25, 0.5, 0.75, 0.975], axis=0) area_interval_f_mat_wt = scipy.stats.mstats.hdquantiles(area_q_f_mat_wt, prob=[0.025, 0.25, 0.5, 0.75, 0.975], axis=0) area_interval_m_mat_wt = scipy.stats.mstats.hdquantiles(area_q_m_mat_wt, prob=[0.025, 0.25, 0.5, 0.75, 0.975], axis=0) area_q_f_pat_het = area_q_all[(sex_all == 'f') * (ko_all == 'PAT') * (genotype_all == 'KLF14-KO:Het'), :] area_q_m_pat_het = area_q_all[(sex_all == 'm') * (ko_all == 'PAT') * (genotype_all == 'KLF14-KO:Het'), :] area_q_f_mat_het = area_q_all[(sex_all == 'f') * (ko_all == 'MAT') * (genotype_all == 'KLF14-KO:Het'), :] area_q_m_mat_het = area_q_all[(sex_all == 'm') * (ko_all == 'MAT') * (genotype_all == 'KLF14-KO:Het'), :] area_interval_f_pat_het = scipy.stats.mstats.hdquantiles(area_q_f_pat_het, prob=[0.025, 0.25, 0.5, 0.75, 0.975], axis=0) area_interval_m_pat_het = scipy.stats.mstats.hdquantiles(area_q_m_pat_het, prob=[0.025, 0.25, 0.5, 0.75, 0.975], axis=0) area_interval_f_mat_het = scipy.stats.mstats.hdquantiles(area_q_f_mat_het, prob=[0.025, 0.25, 0.5, 0.75, 0.975], axis=0) area_interval_m_mat_het = scipy.stats.mstats.hdquantiles(area_q_m_mat_het, prob=[0.025, 0.25, 0.5, 0.75, 0.975], axis=0) n_f_pat_wt = area_q_f_pat_wt.shape[0] n_m_pat_wt = area_q_m_pat_wt.shape[0] n_f_mat_wt = area_q_f_mat_wt.shape[0] n_m_mat_wt = area_q_m_mat_wt.shape[0] n_f_pat_het = area_q_f_pat_het.shape[0] n_m_pat_het = area_q_m_pat_het.shape[0] n_f_mat_het = area_q_f_mat_het.shape[0] n_m_mat_het = area_q_m_mat_het.shape[0] if DEBUG: # plots of female median ECDF^-1 with quartile shaded area plt.clf() plt.subplot(121) plt.plot(quantiles, area_interval_f_pat_wt[2, :] * 1e12 * 1e-3, 'C0', linewidth=3, label=str(n_f_pat_wt) + ' WT') plt.fill_between(quantiles, area_interval_f_pat_wt[1, :] * 1e12 * 1e-3, area_interval_f_pat_wt[3, :] * 1e12 * 1e-3, facecolor='C0', alpha=0.3) plt.plot(quantiles, area_interval_f_pat_het[2, :] * 1e12 * 1e-3, 'k', linewidth=3, label=str(n_f_pat_het) + ' Het') plt.fill_between(quantiles, area_interval_f_pat_het[1, :] * 1e12 * 1e-3, area_interval_f_pat_het[3, :] * 1e12 * 1e-3, facecolor='k', alpha=0.3) plt.title('Female PAT', fontsize=14) plt.xlabel('Quantile', fontsize=14) plt.ylabel('White adipocyte area ($\cdot 10^3 \mu$m$^2$)', fontsize=14) plt.tick_params(axis='both', which='major', labelsize=14) plt.legend(loc='upper left', prop={'size': 12}) plt.ylim(0, 15) plt.tight_layout() plt.subplot(122) plt.plot(quantiles, area_interval_f_mat_wt[2, :] * 1e12 * 1e-3, 'C0', linewidth=3, label=str(n_f_mat_wt) + ' WT') plt.fill_between(quantiles, area_interval_f_mat_wt[1, :] * 1e12 * 1e-3, area_interval_f_mat_wt[3, :] * 1e12 * 1e-3, facecolor='C0', alpha=0.3) plt.plot(quantiles, area_interval_f_mat_het[2, :] * 1e12 * 1e-3, 'k', linewidth=3, label=str(n_f_mat_het) + ' Het') plt.fill_between(quantiles, area_interval_f_mat_het[1, :] * 1e12 * 1e-3, area_interval_f_mat_het[3, :] * 1e12 * 1e-3, facecolor='k', alpha=0.3) plt.title('Female MAT', fontsize=14) plt.xlabel('Quantile', fontsize=14) plt.tick_params(axis='both', which='major', labelsize=14) plt.legend(loc='upper left', prop={'size': 12}) plt.ylim(0, 15) plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'exp_0099_' + depot + '_cell_area_female_pat_vs_mat_bands.svg')) plt.savefig(os.path.join(figures_dir, 'exp_0099_' + depot + '_cell_area_female_pat_vs_mat_bands.png')) if DEBUG: # plots of male median ECDF^-1 with quartile shaded area plt.clf() plt.subplot(121) plt.plot(quantiles, area_interval_m_pat_wt[2, :] * 1e12 * 1e-3, 'C0', linewidth=3, label=str(n_m_pat_wt) + ' WT') plt.fill_between(quantiles, area_interval_m_pat_wt[1, :] * 1e12 * 1e-3, area_interval_m_pat_wt[3, :] * 1e12 * 1e-3, facecolor='C0', alpha=0.3) plt.plot(quantiles, area_interval_m_pat_het[2, :] * 1e12 * 1e-3, 'k', linewidth=3, label=str(n_m_pat_het) + ' Het') plt.fill_between(quantiles, area_interval_m_pat_het[1, :] * 1e12 * 1e-3, area_interval_m_pat_het[3, :] * 1e12 * 1e-3, facecolor='k', alpha=0.3) plt.title('Male PAT', fontsize=14) plt.xlabel('Quantile', fontsize=14) plt.ylabel('White adipocyte area ($\cdot 10^3 \mu$m$^2$)', fontsize=14) plt.tick_params(axis='both', which='major', labelsize=14) plt.legend(loc='upper left', prop={'size': 12}) plt.ylim(0, 16) plt.tight_layout() plt.subplot(122) plt.plot(quantiles, area_interval_m_mat_wt[2, :] * 1e12 * 1e-3, 'C0', linewidth=3, label=str(n_m_mat_wt) + ' WT') plt.fill_between(quantiles, area_interval_m_mat_wt[1, :] * 1e12 * 1e-3, area_interval_m_mat_wt[3, :] * 1e12 * 1e-3, facecolor='C0', alpha=0.3) plt.plot(quantiles, area_interval_m_mat_het[2, :] * 1e12 * 1e-3, 'k', linewidth=3, label=str(n_m_mat_het) + ' Het') plt.fill_between(quantiles, area_interval_m_mat_het[1, :] * 1e12 * 1e-3, area_interval_m_mat_het[3, :] * 1e12 * 1e-3, facecolor='k', alpha=0.3) plt.title('Male MAT', fontsize=14) plt.xlabel('Quantile', fontsize=14) plt.tick_params(axis='both', which='major', labelsize=14) plt.legend(loc='upper left', prop={'size': 12}) plt.ylim(0, 16) plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'exp_0099_' + depot + '_cell_area_male_pat_vs_mat_bands.svg')) plt.savefig(os.path.join(figures_dir, 'exp_0099_' + depot + '_cell_area_male_pat_vs_mat_bands.png')) filename_pvals = os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_pvals_' + depot + '.npz') if os.path.isfile(filename_pvals): with
np.load(filename_pvals)
numpy.load
import numpy as np # 判断两个核是否可分 def is_separable(local_outcat): # row1 = random.sample(range(0, 1000), 10) # test_data = data.iloc[row1] # test_data = np.array(test_data) local_outcat[:, 7: 10] = local_outcat[:, 7: 10] / 2.3548 # 检测核表的轴长(标准差) distance_xy = [] # 表达式二的xy距离矩阵 distance_xy_sigma = [] # 表达式二的sigma距离矩阵 distance_v = [] # 表达式一的v距离矩阵 distance_v_sigma = [] # 表达式一的sigma距离矩阵 for i in range(local_outcat.shape[0]): distance_xy.append(np.sqrt((local_outcat[:, 1] - local_outcat[i, 1]) ** 2 + (local_outcat[:, 2] - local_outcat[i, 2]) ** 2)) distance_xy_sigma.append(2.3548 * np.sqrt(local_outcat[:, 8] ** 2 + local_outcat[:, 7] ** 2 + local_outcat[i, 8] ** 2 + local_outcat[i, 7] ** 2)) distance_v.append(np.abs(local_outcat[:, 3] - local_outcat[i, 3])) distance_v_sigma.append(2.3548 * np.sqrt(local_outcat[:, 9] ** 2 + local_outcat[i, 9] ** 2)) distance_xy = np.array(distance_xy) distance_xy_sigma = np.array(distance_xy_sigma) distance_v = np.array(distance_v) distance_v_sigma = np.array(distance_v_sigma) func1_res = distance_v - distance_v_sigma func1_res[func1_res >= 0] = 0 # 可分 func1_res[func1_res < 0] = 1 # 不可分 func2_res = distance_xy - distance_xy_sigma func2_res[func2_res >= 0] = 0 # 可分 func2_res[func2_res < 0] = 1 # 不可分 result = np.zeros_like(func2_res) for i in range(func2_res.shape[0]): for j in range(func2_res.shape[1]): result[i, j] = func2_res[i, j] and func1_res[i, j] row, col = np.diag_indices_from(result) result[row, col] = np.array(0) # 将对角线元素的值置为0 a =
np.triu(result)
numpy.triu
"""Test script for single agent problems. This scripts runs the best model found by one of the executions of `singleagent.py` Example ------- To run the script, type in a terminal: $ python test_singleagent.py --exp ./results/save-<env>-<algo>-<obs>-<act>-<time_date> --time <seconds> """ import sys sys.path.append('../../') import os import time from datetime import datetime import argparse import re import numpy as np import gym import torch from stable_baselines3.common.env_checker import check_env from stable_baselines3 import A2C, PPO, SAC, TD3, DDPG from stable_baselines3.common.policies import ActorCriticPolicy as a2cppoMlpPolicy from stable_baselines3.sac.policies import SACPolicy as sacMlpPolicy from stable_baselines3.td3 import MlpPolicy as td3ddpgMlpPolicy from stable_baselines3.common.evaluation import evaluate_policy from gym_pybullet_drones.utils.utils import sync from gym_pybullet_drones.utils.Logger import Logger from gym_pybullet_drones.envs.single_agent_rl.MoveAviary import MoveAviary from gym_pybullet_drones.envs.single_agent_rl.HoverAviary import HoverAviary from gym_pybullet_drones.envs.single_agent_rl.BaseSingleAgentAviary import ActionType, ObservationType import shared_constants STARTING_POINT = np.array([[0, 0, 1.2]]) def selective_noise(obs, mean=0.1, dev=0.05): noise = np.random.normal(mean, dev, size=(12,)) obs[10] += noise[10] obs[11] += noise[11] return obs def white_noise(obs): noise = np.random.normal(0, 0.08, size=(12,)) obs[:] += noise[:] return obs if __name__ == "__main__": #### Define and parse (optional) arguments for the script ## parser = argparse.ArgumentParser(description='Single agent reinforcement learning example script using MoveAviary') parser.add_argument('--exp', type=str, help='The experiment folder written as ./results/save-<env>-<algo>-<obs>-<act>-<time_date>', metavar='') parser.add_argument('--time', default='6', type=int, help='Time to run experiment in seconds', metavar='') parser.add_argument('--white_noise', default='0', type=int, help='White noise on all observations, 1 active, 0 inactive', metavar='') parser.add_argument('--noise_mean', default='0.6', type=float, help='Selective noise mean', metavar='') parser.add_argument('--noise_dev', default='0.1', type=float, help='Selective noise std deviation', metavar='') parser.add_argument('--noise_starting_sec', default='2', type=float, help='Selective noise starting time', metavar='') parser.add_argument('--noise_duration', default='0', type=float, help='Selective noise duration', metavar='') ARGS = parser.parse_args() #### Load the model from file ############################## algo = ARGS.exp.split("-")[2] if os.path.isfile(ARGS.exp + '/best_model.zip'): path = ARGS.exp + '/best_model.zip' elif os.path.isfile(ARGS.exp + '/success_model.zip'): path = ARGS.exp + '/success_model.zip' else: print("[ERROR]: no model under the specified path", ARGS.exp) if algo == 'a2c': model = A2C.load(path) if algo == 'ppo': model = PPO.load(path) if algo == 'sac': model = SAC.load(path) if algo == 'td3': model = TD3.load(path) if algo == 'ddpg': model = DDPG.load(path) #### Parameters to recreate the environment ################ env_name = ARGS.exp.split("-")[1] + "-aviary-v0" OBS = ObservationType.KIN if ARGS.exp.split("-")[3] == 'kin' else ObservationType.RGB if ARGS.exp.split("-")[4] == 'rpm': ACT = ActionType.RPM elif ARGS.exp.split("-")[4] == 'dyn': ACT = ActionType.DYN elif ARGS.exp.split("-")[4] == 'pid': ACT = ActionType.PID elif ARGS.exp.split("-")[4] == 'vel': ACT = ActionType.VEL elif ARGS.exp.split("-")[4] == 'tun': ACT = ActionType.TUN elif ARGS.exp.split("-")[4] == 'one_d_rpm': ACT = ActionType.ONE_D_RPM elif ARGS.exp.split("-")[4] == 'one_d_dyn': ACT = ActionType.ONE_D_DYN elif ARGS.exp.split("-")[4] == 'one_d_pid': ACT = ActionType.ONE_D_PID #### Evaluate the model #################################### if 'move' in env_name: eval_env = MoveAviary(initial_xyzs=STARTING_POINT, aggregate_phy_steps=shared_constants.AGGR_PHY_STEPS, obs=OBS, act=ACT) elif 'hover' in env_name: eval_env = HoverAviary(initial_xyzs=STARTING_POINT, aggregate_phy_steps=shared_constants.AGGR_PHY_STEPS, obs=OBS, act=ACT) mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10 ) print("\n\n\nMean reward ", mean_reward, " +- ", std_reward, "\n\n") #### Show, record a video, and log the model's performance #### if 'move' in env_name: test_env = MoveAviary(initial_xyzs=STARTING_POINT, aggregate_phy_steps=shared_constants.AGGR_PHY_STEPS, obs=OBS, act=ACT, gui=True, record=True ) elif 'hover' in env_name: test_env = HoverAviary(initial_xyzs=STARTING_POINT, aggregate_phy_steps=shared_constants.AGGR_PHY_STEPS, obs=OBS, act=ACT, gui=True, record=True ) logger = Logger(logging_freq_hz=int(test_env.SIM_FREQ / test_env.AGGR_PHY_STEPS), num_drones=1 ) obs = test_env.reset() start = time.time() for i in range(ARGS.time * int(test_env.SIM_FREQ / test_env.AGGR_PHY_STEPS)): #### APPLY NOISE #### if ARGS.white_noise == 1: obs = white_noise(obs) if ARGS.noise_duration > 0.5: start_noise = ARGS.noise_starting_sec end_noise = ARGS.noise_starting_sec + ARGS.noise_duration if start_noise * int(test_env.SIM_FREQ / test_env.AGGR_PHY_STEPS) < i < end_noise * int( test_env.SIM_FREQ / test_env.AGGR_PHY_STEPS): obs = selective_noise(obs, ARGS.noise_mean, ARGS.noise_dev) ################ action, _states = model.predict(obs, deterministic=True ) obs, reward, done, info = test_env.step(action) test_env.render() if OBS == ObservationType.KIN: logger.log(drone=0, timestamp=i / test_env.SIM_FREQ, state=np.hstack([obs[0:3], np.zeros(4), obs[3:15], np.resize(action, (4))]), control=
np.zeros(12)
numpy.zeros
import itertools import numpy as np from scipy.ndimage.filters import gaussian_filter import matplotlib.pyplot as plt from transformations import SimpleTransformer from utils import load_mnist from keras.utils import to_categorical from keras.layers import Flatten, Conv2D, Dense, BatchNormalization, MaxPool2D, Input, Lambda, average from keras.models import Sequential, Model import keras.backend as K import tensorflow as tf (x_train, y_train), (x_test, y_test) = load_mnist() # scale to be in [0, 1] x_train = (x_train + 1) / 2. x_test = (x_test + 1) / 2. single_class_ind = 3 anomaly_class_ind = 0 x_train_single = x_train[y_train == single_class_ind] x_test_single = x_test[y_test == single_class_ind] x_test_anomaly = x_test[y_test == anomaly_class_ind] transformer = SimpleTransformer() transformations_inds = np.tile(np.arange(transformer.n_transforms), len(x_train_single)) x_train_single_transformed = transformer.transform_batch(np.repeat(x_train_single, transformer.n_transforms, axis=0), transformations_inds) mdl = Sequential([Conv2D(32, (3, 3), padding='same', input_shape=(32, 32, 1), activation='relu'), BatchNormalization(axis=-1), MaxPool2D(), Flatten(), Dense(10, activation='relu'), BatchNormalization(axis=-1), Dense(transformer.n_transforms, activation='softmax')]) mdl.compile('adam', 'categorical_crossentropy', ['acc']) batch_size = 64 mdl.fit(x=x_train_single_transformed, y=to_categorical(transformations_inds), batch_size=batch_size, validation_split=0.1, epochs=10) single_class_preds = np.zeros((len(x_test_single), transformer.n_transforms)) for t in range(transformer.n_transforms): single_class_preds[:, t] = mdl.predict(transformer.transform_batch(x_test_single, [t] * len(x_test_single)), batch_size=batch_size)[:, t] single_class_scores = single_class_preds.mean(axis=-1) anomaly_class_preds = np.zeros((len(x_test_anomaly), transformer.n_transforms)) for t in range(transformer.n_transforms): anomaly_class_preds[:, t] = mdl.predict(transformer.transform_batch(x_test_anomaly, [t] * len(x_test_anomaly)), batch_size=batch_size)[:, t] anomaly_class_scores = anomaly_class_preds.mean(axis=-1) def affine(x, is_flip, k_rotate): return tf.image.rot90(tf.image.flip_left_right(x) if is_flip else x, k=k_rotate) x_in = Input(batch_shape=mdl.input_shape) transformations_sm_responses = [mdl(Lambda(affine, arguments={'is_flip': is_flip, 'k_rotate': k_rotate})(x_in)) for is_flip, k_rotate in itertools.product((False, True), range(4))] out = average([Lambda(lambda sm_res: sm_res[:, j:j+1])(tens) for j, tens in enumerate(transformations_sm_responses)]) inference_mdl = Model(x_in, out) grads_tensor = K.gradients([inference_mdl.output], [inference_mdl.input])[0] grads_fn = K.function([inference_mdl.input], [grads_tensor]) def optimize_anomaly_images(): for im_ind in range(len(x_test_anomaly)): im = x_test_anomaly[im_ind:im_ind+1].copy() eta = 5 for _ in range(200): grads = grads_fn([im])[0] grads[np.abs(grads * im) < np.percentile(np.abs(grads * im), 80)] = 0 im_diff = grads * eta im_diff *= 0.99 im += im_diff im = gaussian_filter(im, 0.28) im = np.clip(im, 0, 1) im[im < np.percentile(
np.abs(im)
numpy.abs
from functools import partial import numpy as np from scipy.optimize import brentq from scipy.special import ndtr from scipy.stats import gaussian_kde from copulas import EPSILON, scalarize, store_args from copulas.marginals.model import BoundedType, ParametricType, ScipyModel class GaussianKDE(ScipyModel): PARAMETRIC = ParametricType.NON_PARAMETRIC BOUNDED = BoundedType.BOUNDED MODEL_CLASS = gaussian_kde @store_args def __init__(self, sample_size=None, random_seed=None, bw_method=None, weights=None): self.random_seed = random_seed self._sample_size = sample_size self.bw_method = bw_method self.weights = weights def _get_model(self): dataset = self._params['dataset'] self._sample_size = self._sample_size or len(dataset) return gaussian_kde(dataset, bw_method=self.bw_method, weights=self.weights) def _get_bounds(self): X = self._params['dataset'] lower = np.min(X) - (5 * np.std(X)) upper =
np.max(X)
numpy.max
import tensorflow as tf from sklearn.metrics import confusion_matrix import numpy as np import load train_samples, train_labels = load._train_samples, load._train_labels test_samples, test_labels = load._test_samples, load._test_labels print('Training set', train_samples.shape, train_labels.shape) print(' Test set', test_samples.shape, test_labels.shape) image_size = load.image_size num_labels = load.num_labels num_channels = load.num_channels def get_chunk(samples, labels, chunkSize): """ Iterator/Generator: get a batch of data 这个函数是一个迭代器/生成器,用于每一次只得到 chunkSize 这么多的数据 用于 for loop, just like range() function """ if len(samples) != len(labels): raise Exception('Length of samples and labels must equal') stepStart = 0 # initial step i = 0 while stepStart < len(samples): stepEnd = stepStart + chunkSize if stepEnd < len(samples): yield i, samples[stepStart:stepEnd], labels[stepStart:stepEnd] i += 1 stepStart = stepEnd class Network(): def __init__(self, num_hidden, batch_size): """ @num_hidden: 隐藏层的节点数量 @batch_size:因为我们要节省内存,所以分批处理数据。每一批的数据量。 """ self.batch_size = batch_size self.test_batch_size = 500 # Hyper Parameters self.num_hidden = num_hidden # Graph Related self.graph = tf.Graph() self.tf_train_samples = None self.tf_train_labels = None self.tf_test_samples = None self.tf_test_labels = None self.tf_test_prediction = None def define_graph(self): """ 定义我的的计算图谱 """ with self.graph.as_default(): # 这里只是定义图谱中的各种变量 self.tf_train_samples = tf.placeholder( tf.float32, shape=(self.batch_size, image_size, image_size, num_channels) ) self.tf_train_labels = tf.placeholder( tf.float32, shape=(self.batch_size, num_labels) ) self.tf_test_samples = tf.placeholder( tf.float32, shape=(self.test_batch_size, image_size, image_size, num_channels) ) # fully connected layer 1, fully connected fc1_weights = tf.Variable( tf.truncated_normal([image_size * image_size * num_channels, self.num_hidden], stddev=0.1) ) fc1_biases = tf.Variable(tf.constant(0.1, shape=[self.num_hidden])) # fully connected layer 2 --> output layer fc2_weights = tf.Variable( tf.truncated_normal([self.num_hidden, num_labels], stddev=0.1) ) fc2_biases = tf.Variable(tf.constant(0.1, shape=[num_labels])) # 想在来定义图谱的运算 def model(data): # fully connected layer 1 shape = data.get_shape().as_list() print(data.get_shape(), shape) reshape = tf.reshape(data, [shape[0], shape[1] * shape[2] * shape[3]]) print(reshape.get_shape(), fc1_weights.get_shape(), fc1_biases.get_shape()) hidden = tf.nn.relu(tf.matmul(reshape, fc1_weights) + fc1_biases) # fully connected layer 2 return tf.matmul(hidden, fc2_weights) + fc2_biases # Training computation. logits = model(self.tf_train_samples) self.loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=self.tf_train_labels) ) # print(self.loss) # Optimizer. self.optimizer = tf.train.GradientDescentOptimizer(0.01).minimize(self.loss) # Predictions for the training, validation, and test data. self.train_prediction = tf.nn.softmax(logits) self.test_prediction = tf.nn.softmax(model(self.tf_test_samples)) def run(self): """ 用到Session """ # private function def print_confusion_matrix(confusionMatrix): print('Confusion Matrix:') for i, line in enumerate(confusionMatrix): print(line, line[i] / np.sum(line)) a = 0 for i, column in enumerate(np.transpose(confusionMatrix, (1, 0))): a += (column[i] / np.sum(column)) * (np.sum(column) / 26000) print(column[i] / np.sum(column), ) print('\n', np.sum(confusionMatrix), a) self.session = tf.Session(graph=self.graph) with self.session as session: tf.global_variables_initializer().run() ### 训练 print('Start Training') # batch 1000 for i, samples, labels in get_chunk(train_samples, train_labels, chunkSize=self.batch_size): _, l, predictions = session.run( [self.optimizer, self.loss, self.train_prediction], feed_dict={self.tf_train_samples: samples, self.tf_train_labels: labels} ) print("loss is :", l) # labels is True Labels accuracy, _ = self.accuracy(predictions, labels) if i % 50 == 0: print('Minibatch loss at step %d: %f' % (i, l)) print('Minibatch accuracy: %.1f%%' % accuracy) ### ### 测试 print('Start Testing') accuracies = [] confusionMatrices = [] for i, samples, labels in get_chunk(test_samples, test_labels, chunkSize=self.test_batch_size): result = self.test_prediction.eval(feed_dict={self.tf_test_samples: samples}) accuracy, cm = self.accuracy(result, labels, need_confusion_matrix=True) accuracies.append(accuracy) confusionMatrices.append(cm) print('Test Accuracy: %.1f%%' % accuracy) print(' Average Accuracy:', np.average(accuracies)) print('Standard Deviation:', np.std(accuracies)) print_confusion_matrix(np.add.reduce(confusionMatrices)) ### def accuracy(self, predictions, labels, need_confusion_matrix=False): """ 计算预测的正确率与召回率 @return: accuracy and confusionMatrix as a tuple """ _predictions = np.argmax(predictions, 1) _labels = np.argmax(labels, 1) cm = confusion_matrix(_labels, _predictions) if need_confusion_matrix else None # == is overloaded for numpy array accuracy = (100.0 *
np.sum(_predictions == _labels)
numpy.sum
import os import sys import numpy as np import time import glob import pickle from sklearn.neighbors import KDTree import tensorflow as tf BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = os.path.dirname(BASE_DIR) sys.path.append(ROOT_DIR) DATA_DIR = os.path.join('/data/dataset/', 'SensatUrban') if not os.path.exists(DATA_DIR): raise IOError(f"{DATA_DIR} not found!") from utils.ply import read_ply, write_ply from .custom_dataset import CustomDataset, grid_subsampling, tf_batch_subsampling, tf_batch_neighbors class SensatUrbanDataset(CustomDataset): def __init__(self, config, input_threads=8): """Class to handle SensatUrban dataset for scene segmentation task. Args: config: config file input_threads: the number elements to process in parallel """ super(SensatUrbanDataset, self).__init__() self.config = config self.num_threads = input_threads self.trainval = config.get('trainval', False) # Dict from labels to names self.path = DATA_DIR self.label_to_names = {0: 'Ground', 1: 'High Vegetation', 2: 'Buildings', 3: 'Walls', 4: 'Bridge', 5: 'Parking', 6: 'Rail', 7: 'traffic Roads', 8: 'Street Furniture', 9: 'Cars', 10: 'Footpath', 11: 'Bikes', 12: 'Water'} # Initiate a bunch of variables concerning class labels self.init_labels() config.num_classes = self.num_classes # Number of input threads self.num_threads = input_threads self.all_files = np.sort(glob.glob(os.path.join(self.path, 'original_block_ply', '*.ply'))) self.val_file_name = ['birmingham_block_1', 'birmingham_block_5', 'cambridge_block_10', 'cambridge_block_7'] self.test_file_name = ['birmingham_block_2', 'birmingham_block_8', 'cambridge_block_15', 'cambridge_block_22', 'cambridge_block_16', 'cambridge_block_27'] # Some configs self.num_gpus = config.num_gpus self.first_subsampling_dl = config.first_subsampling_dl self.in_features_dim = config.in_features_dim self.num_layers = config.num_layers self.downsample_times = config.num_layers - 1 self.density_parameter = config.density_parameter self.batch_size = config.batch_size self.augment_scale_anisotropic = config.augment_scale_anisotropic self.augment_symmetries = config.augment_symmetries self.augment_rotation = config.augment_rotation self.augment_scale_min = config.augment_scale_min self.augment_scale_max = config.augment_scale_max self.augment_noise = config.augment_noise self.augment_color = config.augment_color self.epoch_steps = config.epoch_steps self.validation_size = config.validation_size self.in_radius = config.in_radius # initialize self.num_per_class = np.zeros(self.num_classes) self.ignored_labels = np.array([]) self.val_proj = [] self.val_labels = [] self.test_proj = [] self.test_labels = [] self.possibility = {} self.min_possibility = {} self.input_trees = {'training': [], 'validation': [], 'test': []} self.input_colors = {'training': [], 'validation': [], 'test': []} self.input_labels = {'training': [], 'validation': [], 'test': []} self.input_names = {'training': [], 'validation': [], 'test': []} # input subsampling self.load_sub_sampled_clouds(self.first_subsampling_dl) self.batch_limit = self.calibrate_batches() print("batch_limit: ", self.batch_limit) self.neighborhood_limits = [26, 31, 38, 41, 39] self.neighborhood_limits = [int(l * self.density_parameter // 5) for l in self.neighborhood_limits] print("neighborhood_limits: ", self.neighborhood_limits) # Get generator and mapping function gen_function, gen_types, gen_shapes = self.get_batch_gen('training') gen_function_val, _, _ = self.get_batch_gen('validation') gen_function_test, _, _ = self.get_batch_gen('test') map_func = self.get_tf_mapping() self.train_data = tf.data.Dataset.from_generator(gen_function, gen_types, gen_shapes) self.train_data = self.train_data.map(map_func=map_func, num_parallel_calls=self.num_threads) self.train_data = self.train_data.prefetch(10) self.val_data = tf.data.Dataset.from_generator(gen_function_val, gen_types, gen_shapes) self.val_data = self.val_data.map(map_func=map_func, num_parallel_calls=self.num_threads) self.val_data = self.val_data.prefetch(10) self.test_data = tf.data.Dataset.from_generator(gen_function_test, gen_types, gen_shapes) self.test_data = self.test_data.map(map_func=map_func, num_parallel_calls=self.num_threads) self.test_data = self.test_data.prefetch(10) # create a iterator of the correct shape and type iter = tf.data.Iterator.from_structure(self.train_data.output_types, self.train_data.output_shapes) self.flat_inputs = [None] * self.num_gpus for i in range(self.num_gpus): self.flat_inputs[i] = iter.get_next() # create the initialisation operations self.train_init_op = iter.make_initializer(self.train_data) self.val_init_op = iter.make_initializer(self.val_data) self.test_init_op = iter.make_initializer(self.test_data) @staticmethod def get_num_class_from_label(labels, total_class): num_pts_per_class = np.zeros(total_class, dtype=np.int32) # original class distribution val_list, counts =
np.unique(labels, return_counts=True)
numpy.unique
import numpy as np from skimage import filters from skimage.util import random_noise, img_as_ubyte, img_as_float from scipy.ndimage.interpolation import zoom as npzoom from skimage.transform import rescale import PIL def no_crap(img, scale=4, upsample=False): from skimage.transform import rescale x = np.array(img) multichannel = len(x.shape) > 2 x = rescale(x, scale=1/scale, order=1, multichannel=multichannel) x *= np.iinfo(np.uint8).max return PIL.Image.fromarray(x.astype(np.uint8)) def fluo_G_D(x, scale=4, upsample=False): xn = np.array(x) xorig_max = xn.max() xn = xn.astype(np.float32) xn /= float(np.iinfo(np.uint8).max) x = np.array(x) mu, sigma = 0, 5 noise =
np.random.normal(mu, sigma*0.05, x.shape)
numpy.random.normal
import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import numpy as np from .taskdataset import EbbFlowStats class PlotRTs(EbbFlowStats): """Plot RT distributions. Args ---- stats_obj (EbbFlowStats instance): Data from the model/participant. palette (str, optional): Color palette used for plotting. """ def __init__(self, stats_obj, palette='viridis'): self.__dict__ = stats_obj.__dict__ self.palette = palette def plot_rt_dists(self, ax, plot_type): if plot_type == 'all': plot_df = self._format_all() elif plot_type == 'switch': plot_df = self._format_by_switch() elif plot_type == 'congruency': plot_df = self._format_by_congruency() sns.violinplot(x='trial_type', y='rts', hue='model_or_user', data=plot_df, split=True, inner=None, ax=ax, palette=self.palette, cut=0, linewidth=0.5) if plot_type == 'all': ax.set_xticks([]) else: ax.set_xticklabels( ax.get_xticklabels(), rotation=45, ha='right', rotation_mode='anchor') ax.set_xlabel('') ax.set_ylabel('') return ax def _format_as_df(self, plot_dists, model_or_user, trial_types): all_rts = pd.concat(plot_dists) m_u_array = [] ttype_array = [] for rts, mu, ttype in zip(plot_dists, model_or_user, trial_types): m_u_array.extend(len(rts) * [mu]) ttype_array.extend(len(rts) * [ttype]) plot_df = pd.DataFrame({'rts': all_rts, 'model_or_user': m_u_array, 'trial_type': ttype_array}) return plot_df def _format_all(self): plot_dists = [self.df['urt_ms'], self.df['mrt_ms']] m_or_u = ['user', 'model'] trial_types = ['N/A', 'N/A'] return self._format_as_df(plot_dists, m_or_u, trial_types) def _format_by_switch(self): stay_inds = self.select(**{'is_switch': 0}) switch_inds = self.select(**{'is_switch': 1}) u_stay_rts = self.df['urt_ms'][stay_inds] m_stay_rts = self.df['mrt_ms'][stay_inds] u_switch_rts = self.df['urt_ms'][switch_inds] m_switch_rts = self.df['mrt_ms'][switch_inds] plot_dists = [u_stay_rts, u_switch_rts, m_stay_rts, m_switch_rts] trial_types = ['Stay', 'Switch', 'Stay', 'Switch'] m_or_u = ['user', 'user', 'model', 'model'] return self._format_as_df(plot_dists, m_or_u, trial_types) def _format_by_congruency(self): con_inds = self.select(**{'is_congruent': 1}) incon_inds = self.select(**{'is_congruent': 0}) u_con_rts = self.df['urt_ms'][con_inds] m_con_rts = self.df['mrt_ms'][con_inds] u_incon_rts = self.df['urt_ms'][incon_inds] m_incon_rts = self.df['mrt_ms'][incon_inds] plot_dists = [u_con_rts, u_incon_rts, m_con_rts, m_incon_rts] trial_types = ['Congruent', 'Incongruent', 'Congruent', 'Incongruent'] m_or_u = ['user', 'user', 'model', 'model'] return self._format_as_df(plot_dists, m_or_u, trial_types) class BarPlot(): """Plot seaborn style barplots, but allow plotting of s.e.m. error bars. See figure2.py and figure3.py for usage. Args ---- df (pandas DataFrame): Data to plot. palette (str, optional): Color palette used for plotting. """ supported_error = {'sem', 'sd'} def __init__(self, df, palette='viridis'): self.df = df self.palette = palette def plot_grouped_bar(self, x, y, hue, error_type, ax, **kwargs): # Note: Currently this only supports plotting two groups # (designated by the hue argument) assert error_type in self.supported_error, \ 'error_type must be one of the following: ' \ f'{self.supported_error}' colors = [(0.2363, 0.3986, 0.5104, 1.0), (0.2719, 0.6549, 0.4705, 1.0)] width = kwargs.get('width', 0.35) x_offset = -width / 2 hue_types = self.df[hue].unique() elinewidth = kwargs.get('elinewidth', 0.5) error_kw = {'elinewidth': elinewidth} for i, h in enumerate(hue_types): group_df = self.df.query(f'{hue} == @h') group_means, group_errors = self._get_group_data( group_df, x, y, error_type) plot_x = np.arange(len(group_means)) ax.bar(plot_x + x_offset, group_means, yerr=group_errors, width=width, label=h, error_kw=error_kw, **{'fc': colors[i]}) x_offset += width ax = self._adjust_bar(plot_x, ax, **kwargs) return ax def plot_bar(self, keys, error_type, ax, **kwargs): assert error_type in self.supported_error, \ 'error_type must be one of the following: ' \ f'{self.supported_error}' colors = sns.color_palette(palette=self.palette, n_colors=len(keys)) width = kwargs.get('width', 0.75) plot_data = [self.df[key] for key in keys] for di, d in enumerate(plot_data): d_mean = np.mean(d) d_sem = np.std(d) / np.sqrt(len(d)) ax.bar(di, d_mean, yerr=d_sem, width=width, error_kw={'elinewidth': 1}, **{'fc': colors[di]}) ax = self._adjust_bar(np.arange(len(plot_data)), ax, **kwargs) return ax def _get_group_data(self, group_df, x, y, error_type): means = group_df.groupby(x)[y].mean().to_numpy() if error_type == 'sem': errors = group_df.groupby(x)[y].sem().to_numpy() elif error_type == 'sd': errors = group_df.groupby(x)[y].std().to_numpy() return means, errors def _adjust_bar(self, plot_x, ax, **kwargs): ax.set_xlabel(kwargs.get('xlabel', None)) ax.set_ylabel(kwargs.get('ylabel', None)) ax.set_xticks(plot_x) ax.set_xticklabels(kwargs.get('xticklabels', None), rotation=45, ha='right', rotation_mode='anchor') if 'yticks' in kwargs.keys(): ax.set_yticks(kwargs['yticks']) ax.set_xlim(kwargs.get('xlim', None)) ax.set_ylim(kwargs.get('ylim', None)) if kwargs.get('plot_legend', False): ax.legend() ax.get_legend().get_frame().set_linewidth(0.0) return ax class PlotModelLatents(): """Plot the model latents in 3D. See e.g. figure3.py and figure4.py for usage. Args ---- data (EbbFlowStats instance): Data to plot. post_on_dur (int, optional): Duration after stimulus onset to plot (ms). pcs_to_plot (list, optional): Which PCs to plot. fixed_points (pandas DataFrame, optional): Fixed points to plot. """ default_colors = 2 * ['royalblue', 'forestgreen', 'crimson', 'orange'] def __init__(self, data, post_on_dur=1200, pcs_to_plot=[0, 1, 2], fixed_points=None, plot_pre_onset=True): self.data = data self.pcs_to_plot = pcs_to_plot self.latents = data.windowed['pca_latents'][:, :, pcs_to_plot] self.m_rts = data.df['mrt_ms'].to_numpy() self.step = data.step self.n_pre = data.n_pre self.t_off_ind = self.n_pre + 1 \ + np.round(post_on_dur / self.step).astype('int') if plot_pre_onset: self.t_on_ind = 0 else: self.t_on_ind = self.n_pre self.fixed_points = fixed_points def plot_stay_switch(self, ax, params, elev=30, azim=60): # Plot average stay and switch trajectories for one task cue # and one response direction (used e.g. in Fig. 4A). labels = ['Stay', 'Switch'] styles = ['-', '-'] series = self._get_stay_switch_series(params) cmap = sns.color_palette('viridis', as_cmap=True) color_indices = [0.2, 0.8] colors = [cmap(i) for i in color_indices] plot_kwargs = {'colors': colors, 'line_styles': styles, 'line_width': 0.5, 'plot_series_onset': True, 'plot_series_rt': True, 'plot_times':
np.array([100])
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -*- import os, sys, codecs, glob from PIL import Image, ImageDraw import numpy as np import pandas as pd import cv2 import torch torch.backends.cudnn.benchmark = False # torch.backends.cudnn.enabled = False import torchvision.models as models import torchvision.transforms as transforms import torchvision.datasets as datasets import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable from torch.utils.data.dataset import Dataset import logging logging.basicConfig(level=logging.DEBUG, filename='example.log', format='%(asctime)s - %(filename)s[line:%(lineno)d]: %(message)s') # def draw_cv2(raw_strokes, size=256, lw=6, time_color=True): BASE_SIZE = 299 img = np.zeros((BASE_SIZE, BASE_SIZE), np.uint8) for t, stroke in enumerate(eval(raw_strokes)): str_len = len(stroke[0]) for i in range(len(stroke[0]) - 1): # dot dropout if np.random.uniform() > 0.95: continue color = 255 - min(t, 10) * 13 if time_color else 255 _ = cv2.line(img, (stroke[0][i] + 22, stroke[1][i] + 22), (stroke[0][i + 1] + 22, stroke[1][i + 1] + 22), color, lw) if size != BASE_SIZE: return cv2.resize(img, (size, size)) else: return img class QRDataset(Dataset): def __init__(self, img_drawing, img_label, img_size, transform=None): self.img_drawing = img_drawing self.img_label = img_label self.img_size = img_size self.transform = transform def __getitem__(self, index): img = np.zeros((self.img_size, self.img_size, 3)) img[:, :, 0] = draw_cv2(self.img_drawing[index], self.img_size) img[:, :, 1] = img[:, :, 0] img[:, :, 2] = img[:, :, 0] img = Image.fromarray(np.uint8(img)) if self.transform is not None: img = self.transform(img) label = torch.from_numpy(
np.array([self.img_label[index]])
numpy.array
# Copyright (C) 2021 <NAME> # # SPDX-License-Identifier: MIT # # This tests the custom assembly for the unbiased Nitsche formulation in a special case # that can be expressed using ufl: # We consider a very simple test case made up of two disconnected elements with a constant # gap in x[tdim-1]-direction. The contact surfaces are made up of exactly one edge # from each element that are perfectly aligned such that the quadrature points only # differ in the x[tdim-1]-direction by the given gap. # For comparison, we consider a DG function space on a mesh that is constructed by # removing the gap between the elements and merging the edges making up the contact # surface into one. This allows us to use DG-functions and ufl to formulate the contact # terms in the variational form by suitably adjusting the deformation u and using the given # constant gap. import numpy as np import scipy import pytest import ufl from dolfinx.cpp.mesh import to_type import dolfinx.fem as _fem from dolfinx.graph import create_adjacencylist from dolfinx.mesh import (CellType, locate_entities_boundary, locate_entities, create_mesh, compute_midpoints, meshtags) from mpi4py import MPI import dolfinx_cuas import dolfinx_contact import dolfinx_contact.cpp from dolfinx_contact.helpers import (R_minus, dR_minus, R_plus, dR_plus, epsilon, lame_parameters, sigma_func) kt = dolfinx_contact.cpp.Kernel def DG_rhs_plus(u0, v0, h, n, gamma, theta, sigma, gap, dS): # This version of the ufl form agrees with the formulation in https://doi.org/10.1007/s00211-018-0950-x def Pn_g(u, a, b): return ufl.dot(u(a) - u(b), -n(b)) - gap - (h(a) / gamma) * ufl.dot(sigma(u(a)) * n(a), -n(b)) def Pn_gtheta(v, a, b): return ufl.dot(v(a) - v(b), -n(b)) - theta * (h(a) / gamma) * ufl.dot(sigma(v(a)) * n(a), -n(b)) F = 0.5 * (gamma / h('+')) * R_plus(Pn_g(u0, '+', '-')) * Pn_gtheta(v0, '+', '-') * dS F += 0.5 * (gamma / h('-')) * R_plus(Pn_g(u0, '-', '+')) * Pn_gtheta(v0, '-', '+') * dS return F def DG_rhs_minus(u0, v0, h, n, gamma, theta, sigma, gap, dS): # This version of the ufl form agrees with its one-sided equivalent in nitsche_ufl.py def Pn_g(u, a, b): return ufl.dot(sigma(u(a)) * n(a), -n(b)) + (gamma / h(a)) * (gap - ufl.dot(u(a) - u(b), -n(b))) def Pn_gtheta(v, a, b): return theta * ufl.dot(sigma(v(a)) * n(a), -n(b)) - (gamma / h(a)) * ufl.dot(v(a) - v(b), -n(b)) F = 0.5 * (h('+') / gamma) * R_minus(Pn_g(u0, '+', '-')) * Pn_gtheta(v0, '+', '-') * dS F += 0.5 * (h('-') / gamma) * R_minus(Pn_g(u0, '-', '+')) * Pn_gtheta(v0, '-', '+') * dS return F def DG_jac_plus(u0, v0, w0, h, n, gamma, theta, sigma, gap, dS): # This version of the ufl form agrees with the formulation in https://doi.org/10.1007/s00211-018-0950-x def Pn_g(u, a, b): return ufl.dot(u(a) - u(b), -n(b)) - gap - (h(a) / gamma) * ufl.dot(sigma(u(a)) * n(a), -n(b)) def Pn_gtheta(v, a, b, t): return ufl.dot(v(a) - v(b), -n(b)) - t * (h(a) / gamma) * ufl.dot(sigma(v(a)) * n(a), -n(b)) J = 0.5 * (gamma / h('+')) * dR_plus(Pn_g(u0, '+', '-')) * \ Pn_gtheta(w0, '+', '-', 1.0) * Pn_gtheta(v0, '+', '-', theta) * dS J += 0.5 * (gamma / h('-')) * dR_plus(Pn_g(u0, '-', '+')) * \ Pn_gtheta(w0, '-', '+', 1.0) * Pn_gtheta(v0, '-', '+', theta) * dS return J def DG_jac_minus(u0, v0, w0, h, n, gamma, theta, sigma, gap, dS): # This version of the ufl form agrees with its one-sided equivalent in nitsche_ufl.py def Pn_g(u, a, b): return ufl.dot(sigma(u(a)) * n(a), -n(b)) + (gamma / h(a)) * (gap - ufl.dot(u(a) - u(b), -n(b))) def Pn_gtheta(v, a, b, t): return t * ufl.dot(sigma(v(a)) * n(a), -n(b)) - (gamma / h(a)) * ufl.dot(v(a) - v(b), -n(b)) J = 0.5 * (h('+') / gamma) * dR_minus(Pn_g(u0, '+', '-')) * \ Pn_gtheta(w0, '+', '-', 1.0) * Pn_gtheta(v0, '+', '-', theta) * dS J += 0.5 * (h('-') / gamma) * dR_minus(Pn_g(u0, '-', '+')) * \ Pn_gtheta(w0, '-', '+', 1.0) * Pn_gtheta(v0, '-', '+', theta) * dS return J def compute_dof_permutations(V_dg, V_cg, gap, facets_dg, facets_cg): '''The meshes used for the two different formulations are created independently of each other. Therefore we need to determine how to map the dofs from one mesh to the other in order to compare the results''' mesh_dg = V_dg.mesh mesh_cg = V_cg.mesh bs = V_cg.dofmap.index_map_bs tdim = mesh_dg.topology.dim mesh_dg.topology.create_connectivity(tdim - 1, tdim) f_to_c_dg = mesh_dg.topology.connectivity(tdim - 1, tdim) mesh_cg.topology.create_connectivity(tdim - 1, tdim) mesh_cg.topology.create_connectivity(tdim, tdim - 1) f_to_c_cg = mesh_cg.topology.connectivity(tdim - 1, tdim) c_to_f_cg = mesh_cg.topology.connectivity(tdim, tdim - 1) x_cg = V_cg.tabulate_dof_coordinates() x_dg = V_dg.tabulate_dof_coordinates() for i in range(len(facets_dg)): facet_dg = facets_dg[i] dofs_cg = [] coordinates_cg = [] for facet_cg in np.array(facets_cg)[:, 0]: # retrieve dofs and dof coordinates for mesh with gap cell = f_to_c_cg.links(facet_cg)[0] all_facets = c_to_f_cg.links(cell) local_index = np.argwhere(np.array(all_facets) == facet_cg)[0, 0] dof_layout = V_cg.dofmap.dof_layout local_dofs = dof_layout.entity_closure_dofs(tdim - 1, local_index) dofs_cg0 = V_cg.dofmap.cell_dofs(cell)[local_dofs] dofs_cg.append(dofs_cg0) coordinates_cg.append(x_cg[dofs_cg0, :]) # retrieve all dg dofs on mesh without gap for each cell # and modify coordinates by gap if necessary cells = f_to_c_dg.links(facet_dg) for cell in cells: midpoint = compute_midpoints(mesh_dg, tdim, [cell])[0] if midpoint[tdim - 1] > 0: # coordinates of corresponding dofs are identical for both meshes dofs_dg0 = V_dg.dofmap.cell_dofs(cell) coordinates_dg0 = x_dg[dofs_dg0, :] else: # coordinates of corresponding dofs need to be adjusted by gap dofs_dg1 = V_dg.dofmap.cell_dofs(cell) coordinates_dg1 = x_dg[dofs_dg1, :] coordinates_dg1[:, tdim - 1] -= gap # create array of indices to access corresponding function values num_dofs_f = dofs_cg[0].size indices_cg = np.zeros(bs * 2 * num_dofs_f, dtype=np.int32) for i, dofs in enumerate(dofs_cg): for j, dof in enumerate(dofs): for k in range(bs): indices_cg[i * num_dofs_f * bs + j * bs + k] = bs * dof + k indices_dg =
np.zeros(indices_cg.size, dtype=np.int32)
numpy.zeros
""" Module of functions that are like ufuncs in acting on arrays and optionally storing results in an output array. """ __all__ = ['fix', 'isneginf', 'isposinf', 'log2'] import numpy.core.numeric as nx def fix(x, y=None): """ Round to nearest integer towards zero. Round an array of floats element-wise to nearest integer towards zero. The rounded values are returned as floats. Parameters ---------- x : array_like An array of floats to be rounded y : ndarray, optional Output array Returns ------- out : ndarray of floats The array of rounded numbers See Also -------- floor : Round downwards around : Round to given number of decimals Examples -------- >>> np.fix(3.14) 3.0 >>> np.fix(3) 3.0 >>> np.fix([2.1, 2.9, -2.1, -2.9]) array([ 2., 2., -2., -2.]) """ x = nx.asanyarray(x) if y is None: y = nx.zeros_like(x) y1 = nx.floor(x) y2 = nx.ceil(x) y[...] = nx.where(x >= 0, y1, y2) return y def isposinf(x, y=None): """ Shows which elements of the input are positive infinity. Returns a numpy array resulting from an element-wise test for positive infinity. Parameters ---------- x : array_like The input array. y : array_like A boolean array with the same shape as `x` to store the result. Returns ------- y : ndarray A numpy boolean array with the same dimensions as the input. If second argument is not supplied then a numpy boolean array is returned with values True where the corresponding element of the input is positive infinity and values False where the element of the input is not positive infinity. If second argument is supplied then an numpy integer array is returned with values 1 where the corresponding element of the input is positive positive infinity. See Also -------- isinf : Shows which elements are negative or positive infinity. isneginf : Shows which elements are negative infinity. isnan : Shows which elements are Not a Number (NaN). isfinite: Shows which elements are not: Not a number, positive and negative infinity Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity is equivalent to positive infinity. Errors result if second argument is also supplied with scalar input or if first and second arguments have different shapes. Numpy's definitions for positive infinity (PINF) and negative infinity (NINF) may be change in the future versions. Examples -------- >>> np.isposinf(np.PINF) array(True, dtype=bool) >>> np.isposinf(np.inf) array(True, dtype=bool) >>> np.isposinf(np.NINF) array(False, dtype=bool) >>> np.isposinf([-np.inf, 0., np.inf]) array([False, False, True], dtype=bool) >>> x=np.array([-np.inf, 0., np.inf]) >>> y=np.array([2,2,2]) >>> np.isposinf(x,y) array([1, 0, 0]) >>> y array([1, 0, 0]) """ if y is None: x = nx.asarray(x) y = nx.empty(x.shape, dtype=nx.bool_) nx.logical_and(nx.isinf(x), ~nx.signbit(x), y) return y def isneginf(x, y=None): """ Return True where x is -infinity, and False otherwise. Parameters ---------- x : array_like The input array. y : array_like A boolean array with the same shape as `x` to store the result. Returns ------- y : ndarray A boolean array where y[i] = True only if x[i] = -Inf. See Also -------- isposinf, isfinite Examples -------- >>> np.isneginf([-np.inf, 0., np.inf]) array([ True, False, False], dtype=bool) """ if y is None: x = nx.asarray(x) y = nx.empty(x.shape, dtype=nx.bool_) nx.logical_and(
nx.isinf(x)
numpy.core.numeric.isinf
""" Hydrogen.py Author: <NAME> Affiliation: University of Colorado at Boulder Created on: Mon Mar 12 18:02:07 2012 Description: Container for hydrogen physics stuff. """ import scipy import numpy as np from types import FunctionType from scipy.optimize import fsolve, minimize from ..util.ParameterFile import ParameterFile from ..util.Math import central_difference, interp1d from .Constants import A10, T_star, m_p, m_e, erg_per_ev, h, c, E_LyA, E_LL, \ k_B try: from scipy.special import gamma g23 = gamma(2. / 3.) g13 = gamma(1. / 3.) c1 = 4. * np.pi / 3. /
np.sqrt(3.)
