prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
################################################################## # Radio Map Construction with Regression Kriging # Written by <NAME>, Ph.D. # Requirements: # - Python 3.x # - numpy # - scipy # - matplotlib ################################################################## # The MIT License (MIT) # # Copyright (c) 2021 <NAME>. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from scipy.optimize import minimize ''' sampling via multivariate normal distribution with no trend ''' """ cov: variance-covariance matrix """ def gen_multivariate_normal(cov): # print("--gen_multivariate_normal()--") L = np.linalg.cholesky(cov) z = np.random.standard_normal(len(cov)) return np.dot(L, z) '''variance-covariance matrix for log-normal shadowing''' """ x, y: vector for measurement location dcor: correlation distance of shadowing [m] sigma: standard deviation [dB] """ def gen_varcov_matrix(x, y, dcor, sigma): # print("--gen_varcov_matrix()--") dmat = distance(x, y, x[:, np.newaxis], y[:, np.newaxis]) # distance matrix tmp = 0.6931471805599453 / dcor # np.log(2.0)/dcor return sigma * sigma * np.exp(-dmat * tmp) '''for measurement location''' """ n_node: number of nodes len_area: area length [m] """ def gen_location_vector(n_node, len_area): # print("--gen_location_vector()--") x = np.random.uniform(0.0, len_area, n_node) y = np.random.uniform(0.0, len_area, n_node) return x, y def gen_location_vector_on_circle(n_node, r): x = np.zeros(n_node) y = np.zeros(n_node) for i in range(n_node): while True: x_tmp = np.random.uniform(0.0, 2.0 * r) y_tmp = np.random.uniform(0.0, 2.0 * r) d = np.sqrt((x_tmp - r)**2 + (y_tmp - r)**2) if d <= r: break x[i] = x_tmp y[i] = y_tmp return x, y ''' gen empirical semivariogram via binning ''' def gen_emprical_semivar(data, d_max, num): def gen_combinations(arr): r, c = np.triu_indices(len(arr), 1) return np.stack((arr[r], arr[c]), 1) # print("--gen_emprical_semivar()--") d_semivar = np.linspace(0.0, d_max, num) SPAN = d_semivar[1] - d_semivar[0] indx = gen_combinations(np.arange(len(data))) '''gen semivariogram clouds''' d = distance(data[indx[:, 0], 0], data[indx[:, 0], 1], data[indx[:, 1], 0], data[indx[:, 1], 1]) indx = indx[d<=d_max] d = d[d <= d_max] semivar = (data[indx[:, 0], 2] - data[indx[:, 1], 2])**2 '''average semivariogram clouds via binning''' semivar_avg = np.empty(num) for i in range(num): d1 = d_semivar[i] - 0.5*SPAN d2 = d_semivar[i] + 0.5*SPAN indx_tmp = (d1 < d) * (d <= d2) #index within calculation span semivar_tr = semivar[indx_tmp] # semivar_avg[i] = semivar_tr.mean() if len(semivar_tr)>0: semivar_avg[i] = semivar_tr.mean() else: semivar_avg[i] = np.nan return d_semivar[np.isnan(semivar_avg) == False], 0.5 * semivar_avg[np.isnan(semivar_avg) == False] '''theoretical semivariogram (exponential)''' def semivar_exp(d, nug, sill, ran): return np.abs(nug) +
np.abs(sill)
numpy.abs
import collections import numpy as np import time import datetime import os import networkx as nx import pytz import cloudvolume import pandas as pd from multiwrapper import multiprocessing_utils as mu from . import mincut from google.api_core.retry import Retry, if_exception_type from google.api_core.exceptions import Aborted, DeadlineExceeded, \ ServiceUnavailable from google.auth import credentials from google.cloud import bigtable from google.cloud.bigtable.row_filters import TimestampRange, \ TimestampRangeFilter, ColumnRangeFilter, ValueRangeFilter, RowFilterChain, \ ColumnQualifierRegexFilter, RowFilterUnion, ConditionalRowFilter, \ PassAllFilter, BlockAllFilter, RowFilter from google.cloud.bigtable.column_family import MaxVersionsGCRule from typing import Any, Dict, Iterable, List, Optional, Sequence, Tuple, Union # global variables HOME = os.path.expanduser("~") N_DIGITS_UINT64 = len(str(np.iinfo(np.uint64).max)) LOCK_EXPIRED_TIME_DELTA = datetime.timedelta(minutes=2, seconds=00) UTC = pytz.UTC # Setting environment wide credential path os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = \ HOME + "/.cloudvolume/secrets/google-secret.json" def compute_indices_pandas(data) -> pd.Series: """ Computes indices of all unique entries Make sure to remap your array to a dense range starting at zero https://stackoverflow.com/questions/33281957/faster-alternative-to-numpy-where :param data: np.ndarray :return: pandas dataframe """ d = data.ravel() f = lambda x: np.unravel_index(x.index, data.shape) return pd.Series(d).groupby(d).apply(f) def log_n(arr, n): """ Computes log to base n :param arr: array or float :param n: int base :return: return log_n(arr) """ if n == 2: return np.log2(arr) elif n == 10: return np.log10(arr) else: return np.log(arr) / np.log(n) def pad_node_id(node_id: np.uint64) -> str: """ Pad node id to 20 digits :param node_id: int :return: str """ return "%.20d" % node_id def serialize_uint64(node_id: np.uint64) -> bytes: """ Serializes an id to be ingested by a bigtable table row :param node_id: int :return: str """ return serialize_key(pad_node_id(node_id)) # type: ignore def deserialize_uint64(node_id: bytes) -> np.uint64: """ De-serializes a node id from a BigTable row :param node_id: bytes :return: np.uint64 """ return np.uint64(node_id.decode()) # type: ignore def serialize_key(key: str) -> bytes: """ Serializes a key to be ingested by a bigtable table row :param key: str :return: bytes """ return key.encode("utf-8") def deserialize_key(key: bytes) -> str: """ Deserializes a row key :param key: bytes :return: str """ return key.decode() def row_to_byte_dict(row: bigtable.row.Row, f_id: str = None, idx: int = None ) -> Dict[int, Dict]: """ Reads row entries to a dictionary :param row: row :param f_id: str :param idx: int :return: dict """ row_dict = {} for fam_id in row.cells.keys(): row_dict[fam_id] = {} for row_k in row.cells[fam_id].keys(): if idx is None: row_dict[fam_id][deserialize_key(row_k)] = \ [c.value for c in row.cells[fam_id][row_k]] else: row_dict[fam_id][deserialize_key(row_k)] = \ row.cells[fam_id][row_k][idx].value if f_id is not None and f_id in row_dict: return row_dict[f_id] elif f_id is None: return row_dict else: raise Exception("Family id not found") def compute_bitmasks(n_layers: int, fan_out: int) -> Dict[int, int]: """ :param n_layers: int :return: dict layer -> bits for layer id """ bitmask_dict = {} for i_layer in range(n_layers, 0, -1): if i_layer == 1: # Lock this layer to an 8 bit layout to maintain compatibility with # the exported segmentation # n_bits_for_layers = np.ceil(log_n(fan_out**(n_layers - 2), fan_out)) n_bits_for_layers = 8 else: n_bits_for_layers = max(1, np.ceil(log_n(fan_out**(n_layers - i_layer), fan_out))) # n_bits_for_layers = fan_out ** int(np.ceil(log_n(n_bits_for_layers, fan_out))) n_bits_for_layers = int(n_bits_for_layers) assert n_bits_for_layers <= 8 bitmask_dict[i_layer] = n_bits_for_layers return bitmask_dict class ChunkedGraph(object): def __init__(self, table_id: str, instance_id: str = "pychunkedgraph", project_id: str = "neuromancer-seung-import", chunk_size: Tuple[int, int, int] = None, fan_out: Optional[int] = None, n_layers: Optional[int] = None, credentials: Optional[credentials.Credentials] = None, client: bigtable.Client = None, cv_path: str = None, is_new: bool = False) -> None: if client is not None: self._client = client else: self._client = bigtable.Client(project=project_id, admin=True, credentials=credentials) self._instance = self.client.instance(instance_id) self._table_id = table_id self._table = self.instance.table(self.table_id) if is_new: self.check_and_create_table() self._n_layers = self.check_and_write_table_parameters("n_layers", n_layers) self._fan_out = self.check_and_write_table_parameters("fan_out", fan_out) self._cv_path = self.check_and_write_table_parameters("cv_path", cv_path) self._chunk_size = self.check_and_write_table_parameters("chunk_size", chunk_size) self._bitmasks = compute_bitmasks(self.n_layers, self.fan_out) self._cv = None # Hardcoded parameters self._n_bits_for_layer_id = 8 self._cv_mip = 3 @property def client(self) -> bigtable.Client: return self._client @property def instance(self) -> bigtable.instance.Instance: return self._instance @property def table(self) -> bigtable.table.Table: return self._table @property def table_id(self) -> str: return self._table_id @property def instance_id(self): return self.instance.instance_id @property def project_id(self): return self.client.project @property def family_id(self) -> str: return "0" @property def incrementer_family_id(self) -> str: return "1" @property def log_family_id(self) -> str: return "2" @property def cross_edge_family_id(self) -> str: return "3" @property def fan_out(self) -> int: return self._fan_out @property def chunk_size(self) -> np.ndarray: return self._chunk_size @property def n_layers(self) -> int: return self._n_layers @property def bitmasks(self) -> Dict[int, int]: return self._bitmasks @property def cv_path(self) -> str: return self._cv_path @property def cv_mip(self) -> int: return self._cv_mip @property def cv(self) -> cloudvolume.CloudVolume: if self._cv is None: self._cv = cloudvolume.CloudVolume(self.cv_path, mip=self._cv_mip) return self._cv @property def root_chunk_id(self): return self.get_chunk_id(layer=int(self.n_layers), x=0, y=0, z=0) def check_and_create_table(self) -> None: """ Checks if table exists and creates new one if necessary """ table_ids = [t.table_id for t in self.instance.list_tables()] if not self.table_id in table_ids: self.table.create() f = self.table.column_family(self.family_id) f.create() f_inc = self.table.column_family(self.incrementer_family_id, gc_rule=MaxVersionsGCRule(1)) f_inc.create() f_log = self.table.column_family(self.log_family_id) f_log.create() f_ce = self.table.column_family(self.cross_edge_family_id, gc_rule=MaxVersionsGCRule(1)) f_ce.create() print("Table created") def check_and_write_table_parameters(self, param_key: str, value: Optional[np.uint64] = None ) -> np.uint64: """ Checks if a parameter already exists in the table. If it already exists it returns the stored value, else it stores the given value. It raises an exception if no value is passed and the parameter does not exist, yet. :param param_key: str :param value: np.uint64 :return: np.uint64 value """ ser_param_key = serialize_key(param_key) row = self.table.read_row(serialize_key("params")) if row is None or ser_param_key not in row.cells[self.family_id]: assert value is not None if param_key in ["fan_out", "n_layers"]: val_dict = {param_key: np.array(value, dtype=np.uint64).tobytes()} elif param_key in ["cv_path"]: val_dict = {param_key: serialize_key(value)} elif param_key in ["chunk_size"]: val_dict = {param_key: np.array(value, dtype=np.uint64).tobytes()} else: raise Exception("Unknown type for parameter") row = self.mutate_row(serialize_key("params"), self.family_id, val_dict) self.bulk_write([row]) else: value = row.cells[self.family_id][ser_param_key][0].value if param_key in ["fan_out", "n_layers"]: value = np.frombuffer(value, dtype=np.uint64)[0] elif param_key in ["cv_path"]: value = deserialize_key(value) elif param_key in ["chunk_size"]: value = np.frombuffer(value, dtype=np.uint64) else: raise Exception("Unknown key") return value def get_serialized_info(self): """ Rerturns dictionary that can be used to load this ChunkedGraph :return: dict """ info = {"table_id": self.table_id, "instance_id": self.instance_id, "project_id": self.project_id} try: info["credentials"] = self.client.credentials except: info["credentials"] = self.client._credentials return info def get_chunk_layer(self, node_or_chunk_id: np.uint64) -> int: """ Extract Layer from Node ID or Chunk ID :param node_or_chunk_id: np.uint64 :return: int """ return int(node_or_chunk_id) >> 64 - self._n_bits_for_layer_id def get_chunk_coordinates(self, node_or_chunk_id: np.uint64 ) -> np.ndarray: """ Extract X, Y and Z coordinate from Node ID or Chunk ID :param node_or_chunk_id: np.uint64 :return: Tuple(int, int, int) """ layer = self.get_chunk_layer(node_or_chunk_id) bits_per_dim = self.bitmasks[layer] x_offset = 64 - self._n_bits_for_layer_id - bits_per_dim y_offset = x_offset - bits_per_dim z_offset = y_offset - bits_per_dim x = int(node_or_chunk_id) >> x_offset & 2 ** bits_per_dim - 1 y = int(node_or_chunk_id) >> y_offset & 2 ** bits_per_dim - 1 z = int(node_or_chunk_id) >> z_offset & 2 ** bits_per_dim - 1 return np.array([x, y, z]) def get_chunk_id(self, node_id: Optional[np.uint64] = None, layer: Optional[int] = None, x: Optional[int] = None, y: Optional[int] = None, z: Optional[int] = None) -> np.uint64: """ (1) Extract Chunk ID from Node ID (2) Build Chunk ID from Layer, X, Y and Z components :param node_id: np.uint64 :param layer: int :param x: int :param y: int :param z: int :return: np.uint64 """ assert node_id is not None or \ all(v is not None for v in [layer, x, y, z]) if node_id is not None: layer = self.get_chunk_layer(node_id) bits_per_dim = self.bitmasks[layer] if node_id is not None: chunk_offset = 64 - self._n_bits_for_layer_id - 3 * bits_per_dim return np.uint64((int(node_id) >> chunk_offset) << chunk_offset) else: if not(x < 2 ** bits_per_dim and y < 2 ** bits_per_dim and z < 2 ** bits_per_dim): raise Exception("Chunk coordinate is out of range for" "this graph on layer %d with %d bits/dim." "[%d, %d, %d]; max = %d." % (layer, bits_per_dim, x, y, z, 2 ** bits_per_dim)) layer_offset = 64 - self._n_bits_for_layer_id x_offset = layer_offset - bits_per_dim y_offset = x_offset - bits_per_dim z_offset = y_offset - bits_per_dim return np.uint64(layer << layer_offset | x << x_offset | y << y_offset | z << z_offset) def get_chunk_ids_from_node_ids(self, node_ids: Iterable[np.uint64] ) -> np.ndarray: """ Extract a list of Chunk IDs from a list of Node IDs :param node_ids: np.ndarray(dtype=np.uint64) :return: np.ndarray(dtype=np.uint64) """ # TODO: measure and improve performance(?) return np.array(list(map(lambda x: self.get_chunk_id(node_id=x), node_ids)), dtype=np.uint64) def get_segment_id_limit(self, node_or_chunk_id: np.uint64) -> np.uint64: """ Get maximum possible Segment ID for given Node ID or Chunk ID :param node_or_chunk_id: np.uint64 :return: np.uint64 """ layer = self.get_chunk_layer(node_or_chunk_id) bits_per_dim = self.bitmasks[layer] chunk_offset = 64 - self._n_bits_for_layer_id - 3 * bits_per_dim return np.uint64(2 ** chunk_offset - 1) def get_segment_id(self, node_id: np.uint64) -> np.uint64: """ Extract Segment ID from Node ID :param node_id: np.uint64 :return: np.uint64 """ return node_id & self.get_segment_id_limit(node_id) def get_node_id(self, segment_id: np.uint64, chunk_id: Optional[np.uint64] = None, layer: Optional[int] = None, x: Optional[int] = None, y: Optional[int] = None, z: Optional[int] = None) -> np.uint64: """ (1) Build Node ID from Segment ID and Chunk ID (2) Build Node ID from Segment ID, Layer, X, Y and Z components :param segment_id: np.uint64 :param chunk_id: np.uint64 :param layer: int :param x: int :param y: int :param z: int :return: np.uint64 """ if chunk_id is not None: return chunk_id | segment_id else: return self.get_chunk_id(layer=layer, x=x, y=y, z=z) | segment_id def get_unique_segment_id_range(self, chunk_id: np.uint64, step: int = 1 ) -> np.ndarray: """ Return unique Segment ID for given Chunk ID atomic counter :param chunk_id: np.uint64 :param step: int :return: np.uint64 """ counter_key = serialize_key('counter') # Incrementer row keys start with an "i" followed by the chunk id row_key = serialize_key("i%s" % pad_node_id(chunk_id)) append_row = self.table.row(row_key, append=True) append_row.increment_cell_value(self.incrementer_family_id, counter_key, step) # This increments the row entry and returns the value AFTER incrementing latest_row = append_row.commit() max_segment_id_b = latest_row[self.incrementer_family_id][counter_key][0][0] max_segment_id = int.from_bytes(max_segment_id_b, byteorder="big") min_segment_id = max_segment_id + 1 - step segment_id_range = np.array(range(min_segment_id, max_segment_id + 1), dtype=np.uint64) return segment_id_range def get_unique_segment_id(self, chunk_id: np.uint64) -> np.uint64: """ Return unique Segment ID for given Chunk ID atomic counter :param chunk_id: np.uint64 :param step: int :return: np.uint64 """ return self.get_unique_segment_id_range(chunk_id=chunk_id, step=1)[0] def get_unique_node_id_range(self, chunk_id: np.uint64, step: int = 1 ) -> np.ndarray: """ Return unique Node ID range for given Chunk ID atomic counter :param chunk_id: np.uint64 :param step: int :return: np.uint64 """ segment_ids = self.get_unique_segment_id_range(chunk_id=chunk_id, step=step) node_ids = np.array([self.get_node_id(segment_id, chunk_id) for segment_id in segment_ids], dtype=np.uint64) return node_ids def get_unique_node_id(self, chunk_id: np.uint64) -> np.uint64: """ Return unique Node ID for given Chunk ID atomic counter :param chunk_id: np.uint64 :return: np.uint64 """ return self.get_unique_node_id_range(chunk_id=chunk_id, step=1)[0] def get_max_node_id(self, chunk_id: np.uint64) -> np.uint64: """ Gets maximal node id in a chunk based on the atomic counter This is an approximation. It is not guaranteed that all ids smaller or equal to this id exists. However, it is guaranteed that no larger id exist at the time this function is executed. :return: uint64 """ counter_key = serialize_key('counter') # Incrementer row keys start with an "i" row_key = serialize_key("i%s" % pad_node_id(chunk_id)) row = self.table.read_row(row_key) # Read incrementer value if row is not None: max_node_id_b = row.cells[self.incrementer_family_id][counter_key][0].value max_node_id = int.from_bytes(max_node_id_b, byteorder="big") else: max_node_id = 0 return np.uint64(max_node_id) def get_unique_operation_id(self) -> np.uint64: """ Finds a unique operation id atomic counter Operations essentially live in layer 0. Even if segmentation ids might live in layer 0 one day, they would not collide with the operation ids because we write information belonging to operations in a separate family id. :return: str """ counter_key = serialize_key('counter') # Incrementer row keys start with an "i" row_key = serialize_key("ioperations") append_row = self.table.row(row_key, append=True) append_row.increment_cell_value(self.incrementer_family_id, counter_key, 1) # This increments the row entry and returns the value AFTER incrementing latest_row = append_row.commit() operation_id_b = latest_row[self.incrementer_family_id][counter_key][0][0] operation_id = int.from_bytes(operation_id_b, byteorder="big") return np.uint64(operation_id) def get_max_operation_id(self) -> np.uint64: """ Gets maximal operation id based on the atomic counter This is an approximation. It is not guaranteed that all ids smaller or equal to this id exists. However, it is guaranteed that no larger id exist at the time this function is executed. :return: uint64 """ counter_key = serialize_key('counter') # Incrementer row keys start with an "i" row_key = serialize_key("ioperations") row = self.table.read_row(row_key) # Read incrementer value if row is not None: max_operation_id_b = row.cells[self.incrementer_family_id][counter_key][0].value max_operation_id = int.from_bytes(max_operation_id_b, byteorder="big") else: max_operation_id = 0 return np.uint64(max_operation_id) def get_cross_chunk_edges_layer(self, cross_edges): if len(cross_edges) == 0: return np.array([], dtype=np.int) cross_chunk_edge_layers = np.ones(len(cross_edges), dtype=np.int) * 2 cross_edge_coordinates = [] for cross_edge in cross_edges: cross_edge_coordinates.append( [self.get_chunk_coordinates(cross_edge[0]), self.get_chunk_coordinates(cross_edge[1])]) cross_edge_coordinates = np.array(cross_edge_coordinates, dtype=np.int) for layer in range(3, self.n_layers): cross_edge_coordinates = cross_edge_coordinates // self.fan_out edge_diff = np.sum(np.abs(cross_edge_coordinates[:, 0] - cross_edge_coordinates[:, 1]), axis=1) cross_chunk_edge_layers[edge_diff > 0] += 1 return cross_chunk_edge_layers def get_cross_chunk_edge_dict(self, cross_edges): cce_layers = self.get_cross_chunk_edges_layer(cross_edges) u_cce_layers = np.unique(cce_layers) cross_edge_dict = {} for l in range(2, self.n_layers): cross_edge_dict[l] = \ np.array([], dtype=np.uint64).reshape(-1, 2) val_dict = {} for cc_layer in u_cce_layers: layer_cross_edges = cross_edges[cce_layers == cc_layer] if len(layer_cross_edges) > 0: val_dict["atomic_cross_edges_%d" % cc_layer] = \ layer_cross_edges.tobytes() cross_edge_dict[cc_layer] = layer_cross_edges return cross_edge_dict def read_row(self, node_id: np.uint64, key: str, idx: int = 0, dtype: type = np.uint64, get_time_stamp: bool = False, fam_id: str = None) -> Any: """ Reads row from BigTable and takes care of serializations :param node_id: uint64 :param key: table column :param idx: column list index :param dtype: np.dtype :param get_time_stamp: bool :param fam_id: str :return: row entry """ key = serialize_key(key) if fam_id is None: fam_id = self.family_id row = self.table.read_row(serialize_uint64(node_id), filter_=ColumnQualifierRegexFilter(key)) if row is None or key not in row.cells[fam_id]: if get_time_stamp: return None, None else: return None cell_entries = row.cells[fam_id][key] if dtype is None: cell_value = cell_entries[idx].value else: cell_value = np.frombuffer(cell_entries[idx].value, dtype=dtype) if get_time_stamp: return cell_value, cell_entries[idx].timestamp else: return cell_value def mutate_row(self, row_key: bytes, column_family_id: str, val_dict: dict, time_stamp: Optional[datetime.datetime] = None ) -> bigtable.row.Row: """ Mutates a single row :param row_key: serialized bigtable row key :param column_family_id: str serialized column family id :param val_dict: dict :param time_stamp: None or datetime :return: list """ row = self.table.row(row_key) for column, value in val_dict.items(): row.set_cell(column_family_id=column_family_id, column=column, value=value, timestamp=time_stamp) return row def bulk_write(self, rows: Iterable[bigtable.row.DirectRow], root_ids: Optional[Union[np.uint64, Iterable[np.uint64]]] = None, operation_id: Optional[np.uint64] = None, slow_retry: bool = True, block_size: int = 2000) -> bool: """ Writes a list of mutated rows in bulk WARNING: If <rows> contains the same row (same row_key) and column key two times only the last one is effectively written to the BigTable (even when the mutations were applied to different columns) --> no versioning! :param rows: list list of mutated rows :param root_ids: list if uint64 :param operation_id: uint64 or None operation_id (or other unique id) that *was* used to lock the root the bulk write is only executed if the root is still locked with the same id. :param slow_retry: bool :param block_size: int """ if slow_retry: initial = 5 else: initial = 1 retry_policy = Retry( predicate=if_exception_type((Aborted, DeadlineExceeded, ServiceUnavailable)), initial=initial, maximum=15.0, multiplier=2.0, deadline=LOCK_EXPIRED_TIME_DELTA.seconds) if root_ids is not None and operation_id is not None: if isinstance(root_ids, int): root_ids = [root_ids] if not self.check_and_renew_root_locks(root_ids, operation_id): return False for i_row in range(0, len(rows), block_size): status = self.table.mutate_rows(rows[i_row: i_row + block_size], retry=retry_policy) if not all(status): raise Exception(status) return True def _range_read_execution(self, start_id, end_id, row_filter: RowFilter = None, n_retries: int = 100): """ Executes predefined range read (read_rows) :param start_id: np.uint64 :param end_id: np.uint64 :param row_filter: BigTable RowFilter :param n_retries: int :return: dict """ # Set up read range_read = self.table.read_rows( start_key=serialize_uint64(start_id), end_key=serialize_uint64(end_id), # allow_row_interleaving=True, end_inclusive=True, filter_=row_filter) range_read.consume_all() # Execute read consume_success = False # Retry reading if any of the writes failed i_tries = 0 while not consume_success and i_tries < n_retries: try: range_read.consume_all() consume_success = True except: time.sleep(i_tries) i_tries += 1 if not consume_success: raise Exception("Unable to consume range read: " "%d - %d -- n_retries = %d" % (start_id, end_id, n_retries)) return range_read.rows def range_read(self, start_id: np.uint64, end_id: np.uint64, n_retries: int = 100, max_block_size: int = 50000, row_keys: Optional[Iterable[str]] = None, row_key_filters: Optional[Iterable[str]] = None, time_stamp: datetime.datetime = datetime.datetime.max ) -> Union[ bigtable.row_data.PartialRowData, Dict[bytes, bigtable.row_data.PartialRowData]]: """ Reads all ids within a given range :param start_id: np.uint64 :param end_id: np.uint64 :param n_retries: int :param max_block_size: int :param row_keys: list of str more efficient read through row filters :param row_key_filters: list of str rows *with* this column will be ignored :param time_stamp: datetime.datetime :return: dict """ # Comply to resolution of BigTables TimeRange time_stamp -= datetime.timedelta( microseconds=time_stamp.microsecond % 1000) # Create filters: time and id range time_filter = TimestampRangeFilter(TimestampRange(end=time_stamp)) if row_keys is not None: filters = [] for k in row_keys: filters.append(ColumnQualifierRegexFilter(serialize_key(k))) if len(filters) > 1: row_filter = RowFilterUnion(filters) else: row_filter = filters[0] else: row_filter = None if row_filter is None: row_filter = time_filter else: row_filter = RowFilterChain([time_filter, row_filter]) if row_key_filters is not None: for row_key in row_key_filters: key_filter = ColumnRangeFilter( column_family_id=self.family_id, start_column=row_key, end_column=row_key, inclusive_start=True, inclusive_end=True) row_filter = ConditionalRowFilter(base_filter=key_filter, false_filter=row_filter, true_filter=BlockAllFilter(True)) max_block_size = np.uint64(max_block_size) block_start_ids = range(start_id, end_id, max_block_size) row_dict = {} for block_start_id in block_start_ids: block_end_id = np.uint64(block_start_id + max_block_size) if block_end_id > end_id: block_end_id = end_id block_row_dict = self._range_read_execution(start_id=block_start_id, end_id=block_end_id, row_filter=row_filter, n_retries=n_retries) row_dict.update(block_row_dict) return row_dict def range_read_chunk(self, layer: int, x: int, y: int, z: int, n_retries: int = 100, max_block_size: int = 1000000, row_keys: Optional[Iterable[str]] = None, row_key_filters: Optional[Iterable[str]] = None, time_stamp: datetime.datetime = datetime.datetime.max, ) -> Union[ bigtable.row_data.PartialRowData, Dict[bytes, bigtable.row_data.PartialRowData]]: """ Reads all ids within a chunk :param layer: int :param x: int :param y: int :param z: int :param n_retries: int :param max_block_size: int :param row_keys: list of str more efficient read through row filters :param row_key_filters: list of str rows *with* this column will be ignored :param time_stamp: datetime.datetime :return: dict """ chunk_id = self.get_chunk_id(layer=layer, x=x, y=y, z=z) if layer == 1: max_segment_id = self.get_segment_id_limit(chunk_id) max_block_size = max_segment_id + 1 else: max_segment_id = self.get_max_node_id(chunk_id=chunk_id) # Define BigTable keys start_id = self.get_node_id(np.uint64(0), chunk_id=chunk_id) end_id = self.get_node_id(max_segment_id, chunk_id=chunk_id) try: rr = self.range_read(start_id, end_id, n_retries=n_retries, max_block_size=max_block_size, row_keys=row_keys, row_key_filters=row_key_filters, time_stamp=time_stamp) except: raise Exception("Unable to consume range read: " "[%d, %d, %d], l = %d, n_retries = %d" % (x, y, z, layer, n_retries)) return rr def range_read_operations(self, time_start: datetime.datetime = datetime.datetime.min, time_end: datetime.datetime = None, start_id: np.uint64 = 0, end_id: np.uint64 = None, n_retries: int = 100, row_keys: Optional[Iterable[str]] = None ) -> Dict[bytes, bigtable.row_data.PartialRowData]: """ Reads all ids within a chunk :param time_start: datetime :param time_end: datetime :param start_id: uint64 :param end_id: uint64 :param n_retries: int :param row_keys: list of str more efficient read through row filters :return: list or yield of rows """ # Set defaults if end_id is None: end_id = self.get_max_operation_id() if time_end is None: time_end = datetime.datetime.utcnow() if end_id < start_id: return {} # Comply to resolution of BigTables TimeRange time_start -= datetime.timedelta( microseconds=time_start.microsecond % 1000) time_end -= datetime.timedelta( microseconds=time_end.microsecond % 1000) # Create filters: time and id range time_filter = TimestampRangeFilter(TimestampRange(start=time_start, end=time_end)) if row_keys is not None: filters = [] for k in row_keys: filters.append(ColumnQualifierRegexFilter(serialize_key(k))) if len(filters) > 1: row_filter = RowFilterUnion(filters) else: row_filter = filters[0] else: row_filter = None if row_filter is None: row_filter = time_filter else: row_filter = RowFilterChain([time_filter, row_filter]) # Set up read range_read = self.table.read_rows( start_key=serialize_uint64(start_id), end_key=serialize_uint64(end_id), end_inclusive=False, filter_=row_filter) range_read.consume_all() # Execute read consume_success = False # Retry reading if any of the writes failed i_tries = 0 while not consume_success and i_tries < n_retries: try: range_read.consume_all() consume_success = True except: time.sleep(i_tries) i_tries += 1 if not consume_success: raise Exception("Unable to consume chunk range read: " "n_retries = %d" % (n_retries)) return range_read.rows def range_read_layer(self, layer_id: int): """ Reads all ids within a layer This can take a while depending on the size of the graph :param layer_id: int :return: list of rows """ raise NotImplementedError() def test_if_nodes_are_in_same_chunk(self, node_ids: Sequence[np.uint64] ) -> bool: """ Test whether two nodes are in the same chunk :param node_ids: list of two ints :return: bool """ assert len(node_ids) == 2 return self.get_chunk_id(node_id=node_ids[0]) == \ self.get_chunk_id(node_id=node_ids[1]) def get_chunk_id_from_coord(self, layer: int, x: int, y: int, z: int) -> np.uint64: """ Return ChunkID for given chunked graph layer and voxel coordinates. :param layer: int -- ChunkedGraph layer :param x: int -- X coordinate in voxel :param y: int -- Y coordinate in voxel :param z: int -- Z coordinate in voxel :return: np.uint64 -- ChunkID """ base_chunk_span = int(self.fan_out) ** max(0, layer - 2) return self.get_chunk_id( layer=layer, x=x // (int(self.chunk_size[0]) * base_chunk_span), y=y // (int(self.chunk_size[1]) * base_chunk_span), z=z // (int(self.chunk_size[2]) * base_chunk_span)) def get_atomic_id_from_coord(self, x: int, y: int, z: int, parent_id: np.uint64, n_tries: int=5 ) -> np.uint64: """ Determines atomic id given a coordinate :param x: int :param y: int :param z: int :param parent_id: np.uint64 :param n_tries: int :return: np.uint64 or None """ if self.get_chunk_layer(parent_id) == 1: return parent_id x /= 2**self.cv_mip y /= 2**self.cv_mip x = int(x) y = int(y) checked = [] atomic_id = None root_id = self.get_root(parent_id) for i_try in range(n_tries): # Define block size -- increase by one each try x_l = x - (i_try - 1)**2 y_l = y - (i_try - 1)**2 z_l = z - (i_try - 1)**2 x_h = x + 1 + (i_try - 1)**2 y_h = y + 1 + (i_try - 1)**2 z_h = z + 1 + (i_try - 1)**2 if x_l < 0: x_l = 0 if y_l < 0: y_l = 0 if z_l < 0: z_l = 0 # Get atomic ids from cloudvolume atomic_id_block = self.cv[x_l: x_h, y_l: y_h, z_l: z_h] atomic_ids, atomic_id_count = np.unique(atomic_id_block, return_counts=True) # sort by frequency and discard those ids that have been checked # previously sorted_atomic_ids = atomic_ids[np.argsort(atomic_id_count)] sorted_atomic_ids = sorted_atomic_ids[~np.in1d(sorted_atomic_ids, checked)] # For each candidate id check whether its root id corresponds to the # given root id for candidate_atomic_id in sorted_atomic_ids: ass_root_id = self.get_root(candidate_atomic_id) if ass_root_id == root_id: # atomic_id is not None will be our indicator that the # search was successful atomic_id = candidate_atomic_id break else: checked.append(candidate_atomic_id) if atomic_id is not None: break # Returns None if unsuccessful return atomic_id def _create_split_log_row(self, operation_id: np.uint64, user_id: str, root_ids: Sequence[np.uint64], selected_atomic_ids: Sequence[np.uint64], removed_edges: Sequence[np.uint64], time_stamp: datetime.datetime ) -> bigtable.row.Row: val_dict = {serialize_key("user"): serialize_key(user_id), serialize_key("roots"): np.array(root_ids, dtype=np.uint64).tobytes(), serialize_key("atomic_ids"): np.array(selected_atomic_ids).tobytes(), serialize_key("removed_edges"): np.array(removed_edges, dtype=np.uint64).tobytes()} row = self.mutate_row(serialize_uint64(operation_id), self.log_family_id, val_dict, time_stamp) return row def _create_merge_log_row(self, operation_id: np.uint64, user_id: str, root_ids: Sequence[np.uint64], selected_atomic_ids: Sequence[np.uint64], time_stamp: datetime.datetime ) -> bigtable.row.Row: val_dict = {serialize_key("user"): serialize_key(user_id), serialize_key("roots"): np.array(root_ids, dtype=np.uint64).tobytes(), serialize_key("atomic_ids"): np.array(selected_atomic_ids).tobytes()} row = self.mutate_row(serialize_uint64(operation_id), self.log_family_id, val_dict, time_stamp) return row def add_atomic_edges_in_chunks(self, edge_id_dict: dict, edge_aff_dict: dict, edge_area_dict: dict, isolated_node_ids: Sequence[np.uint64], verbose: bool = True, time_stamp: Optional[datetime.datetime] = None): """ Creates atomic nodes in first abstraction layer for a SINGLE chunk and all abstract nodes in the second for the same chunk Alle edges (edge_ids) need to be from one chunk and no nodes should exist for this chunk prior to calling this function. All cross edges (cross_edge_ids) have to point out the chunk (first entry is the id within the chunk) :param edge_ids: n x 2 array of uint64s :param cross_edge_ids: m x 2 array of uint64s :param edge_affs: float array of length n :param cross_edge_affs: float array of length m :param isolated_node_ids: list of uint64s ids of nodes that have no edge in the chunked graph :param verbose: bool :param time_stamp: datetime """ if time_stamp is None: time_stamp = datetime.datetime.utcnow() if time_stamp.tzinfo is None: time_stamp = UTC.localize(time_stamp) edge_id_keys = ["in_connected", "in_disconnected", "cross", "between_connected", "between_disconnected"] edge_aff_keys = ["in_connected", "in_disconnected", "between_connected", "between_disconnected"] # Check if keys exist and include an empty array if not n_edge_ids = 0 chunk_id = None for edge_id_key in edge_id_keys: if not edge_id_key in edge_id_dict: empty_edges = np.array([], dtype=np.uint64).reshape(0, 2) edge_id_dict[edge_id_key] = empty_edges else: n_edge_ids += len(edge_id_dict[edge_id_key]) if len(edge_id_dict[edge_id_key]) > 0: node_id = edge_id_dict[edge_id_key][0, 0] chunk_id = self.get_chunk_id(node_id) for edge_aff_key in edge_aff_keys: if not edge_aff_key in edge_aff_dict: edge_aff_dict[edge_aff_key] = np.array([], dtype=np.float32) time_start = time.time() # Catch trivial case if n_edge_ids == 0 and len(isolated_node_ids) == 0: return 0 # Make parent id creation easier if chunk_id is None: chunk_id = self.get_chunk_id(isolated_node_ids[0]) chunk_id_c = self.get_chunk_coordinates(chunk_id) parent_chunk_id = self.get_chunk_id(layer=2, x=chunk_id_c[0], y=chunk_id_c[1], z=chunk_id_c[2]) # Get connected component within the chunk chunk_node_ids = np.concatenate([ isolated_node_ids, np.unique(edge_id_dict["in_connected"]), np.unique(edge_id_dict["in_disconnected"]), np.unique(edge_id_dict["cross"][:, 0]), np.unique(edge_id_dict["between_connected"][:, 0]), np.unique(edge_id_dict["between_disconnected"][:, 0])]) chunk_node_ids = np.unique(chunk_node_ids) node_chunk_ids = np.array([self.get_chunk_id(c) for c in chunk_node_ids], dtype=np.uint64) u_node_chunk_ids, c_node_chunk_ids = np.unique(node_chunk_ids, return_counts=True) if len(u_node_chunk_ids) > 1: raise Exception("%d: %d chunk ids found in node id list. " "Some edges might be in the wrong order. " "Number of occurences:" % (chunk_id, len(u_node_chunk_ids)), c_node_chunk_ids) chunk_g = nx.Graph() chunk_g.add_nodes_from(chunk_node_ids) chunk_g.add_edges_from(edge_id_dict["in_connected"]) ccs = list(nx.connected_components(chunk_g)) # if verbose: # print("CC in chunk: %.3fs" % (time.time() - time_start)) # Add rows for nodes that are in this chunk # a connected component at a time node_c = 0 # Just a counter for the print / speed measurement n_ccs = len(ccs) parent_ids = self.get_unique_node_id_range(parent_chunk_id, step=n_ccs) time_start = time.time() time_dict = collections.defaultdict(list) time_start_1 = time.time() sparse_indices = {} remapping = {} for k in edge_id_dict.keys(): # Circumvent datatype issues u_ids, inv_ids = np.unique(edge_id_dict[k], return_inverse=True) mapped_ids = np.arange(len(u_ids), dtype=np.int32) remapped_arr = mapped_ids[inv_ids].reshape(edge_id_dict[k].shape) sparse_indices[k] = compute_indices_pandas(remapped_arr) remapping[k] = dict(zip(u_ids, mapped_ids)) time_dict["sparse_indices"].append(time.time() - time_start_1) rows = [] for i_cc, cc in enumerate(ccs): # if node_c % 1000 == 1 and verbose: # dt = time.time() - time_start # print("%5d at %5d - %.5fs " % # (i_cc, node_c, dt / node_c), end="\r") node_ids = np.array(list(cc)) u_chunk_ids = np.unique([self.get_chunk_id(n) for n in node_ids]) if len(u_chunk_ids) > 1: print("Found multiple chunk ids:", u_chunk_ids) raise Exception() # Create parent id parent_id = parent_ids[i_cc] parent_id_b = np.array(parent_id, dtype=np.uint64).tobytes() parent_cross_edges = np.array([], dtype=np.uint64).reshape(0, 2) # Add rows for nodes that are in this chunk for i_node_id, node_id in enumerate(node_ids): # Extract edges relevant to this node # in chunk + connected time_start_2 = time.time() if node_id in remapping["in_connected"]: row_ids, column_ids = sparse_indices["in_connected"][remapping["in_connected"][node_id]] inv_column_ids = (column_ids + 1) % 2 connected_ids = edge_id_dict["in_connected"][row_ids, inv_column_ids] connected_affs = edge_aff_dict["in_connected"][row_ids] connected_areas = edge_area_dict["in_connected"][row_ids] time_dict["in_connected"].append(time.time() - time_start_2) time_start_2 = time.time() else: connected_ids = np.array([], dtype=np.uint64) connected_affs = np.array([], dtype=np.float32) connected_areas = np.array([], dtype=np.uint64) # in chunk + disconnected if node_id in remapping["in_disconnected"]: row_ids, column_ids = sparse_indices["in_disconnected"][remapping["in_disconnected"][node_id]] inv_column_ids = (column_ids + 1) % 2 disconnected_ids = edge_id_dict["in_disconnected"][row_ids, inv_column_ids] disconnected_affs = edge_aff_dict["in_disconnected"][row_ids] disconnected_areas = edge_area_dict["in_disconnected"][row_ids] time_dict["in_disconnected"].append(time.time() - time_start_2) time_start_2 = time.time() else: disconnected_ids = np.array([], dtype=np.uint64) disconnected_affs = np.array([], dtype=np.float32) disconnected_areas = np.array([], dtype=np.uint64) # out chunk + connected if node_id in remapping["between_connected"]: row_ids, column_ids = sparse_indices["between_connected"][remapping["between_connected"][node_id]] row_ids = row_ids[column_ids == 0] column_ids = column_ids[column_ids == 0] inv_column_ids = (column_ids + 1) % 2 time_dict["out_connected_mask"].append(time.time() - time_start_2) time_start_2 = time.time() connected_ids = np.concatenate([connected_ids, edge_id_dict["between_connected"][row_ids, inv_column_ids]]) connected_affs = np.concatenate([connected_affs, edge_aff_dict["between_connected"][row_ids]]) connected_areas = np.concatenate([connected_areas, edge_area_dict["between_connected"][row_ids]]) parent_cross_edges = np.concatenate([parent_cross_edges, edge_id_dict["between_connected"][row_ids]]) time_dict["out_connected"].append(time.time() - time_start_2) time_start_2 = time.time() # out chunk + disconnected if node_id in remapping["between_disconnected"]: row_ids, column_ids = sparse_indices["between_disconnected"][remapping["between_disconnected"][node_id]] row_ids = row_ids[column_ids == 0] column_ids = column_ids[column_ids == 0] inv_column_ids = (column_ids + 1) % 2 time_dict["out_disconnected_mask"].append(time.time() - time_start_2) time_start_2 = time.time() connected_ids = np.concatenate([connected_ids, edge_id_dict["between_disconnected"][row_ids, inv_column_ids]]) connected_affs = np.concatenate([connected_affs, edge_aff_dict["between_disconnected"][row_ids]]) connected_areas = np.concatenate([connected_areas, edge_area_dict["between_disconnected"][row_ids]]) time_dict["out_disconnected"].append(time.time() - time_start_2) time_start_2 = time.time() # cross if node_id in remapping["cross"]: row_ids, column_ids = sparse_indices["cross"][remapping["cross"][node_id]] row_ids = row_ids[column_ids == 0] column_ids = column_ids[column_ids == 0] inv_column_ids = (column_ids + 1) % 2 time_dict["cross_mask"].append(time.time() - time_start_2) time_start_2 = time.time() connected_ids = np.concatenate([connected_ids, edge_id_dict["cross"][row_ids, inv_column_ids]]) connected_affs = np.concatenate([connected_affs, np.full((len(row_ids)), np.inf, dtype=np.float32)]) connected_areas = np.concatenate([connected_areas, np.zeros((len(row_ids)), dtype=np.uint64)]) parent_cross_edges = np.concatenate([parent_cross_edges, edge_id_dict["cross"][row_ids]]) time_dict["cross"].append(time.time() - time_start_2) time_start_2 = time.time() # Create node val_dict = \ {"atomic_connected_partners": connected_ids.tobytes(), "atomic_connected_affinities": connected_affs.tobytes(), "atomic_connected_areas": connected_areas.tobytes(), "atomic_disconnected_partners": disconnected_ids.tobytes(), "atomic_disconnected_affinities": disconnected_affs.tobytes(), "atomic_disconnected_areas": disconnected_areas.tobytes(), "parents": parent_id_b} rows.append(self.mutate_row(serialize_uint64(node_id), self.family_id, val_dict, time_stamp=time_stamp)) node_c += 1 time_dict["creating_lv1_row"].append(time.time() - time_start_2) time_start_1 = time.time() # Create parent node rows.append(self.mutate_row(serialize_uint64(parent_id), self.family_id, {"children": node_ids.tobytes()}, time_stamp=time_stamp)) time_dict["creating_lv2_row"].append(time.time() - time_start_1) time_start_1 = time.time() cce_layers = self.get_cross_chunk_edges_layer(parent_cross_edges) u_cce_layers = np.unique(cce_layers) val_dict = {} for cc_layer in u_cce_layers: layer_cross_edges = parent_cross_edges[cce_layers == cc_layer] if len(layer_cross_edges) > 0: val_dict["atomic_cross_edges_%d" % cc_layer] = \ layer_cross_edges.tobytes() if len(val_dict) > 0: rows.append(self.mutate_row(serialize_uint64(parent_id), self.cross_edge_family_id, val_dict, time_stamp=time_stamp)) node_c += 1 time_dict["adding_cross_edges"].append(time.time() - time_start_1) if len(rows) > 100000: time_start_1 = time.time() self.bulk_write(rows) time_dict["writing"].append(time.time() - time_start_1) if len(rows) > 0: time_start_1 = time.time() self.bulk_write(rows) time_dict["writing"].append(time.time() - time_start_1) if verbose: print("Time creating rows: %.3fs for %d ccs with %d nodes" % (time.time() - time_start, len(ccs), node_c)) for k in time_dict.keys(): print("%s -- %.3fms for %d instances -- avg = %.3fms" % (k, np.sum(time_dict[k])*1000, len(time_dict[k]), np.mean(time_dict[k])*1000)) def add_layer(self, layer_id: int, child_chunk_coords: Sequence[Sequence[int]], time_stamp: Optional[datetime.datetime] = None, verbose: bool = True, n_threads: int = 20) -> None: """ Creates the abstract nodes for a given chunk in a given layer :param layer_id: int :param child_chunk_coords: int array of length 3 coords in chunk space :param time_stamp: datetime :param verbose: bool :param n_threads: int """ def _read_subchunks_thread(chunk_coord): # Get start and end key x, y, z = chunk_coord row_keys = ["children"] + \ ["atomic_cross_edges_%d" % l for l in range(layer_id - 1, self.n_layers)] range_read = self.range_read_chunk(layer_id - 1, x, y, z, row_keys=row_keys) # Due to restarted jobs some parents might be duplicated. We can # find these duplicates only by comparing their children because # each node has a unique id. However, we can use that more recently # created nodes have higher segment ids. We are only interested in # the latest version of any duplicated parents. # Deserialize row keys and store child with highest id for # comparison row_cell_dict = {} segment_ids = [] row_ids = [] max_child_ids = [] for row_id_b, row_data in range_read.items(): row_id = deserialize_uint64(row_id_b) segment_id = self.get_segment_id(row_id) cells = row_data.cells cell_family = cells[self.family_id] if self.cross_edge_family_id in cells: row_cell_dict[row_id] = cells[self.cross_edge_family_id] node_child_ids_b = cell_family[children_key][0].value node_child_ids = np.frombuffer(node_child_ids_b, dtype=np.uint64) max_child_ids.append(np.max(node_child_ids)) segment_ids.append(segment_id) row_ids.append(row_id) segment_ids = np.array(segment_ids, dtype=np.uint64) row_ids = np.array(row_ids) max_child_ids = np.array(max_child_ids, dtype=np.uint64) sorting = np.argsort(segment_ids)[::-1] row_ids = row_ids[sorting] max_child_ids = max_child_ids[sorting] counter = collections.defaultdict(int) max_child_ids_occ_so_far = np.zeros(len(max_child_ids), dtype=np.int) for i_row in range(len(max_child_ids)): max_child_ids_occ_so_far[i_row] = counter[max_child_ids[i_row]] counter[max_child_ids[i_row]] += 1 # Filter last occurences (we inverted the list) of each node m = max_child_ids_occ_so_far == 0 row_ids = row_ids[m] ll_node_ids.extend(row_ids) # Loop through nodes from this chunk for row_id in row_ids: if row_id in row_cell_dict: cross_edge_dict[row_id] = {} cell_family = row_cell_dict[row_id] for l in range(layer_id - 1, self.n_layers): row_key = serialize_key("atomic_cross_edges_%d" % l) if row_key in cell_family: cross_edge_dict[row_id][l] = cell_family[row_key][0].value if int(layer_id - 1) in cross_edge_dict[row_id]: atomic_cross_edges_b = cross_edge_dict[row_id][layer_id - 1] atomic_cross_edges = \ np.frombuffer(atomic_cross_edges_b, dtype=np.uint64).reshape(-1, 2) if len(atomic_cross_edges) > 0: atomic_partner_id_dict[row_id] = \ atomic_cross_edges[:, 1] new_pairs = zip(atomic_cross_edges[:, 0], [row_id] * len(atomic_cross_edges)) atomic_child_id_dict_pairs.extend(new_pairs) def _resolve_cross_chunk_edges_thread(args) -> None: start, end = args for i_child_key, child_key in\ enumerate(atomic_partner_id_dict_keys[start: end]): this_atomic_partner_ids = atomic_partner_id_dict[child_key] partners = {atomic_child_id_dict[atomic_cross_id] for atomic_cross_id in this_atomic_partner_ids if atomic_child_id_dict[atomic_cross_id] != 0} if len(partners) > 0: partners = np.array(list(partners), dtype=np.uint64)[:, None] this_ids = np.array([child_key] * len(partners), dtype=np.uint64)[:, None] these_edges = np.concatenate([this_ids, partners], axis=1) edge_ids.extend(these_edges) def _write_out_connected_components(args) -> None: start, end = args n_ccs = int(end - start) parent_ids = self.get_unique_node_id_range(chunk_id, step=n_ccs) rows = [] for i_cc, cc in enumerate(ccs[start: end]): node_ids = np.array(list(cc)) parent_id = parent_ids[i_cc] parent_id_b = np.array(parent_id, dtype=np.uint64).tobytes() parent_cross_edges_b = {} for l in range(layer_id, self.n_layers): parent_cross_edges_b[l] = b"" # Add rows for nodes that are in this chunk for i_node_id, node_id in enumerate(node_ids): if node_id in cross_edge_dict: # Extract edges relevant to this node for l in range(layer_id, self.n_layers): if l in cross_edge_dict[node_id]: parent_cross_edges_b[l] += \ cross_edge_dict[node_id][l] # Create node val_dict = {"parents": parent_id_b} rows.append(self.mutate_row(serialize_uint64(node_id), self.family_id, val_dict, time_stamp=time_stamp)) # Create parent node val_dict = {"children": node_ids.tobytes()} rows.append(self.mutate_row(serialize_uint64(parent_id), self.family_id, val_dict, time_stamp=time_stamp)) val_dict = {} for l in range(layer_id, self.n_layers): if l in parent_cross_edges_b: val_dict["atomic_cross_edges_%d" % l] = \ parent_cross_edges_b[l] if len(val_dict) > 0: rows.append(self.mutate_row(serialize_uint64(parent_id), self.cross_edge_family_id, val_dict, time_stamp=time_stamp)) if len(rows) > 100000: self.bulk_write(rows) rows = [] if len(rows) > 0: self.bulk_write(rows) if time_stamp is None: time_stamp = datetime.datetime.utcnow() if time_stamp.tzinfo is None: time_stamp = UTC.localize(time_stamp) # 1 -------------------------------------------------------------------- # The first part is concerned with reading data from the child nodes # of this layer and pre-processing it for the second part time_start = time.time() children_key = serialize_key("children") atomic_partner_id_dict = {} cross_edge_dict = {} atomic_child_id_dict_pairs = [] ll_node_ids = [] multi_args = child_chunk_coords n_jobs = np.min([n_threads, len(multi_args)]) if n_jobs > 0: mu.multithread_func(_read_subchunks_thread, multi_args, n_threads=n_jobs) d = dict(atomic_child_id_dict_pairs) atomic_child_id_dict = collections.defaultdict(np.uint64, d) ll_node_ids = np.array(ll_node_ids, dtype=np.uint64) if verbose: print("Time iterating through subchunks: %.3fs" % (time.time() - time_start)) time_start = time.time() # Extract edges from remaining cross chunk edges # and maintain unused cross chunk edges edge_ids = [] # u_atomic_child_ids = np.unique(atomic_child_ids) atomic_partner_id_dict_keys = \ np.array(list(atomic_partner_id_dict.keys()), dtype=np.uint64) if n_threads > 1: n_jobs = n_threads * 3 # Heuristic else: n_jobs = 1 n_jobs = np.min([n_jobs, len(atomic_partner_id_dict_keys)]) if n_jobs > 0: spacing = np.linspace(0, len(atomic_partner_id_dict_keys), n_jobs+1).astype(np.int) starts = spacing[:-1] ends = spacing[1:] multi_args = list(zip(starts, ends)) mu.multithread_func(_resolve_cross_chunk_edges_thread, multi_args, n_threads=n_threads) if verbose: print("Time resolving cross chunk edges: %.3fs" % (time.time() - time_start)) time_start = time.time() # 2 -------------------------------------------------------------------- # The second part finds connected components, writes the parents to # BigTable and updates the childs # Make parent id creation easier x, y, z = np.min(child_chunk_coords, axis=0) // self.fan_out chunk_id = self.get_chunk_id(layer=layer_id, x=x, y=y, z=z) # Extract connected components chunk_g = nx.from_edgelist(edge_ids) # Add single node objects that have no edges isolated_node_mask = ~np.in1d(ll_node_ids, np.unique(edge_ids)) add_ccs = list(ll_node_ids[isolated_node_mask][:, None]) ccs = list(nx.connected_components(chunk_g)) + add_ccs if verbose: print("Time connected components: %.3fs" % (time.time() - time_start)) time_start = time.time() # Add rows for nodes that are in this chunk # a connected component at a time if n_threads > 1: n_jobs = n_threads * 3 # Heuristic else: n_jobs = 1 n_jobs = np.min([n_jobs, len(ccs)]) spacing = np.linspace(0, len(ccs), n_jobs+1).astype(np.int) starts = spacing[:-1] ends = spacing[1:] multi_args = list(zip(starts, ends)) mu.multithread_func(_write_out_connected_components, multi_args, n_threads=n_threads) if verbose: print("Time writing %d connected components in layer %d: %.3fs" % (len(ccs), layer_id, time.time() - time_start)) def get_atomic_cross_edge_dict(self, node_id: np.uint64, layer_ids: Sequence[int] = None, deserialize_node_ids: bool = False, reshape: bool = False): """ Extracts all atomic cross edges and serves them as a dictionary :param node_id: np.uitn64 :param layer_ids: list of ints :param deserialize_node_ids: bool :param reshape: bool reshapes the list of node ids to an edge list (n x 2) Only available when deserializing :return: dict """ row = self.table.read_row(serialize_uint64(node_id)) if row is None: return {} atomic_cross_edges = {} if isinstance(layer_ids, int): layer_ids = [layer_ids] if layer_ids is None: layer_ids = range(2, self.n_layers) if self.cross_edge_family_id in row.cells: for l in layer_ids: key = serialize_key("atomic_cross_edges_%d" % l) row_cell = row.cells[self.cross_edge_family_id] atomic_cross_edges[l] = [] if key in row_cell: row_val = row_cell[key][0].value if deserialize_node_ids: atomic_cross_edges[l] = np.frombuffer(row_val, dtype=np.uint64) if reshape: atomic_cross_edges[l] = \ atomic_cross_edges[l].reshape(-1, 2) else: atomic_cross_edges[l] = row_val return atomic_cross_edges def get_parent(self, node_id: np.uint64, get_only_relevant_parent: bool = True, time_stamp: Optional[datetime.datetime] = None) -> Union[ List[Tuple[np.uint64, datetime.datetime]], np.uint64, None]: """ Acquires parent of a node at a specific time stamp :param node_id: uint64 :param get_only_relevant_parent: bool True: return single parent according to time_stamp False: return n x 2 list of all parents ((parent_id, time_stamp), ...) :param time_stamp: datetime or None :return: uint64 or None """ if time_stamp is None: time_stamp = datetime.datetime.utcnow() if time_stamp.tzinfo is None: time_stamp = UTC.localize(time_stamp) parent_key = serialize_key("parents") all_parents = [] p_filter_ = ColumnQualifierRegexFilter(parent_key) row = self.table.read_row(serialize_uint64(node_id), filter_=p_filter_) if row and parent_key in row.cells[self.family_id]: for parent_entry in row.cells[self.family_id][parent_key]: if get_only_relevant_parent: if parent_entry.timestamp > time_stamp: continue else: return np.frombuffer(parent_entry.value, dtype=np.uint64)[0] else: all_parents.append((np.frombuffer(parent_entry.value, dtype=np.uint64)[0], parent_entry.timestamp)) else: return None if len(all_parents) == 0: raise Exception("Did not find a valid parent for %d with" " the given time stamp" % node_id) else: return all_parents def get_children(self, node_id: np.uint64) -> np.ndarray: """ Returns all children of a node :param node_id: np.uint64 :return: np.ndarray[np.uint64] """ children = self.read_row(node_id, "children", dtype=np.uint64) if children is None: return np.empty(0, dtype=np.uint64) else: return children def get_latest_edge_affinity(self, atomic_edge: [np.uint64, np.uint64], check: bool = False) -> np.float32: """ Looks up the LATEST affinity of an edge Future work should add a timestamp option :param atomic_edge: [uint64, uint64] :param check: bool whether to look up affinity from both sides and compare :return: float32 """ edge_affinities = [] if check: iter_max = 2 else: iter_max = 1 for i in range(iter_max): atomic_partners, atomic_affinities = \ self.get_atomic_partners(atomic_edge[i % 2], include_connected_partners=True, include_disconnected_partners=True) edge_mask = atomic_partners == atomic_edge[(i + 1) % 2] if len(edge_mask) == 0: raise Exception("Edge does not exist") edge_affinities.append(atomic_affinities[edge_mask][0]) if len(np.unique(edge_affinities)) == 1: return edge_affinities[0] else: raise Exception("Different edge affinities found... Something went " "horribly wrong.") def get_latest_roots(self, time_stamp: Optional[datetime.datetime] = datetime.datetime.max, n_threads: int = 1): """ :param time_stamp: :return: """ def _read_root_rows(args) -> None: start_seg_id, end_seg_id = args start_id = self.get_node_id(segment_id=start_seg_id, chunk_id=self.root_chunk_id) end_id = self.get_node_id(segment_id=end_seg_id, chunk_id=self.root_chunk_id) range_read = self.table.read_rows( start_key=serialize_uint64(start_id), end_key=serialize_uint64(end_id), # allow_row_interleaving=True, end_inclusive=False, filter_=time_filter) range_read.consume_all() rows = range_read.rows for row_id, row_data in rows.items(): row_keys = row_data.cells[self.family_id] if not serialize_key("new_parents") in row_keys: root_ids.append(deserialize_uint64(row_id)) time_stamp -= datetime.timedelta(microseconds=time_stamp.microsecond % 1000) time_filter = TimestampRangeFilter(TimestampRange(end=time_stamp)) max_seg_id = self.get_max_node_id(self.root_chunk_id) + 1 root_ids = [] n_blocks = np.min([n_threads*3+1, max_seg_id]) seg_id_blocks = np.linspace(1, max_seg_id, n_blocks, dtype=np.uint64) multi_args = [] for i_id_block in range(0, len(seg_id_blocks) - 1): multi_args.append([seg_id_blocks[i_id_block], seg_id_blocks[i_id_block + 1]]) mu.multithread_func( _read_root_rows, multi_args, n_threads=n_threads, debug=False, verbose=True) return root_ids def get_root(self, node_id: np.uint64, time_stamp: Optional[datetime.datetime] = None ) -> Union[List[np.uint64], np.uint64]: """ Takes a node id and returns the associated agglomeration ids :param atomic_id: uint64 :param time_stamp: None or datetime :return: np.uint64 """ if time_stamp is None: time_stamp = datetime.datetime.utcnow() if time_stamp.tzinfo is None: time_stamp = UTC.localize(time_stamp) early_finish = True if self.get_chunk_layer(node_id) == self.n_layers: raise Exception("node is already root") parent_id = node_id while early_finish: parent_id = node_id early_finish = False for i_layer in range(self.get_chunk_layer(node_id)+1, int(self.n_layers + 1)): temp_parent_id = self.get_parent(parent_id, time_stamp=time_stamp) if temp_parent_id is None: early_finish = True break else: parent_id = temp_parent_id return parent_id def get_all_parents(self, node_id: np.uint64, time_stamp: Optional[datetime.datetime] = None ) -> Union[List[np.uint64], np.uint64]: """ Takes a node id and returns all parents and parents' parents up to the top :param atomic_id: uint64 :param time_stamp: None or datetime :return: np.uint64 """ if time_stamp is None: time_stamp = datetime.datetime.utcnow() if time_stamp.tzinfo is None: time_stamp = UTC.localize(time_stamp) early_finish = True parent_ids: List[np.uint64] = [] while early_finish: parent_id = node_id parent_ids = [] early_finish = False for i_layer in range(self.get_chunk_layer(node_id)+1, int(self.n_layers + 1)): temp_parent_id = self.get_parent(parent_id, time_stamp=time_stamp) if temp_parent_id is None: early_finish = True break else: parent_id = temp_parent_id parent_ids.append(parent_id) return parent_ids def lock_root_loop(self, root_ids: Sequence[np.uint64], operation_id: np.uint64, max_tries: int = 1, waittime_s: float = 0.5) -> Tuple[bool, np.ndarray]: """ Attempts to lock multiple roots at the same time :param root_ids: list of uint64 :param operation_id: uint64 :param max_tries: int :param waittime_s: float :return: bool, list of uint64s success, latest root ids """ i_try = 0 while i_try < max_tries: lock_acquired = False # Collect latest root ids new_root_ids: List[np.uint64] = [] for i_root_id in range(len(root_ids)): future_root_ids = self.get_future_root_ids(root_ids[i_root_id]) if len(future_root_ids) == 0: new_root_ids.append(root_ids[i_root_id]) else: new_root_ids.extend(future_root_ids) # Attempt to lock all latest root ids root_ids = np.unique(new_root_ids) for i_root_id in range(len(root_ids)): print("operation id: %d - root id: %d" % (operation_id, root_ids[i_root_id])) lock_acquired = self.lock_single_root(root_ids[i_root_id], operation_id) # Roll back locks if one root cannot be locked if not lock_acquired: for j_root_id in range(len(root_ids)): self.unlock_root(root_ids[j_root_id], operation_id) break if lock_acquired: return True, root_ids time.sleep(waittime_s) i_try += 1 print(i_try) return False, root_ids def lock_single_root(self, root_id: np.uint64, operation_id: np.uint64 ) -> bool: """ Attempts to lock the latest version of a root node :param root_id: uint64 :param operation_id: uint64 an id that is unique to the process asking to lock the root node :return: bool success """ operation_id_b = serialize_uint64(operation_id) lock_key = serialize_key("lock") new_parents_key = serialize_key("new_parents") # Build a column filter which tests if a lock was set (== lock column # exists) and if it is still valid (timestamp younger than # LOCK_EXPIRED_TIME_DELTA) and if there is no new parent (== new_parents # exists) time_cutoff = datetime.datetime.utcnow() - LOCK_EXPIRED_TIME_DELTA # Comply to resolution of BigTables TimeRange time_cutoff -= datetime.timedelta( microseconds=time_cutoff.microsecond % 1000) time_filter = TimestampRangeFilter(TimestampRange(start=time_cutoff)) # lock_key_filter = ColumnQualifierRegexFilter(lock_key) # new_parents_key_filter = ColumnQualifierRegexFilter(new_parents_key) lock_key_filter = ColumnRangeFilter( column_family_id=self.family_id, start_column=lock_key, end_column=lock_key, inclusive_start=True, inclusive_end=True) new_parents_key_filter = ColumnRangeFilter( column_family_id=self.family_id, start_column=new_parents_key, end_column=new_parents_key, inclusive_start=True, inclusive_end=True) # Combine filters together chained_filter = RowFilterChain([time_filter, lock_key_filter]) combined_filter = ConditionalRowFilter( base_filter=chained_filter, true_filter=PassAllFilter(True), false_filter=new_parents_key_filter) # Get conditional row using the chained filter root_row = self.table.row(serialize_uint64(root_id), filter_=combined_filter) # Set row lock if condition returns no results (state == False) time_stamp = datetime.datetime.utcnow() root_row.set_cell(self.family_id, lock_key, operation_id_b, state=False, timestamp=time_stamp) # The lock was acquired when set_cell returns False (state) lock_acquired = not root_row.commit() if not lock_acquired: r = self.table.read_row(serialize_uint64(root_id)) l_operation_ids = [] for cell in r.cells[self.family_id][lock_key]: l_operation_id = deserialize_uint64(cell.value) l_operation_ids.append(l_operation_id) print("Locked operation ids:", l_operation_ids) return lock_acquired def unlock_root(self, root_id: np.uint64, operation_id: np.uint64) -> bool: """ Unlocks a root This is mainly used for cases where multiple roots need to be locked and locking was not sucessful for all of them :param root_id: np.uint64 :param operation_id: uint64 an id that is unique to the process asking to lock the root node :return: bool success """ operation_id_b = serialize_uint64(operation_id) lock_key = serialize_key("lock") # Build a column filter which tests if a lock was set (== lock column # exists) and if it is still valid (timestamp younger than # LOCK_EXPIRED_TIME_DELTA) and if the given operation_id is still # the active lock holder time_cutoff = datetime.datetime.utcnow() - LOCK_EXPIRED_TIME_DELTA # Comply to resolution of BigTables TimeRange time_cutoff -= datetime.timedelta( microseconds=time_cutoff.microsecond % 1000) time_filter = TimestampRangeFilter(TimestampRange(start=time_cutoff)) # column_key_filter = ColumnQualifierRegexFilter(lock_key) # value_filter = ColumnQualifierRegexFilter(operation_id_b) column_key_filter = ColumnRangeFilter( column_family_id=self.family_id, start_column=lock_key, end_column=lock_key, inclusive_start=True, inclusive_end=True) value_filter = ValueRangeFilter( start_value=operation_id_b, end_value=operation_id_b, inclusive_start=True, inclusive_end=True) # Chain these filters together chained_filter = RowFilterChain([time_filter, column_key_filter, value_filter]) # Get conditional row using the chained filter root_row = self.table.row(serialize_uint64(root_id), filter_=chained_filter) # Delete row if conditions are met (state == True) root_row.delete_cell(self.family_id, lock_key, state=True) return root_row.commit() def check_and_renew_root_locks(self, root_ids: Iterable[np.uint64], operation_id: np.uint64) -> bool: """ Tests if the roots are locked with the provided operation_id and renews the lock to reset the time_stam This is mainly used before executing a bulk write :param root_ids: uint64 :param operation_id: uint64 an id that is unique to the process asking to lock the root node :return: bool success """ for root_id in root_ids: if not self.check_and_renew_root_lock_single(root_id, operation_id): print("check_and_renew_root_locks failed - %d" % root_id) return False return True def check_and_renew_root_lock_single(self, root_id: np.uint64, operation_id: np.uint64) -> bool: """ Tests if the root is locked with the provided operation_id and renews the lock to reset the time_stam This is mainly used before executing a bulk write :param root_id: uint64 :param operation_id: uint64 an id that is unique to the process asking to lock the root node :return: bool success """ operation_id_b = serialize_uint64(operation_id) lock_key = serialize_key("lock") new_parents_key = serialize_key("new_parents") # Build a column filter which tests if a lock was set (== lock column # exists) and if the given operation_id is still the active lock holder # and there is no new parent (== new_parents column exists). The latter # is not necessary but we include it as a backup to prevent things # from going really bad. # column_key_filter = ColumnQualifierRegexFilter(lock_key) # value_filter = ColumnQualifierRegexFilter(operation_id_b) column_key_filter = ColumnRangeFilter( column_family_id=self.family_id, start_column=lock_key, end_column=lock_key, inclusive_start=True, inclusive_end=True) value_filter = ValueRangeFilter( start_value=operation_id_b, end_value=operation_id_b, inclusive_start=True, inclusive_end=True) new_parents_key_filter = ColumnRangeFilter( column_family_id=self.family_id, start_column=new_parents_key, end_column=new_parents_key, inclusive_start=True, inclusive_end=True) # Chain these filters together chained_filter = RowFilterChain([column_key_filter, value_filter]) combined_filter = ConditionalRowFilter( base_filter=chained_filter, true_filter=new_parents_key_filter, false_filter=PassAllFilter(True)) # Get conditional row using the chained filter root_row = self.table.row(serialize_uint64(root_id), filter_=combined_filter) # Set row lock if condition returns a result (state == True) root_row.set_cell(self.family_id, lock_key, operation_id_b, state=False) # The lock was acquired when set_cell returns True (state) lock_acquired = not root_row.commit() return lock_acquired def get_latest_root_id(self, root_id: np.uint64) -> np.ndarray: """ Returns the latest root id associated with the provided root id :param root_id: uint64 :return: list of uint64s """ id_working_set = [root_id] new_parent_key = serialize_key("new_parents") latest_root_ids = [] while len(id_working_set) > 0: next_id = id_working_set[0] del(id_working_set[0]) r = self.table.read_row(serialize_uint64(next_id)) # Check if a new root id was attached to this root id if new_parent_key in r.cells[self.family_id]: id_working_set.extend( np.frombuffer( r.cells[self.family_id][new_parent_key][0].value, dtype=np.uint64)) else: latest_root_ids.append(next_id) return np.unique(latest_root_ids) def get_future_root_ids(self, root_id: np.uint64, time_stamp: Optional[datetime.datetime] = datetime.datetime.max)-> np.ndarray: """ Returns all future root ids emerging from this root This search happens in a monotic fashion. At no point are past root ids of future root ids taken into account. :param root_id: np.uint64 :param time_stamp: None or datetime restrict search to ids created before this time_stamp None=search whole future :return: array of uint64 """ if time_stamp.tzinfo is None: time_stamp = UTC.localize(time_stamp) id_history = [] next_ids = [root_id] while len(next_ids): temp_next_ids = [] for next_id in next_ids: ids, row_time_stamp = self.read_row(next_id, key="new_parents", dtype=np.uint64, get_time_stamp=True) if ids is None: r, row_time_stamp = self.read_row(next_id, key="children", dtype=np.uint64, get_time_stamp=True) if row_time_stamp is None: raise Exception("Something went wrong...") if row_time_stamp < time_stamp: if ids is not None: temp_next_ids.extend(ids) if next_id != root_id: id_history.append(next_id) next_ids = temp_next_ids return np.unique(np.array(id_history, dtype=np.uint64)) def get_past_root_ids(self, root_id: np.uint64, time_stamp: Optional[datetime.datetime] = datetime.datetime.min) -> np.ndarray: """ Returns all future root ids emerging from this root This search happens in a monotic fashion. At no point are future root ids of past root ids taken into account. :param root_id: np.uint64 :param time_stamp: None or datetime restrict search to ids created after this time_stamp None=search whole future :return: array of uint64 """ if time_stamp.tzinfo is None: time_stamp = UTC.localize(time_stamp) id_history = [] next_ids = [root_id] while len(next_ids): temp_next_ids = [] for next_id in next_ids: ids, row_time_stamp = self.read_row(next_id, key="former_parents", dtype=np.uint64, get_time_stamp=True) if ids is None: _, row_time_stamp = self.read_row(next_id, key="children", dtype=np.uint64, get_time_stamp=True) if row_time_stamp is None: raise Exception("Something went wrong...") if row_time_stamp > time_stamp: if ids is not None: temp_next_ids.extend(ids) if next_id != root_id: id_history.append(next_id) next_ids = temp_next_ids return np.unique(np.array(id_history, dtype=np.uint64)) def get_root_id_history(self, root_id: np.uint64, time_stamp_past: Optional[datetime.datetime] = datetime.datetime.min, time_stamp_future: Optional[datetime.datetime] = datetime.datetime.max ) -> np.ndarray: """ Returns all future root ids emerging from this root This search happens in a monotic fashion. At no point are future root ids of past root ids or past root ids of future root ids taken into account. :param root_id: np.uint64 :param time_stamp_past: None or datetime restrict search to ids created after this time_stamp None=search whole future :param time_stamp_future: None or datetime restrict search to ids created before this time_stamp None=search whole future :return: array of uint64 """ past_ids = self.get_past_root_ids(root_id=root_id, time_stamp=time_stamp_past) future_ids = self.get_future_root_ids(root_id=root_id, time_stamp=time_stamp_future) history_ids = np.concatenate([past_ids, np.array([root_id], dtype=np.uint64), future_ids]) return history_ids def get_subgraph(self, agglomeration_id: np.uint64, bounding_box: Optional[Sequence[Sequence[int]]] = None, bb_is_coordinate: bool = False, stop_lvl: int = 1, get_edges: bool = False, verbose: bool = True ) -> Union[Tuple[np.ndarray, np.ndarray], np.ndarray]: """ Returns all edges between supervoxels belonging to the specified agglomeration id within the defined bouning box :param agglomeration_id: int :param bounding_box: [[x_l, y_l, z_l], [x_h, y_h, z_h]] :param bb_is_coordinate: bool :param stop_lvl: int :param get_edges: bool :param verbose: bool :return: edge list """ # Helper functions for multithreading def _handle_subgraph_children_layer2_edges_thread( child_ids: Iterable[np.uint64]) -> Tuple[List[np.ndarray], List[np.float32]]: _edges = [] _affinities = [] for child_id in child_ids: this_edges, this_affinities = self.get_subgraph_chunk( child_id, time_stamp=time_stamp) _edges.extend(this_edges) _affinities.extend(this_affinities) return _edges, _affinities def _handle_subgraph_children_layer2_thread( child_ids: Iterable[np.uint64]) -> None: for child_id in child_ids: atomic_ids.extend(self.get_children(child_id)) def _handle_subgraph_children_higher_layers_thread( child_ids: Iterable[np.uint64]) -> None: for child_id in child_ids: _children = self.get_children(child_id) if bounding_box is not None: chunk_ids = self.get_chunk_ids_from_node_ids(_children) chunk_ids = np.array([self.get_chunk_coordinates(c) for c in chunk_ids]) chunk_ids = np.array(chunk_ids) bounding_box_layer = bounding_box / self.fan_out ** np.max([0, (layer - 3)]) bound_check = np.array([ np.all(chunk_ids < bounding_box_layer[1], axis=1), np.all(chunk_ids + 1 > bounding_box_layer[0], axis=1)]).T bound_check_mask = np.all(bound_check, axis=1) _children = _children[bound_check_mask] new_childs.extend(_children) # Make sure that edges are not requested if we should stop on an # intermediate level assert stop_lvl == 1 or not get_edges if get_edges: time_stamp = self.read_row(agglomeration_id, "children", get_time_stamp=True)[1] if bounding_box is not None: if bb_is_coordinate: bounding_box = np.array(bounding_box, dtype=np.float32) / self.chunk_size bounding_box[0] = np.floor(bounding_box[0]) bounding_box[1] = np.ceil(bounding_box[1]) bounding_box = bounding_box.astype(np.int) else: bounding_box = np.array(bounding_box, dtype=np.int) edges = np.array([], dtype=np.uint64).reshape(0, 2) atomic_ids = [] affinities = np.array([], dtype=np.float32) child_ids = [agglomeration_id] time_start = time.time() while len(child_ids) > 0: new_childs = [] layer = self.get_chunk_layer(child_ids[0]) if stop_lvl == layer: atomic_ids = child_ids break # Use heuristic to guess the optimal number of threads n_child_ids = len(child_ids) this_n_threads = np.min([int(n_child_ids // 20) + 1, mu.n_cpus]) if layer == 2: if get_edges: edges_and_affinities = mu.multithread_func( _handle_subgraph_children_layer2_edges_thread, np.array_split(child_ids, this_n_threads), n_threads=this_n_threads, debug=this_n_threads == 1) for edges_and_affinities_pair in edges_and_affinities: _edges, _affinities = edges_and_affinities_pair affinities = np.concatenate([affinities, _affinities]) edges = np.concatenate([edges, _edges]) else: mu.multithread_func( _handle_subgraph_children_layer2_thread, np.array_split(child_ids, this_n_threads), n_threads=this_n_threads, debug=this_n_threads == 1) else: mu.multithread_func( _handle_subgraph_children_higher_layers_thread, np.array_split(child_ids, this_n_threads), n_threads=this_n_threads, debug=this_n_threads == 1) child_ids = new_childs if verbose: print("Layer %d: %.3fms for %d children with %d threads" % (layer, (time.time() - time_start) * 1000, n_child_ids, this_n_threads)) # if len(child_ids) != len(np.unique(child_ids)): # print("N children %d - %d" % (len(child_ids), len(np.unique(child_ids)))) # # print(agglomeration_id, child_ids) # # assert len(child_ids) == len(np.unique(child_ids)) time_start = time.time() atomic_ids = np.array(atomic_ids, np.uint64) if get_edges: return edges, affinities else: return atomic_ids def get_atomic_partners(self, atomic_id: np.uint64, include_connected_partners=True, include_disconnected_partners=False, time_stamp: Optional[datetime.datetime] = None ) -> Tuple[np.ndarray, np.ndarray]: """ Extracts the atomic partners and affinities for a given timestamp :param atomic_id: np.uint64 :param include_connected_partners: bool :param include_disconnected_partners: bool :param time_stamp: None or datetime :return: list of uint64, list of float32 """ if time_stamp is None: time_stamp = datetime.datetime.utcnow() if time_stamp.tzinfo is None: time_stamp = UTC.localize(time_stamp) edge_keys = [] affinity_keys = [] area_keys = [] if include_connected_partners: edge_keys.append(serialize_key('atomic_connected_partners')) affinity_keys.append(serialize_key('atomic_connected_affinities')) area_keys.append(serialize_key('atomic_connected_areas')) if include_disconnected_partners: edge_keys.append(serialize_key('atomic_disconnected_partners')) affinity_keys.append(serialize_key('atomic_disconnected_affinities')) area_keys.append(serialize_key('atomic_disconnected_areas')) filters = [ColumnQualifierRegexFilter(k) for k in edge_keys + affinity_keys if k is not None] filter_ = RowFilterUnion(filters) partners = np.array([], dtype=np.uint64) affinities = np.array([], dtype=np.float32) areas = np.array([], dtype=np.uint64) r = self.table.read_row(serialize_uint64(atomic_id), filter_=filter_) for edge_key, affinity_key, area_key in \ zip(edge_keys, affinity_keys, area_keys): # Shortcut for the trivial case that there have been no changes to # the edges of this child: if len(r.cells[self.family_id][edge_key]) == 0: this_partners = \ np.frombuffer(r.cells[self.family_id][edge_key][0].value, dtype=np.uint64) partners = np.concatenate([partners, this_partners]) if affinity_key is None: affinities = np.concatenate([ affinities, np.full((len(this_partners)), np.inf)]) else: this_affinities = \ np.frombuffer(r.cells[self.family_id][affinity_key][0].value, dtype=np.float32) affinities = np.concatenate([affinities, this_affinities]) if area_key is None: areas = np.concatenate([ areas, np.full((len(this_partners)), 0)]) else: this_areas = \ np.frombuffer(r.cells[self.family_id][area_key][0].value, dtype=np.uint64) areas = np.concatenate([areas, this_areas]) # From new to old: Add partners that are not # in the edge list of this child. This assures that more recent # changes are prioritized. For each, check if the time_stamp # is satisfied. # Note: The creator writes one list of partners (edges) and # affinities. Each edit makes only small edits (yet), hence, # all but the oldest entry are short lists of length ~ 1-10 for i_edgelist in range(len(r.cells[self.family_id][edge_key])): cell = r.cells[self.family_id][edge_key][i_edgelist] if time_stamp >= cell.timestamp: partner_batch_b = \ r.cells[self.family_id][edge_key][i_edgelist].value partner_batch = np.frombuffer(partner_batch_b, dtype=np.uint64) partner_batch_m = ~np.in1d(partner_batch, partners) this_partners = partner_batch[partner_batch_m] partners = np.concatenate([partners, this_partners]) if affinity_key is None: affinities = np.concatenate([ affinities, np.full((len(this_partners)), np.inf)]) else: affinity_batch_b = \ r.cells[self.family_id][affinity_key][i_edgelist].value affinity_batch = np.frombuffer(affinity_batch_b, dtype=np.float32) affinities = np.concatenate([ affinities, affinity_batch[partner_batch_m]]) # Take care of removed edges (affinity == 0) partners_m = affinities > 0 partners = partners[partners_m] affinities = affinities[partners_m] return partners, affinities def get_subgraph_chunk(self, parent_id: np.uint64, make_unique: bool = True, time_stamp: Optional[datetime.datetime] = None ) -> Tuple[np.ndarray, np.ndarray]: """ Takes an atomic id and returns the associated agglomeration ids :param parent_id: np.uint64 :param make_unique: bool :param time_stamp: None or datetime :return: edge list """ def _read_atomic_partners(child_id_block: Iterable[np.uint64] ) -> Tuple[np.ndarray, np.ndarray]: thread_edges = np.array([], dtype=np.uint64).reshape(0, 2) thread_affinities = np.array([], dtype=np.float32) for child_id in child_id_block: node_edges, node_affinities = self.get_atomic_partners( child_id, time_stamp=time_stamp, include_connected_partners=True, include_disconnected_partners=False) # If we have edges add them to the chunk global edge list if len(node_edges) > 0: # Build n x 2 edge list from partner list node_edges = \ np.concatenate([np.ones((len(node_edges), 1), dtype=np.uint64) * child_id, node_edges[:, None]], axis=1) thread_edges = np.concatenate([thread_edges, node_edges]) thread_affinities = np.concatenate([thread_affinities, node_affinities]) return thread_edges, thread_affinities if time_stamp is None: time_stamp = datetime.datetime.utcnow() if time_stamp.tzinfo is None: time_stamp = UTC.localize(time_stamp) child_ids = self.get_children(parent_id) # Iterate through all children of this parent and retrieve their edges edges = np.array([], dtype=np.uint64).reshape(0, 2) affinities = np.array([], dtype=np.float32) n_child_ids = len(child_ids) this_n_threads = np.min([int(n_child_ids // 20) + 1, mu.n_cpus]) child_id_blocks = np.array_split(child_ids, this_n_threads) edges_and_affinities = mu.multithread_func(_read_atomic_partners, child_id_blocks, n_threads=this_n_threads, debug=this_n_threads == 1) for edges_and_affinities_pairs in edges_and_affinities: edges = np.concatenate([edges, edges_and_affinities_pairs[0]]) affinities = np.concatenate([affinities, edges_and_affinities_pairs[1]]) # If requested, remove duplicate edges. Every edge is stored in each # participating node. Hence, we have many edge pairs that look # like [x, y], [y, x]. We solve this by sorting and calling np.unique # row-wise if make_unique: edges, idx = np.unique(np.sort(edges, axis=1), axis=0, return_index=True) affinities = affinities[idx] return edges, affinities def add_edge(self, user_id: str, atomic_edge: Sequence[np.uint64], affinity: Optional[np.float32] = None, root_ids: Optional[Sequence[np.uint64]] = None, n_tries: int = 20) -> np.uint64: """ Adds an edge to the chunkedgraph Multi-user safe through locking of the root node This function acquires a lock and ensures that it still owns the lock before executing the write. :param user_id: str unique id - do not just make something up, use the same id for the same user every time :param atomic_edge: list of two uint64s :param affinity: float or None will eventually be set to 1 if None :param root_ids: list of uint64s avoids reading the root ids again if already computed :param n_tries: int :return: uint64 if successful the new root id is send else None """ # Sanity Checks if atomic_edge[0] == atomic_edge[1]: return None if self.get_chunk_layer(atomic_edge[0]) != \ self.get_chunk_layer(atomic_edge[1]): return None # Lookup root ids if root_ids is None: root_ids = [self.get_root(atomic_edge[0]), self.get_root(atomic_edge[1])] # Get a unique id for this operation operation_id = self.get_unique_operation_id() i_try = 0 lock_root_ids = np.unique(root_ids) while i_try < n_tries: # Try to acquire lock and only continue if successful lock_acquired, lock_root_ids = \ self.lock_root_loop(root_ids=lock_root_ids, operation_id=operation_id) if lock_acquired: # Add edge and change hierarchy new_root_id, rows, time_stamp = \ self._add_edge(operation_id=operation_id, atomic_edge=atomic_edge, affinity=affinity) # Add a row to the log rows.append(self._create_merge_log_row(operation_id, user_id, [new_root_id], atomic_edge, time_stamp)) # Execute write (makes sure that we are still owning the lock) if self.bulk_write(rows, lock_root_ids, operation_id=operation_id, slow_retry=False): return new_root_id for lock_root_id in lock_root_ids: self.unlock_root(lock_root_id, operation_id) i_try += 1 print("Waiting - %d" % i_try) time.sleep(1) return None def _add_edge(self, operation_id: np.uint64, atomic_edge: Sequence[np.uint64], affinity: Optional[np.float32] = None ) -> Tuple[np.uint64, List[bigtable.row.Row], datetime.datetime]: """ Adds an atomic edge to the ChunkedGraph :param operation_id: uint64 :param atomic_edge: list of two ints :param affinity: float :return: int new root id """ time_stamp = datetime.datetime.utcnow() if affinity is None: affinity = np.float32(1.0) rows = [] assert len(atomic_edge) == 2 # Walk up the hierarchy until a parent in the same chunk is found original_parent_ids = [self.get_all_parents(atomic_edge[0]), self.get_all_parents(atomic_edge[1])] original_parent_ids = np.array(original_parent_ids).T merge_layer = None for i_layer in range(len(original_parent_ids)): if self.test_if_nodes_are_in_same_chunk(original_parent_ids[i_layer]): merge_layer = i_layer break if merge_layer is None: raise Exception("No parents found. Did you set is_cg_id correctly?") original_root = original_parent_ids[-1] # Find a new node id and update all children # circumvented_nodes = current_parent_ids.copy() # chunk_id = self.get_chunk_id(node_id=original_parent_ids[merge_layer][0]) new_parent_id = self.get_unique_node_id( self.get_chunk_id(node_id=original_parent_ids[merge_layer][0])) new_parent_id_b = np.array(new_parent_id).tobytes() current_node_id = None for i_layer in range(merge_layer, len(original_parent_ids)): # If an edge connects two supervoxel that were already conntected # through another path, we will reach a point where we find the same # parent twice. current_parent_ids = np.unique(original_parent_ids[i_layer]) # Collect child ids of all nodes --> childs of new node if current_node_id is None: combined_child_ids = np.array([], dtype=np.uint64) else: combined_child_ids = np.array([current_node_id], dtype=np.uint64).flatten() for prior_parent_id in current_parent_ids: child_ids = self.get_children(prior_parent_id) # Exclude parent nodes from old hierarchy path if i_layer > merge_layer: child_ids = child_ids[~np.in1d(child_ids, original_parent_ids)] combined_child_ids = np.concatenate([combined_child_ids, child_ids]) # Append new parent entry for all children for child_id in child_ids: val_dict = {"parents": new_parent_id_b} rows.append(self.mutate_row(serialize_uint64(child_id), self.family_id, val_dict, time_stamp=time_stamp)) # Create new parent node val_dict = {"children": combined_child_ids.tobytes()} current_node_id = new_parent_id # Store for later if i_layer < len(original_parent_ids) - 1: new_parent_id = self.get_unique_node_id( self.get_chunk_id( node_id=original_parent_ids[i_layer + 1][0])) new_parent_id_b = np.array(new_parent_id).tobytes() val_dict["parents"] = new_parent_id_b else: val_dict["former_parents"] = np.array(original_root).tobytes() val_dict["operation_id"] = serialize_uint64(operation_id) rows.append(self.mutate_row(serialize_uint64(original_root[0]), self.family_id, {"new_parents": new_parent_id_b}, time_stamp=time_stamp)) rows.append(self.mutate_row(serialize_uint64(original_root[1]), self.family_id, {"new_parents": new_parent_id_b}, time_stamp=time_stamp)) rows.append(self.mutate_row(serialize_uint64(current_node_id), self.family_id, val_dict, time_stamp=time_stamp)) # Read original cross chunk edges atomic_cross_edges_b = {} for l in range(i_layer + 2, self.n_layers): atomic_cross_edges_b[l] = b"" for original_parent_id in original_parent_ids[i_layer]: this_atomic_cross_edges = \ self.table.read_row(serialize_uint64(original_parent_id)) if self.cross_edge_family_id in this_atomic_cross_edges.cells: for l in range(i_layer + 2, self.n_layers): key = serialize_key("atomic_cross_edges_%d" % l) if key in this_atomic_cross_edges.cells[self.cross_edge_family_id]: atomic_cross_edges_b[l] += this_atomic_cross_edges.cells[self.cross_edge_family_id][key][0].value val_dict = {} for l in range(i_layer + 2, self.n_layers): if len(atomic_cross_edges_b[l]) > 0: val_dict["atomic_cross_edges_%d" % l] = atomic_cross_edges_b[l] if len(val_dict): rows.append(self.mutate_row(serialize_uint64(current_node_id), self.cross_edge_family_id, val_dict, time_stamp=time_stamp)) # Atomic edge for i_atomic_id in range(2): val_dict = \ {"atomic_connected_partners": np.array([atomic_edge[(i_atomic_id + 1) % 2]]).tobytes(), "atomic_connected_affinities": np.array([affinity], dtype=np.float32).tobytes(), "atomic_connected_areas": np.array([1], dtype=np.uint64).tobytes(), "atomic_disconnected_partners": np.array([atomic_edge[(i_atomic_id + 1) % 2]]).tobytes(), "atomic_disconnected_affinities": np.array([0], dtype=np.float32).tobytes(), "atomic_disconnected_areas": np.array([0], dtype=np.uint64).tobytes() } rows.append(self.mutate_row(serialize_uint64( atomic_edge[i_atomic_id]), self.family_id, val_dict, time_stamp=time_stamp)) return new_parent_id, rows, time_stamp def remove_edges(self, user_id: str, source_id: np.uint64, sink_id: np.uint64, source_coord: Optional[Sequence[int]] = None, sink_coord: Optional[Sequence[int]] = None, mincut: bool = True, bb_offset: Tuple[int, int, int] = (240, 240, 24), root_ids: Optional[Sequence[np.uint64]] = None, n_tries: int = 20) -> Sequence[np.uint64]: """ Removes edges - either directly or after applying a mincut Multi-user safe through locking of the root node This function acquires a lock and ensures that it still owns the lock before executing the write. :param user_id: str unique id - do not just make something up, use the same id for the same user every time :param source_id: uint64 :param sink_id: uint64 :param source_coord: list of 3 ints [x, y, z] coordinate of source supervoxel :param sink_coord: list of 3 ints [x, y, z] coordinate of sink supervoxel :param mincut: :param bb_offset: list of 3 ints [x, y, z] bounding box padding beyond box spanned by coordinates :param root_ids: list of uint64s :param n_tries: int :return: list of uint64s or None if no split was performed """ # Sanity Checks if source_id == sink_id: print("source == sink") return None if self.get_chunk_layer(source_id) != \ self.get_chunk_layer(sink_id): print("layer(source) !== layer(sink)") return None if mincut: assert source_coord is not None assert sink_coord is not None if root_ids is None: root_ids = [self.get_root(source_id), self.get_root(sink_id)] if root_ids[0] != root_ids[1]: print("root(source) != root(sink):", root_ids) return None # Get a unique id for this operation operation_id = self.get_unique_operation_id() i_try = 0 while i_try < n_tries: # Try to acquire lock and only continue if successful lock_root_ids = np.unique(root_ids) lock_acquired, lock_root_ids = \ self.lock_root_loop(root_ids=lock_root_ids, operation_id=operation_id) if lock_acquired: # (run mincut) and remove edges + update hierarchy if mincut: success, result = \ self._remove_edges_mincut(operation_id=operation_id, source_id=source_id, sink_id=sink_id, source_coord=source_coord, sink_coord=sink_coord, bb_offset=bb_offset) if success: new_root_ids, rows, removed_edges, time_stamp = result else: for lock_root_id in lock_root_ids: self.unlock_root(lock_root_id, operation_id=operation_id) return None else: success, result = \ self._remove_edges(operation_id=operation_id, atomic_edges=[(source_id, sink_id)]) if success: new_root_ids, rows, time_stamp = result removed_edges = [[source_id, sink_id]] else: for lock_root_id in lock_root_ids: self.unlock_root(lock_root_id, operation_id=operation_id) return None # Add a row to the log rows.append(self._create_split_log_row(operation_id, user_id, new_root_ids, [source_id, sink_id], removed_edges, time_stamp)) # Execute write (makes sure that we are still owning the lock) if self.bulk_write(rows, lock_root_ids, operation_id=operation_id, slow_retry=False): return new_root_ids for lock_root_id in lock_root_ids: self.unlock_root(lock_root_id, operation_id=operation_id) i_try += 1 print("Waiting - %d" % i_try) time.sleep(1) return None def _remove_edges_mincut(self, operation_id: np.uint64, source_id: np.uint64, sink_id: np.uint64, source_coord: Sequence[int], sink_coord: Sequence[int], bb_offset: Tuple[int, int, int] = (120, 120, 12) ) -> Tuple[ bool, # success Optional[Tuple[ List[np.uint64], # new_roots List[bigtable.row.Row], # rows np.ndarray, # removed_edges datetime.datetime]]]: # timestamp """ Computes mincut and removes edges accordingly :param operation_id: uint64 :param source_id: uint64 :param sink_id: uint64 :param source_coord: list of 3 ints [x, y, z] coordinate of source supervoxel :param sink_coord: list of 3 ints [x, y, z] coordinate of sink supervoxel :param bb_offset: list of 3 ints [x, y, z] bounding box padding beyond box spanned by coordinates :return: list of uint64s if successful, or None if no valid split new root ids """ time_start = time.time() # ------------------------------------------ bb_offset = np.array(list(bb_offset)) source_coord = np.array(source_coord) sink_coord = np.array(sink_coord) # Decide a reasonable bounding box (NOT guaranteed to be successful!) coords = np.concatenate([source_coord[:, None], sink_coord[:, None]], axis=1).T bounding_box = [np.min(coords, axis=0), np.max(coords, axis=0)] bounding_box[0] -= bb_offset bounding_box[1] += bb_offset root_id_source = self.get_root(source_id) root_id_sink = self.get_root(source_id) # Verify that sink and source are from the same root object if root_id_source != root_id_sink: print("root(source) != root(sink)") return False, None print("Get roots and check: %.3fms" % ((time.time() - time_start) * 1000)) time_start = time.time() # ------------------------------------------ root_id = root_id_source # Get edges between local supervoxels n_chunks_affected = np.product((np.ceil(bounding_box[1] / self.chunk_size)).astype(np.int) - (np.floor(bounding_box[0] / self.chunk_size)).astype(np.int)) print("Number of affected chunks: %d" % n_chunks_affected) print("Bounding box:", bounding_box) print("Bounding box padding:", bb_offset) print("Atomic ids: %d - %d" % (source_id, sink_id)) print("Root id:", root_id) edges, affs = self.get_subgraph(root_id, get_edges=True, bounding_box=bounding_box, bb_is_coordinate=True) print( "Get edges and affs: %.3fms" % ((time.time() - time_start) * 1000)) time_start = time.time() # ------------------------------------------ # Compute mincut atomic_edges = mincut.mincut(edges, affs, source_id, sink_id) print("Mincut: %.3fms" % ((time.time() - time_start) * 1000)) time_start = time.time() # ------------------------------------------ if len(atomic_edges) == 0: print("WARNING: Mincut failed. Try again...") return False, None # Check if any edge in the cutset is infinite (== between chunks) # We would prevent such a cut atomic_edges_flattened_view = atomic_edges.view(dtype='u8,u8') edges_flattened_view = edges.view(dtype='u8,u8') cutset_mask = np.in1d(edges_flattened_view, atomic_edges_flattened_view) if np.any(np.isinf(affs[cutset_mask])): print("inf in cutset") return False, None # Remove edges success, result = self._remove_edges(operation_id, atomic_edges) if not success: print("remove edges failed") return False, None new_roots, rows, time_stamp = result print("Remove edges: %.3fms" % ((time.time() - time_start) * 1000)) time_start = time.time() # ------------------------------------------ return True, (new_roots, rows, atomic_edges, time_stamp) def _remove_edges(self, operation_id: np.uint64, atomic_edges: Sequence[Tuple[np.uint64, np.uint64]] ) -> Tuple[bool, # success Optional[Tuple[ List[np.uint64], # new_roots List[bigtable.row.Row], # rows datetime.datetime]]]: # timestamp """ Removes atomic edges from the ChunkedGraph :param operation_id: uint64 :param atomic_edges: list of two uint64s :return: list of uint64s new root ids """ time_stamp = datetime.datetime.utcnow() # Make sure that we have a list of edges if isinstance(atomic_edges[0], np.uint64): atomic_edges = [atomic_edges] atomic_edge_affinities = np.array([], dtype=np.float32) for atomic_edge in atomic_edges: atomic_edge_affinities = np.concatenate([ atomic_edge_affinities, [self.get_latest_edge_affinity(atomic_edge)]]) if np.any(np.isinf(atomic_edge_affinities)): return False, None atomic_edges = np.array(atomic_edges) u_atomic_ids = np.unique(atomic_edges) # Get number of layers and the original root original_parent_ids = self.get_all_parents(atomic_edges[0, 0]) original_root = original_parent_ids[-1] # Find lowest level chunks that might have changed chunk_ids = self.get_chunk_ids_from_node_ids(u_atomic_ids) u_chunk_ids, u_chunk_ids_idx = np.unique(chunk_ids, return_index=True) involved_chunk_id_dict = dict(zip(u_chunk_ids, u_atomic_ids[u_chunk_ids_idx])) # Note: After removing the atomic edges, we basically need to build the # ChunkedGraph for these chunks from the ground up. # involved_chunk_id_dict stores a representative for each chunk that we # can use to acquire the parent that knows about all atomic nodes in the # chunk. rows = [] # Remove atomic edges # Removing edges nodewise. We cannot remove edges edgewise because that # would add up multiple changes to each node (row). Unfortunately, # the batch write (mutate_rows) from BigTable cannot handle multiple # changes to the same row within a batch write and only executes # one of them. for u_atomic_id in np.unique(atomic_edges): partners = np.concatenate([atomic_edges[atomic_edges[:, 0] == u_atomic_id][:, 1], atomic_edges[atomic_edges[:, 1] == u_atomic_id][:, 0]]) val_dict = {"atomic_connected_partners": partners.tobytes(), "atomic_connected_affinities": np.zeros(len(partners), dtype=np.float32).tobytes(), "atomic_disconnected_partners": partners.tobytes(), "atomic_disconnected_affinities": atomic_edge_affinities.tobytes(), } rows.append(self.mutate_row(serialize_uint64(u_atomic_id), self.family_id, val_dict, time_stamp=time_stamp)) # Dictionaries keeping temporary information about the ChunkedGraph # while updates are not written to BigTable yet new_layer_parent_dict = {} cross_edge_dict = {} old_id_dict = collections.defaultdict(list) # This view of the to be removed edges helps us to compute the mask # of the retained edges in each chunk double_atomic_edges = np.concatenate([atomic_edges, atomic_edges[:, ::-1]], axis=0) double_atomic_edges_view = double_atomic_edges.view(dtype='u8,u8') double_atomic_edges_view = \ double_atomic_edges_view.reshape(double_atomic_edges.shape[0]) nodes_in_removed_edges = np.unique(atomic_edges) # For each involved chunk we need to compute connected components for chunk_id in involved_chunk_id_dict.keys(): # Get the local subgraph node_id = involved_chunk_id_dict[chunk_id] old_parent_id = self.get_parent(node_id) edges, _ = self.get_subgraph_chunk(old_parent_id, make_unique=False) # These edges still contain the removed edges. # For consistency reasons we can only write to BigTable one time. # Hence, we have to evict the to be removed "atomic_edges" from the # queried edges. retained_edges_mask =\ ~np.in1d(edges.view(dtype='u8,u8').reshape(edges.shape[0]), double_atomic_edges_view) edges = edges[retained_edges_mask] # The cross chunk edges are passed on to the parents to compute # connected components in higher layers. cross_edge_mask = self.get_chunk_ids_from_node_ids( np.ascontiguousarray(edges[:, 1])) != \ self.get_chunk_id(node_id=node_id) cross_edges = edges[cross_edge_mask] edges = edges[~cross_edge_mask] isolated_nodes = list(filter( lambda x: x not in edges and self.get_chunk_id(x) == chunk_id, nodes_in_removed_edges)) # Build the local subgraph and compute connected components G = nx.from_edgelist(edges) G.add_nodes_from(isolated_nodes) ccs = nx.connected_components(G) # For each connected component we create one new parent for cc in ccs: cc_node_ids = np.array(list(cc), dtype=np.uint64) # Get the associated cross edges cc_cross_edges = cross_edges[np.in1d(cross_edges[:, 0], cc_node_ids)] # Get a new parent id new_parent_id = self.get_unique_node_id( self.get_chunk_id(node_id=old_parent_id)) new_parent_id_b =
np.array(new_parent_id)
numpy.array
from os.path import join import pickle from csbdeep.models import Config, CARE import numpy as np import json from scipy import ndimage from numba import jit @jit def pixel_sharing_bipartite(lab1, lab2): assert lab1.shape == lab2.shape psg = np.zeros((lab1.max()+1, lab2.max()+1), dtype=np.int) for i in range(lab1.size): psg[lab1.flat[i], lab2.flat[i]] += 1 return psg def intersection_over_union(psg): rsum = np.sum(psg, 0, keepdims=True) csum = np.sum(psg, 1, keepdims=True) return psg / (rsum + csum - psg) def matching_iou(psg, fraction=0.5): iou = intersection_over_union(psg) matching = iou > 0.5 matching[:,0] = False matching[0,:] = False return matching def precision(lab_gt, lab, iou=0.5, partial_dataset=False): """ precision = TP / (TP + FP + FN) i.e. "intersection over union" for a graph matching """ psg = pixel_sharing_bipartite(lab_gt, lab) matching = matching_iou(psg, fraction=iou) assert matching.sum(0).max() < 2 assert matching.sum(1).max() < 2 n_gt = len(set(np.unique(lab_gt)) - {0}) n_hyp = len(set(np.unique(lab)) - {0}) n_matched = matching.sum() if partial_dataset: return n_matched , (n_gt + n_hyp - n_matched) else: return n_matched / (n_gt + n_hyp - n_matched) def normalize(img, mean, std): zero_mean = img - mean return zero_mean / std def denormalize(x, mean, std): return x * std + mean with open('experiment.json', 'r') as f: exp_params = json.load(f) train_files = np.load(join('..', '..', '..', *exp_params['train_path'].split('/')[4:])) X_train = train_files['X_train'] mean, std = np.mean(X_train),
np.std(X_train)
numpy.std
# Copyright (c) 2018 <NAME> import numpy as np from numba import njit, prange from skimage import measure try: import pycuda.driver as cuda import pycuda.autoinit from pycuda.compiler import SourceModule FUSION_GPU_MODE = 1 except Exception as err: print('Warning: {}'.format(err)) print('Failed to import PyCUDA. Running fusion in CPU mode.') FUSION_GPU_MODE = 0 class TSDFVolume: """Volumetric TSDF Fusion of RGB-D Images. """ def __init__(self, vol_bnds, voxel_size, use_gpu=True): """Constructor. Args: vol_bnds (ndarray): An ndarray of shape (3, 2). Specifies the xyz bounds (min/max) in meters. voxel_size (float): The volume discretization in meters. """ vol_bnds = np.asarray(vol_bnds) assert vol_bnds.shape == (3, 2), "[!] `vol_bnds` should be of shape (3, 2)." # Define voxel volume parameters self._vol_bnds = vol_bnds self._voxel_size = float(voxel_size) self._trunc_margin = 5 * self._voxel_size # truncation on SDF self._color_const = 256 * 256 # Adjust volume bounds and ensure C-order contiguous self._vol_dim = np.ceil((self._vol_bnds[:,1]-self._vol_bnds[:,0])/self._voxel_size).copy(order='C').astype(int) self._vol_bnds[:,1] = self._vol_bnds[:,0]+self._vol_dim*self._voxel_size self._vol_origin = self._vol_bnds[:,0].copy(order='C').astype(np.float32) print("Voxel volume size: {} x {} x {} - # points: {:,}".format( self._vol_dim[0], self._vol_dim[1], self._vol_dim[2], self._vol_dim[0]*self._vol_dim[1]*self._vol_dim[2]) ) # Initialize pointers to voxel volume in CPU memory self._tsdf_vol_cpu = np.ones(self._vol_dim).astype(np.float32) # for computing the cumulative moving average of observations per voxel self._weight_vol_cpu = np.zeros(self._vol_dim).astype(np.float32) self._color_vol_cpu = np.zeros(self._vol_dim).astype(np.float32) self.gpu_mode = use_gpu and FUSION_GPU_MODE # Copy voxel volumes to GPU if self.gpu_mode: self._tsdf_vol_gpu = cuda.mem_alloc(self._tsdf_vol_cpu.nbytes) cuda.memcpy_htod(self._tsdf_vol_gpu,self._tsdf_vol_cpu) self._weight_vol_gpu = cuda.mem_alloc(self._weight_vol_cpu.nbytes) cuda.memcpy_htod(self._weight_vol_gpu,self._weight_vol_cpu) self._color_vol_gpu = cuda.mem_alloc(self._color_vol_cpu.nbytes) cuda.memcpy_htod(self._color_vol_gpu,self._color_vol_cpu) # Cuda kernel function (C++) self._cuda_src_mod = SourceModule(""" __global__ void integrate(float * tsdf_vol, float * weight_vol, float * color_vol, float * vol_dim, float * vol_origin, float * cam_intr, float * cam_pose, float * other_params, float * color_im, float * depth_im) { // Get voxel index int gpu_loop_idx = (int) other_params[0]; int max_threads_per_block = blockDim.x; int block_idx = blockIdx.z*gridDim.y*gridDim.x+blockIdx.y*gridDim.x+blockIdx.x; int voxel_idx = gpu_loop_idx*gridDim.x*gridDim.y*gridDim.z*max_threads_per_block+block_idx*max_threads_per_block+threadIdx.x; int vol_dim_x = (int) vol_dim[0]; int vol_dim_y = (int) vol_dim[1]; int vol_dim_z = (int) vol_dim[2]; if (voxel_idx > vol_dim_x*vol_dim_y*vol_dim_z) return; // Get voxel grid coordinates (note: be careful when casting) float voxel_x = floorf(((float)voxel_idx)/((float)(vol_dim_y*vol_dim_z))); float voxel_y = floorf(((float)(voxel_idx-((int)voxel_x)*vol_dim_y*vol_dim_z))/((float)vol_dim_z)); float voxel_z = (float)(voxel_idx-((int)voxel_x)*vol_dim_y*vol_dim_z-((int)voxel_y)*vol_dim_z); // Voxel grid coordinates to world coordinates float voxel_size = other_params[1]; float pt_x = vol_origin[0]+voxel_x*voxel_size; float pt_y = vol_origin[1]+voxel_y*voxel_size; float pt_z = vol_origin[2]+voxel_z*voxel_size; // World coordinates to camera coordinates float tmp_pt_x = pt_x-cam_pose[0*4+3]; float tmp_pt_y = pt_y-cam_pose[1*4+3]; float tmp_pt_z = pt_z-cam_pose[2*4+3]; float cam_pt_x = cam_pose[0*4+0]*tmp_pt_x+cam_pose[1*4+0]*tmp_pt_y+cam_pose[2*4+0]*tmp_pt_z; float cam_pt_y = cam_pose[0*4+1]*tmp_pt_x+cam_pose[1*4+1]*tmp_pt_y+cam_pose[2*4+1]*tmp_pt_z; float cam_pt_z = cam_pose[0*4+2]*tmp_pt_x+cam_pose[1*4+2]*tmp_pt_y+cam_pose[2*4+2]*tmp_pt_z; // Camera coordinates to image pixels int pixel_x = (int) roundf(cam_intr[0*3+0]*(cam_pt_x/cam_pt_z)+cam_intr[0*3+2]); int pixel_y = (int) roundf(cam_intr[1*3+1]*(cam_pt_y/cam_pt_z)+cam_intr[1*3+2]); // Skip if outside view frustum int im_h = (int) other_params[2]; int im_w = (int) other_params[3]; if (pixel_x < 0 || pixel_x >= im_w || pixel_y < 0 || pixel_y >= im_h || cam_pt_z<0) return; // Skip invalid depth float depth_value = depth_im[pixel_y*im_w+pixel_x]; if (depth_value == 0) return; // Integrate TSDF float trunc_margin = other_params[4]; float depth_diff = depth_value-cam_pt_z; if (depth_diff < -trunc_margin) return; float dist = fmin(1.0f,depth_diff/trunc_margin); float w_old = weight_vol[voxel_idx]; float obs_weight = other_params[5]; float w_new = w_old + obs_weight; weight_vol[voxel_idx] = w_new; tsdf_vol[voxel_idx] = (tsdf_vol[voxel_idx]*w_old+obs_weight*dist)/w_new; // Integrate color float old_color = color_vol[voxel_idx]; float old_b = floorf(old_color/(256*256)); float old_g = floorf((old_color-old_b*256*256)/256); float old_r = old_color-old_b*256*256-old_g*256; float new_color = color_im[pixel_y*im_w+pixel_x]; float new_b = floorf(new_color/(256*256)); float new_g = floorf((new_color-new_b*256*256)/256); float new_r = new_color-new_b*256*256-new_g*256; new_b = fmin(roundf((old_b*w_old+obs_weight*new_b)/w_new),255.0f); new_g = fmin(roundf((old_g*w_old+obs_weight*new_g)/w_new),255.0f); new_r = fmin(roundf((old_r*w_old+obs_weight*new_r)/w_new),255.0f); color_vol[voxel_idx] = new_b*256*256+new_g*256+new_r; }""") self._cuda_integrate = self._cuda_src_mod.get_function("integrate") # Determine block/grid size on GPU gpu_dev = cuda.Device(0) self._max_gpu_threads_per_block = gpu_dev.MAX_THREADS_PER_BLOCK n_blocks = int(np.ceil(float(np.prod(self._vol_dim))/float(self._max_gpu_threads_per_block))) grid_dim_x = min(gpu_dev.MAX_GRID_DIM_X,int(np.floor(np.cbrt(n_blocks)))) grid_dim_y = min(gpu_dev.MAX_GRID_DIM_Y,int(np.floor(np.sqrt(n_blocks/grid_dim_x)))) grid_dim_z = min(gpu_dev.MAX_GRID_DIM_Z,int(np.ceil(float(n_blocks)/float(grid_dim_x*grid_dim_y)))) self._max_gpu_grid_dim = np.array([grid_dim_x,grid_dim_y,grid_dim_z]).astype(int) self._n_gpu_loops = int(np.ceil(float(
np.prod(self._vol_dim)
numpy.prod
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for baseline_mechanisms.""" from absl.testing import absltest import numpy as np from dp_topk import baseline_mechanisms from dp_topk.differential_privacy import NeighborType class BaselineMechanismsTest(absltest.TestCase): def test_sorted_top_k_returns_correct_when_input_is_ascending(self): counts = np.arange(10) k = 3 expected_items = np.array([9, 8, 7]) items = baseline_mechanisms.sorted_top_k(counts, k) self.assertSequenceAlmostEqual(items, expected_items) def test_sorted_top_k_returns_correct_when_input_is_descending(self): counts = np.arange(10)[::-1] k = 3 expected_items = np.arange(k) items = baseline_mechanisms.sorted_top_k(counts, k) self.assertSequenceAlmostEqual(items, expected_items) def test_laplace_no_noise_add_remove(self): counts = np.arange(2) k = 1 c = 10 expected_items = [1] items = baseline_mechanisms.laplace_mechanism( counts, k, c, epsilon=1e6, neighbor_type=NeighborType.ADD_REMOVE) self.assertSequenceAlmostEqual(items, expected_items) def test_laplace_no_noise_swap(self): counts = np.arange(2) k = 1 c = 10 expected_items = [1] items = baseline_mechanisms.laplace_mechanism( counts, k, c, epsilon=1e6, neighbor_type=NeighborType.SWAP) self.assertSequenceAlmostEqual(items, expected_items) def test_laplace_with_noise_add_remove(self): k = 1 epsilon = 1.1 trials = 100000 z1 = 1 + np.random.laplace(0, k / epsilon, size=trials) z2 = np.random.laplace(0, k / epsilon, size=trials) expected_correctness = sum(z1 > z2) / trials counts = np.array([1, 0]) correct = 0 for _ in range(trials): items = baseline_mechanisms.laplace_mechanism( item_counts=counts, k=k, c=2, epsilon=epsilon, neighbor_type=NeighborType.ADD_REMOVE) if items[0] == 0: correct += 1 real_correctness = correct / trials self.assertAlmostEqual(expected_correctness, real_correctness, places=2) def test_laplace_with_noise_swap(self): k = 1 epsilon = 1.1 trials = 100000 z1 = 1 + np.random.laplace(0, 2 * k / epsilon, size=trials) z2 = np.random.laplace(0, 2 * k / epsilon, size=trials) expected_correctness = sum(z1 > z2) / trials counts = np.array([1, 0]) correct = 0 for _ in range(trials): items = baseline_mechanisms.laplace_mechanism( item_counts=counts, k=k, c=2, epsilon=epsilon, neighbor_type=NeighborType.SWAP) if items[0] == 0: correct += 1 real_correctness = correct / trials self.assertAlmostEqual(expected_correctness, real_correctness, places=2) def test_em_epsilon_cdp_delta_zero(self): k = 10 epsilon = 1.1 delta = 0 local_epsilon = baseline_mechanisms.em_epsilon_cdp(epsilon, delta, k) self.assertAlmostEqual(epsilon / k, local_epsilon, places=4) def test_em_epsilon_cdp_k_one(self): k = 1 epsilon = 1.1 delta = 0.1 local_epsilon = baseline_mechanisms.em_epsilon_cdp(epsilon, delta, k) self.assertAlmostEqual(epsilon, local_epsilon, places=4) def test_em_epsilon_cdp_k_ten(self): k = 10 epsilon = 1.1 delta = 0.1 local_epsilon = baseline_mechanisms.em_epsilon_cdp(epsilon, delta, k) self.assertAlmostEqual(0.29264, local_epsilon, places=4) def test_cdp_peeling_no_noise(self): counts = np.arange(2) k = 1 expected_items = [1] items = baseline_mechanisms.cdp_peeling_mechanism( counts, k, epsilon=1e6, delta=0.1) self.assertEqual(items, expected_items) def test_cdp_peeling_with_noise(self): k = 1 epsilon = 1.1 trials = 100000 counts = np.array([1, 0]) probs = np.exp(epsilon * counts) probs = probs / sum(probs) expected_correctness = probs[0] correct = 0 for _ in range(trials): items = baseline_mechanisms.cdp_peeling_mechanism( item_counts=counts, k=k, epsilon=epsilon, delta=0.1) if items[0] == 0: correct += 1 real_correctness = correct / trials self.assertAlmostEqual(expected_correctness, real_correctness, places=2) def test_pnf_peeling_no_noise(self): counts =
np.arange(2)
numpy.arange
from cemc.mcmc import NetworkObserver import h5py as h5 import numpy as np from ase.visualize import view from scipy.stats import linregress import os from ase.units import kB class Mode(object): bring_system_into_window = 0 sample_in_window = 1 equillibriate = 2 transition_path_sampling = 3 class NucleationSampler(object): """ Class that do the book-keeping needed for free energy calculations of nucleation :Keyword arguments: * *size_window_width* Size range in each window * *max_cluster_size* Maximmum cluster size * *merge_strategy* How to perform the actual merging (Recommended to use the default) * *max_one_cluster* Ensure that there is only *one* cluster present in the system. For larger cluster sizes this should not matter. """ def __init__(self, **kwargs): self.size_window_width = kwargs.pop("size_window_width") self.max_cluster_size = kwargs.pop("max_cluster_size") self.merge_strategy = "normalize_overlap" self.max_one_cluster = False self.allow_solutes = True if "merge_strategy" in kwargs.keys(): self.merge_strategy = kwargs.pop("merge_strategy") if "max_one_cluster" in kwargs.keys(): self.max_one_cluster = kwargs.pop("max_one_cluster") allowed_merge_strategies = ["normalize_overlap", "fit"] if self.merge_strategy not in allowed_merge_strategies: msg = "Merge strategy has to be one of {}".format( allowed_merge_strategies) raise ValueError(msg) chem_pot = kwargs.pop("chemical_potential") self.n_bins = self.size_window_width self.n_windows = int(self.max_cluster_size / self.size_window_width) self.histograms = [] self.singlets = [] n_singlets = len(chem_pot.keys()) for i in range(self.n_windows): if i == 0: self.histograms.append(np.ones(self.n_bins)) self.singlets.append(np.zeros((self.n_bins, n_singlets))) else: self.histograms.append(np.ones(self.n_bins + 1)) self.singlets.append(np.zeros((self.n_bins + 1, n_singlets))) self.current_window = 0 self.mode = Mode.bring_system_into_window self.current_cluster_size = 0 def _get_window_boundaries(self, num): """ Return the upper and lower boundary of the windows :param num: Window index """ if num == 0: lower = 0 else: lower = (num * self.size_window_width) - 1 if num == self.n_windows - 1: upper = self.max_cluster_size else: upper = (num + 1) * self.size_window_width return int(lower), int(upper) def is_in_window(self, network, retstat=False): """ Check if the current network state belongs to the current window :param network: Instance of :py:class:`cemc.mcmc.NetworkObserver` :param retstat: If true it will also return the network statistics """ network.reset() network(None) # Explicitly call the network observer stat = network.get_statistics() lower, upper = self._get_window_boundaries(self.current_window) max_size_ok = stat["max_size"] >= lower and stat["max_size"] < upper n_clusters_ok = True if self.max_one_cluster: n_clusters = stat["number_of_clusters"] n_clusters_ok = (n_clusters == 1) if self.mode == Mode.transition_path_sampling: max_size_ok = True # Do not restrict the window size in this case n_clusters_ok = True network.reset() if retstat: return max_size_ok and n_clusters_ok, stat return max_size_ok and n_clusters_ok def bring_system_into_window(self, network): """ Brings the system into the current window :param network: Instance of :py:class:`cemc.mcmc.NetworkObserver` """ lower, upper = self._get_window_boundaries(self.current_window) size = int(0.5 * (lower + upper) + 1) # TODO: Network observers no longer has a grow_cluster function # should be handle in python network.grow_cluster(size) network(None) stat = network.get_statistics() network.reset() if stat["max_size"] != size: msg = "Size of created cluster does not match the one requested!\n" msg += "Size of created: {}. ".format(stat["max_size"]) msg += "Requested: {}".format(size) raise RuntimeError(msg) if stat["number_of_clusters"] != 1: msg = "More than one cluster exists!\n" msg += "Supposed to create 1 cluster, " msg += "created {}".format(stat["number_of_clusters"]) raise RuntimeError(msg) self.current_cluster_size = stat["max_size"] def _get_indx(self, size): """ Get the corresponding bin :param size: The size of which its corresponding bin number should be computed """ lower, upper = self._get_window_boundaries(self.current_window) # indx = int( (size-lower)/float(upper-lower) ) indx = int(size - lower) return indx def update_histogram(self, mc_obj): """ Update the histogram :param mc_obj: Instance of the sampler (typically `cemc.mcmc.SGCNucleation`) """ stat = mc_obj.network.get_statistics() indx = self._get_indx(stat["max_size"]) if indx < 0: lower, upper = self._get_window_boundaries(self.current_window) msg = "Given size: {}. ".format(stat["max_size"]) msg += "Boundaries: [{},{})".format(lower, upper) raise ValueError(msg) self.histograms[self.current_window][indx] += 1 if mc_obj.name == "SGCMonteCarlo": new_singlets = np.zeros_like(mc_obj.averager.singlets) new_singlets = mc_obj.atoms._calc.get_singlets() self.singlets[self.current_window][indx, :] += new_singlets def helmholtz_free_energy(self, singlets, hist): """ Compute the Helmholtz Free Energy barrier :param singlets: Thermal average singlet terms :param hist: Histogram of visits """ # N = len(self.atoms) # TODO: Fix this N = 1000 beta_gibbs = -
np.log(hist)
numpy.log
# pylint:disable=no-name-in-module, import-error import aiofiles import time from fastapi import APIRouter, File, UploadFile, Response, status, Depends import app.api.utils_com as utils_com from app.api import classes from app import crud, fileserver_requests from app.api.dependencies import get_db from app.api import napari_viewer from fastapi.responses import JSONResponse from app.api import utils_import, utils_paths, utils_export import numpy as np import zarr import pathlib from sqlalchemy.orm import Session import warnings import asyncio from app.api.com.api_request_models import (ViewImageRequest, DeleteRequest, UpdateHintRequest, UpdateChannelNamesRequest, UpdateNameRequest, ReadFromPathRequest) router = APIRouter() # GET @router.get("/api/images/fetch_all", status_code=200) async def fetch_all_images(sess: Session = Depends(get_db)): """ API request to return a list of all images """ image_list = utils_com.get_com_image_list(sess) return image_list @router.get("/api/images/fetch_by_id/{image_uid}", status_code=200) async def fetch_image_by_id( image_uid: str ): """ API request to return a single image by uid """ image_uid = int(image_uid) image = utils_com.get_com_image_by_uid(image_uid) return image @router.get("/api/images/fetch_thumbnail_path/{image_uid}", status_code=200) async def fetch_thumbnail_path(image_uid: str): ''' API request to return the path of an images thumbnail ''' path = utils_paths.make_thumbnail_path(int(image_uid)) path = "http://" + utils_paths.static_fileserver + path.as_posix() return {"path": path} # return utils_paths.fileserver.joinpath() @router.get("/api/images/export_mistos_image/{image_uid}", status_code=201) async def export_image(image_uid: str): ''' API request to export an image to the export folder ''' path = utils_export.export_mistos_image(int(image_uid)) return {"path": path} # POST @router.post("/api/images/view_by_id", status_code=200) async def view_image_by_id(post: ViewImageRequest): ''' API expects a json of format { "image_id": int, "display_result_layers": bool, "display_background_layers":bool}. It reads the image by id from the database and opens it with the napari viewer. ''' c_int_image = crud.read_image_by_uid(post.image_id) napari_viewer.view( c_int_image, post.display_result_layers, post.display_background_layers ) return JSONResponse(content={ "imageId": c_int_image.uid, "imageClosed": True }) @router.post("/api/images/upload", status_code=201) async def upload_image(file: UploadFile = File(...)): ''' API Request to upload an image. ''' path = utils_paths.make_tmp_file_path(file.filename) path = utils_paths.fileserver.joinpath(path).as_posix() async with aiofiles.open(path, 'wb') as out_file: while content := await file.read(1024): # async read chunk await out_file.write(content) # async write chunk image_list, metadata_dict, metadata_OMEXML = utils_import.read_image_file( path) metadata_dict["original_filename"] = metadata_dict["original_filename"][2:] print(metadata_dict) for image, i in image_list: img_zarr = zarr.creation.array(image) int_image = classes.IntImage( uid=-1, series_index=i, name=metadata_dict["original_filename"], # .replace("\#", "_"), metadata=metadata_dict, # This is not the finished metadata! data=img_zarr, metadata_omexml=metadata_OMEXML ) int_image.on_init() fileserver_requests.delete_file(path) return {"Result": "OK"} @router.post("/api/images/upload_to_group_{group_id}", status_code=201) async def upload_images_to_group(group_id: str, file: UploadFile = File(...)): ''' API Request to upload an image. ''' path = utils_paths.make_tmp_file_path(file.filename) path = utils_paths.fileserver.joinpath(path).as_posix() async with aiofiles.open(path, 'wb') as out_file: while content := await file.read(1024): # async read chunk await out_file.write(content) # async write chunk # open experiment group group_id = int(group_id) db_experiment_group = crud.read_experiment_db_group_by_uid(group_id) image_ids = [image.uid for image in db_experiment_group.images] image_list, metadata_dict, metadata_OMEXML = utils_import.read_image_file( path) metadata_dict["original_filename"] = metadata_dict["original_filename"][2:] for image, i in image_list: img_zarr = zarr.creation.array(image) int_image = classes.IntImage( uid=-1, series_index=i, name=metadata_dict["original_filename"], # .replace("\#", "_"), metadata=metadata_dict, # This is not the finished metadata! data=img_zarr, metadata_omexml=metadata_OMEXML ) int_image.on_init() image_ids.append(int_image.uid) db_experiment_group.update_images(image_ids) fileserver_requests.delete_file(path) return {"Result": "OK"} @router.post("/api/images/upload_max_z_projection", status_code=201) async def upload_image_max_z_projection(file: UploadFile = File(...)): ''' API Request to upload an image and save its max z projection. ''' path = utils_paths.make_tmp_file_path(file.filename) path = utils_paths.fileserver.joinpath(path).as_posix() async with aiofiles.open(path, 'wb') as out_file: while content := await file.read(1024): # async read chunk await out_file.write(content) # async write chunk image_list, metadata_dict, metadata_OMEXML = utils_import.read_image_file( path) for image, i in image_list: img_zarr = zarr.creation.array(image) img_zarr = np.array(img_zarr).max(axis=0) img_zarr = img_zarr[np.newaxis, ...] int_image = classes.IntImage( uid=-1, series_index=i, name=metadata_dict["original_filename"], metadata=metadata_dict, # This is not the finished metadata! data=img_zarr, metadata_omexml=metadata_OMEXML ) int_image.on_init() fileserver_requests.delete_file(path) return {"Result": "OK"} # img = file.file @router.post("/api/images/read_from_path", status_code=201) async def read_from_path(read_image_from_path_request: ReadFromPathRequest, response: Response): ''' API Request to import an image from a filepath ''' path = pathlib.Path(read_image_from_path_request.path) print(path) if path.exists(): path = path.as_posix() image_list, metadata_dict, metadata_OMEXML = utils_import.read_image_file( path) for image, i in image_list: img_zarr = zarr.creation.array(image) int_image = classes.IntImage( uid=-1, series_index=i, name=metadata_dict["original_filename"], metadata=metadata_dict, # This is not the finished metadata! data=img_zarr, metadata_omexml=metadata_OMEXML ) int_image.on_init() return {"Result": "OK"} else: response.status_code = status.HTTP_404_NOT_FOUND return {"Result": "File not found"} @router.post("/api/images/read_from_path_max_z_projection", status_code=201) async def read_from_path_max_z_projection(read_image_from_path_request: ReadFromPathRequest, response: Response): ''' API Request to import an image as max-z-projection from a filepath ''' path = pathlib.Path(read_image_from_path_request.path) if path.exists(): path = path.as_posix() image_list, metadata_dict, metadata_OMEXML = utils_import.read_image_file( path) for image, i in image_list: img_zarr = zarr.creation.array(image) img_zarr =
np.array(img_zarr)