numpy.sqrt
# # Copyright (c) 2019 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # based on https://github.com/keras-team/keras/blob/master/examples/imdb_cnn.py import argparse import multiprocessing import os import keras from keras.preprocessing import sequence from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.layers import Embedding from keras.layers import Conv1D, GlobalMaxPooling1D from keras.datasets import imdb from keras import backend as K from keras_preprocessing.sequence import _remove_long_seq from tensorflow import saved_model import tensorflow as tf import numpy as np try: from experiment_metrics.api import publish except ImportError: print("Nauta's Experiment metrics library not found.") publish = print # If experiment_metrics.api is not available, simply bind publish to print function class TensorflowModelCheckpoint(keras.callbacks.ModelCheckpoint): """ A simple extension of keras.callbacks.ModelCheckpoint that saves model also in TensorFlow checkpoint format. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.saver = tf.train.Saver() def on_epoch_end(self, epoch, logs=None): super().on_epoch_end(epoch, logs) sess = keras.backend.get_session() self.saver.save(sess, self.filepath.replace('{epoch}', str(epoch)).replace('h5', 'ckpt')) class NautaExperimentMetricsCallback(keras.callbacks.Callback): def on_epoch_end(self, epoch, logs: dict = None): publish({'accuracy': str(logs.get('acc')), 'loss': str(logs.get('loss'))[:5], # Reduce precision for shorter metrics 'validation_accuracy': str(logs.get('val_acc')), 'validation_loss': str(logs.get('val_loss'))[:5]}) def load_data(dataset_path: str = None, num_words=None, skip_top=0, maxlen=None, seed=113, start_char=1, oov_char=2, index_from=3): print('Loading data...') if dataset_path: with np.load(dataset_path) as f: x_train, labels_train = f['x_train'], f['y_train'] x_test, labels_test = f['x_test'], f['y_test'] np.random.seed(seed) indices = np.arange(len(x_train)) np.random.shuffle(indices) x_train = x_train[indices] labels_train = labels_train[indices] indices = np.arange(len(x_test)) np.random.shuffle(indices) x_test = x_test[indices] labels_test = labels_test[indices] xs = np.concatenate([x_train, x_test]) labels = np.concatenate([labels_train, labels_test]) if start_char is not None: xs = [[start_char] + [w + index_from for w in x] for x in xs] elif index_from: xs = [[w + index_from for w in x] for x in xs] if maxlen: xs, labels = _remove_long_seq(maxlen, xs, labels) if not xs: raise ValueError('After filtering for sequences shorter than maxlen=' + str(maxlen) + ', no sequence was kept. ' 'Increase maxlen.') if not num_words: num_words = max([max(x) for x in xs]) # by convention, use 2 as OOV word # reserve 'index_from' (=3 by default) characters: # 0 (padding), 1 (start), 2 (OOV) if oov_char is not None: xs = [[w if (skip_top <= w < num_words) else oov_char for w in x] for x in xs] else: xs = [[w for w in x if skip_top <= w < num_words] for x in xs] idx = len(x_train) x_train, y_train = np.array(xs[:idx]), np.array(labels[:idx]) x_test, y_test =
np.array(xs[idx:])
numpy.array
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 r"""A collection of math transform methods.""" import math import random import sys from typing import List, Tuple, Union, Optional import numpy as np # type: ignore from scipy.spatial.transform.rotation import Rotation # type: ignore import cv2 # type: ignore ZERO_VECTOR3 = np.array([0.0, 0.0, 0.0]).reshape(3, 1) X_VECTOR3 = np.array([1.0, 0.0, 0.0]).reshape(3, 1) Y_VECTOR3 = np.array([0.0, 1.0, 0.0]).reshape(3, 1) Z_VECTOR3 = np.array([0.0, 0.0, 1.0]).reshape(3, 1) _FloatOrInt = Union[float, int] ArrayOrList = Union[List[_FloatOrInt], Tuple[_FloatOrInt], np.ndarray] ArrayOrList2 = Union[List[_FloatOrInt], Tuple[_FloatOrInt, _FloatOrInt], np.ndarray] ArrayOrList3 = Union[List[_FloatOrInt], Tuple[_FloatOrInt, _FloatOrInt, _FloatOrInt], np.ndarray] ArrayOrList4 = Union[List[_FloatOrInt], Tuple[_FloatOrInt, _FloatOrInt, _FloatOrInt, _FloatOrInt], np.ndarray] ArrayOrList8 = Union[List[_FloatOrInt], Tuple[_FloatOrInt, _FloatOrInt, _FloatOrInt, _FloatOrInt, _FloatOrInt, _FloatOrInt, _FloatOrInt, _FloatOrInt], np.ndarray] def transform(v: np.ndarray, translation: Optional[np.ndarray], rotation: Optional[np.ndarray]) -> np.ndarray: """Transforms a 3D point using translation and rotation vectors. This rotates in place before translation. This is the way Unity operates. Args: v: array containing (x, y, z) coords or numpy array of shape (3, N). translation: array containing input translation (t_x, t_y, t_z). rotation: array containing input rotation vector parameterized using OpenCV's Rodrigues parameterization: (r_x, r_y, r_z). Returns: array containing (x, y, z) points of shape (3, N). """ npnts = v.size // 3 v2 = v.reshape(3, npnts) if rotation is not None: r_mat, _ = cv2.Rodrigues(rotation.reshape(3, 1)) v2 = r_mat.dot(v2) if translation is not None: v2 = np.add(v2, translation.reshape(3, 1)) return v2 def transform_inv(v: np.ndarray, translation: Optional[np.ndarray], rotation: Optional[np.ndarray]) -> np.ndarray: """Transforms a 3D point using the inverse translation and rotation vectors. Args: v: array containing (x, y, z) coords or numpy array of shape (3, N). translation: array containing input translation (t_x, t_y, t_z). rotation: array containing input rotation vector parameterized using OpenCV's Rodrigues parameterization: (r_x, r_y, r_z). Returns: array containing (x, y, z) points of shape (3, N). """ npnts = v.size // 3 v2 = v.reshape(3, npnts) if translation is not None: v2 = np.add(v2, -translation.reshape(3, 1)) if rotation is not None: r_mat, _ = cv2.Rodrigues(rotation.reshape(3, 1)) v2 = r_mat.transpose().dot(v2) return v2 def project_2d_int(p: ArrayOrList3, extrinsics: np.ndarray, intrinsics: np.ndarray, distortion: np.ndarray, clip_range: float = 100000) -> Optional[Tuple[int, int]]: """Computes the 2D projection of a 3D point p. Using a camera model using the extrinsincs, intrinsics, and distortion parameters. Args: p: numpy array of type np.float32 containing (x, y, z) coord. extrinsics: numpy array of length 6 containing [t_x, t_y, t_z, r_x, r_y, r_z]. intrinsics: numpy array of shape (3, 3). This is typically the return value of intrinsics_to_matrix. distortion: camera distortion parameters of shape (5,). clip_range: Return None if pixel x or y is larger than clip_range. Returns: x, y: integer pixel coords, else returns None if point is outside clip range or behind the camera view. """ p2 = np.array(p, dtype=np.float32).reshape((1, 3, 1)) # opencv project points will project even if behind camera # so do transform and z check here. p2 = transform(p2, extrinsics[:3].reshape(3, 1), extrinsics[3:].reshape(3, 1)) if p2[2] < sys.float_info.epsilon: return None p2, _ = cv2.projectPoints( np.array([p2]), ZERO_VECTOR3, ZERO_VECTOR3, intrinsics, distortion) x = int(p2[0][0][0]) y = int(p2[0][0][1]) if x > clip_range: return None if x < -clip_range: return None if y > clip_range: return None if y < -clip_range: return None return x, y def project(p: ArrayOrList3, extrinsics: np.ndarray, intrinsics: np.ndarray, distortion: np.ndarray) -> np.ndarray: """Compute the 2D projection of a 3D point p. Using a camera model using the extrinsincs, intrinsics, and distortion parameters. Args: p: array of containing (x, y, z) coord. extrinsics: array of length 6 containing [t_x, t_y, t_z, r_x, r_y, r_z]. intrinsics: array of shape (3, 3). This is typically the return value of intrinsics_to_matrix. distortion: camera distortion parameters of shape (5,). Returns: numpy array of shape (1, 1, 2) containing projected x, y. """ p2, _ = cv2.projectPoints(p, extrinsics[3:].reshape(3, 1), extrinsics[:3].reshape(3, 1), intrinsics, distortion) return p2 def intrinsics_to_matrix(v: ArrayOrList4, dtype: np.dtype = np.float64) -> np.ndarray: """Convert a flattened list of intrinsics to 3x3 intrincis matrix.""" return np.array([[v[0], 0, v[2]], [0, v[1], v[3]], [0, 0, 1]], dtype=dtype) def intrinsics_to_list(v: np.ndarray) -> List[float]: """Convert a 3x3 intrinsics matrix to a flattened list of intrinsics.""" return [v[0, 0], v[1, 1], v[0, 2], v[1, 2]] def unproject(p: ArrayOrList, z: float, intrinsic: np.ndarray, distortion: ArrayOrList) -> np.ndarray: """Unproject (u,v) pixel coordinate, with depth z, into x,y,z coordinate. Args: p: (u,v) pixel coordinate. z: depth at pixel (u,v). intrinsic: array of shape (3, 3). This is typically the return value of intrinsics_to_matrix. distortion: camera distortion parameters of shape (5,). Returns: numpy.ndarray of shape (3,) containing xyz coordinate in camera frame. """ cam_mtx = intrinsic # shape [3,3] cam_dist = np.array(distortion) # shape [5] pts = np.array([np.array(p, dtype=np.float32).reshape(1, 2)]) # shape [1,2] point_undistorted = cv2.undistortPoints(pts, cam_mtx, cam_dist) x = point_undistorted[0][0][0] * z y = point_undistorted[0][0][1] * z return np.array([x, y, z]) def unproject_depth_sample(img_pt: ArrayOrList2, raw_depth: float, depth_dist: ArrayOrList8, camera_mtx: np.ndarray, camera_dist: np.ndarray) -> np.ndarray: """Convert (u,v) pixel coordinate, with depth, into an (x, y, z) coordinate. Args: img_pt: (u,v) pixel coordinate. raw_depth: depth value pre-calibration. depth_dist: depth distortion parameters of shape (8,) camera_mtx: intrinsics matrix of shape (3, 3). This is typically the return value of intrinsics_to_matrix. camera_dist: camera distortion parameters. numpy array of shape (5,). Returns: xyz coordinate in camera frame of shape (1, 3). """ # ax = (img_pt[0] - camera_mtx[0][2]) / camera_mtx[0][0] # ay = (img_pt[1] - camera_mtx[1][2]) / camera_mtx[1][1] adjusted_depth = depth_dist[0] + raw_depth * depth_dist[1] # + \ # ax * depth_dist[2] + \ # ay * depth_dist[3] + \ # ax * ay * depth_dist[4] + \ # ax * raw_depth * depth_dist[5] + \ # ay * raw_depth * depth_dist[6] + \ # ax * ay * raw_depth * depth_dist[7] return unproject(img_pt, adjusted_depth, camera_mtx, camera_dist).reshape(1, 3) def unproject_vectorized(uv_coordinates: np.ndarray, depth_values: np.ndarray, intrinsic: np.ndarray, distortion: np.ndarray) -> np.ndarray: """Vectorized version of unproject(), for N points. Args: uv_coordinates: pixel coordinates to unproject of shape (n, 2). depth_values: depth values corresponding index-wise to the uv_coordinates of shape (n). intrinsic: array of shape (3, 3). This is typically the return value of intrinsics_to_matrix. distortion: camera distortion parameters of shape (5,). Returns: xyz coordinates in camera frame of shape (n, 3). """ cam_mtx = intrinsic # shape [3, 3] cam_dist = np.array(distortion) # shape [5] # shape of points_undistorted is [N, 2] after the squeeze(). points_undistorted = cv2.undistortPoints( uv_coordinates.reshape((-1, 1, 2)), cam_mtx, cam_dist).squeeze(axis=1) x = points_undistorted[:, 0] * depth_values y = points_undistorted[:, 1] * depth_values xyz = np.vstack((x, y, depth_values)).T return xyz def unproject_depth_sample_vectorized(img_pts: np.ndarray, raw_depths: np.ndarray, depth_dist: ArrayOrList8, camera_mtx: np.ndarray, camera_dist: np.ndarray) -> np.ndarray: """Convert (u,v) pixel coordinate, with depth, into an (x, y, z) coordinate. Args: img_pts: (u,v) pixel coordinates of shape (n, 2). raw_depths: depth values pre-calibration of shape (n). depth_dist: depth distortion parameters of shape (8,) camera_mtx: intrinsics matrix of shape (3, 3). This is typically the return value of intrinsics_to_matrix. camera_dist: camera distortion parameters. numpy array of shape (5,). Returns: xyz coordinates in camera frame of shape (n, 3). """ adjusted_depths = depth_dist[0] + raw_depths * depth_dist[1] return unproject_vectorized(img_pts, adjusted_depths, camera_mtx, camera_dist).reshape(img_pts.shape[0], 3) def unproject_depth_vectorized(im_depth: np.ndarray, depth_dist: np.ndarray, camera_mtx: np.ndarray, camera_dist: np.ndarray) -> np.ndarray: """Unproject depth image into 3D point cloud, using calibration. Args: im_depth: raw depth image, pre-calibration of shape (height, width). depth_dist: depth distortion parameters of shape (8,) camera_mtx: intrinsics matrix of shape (3, 3). This is typically the return value of intrinsics_to_matrix. camera_dist: camera distortion parameters shape (5,). Returns: numpy array of shape [3, H*W]. each column is xyz coordinates """ h, w = im_depth.shape # shape of each u_map, v_map is [H, W]. dtype = np.float64 if not isinstance(im_depth, np.ndarray) else im_depth.dtype u_map, v_map = np.meshgrid( np.linspace(0, w - 1, w, dtype=dtype), np.linspace(0, h - 1, h, dtype=dtype)) adjusted_depth = depth_dist[0] + im_depth * depth_dist[1] # shape after stack is [N, 2], where N = H * W. uv_coordinates = np.stack((u_map.reshape(-1), v_map.reshape(-1)), axis=-1) return unproject_vectorized(uv_coordinates, adjusted_depth.reshape(-1), camera_mtx, camera_dist) def pose_to_matrix(pose: np.ndarray) -> np.ndarray: """Converts a pose to a homogeneous transformation matrix. A pose is a 6-element array. First three elements are the translations of the post, next three elements are the rotation of the pose in the axis-angle representation. Args: pose: convert from pose. Returns: two dimensional numpy array of a homogeneous transformation matrix. array([[R00, R01, R02, T0], [R10, R11, R12, T1], [R20, R21, R22, T2], [0., 0., 0., 1.]]) """ return convert_to_matrix(pose[0:3], pose[3:6]) def convert_to_matrix(translation: ArrayOrList3, rotation: ArrayOrList3) -> np.ndarray: """Converts 3D translation & rotation to a homogeneous transformation matrix. Args: translation: x, y, z position of the pose. rotation: axis/angle representation of the rotation. Returns: two dimensional numpy array of a homogeneous transformation matrix. array([[R00, R01, R02, T0], [R10, R11, R12, T1], [R20, R21, R22, T2], [0., 0., 0., 1.]]) """ m = np.zeros((4, 4), dtype=np.float) m[:3, :3] = cv2.Rodrigues(np.array(rotation))[0] m[0, 3] = translation[0] m[1, 3] = translation[1] m[2, 3] = translation[2] m[3, 3] = 1 return m def multiply_pose(a: np.ndarray, b: np.ndarray) -> np.ndarray: """Combine two poses. A pose is a 6-element array. First three elements are the translations of the post, next three elements are the rotation of the pose in the axis-angle representation. Args: a: relative pose on top of the base pose. b: base pose Returns: combined pose. """ ma = pose_to_matrix(a) mb = pose_to_matrix(b) return matrix_to_pose(np.matmul(ma, mb)) def inverse_pose(pose: np.ndarray) -> np.ndarray: """Inverse a pose. A pose is a 6-element array. First three elements are the translations of the post, next three elements are the rotation of the pose in the axis-angle representation. Args: pose: relative pose on top of the base pose. Returns: inverted pose. """ transformation_matrix = pose_to_matrix(pose) inverse_translation =
np.identity(4, dtype=np.float64)
numpy.identity
import numpy as np def zero(): return np.zeros((3, ), dtype=np.float64) def ones(): return
np.ones((3,), dtype=np.float64)
numpy.ones
# ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- from unittest import TestCase, main import numpy as np import numpy.testing as npt import pandas as pd from skbio.sequence import GrammaredSequence from skbio.util import classproperty from skbio.util._testing import assert_data_frame_almost_equal class ExampleGrammaredSequence(GrammaredSequence): @classproperty def degenerate_map(cls): return {"X": set("AB"), "Y": set("BC"), "Z": set("AC")} @classproperty def nondegenerate_chars(cls): return set("ABC") @classproperty def default_gap_char(cls): return '-' @classproperty def gap_chars(cls): return set('-.') class ExampleMotifsTester(ExampleGrammaredSequence): @property def _motifs(self): # These aren't really motifs, just a way to excercise the code paths return { "name1": lambda x, _, __: str(x), "name2": lambda x, _, __: len(x) } class TestGrammaredSequence(TestCase): def test_default_gap_must_be_in_gap_chars(self): with self.assertRaisesRegex( TypeError, "default_gap_char must be in gap_chars for class " "GrammaredSequenceInvalidDefaultGap"): class GrammaredSequenceInvalidDefaultGap(ExampleGrammaredSequence): @classproperty def default_gap_char(cls): return '*' def test_degenerates_must_expand_to_valid_nondegenerates(self): with self.assertRaisesRegex( TypeError, "degenerate_map must expand only to characters included in " "nondegenerate_chars for class " "GrammaredSequenceInvalidDefaultGap"): class GrammaredSequenceInvalidDefaultGap(ExampleGrammaredSequence): @classproperty def degenerate_map(cls): return {"X": set("B")} @classproperty def nondegenerate_chars(cls): return set("A") def test_gap_chars_and_degenerates_share(self): with self.assertRaisesRegex( TypeError, "gap_chars and degenerate_chars must not share any characters " "for class GrammaredSequenceGapInDegenerateMap"): class GrammaredSequenceGapInDegenerateMap( ExampleGrammaredSequence): @classproperty def degenerate_map(cls): return {"X": set("AB")} @classproperty def nondegenerate_chars(cls): return set("ABC") @classproperty def gap_chars(cls): return set(".-X") def test_gap_chars_and_nondegenerates_share(self): with self.assertRaisesRegex( TypeError, ("gap_chars and nondegenerate_chars must not share any characters " "for class GrammaredSequenceGapInNondegenerateMap")): class GrammaredSequenceGapInNondegenerateMap( ExampleGrammaredSequence): @classproperty def degenerate_map(cls): return {"X": set("AB")} @classproperty def nondegenerate_chars(cls): return set("ABC") @classproperty def gap_chars(cls): return set(".-A") def test_degenerates_and_nondegenerates_share(self): with self.assertRaisesRegex( TypeError, ("degenerate_chars and nondegenerate_chars must not share any " "characters for class GrammaredSequenceInvalid")): class GrammaredSequenceInvalid(ExampleGrammaredSequence): @classproperty def degenerate_map(cls): return {"X": set("AB")} @classproperty def nondegenerate_chars(cls): return set("ABCX") def test_instantiation_with_no_implementation(self): class GrammaredSequenceSubclassNoImplementation(GrammaredSequence): pass with self.assertRaises(TypeError) as cm: GrammaredSequenceSubclassNoImplementation() self.assertIn("abstract class", str(cm.exception)) self.assertIn("nondegenerate_chars", str(cm.exception)) self.assertIn("degenerate_map", str(cm.exception)) def test_init_default_parameters(self): seq = ExampleGrammaredSequence('.-ABCXYZ') npt.assert_equal(seq.values, np.array('.-ABCXYZ', dtype='c')) self.assertEqual(seq.metadata, {}) assert_data_frame_almost_equal(seq.positional_metadata, pd.DataFrame(index=range(8))) def test_init_nondefault_parameters(self): seq = ExampleGrammaredSequence( '.-ABCXYZ', metadata={'id': 'foo'}, positional_metadata={'quality': range(8)}) npt.assert_equal(seq.values, np.array('.-ABCXYZ', dtype='c')) self.assertEqual(seq.metadata, {'id': 'foo'}) assert_data_frame_almost_equal(seq.positional_metadata, pd.DataFrame({'quality': range(8)})) def test_init_valid_empty_sequence(self): # just make sure we can instantiate an empty sequence regardless of # `validate` and `lowercase` parameters. more extensive tests # are performed in Sequence base class unit tests for validate in (True, False): for lowercase in (True, False): seq = ExampleGrammaredSequence( '', validate=validate, lowercase=lowercase) self.assertEqual(seq, ExampleGrammaredSequence('')) def test_init_valid_single_character_sequence(self): for validate in (True, False): for lowercase in (True, False): seq = ExampleGrammaredSequence( 'C', validate=validate, lowercase=lowercase) self.assertEqual(seq, ExampleGrammaredSequence('C')) def test_init_valid_multiple_character_sequence(self): for validate in (True, False): for lowercase in (True, False): seq = ExampleGrammaredSequence( 'BAACB.XYY-AZ', validate=validate, lowercase=lowercase) self.assertEqual(seq, ExampleGrammaredSequence('BAACB.XYY-AZ')) def test_init_validate_parameter_single_character(self): seq = 'w' with self.assertRaisesRegex(ValueError, "character.*'w'"): ExampleGrammaredSequence(seq) # test that we can instantiate an invalid sequence. we don't guarantee # anything working beyond instantiation ExampleGrammaredSequence(seq, validate=False) def test_init_validate_parameter_multiple_characters(self): # mix of valid and invalid characters with repeats and lowercased # alphabet characters seq = 'CBCBBbawCbbwBXYZ-.x' with self.assertRaisesRegex(ValueError, "\['a', 'b', 'w', 'x'\]"): ExampleGrammaredSequence(seq) ExampleGrammaredSequence(seq, validate=False) def test_init_lowercase_all_lowercase(self): s = 'cbcbbbazcbbzbxyz-.x' with self.assertRaisesRegex(ValueError, "\['a', 'b', 'c', 'x', 'y', 'z'\]"): ExampleGrammaredSequence(s) seq = ExampleGrammaredSequence(s, lowercase=True) self.assertEqual(seq, ExampleGrammaredSequence('CBCBBBAZCBBZBXYZ-.X')) def test_init_lowercase_mixed_case(self): s = 'CBCBBbazCbbzBXYZ-.x' with self.assertRaisesRegex(ValueError, "\['a', 'b', 'x', 'z'\]"): ExampleGrammaredSequence(s) seq = ExampleGrammaredSequence(s, lowercase=True) self.assertEqual(seq, ExampleGrammaredSequence('CBCBBBAZCBBZBXYZ-.X')) def test_init_lowercase_no_validation(self): s = 'car' with self.assertRaisesRegex(ValueError, "\['a', 'c', 'r'\]"): ExampleGrammaredSequence(s) with self.assertRaisesRegex(ValueError, "character.*'R'"): ExampleGrammaredSequence(s, lowercase=True) ExampleGrammaredSequence(s, lowercase=True, validate=False) def test_init_lowercase_byte_ownership(self): bytes = np.array([97, 98, 97], dtype=np.uint8) with self.assertRaisesRegex(ValueError, "\['a', 'b'\]"): ExampleGrammaredSequence(bytes) seq = ExampleGrammaredSequence(bytes, lowercase=True) self.assertEqual(seq, ExampleGrammaredSequence('ABA')) # should not share the same memory self.assertIsNot(seq._bytes, bytes) # we should have copied `bytes` before modifying in place to convert to # upper. make sure `bytes` hasn't been mutated npt.assert_equal(bytes, np.array([97, 98, 97], dtype=np.uint8)) def test_init_lowercase_invalid_keys(self): for invalid_key in ((), [], 2): invalid_type = type(invalid_key) with self.assertRaisesRegex(TypeError, "lowercase keyword argument expected " "a bool or string, but got %s" % invalid_type): ExampleGrammaredSequence('ACGTacgt', lowercase=invalid_key) def test_degenerate_chars(self): expected = set("XYZ") self.assertIs(type(ExampleGrammaredSequence.degenerate_chars), set) self.assertEqual(ExampleGrammaredSequence.degenerate_chars, expected) ExampleGrammaredSequence.degenerate_chars.add("W") self.assertEqual(ExampleGrammaredSequence.degenerate_chars, expected) self.assertEqual(ExampleGrammaredSequence('').degenerate_chars, expected) with self.assertRaises(AttributeError): ExampleGrammaredSequence('').degenerate_chars = set("BAR") def test_nondegenerate_chars(self): expected = set("ABC") self.assertEqual(ExampleGrammaredSequence.nondegenerate_chars, expected) ExampleGrammaredSequence.degenerate_chars.add("D") self.assertEqual(ExampleGrammaredSequence.nondegenerate_chars, expected) self.assertEqual(ExampleGrammaredSequence('').nondegenerate_chars, expected) with self.assertRaises(AttributeError): ExampleGrammaredSequence('').nondegenerate_chars = set("BAR") def test_gap_chars(self): expected = set(".-") self.assertIs(type(ExampleGrammaredSequence.gap_chars), set) self.assertEqual(ExampleGrammaredSequence.gap_chars, expected) ExampleGrammaredSequence.gap_chars.add("_") self.assertEqual(ExampleGrammaredSequence.gap_chars, expected) self.assertEqual(ExampleGrammaredSequence('').gap_chars, expected) with self.assertRaises(AttributeError): ExampleGrammaredSequence('').gap_chars = set("_ =") def test_default_gap_char(self): self.assertIs(type(ExampleGrammaredSequence.default_gap_char), str) self.assertEqual(ExampleGrammaredSequence.default_gap_char, '-') self.assertEqual(ExampleGrammaredSequence('').default_gap_char, '-') with self.assertRaises(AttributeError): ExampleGrammaredSequence('').default_gap_char = '.' def test_alphabet(self): expected = set("ABC.-XYZ") self.assertIs(type(ExampleGrammaredSequence.alphabet), set) self.assertEqual(ExampleGrammaredSequence.alphabet, expected) ExampleGrammaredSequence.alphabet.add("DEF") self.assertEqual(ExampleGrammaredSequence.alphabet, expected) self.assertEqual(ExampleGrammaredSequence('').alphabet, expected) with self.assertRaises(AttributeError): ExampleGrammaredSequence('').alphabet = set("ABCDEFG.-WXYZ") def test_degenerate_map(self): expected = {"X": set("AB"), "Y": set("BC"), "Z": set("AC")} self.assertEqual(ExampleGrammaredSequence.degenerate_map, expected) ExampleGrammaredSequence.degenerate_map['W'] = set("ABC") ExampleGrammaredSequence.degenerate_map['X'] = set("CA") self.assertEqual(ExampleGrammaredSequence.degenerate_map, expected) self.assertEqual(ExampleGrammaredSequence('').degenerate_map, expected) with self.assertRaises(AttributeError): ExampleGrammaredSequence('').degenerate_map = {'W': "ABC"} def test_gaps(self): self.assertIs(type(ExampleGrammaredSequence("").gaps()), np.ndarray) self.assertIs(ExampleGrammaredSequence("").gaps().dtype, np.dtype('bool')) npt.assert_equal(ExampleGrammaredSequence("ABCXBZYABC").gaps(), np.zeros(10).astype(bool)) npt.assert_equal(ExampleGrammaredSequence(".-.-.").gaps(), np.ones(5).astype(bool)) npt.assert_equal(ExampleGrammaredSequence("A.B-C.X-Y.").gaps(), np.array([0, 1] * 5, dtype=bool)) npt.assert_equal(ExampleGrammaredSequence("AB.AC.XY-").gaps(), np.array([0, 0, 1] * 3, dtype=bool)) npt.assert_equal(ExampleGrammaredSequence("A.BC.-").gaps(), np.array([0, 1, 0, 0, 1, 1], dtype=bool)) def test_has_gaps(self): self.assertIs(type(ExampleGrammaredSequence("").has_gaps()), bool) self.assertIs(type(ExampleGrammaredSequence("-").has_gaps()), bool) self.assertFalse(ExampleGrammaredSequence("").has_gaps()) self.assertFalse(ExampleGrammaredSequence("ABCXYZ").has_gaps()) self.assertTrue(ExampleGrammaredSequence("-").has_gaps()) self.assertTrue(ExampleGrammaredSequence("ABCXYZ-").has_gaps()) def test_degenerates(self): self.assertIs(type(ExampleGrammaredSequence("").degenerates()), np.ndarray) self.assertIs(ExampleGrammaredSequence("").degenerates().dtype, np.dtype('bool')) npt.assert_equal(ExampleGrammaredSequence("ABCBC-.AB.").degenerates(), np.zeros(10).astype(bool)) npt.assert_equal(ExampleGrammaredSequence("ZYZYZ").degenerates(), np.ones(5).astype(bool)) npt.assert_equal(ExampleGrammaredSequence("AX.Y-ZBXCZ").degenerates(), np.array([0, 1] * 5, dtype=bool)) npt.assert_equal(ExampleGrammaredSequence("ABXACY.-Z").degenerates(), np.array([0, 0, 1] * 3, dtype=bool)) npt.assert_equal(ExampleGrammaredSequence("AZBCXY").degenerates(), np.array([0, 1, 0, 0, 1, 1], dtype=bool)) def test_has_degenerates(self): self.assertIs(type(ExampleGrammaredSequence("").has_degenerates()), bool) self.assertIs(type(ExampleGrammaredSequence("X").has_degenerates()), bool) self.assertFalse(ExampleGrammaredSequence("").has_degenerates()) self.assertFalse(ExampleGrammaredSequence("A-.BC").has_degenerates()) self.assertTrue(ExampleGrammaredSequence("Z").has_degenerates()) self.assertTrue(ExampleGrammaredSequence("ABC.XYZ-").has_degenerates()) def test_nondegenerates(self): self.assertIs(type(ExampleGrammaredSequence("").nondegenerates()), np.ndarray) self.assertIs(ExampleGrammaredSequence("").nondegenerates().dtype, np.dtype('bool')) npt.assert_equal( ExampleGrammaredSequence("XYZYZ-.XY.").nondegenerates(), np.zeros(10).astype(bool)) npt.assert_equal(ExampleGrammaredSequence("ABABA").nondegenerates(), np.ones(5).astype(bool)) npt.assert_equal( ExampleGrammaredSequence("XA.B-AZCXA").nondegenerates(), np.array([0, 1] * 5, dtype=bool)) npt.assert_equal( ExampleGrammaredSequence("XXAZZB.-C").nondegenerates(), np.array([0, 0, 1] * 3, dtype=bool)) npt.assert_equal(ExampleGrammaredSequence("YB.-AC").nondegenerates(), np.array([0, 1, 0, 0, 1, 1], dtype=bool)) def test_has_nondegenerates(self): self.assertIs(type(ExampleGrammaredSequence("").has_nondegenerates()), bool) self.assertIs(type(ExampleGrammaredSequence("A").has_nondegenerates()), bool) self.assertFalse(ExampleGrammaredSequence("").has_nondegenerates()) self.assertFalse( ExampleGrammaredSequence("X-.YZ").has_nondegenerates()) self.assertTrue(ExampleGrammaredSequence("C").has_nondegenerates()) self.assertTrue( ExampleGrammaredSequence(".XYZ-ABC").has_nondegenerates()) def test_degap(self): kw = { 'metadata': { 'id': 'some_id', 'description': 'some description', }, } self.assertEqual( ExampleGrammaredSequence( "", positional_metadata={'qual': []}, **kw).degap(), ExampleGrammaredSequence( "", positional_metadata={'qual': []}, **kw)) self.assertEqual( ExampleGrammaredSequence( "ABCXYZ", positional_metadata={'qual': np.arange(6)}, **kw).degap(), ExampleGrammaredSequence( "ABCXYZ", positional_metadata={'qual':
np.arange(6)
numpy.arange
import os from collections import namedtuple import numpy as np from .idx import read_idx_file def _to_onehot(k, a): vs = [] for x in a: v = np.zeros((k, ), np.float32) v[x] = 1 vs.append(v) return
np.array(vs)
numpy.array
import numpy as np import matplotlib.pyplot as plt class LinearSpline: def __init__(self): self.ts = [] self.xs = [] def add_entry(self, t, x): self.ts.append(t) self.xs.append(x) def interpolate(self, t): if t <= self.ts[0]: return self.xs[0] elif t >= self.ts[-1]: return self.xs[-1] else: i2 = 0 while t > self.ts[i2]: i2 += 1 i1 = i2 - 1 k = (t - self.ts[i1])/(self.ts[i2]-self.ts[i1]) return self.xs[i1]*(1-k) + self.xs[i2]*k class LinearSpline3D: def __init__(self): self.xs = LinearSpline() self.ys = LinearSpline() self.zs = LinearSpline() def add_entry(self, t, x, y ,z): self.xs.add_entry(t, x) self.ys.add_entry(t, y) self.zs.add_entry(t, z) def get_start(self): return self.xs.ts[0] def get_duree(self): return self.xs.ts[-1] - self.xs.ts[0] def interpolate(self, t): x = self.xs.interpolate(t) y = self.ys.interpolate(t) z = self.zs.interpolate(t) return x, y, z class CircularSpline3D: def __init__(self, start): self.ts = [] self.duree = [] self.rayon = [] self.normale = [] self.center = [] self.angle = [] self.end = [start] def add_entry(self, t, center, normale, angle, duree): self.ts.append(t) self.duree.append(duree) rayon = np.array([self.end[-1][i] - center[i] for i in range(3)]) self.rayon.append(rayon) self.center.append(center) self.normale.append(normale) self.angle.append(angle) self.end.append(rayon * np.cos(angle) + np.cross(normale, rayon) * np.sin(angle) + center) def get_middle(self, i): return (self.end[i - 1] + self.end[i]) / 2 def get_end(self, i): return self.end[i + 1] def interpolate(self, t): if t <= self.ts[0]: print(t) return self.rayon[0] + self.center[0] elif t >= self.ts[-1] + self.duree[-1]: return self.end[-1] else: i = 0 while t > self.ts[i] + self.duree[i]: i += 1 angle = self.angle[i] * (t - self.ts[i]) / self.duree[i] M = self.rayon[i] * np.cos(angle) + np.cross(self.normale[i], self.rayon[i]) * np.sin(angle) + self.center[i] return M if __name__ == "__main__": # from mpl_toolkits import mplot3d # ax = plt.axes(projection='3d') # ts = np.arange(0, 2*np.pi, 0.05) # xs = [] # ys = [] # zs = [] # nx = [] # ny = [] # nz = [] # for t in ts: # R = np.array([3, 0, 0]) # N = np.array([0, 0, 1]) # O = np.array([2, 0, 0]) # nx.append(N[0] * t + O[0]) # ny.append(N[1] * t + O[1]) # nz.append(N[2] * t + O[2]) # M = R * math.cos(t) + np.cross(N, R) * math.sin(t) + O # xs.append(M[0]) # ys.append(M[1]) # zs.append(M[2]) from mpl_toolkits import mplot3d ax = plt.axes(projection='3d') ts = np.arange(0., 9, 0.05) xs = [] ys = [] zs = [] N1 = [] N2 = [] # point = [3, 1, 0] # spline = CircularSpline3D(point) # center = [0, 0, 0] # normale1 = [0, 0, 1] # spline.add_entry(0, center, normale1, 3, np.pi / 2) # normale2 = spline.get_middle(0) # center2 = spline.get_middle(0) # spline.add_entry(3, center2, normale2, 3, np.pi) point = [3, 0, 0] spline = CircularSpline3D(point) angle = np.pi / 3 center = [0, 0, 0] normale1 = [0, 0, 1] spline.add_entry(0, center, normale1, angle, 3) normale2 = [1, 0, 0] center2 = [spline.get_end(0)[0], center[1], center[2]] print(center2) # spline.add_entry(3, center, normale1, - np.pi, 3) spline.add_entry(3, center2, normale2, np.pi, 3) spline.add_entry(6, center, normale1, angle, 3) ax.scatter3D(center[0], center[1], center[2], c='r') ax.scatter3D(center2[0], center2[1], center2[2], c='g') ax.scatter3D(point[0], point[1], point[2], c='b') for t in ts: x, y, z = spline.interpolate(t) xs.append(x) ys.append(y) zs.append(z) N1.append(np.array(normale1) * t + np.array(center)) N2.append(np.array(normale2) * t +
np.array(center)
numpy.array
from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import numpy as np from .utils import * from .splitters import Splitter from sklearn.cluster import AgglomerativeClustering from sklearn.decomposition import PCA,TruncatedSVD,NMF,FastICA from scipy.stats import pearsonr from sklearn.metrics import roc_auc_score from pandas import DataFrame from sklearn.neighbors import LocalOutlierFactor from sklearn.ensemble import IsolationForest from sklearn.neighbors import VALID_METRICS import warnings warnings.filterwarnings("ignore", message='default contamination parameter 0.1 will change in version 0.22 to "auto". This will change the predict method behavior.') warnings.filterwarnings("ignore", message='Data with input dtype float64 was converted to bool by check_pairwise_arrays.') warnings.filterwarnings("ignore", message='Invalid value encountered in percentile') DEBUG = True all_metrics = ['cityblock','L2','L4','braycurtis', 'canberra','chebyshev','correlation','mahalanobis', 'wL2','wL4'] def sk_check(X_train,X_test,y_test,o_list): f_f = [LocalOutlierFactor(n_neighbors=5),\ LocalOutlierFactor(n_neighbors=10),\ LocalOutlierFactor(n_neighbors=35),\ IsolationForest(max_samples='auto')] f_name = ['LOF5','LOF10','LOF35','i-forest'] columns = ['method']+['AUC','MCC','RWS'] n_row = 2 index = np.arange(n_row) # array of numbers for the number of samples df = DataFrame(columns=columns, index = index) y_test = np.array(y_test) exec('T_o ='+(' | '.join(['(y_test=='+str(i)+')' for i in o_list])),locals(),globals()) auc_max = -1 for i in range(3): lof = f_f[i] lof.fit(X_test) outliers = -lof.negative_outlier_factor_ auc_test = roc_auc_score(T_o, outliers) if auc_test>auc_max: auc_max = auc_test df['method'][0] = f_name[i] df['MCC'][0] = MCC(T_o, outliers) df['AUC'][0] = auc_max df['RWS'][0] = rws_score(T_o, outliers) df['method'][1] = f_name[3] isof = f_f[3] isof.fit(X_train) scores_pred = isof.decision_function(X_test) outliers = scores_pred.max()-scores_pred df['MCC'][1] = MCC(T_o, outliers) df['AUC'][1] = roc_auc_score(T_o, outliers) df['RWS'][1] = rws_score(T_o, outliers) return df def d_lof(X_seen,X_unseen=None,n_neighbors=20,algorithm='auto',metric='minkowski'): lof = LocalOutlierFactor(n_neighbors = n_neighbors, algorithm = algorithm, metric = metric, novelty=not (X_unseen is None), n_jobs=-1) lof.fit(X_seen) if X_unseen is None: return -lof.negative_outlier_factor_ else: return -lof.score_samples(X_unseen) def grid_run_lof(X_seen,y_seen=None, X_unseen=None,y_unseen=None, n_neighbors = [5,20,35], algorithms = ['ball_tree', 'kd_tree', 'brute'], metrics=None): ''' This function is able to deal with three modes: 1- Unsupervised outlier detection 2- Semi-supervised outlier detection 3- Novelty detection ''' novelty = 0 semisupervised = 0 if (np.all(y_seen==0)) | (y_seen is None): novelty = 1 X_unseen_p = X_unseen y_seen = y_unseen print('Novelty detection mode.') conds = (X_unseen is not None and y_unseen is not None) assert conds,'In novelty detection you need to input the unseen data sets.' elif y_unseen is not None and X_unseen is not None: semisupervised = 1 # print('Semi-supervised option is not available for novelty detection.') X_unseen_p = None print('Semi-supervised outlier detection mode.') elif X_seen is not None: X_unseen_p = X_unseen print('Unsupervised outlier detection mode.') else: assert 0, 'The configuration is not recognized!' aucs,mccs,rwss,conf = [],[],[],[] for nn in n_neighbors: for al in algorithms: if metrics is None: metrics = VALID_METRICS[al] for mt in metrics: try: outliers = d_lof(X_seen=X_seen,X_unseen=X_unseen_p,n_neighbors=nn,algorithm=al,metric=mt) conf.append([nn,al,mt]) aucs.append(roc_auc_score(y_seen, outliers)) mccs.append(MCC(y_seen, outliers)) rwss.append(rws_score(y_seen, outliers)) except: pass if semisupervised: nn,al,mt = conf[np.argmax(aucs)] outliers = d_lof(X_seen=X_unseen,n_neighbors=nn,algorithm=al,metric=mt) auc = roc_auc_score(y_unseen, outliers) nn,al,mt = conf[np.argmax(mccs)] outliers = d_lof(X_seen=X_unseen,n_neighbors=nn,algorithm=al,metric=mt) mcc = roc_auc_score(y_unseen, outliers) nn,al,mt = conf[np.argmax(rwss)] outliers = d_lof(X_seen=X_unseen,n_neighbors=nn,algorithm=al,metric=mt) rws = roc_auc_score(y_unseen, outliers) return auc,mcc,rws else: return
np.array(aucs)
numpy.array
''' Plot functions to graphically present simulation results ''' import numpy as np import matplotlib import matplotlib.pyplot as plt from parameters import SAVE_FIGS, ONE_FIGURE server_names = ['server 1', 'server 2', 'server 3', 'server 4', 'server 5'] color_sequence = ['#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c'] def setup_plots(suptitle): ''' Basic setup of plots so it can be reused on plot functions Parameters ---------- suptitle: string Description of the plot that will appear on the top Returns ------- Figure and axis matplotlib structs ''' fig, ax = plt.subplots(1, 1, figsize=(15, 12)) # fig.suptitle(suptitle) for item in ([ax.title, ax.xaxis.label, ax.yaxis.label]): item.set_fontsize(30) for item in (ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(26) item.set_fontweight("bold") font = {'weight' : 'bold'} matplotlib.rc('font', **font) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) # Provide tick lines across the plot to help viewers trace along # the axis ticks. plt.grid(True, 'major', 'y', ls='--', lw=.5, c='k', alpha=.3) # Remove the tick marks; they are unnecessary with the tick lines we just # plotted. plt.tick_params(axis='both', which='both', bottom=True, top=False, labelbottom=True, left=False, right=False, labelleft=True) return fig, ax def create_plot_server(result, path_name, suptitle, xlabel, ylabel, offset): ''' Generate the plot needed Parameters ---------- result: 2-d array Each row is a different timeslot Returns ------- Plot ''' if ONE_FIGURE == False: fig, ax = setup_plots(suptitle) y_positions = [] for index, row in enumerate(result): line = plt.plot(row, lw=5, color=color_sequence[index]) # set the text to start on the y of the last value of the line y_pos = row[-1] server_name = server_names[index] # move based on offset if names overlap on plot while y_pos in y_positions: y_pos += offset y_positions.append(y_pos) plt.text(len(row) + 5, y_pos, server_name, fontsize=24, color=color_sequence[index]) plt.xlabel(xlabel, fontweight='bold') plt.ylabel(ylabel, fontweight='bold') if SAVE_FIGS == True and ONE_FIGURE == False: plt.savefig("plots/" + path_name + ".png") else: plt.show(block=False) def plot_data_offloading_of_users(all_bytes_offloaded): ''' Plot the data each user is offloading in each timeslot Parameters ---------- all_bytes_offloaded: 2-d array Contains on each row the amount of data each user is offloading. Each row is a different timeslot Returns ------- Plot ''' result = all_bytes_offloaded # Each row on the transposed matrix contains the data the user offloads # in each timeslot. Different rows mean different user. result = np.transpose(result) suptitle = "Data each user is offloading in each timeslot" if ONE_FIGURE == False: fig, ax = setup_plots(suptitle) for index, row in enumerate(result): # display only some of the users on the plot if index%11 == 0: line = plt.plot(row, lw=5) # line = plt.plot(row, lw=5) plt.xlabel('iterations', fontweight='bold') plt.ylabel('amount of data (bytes)', fontweight='bold') path_name = "all_bytes_offloaded" if SAVE_FIGS == True and ONE_FIGURE == False: plt.savefig("plots/" + path_name + ".png") else: plt.show(block=False) def plot_user_utility(all_user_utility): ''' Plot the utility each user has in each timeslot Parameters ---------- all_user_utility: 2-d array Contains on each row the utility value each user has. Each row is a different timeslot Returns ------- Plot ''' result = all_user_utility # Each row on the transposed matrix contains the data the user offloads # in each timeslot. Different rows mean different user. result = np.transpose(result) suptitle = "Utility each user has in each timeslot" if ONE_FIGURE == False: fig, ax = setup_plots(suptitle) for index, row in enumerate(result): line = plt.plot(row, lw=5) plt.xlabel('iterations', fontweight='bold') plt.ylabel('utility', fontweight='bold') path_name = "all_user_utility" if SAVE_FIGS == True and ONE_FIGURE == False: plt.savefig("plots/" + path_name + ".png") else: plt.show(block=False) def plot_num_of_users_on_each_server(all_server_selected, S, **params): ''' Plot number of users on each server every timeslot Parameters ---------- all_server_selected: 2-d array Contains on each row the server each user has selected. Each row is a different timeslot S: int Number of servers Returns ------- Plot ''' # How many users each server has each timeslot # result = np.empty((0, S), int) # for row in all_server_selected: # # the bincount finds how many times each server has been selected # result = np.append(result, [np.bincount(row, minlength=S)], axis=0) result = all_server_selected # Each row on the transposed matrix contains how many users the server has # in each timeslot. Different rows mean different servers. result = np.transpose(result) offset = np.abs(np.max(result) - np.min(result))*0.03 if offset < 0.005: offset = 0.005 + np.abs(np.max(result))*0.005; path_name = "all_server_selected" suptitle = "Number of users each server has in each timeslot" xlabel = "timeslots" ylabel = "num of users" create_plot_server(result, path_name, suptitle, xlabel, ylabel, offset) def plot_pricing_of_each_server(all_prices): ''' Plot pricing of each server on every timeslot Parameters ---------- all_prices: 2-d array Contains on each row the price each server has chosen. Each row is a different timeslot Returns ------- Plot ''' result = all_prices # Each row on the transposed matrix contains the price the server has # in each timeslot. Different rows mean different servers. result = np.transpose(result) offset = np.abs(np.max(result) - np.min(result))*0.03 if offset < 0.005: offset = 0.005 + np.abs(np.max(result))*0.005; path_name = "all_prices" suptitle = "Price each server has selected in each timeslot" xlabel = "timeslots" ylabel = "price" create_plot_server(result, path_name, suptitle, xlabel, ylabel, offset) def plot_receiving_data_on_each_server(all_bytes_to_server): ''' Plot the data each server is receiving in each timeslot Parameters ---------- all_bytes_to_server: 2-d array Contains on each row the amount of data each server is receiving. Each row is a different timeslot Returns ------- Plot ''' result = all_bytes_to_server # Each row on the transposed matrix contains the data the server receives # in each timeslot. Different rows mean different servers. result = np.transpose(result) offset = np.abs(np.max(result) - np.min(result))*0.03 if offset < 0.005: offset = 0.005 + np.abs(np.max(result))*0.005; path_name = "all_bytes_to_server" suptitle = "Data each server is receiving in each timeslot" xlabel = "timeslots" ylabel = "amount of data (bytes)" create_plot_server(result, path_name, suptitle, xlabel, ylabel, offset) def plot_server_welfare(all_server_welfare): ''' Plot the welfare of each server in each timeslot Parameters ---------- all_server_welfare: 2-d array Contains on each row the welfare of each server. Each row is a different timeslot Returns ------- Plot ''' result = all_server_welfare # Each row on the transposed matrix contains the data the user offloads # in each timeslot. Different rows mean different user. result = np.transpose(result) offset = np.abs(np.max(result) - np.min(result))*0.03 if offset < 0.005: offset = 0.005 + np.abs(np.max(result))*0.005; path_name = "all_server_welfare" suptitle = "Welfare of the server at the end of each timeslot" xlabel = "timeslots" ylabel = "welfare" create_plot_server(result, path_name, suptitle, xlabel, ylabel, offset) def plot_server_Rs(all_Rs): ''' Plot the competitiveness score each server has in each timeslot Parameters ---------- all_Rs: 2-d array Contains on each row the Rs of each server. Each row is a different timeslot Returns ------- Plot ''' result = all_Rs # Each row on the transposed matrix contains the data the user offloads # in each timeslot. Different rows mean different user. result = np.transpose(result) offset = np.abs(np.max(result) - np.min(result))*0.03 if offset < 0.005: offset = 0.005 + np.abs(
np.max(result)
numpy.max
from pathlib import Path import cv2 import glob import imageio import nibabel import numpy as np import os import pandas as pd import random import sys import tensorflow as tf from skimage.transform import resize from tensorflow.keras.preprocessing.image import load_img from tensorflow.keras.preprocessing.image import save_img from config import config as cfg class Dataset: def __init__(self, path, images_path, modality='flair', extract=True, initial_slice=0, final_slice=155, train_split=0.8, test_split=0.1, val_split=0.1): self.input_path = path self.images_path = images_path self.initial_slice = initial_slice self.final_slice = final_slice self.modality = modality self.train_split = train_split self.test_split = train_split + test_split self.val_split = train_split + val_split self.train = None self.val = None self.test = None if extract: self.patients_HGG = [] self.patients_LGG = [] self._extract() self._filter() self._get_sets() def _get_csvs(self): print('>> Searching for sets in csv format..') sets = dict() try: train_set = pd.read_csv('train_set.csv') val_set = pd.read_csv('val_set.csv') test_set = pd.read_csv('test_set.csv') sets['train_set'] = train_set sets['val_set'] = val_set sets['test_set'] = test_set print('!! Found them.') return sets except FileNotFoundError: print("!! Sets not found!") return sets def join_imgs_path(self, tuples): for idx, tup in enumerate(tuples): # print(f'{idx}: {tup}') img = self.images_path + tup[0] seg = self.images_path + tup[1] tuples[idx][0] = img tuples[idx][1] = seg return tuples def _get_sets(self): sets = self._get_csvs() train = None val = None test = None if len(sets) == 0: self._split_data() self._save_sets_csv() else: for set in sets: if 'train' in set: tuples = sets['train_set'].values.tolist() tuples = self.join_imgs_path(tuples) self.train = tuples elif 'val' in set: tuples = sets['val_set'].values.tolist() tuples = self.join_imgs_path(tuples) self.val = tuples else: tuples = sets['test_set'].values.tolist() tuples = self.join_imgs_path(tuples) self.test = tuples def _split_data(self): print('>> Splitting data....') imgs = [] segs = [] for path in Path(self.images_path).rglob('*.png'): path = str(path) if 'seg' in path: # segs.append(str(path[-31:])) segs.append(str(path)) elif f'{self.modality}' in path: # imgs.append(str(path[-33:])) imgs.append(str(path)) tuples = list(zip(imgs, segs)) random.shuffle(tuples) self.train = tuples[:int(len(tuples) * self.train_split)] self.val = tuples[int(len(tuples) * self.train_split):int(len(tuples) * self.test_split)] self.test = tuples[int(len(tuples) * self.val_split):] print('<< Split done!') def _save_sets_csv(self): sets = [self.train, self.val, self.test] idx = 0 for set in sets: imgs = [] segs = [] for i in range(len(set)): img = set[i][0] seg = set[i][1] imgs.append(img[-33:]) segs.append(seg[-31:]) data = {'imgs': imgs, 'segs': segs} df_test = pd.DataFrame(data) if idx == 0: df_test.to_csv('train_set.csv', index=False) print('!! Train set paths saved to > train_set.csv') elif idx == 1: df_test.to_csv('val_set.csv', index=False) print('!! Val set paths saved to > val_set.csv') else: df_test.to_csv('test_set.csv', index=False) print('!! Test set paths saved to > test_set.csv') idx += 1 def _extract(self): amount = count(self.input_path, 'nii.gz') c = 0 for path in Path(self.input_path).rglob('*.nii.gz'): HGG = False data = nibabel.load(path) image_array = data.get_fdata() # Handling patient folders if path.parts[-3] == 'HGG': HGG = True if path.parts[-2] not in self.patients_HGG: self.patients_HGG.append(path.parts[-2]) else: if path.parts[-2] not in self.patients_LGG: self.patients_LGG.append(path.parts[-2]) if HGG: output_label = self.images_path + 'HGG/' index = self.patients_HGG.index(path.parts[-2]) else: output_label = self.images_path + 'LGG/' index = self.patients_LGG.index(path.parts[-2]) patient = 'patient{:03d}'.format(index + 1) for slice in range(self.initial_slice, self.final_slice): img = image_array[:, :, slice] img = np.rot90(np.rot90(np.rot90(img))) img = resize(img, (240, 240, 3), order=0, preserve_range=True, anti_aliasing=False) if ('seg' in path.parts[-1]): img[img == 1] = 1 img[img == 2] = 2 img[img == 4] = 3 output_tissue = output_label + 'seg/' if not os.path.exists(output_tissue): os.makedirs(output_tissue) print("Created ouput directory: " + output_tissue) mask_gray = cv2.cvtColor(img.astype('float32'), cv2.COLOR_RGB2GRAY) # not black image if not cv2.countNonZero(mask_gray) == 0: imageio.imwrite(output_tissue + patient + '_slice{:03d}'.format(slice) + '.png', img.astype(np.uint8)) if ('flair' in path.parts[-1]): output_tissue = output_label + 'flair/' if not os.path.exists(output_tissue): os.makedirs(output_tissue) print("Created ouput directory: " + output_tissue) save_img(output_tissue + patient + '_slice{:03d}'.format(slice) + '.png', img, scale=True) if ('t1' in path.parts[-1]): output_tissue = output_label + 't1/' if not os.path.exists(output_tissue): os.makedirs(output_tissue) print("Created ouput directory: " + output_tissue) save_img(output_tissue + patient + '_slice{:03d}'.format(slice) + '.png', img, scale=True) if ('t1ce' in path.parts[-1]): output_tissue = output_label + 't1c/' if not os.path.exists(output_tissue): os.makedirs(output_tissue) print("Created ouput directory: " + output_tissue) save_img(output_tissue + patient + '_slice{:03d}'.format(slice) + '.png', img, scale=True) if ('t2' in path.parts[-1]): output_tissue = output_label + 't2/' if not os.path.exists(output_tissue): os.makedirs(output_tissue) print("Created ouput directory: " + output_tissue) save_img(output_tissue + patient + '_slice{:03d}'.format(slice) + '.png', img, scale=True) printProgressBar(c + 1, amount, prefix='Progress:', suffix='Complete', length=50) c += 1 def _filter(self): print('>> Filtering black images (without ground truth)..') labels = ['HGG', 'LGG'] for label in labels: path_to_tumors = self.images_path + f'{label}/seg' path_to_modality = self.images_path + f'{label}/flair' tumors = glob.glob(path_to_tumors + '/*.png') images = glob.glob(path_to_modality + '/*.png') tumors_filter = [] images_filters = [] idx = 0 for tumor in tumors: tumors_filter.append(tumor[-16:]) idx += 1 idx = 0 for img in images: images_filters.append(img[-16:]) idx += 1 count = 0 idx = 0 for imgs in images_filters: if not imgs in tumors_filter: os.remove(images[idx]) count += 1 idx += 1 count2 = 0 for img in images_filters: if not img in tumors_filter: count2 += 1 print('<< Done!\n') def get_data(self): return self.train, self.val, self.test class DataGenerator(tf.keras.utils.Sequence): def __init__(self, tuples, img_size=(128, 128), batch_size=8, classes=4): # random.shuffle(tuples) self.input_img_paths = [tuples[i][0] for i in range(len(tuples))] self.target_img_paths = [tuples[i][1] for i in range(len(tuples))] self.classes = classes self.batch_size = batch_size self.img_size = img_size def __len__(self): return len(self.target_img_paths) // self.batch_size def __getitem__(self, index): """Returns tuple (input, target) correspond to batch #idx.""" x = [] y = [] i = index * self.batch_size batch_input_img_paths = self.input_img_paths[i: i + self.batch_size] batch_target_img_paths = self.target_img_paths[i: i + self.batch_size] for j, path in enumerate(batch_input_img_paths): img = load_img(path, target_size=self.img_size, color_mode="grayscale") img_arr = np.array(img) img_arr = img_arr / float(255) img = np.resize(img_arr, self.img_size) img = img.reshape(self.img_size[0], self.img_size[1], 1) maior = np.max(img) if np.max(img) > 0 else 1 img = img / maior x.append(img) for j, path in enumerate(batch_target_img_paths): img = cv2.imread(path, cv2.IMREAD_GRAYSCALE) img = cv2.resize(img, (self.img_size[0], self.img_size[1])) y.append(tf.one_hot(img.astype(np.int64), self.classes)) return np.array(x), np.array(y) # Print iterations progress def printProgressBar(iteration, total, prefix='', suffix='', decimals=1, length=100, fill='█', printEnd="\r"): """ Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) length - Optional : character length of bar (Int) fill - Optional : bar fill character (Str) printEnd - Optional : end character (e.g. "\r", "\r\n") (Str) """ percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength + '-' * (length - filledLength) print(f'\r{prefix} |{bar}| {percent}% {suffix}', end=printEnd) # Print New Line on Complete if iteration == total: print() def count(input, type): count = 0 for path in Path(input).rglob('*.' + type): count += 1 return count np.set_printoptions(threshold=sys.maxsize) def read_img(p, img_size): """ :param p: path of image :return: image as numpy array """ img = cv2.imread(p) img = cv2.resize(img, img_size) img_c = np.copy(
np.asarray(img)
numpy.asarray