numpy.array
import numpy as np from numpy.matlib import repmat import cv2 from scipy.ndimage import map_coordinates from lib.utils import cos_window,gaussian2d_rolled_labels from lib.fft_tools import fft2,ifft2 from cftracker.base import BaseCF from cftracker.feature import extract_hog_feature,extract_cn_feature,extract_cn_feature_byw2c from skimage.feature.peak import peak_local_max from lib.utils import APCE def mod_one(a, b): y = np.mod(a - 1, b) + 1 return y def cf_confidence(response_cf): peak_loc_indices = peak_local_max(response_cf, min_distance=1,indices=True) max_peak_val=0 secondmax_peak_val=0 max_peak_val_indice=[0,0] secondmax_peak_val_indice=[0,0] for indice in peak_loc_indices: if response_cf[indice]>max_peak_val: max_peak_val_indice=indice max_peak_val=response_cf[indice] elif response_cf[indice]>secondmax_peak_val: secondmax_peak_val_indice=indice secondmax_peak_val=response_cf[indice] pass def confidence_cf_apce(response_cf): apce=APCE(response_cf) conf=np.clip(apce/50,a_min=0,a_max=1) return conf # max val at the bottom right loc def gaussian2d_rolled_labels_staple(sz, sigma): halfx, halfy = int(np.floor((sz[0] - 1) / 2)), int(np.floor((sz[1] - 1) / 2)) x_range = np.arange(-halfx, halfx + 1) y_range = np.arange(-halfy, halfy + 1) i, j = np.meshgrid(y_range, x_range) i_mod_range = mod_one(i, sz[1]) j_mod_range = mod_one(j, sz[0]) labels = np.zeros((sz[1], sz[0])) labels[i_mod_range - 1, j_mod_range - 1] = np.exp(-(i ** 2 + j ** 2) / (2 * sigma ** 2)) return labels def crop_filter_response(response_cf, response_sz): h, w = response_cf.shape[:2] half_width = int(np.floor(response_sz[0] / 2)) half_height = int(np.floor(response_sz[1] / 2)) range_i, range_j = np.arange(-half_height, half_height + 1), np.arange(-half_width, half_width + 1) i, j = np.meshgrid(mod_one(range_i, h), mod_one(range_j, w)) new_responses = response_cf[i - 1, j - 1] return new_responses.T # pad [h,w] format def pad(img,pad): h,w=img.shape[:2] delta=(int((pad[0]-h)/2),int((pad[1]-w)/2)) c=img.shape[2] r=np.zeros((pad[0],pad[1],c)) idy=[delta[0],delta[0]+h] idx=[delta[1],delta[1]+w] r[idy[0]:idy[1], idx[0]:idx[1], :] = img return r def parameters_to_projective_matrix(p): """ :param p: [s,rot,x,y] :return: """ s,rot,x,y=p R=np.array([[np.cos(rot),-np.sin(rot)], [np.sin(rot),np.cos(rot)]]) T=np.diag([1.,1.,1.]) T[:2,:2]=s*R T[0,2]=x T[1,2]=y return T def getLKcorner(warp_p,sz): template_nx,template_ny=sz nx=(sz[0]-1)/2 ny=(sz[1]-1)/2 tmplt_pts=np.array([[-nx,-ny], [-nx,template_ny-ny], [template_nx-nx,template_ny-ny], [template_nx-nx,-ny]]).T if warp_p.shape[0]==2: M=np.concatenate((warp_p,np.array([0,0,1])),axis=0) M[0,0]=M[0,0]+1 M[1,1]=M[1,1]+1 else: M=warp_p warp_pts=M.dot(np.concatenate((tmplt_pts,np.ones((1,4))),axis=0)) c=np.array([[(1+template_nx)/2],[(1+template_ny)/2],[1]]) warp_pts=warp_pts[:2,:] return warp_pts def PSR(response,rate): max_response=np.max(response) h,w=response.shape k=4/(h*w) yy,xx=np.unravel_index(np.argmax(response, axis=None),response.shape) idx=np.arange(w)-xx idy=np.arange(h)-yy idx=repmat(idx,h,1) idy=repmat(idy,w,1).T t=idx**2+idy**2 delta=1-np.exp(-k*t.astype(np.float32)) r=(max_response-response)/delta r[np.isnan(r)]=np.inf return np.min(r) def get_center_likelihood(likelihood_map, sz): h,w=likelihood_map.shape[:2] n1= h - sz[1] + 1 n2= w - sz[0] + 1 sat=cv2.integral(likelihood_map) i,j=np.arange(n1),
np.arange(n2)
numpy.arange
# -------------------------------------------------------- # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- import numpy as np import scipy.io as sio import os from numpy.linalg import inv import torch import cv2 import argparse import IPython import platform PYTHON2 = True if platform.python_version().startswith("3"): PYTHON2 = False # if PYTHON2: from . import _init_paths import PyKDL from .kdl_parser import kdl_tree_from_urdf_model from .urdf_parser_py.urdf import URDF np.random.seed(233) def rotX(rotx): RotX = np.array( [ [1, 0, 0, 0], [0, np.cos(rotx), -
np.sin(rotx)
numpy.sin
#!/usr/bin/env python # # Author: <NAME> <<EMAIL>> # import time import ctypes import tempfile import numpy import h5py from pyscf import lib from pyscf.lib import logger from pyscf import ao2mo from pyscf.cc import ccsd from pyscf.cc import _ccsd # # JCP, 95, 2623 # JCP, 95, 2639 # def gamma1_intermediates(mycc, t1, t2, l1, l2): nocc, nvir = t1.shape doo =-numpy.einsum('ja,ia->ij', l1, t1) dvv = numpy.einsum('ia,ib->ab', l1, t1) dvo = l1.T xtv = numpy.einsum('ie,me->im', t1, l1) dov = t1 - numpy.einsum('im,ma->ia', xtv, t1) #:doo -= numpy.einsum('jkab,ikab->ij', l2, theta) #:dvv += numpy.einsum('jica,jicb->ab', l2, theta) #:xt1 = numpy.einsum('mnef,inef->mi', l2, make_theta(t2)) #:xt2 = numpy.einsum('mnaf,mnef->ea', l2, make_theta(t2)) #:dov += numpy.einsum('imae,me->ia', make_theta(t2), l1) #:dov -= numpy.einsum('ma,ie,me->ia', t1, t1, l1) #:dov -= numpy.einsum('mi,ma->ia', xt1, t1) #:dov -= numpy.einsum('ie,ae->ia', t1, xt2) max_memory = mycc.max_memory - lib.current_memory()[0] unit = nocc*nvir**2 blksize = max(ccsd.BLKMIN, int(max_memory*.95e6/8/unit)) for p0, p1 in prange(0, nocc, blksize): theta = make_theta(t2[p0:p1]) doo[p0:p1] -= lib.dot(theta.reshape(p1-p0,-1), l2.reshape(nocc,-1).T) dov[p0:p1] += numpy.einsum('imae,me->ia', theta, l1) xt1 = lib.dot(l2.reshape(nocc,-1), theta.reshape(p1-p0,-1).T) dov[p0:p1] -= numpy.einsum('mi,ma->ia', xt1, t1) xt2 = lib.dot(theta.reshape(-1,nvir).T, l2[p0:p1].reshape(-1,nvir)) dov -= numpy.einsum('ie,ae->ia', t1, xt2) dvv += lib.dot(l2[p0:p1].reshape(-1,nvir).T, theta.reshape(-1,nvir)) return doo, dov, dvo, dvv # gamma2 intermediates in Chemist's notation def gamma2_intermediates(mycc, t1, t2, l1, l2): tmpfile = tempfile.NamedTemporaryFile(dir=lib.param.TMPDIR) with h5py.File(tmpfile.name, 'w') as f: gamma2_outcore(mycc, t1, t2, l1, l2, f) nocc, nvir = f['dovov'].shape[:2] nov = nocc * nvir dovvv = numpy.empty((nocc,nvir,nvir,nvir)) ao2mo.outcore._load_from_h5g(f['dovvv'], 0, nov, dovvv.reshape(nov,-1)) dvvov = None d2 = (f['dovov'].value, f['dvvvv'].value, f['doooo'].value, f['doovv'].value, f['dovvo'].value, dvvov, dovvv, f['dooov'].value) for key in f.keys(): del(f[key]) return d2 def gamma2_outcore(mycc, t1, t2, l1, l2, h5fobj): log = logger.Logger(mycc.stdout, mycc.verbose) nocc, nvir = t1.shape nov = nocc * nvir nvir_pair = nvir * (nvir+1) //2 dovov = h5fobj.create_dataset('dovov', (nocc,nvir,nocc,nvir), 'f8') dvvvv = h5fobj.create_dataset('dvvvv', (nvir_pair,nvir_pair), 'f8') doooo = h5fobj.create_dataset('doooo', (nocc,nocc,nocc,nocc), 'f8') doovv = h5fobj.create_dataset('doovv', (nocc,nocc,nvir,nvir), 'f8') dovvo = h5fobj.create_dataset('dovvo', (nocc,nvir,nvir,nocc), 'f8') dooov = h5fobj.create_dataset('dooov', (nocc,nocc,nocc,nvir), 'f8') _tmpfile = tempfile.NamedTemporaryFile(dir=lib.param.TMPDIR) fswap = h5py.File(_tmpfile.name) mOvOv = fswap.create_dataset('mOvOv', (nocc,nvir,nocc,nvir), 'f8') mOVov = fswap.create_dataset('mOVov', (nocc,nvir,nocc,nvir), 'f8') moo = numpy.empty((nocc,nocc)) mvv = numpy.zeros((nvir,nvir)) max_memory = mycc.max_memory - lib.current_memory()[0] unit = nocc*nvir**2 * 5 blksize = max(ccsd.BLKMIN, int(max_memory*.95e6/8/unit)) log.debug1('rdm intermediates pass 1: block size = %d, nocc = %d in %d blocks', blksize, nocc, int((nocc+blksize-1)/blksize)) time1 = time.clock(), time.time() for istep, (p0, p1) in enumerate(prange(0, nocc, blksize)): #:theta = make_theta(t2[p0:p1]) #:pOvOv = numpy.einsum('ikca,jkcb->jbia', l2, t2[p0:p1]) #:pOVov = -numpy.einsum('ikca,jkbc->jbia', l2, t2[p0:p1]) #:pOVov += numpy.einsum('ikac,jkbc->jbia', l2, theta) pOvOv = numpy.empty((nocc,p1-p0,nvir,nvir)) pOVov = numpy.empty((nocc,p1-p0,nvir,nvir)) t2a = numpy.empty((p1-p0,nvir,nocc,nvir)) t2b = numpy.empty((p1-p0,nvir,nocc,nvir)) theta = make_theta(t2[p0:p1]) tmp = numpy.empty_like(t2a) for i in range(p1-p0): t2a[i] = t2[p0+i].transpose(2,0,1) t2b[i] = t2[p0+i].transpose(1,0,2) tmp[i] = theta[i].transpose(1,0,2) t2a = t2a.reshape(-1,nov) t2b = t2b.reshape(-1,nov) theta, tmp = tmp.reshape(-1,nov), None for i in range(nocc): pOvOv[i] = lib.dot(t2a, l2[i].reshape(nov,-1)).reshape(-1,nvir,nvir) pOVov[i] = lib.dot(t2b, l2[i].reshape(nov,-1), -1).reshape(-1,nvir,nvir) pOVov[i] += lib.dot(theta, _cp(l2[i].transpose(0,2,1).reshape(nov,-1))).reshape(-1,nvir,nvir) theta = t2a = t2b = None mOvOv[p0:p1] = pOvOv.transpose(1,2,0,3) mOVov[p0:p1] = pOVov.transpose(1,2,0,3) fswap['mvOvO/%d'%istep] = pOvOv.transpose(3,1,2,0) fswap['mvOVo/%d'%istep] = pOVov.transpose(3,1,2,0) moo[p0:p1] =(numpy.einsum('ljdd->jl', pOvOv) * 2 + numpy.einsum('ljdd->jl', pOVov)) mvv +=(numpy.einsum('llbd->bd', pOvOv[p0:p1]) * 2 + numpy.einsum('llbd->bd', pOVov[p0:p1])) pOvOv = pOVov = None time1 = log.timer_debug1('rdm intermediates pass1 [%d:%d]'%(p0, p1), *time1) mia =(numpy.einsum('kc,ikac->ia', l1, t2) * 2 - numpy.einsum('kc,ikca->ia', l1, t2)) mab = numpy.einsum('kc,kb->cb', l1, t1) mij = numpy.einsum('kc,jc->jk', l1, t1) + moo*.5 gooov = numpy.einsum('ji,ka->jkia', moo*-.5, t1) max_memory = mycc.max_memory - lib.current_memory()[0] unit = nocc**3 + nocc**2*nvir + nocc*nvir**2*6 blksize = max(ccsd.BLKMIN, int(max_memory*.95e6/8/unit)) log.debug1('rdm intermediates pass 2: block size = %d, nocc = %d in %d blocks', blksize, nocc, int((nocc+blksize-1)/blksize)) for p0, p1 in prange(0, nocc, blksize): tau = _ccsd.make_tau(t2[p0:p1], t1[p0:p1], t1) #:goooo = numpy.einsum('ijab,klab->klij', l2, tau)*.5 goooo = lib.dot(tau.reshape(-1,nvir**2), l2.reshape(-1,nvir**2).T, .5) goooo = goooo.reshape(-1,nocc,nocc,nocc) h5fobj['doooo'][p0:p1] = make_theta(goooo).transpose(0,2,1,3) #:gooov[p0:p1] -= numpy.einsum('ib,jkba->jkia', l1, tau) #:gooov[p0:p1] -= numpy.einsum('jkba,ib->jkia', l2[p0:p1], t1) #:gooov[p0:p1] += numpy.einsum('jkil,la->jkia', goooo, t1*2) for i in range(p0,p1): gooov[i] -= lib.dot(_cp(tau[i-p0].transpose(0,2,1).reshape(-1,nvir)), l1.T).reshape(nocc,nvir,nocc).transpose(0,2,1) gooov[i] -= lib.dot(_cp(l2[i].transpose(0,2,1).reshape(-1,nvir)), t1.T).reshape(nocc,nvir,nocc).transpose(0,2,1) lib.dot(goooo.reshape(-1,nocc), t1, 2, gooov[p0:p1].reshape(-1,nvir), 1) #:goovv -= numpy.einsum('jk,ikab->ijab', mij, tau) goovv = numpy.einsum('ia,jb->ijab', mia[p0:p1], t1) for i in range(p1-p0): lib.dot(mij, tau[i].reshape(nocc,-1), -1, goovv[i].reshape(nocc,-1), 1) goovv[i] += .5 * l2[p0+i] goovv[i] += .5 * tau[i] #:goovv -= numpy.einsum('cb,ijac->ijab', mab, t2[p0:p1]) #:goovv -= numpy.einsum('bd,ijad->ijab', mvv*.5, tau) lib.dot(t2[p0:p1].reshape(-1,nvir), mab, -1, goovv.reshape(-1,nvir), 1) lib.dot(tau.reshape(-1,nvir), mvv.T, -.5, goovv.reshape(-1,nvir), 1) tau = None #==== mem usage nocc**3 + nocc*nvir**2 pOvOv = _cp(mOvOv[p0:p1]) pOVov = _cp(mOVov[p0:p1]) #:gooov[p0:p1,:] += numpy.einsum('jaic,kc->jkia', pOvOv, t1) #:gooov[:,p0:p1] -= numpy.einsum('kaic,jc->jkia', pOVov, t1) tmp = lib.dot(pOvOv.reshape(-1,nvir), t1.T).reshape(p1-p0,-1,nocc,nocc) gooov[p0:p1,:] += tmp.transpose(0,3,2,1) lib.dot(t1, pOVov.reshape(-1,nvir).T, 1, tmp.reshape(nocc,-1), 0) gooov[:,p0:p1] -= tmp.reshape(nocc,p1-p0,nvir,nocc).transpose(0,1,3,2) #:tmp = numpy.einsum('ikac,jc->jika', l2, t1[p0:p1]) #:gOvVo -= numpy.einsum('jika,kb->jabi', tmp, t1) #:gOvvO = numpy.einsum('jkia,kb->jabi', tmp, t1) + pOvOv.transpose(0,3,1,2) tmp = tmp.reshape(-1,nocc,nocc,nvir) lib.dot(t1[p0:p1], l2.reshape(-1,nvir).T, 1, tmp.reshape(p1-p0,-1)) gOvVo = numpy.einsum('ia,jb->jabi', l1, t1[p0:p1]) gOvvO = numpy.empty((p1-p0,nvir,nvir,nocc)) for i in range(p1-p0): gOvVo[i] -= lib.dot(_cp(tmp[i].transpose(0,2,1).reshape(-1,nocc)), t1).reshape(nocc,nvir,-1).transpose(1,2,0) gOvVo[i] += pOVov[i].transpose(2,0,1) gOvvO[i] = lib.dot(tmp[i].reshape(nocc,-1).T, t1).reshape(nocc,nvir,-1).transpose(1,2,0) gOvvO[i] += pOvOv[i].transpose(2,0,1) tmp = None #==== mem usage nocc**3 + nocc*nvir**6 dovvo[p0:p1] = (gOvVo*2 + gOvvO).transpose(0,2,1,3) gOvvO *= -2 gOvvO -= gOvVo doovv[p0:p1] = gOvvO.transpose(0,3,1,2) gOvvO = gOvVo = None for j0, j1 in prange(0, nocc, blksize): tau2 = _ccsd.make_tau(t2[j0:j1], t1[j0:j1], t1) #:goovv += numpy.einsum('ijkl,klab->ijab', goooo[:,:,j0:j1], tau2) lib.dot(goooo[:,:,j0:j1].copy().reshape((p1-p0)*nocc,-1), tau2.reshape(-1,nvir**2), 1, goovv.reshape(-1,nvir**2), 1) tau2 += numpy.einsum('ia,jb->ijab', t1[j0:j1], t1) tau2 = _cp(tau2.transpose(0,3,1,2).reshape(-1,nov)) #:goovv[:,j0:j1] += numpy.einsum('ibld,jlda->ijab', pOvOv, tau2) * .5 #:goovv[:,j0:j1] -= numpy.einsum('iald,jldb->ijab', pOVov, tau2) * .5 goovv[:,j0:j1] += lib.dot(pOvOv.reshape(-1,nov), tau2.T, .5).reshape(p1-p0,nvir,-1,nvir).transpose(0,2,3,1) goovv[:,j0:j1] += lib.dot(pOVov.reshape(-1,nov), tau2.T, -.5).reshape(p1-p0,nvir,-1,nvir).transpose(0,2,1,3) tau2 = None #==== mem usage nocc**3 + nocc*nvir**2*7 #:goovv += numpy.einsum('iald,jlbd->ijab', pOVov*2+pOvOv, t2) * .5 pOVov *= 2 pOVov += pOvOv for j in range(nocc): tmp = lib.dot(pOVov.reshape(-1,nov), _cp(t2[j].transpose(0,2,1).reshape(-1,nvir)), .5) goovv[:,j] += tmp.reshape(-1,nvir,nvir) tmp = None dovov[p0:p1] = make_theta(goovv).transpose(0,2,1,3) goooo = goovv = pOvOv = pOVov = None time1 = log.timer_debug1('rdm intermediates pass2 [%d:%d]'%(p0, p1), *time1) h5fobj['dooov'][:] = gooov.transpose(0,2,1,3)*2 - gooov.transpose(1,2,0,3) gooov = None max_memory = mycc.max_memory - lib.current_memory()[0] unit = max(nocc**2*nvir*2+nocc*nvir**2*2, nvir**3*2+nocc*nvir**2) blksize = max(ccsd.BLKMIN, int(max_memory*.95e6/8/unit)) iobuflen = int(256e6/8/blksize) log.debug1('rdm intermediates pass 3: block size = %d, nvir = %d in %d blocks', blksize, nocc, int((nvir+blksize-1)/blksize)) h5fobj.create_group('dovvv') for istep, (p0, p1) in enumerate(prange(0, nvir, blksize)): pvOvO = numpy.empty((p1-p0,nocc,nvir,nocc)) pvOVo = numpy.empty((p1-p0,nocc,nvir,nocc)) ao2mo.outcore._load_from_h5g(fswap['mvOvO'], p0, p1, pvOvO) ao2mo.outcore._load_from_h5g(fswap['mvOVo'], p0, p1, pvOVo) #:gvovv -= numpy.einsum('aibk,kc->aibc', pvOvO, t1) #:gvovv += numpy.einsum('aick,kb->aibc', pvOVo, t1) gvovv = lib.dot(pvOVo.reshape(-1,nocc), t1).reshape(-1,nocc,nvir,nvir) for i in range(p1-p0): gvovv[i] = gvovv[i].transpose(0,2,1) lib.dot(pvOvO.reshape(-1,nocc), t1, -1, gvovv.reshape(-1,nvir), 1) pvOvO = pvOVo = None #==== mem usage nocc**2*nvir*2 + nocc*nvir**2*2 l2tmp = l2[:,:,p0:p1] * .5 #:gvvvv = numpy.einsum('ijab,ijcd->abcd', l2tmp, t2) #:jabc = numpy.einsum('ijab,ic->jabc', l2tmp, t1) #:gvvvv += numpy.einsum('jabc,jd->abcd', jabc, t1) gvvvv = lib.dot(l2tmp.reshape(nocc**2,-1).T, t2.reshape(nocc**2,-1)) jabc = lib.dot(l2tmp.reshape(nocc,-1).T, t1) lib.dot(jabc.reshape(nocc,-1).T, t1, 1, gvvvv.reshape(-1,nvir), 1) gvvvv = gvvvv.reshape(-1,nvir,nvir,nvir) l2tmp = jabc = None #:gvovv = numpy.einsum('ja,jibc->aibc', l1[:,p0:p1], t2) #:gvovv += numpy.einsum('jibc,ja->aibc', l2, t1[:,p0:p1]) lib.dot(l1[:,p0:p1].copy().T, t2.reshape(nocc,-1), 1, gvovv.reshape(p1-p0,-1), 1) lib.dot(t1[:,p0:p1].copy().T, l2.reshape(nocc,-1), 1, gvovv.reshape(p1-p0,-1), 1) tmp = numpy.einsum('ja,jb->ab', l1[:,p0:p1], t1) gvovv += numpy.einsum('ab,ic->aibc', tmp, t1) gvovv += numpy.einsum('ba,ic->aibc', mvv[:,p0:p1]*.5, t1) #:gvovv -= numpy.einsum('adbc,id->aibc', gvvvv, t1*2) for j in range(p1-p0): lib.dot(t1, gvvvv[j].reshape(nvir,-1), -2, gvovv[j].reshape(nocc,-1), 1) # symmetrize dvvvv because it is symmetrized in ccsd_grad and make_rdm2 anyway #:dvvvv = .5*(gvvvv+gvvvv.transpose(0,1,3,2)) #:dvvvv = .5*(dvvvv+dvvvv.transpose(1,0,3,2)) # now dvvvv == dvvvv.transpose(2,3,0,1) == dvvvv.transpose(0,1,3,2) == dvvvv.transpose(1,0,3,2) tmp = numpy.empty((nvir,nvir,nvir)) tmp1 = numpy.empty((nvir,nvir,nvir)) tmpvvvv = numpy.empty((p1-p0,nvir,nvir_pair)) for i in range(p1-p0): make_theta(gvvvv[i:i+1], out=tmp) tmp1[:] = tmp.transpose(1,0,2) _ccsd.precontract(tmp1, diag_fac=2, out=tmpvvvv[i]) # tril of (dvvvv[p0:p1,p0:p1]+dvvvv[p0:p1,p0:p1].T) for i in range(p0, p1): for j in range(p0, i): tmpvvvv[i-p0,j] += tmpvvvv[j-p0,i] tmpvvvv[i-p0,i] *= 2 for i in range(p0, p1): off = i * (i+1) // 2 if p0 > 0: tmpvvvv[i-p0,:p0] += dvvvv[off:off+p0] dvvvv[off:off+i+1] = tmpvvvv[i-p0,:i+1] * .25 for i in range(p1, nvir): off = i * (i+1) // 2 dvvvv[off+p0:off+p1] = tmpvvvv[:,i] tmp = tmp1 = tmpvvvv = None #==== mem usage nvir**3 + nocc*nvir**2 gvvov = make_theta(gvovv).transpose(0,2,1,3) ao2mo.outcore._transpose_to_h5g(h5fobj, 'dovvv/%d'%istep, gvvov.reshape(-1,nov), iobuflen) gvvvv = None gvovv = None time1 = log.timer_debug1('rdm intermediates pass3 [%d:%d]'%(p0, p1), *time1) del(fswap['mOvOv']) del(fswap['mOVov']) del(fswap['mvOvO']) del(fswap['mvOVo']) fswap.close() _tmpfile = None return (h5fobj['dovov'], h5fobj['dvvvv'], h5fobj['doooo'], h5fobj['doovv'], h5fobj['dovvo'], None, h5fobj['dovvv'], h5fobj['dooov']) def make_rdm1(mycc, t1, t2, l1, l2, d1=None): if d1 is None: doo, dov, dvo, dvv = gamma1_intermediates(mycc, t1, t2, l1, l2) else: doo, dov, dvo, dvv = d1 nocc, nvir = t1.shape nmo = nocc + nvir dm1 = numpy.empty((nmo,nmo)) dm1[:nocc,:nocc] = doo + doo.T dm1[:nocc,nocc:] = dov + dvo.T dm1[nocc:,:nocc] = dm1[:nocc,nocc:].T dm1[nocc:,nocc:] = dvv + dvv.T for i in range(nocc): dm1[i,i] += 2 return dm1 # rdm2 in Chemist's notation def make_rdm2(mycc, t1, t2, l1, l2, d1=None, d2=None): if d1 is None: doo, dov, dvo, dvv = gamma1_intermediates(mycc, t1, t2, l1, l2) else: doo, dov, dvo, dvv = d1 if d2 is None: dovov, dvvvv, doooo, doovv, dovvo, dvvov, dovvv, dooov = \ gamma2_intermediates(mycc, t1, t2, l1, l2) else: dovov, dvvvv, doooo, doovv, dovvo, dvvov, dovvv, dooov = d2 nocc, nvir = t1.shape nmo = nocc + nvir dm2 = numpy.empty((nmo,nmo,nmo,nmo)) dm2[:nocc,nocc:,:nocc,nocc:] = \ (dovov +dovov.transpose(2,3,0,1)) dm2[nocc:,:nocc,nocc:,:nocc] = \ (dovov.transpose(1,0,3,2)+dovov.transpose(3,2,1,0)) dm2[:nocc,:nocc,nocc:,nocc:] = \ (doovv.transpose(0,1,3,2)+doovv.transpose(1,0,2,3)) dm2[nocc:,nocc:,:nocc,:nocc] = \ (doovv.transpose(3,2,0,1)+doovv.transpose(2,3,1,0)) dm2[:nocc,nocc:,nocc:,:nocc] = \ (dovvo +dovvo.transpose(3,2,1,0)) dm2[nocc:,:nocc,:nocc,nocc:] = \ (dovvo.transpose(2,3,0,1)+dovvo.transpose(1,0,3,2)) dm2[nocc:,nocc:,nocc:,nocc:] = ao2mo.restore(1, dvvvv, nvir) dm2[nocc:,nocc:,nocc:,nocc:] *= 4 dm2[:nocc,:nocc,:nocc,:nocc] =(doooo+doooo.transpose(1,0,3,2)) * 2 dm2[:nocc,nocc:,nocc:,nocc:] = dovvv dm2[nocc:,nocc:,:nocc,nocc:] = dovvv.transpose(2,3,0,1) dm2[nocc:,nocc:,nocc:,:nocc] = dovvv.transpose(3,2,1,0) dm2[nocc:,:nocc,nocc:,nocc:] = dovvv.transpose(1,0,3,2) dm2[:nocc,:nocc,:nocc,nocc:] = dooov dm2[:nocc,nocc:,:nocc,:nocc] = dooov.transpose(2,3,0,1) dm2[:nocc,:nocc,nocc:,:nocc] = dooov.transpose(1,0,3,2) dm2[nocc:,:nocc,:nocc,:nocc] = dooov.transpose(3,2,1,0) dm1 = numpy.zeros((nmo,nmo)) dm1[:nocc,:nocc] = doo + doo.T dm1[:nocc,nocc:] = dov + dvo.T dm1[nocc:,:nocc] = dm1[:nocc,nocc:].T dm1[nocc:,nocc:] = dvv + dvv.T for i in range(nocc): dm2[i,i,:,:] += dm1 * 2 dm2[:,:,i,i] += dm1 * 2 dm2[:,i,i,:] -= dm1 dm2[i,:,:,i] -= dm1 for i in range(nocc): for j in range(nocc): dm2[i,i,j,j] += 4 dm2[i,j,j,i] -= 2 return dm2 def prange(start, end, step): for i in range(start, end, step): yield i, min(i+step, end) def _cp(a): return numpy.array(a, copy=False, order='C') def make_theta(t2, out=None): return _ccsd.make_0132(t2, t2, 2, -1, out) if __name__ == '__main__': from pyscf import gto from pyscf import scf from pyscf.cc import ccsd from pyscf import ao2mo mol = gto.M() mf = scf.RHF(mol) mcc = ccsd.CCSD(mf) numpy.random.seed(2) nocc = 5 nmo = 12 nvir = nmo - nocc eri0 = numpy.random.random((nmo,nmo,nmo,nmo)) eri0 = ao2mo.restore(1, ao2mo.restore(8, eri0, nmo), nmo) fock0 = numpy.random.random((nmo,nmo)) fock0 = fock0 + fock0.T + numpy.diag(range(nmo))*2 t1 = numpy.random.random((nocc,nvir)) t2 = numpy.random.random((nocc,nocc,nvir,nvir)) t2 = t2 + t2.transpose(1,0,3,2) l1 = numpy.random.random((nocc,nvir)) l2 = numpy.random.random((nocc,nocc,nvir,nvir)) l2 = l2 + l2.transpose(1,0,3,2) h1 = fock0 - (numpy.einsum('kkpq->pq', eri0[:nocc,:nocc])*2 - numpy.einsum('pkkq->pq', eri0[:,:nocc,:nocc])) eris = lambda:None eris.oooo = eri0[:nocc,:nocc,:nocc,:nocc].copy() eris.ooov = eri0[:nocc,:nocc,:nocc,nocc:].copy() eris.ovoo = eri0[:nocc,nocc:,:nocc,:nocc].copy() eris.oovv = eri0[:nocc,:nocc,nocc:,nocc:].copy() eris.ovov = eri0[:nocc,nocc:,:nocc,nocc:].copy() eris.ovvo = eri0[:nocc,nocc:,nocc:,:nocc].copy() eris.ovvv = eri0[:nocc,nocc:,nocc:,nocc:].copy() eris.vvvv = eri0[nocc:,nocc:,nocc:,nocc:].copy() eris.fock = fock0 doo, dov, dvo, dvv = gamma1_intermediates(mcc, t1, t2, l1, l2) print((numpy.einsum('ij,ij', doo, fock0[:nocc,:nocc]))*2+20166.329861034799) print((numpy.einsum('ab,ab', dvv, fock0[nocc:,nocc:]))*2-58078.964019246778) print((numpy.einsum('ia,ia', dov, fock0[:nocc,nocc:]))*2+74994.356886784764) print((numpy.einsum('ai,ai', dvo, fock0[nocc:,:nocc]))*2-34.010188025702391) dovov, dvvvv, doooo, doovv, dovvo, dvvov, dovvv, dooov = \ gamma2_intermediates(mcc, t1, t2, l1, l2) dvvvv = ao2mo.restore(1, dvvvv, nvir) print('doooo',numpy.einsum('kilj,kilj', doooo, eris.oooo)*2-15939.9007625418) print('dvvvv',numpy.einsum('acbd,acbd', dvvvv, eris.vvvv)*2-37581.823919588 ) print('dooov',numpy.einsum('jkia,jkia', dooov, eris.ooov)*2-128470.009687716) print('dovvv',numpy.einsum('icba,icba', dovvv, eris.ovvv)*2+166794.225195056) print('dovov',numpy.einsum('iajb,iajb', dovov, eris.ovov)*2+719279.812916893) print('dovvo',numpy.einsum('jbai,jbia', dovvo, eris.ovov)*2 +numpy.einsum('jiab,jiba', doovv, eris.oovv)*2+53634.0012286654) dm1 = make_rdm1(mcc, t1, t2, l1, l2) dm2 = make_rdm2(mcc, t1, t2, l1, l2) e2 =(numpy.einsum('ijkl,ijkl', doooo, eris.oooo)*2 +numpy.einsum('acbd,acbd', dvvvv, eris.vvvv)*2 +numpy.einsum('jkia,jkia', dooov, eris.ooov)*2 +numpy.einsum('icba,icba', dovvv, eris.ovvv)*2 +numpy.einsum('iajb,iajb', dovov, eris.ovov)*2 +numpy.einsum('jbai,jbia', dovvo, eris.ovov)*2 +numpy.einsum('ijab,ijab', doovv, eris.oovv)*2 +
numpy.einsum('ij,ij', doo, fock0[:nocc,:nocc])
numpy.einsum
import numpy as np from classes.model import Model # An object with a set of methods to generate and train multiple models and compare clusters # Uses monte carlo like methods to approximately explore the optima of the marginal distributions of observed variables given the latent variable # Generate a given number of models, trains them starting from different initial conditions (define how to do this exactly) and then outputs the different results and their frequencies class Collection: def __init__(self, name, num_models, var_dict, data, num_clusters, df=True, hidden_init='uniform'): self.name = name # Can be an int or a np.ndarray of integers with all number of clusters to explore self.c = num_clusters self.trained = False self.multiple_init = False # The initial distribution for the latent variable can either be random, uniform or defined self.hidden_init = hidden_init self.N = num_models # If it is defined, there is 2 possibilities: ## if hidden_init is a 1 x self.c array : then use it for all models ## else if it is a k x self.c array : use each distribution in the array as many times as possible given num_models if isinstance(hidden_init, np.ndarray): if hidden_init.shape[0] > 1: self.multiple_init = True num_series = num_models % hidden_init.shape[0] self.hidden_init = np.tile(hidden_init, num_series) self.N = self.hidden_init.shape[0] self.multiple_c = False # Set up models if self.multiple_init: self.models = [Model(f'{self.name}_{n}', self.c, var_dict, data=data, df=df, hidden_init=self.hidden_init[n,:]) for n in np.arange(self.N)] else: if isinstance(self.c, list): self.models = [] for cluster in self.c: self.models.append([Model(f'{self.name}_{n}', cluster, var_dict, data=data, df=df, hidden_init=self.hidden_init) for n in np.arange(self.N)]) self.multiple_c = True else: self.models = [Model(f'{self.name}_{n}', self.c, var_dict, data=data, df=df, hidden_init=self.hidden_init) for n in np.arange(self.N)] # Trains all models in self.models def train_models(self, n_iter, sig=0): print(f'Training {self.N} models with {self.c} clusters...') if self.multiple_c: for i, clusters in enumerate(self.c): for n in np.arange(self.N): self.models[i][n].run_EM(n_iter=n_iter) if n % 10 == 0: print(f'c={clusters}, model {n}...') else: for n in
np.arange(self.N)
numpy.arange
""" MIT License Copyright (c) 2020 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np from .utils import * class MeanAveragePrecision: """ Mean Average Precision for object detection. Arguments: num_classes (int): number of classes. """ def __init__(self, num_classes): self.num_classes = num_classes self._init() def reset(self): """Reset stored data.""" self._init() def add(self, preds, gt): """ Add sample to evaluation. Arguments: preds (np.array): predicted boxes. gt (np.array): ground truth boxes. Input format: preds: [xmin, ymin, xmax, ymax, class_id, confidence] gt: [xmin, ymin, xmax, ymax, class_id, difficult] """ class_counter = np.zeros((1, self.num_classes), dtype=np.int32) for c in range(self.num_classes): preds_c = preds[preds[:, 4] == c] gt_c = gt[gt[:, 4] == c] class_counter[0, c] = gt_c.shape[0] match_table = compute_match_table(preds_c, gt_c, self.imgs_counter) self.match_table[c] =
np.concatenate((self.match_table[c], match_table), axis=0)
numpy.concatenate
import numpy as np import pytest from simba.utils.linalg import cosine, compute_pc, normalise_rows @pytest.mark.parametrize( 'x, y, expected', [ ([1, 2, 3], [2, 4, 6], 1), ([1, 1, 1, 1], [-1, -1, -1, -1], -1), ([1, 1], [1, -1], 0), ([1, 1], [1, 0], np.cos(np.pi / 4)), ] ) def test_cosine(x, y, expected): result = cosine(x, y) np.testing.assert_allclose(result, expected) def test_cosine_zero_vector(): x = np.random.random(3) y = np.zeros_like(x) with pytest.warns(RuntimeWarning): result = cosine(x, y) assert np.isnan(result) def test_compute_pc(): X =
np.random.random((4, 5))
numpy.random.random
# Utilities supporting gaze calibration import numpy as np import cv2 import pandas as pd import os def onoff_from_binary(data, return_duration=True): """Converts a binary variable data into onsets, offsets, and optionally durations This may yield unexpected behavior if the first value of `data` is true. Parameters ---------- data : array-like, 1D binary array from which onsets and offsets should be extracted """ data = data.astype(np.float).copy() ddata = np.hstack([[0], np.diff(data)]) (onsets,) =
np.nonzero(ddata > 0)
numpy.nonzero
import numpy as np import math from scipy.special import gamma import scipy import scipy.ndimage def paired_product(new_im): shift1 = np.roll(new_im.copy(), 1, axis=1) shift2 = np.roll(new_im.copy(), 1, axis=0) shift3 = np.roll(np.roll(new_im.copy(), 1, axis=0), 1, axis=1) shift4 = np.roll(np.roll(new_im.copy(), 1, axis=0), -1, axis=1) H_img = shift1 * new_im V_img = shift2 * new_im D1_img = shift3 * new_im D2_img = shift4 * new_im return (H_img, V_img, D1_img, D2_img) def gen_gauss_window(lw, sigma): sd = np.float32(sigma) lw = int(lw) weights = [0.0] * (2 * lw + 1) weights[lw] = 1.0 sum = 1.0 sd *= sd for ii in range(1, lw + 1): tmp = np.exp(-0.5 * np.float32(ii * ii) / sd) weights[lw + ii] = tmp weights[lw - ii] = tmp sum += 2.0 * tmp for ii in range(2 * lw + 1): weights[ii] /= sum return weights def estimateggdparam(vec): gam = np.asarray([x / 1000.0 for x in range(200, 10000, 1)]) r_gam = (gamma(1.0/gam)*gamma(3.0/gam))/((gamma(2.0/gam))**2) # print(np.mean(vec)) sigma_sq = np.mean(vec**2) #-(np.mean(vec))**2 sigma = np.sqrt(sigma_sq) E = np.mean(np.abs(vec)) rho = sigma_sq / (E**2 + 1e-6) array_position = (np.abs(rho - r_gam)).argmin() alphaparam = gam[array_position] return alphaparam, sigma def compute_image_mscn_transform(image, C=1, avg_window=None, extend_mode='constant'): if avg_window is None: avg_window = gen_gauss_window(3, 7.0/6.0) assert len(np.shape(image)) == 2 h, w = np.shape(image) mu_image = np.zeros((h, w), dtype=np.float32) var_image =
np.zeros((h, w), dtype=np.float32)
numpy.zeros
# Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## # # Based on: # -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by <NAME> # -------------------------------------------------------- """blob helper functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from six.moves import cPickle as pickle import numpy as np import cv2 import os import mmcv from mask_rcnn.utils.compute_flow import flow_to_flow_img from mask_rcnn.core.config import cfg def get_image_blob(im, target_scale, target_max_size): """Convert an image into a network input. Arguments: im (ndarray): a color image in BGR order Returns: blob (ndarray): a data blob holding an image pyramid im_scale (float): image scale (target size) / (original size) im_info (ndarray) """ processed_im, im_scale = prep_im_for_blob( im, cfg.PIXEL_MEANS, [target_scale], target_max_size ) blob = im_list_to_blob(processed_im) # NOTE: this height and width may be larger than actual scaled input image # due to the FPN.COARSEST_STRIDE related padding in im_list_to_blob. We are # maintaining this behavior for now to make existing results exactly # reproducible (in practice using the true input image height and width # yields nearly the same results, but they are sometimes slightly different # because predictions near the edge of the image will be pruned more # aggressively). height, width = blob.shape[2], blob.shape[3] im_info =
np.hstack((height, width, im_scale))
numpy.hstack
import numpy as np import config class Trajectory: def __init__(self, q_f, delay=0): self.delay = delay k_v = config.k_v k_a = config.k_a self.k_v = np.array(k_v) self.k_a = np.array(k_a) self.q_f = np.array(q_f) self.num_joints = len(q_f) self.done = False #self.t_prev = None def sign(self, x): if (x == 0): return 0 else: return x/abs(x) def set_initial_conditions(self, q_i, t_i): self.q_i = np.array(q_i) self.t_i = t_i self.D = self.q_f - self.q_i self.sign_D = np.zeros(8) for i in range(len(self.D)): self.sign_D[i] = self.sign(self.D[i]) #v_sign = np.vectorize(sign, otypes=[np.float]) #self.sign_D = v_sign(self.D) self.k_v, self.k_a, self.tau, self.t_f = self.synchronize(self.k_v, self.k_a) def synchronize(self, k_v, k_a): mask = (abs(self.D) <= k_v**2/k_a) #This being true, means that the joint will not be able to achieve its max velocity. k_v[mask] = np.sqrt(abs(self.D[mask]) * k_a[mask]) #With these elements, we set k_v to the maximum achievable velocity tau = k_v / k_a travel_time = np.zeros(self.num_joints) mask = self.k_v != 0 #The result of correcting the k_v elements, is that some of them are 0, if D is 0 travel_time[mask] = tau[mask] + abs(self.D[mask])/k_v[mask] #The elements where k_v is not 0 is calculated normally, the others are left at 0 travel time #print(f"Travel_time : {travel_time}\n\n") max_travel_time = max(travel_time) max_travel_time_index =
np.where(travel_time == max_travel_time)
numpy.where
import unittest import numpy as np import cspyce.typemap_samples as ts def flatten(array): return tuple(tuple(array.ravel())) # noinspection PyTypeChecker class test_array1_1(unittest.TestCase): # %apply (int IN_ARRAY1[ANY]) {int arg[3]} # cs.in_array1_1 just returns whatever 3 integers it was passed as a numpy array def test_basic_test_tuple(self): self.assertEqual((1, 2, 3), ts.in_array1_1((1, 2, 3))) def test_basic_test_array(self): array = np.arange(10, 13, dtype="int32") self.assertEqual(tuple(array), ts.in_array1_1(array)) def test_non_contiguous_array(self): array = np.arange(9, dtype='int32').reshape((3, 3)) self.assertEqual((0, 3, 6), ts.in_array1_1(array[:, 0])) def test_requires_three_elements(self): with self.assertRaises(ValueError): ts.in_array1_1((1, 2, 3, 4)) def test_requires_integer_array(self): with self.assertRaises(ValueError): ts.in_array1_1(np.arange(3.0)) def test_requires_one_dimensional_array(self): array = np.zeros((3, 3), dtype="int32") with self.assertRaises(ValueError): ts.in_array1_1(array) def test_requires_non_null(self): with self.assertRaises(TypeError): ts.in_array1_1(None) class test_array1_2(unittest.TestCase): # %apply (int* IN_ARRAY1, int DIM1) {(int* arg, int dim)}; # This function returns them as a list. def test_basic_test_tuple(self): self.assertEqual((1, 2, 3, 4, 5), ts.in_array1_2([1, 2, 3, 4, 5])) def test_basic_test_array(self): arg = np.arange(1, 10, dtype='int32') self.assertEqual(flatten(arg), ts.in_array1_2(arg)) def test_okay_to_pass_empty_list(self): self.assertEqual((), ts.in_array1_2(())) def test_non_contiguous_array(self): array = np.arange(12, dtype='int32').reshape((4, 3))[:, 1] self.assertEqual(flatten(array), ts.in_array1_2(array)) def test_requires_integer_array(self): with self.assertRaises(ValueError): ts.in_array1_2(np.arange(10.0)) def test_requires_one_dimensional_array(self): array = np.zeros((3, 3), dtype="int32") with self.assertRaises(ValueError): ts.in_array1_2(array) def test_requires_one_dimensional_int_array(self): array = np.zeros((3, 3), dtype="double") with self.assertRaises(ValueError): ts.in_array1_2(array) def test_requires_non_null(self): with self.assertRaises(TypeError): ts.in_array1_2(None) class test_array1_3(unittest.TestCase): # %apply (int* IN_ARRAY1, int DIM1) {(int* arg)}; # This function is exactly like test_array_1_2, except the length is passed separately def test_basic_test_tuple(self): self.assertEqual((1, 2, 3, 4, 5), ts.in_array1_3([1, 2, 3, 4, 5], 5)) def test_basic_test_array(self): arg = np.arange(1, 10, dtype='int32') self.assertEqual(flatten(arg), ts.in_array1_3(arg, len(arg))) def test_okay_to_pass_empty_list(self): self.assertEqual((), ts.in_array1_3((), 0)) def test_non_contiguous_array(self): array = np.arange(12, dtype='int32').reshape((4, 3))[:, 1] self.assertEqual(flatten(array), ts.in_array1_3(array, len(array))) def test_requires_integer_array(self): with self.assertRaises(ValueError): ts.in_array1_3(np.arange(10.0), 1) def test_requires_one_dimensional_array(self): array = np.zeros((3, 3), dtype="int32") with self.assertRaises(ValueError): ts.in_array1_3(array, 9) def test_requires_one_dimensional_int_array(self): array = np.zeros((3, 3), dtype="double") with self.assertRaises(ValueError): ts.in_array1_3(array, 9) def test_requires_non_null(self): with self.assertRaises(TypeError): ts.in_array1_3(None, 0) class test_array1_01_1(unittest.TestCase): # %apply (int *IN_ARRAY01, int DIM1) {(int *arg, int dim)}; # cs.in_array01_1 received either an int scalar or sequence of integer, and SMALL_INT_ARRAY = np.array((4, 5, 6), dtype="int32") SMALL_FLOAT_ARRAY = np.array((4.0, 5.0, 6.0), dtype="double") def f(self, x): return ts.in_array01_1(x) def test_basic_test_scalar(self): self.assertEqual(1, ts.in_array01_1(1)) def test_basic_test_tuple(self): self.assertEqual((1, 2, 3), ts.in_array01_1([1, 2, 3])) def test_basic_test_int_array(self): arg = np.arange(1, 10, dtype='int32') self.assertEqual(flatten(arg), ts.in_array01_1(arg)) def test_non_contiguous_array(self): array = np.arange(12, dtype='int32').reshape((4, 3))[:, 0] self.assertEqual(flatten(array), ts.in_array01_1(array)) def test_requires_integer_array(self): with self.assertRaises(ValueError): ts.in_array01_1(np.arange(20.)) def test_requires_one_dimensional_array(self): array = np.zeros((3, 3), dtype="int32") with self.assertRaises(ValueError): ts.in_array01_1(array) def test_requires_one_dimensional_int_array(self): array = np.zeros((3, 3), dtype="double") with self.assertRaises(ValueError): ts.in_array01_1(array) def test_requires_non_null(self): with self.assertRaises(TypeError): ts.in_array01_1(None) class test_array2_1(unittest.TestCase): # %apply (int IN_ARRAY2[ANY][ANY]) {int arg[3][5]}; # This function specifically requires a 3x5 int array. # It returns the first element, and the dimensions as a tuple. def test_basic_run(self): array = np.arange(1000, 1015, dtype='int32').reshape(3, 5) self.assertEqual((flatten(array), 3, 5), ts.in_array2_1(array)) def test_non_contiguous_array(self): array = np.arange(150, dtype='int32').reshape((3, 5, 10))[..., 2] self.assertEqual((flatten(array), 3, 5), ts.in_array2_1(array)) def test_no_other_size(self): array = np.array(range(100, 115), dtype='int32').reshape(5, 3) with self.assertRaises(ValueError): ts.in_array2_1(array) def test_no_other_data_type(self): array = np.array(range(100, 115), dtype='int64').reshape(3, 5) with self.assertRaises(ValueError): ts.in_array2_1(array) def test_no_other_dimension(self): array = np.array(range(100, 115), dtype='int64').reshape(3, 5, 1) with self.assertRaises(ValueError): ts.in_array2_1(array) def test_requires_non_null(self): with self.assertRaises(TypeError): ts.in_array2_1(None) class test_array2_2(unittest.TestCase): # %apply (int *IN_ARRAY2, int DIM1, int DIM2) {(int *arg, int dim1, int dim2)}; # This function takes any sized integer array. # It returns the elements of the array as a tuple, and the dimensions def test_basic_run(self): array = np.arange(100, 200, dtype='int32').reshape(5, 20) self.assertEqual((flatten(array), 5, 20), ts.in_array2_2(array)) self.assertEqual((flatten(array[1:]), 4, 20), ts.in_array2_2(array[1:])) def test_non_contiguous_array(self): array = np.arange(150, dtype='int32').reshape((3, 5, 10))[..., 2] self.assertEqual((flatten(array), 3, 5), ts.in_array2_2(array)) def test_no_other_data_type(self): array =
np.arange(100., 200.)
numpy.arange
#!/usr/bin/env python # Analysis/plotting functions for HDX analysis import Functions, Methods import numpy as np import matplotlib.pyplot as plt import os, glob, copy, itertools, pickle from scipy.stats import pearsonr as correl from scipy.stats import sem as stderr from matplotlib.backends.backend_pdf import PdfPages from matplotlib.ticker import MultipleLocator, MaxNLocator from cycler import cycler ### Define defaults for matplotlib plots plt.rc('lines', linewidth=1.5, markersize=4) plt.rc('axes', prop_cycle=(cycler('color', ['k','b','r','orange','c','m','y','g'])), # Color cycle defaults to black labelweight='heavy', labelsize=14, titlesize=18) # Default fontsizes for printing plt.rc('axes.spines', top=False, right=False) # Switch off top/right axes plt.rc('legend', fontsize=10) # Default fontsizes for printing plt.rc('xtick', labelsize=12) # Default fontsizes for printing plt.rc('ytick', labelsize=12) # Default fontsizes for printing plt.rc('figure', titlesize=22, titleweight='heavy') # Default fontsizes for printing #plt.rc('text', usetex=True) ### Classes class Analyze(): """Class to contain results and analysis methods for HDX predictions""" def __init__(self, resobj, top, **extra_params): """Initialises Analyze object from a Method object with by-residue results""" try: self.residxs = resobj.reslist self.resobj = resobj # Analysis ignores errors so far # Cumulative resfracs = 3D-array[chunk, resfrac, time] self.resfracs = np.reshape(resobj.resfracs[:,:,0], (1, len(resobj.resfracs), len(resobj.resfracs[0]))) self.c_resfracs = np.copy(self.resfracs) # Byframe PFs = 2D-array[residue, PFs] self.pf_byframe = np.copy(resobj.pf_byframe) if type(resobj) is Methods.Radou: self.lnpf_byframe = np.copy(resobj.lnpf_byframe) # Cumulative PFs = 2D-array[chunk, PFs] self.pfs = np.reshape(resobj.pfs[:,0], (1, len(resobj.pfs))) if type(resobj) is Methods.Radou: self.lnpfs = np.reshape(resobj.lnpfs[:,0], (1, len(resobj.lnpfs))) self.c_pfs = np.copy(self.pfs) if type(resobj) is Methods.Radou: self.c_lnpfs = np.copy(self.lnpfs) # Cumulative n_frames = 1D-array[n_frames] self.n_frames = np.atleast_1d(resobj.n_frames) self.c_n_frames = np.copy(self.n_frames) # Topology & rates self.rates = resobj.rates self.top = top self.resnums = np.asarray([ self.top.residue(i).resSeq for i in self.residxs ]) except AttributeError: raise Functions.HDX_Error("Error when copying results from prediction to analysis objects - have you made any HDX predictions yet?") self.params = resobj.params try: self.params.update(extra_params) except (TypeError, ValueError): print("Couldn't load extra parameters for analysis (maybe they weren't provided?).\nUsing previous parameters from %s object." % resobj) def __add__(self, other): """Add resfracs, pfs and n_frames from a second results object and update cumulative sums. Usage: __add__(self, other)""" if isinstance(other, Analyze): # try: if not all((np.array_equal(self.residxs, other.residxs), np.array_equal(self.rates, other.rates))): print("Reslist or rates of added Analyze objects differ. Not adding them!") return self new = copy.deepcopy(self) # Add n_frames new.n_frames = np.append(new.n_frames, other.n_frames) new.c_n_frames = np.cumsum(new.n_frames) # Calc running ave of PFs = 2D-array[chunk, PFs] new.pf_byframe = np.concatenate((new.pf_byframe, other.pf_byframe), axis=1) new.pfs = np.concatenate((new.pfs, other.pfs), axis=0) _ = np.copy(new.pfs) for frames, curr_pf in zip(new.n_frames, _): curr_pf *= frames new.c_pfs = np.cumsum(_, axis=0) for tot_frames, tot_pf in zip(new.c_n_frames, new.c_pfs): tot_pf /= tot_frames # new.c_lnpfs should be calculated from new.lnpf_byframe if type(self.resobj) is Methods.Radou: new.lnpf_byframe = np.concatenate((new.lnpf_byframe, other.lnpf_byframe), axis=1) new.lnpfs = np.concatenate((new.lnpfs, other.lnpfs), axis=0) new.c_lnpfs = np.append(new.c_lnpfs, np.mean(new.lnpf_byframe, axis=1)[np.newaxis,:], axis=0) # Calc running ave of resfracs = 3D-array[chunk, resfrac, time] new.resfracs = np.concatenate((new.resfracs, other.resfracs), axis=0) _ = np.zeros(new.resfracs[0].shape) # Redo resfrac calculation based on running average of pfs # N.B. Due to the exponential this is NOT just an average of the resfrac blocks if type(self.resobj) is Methods.Radou: for i2, t in enumerate(new.params['times']): def _residue_fraction_lnpf(lnpf, k, time=t): return 1 - np.exp((-k / np.exp(lnpf)) * time) for i1, curr_frac in enumerate(map(_residue_fraction_lnpf, new.c_lnpfs[-1], new.rates)): _[i1,i2] = curr_frac else: for i2, t in enumerate(new.params['times']): def _residue_fraction(pf, k, time=t): return 1 - np.exp((-k / pf) * time) for i1, curr_frac in enumerate(map(_residue_fraction, new.c_pfs[-1], new.rates)): _[i1,i2] = curr_frac new.c_resfracs = np.concatenate((new.c_resfracs, np.reshape(_, (1, len(new.residxs), len(new.params['times'])))), axis=0) return new # except AttributeError: # raise Functions.HDX_Error("Error when adding analysis objects - have you made any HDX predictions yet?") else: return self def __getstate__(self): """Set state of object for pickling. Additional attributes can be removed here""" odict = self.__dict__.copy() for k1 in ['resobj']: # Results object try: for k2 in ['top']: # topology del odict[k1].__dict__[k2] except KeyError: pass return odict def __setstate__(self, d): """Set state of object after pickling. Additional attributes can be added here""" # This will read in a single topology for the whole analysis. # It may have attributes that differ from those in self.top # e.g. for cis-prolines. These should be recalculated if needed # The pfs/rates/fracs in the results object would be correct though. self.__dict__ = d if os.path.exists(self.params['outprefix']+"topology.pkl"): try: self.resobj.top = pickle.load(open(self.params['outprefix']+"topology.pkl", 'rb')) except (IOError, EOFError): raise Functions.HDX_Error("Can't read cached topology file %s. "\ "Re-run calculation after removing the file." \ % (self.params['outprefix']+"topology.pkl")) else: self.resobj.top = self.top def _windowed_average(self, data, window): """Calculate average of non-overlapping windows (size=window) of a set of data. Usage: _windowed_average(data, window)""" blocks = len(data)/window aves = [] for start_i in range(int(blocks)): aves.append(np.mean(data[(start_i * window):(start_i * window) + window])) return np.asarray(aves) def _cumulative_average(self, data, blocksizes): """Calculate cumulative averages of a set of data at provided intervals Data & blocksizes should be 1D arrays (or axis-slices of larger arrays) Usage: _cumulative_average(data, blocksizes)""" if not len(data) == np.sum(blocksizes): raise Functions.HDX_Error("Unable to cumulatively average data of length %d using total blocksizes %d" \ % (len(data), int(np.sum(blocksizes)))) aves = np.zeros(len(blocksizes)) blocksum = np.cumsum(blocksizes) for i, block in enumerate(blocksum): aves[i] = np.mean(data[:block]) return aves def read_segfile(self): # segfile should contain at most 3 columns: startres, endres, chain_idx try: self.segres = np.loadtxt(self.params['segfile'], dtype=[ ('segres', np.int32, (2,)), ('chain', np.int32, (1)) ]) # ResIDs will be converted to indices with dictionary in segments function with open(self.params['logfile'], 'a') as f: f.write("Chain indices read from segments file - segment averaging will be performed on defined chains\n") self._single_chain = False except IndexError: tmp_segres = np.loadtxt(self.params['segfile'], dtype=np.int32, usecols=(0,1)) with open(self.params['logfile'], 'a') as f: f.write("Chain indices NOT read from segments file - segment averaging will be performed on first chain\n") self.segres = np.zeros(len(tmp_segres), dtype=[ ('segres', np.int32, (2,)), ('chain', np.int32, (1)) ]) self.segres['segres'] = tmp_segres self._single_chain = True except ValueError: raise Functions.HDX_Error("There's a problem reading the values in your segments file: %s \n" "File should contain either 2 or 3 columns of integers, separated by spaces.\n" "Format: start_residue end_residue chain_index[optional]") def read_expfile(self): """Reads an experimental data file for comparison to predicted data. Experimental results file should be formatted as follows: Seg_start Seg_end Time_1 Time_2 Time_3 ... [Time_n] This is the same format as the printout of predicted results""" # Check I'm not loading in too many timepoints try: if self._single_chain: expt = np.loadtxt(self.params['expfile'], dtype=[ ('segres', np.int32, (2,)), ('fracs', np.float64, (len(self.params['times']),)) ]) else: expt = np.loadtxt(self.params['expfile'], dtype=[ ('segres', np.int32, (2,)), ('chain', np.int32, (1)), ('fracs', np.float64, (len(self.params['times']),)) ]) except ValueError as err: raise Functions.HDX_Error("There's a problem with the experimental data file. It has too few timepoints. \n" \ "This can be caused if you've defined chain indices in the segments file but not in the experimental data file.\n" \ "The error while reading was: %s" % str(err)) # Now check I'm not loading in too few timepoints try: if self._single_chain: expt = np.loadtxt(self.params['expfile'], dtype=[ ('segres', np.int32, (2,)), ('fracs', np.float64, (len(self.params['times']) + 1,)) ]) else: expt = np.loadtxt(self.params['expfile'], dtype=[ ('segres', np.int32, (2,)), ('chain', np.int32, (1)), ('fracs', np.float64, (len(self.params['times']) + 1,)) ]) raise Functions.HDX_Error("There's a problem with the experimental data file. It has too many timepoints. \n" "This can be caused if you've defined chain indices in the experimental data file but not in the segments file.\n") except ValueError: pass # Check expt = predicted if self._single_chain: if np.array_equal(self.segres['segres'], expt['segres']): self.expfracs = expt['fracs'] else: raise Functions.HDX_Error("The experimental segments read from %s and predicted segments read from %s don't match!" % (self.params['segfile'], self.params['expfile'])) else: if all( (np.array_equal(self.segres['segres'], expt['segres']), np.array_equal(self.segres['chain'], expt['chain'])) ): self.expfracs = expt['fracs'] else: raise Functions.HDX_Error("The experimental segments/chains read from %s and predicted segments/chains read from %s don't match!" % (self.params['segfile'], self.params['expfile'])) def segments(self, top): """Function to average residue deuterated fractions over a given set of peptide segments. The first residue in each segment will not be included in the averaging, as it is assumed to be 100% back-exchanged during analysis. Residue indices provided in the given list are converted to residue IDs from the given trajectory's topology. Currently this remumbering will only work for single chain topologies with sequential numbering. If a residue in a segment is not found (e.g. a truncated N/C terminus), the next residue is chosen as the start/end point instead. Writes info on skipped residues to logfile "HDX_analysis.log" by default and the segment/average deuteration information to "Segment_average_fractions.dat" Usage: segments(traj, residxs, fracs, segfile_name, times, [ log="HDX_analysis.log" ]) Returns: [n_segs, 2] 2D numpy array of segment start/end residue IDs, [n_segs, n_times] 2D numpy array of segment deuterated fractions at each timepoint""" res2idx = {} with open(self.params['logfile'], 'a') as f: f.write("Now converting residue numbers to indices for segment averaging:\n") for idx, res in enumerate(top.residues): if res.is_protein: res2idx[(res.resSeq, res.chain.index)] = idx # res2idx[res.resSeq] = idx # Only works for single chain or sequential numbers, no re-use of resnums else: with open(self.params['logfile'], 'a') as f: f.write("Skipping residue: %s, not a protein residue\n" % res) self.read_segfile() try: aves = np.zeros((len(self.resfracs), len(self.segres), len(self.params['times']))) stddevs = np.zeros((len(self.resfracs), len(self.segres), len(self.params['times']))) c_aves = np.zeros((len(self.c_resfracs), len(self.segres), len(self.params['times']))) except TypeError: aves = np.zeros((len(self.resfracs), len(self.segres), 1)) stddevs = np.zeros((len(self.resfracs), len(self.segres), 1)) c_aves = np.zeros((len(self.c_resfracs), len(self.segres), 1)) self.params['times'] = [self.params['times']] # Info for 'skip_first' if self.params['skip_first']: for i1, (seg, chain) in enumerate(self.segres): with open(self.params['logfile'], 'a') as f: try: f.write("'Skip_first' is set. Not including residue %s in averaging for segment %s-%s, chain idx %s.\n" \ % (top.residue(res2idx[(seg[0], chain)]), seg[0], seg[1], chain)) except KeyError: _ = top.chain(chain).residue(0) f.write("'Skip_first' is set. Not including residue %s in averaging for segment %s-%s, chain idx %s.\n" \ % (_, seg[0], seg[1], chain)) else: for i1, (seg, chain) in enumerate(self.segres): with open(self.params['logfile'], 'a') as f: try: f.write("'Skip_first' is NOT set. Including residue %s in averaging for segment %s-%s, chain idx %s.\n" \ % (top.residue(res2idx[(seg[0], chain)]), seg[0], seg[1], chain)) except KeyError: _ = top.chain(chain).residue(0) f.write("'Skip_first' is NOT set. Including residue %s in averaging for segment %s-%s, chain idx %s.\n" \ % (_, seg[0], seg[1], chain)) # Calc average fractions for each chunk for i0, chunk, errchunk in zip(range(len(self.resfracs)), self.resfracs, self.resfrac_STDs): for i2, t in enumerate(self.params['times']): for i1, (seg, chain) in enumerate(self.segres): try: start = res2idx[(seg[0], chain)] except KeyError: with open(self.params['logfile'], 'a') as f: f.write("Didn't find residue %s, chain %s in protein. Using residue %s, chain %s as startpoint instead.\n" \ % (seg[0], chain, top.chain(chain).residue(0), chain)) start = top.chain(chain).residue(0).index try: end = res2idx[(seg[1], chain)] except KeyError: with open(self.params['logfile'], 'a') as f: f.write("Didn't find residue %s, chain %s in protein. Using residue %s, chain %s as endpoint instead.\n" \ % (seg[1], chain, top.chain(chain).residue(-1), chain)) end = top.chain(chain).residue(-1).index if self.params['skip_first']: idxs = np.where(np.logical_and( self.residxs > start, self.residxs <= end ))[0] # > start skips else: idxs = np.where(np.logical_and( self.residxs >= start, self.residxs <= end ))[0] # >= start incs aves[i0, i1, i2] = np.mean(chunk[idxs, i2]) stddevs[i0, i1, i2] = np.sqrt(np.sum(errchunk[idxs, i2]**2)) / len(np.nonzero(idxs)) stderrs = np.copy(stddevs) for i0, a in enumerate(stderrs): a /= np.sqrt(self.n_frames[i0]) # Do the same for cumulative resfracs for i0, cchunk in enumerate(self.c_resfracs): for i2, t in enumerate(self.params['times']): for i1, (seg, chain) in enumerate(self.segres): try: start = res2idx[(seg[0], chain)] except KeyError: with open(self.params['logfile'], 'a') as f: f.write("Cumulative segment averages: " "Didn't find residue %s, chain %s in protein. Using residue %s, chain %s as startpoint instead.\n" \ % (seg[0], chain, top.chain(chain).residue(0), chain)) start = top.chain(chain).residue(0).index try: end = res2idx[(seg[1], chain)] except KeyError: with open(self.params['logfile'], 'a') as f: f.write("Cumulative segment averages: " "Didn't find residue %s, chain %s in protein. Using residue %s, chain %s as endpoint instead.\n" \ % (seg[0], chain, top.chain(chain).residue(-1), chain)) end = top.chain(chain).residue(-1).index if self.params['skip_first']: idxs = np.where(np.logical_and( self.residxs > start, self.residxs <= end ))[0] # > start skips else: idxs = np.where(np.logical_and( self.residxs >= start, self.residxs <= end ))[0] # >= start incs c_aves[i0, i1, i2] = np.mean(cchunk[idxs, i2]) # Write average fractions file for each chunk # N.B Again, these will NOT add up to the c_segfracs value, which is recalc'd using # the exponential decay and the mean PF at a given timepoint (not just a straight ave # of the block averaged resfracs) if self._single_chain: for chunkave in aves: if os.path.exists(self.params['outprefix']+"Segment_average_fractions.dat"): filenum = len(glob.glob(self.params['outprefix']+"Segment_average_fractions*")) np.savetxt(self.params['outprefix']+"Segment_average_fractions_chunk_%d.dat" % (filenum+1), np.hstack((self.segres['segres'], chunkave)), fmt='%6d %6d ' + '%8.5f '*len(self.params['times']), header="Res1 Res2 Times / min: %s" \ % ' '.join([ str(t) for t in self.params['times'] ])) else: np.savetxt(self.params['outprefix']+"Segment_average_fractions.dat", np.hstack((self.segres['segres'], chunkave)), fmt='%6d %6d ' + '%8.5f '*len(self.params['times']), header="Res1 Res2 Times / min: %s" \ % ' '.join([ str(t) for t in self.params['times'] ])) else: for chunkave in aves: if os.path.exists(self.params['outprefix']+"Segment_average_fractions.dat"): filenum = len(glob.glob(self.params['outprefix']+"Segment_average_fractions*")) np.savetxt(self.params['outprefix']+"Segment_average_fractions_chunk_%d.dat" % (filenum+1), np.hstack((self.segres['segres'], self.segres['chain'].reshape((len(self.segres['segres']),1)), chunkave)), fmt='%6d %6d %6d ' + '%8.5f '*len(self.params['times']), header="Res1 Res2 Chain Times / min: %s" \ % ' '.join([ str(t) for t in self.params['times'] ])) else: np.savetxt(self.params['outprefix']+"Segment_average_fractions.dat", np.hstack((self.segres['segres'], self.segres['chain'].reshape((len(self.segres['segres']),1)), chunkave)), fmt='%6d %6d %6d ' + '%8.5f '*len(self.params['times']), header="Res1 Res2 Chain Times / min: %s" \ % ' '.join([ str(t) for t in self.params['times'] ])) with open(self.params['logfile'], 'a') as f: f.write("Segment averaging complete.\n") return aves, c_aves, stddevs, stderrs def check_blocksize(self): """Evaluate convergence of standard error in the mean for PFs. By-frame PFs are successively block averaged at every possible block size (1 -> n_frames-1), the SEM calculated across block averages, and saved to self.tot_SEMs""" # self.tot_SEMs = np.zeros((len(self.pf_byframe)-1, 2), dtype=[np.int32, np.float64]) # Array(window, SEM) valid_windows = [] for window in range(1, int((self.c_n_frames[-1] / 2)) + 1): if self.c_n_frames[-1] % window == 0: valid_windows.append(window) with open(self.params['logfile'], 'a') as f: f.write("Total frames divisible by: %s,\nEvaluating standard error in total PF at these windows.\n"\ % " ".join([ str(i) for i in valid_windows ])) valid_windows = np.asarray(valid_windows, dtype=np.int32) if len(valid_windows) > 0: # 1 or prime frames self.tot_SEMs = np.zeros((len(valid_windows), 2)) else: self.tot_SEMs = np.zeros((1, 2)) with np.errstate(invalid='ignore'): # Ignores infs in stderr calc for i, window in enumerate(valid_windows): self.tot_SEMs[i, 0] = window self.tot_SEMs[i, 1] = stderr(self._windowed_average(np.sum(self.pf_byframe, axis=0), window)) self.norm_tot_SEMs = np.copy(self.tot_SEMs) self.norm_tot_SEMs[:,1] /= np.max(self.tot_SEMs[:,1]) # Normalised to max # Array(res, window, SEM) if len(valid_windows) > 0: # 1 or prime frames self.res_SEMs = np.zeros((len(self.resnums), len(valid_windows), 2)) self.res_STDs = np.zeros((len(self.resnums), len(valid_windows), 2)) else: self.res_SEMs = np.zeros((len(self.resnums), 1, 2)) self.res_STDs = np.zeros((len(self.resnums), 1, 2)) with np.errstate(invalid='ignore'): # Ignores infs in stderr calc for j, res in enumerate(self.resnums): for i, window in enumerate(valid_windows): self.res_SEMs[j,i,0] = window self.res_SEMs[j,i,1] = stderr(self._windowed_average(self.pf_byframe[j], window)) self.res_STDs[j,i,1] = np.std(self._windowed_average(self.pf_byframe[j], window), ddof=1) self.norm_res_SEMs = np.copy(self.res_SEMs) for res in self.norm_res_SEMs: res[:,1] /= np.max(res[:,1]) # Normalised to max def propagate_errors(self): """Propagate errors for individual blocks. Save as std errors for PFs, resfracs & segfracs""" self.pf_stds = np.zeros(self.pfs.shape) self.pf_SEMs = np.zeros(self.pfs.shape) startframe = 0 for i, endframe in enumerate(self.c_n_frames): self.pf_stds[i] = np.std(self.pf_byframe[:,startframe:endframe], axis=1, ddof=1) self.pf_SEMs[i] = stderr(self.pf_byframe[:,startframe:endframe], axis=1) startframe += self.n_frames[i] self.resfrac_STDs =
np.zeros(self.resfracs.shape)
numpy.zeros
import numpy as np, matplotlib.pyplot as plt from matplotlib.cm import rainbow from matplotlib.cm import YlGn as cmap_gradient from matplotlib import colors, cm #from PreFRBLE.convenience import * from PreFRBLE.label import * from PreFRBLE.likelihood import * #from PreFRBLE.physics import * #from PreFRBLE.parameter import * ############################################################################ ############################ PLOT FIGURES ################################## ############################################################################ def PlotBayes( x=np.ones(1), bayes=np.ones(1), title=None, label=None, width=1.0, color='blue', show_values=False, ax=None, posterior=False ): """ Barplot of bayes factor or posterior likelihood for values of parameter x """ if ax is None: fig, ax = plt.subplots( ) ax.bar(x, bayes/bayes.max(), width, color=color ) ax.set_title( title ) ax.set_yscale('log') ax.set_xlabel( label ) if posterior: ax.set_ylabel(r"$P/P_{\rm max}$") else: ax.set_ylabel(r"$\mathcal{B}/\mathcal{B}_{\rm max}$") # ax.set_ylabel(r"$\mathcal{B} = \prod L / L_0$") if show_values: ## print value on top of each bar, .... doesnt work ... shift = bayes.max()/bayes.min()/10 for xx, b in zip( x, bayes ): ax.text( xx, b*shift, str(b), color=color, fontweight='bold' ) ### assure that there are ticks at y axis lim = ax.get_ylim() ax.set_ylim(lim[0]*0.5, lim[1]*2) def PlotBayes2D( bayes=[], dev=[], x=[], y=[], xlabel='', ylabel='', P_min=1e-5, graphs=False, plane=False, ax=None, posterior=False ): """ Plot 2D distribution of Bayes factors for joint analysis of two parameters x and y Parameters ---------- x : 1D array-like values of first parameter y : 1D array-like values of second parameter bayes : 2D array-like, shape( N_y, N_x ) bayes factors for tuples of (x,y) dev : 2D array-like, shape( N_y, N_x ), optional deviation of log10 of bayes factors, only plotted for graphs=True graphs : boolean indicate whether results should be drawn as graphs plane : boolean indicate whether results should be drawn as plane. Do no use together with graphs """ if ax is None: fig, ax = plt.subplots() if posterior: P_label = r"P/P_{\rm max}" else: P_label = r"\mathcal{B}/\mathcal{B}_{\rm max}" # P_label = r"\mathcal{B} = \prod L / L_0" if graphs: for ib, (b, Y) in enumerate( zip( bayes/bayes.max(), y ) ): if len(dev) > 0: yerr = np.array([ b- 10.**( np.log10(b) - dev[ib]), 10.**(
np.log10(b)
numpy.log10
import pygame import numpy as np import colorsys from PyEvolv.assets.font import FONT, get_font from typing import Dict, List, Tuple def display_creature(f): def inner(self, gameDisplay: pygame.Surface, creatures: List) -> None: pixels_per_relative = self.display_height / self.relatives_on_screen for creature in creatures: type, x, y, color, food_color, size, rotation, sensor_1, sensor_2, sensor_3 = creature() if self.relative_x <= x <= self.relative_x + self.relatives_on_screen and self.relative_y <= y <= self.relative_y + self.relatives_on_screen: size = int(size*pixels_per_relative) surf_size = max(size, int(self.constants["max_sensor_length"]*pixels_per_relative)) creature_surf = pygame.Surface((2*surf_size, 2*surf_size), pygame.SRCALPHA) creature_surf = creature_surf.convert_alpha() color = tuple(round(i * 255) for i in colorsys.hsv_to_rgb(color[0], color[1], color[2])) food_color = tuple(round(i * 255) for i in colorsys.hsv_to_rgb(food_color[0], food_color[1], food_color[2])) f(creature_surf, color, food_color, size, surf_size) pygame.draw.line(creature_surf, (0,0,0), (surf_size, surf_size), (int(surf_size + (pixels_per_relative * sensor_1[0] * np.cos(np.radians(sensor_1[1])))), int(surf_size + (pixels_per_relative * sensor_1[0] * np.sin(np.radians(sensor_1[1]))))) ) pygame.draw.line(creature_surf, (0,0,0), (surf_size, surf_size), (int(surf_size + (pixels_per_relative * sensor_2[0] * np.cos(np.radians(sensor_2[1])))), int(surf_size + (pixels_per_relative * sensor_2[0] * np.sin(
np.radians(sensor_2[1])
numpy.radians
# from tqdm.notebook import tqdm as tqdm_notebook # import os # import glob import pickle import numpy as np from src.support_class import * from matplotlib import pyplot as plt from matplotlib import colors as mcolors from scipy import linalg from codeStore import support_fun as spf colors11 = plt.get_cmap('Blues') colors12 = plt.get_cmap('Reds') colors1 = np.vstack((colors11(np.linspace(1, 0.2, 256)), colors12(np.linspace(0.4, 1, 256)))) cmpBR = mcolors.LinearSegmentedColormap.from_list('my_colormap', colors1) # generate the mobility matrix of the microswimmer from pickle file, # with force and torque free conditions, # ignore head tail interaction. def fun_m_rot(mbase, R): ab = mbase[0:3, 0:3] bb1 = mbase[3:6, 0:3] bb2 = mbase[0:3, 3:6] cb = mbase[3:6, 3:6] m2 = np.zeros_like(mbase) m2[0:3, 0:3] = np.dot(R, np.dot(ab, R.T)) m2[3:6, 0:3] = np.dot(R, np.dot(bb1, R.T)) * np.linalg.det(R) m2[0:3, 3:6] = np.dot(R, np.dot(bb2, R.T)) * np.linalg.det(R) m2[3:6, 3:6] = np.dot(R, np.dot(cb, R.T)) return m2 def cross_matrix(v): assert v.shape == (3,) m = np.zeros((3, 3)) m[0, 1] = -v[2] m[0, 2] = v[1] m[1, 0] = v[2] m[1, 2] = -v[0] m[2, 0] = -v[1] m[2, 1] = v[0] return m def fun_rbc_rtc(rb1, rb2, ch, ph, dist_hs, tail_ini_beta, rotM): trs = rb1 * rb2 / np.sqrt((rb1 * np.sin(tail_ini_beta)) ** 2 + (rb2 * np.cos(tail_ini_beta)) ** 2) tl = 2 * rb1 + ch * ph + dist_hs rbc_base = np.array((0, 0, tl / 2 - rb1)) rtc = rbc_base - np.array((0, 0, rb1 + dist_hs + ch * ph / 2)) head_end0 = rbc_base - np.array((0, 0, trs)) rbc = np.dot(rotM.T, (rbc_base - head_end0)) + head_end0 return rbc, rtc def fun_mfull_ufull_core(mhead_base, mtail, dist_hs, beta, rotM, wbc, wtc, rb1, rb2, ch, ph, body_size_fct=1, tail_size_fct=1, ): beta_norm = np.array([0, 1, 0]) rotM_beta = get_rot_matrix(norm=beta_norm, theta=-beta) mhead = fun_m_rot(fun_m_rot(mhead_base, rotM_beta), rotM.T) rbc, rtc = fun_rbc_rtc(rb1, rb2, ch, ph, dist_hs, beta, rotM) rc = rbc # current version the center of microswimmer is at the center of head. drbc = rbc - rc drtc = rtc - rc mhead[0:3, 0:3] = mhead[0:3, 0:3] * body_size_fct ** 1 mhead[0:3, 3:6] = mhead[0:3, 3:6] * body_size_fct ** 2 mhead[3:6, 0:3] = mhead[3:6, 0:3] * body_size_fct ** 2 mhead[3:6, 3:6] = mhead[3:6, 3:6] * body_size_fct ** 3 mtail[0:3, 0:3] = mtail[0:3, 0:3] * tail_size_fct ** 1 mtail[0:3, 3:6] = mtail[0:3, 3:6] * tail_size_fct ** 2 mtail[3:6, 0:3] = mtail[3:6, 0:3] * tail_size_fct ** 2 mtail[3:6, 3:6] = mtail[3:6, 3:6] * tail_size_fct ** 3 # generate M matrix with the force- and torque-free conditions. mfull = np.zeros((18, 18)) mfull[0: 6, 0: 6] = mhead mfull[6:12, 6:12] = mtail mfull[0: 3, 12:15] = -np.eye(3) mfull[0: 3, 15:18] = cross_matrix(drbc) mfull[3: 6, 15:18] = -np.eye(3) mfull[6: 9, 12:15] = -np.eye(3) mfull[6: 9, 15:18] = cross_matrix(drtc) mfull[9:12, 15:18] = -np.eye(3) mfull[12:15, 0: 3] = -np.eye(3) mfull[12:15, 6: 9] = -np.eye(3) mfull[15:18, 0: 3] = -cross_matrix(drbc) mfull[15:18, 3: 6] = -np.eye(3) mfull[15:18, 6: 9] = -cross_matrix(drtc) mfull[15:18, 9:12] = -np.eye(3) # generate boundary conditions. norm_head = -np.dot(rotM.T, rotM_beta)[:, 2] norm_tail = np.array((0, 0, 1)) ufull = np.zeros(18) ufull[0: 3] = 0 ufull[3: 6] = wbc * norm_head ufull[6: 9] = 0 ufull[9:12] = wtc * norm_tail mobility_kwargs = {'rbc': rbc, 'rtc': rtc, 'rc': rc, 'norm_head': norm_head, 'norm_tail': norm_tail, } return mfull, ufull, mobility_kwargs def fun_position_kwargs(case_kwargs): beta_norm = np.array([0, 1, 0]) dist_hs = case_kwargs['dist_hs'] beta = case_kwargs['tail_ini_beta'] theta = case_kwargs['tail_ini_theta'] phi = case_kwargs['tail_ini_phi'] psi = case_kwargs['tail_ini_psi'] rb1 = case_kwargs['rs1'] rb2 = case_kwargs['rs2'] ch = case_kwargs['ch'] ph = case_kwargs['ph'] rotM_beta = get_rot_matrix(norm=beta_norm, theta=-beta) rotM = Rloc2glb(theta, phi, psi) rbc, rtc = fun_rbc_rtc(rb1, rb2, ch, ph, dist_hs, beta, rotM) rc = rbc # current version the center of microswimmer is at the center of head. norm_head = -np.dot(rotM.T, rotM_beta)[:, 2] norm_tail = np.array((0, 0, 1)) position_kwargs = {'rbc': rbc, 'rtc': rtc, 'rc': rc, 'norm_head': norm_head, 'norm_tail': norm_tail, } return position_kwargs def fun_ut_un(u, w): ut = np.dot(u, w) * w / (np.linalg.norm(w) ** 2) un = u - ut return ut, un def mobility_pickle(pickle_dir, beta, theta, phi, psi, dist_hs, wbc, wtc, body_size_fct=1, tail_size_fct=1, ): with open(pickle_dir, 'rb') as handle: tpick = pickle.load(handle) problem_kwargs = tpick['problem_kwargs'] rb1 = problem_kwargs['rs1'] rb2 = problem_kwargs['rs2'] ch = problem_kwargs['ch'] ph = problem_kwargs['ph'] mhead_base, mtail = tpick['Mhead'], tpick['Mtail'] rotM = Rloc2glb(theta, phi, psi) mfull, ufull, mobility_kwargs = \ fun_mfull_ufull_core(mhead_base, mtail, dist_hs, beta, rotM, wbc, wtc, rb1, rb2, ch, ph, body_size_fct=body_size_fct, tail_size_fct=tail_size_fct) mobility_kwargs['rb1'] = rb1 mobility_kwargs['rb2'] = rb2 mobility_kwargs['ch'] = ch mobility_kwargs['ph'] = ph return mfull, ufull, mobility_kwargs def apx_resistance_pickle(pickle_dir, beta, theta, phi, psi, dist_hs, wbc, wtc): # decoupled method, resistance with open(pickle_dir, 'rb') as handle: tpick = pickle.load(handle) problem_kwargs = tpick['problem_kwargs'] rb1 = problem_kwargs['rs1'] rb2 = problem_kwargs['rs2'] ch = problem_kwargs['ch'] ph = problem_kwargs['ph'] mhead_base, mtail = tpick['Mhead'], tpick['Mtail'] # Rhead_base = np.linalg.inv(mhead_base) Rhead_base = np.diagflat(np.diag(Rhead_base)) t1 = (Rhead_base[0, 0] + Rhead_base[1, 1]) / 2 Rhead_base[0, 0] = t1 Rhead_base[1, 1] = t1 t1 = (Rhead_base[3, 3] + Rhead_base[4, 4]) / 2 Rhead_base[3, 3] = t1 Rhead_base[4, 4] = t1 Rtail = np.linalg.inv(mtail) beta_norm = np.array([0, 1, 0]) rotM_beta = get_rot_matrix(norm=beta_norm, theta=-beta) rotM = Rloc2glb(theta, phi, psi) Rhead = fun_m_rot(fun_m_rot(Rhead_base, rotM_beta), rotM.T) Ab_rt = Rhead[0:3, 0:3] Cb_rt = Rhead[3:6, 3:6] At = np.diagflat(np.diag(Rtail[0:3, 0:3])) t1 = (At[0, 0] + At[1, 1]) / 2 At[0, 0] = t1 At[1, 1] = t1 Bt = np.diagflat(np.diag((Rtail[0:3, 3:6] + Rtail[3:6, 0:3]) / 2)) t1 = (Bt[0, 0] + Bt[1, 1]) / 2 * 0 Bt[0, 0] = t1 Bt[1, 1] = t1 Ct = np.diagflat(np.diag(Rtail[3:6, 3:6])) t1 = (Ct[0, 0] + Ct[1, 1]) / 2 Ct[0, 0] = t1 Ct[1, 1] = t1 # rbc, rtc = fun_rbc_rtc(rb1, rb2, ch, ph, dist_hs, beta, rotM) rc = rbc # current version the center of microswimmer is at the center of head. # drbc = rbc - rc drtc = rtc - rc dtc = cross_matrix(drtc) norm_head = -np.dot(rotM.T, rotM_beta)[:, 2] norm_tail = np.array((0, 0, 1)) # Rfull = np.zeros((6, 6)) Rfull[0:3, 0:3] = Ab_rt + At Rfull[0:3, 3:6] = - np.dot(At, dtc) Rfull[3:6, 0:3] = + np.dot(dtc, At) Rfull[3:6, 3:6] = Cb_rt + Ct + np.dot(dtc, Bt) - np.dot(Bt, dtc) - np.dot(dtc, np.dot(At, dtc)) FFull = np.zeros(6) FFull[0:3] = -np.dot(Bt, wtc * norm_tail) FFull[3:6] = -np.dot(Cb_rt, wbc * norm_head) - \ np.dot(Ct, wtc * norm_tail) - np.dot(dtc, np.dot(Bt, wtc * norm_tail)) resistance_kwargs = {'rbc': rbc, 'rtc': rtc, 'rc': rc, 'norm_head': norm_head, 'norm_tail': norm_tail, } return Rfull, FFull, resistance_kwargs def fun_alpha_bctc(model, wbc, wtc): mfull, ufull, mobility_kwargs = model.mobility_matrix(wbc, wtc) ffull = linalg.solve(mfull, ufull) pb, pt = mobility_kwargs['norm_head'], mobility_kwargs['norm_tail'] Uc, Wc, Wbc = ffull[12:15], ffull[15:18], wbc * pb Wg = Wc + Wbc alpha_b = np.arccos(np.dot(pb, Wg) / np.linalg.norm(pb) / np.linalg.norm(Wg)) alpha_b = np.pi - alpha_b if alpha_b > np.pi / 2 else alpha_b alpha_t = np.arccos(np.dot(pt, Wg) / np.linalg.norm(pt) / np.linalg.norm(Wg)) alpha_t = np.pi - alpha_t if alpha_t > np.pi / 2 else alpha_t return alpha_b, alpha_t def fun_kappa_alpha(model, wbc, wtc): alpha_b, alpha_t = fun_alpha_bctc(model, wbc, wtc) kappa_alpha = np.abs(alpha_b / alpha_t) return kappa_alpha def fun_hook_torque(model, wbc, wtc): mfull, ufull, mobility_kwargs = model.mobility_matrix(wbc, wtc) ffull = linalg.solve(mfull, ufull) rb1 = mobility_kwargs['rb1'] rbc = mobility_kwargs['rbc'] pb = mobility_kwargs['norm_head'] ds = rbc + rb1 * pb hookT = ffull[3:6] - np.cross(ds, ffull[0:3]) return hookT def plot_3D_Traj(axi, tplt, theta_list): axi.plot(np.zeros(1), np.zeros(1), np.zeros(1), ' ') axi.plot(tplt[:, 0], tplt[:, 1], tplt[:, 2], ' ') spf.set_axes_equal(axi) spf.colorline3d(tplt, theta_list / np.pi, ax0=axi, clb_title='$\\theta / \\pi$', cmap=plt.get_cmap('viridis')) axi.scatter(axi.get_xlim()[0], np.zeros(1), np.zeros(1), marker='.', c='k') axi.scatter(np.zeros(1), axi.get_ylim()[1], np.zeros(1), marker='.', c='k') axi.scatter(np.zeros(1), np.zeros(1), axi.get_zlim()[0], marker='.', c='k') axi.plot(np.ones_like(theta_list) * axi.get_xlim()[0], tplt[:, 1], tplt[:, 2], '--', color='grey') axi.plot(tplt[:, 0], np.ones_like(theta_list) * axi.get_ylim()[1], tplt[:, 2], '--', color='grey') axi.plot(tplt[:, 0], tplt[:, 1], np.ones_like(theta_list) * axi.get_zlim()[0], '--', color='grey') axi.view_init(25, -60) axi.plot(np.zeros(1), np.zeros(1), np.zeros(1), marker='s', c='k') return True def plot_color_line(axi, tx, ty, xlabel, ylabel, c, vmin, vmax, cmap=cmpBR, xscale0='linear', yscale0='linear', s=4, marker='o', label=''): axi.plot(tx, ty, linestyle='None') # axi.relim() # txlim0 = axi.get_xlim() # tylim0 = axi.get_ylim() # print(tylim0, ty.min()) sc = axi.scatter(tx, ty, vmin=vmin, vmax=vmax, c=c, cmap=cmap, s=s, marker=marker, label=label) axi.set_xlabel(xlabel) axi.set_ylabel(ylabel) axi.set_xscale(xscale0) axi.set_yscale(yscale0) # axi.set_xlim(*txlim0) # axi.set_ylim(*tylim0) return sc def fun_cal_kwargs(Uc, Wc, wbc, pb, pt, kappa, mdf_alpha=True): Wbc = wbc * pb Wg = Wc + kappa * Wbc UcWg_t, UcWg_n = fun_ut_un(Uc, Wg) eta = np.arccos(np.dot(Uc, Wg) / np.linalg.norm(Uc) / np.linalg.norm(Wg)) alpha_b = np.arccos(np.dot(pb, Wg) / np.linalg.norm(pb) / np.linalg.norm(Wg)) alpha_t = np.arccos(np.dot(pt, Wg) / np.linalg.norm(pt) / np.linalg.norm(Wg)) if mdf_alpha: alpha_b = np.pi - alpha_b if alpha_b > np.pi / 2 else alpha_b alpha_t = np.pi - alpha_t if alpha_t > np.pi / 2 else alpha_t R = np.linalg.norm(UcWg_n) / np.linalg.norm(Wg) uc_par = np.sign(np.dot(Uc, Wg)) * np.linalg.norm(UcWg_t) cal_kwargs = {'Wg': Wg, 'eta': eta, 'alpha_b': alpha_b, 'alpha_t': alpha_t, 'R': R, 'uc_par': uc_par,} return cal_kwargs class DecouplingModel: def __init__(self, pickle_dir, beta_norm=np.array([0, 1, 0])): with open(pickle_dir, 'rb') as handle: tpick = pickle.load(handle) self._case_kwargs = tpick['problem_kwargs'] self._rb1 = self._case_kwargs['rs1'] self._rb2 = self._case_kwargs['rs2'] self._ch = self._case_kwargs['ch'] self._ph = self._case_kwargs['ph'] self._mhead_base = tpick['Mhead'] self._mtail_base = tpick['Mtail'] self._beta_norm = beta_norm self._beta = 0 self._theta = 0 self._phi = 0 self._psi = 0 self._dist_hs = 0 self._rotM_beta = np.eye(3) self._rotM = np.eye(3) @property def case_kwargs(self): return self._case_kwargs @property def rb1(self): return self._rb1 @property def rb2(self): return self._rb2 @property def ch(self): return self._ch @property def ph(self): return self._ph @property def mhead_base(self): return self._mhead_base @property def mtail_base(self): return self._mtail_base @property def beta_norm(self): return self._beta_norm @staticmethod def fun_ut_un(u, w): ut = np.dot(u, w) * w / (np.linalg.norm(w) ** 2) un = u - ut return ut, un @staticmethod def fun_MR_rot(mr_base, R): ab = mr_base[0:3, 0:3] bb1 = mr_base[3:6, 0:3] bb2 = mr_base[0:3, 3:6] cb = mr_base[3:6, 3:6] m2 = np.zeros_like(mr_base) m2[0:3, 0:3] = np.dot(R, np.dot(ab, R.T)) m2[3:6, 0:3] = np.dot(R, np.dot(bb1, R.T)) * np.linalg.det(R) m2[0:3, 3:6] = np.dot(R, np.dot(bb2, R.T)) * np.linalg.det(R) m2[3:6, 3:6] = np.dot(R, np.dot(cb, R.T)) return m2 @staticmethod def cross_matrix(v): assert v.shape == (3,) m = np.zeros((3, 3)) m[0, 1] = -v[2] m[0, 2] = v[1] m[1, 0] = v[2] m[1, 2] = -v[0] m[2, 0] = -v[1] m[2, 1] = v[0] return m @staticmethod def fun_rbc_rtc(rb1, rb2, ch, ph, dist_hs, tail_ini_beta, rotM): trs = rb1 * rb2 / np.sqrt((rb1 * np.sin(tail_ini_beta)) ** 2 + (rb2 * np.cos(tail_ini_beta)) ** 2) tl = 2 * rb1 + ch * ph + dist_hs rbc_base = np.array((0, 0, tl / 2 - rb1)) rtc = rbc_base - np.array((0, 0, rb1 + dist_hs + ch * ph / 2)) head_end0 = rbc_base - np.array((0, 0, trs)) rbc = np.dot(rotM.T, (rbc_base - head_end0)) + head_end0 return rbc, rtc def fun_position_kwargs(self): beta_norm = self.beta_norm rb1 = self.rb1 rb2 = self.rb2 ch = self.ch ph = self.ph beta = self._beta theta = self._theta phi = self._phi psi = self._psi dist_hs = self._dist_hs left_hand = self.case_kwargs['left_hand'] rotM_beta = get_rot_matrix(norm=beta_norm, theta=-beta) rotM = Rloc2glb(theta, phi, psi) rbc, rtc = self.fun_rbc_rtc(rb1, rb2, ch, ph, dist_hs, beta, rotM) rc = rbc # current version the center of microswimmer is at the center of head. if left_hand: norm_head = np.dot(rotM.T, rotM_beta)[:, 2] norm_tail = -
np.array((0, 0, 1))