import pytest import pyCGM_Single.pycgmStatic as pycgmStatic import numpy as np from mock import patch rounding_precision = 8 class TestPycgmStaticAxis(): """ This class tests the axis functions in pycgmStatic.py: staticCalculationHead pelvisJointCenter hipJointCenter hipAxisCenter kneeJointCenter ankleJointCenter footJointCenter headJC uncorrect_footaxis rotaxis_footflat rotaxis_nonfootflat findJointC """ nan_3d = [np.nan, np.nan, np.nan] rand_coor = [np.random.randint(0, 10), np.random.randint(0, 10), np.random.randint(0, 10)] @pytest.mark.parametrize(["head", "expected"], [ # Test from running sample data ([[[244.87227957886893, 326.0240255639856, 1730.4189843948805], [243.89575702706503, 325.0366593474616, 1730.1515677531293], [244.89086730509763, 324.80072493605866, 1731.1283433097797]], [244.89547729492188, 325.0578918457031, 1730.1619873046875]], 0.25992807335420975), # Test with zeros for all params ([[[0, 0, 0], [0, 0, 0], [0, 0, 0]], [0, 0, 0]], np.nan), # Testing when values are added to head[0][0] ([[[-1, 8, 9], [0, 0, 0], [0, 0, 0]], [0, 0, 0]], 1.5707963267948966), # Testing when values are added to head[0][1] ([[[0, 0, 0], [7, 5, 7], [0, 0, 0]], [0, 0, 0]], np.nan), # Testing when values are added to head[0][2] ([[[0, 0, 0], [0, 0, 0], [3, -6, -2]], [0, 0, 0]], 0.0), # Testing when values are added to head[0] ([[[-1, 8, 9], [7, 5, 7], [3, -6, -2]], [0, 0, 0]], -1.3521273809209546), # Testing when values are added to head[1] ([[[0, 0, 0], [0, 0, 0], [0, 0, 0]], [-4, 7, 8]], 0.7853981633974483), # Testing when values are added to head ([[[-1, 8, 9], [7, 5, 7], [3, -6, -2]], [-4, 7, 8]], -0.09966865249116204), # Testing that when head is composed of lists of ints ([[[-1, 8, 9], [7, 5, 7], [3, -6, -2]], [-4, 7, 8]], -0.09966865249116204), # Testing that when head is composed of numpy arrays of ints ([np.array([[-1, 8, 9], [7, 5, 7], [3, -6, -2]], dtype='int'), np.array([-4, 7, 8], dtype='int')], -0.09966865249116204), # Testing that when head is composed of lists of floats ([[[-1.0, 8.0, 9.0], [7.0, 5.0, 7.0], [3.0, -6.0, -2.0]], [-4.0, 7.0, 8.0]], -0.09966865249116204), # Testing that when head is composed of numpy arrays of floats ([np.array([[-1.0, 8.0, 9.0], [7.0, 5.0, 7.0], [3.0, -6.0, -2.0]], dtype='float'), np.array([-4.0, 7.0, 8.0], dtype='float')], -0.09966865249116204)]) def test_staticCalculationHead(self, head, expected): """ This test provides coverage of the staticCalculationHead function in pycgmStatic.py, defined as staticCalculationHead(frame, head) This test takes 2 parameters: head: array containing the head axis and head origin expected: the expected result from calling staticCalculationHead on head This function first calculates the x, y, z axes of the head by subtracting the given head axes by the head origin. It then calls headoffCalc on this head axis and a global axis to find the head offset angles. This test ensures that: - the head axis and the head origin both have an effect on the final offset angle - the resulting output is correct when head is composed of lists of ints, numpy arrays of ints, lists of floats, and numpy arrays of floats. """ result = pycgmStatic.staticCalculationHead(None, head) np.testing.assert_almost_equal(result, expected, rounding_precision) @pytest.mark.parametrize(["frame", "expected"], [ # Test from running sample data ({'RASI': np.array([357.90066528, 377.69210815, 1034.97253418]), 'LASI': np.array([145.31594849, 405.79052734, 1030.81445312]), 'RPSI': np.array([274.00466919, 205.64402771, 1051.76452637]), 'LPSI': np.array([189.15231323, 214.86122131, 1052.73486328])}, [np.array([251.60830688, 391.74131775, 1032.89349365]), np.array([[251.74063624, 392.72694721, 1032.78850073], [250.61711554, 391.87232862, 1032.8741063], [251.60295336, 391.84795134, 1033.88777762]]), np.array([231.57849121, 210.25262451, 1052.24969482])]), # Test with zeros for all params ({'SACR': np.array([0, 0, 0]), 'RASI': np.array([0, 0, 0]), 'LASI': np.array([0, 0, 0]), 'RPSI': np.array([0, 0, 0]), 'LPSI': np.array([0, 0, 0])}, [np.array([0, 0, 0]), np.array([nan_3d, nan_3d, nan_3d]), np.array([0, 0, 0])]), # Testing when adding values to frame['RASI'] and frame['LASI'] ({'RASI': np.array([-6, 6, 3]), 'LASI': np.array([-7, -9, 1]), 'RPSI': np.array([0, 0, 0]), 'LPSI': np.array([0, 0, 0])}, [np.array([-6.5, -1.5, 2.0]), np.array([[-7.44458106, -1.48072284, 2.32771179], [-6.56593805, -2.48907071, 1.86812391], [-6.17841206, -1.64617634, 2.93552855]]), np.array([0, 0, 0])]), # Testing when adding values to frame['RPSI'] and frame['LPSI'] ({'RASI': np.array([0, 0, 0]), 'LASI': np.array([0, 0, 0]), 'RPSI': np.array([1, 0, -4]), 'LPSI': np.array([7, -2, 2])}, [np.array([0, 0, 0]), np.array([nan_3d, nan_3d, nan_3d]), np.array([4., -1.0, -1.0])]), # Testing when adding values to frame['SACR'] ({'SACR': np.array([-4, 8, -5]), 'RASI': np.array([0, 0, 0]), 'LASI': np.array([0, 0, 0]), 'RPSI': np.array([0, 0, 0]), 'LPSI': np.array([0, 0, 0])}, [np.array([0, 0, 0]), np.array([nan_3d, nan_3d, nan_3d]), np.array([-4, 8, -5, ])]), # Testing when adding values to frame['RASI'], frame['LASI'], frame['RPSI'] and frame['LPSI'] ({'RASI': np.array([-6, 6, 3]), 'LASI': np.array([-7, -9, 1]), 'RPSI': np.array([1, 0, -4]), 'LPSI': np.array([7, -2, 2])}, [np.array([-6.5, -1.5, 2.0]), np.array([[-7.45825845, -1.47407957, 2.28472598], [-6.56593805, -2.48907071, 1.86812391], [-6.22180416, -1.64514566, 2.9494945]]), np.array([4.0, -1.0, -1.0])]), # Testing when adding values to frame['SACR'], frame['RASI'] and frame['LASI'] ({'SACR': np.array([-4, 8, -5]), 'RASI': np.array([-6, 6, 3]), 'LASI': np.array([-7, -9, 1]), 'RPSI': np.array([0, 0, 0]), 'LPSI': np.array([0, 0, 0])}, [np.array([-6.5, -1.5, 2.0]), np.array([[-6.72928306, -1.61360872, 2.96670695], [-6.56593805, -2.48907071, 1.86812391], [-5.52887619, -1.59397972, 2.21928602]]), np.array([-4, 8, -5])]), # Testing when adding values to frame['SACR'], frame['RPSI'] and frame['LPSI'] ({'SACR': np.array([-4, 8, -5]), 'RASI': np.array([0, 0, 0]), 'LASI': np.array([0, 0, 0]), 'RPSI': np.array([1, 0, -4]), 'LPSI': np.array([7, -2, 2])}, [np.array([0, 0, 0]), np.array([nan_3d, nan_3d, nan_3d]), np.array([-4, 8, -5])]), # Testing when adding values to frame['SACR'], frame['RASI'], frame['LASI'], frame['RPSI'] and frame['LPSI'] ({'SACR': np.array([-4, 8, -5]), 'RASI': np.array([-6, 6, 3]), 'LASI': np.array([-7, -9, 1]), 'RPSI': np.array([1, 0, -4]), 'LPSI': np.array([7, -2, 2])}, [np.array([-6.5, -1.5, 2.0]), np.array([[-6.72928306, -1.61360872, 2.96670695], [-6.56593805, -2.48907071, 1.86812391], [-5.52887619, -1.59397972, 2.21928602]]), np.array([-4, 8, -5])]), # Testing that when frame is composed of lists of ints ({'SACR': [-4, 8, -5], 'RASI': np.array([-6, 6, 3]), 'LASI': np.array([-7, -9, 1]), 'RPSI': [1, 0, -4], 'LPSI': [7, -2, 2]}, [np.array([-6.5, -1.5, 2.0]), np.array([[-6.72928306, -1.61360872, 2.96670695], [-6.56593805, -2.48907071, 1.86812391], [-5.52887619, -1.59397972, 2.21928602]]), np.array([-4, 8, -5])]), # Testing that when frame is composed ofe numpy arrays of ints ({'SACR': np.array([-4, 8, -5], dtype='int'), 'RASI': np.array([-6, 6, 3], dtype='int'), 'LASI': np.array([-7, -9, 1], dtype='int'), 'RPSI': np.array([1, 0, -4], dtype='int'), 'LPSI': np.array([7, -2, 2], dtype='int')}, [np.array([-6.5, -1.5, 2.0]), np.array([[-6.72928306, -1.61360872, 2.96670695], [-6.56593805, -2.48907071, 1.86812391], [-5.52887619, -1.59397972, 2.21928602]]), np.array([-4, 8, -5])]), # Testing that when frame is composed of lists of floats ({'SACR': [-4.0, 8.0, -5.0], 'RASI': np.array([-6.0, 6.0, 3.0]), 'LASI': np.array([-7.0, -9.0, 1.0]), 'RPSI': [1.0, 0.0, -4.0], 'LPSI': [7.0, -2.0, 2.0]}, [np.array([-6.5, -1.5, 2.0]), np.array([[-6.72928306, -1.61360872, 2.96670695], [-6.56593805, -2.48907071, 1.86812391], [-5.52887619, -1.59397972, 2.21928602]]), np.array([-4, 8, -5])]), # Testing that when frame is composed of numpy arrays of floats ({'SACR': np.array([-4.0, 8.0, -5.0], dtype='float'), 'RASI': np.array([-6.0, 6.0, 3.0], dtype='float'), 'LASI': np.array([-7.0, -9.0, 1.0], dtype='float'), 'RPSI': np.array([1.0, 0.0, -4.0], dtype='float'), 'LPSI': np.array([7.0, -2.0, 2.0], dtype='float')}, [np.array([-6.5, -1.5, 2.0]), np.array([[-6.72928306, -1.61360872, 2.96670695], [-6.56593805, -2.48907071, 1.86812391], [-5.52887619, -1.59397972, 2.21928602]]), np.array([-4, 8, -5])])]) def test_pelvisJointCenter(self, frame, expected): """ This test provides coverage of the pelvisJointCenter function in pycgmStatic.py, defined as pelvisJointCenter(frame) This test takes 2 parameters: frame: dictionary of marker lists expected: the expected result from calling pelvisJointCenter on frame This test is checking to make sure the pelvis joint center and axis are calculated correctly given the input parameters. The test checks to see that the correct values in expected are updated per each input parameter added: When values are added to frame['RASI'] and frame['LASI'], expected[0] and expected[1] should be updated When values are added to frame['RPSI'] and frame['LPSI'], expected[2] should be updated When values are added to frame['SACR'], expected[2] should be updated, and expected[1] should also be updated if there are values for frame['RASI'] and frame['LASI'] Values produced from frame['SACR'] takes precedent over frame['RPSI'] and frame['LPSI'] If RPSI and LPSI are given, then the sacrum will be the midpoint of those two markers. If they are not given then the sacrum is already calculated / specified. The origin of the pelvis is midpoint of the RASI and LASI markers. The axis of the pelvis is calculated using LASI, RASI, origin, and sacrum in the Gram-Schmidt orthogonalization procedure (ref. Kadaba 1990). Lastly, it checks that the resulting output is correct when frame is composed of lists of ints, numpy arrays of ints, lists of floats, and numpy arrays of floats. frame['LASI'] and frame['RASI'] were kept as numpy arrays every time as list would cause an error in the following line of pycgmStatic.py as lists cannot be divided by floats: origin = (RASI+LASI)/2.0 """ result = pycgmStatic.pelvisJointCenter(frame) np.testing.assert_almost_equal(result[0], expected[0], rounding_precision) np.testing.assert_almost_equal(result[1], expected[1], rounding_precision) np.testing.assert_almost_equal(result[2], expected[2], rounding_precision) @pytest.mark.parametrize(["pel_origin", "pel_x", "pel_y", "pel_z", "vsk", "expected"], [ # Test from running sample data ([251.608306884766, 391.741317749023, 1032.893493652344], [251.740636241119, 392.726947206848, 1032.788500732036], [250.617115540376, 391.872328624646, 1032.874106304030], [251.602953357582, 391.847951338178, 1033.887777624562], {'MeanLegLength': 940.0, 'R_AsisToTrocanterMeasure': 72.512, 'L_AsisToTrocanterMeasure': 72.512, 'InterAsisDistance': 215.908996582031}, [[182.57097863, 339.43231855, 935.52900126], [308.38050472, 322.80342417, 937.98979061]]), # Basic test with zeros for all params ([0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], {'MeanLegLength': 0.0, 'R_AsisToTrocanterMeasure': 0.0, 'L_AsisToTrocanterMeasure': 0.0, 'InterAsisDistance': 0.0}, [[0, 0, 0], [0, 0, 0]]), # Testing when values are added to pel_origin ([1, 0, -3], [0, 0, 0], [0, 0, 0], [0, 0, 0], {'MeanLegLength': 0.0, 'R_AsisToTrocanterMeasure': 0.0, 'L_AsisToTrocanterMeasure': 0.0, 'InterAsisDistance': 0.0}, [[-6.1387721, 0, 18.4163163], [8.53165418, 0, -25.59496255]]), # Testing when values are added to pel_x ([0, 0, 0], [-5, -3, -6], [0, 0, 0], [0, 0, 0], {'MeanLegLength': 0.0, 'R_AsisToTrocanterMeasure': 0.0, 'L_AsisToTrocanterMeasure': 0.0, 'InterAsisDistance': 0.0}, [[54.02442793, 32.41465676, 64.82931352], [54.02442793, 32.41465676, 64.82931352]]), # Testing when values are added to pel_y ([0, 0, 0], [0, 0, 0], [4, -1, 2], [0, 0, 0], {'MeanLegLength': 0.0, 'R_AsisToTrocanterMeasure': 0.0, 'L_AsisToTrocanterMeasure': 0.0, 'InterAsisDistance': 0.0}, [[29.34085257, -7.33521314, 14.67042628], [-29.34085257, 7.33521314, -14.67042628]]), # Testing when values are added to pel_z ([0, 0, 0], [0, 0, 0], [0, 0, 0], [3, 8, 2], {'MeanLegLength': 0.0, 'R_AsisToTrocanterMeasure': 0.0, 'L_AsisToTrocanterMeasure': 0.0, 'InterAsisDistance': 0.0}, [[31.82533363, 84.86755635, 21.21688909], [31.82533363, 84.86755635, 21.21688909]]), # Test when values are added to pel_x, pel_y, and pel_z ([0, 0, 0], [-5, -3, -6], [4, -1, 2], [3, 8, 2], {'MeanLegLength': 0.0, 'R_AsisToTrocanterMeasure': 0.0, 'L_AsisToTrocanterMeasure': 0.0, 'InterAsisDistance': 0.0}, [[115.19061413, 109.94699997, 100.71662889], [56.508909 , 124.61742625, 71.37577632]]), # Test when values are added to pel_origin, pel_x, pel_y, and pel_z ([1, 0, -3], [-5, -3, -6], [4, -1, 2], [3, 8, 2], {'MeanLegLength': 0.0, 'R_AsisToTrocanterMeasure': 0.0, 'L_AsisToTrocanterMeasure': 0.0, 'InterAsisDistance': 0.0}, [[109.05184203, 109.94699997, 119.13294518], [65.04056318, 124.61742625, 45.78081377]]), # Test when values are added to pel_origin, pel_x, pel_y, pel_z, and vsk[MeanLegLength] ([1, 0, -3], [-5, -3, -6], [4, -1, 2], [3, 8, 2], {'MeanLegLength': 15.0, 'R_AsisToTrocanterMeasure': 0.0, 'L_AsisToTrocanterMeasure': 0.0, 'InterAsisDistance': 0.0}, [[100.88576753, 97.85280235, 106.39612748], [61.83654463, 110.86920998, 41.31408931]]), # Test when values are added to pel_origin, pel_x, pel_y, pel_z, and vsk[R_AsisToTrocanterMeasure] ([1, 0, -3], [-5, -3, -6], [4, -1, 2], [3, 8, 2], {'MeanLegLength': 0.0, 'R_AsisToTrocanterMeasure': -24.0, 'L_AsisToTrocanterMeasure': 0.0, 'InterAsisDistance': 0.0}, [[109.05184203, 109.94699997, 119.13294518], [-57.09307697, 115.44008189, 14.36512267]]), # Test when values are added to pel_origin, pel_x, pel_y, pel_z, and vsk[L_AsisToTrocanterMeasure] ([1, 0, -3], [-5, -3, -6], [4, -1, 2], [3, 8, 2], {'MeanLegLength': 0.0, 'R_AsisToTrocanterMeasure': 0.0, 'L_AsisToTrocanterMeasure': 0-7.0, 'InterAsisDistance': 0.0}, [[73.42953032, 107.27027453, 109.97003528], [65.04056318, 124.61742625, 45.78081377]]), # Test when values are added to pel_origin, pel_x, pel_y, pel_z, and vsk[InterAsisDistance] ([1, 0, -3], [-5, -3, -6], [4, -1, 2], [3, 8, 2], {'MeanLegLength': 0.0, 'R_AsisToTrocanterMeasure': 0.0, 'L_AsisToTrocanterMeasure': 0.0, 'InterAsisDistance': 11.0}, [[125.55184203, 104.44699997, 146.63294518], [48.54056318, 130.11742625, 18.28081377]]), # Test when values are added to pel_origin, pel_x, pel_y, pel_z, and all values in vsk ([1, 0, -3], [-5, -3, -6], [4, -1, 2], [3, 8, 2], {'MeanLegLength': 15.0, 'R_AsisToTrocanterMeasure': -24.0, 'L_AsisToTrocanterMeasure': -7.0, 'InterAsisDistance': 11.0}, [[81.76345582, 89.67607691, 124.73321758], [-76.79709552, 107.19186562, -17.60160178]]), # Testing that when pel_origin, pel_x, pel_y, and pel_z are lists of ints and vsk values are ints ([1, 0, -3], [-5, -3, -6], [4, -1, 2], [3, 8, 2], {'MeanLegLength': 15, 'R_AsisToTrocanterMeasure': -24, 'L_AsisToTrocanterMeasure': -7, 'InterAsisDistance': 11}, [[81.76345582, 89.67607691, 124.73321758], [-76.79709552, 107.19186562, -17.60160178]]), # Testing that when pel_origin, pel_x, pel_y, and pel_z are numpy arrays of ints and vsk values are ints (np.array([1, 0, -3], dtype='int'), np.array([-5, -3, -6], dtype='int'), np.array([4, -1, 2], dtype='int'), np.array([3, 8, 2], dtype='int'), {'MeanLegLength': 15, 'R_AsisToTrocanterMeasure': -24, 'L_AsisToTrocanterMeasure': -7, 'InterAsisDistance': 11}, [[81.76345582, 89.67607691, 124.73321758], [-76.79709552, 107.19186562, -17.60160178]]), # Testing that when pel_origin, pel_x, pel_y, and pel_z are lists of floats and vsk values are floats ([1.0, 0.0, -3.0], [-5.0, -3.0, -6.0], [4.0, -1.0, 2.0], [3.0, 8.0, 2.0], {'MeanLegLength': 15.0, 'R_AsisToTrocanterMeasure': -24.0, 'L_AsisToTrocanterMeasure': -7.0, 'InterAsisDistance': 11.0}, [[81.76345582, 89.67607691, 124.73321758], [-76.79709552, 107.19186562, -17.60160178]]), # Testing that when pel_origin, pel_x, pel_y, and pel_z are numpy arrays of floats and vsk values are floats (np.array([1.0, 0.0, -3.0], dtype='float'), np.array([-5.0, -3.0, -6.0], dtype='float'), np.array([4.0, -1.0, 2.0], dtype='float'), np.array([3.0, 8.0, 2.0], dtype='float'), {'MeanLegLength': 15.0, 'R_AsisToTrocanterMeasure': -24.0, 'L_AsisToTrocanterMeasure': -7.0, 'InterAsisDistance': 11}, [[81.76345582, 89.67607691, 124.73321758], [-76.79709552, 107.19186562, -17.60160178]])]) def test_hipJointCenter(self, pel_origin, pel_x, pel_y, pel_z, vsk, expected): """ This test provides coverage of the hipJointCenter function in pycgmStatic.py, defined as hipJointCenter(frame, pel_origin, pel_x, pel_y, pel_z, vsk) This test takes 6 parameters: pel_origin: array of x,y,z position of origin of the pelvis pel_x: array of x,y,z position of x-axis of the pelvis pel_y: array of x,y,z position of y-axis of the pelvis pel_z: array of x,y,z position of z-axis of the pelvis vsk: dictionary containing subject measurements from a VSK file expected: the expected result from calling hipJointCenter on pel_origin, pel_x, pel_y, pel_z, and vsk This test is checking to make sure the hip joint center is calculated correctly given the input parameters. The test checks to see that the correct values in expected are updated per each input parameter added. Any parameter that is added should change the value of every value in expected. The hip joint center axis and origin are calculated using the Hip Joint Center Calculation (ref. Davis_1991). Lastly, it checks that the resulting output is correct when pel_origin, pel_x, pel_y, and pel_z are composed of lists of ints, numpy arrays of ints, lists of floats, and numpy arrays of floats and vsk values are ints or floats. """ result = pycgmStatic.hipJointCenter(None, pel_origin, pel_x, pel_y, pel_z, vsk) np.testing.assert_almost_equal(result[0], expected[0], rounding_precision) np.testing.assert_almost_equal(result[1], expected[1], rounding_precision) @pytest.mark.parametrize(["l_hip_jc", "r_hip_jc", "pelvis_axis", "expected"], [ # Test from running sample data ([182.57097863, 339.43231855, 935.52900126], [308.38050472, 322.80342417, 937.98979061], [np.array([251.60830688, 391.74131775, 1032.89349365]), np.array([[251.74063624, 392.72694721, 1032.78850073], [250.61711554, 391.87232862, 1032.8741063], [251.60295336, 391.84795134, 1033.88777762]]), np.array([231.57849121, 210.25262451, 1052.24969482])], [[245.47574167208043, 331.1178713574418, 936.7593959314677], [[245.60807102843359, 332.10350081526684, 936.6544030111602], [244.48455032769033, 331.2488822330648, 936.7400085831541], [245.47038814489719, 331.22450494659665, 937.7536799036861]]]), # Basic test with zeros for all params ([0, 0, 0], [0, 0, 0], [np.array([0, 0, 0]), np.array([[0, 0, 0], [0, 0, 0], [0, 0, 0]]), np.array(rand_coor)], [[0, 0, 0], [[0, 0, 0], [0, 0, 0], [0, 0, 0]]]), # Testing when values are added to l_hip_jc ([1, -3, 2], [0, 0, 0], [np.array([0, 0, 0]), np.array([[0, 0, 0], [0, 0, 0], [0, 0, 0]]), np.array(rand_coor)], [[0.5, -1.5, 1], [[0.5, -1.5, 1], [0.5, -1.5, 1], [0.5, -1.5, 1]]]), # Testing when values are added to r_hip_jc ([0, 0, 0], [-8, 1, 4], [np.array([0, 0, 0]), np.array([[0, 0, 0], [0, 0, 0], [0, 0, 0]]), np.array(rand_coor)], [[-4, 0.5, 2], [[-4, 0.5, 2], [-4, 0.5, 2], [-4, 0.5, 2]]]), # Testing when values are added to l_hip_jc and r_hip_jc ([8, -3, 7], [5, -2, -1], [np.array([0, 0, 0]), np.array([[0, 0, 0], [0, 0, 0], [0, 0, 0]]), np.array(rand_coor)], [[6.5, -2.5, 3], [[6.5, -2.5, 3], [6.5, -2.5, 3], [6.5, -2.5, 3]]]), # Testing when values are added to pelvis_axis[0] ([0, 0, 0], [0, 0, 0], [np.array([1, -3, 6]), np.array([[0, 0, 0], [0, 0, 0], [0, 0, 0]]), np.array(rand_coor)], [[0, 0, 0], [[-1, 3, -6], [-1, 3, -6], [-1, 3, -6]]]), # Testing when values are added to pelvis_axis[1] ([0, 0, 0], [0, 0, 0], [np.array([0, 0, 0]), np.array([[1, 0, 5], [-2, -7, -3], [9, -2, 7]]), np.array(rand_coor)], [[0, 0, 0], [[1, 0, 5], [-2, -7, -3], [9, -2, 7]]]), # Testing when values are added to pelvis_axis[0] and pelvis_axis[1] ([0, 0, 0], [0, 0, 0], [np.array([-3, 0, 5]), np.array([[-4, 5, -2], [0, 0, 0], [8, 5, -1]]), np.array(rand_coor)], [[0, 0, 0], [[-1, 5, -7], [3, 0, -5], [11, 5, -6]]]), # Testing when values are added to all params ([-5, 3, 8], [-3, -7, -1], [np.array([6, 3, 9]), np.array([[5, 4, -2], [0, 0, 0], [7, 2, 3]]), np.array(rand_coor)], [[-4, -2, 3.5], [[-5, -1, -7.5], [-10, -5, -5.5], [-3, -3, -2.5]]]), # Testing that when l_hip_jc, r_hip_jc, and pelvis_axis are composed of lists of ints ([-5, 3, 8], [-3, -7, -1], [[6, 3, 9], [[5, 4, -2], [0, 0, 0], [7, 2, 3]], rand_coor], [[-4, -2, 3.5], [[-5, -1, -7.5], [-10, -5, -5.5], [-3, -3, -2.5]]]), # Testing that when l_hip_jc, r_hip_jc, and pelvis_axis are composed of numpy arrays of ints (np.array([-5, 3, 8], dtype='int'), np.array([-3, -7, -1], dtype='int'), [np.array([6, 3, 9], dtype='int'), np.array([[5, 4, -2], [0, 0, 0], [7, 2, 3]], dtype='int'), rand_coor], [[-4, -2, 3.5], [[-5, -1, -7.5], [-10, -5, -5.5], [-3, -3, -2.5]]]), # Testing that when l_hip_jc, r_hip_jc, and pelvis_axis are composed of lists of floats ([-5.0, 3.0, 8.0], [-3.0, -7.0, -1.0], [[6.0, 3.0, 9.0], [[5.0, 4.0, -2.0], [0.0, 0.0, 0.0], [7.0, 2.0, 3.0]], rand_coor], [[-4, -2, 3.5], [[-5, -1, -7.5], [-10, -5, -5.5], [-3, -3, -2.5]]]), # Testing that when l_hip_jc, r_hip_jc, and pelvis_axis are composed of numpy arrays of floats (np.array([-5.0, 3.0, 8.0], dtype='float'), np.array([-3.0, -7.0, -1.0], dtype='float'), [np.array([6.0, 3.0, 9.0], dtype='float'), np.array([[5.0, 4.0, -2.0], [0.0, 0.0, 0.0], [7.0, 2.0, 3.0]], dtype='float'), rand_coor], [[-4, -2, 3.5], [[-5, -1, -7.5], [-10, -5, -5.5], [-3, -3, -2.5]]])]) def test_hipAxisCenter(self, l_hip_jc, r_hip_jc, pelvis_axis, expected): """ This test provides coverage of the hipAxisCenter function in pycgmStatic.py, defined as hipAxisCenter(l_hip_jc, r_hip_jc, pelvis_axis) This test takes 4 parameters: l_hip_jc: array of left hip joint center x,y,z position r_hip_jc: array of right hip joint center x,y,z position pelvis_axis: array of pelvis origin and axis expected: the expected result from calling hipAxisCenter on l_hip_jc, r_hip_jc, and pelvis_axis This test is checking to make sure the hip axis center is calculated correctly given the input parameters. The test checks to see that the correct values in expected are updated per each input parameter added: When values are added to l_hip_jc or r_hip_jc, every value in expected should be updated When values are added to pelvis_axis, expected[1] should be updated The hip axis center is calculated using the midpoint of the right and left hip joint centers. Then, the given pelvis_axis variable is converted into x,y,z axis format. The pelvis axis is then translated to the shared hip center by calculating the sum of: pelvis_axis axis component + hip_axis_center axis component Lastly, it checks that the resulting output is correct when l_hip_jc, r_hip_jc, and pelvis_axis are composed of lists of ints, numpy arrays of ints, lists of floats, and numpy arrays of floats. """ result = pycgmStatic.hipAxisCenter(l_hip_jc, r_hip_jc, pelvis_axis) np.testing.assert_almost_equal(result[0], expected[0], rounding_precision) np.testing.assert_almost_equal(result[1], expected[1], rounding_precision) @pytest.mark.parametrize(["frame", "hip_JC", "vsk", "mockReturnVal", "expectedMockArgs", "expected"], [ # Test from running sample data ({'RTHI': np.array([426.50338745, 262.65310669, 673.66247559]), 'LTHI': np.array([51.93867874, 320.01849365, 723.03186035]), 'RKNE': np.array([416.98687744, 266.22558594, 524.04089355]), 'LKNE': np.array([84.62355804, 286.69122314, 529.39819336])}, [[182.57097863, 339.43231855, 935.52900126], [308.38050472, 322.80342417, 937.98979061]], {'RightKneeWidth': 105.0, 'LeftKneeWidth': 105.0}, [np.array([364.17774614, 292.17051722, 515.19181496]), np.array([143.55478579, 279.90370346, 524.78408753])], [[[426.50338745, 262.65310669, 673.66247559], [308.38050472, 322.80342417, 937.98979061], [416.98687744, 266.22558594, 524.04089355], 59.5], [[51.93867874, 320.01849365, 723.03186035], [182.57097863, 339.43231855, 935.52900126], [84.62355804, 286.69122314, 529.39819336], 59.5]], [np.array([364.17774614, 292.17051722, 515.19181496]), np.array([143.55478579, 279.90370346, 524.78408753]), np.array([[[364.61959153, 293.06758353, 515.18513093], [363.29019771, 292.60656648, 515.04309095], [364.04724541, 292.24216264, 516.18067112]], [[143.65611282, 280.88685896, 524.63197541], [142.56434499, 280.01777943, 524.86163553], [143.64837987, 280.04650381, 525.76940383]]])]), # Test with zeros for all params ({'RTHI': np.array([0, 0, 0]), 'LTHI': np.array([0, 0, 0]), 'RKNE': np.array([0, 0, 0]), 'LKNE': np.array([0, 0, 0])}, [[0, 0, 0], [0, 0, 0]], {'RightKneeWidth': 0.0, 'LeftKneeWidth': 0.0}, [np.array([0, 0, 0]), np.array([0, 0, 0])], [[[0, 0, 0], [0, 0, 0], [0, 0, 0], 7.0], [[0, 0, 0], [0, 0, 0], [0, 0, 0], 7.0]], [np.array([0, 0, 0]), np.array([0, 0, 0]), np.array([[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]])]), # Testing when values are added to frame ({'RTHI': np.array([1, 2, 4]), 'LTHI': np.array([-1, 0, 8]), 'RKNE': np.array([8, -4, 5]), 'LKNE': np.array([8, -8, 5])}, [[0, 0, 0], [0, 0, 0]], {'RightKneeWidth': 0.0, 'LeftKneeWidth': 0.0}, [np.array([0, 0, 0]), np.array([0, 0, 0])], [[[1, 2, 4], [0, 0, 0], [8, -4, 5], 7.0], [[-1, 0, 8], [0, 0, 0], [8, -8, 5], 7.0]], [np.array([0, 0, 0]), np.array([0, 0, 0]), np.array([[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]])]), # Testing when values are added to hip_JC ({'RTHI': np.array([0, 0, 0]), 'LTHI': np.array([0, 0, 0]), 'RKNE': np.array([0, 0, 0]), 'LKNE': np.array([0, 0, 0])}, [[-8, 8, -2], [1, -9, 2]], {'RightKneeWidth': 0.0, 'LeftKneeWidth': 0.0}, [np.array([0, 0, 0]), np.array([0, 0, 0])], [[[0, 0, 0], [1, -9, 2], [0, 0, 0], 7.0], [[0, 0, 0], [-8, 8, -2], [0, 0, 0], 7.0]], [np.array([0, 0, 0]), np.array([0, 0, 0]), np.array([[nan_3d, nan_3d, [0.10783277, -0.97049496, 0.21566555]], [nan_3d, nan_3d, [-0.69631062, 0.69631062, -0.17407766]]])]), # Testing when values are added to vsk ({'RTHI': np.array([0, 0, 0]), 'LTHI': np.array([0, 0, 0]), 'RKNE': np.array([0, 0, 0]), 'LKNE': np.array([0, 0, 0])}, [[0, 0, 0], [0, 0, 0]], {'RightKneeWidth': 9.0, 'LeftKneeWidth': -6.0}, [np.array([0, 0, 0]), np.array([0, 0, 0])], [[[0, 0, 0], [0, 0, 0], [0, 0, 0], 11.5], [[0, 0, 0], [0, 0, 0], [0, 0, 0], 4.0]], [np.array([0, 0, 0]), np.array([0, 0, 0]), np.array([[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]])]), # Testing when values are added to mockReturnVal ({'RTHI': np.array([0, 0, 0]), 'LTHI': np.array([0, 0, 0]), 'RKNE': np.array([0, 0, 0]), 'LKNE': np.array([0, 0, 0])}, [[0, 0, 0], [0, 0, 0]], {'RightKneeWidth': 0.0, 'LeftKneeWidth': 0.0}, [np.array([-5, -5, -9]), np.array([3, -6, -5])], [[[0, 0, 0], [0, 0, 0], [0, 0, 0], 7.0], [[0, 0, 0], [0, 0, 0], [0, 0, 0], 7.0]], [np.array([-5, -5, -9]), np.array([3, -6, -5]), np.array([[nan_3d, nan_3d, [-4.56314797, -4.56314797, -8.21366635]], [nan_3d, nan_3d, [2.64143142, -5.28286283, -4.4023857]]])]), # Testing when values are added to frame and hip_JC ({'RTHI': np.array([1, 2, 4]), 'LTHI': np.array([-1, 0, 8]), 'RKNE': np.array([8, -4, 5]), 'LKNE': np.array([8, -8, 5])}, [[-8, 8, -2], [1, -9, 2]], {'RightKneeWidth': 0.0, 'LeftKneeWidth': 0.0}, [np.array([0, 0, 0]), np.array([0, 0, 0])], [[[1, 2, 4], [1, -9, 2], [8, -4, 5], 7.0], [[-1, 0, 8], [-8, 8, -2], [8, -8, 5], 7.0]], [np.array([0, 0, 0]), np.array([0, 0, 0]), np.array([[[-0.0512465, -0.22206816, -0.97368348], [0.99284736, 0.09394289, -0.07368069], [0.10783277, -0.97049496, 0.21566555]], [[-0.68318699, -0.71734633, -0.1366374 ], [-0.22001604, 0.02378552, 0.97520623], [-0.69631062, 0.69631062, -0.17407766]]])]), # Testing when values are added to frame, hip_JC, and vsk ({'RTHI': np.array([1, 2, 4]), 'LTHI': np.array([-1, 0, 8]), 'RKNE': np.array([8, -4, 5]), 'LKNE': np.array([8, -8, 5])}, [[-8, 8, -2], [1, -9, 2]], {'RightKneeWidth': 9.0, 'LeftKneeWidth': -6.0}, [np.array([0, 0, 0]), np.array([0, 0, 0])], [[[1, 2, 4], [1, -9, 2], [8, -4, 5], 11.5], [[-1, 0, 8], [-8, 8, -2], [8, -8, 5], 4.0]], [np.array([0, 0, 0]), np.array([0, 0, 0]), np.array([[[-0.0512465, -0.22206816, -0.97368348], [0.99284736 ,0.09394289, -0.07368069], [0.10783277, -0.97049496, 0.21566555]], [[-0.68318699, -0.71734633, -0.1366374 ], [-0.22001604, 0.02378552, 0.97520623], [-0.69631062, 0.69631062, -0.17407766]]])]), # Testing when values are added to frame, hip_JC, vsk, and mockReturnVal ({'RTHI': np.array([1, 2, 4]), 'LTHI': np.array([-1, 0, 8]), 'RKNE': np.array([8, -4, 5]), 'LKNE': np.array([8, -8, 5])}, [[-8, 8, -2], [1, -9, 2]], {'RightKneeWidth': 9.0, 'LeftKneeWidth': -6.0}, [np.array([-5, -5, -9]), np.array([3, -6, -5])], [[[1, 2, 4], [1, -9, 2], [8, -4, 5], 11.5], [[-1, 0, 8], [-8, 8, -2], [8, -8, 5], 4.0]], [np.array([-5, -5, -9]), np.array([3, -6, -5]), np.array([[[-5.65539698, -5.75053525, -8.91543265], [-4.39803462, -5.58669523, -9.54168847], [-4.54382845, -5.30411437, -8.16368549]], [[2.57620655, -6.14126448, -5.89467506], [2.32975119, -6.6154814, -4.58533245], [2.39076635, -5.22461171, -4.83384537]]])]), # Testing that when hip_JC is composed of lists of ints and vsk values are ints ({'RTHI': np.array([1, 2, 4]), 'LTHI': np.array([-1, 0, 8]), 'RKNE': np.array([8, -4, 5]), 'LKNE': np.array([8, -8, 5])}, [[-8, 8, -2], [1, -9, 2]], {'RightKneeWidth': 9, 'LeftKneeWidth': -6}, [np.array([-5, -5, -9]), np.array([3, -6, -5])], [[[1, 2, 4], [1, -9, 2], [8, -4, 5], 11.5], [[-1, 0, 8], [-8, 8, -2], [8, -8, 5], 4.0]], [np.array([-5, -5, -9]), np.array([3, -6, -5]), np.array([[[-5.65539698, -5.75053525, -8.91543265], [-4.39803462, -5.58669523, -9.54168847], [-4.54382845, -5.30411437, -8.16368549]], [[2.57620655, -6.14126448, -5.89467506], [2.32975119, -6.6154814, -4.58533245], [2.39076635, -5.22461171, -4.83384537]]])]), # Testing that when hip_JC is composed of numpy arrays of ints and vsk values are ints ({'RTHI': np.array([1, 2, 4], dtype='int'), 'LTHI': np.array([-1, 0, 8], dtype='int'), 'RKNE': np.array([8, -4, 5], dtype='int'), 'LKNE': np.array([8, -8, 5], dtype='int')}, np.array([[-8, 8, -2], [1, -9, 2]], dtype='int'), {'RightKneeWidth': 9, 'LeftKneeWidth': -6}, [np.array([-5, -5, -9]), np.array([3, -6, -5])], [[[1, 2, 4], [1, -9, 2], [8, -4, 5], 11.5], [[-1, 0, 8], [-8, 8, -2], [8, -8, 5], 4.0]], [np.array([-5, -5, -9]), np.array([3, -6, -5]), np.array([[[-5.65539698, -5.75053525, -8.91543265], [-4.39803462, -5.58669523, -9.54168847], [-4.54382845, -5.30411437, -8.16368549]], [[2.57620655, -6.14126448, -5.89467506], [2.32975119, -6.6154814, -4.58533245], [2.39076635, -5.22461171, -4.83384537]]])]), # Testing that when hip_JC is composed of lists of floats and vsk values are floats ({'RTHI': np.array([1, 2, 4]), 'LTHI': np.array([-1, 0, 8]), 'RKNE': np.array([8, -4, 5]), 'LKNE': np.array([8, -8, 5])}, [[-8.0, 8.0, -2.0], [1.0, -9.0, 2.0]], {'RightKneeWidth': 9.0, 'LeftKneeWidth': -6.0}, [np.array([-5, -5, -9]), np.array([3, -6, -5])], [[[1, 2, 4], [1, -9, 2], [8, -4, 5], 11.5], [[-1, 0, 8], [-8, 8, -2], [8, -8, 5], 4.0]], [np.array([-5, -5, -9]), np.array([3, -6, -5]), np.array([[[-5.65539698, -5.75053525, -8.91543265], [-4.39803462, -5.58669523, -9.54168847], [-4.54382845, -5.30411437, -8.16368549]], [[2.57620655, -6.14126448, -5.89467506], [2.32975119, -6.6154814, -4.58533245], [2.39076635, -5.22461171, -4.83384537]]])]), # Testing that when hip_JC is composed of numpy arrays of floats and vsk values are floats ({'RTHI': np.array([1.0, 2.0, 4.0], dtype='float'), 'LTHI': np.array([-1.0, 0.0, 8.0], dtype='float'), 'RKNE': np.array([8.0, -4.0, 5.0], dtype='float'), 'LKNE': np.array([8.0, -8.0, 5.0], dtype='float')}, np.array([[-8.0, 8.0, -2.0], [1.0, -9.0, 2.0]], dtype='int'), {'RightKneeWidth': 9.0, 'LeftKneeWidth': -6.0}, [np.array([-5, -5, -9]), np.array([3, -6, -5])], [[[1, 2, 4], [1, -9, 2], [8, -4, 5], 11.5], [[-1, 0, 8], [-8, 8, -2], [8, -8, 5], 4.0]], [np.array([-5, -5, -9]), np.array([3, -6, -5]), np.array([[[-5.65539698, -5.75053525, -8.91543265], [-4.39803462, -5.58669523, -9.54168847], [-4.54382845, -5.30411437, -8.16368549]], [[2.57620655, -6.14126448, -5.89467506], [2.32975119, -6.6154814, -4.58533245], [2.39076635, -5.22461171, -4.83384537]]])])]) def test_kneeJointCenter(self, frame, hip_JC, vsk, mockReturnVal, expectedMockArgs, expected): """ This test provides coverage of the kneeJointCenter function in pycgmStatic.py, defined as kneeJointCenter(frame, hip_JC, delta, vsk) This test takes 6 parameters: frame: dictionary of marker lists hip_JC: array of hip_JC containing the x,y,z axes marker positions of the hip joint center vsk: dictionary containing subject measurements from a VSK file mockReturnVal: the value to be returned by the mock for findJointC expectedMockArgs: the expected arguments used to call the mocked function, findJointC expected: the expected result from calling kneeJointCenter on frame, hip_JC, vsk, and mockReturnVal This test is checking to make sure the knee joint center and axis are calculated correctly given the input parameters. This tests mocks findJointC to make sure the correct parameters are being passed into it given the parameters passed into kneeJointCenter, and to also ensure that kneeJointCenter returns the correct value considering the return value of findJointC, mockReturnVal. For each direction (L or R) D, the D knee joint center is calculated using DTHI, D hip joint center, and DKNE in the Rodriques' rotation formula. The knee width for each knee is applied after the rotation in the formula as well. Each knee joint center and the RKNE / LKNE markers are used in the Knee Axis Calculation (ref. Clinical Gait Analysis hand book, Baker2013) calculation formula. Lastly, it checks that the resulting output is correct when hip_JC is composed of lists of ints, numpy arrays of ints, lists of floats, and numpy arrays of floats and vsk values are ints and floats. The values in frame were kept as numpy arrays as lists would cause an error in the following lines of pycgmStatic.py as lists cannot be subtracted by each other: thi_kne_R = RTHI-RKNE thi_kne_L = LTHI-LKNE """ with patch.object(pycgmStatic, 'findJointC', side_effect=mockReturnVal) as mock_findJointC: result = pycgmStatic.kneeJointCenter(frame, hip_JC, None, vsk) # Asserting that there were only 2 calls to findJointC np.testing.assert_equal(mock_findJointC.call_count, 2) # Asserting that the correct params were sent in the 1st (right) call to findJointC np.testing.assert_almost_equal(expectedMockArgs[0][0], mock_findJointC.call_args_list[0][0][0], rounding_precision) np.testing.assert_almost_equal(expectedMockArgs[0][1], mock_findJointC.call_args_list[0][0][1], rounding_precision) np.testing.assert_almost_equal(expectedMockArgs[0][2], mock_findJointC.call_args_list[0][0][2], rounding_precision) np.testing.assert_almost_equal(expectedMockArgs[0][3], mock_findJointC.call_args_list[0][0][3], rounding_precision) # Asserting that the correct params were sent in the 2nd (left) call to findJointC np.testing.assert_almost_equal(expectedMockArgs[1][0], mock_findJointC.call_args_list[1][0][0], rounding_precision) np.testing.assert_almost_equal(expectedMockArgs[1][1], mock_findJointC.call_args_list[1][0][1], rounding_precision) np.testing.assert_almost_equal(expectedMockArgs[1][2], mock_findJointC.call_args_list[1][0][2], rounding_precision) np.testing.assert_almost_equal(expectedMockArgs[1][3], mock_findJointC.call_args_list[1][0][3], rounding_precision) # Asserting that findShoulderJC returned the correct result given the return value given by mocked findJointC np.testing.assert_almost_equal(result[0], expected[0], rounding_precision) np.testing.assert_almost_equal(result[1], expected[1], rounding_precision) np.testing.assert_almost_equal(result[2], expected[2], rounding_precision) @pytest.mark.parametrize(["frame", "knee_JC", "vsk", "mockReturnVal", "expectedMockArgs", "expected"], [ # Test from running sample data ({'RTIB': np.array([433.97537231, 211.93408203, 273.3008728 ]), 'LTIB': np.array([50.04016495, 235.90718079, 364.32226562]), 'RANK': np.array([422.77005005, 217.74053955, 92.86152649]), 'LANK': np.array([58.57380676, 208.54806519, 86.16953278])}, [np.array([364.17774614, 292.17051722, 515.19181496]), np.array([143.55478579, 279.90370346, 524.78408753]), np.array([[rand_coor, rand_coor, rand_coor], [rand_coor, rand_coor, rand_coor]])], {'RightAnkleWidth': 70.0, 'LeftAnkleWidth': 70.0, 'RightTibialTorsion': 0.0, 'LeftTibialTorsion': 0.0}, [np.array([393.76181608, 247.67829633, 87.73775041]), np.array([98.74901939, 219.46930221, 80.6306816])], [[[433.97537231, 211.93408203, 273.3008728 ], [364.17774614, 292.17051722, 515.19181496], [422.77005005, 217.74053955, 92.86152649], 42.0], [[50.04016495, 235.90718079, 364.32226562], [143.55478579, 279.90370346, 524.78408753], [58.57380676, 208.54806519, 86.16953278], 42.0]], [np.array([393.76181608, 247.67829633, 87.73775041]), np.array([98.74901939, 219.46930221, 80.6306816]), [[np.array([394.48171575, 248.37201348, 87.715368]), np.array([393.07114384, 248.39110006, 87.61575574]), np.array([393.69314056, 247.78157916, 88.73002876])], [np.array([98.47494966, 220.42553803, 80.52821783]), np.array([97.79246671, 219.20927275, 80.76255901]), np.array([98.84848169, 219.60345781, 81.61663775])]]]), # Test with zeros for all params ({'RTIB': np.array([0, 0, 0]), 'LTIB': np.array([0, 0, 0]), 'RANK': np.array([0, 0, 0]), 'LANK': np.array([0, 0, 0])}, [np.array([0, 0, 0]), np.array([0, 0, 0]), np.array([[rand_coor, rand_coor, rand_coor], [rand_coor, rand_coor, rand_coor]])], {'RightAnkleWidth': 0.0, 'LeftAnkleWidth': 0.0, 'RightTibialTorsion': 0.0, 'LeftTibialTorsion': 0.0}, [np.array([0, 0, 0]), np.array([0, 0, 0])], [[[0, 0, 0], [0, 0, 0], [0, 0, 0], 7.0], [[0, 0, 0], [0, 0, 0], [0, 0, 0], 7.0]], [np.array([0, 0, 0]), np.array([0, 0, 0]), [[np.array(nan_3d), np.array(nan_3d), np.array(nan_3d)], [np.array(nan_3d), np.array(nan_3d), np.array(nan_3d)]]]), # Testing when values are added to frame ({'RTIB': np.array([-9, 6, -9]), 'LTIB': np.array([0, 2, -1]), 'RANK': np.array([1, 0, -5]), 'LANK': np.array([2, -4, -5])}, [np.array([0, 0, 0]), np.array([0, 0, 0]), np.array([[rand_coor, rand_coor, rand_coor], [rand_coor, rand_coor, rand_coor]])], {'RightAnkleWidth': 0.0, 'LeftAnkleWidth': 0.0, 'RightTibialTorsion': 0.0, 'LeftTibialTorsion': 0.0}, [np.array([0, 0, 0]), np.array([0, 0, 0])], [[[-9, 6, -9], [0, 0, 0], [1, 0, -5], 7.0], [[0, 2, -1], [0, 0, 0], [2, -4, -5], 7.0]], [np.array([0, 0, 0]), np.array([0, 0, 0]), [[np.array(nan_3d), np.array(nan_3d), np.array(nan_3d)], [np.array(nan_3d), np.array(nan_3d), np.array(nan_3d)]]]), # Testing when values are added to knee_JC ({'RTIB': np.array([0, 0, 0]), 'LTIB': np.array([0, 0, 0]), 'RANK': np.array([0, 0, 0]), 'LANK': np.array([0, 0, 0])}, [np.array([-7, 1, 2]), np.array([9, -8, 9]), np.array([[rand_coor, rand_coor, rand_coor], [rand_coor, rand_coor, rand_coor]])], {'RightAnkleWidth': 0.0, 'LeftAnkleWidth': 0.0, 'RightTibialTorsion': 0.0, 'LeftTibialTorsion': 0.0}, [np.array([0, 0, 0]), np.array([0, 0, 0])], [[[0, 0, 0], [-7, 1, 2], [0, 0, 0], 7.0], [[0, 0, 0], [9, -8, 9], [0, 0, 0], 7.0]], [np.array([0, 0, 0]), np.array([0, 0, 0]), [[np.array(nan_3d), np.array(nan_3d), np.array([-0.95257934, 0.13608276, 0.27216553])], [np.array(nan_3d), np.array(nan_3d), np.array([0.59867109, -0.53215208, 0.59867109])]]]), # Testing when values are added to vsk ({'RTIB': np.array([0, 0, 0]), 'LTIB': np.array([0, 0, 0]), 'RANK': np.array([0, 0, 0]), 'LANK': np.array([0, 0, 0])}, [np.array([0, 0, 0]), np.array([0, 0, 0]), np.array([[rand_coor, rand_coor, rand_coor], [rand_coor, rand_coor, rand_coor]])], {'RightAnkleWidth': -38.0, 'LeftAnkleWidth': 18.0, 'RightTibialTorsion': 29.0, 'LeftTibialTorsion': -13.0}, [np.array([0, 0, 0]), np.array([0, 0, 0])], [[[0, 0, 0], [0, 0, 0], [0, 0, 0], -12.0], [[0, 0, 0], [0, 0, 0], [0, 0, 0], 16.0]], [np.array([0, 0, 0]), np.array([0, 0, 0]), [[np.array(nan_3d), np.array(nan_3d), np.array(nan_3d)], [np.array(nan_3d), np.array(nan_3d), np.array(nan_3d)]]]), # Testing when values are added to mockReturnVal ({'RTIB': np.array([0, 0, 0]), 'LTIB': np.array([0, 0, 0]), 'RANK': np.array([0, 0, 0]), 'LANK': np.array([0, 0, 0])}, [np.array([0, 0, 0]), np.array([0, 0, 0]), np.array([[rand_coor, rand_coor, rand_coor], [rand_coor, rand_coor, rand_coor]])], {'RightAnkleWidth': 0.0, 'LeftAnkleWidth': 0.0, 'RightTibialTorsion': 0.0, 'LeftTibialTorsion': 0.0}, [np.array([2, -5, 4]), np.array([8, -3, 1])], [[[0, 0, 0], [0, 0, 0], [0, 0, 0], 7.0], [[0, 0, 0], [0, 0, 0], [0, 0, 0], 7.0]], [np.array([2, -5, 4]), np.array([8, -3, 1]), [[np.array(nan_3d), np.array(nan_3d), np.array([1.7018576 , -4.25464401, 3.40371521])], [np.array(nan_3d), np.array(nan_3d), np.array([7.07001889, -2.65125708, 0.88375236])]]]), # Testing when values are added to frame and knee_JC ({'RTIB': np.array([-9, 6, -9]), 'LTIB': np.array([0, 2, -1]), 'RANK': np.array([1, 0, -5]), 'LANK': np.array([2, -4, -5])}, [np.array([-7, 1, 2]), np.array([9, -8, 9]), np.array([[rand_coor, rand_coor, rand_coor], [rand_coor, rand_coor, rand_coor]])], {'RightAnkleWidth': 0.0, 'LeftAnkleWidth': 0.0, 'RightTibialTorsion': 0.0, 'LeftTibialTorsion': 0.0}, [np.array([0, 0, 0]), np.array([0, 0, 0])], [[[-9, 6, -9], [-7, 1, 2], [1, 0, -5], 7.0], [[0, 2, -1], [9, -8, 9], [2, -4, -5], 7.0]], [np.array([0, 0, 0]), np.array([0, 0, 0]), [[np.array([-0.26726124, -0.80178373, -0.53452248]), np.array([0.14547859, -0.58191437, 0.80013226]), np.array([-0.95257934, 0.13608276, 0.27216553])], [np.array([0.79317435, 0.49803971, -0.35047239]), np.array([-0.11165737, 0.68466825, 0.72025136]), np.array([0.59867109, -0.53215208, 0.59867109])]]]), # Testing when values are added to frame, knee_JC, and vsk ({'RTIB': np.array([-9, 6, -9]), 'LTIB': np.array([0, 2, -1]), 'RANK': np.array([1, 0, -5]), 'LANK': np.array([2, -4, -5])}, [np.array([-7, 1, 2]), np.array([9, -8, 9]), np.array([[rand_coor, rand_coor, rand_coor], [rand_coor, rand_coor, rand_coor]])], {'RightAnkleWidth': -38.0, 'LeftAnkleWidth': 18.0, 'RightTibialTorsion': 29.0, 'LeftTibialTorsion': -13.0}, [np.array([0, 0, 0]), np.array([0, 0, 0])], [[[-9, 6, -9], [-7, 1, 2], [1, 0, -5], -12.0], [[0, 2, -1], [9, -8, 9], [2, -4, -5], 16.0]], [np.array([0, 0, 0]), np.array([0, 0, 0]), [[np.array([-0.30428137, -0.41913816, -0.85541572]), np.array([-0.00233238, -0.89766624, 0.4406698]), np.array([-0.95257934, 0.13608276, 0.27216553])], [np.array([0.7477279, 0.63929183, -0.1794685]), np.array([-0.287221, 0.55508569, 0.7806305]), np.array([0.59867109, -0.53215208, 0.59867109])]]]), # Testing when values are added to frame, knee_JC, vsk and mockReturnVal ({'RTIB': np.array([-9, 6, -9]), 'LTIB': np.array([0, 2, -1]), 'RANK': np.array([1, 0, -5]), 'LANK': np.array([2, -4, -5])}, [np.array([-7, 1, 2]), np.array([9, -8, 9]), np.array([[rand_coor, rand_coor, rand_coor], [rand_coor, rand_coor, rand_coor]])], {'RightAnkleWidth': -38.0, 'LeftAnkleWidth': 18.0, 'RightTibialTorsion': 29.0, 'LeftTibialTorsion': -13.0}, [np.array([2, -5, 4]), np.array([8, -3, 1])], [[[-9, 6, -9], [-7, 1, 2], [1, 0, -5], -12.0], [[0, 2, -1], [9, -8, 9], [2, -4, -5], 16.0]], [np.array([2, -5, 4]), np.array([8, -3, 1]), [[np.array([1.48891678, -5.83482493, 3.7953997 ]), np.array([1.73661348, -5.07447603, 4.96181124]), np.array([1.18181818, -4.45454545, 3.81818182])], [np.array([8.87317138, -2.54514024, 1.17514093]), np.array([7.52412119, -2.28213872, 1.50814815]), np.array([8.10540926, -3.52704628, 1.84327404])]]]), # Testing that when knee_JC is composed of lists of ints and vsk values are ints ({'RTIB': np.array([-9, 6, -9]), 'LTIB': np.array([0, 2, -1]), 'RANK': np.array([1, 0, -5]), 'LANK': np.array([2, -4, -5])}, [[-7, 1, 2], [9, -8, 9], np.array([[rand_coor, rand_coor, rand_coor], [rand_coor, rand_coor, rand_coor]])], {'RightAnkleWidth': -38, 'LeftAnkleWidth': 18, 'RightTibialTorsion': 29, 'LeftTibialTorsion': -13}, [np.array([2, -5, 4]), np.array([8, -3, 1])], [[[-9, 6, -9], [-7, 1, 2], [1, 0, -5], -12.0], [[0, 2, -1], [9, -8, 9], [2, -4, -5], 16.0]], [np.array([2, -5, 4]), np.array([8, -3, 1]), [[np.array([1.48891678, -5.83482493, 3.7953997]), np.array([1.73661348, -5.07447603, 4.96181124]), np.array([1.18181818, -4.45454545, 3.81818182])], [np.array([8.87317138, -2.54514024, 1.17514093]), np.array([7.52412119, -2.28213872, 1.50814815]), np.array([8.10540926, -3.52704628, 1.84327404])]]]), # Testing that when knee_JC is composed of numpy arrays of ints and vsk values are ints ({'RTIB': np.array([-9, 6, -9]), 'LTIB': np.array([0, 2, -1]), 'RANK': np.array([1, 0, -5]), 'LANK': np.array([2, -4, -5])}, [np.array([-7, 1, 2], dtype='int'), np.array([9, -8, 9], dtype='int'), np.array([[rand_coor, rand_coor, rand_coor], [rand_coor, rand_coor, rand_coor]])], {'RightAnkleWidth': -38, 'LeftAnkleWidth': 18, 'RightTibialTorsion': 29, 'LeftTibialTorsion': -13}, [np.array([2, -5, 4]), np.array([8, -3, 1])], [[[-9, 6, -9], [-7, 1, 2], [1, 0, -5], -12.0], [[0, 2, -1], [9, -8, 9], [2, -4, -5], 16.0]], [np.array([2, -5, 4]), np.array([8, -3, 1]), [[np.array([1.48891678, -5.83482493, 3.7953997]), np.array([1.73661348, -5.07447603, 4.96181124]), np.array([1.18181818, -4.45454545, 3.81818182])], [np.array([8.87317138, -2.54514024, 1.17514093]), np.array([7.52412119, -2.28213872, 1.50814815]), np.array([8.10540926, -3.52704628, 1.84327404])]]]), # Testing that when knee_JC is composed of lists of floats and vsk values are floats ({'RTIB': np.array([-9.0, 6.0, -9.0]), 'LTIB': np.array([0.0, 2.0, -1.0]), 'RANK': np.array([1.0, 0.0, -5.0]), 'LANK': np.array([2.0, -4.0, -5.0])}, [[-7.0, 1.0, 2.0], [9.0, -8.0, 9.0], np.array([[rand_coor, rand_coor, rand_coor], [rand_coor, rand_coor, rand_coor]])], {'RightAnkleWidth': -38.0, 'LeftAnkleWidth': 18.0, 'RightTibialTorsion': 29.0, 'LeftTibialTorsion': -13.0}, [np.array([2, -5, 4]), np.array([8, -3, 1])], [[[-9, 6, -9], [-7, 1, 2], [1, 0, -5], -12.0], [[0, 2, -1], [9, -8, 9], [2, -4, -5], 16.0]], [np.array([2, -5, 4]), np.array([8, -3, 1]), [[np.array([1.48891678, -5.83482493, 3.7953997]), np.array([1.73661348, -5.07447603, 4.96181124]), np.array([1.18181818, -4.45454545, 3.81818182])], [np.array([8.87317138, -2.54514024, 1.17514093]), np.array([7.52412119, -2.28213872, 1.50814815]), np.array([8.10540926, -3.52704628, 1.84327404])]]]), # Testing that when knee_JC is composed of numpy arrays of floats and vsk values are floats ({'RTIB': np.array([-9.0, 6.0, -9.0]), 'LTIB': np.array([0.0, 2.0, -1.0]), 'RANK': np.array([1.0, 0.0, -5.0]), 'LANK': np.array([2.0, -4.0, -5.0])}, [np.array([-7.0, 1.0, 2.0], dtype='float'), np.array([9.0, -8.0, 9.0], dtype='float'), np.array([[rand_coor, rand_coor, rand_coor], [rand_coor, rand_coor, rand_coor]], dtype='float')], {'RightAnkleWidth': -38.0, 'LeftAnkleWidth': 18.0, 'RightTibialTorsion': 29.0, 'LeftTibialTorsion': -13.0}, [np.array([2, -5, 4]), np.array([8, -3, 1])], [[[-9, 6, -9], [-7, 1, 2], [1, 0, -5], -12.0], [[0, 2, -1], [9, -8, 9], [2, -4, -5], 16.0]], [np.array([2, -5, 4]), np.array([8, -3, 1]), [[np.array([1.48891678, -5.83482493, 3.7953997]), np.array([1.73661348, -5.07447603, 4.96181124]), np.array([1.18181818, -4.45454545, 3.81818182])], [np.array([8.87317138, -2.54514024, 1.17514093]), np.array([7.52412119, -2.28213872, 1.50814815]), np.array([8.10540926, -3.52704628, 1.84327404])]]])]) def test_ankleJointCenter(self, frame, knee_JC, vsk, mockReturnVal, expectedMockArgs, expected): """ This test provides coverage of the ankleJointCenter function in pycgmStatic.py, defined as ankleJointCenter(frame, knee_JC, delta, vsk) This test takes 6 parameters: frame: dictionary of marker lists knee_JC: array of knee_JC each x,y,z position. vsk: dictionary containing subject measurements from a VSK file mockReturnVal: the value to be returned by the mock for findJointC expectedMockArgs: the expected arguments used to call the mocked function, findJointC expected: the expected result from calling ankleJointCenter on frame, knee_JC, vsk, and mockReturnVal This test is checking to make sure the ankle joint center and axis are calculated correctly given the input parameters. This tests mocks findJointC to make sure the correct parameters are being passed into it given the parameters passed into ankleJointCenter, and to also ensure that ankleJointCenter returns the correct value considering the return value of findJointC, mockReturnVal. The ankle joint center left and right origin are defined by using the ANK, Tib, and KJC marker positions in the Rodriques' rotation formula. The ankle joint center axis is calculated using the Ankle Axis Calculation(ref. Clinical Gait Analysis hand book, Baker2013). Lastly, it checks that the resulting output is correct when knee_JC is composed of lists of ints, numpy arrays of ints, lists of floats, and numpy arrays of floats and vsk values are ints and floats. The values in frame were kept as numpy arrays as lists would cause an error in the following lines of pycgmStatic.py as lists cannot be subtracted by each other: tib_ank_R = tib_R-ank_R tib_ank_L = tib_L-ank_L """ with patch.object(pycgmStatic, 'findJointC', side_effect=mockReturnVal) as mock_findJointC: result = pycgmStatic.ankleJointCenter(frame, knee_JC, None, vsk) # Asserting that there were only 2 calls to findJointC np.testing.assert_equal(mock_findJointC.call_count, 2) # Asserting that the correct params were sent in the 1st (right) call to findJointC np.testing.assert_almost_equal(expectedMockArgs[0][0], mock_findJointC.call_args_list[0][0][0], rounding_precision) np.testing.assert_almost_equal(expectedMockArgs[0][1], mock_findJointC.call_args_list[0][0][1], rounding_precision) np.testing.assert_almost_equal(expectedMockArgs[0][2], mock_findJointC.call_args_list[0][0][2], rounding_precision) np.testing.assert_almost_equal(expectedMockArgs[0][3], mock_findJointC.call_args_list[0][0][3], rounding_precision) # Asserting that the correct params were sent in the 2nd (left) call to findJointC np.testing.assert_almost_equal(expectedMockArgs[1][0], mock_findJointC.call_args_list[1][0][0], rounding_precision) np.testing.assert_almost_equal(expectedMockArgs[1][1], mock_findJointC.call_args_list[1][0][1], rounding_precision) np.testing.assert_almost_equal(expectedMockArgs[1][2], mock_findJointC.call_args_list[1][0][2], rounding_precision) np.testing.assert_almost_equal(expectedMockArgs[1][3], mock_findJointC.call_args_list[1][0][3], rounding_precision) # Asserting that findShoulderJC returned the correct result given the return value given by mocked findJointC np.testing.assert_almost_equal(result[0], expected[0], rounding_precision) np.testing.assert_almost_equal(result[1], expected[1], rounding_precision) np.testing.assert_almost_equal(result[2], expected[2], rounding_precision) @pytest.mark.parametrize(["frame", "static_info", "ankle_JC", "expected"], [ # Test from running sample data ({'RTOE': np.array([442.81997681, 381.62280273, 42.66047668]), 'LTOE': np.array([39.43652725, 382.44522095, 41.78911591])}, [[0.03482194, 0.14879424, np.random.randint(0, 10)], [0.01139704, 0.02142806, np.random.randint(0, 10)]], [np.array([393.76181608, 247.67829633, 87.73775041]), np.array([98.74901939, 219.46930221, 80.6306816]), [[np.array(nan_3d), np.array([393.07114384, 248.39110006, 87.61575574]), np.array(nan_3d)], [np.array(nan_3d), np.array([97.79246671, 219.20927275, 80.76255901]), np.array(nan_3d)]]], [np.array([442.81997681, 381.62280273, 42.66047668]), np.array([39.43652725, 382.44522095, 41.78911591]), np.array([[[442.8881541, 381.76460597, 43.64802096], [441.89515447, 382.00308979, 42.66971773], [442.44573691, 380.70886969, 42.81754643]], [[39.50785213, 382.67891581, 42.75880631], [38.49231839, 382.14765966, 41.93027863], [39.75805858, 381.51956227, 41.98854914]]])]), # Test with zeros for all params ({'RTOE': np.array([0, 0, 0]), 'LTOE': np.array([0, 0, 0])}, [[0, 0, np.random.randint(0, 10)], [0, 0, np.random.randint(0, 10)]], [np.array([0, 0, 0]), np.array([0, 0, 0]), [[np.array(nan_3d), np.array([0, 0, 0]), np.array(nan_3d)], [np.array(nan_3d), np.array([0, 0, 0]), np.array(nan_3d)]]], [np.array([0, 0, 0]), np.array([0, 0, 0]), np.array([[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]])]), # Testing with values added to frame ({'RTOE': np.array([-1, -1, -5]), 'LTOE': np.array([-5, -6, 1])}, [[0, 0, np.random.randint(0, 10)], [0, 0, np.random.randint(0, 10)]], [np.array([0, 0, 0]), np.array([0, 0, 0]), [[np.array(nan_3d), np.array([0, 0, 0]), np.array(nan_3d)], [np.array(nan_3d), np.array([0, 0, 0]), np.array(nan_3d)]]], [np.array([-1, -1, -5]), np.array([-5, -6, 1]), np.array([[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]])]), # Testing with values added to static_info ({'RTOE': np.array([0, 0, 0]), 'LTOE': np.array([0, 0, 0])}, [[-6, 7, np.random.randint(0, 10)], [2, -9, np.random.randint(0, 10)]], [np.array([0, 0, 0]), np.array([0, 0, 0]), [[np.array(nan_3d), np.array([0, 0, 0]), np.array(nan_3d)], [np.array(nan_3d), np.array([0, 0, 0]), np.array(nan_3d)]]], [np.array([0, 0, 0]), np.array([0, 0, 0]), np.array([[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]])]), # Testing with values added to ankle_JC ({'RTOE': np.array([0, 0, 0]), 'LTOE': np.array([0, 0, 0])}, [[0, 0, np.random.randint(0, 10)], [0, 0, np.random.randint(0, 10)]], [np.array([6, 0, 3]), np.array([1, 4, -3]), [[np.array(nan_3d), np.array([-2, 8, 5]), np.array(nan_3d)], [np.array(nan_3d), np.array([1, -6, 8]), np.array(nan_3d)]]], [np.array([0, 0, 0]), np.array([0, 0, 0]), np.array([[[0.3713906763541037, 0.5570860145311556, -0.7427813527082074], [-0.24913643956121992, 0.8304547985373997, 0.49827287912243984], [0.8944271909999159, 