numpy.array
from utils.speech_featurizers import SpeechFeaturizer from utils.text_featurizers import TextFeaturizer import pypinyin import numpy as np from augmentations.augments import Augmentation import random import tensorflow as tf import os class AM_DataLoader(): def __init__(self, config_dict,training=True): self.speech_config = config_dict['speech_config'] self.text_config = config_dict['decoder_config'] self.augment_config = config_dict['augments_config'] self.batch = config_dict['learning_config']['running_config']['batch_size'] self.speech_featurizer = SpeechFeaturizer(self.speech_config) self.text_featurizer = TextFeaturizer(self.text_config) self.make_file_list(self.speech_config['train_list'] if training else self.speech_config['eval_list'],training) self.augment = Augmentation(self.augment_config) self.init_text_to_vocab() self.epochs = 1 self.LAS=False self.steps = 0 def load_state(self,outdir): try: self.pick_index=np.load(os.path.join(outdir,'dg_state.npy')).flatten().tolist() self.epochs=1+int(np.mean(self.pick_index)) except FileNotFoundError: print('not found state file') except: print('load state falied,use init state') def save_state(self,outdir): np.save(os.path.join(outdir,'dg_state.npy'),np.array(self.pick_index)) def return_data_types(self): if self.LAS: return (tf.float32, tf.float32, tf.int32, tf.int32, tf.int32,tf.float32) else: return (tf.float32, tf.int32, tf.int32, tf.int32) def return_data_shape(self): f,c=self.speech_featurizer.compute_feature_dim() if self.LAS: return ( tf.TensorShape([None,None,1]) if self.speech_config['use_mel_layer'] else tf.TensorShape([None,None,f,c]), tf.TensorShape([None,]), tf.TensorShape([None,None]), tf.TensorShape([None,]), tf.TensorShape([None,None,None]) ) else: return ( tf.TensorShape([None, None, 1]) if self.speech_config['use_mel_layer'] else tf.TensorShape( [None, None, f, c]), tf.TensorShape([None, ]), tf.TensorShape([None, None]), tf.TensorShape([None, ]) ) def get_per_epoch_steps(self): return len(self.train_list)//self.batch def eval_per_epoch_steps(self): return len(self.test_list)//self.batch def init_text_to_vocab(self): pypinyin.load_phrases_dict({'调大': [['tiáo'], ['dà']], '调小': [['tiáo'], ['xiǎo']], '调亮': [['tiáo'], ['liàng']], '调暗': [['tiáo'], ['àn']], '肖': [['xiāo']], '英雄传': [['yīng'], ['xióng'], ['zhuàn']], '新传': [['xīn'], ['zhuàn']], '外传': [['wài'], ['zhuàn']], '正传': [['zhèng'], ['zhuàn']], '水浒传': [['shuǐ'], ['hǔ'], ['zhuàn']] }) def text_to_vocab_func(txt): pins=pypinyin.pinyin(txt) pins=[i[0] for i in pins] return pins self.text_to_vocab = text_to_vocab_func def augment_data(self, wavs, label, label_length): if not self.augment.available(): return None mels = [] input_length = [] label_ = [] label_length_ = [] wavs_ = [] max_input = 0 max_wav = 0 for idx, wav in enumerate(wavs): data = self.augment.process(wav.flatten()) speech_feature = self.speech_featurizer.extract(data) if speech_feature.shape[0] // self.speech_config['reduction_factor'] < label_length[idx]: continue max_input = max(max_input, speech_feature.shape[0]) max_wav = max(max_wav, len(data)) wavs_.append(data) mels.append(speech_feature) input_length.append(speech_feature.shape[0] // self.speech_config['reduction_factor']) label_.append(label[idx]) label_length_.append(label_length[idx]) for i in range(len(mels)): if mels[i].shape[0] < max_input: pad = np.ones([max_input - mels[i].shape[0], mels[i].shape[1],mels[i].shape[2]]) * mels[i].min() mels[i] = np.vstack((mels[i], pad)) wavs_ = self.speech_featurizer.pad_signal(wavs_, max_wav) x = np.array(mels, 'float32') label_ = np.array(label_, 'int32') input_length = np.array(input_length, 'int32') label_length_ = np.array(label_length_, 'int32') wavs_ = np.array(np.expand_dims(wavs_, -1), 'float32') return x, wavs_, input_length, label_, label_length_ def make_file_list(self, wav_list,training=True): with open(wav_list, encoding='utf-8') as f: data = f.readlines() data=[i.strip() for i in data if i!=''] num = len(data) if training: self.train_list = data[:int(num * 0.99)] self.test_list = data[int(num * 0.99):] np.random.shuffle(self.train_list) self.pick_index = [0.] * len(self.train_list) else: self.test_list=data self.offset=0 def only_chinese(self, word): txt='' for ch in word: if '\u4e00' <= ch <= '\u9fff': txt+=ch else: continue return txt def eval_data_generator(self): sample=self.test_list[self.offset:self.offset+self.batch] self.offset+=self.batch speech_features = [] input_length = [] y1 = [] label_length1 = [] max_input = 0 max_label1 = 0 for i in sample: wp, txt = i.strip().split('\t') try: data = self.speech_featurizer.load_wav(wp) except: print('load data failed') continue if len(data) < 400: continue elif len(data) > self.speech_featurizer.sample_rate * self.speech_config['wav_max_duration']: continue if self.speech_config['only_chinese']: txt= self.only_chinese(txt) if self.speech_config['use_mel_layer']: speech_feature = data / np.abs(data).max() speech_feature = np.expand_dims(speech_feature, -1) in_len = len(speech_feature) // ( self.speech_config['reduction_factor'] * (self.speech_featurizer.sample_rate / 1000) * self.speech_config['stride_ms']) else: speech_feature = self.speech_featurizer.extract(data) in_len = int(speech_feature.shape[0] // self.speech_config['reduction_factor']) max_input = max(max_input, speech_feature.shape[0]) py = self.text_to_vocab(txt) if not self.check_valid(py, self.text_featurizer.vocab_array): continue text_feature = self.text_featurizer.extract(py) if in_len < len(text_feature): continue max_input = max(max_input, len(speech_feature)) max_label1 = max(max_label1, len(text_feature)) speech_features.append(speech_feature) input_length.append(in_len) y1.append(np.array(text_feature)) label_length1.append(len(text_feature)) if self.speech_config['use_mel_layer']: speech_features = self.speech_featurizer.pad_signal(speech_features, max_input) else: for i in range(len(speech_features)): if speech_features[i].shape[0] < max_input: pad = np.ones([max_input - speech_features[i].shape[0], speech_features[i].shape[1], speech_features[i].shape[2]]) * speech_features[i].min() speech_features[i] = np.vstack((speech_features[i], pad)) for i in range(len(y1)): if y1[i].shape[0] < max_label1: pad = np.ones(max_label1 - y1[i].shape[0]) * self.text_featurizer.pad y1[i] = np.hstack((y1[i], pad)) x =
np.array(speech_features, 'float32')
numpy.array
import sys import os import pickle import numpy as np from metrics_ddie import ddie_compute_metrics from scipy.special import softmax from transformers import BertTokenizer _, cv_dir, k = sys.argv k = int(k) tokenizer = BertTokenizer.from_pretrained('/mnt/model/scibert_scivocab_uncased', do_lower_case=True) paths = ('cnn', 'rad1', 'desc') #paths = ('cnn', 'desc') for path in paths: print(path) fscores = [] for i in range(k): result_path = os.path.join(cv_dir, str(i+1), path, 'eval_results.txt') with open(result_path, 'r') as f: fscore = f.read().strip().split('\n')[2].split()[-1] print(i+1, fscore) fscore = float(fscore) fscores.append(fscore) print(sum(fscores) / len(fscores)) #label_list = ('microF', 'Mechanism_F', 'Effect_F', 'Advise_F', 'Int._F') label_list = ('Mechanism_F', 'Effect_F', 'Advise_F', 'Int._F') model_list = ('cnn', 'rad1', 'desc', 'ensemble') print_d = {'cnn': 'Text-only', 'rad1':'+ Mol (radius=1)', 'desc':'+ Desc', 'ensemble':'+ Desc + Mol (radius=1)'} #model_list = ('cnn', 'desc') def print_result(result_table): for i_, x in enumerate(result_table): print('& {} '.format(print_d[model_list[i_]]), end='') for j_, y in enumerate(x): if i_ == np.argmax(result_table[:, j_]): print('& \\textbf{{{:.2f}}}'.format(y * 100), end=' ') elif i_ != 0 and y < result_table[0,:][j_]: print('& \\underline{{{:.2f}}}'.format(y * 100), end=' ') else: print('& {:.2f}'.format(y * 100), end=' ') if i_ == len(model_list)-1: print('\\\\\\hline') else: print('\\\\') macro_result_dict = {} micro_result_table = np.zeros((len(model_list), len(label_list))) for model_i, model_name in enumerate(model_list): micro_preds = None micro_labels = None for i in range(k): if model_name == 'ensemble': rad_preds = np.load(os.path.join(cv_dir, str(i+1), 'rad1', 'preds.npy')) desc_preds = np.load(os.path.join(cv_dir, str(i+1), 'desc', 'preds.npy')) preds = rad_preds + desc_preds labels = np.load(os.path.join(cv_dir, str(i+1), 'rad1', 'labels.npy')) else: preds= np.load(os.path.join(cv_dir, str(i+1), model_name, 'preds.npy')) labels= np.load(os.path.join(cv_dir, str(i+1), model_name, 'labels.npy')) result = ddie_compute_metrics('ddie',
np.argmax(preds, axis=1)
numpy.argmax
# pylint: disable=R0201 import platform from unittest.mock import MagicMock import numpy as np import pytest from napari.utils.colormaps import make_colorbar from qtpy import PYQT5 from qtpy.QtCore import QPoint, Qt from qtpy.QtGui import QImage import PartSegData from PartSeg.common_backend.base_settings import BaseSettings, ColormapDict, ViewSettings from PartSeg.common_gui.channel_control import ChannelProperty, ColorComboBox, ColorComboBoxGroup from PartSeg.common_gui.napari_image_view import ImageView from PartSegCore.color_image.base_colors import starting_colors from PartSegCore.image_operations import NoiseFilterType from PartSegImage import TiffImageReader from .utils import CI_BUILD if PYQT5: def array_from_image(image: QImage): size = image.size().width() * image.size().height() return np.frombuffer(image.bits().asstring(size * image.depth() // 8), dtype=np.uint8) else: def array_from_image(image: QImage): size = image.size().width() * image.size().height() return np.frombuffer(image.bits(), dtype=np.uint8, count=size * image.depth() // 8) class TestChannelProperty: def test_fail_construct(self, base_settings): with pytest.raises(ValueError): ChannelProperty(base_settings, start_name="") def test_collapse(self, base_settings, qtbot): ch_prop = ChannelProperty(base_settings, start_name="test") qtbot.add_widget(ch_prop) ch_prop.show() assert not ch_prop.collapse_widget.isChecked() assert ch_prop.minimum_value.isVisible() ch_prop.collapse_widget.setChecked(True) assert not ch_prop.minimum_value.isVisible() ch_prop.hide() def test_get_value_from_settings(self, base_settings, qtbot): ch_prop = ChannelProperty(base_settings, start_name="test1") base_settings.set_in_profile("test.range_0", (100, 300)) mock = MagicMock() mock.viewer_name = "test" ch_prop.register_widget(mock) with pytest.raises(ValueError): ch_prop.register_widget(mock) assert ch_prop.minimum_value.value() == 100 assert ch_prop.maximum_value.value() == 300 base_settings.set_in_profile("test.range_0", (200, 500)) assert ch_prop.minimum_value.value() == 200 assert ch_prop.maximum_value.value() == 500 base_settings.set_in_profile("test.range_1", (20, 50)) assert ch_prop.minimum_value.value() == 200 assert ch_prop.maximum_value.value() == 500 with pytest.raises(ValueError): ch_prop.change_current("test7", 1) class TestColorComboBox: def test_base(self, qtbot): dkt = ColormapDict({}) box = ColorComboBox(0, starting_colors, dkt) box.show() qtbot.add_widget(box) with qtbot.waitSignal(box.channel_visible_changed), qtbot.assertNotEmitted(box.clicked): qtbot.mouseClick(box.check_box, Qt.LeftButton) with qtbot.waitSignal(box.clicked, timeout=1000): qtbot.mouseClick(box, Qt.LeftButton, pos=QPoint(5, 5)) with qtbot.waitSignal(box.clicked): qtbot.mouseClick(box, Qt.LeftButton, pos=QPoint(box.width() - 5, 5)) index = 3 with qtbot.waitSignal(box.currentTextChanged): box.set_color(starting_colors[index]) img = np.array(make_colorbar(dkt[starting_colors[index]][0], size=(1, 512))) print(array_from_image(box.image), array_from_image(box.image).size) print(img) print(img.flatten(), img.size, img.shape) print(dkt[starting_colors[index]][0]) print(box.image, box.image.size(), box.image.depth()) assert np.all(array_from_image(box.image) == img.flatten()) box.hide() def test_visibility(self, qtbot): dkt = ColormapDict({}) box = ColorComboBox(0, starting_colors, dkt, lock=True) qtbot.add_widget(box) box.show() qtbot.wait(100) assert box.lock.isVisible() box.hide() box = ColorComboBox(0, starting_colors, dkt, blur=NoiseFilterType.Gauss) qtbot.add_widget(box) box.show() qtbot.wait(100) assert box.blur.isVisible() box.hide() box = ColorComboBox(0, starting_colors, dkt, gamma=2) qtbot.add_widget(box) box.show() qtbot.wait(100) assert box.gamma.isVisible() box.hide() def test_show_frame_arrow(self, qtbot): dkt = ColormapDict({}) box = ColorComboBox(0, starting_colors, dkt) qtbot.add_widget(box) box.show() box.show_arrow = True box.repaint() qtbot.wait(100) box.show_arrow = False box.show_frame = True box.repaint() qtbot.wait(100) box.hide() def test_change_colors(self, qtbot): dkt = ColormapDict({}) box = ColorComboBox(0, starting_colors, dkt) qtbot.add_widget(box) box.change_colors(starting_colors[:-1]) assert box.count() == len(starting_colors) - 1 box.change_colors(starting_colors[1:]) assert box.count() == len(starting_colors) - 1 class TestColorComboBoxGroup: def test_change_channels_num(self, qtbot, image2): settings = ViewSettings() box = ColorComboBoxGroup(settings, "test", height=30) qtbot.add_widget(box) box.set_channels(1) box.set_channels(4) box.set_channels(10) box.set_channels(4) box.set_channels(10) settings.image = image2 box.update_channels() assert box.layout().count() == image2.channels def test_update_colormaps(self, qtbot, base_settings): box = ColorComboBoxGroup(base_settings, "test", height=30) qtbot.add_widget(box) box.set_channels(4) assert box.current_colormaps == [base_settings.colormap_dict[x][0] for x in starting_colors[:4]] box.update_color_list(starting_colors[1:2]) assert box.current_colors == [starting_colors[1] for _ in range(4)] box.update_color_list() assert box.layout().itemAt(0).widget().count() == len(starting_colors) def test_settings_updated(self, qtbot, base_settings, monkeypatch): box = ColorComboBoxGroup(base_settings, "test", height=30) box.set_channels(4) mock = MagicMock() monkeypatch.setattr(box, "parameters_changed", mock) base_settings.set_in_profile("test.lock_0", True) mock.assert_called_once_with(0) dkt = dict(**base_settings.get_from_profile("test")) dkt["lock_0"] = False dkt["lock_1"] = True base_settings.set_in_profile("test", dkt) assert mock.call_count == 5 mock.assert_called_with(3) def test_color_combo_box_group(self, qtbot): settings = ViewSettings() box = ColorComboBoxGroup(settings, "test", height=30) qtbot.add_widget(box) box.set_channels(3) assert len(box.current_colors) == 3 assert all(map(lambda x: isinstance(x, str), box.current_colors)) with qtbot.waitSignal(box.coloring_update): box.layout().itemAt(0).widget().check_box.setChecked(False) with qtbot.waitSignal(box.coloring_update): box.layout().itemAt(0).widget().setCurrentIndex(2) assert box.current_colors[0] is None assert all(map(lambda x: isinstance(x, str), box.current_colors[1:])) def test_color_combo_box_group_and_color_preview(self, qtbot): settings = ViewSettings() ch_property = ChannelProperty(settings, "test") box = ColorComboBoxGroup(settings, "test", ch_property, height=30) qtbot.add_widget(box) qtbot.add_widget(ch_property) box.set_channels(3) box.set_active(1) with qtbot.assert_not_emitted(box.coloring_update), qtbot.assert_not_emitted(box.change_channel): ch_property.minimum_value.setValue(10) ch_property.minimum_value.setValue(100) def check_parameters(name, index): return name == "test" and index == 1 with qtbot.waitSignal(box.coloring_update), qtbot.waitSignal( box.change_channel, check_params_cb=check_parameters ): ch_property.fixed.setChecked(True) with qtbot.waitSignal(box.coloring_update), qtbot.waitSignal( box.change_channel, check_params_cb=check_parameters ): ch_property.minimum_value.setValue(10) ch_property.maximum_value.setValue(10000) with qtbot.waitSignal(box.coloring_update), qtbot.waitSignal( box.change_channel, check_params_cb=check_parameters ): ch_property.maximum_value.setValue(11000) with qtbot.waitSignal(box.coloring_update), qtbot.waitSignal( box.change_channel, check_params_cb=check_parameters ): ch_property.fixed.setChecked(False) with qtbot.waitSignal(box.coloring_update), qtbot.waitSignal( box.change_channel, check_params_cb=check_parameters ): ch_property.use_filter.setCurrentEnum(NoiseFilterType.Gauss) with qtbot.waitSignal(box.coloring_update), qtbot.waitSignal( box.change_channel, check_params_cb=check_parameters ): ch_property.use_filter.setCurrentEnum(NoiseFilterType.Median) ch_property.filter_radius.setValue(0.5) with qtbot.waitSignal(box.coloring_update), qtbot.waitSignal( box.change_channel, check_params_cb=check_parameters ): ch_property.filter_radius.setValue(2) with qtbot.waitSignal(box.coloring_update), qtbot.waitSignal( box.change_channel, check_params_cb=check_parameters ): ch_property.use_filter.setCurrentEnum(NoiseFilterType.No) with qtbot.assert_not_emitted(box.coloring_update), qtbot.assert_not_emitted(box.change_channel): ch_property.filter_radius.setValue(0.5) @pytest.mark.xfail((platform.system() == "Windows") and CI_BUILD, reason="GL problem") @pytest.mark.parametrize("filter_value", NoiseFilterType.__members__.values()) def test_image_view_integration_filter(self, qtbot, tmp_path, filter_value): settings = BaseSettings(tmp_path) ch_property = ChannelProperty(settings, "test") image_view = ImageView(settings, ch_property, "test") # image_view.show() qtbot.addWidget(image_view) qtbot.addWidget(ch_property) image = TiffImageReader.read_image(PartSegData.segmentation_analysis_default_image) with qtbot.waitSignal(image_view.image_added, timeout=10 ** 6): settings.image = image image_view.channel_control.set_active(1) def check_parameters(name, index): return name == "test" and index == 1 if filter_value is NoiseFilterType.No: with qtbot.waitSignal(image_view.channel_control.coloring_update), qtbot.waitSignal( image_view.channel_control.change_channel, check_params_cb=check_parameters ): ch_property.use_filter.setCurrentEnum(NoiseFilterType.Gauss) with qtbot.waitSignal(image_view.channel_control.coloring_update), qtbot.waitSignal( image_view.channel_control.change_channel, check_params_cb=check_parameters ): ch_property.use_filter.setCurrentEnum(filter_value) image4 = image_view.viewer_widget.screenshot() assert (filter_value != NoiseFilterType.No and np.any(image4 != 255)) or ( filter_value == NoiseFilterType.No and np.any(image4 == 255) ) @pytest.mark.xfail((platform.system() == "Windows") and CI_BUILD, reason="GL problem") def test_image_view_integration(self, qtbot, tmp_path): settings = BaseSettings(tmp_path) ch_property = ChannelProperty(settings, "test") image_view = ImageView(settings, ch_property, "test") # image_view.show() qtbot.addWidget(image_view) qtbot.addWidget(ch_property) image = TiffImageReader.read_image(PartSegData.segmentation_analysis_default_image) with qtbot.waitSignal(image_view.image_added, timeout=10 ** 6): settings.image = image channels_num = image.channels assert image_view.channel_control.channels_count == channels_num image_view.viewer_widget.screenshot() image1 = image_view.viewer_widget.canvas.render() assert np.any(image1 != 255) image_view.channel_control.set_active(1) ch_property.minimum_value.setValue(100) ch_property.maximum_value.setValue(10000) ch_property.filter_radius.setValue(0.5) image2 = image_view.viewer_widget.canvas.render() assert np.any(image2 != 255) assert np.all(image1 == image2) def check_parameters(name, index): return name == "test" and index == 1 # Test fixed range with qtbot.waitSignal(image_view.channel_control.coloring_update), qtbot.waitSignal( image_view.channel_control.change_channel, check_params_cb=check_parameters ): ch_property.fixed.setChecked(True) image1 = image_view.viewer_widget.canvas.render() assert np.any(image1 != 255) with qtbot.waitSignal(image_view.channel_control.coloring_update), qtbot.waitSignal( image_view.channel_control.change_channel, check_params_cb=check_parameters ): ch_property.minimum_value.setValue(20) image2 = image_view.viewer_widget.canvas.render() assert np.any(image2 != 255) assert np.any(image1 != image2) with qtbot.waitSignal(image_view.channel_control.coloring_update), qtbot.waitSignal( image_view.channel_control.change_channel, check_params_cb=check_parameters ): ch_property.maximum_value.setValue(11000) image3 = image_view.viewer_widget.screenshot() assert np.any(image3 != 255) assert np.any(image2 != image3) assert np.any(image1 != image3) with qtbot.waitSignal(image_view.channel_control.coloring_update), qtbot.waitSignal( image_view.channel_control.change_channel, check_params_cb=check_parameters ): ch_property.fixed.setChecked(False) image1 = image_view.viewer_widget.screenshot() assert np.any(image1 != 255) assert np.any(image1 != image2) assert np.any(image1 != image3) # Test gauss with qtbot.waitSignal(image_view.channel_control.coloring_update), qtbot.waitSignal( image_view.channel_control.change_channel, check_params_cb=check_parameters ): ch_property.use_filter.setCurrentEnum(NoiseFilterType.Gauss) image4 = image_view.viewer_widget.screenshot() assert np.any(image4 != 255) assert np.any(image1 != image4) assert np.any(image2 != image4) assert np.any(image3 != image4) with qtbot.waitSignal(image_view.channel_control.coloring_update), qtbot.waitSignal( image_view.channel_control.change_channel, check_params_cb=check_parameters ): ch_property.filter_radius.setValue(1) image5 = image_view.viewer_widget.screenshot() assert np.any(image5 != 255) assert np.any(image1 != image5) assert np.any(image2 != image5) assert np.any(image3 != image5) assert np.any(image4 != image5) # Test gauss and fixed range ch_property.minimum_value.setValue(100) ch_property.maximum_value.setValue(10000) with qtbot.waitSignal(image_view.channel_control.coloring_update), qtbot.waitSignal( image_view.channel_control.change_channel, check_params_cb=check_parameters ): ch_property.fixed.setChecked(True) image1 = image_view.viewer_widget.screenshot() with qtbot.waitSignal(image_view.channel_control.coloring_update), qtbot.waitSignal( image_view.channel_control.change_channel, check_params_cb=check_parameters ): ch_property.minimum_value.setValue(10) image2 = image_view.viewer_widget.screenshot() assert
np.any(image2 != 255)
numpy.any
import numpy as np import os import parmap import scipy def remove_duplicates(fname_templates, fname_weights, save_dir, CONFIG, units_in=None, units_to_process=None, multi_processing=False, n_processors=1): # output folder if not os.path.exists(save_dir): os.makedirs(save_dir) # load weights weights = np.load(fname_weights) # units_in is all units if none if units_in is None: units_in = np.arange(len(weights)) if units_to_process is None: units_to_process = np.copy(units_in) # this allows units not in units_to_prcoess not get killed units_to_not_process = np.arange(len(weights)) units_to_not_process = units_to_not_process[ ~np.in1d(units_to_not_process, units_to_process)] weights[units_to_not_process] = np.max(weights) + 10 # compute overlapping units fname_units_to_compare = os.path.join(save_dir, 'units_to_compare.npy') if os.path.exists(fname_units_to_compare): units_to_compare = np.load(fname_units_to_compare)[()] else: units_to_compare = compute_units_to_compare( fname_templates, units_in, units_to_process, CONFIG) # save it np.save(fname_units_to_compare, units_to_compare) ## partition templates #save_dir_partition = os.path.join(save_dir, 'partition') #if not os.path.exists(save_dir_partition): # os.makedirs(save_dir_partition) #fnames_in = partition_templates(fname_templates, # units_to_compare, # save_dir_partition) #find duplicates #save_dir_result = os.path.join(save_dir, 'result') #if not os.path.exists(save_dir_result): # os.makedirs(save_dir_result) fname_duplicates = os.path.join(save_dir, 'duplicates.npy') if os.path.exists(fname_duplicates): duplicates = np.load(fname_duplicates)[()] else: up_factor = 5 max_diff_threshold = CONFIG.clean_up.abs_max_diff max_diff_rel_threshold = CONFIG.clean_up.rel_max_diff # find duplicates if multi_processing: # divide keys units = list(units_to_compare.keys()) n_units = len(units) sub_units_to_compare = [] for j in range(n_processors): sub_keys = units[slice(j, n_units, n_processors)] sub_units_to_compare.append({k: units_to_compare[k] for k in sub_keys}) # run duplicate detector duplicates_list = parmap.map(run_duplicate_detector, sub_units_to_compare, fname_templates, up_factor, max_diff_threshold, max_diff_rel_threshold, processes=n_processors) duplicates = {} for sub_list in duplicates_list: for unit in sub_list: duplicates[unit] = sub_list[unit] else: duplicates = run_duplicate_detector( units_to_compare, fname_templates, up_factor, max_diff_threshold, max_diff_rel_threshold) # save it np.save(fname_duplicates, duplicates) fname_units_killed = os.path.join(save_dir, 'units_killed.npy') if os.path.exists(fname_units_killed): units_killed = np.load(fname_units_killed) else: units_killed = kill_duplicates(duplicates, weights) np.save(fname_units_killed, units_killed) return np.setdiff1d(units_in, units_killed) def compute_units_to_compare(fname_templates, units_in, units_to_process, CONFIG): # threshold on ptp diff diff_threshold = CONFIG.clean_up.abs_max_diff diff_rel_threshold = CONFIG.clean_up.rel_max_diff # load templates templates = np.load(fname_templates) #templates = templates[units_in] #n_units = templates.shape[0] # get ptps max_val = templates.max(1) min_val = templates.min(1) ptps = (max_val - min_val).max(1) ptps_higher = np.maximum(ptps[:, None], ptps[None]) units_to_compare = {} idx_process = np.in1d(units_in, units_to_process) units_in_process = units_in[idx_process] units_in_dont_process = units_in[~idx_process] for ii, j in enumerate(units_in_process): if ii < len(units_in_process) - 1: # add within units_in_: max_val_diff = np.max(np.abs(max_val[units_in_process[ii+1:]] - max_val[[j]]), axis=1) min_val_diff = np.max(np.abs(min_val[units_in_process[ii+1:]] - min_val[[j]]), axis=1) abs_diff = np.maximum(max_val_diff, min_val_diff) abs_diff_rel = abs_diff/ptps_higher[j, units_in_process[ii+1:]] units_to_compare_1 = units_in_process[ii+1:][np.logical_or( abs_diff < diff_threshold, abs_diff_rel < diff_rel_threshold)] else: units_to_compare_1 = np.array(0, 'int32') # max_val_diff = np.max(np.abs(max_val[units_in_dont_process] - max_val[[j]]), axis=1) min_val_diff = np.max(
np.abs(min_val[units_in_dont_process] - min_val[[j]])
numpy.abs
import numpy as np import copy as cp from scipy.linalg import expm from . import cmanif class ManifoldPointArray: def __init__(self, manifold): self._manifold = cp.deepcopy(manifold) self._coords = np.array([]) def __str__(self): return "Array of {num} points of the manifold: ".format(num=len(self._coords))+ str(self._manifold) @property def manifold(self): return self._manifold @property def coords(self): return self._coords @coords.setter def coords(self, coords): self._coords = self._manifold.project_on_manifold(coords) class ManifoldPointArrayParameterized(ManifoldPointArray): def __init__(self, manifold): assert manifold.parameterized self._local_coords = np.array([]) ManifoldPointArray.__init__(self,manifold) @property def coords(self): return self._coords @coords.setter def coords(self, coords): ManifoldPointArray.coords.fset(self,coords) self._local_coords = self._manifold.compute_inverse_parameterization(self._coords) #self._local_coords = np.empty([coords.shape[0],self._manifold.local_dim]) #inverse_parameterization = self._manifold.compute_inverse_parameterization #for i, point in enumerate(self._coords): # self._local_coords[i] = inverse_parameterization(point) @property def local_coords(self): return self._local_coords @local_coords.setter def local_coords(self, local_coords): self._local_coords = np.empty(local_coords.shape) self._local_coords[:] = local_coords self._coords = self._manifold.compute_parameterization(local_coords) class TangentVectorArray: def __init__(self, manifold_point_array): self._base_point_array = cp.deepcopy(manifold_point_array) self._coords = np.zeros(self._base_point_array.coords.shape) def __str__(self): return "Array of {num} tangent vectors of the manifold: ".format(num=len(self._coords)) \ + str(self._base_point_array.manifold) @property def base_point_array(self): return self._base_point_array @property def manifold(self): return self._base_point_array.manifold @property def coords(self): return self._coords @coords.setter def coords(self, coords): self._coords = self.manifold.project_on_tangent_space(self._base_point_array.coords,coords) def perform_geodesic_step(self, step_length=1): self._base_point_array._coords, self._coords = self.manifold.geodesic_step(self._base_point_array.coords, self.coords, step=step_length) def normal_vector_coords(self): return self.manifold.normal_vector(self._base_point_array._coords,self._coords) def christoffel_matrix_lin_comb_mult(self, coeffs): christoffel_lin_comb = self.manifold.christoffel_matrix_lin_comb base_coords = self._base_point_array._coords mult_coords = np.empty(self._coords.shape) for i, tangent_coords in enumerate(self._coords): matrix = christoffel_lin_comb(base_coords[i], coeffs[i]) mult_coords[i] = np.dot(matrix, tangent_coords) return mult_coords class TangentVectorArrayParameterized(TangentVectorArray): def __init__(self, manifold_point_array): assert manifold_point_array.manifold.parameterized TangentVectorArray.__init__(self,manifold_point_array) self._local_coords = np.zeros(self._base_point_array.local_coords.shape) def perform_geodesic_step(self, step_length=1): TangentVectorArray.perform_geodesic_step(self, step_length) self._base_point_array._local_coords = self.manifold.compute_inverse_parameterization(self._base_point_array._coords) jacobi_matrix = self.manifold.compute_jacobi_matrix(self._base_point_array._local_coords) inverse_riemannian_matrix = self.manifold.compute_inverse_riemannian_matrix(self._base_point_array._local_coords) jacobi_transp_dot_coords = np.zeros([self._coords.shape[0],self.manifold.local_dim]) for i in range(self.manifold.local_dim): for j in range(self.manifold.ambient_dim): jacobi_transp_dot_coords[:,i] += jacobi_matrix[:,j,i]*self._coords[:,j] self._local_coords = np.zeros([self._coords.shape[0],self.manifold.local_dim]) for i in range(self.manifold.local_dim): for j in range(self.manifold.local_dim): self._local_coords[:,i] += inverse_riemannian_matrix[:,i,j] * jacobi_transp_dot_coords[:,j] @property def coords(self): return self._coords @coords.setter def coords(self, coords): TangentVectorArray.coords.fset(self,coords) jacobi_matrix = self.manifold.compute_jacobi_matrix(self._base_point_array._local_coords) inverse_riemannian_matrix = self.manifold.compute_inverse_riemannian_matrix(self._base_point_array._local_coords) jacobi_transp_dot_coords = np.zeros([coords.shape[0],self.manifold.local_dim]) for i in range(self.manifold.local_dim): for j in range(self.manifold.ambient_dim): jacobi_transp_dot_coords[:,i] += jacobi_matrix[:,j,i]*coords[:,j] self._local_coords = np.zeros([coords.shape[0],self.manifold.local_dim]) for i in range(self.manifold.local_dim): for j in range(self.manifold.local_dim): self._local_coords[:,i] += inverse_riemannian_matrix[:,i,j] * jacobi_transp_dot_coords[:,j] @property def local_coords(self): return self._local_coords @local_coords.setter def local_coords(self, local_coords): self._local_coords = local_coords jacobi_matrix = self.manifold.compute_jacobi_matrix(self._base_point_array._local_coords) for i, base_point in enumerate(self._base_point_array.local_coords): self._coords[i] = np.dot(jacobi_matrix[i,:,:], local_coords[i]) class Manifold: def __init__(self): # set to True if a parameterization is implemented, (e.g. see Shpere2) self._parameterized = False def __str__(self): return self._description def __eq__(self, other): if isinstance(other, Manifold): return self._description == other._description return NotImplemented @property def ambient_dim(self): return self._dim @property def local_dim(self): return self._local_dim @property def parameterized(self): return self._parameterized def christoffel_matrices(self, base_point_coords): """ Slow fallback implementation of computing christoffel matrices from normal vectors, which should be reimplemented explicitly for performance reasons (see for instance implementations on the Sphere, Rotation Group, or Grassmannian) """ dim = self._dim cm = np.empty([dim,dim,dim]) basis = np.identity(dim) for i in range(dim): v_i = self.project_on_tangent_space(base_point_coords, basis[i]) n_i = self.normal_vector(base_point_coords, v_i) cm[:,i,i] = - n_i for j in range(i,dim): v_j = self.project_on_tangent_space(base_point_coords, basis[j]) n_ipj = self.normal_vector(base_point_coords, v_i + v_j) n_imj = self.normal_vector(base_point_coords, v_i - v_j) cm[:,i,j] = (n_imj - n_ipj)/4 cm[:,j,i] = cm[:,i,j] return cm def christoffel_matrix_lin_comb(self, base_point_coords, coeffs): """ Slow fallback implementation of computing a linear combination of christoffel matrices, which should be reimplemented explicitly for performance reasons (see for instance implementations on the Sphere, Rotation Group, or Grassmannian) """ cm = self.christoffel_matrices(base_point_coords) return np.asmatrix(np.tensordot(coeffs, cm, axes=(0,0))) class EuclideanSpace(Manifold): def __init__(self, d): self._dim=d self._local_dim=d self._description = "Euclidean Space R^{dim}".format(dim=self._dim) Manifold.__init__(self) def project_on_manifold(self, vector): return np.array(vector) def project_on_tangent_space(self, base_point_coords, vector): return np.array(vector) def geodesic_step(self, base_point_coords, tangent_vector_coords, step=1.0): new_base_point_coords = base_point_coords + step * tangent_vector_coords new_tangent_vector_coords = np.array(tangent_vector_coords) return new_base_point_coords, new_tangent_vector_coords def normal_vector(self, base_point_coords, tangent_vector_coords): return np.zeros(tangent_vector_coords.shape) def christoffel_matrices(self, base_point_coords): return np.zeros((self._dim,)*3) def christoffel_matrices_lin_comb(self, base_point_coords): return np.asmatrix(np.zeros((self._dim,)*2)) class Sphere(Manifold): def __init__(self, d): self._dim=d+1 self._local_dim = d self._description = "Sphere S^{d_s} in R^{d_r}".format(d_s=self._local_dim, d_r=self._dim) Manifold.