0.0, 0.4472135954999579]], [[-0.6855829496241487, 0.538672317561831, 0.4897021068743917], [0.701080937355391, 0.3073231506215415, 0.6434578466138523], [0.19611613513818404, 0.7844645405527362, -0.5883484054145521]]])]), # Testing with values added to frame and static_info ({'RTOE': np.array([-1, -1, -5]), 'LTOE': np.array([-5, -6, 1])}, [[-6, 7, np.random.randint(0, 10)], [2, -9, np.random.randint(0, 10)]], [np.array([0, 0, 0]), np.array([0, 0, 0]), [[np.array(nan_3d), np.array([0, 0, 0]), np.array(nan_3d)], [np.array(nan_3d), np.array([0, 0, 0]), np.array(nan_3d)]]], [np.array([-1, -1, -5]), np.array([-5, -6, 1]), np.array([[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]])]), # Testing with values added to frame and ankle_JC ({'RTOE': np.array([-1, -1, -5]), 'LTOE': np.array([-5, -6, 1])}, [[0, 0, np.random.randint(0, 10)], [0, 0, np.random.randint(0, 10)]], [np.array([6, 0, 3]), np.array([1, 4, -3]), [[np.array(nan_3d), np.array([-2, 8, 5]), np.array(nan_3d)], [np.array(nan_3d), np.array([1, -6, 8]), np.array(nan_3d)]]], [np.array([-1, -1, -5]), np.array([-5, -6, 1]), np.array([[[-0.4764529245456802, -0.34134400184779123, -5.540435690791556], [-1.544126730072802, -0.25340750990010874, -4.617213172448785], [-0.3443899318928142, -0.9063414188418306, -4.250731350734645]], [[-5.617369411832039, -5.417908840272649, 1.5291737815703186], [-4.3819280753253675, -6.057228881914318, 1.7840356822261547], [-4.513335736607712, -5.188892894346187, 0.6755571577384749]]])]), # Testing with values added to static_info and ankle_JC ({'RTOE': np.array([0, 0, 0]), 'LTOE': np.array([0, 0, 0])}, [[-6, 7, np.random.randint(0, 10)], [2, -9, np.random.randint(0, 10)]], [np.array([6, 0, 3]), np.array([1, 4, -3]), [[np.array(nan_3d), np.array([-2, 8, 5]), np.array(nan_3d)], [np.array(nan_3d), np.array([1, -6, 8]), np.array(nan_3d)]]], [np.array([0, 0, 0]), np.array([0, 0, 0]), np.array([[[0.8676189717605698, 0.41998838044559317, -0.2661711481957037], [-0.35944921047092726, 0.8996435491853136, 0.2478663944569317], [0.3435601620283683, -0.11937857722363693, 0.9315123028533232]], [[0.5438323231671144, -0.8140929502604927, -0.20371321168453085], [0.12764145145799288, 0.32016712879535714, -0.9387228928222822], [0.829429963377473, 0.48450560159311296, 0.27802923924749284]]])]), # Testing with values added to frame, static_info and ankle_JC ({'RTOE': np.array([-1, -1, -5]), 'LTOE': np.array([-5, -6, 1])}, [[-6, 7, np.random.randint(0, 10)], [2, -9, np.random.randint(0, 10)]], [np.array([6, 0, 3]), np.array([1, 4, -3]), [[np.array(nan_3d), np.array([-2, 8, 5]), np.array(nan_3d)], [np.array(nan_3d), np.array([1, -6, 8]), np.array(nan_3d)]]], [np.array([-1, -1, -5]), np.array([-5, -6, 1]), np.array([[[-0.17456964188738444, -0.44190534702217665, -4.915176169482615], [-1.564451151846412, -0.1819624820720035, -4.889503319319258], [-1.0077214691178664, -1.139086223544123, -4.009749828914483]], [[-4.638059331793927, -6.864633064377841, 0.6515626072260268], [-4.6226610672854616, -5.522323332954951, 0.2066272429566376], [-4.147583269429562, -5.844325128086398, 1.4991503297587707]]])]), # Testing that when frame, static_info and ankle_JC are composed of lists of ints ({'RTOE': [-1, -1, -5], 'LTOE': [-5, -6, 1]}, [[-6, 7, np.random.randint(0, 10)], [2, -9, np.random.randint(0, 10)]], [[6, 0, 3], [1, 4, -3], [[nan_3d, [-2, 8, 5], nan_3d], [nan_3d, [1, -6, 8], nan_3d]]], [np.array([-1, -1, -5]), np.array([-5, -6, 1]), np.array([[[-0.17456964188738444, -0.44190534702217665, -4.915176169482615], [-1.564451151846412, -0.1819624820720035, -4.889503319319258], [-1.0077214691178664, -1.139086223544123, -4.009749828914483]], [[-4.638059331793927, -6.864633064377841, 0.6515626072260268], [-4.6226610672854616, -5.522323332954951, 0.2066272429566376], [-4.147583269429562, -5.844325128086398, 1.4991503297587707]]])]), # Testing that when frame, static_info and ankle_JC are composed of numpy arrays of ints ({'RTOE': np.array([-1, -1, -5], dtype='int'), 'LTOE': np.array([-5, -6, 1], dtype='int')}, [np.array([-6, 7, np.random.randint(0, 10)], dtype='int'), np.array([2, -9, np.random.randint(0, 10)], dtype='int')], [np.array([6, 0, 3], dtype='int'), np.array([1, 4, -3], dtype='int'), [[np.array(nan_3d), np.array([-2, 8, 5], dtype='int'), np.array(nan_3d)], [np.array(nan_3d), np.array([1, -6, 8], dtype='int'), np.array(nan_3d)]]], [np.array([-1, -1, -5]), np.array([-5, -6, 1]), np.array([[[-0.17456964188738444, -0.44190534702217665, -4.915176169482615], [-1.564451151846412, -0.1819624820720035, -4.889503319319258], [-1.0077214691178664, -1.139086223544123, -4.009749828914483]], [[-4.638059331793927, -6.864633064377841, 0.6515626072260268], [-4.6226610672854616, -5.522323332954951, 0.2066272429566376], [-4.147583269429562, -5.844325128086398, 1.4991503297587707]]])]), # Testing that when frame, static_info and ankle_JC are composed of lists of floats ({'RTOE': [-1.0, -1.0, -5.0], 'LTOE': [-5.0, -6.0, 1.0]}, [[-6.0, 7.0, np.random.randint(0, 10)], [2.0, -9.0, np.random.randint(0, 10)]], [[6.0, 0.0, 3.0], [1.0, 4.0, -3.0], [[nan_3d, [-2.0, 8.0, 5.0], nan_3d], [nan_3d, [1.0, -6.0, 8.0], nan_3d]]], [np.array([-1, -1, -5]), np.array([-5, -6, 1]), np.array([[[-0.17456964188738444, -0.44190534702217665, -4.915176169482615], [-1.564451151846412, -0.1819624820720035, -4.889503319319258], [-1.0077214691178664, -1.139086223544123, -4.009749828914483]], [[-4.638059331793927, -6.864633064377841, 0.6515626072260268], [-4.6226610672854616, -5.522323332954951, 0.2066272429566376], [-4.147583269429562, -5.844325128086398, 1.4991503297587707]]])]), # Testing that when frame, static_info and ankle_JC are composed of numpy arrays of floats ({'RTOE': np.array([-1.0, -1.0, -5.0], dtype='float'), 'LTOE': np.array([-5.0, -6.0, 1.0], dtype='float')}, [np.array([-6.0, 7.0, np.random.randint(0, 10)], dtype='float'), np.array([2.0, -9.0, np.random.randint(0, 10)], dtype='float')], [np.array([6.0, 0.0, 3.0], dtype='float'), np.array([1.0, 4.0, -3.0], dtype='float'), [[np.array(nan_3d), np.array([-2.0, 8.0, 5.0], dtype='float'), np.array(nan_3d)], [np.array(nan_3d), np.array([1.0, -6.0, 8.0], dtype='float'), np.array(nan_3d)]]], [np.array([-1, -1, -5]), np.array([-5, -6, 1]), np.array([[[-0.17456964188738444, -0.44190534702217665, -4.915176169482615], [-1.564451151846412, -0.1819624820720035, -4.889503319319258], [-1.0077214691178664, -1.139086223544123, -4.009749828914483]], [[-4.638059331793927, -6.864633064377841, 0.6515626072260268], [-4.6226610672854616, -5.522323332954951, 0.2066272429566376], [-4.147583269429562, -5.844325128086398, 1.4991503297587707]]])])]) def test_footJointCenter(self, frame, static_info, ankle_JC, expected): """ This test provides coverage of the footJointCenter function in pycgmStatic.py, defined as footJointCenter(frame, static_info, ankle_JC, knee_JC, delta) This test takes 4 parameters: frame: dictionaries of marker lists static_info: array containing offset angles ankle_JC: array of ankle_JC each x,y,z position expected: the expected result from calling footJointCenter on frame, static_info, and ankle_JC The incorrect foot joint axes for both feet are calculated using the following calculations: z-axis = ankle joint center - TOE marker y-flex = ankle joint center flexion - ankle joint center x-axis = y-flex \cross z-axis y-axis = z-axis cross x-axis Calculate the foot joint axis by rotating incorrect foot joint axes about offset angle. This test is checking to make sure the foot joint center and axis are calculated correctly given the input parameters. The test checks to see that the correct values in expected are updated per each input parameter added: When values are added to frame, expected[0] and expected[1] should be updated When values are added to vsk, expected[2] should be updated as long as there are values for frame and ankle_JC When values are added to ankle_JC, expected[2] should be updated """ result = pycgmStatic.footJointCenter(frame, static_info, ankle_JC, None, None) np.testing.assert_almost_equal(result[0], expected[0], rounding_precision) np.testing.assert_almost_equal(result[1], expected[1], rounding_precision) np.testing.assert_almost_equal(result[2], expected[2], rounding_precision) @pytest.mark.parametrize(["frame", "expected"], [ # Test from running sample data ({'LFHD': np.array([184.55158997, 409.68713379, 1721.34289551]), 'RFHD': np.array([325.82983398, 402.55450439, 1722.49816895]), 'LBHD': np.array([197.8621521 , 251.28889465, 1696.90197754]), 'RBHD': np.array([304.39898682, 242.91339111, 1694.97497559])}, [[[255.21590218, 407.10741939, 1722.0817318], [254.19105385, 406.14680918, 1721.91767712], [255.18370553, 405.95974655, 1722.90744993]], [255.19071197509766, 406.1208190917969, 1721.9205322265625]]), # Basic test with a variance of 1 in the x and y dimensions of the markers ({'LFHD': np.array([1, 1, 0]), 'RFHD': np.array([0, 1, 0]), 'LBHD': np.array([1, 0, 0]), 'RBHD': np.array([0, 0, 0])}, [[[0.5, 2, 0], [1.5, 1, 0], [0.5, 1, -1]], [0.5, 1, 0]]), # Setting the markers so there's no variance in the x-dimension ({'LFHD': np.array([0, 1, 0]), 'RFHD': np.array([0, 1, 0]), 'LBHD': np.array([0, 0, 0]), 'RBHD': np.array([0, 0, 0])}, [[nan_3d, nan_3d, nan_3d], [0, 1, 0]]), # Setting the markers so there's no variance in the y-dimension ({'LFHD': np.array([1, 0, 0]), 'RFHD': np.array([0, 0, 0]), 'LBHD': np.array([1, 0, 0]), 'RBHD': np.array([0, 0, 0])}, [[nan_3d, nan_3d, nan_3d], [0.5, 0, 0]]), # Setting each marker in a different xy quadrant ({'LFHD': np.array([-1, 1, 0]), 'RFHD': np.array([1, 1, 0]), 'LBHD': np.array([-1, -1, 0]), 'RBHD': np.array([1, -1, 0])}, [[[0, 2, 0], [-1, 1, 0], [0, 1, 1]], [0, 1, 0]]), # Setting values of the markers so that midpoints will be on diagonals ({'LFHD': np.array([-2, 1, 0]), 'RFHD': np.array([1, 2, 0]), 'LBHD': np.array([-1, -2, 0]), 'RBHD': np.array([2, -1, 0])}, [[[-0.81622777, 2.4486833 , 0], [-1.4486833, 1.18377223, 0], [-0.5, 1.5, 1]], [-0.5, 1.5, 0]]), # Adding the value of 1 in the z dimension for all 4 markers ({'LFHD': np.array([1, 1, 1]), 'RFHD': np.array([0, 1, 1]), 'LBHD': np.array([1, 0, 1]), 'RBHD': np.array([0, 0, 1])}, [[[0.5, 2, 1], [1.5, 1, 1], [0.5, 1, 0]], [0.5, 1, 1]]), # Setting the z dimension value higher for LFHD and LBHD ({'LFHD': np.array([1, 1, 2]), 'RFHD': np.array([0, 1, 1]), 'LBHD': np.array([1, 0, 2]), 'RBHD': np.array([0, 0, 1])}, [[[0.5, 2, 1.5], [1.20710678, 1, 2.20710678], [1.20710678, 1, 0.79289322]], [0.5, 1, 1.5]]), # Setting the z dimension value higher for LFHD and RFHD ({'LFHD': np.array([1, 1, 2]), 'RFHD': np.array([0, 1, 2]), 'LBHD': np.array([1, 0, 1]), 'RBHD': np.array([0, 0, 1])}, [[[0.5, 1.70710678, 2.70710678], [1.5, 1, 2], [0.5, 1.70710678, 1.29289322]], [0.5, 1, 2]]), # Testing that when frame is composed of lists of ints ({'LFHD': [1, 1, 2], 'RFHD': [0, 1, 2], 'LBHD': [1, 0, 1], 'RBHD': [0, 0, 1]}, [[[0.5, 1.70710678, 2.70710678], [1.5, 1, 2], [0.5, 1.70710678, 1.29289322]], [0.5, 1, 2]]), # Testing that when frame is composed of numpy arrays of ints ({'LFHD': np.array([1, 1, 2], dtype='int'), 'RFHD': np.array([0, 1, 2], dtype='int'), 'LBHD': np.array([1, 0, 1], dtype='int'), 'RBHD': np.array([0, 0, 1], dtype='int')}, [[[0.5, 1.70710678, 2.70710678], [1.5, 1, 2], [0.5, 1.70710678, 1.29289322]], [0.5, 1, 2]]), # Testing that when frame is composed of lists of floats ({'LFHD': [1.0, 1.0, 2.0], 'RFHD': [0.0, 1.0, 2.0], 'LBHD': [1.0, 0.0, 1.0], 'RBHD': [0.0, 0.0, 1.0]}, [[[0.5, 1.70710678, 2.70710678], [1.5, 1, 2], [0.5, 1.70710678, 1.29289322]], [0.5, 1, 2]]), # Testing that when frame is composed of numpy arrays of floats ({'LFHD': np.array([1.0, 1.0, 2.0], dtype='float'), 'RFHD': np.array([0.0, 1.0, 2.0], dtype='float'), 'LBHD': np.array([1.0, 0.0, 1.0], dtype='float'), 'RBHD': np.array([0.0, 0.0, 1.0], dtype='float')}, [[[0.5, 1.70710678, 2.70710678], [1.5, 1, 2], [0.5, 1.70710678, 1.29289322]], [0.5, 1, 2]])]) def test_headJC(self, frame, expected): """ This test provides coverage of the headJC function in pycgmStatic.py, defined as headJC(frame) This test takes 3 parameters: frame: dictionary of marker lists expected: the expected result from calling headJC on frame This test is checking to make sure the head joint center and head joint axis are calculated correctly given the 4 coordinates given in frame. This includes testing when there is no variance in the coordinates, when the coordinates are in different quadrants, when the midpoints will be on diagonals, and when the z dimension is variable. It also checks to see the difference when a value is set for HeadOffSet in vsk. The function uses the LFHD, RFHD, LBHD, and RBHD markers from the frame to calculate the midpoints of the front, back, left, and right center positions of the head. The head axis vector components are then calculated using the aforementioned midpoints. Afterwords, the axes are made orthogonal by calculating the cross product of each individual axis. Finally, the head axis is then rotated around the y axis based off the head offset angle in the VSK. Lastly, it checks that the resulting output is correct when frame composed of lists of ints, numpy arrays of ints, lists of floats, and numpy arrays of floats and when headOffset is an int and a float. """ result = pycgmStatic.headJC(frame) np.testing.assert_almost_equal(result[0], expected[0], rounding_precision) np.testing.assert_almost_equal(result[1], expected[1], rounding_precision) @pytest.mark.parametrize(["frame", "ankle_JC", "expected"], [ # Test from running sample data ({'RTOE': np.array([433.33508301, 354.97229004, 44.27765274]), 'LTOE': np.array([31.77310181, 331.23657227, 42.15322876])}, [np.array([397.45738291, 217.50712216, 87.83068433]), np.array([112.28082818, 175.83265027, 80.98477997]), [[np.array(rand_coor), np.array([396.73749179, 218.18875543, 87.69979179]), np.array(rand_coor)], [np.array(rand_coor), np.array([111.34886681, 175.49163538, 81.10789314]), np.array(rand_coor)]]], [np.array([433.33508301, 354.97229004, 44.27765274]), np.array([31.77310181, 331.23657227, 42.15322876]), [[[433.4256618315962, 355.25152027652007, 45.233595181827035], [432.36890500826763, 355.2296456773885, 44.29402798451682], [433.09363829389764, 354.0471962330562, 44.570749823731354]], [[31.806110207058808, 331.49492345678016, 43.11871573923792], [30.880216288550965, 330.81014854432254, 42.29786022762896], [32.2221740692973, 330.36972887034574, 42.36983123198873]]]]), # Test with zeros for all params ({'RTOE': np.array([0, 0, 0]), 'LTOE': np.array([0, 0, 0])}, [np.array([0, 0, 0]), np.array([0, 0, 0]), [[np.array(rand_coor), np.array([0, 0, 0]), np.array(rand_coor)], [np.array(rand_coor), np.array([0, 0, 0]), np.array(rand_coor)]]], [np.array([0, 0, 0]), np.array([0, 0, 0]), [[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]]]), # Testing when values are added to frame['RTOE'] ({'RTOE': np.array([-7, 3, -8]), 'LTOE': np.array([0, 0, 0])}, [np.array([0, 0, 0]), np.array([0, 0, 0]), [[np.array(rand_coor), np.array([0, 0, 0]), np.array(rand_coor)], [np.array(rand_coor), np.array([0, 0, 0]), np.array(rand_coor)]]], [np.array([-7, 3, -8]), np.array([0, 0, 0]), [[nan_3d, nan_3d, [-6.36624977770237, 2.7283927618724446, -7.275714031659851]], [nan_3d, nan_3d, nan_3d]]]), # Testing when values are added to frame['LTOE'] ({'RTOE': np.array([0, 0, 0]), 'LTOE': np.array([8, 0, -8])}, [np.array([0, 0, 0]), np.array([0, 0, 0]), [[np.array(rand_coor), np.array([0, 0, 0]), np.array(rand_coor)], [np.array(rand_coor), np.array([0, 0, 0]), np.array(rand_coor)]]], [np.array([0, 0, 0]), np.array([8, 0, -8]), [[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, [7.292893218813452, 0.0, -7.292893218813452]]]]), # Testing when values are added to frame ({'RTOE': np.array([-7, 3, -8]), 'LTOE': np.array([8, 0, -8])}, [np.array([0, 0, 0]), np.array([0, 0, 0]), [[np.array(rand_coor), np.array([0, 0, 0]), np.array(rand_coor)], [np.array(rand_coor), np.array([0, 0, 0]), np.array(rand_coor)]]], [np.array([-7, 3, -8]), np.array([8, 0, -8]), [[nan_3d, nan_3d, [-6.36624977770237, 2.7283927618724446, -7.275714031659851]], [nan_3d, nan_3d, [7.292893218813452, 0.0, -7.292893218813452]]]]), # Testing when values are added to ankle_JC[0] ({'RTOE': np.array([0, 0, 0]), 'LTOE': np.array([0, 0, 0])}, [np.array([2, -9, 1]), np.array([0, 0, 0]), [[np.array(rand_coor), np.array([0, 0, 0]), np.array(rand_coor)], [np.array(rand_coor), np.array([0, 0, 0]), np.array(rand_coor)]]], [np.array([0, 0, 0]), np.array([0, 0, 0]), [[nan_3d, nan_3d, [0.21566554640687682, -0.9704949588309457, 0.10783277320343841]], [nan_3d, nan_3d, nan_3d]]]), # Testing when values are added to ankle_JC[1] ({'RTOE': np.array([0, 0, 0]), 'LTOE': np.array([0, 0, 0])}, [np.array([0, 0, 0]), np.array([3, -7, 4]), [[np.array(rand_coor), np.array([0, 0, 0]), np.array(rand_coor)], [np.array(rand_coor), np.array([0, 0, 0]), np.array(rand_coor)]]], [np.array([0, 0, 0]), np.array([0, 0, 0]), [[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, [0.34874291623145787, -0.813733471206735, 0.46499055497527714]]]]), # Testing when values are added to ankle_JC[2] ({'RTOE': np.array([0, 0, 0]), 'LTOE': np.array([0, 0, 0])}, [np.array([0, 0, 0]), np.array([0, 0, 0]), [[np.array(rand_coor), np.array([8, -4, 2]), np.array(rand_coor)], [np.array(rand_coor), np.array([-9, 7, 4]), np.array(rand_coor)]]], [np.array([0, 0, 0]), np.array([0, 0, 0]), [[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]]]), # Testing when values are added to ankle_JC ({'RTOE': np.array([0, 0, 0]), 'LTOE': np.array([0, 0, 0])}, [np.array([2, -9, 1]), np.array([3, -7, 4]), [[np.array(rand_coor), np.array([8, -4, 2]), np.array(rand_coor)], [np.array(rand_coor), np.array([-9, 7, 4]), np.array(rand_coor)]]], [np.array([0, 0, 0]), np.array([0, 0, 0]), [[[0.21329967236760183, -0.06094276353360052, -0.9750842165376084], [0.9528859437838807, 0.23329276554708803, 0.1938630023560309], [0.21566554640687682, -0.9704949588309457, 0.10783277320343841]], [[0.6597830814767823, 0.5655283555515277, 0.4948373111075868], [-0.6656310267523443, 0.1342218942833945, 0.7341115850601987], [0.34874291623145787, -0.813733471206735, 0.46499055497527714]]]]), # Testing when values are added to frame and ankle_JC ({'RTOE': np.array([-7, 3, -8]), 'LTOE': np.array([8, 0, -8])}, [np.array([2, -9, 1]), np.array([3, -7, 4]), [[np.array(rand_coor), np.array([8, -4, 2]), np.array(rand_coor)], [np.array(rand_coor), np.array([-9, 7, 4]), np.array(rand_coor)]]], [np.array([-7, 3, -8]), np.array([8, 0, -8]), [[[-6.586075309097216, 2.6732173492872757, -8.849634891853084], [-6.249026985898898, 3.6500960420576702, -7.884178291357542], [-6.485504244572473, 2.3140056594299647, -7.485504244572473]], [[8.623180382731631, 0.5341546137699694, -7.428751315829338], [7.295040915019964, 0.6999344300621451, -7.885437867872096], [7.6613572692607015, -0.47409982303501746, -7.187257446225685]]]]), # Testing that when frame and ankle_JC are composed of lists of ints ({'RTOE': [-7, 3, -8], 'LTOE': [8, 0, -8]}, [[2, -9, 1], [3, -7, 4], [[rand_coor, [8, -4, 2], rand_coor], [rand_coor, [-9, 7, 4], rand_coor]]], [np.array([-7, 3, -8]), np.array([8, 0, -8]), [[[-6.586075309097216, 2.6732173492872757, -8.849634891853084], [-6.249026985898898, 3.6500960420576702, -7.884178291357542], [-6.485504244572473, 2.3140056594299647, -7.485504244572473]], [[8.623180382731631, 0.5341546137699694, -7.428751315829338], [7.295040915019964, 0.6999344300621451, -7.885437867872096], [7.6613572692607015, -0.47409982303501746, -7.187257446225685]]]]), # Testing that when frame and ankle_JC are composed of numpy arrays of ints ({'RTOE': np.array([-7, 3, -8], dtype='int'), 'LTOE': np.array([8, 0, -8], dtype='int')}, [np.array([2, -9, 1], dtype='int'), np.array([3, -7, 4], dtype='int'), [np.array([rand_coor, [8, -4, 2], rand_coor], dtype='int'), np.array([rand_coor, [-9, 7, 4], rand_coor], dtype='int')]], [np.array([-7, 3, -8]), np.array([8, 0, -8]), [[[-6.586075309097216, 2.6732173492872757, -8.849634891853084], [-6.249026985898898, 3.6500960420576702, -7.884178291357542], [-6.485504244572473, 2.3140056594299647, -7.485504244572473]], [[8.623180382731631, 0.5341546137699694, -7.428751315829338], [7.295040915019964, 0.6999344300621451, -7.885437867872096], [7.6613572692607015, -0.47409982303501746, -7.187257446225685]]]]), # Testing that when frame and ankle_JC are composed of lists of floats ({'RTOE': [-7.0, 3.0, -8.0], 'LTOE': [8.0, 0.0, -8.0]}, [[2.0, -9.0, 1.0], [3.0, -7.0, 4.0], [[rand_coor, [8.0, -4.0, 2.0], rand_coor], [rand_coor, [-9.0, 7.0, 4.0], rand_coor]]], [np.array([-7, 3, -8]), np.array([8, 0, -8]), [[[-6.586075309097216, 2.6732173492872757, -8.849634891853084], [-6.249026985898898, 3.6500960420576702, -7.884178291357542], [-6.485504244572473, 2.3140056594299647, -7.485504244572473]], [[8.623180382731631, 0.5341546137699694, -7.428751315829338], [7.295040915019964, 0.6999344300621451, -7.885437867872096], [7.6613572692607015, -0.47409982303501746, -7.187257446225685]]]]), # Testing that when frame and ankle_JC are composed of numpy arrays of floats ({'RTOE': np.array([-7.0, 3.0, -8.0], dtype='float'), 'LTOE': np.array([8.0, 0.0, -8.0], dtype='float')}, [np.array([2.0, -9.0, 1.0], dtype='float'), np.array([3.0, -7.0, 4.0], dtype='float'), [np.array([rand_coor, [8.0, -4.0, 2.0], rand_coor], dtype='float'), np.array([rand_coor, [-9.0, 7.0, 4.0], rand_coor], dtype='float')]], [np.array([-7, 3, -8]), np.array([8, 0, -8]), [[[-6.586075309097216, 2.6732173492872757, -8.849634891853084], [-6.249026985898898, 3.6500960420576702, -7.884178291357542], [-6.485504244572473, 2.3140056594299647, -7.485504244572473]], [[8.623180382731631, 0.5341546137699694, -7.428751315829338], [7.295040915019964, 0.6999344300621451, -7.885437867872096], [7.6613572692607015, -0.47409982303501746, -7.187257446225685]]]])]) def test_uncorrect_footaxis(self, frame, ankle_JC, expected): """ This test provides coverage of the uncorrect_footaxis function in pycgmStatic.py, defined as uncorrect_footaxis(frame, ankle_JC) This test takes 3 parameters: frame: dictionaries of marker lists. ankle_JC: array of ankle_JC each x,y,z position expected: the expected result from calling uncorrect_footaxis on frame and ankle_JC, which should be the anatomically incorrect foot axis Given a marker RTOE and the ankle JC, the right anatomically incorrect foot axis is calculated with: .. math:: R = [R_x + ROrigin_x, R_y + ROrigin_y, R_z + ROrigin_z] where :math:`ROrigin_x` is the x coor of the foot axis's origin gotten from frame['RTOE'] :math:`R_x` is the unit vector of :math:`Yflex_R \times R_z` :math:`R_y` is the unit vector of :math:`R_z \times R_x` :math:`R_z` is the unit vector of the axis from right toe to right ankle JC :math:`Yflex_R` is the unit vector of the axis from right ankle flexion to right ankle JC The same calculation applies for the left anatomically incorrect foot axis by replacing all the right values with left values This unit test ensures that: - the markers for RTOE and LTOE only effect either the right or the left axis - ankle_JC_R and ankle_JC_L only effect either the right or the left axis - the resulting output is correct when frame and ankle_JC are composed of lists of ints, numpy arrays of ints, lists of floats, and numpy arrays of floats. """ result = pycgmStatic.uncorrect_footaxis(frame, ankle_JC) np.testing.assert_almost_equal(result[0], expected[0], rounding_precision) np.testing.assert_almost_equal(result[1], expected[1], rounding_precision) np.testing.assert_almost_equal(result[2], expected[2], rounding_precision) @pytest.mark.parametrize(["frame", "ankle_JC", "vsk", "expected"], [ # Test from running sample data ({'RHEE': [374.01257324, 181.57929993, 49.50960922], 'LHEE': [105.30126953, 180.2130127, 47.15660858], 'RTOE': [442.81997681, 381.62280273, 42.66047668], 'LTOE': [39.43652725, 382.44522095, 41.78911591]}, [np.array([393.76181608, 247.67829633, 87.73775041]), np.array([98.74901939, 219.46930221, 80.6306816]), [[np.array(rand_coor), np.array([393.07114384, 248.39110006, 87.61575574]), np.array(rand_coor)], [np.array(rand_coor), np.array([97.79246671, 219.20927275, 80.76255901]), np.array(rand_coor)]]], {'RightSoleDelta': 0.45, 'LeftSoleDelta': 0.45}, [np.array([442.81997681, 381.62280273, 42.66047668]), np.array([ 39.43652725, 382.44522095, 41.78911591]), np.array([[[442.30666241, 381.79936348, 43.50031871], [442.02580128, 381.89596909, 42.1176458 ], [442.49471759, 380.67717784, 42.66047668]], [[39.14565179, 382.3504861, 42.74117514], [38.53126992, 382.15038888, 41.48320216], [39.74620554, 381.49437955, 41.78911591]]])]), # Testing with zeros for all params ({'RHEE': [0, 0, 0], 'LHEE': [0, 0, 0], 'RTOE': [0, 0, 0], 'LTOE': [0, 0, 0]}, [np.array([0, 0, 0]), np.array([0, 0, 0]), [[np.array(rand_coor), np.array([0, 0, 0]), np.array(rand_coor)], [np.array(rand_coor), np.array([0, 0, 0]), np.array(rand_coor)]]], {'RightSoleDelta': 0.0, 'LeftSoleDelta': 0.0}, [np.array([0, 0, 0]), np.array([0, 0, 0]), np.array([[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]])]), # Testing with values for frame ({'RHEE': [1, -4, -9], 'LHEE': [2, -3, -1], 'RTOE': [1, 4, -6], 'LTOE': [4, 2, 2]}, [np.array([0, 0, 0]), np.array([0, 0, 0]), [[np.array(rand_coor), np.array([0, 0, 0]), np.array(rand_coor)], [np.array(rand_coor), np.array([0, 0, 0]), np.array(rand_coor)]]], {'RightSoleDelta': 0.0, 'LeftSoleDelta': 0.0}, [np.array([1, 4, -6]), np.array([4, 2, 2]), np.array([[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]])]), # Testing with values for ankleJC ({'RHEE': [0, 0, 0], 'LHEE': [0, 0, 0], 'RTOE': [0, 0, 0], 'LTOE': [0, 0, 0]}, [np.array([-5, -5, -1]), np.array([5, 7, 1]), [[np.array(rand_coor), np.array([9, 3, 7]), np.array(rand_coor)], [np.array(rand_coor), np.array([-9, 2, 9]), np.array(rand_coor)]]], {'RightSoleDelta': 0.0, 'LeftSoleDelta': 0.0}, [np.array([0, 0, 0]), np.array([0, 0, 0]), np.array([[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]])]), # Testing with values for vsk ({'RHEE': [0, 0, 0], 'LHEE': [0, 0, 0], 'RTOE': [0, 0, 0], 'LTOE': [0, 0, 0]}, [np.array([0, 0, 0]), np.array([0, 0, 0]), [[np.array(rand_coor), np.array([0, 0, 0]), np.array(rand_coor)], [np.array(rand_coor), np.array([0, 0, 0]), np.array(rand_coor)]]], {'RightSoleDelta': 0.64, 'LeftSoleDelta': 0.19}, [np.array([0, 0, 0]), np.array([0, 0, 0]), np.array([[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]])]), # Testing with values for frame and ankleJC ({'RHEE': [1, -4, -9], 'LHEE': [2, -3, -1], 'RTOE': [1, 4, -6], 'LTOE': [4, 2, 2]}, [np.array([-5, -5, -1]), np.array([5, 7, 1]), [[np.array(rand_coor), np.array([9, 3, 7]), np.array(rand_coor)], [np.array(rand_coor), np.array([-9, 2, 9]), np.array(rand_coor)]]], {'RightSoleDelta': 0.0, 'LeftSoleDelta': 0.0}, [np.array([1, 4, -6]), np.array([4, 2, 2]), np.array([[[1.4961389383568338, 4.0, -6.868243142124459], [1.8682431421244592, 4.0, -5.503861061643166], [1.0, 3.0, -6.0]], [[4.541530361073883, 1.783387855570447, 2.8122955416108235], [3.245802523504333, 2.301678990598267, 2.5832460484899826], [3.6286093236458963, 1.0715233091147407, 2.0]]])]), # Testing with values for frame and vsk ({'RHEE': [1, -4, -9], 'LHEE': [2, -3, -1], 'RTOE': [1, 4, -6], 'LTOE': [4, 2, 2]}, [np.array([0, 0, 0]), np.array([0, 0, 0]), [[np.array(rand_coor), np.array([0, 0, 0]), np.array(rand_coor)], [np.array(rand_coor), np.array([0, 0, 0]), np.array(rand_coor)]]], {'RightSoleDelta': 0.64, 'LeftSoleDelta': 0.19}, [np.array([1, 4, -6]), np.array([4, 2, 2]), np.array([[[0.0, 4.0, -6.0], [1.0, 4.0, -7.0], [1.0, 3.0, -6.0]], [[3.071523309114741, 2.3713906763541037, 2.0], [4.0, 2.0, 1.0], [3.6286093236458963, 1.0715233091147407, 2.0]]])]), # Testing with values for ankleJC and vsk ({'RHEE': [0, 0, 0], 'LHEE': [0, 0, 0], 'RTOE': [0, 0, 0], 'LTOE': [0, 0, 0]}, [np.array([-5, -5, -1]), np.array([5, 7, 1]), [[np.array(rand_coor), np.array([9, 3, 7]), np.array(rand_coor)], [np.array(rand_coor), np.array([-9, 2, 9]), np.array(rand_coor)]]], {'RightSoleDelta': 0.64, 'LeftSoleDelta': 0.19}, [np.array([0, 0, 0]), np.array([0, 0, 0]), np.array([[nan_3d, nan_3d, nan_3d], [nan_3d, nan_3d, nan_3d]])]), # Testing with values for frame, ankleJC, and vsk ({'RHEE': [1, -4, -9], 'LHEE': [2, -3, -1], 'RTOE': [1, 4, -6], 'LTOE': [4, 2, 2]}, [
np.array([-5, -5, -1])
numpy.array
import tensorflow_probability as tfp import numpy as np import tensorflow as tf import time from tqdm import tqdm import pickle from math import * import matplotlib.dates as mdates import matplotlib.ticker as ticker myFmt = mdates.DateFormatter('%Hh') import pandas as pd np.set_printoptions(suppress=True,precision=6) import matplotlib.pyplot as plt import matplotlib plt.style.use('ggplot') plt.style.use('seaborn-paper') plt.style.use('seaborn-whitegrid') import sys from tensorflow_probability import distributions as tfd from geopy.distance import geodesic from move_ns import moveNS def setup_data(skip=2): df = pd.read_csv('data/ovejas.csv') df = df[df.id!=34] df['ID'] = df['id'].astype('category').cat.rename_categories(range(0, df['id'].nunique())).astype('int') ID = df['ID'].values Xgps = df[['lat','lon']].values minX = np.min(Xgps[:,0]) minY = np.min(Xgps[:,1]) secs =(pd.to_datetime(df['time'])- pd.datetime(2018,1,1)).dt.seconds.astype(float).values days = (pd.to_datetime(df['time'])- pd.datetime(2018,1,1)).dt.days.astype(float).values T = (days*24*60+secs/60)/(60*24) #days T = T-np.min(T) rescale = 24 # use hours to improve numerical stability T = T * rescale # use geodesic to get the straight line distance between two points Xmetres = np.array([geodesic((xloc,minY), (minX,minY)).meters for xloc in Xgps[:,0]]) Ymetres = np.array([geodesic((minX,yloc), (minX,minY)).meters for yloc in Xgps[:,1]]) X = np.array([Xmetres, Ymetres]).T T=T[::skip,None] X=X[::skip] ID=ID[::skip] return X, T, ID # set up positions data X,T,ID = setup_data(skip=2) X[:,0] = X[:,0]-X[:,0].mean() X[:,1] = X[:,1]-X[:,1].mean() X[:,0] = X[:,0]/1000 X[:,1] = X[:,1]/1000 # set up lower level GP locations covering 24 hours Z = np.linspace(0,24,num=25,endpoint=False).astype(np.float64)[:,None] def sp_shift(x): # softplus transform with shift return tf.nn.softplus(x)+1e-4 def periodic_kernel(x1,x2): # periodic kernel with parameter set to encode # daily activity pattern (period=rescale). return tfp.math.psd_kernels.ExpSinSquared(x1,x2,np.float64(24.0)) # transform for parameter to ensure positive transforms=[sp_shift,sp_shift] #transforms=[sp_shift] # diffuse priors on parameters lpriors = [tfd.Normal(loc = np.float64(0),scale=np.float64(1)), tfd.Normal(loc = np.float64(0),scale=np.float64(10.))] apriors = [tfd.Normal(loc = np.float64(0.),scale=np.float64(1)), tfd.Normal(loc = np.float64(0),scale=np.float64(10.))] lparams_init = [0.0,0.0] aparams_init = [0.0,0.0] # create the model #2880 mover = moveNS(T,X,Z, ID, BATCH_SIZE=1000, MIN_REMAIN=500,velocity=True, std_obs_noise=100, mean_obs_noise=10, akernel=periodic_kernel, aparams_init=aparams_init, apriors=apriors, atransforms=transforms, lkernel=periodic_kernel, lparams_init=lparams_init, lpriors=lpriors, ltransforms=transforms) #-mover.log_posterior(*mover.kernel_params) learning_rate = tf.optimizers.schedules.ExponentialDecay( initial_learning_rate=1e-1, decay_steps=50, decay_rate=0.99, staircase=True) optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate,beta_2=0.99) train_steps = 2000 pbar = tqdm(range(train_steps)) loss_history = np.zeros((train_steps)) for i in pbar: with tf.GradientTape() as t: loss = -mover.log_posterior(*mover.kernel_params) loss_history[i] = loss.numpy() pbar.set_description("Loss %f" % (loss_history[i])) gradients = t.gradient(loss, mover.kernel_params) optimizer.apply_gradients(zip(gradients, mover.kernel_params)) #n=3.5 opt_params = [i.numpy() for i in mover.kernel_params] with open('opt_params.npy', 'wb') as fp: pickle.dump(opt_params, fp) with open ('opt_params.npy', 'rb') as fp: opt_params = pickle.load(fp) opt_obs_noise = opt_params[0] opt_ls_v = opt_params[1] opt_ls_amp = sp_shift(opt_params[2]).numpy() opt_ls_ls = sp_shift(opt_params[3]).numpy() opt_amp_v = opt_params[4] opt_amp_amp = sp_shift(opt_params[5]).numpy() opt_amp_ls = sp_shift(opt_params[6]).numpy() start = time.time() num_runs=4 rescale = 24 def ls_periodic_kernel(): # periodic kernel with single variable parameter. Other parameters are set # to encode daily activity pattern (period=rescale). # 15 minute correlation time return tfp.math.psd_kernels.ExpSinSquared(np.float64(opt_ls_amp),np.float64(opt_ls_ls),np.float64(24.0)) def amp_periodic_kernel(): # periodic kernel with single variable parameter. Other parameters are set # to encode daily activity pattern (period=rescale). # 15 minute correlation time return tfp.math.psd_kernels.ExpSinSquared(np.float64(opt_amp_amp),
np.float64(opt_amp_ls)
numpy.float64
from galaxy_analysis.plot.plot_styles import * import numpy as np from scipy import integrate import yt import os, sys import matplotlib.pyplot as plt import glob # AE: Comment out below import unless you feel like # installing a bunch of stuff: # from galaxy_analysis.plot.plot_styles import * SolarAbundances = np.array([0.02, 0.28, 3.26E-3, 1.32E-3, 8.65E-3, 2.22E-3, 9.31E-4, 1.08E-3, 6.44E-4, 1.01E-4, 1.73E-3]) # globals since these were ifdefs in an old version of the code # here for backwards compatability, but now these are # read from the gizmo parameter file if they are there # (only needed for when logbins used) AGE_BIN_START = 1.0 # Myr AGE_BIN_END = 14000.0 # Myr SOLAR_METALLICITY = 0.02 # as defined in Gizmo / FIRE defaults CYTHON_ON = True if CYTHON_ON: import pyximport; pyximport.install(setup_args={'include_dirs':[np.get_include()]}, language_level=3) from galaxy_analysis.gizmo import age_fields from galaxy_analysis.utilities import cy_convert_abundances as ca # in Gizmo output, first metal tracer field corresponding to # the age bins (0-14 are the 11 default species + 4 r-process) OFFSET = 15 # Hard-coded: list of elements in standard file model (in order) elements = ['Total','He','C','N','O','Ne','Mg','Si','S','Ca','Fe'] element_num = {} i = 0 for e in elements: element_num[e] = i i = i + 1 def generate_metal_fields(ds, _agebins=None, _elements=elements, _yields=None, ptype='PartType0', age_is_fraction=False): """ Generate derived fields mapping the age tracers to actual elemental abundances using the given set of yields. yields must be a NxM array with N = the number of age bins and M = the number of elements (M = 11 for default FIRE). Each value here should be the yield (in solar masses) per solar mass of star formation in each age bin for each element. The derived fields computing elemental mass loop through all the age bin tracer fields. Derived fields will be of form: (ptype,"ELEMENTNAME_mass") (ptype,"ELEMENTNAME_fraction") (ptype,"ELEMENTNAME_actual_mass") where 'ptype' is the passed particle type ("PartType0" or "PartType4" probably) and the "ELEMENTNAME_actual_mass" field is the actual mass of that element in the yields followed in the simulation (e.g. something like: (ptype,"Metallicity_X")*(ptype,"particle_mass"), where X is the metallicity number corresponding to that given element). """ def _metal_mass_test(_ptype, _ei): # test metals in bin zero def temp(field,data): mass_p = np.zeros(np.shape( data[(_ptype,'particle_mass')])) # do this in cython: if CYTHON_ON: for i in np.arange(np.size(_agebins)-1): fname = 'Metallicity_%02i'%(OFFSET + i) mass_p += data[(ptype,fname)].value * _yields[i,_ei] #(agebinnum, elementnum) # # Both the calculations below *should* work but don't for some reason. I am # absolutely mystified by this.... it works just fine in tests outside of # the derived fields routines.... but for some reason this gives wrong answers... # unfortunate since its slightly faster (and is how I wrote the cython version.... # # age_vals = np.array([ data[(_ptype ,"Metallicity_%02i"%(OFFSET+i))].value for i in np.arange(np.size(_agebins)-1)]) # mass_p = np.matmul(age_vals.T, _yields[:,ei].T) # mass_p = np.matmul(_yields[:,ei].T, age_vals) else: for i in np.arange(np.size(_agebins)-1): fname = 'Metallicity_%02i'%(OFFSET + i) mass_p += data[(_ptype,fname)].value * _yields[i,_ei] #(agebinnum, elementnum) # age_vals = np.array([ data[(_ptype,"Metallicity_%02i"%(OFFSET+i))] for i in np.arange(np.size(_agebins)-1)]) # mass_p = np.matmul(_yields[:ei].T, age_vals) #np.sum(np.transpose(age_vals) * _yields[:,ei], axis=1) if age_is_fraction: mass_p = (mass_p * data[(_ptype,'particle_mass')].to('code_mass').value) * yt.units.Msun else: mass_p = mass_p * yt.units.Msun return mass_p / data.ds.hubble_constant return temp def _metal_fraction_test(_ptype, _e): def temp(field,data): Mp = data[(_ptype,'particle_mass')].to('Msun') abund = data[('all',_ptype + '_' + _e + '_mass')].to('Msun') / Mp abund[Mp==0.0] = 0.0 return abund return temp def _metal_mass_actual_test(_ptype,_ei): def temp(field,data): Mp = data[(_ptype,'particle_mass')].to('Msun') abund = data[(_ptype,"Metallicity_%02i"%(_ei))] return abund*Mp return temp for ei,e in enumerate(_elements): ds.add_field( ('all', ptype + '_' + e + '_mass'), sampling_type='particle', function=_metal_mass_test(ptype, ei), units = 'Msun', force_override=True) ds.add_field( ('all',ptype + '_' + e + '_fraction'), sampling_type='particle', function=_metal_fraction_test(ptype,e), units='', force_override=True) ds.add_field( ('all',ptype + '_' + e + '_actual_mass'), sampling_type='particle', function=_metal_mass_actual_test(ptype,ei), units='Msun', force_override=True) return def _generate_star_metal_fields(ds, _agebins=None, _elements=elements, _yields=None, ptype='PartType4', age_is_fraction = False): """ See above function. Computes surface abundances of given star as derived from the age tracers """ def _star_metal_mass_test(_ptype, _ei): # test metals in bin zero def temp(field,data): mass_p = np.zeros(np.shape( data[(_ptype,'particle_mass')])) for i in np.arange(np.size(_agebins)-1): fname = 'Metallicity_%02i'%(OFFSET + i) mass_p += data[(ptype,fname)].value * _yields[i,_ei] #(agebinnum, elementnum) if age_is_fraction: mass_p = (mass_p * data[(ptype,'particle_mass')].to('code_mass').value) * yt.units.Msun else: mass_p = mass_p * yt.units.Msun return mass_p / data.ds.hubble_constant return temp for ei,e in enumerate(_elements): ds.add_field( ('all', ptype + '_' + e + '_mass'), sampling_type='particle', function=_star_metal_mass_test(ptype, ei), units = 'Msun', force_override=True) return # # Extracted FIRE yield model: # - Model is as-is from the code, but does not include any # metallicity dependence (wind rates are fixed to a chosen # metallicity, default is solar) # # def sn_rate(t): """ CCSNE rate SN / Gyr per solar msas of star formation Changed output to /Gyr to keep same units as input t """ agemin = 0.003401 # Gyr agebrk = 0.010370 # Gyr agemax = 0.03753 # Gyr RSNE = 0.0 if (t>agemin): if (t <= agebrk): RSNE = 5.408E-4 elif (t<=agemax): RSNE=2.516E-4 if (t > agemax): #RSNE=5.3E-8+1.6*np.exp(-0.5*((t-0.05)/0.01)*((t-0.05)/0.01)) # This is JUST SNIa RSNE=0.0 # set to zero for CCSNE return RSNE * 1000.0 def snIa_rate(t): """ SNIa rate (SN/Gyr) - t in Gyr """ agemin = 0.003401 # Gyr agebrk = 0.010370 # Gyr agemax = 0.03753 # Gyr RSNE = 0.0 if (t > agemax): RSNE=5.3E-8+1.6E-5*np.exp(-0.5*((t-0.05)/0.01)*((t-0.05)/0.01)) # This is JUST SNIa return RSNE * 1000.0 def wind_yields(i,element=None, Z = 1.0E-5, FIRE_Z_scaling = False): """ Yields (in fraction) per element with winds """ Zsolar = Z / SOLAR_METALLICITY yields = np.array([0.0, 0.36,0.016,0.0041,0.0118] + [0.0]*6) if (Z < 0.033): yields[4] *= Zsolar else: yields[4] *= 1.65 if FIRE_Z_scaling: # only first 5 elements i = 5 yields[:i] = yields[:i]*(1.0-Z)+(Zsolar*SolarAbundances[:i]-SolarAbundances[:i]) yields[0] = np.sum(yields[2:]) # total yield if yields[4] < 0: yields[4] = 0.0 print("Total O yield in winds is negative due to Z scaling") if (np.any(yields < 0.0)): print(yields) print("Error in wind yields - negative", Z) raise RuntimeError # if element passed, use that - otherwise use yield indeces if not (element is None): if element == 'all': return yields return yields[i] def wind_rate(t, Z = 1.0E-5, GasReturnFraction = 1.0): """ Mass loss rate from stellar winds. Z is in solar. """ Zsolar = Z / SOLAR_METALLICITY p = 0.0 if (t <= 0.001): p = 11.6846 else: if (t <=0.0035): logZ=np.log10(Zsolar) p=11.6846*Zsolar*10.0**(1.838*(0.79+logZ)*(np.log10(t)-(-3.00))) else: if (t<=0.1): p=72.1215*(t/0.0035)**(-3.25)+0.0103 else: p=1.03*t**(-1.1) / (12.9-np.log(t)) # bug: this was log10 at first #if (t < 0.1): # p = p * 1.0 # assuming wind_rate is in Msun / Myr per solar mass of SF rate = p * GasReturnFraction * 1.4 * 0.291175 return rate # might already be / Gyr def snIa_yields(i, element = None, Z = 1.0E-5, FIRE_Z_scaling = False, MSNe = 1.4): # ['Total','He','C','N','O','Ne','Mg','Si','S','Ca','Fe'] yields = np.array([1.4,0.0,0.049,1.2E-6,0.143,0.0045,0.0086,0.156,0.087,0.012,0.743]) Zsolar = Z / SOLAR_METALLICITY if FIRE_Z_scaling: yields = yields / MSNe yields = yields*(1.0-Z)+(Zsolar*SolarAbundances-SolarAbundances) yields = yields * MSNe yields[1] = 0.0 if (np.any(yields < 0.0)): if yields[3] < 0.0: print("N yield in SNIA is negative") yields[3] = 0.0 if
np.any(yields<0.0)
numpy.any
import numpy as np def box_iou_calc(boxes1, boxes2): # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py """ Return intersection-over-union (Jaccard index) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format. Arguments: boxes1 (Array[N, 4]) boxes2 (Array[M, 4]) Returns: iou (Array[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2 This implementation is taken from the above link and changed so that it only uses numpy.. """ def box_area(box): # box = 4xn return (box[2] - box[0]) * (box[3] - box[1]) area1 = box_area(boxes1.T) area2 = box_area(boxes2.T) lt = np.maximum(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] rb = np.minimum(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] inter = np.prod(np.clip(rb - lt, a_min = 0, a_max = None), 2) return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter) class ConfusionMatrix: def __init__(self, num_classes, CONF_THRESHOLD = 0.3, IOU_THRESHOLD = 0.5): self.matrix =
np.zeros((num_classes + 1, num_classes + 1))
numpy.zeros
"""Calculate ph-ph interaction and phonons on grid.""" # Copyright (C) 2020 <NAME> # All rights reserved. # # This file is part of phono3py. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # * Neither the name of the phonopy project nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import warnings import numpy as np from phonopy.harmonic.dynamical_matrix import get_dynamical_matrix from phonopy.structure.cells import ( Primitive, compute_all_sg_permutations, sparse_to_dense_svecs, ) from phonopy.structure.symmetry import Symmetry from phonopy.units import AMU, EV, Angstrom, Hbar, THz, VaspToTHz from phono3py.phonon3.real_to_reciprocal import RealToReciprocal from phono3py.phonon3.reciprocal_to_normal import ReciprocalToNormal from phono3py.phonon3.triplets import get_nosym_triplets_at_q, get_triplets_at_q from phono3py.phonon.grid import ( BZGrid, get_grid_points_by_rotations, get_ir_grid_points, ) from phono3py.phonon.solver import run_phonon_solver_c, run_phonon_solver_py class Interaction: """Calculate ph-ph interaction and phonons on grid. This class instance is the heart of phono3py calculation. Many data are stored. The following three steps have to be done manually. 1) init_dynamical_matrix 2) set_grid_point 3) run Attributes ---------- interaction_strength mesh_numbers is_mesh_symmetry fc3 dynamical_matrix primitive primitive_symmetry bz_grid band_indices nac_params nac_q_direction zero_value_positions frequency_factor_to_THz lapack_zheev_uplo cutoff_frequency """ def __init__( self, primitive: Primitive, bz_grid: BZGrid, primitive_symmetry: Symmetry, fc3=None, band_indices=None, constant_averaged_interaction=None, frequency_factor_to_THz=VaspToTHz, frequency_scale_factor=None, unit_conversion=None, is_mesh_symmetry=True, symmetrize_fc3q=False, cutoff_frequency=None, lapack_zheev_uplo="L", ): """Init method.""" self._primitive = primitive self._bz_grid = bz_grid self._primitive_symmetry = primitive_symmetry self._band_indices = None self._set_band_indices(band_indices) self._constant_averaged_interaction = constant_averaged_interaction self._frequency_factor_to_THz = frequency_factor_to_THz self._frequency_scale_factor = frequency_scale_factor if fc3 is not None: self._set_fc3(fc3) # Unit to eV^2 if unit_conversion is None: num_grid = np.prod(self.mesh_numbers) self._unit_conversion = ( (Hbar * EV) ** 3 / 36 / 8 * EV ** 2 / Angstrom ** 6 / (2 * np.pi * THz) ** 3 / AMU ** 3 / num_grid / EV ** 2 ) else: self._unit_conversion = unit_conversion if cutoff_frequency is None: self._cutoff_frequency = 0 else: self._cutoff_frequency = cutoff_frequency self._is_mesh_symmetry = is_mesh_symmetry self._symmetrize_fc3q = symmetrize_fc3q self._lapack_zheev_uplo = lapack_zheev_uplo self._symprec = self._primitive_symmetry.tolerance self._triplets_at_q = None self._weights_at_q = None self._triplets_map_at_q = None self._ir_map_at_q = None self._interaction_strength = None self._g_zero = None self._phonon_done = None self._frequencies = None self._eigenvectors = None self._dm = None self._nac_params = None self._nac_q_direction = None self._band_index_count = 0 svecs, multi = self._primitive.get_smallest_vectors() if self._primitive.store_dense_svecs: self._svecs = svecs self._multi = multi else: self._svecs, self._multi = sparse_to_dense_svecs(svecs, multi) self._masses = np.array(self._primitive.masses, dtype="double") self._p2s = np.array(self._primitive.p2s_map, dtype="int_") self._s2p = np.array(self._primitive.s2p_map, dtype="int_") def run(self, lang="C", g_zero=None): """Run ph-ph interaction calculation.""" if (self._phonon_done == 0).any(): self.run_phonon_solver() num_band = len(self._primitive) * 3 num_triplets = len(self._triplets_at_q) self._interaction_strength = np.empty( (num_triplets, len(self._band_indices), num_band, num_band), dtype="double" ) if self._constant_averaged_interaction is None: self._interaction_strength[:] = 0 if lang == "C": self._run_c(g_zero) else: self._run_py() else: num_grid = np.prod(self.mesh_numbers) self._interaction_strength[:] = ( self._constant_averaged_interaction / num_grid ) @property def interaction_strength(self): """Return ph-ph interaction strength. Returns ------- ndarray shape=(num_ir_grid_points, num_specified_band, num_band, num_band), dtype='double', order='C' """ return self._interaction_strength def get_interaction_strength(self): """Return ph-ph interaction strength.""" warnings.warn( "Use attribute, Interaction.interaction_strength " "instead of Interaction.get_interaction_strength().", DeprecationWarning, ) return self.interaction_strength @property def mesh_numbers(self): """Return mesh numbers. Returns ------- ndarray shape=(3, ), dtype='int_' """ return self._bz_grid.D_diag def get_mesh_numbers(self): """Return mesh numbers.""" warnings.warn( "Use attribute, Interaction.mesh_numbers " "instead of Interaction.get_mesh_numbers().", DeprecationWarning, ) return self.mesh_numbers @property def is_mesh_symmetry(self): """Whether symmetry of grid is utilized or not.""" return self._is_mesh_symmetry @property def fc3(self): """Return fc3.""" return self._fc3 def get_fc3(self): """Return fc3.""" warnings.warn( "Use attribute, Interaction.fc3 " "instead of Interaction.get_fc3().", DeprecationWarning, ) return self.fc3 @property def dynamical_matrix(self): """Return DynamicalMatrix class instance.""" return self._dm def get_dynamical_matrix(self): """Return DynamicalMatrix class instance.""" warnings.warn( "Use attribute, Interaction.dynamical_matrix " "instead of Interaction.get_dynamical_matrix().", DeprecationWarning, ) return self.dynamical_matrix @property def primitive(self): """Return Primitive class instance.""" return self._primitive def get_primitive(self): """Return Primitive class instance.""" warnings.warn( "Use attribute, Interaction.primitive " "instead of Interaction.get_primitive().", DeprecationWarning, ) return self.primitive @property def primitive_symmetry(self): """Return Symmetry class instance of primitive cell.""" return self._primitive_symmetry def get_triplets_at_q(self): """Return grid point triplets information. triplets_at_q is in BZ-grid. triplets_map_at_q is in GR-grid. ir_map_at_q is in GR-grid. See details at ``get_triplets_at_q``. """ return ( self._triplets_at_q, self._weights_at_q, self._triplets_map_at_q, self._ir_map_at_q, ) @property def bz_grid(self): """Return BZGrid class instance.""" return self._bz_grid @property def band_indices(self): """Return band indices. Returns ------- ndarray shape=(num_specified_bands, ), dtype='int_' """ return self._band_indices def get_band_indices(self): """Return band indices.""" warnings.warn( "Use attribute, Interaction.band_indices " "instead of Interaction.get_band_indices().", DeprecationWarning, ) return self.band_indices @property def nac_params(self): """Return NAC params.""" return self._nac_params @property def nac_q_direction(self): """Return q-direction used for NAC at q->0. Direction of q-vector watching from Gamma point used for non-analytical term correction. This is effective only at q=0 (physically q->0). The direction is given in crystallographic (fractional) coordinates. shape=(3,), dtype='double'. Default value is None, which means this feature is not used. """ return self._nac_q_direction @nac_q_direction.setter def nac_q_direction(self, nac_q_direction): if nac_q_direction is None: self._nac_q_direction = None else: self._nac_q_direction = np.array(nac_q_direction, dtype="double") def get_nac_q_direction(self): """Return q-direction used for NAC at q->0.""" warnings.warn( "Use attribute, Interaction.nac_q_direction " "instead of Interaction.get_nac_q_direction().", DeprecationWarning, ) return self.nac_q_direction def set_nac_q_direction(self, nac_q_direction=None): """Set NAC q-point direction valid at q->0.""" warnings.warn( "Use attribute, Interaction.nac_q_direction " "instead of Interaction.set_nac_q_direction().", DeprecationWarning, ) self.nac_q_direction = nac_q_direction @property def zero_value_positions(self): """Return zero ph-ph interaction elements information. Returns ------- shape is same as that of interaction_strength, dtype='byte', order='C' """ return self._g_zero def get_zero_value_positions(self): """Return zero ph-ph interaction elements information.""" warnings.warn( "Use attribute, Interaction.zero_value_positions " "instead of Interaction.get_zero_value_positions().", DeprecationWarning, ) return self.zero_value_positions def get_phonons(self): """Return phonons on grid. Returns ------- tuple frequencies : ndarray Phonon frequencies on grid. shape=(num_bz_grid, num_band), dtype='double', order='C' eigenvectors : ndarray Phonon eigenvectors on grid. shape=(num_bz_grid, num_band, num_band), dtype="c%d" % (np.dtype('double').itemsize * 2), order='C' phonon_done : ndarray 1 if phonon at a grid point is calcualted, otherwise 0. shape=(num_bz_grid, ), dtype='byte' """ return self._frequencies, self._eigenvectors, self._phonon_done @property def frequency_factor_to_THz(self): """Return phonon frequency conversion factor to THz.""" return self._frequency_factor_to_THz def get_frequency_factor_to_THz(self): """Return phonon frequency conversion factor to THz.""" warnings.warn( "Use attribute, Interaction.frequency_factor_to_THz ", "instead of Interaction.get_frequency_factor_to_THz().", DeprecationWarning, ) return self.frequency_factor_to_THz @property def lapack_zheev_uplo(self): """Return U or L for lapack zheev solver.""" return self._lapack_zheev_uplo def get_lapack_zheev_uplo(self): """Return U or L for lapack zheev solver.""" warnings.warn( "Use attribute, Interaction.lapack_zheev_uplo " "instead of Interaction.get_lapack_zheev_uplo().", DeprecationWarning, ) return self.lapack_zheev_uplo @property def cutoff_frequency(self): """Return cutoff phonon frequency to judge imaginary phonon.""" return self._cutoff_frequency def get_cutoff_frequency(self): """Return cutoff phonon frequency to judge imaginary phonon.""" warnings.warn( "Use attribute, Interaction.cutoff_frequency " "instead of Interaction.get_cutoff_frequency().", DeprecationWarning, ) return self.cutoff_frequency def get_averaged_interaction(self): """Return sum over phonon triplets of interaction strength. See Eq.(21) of PRB 91, 094306 (2015) """ # v[triplet, band0, band, band] v = self._interaction_strength w = self._weights_at_q v_sum = np.dot(w, v.sum(axis=2).sum(axis=2)) return v_sum / np.prod(v.shape[2:]) def get_primitive_and_supercell_correspondence(self): """Return atomic pair information.""" return (self._svecs, self._multi, self._p2s, self._s2p, self._masses) def get_unit_conversion_factor(self): """Return unit conversion factor.""" return self._unit_conversion def get_constant_averaged_interaction(self): """Return constant averaged interaction.""" return self._constant_averaged_interaction def set_interaction_strength(self, pp_strength, g_zero=None): """Set interaction strength.""" self._interaction_strength = pp_strength self._g_zero = g_zero def set_grid_point(self, grid_point, store_triplets_map=False): """Set grid point and prepare grid point triplets.""" if not self._is_mesh_symmetry: ( triplets_at_q, weights_at_q, triplets_map_at_q, ir_map_at_q, ) = get_nosym_triplets_at_q(grid_point, self._bz_grid) else: ( triplets_at_q, weights_at_q, triplets_map_at_q, ir_map_at_q, ) = get_triplets_at_q(grid_point, self._bz_grid, swappable=True) # Special treatment of symmetry is applied when q_direction is # used. if self._nac_q_direction is not None: if (self._bz_grid.addresses[grid_point] == 0).all(): self._phonon_done[grid_point] = 0 self.run_phonon_solver( np.array( [ grid_point, ], dtype="int_", ) ) rotations = [] for i, r in enumerate(self._bz_grid.reciprocal_operations): dq = self._nac_q_direction dq /= np.linalg.norm(dq) diff = np.dot(r, dq) - dq if (abs(diff) < 1e-5).all(): rotations.append(self._bz_grid.rotations[i]) ( triplets_at_q, weights_at_q, triplets_map_at_q, ir_map_at_q, ) = get_triplets_at_q( grid_point, self._bz_grid, reciprocal_rotations=rotations, is_time_reversal=False, ) reciprocal_lattice = np.linalg.inv(self._primitive.cell) for triplet in triplets_at_q: sum_q = (self._bz_grid.addresses[triplet]).sum(axis=0) if (sum_q % self.mesh_numbers != 0).any(): print("============= Warning ==================") print("%s" % triplet) for tp in triplet: print( "%s %s" % ( self._bz_grid.addresses[tp], np.linalg.norm( np.dot( reciprocal_lattice, self._bz_grid.addresses[tp] / self.mesh_numbers.astype("double"), ) ), ) ) print("%s" % sum_q) print("============= Warning ==================") self._triplets_at_q = triplets_at_q self._weights_at_q = weights_at_q if store_triplets_map: self._triplets_map_at_q = triplets_map_at_q self._ir_map_at_q = ir_map_at_q def init_dynamical_matrix( self, fc2, supercell, primitive, nac_params=None, solve_dynamical_matrices=True, decimals=None, ): """Prepare for phonon calculation on grid. solve_dynamical_matrices : bool When False, phonon calculation will be postponed. """ self._allocate_phonon() self._nac_params = nac_params self._dm = get_dynamical_matrix( fc2, supercell, primitive, nac_params=nac_params, frequency_scale_factor=self._frequency_scale_factor, decimals=decimals, symprec=self._symprec, ) self._phonon_done[0] = 0 if solve_dynamical_matrices: self.run_phonon_solver() else: self.run_phonon_solver(
np.array([0], dtype="int_")
numpy.array
import numpy as np import cv2 as cv import math import tensorflow as tf import random from os import listdir from matplotlib import pyplot as plt def enhance(load):#数据增强模块 with tf.Session() as sess: for i in load: for s in range(0,80): raw_img = tf.gfile.FastGFile(i,'rb').read() n=random.randint(0,11) img_data = tf.image.decode_image(raw_img) if n==0: #随机进行翻转,裁剪,缩放,调整对比度,色调,亮度 img_data=np.rot90(sess.run(img_data)) strload=i[0:i.find('.',-5,-1)-1]+'_'+str(s)+str(n)+'.jpg' cv.imwrite(strload,img_data.eval()) elif n==1: img_data = tf.image.rgb_to_grayscale(img_data) elif n==2: img_data = tf.image.convert_image_dtype(img_data, tf.float32) img_data = tf.image.adjust_brightness(img_data, delta=-.7) elif n==3: img_data = tf.image.convert_image_dtype(img_data, tf.float32) img_data = tf.image.random_brightness(img_data, max_delta=0.6) elif n==4: img_data = tf.image.convert_image_dtype(img_data, tf.float32) img_data = tf.image.random_contrast(img_data, lower=0, upper=4) elif n==5: img_data = tf.image.convert_image_dtype(img_data, tf.float32) img_data = tf.image.random_hue(img_data, 0.5) elif n==6: img_data = tf.image.convert_image_dtype(img_data, tf.float32) img_data = tf.image.random_saturation(img_data, lower=0, upper=2) elif n==7: img_data = tf.image.central_crop(sess.run(img_data),random.random()) elif n==8: img_data = tf.image.resize_image_with_pad(img_data,random.randint(sess.run(tf.shape(img_data))[0]/2,sess.run(tf.shape(img_data))[0]*2),random.randint(sess.run(tf.shape(img_data))[1]/2,sess.run(tf.shape(img_data))[1]*2)) elif n==9: img_data = tf.image.flip_left_right(img_data) elif n== 10: img_data = tf.image.flip_up_down(img_data) img_data = tf.image.convert_image_dtype(img_data, tf.int16) strload=i[0:i.find('.',-5,-1)-1]+'_'+str(s)+str(n)+'.jpg' cv.imwrite(strload,img_data.eval()) def cutimg(img_value,ROI_w,ROI_h,ROI_x,ROI_y,type):#裁剪图片 img=[] t=0 for i in range(0,math.ceil(ROI_w/25)): if type!=3 and i%4==0 and i>0: t+=10 n=i*25+t x=np.zeros((ROI_h,25,img_value.shape[2]),dtype=np.int16) for j in range(0,ROI_h): if ROI_w-n<25: return img else : x[j][0:]=img_value[ROI_y+j][n+ROI_x:n+ROI_x+25] img.append(x) return img def tool1(type,imgout,kernel,light_num,thresholdvalue):#卡号定位处理 num=t=0 ROI_w=ROI_h=ROI_x=ROI_y=0 if type==1: retval, dst=cv.threshold(imgout,thresholdvalue+light_num,255,cv.THRESH_BINARY) elif type==2: retval, dst=cv.threshold(imgout,thresholdvalue-15,255,cv.THRESH_BINARY) elif type==3: retval, dst=cv.threshold(imgout,thresholdvalue-light_num-30,255,cv.THRESH_BINARY_INV) dst = cv.morphologyEx(dst,cv.MORPH_GRADIENT,kernel) contours, hierarchy=cv.findContours(dst,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE) for i in range(0,len(contours)): x, y, w, h = cv.boundingRect(contours[i]) # print('ROI:',ROI_x,ROI_y,ROI_w,ROI_h,"\n") if w>150 and h>120 and y>300: ROI_y=0 num=0 t=10 continue # print(x,y,w,h,"\n") if y+h <= 480*0.75-t and y>=200 and h<=46: if ROI_y==0: ROI_h=46 ROI_y=y-(60-h) ROI_x=x ROI_w=w elif y>=ROI_y and y+h<=ROI_y+46: if x>ROI_x: if x>ROI_x+ROI_w: ROI_w=x-ROI_x+w else: ROI_w+=ROI_x-x ROI_x=x num+=(ROI_h/20+1)*(ROI_w/30+1) elif ROI_w/640>0.7 and num>20: break else : ROI_h=46 ROI_y=y-(46-h) ROI_x=x ROI_w=w num=0 else: continue return ROI_w,ROI_h,ROI_x,ROI_y,num def imghandle(img_name):#图片处理 img = cv.imread(img_name) img = cv.cvtColor(img, cv.COLOR_BGR2RGB) img=cv.resize(img,(640,480))#准备参数 imgout = cv.cvtColor(img,cv.COLOR_BGR2GRAY) thresholdvalue=imgout[20,20] light_num=30 kernel = np.ones((9,9), np.uint8) print(cv.__version__,thresholdvalue) if thresholdvalue>190: light_num=50 elif thresholdvalue>200: light_num=100 dst = cv.morphologyEx(imgout,cv.MORPH_TOPHAT,kernel)#形态处理 gradX = cv.Sobel(dst,cv.CV_32F,1,0,-1) gradX =
np.absolute(gradX)
numpy.absolute
''' This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de). PM4Py is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. PM4Py is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with PM4Py. If not, see <https://www.gnu.org/licenses/>. ''' from pm4py.algo.clustering.trace_attribute_driven.util import filter_subsets import pandas as pd import numpy as np from collections import Counter from scipy.spatial.distance import pdist from pm4py.util import exec_utils from enum import Enum from pm4py.util import constants class Parameters(Enum): ATTRIBUTE_KEY = constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY SINGLE = "single" BINARIZE = "binarize" POSITIVE = "positive" LOWER_PERCENT = "lower_percent" def occu_var_act(var_list): ''' return dataframe that shows the frequency of each element(activity) in each variant list :param var_list: :return: ''' result = Counter(var_list) # count number of occurrence of each element df = pd.DataFrame.from_dict(dict(result), orient='index', columns=['freq']) df = df.reset_index().rename(columns={'index': 'var'}) return df def act_sim(var_list_1, var_list_2, log1, log2, freq_thres, num, parameters=None): ''' this function compare the activity similarity between two sublogs via the two lists of variants. :param var_list_1: lists of variants in sublog 1 :param var_list_2: lists of variants in sublog 2 :param freq_thres: same as sublog2df() :param log1: input sublog1 of sublog2df(), which must correspond to var_list_1 :param log2: input sublog2 of sublog2df(), which must correspond to var_list_2 :return: the distance matrix between 2 sublogs in which each element is the distance between two variants. ''' if parameters is None: parameters = {} single = exec_utils.get_param_value(Parameters.SINGLE, parameters, False) if len(var_list_1) >= len(var_list_2): max_len = len(var_list_1) min_len = len(var_list_2) max_var = var_list_1 min_var = var_list_2 var_count_max = filter_subsets.sublog2df(log1, freq_thres, num)['count'] var_count_min = filter_subsets.sublog2df(log2, freq_thres, num)['count'] else: max_len = len(var_list_2) min_len = len(var_list_1) max_var = var_list_2 min_var = var_list_1 var_count_max = filter_subsets.sublog2df(log2, freq_thres, num)['count'] var_count_min = filter_subsets.sublog2df(log1, freq_thres, num)['count'] dist_matrix = np.zeros((max_len, min_len)) max_per_var = np.zeros(max_len) max_freq = np.zeros(max_len) col_sum = np.zeros(max_len) if var_list_1 == var_list_2: print("Please give different variant lists!") else: for i in range(max_len): dist_vec = np.zeros(min_len) df_1 = occu_var_act(max_var[i]) for j in range(min_len): df_2 = occu_var_act(min_var[j]) df = pd.merge(df_1, df_2, how='outer', on='var').fillna(0) # cosine similarity is used to calculate trace similarity dist_vec[j] = (pdist(
np.array([df['freq_x'].values, df['freq_y'].values])
numpy.array
""" MeasureColocalization ===================== **MeasureColocalization** measures the colocalization and correlation between intensities in different images (e.g., different color channels) on a pixel-by-pixel basis, within identified objects or across an entire image. Given two or more images, this module calculates the correlation & colocalization (Overlap, Manders, Costes’ Automated Threshold & Rank Weighted Colocalization) between the pixel intensities. The correlation / colocalization can be measured for entire images, or a correlation measurement can be made within each individual object. Correlations / Colocalizations will be calculated between all pairs of images that are selected in the module, as well as between selected objects. For example, if correlations are to be measured for a set of red, green, and blue images containing identified nuclei, measurements will be made between the following: - The blue and green, red and green, and red and blue images. - The nuclei in each of the above image pairs. A good primer on colocalization theory can be found on the `SVI website`_. You can find a helpful review on colocalization from Aaron *et al*. `here`_. | ============ ============ =============== Supports 2D? Supports 3D? Respects masks? ============ ============ =============== YES YES YES ============ ============ =============== Measurements made by this module ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - *Correlation:* The correlation between a pair of images *I* and *J*, calculated as Pearson’s correlation coefficient. The formula is covariance(\ *I* ,\ *J*)/[std(\ *I* ) × std(\ *J*)]. - *Slope:* The slope of the least-squares regression between a pair of images I and J. Calculated using the model *A* × *I* + *B* = *J*, where *A* is the slope. - *Overlap coefficient:* The overlap coefficient is a modification of Pearson’s correlation where average intensity values of the pixels are not subtracted from the original intensity values. For a pair of images R and G, the overlap coefficient is measured as r = sum(Ri \* Gi) / sqrt (sum(Ri\*Ri)\*sum(Gi\*Gi)). - *Manders coefficient:* The Manders coefficient for a pair of images R and G is measured as M1 = sum(Ri_coloc)/sum(Ri) and M2 = sum(Gi_coloc)/sum(Gi), where Ri_coloc = Ri when Gi > 0, 0 otherwise and Gi_coloc = Gi when Ri >0, 0 otherwise. - *Manders coefficient (Costes Automated Threshold):* Costes’ automated threshold estimates maximum threshold of intensity for each image based on correlation. Manders coefficient is applied on thresholded images as Ri_coloc = Ri when Gi > Gthr and Gi_coloc = Gi when Ri > Rthr where Gthr and Rthr are thresholds calculated using Costes’ automated threshold method. - *Rank Weighted Colocalization coefficient:* The RWC coefficient for a pair of images R and G is measured as RWC1 = sum(Ri_coloc\*Wi)/sum(Ri) and RWC2 = sum(Gi_coloc\*Wi)/sum(Gi), where Wi is Weight defined as Wi = (Rmax - Di)/Rmax where Rmax is the maximum of Ranks among R and G based on the max intensity, and Di = abs(Rank(Ri) - Rank(Gi)) (absolute difference in ranks between R and G) and Ri_coloc = Ri when Gi > 0, 0 otherwise and Gi_coloc = Gi when Ri >0, 0 otherwise. (Singan et al. 2011, BMC Bioinformatics 12:407). References ^^^^^^^^^^ - <NAME>, Taylor AB, Chew TL. Image co-localization - co-occurrence versus correlation. J Cell Sci. 2018;131(3):jcs211847. Published 2018 Feb 8. doi:10.1242/jcs.211847 .. _SVI website: http://svi.nl/ColocalizationTheory .. _here: https://jcs.biologists.org/content/joces/131/3/jcs211847.full.pdf """ import numpy import scipy.ndimage import scipy.stats from cellprofiler_core.constants.measurement import COLTYPE_FLOAT from cellprofiler_core.module import Module from cellprofiler_core.setting import Divider, Binary, ValidationError from cellprofiler_core.setting.choice import Choice from cellprofiler_core.setting.subscriber import ( LabelListSubscriber, ImageListSubscriber, ) from cellprofiler_core.setting.text import Float from cellprofiler_core.utilities.core.object import size_similarly from centrosome.cpmorphology import fixup_scipy_ndimage_result as fix from scipy.linalg import lstsq M_IMAGES = "Across entire image" M_OBJECTS = "Within objects" M_IMAGES_AND_OBJECTS = "Both" M_FAST = "Fast" M_ACCURATE = "Accurate" """Feature name format for the correlation measurement""" F_CORRELATION_FORMAT = "Correlation_Correlation_%s_%s" """Feature name format for the slope measurement""" F_SLOPE_FORMAT = "Correlation_Slope_%s_%s" """Feature name format for the overlap coefficient measurement""" F_OVERLAP_FORMAT = "Correlation_Overlap_%s_%s" """Feature name format for the Manders Coefficient measurement""" F_K_FORMAT = "Correlation_K_%s_%s" """Feature name format for the Manders Coefficient measurement""" F_KS_FORMAT = "Correlation_KS_%s_%s" """Feature name format for the Manders Coefficient measurement""" F_MANDERS_FORMAT = "Correlation_Manders_%s_%s" """Feature name format for the RWC Coefficient measurement""" F_RWC_FORMAT = "Correlation_RWC_%s_%s" """Feature name format for the Costes Coefficient measurement""" F_COSTES_FORMAT = "Correlation_Costes_%s_%s" class MeasureColocalization(Module): module_name = "MeasureColocalization" category = "Measurement" variable_revision_number = 5 def create_settings(self): """Create the initial settings for the module""" self.images_list = ImageListSubscriber( "Select images to measure", [], doc="""Select images to measure the correlation/colocalization in.""", ) self.objects_list = LabelListSubscriber( "Select objects to measure", [], doc="""\ *(Used only when "Within objects" or "Both" are selected)* Select the objects to be measured.""", ) self.thr = Float( "Set threshold as percentage of maximum intensity for the images", 15, minval=0, maxval=99, doc="""\ You may choose to measure colocalization metrics only for those pixels above a certain threshold. Select the threshold as a percentage of the maximum intensity of the above image [0-99]. This value is used by the Overlap, Manders, and Rank Weighted Colocalization measurements. """, ) self.images_or_objects = Choice( "Select where to measure correlation", [M_IMAGES, M_OBJECTS, M_IMAGES_AND_OBJECTS], doc="""\ You can measure the correlation in several ways: - *%(M_OBJECTS)s:* Measure correlation only in those pixels previously identified as within an object. You will be asked to choose which object type to measure within. - *%(M_IMAGES)s:* Measure the correlation across all pixels in the images. - *%(M_IMAGES_AND_OBJECTS)s:* Calculate both measurements above. All methods measure correlation on a pixel by pixel basis. """ % globals(), ) self.spacer = Divider(line=True) self.do_all = Binary( "Run all metrics?", True, doc="""\ Select *{YES}* to run all of CellProfiler's correlation and colocalization algorithms on your images and/or objects; otherwise select *{NO}* to pick which correlation and colocalization algorithms to run. """.format( **{"YES": "Yes", "NO": "No"} ), ) self.do_corr_and_slope = Binary( "Calculate correlation and slope metrics?", True, doc="""\ Select *{YES}* to run the Pearson correlation and slope metrics. """.format( **{"YES": "Yes"} ), ) self.do_manders = Binary( "Calculate the Manders coefficients?", True, doc="""\ Select *{YES}* to run the Manders coefficients. """.format( **{"YES": "Yes"} ), ) self.do_rwc = Binary( "Calculate the Rank Weighted Colocalization coefficients?", True, doc="""\ Select *{YES}* to run the Rank Weighted Colocalization coefficients. """.format( **{"YES": "Yes"} ), ) self.do_overlap = Binary( "Calculate the Overlap coefficients?", True, doc="""\ Select *{YES}* to run the Overlap coefficients. """.format( **{"YES": "Yes"} ), ) self.do_costes = Binary( "Calculate the Manders coefficients using Costes auto threshold?", True, doc="""\ Select *{YES}* to run the Manders coefficients using Costes auto threshold. """.format( **{"YES": "Yes"} ), ) self.fast_costes = Choice( "Method for Costes thresholding", [M_FAST, M_ACCURATE], doc=f"""\ This setting determines the method used to calculate the threshold for use within the Costes calculations. Selecting *{M_FAST}* will prioritise testing the most relevant potential thresholds to identify the optimal value. Selecting *{M_ACCURATE}* will test every possible threshold value. The latter method becomes particularly time-consuming with larger images. In most instances the results of both strategies should be identical. In both modes Costes automatic thresholding can seriously impact performance when working with 16-bit images. You may want to disable these specific measurements (available when "*Run All Metrics?*" is set to "*No*"). """ ) def settings(self): """Return the settings to be saved in the pipeline""" result = [ self.images_list, self.thr, self.images_or_objects, self.objects_list, self.do_all, self.do_corr_and_slope, self.do_manders, self.do_rwc, self.do_overlap, self.do_costes, self.fast_costes, ] return result def visible_settings(self): result = [ self.images_list, self.spacer, self.thr, self.images_or_objects, ] if self.wants_objects(): result += [self.objects_list] result += [self.do_all] if not self.do_all: result += [ self.do_corr_and_slope, self.do_manders, self.do_rwc, self.do_overlap, self.do_costes, ] if self.do_all or self.do_costes: result += [self.fast_costes] return result def help_settings(self): """Return the settings to be displayed in the help menu""" help_settings = [ self.images_or_objects, self.thr, self.images_list, self.objects_list, self.do_all, ] return help_settings def get_image_pairs(self): """Yield all permutations of pairs of images to correlate Yields the pairs of images in a canonical order. """ for i in range(len(self.images_list.value) - 1): for j in range(i + 1, len(self.images_list.value)): yield ( self.images_list.value[i], self.images_list.value[j], ) def wants_images(self): """True if the user wants to measure correlation on whole images""" return self.images_or_objects in (M_IMAGES, M_IMAGES_AND_OBJECTS) def wants_objects(self): """True if the user wants to measure per-object correlations""" return self.images_or_objects in (M_OBJECTS, M_IMAGES_AND_OBJECTS) def run(self, workspace): """Calculate measurements on an image set""" col_labels = ["First image", "Second image", "Objects", "Measurement", "Value"] statistics = [] if len(self.images_list.value) < 2: raise ValueError("At least 2 images must be selected for analysis.") for first_image_name, second_image_name in self.get_image_pairs(): if self.wants_images(): statistics += self.run_image_pair_images( workspace, first_image_name, second_image_name ) if self.wants_objects(): for object_name in self.objects_list.value: statistics += self.run_image_pair_objects( workspace, first_image_name, second_image_name, object_name ) if self.show_window: workspace.display_data.statistics = statistics workspace.display_data.col_labels = col_labels def display(self, workspace, figure): statistics = workspace.display_data.statistics if self.wants_objects(): helptext = "default" else: helptext = None figure.set_subplots((1, 1)) figure.subplot_table( 0, 0, statistics, workspace.display_data.col_labels, title=helptext ) def run_image_pair_images(self, workspace, first_image_name, second_image_name): """Calculate the correlation between the pixels of two images""" first_image = workspace.image_set.get_image( first_image_name, must_be_grayscale=True ) second_image = workspace.image_set.get_image( second_image_name, must_be_grayscale=True ) first_pixel_data = first_image.pixel_data first_mask = first_image.mask first_pixel_count = numpy.product(first_pixel_data.shape) second_pixel_data = second_image.pixel_data second_mask = second_image.mask second_pixel_count = numpy.product(second_pixel_data.shape) # # Crop the larger image similarly to the smaller one # if first_pixel_count < second_pixel_count: second_pixel_data = first_image.crop_image_similarly(second_pixel_data) second_mask = first_image.crop_image_similarly(second_mask) elif second_pixel_count < first_pixel_count: first_pixel_data = second_image.crop_image_similarly(first_pixel_data) first_mask = second_image.crop_image_similarly(first_mask) mask = ( first_mask & second_mask & (~numpy.isnan(first_pixel_data)) & (~numpy.isnan(second_pixel_data)) ) result = [] if numpy.any(mask): fi = first_pixel_data[mask] si = second_pixel_data[mask] if self.do_corr_and_slope: # # Perform the correlation, which returns: # [ [ii, ij], # [ji, jj] ] # corr = numpy.corrcoef((fi, si))[1, 0] # # Find the slope as a linear regression to # A * i1 + B = i2 # coeffs = lstsq(numpy.array((fi, numpy.ones_like(fi))).transpose(), si)[ 0 ] slope = coeffs[0] result += [ [ first_image_name, second_image_name, "-", "Correlation", "%.3f" % corr, ], [first_image_name, second_image_name, "-", "Slope", "%.3f" % slope], ] if any((self.do_manders, self.do_rwc, self.do_overlap)): # Threshold as percentage of maximum intensity in each channel thr_fi = self.thr.value * numpy.max(fi) / 100 thr_si = self.thr.value * numpy.max(si) / 100 combined_thresh = (fi > thr_fi) & (si > thr_si) fi_thresh = fi[combined_thresh] si_thresh = si[combined_thresh] tot_fi_thr = fi[(fi > thr_fi)].sum() tot_si_thr = si[(si > thr_si)].sum() if self.do_manders: # Manders Coefficient M1 = 0 M2 = 0 M1 = fi_thresh.sum() / tot_fi_thr M2 = si_thresh.sum() / tot_si_thr result += [ [ first_image_name, second_image_name, "-", "Manders Coefficient", "%.3f" % M1, ], [ second_image_name, first_image_name, "-", "Manders Coefficient", "%.3f" % M2, ], ] if self.do_rwc: # RWC Coefficient RWC1 = 0 RWC2 = 0 Rank1 = numpy.lexsort([fi]) Rank2 = numpy.lexsort([si]) Rank1_U = numpy.hstack([[False], fi[Rank1[:-1]] != fi[Rank1[1:]]]) Rank2_U = numpy.hstack([[False], si[Rank2[:-1]] != si[Rank2[1:]]]) Rank1_S = numpy.cumsum(Rank1_U) Rank2_S = numpy.cumsum(Rank2_U) Rank_im1 = numpy.zeros(fi.shape, dtype=int) Rank_im2 = numpy.zeros(si.shape, dtype=int) Rank_im1[Rank1] = Rank1_S Rank_im2[Rank2] = Rank2_S R = max(Rank_im1.max(), Rank_im2.max()) + 1 Di = abs(Rank_im1 - Rank_im2) weight = ((R - Di) * 1.0) / R weight_thresh = weight[combined_thresh] RWC1 = (fi_thresh * weight_thresh).sum() / tot_fi_thr RWC2 = (si_thresh * weight_thresh).sum() / tot_si_thr result += [ [ first_image_name, second_image_name, "-", "RWC Coefficient", "%.3f" % RWC1, ], [ second_image_name, first_image_name, "-", "RWC Coefficient", "%.3f" % RWC2, ], ] if self.do_overlap: # Overlap Coefficient overlap = 0 overlap = (fi_thresh * si_thresh).sum() / numpy.sqrt( (fi_thresh ** 2).sum() * (si_thresh ** 2).sum() ) K1 = (fi_thresh * si_thresh).sum() / (fi_thresh ** 2).sum() K2 = (fi_thresh * si_thresh).sum() / (si_thresh ** 2).sum() result += [ [ first_image_name, second_image_name, "-", "Overlap Coefficient", "%.3f" % overlap, ] ] if self.do_costes: # Orthogonal Regression for Costes' automated threshold nonZero = (fi > 0) | (si > 0) xvar = numpy.var(fi[nonZero], axis=0, ddof=1) yvar = numpy.var(si[nonZero], axis=0, ddof=1) xmean = numpy.mean(fi[nonZero], axis=0) ymean = numpy.mean(si[nonZero], axis=0) z = fi[nonZero] + si[nonZero] zvar = numpy.var(z, axis=0, ddof=1) covar = 0.5 * (zvar - (xvar + yvar)) denom = 2 * covar num = (yvar - xvar) + numpy.sqrt( (yvar - xvar) * (yvar - xvar) + 4 * (covar * covar) ) a = num / denom b = ymean - a * xmean i_step = get_scale(first_image.scale, second_image.scale) # Start at 1 step above the maximum img_max = max(fi.max(), si.max()) i = i_step * ((img_max // i_step) + 1) num_true = None while i > i_step: Thr_fi_c = i Thr_si_c = (a * i) + b combt = (fi < Thr_fi_c) | (si < Thr_si_c) try: # Only run pearsonr if the input has changed. if (positives := numpy.count_nonzero(combt)) != num_true: costReg, _ = scipy.stats.pearsonr(fi[combt], si[combt]) num_true = positives if costReg <= 0: break elif self.fast_costes.value == M_ACCURATE or i < i_step * 10: i -= i_step elif costReg > 0.45: # We're way off, step down 10x i -= i_step * 10 elif costReg > 0.35: # Still far from 0, step 5x i -= i_step * 5 elif costReg > 0.25: # Step 2x i -= i_step * 2 else: i -= i_step except ValueError: break # Costes' thershold calculation combined_thresh_c = (fi > Thr_fi_c) & (si > Thr_si_c) fi_thresh_c = fi[combined_thresh_c] si_thresh_c = si[combined_thresh_c] tot_fi_thr_c = fi[(fi > Thr_fi_c)].sum() tot_si_thr_c = si[(si > Thr_si_c)].sum() # Costes' Automated Threshold C1 = 0 C2 = 0 C1 = fi_thresh_c.sum() / tot_fi_thr_c C2 = si_thresh_c.sum() / tot_si_thr_c result += [ [ first_image_name, second_image_name, "-", "Manders Coefficient (Costes)", "%.3f" % C1, ], [ second_image_name, first_image_name, "-", "Manders Coefficient (Costes)", "%.3f" % C2, ], ] else: corr = numpy.NaN slope = numpy.NaN C1 = numpy.NaN C2 = numpy.NaN M1 = numpy.NaN M2 = numpy.NaN RWC1 = numpy.NaN RWC2 = numpy.NaN overlap = numpy.NaN K1 = numpy.NaN K2 = numpy.NaN # # Add the measurements # if self.do_corr_and_slope: corr_measurement = F_CORRELATION_FORMAT % ( first_image_name, second_image_name, ) slope_measurement = F_SLOPE_FORMAT % (first_image_name, second_image_name) workspace.measurements.add_image_measurement(corr_measurement, corr) workspace.measurements.add_image_measurement(slope_measurement, slope) if self.do_overlap: overlap_measurement = F_OVERLAP_FORMAT % ( first_image_name, second_image_name, ) k_measurement_1 = F_K_FORMAT % (first_image_name, second_image_name) k_measurement_2 = F_K_FORMAT % (second_image_name, first_image_name) workspace.measurements.add_image_measurement(overlap_measurement, overlap) workspace.measurements.add_image_measurement(k_measurement_1, K1) workspace.measurements.add_image_measurement(k_measurement_2, K2) if self.do_manders: manders_measurement_1 = F_MANDERS_FORMAT % ( first_image_name, second_image_name, ) manders_measurement_2 = F_MANDERS_FORMAT % ( second_image_name, first_image_name, ) workspace.measurements.add_image_measurement(manders_measurement_1, M1) workspace.measurements.add_image_measurement(manders_measurement_2, M2) if self.do_rwc: rwc_measurement_1 = F_RWC_FORMAT % (first_image_name, second_image_name) rwc_measurement_2 = F_RWC_FORMAT % (second_image_name, first_image_name) workspace.measurements.add_image_measurement(rwc_measurement_1, RWC1) workspace.measurements.add_image_measurement(rwc_measurement_2, RWC2) if self.do_costes: costes_measurement_1 = F_COSTES_FORMAT % ( first_image_name, second_image_name, ) costes_measurement_2 = F_COSTES_FORMAT % ( second_image_name, first_image_name, ) workspace.measurements.add_image_measurement(costes_measurement_1, C1) workspace.measurements.add_image_measurement(costes_measurement_2, C2) return result def run_image_pair_objects( self, workspace, first_image_name, second_image_name, object_name ): """Calculate per-object correlations between intensities in two images""" first_image = workspace.image_set.get_image( first_image_name, must_be_grayscale=True ) second_image = workspace.image_set.get_image( second_image_name, must_be_grayscale=True ) objects = workspace.object_set.get_objects(object_name) # # Crop both images to the size of the labels matrix # labels = objects.segmented try: first_pixels = objects.crop_image_similarly(first_image.pixel_data) first_mask = objects.crop_image_similarly(first_image.mask) except ValueError: first_pixels, m1 = size_similarly(labels, first_image.pixel_data) first_mask, m1 = size_similarly(labels, first_image.mask) first_mask[~m1] = False try: second_pixels = objects.crop_image_similarly(second_image.pixel_data) second_mask = objects.crop_image_similarly(second_image.mask) except ValueError: second_pixels, m1 = size_similarly(labels, second_image.pixel_data) second_mask, m1 = size_similarly(labels, second_image.mask) second_mask[~m1] = False mask = (labels > 0) & first_mask & second_mask first_pixels = first_pixels[mask] second_pixels = second_pixels[mask] labels = labels[mask] result = [] first_pixel_data = first_image.pixel_data first_mask = first_image.mask first_pixel_count = numpy.product(first_pixel_data.shape) second_pixel_data = second_image.pixel_data second_mask = second_image.mask second_pixel_count = numpy.product(second_pixel_data.shape) # # Crop the larger image similarly to the smaller one # if first_pixel_count < second_pixel_count: second_pixel_data = first_image.crop_image_similarly(second_pixel_data) second_mask = first_image.crop_image_similarly(second_mask) elif second_pixel_count < first_pixel_count: first_pixel_data = second_image.crop_image_similarly(first_pixel_data) first_mask = second_image.crop_image_similarly(first_mask) mask = ( first_mask & second_mask & (~numpy.isnan(first_pixel_data)) & (~numpy.isnan(second_pixel_data)) ) if numpy.any(mask): fi = first_pixel_data[mask] si = second_pixel_data[mask] n_objects = objects.count # Handle case when both images for the correlation are completely masked out if n_objects == 0: corr = numpy.zeros((0,)) overlap = numpy.zeros((0,)) K1 = numpy.zeros((0,)) K2 = numpy.zeros((0,)) M1 = numpy.zeros((0,)) M2 = numpy.zeros((0,)) RWC1 = numpy.zeros((0,)) RWC2 = numpy.zeros((0,)) C1 = numpy.zeros((0,)) C2 = numpy.zeros((0,)) elif numpy.where(mask)[0].__len__() == 0: corr = numpy.zeros((n_objects,)) corr[:] = numpy.NaN overlap = K1 = K2 = M1 = M2 = RWC1 = RWC2 = C1 = C2 = corr else: lrange = numpy.arange(n_objects, dtype=numpy.int32) + 1 if self.do_corr_and_slope: # # The correlation is sum((x-mean(x))(y-mean(y)) / # ((n-1) * std(x) *std(y))) # mean1 = fix(scipy.ndimage.mean(first_pixels, labels, lrange)) mean2 = fix(scipy.ndimage.mean(second_pixels, labels, lrange)) # # Calculate the standard deviation times the population. # std1 = numpy.sqrt( fix( scipy.ndimage.sum( (first_pixels - mean1[labels - 1]) ** 2, labels, lrange ) ) ) std2 = numpy.sqrt( fix( scipy.ndimage.sum( (second_pixels - mean2[labels - 1]) ** 2, labels, lrange ) ) ) x = first_pixels - mean1[labels - 1] # x - mean(x) y = second_pixels - mean2[labels - 1] # y - mean(y) corr = fix( scipy.ndimage.sum( x * y / (std1[labels - 1] * std2[labels - 1]), labels, lrange ) ) # Explicitly set the correlation to NaN for masked objects corr[scipy.ndimage.sum(1, labels, lrange) == 0] = numpy.NaN result += [ [ first_image_name, second_image_name, object_name, "Mean Correlation coeff", "%.3f" % numpy.mean(corr), ], [ first_image_name, second_image_name, object_name, "Median Correlation coeff", "%.3f" % numpy.median(corr), ], [ first_image_name, second_image_name, object_name, "Min Correlation coeff", "%.3f" % numpy.min(corr), ], [ first_image_name, second_image_name, object_name, "Max Correlation coeff", "%.3f" % numpy.max(corr), ], ] if any((self.do_manders, self.do_rwc, self.do_overlap)): # Threshold as percentage of maximum intensity of objects in each channel tff = (self.thr.value / 100) * fix( scipy.ndimage.maximum(first_pixels, labels, lrange) ) tss = (self.thr.value / 100) * fix( scipy.ndimage.maximum(second_pixels, labels, lrange) ) combined_thresh = (first_pixels >= tff[labels - 1]) & ( second_pixels >= tss[labels - 1] ) fi_thresh = first_pixels[combined_thresh] si_thresh = second_pixels[combined_thresh] tot_fi_thr = scipy.ndimage.sum( first_pixels[first_pixels >= tff[labels - 1]], labels[first_pixels >= tff[labels - 1]], lrange, ) tot_si_thr = scipy.ndimage.sum( second_pixels[second_pixels >= tss[labels - 1]], labels[second_pixels >= tss[labels - 1]], lrange, ) if self.do_manders: # Manders Coefficient M1 = numpy.zeros(len(lrange)) M2 = numpy.zeros(len(lrange)) if numpy.any(combined_thresh): M1 = numpy.array( scipy.ndimage.sum(fi_thresh, labels[combined_thresh], lrange) ) / numpy.array(tot_fi_thr) M2 = numpy.array( scipy.ndimage.sum(si_thresh, labels[combined_thresh], lrange) ) / numpy.array(tot_si_thr) result += [ [ first_image_name, second_image_name, object_name, "Mean Manders coeff", "%.3f" % numpy.mean(M1), ], [ first_image_name, second_image_name, object_name, "Median Manders coeff", "%.3f" % numpy.median(M1), ], [ first_image_name, second_image_name, object_name, "Min Manders coeff", "%.3f" % numpy.min(M1), ], [ first_image_name, second_image_name, object_name, "Max Manders coeff", "%.3f" % numpy.max(M1), ], ] result += [ [ second_image_name, first_image_name, object_name, "Mean Manders coeff", "%.3f" % numpy.mean(M2), ], [ second_image_name, first_image_name, object_name, "Median Manders coeff", "%.3f" % numpy.median(M2), ], [ second_image_name, first_image_name, object_name, "Min Manders coeff", "%.3f" % numpy.min(M2), ], [ second_image_name, first_image_name, object_name, "Max Manders coeff", "%.3f" % numpy.max(M2), ], ] if self.do_rwc: # RWC Coefficient RWC1 = numpy.zeros(len(lrange)) RWC2 = numpy.zeros(len(lrange)) [Rank1] = numpy.lexsort(([labels], [first_pixels])) [Rank2] = numpy.lexsort(([labels], [second_pixels])) Rank1_U = numpy.hstack( [[False], first_pixels[Rank1[:-1]] != first_pixels[Rank1[1:]]] ) Rank2_U = numpy.hstack( [[False], second_pixels[Rank2[:-1]] != second_pixels[Rank2[1:]]] ) Rank1_S = numpy.cumsum(Rank1_U) Rank2_S = numpy.cumsum(Rank2_U) Rank_im1 = numpy.zeros(first_pixels.shape, dtype=int) Rank_im2 = numpy.zeros(second_pixels.shape, dtype=int) Rank_im1[Rank1] = Rank1_S Rank_im2[Rank2] = Rank2_S R = max(Rank_im1.max(), Rank_im2.max()) + 1 Di = abs(Rank_im1 - Rank_im2) weight = (R - Di) * 1.0 / R weight_thresh = weight[combined_thresh] if numpy.any(combined_thresh): RWC1 = numpy.array( scipy.ndimage.sum( fi_thresh * weight_thresh, labels[combined_thresh], lrange ) ) / numpy.array(tot_fi_thr) RWC2 = numpy.array( scipy.ndimage.sum( si_thresh * weight_thresh, labels[combined_thresh], lrange ) ) / numpy.array(tot_si_thr) result += [ [ first_image_name, second_image_name, object_name, "Mean RWC coeff", "%.3f" % numpy.mean(RWC1), ], [ first_image_name, second_image_name, object_name, "Median RWC coeff", "%.3f" % numpy.median(RWC1), ], [ first_image_name, second_image_name, object_name, "Min RWC coeff", "%.3f" % numpy.min(RWC1), ], [ first_image_name, second_image_name, object_name, "Max RWC coeff", "%.3f" % numpy.max(RWC1), ], ] result += [ [ second_image_name, first_image_name, object_name, "Mean RWC coeff", "%.3f" % numpy.mean(RWC2), ], [ second_image_name, first_image_name, object_name, "Median RWC coeff", "%.3f" % numpy.median(RWC2), ], [ second_image_name, first_image_name, object_name, "Min RWC coeff", "%.3f" % numpy.min(RWC2), ], [ second_image_name, first_image_name, object_name, "Max RWC coeff", "%.3f" % numpy.max(RWC2), ], ] if self.do_overlap: # Overlap Coefficient if numpy.any(combined_thresh): fpsq = scipy.ndimage.sum( first_pixels[combined_thresh] ** 2, labels[combined_thresh], lrange, ) spsq = scipy.ndimage.sum( second_pixels[combined_thresh] ** 2, labels[combined_thresh], lrange, ) pdt = numpy.sqrt(numpy.array(fpsq) * numpy.array(spsq)) overlap = fix( scipy.ndimage.sum( first_pixels[combined_thresh] * second_pixels[combined_thresh], labels[combined_thresh], lrange, ) / pdt ) K1 = fix( ( scipy.ndimage.sum( first_pixels[combined_thresh] * second_pixels[combined_thresh], labels[combined_thresh], lrange, ) ) / (numpy.array(fpsq)) ) K2 = fix( scipy.ndimage.sum( first_pixels[combined_thresh] * second_pixels[combined_thresh], labels[combined_thresh], lrange, ) / numpy.array(spsq) ) else: overlap = K1 = K2 = numpy.zeros(len(lrange)) result += [ [ first_image_name, second_image_name, object_name, "Mean Overlap coeff", "%.3f" % numpy.mean(overlap), ], [ first_image_name, second_image_name, object_name, "Median Overlap coeff", "%.3f" % numpy.median(overlap), ], [ first_image_name, second_image_name, object_name, "Min Overlap coeff", "%.3f" % numpy.min(overlap), ], [ first_image_name, second_image_name, object_name, "Max Overlap coeff", "%.3f" % numpy.max(overlap), ], ] if self.do_costes: nonZero = (fi > 0) | (si > 0) xvar = numpy.var(fi[nonZero], axis=0, ddof=1) yvar = numpy.var(si[nonZero], axis=0, ddof=1) xmean = numpy.mean(fi[nonZero], axis=0) ymean = numpy.mean(si[nonZero], axis=0) z = fi[nonZero] + si[nonZero] zvar = numpy.var(z, axis=0, ddof=1) covar = 0.5 * (zvar - (xvar + yvar)) denom = 2 * covar num = (yvar - xvar) + numpy.sqrt( (yvar - xvar) * (yvar - xvar) + 4 * (covar * covar) ) a = num / denom b = ymean - a * xmean i_step = get_scale(first_image.scale, second_image.scale) # Start at 1 step above the maximum img_max = max(fi.max(), si.max()) i = i_step * ((img_max // i_step) + 1) num_true = None while i > i_step: thr_fi_c = i thr_si_c = (a * i) + b combt = (fi < thr_fi_c) | (si < thr_si_c) try: # Only run pearsonr if the input has changed. if (positives := numpy.count_nonzero(combt)) != num_true: costReg, _ = scipy.stats.pearsonr(fi[combt], si[combt]) num_true = positives if costReg <= 0: break elif self.fast_costes.value == M_ACCURATE or i < i_step * 10: i -= i_step elif costReg > 0.45: # We're way off, step down 10x i -= i_step * 10 elif costReg > 0.35: # Still far from 0, step 5x i -= i_step * 5 elif costReg > 0.25: # Step 2x i -= i_step * 2 else: i -= i_step except ValueError: break # Costes' thershold for entire image is applied to each object fi_above_thr = first_pixels > thr_fi_c si_above_thr = second_pixels > thr_si_c combined_thresh_c = fi_above_thr & si_above_thr fi_thresh_c = first_pixels[combined_thresh_c] si_thresh_c = second_pixels[combined_thresh_c] if numpy.any(fi_above_thr): tot_fi_thr_c = scipy.ndimage.sum( first_pixels[first_pixels >= thr_fi_c], labels[first_pixels >= thr_fi_c], lrange, ) else: tot_fi_thr_c = numpy.zeros(len(lrange)) if numpy.any(si_above_thr): tot_si_thr_c = scipy.ndimage.sum( second_pixels[second_pixels >= thr_si_c], labels[second_pixels >= thr_si_c], lrange, ) else: tot_si_thr_c = numpy.zeros(len(lrange)) # Costes Automated Threshold C1 = numpy.zeros(len(lrange)) C2 = numpy.zeros(len(lrange)) if numpy.any(combined_thresh_c): C1 = numpy.array( scipy.ndimage.sum( fi_thresh_c, labels[combined_thresh_c], lrange ) ) / numpy.array(tot_fi_thr_c) C2 = numpy.array( scipy.ndimage.sum( si_thresh_c, labels[combined_thresh_c], lrange ) ) / numpy.array(tot_si_thr_c) result += [ [ first_image_name, second_image_name, object_name, "Mean Manders coeff (Costes)", "%.3f" % numpy.mean(C1), ], [ first_image_name, second_image_name, object_name, "Median Manders coeff (Costes)", "%.3f" % numpy.median(C1), ], [ first_image_name, second_image_name, object_name, "Min Manders coeff (Costes)", "%.3f" % numpy.min(C1), ], [ first_image_name, second_image_name, object_name, "Max Manders coeff (Costes)", "%.3f" % numpy.max(C1), ], ] result += [ [ second_image_name, first_image_name, object_name, "Mean Manders coeff (Costes)", "%.3f" % numpy.mean(C2), ], [ second_image_name, first_image_name, object_name, "Median Manders coeff (Costes)", "%.3f" %
numpy.median(C2)
numpy.median
from constants import * import math import numpy as np import sys from util import bestTwoActions, UpperP, LowerP, iteratedConvergence from evaluatePolicy import evaluatePolicy verbose=0 def RoundRobin(mdp, start_state=0, epsilon=4, randomseed=None, delta=0.1): global MAX_ITERATION_LIMIT, c if(randomseed is not None): np.random.seed(randomseed) iteration = 0 it=0 initial_iterations = 1*mdp.numStates*mdp.numActions rewards_s_a_sprime = np.zeros((mdp.numStates,mdp.numActions,mdp.numStates)) R_s_a = np.zeros((mdp.numStates,mdp.numActions)) sampled_frequency_s_a = np.zeros((mdp.numStates,mdp.numActions)) N_s_a_sprime = np.zeros((mdp.numStates,mdp.numActions,mdp.numStates)) P = np.zeros((mdp.numStates,mdp.numActions,mdp.numStates)) P_tilda = np.zeros((mdp.numStates,mdp.numActions,mdp.numStates)) P_lower_tilda = np.zeros((mdp.numStates,mdp.numActions,mdp.numStates)) VlowerMBAE = np.zeros((mdp.numStates)) Vlower = np.zeros((mdp.numStates)) Vstar = (mdp.Vmax/2)*np.ones((mdp.numStates)) VupperMBAE = mdp.Vmax*np.ones((mdp.numStates)) Vupper = mdp.Vmax*np.random.random([mdp.numStates]) QlowerMBAE = np.zeros((mdp.numStates,mdp.numActions)) Qlower = np.zeros((mdp.numStates,mdp.numActions)) Qstar = (mdp.Vmax/2)*np.ones((mdp.numStates,mdp.numActions)) QupperMBAE = mdp.Vmax*np.ones((mdp.numStates,mdp.numActions)) Qupper = mdp.Vmax*
np.random.random([mdp.numStates,mdp.numActions])
numpy.random.random
# Copyright (C) 2021 <NAME> and <NAME> # # SPDX-License-Identifier: MIT import argparse import os import gmsh import numpy as np from mpi4py import MPI try: import meshio except ImportError: print("Meshio and h5py must be installed to convert meshes." + " Please run `pip3 install --no-binary=h5py h5py meshio`") exit(1) __all__ = ["model_parameters", "mesh_parameters", "domain_parameters", "surface_map", "generate_team30_mesh"] # Model parameters for the TEAM 3- model model_parameters = { "mu_0": 1.25663753e-6, # Relative permability of air [H/m]=[kg m/(s^2 A^2)] "freq": 60, # Frequency of excitation, "J": 3.1e6 * np.sqrt(2), # [A/m^2] Current density of copper winding "mu_r": {"Cu": 1, "Stator": 30, "Rotor": 30, "Al": 1, "Air": 1, "AirGap": 1}, # Relative permability "sigma": {"Rotor": 1.6e6, "Al": 3.72e7, "Stator": 0, "Cu": 0, "Air": 0, "AirGap": 0}, # Conductivity "densities": {"Rotor": 7850, "Al": 2700, "Stator": 0, "Air": 0, "Cu": 0, "AirGap": 0} # [kg/m^3] } # Marker for facets, and restriction to use in surface integral of airgap surface_map = {"Exterior": 1, "MidAir": 2, "restriction": "+"} # Copper wires is ordered in counter clock-wise order from angle = 0, 2*np.pi/num_segments... _domain_map_single = {"Cu": (7, 8), "Stator": (6, ), "Rotor": (5, ), "Al": (4,), "AirGap": (2, 3), "Air": (1,)} _domain_map_three = {"Cu": (7, 8, 9, 10, 11, 12), "Stator": (6, ), "Rotor": (5, ), "Al": (4,), "AirGap": (2, 3), "Air": (1,)} # Currents mapping to the domain marker sof the copper _currents_single = {7: {"alpha": 1, "beta": 0}, 8: {"alpha": -1, "beta": 0}} _currents_three = {7: {"alpha": 1, "beta": 0}, 8: {"alpha": -1, "beta": 2 * np.pi / 3}, 9: {"alpha": 1, "beta": 4 * np.pi / 3}, 10: {"alpha": -1, "beta": 0}, 11: {"alpha": 1, "beta": 2 * np.pi / 3}, 12: {"alpha": -1, "beta": 4 * np.pi / 3}} # The different radiuses used in domain specifications mesh_parameters = {"r1": 0.02, "r2": 0.03, "r3": 0.032, "r4": 0.052, "r5": 0.057} def domain_parameters(single_phase: bool): """ Get domain markers and current specifications for either the single phase or three phase engine """ if single_phase: return _domain_map_single, _currents_single else: return _domain_map_three, _currents_three def _add_copper_segment(start_angle=0): """ Helper function Add a 45 degree copper segement, r in (r3, r4) with midline at "start_angle". """ copper_arch_inner = gmsh.model.occ.addCircle( 0, 0, 0, mesh_parameters["r3"], angle1=start_angle - np.pi / 8, angle2=start_angle + np.pi / 8) copper_arch_outer = gmsh.model.occ.addCircle( 0, 0, 0, mesh_parameters["r4"], angle1=start_angle - np.pi / 8, angle2=start_angle + np.pi / 8) gmsh.model.occ.synchronize() nodes_inner = gmsh.model.getBoundary([(1, copper_arch_inner)]) nodes_outer = gmsh.model.getBoundary([(1, copper_arch_outer)]) l0 = gmsh.model.occ.addLine(nodes_inner[0][1], nodes_outer[0][1]) l1 = gmsh.model.occ.addLine(nodes_inner[1][1], nodes_outer[1][1]) c_l = gmsh.model.occ.addCurveLoop([copper_arch_inner, l1, copper_arch_outer, l0]) copper_segment = gmsh.model.occ.addPlaneSurface([c_l]) gmsh.model.occ.synchronize() return copper_segment def generate_team30_mesh(filename: str, single: bool, res: np.float64, L: np.float64): """ Generate the single phase or three phase team 30 model, with a given minimal resolution, encapsilated in a LxL box. All domains are marked, while only the exterior facets and the mid air gap facets are marked """ if single: angles = [0, np.pi] domain_map = _domain_map_single else: spacing = (np.pi / 4) + (np.pi / 4) / 3 angles = np.array([spacing * i for i in range(6)]) domain_map = _domain_map_three assert(len(domain_map["Cu"]) == len(angles)) gmsh.initialize() # Generate three phase induction motor rank = MPI.COMM_WORLD.rank gdim = 2 # Geometric dimension of the mesh if rank == 0: center = gmsh.model.occ.addPoint(0, 0, 0) air_box = gmsh.model.occ.addRectangle(-L / 2, - L / 2, 0, 2 * L / 2, 2 * L / 2) # Define the different circular layers strator_steel = gmsh.model.occ.addCircle(0, 0, 0, mesh_parameters["r5"]) air_2 = gmsh.model.occ.addCircle(0, 0, 0, mesh_parameters["r4"]) air = gmsh.model.occ.addCircle(0, 0, 0, mesh_parameters["r3"]) air_mid = gmsh.model.occ.addCircle(0, 0, 0, 0.5 * (mesh_parameters["r2"] + mesh_parameters["r3"])) aluminium = gmsh.model.occ.addCircle(0, 0, 0, mesh_parameters["r2"]) rotor_steel = gmsh.model.occ.addCircle(0, 0, 0, mesh_parameters["r1"]) # Create out strator steel steel_loop = gmsh.model.occ.addCurveLoop([strator_steel]) air_2_loop = gmsh.model.occ.addCurveLoop([air_2]) strator_steel = gmsh.model.occ.addPlaneSurface([steel_loop, air_2_loop]) # Create air layer air_loop = gmsh.model.occ.addCurveLoop([air]) air = gmsh.model.occ.addPlaneSurface([air_2_loop, air_loop]) domains = [(2, _add_copper_segment(angle)) for angle in angles] # Add second air segment (in two pieces) air_mid_loop = gmsh.model.occ.addCurveLoop([air_mid]) al_loop = gmsh.model.occ.addCurveLoop([aluminium]) air_surf1 = gmsh.model.occ.addPlaneSurface([air_loop, air_mid_loop]) air_surf2 = gmsh.model.occ.addPlaneSurface([air_mid_loop, al_loop]) # Add aluminium segement rotor_loop = gmsh.model.occ.addCurveLoop([rotor_steel]) aluminium_surf = gmsh.model.occ.addPlaneSurface([al_loop, rotor_loop]) # Add steel rotor rotor_disk = gmsh.model.occ.addPlaneSurface([rotor_loop]) gmsh.model.occ.synchronize() domains.extend([(2, strator_steel), (2, rotor_disk), (2, air), (2, air_surf1), (2, air_surf2), (2, aluminium_surf)]) surfaces, _ = gmsh.model.occ.fragment([(2, air_box)], domains) gmsh.model.occ.synchronize() # Helpers for assigning domain markers based on area of domain rs = [mesh_parameters[f"r{i}"] for i in range(1, 6)] r_mid = 0.5 * (rs[1] + rs[2]) # Radius for middle of air gap area_helper = (rs[3]**2 - rs[2]**2) * np.pi # Helper function to determine area of copper and air frac_cu = 45 / 360 frac_air = (360 - len(angles) * 45) / (360 * len(angles)) _area_to_domain_map = {rs[0]**2 * np.pi: "Rotor", (rs[1]**2 - rs[0]**2) * np.pi: "Al", (r_mid**2 - rs[1]**2) * np.pi: "AirGap1", (rs[2]**2 - r_mid**2) * np.pi: "AirGap0", area_helper * frac_cu: "Cu", area_helper * frac_air: "Air", (rs[4]**2 - rs[3]**2) * np.pi: "Stator", L**2 - np.pi * rs[4]**2: "Air"} # Helper for assigning current wire tag to copper windings cu_points = np.asarray([[np.cos(angle), np.sin(angle)] for angle in angles]) # Assign physical surfaces based on the mass of the segment # For copper wires order them counter clockwise other_air_markers = [] for surface in surfaces: mass = gmsh.model.occ.get_mass(surface[0], surface[1]) found_domain = False for _mass in _area_to_domain_map.keys(): if np.isclose(mass, _mass): domain_type = _area_to_domain_map[_mass] if domain_type == "Cu": com = gmsh.model.occ.get_center_of_mass(surface[0], surface[1]) point =
np.array([com[0], com[1]])
numpy.array
# Copyright (c) 2021, <NAME>, <NAME>, <NAME>, <NAME>, <NAME> # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # pylint: disable=no-member # definition of various activation fcns import numpy as np from sympy import Expr import z3 import logging try: import dreal as dr except Exception as e: logging.exception('Exception while importing dReal') from src.shared.activations import ActivationType def activation_z3(select, p): if select == ActivationType.IDENTITY: return p elif select == ActivationType.RELU: return relu(p) elif select == ActivationType.LINEAR: return p elif select == ActivationType.SQUARE: return square_z3(p) elif select == ActivationType.LIN_SQUARE: return lin_square_z3(p) elif select == ActivationType.RELU_SQUARE: return relu_square_z3(p) elif select == ActivationType.REQU: return requ_z3(p) elif select == ActivationType.TANH: return hyper_tan_dr(p) elif select == ActivationType.SIGMOID: return sigm_dr(p) elif select == ActivationType.SOFTPLUS: return softplus_dr(p) elif select == ActivationType.COSH: return cosh(p) elif select == ActivationType.LIN_TO_CUBIC: return lqc_z3(p) elif select == ActivationType.LIN_TO_QUARTIC: return lqcq_z3(p) elif select == ActivationType.LIN_TO_QUINTIC: return lqcqp_z3(p) elif select == ActivationType.LIN_TO_SEXTIC: return l_e_z3(p) elif select == ActivationType.LIN_TO_SEPTIC: return l_s_z3(p) elif select == ActivationType.LIN_TO_OCTIC: return l_o_z3(p) elif select == ActivationType.SQUARE_DEC: return sd(p) def activation_der_z3(select, p): if select == ActivationType.IDENTITY: return np.ones((p.shape)) elif select == ActivationType.RELU: return step_z3(p) elif select == ActivationType.LINEAR: return np.ones((p.shape)) elif select == ActivationType.SQUARE: return 2*p elif select == ActivationType.LIN_SQUARE: return lin_square_der_z3(p) elif select == ActivationType.RELU_SQUARE: return relu_square_der_z3(p) elif select == ActivationType.REQU: return requ_der_z3(p) elif select == ActivationType.TANH: return hyper_tan_der_dr(p) elif select == ActivationType.SIGMOID: return sigm_der_dr(p) elif select == ActivationType.SOFTPLUS: return softplus_der_dr(p) elif select == ActivationType.COSH: return sinh(p) elif select == ActivationType.LIN_TO_CUBIC: return lqc_der_z3(p) elif select == ActivationType.LIN_TO_QUARTIC: return lqcq_der_z3(p) elif select == ActivationType.LIN_TO_QUINTIC: return lqcqp_der_z3(p) elif select == ActivationType.LIN_TO_SEXTIC: return l_e_der_z3(p) elif select == ActivationType.LIN_TO_SEPTIC: return l_s_der_z3(p) elif select == ActivationType.LIN_TO_OCTIC: return l_o_der_z3(p) elif select == ActivationType.SQUARE_DEC: return sd_der(p) def relu(x): # Won't work with sympy y = x.copy() if isinstance(x[0,0], z3.ArithRef): _If = z3.If for idx in range(len(y)): y[idx, 0] = z3.simplify(_If(y[idx, 0] > 0, y[idx, 0], 0)) else: _max = dr.Max for idx in range(len(y)): y[idx, 0] = _max(y[idx, 0], 0) return y def square_z3(x): return np.power(x, 2) # assert(len(p[0]) == 1) # return [[elem[0] ** 2] for elem in p] def lin_square_z3(x): h = int(len(x) / 2) x1, x2 = x[:h], x[h:] return np.vstack((x1, np.power(x2, 2))) def relu_square_z3(x): h = int(len(x) / 2) x1, x2 = x[:h], x[h:] return np.vstack((relu(x1), np.power(x2, 2))) def requ_z3(x): return np.multiply(x, relu(x)) def hyper_tan_dr(x): y = x.copy() # original_shape = y.shape # y = y.reshape(max(y.shape[0], y.shape[1]), 1) for idx in range(len(y)): y[idx, 0] = dr.tanh(y[idx, 0]) return y # .reshape(original_shape) def sigm_dr(x): # sigmoid is f(x) = 1/(1+e^-x) y = x.copy() for idx in range(len(y)): y[idx, 0] = 1/(1+dr.exp(-y[idx, 0])) return y def softplus_dr(x): # softplus is f(x) = ln(1 + e^x) y = x.copy() for idx in range(len(y)): y[idx, 0] = dr.log(1 + dr.exp(y[idx,0])) return y def cosh(x): y = x.copy() # original_shape = y.shape # y = y.reshape(max(y.shape[0], y.shape[1]), 1) for idx in range(len(y)): y[idx, 0] = dr.cosh(y[idx, 0]) - 1 return y # .reshape(original_shape) def lqc_z3(x): # linear - quadratic - cubic activation h = int(x.shape[0] / 3) x1, x2, x3 = x[:h], x[h:2 * h], x[2 * h:] return np.vstack([x1, np.power(x2, 2), np.power(x3, 3)]) def lqcq_z3(x): # # linear - quadratic - cubic - quartic activation h = int(x.shape[0] / 4) x1, x2, x3, x4 = x[:h], x[h:2 * h], x[2 * h:3 * h], x[3 * h:] return np.vstack([x1, np.power(x2, 2), np.power(x3, 3), np.power(x4, 4)]) def lqcqp_z3(x): # # linear - quadratic - cubic - quartic -penta activation h = int(x.shape[0] / 5) x1, x2, x3, x4, x5 = x[:h], x[h:2 * h], x[2 * h:3 * h], x[3 * h:4*h], x[4*h:] return np.vstack([x1, np.power(x2, 2), np.power(x3, 3), np.power(x4, 4), np.power(x5, 5)]) def l_e_z3(x): # # linear - quadratic - cubic - quartic -penta activation h = int(x.shape[0] / 6) x1, x2, x3, x4, x5, x6 = x[:h], x[h:2 * h], x[2 * h:3 * h], x[3 * h:4*h], x[4*h:5*h], x[5*h:] return np.vstack([x1, np.power(x2, 2), np.power(x3, 3), np.power(x4, 4), np.power(x5, 5), np.power(x6,6 )]) def l_s_z3(x): # # linear - quadratic - cubic - quartic -penta activation h = int(x.shape[0] / 7) x1, x2, x3, x4, x5, x6, x7= x[:h], x[h:2 * h], x[2 * h:3 * h], x[3 * h:4*h], \ x[4*h:5*h], x[5*h:6*h], x[6*h:] return np.vstack([x1, np.power(x2, 2), np.power(x3, 3), np.power(x4, 4), np.power(x5, 5), np.power(x6, 6), np.power(x7, 7)]) def l_o_z3(x): # # linear - quadratic - cubic - quartic -penta activation h = int(x.shape[0] / 8) x1, x2, x3, x4, x5, x6, x7, x8 = x[:h], x[h:2 * h], x[2 * h:3 * h], x[3 * h:4*h], \ x[4*h:5*h], x[5*h:6*h], x[6*h:7*h], x[7*h:] return np.vstack([x1, np.power(x2, 2), np.power(x3, 3), np.power(x4, 4), np.power(x5, 5), np.power(x6, 6), np.power(x7, 7), np.power(x8, 8)]) def sd(x): h = int(x.shape[0] / 5) x1, x2, x3, x4, x5 = x[:h], x[h:2 * h], x[2 * h:3 * h], x[3 * h:4*h], x[4*h:] return np.vstack([np.power(x1, 2), np.power(x2, 4), np.power(x4, 6), np.power(x4, 8), np.power(x5, 10)]) ############################## # DERIVATIVE ############################## def step_z3(x): y = x.copy() original_shape = y.shape y = y.reshape(max(y.shape[0], y.shape[1]), 1) if isinstance(x[0,0], z3.ArithRef): _If = z3.If for idx in range(y.shape[0]): y[idx, 0] = z3.simplify(_If(y[idx, 0] > 0.0, 1.0, 0.0)) # using 0.0 and 1.0 avoids int/float issues else: _If = dr.if_then_else for idx in range(y.shape[0]): y[idx, 0] = _If(y[idx, 0] > 0.0, 1.0, 0.0) # using 0.0 and 1.0 avoids int/float issues return y.reshape(original_shape) def lin_square_der_z3(x): h = int(len(x) / 2) x1, x2 = x[:h], x[h:] return np.vstack((np.ones(x1.shape), 2*x2)) def relu_square_der_z3(x): h = int(len(x) / 2) x1, x2 = x[:h], x[h:] return np.vstack((step_z3(x1), 2*x2)) def requ_der_z3(x): return 2*relu(x) def hyper_tan_der_dr(x): return np.ones((x.shape)) - np.power(hyper_tan_dr(x), 2) def sinh(x): y = x.copy() # original_shape = y.shape # y = y.reshape(max(y.shape[0], y.shape[1]), 1) for idx in range(len(y)): y[idx, 0] = dr.sinh(y[idx, 0]) return y # .reshape(original_shape) def sigm_der_dr(x): y = sigm_dr(x) # elem-wise multiplication return np.multiply(y, (np.ones(x.shape) - y)) def lqc_der_z3(x): # linear - quadratic - cubic activation h = int(x.shape[0] / 3) x1, x2, x3 = x[:h], x[h:2 * h], x[2 * h:] return np.vstack([np.ones((h, 1)), 2 * x2, 3 * np.power(x3, 2)]) def lqcq_der_z3(x): # # linear - quadratic - cubic - quartic activation h = int(x.shape[0] / 4) x1, x2, x3, x4 = x[:h], x[h:2 * h], x[2 * h:3 * h], x[3 * h:] return np.vstack([np.ones((h, 1)), 2*x2, 3*np.power(x3, 2), 4*np.power(x4, 3)]) # torch.pow(x, 2) def lqcqp_der_z3(x): # # linear - quadratic - cubic - quartic - penta activation h = int(x.shape[0] / 5) x1, x2, x3, x4, x5 = x[:h], x[h:2 * h], x[2 * h:3 * h], x[3*h:4*h], x[4*h:] return np.vstack([np.ones((h, 1)), 2*x2, 3*np.power(x3, 2), 4*np.power(x4, 3), 5*np.power(x5, 4)]) def l_e_der_z3(x): # # linear - quadratic - cubic - quartic - penta activation h = int(x.shape[0] / 6) x1, x2, x3, x4, x5, x6 = x[:h], x[h:2 * h], x[2 * h:3 * h], x[3*h:4*h], x[4*h:5*h], x[5*h:] return np.vstack([np.ones((h, 1)), 2*x2, 3*np.power(x3, 2), 4*np.power(x4, 3), 5*np.power(x5, 4), 6*np.power(x6, 5)]) def l_s_der_z3(x): # # linear - quadratic - cubic - quartic - penta activation h = int(x.shape[0] / 7) x1, x2, x3, x4, x5, x6, x7 = x[:h], x[h:2 * h], x[2 * h:3 * h], x[3*h:4*h], \ x[4*h:5*h], x[5*h:6*h], x[6*h:] return np.vstack([np.ones((h, 1)), 2*x2, 3*np.power(x3, 2), 4*np.power(x4, 3), 5*np.power(x5, 4), 6*np.power(x6, 5), 7*np.power(x7, 6)]) def l_o_der_z3(x): # # linear - quadratic - cubic - quartic - penta activation h = int(x.shape[0] / 8) x1, x2, x3, x4, x5, x6, x7, x8 = x[:h], x[h:2 * h], x[2 * h:3 * h], x[3*h:4*h], \ x[4*h:5*h], x[5*h:6*h], x[6*h:7*h], x[7*h:] return np.vstack([np.ones((h, 1)), 2*x2, 3*np.power(x3, 2), 4*np.power(x4, 3), 5*np.power(x5, 4), 6*np.power(x6, 5), 7*np.power(x7, 6), 8*np.power(x8, 7)]) def sd_der(x): h = int(x.shape[0] / 5) x1, x2, x3, x4, x5 = x[:h], x[h:2 * h], x[2 * h:3 * h], x[3 * h:4*h], x[4*h:] return np.vstack([2 * x1, 4 *
np.power(x2, 3)