__init__(self) def project_on_manifold(self, vector): norm = np.sqrt(np.sum(vector*vector,axis=1)).reshape([vector.shape[0],1]) return vector/norm def project_on_tangent_space(self, base_point_coords, vector): pv = np.sum(base_point_coords*vector,axis=1).reshape([vector.shape[0],1]) return vector - pv*base_point_coords def geodesic_step(self, base_point_coords, tangent_vector_coords, step=1.0): v_norm = np.sqrt(np.sum(tangent_vector_coords*tangent_vector_coords,axis=1)).reshape([tangent_vector_coords.shape[0],1]) length = step*v_norm new_base_point_coords = np.cos(length)*base_point_coords + np.sin(length)*tangent_vector_coords/v_norm new_tangent_vector_coords = - v_norm*np.sin(length)*base_point_coords + np.cos(length)*tangent_vector_coords return new_base_point_coords, new_tangent_vector_coords def normal_vector(self, base_point_coords, tangent_vector_coords): norm2 = np.sum(tangent_vector_coords*tangent_vector_coords,axis=1) return -base_point_coords*norm2 def christoffel_matrices(self, base_point_coords): dim = self._dim christoffel_matrices = np.empty((dim,)*3) for i in range(dim): christoffel_matrices[i,:,:] = np.eye(dim) * base_point_coords[i] return christoffel_matrices def christoffel_matrix_lin_comb(self, base_point_coords, coeffs): return np.eye(self._dim)*(coeffs*base_point_coords).sum() class Sphere3(Sphere): def __init__(self): Sphere.__init__(self,3) @staticmethod def compute_stereographicprojection(point_coords_4d): if point_coords_4d[0] > 0: point_coords_3d = point_coords_4d[1:4]/(1+point_coords_4d[0]) else: point_coords_3d = -point_coords_4d[1:4]/(1-point_coords_4d[0]) return point_coords_3d class Sphere2(Sphere): def __init__(self): Sphere.__init__(self,2) self._parameterized = True @staticmethod def compute_parameterization(spherical_coords): point_coords = np.empty([spherical_coords.shape[0],3]) theta = spherical_coords[:,0] phi = spherical_coords[:,1] point_coords[:,0] = np.sin(theta) * np.cos(phi) point_coords[:,1] = np.sin(theta) * np.sin(phi) point_coords[:,2] = np.cos(theta) return point_coords @staticmethod def compute_inverse_parameterization(point_coords): local_coords = np.zeros([point_coords.shape[0],2]) # theta local_coords[:,0] = np.arccos( point_coords[:,2] ) # phi local_coords[:,1] = point_coords[:,1] / ( point_coords[:,0] - np.sqrt(point_coords[:,0]**2 + point_coords[:,1]**2) ) local_coords[:,1] = 2*np.arctan(local_coords[:,1]) + np.pi mask = (point_coords[:,1]==0)*(0<=point_coords[:,0]) local_coords[mask,1] = 0 return local_coords @staticmethod def compute_jacobi_matrix(spherical_coords): theta = spherical_coords[:,0] phi = spherical_coords[:,1] jacobi_matrix = np.empty([spherical_coords.shape[0],3,2]) # d_theat jacobi_matrix[:,0,0] = np.cos(theta) * np.cos(phi) jacobi_matrix[:,1,0] = np.cos(theta) * np.sin(phi) jacobi_matrix[:,2,0] = -np.sin(theta) # d_phi jacobi_matrix[:,0,1] = -np.sin(theta) * np.sin(phi) jacobi_matrix[:,1,1] = np.sin(theta) * np.cos(phi) jacobi_matrix[:,2,1] = 0 return jacobi_matrix @staticmethod def compute_inverse_riemannian_matrix(spherical_coords): inverse_riemannian_matrix = np.empty([spherical_coords.shape[0],2,2]) theta = spherical_coords[:,0] # theta column inverse_riemannian_matrix[:,0,0] = 1. inverse_riemannian_matrix[:,1,0] = 0. # phi column inverse_riemannian_matrix[:,0,1] = 0. inverse_riemannian_matrix[:,1,1] = 1. / ( np.sin(theta) ** 2 ) return inverse_riemannian_matrix @staticmethod def compute_christoffel_matrix_lin_comb_parameterization(spherical_coords,coeffs): theta = spherical_coords[:,0] christoffel_matrix = np.zeros([coeffs.shape[0],2,2]) # theta_coeff * theta_ChristoffelMatrix christoffel_matrix[:,1,1] += -coeffs[:,0] * np.sin(theta) * np.cos(theta) # phi_coeff * phi_ChristoffelMatrix christoffel_matrix[:,0,1] += coeffs[:,1] / np.tan(theta) christoffel_matrix[:,1,0] += christoffel_matrix[:,0,1] return christoffel_matrix class MatrixManifold(Manifold): @property def matrix_size(self): return self._matrix_size def coords_as_matrix(self, vector): return np.asmatrix(vector.reshape(self._matrix_size)) def coords_as_vector(self, matrix): return np.asarray(matrix.reshape(self._dim)) class RotationGroup(MatrixManifold): def __init__(self, d): self._matrix_size = (d,d) self._dim=d**2 self._local_dim=int(d*(d-1)/2) self._description = "Rotation Group SO({d_so}) in R^{d_r}".format(d_so=self._matrix_size[0], d_r=self._dim) Manifold.__init__(self) def project_on_manifold(self, vector): vector_m = vector.shape[0] projected_vector = np.empty([vector_m,self._dim]) U, _, V = np.linalg.svd(vector.reshape([vector_m,self._matrix_size[0],self._matrix_size[1]]), full_matrices=True) m = np.matmul(U,V) det = np.linalg.det(m) for i in range(vector_m):#, v in enumerate(vector): #U, __, V = np.linalg.svd(self.coords_as_matrix(v), full_matrices=True) #m = np.matmul(U[i],V[i]) if det[i]<0:#np.linalg.det(m) < 0: m[i,:,[0, 1]] = m[i,:,[1, 0]] projected_vector[i,:] = m[i,:,:].reshape(self._dim)#self.coords_as_vector(m) return projected_vector def project_on_tangent_space(self, base_point_coords, vector): projected_vector = np.empty([vector.shape[0],self._dim]) m = base_point_coords.shape[0] m_p = base_point_coords.reshape(m,self._matrix_size[0],self._matrix_size[1]) m_v = vector.reshape(m,self._matrix_size[0],self._matrix_size[1]) return ((m_v - np.matmul(m_p,np.matmul(m_v.transpose(0,2,1),m_p)))/2).reshape(m,self._dim) #for i in range(vector.shape[0]): # m_p = (base_point_coords[i,:]).reshape(self._matrix_size) # m_v = (vector[i,:]).reshape(self._matrix_size) # projected_vector[i,:] = ((m_v - m_p @ m_v.transpose() @ m_p)/2).reshape(self._dim) #return projected_vector def geodesic_step(self, base_point_coords, tangent_vector_coords, step=1.0): m = base_point_coords.shape[0] #new_base_point_coords = np.empty([base_point_coords.shape[0],self._dim]) #new_tangent_vector_coords = np.empty([tangent_vector_coords.shape[0],self._dim]) m_p = base_point_coords.reshape(m,self._matrix_size[0],self._matrix_size[1]) m_p_t = m_p.transpose(0,2,1) m_v = tangent_vector_coords.reshape(m,self._matrix_size[0],self._matrix_size[1]) m_p_t_m_v = step*np.matmul(m_p_t,m_v) x = (np.sqrt(np.sum(np.sum(m_p_t_m_v**2,axis=1),axis=1)/2)).reshape(m,1,1) x[x==0]=1e-10 expm1_step = np.sin(x)/x*m_p_t_m_v + (1-np.cos(x))/x**2*np.matmul(m_p_t_m_v,m_p_t_m_v) m_p_new = m_p + np.matmul(m_p,expm1_step) m_v_new = m_v +
np.matmul(m_v,expm1_step)
numpy.matmul
import itertools import unittest from copy import copy import numpy as np import pytest from coremltools._deps import _HAS_KERAS2_TF, _HAS_KERAS_TF from coremltools.models.utils import _macos_version, _is_macos np.random.seed(1377) if _HAS_KERAS2_TF or _HAS_KERAS_TF: import keras from keras.models import Sequential from keras.layers import LSTM, GRU, SimpleRNN, RepeatVector from keras.layers.wrappers import Bidirectional import keras.backend as K from coremltools.converters import keras as keras_converter """ ============================= Utility Functions ============================= """ def get_recurrent_activation_name_from_keras(activation): if activation == keras.activations.sigmoid: activation_str = "SIGMOID" elif activation == keras.activations.hard_sigmoid: activation_str = "SIGMOID_HARD" elif activation == keras.activations.tanh: activation_str = "TANH" elif activation == keras.activations.relu: activation_str = "RELU" elif activation == keras.activations.linear: activation_str = "LINEAR" else: raise NotImplementedError( "activation %s not supported for Recurrent layer." % activation ) return activation_str def linear(x, alpha=1, beta=0): return alpha * x + beta def relu(x): return np.maximum(0, x) def sigmoid(x): return 1.0 / (1 + np.exp(-x)) def hard_sigmoid(x, alpha=0.2, beta=0.5): return np.minimum(np.maximum(alpha * x + beta, 0), 1) def tanh(x): return np.tanh(x) def apply_act(x, option): if option == "TANH": return tanh(x) elif option == "RELU": return relu(x) elif option == "SIGMOID": return sigmoid(x) elif option == "SIGMOID_HARD": return hard_sigmoid(x) elif option == "LINEAR": return linear(x) def clip(x, threshold=50.0): return np.maximum(np.minimum(x, threshold), -threshold) def valid_params(params): """Checks if this combination of parameters is allowed by Keras""" return not (params["input_dims"][1] == 1 and params["unroll"]) def _compute_SNR(x, y): x = x.flatten() y = y.flatten() noise = x - y noise_var = np.sum(noise ** 2) / len(noise) + 1e-7 signal_energy = np.sum(y ** 2) / len(y) signal_energy2 = np.sum(x ** 2) / len(x) if signal_energy < 1e-5 and signal_energy2 < 1e-5: return 50, 50, 0 max_signal_energy = np.amax(y ** 2) SNR = 10 * np.log10(signal_energy / noise_var) PSNR = 10 * np.log10(max_signal_energy / noise_var) return SNR, PSNR, signal_energy """ ============================= Numpy implementations ============================= """ def get_numpy_prediction_gru(model, X): X = X[0, :, :] seq_len, input_size = X.shape keras_layer = model.layers[0] return_seq = keras_layer.return_sequences if keras_layer.go_backwards: X = X[::-1, :] if _HAS_KERAS2_TF: hidden_size = keras_layer.units keras_W_h = keras_layer.get_weights()[1].T R_z = keras_W_h[0 * hidden_size :][:hidden_size] R_r = keras_W_h[1 * hidden_size :][:hidden_size] R_o = keras_W_h[2 * hidden_size :][:hidden_size] keras_W_x = keras_layer.get_weights()[0].T W_z = keras_W_x[0 * hidden_size :][:hidden_size] W_r = keras_W_x[1 * hidden_size :][:hidden_size] W_o = keras_W_x[2 * hidden_size :][:hidden_size] keras_b = keras_layer.get_weights()[2] b_z = keras_b[0 * hidden_size :][:hidden_size] b_r = keras_b[1 * hidden_size :][:hidden_size] b_o = keras_b[2 * hidden_size :][:hidden_size] inner_activation_str = get_recurrent_activation_name_from_keras( keras_layer.recurrent_activation ) activation_str = get_recurrent_activation_name_from_keras( keras_layer.activation ) else: hidden_size = keras_layer.output_dim W_z = keras_layer.get_weights()[0].T W_r = keras_layer.get_weights()[3].T W_o = keras_layer.get_weights()[6].T R_z = keras_layer.get_weights()[1].T R_r = keras_layer.get_weights()[4].T R_o = keras_layer.get_weights()[7].T b_z = keras_layer.get_weights()[2] b_r = keras_layer.get_weights()[5] b_o = keras_layer.get_weights()[8] inner_activation_str = get_recurrent_activation_name_from_keras( keras_layer.inner_activation ) activation_str = get_recurrent_activation_name_from_keras( keras_layer.activation ) h = np.zeros((hidden_size)) c = np.zeros((hidden_size)) np_out = np.zeros((seq_len, hidden_size)) for k in range(seq_len): x = X[k, :] z = apply_act(clip(np.dot(W_z, x) + np.dot(R_z, h) + b_z), inner_activation_str) r = apply_act(clip(np.dot(W_r, x) + np.dot(R_r, h) + b_r), inner_activation_str) c = clip(h * r) o = apply_act(clip(np.dot(W_o, x) + np.dot(R_o, c) + b_o), activation_str) h = (1 - z) * o + z * h np_out[k, :] = h if return_seq: np_out_final = np_out else: np_out_final = np_out[-1, :] return np_out_final def get_numpy_prediction_unilstm(model, X): X = X[0, :, :] seq_len, input_size = X.shape keras_layer = model.layers[0] return_seq = keras_layer.return_sequences if keras_layer.go_backwards: X = X[::-1, :] if _HAS_KERAS2_TF: hidden_size = keras_layer.units keras_W_h = keras_layer.get_weights()[1].T R_i = keras_W_h[0 * hidden_size :][:hidden_size] R_f = keras_W_h[1 * hidden_size :][:hidden_size] R_o = keras_W_h[3 * hidden_size :][:hidden_size] R_g = keras_W_h[2 * hidden_size :][:hidden_size] keras_W_x = keras_layer.get_weights()[0].T W_i = keras_W_x[0 * hidden_size :][:hidden_size] W_f = keras_W_x[1 * hidden_size :][:hidden_size] W_o = keras_W_x[3 * hidden_size :][:hidden_size] W_g = keras_W_x[2 * hidden_size :][:hidden_size] keras_b = keras_layer.get_weights()[2] b_i = keras_b[0 * hidden_size :][:hidden_size] b_f = keras_b[1 * hidden_size :][:hidden_size] b_o = keras_b[3 * hidden_size :][:hidden_size] b_g = keras_b[2 * hidden_size :][:hidden_size] inner_activation_str = get_recurrent_activation_name_from_keras( keras_layer.recurrent_activation ) activation_str = get_recurrent_activation_name_from_keras( keras_layer.activation ) else: hidden_size = keras_layer.output_dim R_i = keras_layer.get_weights()[1].T R_f = keras_layer.get_weights()[7].T R_o = keras_layer.get_weights()[10].T R_g = keras_layer.get_weights()[4].T W_i = keras_layer.get_weights()[0].T W_f = keras_layer.get_weights()[6].T W_o = keras_layer.get_weights()[9].T W_g = keras_layer.get_weights()[3].T b_i = keras_layer.get_weights()[2] b_f = keras_layer.get_weights()[8] b_o = keras_layer.get_weights()[11] b_g = keras_layer.get_weights()[5] inner_activation_str = get_recurrent_activation_name_from_keras( keras_layer.inner_activation ) activation_str = get_recurrent_activation_name_from_keras( keras_layer.activation ) h = np.zeros((hidden_size)) c = np.zeros((hidden_size)) np_out = np.zeros((seq_len, hidden_size)) for k in range(seq_len): x = X[k, :] i = apply_act(clip(np.dot(W_i, x) + np.dot(R_i, h) + b_i), inner_activation_str) f = apply_act(clip(np.dot(W_f, x) + np.dot(R_f, h) + b_f), inner_activation_str) g = apply_act(clip(np.dot(W_g, x) + np.dot(R_g, h) + b_g), activation_str) c = c * f + i * g c = clip(c, 50000.0) o = apply_act(clip(np.dot(W_o, x) + np.dot(R_o, h) + b_o), inner_activation_str) h = o * apply_act(c, activation_str) np_out[k, :] = h if return_seq: np_out_final = np_out else: np_out_final = np_out[-1, :] return np_out_final def get_numpy_prediction_bilstm_batched(model, X): batch, _, _ = X.shape out = [] for i in range(batch): out.append( get_numpy_prediction_bilstm(model, np.expand_dims(X[i, :, :], axis=0)) ) return np.stack(out, axis=0) def get_numpy_prediction_bilstm(model, X): X = X[0, :, :] seq_len, input_size = X.shape keras_layer = model.layers[0] return_seq = keras_layer.return_sequences if _HAS_KERAS2_TF: hidden_size = keras_layer.forward_layer.units keras_W_h = keras_layer.forward_layer.get_weights()[1].T R_i = keras_W_h[0 * hidden_size :][:hidden_size] R_f = keras_W_h[1 * hidden_size :][:hidden_size] R_o = keras_W_h[3 * hidden_size :][:hidden_size] R_g = keras_W_h[2 * hidden_size :][:hidden_size] keras_W_x = keras_layer.forward_layer.get_weights()[0].T W_i = keras_W_x[0 * hidden_size :][:hidden_size] W_f = keras_W_x[1 * hidden_size :][:hidden_size] W_o = keras_W_x[3 * hidden_size :][:hidden_size] W_g = keras_W_x[2 * hidden_size :][:hidden_size] keras_b = keras_layer.forward_layer.get_weights()[2] b_i = keras_b[0 * hidden_size :][:hidden_size] b_f = keras_b[1 * hidden_size :][:hidden_size] b_o = keras_b[3 * hidden_size :][:hidden_size] b_g = keras_b[2 * hidden_size :][:hidden_size] keras_W_h = keras_layer.backward_layer.get_weights()[1].T R_i_back = keras_W_h[0 * hidden_size :][:hidden_size] R_f_back = keras_W_h[1 * hidden_size :][:hidden_size] R_o_back = keras_W_h[3 * hidden_size :][:hidden_size] R_g_back = keras_W_h[2 * hidden_size :][:hidden_size] keras_W_x = keras_layer.backward_layer.get_weights()[0].T W_i_back = keras_W_x[0 * hidden_size :][:hidden_size] W_f_back = keras_W_x[1 * hidden_size :][:hidden_size] W_o_back = keras_W_x[3 * hidden_size :][:hidden_size] W_g_back = keras_W_x[2 * hidden_size :][:hidden_size] keras_b = keras_layer.backward_layer.get_weights()[2] b_i_back = keras_b[0 * hidden_size :][:hidden_size] b_f_back = keras_b[1 * hidden_size :][:hidden_size] b_o_back = keras_b[3 * hidden_size :][:hidden_size] b_g_back = keras_b[2 * hidden_size :][:hidden_size] inner_activation_str = get_recurrent_activation_name_from_keras( keras_layer.forward_layer.recurrent_activation ) activation_str = get_recurrent_activation_name_from_keras( keras_layer.forward_layer.activation ) else: hidden_size = keras_layer.forward_layer.output_dim R_i = keras_layer.get_weights()[1].T R_f = keras_layer.get_weights()[7].T R_o = keras_layer.get_weights()[10].T R_g = keras_layer.get_weights()[4].T W_i = keras_layer.get_weights()[0].T W_f = keras_layer.get_weights()[6].T W_o = keras_layer.get_weights()[9].T W_g = keras_layer.get_weights()[3].T b_i = keras_layer.get_weights()[2] b_f = keras_layer.get_weights()[8] b_o = keras_layer.get_weights()[11] b_g = keras_layer.get_weights()[5] R_i_back = keras_layer.backward_layer.get_weights()[1].T R_f_back = keras_layer.backward_layer.get_weights()[7].T R_o_back = keras_layer.backward_layer.get_weights()[10].T R_g_back = keras_layer.backward_layer.get_weights()[4].T W_i_back = keras_layer.backward_layer.get_weights()[0].T W_f_back = keras_layer.backward_layer.get_weights()[6].T W_o_back = keras_layer.backward_layer.get_weights()[9].T W_g_back = keras_layer.backward_layer.get_weights()[3].T b_i_back = keras_layer.backward_layer.get_weights()[2] b_f_back = keras_layer.backward_layer.get_weights()[8] b_o_back = keras_layer.backward_layer.get_weights()[11] b_g_back = keras_layer.backward_layer.get_weights()[5] inner_activation_str = get_recurrent_activation_name_from_keras( keras_layer.forward_layer.inner_activation ) activation_str = get_recurrent_activation_name_from_keras( keras_layer.forward_layer.activation ) h = np.zeros((hidden_size)) c = np.zeros((hidden_size)) np_out_forward = np.zeros((seq_len, hidden_size)) for k in range(seq_len): x = X[k, :] i = apply_act(clip(np.dot(W_i, x) + np.dot(R_i, h) + b_i), inner_activation_str) f = apply_act(clip(np.dot(W_f, x) + np.dot(R_f, h) + b_f), inner_activation_str) g = apply_act(clip(np.dot(W_g, x) + np.dot(R_g, h) + b_g), activation_str) c = c * f + i * g c = clip(c, 50000.0) o = apply_act(clip(np.dot(W_o, x) + np.dot(R_o, h) + b_o), inner_activation_str) h = o * apply_act(c, activation_str) np_out_forward[k, :] = h h = np.zeros((hidden_size)) c = np.zeros((hidden_size)) np_out_backward = np.zeros((seq_len, hidden_size)) for k in range(seq_len): x = X[seq_len - k - 1, :] i = apply_act( clip(np.dot(W_i_back, x) + np.dot(R_i_back, h) + b_i_back), inner_activation_str, ) f = apply_act( clip(np.dot(W_f_back, x) + np.dot(R_f_back, h) + b_f_back), inner_activation_str, ) g = apply_act( clip(np.dot(W_g_back, x) + np.dot(R_g_back, h) + b_g_back), activation_str ) c = c * f + i * g c = clip(c, 50000.0) o = apply_act( clip(
np.dot(W_o_back, x)
numpy.dot
# coding: utf-8 import sys, os sys.path.append(os.pardir) # 부모 디렉터리의 파일을 가져올 수 있도록 설정 import numpy as np from common.functions import softmax, cross_entropy_error from common.gradient import numerical_gradient # np.random.seed(1) class simpleNet: def __init__(self): self.W = np.random.randn(2,3) # 정규분포로 초기화 self.y = [] def predict(self, x): return
np.dot(x, self.W)
numpy.dot
from OpenGL.GL import * from OpenGL.GLU import * from OpenGL.GLUT import * from threading import Lock import numpy as np import sys import array import math import ctypes import pyzed.sl as sl VERTEX_SHADER = """ # version 330 core layout(location = 0) in vec3 in_Vertex; layout(location = 1) in vec4 in_Color; uniform mat4 u_mvpMatrix; out vec4 b_color; void main() { b_color = in_Color; gl_Position = u_mvpMatrix * vec4(in_Vertex, 1); } """ FRAGMENT_SHADER = """ # version 330 core in vec4 b_color; layout(location = 0) out vec4 out_Color; void main() { out_Color = b_color; } """ M_PI = 3.1415926 GRID_SIZE = 15.0 CLASS_COLORS = np.array([ [44, 117, 255] # People , [255, 0, 255] # Vehicle , [0, 0, 255] , [0, 255, 255] , [0, 255, 0] , [255, 255, 255]] , np.float32) ID_COLORS = np.array([ [0.231, 0.909, 0.69] , [0.098, 0.686, 0.816] , [0.412, 0.4, 0.804] , [1, 0.725, 0] , [0.989, 0.388, 0.419]] , np.float32) def get_color_class(_idx): _idx = min(5, _idx) clr = [CLASS_COLORS[_idx][0], CLASS_COLORS[_idx][1], CLASS_COLORS[_idx][2], 1.0] return np.divide(clr, 255.0) def generate_color_id(_idx): clr = [] if _idx < 0: clr = [236, 184, 36, 255] clr = np.divide(clr, 255.0) else: offset = _idx % 5 clr = [ID_COLORS[offset][0], ID_COLORS[offset][1], ID_COLORS[offset][2], 1] return clr class Shader: def __init__(self, _vs, _fs): self.program_id = glCreateProgram() vertex_id = self.compile(GL_VERTEX_SHADER, _vs) fragment_id = self.compile(GL_FRAGMENT_SHADER, _fs) glAttachShader(self.program_id, vertex_id) glAttachShader(self.program_id, fragment_id) glBindAttribLocation( self.program_id, 0, "in_vertex") glBindAttribLocation( self.program_id, 1, "in_texCoord") glLinkProgram(self.program_id) if glGetProgramiv(self.program_id, GL_LINK_STATUS) != GL_TRUE: info = glGetProgramInfoLog(self.program_id) glDeleteProgram(self.program_id) glDeleteShader(vertex_id) glDeleteShader(fragment_id) raise RuntimeError('Error linking program: %s' % (info)) glDeleteShader(vertex_id) glDeleteShader(fragment_id) def compile(self, _type, _src): try: shader_id = glCreateShader(_type) if shader_id == 0: print("ERROR: shader type {0} does not exist".format(_type)) exit() glShaderSource(shader_id, _src) glCompileShader(shader_id) if glGetShaderiv(shader_id, GL_COMPILE_STATUS) != GL_TRUE: info = glGetShaderInfoLog(shader_id) glDeleteShader(shader_id) raise RuntimeError('Shader compilation failed: %s' % (info)) return shader_id except: glDeleteShader(shader_id) raise def get_program_id(self): return self.program_id class Simple3DObject: """ Class that manages simple 3D objects to render with OpenGL """ def __init__(self, _is_static): self.vaoID = 0 self.drawing_type = GL_TRIANGLES self.is_static = _is_static self.elementbufferSize = 0 self.vertices = array.array('f') self.colors = array.array('f') self.normals = array.array('f') self.indices = array.array('I') def __del__(self): if self.vaoID: self.vaoID = 0 """ Add a unique point to the list of points """ def add_pt(self, _pts): for pt in _pts: self.vertices.append(pt) """ Add a unique color to the list of colors """ def add_clr(self, _clrs): for clr in _clrs: self.colors.append(clr) """ Add a unique normal to the list of normals """ def add_normal(self, _normals): for normal in _normals: self.normals.append(normal) """ Add a set of points to the list of points and their corresponding color """ def add_points(self, _pts, _base_clr): for i in range(len(_pts)): pt = _pts[i] self.add_pt(pt) self.add_clr(_base_clr) current_size_index = (len(self.vertices)/3)-1 self.indices.append(current_size_index) self.indices.append(current_size_index+1) """ Add a point and its corresponding color to the list of points """ def add_point_clr(self, _pt, _clr): self.add_pt(_pt) self.add_clr(_clr) self.indices.append(len(self.indices)) """ Define a line from two points """ def add_line(self, _p1, _p2, _clr): self.add_point_clr(_p1, _clr) self.add_point_clr(_p2, _clr) def add_full_edges(self, _pts, _clr): start_id = int(len(self.vertices) / 3) _clr[3] = 0.2 for i in range(len(_pts)): self.add_pt(_pts[i]) self.add_clr(_clr) box_links_top = np.array([0, 1, 1, 2, 2, 3, 3, 0]) i = 0 while i < box_links_top.size: self.indices.append(start_id + box_links_top[i]) self.indices.append(start_id + box_links_top[i+1]) i = i + 2 box_links_bottom = np.array([4, 5, 5, 6, 6, 7, 7, 4]) i = 0 while i < box_links_bottom.size: self.indices.append(start_id + box_links_bottom[i]) self.indices.append(start_id + box_links_bottom[i+1]) i = i + 2 def __add_single_vertical_line(self, _top_pt, _bottom_pt, _clr): current_pts = np.array( [_top_pt, ((GRID_SIZE - 1) * np.array(_top_pt) + np.array(_bottom_pt)) / GRID_SIZE, ((GRID_SIZE - 2) * np.array(_top_pt) + np.array(_bottom_pt) * 2) / GRID_SIZE, (2 * np.array(_top_pt) + np.array(_bottom_pt) * (GRID_SIZE - 2)) / GRID_SIZE, (np.array(_top_pt) + np.array(_bottom_pt) * (GRID_SIZE - 1)) / GRID_SIZE, _bottom_pt ], np.float32) start_id = int(len(self.vertices) / 3) for i in range(len(current_pts)): self.add_pt(current_pts[i]) if (i == 2 or i == 3): _clr[3] = 0 else: _clr[3] = 0.2 self.add_clr(_clr) box_links = np.array([0, 1, 1, 2, 2, 3, 3, 4, 4, 5]) i = 0 while i < box_links.size: self.indices.append(start_id + box_links[i]) self.indices.append(start_id + box_links[i+1]) i = i + 2 def add_vertical_edges(self, _pts, _clr): self.__add_single_vertical_line(_pts[0], _pts[4], _clr) self.__add_single_vertical_line(_pts[1], _pts[5], _clr) self.__add_single_vertical_line(_pts[2], _pts[6], _clr) self.__add_single_vertical_line(_pts[3], _pts[7], _clr) def add_top_face(self, _pts, _clr): _clr[3] = 0.25 for pt in _pts: self.add_point_clr(pt, _clr) def __add_quad(self, _quad_pts, _alpha1, _alpha2, _clr): for i in range(len(_quad_pts)): self.add_pt(_quad_pts[i]) if i < 2: _clr[3] = _alpha1 else: _clr[3] = _alpha2 self.add_clr(_clr) self.indices.append(len(self.indices)) self.indices.append(len(self.indices)) self.indices.append(len(self.indices)) self.indices.append(len(self.indices)) def add_vertical_faces(self, _pts, _clr): # For each face, we need to add 4 quads (the first 2 indexes are always the top points of the quad) quads = [[0, 3, 7, 4] # Front face , [3, 2, 6, 7] # Right face , [2, 1, 5, 6] # Back face , [1, 0, 4, 5]] # Left face alpha = 0.25 # Create gradually fading quads for quad in quads: quad_pts_1 = [ _pts[quad[0]], _pts[quad[1]], ((GRID_SIZE - 0.5) * np.array(_pts[quad[1]]) + 0.5 * np.array(_pts[quad[2]])) / GRID_SIZE, ((GRID_SIZE - 0.5) * np.array(_pts[quad[0]]) + 0.5 * np.array(_pts[quad[3]])) / GRID_SIZE ] self.__add_quad(quad_pts_1, alpha, alpha, _clr) quad_pts_2 = [ ((GRID_SIZE - 0.5) * np.array(_pts[quad[0]]) + 0.5 * np.array(_pts[quad[3]])) / GRID_SIZE, ((GRID_SIZE - 0.5) * np.array(_pts[quad[1]]) + 0.5 * np.array(_pts[quad[2]])) / GRID_SIZE, ((GRID_SIZE - 1.0) * np.array(_pts[quad[1]]) + np.array(_pts[quad[2]])) / GRID_SIZE, ((GRID_SIZE - 1.0) * np.array(_pts[quad[0]]) + np.array(_pts[quad[3]])) / GRID_SIZE ] self.__add_quad(quad_pts_2, alpha, 2 * alpha / 3, _clr) quad_pts_3 = [ ((GRID_SIZE - 1.0) * np.array(_pts[quad[0]]) + np.array(_pts[quad[3]])) / GRID_SIZE, ((GRID_SIZE - 1.0) * np.array(_pts[quad[1]]) + np.array(_pts[quad[2]])) / GRID_SIZE, ((GRID_SIZE - 1.5) * np.array(_pts[quad[1]]) + 1.5 * np.array(_pts[quad[2]])) / GRID_SIZE, ((GRID_SIZE - 1.5) * np.array(_pts[quad[0]]) + 1.5 * np.array(_pts[quad[3]])) / GRID_SIZE ] self.__add_quad(quad_pts_3, 2 * alpha / 3, alpha / 3, _clr) quad_pts_4 = [ ((GRID_SIZE - 1.5) *
np.array(_pts[quad[0]])
numpy.array
''' Walker-v2 solution by <NAME> **Experimentatl** https://github.com/FitMachineLearning/FitML/ https://www.youtube.com/channel/UCi7_WxajoowBl4_9P0DhzzA/featured Using DeepQ Learning ''' import numpy as np import keras import gym import os import h5py from keras.models import Sequential from keras.layers import Dense, Dropout from keras.layers import Embedding from keras.layers import LSTM from keras import optimizers num_env_variables = 24 num_env_actions = 4 num_initial_observation = 1 learning_rate = 0.001 weigths_filename = "BpW1024-QL-v2-weights.h5" apWeights_filename = "BpW1024_ap-QL-v2-weights.h5" #range within wich the SmartCrossEntropy action parameters will deviate from #remembered optimal policy sce_range = 0.5 b_discount = 0.98 max_memory_len = 90000 starting_explore_prob = 0.1 training_epochs = 2 load_previous_weights = True observe_and_train = True save_weights = True num_games_to_play = 1000 #One hot encoding array possible_actions = np.arange(0,num_env_actions) actions_1_hot = np.zeros((num_env_actions,num_env_actions)) actions_1_hot[np.arange(num_env_actions),possible_actions] = 1 #Create testing enviroment env = gym.make('BipedalWalker-v2') env.reset() #initialize training matrix with random states and actions dataX = np.random.random(( 5,num_env_variables+num_env_actions )) #Only one output for the total score / reward dataY = np.random.random((5,1)) #initialize training matrix with random states and actions apdataX = np.random.random(( 5,num_env_variables )) apdataY = np.random.random((5,num_env_actions)) #nitialize the Reward predictor model model = Sequential() #model.add(Dense(num_env_variables+num_env_actions, activation='tanh', input_dim=dataX.shape[1])) model.add(Dense(1024, activation='relu', input_dim=dataX.shape[1])) model.add(Dense(dataY.shape[1])) opt = optimizers.adam(lr=learning_rate) model.compile(loss='mse', optimizer=opt, metrics=['accuracy']) #initialize the action predictor model action_predictor_model = Sequential() #model.add(Dense(num_env_variables+num_env_actions, activation='tanh', input_dim=dataX.shape[1])) action_predictor_model.add(Dense(512, activation='relu', input_dim=apdataX.shape[1])) action_predictor_model.add(Dense(apdataY.shape[1])) opt2 = optimizers.adam(lr=learning_rate) action_predictor_model.compile(loss='mse', optimizer=opt2, metrics=['accuracy']) #load previous model weights if they exist if load_previous_weights: dir_path = os.path.realpath(".") fn = dir_path + "/"+weigths_filename print("filepath ", fn) if os.path.isfile(fn): print("loading weights") model.load_weights(weigths_filename) else: print("File ",weigths_filename," does not exis. Retraining... ") #load previous action predictor model weights if they exist if load_previous_weights: dir_path = os.path.realpath(".") fn = dir_path + "/"+ apWeights_filename print("filepath ", fn) if os.path.isfile(fn): print("loading weights") action_predictor_model.load_weights(apWeights_filename) else: print("File ",apWeights_filename," does not exis. Retraining... ") #Record first 500 in a sequence and add them to the training sequence total_steps = 0 dataX = np.zeros(shape=(1,num_env_variables+num_env_actions)) dataY = np.zeros(shape=(1,1)) memoryX = np.zeros(shape=(1,num_env_variables+num_env_actions)) memoryY = np.zeros(shape=(1,1)) apmemoryX = np.zeros(shape=(1,num_env_variables)) apmemoryY = np.zeros(shape=(1,num_env_actions)) print("dataX shape", dataX.shape) print("dataY shape", dataY.shape) def predictTotalRewards(qstate, action): qs_a = np.concatenate((qstate,action), axis=0) predX = np.zeros(shape=(1,num_env_variables+num_env_actions)) predX[0] = qs_a #print("trying to predict reward at qs_a", predX[0]) pred = model.predict(predX[0].reshape(1,predX.shape[1])) remembered_total_reward = pred[0][0] return remembered_total_reward def GetRememberedOptimalPolicy(qstate): predX = np.zeros(shape=(1,num_env_variables)) predX[0] = qstate #print("trying to predict reward at qs_a", predX[0]) pred = action_predictor_model.predict(predX[0].reshape(1,predX.shape[1])) r_remembered_optimal_policy = pred[0] return r_remembered_optimal_policy def SmartCrossEntropy(current_optimal_policy): sce = np.zeros(shape=(num_env_actions)) #print("current_optimal_policy", current_optimal_policy) for i in range(num_env_actions): sce[i] = current_optimal_policy[i] + sce_range * (
np.random.rand(1)
numpy.random.rand
import numpy as np import matplotlib.pyplot as plt from scipy import ndimage from mpl_toolkits.mplot3d import Axes3D import matplotlib.image as mplimg from matplotlib.colors import LogNorm from numpy import fft def get_photon_positions(image, cdf, cdf_indexes, nphot=1): """ Uses an inverse CDF lookup to find positions for uniform draws :param image: The 3d voxel representation of the truth :param cdf: CDF representation of the image. CDF should only be computed for non-zero pixels :param cdf_indexes: 1d indexes from image of the pixels represented in cdf :param nphot: Number of photons to draw :return: 3D positions of the drawn photons, about the image center ISSUES: make sure the cdf picker is statistically correct """ draws = np.random.uniform(size=nphot) * cdf[-1] insert_locations = np.searchsorted(cdf, draws) insert_locations = cdf_indexes[insert_locations] indexes_3d = np.unravel_index(insert_locations, image.shape) indexes_3d = np.column_stack(indexes_3d) jitter = np.random.uniform(size=indexes_3d.size).reshape(indexes_3d.shape) return indexes_3d + jitter - np.array(image.shape) / 2 def project_by_random_matrix(photon_zyxs, distort=None, debug=False): """ Generate a randomized 3D-to-2D projection matrix, and project given photon positions using it. :param photon_zyxs: Photon positions in 3D, zyx order :param distort: Either None, or a dictionary of vectors {'dipole': vec, 'quadrupole': vec} :param debug: If True, return axis, rot matrix, and proj matrix instead of transforming points :return: Projected photon positions in 2D, yx order """ rand_axis = np.random.normal(size=3) if distort is not None: if 'quadrupole' in distort: rand_axis *= distort['quadrupole'] if 'dipole' in distort: rand_axis += distort['dipole'] rand_axis /= np.sqrt(np.dot(rand_axis, rand_axis)) rand_angle = np.random.uniform(0, 2 * np.pi) + 1 # 0 to 2pi can scale by 0 rot_matrix = angle_axis_to_matrix(rand_angle*rand_axis) proj_matrix = rot_matrix[:, 1:3].T # first two cols (arbitrary) if debug: return rand_axis, rot_matrix, proj_matrix projected_yxs = np.dot(proj_matrix, photon_zyxs.T).T return projected_yxs def random_fourier_slice(f_image_zyxis, distort=None): rand_axis = np.random.normal(size=3) if distort is not None: if 'quadrupole' in distort: rand_axis *= distort['quadrupole'] if 'dipole' in distort: rand_axis += distort['dipole'] rand_axis /= np.sqrt(np.dot(rand_axis, rand_axis)) rand_angle = np.random.uniform(0, 2*np.pi) + 1 # 0 to 2pi can scale by 0 rot_matrix = angle_axis_to_matrix(rand_angle*rand_axis) proj_matrix = rot_matrix[:, 1:3].T # project along z axis (arbitrary) # Point-plane distance for a plane in Hessian normal form is just # dot(n, x) + p. If the plane goes through the origin p is zero. Get voxels # that are within 1 unit of the slicing plane z_axis_aug = np.zeros(4) z_axis_aug[0:3] = rot_matrix[:, 0] slice_plane_distances = np.abs(np.dot(z_axis_aug, f_image_zyxis.T)) # TODO: be more precise about which voxels to select dist_mask = slice_plane_distances < 1.0 fourier_slice = f_image_zyxis[dist_mask] dist_weights = 1 - slice_plane_distances[dist_mask] proj_matrix_aug = np.zeros((3, 4)) proj_matrix_aug[0:2, 0:3] = proj_matrix proj_matrix_aug[2, 3] = 1 proj_yxis = np.dot(proj_matrix_aug, fourier_slice.T).T # assert np.all(np.isclose(proj_yxis[:,2], fourier_slice[:,3])) # TODO: Right now this sums up into pixels bins. Should really interpolate. extents_yx = np.ceil(np.abs(proj_yxis[:, 0:2]).max(axis=0)) bins_x = np.arange(-extents_yx[1], extents_yx[1]+1) bins_y = np.arange(-extents_yx[0], extents_yx[0]+1) img2d = np.zeros((bins_x.size-1, bins_y.size-1)) # 2d gaussian kernel with FWHM=1 pixel kern = np.outer((0.05554667, 0.88890666, 0.05554667), (0.05554667, 0.88890666, 0.05554667)) shifts = [(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 0), (0, 1), (1, -1), (1, 0), (1, 1)] for (shiftx, shifty), kern_weight in zip(shifts, kern.flat): img, bx, by = np.histogram2d( proj_yxis[:, 1]+shiftx, proj_yxis[:, 0]+shifty, bins=(bins_x, bins_y), weights=proj_yxis[:, 2]*dist_weights*kern_weight) img2d += img return img2d def make_fake_data_fft(truth, num_images=1024, rate=1., distort=None, save_pngs=0): """ # inputs: - truth: pixelized image of density - N: number of images to take - rate: mean number of photons per image # notes: - Images that get zero photons will be dropped, but N images will be returned. """ n_phots = np.zeros(num_images, dtype=int) while True: resamp_mask = n_phots == 0 n_phots[resamp_mask] = np.random.poisson(rate, size=np.sum(resamp_mask)) if np.all(n_phots > 0): break nyxs = np.zeros(shape=(np.sum(n_phots), 3)) fft_truth = fft.fftshift(fft.fftn(truth)) fft_truth = np.real(fft_truth * fft_truth.conj()) inds =
np.arange(fft_truth.size, dtype=int)
numpy.arange