numpy.power
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The module that keeps and operates with detector's output. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np class Detector(object): """Keeps the detections and gets proposals for a given image-label pairs.""" def __init__(self, detections, predictive_fields): """Initialisation of the detector. Args: detections: pandas dataframe with detections predictive_fields: list of features that will be used by IAD """ self.predictive_fields = predictive_fields # We need to search in detection many times, sort them to make it faster self.detections = detections.sort_values('image_id') self.detections_nparray = self.detections.values[:, 0] def get_box_proposals(self, image_id, class_id): """Gets a list of proposals for a given image and class. Args: image_id: image id for verification, str class_id: class id for verification, int64 Returns: coordinates: of all box proposals, pandas dataframe with columns 'xmin', 'xmax', 'ymin', 'ymax' features: corresponding to coordinates, pandas dataframe with columns stated in predictive fields """ # as the images_id are sorted, # let's find the first and last occurrence of image_id # that will define the possible search range for proposals in1 =
np.searchsorted(self.detections_nparray, image_id, side='left')
numpy.searchsorted
import numpy as np import itertools as it import gurobipy as gurobi from gurobipy import GRB as G from textwrap import dedent from math import* from . import get_logger, freeze, subdict _LOG = get_logger('adt17') _STATUS = { 1: 'LOADED', 2: 'OPTIMAL', 3: 'INFEASIBLE', 4: 'INF_OR_UNBD', 5: 'UNBOUNDED', 6: 'CUTOFF', 7: 'ITERATION_LIMIT', 8: 'NODE_LIMIT', 9: 'TIME_LIMIT', 10: 'SOLUTION_LIMIT', 11: 'INTERRUPTED', 12: 'NUMERIC', 13: 'SUBOPTIMAL', } def dict2array(d): indices = np.array(list(d.keys())) if not len(indices): return None ndim = len(indices[0]) shape = [indices[:, dim].max() + 1 for dim in range(ndim)] array = np.zeros(shape) for index in map(tuple, indices): array[index] = d[index].x return array def dot(x, z): grutil = gurobi.quicksum([x[i] * z[i] for i in range(len(x))]) return grutil def bilinear(x, A, z): return dot(x, [dot(a[i], z) for i in range(len(x))]) def L1_distance(x, y): return sum(abs(a - b) for a, b in zip(x, y)) def Ep_distance(x,y): return sum(a-b for a, b in zip(x, y)) class Problem(object): def __init__(self, num_attributes, num_threads=0): self.num_attributes = num_attributes self.num_threads = num_threads def infer(self, w, transform=(1, 0)): """Computes a highest-utility configuration w.r.t. the given weights. Parameters ---------- w : ndarray of shape (num_attributes,) A weight vector. transform : tuple of (float, 1D ndarray) The transformation parameters (a, b). Returns ------- x : ndarray of shape (num_attributes,) An optimal configuration. """ a, b = transform transformed_w = a * w + b assert (transformed_w >= 0).all() _LOG.debug(dedent(''' INFERENCE w = {} transformed w = {} ''').format(w, transformed_w)) model = gurobi.Model('inference') model.params.OutputFlag = 0 model.params.Threads = self.num_threads model.params.Seed = 0 x = [model.addVar(vtype=G.BINARY) for z in range(self.num_attributes)] model.modelSense = G.MAXIMIZE model.setObjective(gurobi.quicksum([w[i] * x[i] for i in range(self.num_attributes)])) self._add_constraints(model, x) model.optimize() x = np.array([x[z].x for z in range(self.num_attributes)]) _LOG.debug('inferred {}'.format(x)) return x #Implement groupwise query selection #Compute x_star def benchmark(self, W, omega_star): W = np.squeeze(np.asarray(W)) omega_star = np.squeeze(np.asarray(omega_star)) ws_star = np.dot(W, omega_star, out=None) model = gurobi.Model('inference') model.params.Threads = self.num_threads model.params.Seed = 0 model.params.OutputFlag = 0 x_star = [model.addVar(vtype=G.BINARY) for z in range(self.num_attributes)] model.modelSense = G.MAXIMIZE model.update() model.setObjective(dot(ws_star,x_star)) self._add_constraints(model, x_star) model.optimize() x_star = np.array([x_star[z].x for z in range(self.num_attributes)]) print("This is True X =", x_star) _LOG.debug('inferred {}'.format(x_star)) return x_star def infer_query(self, W ,omega): LAMBDA = 0.5 M = 1000000 # XXX w_star is supposed to be a matrix of shape (num_attributes, # num_users), each column encodes the preferences of one user; omega # a vector of shape (num_users,), each element encodes the importance # of one user. Is this vvv correct in this case? #print ("Shape of aggregate_utility =", W.shape, " = (num_attributes, num_users)") #print ("Shape of omega =", omega.shape," = (num_users,)") #omega = omega[:,None] W = np.squeeze(np.asarray(W)) omega = np.squeeze(
np.asarray(omega)
numpy.asarray
# instance.method = MethodType(method, instance) # !aws codecommit list-repositories # !autopep8 --in-place --aggressive --aggressive brac_dual_agent.py # gpus = tf.config.experimental.list_physical_devices('GPU') # if gpus: # try: # for gpu in gpus: # tf.config.experimental.set_memory_growth(gpu, True) # except RuntimeError as e: # print(e) ############################################################################# # %matplotlib inline # !tar -czf data.tar.gz data # !tar -czf code.tar.gz code from inspect import getsource from importlib import reload from livelossplot import PlotLosses import pytz import tensorflow as tf import silence_tensorflow.auto # tz_NY = pytz.timezone('America/New_York') # dt.now(tz_NY).strftime("%D:%H:%M:%S") from typing import Dict, List, Set, Tuple from datetime import datetime as dt import itertools import io import sys import gym import ray import warnings warnings.simplefilter("ignore") # from sagemaker import get_execution_role # role = get_execution_role() from IPython.display import clear_output from tqdm import tqdm # https://github.com/tqdm/tqdm """ pbar = tqdm(["a", "b", "c", "d"]) for char in pbar: time.sleep(0.25) pbar.set_description("Processing %s" % char) for i in tqdm(range(10)): """ def smooth_loss(loss, freq): loss = arr(loss).copy() return np.mean(loss.reshape(-1, freq), axis = -1) from types import MethodType import functools from functools import reduce ############################################################################# # Packages import scipy as sp import pandas as pd from pandas import DataFrame as DF # import statsmodels.api as sm # !pip install statsmodels from matplotlib.pyplot import hist import pickle from scipy.stats import truncnorm import matplotlib.pyplot as plt #################################### # Random import random from random import seed as rseed from numpy.random import seed as npseed from numpy import absolute as np_abs from numpy.random import normal as rnorm from numpy.random import uniform as runi from numpy.random import binomial as rbin from numpy.random import poisson as rpoisson from numpy.random import shuffle,randn, permutation # randn(d1,d2) is d1*d2 i.i.d N(0,1) from numpy import squeeze from numpy.linalg import solve #################################### # Numpy import numpy as np from numpy import mean, var, std, median from numpy import array as arr from numpy import sqrt, log, cos, sin, exp, dot, diag, ones, identity, zeros, roll, multiply, stack, concatenate, transpose from numpy import concatenate as v_add from numpy.linalg import norm, inv from numpy import apply_along_axis as apply from numpy.random import multinomial, choice #################################### # sklearn import sklearn as sk from sklearn import preprocessing as pre from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error as mse from sklearn.metrics import r2_score from sklearn.linear_model import LinearRegression as lm from sklearn.model_selection import KFold from sklearn.model_selection import GridSearchCV from scipy.special import softmax ############################################################################# import os os.environ["OMP_NUM_THREADS"] = "1" os.environ["OPENBLAS_NUM_THREADS"] = "1" np.set_printoptions(precision = 4) ############################################################################# import time now = time.time import smtplib, ssl import datetime, pytz def EST(): return datetime.datetime.now().astimezone(pytz.timezone('US/Eastern')).strftime("%H:%M, %m/%d") ############################################################################# dash = "--------------------------------------" DASH = "\n" + "--------------------------------------" + "\n" Dash = "\n" + dash dasH = dash + "\n" ############################################################################# #%% utility funs from multiprocessing import Pool import multiprocessing n_cores = multiprocessing.cpu_count() def mute(): sys.stdout = open(os.devnull, 'w') def fun(f, q_in, q_out): while True: i, x = q_in.get() if i is None: break q_out.put((i, f(x))) def parmap(f, X, nprocs = multiprocessing.cpu_count(), **args):#-2 q_in = multiprocessing.Queue(1) q_out = multiprocessing.Queue() def g(x): return f(x, **args) proc = [multiprocessing.Process(target=fun, args=(g, q_in, q_out)) for _ in range(nprocs)] for p in proc: p.daemon = True p.start() sent = [q_in.put((i, x)) for i, x in enumerate(X)] [q_in.put((None, None)) for _ in range(nprocs)] res = [q_out.get() for _ in range(len(sent))] [p.join() for p in proc] return [x for i, x in sorted(res)] def setminus(A, B): return [item for item in A if item not in B] def listinlist2list(theList): return [item for sublist in theList for item in sublist] def if_exist(obj): return obj in locals() or obj in globals() def getSize(one_object): print(one_object.memory_usage().sum() / 1024 ** 2, "MB") # print(sys.getsizeof(one_object) // 1024, "MB") def dump(file, path): pickle.dump(file, open(path, "wb")) def load(path): return pickle.load(open(path, "rb")) def get_MB(a): MB = sys.getsizeof(a) / 1024 / 1024 return MB def hstack_all_comb(array1, array2): # array1 is on the left and also changes faster res = np.hstack([ np.tile(array1, (array2.shape[0], 1)) , np.repeat(array2, array1.shape[0], axis=0)] ) return res def quantile(a, p): r = [a[0] for a in DF(a).quantile(p).values] return np.round(r, 3) def flatten(l): # list of sublist -> list return [item for sublist in l for item in sublist] def change_rate(old_targets, new_targets, numpy = False): if numpy: diff = np.mean(abs(new_targets-old_targets)) / (np.mean(abs(old_targets))+1e-6) else: diff = abs(new_targets-old_targets).mean() / (abs(old_targets).mean()+1e-6) return min(1.0, diff) ############################################################################# # pd.options.display.max_rows = 10 # with open('pred_columns.txt', 'w') as filehandle: # k = 0 # for listitem in list(a): # filehandle.write('{} {}\n'.format(k, listitem)) # k += 1 def print_all(dat, column_only = True): if column_only: with pd.option_context('display.max_columns', None): # more options can be specified also print(dat) else: with pd.option_context('display.max_rows', None, 'display.max_columns', None): # more options can be specified also print(dat) def quantile(a): return np.percentile(a, range(0,110,10)) ############################################################################# def unzip(path, zip_type = "tar_gz"): if zip_type == "tar_gz": import tarfile tar = tarfile.open(path, "r:gz") tar.extractall() tar.close() elif zip_type == "zip": from zipfile import ZipFile with ZipFile(path, 'r') as zipObj: # Extract all the contents of zip file in current directory zipObj.extractall() # import shutil # total, used, free = shutil.disk_usage("/") # print("Total: %d GiB" % (total // (2**30))) # print("Used: %d GiB" % (used // (2**30))) # print("Free: %d GiB" % (free // (2**30))) ############################################################################# # !pip install termcolor from termcolor import colored, cprint # https://pypi.org/project/termcolor/#description def printR(theStr): print(colored(theStr, 'red')) def printG(theStr): print(colored(theStr, 'green')) def printB(theStr): print(colored(theStr, 'blue')) def sets_intersection(d): return list(reduce(set.intersection, [set(item) for item in d ])) def select_each_row(array, idx): return np.take_along_axis(array, idx[:,None], axis=1) def subtract_each_column(mat, col): return (mat.transpose() - col).transpose() def sample_split(L, N): """ replay buffer? """ kf = KFold(n_splits=L) kf.get_n_splits(zeros(N)) split_ind = {} k = 0 for i, j in kf.split(range(N)): split_ind[k] = {"train_ind" : i, "test_ind" : j} k += 1 return split_ind def row_repeat(mat, rep, full_block = False): if full_block: return np.tile(mat, (rep, 1)) else: return
np.repeat(mat, rep, axis=0)
numpy.repeat
""" Extract the annotations from PTS file Author: <NAME> License: MIT Copyright: 2018-2019 """ import rasterio import re import time,datetime import argparse from rasterio import mask,features,warp import os import os.path import fiona import numpy as np import osgeo from osgeo import gdal,osr from shapely.geometry import shape,mapping from shapely.geometry.polygon import LinearRing,Polygon from mfuncshape import * from PIL import Image from m_util import sdmkdir, convertMbandstoRGB,sdsaveim import pandas as pd from shutil import copyfile parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) opt = parser.parse_args() padding = 300 opt.root = '/gpfs/projects/LynchGroup/' opt.resdir = '/gpfs/projects/LynchGroup/Penguin_workstation/data/Penguins' + '/TEST_PTS_MASK_PADDING_' + str(padding) + '/' opt.A = opt.resdir + 'A/' opt.B = opt.resdir + 'B/' opt.tif_fold = opt.root + 'Orthoed/' sdmkdir(opt.resdir) sdmkdir(opt.A) sdmkdir(opt.B) opt.shape_dir = opt.root+ '/Annotated_shapefiles_PTS/' files= [] for root,_,fnames in sorted(os.walk(opt.shape_dir)): for fname in fnames: if fname.endswith('tif'): files.append(fname) for file1 in files: indx = file1.find('__') file2 = file1[indx+2:] print(file2) match = re.search(r'\d{2}\D{3}\d{8}', file2).group(0) date = '20'+match[0:2] + "%02d"%(time.strptime(match[2:5],'%b').tm_mon)+match[5:] date = datetime.datetime.strptime(date, '%Y%m%d%H%M%S') if date.year ==2017 or date.year==2018: TIF1 = opt.tif_fold + str(date.year)+'/' + "%02d"%date.month +'/'+file2 else: TIF1 = opt.tif_fold + str(date.year) +'/' +file2 TIF2 = opt.shape_dir + file1 Im1 = rasterio.open(TIF1) Im2 = rasterio.open(TIF2) print(Im1.meta) print(Im2.meta) out_meta = Im1.meta.copy() out_meta.update({"count":out_meta["count"]+1 }) X = Im1.read() print(X.shape) GT = Im2.read() GT = GT[0:1,:,:] x1,y1 = np.where(GT[0,:,:]!=255) maxx = np.max(x1) + padding minx = np.min(x1) - padding maxy = np.max(y1) + padding miny = np.min(y1) - padding im = X[:,minx:maxx,miny:maxy] im = convertMbandstoRGB(im,file2) mask = GT[:,minx:maxx,miny:maxy] mask[mask!=255] = 1 mask[mask==255] = 0 mask[mask==1] = 255 print(im.shape) print(mask.shape) im =
np.transpose(im,(1,2,0))
numpy.transpose
# -*- coding: utf-8 -*- import warnings import numpy as np from numpy.linalg import eigh, inv, norm, matrix_rank import pandas as pd from scipy.optimize import minimize from statsmodels.tools.decorators import cache_readonly from statsmodels.base.model import Model from statsmodels.iolib import summary2 from statsmodels.graphics.utils import _import_mpl from .factor_rotation import rotate_factors, promax _opt_defaults = {'gtol': 1e-7} def _check_args_1(endog, n_factor, corr, nobs): msg = "Either endog or corr must be provided." if endog is not None and corr is not None: raise ValueError(msg) if endog is None and corr is None: warnings.warn('Both endog and corr are provided, ' + 'corr will be used for factor analysis.') if n_factor <= 0: raise ValueError('n_factor must be larger than 0! %d < 0' % (n_factor)) if nobs is not None and endog is not None: warnings.warn("nobs is ignored when endog is provided") def _check_args_2(endog, n_factor, corr, nobs, k_endog): if n_factor > k_endog: raise ValueError('n_factor cannot be greater than the number' ' of variables! %d > %d' % (n_factor, k_endog)) if np.max(np.abs(np.diag(corr) - 1)) > 1e-10: raise ValueError("corr must be a correlation matrix") if corr.shape[0] != corr.shape[1]: raise ValueError('Correlation matrix corr must be a square ' '(rows %d != cols %d)' % corr.shape) class Factor(Model): """ Factor analysis Parameters ---------- endog : array_like Variables in columns, observations in rows. May be `None` if `corr` is not `None`. n_factor : int The number of factors to extract corr : array_like Directly specify the correlation matrix instead of estimating it from `endog`. If provided, `endog` is not used for the factor analysis, it may be used in post-estimation. method : str The method to extract factors, currently must be either 'pa' for principal axis factor analysis or 'ml' for maximum likelihood estimation. smc : True or False Whether or not to apply squared multiple correlations (method='pa') endog_names : str Names of endogenous variables. If specified, it will be used instead of the column names in endog nobs : int The number of observations, not used if endog is present. Needs to be provided for inference if endog is None. missing : 'none', 'drop', or 'raise' Missing value handling for endog, default is row-wise deletion 'drop' If 'none', no nan checking is done. If 'drop', any observations with nans are dropped. If 'raise', an error is raised. Notes ----- **Experimental** Supported rotations: 'varimax', 'quartimax', 'biquartimax', 'equamax', 'oblimin', 'parsimax', 'parsimony', 'biquartimin', 'promax' If method='ml', the factors are rotated to satisfy condition IC3 of Bai and Li (2012). This means that the scores have covariance I, so the model for the covariance matrix is L * L' + diag(U), where L are the loadings and U are the uniquenesses. In addition, L' * diag(U)^{-1} L must be diagonal. References ---------- .. [*] <NAME>. (2004). Exploratory Factor Analysis, Mathematical Marketing. http://www.openaccesstexts.org/pdf/Quant_Chapter_11_efa.pdf .. [*] <NAME>, <NAME> (2012). Statistical analysis of factor models of high dimension. Annals of Statistics. https://arxiv.org/pdf/1205.6617.pdf """ def __init__(self, endog=None, n_factor=1, corr=None, method='pa', smc=True, endog_names=None, nobs=None, missing='drop'): _check_args_1(endog, n_factor, corr, nobs) if endog is not None: super(Factor, self).__init__(endog, exog=None, missing=missing) endog = self.endog # after preprocessing like missing, asarray k_endog = endog.shape[1] nobs = endog.shape[0] corr = self.corr = np.corrcoef(endog, rowvar=0) elif corr is not None: corr = self.corr = np.asarray(corr) k_endog = self.corr.shape[0] self.endog = None else: msg = "Either endog or corr must be provided." raise ValueError(msg) _check_args_2(endog, n_factor, corr, nobs, k_endog) self.n_factor = n_factor self.loadings = None self.communality = None self.method = method self.smc = smc self.nobs = nobs self.method = method self.corr = corr self.k_endog = k_endog if endog_names is None: if hasattr(corr, 'index'): endog_names = corr.index if hasattr(corr, 'columns'): endog_names = corr.columns self.endog_names = endog_names @property def endog_names(self): """Names of endogenous variables""" if self._endog_names is not None: return self._endog_names else: if self.endog is not None: return self.data.ynames else: d = 0 n = self.corr.shape[0] - 1 while n > 0: d += 1 n //= 10 return [('var%0' + str(d) + 'd') % i for i in range(self.corr.shape[0])] @endog_names.setter def endog_names(self, value): # Check validity of endog_names: if value is not None: if len(value) != self.corr.shape[0]: raise ValueError('The length of `endog_names` must ' 'equal the number of variables.') self._endog_names = np.asarray(value) else: self._endog_names = None def fit(self, maxiter=50, tol=1e-8, start=None, opt_method='BFGS', opt=None, em_iter=3): """ Estimate factor model parameters. Parameters ---------- maxiter : int Maximum number of iterations for iterative estimation algorithms tol : float Stopping criteria (error tolerance) for iterative estimation algorithms start : array_like Starting values, currently only used for ML estimation opt_method : str Optimization method for ML estimation opt : dict-like Keyword arguments passed to optimizer, only used for ML estimation em_iter : int The number of EM iterations before starting gradient optimization, only used for ML estimation. Returns ------- FactorResults Results class instance. """ method = self.method.lower() if method == 'pa': return self._fit_pa(maxiter=maxiter, tol=tol) elif method == 'ml': return self._fit_ml(start, em_iter, opt_method, opt) else: msg = "Unknown factor extraction approach '%s'" % self.method raise ValueError(msg) def _fit_pa(self, maxiter=50, tol=1e-8): """ Extract factors using the iterative principal axis method Parameters ---------- maxiter : int Maximum number of iterations for communality estimation tol : float If `norm(communality - last_communality) < tolerance`, estimation stops Returns ------- results : FactorResults instance """ R = self.corr.copy() # inplace modification below # Parameter validation self.n_comp = matrix_rank(R) if self.n_factor > self.n_comp: raise ValueError('n_factor must be smaller or equal to the rank' ' of endog! %d > %d' % (self.n_factor, self.n_comp)) if maxiter <= 0: raise ValueError('n_max_iter must be larger than 0! %d < 0' % (maxiter)) if tol <= 0 or tol > 0.01: raise ValueError('tolerance must be larger than 0 and smaller than' ' 0.01! Got %f instead' % (tol)) # Initial communality estimation if self.smc: c = 1 - 1 / np.diag(inv(R)) else: c = np.ones(len(R)) # Iterative communality estimation eigenvals = None for i in range(maxiter): # Get eigenvalues/eigenvectors of R with diag replaced by # communality for j in range(len(R)): R[j, j] = c[j] L, V = eigh(R, UPLO='U') c_last = np.array(c) ind = np.argsort(L) ind = ind[::-1] L = L[ind] n_pos = (L > 0).sum() V = V[:, ind] eigenvals = np.array(L) # Select eigenvectors with positive eigenvalues n = np.min([n_pos, self.n_factor]) sL = np.diag(np.sqrt(L[:n])) V = V[:, :n] # Calculate new loadings and communality A = V.dot(sL) c = np.power(A, 2).sum(axis=1) if norm(c_last - c) < tol: break self.eigenvals = eigenvals self.communality = c self.uniqueness = 1 - c self.loadings = A return FactorResults(self) # Unpacks the model parameters from a flat vector, used for ML # estimation. The first k_endog elements of par are the square # roots of the uniquenesses. The remaining elements are the # factor loadings, packed one factor at a time. def _unpack(self, par): return (par[0:self.k_endog]**2, np.reshape(par[self.k_endog:], (-1, self.k_endog)).T) # Packs the model parameters into a flat parameter, used for ML # estimation. def _pack(self, load, uniq): return np.concatenate((np.sqrt(uniq), load.T.flat)) def loglike(self, par): """ Evaluate the log-likelihood function. Parameters ---------- par : ndarray or tuple of 2 ndarray's The model parameters, either a packed representation of the model parameters or a 2-tuple containing a `k_endog x n_factor` matrix of factor loadings and a `k_endog` vector of uniquenesses. Returns ------- float The value of the log-likelihood evaluated at par. """ if type(par) is np.ndarray: uniq, load = self._unpack(par) else: load, uniq = par[0], par[1] loadu = load / uniq[:, None] lul = np.dot(load.T, loadu) # log|GG' + S| # Using matrix determinant lemma: # |GG' + S| = |I + G'S^{-1}G|*|S| lul.flat[::lul.shape[0]+1] += 1 _, ld = np.linalg.slogdet(lul) v = np.sum(np.log(uniq)) + ld # tr((GG' + S)^{-1}C) # Using Sherman-Morrison-Woodbury w = np.sum(1 / uniq) b = np.dot(load.T, self.corr / uniq[:, None]) b = np.linalg.solve(lul, b) b = np.dot(loadu, b) w -= np.trace(b) # Scaled log-likelihood return -(v + w) / (2*self.k_endog) def score(self, par): """ Evaluate the score function (first derivative of loglike). Parameters ---------- par : ndarray or tuple of 2 ndarray's The model parameters, either a packed representation of the model parameters or a 2-tuple containing a `k_endog x n_factor` matrix of factor loadings and a `k_endog` vector of uniquenesses. Returns ------- ndarray The score function evaluated at par. """ if type(par) is np.ndarray: uniq, load = self._unpack(par) else: load, uniq = par[0], par[1] # Center term of SMW loadu = load / uniq[:, None] c = np.dot(load.T, loadu) c.flat[::c.shape[0]+1] += 1 d = np.linalg.solve(c, load.T) # Precompute these terms lud = np.dot(loadu, d) cu = (self.corr / uniq) / uniq[:, None] r = np.dot(cu, load) lul = np.dot(lud.T, load) luz = np.dot(cu, lul) # First term du = 2*np.sqrt(uniq) * (1/uniq - (d * load.T).sum(0) / uniq**2) dl = 2*(loadu - np.dot(lud, loadu)) # Second term h = np.dot(lud, cu) f = np.dot(h, lud.T) du -= 2*np.sqrt(uniq) * (np.diag(cu) - 2*np.diag(h) + np.diag(f)) dl -= 2*r dl += 2*np.dot(lud, r) dl += 2*luz dl -= 2*np.dot(lud, luz) # Cannot use _pack because we are working with the square root # uniquenesses directly. return -np.concatenate((du, dl.T.flat)) / (2*self.k_endog) # Maximum likelihood factor analysis. def _fit_ml(self, start, em_iter, opt_method, opt): """estimate Factor model using Maximum Likelihood """ # Starting values if start is None: load, uniq = self._fit_ml_em(em_iter) start = self._pack(load, uniq) elif len(start) == 2: if len(start[1]) != start[0].shape[0]: msg = "Starting values have incompatible dimensions" raise ValueError(msg) start = self._pack(start[0], start[1]) else: raise ValueError("Invalid starting values") def nloglike(par): return -self.loglike(par) def nscore(par): return -self.score(par) # Do the optimization if opt is None: opt = _opt_defaults r = minimize(nloglike, start, jac=nscore, method=opt_method, options=opt) if not r.success: warnings.warn("Fitting did not converge") par = r.x uniq, load = self._unpack(par) if uniq.min() < 1e-10: warnings.warn("Some uniquenesses are nearly zero") # Rotate solution to satisfy IC3 of Bai and Li load = self._rotate(load, uniq) self.uniqueness = uniq self.communality = 1 - uniq self.loadings = load self.mle_retvals = r return FactorResults(self) def _fit_ml_em(self, iter): """estimate Factor model using EM algorithm """ # Starting values
np.random.seed(3427)
numpy.random.seed
# Licensed under a 3-clause BSD style license - see LICENSE.rst """generators --- Parameter generators ====================================== Generators are used to create particle variables. They may be fixed, random, or produce a fixed sequence. There are two classes of generators. The first class produces single values, useful for producing particle ages, sizes, etc. The second is based on a 3D geometry, designed for producing ejection velocity vectors. Generators are Python iterators and can be used with the `next` built-in function, or can be used in loops. An additional method allows creating multiple values: g = Generator() v = next(g) # create one new value v = g.next(N=100) # create 100 new values # generate values until `g` is exhausted, which may be never. for v in g: print(v) Classes ------- Generator CosineAngle Delta Grid Log Normal Sequence Uniform UniformAngle Vej Isotropic UniformLatitude Sunward Exceptions ---------- InvalidDistribution """ __all__ = [ 'CosineAngle', 'Delta', 'Grid', 'Log', 'Normal', 'Sequence', 'Uniform', 'UniformAngle', 'Isotropic', 'UniformLatitude', 'Sunward'] from abc import ABC, ABCMeta, abstractmethod import numpy as np class InvalidDistribution(Exception): pass class Generator(ABC): """Abstract base class for CometSuite particle generators.""" def __iter__(self): return self @abstractmethod def __min__(self): pass @abstractmethod def __min__(self): pass def __next__(self): return self.next(1) @abstractmethod def next(self, N=1): """The next `N` values. Parameters ---------- N : int, optional `N > 0`. """ pass @abstractmethod def reset(self): """Reset to initial state. Especially useful for generators that have a prescribed sequence. """ pass class CosineAngle(Generator): """Polar angle variate for a solid angle distrubution proportional to `cos`. Picked from a distribution such that the flux through a solid angle at theta is proportional to `cos(theta)`. Only valid for `theta <= pi / 2`. Parameters ---------- x0, x1 : float, optional Minimum and maximum values, 0 <= x0 <= x1 <= pi / 2. [radians] """ def __init__(self, x0=0, x1=np.pi / 2): assert x0 <= x1 assert x0 >= 0 assert x1 <= np.pi / 2 self.x0 = x0 self.x1 = x1 def __str__(self): return "CosineAngle(x0={}, x1={})".format(self.x0, self.x1) def __min__(self): return self.x0 def __max__(self): return self.x1 def next(self, N=1): from numpy.random import rand u = rand(N) u = np.arccos(np.sqrt((1 - u) * np.cos(self.x0)**2 + u * np.cos(self.x1)**2)) return u[0] if N == 1 else u def reset(self): # nothing to be done pass class Delta(Generator): """A "random" variate pick from the delta function distribution. Parameters ---------- x0 : float, optional The location of the delta function. Returns ------- x : float Always returns `x0`. """ def __init__(self, x0=0): self.x0 = x0 def __str__(self): return "Delta(x0={})".format(self.x0) def __min__(self): return self.x0 def __max__(self): return self.x0 def next(self, N=1): if N == 1: return self.x0 else: return np.repeat(self.x0, N) def reset(self): # nothing to be done pass class Grid(Generator): """Variate picked from a uniform grid. Parameters ---------- x0 : float The start value of the sequence. x1 : float The end value of the sequence. num : int The number of samples to generate. endpoint : bool, optional If `True`, `x1` is the last sample. log : bool, optional Set to `True` if `x0`, `x1`, and the spacing are in log space. cycle : int or float('inf'), optional Cylce over the sequence `cycle` times. Set to `inf` to infintely cycle over the sequence. repeat : int, optional Repeat each element `repeat` times. Returns ------- x : float The next sequence value. """ def __init__(self, x0, x1, num, endpoint=True, log=False, cycle=1, repeat=1): self.args = (x0, x1, num) self.kwargs = dict(endpoint=endpoint, log=log, cycle=cycle, repeat=repeat) if log: seq = np.logspace(x0, x1, num, endpoint=endpoint) else: seq = np.linspace(x0, x1, num, endpoint=endpoint) self._repeat = repeat if repeat > 1: self.seq = np.repeat(seq, repeat) else: self.seq = np.array(seq) self.cycle = cycle self.i = -1 def __str__(self): return ("Grid({args[0]}, {args[1]}, {args[2]}, endpoint={kwargs[endpoint]}, log={kwargs[log]}, cycle={kwargs[cycle]}, repeat={kwargs[repeat]})" .format(args=self.args, kwargs=self.kwargs)) def __min__(self): return min(self.args[:2]) def __max__(self): return max(self.args[:2]) def __next__(self): self.i += 1 if self.i >= len(self.seq): self.i = 0 self.cycle -= 1 if self.cycle <= 0: raise StopIteration return self.seq[self.i] def next(self, N=1): x = np.array((next(self) for i in range(N))) return x[0] if N == 1 else x def reset(self): self.__init__(self._x0, self._x1, self._num, endpoint=self._endpoint, log=self._log, cycle=self._cycle, repeat=self._repeat) class Log(Generator): """Random variate with the distribution dn/dlog ~ 1. Base 10. Parameters ---------- x0, x1 : float, optional `log10(min_val)` and `log10(max_val)`. """ def __init__(self, x0=0, x1=1): self.x0 = x0 self.x1 = x1 def __str__(self): return "Log(x0={}, x1={})".format(self.x0, self.x1) def __min__(self): return 10**self.x0 def __max__(self): return 10**self.x1 def next(self, N=1): from numpy.random import rand x = np.exp((rand(N) * (self.x1 - self.x0) + self.x0) * 2.3025850929940459) return x[0] if N == 1 else x def reset(self): # nothing to be done pass class Normal(Generator): """Normally distributed random variate. Parameters ---------- mu : float, optional The center of the distribution. sigma : float, optional The width of the distribution. x0, x1 : float, optional Minimum and maximum values. The generator is not efficient for `x0` similar to `x1`. Returns ------- x : float The random variate. """ def __init__(self, mu=0, sigma=1, x0=-float('inf'), x1=float('inf')): self.mu = mu self.sigma = sigma assert x0 < x1 self.x0 = x0 self.x1 = x1 def __str__(self): return "Normal(mu={}, sigma={}, x0={}, x1={})".format( self.mu, self.sigma, self.x0, self.x1) def __min__(self): return self.x0 def __max__(self): return self.x1 def __next__(self): from numpy.random import randn for i in range(10000): u = randn(1)[0] * self.sigma + self.mu if (u >= self.x0) and (u <= self.x1): break else: raise ValueError("Variate limits are too restrictive:" " no good values in 10,000 iterations.") return u def next(self, N=1): x = np.array((next(self) for i in range(N))) return x[0] if N == 1 else x def reset(self): # nothing to be done pass class Sequence(Generator): """Variate picked from a sequence. Parameters ---------- seq : array The sequence to iterate over. cycle : int or float('inf'), optional Cylce over the sequence `cycle` times. Set to `inf` to infintely cycle over the sequence. repeat : int, optional Repeat each element `repeat` times. Returns ------- x : float The next sequence value. """ def __init__(self, seq, cycle=1, repeat=1): self._seq = seq self._repeat = repeat if repeat > 1: self.seq = np.repeat(seq, repeat) else: self.seq = np.array(seq) self.cycle = cycle self.i = -1 def __str__(self): return "Sequence({}, cycle={}, repeat={})".format( np.array2string(self._seq, max_line_width=32768, separator=','), self.cycle, self._repeat) def __min__(self): return min(self._seq) def __max__(self): return max(self._seq) def __next__(self): self.i += 1 if self.i >= len(self.seq): self.i = 0 self.cycle -= 1 if self.cycle <= 0: raise StopIteration return self.seq[self.i] def next(self, N=1): x = np.array((next(self) for i in range(N))) return x[0] if N == 1 else x def reset(self): Sequence.__init__(self, self._seq, cycle=self.cycle, repeat=self._repeat) class Uniform(Generator): """Uniformly distributed random variate. Parameters ---------- x0, x1 : float, optional Minimum and maximum values. Returns ------- x : float The random variate. """ def __init__(self, x0=0, x1=1): assert x0 <= x1 self.x0 = x0 self.x1 = x1 def __str__(self): return "Uniform(x0={}, x1={})".format(self.x0, self.x1) def __min__(self): return self.x0 def __max__(self): return self.x1 def next(self, N=1): from numpy.random import rand x = rand(N) * (self.x1 - self.x0) + self.x0 return x[0] if N == 1 else x def reset(self): # nothing to be done pass class UniformAngle(Generator): """Polar angle variate for a uniform solid angle distrubution. Picked from a distribution such that the flux through a solid angle at theta is proportional to 1. Parameters ---------- x0, x1 : float, optional Minimum and maximum values, 0 <= x0 <= pi. [radians] Returns ------- x : float Random angle. [radians] """ def __init__(self, x0=0, x1=np.pi): assert x0 <= x1 assert 0 <= x0 assert x1 <= np.pi self.x0 = x0 self.x1 = x1 def __str__(self): return "UniformAngle(x0={}, x1={})".format(self.x0, self.x1) def __min__(self): return self.x0 def __max__(self): return self.x1 def next(self, N=1): from numpy.random import rand u = rand(N) u = np.arccos((1 - u) * np.cos(self.x0) + u * np.cos(self.x1)) return u[0] if N == 1 else u def reset(self): # nothing to be done pass class Vej(Generator, metaclass=ABCMeta): """Abstract base class for ejection velocity generators. Parameters ---------- pole : array, optional The pole in Ecliptic coordinates, angular (lambda, beta) [rad] or rectangular (x, y, z). The Vernal equinox will be arbitrarily defined. body_basis : array, optional Nx3 array of x, y, and z unit vectors defining the planetocentric coordinate system, in Ecliptic rectangular coordinates. w : float, optional Full opening angle of the emission. [radians]. distribution : string, optional The kind of distribution to use when `w` is provided: 'uniformangle': uniformly distributed in solid angle 'normal': Gaussian distribution with `w` as the FWHM. theta_dist, phi_dist : Generator Specific polar (`theta`) and azimuthal (`phi`) angle distributions. Notes ----- If `pole` is provided, the Vernal equinox and first solstice will be arbitrarity derived. The vectors in `body_basis` are: `body_basis[0]` (x): the Vernal equinox `body_basis[1]` (y): the first solstice `body_basis[2]` (z): the pole Only one of `pole` or `body_basis` may be provided. If `w` is provided, `theta_dist` and `phi_dist` are ignored. `min()` and `max()` operators return the respective limits from `phi_dist` and `theta_dist`. Attributes ---------- theta_dist : Polar angle generator phi_dist : Azimuthal angle generator body_basis : 3x3 array, as described above pole : polar vector vernal_eq : Vernal equinox vector solstice : First solstice vector Methods ------- axis : xxis of symmetry for the ejection cone. next : New ejection velocity direction. origin : Planetographic coordinates of a vector. Static methods ------------- pole2basis : A helper function for defining `body_basis`. ..todo: Incorporate nucleus rotation? """ def __init__(self, pole=None, body_basis=None, w=None, distribution='uniformangle', theta_dist=None, phi_dist=None): from .state import State if body_basis is None: if pole is None: body_basis = np.array(((1, 0, 0), (0, 1, 0), (0, 0, 1)), float) else: body_basis = self.pole2basis(pole) self.body_basis = body_basis self._w = w self._distribution = distribution if w is not None: self.phi_dist = Uniform(x0=0, x1=2 * np.pi) if distribution.lower() == 'uniformangle': self.theta_dist = UniformAngle(x0=0, x1=w / 2.0) elif distribution.lower() == 'normal': self.theta_dist = Normal(x0=0, mu=0, sigma=w / 2.35) else: raise InvalidDistribution("Only 'UniformAngle' and 'Normal'" " are implemented for w != None.") else: if theta_dist is None: self.theta_dist = Delta(0) else: self.theta_dist = theta_dist if phi_dist is None: self.phi_dist = Delta(0) else: self.phi_dist = phi_dist def __min__(self): return min(self.phi_dist), min(self.theta_dist) def __max__(self): return max(self.phi_dist), max(self.theta_dist) @abstractmethod def axis(self, init): """The axis of symmetry. Parameters ---------- init : State or array of State The state(s) of the parent object (comet) at the time(s) of ejection. Returns ------- a : ndarray Axis/axes of symmetry, shape (N, 3), where N is the number of initial states provided. """ pass @property def vernal_eq(self): return body_basis[0] @property def solstice(self): return body_basis[1] @property def pole(self): return body_basis[2] @staticmethod def pole2basis(pole, vernal_eq=None): """Planetographic basis vectors from pole. Parameters ---------- pole : array-like Ecliptic coordinates of the pole, may be angular (lambda, beta) in radians, or rectangular (x, y, z). vernal_eq : array-like, optional Ecliptic coordinates of the Vernal equinox, same format as `pole`. If `None`, then the VE will be generated from `y × pole`, unless `pole == y`, in which case VE will be the x-axis. Returns ------- body_basis : ndarray The basis vectors (3x3 array) for planetographic coordinates: `body_basis[0]` (x) is the Vernal eqinox, `body_basis[1]` (y) is the first solstice, and `body_basis[2]` (z) is the pole. """ from .util import mhat, lb2xyz z = pole if len(pole) == 3 else lb2xyz(pole) z = mhat(z)[1] if vernal_eq is None: if np.allclose(z, np.array((0, 1.0, 0))): # if the pole is the y-axis, VE should be x-axis x = np.array((1.0, 0, 0)) else: # use y-axis × pole x = mhat(np.cross((0, 1.0, 0), z))[1] else: x = vernal_eq if len(vernal_eq) == 3 else lb2xyz(vernal_eq) c = np.dot(x, z) assert np.isclose(c, 0), 'Pole and vernal equinox must be perpendicular to each other, angle is {} rad'.format(np.arccos(c)) y = mhat(np.cross(z, x))[1] return np.vstack((x, y, z)) def origin(self, v): """Planetographic longitude and latitude of the velocity vector. Parameters ---------- v : array-like The vector to analyze, shape `(3,)` or `(N, 3)`. Returns ------- lam : float or ndarray Longitude. [rad] bet : float or ndarray Latitude. [rad] """ p = (self.body_basis * v[:, np.newaxis]).sum(2) origin = np.c_[ np.arctan2(p[:, 1], p[:, 0]), np.arctan2(p[:, 2], np.sqrt(p[:, 0]**2 + p[:, 1]**2)) ] return origin[0], origin[1] def next(self, init, N=1): """New ejection velocity direction(s). If the axis of symmetry is [0, 0, 0], the returned velocity will also be [0, 0, 0]. Parameters ---------- init : State or array of States The state(s) of the parent object (comet) at the time(s) of ejection. If an array, it must be of length 1 or `N`. N : int, optional The number of velocities to generate. Returns ------- vhat : ndarray Ejection velocity direction, shape `(N, 3)`. """ from . import util if np.iterable(init): assert len(init) in (1, N), "If `init` is an array, it must have length 1 or `N`." # choose theta and phi, define radial vector, all w.r.t. axis # of symmetry theta = np.pi / 2 - self.theta_dist.next(N) phi = self.phi_dist.next(N) r = np.c_[np.cos(theta) * np.cos(phi), np.cos(theta) * np.sin(phi), np.sin(theta)] # define axis of symmetry axis = self.axis(init) # if axis is [0, 0, 0], return [0, 0, 0] if np.allclose(axis, 0): return np.zeros((N, 3)) # rotate `r` from axis of symmetry coords to Ecliptic coords v = util.vector_rotate(r, [0, 0, 1], axis) return v def reset(self): self.theta_dist.reset() self.phi_dist.reset() class Isotropic(Vej): """Isotropic emission. The axis of symmetry is arbitrary. """ def __init__(self): Vej.__init__(self, w=2 * np.pi, distribution='UniformAngle') self._axis = np.array([[1.0, 0.0, 0.0]]) def axis(self, init): return self._axis def __str__(self): return "Isotropic()" i = Vej.__doc__.find('Parameters') __doc__ += Vej.__doc__[i:] del i class UniformLatitude(Vej): def __init__(self, lrange, pole=None, body_basis=None): """Uniform emission from a range of latitudes. Vectors are uniform in solid angle. The axis of symmetry is the pole. Parameters ---------- lrange : array-like Latitude range, between -pi/2 and pi/2. [radians] pole : array, optional The pole in Ecliptic coordinates, angular (lambda, beta) or rectangular (x, y, z). body_basis : array, optional Shape `(N, 3)` array of x, y, and z unit vectors defining the planetocentric coordinate system, in Ecliptic rectangular coordinates. """ phi_dist = Uniform(x0=0, x1=2 * np.pi) th = np.pi / 2 -
np.array(lrange)
numpy.array
''' @Description: The utils file @Author: xieydd @Date: 2019-08-13 14:15:23 @LastEditTime: 2019-09-24 10:55:54 @LastEditors: Please set LastEditors ''' import logging import numpy as np import torchvision.datasets as dset import os import torch import shutil import csv import torchvision.transforms as transforms from torch.autograd import Variable import torch.nn.functional as F ''' @description: count the params size @param pytorch model @return: MB ''' def param_size(model): """ Compute parameter size in MB """ n_params = sum( np.prod(v.size()) for k, v in model.named_parameters() if not k.startswith('aux_head')) return n_params / 1024. / 1024 def count_conv_flop(layer, x): out_h = int(x.size()[2] / layer.stride[0]) out_w = int(x.size()[3] / layer.stride[1]) delta_ops = layer.in_channels * layer.out_channels * layer.kernel_size[0] * layer.kernel_size[1] * \ out_h * out_w / layer.groups return delta_ops def shuffle_layer(x, groups): batchsize, num_channels, height, width = x.data.size() channels_per_group = num_channels // groups # reshape x = x.view(batchsize, groups, channels_per_group, height, width) # transpose x = torch.transpose(x, 1, 2).contiguous() # flatten x = x.view(batchsize, -1, height, width) return x def _data_transforms_cifar10(args): CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124] CIFAR_STD = [0.24703233, 0.24348505, 0.26158768] train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) if args.cutout: train_transform.transforms.append(Cutout(args.cutout_length)) valid_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) return train_transform, valid_transform def count_parameters_in_MB(model): return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name)/1e6 def save(model, model_path): torch.save(model.state_dict(), model_path) def save_checkpoint_spos(state, iters, path,is_best=False,tag=''): model_path = path + '/models' if not os.path.exists(model_path): os.makedirs(model_path) filename = os.path.join( model_path + '/{}checkpoint-{:06}.pth.tar'.format(tag, iters)) torch.save(state, filename) if is_best: latestfilename = os.path.join( model_path + '/{}best.pth.tar'.format(tag)) torch.save(state, latestfilename) def load_checkpoint_spos(model, path): checkpoint = torch.load(path) model.load_state_dict(checkpoint['state_dict'], strict=True) w_optimizer = checkpoint['w_optimizer'] print('load from check[oint') return w_optimizer def get_lastest_model(path): model_path = path + '/models/' if not os.path.exists(model_path): os.mkdir(model_path) model_list = os.listdir(model_path) if model_list == []: return None, 0 model_list.sort() lastest_model = model_list[-1] iters = re.findall(r'\d+', lastest_model) return model_path + lastest_model, int(iters[0]) def load(model, model_path): model.load_state_dict(torch.load(model_path)) def drop_path(x, drop_prob): if drop_prob > 0.: keep_prob = 1.-drop_prob mask = Variable(torch.cuda.FloatTensor(x.size(0), 1, 1, 1).bernoulli_(keep_prob)) x.div_(keep_prob) x.mul_(mask) return x def create_exp_dir(path, scripts_to_save=None): if not os.path.exists(path): os.mkdir(path) print('Experiment dir : {}'.format(path)) if scripts_to_save is not None: os.mkdir(os.path.join(path, 'scripts')) for script in scripts_to_save: dst_file = os.path.join(path, 'scripts', os.path.basename(script)) shutil.copyfile(script, dst_file) def time(seconds): m, s = divmod(seconds, 60) h, m = divmod(m, 60) print('Using {:d}:{:02d}:{:02d}'.format(int(h), int(m), int(s))) def rescale(alpha, alpha_new, selecteds): result = list() for i in range(len(alpha)): a = alpha[i] a_new = alpha_new[i] selected = selecteds[i] i_op_0 = int(selected[0]) i_op_1 = int(selected[1]) old_p = F.softmax(a, dim=-1) new_p = F.softmax(a_new, dim=-1) old_sum = old_p[i_op_0] + old_p[i_op_1] new_sum = new_p[i_op_0] + new_p[i_op_1] ratio = old_sum / new_sum # rescaled probabilties such that sum is same as before p_r_0 = ratio * new_p[i_op_0] p_r_1 = ratio * new_p[i_op_1] new_sum_a = sum([torch.exp(a_new[i]) for i in range(len(a)) if i not in [i_op_0, i_op_1]]) new_a_0 = torch.log((new_sum_a * (p_r_0 + ((p_r_0 * p_r_1)/(1-p_r_1)))) / ( 1 - p_r_0 - ((p_r_0*p_r_1) / (1-p_r_1)))) new_a_1 = torch.log((new_sum_a * (p_r_1 + ((p_r_1 * p_r_0)/(1-p_r_0)))) / ( 1 - p_r_1 - ((p_r_1*p_r_0) / (1-p_r_0)))) a_new.data[i_op_0] = new_a_0 a_new.data[i_op_1] = new_a_1 result.append(a_new) return result def binarize(alpha, probability, select=1): selected = torch.multinomial(probability, select, replacement=False) selected = sorted(selected) print(selected) alpha = [alpha[i] for i in selected] return selected def weights_init(m, deepth=0, max_depth=2): if deepth > max_depth: return if isinstance(m, torch.nn.Conv2d): torch.nn.init.kaiming_uniform_(m.weight.data) if m.bias is not None: torch.nn.init.constant_(m.bias.data, 0) elif isinstance(m, torch.nn.Linear): m.weight.data.normal_(0, 0.01) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, torch.nn.BatchNorm2d): return elif isinstance(m, torch.nn.ReLU): return elif isinstance(m, torch.nn.Module): deepth += 1 for m_ in m.modules(): weights_init(m_, deepth) else: raise ValueError("%s is unk" % m.__class__.__name__) def check_tensor_in_list(atensor, alist): if any([(atensor == t_).all() for t_ in alist if atensor.shape == t_.shape]): return True return False ''' @description: Sets the learning rate to the initial LR decayed by 10 every 30 epochs ''' def adjust_learning_rate(optimizer, epoch, args): lr = args.lr * (0.1 ** (epoch // 30)) for param_group in optimizer.param_groups: param_group['lr'] = lr # Horovod: using `lr = base_lr * hvd.size()` from the very beginning leads to worse final # accuracy. Scale the learning rate `lr = base_lr` ---> `lr = base_lr * hvd.size()` during # the first five epochs. See https://arxiv.org/abs/1706.02677 for details. # After the warmup reduce learning rate by 10 on the 30th, 60th and 80th epochs. def adjust_learning_rate_hvd(epoch, batch_idx, args, train_loader, size, optimizer): if epoch < args.warmup_epochs: epoch += float(batch_idx + 1) / len(train_loader) lr_adj = 1. / size * (epoch * (size - 1) / args.warmup_epochs + 1) elif epoch < 30: lr_adj = 1. elif epoch < 60: lr_adj = 1e-1 elif epoch < 80: lr_adj = 1e-2 else: lr_adj = 1e-3 for param_group in optimizer.param_groups: param_group['lr'] = args.base_lr * size * args.batches_per_allreduce * lr_adj def get_logger(file_path): """ Make python logger """ # [!] Since tensorboardX use default logger (e.g. logging.info()), we should use custom logger logger = logging.getLogger('Awesome model') log_format = '%(asctime)s | %(message)s' formatter = logging.Formatter(log_format, datefmt='%m/%d %I:%M:%S %p') file_handler = logging.FileHandler(file_path) file_handler.setFormatter(formatter) stream_handler = logging.StreamHandler() stream_handler.setFormatter(formatter) logger.addHandler(file_handler) logger.addHandler(stream_handler) logger.setLevel(logging.INFO) return logger def get_data(dataset, data_path, cutout_length, validation): """ Get torchvision dataset """ dataset = dataset.lower() if dataset == 'cifar10': dset_cls = dset.CIFAR10 n_classes = 10 elif dataset == 'mnist': dset_cls = dset.MNIST n_classes = 10 elif dataset == 'fashionmnist': dset_cls = dset.FashionMNIST n_classes = 10 else: raise ValueError(dataset) trn_transform, val_transform = preproc.data_transforms(dataset, cutout_length) trn_data = dset_cls(root=data_path+"/"+dataset, train=True, download=False, transform=trn_transform) # assuming shape is NHW or NHWC shape = trn_data.train_data.shape input_channels = 3 if len(shape) == 4 else 1 assert shape[1] == shape[2], "not expected shape = {}".format(shape) input_size = shape[1] ret = [input_size, input_channels, n_classes, trn_data] if validation: # append validation data ret.append(dset_cls(root=data_path+"/"+dataset, train=False, download=False, transform=val_transform)) return ret ''' @description: get the top k accuracy, default is top1 ''' def accuracy(output, target, topk=(1,)): """ Computes the precision@k for the specified values of k """ maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() # one-hot case if target.ndimension() > 1: target = target.max(1)[1] correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(1.0 / batch_size)) return res ''' @description: store the checkpoint, and will save the best named best.pth.tar ''' def save_checkpoint(state, ckpt_dir, is_best=False): filename = os.path.join(ckpt_dir, 'checkpoint.pth.tar') torch.save(state, filename) if is_best: best_filename = os.path.join(ckpt_dir, 'best.pth.tar') shutil.copyfile(filename, best_filename) class AverageMeter(): """ Computes and stores the average and current value """ def __init__(self): self.reset() def reset(self): """ Reset all statistics """ self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): """ Update statistics """ self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count class AverageMeters(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=':f'): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__) class ProgressMeter(object): def __init__(self, num_batches, *meters, prefix=""): self.batch_fmtstr = self._get_batch_fmtstr(num_batches) self.meters = meters self.prefix = prefix def print(self, batch): entries = [self.prefix + self.batch_fmtstr.format(batch)] entries += [str(meter) for meter in self.meters] print('\t'.join(entries)) def _get_batch_fmtstr(self, num_batches): #num_digits = len(str(num_batches // 1)) num_digits = len(str(num_batches)) fmt = '{:' + str(num_digits) + 'd}' return '[' + fmt + '/' + fmt.format(num_batches) + ']' # Horovod: average metrics from distributed training. class Metric(object): def __init__(self, name, hvd): self.name = name self.hvd = hvd self.sum = torch.tensor(0.) self.n = torch.tensor(0.) def update(self, val): self.sum += self.hvd.allreduce(val.detach().cpu(), name=self.name) self.n += 1 @property def avg(self): return self.sum / self.n ''' @description: EarlyStopping via loss and save the best result ''' class EarlyStopping: """Early stops the training if validation loss doesn't improve after a given patience.""" def __init__(self, patience=7, verbose=False, delta=0): """ Args: patience (int): How long to wait after last time validation loss improved. Default: 7 verbose (bool): If True, prints a message for each validation loss improvement. Default: False delta (float): Minimum change in the monitored quantity to qualify as an improvement. Default: 0 """ self.patience = patience self.verbose = verbose self.counter = 0 self.best_score = None self.early_stop = False self.val_loss_min = np.Inf self.delta = delta def __call__(self, val_loss, model, ckpt_dir): score = -val_loss if self.best_score is None: self.best_score = score self.save_checkpoint(val_loss, model, ckpt_dir, True) elif score < self.best_score - self.delta: self.counter += 1 print('EarlyStopping counter: {0} out of {1}'.format(self.counter, self.counter)) if self.counter >= self.patience: self.early_stop = True print('The best loss is {0}'.format(self.best_score)) else: self.best_score = score self.save_checkpoint(val_loss, model, ckpt_dir, True) self.counter = 0 def save_checkpoint(self, val_loss, model, ckpt_dir,is_best=False): '''Saves model when validation loss decrease.''' if self.verbose: print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format(self.val_loss_min, val_loss)) filename = os.path.join(ckpt_dir, 'checkpoint.pth.tar') torch.save(model, filename) if is_best: best_filename = os.path.join(ckpt_dir, 'best.pth.tar') shutil.copyfile(filename, best_filename) self.val_loss_min = val_loss class data_prefetcher_imagenet(): def __init__(self, loader): self.loader = iter(loader) self.stream = torch.cuda.Stream() self.mean = torch.tensor([0.485 * 255, 0.456 * 255, 0.406 * 255]).cuda().view(1,3,1,1) self.std = torch.tensor([0.229 * 255, 0.224 * 255, 0.225 * 255]).cuda().view(1,3,1,1) # With Amp, it isn't necessary to manually convert data to half. # if args.fp16: # self.mean = self.mean.half() # self.std = self.std.half() self.preload() def preload(self): try: self.next_input, self.next_target = next(self.loader) except StopIteration: self.next_input = None self.next_target = None return with torch.cuda.stream(self.stream): self.next_input = self.next_input.cuda(non_blocking=True) self.next_target = self.next_target.cuda(non_blocking=True) # With Amp, it isn't necessary to manually convert data to half. # if args.fp16: # self.next_input = self.next_input.half() # else: self.next_input = self.next_input.float() self.next_input = self.next_input.sub_(self.mean).div_(self.std) def next(self): torch.cuda.current_stream().wait_stream(self.stream) input = self.next_input target = self.next_target self.preload() return input, target class Cutout(object): def __init__(self, length): self.length = length def __call__(self, img): h, w = img.size(1), img.size(2) mask = np.ones((h, w), np.float32) y = np.random.randint(h) x = np.random.randint(w) y1 = np.clip(y - self.length // 2, 0, h) y2 =
np.clip(y + self.length // 2, 0, h)
numpy.clip
""" retain 用于实现高阶导数,分开实现是为了性能,毕竟大多数时候用不到高阶导数 需要注意的是 高阶导数并非所有的都实现了,有一些算子并未实现 """ from typing import * import numpy as np from numpy import ndarray from . import _tensor from .base import ComputeNode, ComputeNodeDetached from . import functional from .dtypes import float32 if TYPE_CHECKING: from ._tensor import Tensor def from_numpy(data: ndarray, requires_grad=False, is_leaf=False): return _tensor.Tensor(data, requires_grad=requires_grad, is_leaf=is_leaf) def full_like(a: "Tensor", full_val: Union[int, float], dtype=None, requires_grad=False) -> "Tensor": data = np.full_like(a.data, full_val, dtype or a.dtype) return _tensor.Tensor(data, requires_grad=requires_grad) def full(shape, fill_val, dtype=float32, requires_grad=False) -> "Tensor": data = np.full(shape, fill_val, dtype) return _tensor.Tensor(data, requires_grad=requires_grad) def zeros(shape, dtype=float32, requires_grad=False) -> "Tensor": return _tensor.Tensor(np.zeros(shape, dtype), requires_grad=requires_grad) def zeros_like(a: 'Tensor', dtype=None, requires_grad=False) -> "Tensor": return _tensor.Tensor(np.zeros_like(a.data, dtype or a.dtype), requires_grad=requires_grad) def ones(shape, dtype=float32, requires_grad=False): return _tensor.Tensor(np.ones(shape, dtype), requires_grad=requires_grad) def ones_like(a: "Tensor", dtype=None, requires_grad=False): return _tensor.Tensor(np.ones_like(a.data, dtype or a.dtype), requires_grad=requires_grad) def apply_broadcast_a(sa, sb, grad_a): if sa == sb: return grad_a max_dim = max(len(sa), len(sb)) new_sa = (1,) * (max_dim - len(sa)) + sa new_sb = (1,) * (max_dim - len(sb)) + sb for i, (da, db) in enumerate(zip(new_sa, new_sb)): if db != da == 1: grad_a = np.expand_dims(grad_a.sum(axis=i), i) return grad_a.reshape(sa) def apply_broadcast_b(sa, sb, grad_b): if sa == sb: return grad_b max_dim = max(len(sa), len(sb)) new_sa = (1,) * (max_dim - len(sa)) + sa new_sb = (1,) * (max_dim - len(sb)) + sb for i, (da, db) in enumerate(zip(new_sa, new_sb)): if da != db == 1: grad_b = np.expand_dims(grad_b.sum(axis=i), i) return grad_b.reshape(sb) def apply_broadcast(sa, sb, grad_a, grad_b): if sa == sb: return grad_a, grad_b max_dim = max(len(sa), len(sb)) new_sa = (1,) * (max_dim - len(sa)) + sa new_sb = (1,) * (max_dim - len(sb)) + sb for i, (da, db) in enumerate(zip(new_sa, new_sb)): if db != da == 1: # 这里求和的原因是广播产生了n条路径,根据乘法结合律, # 提取公共部分后就是当前节点的n条路径相加了 # 例如 1 x 2 x 3 x c1 + 1 x 2 x 3 x c2 + 1 x 2 x 3 x c3 ==> 1 x 2 x 3 x (c1 + c2 + c3 + c4) grad_a = np.expand_dims(grad_a.sum(i), i) if da != db == 1: grad_b = np.expand_dims(grad_b.sum(i), i) return grad_a.reshape(sa), grad_b.reshape(sb) def apply_broadcast_a_tensor(sa, sb, grad_a: "Tensor"): if sa == sb: return grad_a max_dim = max(len(sa), len(sb)) new_sa = (1,) * (max_dim - len(sa)) + sa new_sb = (1,) * (max_dim - len(sb)) + sb for i, (da, db) in enumerate(zip(new_sa, new_sb)): if db != da == 1: # grad_a = np.expand_dims(grad_a.sum(axis=i), i) grad_a = UnSqueeze(grad_a.sum(dim=i), i) return grad_a.reshape(sa) def apply_broadcast_b_tensor(sa, sb, grad_b: "Tensor"): if sa == sb: return grad_b max_dim = max(len(sa), len(sb)) new_sa = (1,) * (max_dim - len(sa)) + sa new_sb = (1,) * (max_dim - len(sb)) + sb for i, (da, db) in enumerate(zip(new_sa, new_sb)): if da != db == 1: # grad_b = np.expand_dims(grad_b.sum(axis=i), i) grad_b = ExpandDims(grad_b.sum(dim=i), i) return grad_b.reshape(sb) class Add(ComputeNodeDetached): def forward(self) -> ndarray: a, b = self.inputs_data return a + b def backward_a(self, dy): a, b = self.inputs_data res = apply_broadcast_a(a.shape, b.shape, dy) return res def backward_b(self, dy): a, b = self.inputs_data res = apply_broadcast_b(a.shape, b.shape, dy) return res def retain_backward_a(self, dy): a, b = self.inputs res = apply_broadcast_a_tensor(a.shape, b.shape, dy) return res def retain_backward_b(self, dy): a, b = self.inputs res = apply_broadcast_b_tensor(a.shape, b.shape, dy) return res @staticmethod def at(a: "Tensor", indices, b: "Tensor"): if not isinstance(b, (int, float)): b = (b,) * len(indices) if not isinstance(b, _tensor.Tensor): b = _tensor.Tensor(b) if isinstance(indices, list): for i, idx in enumerate(indices): a = a * 1 a[idx] += b[i] elif isinstance(indices, tuple): a[indices] = b return a class Sub(ComputeNodeDetached): def forward(self) -> ndarray: a, b = self.inputs_data return a - b def backward_a(self, dy): a, b = self.inputs_data return apply_broadcast_a(a.shape, b.shape, dy) def backward_b(self, dy): a, b = self.inputs_data dy = -dy return apply_broadcast_b(a.shape, b.shape, dy) def retain_backward_a(self, dy): a, b = self.inputs return apply_broadcast_a_tensor(a.shape, b.shape, dy) def retain_backward_b(self, dy): a, b = self.inputs dy = -dy return apply_broadcast_b_tensor(a.shape, b.shape, dy) class Mul(ComputeNodeDetached): def forward(self) -> ndarray: a, b = self.inputs_data return a * b def backward_a(self, dy): a, b = self.inputs_data dy = b * dy return apply_broadcast_a(a.shape, b.shape, dy) def backward_b(self, dy): a, b = self.inputs_data dy = a * dy return apply_broadcast_b(a.shape, b.shape, dy) def retain_backward_a(self, dy): a, b = self.inputs dy = b * dy return apply_broadcast_a_tensor(a.shape, b.shape, dy) def retain_backward_b(self, dy): a, b = self.inputs dy = a * dy return apply_broadcast_b_tensor(a.shape, b.shape, dy) class Div(ComputeNodeDetached): def forward(self) -> ndarray: a, b = self.inputs_data return a / b def backward_a(self, dy): a, b = self.inputs_data dy = (1 / b) * dy return apply_broadcast_a(a.shape, b.shape, dy) def backward_b(self, dy): a, b = self.inputs_data dy = -a * (b ** (-2)) * dy return apply_broadcast_b(a.shape, b.shape, dy) def retain_backward_a(self, dy): a, b = self.inputs dy = (1 / b) * dy return apply_broadcast_a_tensor(a.shape, b.shape, dy) def retain_backward_b(self, dy): a, b = self.inputs dy = -a * (b ** (-2)) * dy return apply_broadcast_b_tensor(a.shape, b.shape, dy) class Pow(ComputeNodeDetached): def forward(self) -> ndarray: a, b = self.inputs_data return np.power(a, b) def backward_a(self, dy): a, b = self.inputs_data dy = b * (a ** (b - 1)) * dy return apply_broadcast_a(a.shape, b.shape, dy) def backward_b(self, dy): a, b = self.inputs_data dy =
np.power(a, b)
numpy.power
# AUTOGENERATED! DO NOT EDIT! File to edit: 30_datasets.ipynb (unless otherwise specified). __all__ = ['To3dArray', 'ToArray', 'decompress_from_url', 'get_UCR_univariate_list', 'get_UCR_multivariate_list', 'get_UCR_univariate', 'get_UCR_multivariate', 'get_UCR_data', 'ucr_to_items', 'get_simple_config', 'items_from_df', 'cats_from_df'] # Cell from .data import * # Cell import numpy as np #import torch from fastai.torch_basics import * from fastai.data.all import * from fastai.callback.all import * import torch # Cell import os import tempfile try: from urllib import urlretrieve except ImportError: from urllib.request import urlretrieve import shutil from pyunpack import Archive from scipy.io import arff # Cell #TSUtilities def To3dArray(arr): arr = ToArray(arr) if arr.ndim == 1: arr = arr[None, None] elif arr.ndim == 2: arr = arr[:, None] elif arr.ndim == 4: arr = arr[0] assert arr.ndim == 3, 'Please, review input dimensions' return np.array(arr) def ToArray(arr): if isinstance(arr, torch.Tensor): arr = np.array(arr) elif not isinstance(arr, np.ndarray): print(f"Can't convert {type(arr)} to np.array") if arr.dtype == 'O': arr = np.array(arr, dtype=np.float32) return arr # Cell def decompress_from_url(url, target_dir=None, verbose=False): """Downloads a compressed file from its URL and uncompresses it. Parameters ---------- url : string URL from which to download. target_dir : str or None (default: None) Directory to be used to extract downloaded files. verbose : bool (default: False) Whether to print information about the process (cached files used, ...) Returns ------- str or None Directory in which the compressed file has been extracted if the process was successful, None otherwise """ try: fname = os.path.basename(url) tmpdir = tempfile.mkdtemp() local_comp_fname = os.path.join(tmpdir, fname) urlretrieve(url, local_comp_fname) except: shutil.rmtree(tmpdir) if verbose: sys.stderr.write("Could not download url. Please, check url.\n") try: if not os.path.exists(target_dir): os.makedirs(target_dir) Archive(local_comp_fname).extractall(target_dir) shutil.rmtree(tmpdir) if verbose: print("Successfully extracted file %s to path %s" % (local_comp_fname, target_dir)) return target_dir except: shutil.rmtree(tmpdir) if verbose: sys.stderr.write("Could not uncompress file, aborting.\n") return None def get_UCR_univariate_list(): return sorted([ 'ACSF1', 'Adiac', 'AllGestureWiimoteX', 'AllGestureWiimoteY', 'AllGestureWiimoteZ', 'ArrowHead', 'AsphaltObstacles', 'BME', 'Beef', 'BeetleFly', 'BirdChicken', 'CBF', 'Car', 'Chinatown', 'ChlorineConcentration', 'CinCECGTorso', 'Coffee', 'Computers', 'CricketX', 'CricketY', 'CricketZ', 'Crop', 'DiatomSizeReduction', 'DistalPhalanxOutlineAgeGroup', 'DistalPhalanxOutlineCorrect', 'DistalPhalanxTW', 'DodgerLoopDay', 'DodgerLoopGame', 'DodgerLoopWeekend', 'ECG200', 'ECG5000', 'ECGFiveDays', 'EOGHorizontalSignal', 'EOGVerticalSignal', 'Earthquakes', 'ElectricDevices', 'EthanolLevel', 'FaceAll', 'FaceFour', 'FacesUCR', 'FiftyWords', 'Fish', 'FordA', 'FordB', 'FreezerRegularTrain', 'FreezerSmallTrain', 'Fungi', 'GestureMidAirD1', 'GestureMidAirD2', 'GestureMidAirD3', 'GesturePebbleZ1', 'GesturePebbleZ2', 'GunPoint', 'GunPointAgeSpan', 'GunPointMaleVersusFemale', 'GunPointOldVersusYoung', 'Ham', 'HandOutlines', 'Haptics', 'Herring', 'HouseTwenty', 'InlineSkate', 'InsectEPGRegularTrain', 'InsectEPGSmallTrain', 'InsectWingbeatSound', 'ItalyPowerDemand', 'LargeKitchenAppliances', 'Lightning2', 'Lightning7', 'Mallat', 'Meat', 'MedicalImages', 'MelbournePedestrian', 'MiddlePhalanxOutlineAgeGroup', 'MiddlePhalanxOutlineCorrect', 'MiddlePhalanxTW', 'MixedShapesRegularTrain', 'MixedShapesSmallTrain', 'MoteStrain', 'NonInvasiveFetalECGThorax1', 'NonInvasiveFetalECGThorax2', 'OSULeaf', 'OliveOil', 'PLAID', 'PhalangesOutlinesCorrect', 'Phoneme', 'PickupGestureWiimoteZ', 'PigAirwayPressure', 'PigArtPressure', 'PigCVP', 'Plane', 'PowerCons', 'ProximalPhalanxOutlineAgeGroup', 'ProximalPhalanxOutlineCorrect', 'ProximalPhalanxTW', 'RefrigerationDevices', 'Rock', 'ScreenType', 'SemgHandGenderCh2', 'SemgHandMovementCh2', 'SemgHandSubjectCh2', 'ShakeGestureWiimoteZ', 'ShapeletSim', 'ShapesAll', 'SmallKitchenAppliances', 'SmoothSubspace', 'SonyAIBORobotSurface1', 'SonyAIBORobotSurface2', 'StarLightCurves', 'Strawberry', 'SwedishLeaf', 'Symbols', 'SyntheticControl', 'ToeSegmentation1', 'ToeSegmentation2', 'Trace', 'TwoLeadECG', 'TwoPatterns', 'UMD', 'UWaveGestureLibraryAll', 'UWaveGestureLibraryX', 'UWaveGestureLibraryY', 'UWaveGestureLibraryZ', 'Wafer', 'Wine', 'WordSynonyms', 'Worms', 'WormsTwoClass', 'Yoga' ]) def get_UCR_multivariate_list(): return sorted([ 'ArticularyWordRecognition', 'AtrialFibrillation', 'BasicMotions', 'CharacterTrajectories', 'Cricket', 'DuckDuckGeese', 'ERing', 'EigenWorms', 'Epilepsy', 'EthanolConcentration', 'FaceDetection', 'FingerMovements', 'HandMovementDirection', 'Handwriting', 'Heartbeat', 'InsectWingbeat', 'JapaneseVowels', 'LSST', 'Libras', 'MotorImagery', 'NATOPS', 'PEMS-SF', 'PenDigits', 'PhonemeSpectra', 'RacketSports', 'SelfRegulationSCP1', 'SelfRegulationSCP2', 'SpokenArabicDigits', 'StandWalkJump', 'UWaveGestureLibrary' ]) # Cell def get_UCR_univariate(sel_dataset, parent_dir='data/UCR', verbose=False, drop_na=False, check=True): if check and sel_dataset not in get_UCR_univariate_list(): print('This dataset does not exist. Please select one from this list:') print(get_UCR_univariate_list()) return None, None, None, None if verbose: print('Dataset:', sel_dataset) src_website = 'http://www.timeseriesclassification.com/Downloads/' tgt_dir = Path(parent_dir) / sel_dataset if verbose: print('Downloading and decompressing data...') if not os.path.isdir(tgt_dir): decompress_from_url( src_website + sel_dataset + '.zip', target_dir=tgt_dir, verbose=verbose) if verbose: print('...data downloaded and decompressed') fname_train = sel_dataset + "_TRAIN.arff" fname_test = sel_dataset + "_TEST.arff" train_df = pd.DataFrame(arff.loadarff(os.path.join(tgt_dir, fname_train))[0]) test_df = pd.DataFrame(arff.loadarff(os.path.join(tgt_dir, fname_test))[0]) unique_cats = train_df.iloc[:, -1].unique() mapping = dict(zip(unique_cats, np.arange(len(unique_cats)))) train_df = train_df.replace({train_df.columns.values[-1]: mapping}) test_df = test_df.replace({test_df.columns.values[-1]: mapping}) if drop_na: train_df.dropna(axis=1, inplace=True) test_df.dropna(axis=1, inplace=True) X_train = train_df.iloc[:, :-1].values.astype(np.float32) X_test = test_df.iloc[:, :-1].values.astype(np.float32) y_train = train_df.iloc[:, -1].values.astype(int) y_test = test_df.iloc[:, -1].values.astype(int) X_train = To3dArray(X_train) X_test = To3dArray(X_test) if verbose: print('Successfully extracted dataset\n') print('X_train:', X_train.shape) print('y_train:', y_train.shape) print('X_valid:', X_test.shape) print('y_valid:', y_test.shape, '\n') return X_train, y_train, X_test, y_test def get_UCR_multivariate(sel_dataset, parent_dir='data/UCR', verbose=False, check=True): if sel_dataset.lower() == 'mphoneme': sel_dataset = 'Phoneme' if check and sel_dataset not in get_UCR_multivariate_list(): print('This dataset does not exist. Please select one from this list:') print(get_UCR_multivariate_list()) return None, None, None, None if verbose: print('Dataset:', sel_dataset) src_website = 'http://www.timeseriesclassification.com/Downloads/' tgt_dir = Path(parent_dir) / sel_dataset if verbose: print('Downloading and decompressing data...') if not os.path.isdir(tgt_dir): decompress_from_url( src_website + sel_dataset + '.zip', target_dir=tgt_dir, verbose=verbose) if verbose: print('...data downloaded and decompressed') if verbose: print('Extracting data...') X_train_ = [] X_test_ = [] for i in range(10000): if not os.path.isfile( f'{parent_dir}/{sel_dataset}/{sel_dataset}Dimension' + str(i + 1) + '_TRAIN.arff'): break train_df = pd.DataFrame( arff.loadarff( f'{parent_dir}/{sel_dataset}/{sel_dataset}Dimension' + str(i + 1) + '_TRAIN.arff')[0]) unique_cats = train_df.iloc[:, -1].unique() mapping = dict(zip(unique_cats, np.arange(len(unique_cats)))) train_df = train_df.replace({train_df.columns.values[-1]: mapping}) test_df = pd.DataFrame( arff.loadarff( f'{parent_dir}/{sel_dataset}/{sel_dataset}Dimension' + str(i + 1) + '_TEST.arff')[0]) test_df = test_df.replace({test_df.columns.values[-1]: mapping}) X_train_.append(train_df.iloc[:, :-1].values) X_test_.append(test_df.iloc[:, :-1].values) if verbose: print('...extraction complete') X_train = np.stack(X_train_, axis=-1) X_test = np.stack(X_test_, axis=-1) # In this case we need to rearrange the arrays () X_train = np.transpose(X_train, (0, 2, 1)) X_test =
np.transpose(X_test, (0, 2, 1))
numpy.transpose
############################TESTS ON POTENTIALS################################ from __future__ import print_function, division import os import sys import numpy import pynbody from galpy import potential _TRAVIS= bool(os.getenv('TRAVIS')) #Test whether the normalization of the potential works def test_normalize_potential(): #Grab all of the potentials pots= [p for p in dir(potential) if ('Potential' in p and not 'plot' in p and not 'RZTo' in p and not 'evaluate' in p)] pots.append('mockTwoPowerIntegerSphericalPotential') pots.append('specialTwoPowerSphericalPotential') pots.append('HernquistTwoPowerIntegerSphericalPotential') pots.append('JaffeTwoPowerIntegerSphericalPotential') pots.append('NFWTwoPowerIntegerSphericalPotential') pots.append('specialMiyamotoNagaiPotential') pots.append('specialPowerSphericalPotential') pots.append('specialFlattenedPowerPotential') pots.append('specialMN3ExponentialDiskPotentialPD') pots.append('specialMN3ExponentialDiskPotentialSECH') rmpots= ['Potential','MWPotential','MWPotential2014', 'MovingObjectPotential', 'interpRZPotential', 'linearPotential', 'planarAxiPotential', 'planarPotential', 'verticalPotential','PotentialError', 'SnapshotRZPotential','InterpSnapshotRZPotential'] if False: #_TRAVIS: #travis CI rmpots.append('DoubleExponentialDiskPotential') rmpots.append('RazorThinExponentialDiskPotential') for p in rmpots: pots.remove(p) for p in pots: #if not 'NFW' in p: continue #For testing the test #Setup instance of potential try: tclass= getattr(potential,p) except AttributeError: tclass= getattr(sys.modules[__name__],p) tp= tclass() if not hasattr(tp,'normalize'): continue tp.normalize(1.) assert (tp.Rforce(1.,0.)+1.)**2. < 10.**-16., \ "Normalization of %s potential fails" % p assert (tp.vcirc(1.)**2.-1.)**2. < 10.**-16., \ "Normalization of %s potential fails" % p tp.normalize(.5) if hasattr(tp,'toPlanar'): ptp= tp.toPlanar() else: ptp= tp assert (ptp.Rforce(1.,0.)+.5)**2. < 10.**-16., \ "Normalization of %s potential fails" % p assert (ptp.vcirc(1.)**2.-0.5)**2. < 10.**-16., \ "Normalization of %s potential fails" % p #Test whether the derivative of the potential is minus the force def test_forceAsDeriv_potential(): #Grab all of the potentials pots= [p for p in dir(potential) if ('Potential' in p and not 'plot' in p and not 'RZTo' in p and not 'evaluate' in p)] pots.append('mockTwoPowerIntegerSphericalPotential') pots.append('specialTwoPowerSphericalPotential') pots.append('HernquistTwoPowerIntegerSphericalPotential') pots.append('JaffeTwoPowerIntegerSphericalPotential') pots.append('NFWTwoPowerIntegerSphericalPotential') pots.append('specialMiyamotoNagaiPotential') pots.append('specialMN3ExponentialDiskPotentialPD') pots.append('specialMN3ExponentialDiskPotentialSECH') pots.append('specialPowerSphericalPotential') pots.append('specialFlattenedPowerPotential') pots.append('testMWPotential') pots.append('testplanarMWPotential') pots.append('testlinearMWPotential') pots.append('mockInterpRZPotential') pots.append('mockSnapshotRZPotential') pots.append('mockInterpSnapshotRZPotential') pots.append('mockCosmphiDiskPotentialT1') pots.append('mockCosmphiDiskPotentialTm1') pots.append('mockCosmphiDiskPotentialTm5') pots.append('mockDehnenBarPotentialT1') pots.append('mockDehnenBarPotentialTm1') pots.append('mockDehnenBarPotentialTm5') pots.append('mockEllipticalDiskPotentialT1') pots.append('mockEllipticalDiskPotentialTm1') pots.append('mockEllipticalDiskPotentialTm5') pots.append('mockSteadyLogSpiralPotentialT1') pots.append('mockSteadyLogSpiralPotentialTm1') pots.append('mockSteadyLogSpiralPotentialTm5') pots.append('mockTransientLogSpiralPotential') pots.append('mockFlatEllipticalDiskPotential') #for evaluate w/ nonaxi lists pots.append('mockMovingObjectPotential') pots.append('mockMovingObjectExplSoftPotential') rmpots= ['Potential','MWPotential','MWPotential2014', 'MovingObjectPotential', 'interpRZPotential', 'linearPotential', 'planarAxiPotential', 'planarPotential', 'verticalPotential','PotentialError', 'SnapshotRZPotential','InterpSnapshotRZPotential'] if False: #_TRAVIS: #travis CI rmpots.append('DoubleExponentialDiskPotential') rmpots.append('RazorThinExponentialDiskPotential') for p in rmpots: pots.remove(p) Rs= numpy.array([0.5,1.,2.]) Zs= numpy.array([0.,.125,-.125,0.25,-0.25]) phis= numpy.array([0.,0.5,-0.5,1.,-1., numpy.pi,0.5+numpy.pi, 1.+numpy.pi]) #tolerances in log10 tol= {} tol['default']= -8. tol['DoubleExponentialDiskPotential']= -6. #these are more difficult tol['RazorThinExponentialDiskPotential']= -6. tol['mockInterpRZPotential']= -4. for p in pots: #if not 'NFW' in p: continue #For testing the test #Setup instance of potential try: tclass= getattr(potential,p) except AttributeError: tclass= getattr(sys.modules[__name__],p) tp= tclass() if hasattr(tp,'normalize'): tp.normalize(1.) #Set tolerance if p in list(tol.keys()): ttol= tol[p] else: ttol= tol['default'] #Radial force for ii in range(len(Rs)): for jj in range(len(Zs)): dr= 10.**-8. newR= Rs[ii]+dr dr= newR-Rs[ii] #Representable number if isinstance(tp,potential.linearPotential): mpotderivR= (potential.evaluatelinearPotentials(Rs[ii],tp) -potential.evaluatelinearPotentials(Rs[ii]+dr, tp))/dr tRforce= potential.evaluatelinearForces(Rs[ii],tp) elif isinstance(tp,potential.planarPotential): mpotderivR= (potential.evaluateplanarPotentials(Rs[ii],tp,phi=Zs[jj])-potential.evaluateplanarPotentials(Rs[ii]+dr,tp,phi=Zs[jj]))/dr tRforce= potential.evaluateplanarRforces(Rs[ii],tp, phi=Zs[jj]) else: mpotderivR= (potential.evaluatePotentials(Rs[ii],Zs[jj],tp) -potential.evaluatePotentials(Rs[ii]+dr,Zs[jj], tp))/dr tRforce= potential.evaluateRforces(Rs[ii],Zs[jj],tp) if tRforce**2. < 10.**ttol: assert mpotderivR**2. < 10.**ttol, \ "Calculation of the Radial force as the Radial derivative of the %s potential fails at (R,Z) = (%.3f,%.3f); diff = %e, rel. diff = %e" % (p,Rs[ii],Zs[jj],numpy.fabs(tRforce-mpotderivR), numpy.fabs((tRforce-mpotderivR)/tRforce)) else: assert (tRforce-mpotderivR)**2./tRforce**2. < 10.**ttol, \ "Calculation of the Radial force as the Radial derivative of the %s potential fails at (R,Z) = (%.3f,%.3f); diff = %e, rel. diff = %e" % (p,Rs[ii],Zs[jj],numpy.fabs(tRforce-mpotderivR), numpy.fabs((tRforce-mpotderivR)/tRforce)) #Azimuthal force, if it exists if isinstance(tp,potential.linearPotential): continue for ii in range(len(Rs)): for jj in range(len(phis)): dphi= 10.**-8. newphi= phis[jj]+dphi dphi= newphi-phis[jj] #Representable number if isinstance(tp,potential.planarPotential): mpotderivphi= (tp(Rs[ii],phi=phis[jj])-tp(Rs[ii],phi=phis[jj]+dphi))/dphi tphiforce= potential.evaluateplanarphiforces(Rs[ii],tp, phi=phis[jj]) else: mpotderivphi= (tp(Rs[ii],0.05,phi=phis[jj])-tp(Rs[ii],0.05,phi=phis[jj]+dphi))/dphi tphiforce= potential.evaluatephiforces(Rs[ii],0.05,tp, phi=phis[jj]) try: if tphiforce**2. < 10.**ttol: assert(mpotderivphi**2. < 10.**ttol) else: assert((tphiforce-mpotderivphi)**2./tphiforce**2. < 10.**ttol) except AssertionError: if isinstance(tp,potential.planarPotential): raise AssertionError("Calculation of the azimuthal force as the azimuthal derivative of the %s potential fails at (R,phi) = (%.3f,%.3f); diff = %e, rel. diff = %e" % (p,Rs[ii],phis[jj],numpy.fabs(mpotderivphi),numpy.fabs((tphiforce-mpotderivphi)/tphiforce))) else: raise AssertionError("Calculation of the azimuthal force as the azimuthal derivative of the %s potential fails at (R,Z,phi) = (%.3f,0.05,%.3f); diff = %e, rel. diff = %e" % (p,Rs[ii],phis[jj],numpy.fabs(mpotderivphi),numpy.fabs((tphiforce-mpotderivphi)/tphiforce))) #Vertical force, if it exists if isinstance(tp,potential.planarPotential) \ or isinstance(tp,potential.linearPotential): continue for ii in range(len(Rs)): for jj in range(len(Zs)): dz= 10.**-8. newZ= Zs[jj]+dz dz= newZ-Zs[jj] #Representable number mpotderivz= (tp(Rs[ii],Zs[jj])-tp(Rs[ii],Zs[jj]+dz))/dz tzforce= potential.evaluatezforces(Rs[ii],Zs[jj],tp) if tzforce**2. < 10.**ttol: assert mpotderivz**2. < 10.**ttol, \ "Calculation of the vertical force as the vertical derivative of the %s potential fails at (R,Z) = (%.3f,%.3f); diff = %e, rel. diff = %e" % (p,Rs[ii],Zs[jj],numpy.fabs(mpotderivz),numpy.fabs((tzforce-mpotderivz)/tzforce)) else: assert (tzforce-mpotderivz)**2./tzforce**2. < 10.**ttol, \ "Calculation of the vertical force as the vertical derivative of the %s potential fails at (R,Z) = (%.3f,%.3f); diff = %e, rel. diff = %e" % (p,Rs[ii],Zs[jj],numpy.fabs(mpotderivz),numpy.fabs((tzforce-mpotderivz)/tzforce)) #Test whether the second derivative of the potential is minus the derivative of the force def test_2ndDeriv_potential(): #Grab all of the potentials pots= [p for p in dir(potential) if ('Potential' in p and not 'plot' in p and not 'RZTo' in p and not 'evaluate' in p)] pots.append('mockTwoPowerIntegerSphericalPotential') pots.append('specialTwoPowerSphericalPotential') pots.append('HernquistTwoPowerIntegerSphericalPotential') pots.append('JaffeTwoPowerIntegerSphericalPotential') pots.append('NFWTwoPowerIntegerSphericalPotential') pots.append('specialMiyamotoNagaiPotential') pots.append('specialMN3ExponentialDiskPotentialPD') pots.append('specialMN3ExponentialDiskPotentialSECH') pots.append('specialPowerSphericalPotential') pots.append('specialFlattenedPowerPotential') pots.append('testMWPotential') pots.append('testplanarMWPotential') pots.append('testlinearMWPotential') pots.append('mockInterpRZPotential') pots.append('mockCosmphiDiskPotentialT1') pots.append('mockCosmphiDiskPotentialTm1') pots.append('mockCosmphiDiskPotentialTm5') pots.append('mockDehnenBarPotentialT1') pots.append('mockDehnenBarPotentialTm1') pots.append('mockDehnenBarPotentialTm5') pots.append('mockEllipticalDiskPotentialT1') pots.append('mockEllipticalDiskPotentialTm1') pots.append('mockEllipticalDiskPotentialTm5') pots.append('mockSteadyLogSpiralPotentialT1') pots.append('mockSteadyLogSpiralPotentialTm1') pots.append('mockSteadyLogSpiralPotentialTm5') pots.append('mockTransientLogSpiralPotential') pots.append('mockFlatEllipticalDiskPotential') #for evaluate w/ nonaxi lists rmpots= ['Potential','MWPotential','MWPotential2014', 'MovingObjectPotential', 'interpRZPotential', 'linearPotential', 'planarAxiPotential', 'planarPotential', 'verticalPotential','PotentialError', 'SnapshotRZPotential','InterpSnapshotRZPotential'] if False: #_TRAVIS: #travis CI rmpots.append('DoubleExponentialDiskPotential') rmpots.append('RazorThinExponentialDiskPotential') for p in rmpots: pots.remove(p) Rs= numpy.array([0.5,1.,2.]) Zs= numpy.array([0.,.125,-.125,0.25,-0.25]) phis= numpy.array([0.,0.5,-0.5,1.,-1., numpy.pi,0.5+numpy.pi, 1.+numpy.pi]) #tolerances in log10 tol= {} tol['default']= -8. tol['DoubleExponentialDiskPotential']= -3. #these are more difficult tol['RazorThinExponentialDiskPotential']= -6. tol['mockInterpRZPotential']= -4. for p in pots: #if not 'NFW' in p: continue #For testing the test #Setup instance of potential try: tclass= getattr(potential,p) except AttributeError: tclass= getattr(sys.modules[__name__],p) tp= tclass() if hasattr(tp,'normalize'): tp.normalize(1.) #Set tolerance if p in list(tol.keys()): ttol= tol[p] else: ttol= tol['default'] #2nd radial if hasattr(tp,'_R2deriv'): for ii in range(len(Rs)): for jj in range(len(Zs)): if p == 'RazorThinExponentialDiskPotential' and numpy.fabs(Zs[jj]) > 0.: continue #Not implemented dr= 10.**-8. newR= Rs[ii]+dr dr= newR-Rs[ii] #Representable number if isinstance(tp,potential.linearPotential): mRforcederivR= (tp.Rforce(Rs[ii])-tp.Rforce(Rs[ii]+dr))/dr tR2deriv= tp.R2deriv(Rs[ii]) elif isinstance(tp,potential.planarPotential): mRforcederivR= (tp.Rforce(Rs[ii],Zs[jj])-tp.Rforce(Rs[ii]+dr,Zs[jj]))/dr tR2deriv= potential.evaluateplanarR2derivs(Rs[ii],tp, phi=Zs[jj]) else: mRforcederivR= (tp.Rforce(Rs[ii],Zs[jj])-tp.Rforce(Rs[ii]+dr,Zs[jj]))/dr tR2deriv= potential.evaluateR2derivs(Rs[ii],Zs[jj],tp) if tR2deriv**2. < 10.**ttol: assert mRforcederivR**2. < 10.**ttol, \ "Calculation of the second Radial derivative of the potential as the Radial derivative of the %s Radial force fails at (R,Z) = (%.3f,%.3f); diff = %e, rel. diff = %e" % (p,Rs[ii],Zs[jj],numpy.fabs(tR2deriv-mRforcederivR), numpy.fabs((tR2deriv-mRforcederivR)/tR2deriv)) else: assert (tR2deriv-mRforcederivR)**2./tR2deriv**2. < 10.**ttol, \ "Calculation of the second Radial derivative of the potential as the Radial derivative of the %s Radial force fails at (R,Z) = (%.3f,%.3f); diff = %e, rel. diff = %e" % (p,Rs[ii],Zs[jj],numpy.fabs(tR2deriv-mRforcederivR), numpy.fabs((tR2deriv-mRforcederivR)/tR2deriv)) #2nd azimuthal if not isinstance(tp,potential.linearPotential) \ and hasattr(tp,'_phi2deriv'): for ii in range(len(Rs)): for jj in range(len(phis)): dphi= 10.**-8. newphi= phis[jj]+dphi dphi= newphi-phis[jj] #Representable number if isinstance(tp,potential.planarPotential): mphiforcederivphi= (tp.phiforce(Rs[ii],phi=phis[jj])-tp.phiforce(Rs[ii],phi=phis[jj]+dphi))/dphi tphi2deriv= tp.phi2deriv(Rs[ii],phi=phis[jj]) else: mphiforcederivphi= (tp.phiforce(Rs[ii],0.05,phi=phis[jj])-tp.phiforce(Rs[ii],0.05,phi=phis[jj]+dphi))/dphi tphi2deriv= tp.phi2deriv(Rs[ii],0.05,phi=phis[jj]) try: if tphi2deriv**2. < 10.**ttol: assert(mphiforcederivphi**2. < 10.**ttol) else: assert((tphi2deriv-mphiforcederivphi)**2./tphi2deriv**2. < 10.**ttol) except AssertionError: if isinstance(tp,potential.planarPotential): raise AssertionError("Calculation of the second azimuthal derivative of the potential as the azimuthal derivative of the %s azimuthal force fails at (R,phi) = (%.3f,%.3f); diff = %e, rel. diff = %e" % (p,Rs[ii],phis[jj],numpy.fabs(tphi2deriv-mphiforcederivphi), numpy.fabs((tphi2deriv-mphiforcederivphi)/tphi2deriv))) else: raise AssertionError("Calculation of the second azimuthal derivative of the potential as the azimuthal derivative of the %s azimuthal force fails at (R,Z,phi) = (%.3f,0.05,%.3f); diff = %e, rel. diff = %e" % (p,Rs[ii],phis[jj],numpy.fabs(tphi2deriv-mphiforcederivphi), numpy.fabs((tphi2deriv-mphiforcederivphi)/tphi2deriv))) #mixed radial azimuthal if not isinstance(tp,potential.linearPotential) \ and hasattr(tp,'_Rphideriv'): for ii in range(len(Rs)): for jj in range(len(phis)): dphi= 10.**-8. newphi= phis[jj]+dphi dphi= newphi-phis[jj] #Representable number if isinstance(tp,potential.planarPotential): mRforcederivphi= (tp.Rforce(Rs[ii],phi=phis[jj])-tp.Rforce(Rs[ii],phi=phis[jj]+dphi))/dphi tRphideriv= tp.Rphideriv(Rs[ii],phi=phis[jj]) else: mRforcederivphi= (tp.Rforce(Rs[ii],0.05,phi=phis[jj])-tp.Rforce(Rs[ii],0.05,phi=phis[jj]+dphi))/dphi tRphideriv= tp.Rphideriv(Rs[ii],0.05,phi=phis[jj]) try: if tRphideriv**2. < 10.**ttol: assert(mRforcederivphi**2. < 10.**ttol) else: assert((tRphideriv-mRforcederivphi)**2./tRphideriv**2. < 10.**ttol) except AssertionError: if isinstance(tp,potential.planarPotential): raise AssertionError("Calculation of the mixed radial, azimuthal derivative of the potential as the azimuthal derivative of the %s Radial force fails at (R,phi) = (%.3f,%.3f); diff = %e, rel. diff = %e" % (p,Rs[ii],phis[jj],numpy.fabs(tRphideriv-mRforcederivphi), numpy.fabs((tRphideriv-mRforcederivphi)/tRphideriv))) else: raise AssertionError("Calculation of the second azimuthal derivative of the potential as the azimuthal derivative of the %s azimuthal force fails at (R,Z,phi) = (%.3f,0.05,%.3f); diff = %e, rel. diff = %e" % (p,Rs[ii],phis[jj],numpy.fabs(tphi2deriv-mphiforcederivphi), numpy.fabs((tphi2deriv-mphiforcederivphi)/tphi2deriv))) #2nd vertical if not isinstance(tp,potential.planarPotential) \ and not isinstance(tp,potential.linearPotential) \ and hasattr(tp,'_z2deriv'): for ii in range(len(Rs)): for jj in range(len(Zs)): if p == 'RazorThinExponentialDiskPotential': continue #Not implemented, or badly defined if p == 'TwoPowerSphericalPotential': continue #Not implemented, or badly defined if p == 'mockTwoPowerIntegerSphericalPotential': continue #Not implemented, or badly defined if p == 'specialTwoPowerSphericalPotential': continue #Not implemented, or badly defined if p == 'HernquistTwoPowerIntegerSphericalPotential': continue #Not implemented, or badly defined if p == 'JaffeTwoPowerIntegerSphericalPotential': continue #Not implemented, or badly defined if p == 'NFWTwoPowerIntegerSphericalPotential': continue #Not implemented, or badly defined dz= 10.**-8. newz= Zs[jj]+dz dz= newz-Zs[jj] #Representable number mzforcederivz= (tp.zforce(Rs[ii],Zs[jj])-tp.zforce(Rs[ii],Zs[jj]+dz))/dz tz2deriv= potential.evaluatez2derivs(Rs[ii],Zs[jj],tp) if tz2deriv**2. < 10.**ttol: assert mzforcederivz**2. < 10.**ttol, \ "Calculation of the second vertical derivative of the potential as the vertical derivative of the %s vertical force fails at (R,Z) = (%.3f,%.3f); diff = %e, rel. diff = %e" % (p,Rs[ii],Zs[jj],numpy.fabs(tz2deriv-mzforcederivz), numpy.fabs((tz2deriv-mzforcederivz)/tz2deriv)) else: assert (tz2deriv-mzforcederivz)**2./tz2deriv**2. < 10.**ttol, \ "Calculation of the second vertical derivative of the potential as the vertical derivative of the %s vertical force fails at (R,Z) = (%.3f,%.3f); diff = %e, rel. diff = %e" % (p,Rs[ii],Zs[jj],numpy.fabs(tz2deriv-mzforcederivz), numpy.fabs((tz2deriv-mzforcederivz)/tz2deriv)) #mixed radial vertical if not isinstance(tp,potential.planarPotential) \ and not isinstance(tp,potential.linearPotential) \ and hasattr(tp,'_Rzderiv'): for ii in range(len(Rs)): for jj in range(len(Zs)): # if p == 'RazorThinExponentialDiskPotential': continue #Not implemented, or badly defined dz= 10.**-8. newz= Zs[jj]+dz dz= newz-Zs[jj] #Representable number mRforcederivz= (tp.Rforce(Rs[ii],Zs[jj])-tp.Rforce(Rs[ii],Zs[jj]+dz))/dz tRzderiv= potential.evaluateRzderivs(Rs[ii],Zs[jj],tp) if tRzderiv**2. < 10.**ttol: assert mRforcederivz**2. < 10.**ttol, \ "Calculation of the mixed radial vertical derivative of the potential as the vertical derivative of the %s radial force fails at (R,Z) = (%.3f,%.3f); diff = %e, rel. diff = %e" % (p,Rs[ii],Zs[jj],numpy.fabs(tRzderiv-mRforcederivz), numpy.fabs((tRzderiv-mRforcederivz)/tRzderiv)) else: assert (tRzderiv-mRforcederivz)**2./tRzderiv**2. < 10.**ttol, \ "Calculation of the mixed radial vertical derivative of the potential as the vertical derivative of the %s radial force fails at (R,Z) = (%.3f,%.3f); diff = %e, rel. diff = %e" % (p,Rs[ii],Zs[jj],numpy.fabs(tRzderiv-mRforcederivz), numpy.fabs((tRzderiv-mRforcederivz)/tRzderiv)) #mixed radial, azimuthal if not isinstance(tp,potential.linearPotential) \ and hasattr(tp,'_Rphideriv'): for ii in range(len(Rs)): for jj in range(len(phis)): # if p == 'RazorThinExponentialDiskPotential': continue #Not implemented, or badly defined dphi= 10.**-8. newphi= phis[jj]+dphi dphi= newphi-phis[jj] #Representable number if isinstance(tp,potential.planarPotential): mRforcederivphi= (tp.Rforce(Rs[ii],phi=phis[jj])\ -tp.Rforce(Rs[ii],phi=phis[jj]+dphi))/dphi tRphideriv= potential.evaluateplanarPotentials(Rs[ii],tp, phi=phis[jj],dR=1,dphi=1) else: mRforcederivphi= (tp.Rforce(Rs[ii],0.1,phi=phis[jj])\ -tp.Rforce(Rs[ii],0.1,phi=phis[jj]+dphi))/dphi tRphideriv= potential.evaluatePotentials(Rs[ii],0.1,tp, phi=phis[jj],dR=1,dphi=1) if tRphideriv**2. < 10.**ttol: assert mRforcederivphi**2. < 10.**ttol, \ "Calculation of the mixed radial azimuthal derivative of the potential as the azimuthal derivative of the %s radial force fails at (R,phi) = (%.3f,%.3f); diff = %e, rel. diff = %e" % (p,Rs[ii],phis[jj],numpy.fabs(tRphideriv-mRforcederivphi), numpy.fabs((tRphideriv-mRforcederivphi)/tRphideriv)) else: assert (tRphideriv-mRforcederivphi)**2./tRphideriv**2. < 10.**ttol, \ "Calculation of the mixed radial azimuthal derivative of the potential as the azimuthal derivative of the %s radial force fails at (R,phi) = (%.3f,%.3f); diff = %e, rel. diff = %e" % (p,Rs[ii],phis[jj],numpy.fabs(tRphideriv-mRforcederivphi), numpy.fabs((tRphideriv-mRforcederivphi)/tRphideriv)) #Test whether the Poisson equation is satisfied if _dens and the relevant second derivatives are implemented def test_poisson_potential(): #Grab all of the potentials pots= [p for p in dir(potential) if ('Potential' in p and not 'plot' in p and not 'RZTo' in p and not 'evaluate' in p)] pots.append('mockTwoPowerIntegerSphericalPotential') pots.append('specialTwoPowerSphericalPotential') pots.append('HernquistTwoPowerIntegerSphericalPotential') pots.append('JaffeTwoPowerIntegerSphericalPotential') pots.append('NFWTwoPowerIntegerSphericalPotential') pots.append('specialMiyamotoNagaiPotential') pots.append('specialMN3ExponentialDiskPotentialPD') pots.append('specialMN3ExponentialDiskPotentialSECH') pots.append('specialFlattenedPowerPotential') pots.append('specialPowerSphericalPotential') pots.append('testMWPotential') pots.append('testplanarMWPotential') pots.append('testlinearMWPotential') rmpots= ['Potential','MWPotential','MWPotential2014', 'MovingObjectPotential', 'interpRZPotential', 'linearPotential', 'planarAxiPotential', 'planarPotential', 'verticalPotential','PotentialError', 'SnapshotRZPotential','InterpSnapshotRZPotential'] if False: #_TRAVIS: #travis CI rmpots.append('DoubleExponentialDiskPotential') rmpots.append('RazorThinExponentialDiskPotential') for p in rmpots: pots.remove(p) Rs= numpy.array([0.5,1.,2.]) Zs= numpy.array([0.,.125,-.125,0.25,-0.25]) phis= numpy.array([0.,0.5,-0.5,1.,-1., numpy.pi,0.5+numpy.pi, 1.+numpy.pi]) #tolerances in log10 tol= {} tol['default']= -8. tol['DoubleExponentialDiskPotential']= -3. #these are more difficult #tol['RazorThinExponentialDiskPotential']= -6. for p in pots: #if not 'NFW' in p: continue #For testing the test #if 'Isochrone' in p: continue #For testing the test #Setup instance of potential try: tclass= getattr(potential,p) except AttributeError: tclass= getattr(sys.modules[__name__],p) tp= tclass() if hasattr(tp,'normalize'): tp.normalize(1.) #Set tolerance if p in list(tol.keys()): ttol= tol[p] else: ttol= tol['default'] #2nd radial if not hasattr(tp,'_dens') or not hasattr(tp,'_R2deriv') \ or not hasattr(tp,'_Rforce') or not hasattr(tp,'phi2deriv') \ or not hasattr(tp,'_z2deriv'): continue for ii in range(len(Rs)): for jj in range(len(Zs)): for kk in range(len(phis)): tpoissondens= tp.dens(Rs[ii],Zs[jj],phi=phis[kk], forcepoisson=True) tdens= potential.evaluateDensities(Rs[ii],Zs[jj],tp, phi=phis[kk], forcepoisson=False) if tdens**2. < 10.**ttol: assert tpoissondens**2. < 10.**ttol, \ "Poisson equation relation between the derivatives of the potential and the implemented density is not satisfied for the %s potential at (R,Z,phi) = (%.3f,%.3f,%.3f); diff = %e, rel. diff = %e" % (p,Rs[ii],Zs[jj],phis[kk],numpy.fabs(tdens-tpoissondens), numpy.fabs((tdens-tpoissondens)/tdens)) else: assert (tpoissondens-tdens)**2./tdens**2. < 10.**ttol, \ "Poisson equation relation between the derivatives of the potential and the implemented density is not satisfied for the %s potential at (R,Z,phi) = (%.3f,%.3f,%.3f); diff = %e, rel. diff = %e" % (p,Rs[ii],Zs[jj],phis[kk],numpy.fabs(tdens-tpoissondens), numpy.fabs((tdens-tpoissondens)/tdens)) return None #Test whether the _evaluate function is correctly implemented in specifying derivatives def test_evaluateAndDerivs_potential(): #Grab all of the potentials pots= [p for p in dir(potential) if ('Potential' in p and not 'plot' in p and not 'RZTo' in p and not 'evaluate' in p)] pots.append('mockTwoPowerIntegerSphericalPotential') pots.append('specialTwoPowerSphericalPotential') pots.append('HernquistTwoPowerIntegerSphericalPotential') pots.append('JaffeTwoPowerIntegerSphericalPotential') pots.append('NFWTwoPowerIntegerSphericalPotential') pots.append('specialMiyamotoNagaiPotential') pots.append('specialMN3ExponentialDiskPotentialPD') pots.append('specialMN3ExponentialDiskPotentialSECH') pots.append('specialFlattenedPowerPotential') pots.append('specialPowerSphericalPotential') pots.append('mockCosmphiDiskPotentialT1') pots.append('mockCosmphiDiskPotentialTm1') pots.append('mockCosmphiDiskPotentialTm5') pots.append('mockDehnenBarPotentialT1') pots.append('mockDehnenBarPotentialTm1') pots.append('mockDehnenBarPotentialTm5') pots.append('mockEllipticalDiskPotentialT1') pots.append('mockEllipticalDiskPotentialTm1') pots.append('mockEllipticalDiskPotentialTm5') pots.append('mockSteadyLogSpiralPotentialT1') pots.append('mockSteadyLogSpiralPotentialTm1') pots.append('mockSteadyLogSpiralPotentialTm5') pots.append('mockTransientLogSpiralPotential') pots.append('mockMovingObjectPotential') rmpots= ['Potential','MWPotential','MWPotential2014', 'MovingObjectPotential', 'interpRZPotential', 'linearPotential', 'planarAxiPotential', 'planarPotential', 'verticalPotential','PotentialError', 'SnapshotRZPotential','InterpSnapshotRZPotential'] if False: #_TRAVIS: #travis CI rmpots.append('DoubleExponentialDiskPotential') rmpots.append('RazorThinExponentialDiskPotential') for p in rmpots: pots.remove(p) #tolerances in log10 tol= {} tol['default']= -12. #tol['DoubleExponentialDiskPotential']= -3. #these are more difficult #tol['RazorThinExponentialDiskPotential']= -6. for p in pots: #if 'Isochrone' in p: continue #For testing the test #Setup instance of potential try: tclass= getattr(potential,p) except AttributeError: tclass= getattr(sys.modules[__name__],p) tp= tclass() if hasattr(tp,'normalize'): tp.normalize(1.) #Set tolerance if p in list(tol.keys()): ttol= tol[p] else: ttol= tol['default'] #1st radial if isinstance(tp,potential.linearPotential): continue elif isinstance(tp,potential.planarPotential): tevaldr= tp(1.2,phi=0.1,dR=1) trforce= tp.Rforce(1.2,phi=0.1) else: tevaldr= tp(1.2,0.1,phi=0.1,dR=1) trforce= tp.Rforce(1.2,0.1,phi=0.1) if not tevaldr is None: if tevaldr**2. < 10.**ttol: assert trforce**2. < 10.**ttol, \ "Calculation of radial derivative through _evaluate and Rforce inconsistent for the %s potential" % p else: assert (tevaldr+trforce)**2./tevaldr**2. < 10.**ttol, \ "Calculation of radial derivative through _evaluate and Rforce inconsistent for the %s potential" % p #2nd radial hasR2= True from galpy.potential import PotentialError if 'RazorThin' in p: R2z= 0. else: R2z= 0.1 try: if isinstance(tp,potential.planarPotential): tp.R2deriv(1.2) else: tp.R2deriv(1.2,R2z) except PotentialError: hasR2= False if hasR2: if isinstance(tp,potential.planarPotential): tevaldr2= tp(1.2,phi=0.1,dR=2) tr2deriv= tp.R2deriv(1.2,phi=0.1) else: tevaldr2= tp(1.2,R2z,phi=0.1,dR=2) tr2deriv= tp.R2deriv(1.2,R2z,phi=0.1) if not tevaldr2 is None: if tevaldr2**2. < 10.**ttol: assert tr2deriv*2. < 10.**ttol, \ "Calculation of 2nd radial derivative through _evaluate and R2deriv inconsistent for the %s potential" % p else: assert (tevaldr2-tr2deriv)**2./tevaldr2**2. < 10.**ttol, \ "Calculation of 2nd radial derivative through _evaluate and R2deriv inconsistent for the %s potential" % p #1st phi if isinstance(tp,potential.planarPotential): tevaldphi= tp(1.2,phi=0.1,dphi=1) tphiforce= tp.phiforce(1.2,phi=0.1) else: tevaldphi= tp(1.2,0.1,phi=0.1,dphi=1) tphiforce= tp.phiforce(1.2,0.1,phi=0.1) if not tevaldphi is None: if tevaldphi**2. < 10.**ttol: assert tphiforce**2. < 10.**ttol, \ "Calculation of azimuthal derivative through _evaluate and phiforce inconsistent for the %s potential" % p else: assert (tevaldphi+tphiforce)**2./tevaldphi**2. < 10.**ttol, \ "Calculation of azimuthal derivative through _evaluate and phiforce inconsistent for the %s potential" % p #2nd phi hasphi2= True try: if isinstance(tp,potential.planarPotential): tp.phi2deriv(1.2,phi=0.1) else: tp.phi2deriv(1.2,0.1,phi=0.1) except (PotentialError,AttributeError): hasphi2= False if hasphi2 and hasattr(tp,'_phi2deriv'): if isinstance(tp,potential.planarPotential): tevaldphi2= tp(1.2,phi=0.1,dphi=2) tphi2deriv= tp.phi2deriv(1.2,phi=0.1) else: tevaldphi2= tp(1.2,0.1,phi=0.1,dphi=2) tphi2deriv= tp.phi2deriv(1.2,0.1,phi=0.1) if not tevaldphi2 is None: if tevaldphi2**2. < 10.**ttol: assert tphi2deriv*2. < 10.**ttol, \ "Calculation of 2nd azimuthal derivative through _evaluate and phi2deriv inconsistent for the %s potential" % p else: assert (tevaldphi2-tphi2deriv)**2./tevaldphi2**2. < 10.**ttol, \ "Calculation of 2nd azimuthal derivative through _evaluate and phi2deriv inconsistent for the %s potential" % p continue #mixed radial,vertical if isinstance(tp,potential.planarPotential): tevaldrz= tp(1.2,0.1,phi=0.1,dR=1,dz=1) trzderiv= tp.Rzderiv(1.2,0.1,phi=0.1) else: tevaldrz= tp(1.2,0.1,phi=0.1,dR=1,dz=1) trzderiv= tp.Rzderiv(1.2,0.1,phi=0.1) if not tevaldrz is None: if tevaldrz**2. < 10.**ttol: assert trzderiv*2. < 10.**ttol, \ "Calculation of mixed radial,vertical derivative through _evaluate and z2deriv inconsistent for the %s potential" % p else: assert (tevaldrz-trzderiv)**2./tevaldrz**2. < 10.**ttol, \ "Calculation of mixed radial,vertical derivative through _evaluate and z2deriv inconsistent for the %s potential" % p #Finally test that much higher derivatives are not implemented try: tp(1.2,0.1,dR=4,dphi=10) except NotImplementedError: pass else: raise AssertionError('Higher-order derivative request in potential __call__ does not raise NotImplementedError') return None # Check that the masses are calculated correctly for spherical potentials def test_mass_spher(): #PowerPotential close to Kepler should be very steep pp= potential.PowerSphericalPotential(amp=2.,alpha=3.001) kp= potential.KeplerPotential(amp=2.) assert numpy.fabs(((pp.mass(10.)-kp.mass(10.)))/kp.mass(10.)) < 10.**-2., "Mass for PowerSphericalPotential close to KeplerPotential is not close to KeplerPotential's mass" pp= potential.PowerSphericalPotential(amp=2.) #mass = amp x r^(3-alpha) tR= 1. assert numpy.fabs(pp.mass(tR,forceint=True)-pp._amp*tR**(3.-pp.alpha)) < 10.**-10., 'Mass for PowerSphericalPotential not as expected' tR= 2. assert numpy.fabs(pp.mass(tR,forceint=True)-pp._amp*tR**(3.-pp.alpha)) < 10.**-10., 'Mass for PowerSphericalPotential not as expected' tR= 20. assert numpy.fabs(pp.mass(tR,forceint=True)-pp._amp*tR**(3.-pp.alpha)) < 10.**-10., 'Mass for PowerSphericalPotential not as expected' #Test that for a cut-off potential, the mass far beyond the cut-off is # 2pi rc^(3-alpha) gamma(1.5-alpha/2) pp= potential.PowerSphericalPotentialwCutoff(amp=2.) from scipy import special expecMass= 2.*pp._amp*numpy.pi*pp.rc**(3.-pp.alpha)*special.gamma(1.5-pp.alpha/2.) tR= 5. assert numpy.fabs((pp.mass(tR,forceint=True)-expecMass)/expecMass) < 10.**-6., 'Mass of PowerSphericalPotentialwCutoff far beyond the cut-off not as expected' tR= 15. assert numpy.fabs((pp.mass(tR,forceint=True)-expecMass)/expecMass) < 10.**-6., 'Mass of PowerSphericalPotentialwCutoff far beyond the cut-off not as expected' tR= 50. assert numpy.fabs((pp.mass(tR,forceint=True)-expecMass)/expecMass) < 10.**-6., 'Mass of PowerSphericalPotentialwCutoff far beyond the cut-off not as expected' #Jaffe and Hernquist both have finite masses, NFW diverges logarithmically jp= potential.JaffePotential(amp=2.,a=0.1) hp= potential.HernquistPotential(amp=2.,a=0.1) np= potential.NFWPotential(amp=2.,a=0.1) tR= 10. # Limiting behavior jaffemass= jp._amp*(1.-jp.a/tR) hernmass= hp._amp/2.*(1.-2.*hp.a/tR) nfwmass= np._amp*(numpy.log(tR/np.a)-1.+np.a/tR) assert numpy.fabs((jp.mass(tR,forceint=True)-jaffemass)/jaffemass) < 10.**-3., 'Limit mass for Jaffe potential not as expected' assert numpy.fabs((hp.mass(tR,forceint=True)-hernmass)/hernmass) < 10.**-3., 'Limit mass for Jaffe potential not as expected' assert numpy.fabs((np.mass(tR,forceint=True)-nfwmass)/nfwmass) < 10.**-2., 'Limit mass for NFW potential not as expected' tR= 200. # Limiting behavior, add z, to test that too jaffemass= jp._amp*(1.-jp.a/tR) hernmass= hp._amp/2.*(1.-2.*hp.a/tR) nfwmass= np._amp*(numpy.log(tR/np.a)-1.+np.a/tR) assert numpy.fabs((jp.mass(tR,forceint=True)-jaffemass)/jaffemass) < 10.**-6., 'Limit mass for Jaffe potential not as expected' assert numpy.fabs((hp.mass(tR,forceint=True)-hernmass)/hernmass) < 10.**-6., 'Limit mass for Jaffe potential not as expected' assert numpy.fabs((np.mass(tR,forceint=True)-nfwmass)/nfwmass) < 10.**-4., 'Limit mass for NFW potential not as expected' tR, tz= 200., 10. tr= numpy.sqrt(tR**2.+tz**2.) # Limiting behavior, add z, to test that too jaffemass= jp._amp*(1.-jp.a/tr) hernmass= hp._amp/2.*(1.-2.*hp.a/tr) nfwmass= np._amp*(numpy.log(tr/np.a)-1.+np.a/tr) assert numpy.fabs((jp.mass(tR,z=tz,forceint=False)-jaffemass)/jaffemass) < 10.**-6., 'Limit mass for Jaffe potential not as expected' assert numpy.fabs((hp.mass(tR,z=tz,forceint=False)-hernmass)/hernmass) < 10.**-6., 'Limit mass for Jaffe potential not as expected' assert numpy.fabs((np.mass(tR,z=tz,forceint=False)-nfwmass)/nfwmass) < 10.**-4., 'Limit mass for NFW potential not as expected' return None # Check that the masses are implemented correctly for spherical potentials def test_mass_spher_analytic(): #TwoPowerSphericalPotentials all have explicitly implemented masses jp= potential.JaffePotential(amp=2.) hp= potential.HernquistPotential(amp=2.) np= potential.NFWPotential(amp=2.) tp= potential.TwoPowerSphericalPotential(amp=2.) tR= 2. assert numpy.fabs(jp.mass(tR,forceint=True)-jp.mass(tR)) < 10.**-10., 'Explicit mass does not agree with integral of the density for Jaffe potential' assert numpy.fabs(hp.mass(tR,forceint=True)-hp.mass(tR)) < 10.**-10., 'Explicit mass does not agree with integral of the density for Hernquist potential' assert numpy.fabs(np.mass(tR,forceint=True)-np.mass(tR)) < 10.**-10., 'Explicit mass does not agree with integral of the density for NFW potential' assert numpy.fabs(tp.mass(tR,forceint=True)-tp.mass(tR)) < 10.**-10., 'Explicit mass does not agree with integral of the density for TwoPowerSpherical potential' assert numpy.fabs(tp.mass(tR,forceint=True)-tp.mass(numpy.sqrt(tR**2.-1**2.),z=1.)) < 10.**-10., 'Explicit mass does not agree with integral of the density for TwoPowerSpherical potential, for not z is None' return None # Check that the masses are calculated correctly for axisymmetric potentials def test_mass_axi(): #For Miyamoto-Nagai, we know that mass integrated over everything should be equal to amp, so mp= potential.MiyamotoNagaiPotential(amp=1.) assert numpy.fabs(mp.mass(200.,20.)-1.) < 0.01, 'Total mass of Miyamoto-Nagai potential w/ amp=1 is not equal to 1' #For a double-exponential disk potential, the # mass(R,z) = amp x hR^2 x hz x (1-(1+R/hR)xe^(-R/hR)) x (1-e^(-Z/hz) dp= potential.DoubleExponentialDiskPotential(amp=2.) def dblexpmass(r,z,dp): return 4.*numpy.pi*dp._amp*dp._hr**2.*dp._hz*(1.-(1.+r/dp._hr)*numpy.exp(-r/dp._hr))*(1.-numpy.exp(-z/dp._hz)) tR,tz= 0.01,0.01 assert numpy.fabs((dp.mass(tR,tz,forceint=True)-dblexpmass(tR,tz,dp))/dblexpmass(tR,tz,dp)) < 10.**-10., 'Mass for DoubleExponentialDiskPotential incorrect' tR,tz= 0.1,0.05 assert numpy.fabs((dp.mass(tR,tz,forceint=True)-dblexpmass(tR,tz,dp))/dblexpmass(tR,tz,dp)) < 10.**-10., 'Mass for DoubleExponentialDiskPotential incorrect' tR,tz= 1.,0.1 assert numpy.fabs((dp.mass(tR,tz,forceint=True)-dblexpmass(tR,tz,dp))/dblexpmass(tR,tz,dp)) < 10.**-10., 'Mass for DoubleExponentialDiskPotential incorrect' tR,tz= 5.,0.1 assert numpy.fabs((dp.mass(tR,tz,forceint=True)-dblexpmass(tR,tz,dp))/dblexpmass(tR,tz,dp)) < 10.**-10., 'Mass for DoubleExponentialDiskPotential incorrect' tR,tz= 5.,1. assert numpy.fabs((dp.mass(tR,tz,forceint=True)-dblexpmass(tR,tz,dp))/dblexpmass(tR,tz,dp)) < 10.**-10., 'Mass for DoubleExponentialDiskPotential incorrect' tR,tz= 100.,100. assert numpy.fabs((dp.mass(tR,tz,forceint=True)-dblexpmass(tR,tz,dp))/dblexpmass(tR,tz,dp)) < 10.**-6., 'Mass for DoubleExponentialDiskPotential incorrect' #Test that nonAxi raises error from galpy.orbit import Orbit mop= potential.MovingObjectPotential(Orbit([1.,0.1,1.1,0.1,0.,0.])) try: mop.mass(1.,0.) except NotImplementedError: pass else: raise AssertionError('mass for non-axisymmetric potential should have raised NotImplementedError, but did not') return None # Check that toVertical and toPlanar work def test_toVertical_toPlanar(): #Grab all of the potentials pots= [p for p in dir(potential) if ('Potential' in p and not 'plot' in p and not 'RZTo' in p and not 'evaluate' in p)] rmpots= ['Potential','MWPotential','MWPotential2014', 'MovingObjectPotential', 'interpRZPotential', 'linearPotential', 'planarAxiPotential', 'planarPotential', 'verticalPotential','PotentialError', 'SnapshotRZPotential','InterpSnapshotRZPotential'] if False: #_TRAVIS: #travis CI rmpots.append('DoubleExponentialDiskPotential') rmpots.append('RazorThinExponentialDiskPotential') for p in rmpots: pots.remove(p) for p in pots: #Setup instance of potential try: tclass= getattr(potential,p) except AttributeError: tclass= getattr(sys.modules[__name__],p) tp= tclass() if not hasattr(tp,'normalize'): continue #skip these tp.normalize(1.) if isinstance(tp,potential.linearPotential) or \ isinstance(tp,potential.planarPotential): continue tpp= tp.toPlanar() assert isinstance(tpp,potential.planarPotential), \ "Conversion into planar potential of potential %s fails" % p tlp= tp.toVertical(1.) assert isinstance(tlp,potential.linearPotential), \ "Conversion into linear potential of potential %s fails" % p def test_RZToplanarPotential(): lp= potential.LogarithmicHaloPotential(normalize=1.) plp= potential.RZToplanarPotential(lp) assert isinstance(plp,potential.planarPotential), 'Running an RZPotential through RZToplanarPotential does not produce a planarPotential' #Check that a planarPotential through RZToplanarPotential is still planar pplp= potential.RZToplanarPotential(lp) assert isinstance(pplp,potential.planarPotential), 'Running a planarPotential through RZToplanarPotential does not produce a planarPotential' try: plp= potential.RZToplanarPotential('something else') except potential.PotentialError: pass else: raise AssertionError('Using RZToplanarPotential with a string rather than an RZPotential or a planarPotential did not raise PotentialError') return None # Sanity check the derivative of the rotation curve and the frequencies in the plane def test_dvcircdR_omegac_epifreq_rl_vesc(): #Derivative of rotation curve #LogarithmicHaloPotential: rotation everywhere flat lp= potential.LogarithmicHaloPotential(normalize=1.) assert lp.dvcircdR(1.)**2. < 10.**-16., \ "LogarithmicHaloPotential's rotation curve is not flat at R=1" assert lp.dvcircdR(0.5)**2. < 10.**-16., \ "LogarithmicHaloPotential's rotation curve is not flat at R=0.5" assert lp.dvcircdR(2.)**2. < 10.**-16., \ "LogarithmicHaloPotential's rotation curve is not flat at R=2" #Kepler potential, vc = vc_0(R/R0)^-0.5 -> dvcdR= -0.5 vc_0 (R/R0)**-1.5 kp= potential.KeplerPotential(normalize=1.) assert (kp.dvcircdR(1.)+0.5)**2. < 10.**-16., \ "KeplerPotential's rotation curve is not what it should be at R=1" assert (kp.dvcircdR(0.5)+0.5**-0.5)**2. < 10.**-16., \ "KeplerPotential's rotation curve is not what it should be at R=0.5" assert (kp.dvcircdR(2.)+0.5**2.5)**2. < 10.**-16., \ "KeplerPotential's rotation curve is not what it should be at R=2" #Rotational frequency assert (lp.omegac(1.)-1.)**2. < 10.**-16., \ "LogarithmicHalo's rotational frequency is off at R=1" assert (lp.omegac(0.5)-2.)**2. < 10.**-16., \ "LogarithmicHalo's rotational frequency is off at R=0.5" assert (lp.omegac(2.)-0.5)**2. < 10.**-16., \ "LogarithmicHalo's rotational frequency is off at R=2" assert (lp.toPlanar().omegac(2.)-0.5)**2. < 10.**-16., \ "LogarithmicHalo's rotational frequency is off at R=2 through planarPotential" #Epicycle frequency, flat rotation curve assert (lp.epifreq(1.)-numpy.sqrt(2.)*lp.omegac(1.))**2. < 10.**-16., \ "LogarithmicHalo's epicycle and rotational frequency are inconsistent with kappa = sqrt(2) Omega at R=1" assert (lp.epifreq(0.5)-numpy.sqrt(2.)*lp.omegac(0.5))**2. < 10.**-16., \ "LogarithmicHalo's epicycle and rotational frequency are inconsistent with kappa = sqrt(2) Omega at R=0.5" assert (lp.epifreq(2.0)-numpy.sqrt(2.)*lp.omegac(2.0))**2. < 10.**-16., \ "LogarithmicHalo's epicycle and rotational frequency are inconsistent with kappa = sqrt(2) Omega at R=2" assert (lp.toPlanar().epifreq(2.0)-numpy.sqrt(2.)*lp.omegac(2.0))**2. < 10.**-16., \ "LogarithmicHalo's epicycle and rotational frequency are inconsistent with kappa = sqrt(2) Omega at R=, through planar2" #Epicycle frequency, Kepler assert (kp.epifreq(1.)-kp.omegac(1.))**2. < 10.**-16., \ "KeplerPotential's epicycle and rotational frequency are inconsistent with kappa = Omega at R=1" assert (kp.epifreq(0.5)-kp.omegac(0.5))**2. < 10.**-16., \ "KeplerPotential's epicycle and rotational frequency are inconsistent with kappa = Omega at R=0.5" assert (kp.epifreq(2.)-kp.omegac(2.))**2. < 10.**-16., \ "KeplerPotential's epicycle and rotational frequency are inconsistent with kappa = Omega at R=2" #Check radius of circular orbit, Kepler assert (kp.rl(1.)-1.)**2. < 10.**-16., \ "KeplerPotential's radius of a circular orbit is wrong at Lz=1." assert (kp.rl(0.5)-1./4.)**2. < 10.**-16., \ "KeplerPotential's radius of a circular orbit is wrong at Lz=0.5" assert (kp.rl(2.)-4.)**2. < 10.**-16., \ "KeplerPotential's radius of a circular orbit is wrong at Lz=2." #Check radius of circular orbit, PowerSphericalPotential with close-to-flat rotation curve pp= potential.PowerSphericalPotential(alpha=1.8,normalize=1.) assert (pp.rl(1.)-1.)**2. < 10.**-16., \ "PowerSphericalPotential's radius of a circular orbit is wrong at Lz=1." assert (pp.rl(0.5)-0.5**(10./11.))**2. < 10.**-16., \ "PowerSphericalPotential's radius of a circular orbit is wrong at Lz=0.5" assert (pp.rl(2.)-2.**(10./11.))**2. < 10.**-16., \ "PowerSphericalPotential's radius of a circular orbit is wrong at Lz=2." #Check radius of circular orbit, PowerSphericalPotential with steeper rotation curve pp= potential.PowerSphericalPotential(alpha=0.5,normalize=1.) assert (pp.rl(1.)-1.)**2. < 10.**-16., \ "PowerSphericalPotential's radius of a circular orbit is wrong at Lz=1." assert (pp.rl(0.0625)-0.0625**(4./7.))**2. < 10.**-16., \ "PowerSphericalPotential's radius of a circular orbit is wrong at Lz=0.0625" assert (pp.rl(16.)-16.**(4./7.))**2. < 10.**-16., \ "PowerSphericalPotential's radius of a circular orbit is wrong at Lz=16." #Escape velocity of Kepler potential assert (kp.vesc(1.)**2.-2.)**2. < 10.**-16., \ "KeplerPotential's escape velocity is wrong at R=1" assert (kp.vesc(0.5)**2.-2.*kp.vcirc(0.5)**2.)**2. < 10.**-16., \ "KeplerPotential's escape velocity is wrong at R=0.5" assert (kp.vesc(2.)**2.-2.*kp.vcirc(2.)**2.)**2. < 10.**-16., \ "KeplerPotential's escape velocity is wrong at R=2" assert (kp.toPlanar().vesc(2.)**2.-2.*kp.vcirc(2.)**2.)**2. < 10.**-16., \ "KeplerPotential's escape velocity is wrong at R=2, through planar" # W/ different interface assert (kp.vcirc(1.)-potential.vcirc(kp,1.))**2. < 10.**-16., \ "KeplerPotential's circular velocity does not agree between kp.vcirc and vcirc(kp)" assert (kp.vcirc(1.)-potential.vcirc(kp.toPlanar(),1.))**2. < 10.**-16., \ "KeplerPotential's circular velocity does not agree between kp.vcirc and vcirc(kp.toPlanar)" assert (kp.vesc(1.)-potential.vesc(kp,1.))**2. < 10.**-16., \ "KeplerPotential's escape velocity does not agree between kp.vesc and vesc(kp)" assert (kp.vesc(1.)-potential.vesc(kp.toPlanar(),1.))**2. < 10.**-16., \ "KeplerPotential's escape velocity does not agree between kp.vesc and vesc(kp.toPlanar)" return None def test_vcirc_vesc_special(): #Test some special cases of vcirc and vesc dp= potential.DehnenBarPotential() try: potential.plotRotcurve([dp]) except AttributeError: #should be raised pass else: raise AssertionError("plotRotcurve for non-axisymmetric potential should have raised AttributeError, but didn't") try: potential.plotEscapecurve([dp]) except AttributeError: #should be raised pass else: raise AssertionError("plotEscapecurve for non-axisymmetric potential should have raised AttributeError, but didn't") lp= potential.LogarithmicHaloPotential(normalize=1.) assert numpy.fabs(potential.calcRotcurve(lp,0.8)-lp.vcirc(0.8)) < 10.**-16., 'Circular velocity calculated with calcRotcurve not the same as that calculated with vcirc' assert numpy.fabs(potential.calcEscapecurve(lp,0.8)-lp.vesc(0.8)) < 10.**-16., 'Escape velocity calculated with calcEscapecurve not the same as that calculated with vcirc' return None def test_lindbladR(): lp= potential.LogarithmicHaloPotential(normalize=1.) assert numpy.fabs(lp.lindbladR(0.5,'corotation')-2.) < 10.**-10., 'Location of co-rotation resonance is wrong for LogarithmicHaloPotential' assert numpy.fabs(lp.omegac(lp.lindbladR(0.5,2))-2./(2.-numpy.sqrt(2.))*0.5) < 10.**-14., 'Location of m=2 resonance is wrong for LogarithmicHaloPotential' assert numpy.fabs(lp.omegac(lp.lindbladR(0.5,-2))+2./(-2.-numpy.sqrt(2.))*0.5) < 10.**-14., 'Location of m=-2 resonance is wrong for LogarithmicHaloPotential' #Also through general interface assert numpy.fabs(lp.omegac(potential.lindbladR(lp,0.5,-2))+2./(-2.-numpy.sqrt(2.))*0.5) < 10.**-14., 'Location of m=-2 resonance is wrong for LogarithmicHaloPotential' #Also for planar assert numpy.fabs(lp.omegac(lp.toPlanar().lindbladR(0.5,-2))+2./(-2.-numpy.sqrt(2.))*0.5) < 10.**-14., 'Location of m=-2 resonance is wrong for LogarithmicHaloPotential' #Test non-existent ones mp= potential.MiyamotoNagaiPotential(normalize=1.,a=0.3) assert mp.lindbladR(3.,2) is None, 'MiyamotoNagai w/ OmegaP=3 should not have a inner m=2 LindbladR' assert mp.lindbladR(6.,'corotation') is None, 'MiyamotoNagai w/ OmegaP=6 should not have a inner m=2 LindbladR' #Test error try: lp.lindbladR(0.5,'wrong resonance') except IOError: pass else: raise AssertionError("lindbladR w/ wrong m input should have raised IOError, but didn't") return None def test_vterm(): lp= potential.LogarithmicHaloPotential(normalize=1.) assert numpy.fabs(lp.vterm(30.,deg=True)-0.5*(lp.omegac(0.5)-1.)) < 10.**-10., 'vterm for LogarithmicHaloPotential at l=30 is incorrect' assert numpy.fabs(lp.vterm(numpy.pi/3.,deg=False)-numpy.sqrt(3.)/2.*(lp.omegac(numpy.sqrt(3.)/2.)-1.)) < 10.**-10., 'vterm for LogarithmicHaloPotential at l=60 in rad is incorrect' #Also using general interface assert numpy.fabs(potential.vterm(lp,30.,deg=True)-0.5*(lp.omegac(0.5)-1.)) < 10.**-10., 'vterm for LogarithmicHaloPotential at l=30 is incorrect' assert numpy.fabs(potential.vterm(lp,numpy.pi/3.,deg=False)-numpy.sqrt(3.)/2.*(lp.omegac(numpy.sqrt(3.)/2.)-1.)) < 10.**-10., 'vterm for LogarithmicHaloPotential at l=60 in rad is incorrect' return None def test_flattening(): #Simple tests: LogarithmicHalo qs= [0.75,1.,1.25] for q in qs: lp= potential.LogarithmicHaloPotential(normalize=1.,q=q) assert (lp.flattening(1.,0.001)-q)**2. < 10.**-16., \ "Flattening of LogarithmicHaloPotential w/ q= %f is not equal to q at (R,z) = (1.,0.001)" % q assert (lp.flattening(1.,0.1)-q)**2. < 10.**-16., \ "Flattening of LogarithmicHaloPotential w/ q= %f is not equal to q at (R,z) = (1.,0.1)" % q assert (lp.flattening(0.5,0.001)-q)**2. < 10.**-16., \ "Flattening of LogarithmicHaloPotential w/ q= %f is not equal to q at (R,z) = (0.5,0.001)" % q assert (lp.flattening(0.5,0.1)-q)**2. < 10.**-16., \ "Flattening of LogarithmicHaloPotential w/ q= %f is not equal to q at (R,z) = (0.5,0.1)" % q #One test with the general interface assert (potential.flattening(lp,0.5,0.1)-q)**2. < 10.**-16., \ "Flattening of LogarithmicHaloPotential w/ q= %f is not equal to q at (R,z) = (0.5,0.1), through potential.flattening" % q #Check some spherical potentials kp= potential.KeplerPotential(normalize=1.) assert (kp.flattening(1.,0.02)-1.)**2. < 10.**-16., \ "Flattening of KeplerPotential is not equal to 1 at (R,z) = (1.,0.02)" np= potential.NFWPotential(normalize=1.,a=5.) assert (np.flattening(1.,0.02)-1.)**2. < 10.**-16., \ "Flattening of NFWPotential is not equal to 1 at (R,z) = (1.,0.02)" hp= potential.HernquistPotential(normalize=1.,a=5.) assert (hp.flattening(1.,0.02)-1.)**2. < 10.**-16., \ "Flattening of HernquistPotential is not equal to 1 at (R,z) = (1.,0.02)" #Disk potentials should be oblate everywhere mp= potential.MiyamotoNagaiPotential(normalize=1.,a=0.5,b=0.05) assert mp.flattening(1.,0.1) <= 1., \ "Flattening of MiyamotoNagaiPotential w/ a=0.5, b=0.05 is > 1 at (R,z) = (1.,0.1)" assert mp.flattening(1.,2.) <= 1., \ "Flattening of MiyamotoNagaiPotential w/ a=0.5, b=0.05 is > 1 at (R,z) = (1.,2.)" assert mp.flattening(3.,3.) <= 1., \ "Flattening of MiyamotoNagaiPotential w/ a=0.5, b=0.05 is > 1 at (R,z) = (3.,3.)" return None def test_verticalfreq(): #For spherical potentials, vertical freq should be equal to rotational freq lp= potential.LogarithmicHaloPotential(normalize=1.,q=1.) kp= potential.KeplerPotential(normalize=1.) np= potential.NFWPotential(normalize=1.) bp= potential.BurkertPotential(normalize=1.) rs= numpy.linspace(0.2,2.,21) for r in rs: assert numpy.fabs(lp.verticalfreq(r)-lp.omegac(r)) < 10.**-10., \ 'Verticalfreq for spherical potential does not equal rotational freq' assert numpy.fabs(kp.verticalfreq(r)-kp.omegac(r)) < 10.**-10., \ 'Verticalfreq for spherical potential does not equal rotational freq' #Through general interface assert numpy.fabs(potential.verticalfreq(np,r)-np.omegac(r)) < 10.**-10., \ 'Verticalfreq for spherical potential does not equal rotational freq' assert numpy.fabs(potential.verticalfreq([bp],r)-bp.omegac(r)) < 10.**-10., \ 'Verticalfreq for spherical potential does not equal rotational freq' #For Double-exponential disk potential, epi^2+vert^2-2*rot^2 =~ 0 (explicitly, because we use a Kepler potential) if True: #not _TRAVIS: dp= potential.DoubleExponentialDiskPotential(normalize=1.,hr=0.05,hz=0.01) assert numpy.fabs(dp.epifreq(1.)**2.+dp.verticalfreq(1.)**2.-2.*dp.omegac(1.)**2.) < 10.**-6., 'epi^2+vert^2-2*rot^2 !=~ 0 for dblexp potential, very far from center' #Closer to the center, this becomes the Poisson eqn. assert numpy.fabs(dp.epifreq(.125)**2.+dp.verticalfreq(.125)**2.-2.*dp.omegac(.125)**2.-4.*numpy.pi*dp.dens(0.125,0.))/4./numpy.pi/dp.dens(0.125,0.) < 10.**-3., 'epi^2+vert^2-2*rot^2 !=~ dens for dblexp potential' return None def test_planar_nonaxi(): dp= potential.DehnenBarPotential() try: potential.evaluateplanarPotentials(1.,dp) except potential.PotentialError: pass else: raise AssertionError('evaluateplanarPotentials for non-axisymmetric potential w/o specifying phi did not raise PotentialError') try: potential.evaluateplanarRforces(1.,dp) except potential.PotentialError: pass else: raise AssertionError('evaluateplanarRforces for non-axisymmetric potential w/o specifying phi did not raise PotentialError') try: potential.evaluateplanarphiforces(1.,dp) except potential.PotentialError: pass else: raise AssertionError('evaluateplanarphiforces for non-axisymmetric potential w/o specifying phi did not raise PotentialError') try: potential.evaluateplanarR2derivs(1.,dp) except potential.PotentialError: pass else: raise AssertionError('evaluateplanarR2derivs for non-axisymmetric potential w/o specifying phi did not raise PotentialError') return None def test_ExpDisk_special(): #Test some special cases for the ExponentialDisk potentials #if _TRAVIS: return None #Test that array input works dp= potential.DoubleExponentialDiskPotential(normalize=1.) rs= numpy.linspace(0.1,2.11) zs= numpy.ones_like(rs)*0.1 #Potential itself dpevals= numpy.array([dp(r,z) for (r,z) in zip(rs,zs)]) assert numpy.all(numpy.fabs(dp(rs,zs)-dpevals) < 10.**-10.), \ 'DoubleExppnentialDiskPotential evaluation does not work as expected for array inputs' #Rforce dpevals= numpy.array([dp.Rforce(r,z) for (r,z) in zip(rs,zs)]) assert numpy.all(numpy.fabs(dp.Rforce(rs,zs)-dpevals) < 10.**-10.), \ 'DoubleExppnentialDiskPotential Rforce evaluation does not work as expected for array inputs' #zforce dpevals= numpy.array([dp.zforce(r,z) for (r,z) in zip(rs,zs)]) assert numpy.all(numpy.fabs(dp.zforce(rs,zs)-dpevals) < 10.**-10.), \ 'DoubleExppnentialDiskPotential zforce evaluation does not work as expected for array inputs' #R2deriv dpevals= numpy.array([dp.R2deriv(r,z) for (r,z) in zip(rs,zs)]) assert numpy.all(numpy.fabs(dp.R2deriv(rs,zs)-dpevals) < 10.**-10.), \ 'DoubleExppnentialDiskPotential R2deriv evaluation does not work as expected for array inputs' #z2deriv dpevals= numpy.array([dp.z2deriv(r,z) for (r,z) in zip(rs,zs)]) assert numpy.all(numpy.fabs(dp.z2deriv(rs,zs)-dpevals) < 10.**-10.), \ 'DoubleExppnentialDiskPotential z2deriv evaluation does not work as expected for array inputs' #Rzderiv dpevals= numpy.array([dp.Rzderiv(r,z) for (r,z) in zip(rs,zs)]) assert numpy.all(numpy.fabs(dp.Rzderiv(rs,zs)-dpevals) < 10.**-10.), \ 'DoubleExppnentialDiskPotential Rzderiv evaluation does not work as expected for array inputs' #Check the PotentialError for z=/=0 evaluation of R2deriv of RazorThinDiskPotential rp= potential.RazorThinExponentialDiskPotential(normalize=1.) try: rp.R2deriv(1.,0.1) except potential.PotentialError: pass else: raise AssertionError("RazorThinExponentialDiskPotential's R2deriv did not raise AttributeError for z=/= 0 input") return None def test_MovingObject_density(): mp= mockMovingObjectPotential() #Just test that the density far away from the object is close to zero assert numpy.fabs(mp.dens(5.,0.)) < 10.**-8., 'Density far away from MovingObject is not close to zero' return None # Test that MWPotential is what it's supposed to be def test_MWPotential2014(): pot= potential.MWPotential2014 V0, R0= 220., 8. #Check the parameters of the bulge assert pot[0].rc == 1.9/R0, "MWPotential2014's bulge cut-off radius is incorrect" assert pot[0].alpha == 1.8, "MWPotential2014's bulge power-law exponent is incorrect" assert numpy.fabs(pot[0].Rforce(1.,0.)+0.05) < 10.**-14., "MWPotential2014's bulge amplitude is incorrect" #Check the parameters of the disk assert numpy.fabs(pot[1]._a-3./R0) < 10.**-14., "MWPotential2014's disk scale length is incorrect" assert numpy.fabs(pot[1]._b-0.28/R0) < 10.**-14., "MWPotential2014's disk scale heigth is incorrect" assert numpy.fabs(pot[1].Rforce(1.,0.)+0.60) < 10.**-14., "MWPotential2014's disk amplitude is incorrect" #Check the parameters of the halo assert numpy.fabs(pot[2].a-16./R0) < 10.**-14., "MWPotential2014's halo scale radius is incorrect" assert numpy.fabs(pot[2].Rforce(1.,0.)+0.35) < 10.**-14., "MWPotential2014's halo amplitude is incorrect" return None # Test that the virial setup of NFW works def test_NFW_virialsetup_wrtmeanmatter(): from galpy.util import bovy_conversion H, Om, overdens, wrtcrit= 71., 0.32, 201., False ro, vo= 220., 8. conc, mvir= 12., 1.1 np= potential.NFWPotential(conc=conc,mvir=mvir,vo=vo,ro=ro, H=H,Om=Om,overdens=overdens, wrtcrit=wrtcrit) assert numpy.fabs(conc-np.conc(vo,ro,H=H,Om=Om,overdens=overdens, wrtcrit=wrtcrit)) < 10.**-6., "NFWPotential virial setup's concentration does not work" assert numpy.fabs(mvir*100./bovy_conversion.mass_in_1010msol(vo,ro)\ -np.mvir(vo,ro,H=H,Om=Om,overdens=overdens, wrtcrit=wrtcrit)) < 10.**-6., "NFWPotential virial setup's virial mass does not work" return None def test_NFW_virialsetup_wrtcrit(): from galpy.util import bovy_conversion H, Om, overdens, wrtcrit= 71., 0.32, 201., True ro, vo= 220., 8. conc, mvir= 12., 1.1 np= potential.NFWPotential(conc=conc,mvir=mvir,vo=vo,ro=ro, H=H,Om=Om,overdens=overdens, wrtcrit=wrtcrit) assert numpy.fabs(conc-np.conc(vo,ro,H=H,Om=Om,overdens=overdens, wrtcrit=wrtcrit)) < 10.**-6., "NFWPotential virial setup's concentration does not work" assert numpy.fabs(mvir*100./bovy_conversion.mass_in_1010msol(vo,ro)\ -np.mvir(vo,ro,H=H,Om=Om,overdens=overdens, wrtcrit=wrtcrit)) < 10.**-6., "NFWPotential virial setup's virial mass does not work" return None def test_conc_attributeerror(): pp= potential.PowerSphericalPotential(normalize=1.) #This potential doesn't have a scale, so we cannot calculate the concentration try: pp.conc(220.,8.) except AttributeError: pass else: raise AssertionError('conc function for potential w/o scale did not raise AttributeError') return None def test_mvir_attributeerror(): mp= potential.MiyamotoNagaiPotential(normalize=1.) #Don't think I will ever implement the virial radius for this try: mp.mvir(220.,8.) except AttributeError: pass else: raise AssertionError('mvir function for potential w/o rvir did not raise AttributeError') return None def test_LinShuReductionFactor(): #Test that the LinShuReductionFactor is implemented correctly, by comparing to figure 1 in Lin & Shu (1966) from galpy.potential import LinShuReductionFactor, \ LogarithmicHaloPotential, omegac, epifreq lp= LogarithmicHaloPotential(normalize=1.) #work in flat rotation curve #nu^2 = 0.2, x=4 for m=2,sigmar=0.1 # w/ nu = m(OmegaP-omegac)/epifreq, x=sr^2*k^2/epifreq^2 R,m,sr = 0.9,2.,0.1 tepi, tomegac= epifreq(lp,R), omegac(lp,R) OmegaP= tepi*numpy.sqrt(0.2)/m+tomegac #leads to nu^2 = 0.2 k= numpy.sqrt(4.)*tepi/sr assert numpy.fabs(LinShuReductionFactor(lp,R,sr,m=m,k=k,OmegaP=OmegaP)-0.18) < 0.01, 'LinShuReductionFactor does not agree w/ Figure 1 from Lin & Shu (1966)' #nu^2 = 0.8, x=10 OmegaP= tepi*
numpy.sqrt(0.8)
numpy.sqrt
# --------------------------------------------------------------------------------} # --- Info # --------------------------------------------------------------------------------{ # Tools for fatigue analysis # # Taken from: # repository: wetb # package: wetb.fatigue_tools, # institution: DTU wind energy, Denmark # main author: mmpe ''' Created on 04/03/2013 @author: mmpe 'eq_load' calculate equivalent loads using one of the two rain flow counting methods 'cycle_matrix' calculates a matrix of cycles (binned on amplitude and mean value) 'eq_load_and_cycles' is used to calculate eq_loads of multiple time series (e.g. life time equivalent load) The methods uses the rainflow counting routines (See documentation in top of methods): - 'rainflow_windap': (Described in "Recommended Practices for Wind Turbine Testing - 3. Fatigue Loads", 2. edition 1990, Appendix A) or - 'rainflow_astm' (based on the c-implementation by <NAME> found at the MATLAB Central File Exchange http://www.mathworks.com/matlabcentral/fileexchange/3026) ''' from __future__ import division from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import from future import standard_library import warnings standard_library.install_aliases() import numpy as np __all__ = ['rainflow_astm', 'rainflow_windap','eq_load','eq_load_and_cycles','cycle_matrix','cycle_matrix2'] def check_signal(signal): # check input data validity if not type(signal).__name__ == 'ndarray': raise TypeError('signal must be ndarray, not: ' + type(signal).__name__) elif len(signal.shape) not in (1, 2): raise TypeError('signal must be 1D or 2D, not: ' + str(len(signal.shape))) if len(signal.shape) == 2: if signal.shape[1] > 1: raise TypeError('signal must have one column only, not: ' + str(signal.shape[1])) if np.min(signal) == np.max(signal): raise TypeError("Signal contains no variation") def rainflow_windap(signal, levels=255., thresshold=(255 / 50)): """Windap equivalent rainflow counting Calculate the amplitude and mean values of half cycles in signal This algorithms used by this routine is implemented directly as described in "Recommended Practices for Wind Turbine Testing - 3. Fatigue Loads", 2. edition 1990, Appendix A Parameters ---------- Signal : array-like The raw signal levels : int, optional The signal is discretize into this number of levels. 255 is equivalent to the implementation in Windap thresshold : int, optional Cycles smaller than this thresshold are ignored 255/50 is equivalent to the implementation in Windap Returns ------- ampl : array-like Peak to peak amplitudes of the half cycles mean : array-like Mean values of the half cycles Examples -------- >>> signal = np.array([-2.0, 0.0, 1.0, 0.0, -3.0, 0.0, 5.0, 0.0, -1.0, 0.0, 3.0, 0.0, -4.0, 0.0, 4.0, 0.0, -2.0]) >>> ampl, mean = rainflow_windap(signal) """ check_signal(signal) #type <double> is required by <find_extreme> and <rainflow> signal = signal.astype(np.double) if np.all(np.isnan(signal)): return None offset = np.nanmin(signal) signal -= offset if np.nanmax(signal) > 0: gain = np.nanmax(signal) / levels signal = signal / gain signal = np.round(signal).astype(np.int) # If possible the module is compiled using cython otherwise the python implementation is used #Convert to list of local minima/maxima where difference > thresshold sig_ext = peak_trough(signal, thresshold) #rainflow count ampl_mean = pair_range_amplitude_mean(sig_ext) ampl_mean = np.array(ampl_mean) ampl_mean = np.round(ampl_mean / thresshold) * gain * thresshold ampl_mean[:, 1] += offset return ampl_mean.T def rainflow_astm(signal): """Matlab equivalent rainflow counting Calculate the amplitude and mean values of half cycles in signal This implemementation is based on the c-implementation by <NAME> found at the MATLAB Central File Exchange http://www.mathworks.com/matlabcentral/fileexchange/3026 Parameters ---------- Signal : array-like The raw signal Returns ------- ampl : array-like peak to peak amplitudes of the half cycles (note that the matlab implementation uses peak amplitude instead of peak to peak) mean : array-like Mean values of the half cycles Examples -------- >>> signal = np.array([-2.0, 0.0, 1.0, 0.0, -3.0, 0.0, 5.0, 0.0, -1.0, 0.0, 3.0, 0.0, -4.0, 0.0, 4.0, 0.0, -2.0]) >>> ampl, mean = rainflow_astm(signal) """ check_signal(signal) # type <double> is reuqired by <find_extreme> and <rainflow> signal = signal.astype(np.double) # Import find extremes and rainflow. # If possible the module is compiled using cython otherwise the python implementation is used # Remove points which is not local minimum/maximum sig_ext = find_extremes(signal) # rainflow count ampl_mean = np.array(rainflowcount(sig_ext)) return np.array(ampl_mean).T def eq_load(signals, no_bins=46, m=[3, 4, 6, 8, 10, 12], neq=1, rainflow_func=rainflow_windap): """Equivalent load calculation Calculate the equivalent loads for a list of Wohler exponent and number of equivalent loads Parameters ---------- signals : list of tuples or array_like - if list of tuples: list must have format [(sig1_weight, sig1),(sig2_weight, sig1),...] where\n - sigx_weight is the weight of signal x\n - sigx is signal x\n - if array_like: The signal no_bins : int, optional Number of bins in rainflow count histogram m : int, float or array-like, optional Wohler exponent (default is [3, 4, 6, 8, 10, 12]) neq : int, float or array-like, optional The equivalent number of load cycles (default is 1, but normally the time duration in seconds is used) rainflow_func : {rainflow_windap, rainflow_astm}, optional The rainflow counting function to use (default is rainflow_windap) Returns ------- eq_loads : array-like List of lists of equivalent loads for the corresponding equivalent number(s) and Wohler exponents Examples -------- >>> signal = np.array([-2.0, 0.0, 1.0, 0.0, -3.0, 0.0, 5.0, 0.0, -1.0, 0.0, 3.0, 0.0, -4.0, 0.0, 4.0, 0.0, -2.0]) >>> eq_load(signal, no_bins=50, neq=[1, 17], m=[3, 4, 6], rainflow_func=rainflow_windap) [[10.311095426959747, 9.5942535021382174, 9.0789213365013932], # neq = 1, m=[3,4,6] [4.010099657859783, 4.7249689509841746, 5.6618639965313005]], # neq = 17, m=[3,4,6] eq_load([(.4, signal), (.6, signal)], no_bins=50, neq=[1, 17], m=[3, 4, 6], rainflow_func=rainflow_windap) [[10.311095426959747, 9.5942535021382174, 9.0789213365013932], # neq = 1, m=[3,4,6] [4.010099657859783, 4.7249689509841746, 5.6618639965313005]], # neq = 17, m=[3,4,6] """ try: return eq_load_and_cycles(signals, no_bins, m, neq, rainflow_func)[0] except TypeError: return [[np.nan] * len(np.atleast_1d(m))] * len(np.atleast_1d(neq)) def eq_load_and_cycles(signals, no_bins=46, m=[3, 4, 6, 8, 10, 12], neq=[10 ** 6, 10 ** 7, 10 ** 8], rainflow_func=rainflow_windap): """Calculate combined fatigue equivalent load Parameters ---------- signals : list of tuples or array_like - if list of tuples: list must have format [(sig1_weight, sig1),(sig2_weight, sig1),...] where\n - sigx_weight is the weight of signal x\n - sigx is signal x\n - if array_like: The signal no_bins : int, optional Number of bins for rainflow counting m : int, float or array-like, optional Wohler exponent (default is [3, 4, 6, 8, 10, 12]) neq : int or array-like, optional Equivalent number, default is [10^6, 10^7, 10^8] rainflow_func : {rainflow_windap, rainflow_astm}, optional The rainflow counting function to use (default is rainflow_windap) Returns ------- eq_loads : array-like List of lists of equivalent loads for the corresponding equivalent number(s) and Wohler exponents cycles : array_like 2d array with shape = (no_ampl_bins, 1) ampl_bin_mean : array_like mean amplitude of the bins ampl_bin_edges Edges of the amplitude bins """ cycles, ampl_bin_mean, ampl_bin_edges, _, _ = cycle_matrix(signals, no_bins, 1, rainflow_func) if 0: #to be similar to windap ampl_bin_mean = (ampl_bin_edges[:-1] + ampl_bin_edges[1:]) / 2 cycles, ampl_bin_mean = cycles.flatten(), ampl_bin_mean.flatten() with warnings.catch_warnings(): warnings.simplefilter("ignore") eq_loads = [[((np.nansum(cycles * ampl_bin_mean ** _m) / _neq) ** (1. / _m)) for _m in np.atleast_1d(m)] for _neq in np.atleast_1d(neq)] return eq_loads, cycles, ampl_bin_mean, ampl_bin_edges def cycle_matrix(signals, ampl_bins=10, mean_bins=10, rainflow_func=rainflow_windap): """Markow load cycle matrix Calculate the Markow load cycle matrix Parameters ---------- Signals : array-like or list of tuples - if array-like, the raw signal\n - if list of tuples, list of (weight, signal), e.g. [(0.1,sig1), (0.8,sig2), (.1,sig3)]\n ampl_bins : int or array-like, optional if int, Number of amplitude value bins (default is 10) if array-like, the bin edges for amplitude mean_bins : int or array-like, optional if int, Number of mean value bins (default is 10) if array-like, the bin edges for mea rainflow_func : {rainflow_windap, rainflow_astm}, optional The rainflow counting function to use (default is rainflow_windap) Returns ------- cycles : ndarray, shape(ampl_bins, mean_bins) A bi-dimensional histogram of load cycles(full cycles). Amplitudes are\ histogrammed along the first dimension and mean values are histogrammed along the second dimension. ampl_bin_mean : ndarray, shape(ampl_bins,) The average cycle amplitude of the bins ampl_edges : ndarray, shape(ampl_bins+1,) The amplitude bin edges mean_bin_mean : ndarray, shape(ampl_bins,) The average cycle mean of the bins mean_edges : ndarray, shape(mean_bins+1,) The mean bin edges Examples -------- >>> signal = np.array([-2.0, 0.0, 1.0, 0.0, -3.0, 0.0, 5.0, 0.0, -1.0, 0.0, 3.0, 0.0, -4.0, 0.0, 4.0, 0.0, -2.0]) >>> cycles, ampl_bin_mean, ampl_edges, mean_bin_mean, mean_edges = cycle_matrix(signal) >>> cycles, ampl_bin_mean, ampl_edges, mean_bin_mean, mean_edges = cycle_matrix([(.4, signal), (.6,signal)]) """ if isinstance(signals[0], tuple): weights, ampls, means = np.array([(np.zeros_like(ampl)+weight,ampl,mean) for weight, signal in signals for ampl,mean in rainflow_func(signal[:]).T], dtype=np.float64).T else: ampls, means = rainflow_func(signals[:]) weights = np.ones_like(ampls) if isinstance(ampl_bins, int): ampl_bins = np.linspace(0, 1, num=ampl_bins + 1) * ampls[weights>0].max() cycles, ampl_edges, mean_edges = np.histogram2d(ampls, means, [ampl_bins, mean_bins], weights=weights) with warnings.catch_warnings(): warnings.simplefilter("ignore") ampl_bin_sum = np.histogram2d(ampls, means, [ampl_bins, mean_bins], weights=weights * ampls)[0] ampl_bin_mean = np.nanmean(ampl_bin_sum / np.where(cycles,cycles,np.nan),1) mean_bin_sum =
np.histogram2d(ampls, means, [ampl_bins, mean_bins], weights=weights * means)
numpy.histogram2d
import pytest import mxnet as mx import numpy as np from mxfusion.components.variables.runtime_variable import add_sample_dimension, is_sampled_array, get_num_samples from mxfusion.components.distributions.gp.kernels import RBF, Linear, Bias, White from mxfusion.util.testutils import numpy_array_reshape, prepare_mxnet_array # These test cases depends on GPy. Put them in try/except. try: import GPy def gpy_kernel_test(X, X_isSamples, X2, X2_isSamples, kernel_params, num_samples, dtype, mf_kernel_create, gpy_kernel_create): X_mx = prepare_mxnet_array(X, X_isSamples, dtype) X2_mx = prepare_mxnet_array(X2, X2_isSamples, dtype) kern = mf_kernel_create() kernel_params_mx = {kern.name + '_' + k: prepare_mxnet_array(v[0], v[1], dtype) for k, v in kernel_params.items()} K_XX_mx = kern.K(mx.nd, X=X_mx, **kernel_params_mx) K_XX2_mx = kern.K(mx.nd, X=X_mx, X2=X2_mx, **kernel_params_mx) Kdiag_mx = kern.Kdiag(mx.nd, X=X_mx, **kernel_params_mx) kern_gpy = gpy_kernel_create() K_XX_gpy, K_XX2_gpy, Kdiag_gpy = [], [], [] for i in range(num_samples): X_i = X[i] if X_isSamples else X X2_i = X2[i] if X2_isSamples else X2 kernel_params_gpy = {k: v[0][i] if v[1] else v[0] for k, v in kernel_params.items()} for k, v in kernel_params_gpy.items(): setattr(kern_gpy, k, v) K_XX_gpy.append(np.expand_dims(kern_gpy.K(X_i), axis=0)) K_XX2_gpy.append(np.expand_dims(kern_gpy.K(X_i, X2_i), axis=0)) Kdiag_gpy.append(np.expand_dims(kern_gpy.Kdiag(X_i), axis=0)) K_XX_gpy = np.vstack(K_XX_gpy) K_XX2_gpy = np.vstack(K_XX2_gpy) Kdiag_gpy = np.vstack(Kdiag_gpy) assert np.issubdtype(K_XX_mx.dtype, dtype) assert np.issubdtype(K_XX2_mx.dtype, dtype) assert np.issubdtype(Kdiag_mx.dtype, dtype) assert np.allclose(K_XX_gpy, K_XX_mx.asnumpy()) assert np.allclose(K_XX2_gpy, K_XX2_mx.asnumpy()) assert np.allclose(Kdiag_gpy, Kdiag_mx.asnumpy()) def gpy_comb_kernel_test(X, X_isSamples, X2, X2_isSamples, kernel_params, num_samples, dtype, mf_kernel_create, gpy_kernel_create): X_mx = prepare_mxnet_array(X, X_isSamples, dtype) X2_mx = prepare_mxnet_array(X2, X2_isSamples, dtype) kern = mf_kernel_create() kernel_params_mx = {kern.name + '_' + k + '_' + k2: prepare_mxnet_array(v2[0], v2[1], dtype) for k, v in kernel_params.items() for k2, v2 in v.items()} K_XX_mx = kern.K(mx.nd, X=X_mx, **kernel_params_mx) K_XX2_mx = kern.K(mx.nd, X=X_mx, X2=X2_mx, **kernel_params_mx) Kdiag_mx = kern.Kdiag(mx.nd, X=X_mx, **kernel_params_mx) kern_gpy = gpy_kernel_create() K_XX_gpy, K_XX2_gpy, Kdiag_gpy = [], [], [] for i in range(num_samples): X_i = X[i] if X_isSamples else X X2_i = X2[i] if X2_isSamples else X2 for k, v in kernel_params.items(): kern_1 = getattr(kern_gpy, k) for k2, v2 in v.items(): setattr(kern_1, k2, v2[0][i] if v2[1] else v2[0]) K_XX_gpy.append(np.expand_dims(kern_gpy.K(X_i), axis=0)) K_XX2_gpy.append(np.expand_dims(kern_gpy.K(X_i, X2_i), axis=0)) Kdiag_gpy.append(np.expand_dims(kern_gpy.Kdiag(X_i), axis=0)) K_XX_gpy = np.vstack(K_XX_gpy) K_XX2_gpy = np.vstack(K_XX2_gpy) Kdiag_gpy = np.vstack(Kdiag_gpy) assert np.issubdtype(K_XX_mx.dtype, dtype) assert np.issubdtype(K_XX2_mx.dtype, dtype) assert np.issubdtype(Kdiag_mx.dtype, dtype) assert np.allclose(K_XX_gpy, K_XX_mx.asnumpy()) assert np.allclose(K_XX2_gpy, K_XX2_mx.asnumpy()) assert np.allclose(Kdiag_gpy, Kdiag_mx.asnumpy()) @pytest.mark.usefixtures("set_seed") class TestGPKernels(object): @pytest.mark.parametrize("dtype, X, X_isSamples, X2, X2_isSamples, lengthscale, lengthscale_isSamples, variance, variance_isSamples, num_samples, input_dim, ARD", [ (np.float64, np.random.rand(5,2), False, np.random.rand(4,2), False, np.random.rand(2)+1e-4, False, np.random.rand(1)+1e-4, False, 1, 2, True), (np.float64, np.random.rand(5,2), False, np.random.rand(4,2), False, np.random.rand(3,2)+1e-4, True, np.random.rand(1)+1e-4, False, 3, 2, True), (np.float64, np.random.rand(5,2), False, np.random.rand(4,2), False, np.random.rand(2)+1e-4, False, np.random.rand(3,1)+1e-4, True, 3, 2, True), (np.float64, np.random.rand(3,5,2), True, np.random.rand(3,4,2), True, np.random.rand(2)+1e-4, False, np.random.rand(1)+1e-4, False, 3, 2, True), (np.float64, np.random.rand(3,5,2), True, np.random.rand(3,4,2), True, np.random.rand(1)+1e-4, False, np.random.rand(1)+1e-4, False, 3, 2, False), ]) def test_RBF_kernel(self, dtype, X, X_isSamples, X2, X2_isSamples, lengthscale, lengthscale_isSamples, variance, variance_isSamples, num_samples, input_dim, ARD): def create_rbf(): return RBF(input_dim, ARD, 1., 1., 'rbf', None, dtype) def create_gpy_rbf(): return GPy.kern.RBF(input_dim=input_dim, ARD=ARD) kernel_params = {'lengthscale': (lengthscale, lengthscale_isSamples), 'variance': (variance, variance_isSamples)} gpy_kernel_test(X, X_isSamples, X2, X2_isSamples, kernel_params, num_samples, dtype, create_rbf, create_gpy_rbf) @pytest.mark.parametrize("dtype, X, X_isSamples, X2, X2_isSamples, variances, variances_isSamples, num_samples, input_dim, ARD", [ (np.float64, np.random.rand(5,2), False, np.random.rand(4,2), False, np.random.rand(2)+1e-4, False, 1, 2, True), (np.float64, np.random.rand(5,2), False, np.random.rand(4,2), False, np.random.rand(3,2)+1e-4, True, 3, 2, True), (np.float64, np.random.rand(3,5,2), True, np.random.rand(3,4,2), True, np.random.rand(2)+1e-4, False, 3, 2, True), (np.float64, np.random.rand(3,5,2), True, np.random.rand(3,4,2), True, np.random.rand(1)+1e-4, False, 3, 2, False), ]) def test_Linear_kernel(self, dtype, X, X_isSamples, X2, X2_isSamples, variances, variances_isSamples, num_samples, input_dim, ARD): def create_linear(): return Linear(input_dim, ARD, 1., 'linear', None, dtype) def create_gpy_linear(): return GPy.kern.Linear(input_dim=input_dim, ARD=ARD) kernel_params = {'variances': (variances, variances_isSamples)} gpy_kernel_test(X, X_isSamples, X2, X2_isSamples, kernel_params, num_samples, dtype, create_linear, create_gpy_linear) @pytest.mark.parametrize("dtype, X, X_isSamples, X2, X2_isSamples, variance, variance_isSamples, num_samples, input_dim", [ (np.float64, np.random.rand(5,2), False, np.random.rand(4,2), False, np.random.rand(1)+1e-4, False, 1, 2), (np.float64, np.random.rand(5,2), False, np.random.rand(4,2), False, np.random.rand(3,1)+1e-4, True, 3, 2), (np.float64, np.random.rand(3,5,2), True, np.random.rand(3,4,2), True, np.random.rand(1)+1e-4, False, 3, 2) ]) def test_Bias_kernel(self, dtype, X, X_isSamples, X2, X2_isSamples, variance, variance_isSamples, num_samples, input_dim): def create_bias(): return Bias(input_dim, 1., 'bias', None, dtype) def create_gpy_bias(): return GPy.kern.Bias(input_dim=input_dim) kernel_params = {'variance': (variance, variance_isSamples)} gpy_kernel_test(X, X_isSamples, X2, X2_isSamples, kernel_params, num_samples, dtype, create_bias, create_gpy_bias) @pytest.mark.parametrize("dtype, X, X_isSamples, X2, X2_isSamples, variance, variance_isSamples, num_samples, input_dim", [ (np.float64, np.random.rand(5,2), False, np.random.rand(4,2), False, np.random.rand(1)+1e-4, False, 1, 2), (np.float64, np.random.rand(5,2), False, np.random.rand(4,2), False, np.random.rand(3,1)+1e-4, True, 3, 2), (np.float64, np.random.rand(3,5,2), True, np.random.rand(3,4,2), True, np.random.rand(1)+1e-4, False, 3, 2) ]) def test_White_kernel(self, dtype, X, X_isSamples, X2, X2_isSamples, variance, variance_isSamples, num_samples, input_dim): def create_white(): return White(input_dim, 1., 'bias', None, dtype) def create_gpy_white(): return GPy.kern.White(input_dim=input_dim) kernel_params = {'variance': (variance, variance_isSamples)} gpy_kernel_test(X, X_isSamples, X2, X2_isSamples, kernel_params, num_samples, dtype, create_white, create_gpy_white) @pytest.mark.parametrize("dtype, X, X_isSamples, X2, X2_isSamples, rbf_lengthscale, rbf_lengthscale_isSamples, rbf_variance, rbf_variance_isSamples, linear_variances, linear_variances_isSamples, num_samples, input_dim", [ (np.float64, np.random.rand(5,2), False, np.random.rand(4,2), False, np.random.rand(2)+1e-4, False, np.random.rand(1)+1e-4, False, np.random.rand(2)+1e-4, False, 1, 2), (np.float64, np.random.rand(3,5,2), True, np.random.rand(3,4,2), True, np.random.rand(2)+1e-4, False, np.random.rand(1)+1e-4, False, np.random.rand(2)+1e-4, False, 3, 2), (np.float64, np.random.rand(5,2), False, np.random.rand(4,2), False, np.random.rand(3,2)+1e-4, True, np.random.rand(1)+1e-4, False, np.random.rand(2)+1e-4, False, 3, 2), (np.float64, np.random.rand(5,2), False, np.random.rand(4,2), False, np.random.rand(2)+1e-4, False, np.random.rand(1)+1e-4, False, np.random.rand(3,2)+1e-4, True, 3, 2), (np.float64, np.random.rand(3,5,2), True, np.random.rand(3,4,2), True, np.random.rand(3,2)+1e-4, True,
np.random.rand(3,1)
numpy.random.rand
import numpy as np import pickle as pl import matplotlib.pyplot as plt from mdtools import Isomorph from mpl_toolkits.mplot3d import Axes3D """ PARAMETER A: 1. A0 affects the curve of the isomorphic surface, with a0 = 0, being a flat surface and a0 = 1.0 being more curved as T becomes smaller. 2. It also affects, the position on the z-axis (a), with higher values of A0 shifting the surface higher up. When A0 = 0, then the figure is collapsed on the rho-T axis 3. The surfaces have the exact same footprint on the X-Y axis rho2 increases as we go down the isomorphic line T2 also increases A2 decreases if a_r == 0; then all the a2s are forced to be zero (0) hence causing the surface to be flat """ def isomorphic_surface_array(rho_list, t_list, n_list, a_list, t2, figname, save_fig=False, save_pickle=False): """ @param rho_list: @param t_list: @param n_list: @param a_list: @param t2: @param figname: @param save_fig: @param save_pickle: @return: """ # Generate the 3D plot canvas here fig = plt.figure(figname) ax = Axes3D(fig) canvas = None edg_col = ["none", "black", "cyan", "white"] edg_it = 0 for a_r in a_list: for t_r in t_list: # Varying the reference density in the line # Merging multiple rho lines creates a surface for n in n_list: rho_iso = np.empty((0, len(t2))) t_iso = np.empty((0, len(t2))) a_iso = np.empty((0, len(t2))) label_title = fr"n: {n}, $T_0$: {t_r:.1f}, $A_0$: {a_r:.1f}" for i, rho_r in enumerate(rho_list): iso = Isomorph(rho_r, t_r, a_r, t2) # Generate isomorphic line rho2, a2 = iso.gen_line(n) # Creating the 3D mesh grid rho_iso = np.append(rho_iso, [rho2], axis=0) t_iso = np.append(t_iso, [t2], axis=0) a_iso = np.append(a_iso, [a2], axis=0) surf = ax.plot_surface(rho_iso, t_iso, a_iso, label=label_title, alpha=0.9, edgecolor=edg_col[edg_it]) # This is a fix for the bug that does not allow legends to 3D surfaces surf._facecolors2d = surf._facecolors3d surf._edgecolors2d = surf._edgecolors3d ax.legend(loc="best") edg_it += 1 ax.set_xlabel(r'$\rho$') ax.set_ylabel(r'T') ax.set_zlabel(r'a') # ax.view_init(elev=44, azim=-128.5) if save_fig is True: plt.savefig(f"{figname}.pdf") # Save figures for loading at a later time if save_pickle is True: pl.dump(fig, open(f"{figname}.pickle", "wb")) def plot_all_surfaces(): """ Generates all the plots of the ismorphic surfaces for the MD fluid. It also pickles the figures, so that they can be loaded at a later time. """ # Leave these unchanged # Density reference rho_list = np.linspace(0.2, 1, 10) # Input temperature over which the isomorphic points are generated t2 = np.linspace(0.2, 2, 20) # PLOT VARIOUS TEMPERATURES T0 # Reference parameters t_list = np.linspace(0.2, 1, 5) a_list = [0.5] n_list = [8] isomorphic_surface_array(rho_list, t_list, n_list, a_list, t2, "Isomorphs_with_varying_T0") # PLOT VARIOUS PARAMETERS A0 a_list = np.linspace(0.5, 1, 3) t_list = [0.5] n_list = [8] isomorphic_surface_array(rho_list, t_list, n_list, a_list, t2, "Isomorphs_with_varying_A0") # PLOT VARIOUS PAIR POTENTIAL STRENGTHS n # TODO: increase color intensity cyan, light green, DISABLE SHADING, wireframe color and decrease thickness a_list = [0.5] t_list = [0.5] n_list = list(range(8, 15, 2)) isomorphic_surface_array(rho_list, t_list, n_list, a_list, t2, "Isomorphs_with_varying_n") # PLOT VARIOUS A0 AND T0 t_list = np.linspace(0.2, 1, 3) a_list =
np.linspace(0, 1, 3)
numpy.linspace
import numpy as np def sigmoid(x): return 1 / (1 + np.exp(-x)) X = np.array([1.0, 0.5]) W1 = np.array([[0.1, 0.3, 0.5], [0.2, 0.4, 0.6]]) B1 = np.array([0.1, 0.2, 0.3]) print(W1.shape) print(X.shape) print(B1.shape) A1 = np.dot(X, W1) + B1 Z1 = sigmoid(A1) print(A1) print(Z1) W2 = np.array([[0.1, 0.4], [0.2, 0.5], [0.3, 0.6]]) B2 =
np.array([0.1, 0.2])
numpy.array
# -*- coding: utf-8 -*- import numpy as np import torch from albumentations.core.transforms_interface import BasicTransform from numpy import cos, pi, sin def atan2(y, x): """from 0 to 2 * pi""" return np.arctan2(y, x) % (2 * pi) def donut(img, inplace=True): if not inplace: img = np.copy(img) size, _ = img.shape # square radius = size / 2 r_in = np.random.random() * radius r_out = np.random.random() * radius r_in, r_out = min(r_in, r_out), max(r_in, r_out) a1 = np.random.random() * 2 * pi a2 = np.random.random() * 2 * pi a1, a2 = min(a1, a2), max(a1, a2) y0, x0 = size / 2, size / 2 y, x = np.ogrid[0: size, 0: size] img[np.where((r_in ** 2 <= (y - y0) ** 2 + (x - x0) ** 2) & ((y - y0) ** 2 + (x - x0) ** 2 <= r_out ** 2) & (a1 <= atan2(y-y0, x-x0)) & (atan2(y-y0, x-x0) <= a2))] = 2.0 return img def scratch(img, inplace=True): if not inplace: img =
np.copy(img)
numpy.copy
from datetime import date,datetime from os import system,name import numpy as np LOCK = 1 EMPT = 0 BLK_EDGE = 10 BOARD_HEIGHT = 9 BOARD_WIDTH = 6 FILE_NAME = 'logfile.txt' board = [ ["JAN","FEB","MAR","APR","MAY","JUN"], ["JUL","AUG","SEP","OCT","NOV","DEC"], ["1" ,"2" ,"3" ,"4" ,"5" ,"6" ], ["7" ,"8" ,"9" ,"10" ,"11" ,"12" ], ["13" ,"14" ,"15" ,"16" ,"17" ,"18" ], ["19" ,"20" ,"21" ,"22" ,"23" ,"24" ], ["25" ,"26" ,"27" ,"28" ,"29" ,"30" ], ["31" ," " ," " ,"MON","TUE","WED"], [" " ," " ,"THU","FRI","SAT","SUN"] ] force_check = 0 bk1 = [ [LOCK,EMPT,EMPT], [LOCK,LOCK,LOCK], [LOCK,EMPT,EMPT], [LOCK,EMPT,EMPT] ] bk2 = [ [LOCK,EMPT], [LOCK,LOCK], [LOCK,EMPT], [LOCK,EMPT], [LOCK,EMPT] ] bk3 = [ [LOCK,LOCK], [LOCK,EMPT], [LOCK,EMPT], [LOCK,EMPT] ] bk4 = [ [LOCK,LOCK], [LOCK,EMPT], [LOCK,EMPT], [LOCK,EMPT], [LOCK,EMPT] ] bk5 = [ [LOCK,LOCK,LOCK], [LOCK,EMPT,EMPT], [LOCK,EMPT,EMPT], [LOCK,EMPT,EMPT] ] bk6 = [ [LOCK,EMPT], [LOCK,LOCK], [EMPT,LOCK], [EMPT,LOCK] ] bk7 = [ [LOCK,EMPT,LOCK], [LOCK,LOCK,LOCK], [LOCK,EMPT,EMPT] ] bk8 = [ [LOCK,EMPT,EMPT], [LOCK,LOCK,LOCK], [EMPT,LOCK,EMPT], [EMPT,LOCK,EMPT] ] bk9 = [ [LOCK,EMPT], [LOCK,LOCK], [LOCK,LOCK] ] def rotate(bk, times= 0): res = np.array(bk) if times < 0: res = np.fliplr(res) times += 1 res = np.rot90(res,abs(times)) return res def position(bk,x,y): res = np.array(bk) row,column = res.shape res = np.pad(res,((x,9-row-x),(y,6-y-column))) return res def clear(): # for windows if name == 'nt': _ = system('cls') # for mac and linux(here, os.name is 'posix') else: _ = system('clear') def printBk(bk): for i in bk: for j in i: print(j,end=" ") print() def markDateBoard(daystr = ''): today = date.today() if daystr: today = datetime.strptime(daystr, '%Y-%m-%d') if today.month == 1: global force_check force_check = 1 nboard = np.zeros((BOARD_HEIGHT,BOARD_WIDTH),np.int8) wdpos = [[7,3],[7,4],[7,5],[8,2],[8,3],[8,4],[8,5]] nboard[(today.month - 1) // BOARD_WIDTH][(today.month - 1) % BOARD_WIDTH] = LOCK nboard[(today.day - 1) // BOARD_WIDTH + 2][(today.day - 1) % BOARD_WIDTH] = LOCK i,j = wdpos[today.weekday()] nboard[i][j] = LOCK return nboard def validBoard(currBoard): if
np.max(currBoard)
numpy.max
# -*- coding: utf-8 -*- import argparse import matplotlib.pyplot as plt import numpy as np import soundfile as sf import torch from torch_audioset.data.torch_input_processing import WaveformToInput as TorchTransform from torch_audioset.params import YAMNetParams from torch_audioset.yamnet.model import yamnet as torch_yamnet from torch_audioset.yamnet.model import yamnet_category_metadata def sf_load_from_int16(fname): x, sr = sf.read(fname, dtype='int16', always_2d=True) x = x / 2 ** 15 x = x.T.astype(np.float32) return x, sr if __name__ == '__main__': # one wav file as argument. parser = argparse.ArgumentParser() parser.add_argument('wav') args = parser.parse_args() wav_fname = args.wav waveforms, sr = sf_load_from_int16(wav_fname) waveform = waveforms[0] waveform_for_torch = torch.tensor(waveforms) patches, spectrogram = TorchTransform().wavform_to_log_mel(waveform_for_torch, 16000) pt_model = torch_yamnet(pretrained=False) # Manually download the `yamnet.pth` file. pt_model.load_state_dict(torch.load('./yamnet.pth')) with torch.no_grad(): pt_model.eval() # x = torch.from_numpy(patches) # x = x.unsqueeze(1) # [5, 96, 64] -> [5, 1, 96, 64] x = patches pt_pred = pt_model(x, to_prob=True) pt_pred = pt_pred.numpy() scores = pt_pred params = YAMNetParams() class_names = [x['name'] for x in yamnet_category_metadata()] # Visualize the results. plt.figure(figsize=(10, 8)) # Plot the waveform. plt.subplot(3, 1, 1) plt.plot(waveform) plt.xlim([0, len(waveform)]) # Plot the log-mel spectrogram (returned by the model). plt.subplot(3, 1, 2) extent = (0, spectrogram.shape[0], -0.5, spectrogram.shape[1] - 0.5) plt.imshow(spectrogram.T, aspect='auto', interpolation='nearest', origin='lower', extent=extent) plt.xlim([0, len(waveform) / sr / YAMNetParams.STFT_HOP_SECONDS]) # Plot and label the model output scores for the top-scoring classes. mean_scores = np.mean(scores, axis=0) top_N = 10 top_class_indices =
np.argsort(mean_scores)
numpy.argsort
import numpy as np #import scipy.stats as stats import torch import torch.nn as nn import torch.optim as optim device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if torch.cuda.is_available(): print("GPU available") class RNN(nn.Module): def __init__(self, in_size, h_size, n_layers, dropout=0): super(RNN, self).__init__() self.model = nn.GRU(in_size,hidden_size=h_size,num_layers=n_layers, batch_first=True,dropout=dropout) def forward(self, x): out, _ = self.model(x, None) return out[0][-1][None] #(1,h_size) class MultiModel(nn.Module): def __init__(self, mods, in_dims, out_dims, n_scores, dp=0.1): super(MultiModel, self).__init__() layers = [] mods = set(mods) if 'spk_speech' in mods: layers.append(RNN(128, in_dims, 1)) if 'spk_language' in mods: layers.append(nn.Linear(768, in_dims)) if 'spk_vision' in mods: layers.append(RNN(2048, in_dims, 1)) if 'lis_speech' in mods: layers.append(RNN(128, in_dims, 1)) if 'lis_language' in mods: layers.append(nn.Linear(768, in_dims)) if 'lis_vision' in mods: layers.append(RNN(2048, in_dims, 1)) self.layers = nn.ModuleList(layers) self.dp1 = nn.Dropout(dp, inplace=True) self.relu1 = nn.ReLU(inplace=True) self.fc1 = nn.Linear(in_dims*len(mods), out_dims) self.dp2 = nn.Dropout(dp, inplace=True) self.relu2 = nn.ReLU(inplace=True) self.fc2 = nn.Linear(out_dims, n_scores) def forward(self, data): feats = [] for layer, x in zip(self.layers, data): feats.append(layer(x[None])) # (1, in_dims) y = torch.cat(feats, dim=1) # (1, in_dims * len(mods)) y = self.dp1(y) y = self.relu1(y) y = self.fc1(y) y = self.dp2(y) y = self.relu2(y) y = self.fc2(y) return y #(1, n_scores) class M3: def __init__(self, mods, task, lr, in_dims, out_dims, n_scores, dp): print('Using multi-modalities model, hyper-params:', lr, in_dims, out_dims) self.mods = mods self.task = task if task == 'reg': self.model = MultiModel(mods, in_dims, out_dims, n_scores, dp).to(device) self.criterion = nn.MSELoss(reduction='sum') elif task == 'cls': self.model = MultiModel(mods, in_dims, out_dims, n_scores+1, dp).to(device) self.criterion = nn.CrossEntropyLoss() else: self.model = MultiModel(mods, in_dims, out_dims, n_scores+1, dp).to(device) self.criterion_reg = nn.MSELoss(reduction='sum') self.criterion_cls = nn.CrossEntropyLoss() self.optimizer = optim.Adam(self.model.parameters(), lr=lr) #self.optimizer = optim.SGD(self.model.parameters(), lr=lr) def test(self, data): self.model.eval() X, Y = data loss = 0 for x, y in zip(X, Y): x = [torch.FloatTensor(i).to(device) for i in x] with torch.no_grad(): if self.task == 'reg': y = torch.FloatTensor(y).to(device) pred = self.model(x).reshape(y.shape) loss += self.criterion(pred, y).item() elif self.task == 'cls': y = torch.LongTensor(y).to(device) pred = self.model(x) loss += self.criterion(pred, y).item() else: y1 = torch.FloatTensor(y[:-1]).to(device) y2 = torch.LongTensor(y[-1][None]).to(device) pred = self.model(x) pred1 = pred[:,:-2].reshape(y1.shape) pred2 = pred[:,-2:] loss1 = self.criterion_reg(pred1, y1).item() loss2 = self.criterion_cls(pred2, y2).item() loss += (loss1/9 + loss2*8/9) return loss/Y.shape[0] def train(self, train_data, eval_data, epoch, batch, path): X, y = train_data n = y.shape[0] #y = y + (np.random.random(y.shape)-0.5)*0.5 for e in range(epoch): self.model.train() idx = np.arange(n)
np.random.shuffle(idx)
numpy.random.shuffle