#!/usr/bin/env python3 import os.path import numpy as np import numpy.linalg as la import scipy.io as sio import matplotlib.pyplot as plt from neml import models, elasticity, parse import sys sys.path.append('../../..') from srlife import receiver, structural class TestCase: def __init__(self, name, T, analytic, ri = 0.9, ro = 1.0, h = 10.0, alpha = 1.0e-5, E = 100000.0, nu = 0.3, p = 1.0): self.name = name self.Tfn = T self.afn = analytic self.ri = ri self.ro = ro self.h = h self.alpha = alpha self.E = E self.nu = nu self.p = p def T(self, r): return self.Tfn(r, self.ri, self.ro) def exact(self, r): return self.afn(r, self.p, self.ri, self.ro, self.E, self.nu, self.alpha) def make_mat(self): emodel = elasticity.IsotropicLinearElasticModel(self.E, "youngs", self.nu, "poissons") return models.SmallStrainElasticity(emodel, alpha = self.alpha) def make_tube(self, dim, nr = 15, nt = 30, nz = 5): tube = receiver.Tube(self.ro, self.ro - self.ri, self.h, nr, nt, nz) if dim == 1: tube.make_1D(self.h/2, 0) elif dim == 2: tube.make_2D(self.h/2) times = np.array([0,1]) tube.set_times(times) R, _, _ = tube.mesh Ts = np.zeros((2,) + R.shape[:dim]) Ts[1] = self.T(R) tube.add_results("temperature", Ts) if self.p != 0: tube.set_pressure_bc(receiver.PressureBC(times, times * self.p)) return tube def run_comparison(self, dim, solver, axial_strain = 0, nr = 10, nt = 20, nz = 10): mat = self.make_mat() tube = self.make_tube(dim, nr, nt, nz) solver.setup_tube(tube) state_n = solver.init_state(tube, mat) state_np1 = solver.solve(tube, 1, state_n, axial_strain) solver.dump_state(tube, 1, state_np1) return tube def get_comparison(self, tube): if tube.ndim == 3: z = tube.nz // 2 x_avg = np.mean(tube.results['disp_x']) u = tube.results['disp_x'][1,:,0,z] - 2*x_avg r = tube.mesh[0][:,0,z] elif tube.ndim == 2: # The displacements tend to drift, need to recenter x_avg = np.mean(tube.results['disp_x']) u = tube.results['disp_x'][1,:,0] - 2*x_avg r = tube.mesh[0][:,0,0] else: u = tube.results['disp_x'][1] r = tube.mesh[0][:,0,0] return u, r def plot_comparison(self, tube): u, r = self.get_comparison(tube) plt.figure() plt.plot(r, u, 'k-') plt.plot(r, self.exact(r), 'k--') plt.xlabel("Radial position") plt.ylabel("Radial displacement") plt.title(self.name + ": " + "%iD" % tube.ndim) plt.show() def evaluate_comparison(self, tube): u, r = self.get_comparison(tube) err = np.abs(u - self.exact(r)) rel = err / np.abs(self.exact(r)) return np.max(err), np.max(rel) def exact1(r, p, ri, ro, E, v, a): A = p / (1.0/ro**2.0 - 1.0/ri**2.0) C = -A/(2*ro**2.0) res = (1.0+v)/E * (-A/r + 2.0*(1-2.0*v) * C* r) return res cases = [ TestCase("Inner pressure", lambda T, ri, ro: 0.0, exact1, p = 100, ri = 8, ro = 10.0) ] # Moose comparison stuff # MOOSE test stuff ramp = lambda x: np.piecewise(x, [x < 1, x>=1], [lambda xx: xx, lambda xx: 1.0+xx*0.0]) unit_temperature = lambda x, y, z: (np.sqrt(x**2.0+y**2.0)-9)/(10-9) * np.cos(np.arctan2(y,x))*(z/10.0 + 1) temperature = lambda t, x, y, z: np.array([100*ramp(ti)*unit_temperature(x,y,z) for ti in t]) pressure = lambda t: 1.0 * ramp(t) times = np.array([0, 0.5, 1, 101, 201, 301, 401, 501, 601, 701, 801, 901, 1001]) mat = parse.parse_xml(os.path.join(os.path.dirname(__file__), 'moose-verification', 'model.xml'), 'creeping') ri = 9.0 ro = 10.0 h = 10.0 nr = 11 nt = 20 nz = 6 moose_base = os.path.join(os.path.dirname(__file__), 'moose-verification') moose_ver = [os.path.join(moose_base, f) for f in ['1d_out.e', '2d_out.e', '3d_out.e']] def run_reference_simulation(d, solver): tube = receiver.Tube(ro, ro - ri, h, nr, nt, nz) tube.set_times(times) if d == 1: tube.make_1D(0, 0) elif d == 2: tube.make_2D(0) R, T, Z = tube.mesh X = R * np.cos(T) Y = R * np.sin(T) Ts = temperature(times, X, Y, Z).reshape((len(times),) + tube.dim[:tube.ndim]) tube.add_results("temperature", Ts) tube.set_pressure_bc(receiver.PressureBC(times, pressure(times))) solver.setup_tube(tube) state_n = solver.init_state(tube, mat) for i in range(1,len(tube.times)): state_np1 = solver.solve(tube, i, state_n, 0.0) solver.dump_state(tube, i, state_np1) state_n = state_np1 return tube def load_displacements_exodus(efilename, d): nf = sio.netcdf_file(efilename) cnames = ['coordx', 'coordy', 'coordz'] coords = np.array([ np.copy(nf.variables[c][:]) for c in cnames[:d]]) names = [b''.join(v).decode('utf-8') for v in nf.variables['name_nod_var']] disps = np.array([np.copy(nf.variables['vals_nod_var%i' % (names.index(nm)+1)][:]) for nm in ['disp_x', 'disp_y', 'disp_z'][:d]]) return coords, disps def compare_nodal_field(c1, r1, c2, r2, d, dec = 6, gtol = 1.0e-8): c1 = np.round(c1, decimals=dec) c2 =
np.round(c2, decimals=dec)
numpy.round
from sqlalchemy import true import FinsterTab.W2020.DataForecast import datetime as dt from FinsterTab.W2020.dbEngine import DBEngine import pandas as pd import sqlalchemy as sal import numpy from datetime import datetime, timedelta, date import pandas_datareader.data as dr def get_past_data(self): """ Get raw data from Yahoo! Finance for SPY during Great Recession Store data in MySQL database :param sources: provides ticker symbols of instruments being tracked """ # Assume that date is 2010 now = dt.date(2009, 1, 1) # Date Variables start = now - timedelta(days=1500) # get date value from 5 years ago end = now # data will be a 2D Pandas Dataframe data = dr.DataReader('SPY', 'yahoo', start, end) symbol = [3] * len(data) # add column to identify instrument id number data['instrumentid'] = symbol data = data.reset_index() # no designated index - easier to work with mysql database # Yahoo! Finance columns to match column names in MySQL database. # Column names are kept same to avoid any ambiguity. # Column names are not case-sensitive. data.rename(columns={'Date': 'date', 'High': 'high', 'Low': 'low', 'Open': 'open', 'Close': 'close', 'Adj Close': 'adj close', 'Volume': 'volume'}, inplace=True) data.sort_values(by=['date']) # make sure data is ordered by trade date # send data to database # replace data each time program is run data.to_sql('dbo_paststatistics', self.engine, if_exists=('replace'), index=False, dtype={'date': sal.Date, 'open': sal.FLOAT, 'high': sal.FLOAT, 'low': sal.FLOAT, 'close': sal.FLOAT, 'adj close': sal.FLOAT, 'volume': sal.FLOAT}) # Tests the accuracy of the old functions def accuracy(self): query = 'SELECT * FROM dbo_algorithmmaster' algorithm_df = pd.read_sql_query(query, self.engine) query = 'SELECT * FROM dbo_instrumentmaster' instrument_master_df = pd.read_sql_query(query, self.engine) # Changes algorithm code for code in range(len(algorithm_df)): # Dynamic range for changing instrument ID starting at 1 for ID in range(1, len(instrument_master_df) + 1): query = 'SELECT * FROM dbo_algorithmforecast AS a, dbo_instrumentstatistics AS b WHERE a.forecastdate = b.date AND' \ ' a.instrumentid = %d AND b.instrumentid = %d AND a.algorithmcode = "%s"' % ( ID, ID, algorithm_df['algorithmcode'][code]) df = pd.read_sql_query(query, self.engine) count = 0 # Calculates accuracy for x in range((len(df) - 1)): # Check if upward or downward trend if (df['close'][x + 1] > df['close'][x] and df['forecastcloseprice'][x + 1] > df['forecastcloseprice'][ x]) or \ (df['close'][x + 1] < df['close'][x] and df['forecastcloseprice'][x + 1] < df['forecastcloseprice'][ x]): count += 1 # Populates absolute_percent_error with the calculated percent error for a specific data point absolute_percent_error = [] for i in range(len(df)): absolute_percent_error.append( abs((df['close'].loc[i] - df['forecastcloseprice'].loc[i]) / df['close'].loc[i])) # Calculate sum of percent error and find average average_percent_error = 0 for i in absolute_percent_error: average_percent_error = average_percent_error + i average_percent_error = average_percent_error / len(df) # return the average percent error calculated above print("Average percent error for instrument: %d and algorithm: %s " % (ID, algorithm_df['algorithmcode'][code]), average_percent_error) #print('Algorithm:', algorithm_df['algorithmcode'][code]) #print('instrumentid: %d' % ID, instrument_master_df['instrumentname'][ID - 1]) #print('length of data is:', len(df)) #print('number correct: ', count) d = len(df) b = (count / d) * 100 #print('The accuracy is: %.2f%%\n' % b) # Isolated tests for ARIMA as we where trying to determine why it was so accurate def arima_accuracy(self): query = 'SELECT * FROM dbo_algorithmforecast AS a, dbo_instrumentstatistics AS b WHERE a.forecastdate = b.date AND' \ ' a.instrumentid = 1 AND b.instrumentid = 1 AND a.algorithmcode = "ARIMA"' df = pd.read_sql_query(query, self.engine) df = df.tail(10) df = df.reset_index(drop=true) #print(df) arima_count = 0 for x in range((len(df) - 1)): # Check if upward or downward trend if df['close'][x + 1] > df['close'][x] and df['forecastcloseprice'][x + 1] > df['forecastcloseprice'][x] \ or (df['close'][x + 1] < df['close'][x] and df['forecastcloseprice'][x + 1] < df['forecastcloseprice'][x]): arima_count += 1 #print(df['close'], df['forecastcloseprice']) #print(arima_count) #print(arima_count/len(df)) # Accuracy test for the new function MSF1 def MSF1_accuracy(self): # Queires the database to grab all of the Macro Economic Variable codes query = "SELECT macroeconcode FROM dbo_macroeconmaster WHERE activecode = 'A'" id = pd.read_sql_query(query, self.engine) id = id.reset_index(drop=True) # Queries the database to grab all of the instrument IDs query = 'SELECT instrumentid FROM dbo_instrumentmaster' id2 = pd.read_sql_query(query, self.engine) id2 = id2.reset_index(drop=True) # These are the date ranges we are working with # start_date represents the starting date for the forecasts and the end of the training dates start_date = "'2018-01-01'" # end_date represents the date for which the forecasting ends end_date = "'2020-01-01'" # train_date represents the date we start collecting the instrument statistics used to forecast prices train_date = "'2016-01-01'" # Bool to determine whether we append to dbo_tempvisualize or replace the values to_append = False # Create a for loop to iterate through all of the instrument ids for v in id2['instrumentid']: # Initializes a list for which we will eventually be storing all data to add to the macroeconalgorithm database table data = [] # Data1 will be used to store the forecastdate, instrumentid, forecastprice, and algorithm code # It will be used to graph our backtested forecast against the actual instrument prices data1 = [] # Getting Dates for Future Forecast as well as actual close prices for instrumentID# # We chose 2018 - 2020, to alter this date range simply change the dates in the 3rd line of the query for the dates you want to test on # Make sure they are valid dates as some instruments only have statistics that go back so far, check the instrument statistic table to figure out how far back each instrument goes query = "SELECT date, close FROM ( SELECT date, close, instrumentID, ROW_NUMBER() OVER " \ "(PARTITION BY YEAR(date), MONTH(date) ORDER BY DAY(date) DESC) AS rowNum FROM " \ "dbo_instrumentstatistics WHERE instrumentid = {} AND date BETWEEN {} AND {} ) z " \ "WHERE rowNum = 1 AND ( MONTH(z.date) = 3 OR MONTH(z.date) = 6 OR MONTH(z.date) = 9 OR " \ "MONTH(z.date) = 12)".format(v, start_date, end_date) # instrument_stats will hold the closing prices and the dates for the dates we are forecasting for instrument_stats = pd.read_sql_query(query, self.engine) # We isolate the dates and closing prices into individual arrays to make them easier to work with date = [] close = [] for i in instrument_stats['date']: date.append(i) for i in instrument_stats['close']: close.append(i) # n will always correspond to the amount of dates, as the amount of dates is the number of data points being compared n = len(date) # Median_forecast will be a dictionary where the key is the date and the value is a list of forecasted prices median_forecast = {} # This disctionary will be used to easily combine all of the forecasts for different dates to determine the median forecast value for i in date: temp = {i: []} median_forecast.update(temp) # This query will grab quarterly instrument prices from between 2014 and the current date to be used in the forecasting query = "SELECT date, close, instrumentid FROM ( SELECT date, close, instrumentid, ROW_NUMBER() OVER " \ "(PARTITION BY YEAR(date), MONTH(date) ORDER BY DAY(date) DESC) AS rowNum FROM " \ "dbo_instrumentstatistics WHERE instrumentid = {} AND date BETWEEN {} AND {} ) z " \ "WHERE rowNum = 1 AND ( MONTH(z.date) = 3 OR MONTH(z.date) = 6 OR MONTH(z.date) = 9 OR " \ "MONTH(z.date) = 12)".format(v, train_date, start_date) # Executes the query and stores the result in a dataframe variable df2 = pd.read_sql_query(query, self.engine) # This for loop iterates through the different macro economic codes to calculate the percent change for each macroeconomic variable for x in id['macroeconcode']: # Retrieves the most recent macro economic statistics prior to the date for which we are testing our algorithm query = "SELECT * FROM dbo_macroeconstatistics WHERE macroeconcode = {} and date <= {} ".format('"' + str(x) + '"', start_date) df = pd.read_sql_query(query, self.engine) macro = df.tail(n) SP = df2.tail(n) temp = df.tail(n + 1) temp = temp.reset_index() # Converts macro variables to precent change macroPercentChange = macro macro = macro.reset_index(drop=True) SP = SP.reset_index(drop=True) macroPercentChange = macroPercentChange.reset_index(drop=True) for i in range(0, n): if (i == 0): macrov = (macro['statistics'][i] - temp['statistics'][i]) / temp['statistics'][i] macroPercentChange['statistics'].iloc[i] = macrov * 100 else: macrov = (macro['statistics'][i] - macro['statistics'][i - 1]) / macro['statistics'][i - 1] macroPercentChange['statistics'].iloc[i] = macrov * 100 # Algorithm for forecast price S = calc(self, macroPercentChange, SP,n) # Calculates the average GDP and S&P values for the given data points over n days and performs operations on GDP average # isFirst will determine whether or not this is the first calculation being done # If it is true then we use the most recent instrument statistic to forecast the first pricepoint # IF it is false then we use the previous forecast price to predict the next forecast price isFirst = True # temp_price will be used to hold the previous forecast price for the next prediction temp_price = 0 # Setup a for loop to calculate the final forecast price and add data to the list variable data for i in range(n): if isFirst: if x in [2, 3, 4]: temp_price = ((S * (SP['close'].iloc[n-1])) + (SP['close'].iloc[n-1])) isFirst = False else: temp_price = ((S * SP['close'].iloc[n-1]) + SP['close'].iloc[n-1]) isFirst = False else: if x in [2, 3, 4]: temp_price = ((S * temp_price) + temp_price) else: temp_price = ((S * temp_price) + temp_price) # Once the forecast price is calculated append it to median_forecast list median_forecast[date[i]].append(temp_price) # Calculates the median value for each date using a list of prices forecasted by each individual macro economic variable forecast_prices = [] for i in date: # Sort the forecasted prices based on date sorted_prices = sorted(median_forecast[i]) # calculate the median forecasted price for each date if len(sorted_prices) % 2 == 0: center = int(len(sorted_prices) / 2) forecast_prices.append(sorted_prices[center]) else: center = int(len(sorted_prices) / 2) forecast_prices.append((sorted_prices[center] + sorted_prices[center - 1]) / 2) # Set up a for loop to construct a list using variables associated with macroeconalgorithm database table for i in range(len(forecast_prices)): data.append([date[i], v, 'ALL', forecast_prices[i], close[i], 'MSF1', 0]) data1.append([date[i], v, forecast_prices[i], 'MSF1']) # Convert data list to dataframe variable df = pd.DataFrame(data, columns=['forecastdate', 'instrumentid', 'macroeconcode', 'forecastcloseprice', 'close', 'algorithmcode', 'prederror']) df1 = pd.DataFrame(data1, columns=['forecastdate', 'instrumentid', 'forecastcloseprice', 'algorithmcode']) df1.to_sql('dbo_tempvisualize', self.engine, if_exists=('replace' if not to_append else 'append'), index=False) to_append = True # Populates absolute_percent_error with the calculated percent error for a specific data point absolute_percent_error = [] for i in range(n): absolute_percent_error.append(abs((df['close'].loc[i] - df['forecastcloseprice'].loc[i]) / df['close'].loc[i])) # Calculate sum of percent error and find average average_percent_error = 0 for i in absolute_percent_error: average_percent_error = average_percent_error + i average_percent_error = average_percent_error / n count = 0 # Calculates trend accuracy for x in range((len(df) - 1)): # Check if upward or downward trend if (df['close'][x + 1] > df['close'][x] and df['forecastcloseprice'][x + 1] > df['forecastcloseprice'][ x]) or \ (df['close'][x + 1] < df['close'][x] and df['forecastcloseprice'][x + 1] < df['forecastcloseprice'][ x]): count += 1 length = len(df) trend_error = (count / length) * 100 print("Trend accuracy for %s for instrument %d is %.2f%%" % ('MSF1', v, trend_error)) print("The average percent error for %s for instrument %d is %.2f%%" % ('MSF1', v, average_percent_error * 100)) # return the average percent error calculated above # This function is not currently used, it can be used to check the accuracy of MSF2 but will need set weightings # The functions below this one will test the accuracy using a variety of weightings and choose the weightings with the best results def MSF2_accuracy(self): n = 8 #Gets the macro economic variables codes and names to loop through the inidividual macro variables query = "SELECT macroeconcode, macroeconname FROM dbo_macroeconmaster WHERE activecode = 'A'" data = pd.read_sql_query(query, self.engine) macrocodes = [] indicators = {} for i in range(len(data['macroeconcode'])): macrocodes.append(data['macroeconcode'].loc[i]) d = {data['macroeconcode'].loc[i]: []} indicators.update(d) #Gets the instrument ids to loop through the individual instruments query = 'SELECT instrumentid, instrumentname FROM dbo_instrumentmaster' data = pd.read_sql_query(query, self.engine) instrumentids = [] for i in data['instrumentid']: instrumentids.append(i) # These are the date ranges we are working with # start_date represents the starting date for the forecasts and the end of the training dates start_date = "'2018-01-01'" # end_date represents the date for which the forecasting ends end_date = "'2020-01-01'" # train_date represents the date we start collecting the instrument statistics used to forecast prices train_date = "'2016-01-01'" #Loops through each instrument id to preform error calculations 1 instrument at a time for i in instrumentids: #Gets the instrument statistics to run through the function query = "SELECT date, close, instrumentid FROM ( SELECT date, close, instrumentID, ROW_NUMBER() OVER " \ "(PARTITION BY YEAR(date), MONTH(date) ORDER BY DAY(date) DESC) AS rowNum FROM " \ "dbo_instrumentstatistics WHERE instrumentid = {} AND date BETWEEN {} AND {} ) z " \ "WHERE rowNum = 1 AND ( MONTH(z.date) = 3 OR MONTH(z.date) = 6 OR MONTH(z.date) = 9 OR " \ "MONTH(z.date) = 12)".format(i, train_date, start_date) train_data = pd.read_sql_query(query, self.engine) #Gets the instrument statistics to check against the forecast prices query = "SELECT date, close, instrumentid FROM ( SELECT date, close, instrumentID, ROW_NUMBER() OVER " \ "(PARTITION BY YEAR(date), MONTH(date) ORDER BY DAY(date) DESC) AS rowNum FROM " \ "dbo_instrumentstatistics WHERE instrumentid = {} AND date BETWEEN {} AND {} ) z " \ "WHERE rowNum = 1 AND ( MONTH(z.date) = 3 OR MONTH(z.date) = 6 OR MONTH(z.date) = 9 OR " \ "MONTH(z.date) = 12)".format(i, start_date, end_date) check_data = pd.read_sql_query(query, self.engine) #Gets the dates for the future forecast prices so they match the instrument statistics dates = [] for l in check_data['date']: dates.append(str(l)) #Loops through the macro economic variable codes to calculate percent change for j in macrocodes: #Retrieves macro economic statistics for each macro variables query = "SELECT date, statistics, macroeconcode FROM dbo_macroeconstatistics WHERE macroeconcode = {} AND date <= {}".format('"' + j + '"', start_date) data = pd.read_sql_query(query, self.engine) # For loop to retrieve macro statistics and calculate percent change for k in range(n): temp = data.tail(n + 1) data = data.tail(n) if j == k: macrov = (data['statistics'].iloc[k] - temp['statistics'].iloc[0]) / temp['statistics'].iloc[0] indicators[j].append(macrov) else: macrov = (data['statistics'].iloc[k] - data['statistics'].iloc[k - 1]) / data['statistics'].iloc[ k - 1] indicators[j].append(macrov) #Preforms the actual calculations and stores them in an array called calculated forecast calculated_forecast = [] for k in range(n): stat = indicators['GDP'][k] * 1 - (indicators['UR'][k] * 0 + indicators['IR'][k] * .5) - ( indicators['MI'][k] * indicators['MI'][k]) stat = (stat * train_data['close'].iloc[n-1]) + train_data['close'].iloc[n-1] calculated_forecast.append(stat) #Creates and inserts the forecast dates, instrument ids, calculated forecast prices, and actual close prices into an array results = [] for k in range(n): results.append([dates[k], i, calculated_forecast[k], check_data['close'].loc[k]]) #Creates a dataframe out of the array created above df = pd.DataFrame(results, columns=['forecastdate', 'instrumentid', 'forecastcloseprice', 'close']) #print(df) count = 0 # Calculates accuracy percent_error = [] temp_error = 0 for x in range((len(df) - 1)): # Check if upward or downward trend if (df['close'][x + 1] > df['close'][x] and df['forecastcloseprice'][x + 1] > df['forecastcloseprice'][x]) or \ (df['close'][x + 1] < df['close'][x] and df['forecastcloseprice'][x + 1] < df['forecastcloseprice'][x]): count += 1 temp_error = abs((df['close'][x] - df['forecastcloseprice'][x]))/df['close'] #Percent Error calculation temp_error = (df['close'] - df['forecastcloseprice']) / df['close'] absolute_percent_error = [abs(ele) for ele in temp_error] percent_error.append(absolute_percent_error) if df['instrumentid'][i] == 1: gm_temp_error = (df['close'] - df['forecastcloseprice']) / df['close'] gm_absolute_percent_error = [abs(ele) for ele in gm_temp_error] #Calculate sum of percent error and find average gm_average_percent_error = sum(gm_absolute_percent_error) / 8 #print("Average percent error of MSF2 on GM stock is: ", gm_average_percent_error * 100, "%") if df['instrumentid'][i] == 2: pfe_temp_error = (df['close'] - df['forecastcloseprice']) / df['close'] pfe_absolute_percent_error = [abs(ele) for ele in pfe_temp_error] #Calculate sum of percent error and find average pfe_average_percent_error = sum(pfe_absolute_percent_error) / 8 #print("Average percent error of MSF2 on PFE stock is: ", pfe_average_percent_error * 100, "%") if df['instrumentid'][i] == 3: spy_temp_error = (df['close'] - df['forecastcloseprice']) / df['close'] spy_absolute_percent_error = [abs(ele) for ele in spy_temp_error] #Calculate sum of percent error and find average spy_average_percent_error = sum(spy_absolute_percent_error) / 8 #print("Average percent error of MSF2 on S&P 500 stock is: ", spy_average_percent_error * 100, "%") if df['instrumentid'][i] == 4: xph_temp_error = (df['close'] - df['forecastcloseprice']) / df['close'] xph_absolute_percent_error = [abs(ele) for ele in xph_temp_error] #Calculate sum of percent error and find average xph_average_percent_error = sum(xph_absolute_percent_error) / 8 #print("Average percent error of MSF2 on XPH stock is: ", xph_average_percent_error * 100, "%") if df['instrumentid'][i] == 5: carz_temp_error = (df['close'] - df['forecastcloseprice']) / df['close'] carz_absolute_percent_error = [abs(ele) for ele in carz_temp_error] #Calculate sum of percent error and find average carz_average_percent_error = sum(carz_absolute_percent_error) / 8 #print("Average percent error of MSF2 on CARZ index stock is: ", carz_average_percent_error * 100, "%") if df['instrumentid'][i] == 6: tyx_temp_error = (df['close'] - df['forecastcloseprice']) / df['close'] tyx_absolute_percent_error = [abs(ele) for ele in tyx_temp_error] #Calculate sum of percent error and find average tyx_average_percent_error = sum(tyx_absolute_percent_error) / 8 #print("Average percent error of MSF2 on TYX 30-YR bond is: ", tyx_average_percent_error * 100, "%") d = len(df) b = (count / d) * 100 #Prints the trend accuracy #print('The accuracy for instrument %d: %.2f%%\n' % (i, b)) #Create weightings MSF2 runs the MSF2 algorithm for past dates and compares them to actual instrument prices, generating a percent error calculation #We then iterate through several different weightings and we compare each percent error for each instrument and determine the weightings with the lowest percent error def create_weightings_MSF2(self, setWeightings): # Query to grab the macroeconcodes and macroeconnames from the macroeconmaster database table query = "SELECT macroeconcode, macroeconname FROM dbo_macroeconmaster WHERE activecode = 'A'" data = pd.read_sql_query(query, self.engine) # Query to grab the instrumentid and instrument name from the instrumentmaster database table query = 'SELECT instrumentid, instrumentname FROM dbo_instrumentmaster' data1 = pd.read_sql_query(query, self.engine) # Keys is a dictionary that will be used to store the macro econ code for each macro econ name keys = {} for i in range(len(data)): keys.update({data['macroeconname'].iloc[i]: data['macroeconcode'].iloc[i]}) # ikeys is a dictionary that will be used to store instrument ids for each instrument name ikeys = {} for x in range(len(data1)): ikeys.update({data1['instrumentname'].iloc[x]: data1['instrumentid'].iloc[x]}) #Vars is a dictionary used to store the macro economic variable percent change for each macro economic code vars = {} #Vars is only populated with the relevant macro economic variables (GDP, COVI, CPIUC, and FSI) for i in data['macroeconcode']: if (i == 'GDP' or i == 'UR' or i == 'IR' or i == 'MI'): d = {i: []} vars.update(d) #Weightings is used to store the best weightings for each instrument id which is returned to dataforecast and used for actual prediction weightings = {} #n represents the number of datapoints we are working with (represented in quarters) n = 8 # These are the date ranges we are working with # start_date represents the starting date for the forecasts and the end of the training dates start_date = "'2018-01-01'" # end_date represents the date for which the forecasting ends end_date = "'2020-01-01'" # train_date represents the date we start collecting the instrument statistics used to forecast prices train_date = "'2016-01-01'" # For loop to loop through the macroeconomic codes to calculate the macro economic variable percent change for i in keys: # Check to make sure the macroeconcode we are working with is one of the relevant ones if keys[i] in vars: # Query to grab the macroeconomic statistics from the database using the relevant macro economic codes query = "SELECT date, statistics, macroeconcode FROM dbo_macroeconstatistics WHERE macroeconcode = {} AND date <= {}".format( '"' + keys[i] + '"', start_date) data = pd.read_sql_query(query, self.engine) # For loop to retrieve macro statistics and calculate percent change for j in range(n): # This will grab the n+1 statistic to use to calculate the percent change to the n statistic temp = data.tail(n + 1) # This will grab the most recent n statistics from the query, as we are working only with n points data = data.tail(n) # For the first iteration we need to use the n+1th statistic to calculate percent change on the oldest point if j == 0: macrov = (data['statistics'].iloc[j] - temp['statistics'].iloc[0]) / temp['statistics'].iloc[0] vars[keys[i]].append(macrov) else: macrov = (data['statistics'].iloc[j] - data['statistics'].iloc[j - 1]) / \ data['statistics'].iloc[j - 1] vars[keys[i]].append(macrov) # If you are not using set weightings then this if statement will run and create the best fit weightings if not setWeightings: # We now iterate through the instrument ids for x in ikeys: # This query will grab the quarterly instrument statistics from 2016 to 2018 query = "SELECT date, close, instrumentid FROM ( SELECT date, close, instrumentid, ROW_NUMBER() OVER " \ "(PARTITION BY YEAR(date), MONTH(date) ORDER BY DAY(date) DESC) AS rowNum FROM " \ "dbo_instrumentstatistics WHERE instrumentid = {} AND date BETWEEN {} AND {} ) z " \ "WHERE rowNum = 1 AND ( MONTH(z.date) = 3 OR MONTH(z.date) = 6 OR MONTH(z.date) = 9 OR " \ "MONTH(z.date) = 12)".format(ikeys[x], train_date, start_date) # Then we execute the query and store the returned values in instrumentStats, and grab the last n stats from the dataframe as we are only using n datapoints instrumentStats = pd.read_sql_query(query, self.engine) instrumentStats = instrumentStats.tail(n) #Best weightings will be used to store the best weightings for each instrument best_weightings = [0, 0, 0] #Best avg error will be used to store the best average percent error for each isntrument best_avg_error = -1 #Best trend error will be used to store the best trend error for each instrument best_trend_error = -1 #Best forecast prices will be used to store the forecast prices for the best weightings to store them in a database for visual comparison later best_forecast_prices = [] # We now iterate through all 3 different possible weightings for weight in numpy.arange(-5.7, 2.8, .25): for uweight in
numpy.arange(-3.7, 3.6, .25)
numpy.arange
# In order to manipulate the array import numpy as np # In order to load mat file from scipy.io import loadmat # In order to import the libsvm format dataset from sklearn.datasets import load_svmlight_file from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import Imputer from sklearn.preprocessing import Binarizer from collections import Counter from fetch.coil_2000 import fetch_coil_2000 from process.coil_2000 import convert_coil_2000 def abalone_19(): # Abalone dataset - Convert the ring = 19 to class 1 and the other to class 0 filename = '../../data/raw/mldata/uci-20070111-abalone.mat' matfile = loadmat(filename) sex_array = np.zeros(np.ravel(matfile['int1']).shape[0]) sex_array[np.nonzero(np.ravel(matfile['Sex']) == 'M')] = 0 sex_array[np.nonzero(np.ravel(matfile['Sex']) == 'F')] = 1 sex_array[np.nonzero(np.ravel(matfile['Sex']) == 'I')] = 2 data = np.zeros((np.ravel(matfile['int1']).shape[0], 8)) data[:, 0] = sex_array data[:, 1::] = matfile['double0'].T label = np.zeros((np.ravel(matfile['int1']).shape[0], ), dtype=(int)) label[np.nonzero(np.ravel(matfile['int1']) == 19)] = 1 np.savez('../../data/clean/uci-abalone-19.npz', data=data, label=label) def abalone_7(): # Abalone dataset - Convert the ring = 19 to class 1 and the other to class 0 filename = '../../data/raw/mldata/uci-20070111-abalone.mat' matfile = loadmat(filename) sex_array = np.zeros(np.ravel(matfile['int1']).shape[0]) sex_array[np.nonzero(np.ravel(matfile['Sex']) == 'M')] = 0 sex_array[np.nonzero(np.ravel(matfile['Sex']) == 'F')] = 1 sex_array[np.nonzero(np.ravel(matfile['Sex']) == 'I')] = 2 data = np.zeros((np.ravel(matfile['int1']).shape[0], 8)) data[:, 0] = sex_array data[:, 1::] = matfile['double0'].T label = np.zeros((np.ravel(matfile['int1']).shape[0], ), dtype=(int)) label[np.nonzero(np.ravel(matfile['int1']) == 7)] = 1 np.savez('../../data/clean/uci-abalone-7.npz', data=data, label=label) def adult(): # Adult dataset filename = '../../data/raw/mldata/adult' tmp_input = np.loadtxt(filename, delimiter = ',', usecols = (0, 2, 4, 10, 11, 12, 14)) data = tmp_input[:, :-1] label = tmp_input[:, -1].astype(int) np.savez('../../data/clean/uci-adult.npz', data=data, label=label) def ecoli(): # ecoli dataset filename = '../../data/raw/mldata/ecoli.data' # We are loading only the 7th continous attributes data = np.loadtxt(filename, usecols = (1, 2, 3, 4, 5, 6, 7), dtype=float) # Get the label tmp_label = np.loadtxt(filename, usecols = (8, ), dtype=str) label = np.zeros(tmp_label.shape, dtype=int) label[np.nonzero(tmp_label == 'imU')] = 1 np.savez('../../data/clean/uci-ecoli.npz', data=data, label=label) def optical_digits(): # optical digits dataset filename = '../../data/raw/mldata/optdigits' # We are loading only the 7th continous attributes data = np.loadtxt(filename, delimiter = ',', usecols = tuple(range(64)), dtype=float) # Get the label tmp_label = np.loadtxt(filename, delimiter = ',', usecols = (64, ), dtype=int) label = np.zeros(tmp_label.shape, dtype=int) label[np.nonzero(tmp_label == 8)] = 1 np.savez('../../data/clean/uci-optical-digits.npz', data=data, label=label) def sat_image(): # sat image dataset filename = '../../data/raw/mldata/satimage.scale' tmp_data, tmp_label = load_svmlight_file(filename) data = tmp_data.toarray() label = np.zeros(tmp_label.shape, dtype=int) label[np.nonzero(tmp_label == 4)] = 1 np.savez('../../data/clean/uci-sat-image.npz', data=data, label=label) def pen_digits(): # sat image dataset filename = '../../data/raw/mldata/pendigits' tmp_data, tmp_label = load_svmlight_file(filename) data = tmp_data.toarray() label = np.zeros(tmp_label.shape, dtype=int) label[np.nonzero(tmp_label == 5)] = 1 np.savez('../../data/clean/uci-pen-digits.npz', data=data, label=label) def spectrometer(): # spectrometer dataset filename = '../../data/raw/mldata/lrs.data' # We are loading only the 7th continous attributes data = np.loadtxt(filename, usecols = tuple(range(10, 103)), dtype=float) # Get the label tmp_label = np.loadtxt(filename, usecols = (1, ), dtype=int) label = np.zeros(tmp_label.shape, dtype=int) label[np.nonzero(tmp_label == 44)] = 1 np.savez('../../data/clean/uci-spectrometer.npz', data=data, label=label) def balance(): # balance dataset filename = '../../data/raw/mldata/balance-scale.data' # We are loading only the 7th continous attributes data = np.loadtxt(filename, delimiter= ',', usecols = tuple(range(1, 5)), dtype=float) # Get the label tmp_label = np.loadtxt(filename, delimiter = ',', usecols = (0, ), dtype=str) label = np.zeros(tmp_label.shape, dtype=int) label[np.nonzero(tmp_label == 'B')] = 1 np.savez('../../data/clean/uci-balance.npz', data=data, label=label) def car_eval_34(): # car eval dataset filename = '../../data/raw/mldata/car.data' tmp_data = np.loadtxt(filename, delimiter = ',', dtype=str) tmp_label = tmp_data[:, -1] tmp_data_2 = np.zeros((tmp_data.shape), dtype=int) # Encode each label with an integer for f_idx in range(tmp_data.shape[1]): le = LabelEncoder() tmp_data_2[:, f_idx] = le.fit_transform(tmp_data[:, f_idx]) # initialise the data data = np.zeros((tmp_data.shape[0], tmp_data.shape[1] - 1), dtype=float) label = np.zeros((tmp_data.shape[0], ), dtype=int) # Push the data data = tmp_data_2[:, :-1] label[np.nonzero(tmp_label == 'good')] = 1 label[np.nonzero(tmp_label == 'vgood')] = 1 np.savez('../../data/clean/uci-car-eval-34.npz', data=data, label=label) def car_eval_4(): # car eval dataset filename = '../../data/raw/mldata/car.data' tmp_data = np.loadtxt(filename, delimiter = ',', dtype=str) tmp_label = tmp_data[:, -1] tmp_data_2 = np.zeros((tmp_data.shape), dtype=int) # Encode each label with an integer for f_idx in range(tmp_data.shape[1]): le = LabelEncoder() tmp_data_2[:, f_idx] = le.fit_transform(tmp_data[:, f_idx]) # initialise the data data = np.zeros((tmp_data.shape[0], tmp_data.shape[1] - 1), dtype=float) label = np.zeros((tmp_data.shape[0], ), dtype=int) # Push the data data = tmp_data_2[:, :-1] label[np.nonzero(tmp_label == 'vgood')] = 1 np.savez('../../data/clean/uci-car-eval-4.npz', data=data, label=label) def isolet(): # isolet dataset filename = '../../data/raw/mldata/isolet.data' data = np.loadtxt(filename, delimiter = ',', usecols = tuple(range(617)), dtype=float) tmp_label = np.loadtxt(filename, delimiter = ',', usecols = (617, ), dtype=float) label = np.zeros(tmp_label.shape, dtype=int) label[np.nonzero(tmp_label == 1.)] = 1 label[np.nonzero(tmp_label == 2.)] = 1
np.savez('../../data/clean/uci-isolet.npz', data=data, label=label)
numpy.savez
import copy as cp import numpy as np from scipy.linalg import pinv, eigh from sklearn.base import TransformerMixin from mne import EvokedArray def shrink(cov, alpha): n = len(cov) shrink_cov = (1 - alpha) * cov + alpha * np.trace(cov) * np.eye(n) / n return shrink_cov def fstd(y): y = y.astype(np.float32) y -= y.mean(axis=0) y /= y.std(axis=0) return y def _get_scale(X, scale): if scale == 'auto': scale = 1 / np.mean([[np.trace(y) for y in x] for x in X]) return scale class ProjIdentitySpace(TransformerMixin): def __init__(self): return None def fit(self, X, y): return self def transform(self, X): return X class ProjLWSpace(TransformerMixin): def __init__(self, shrink): self.shrink = shrink def fit(self, X, y): return self def transform(self, X): n_sub, n_fb, p, _ = X.shape Xout = np.empty((n_sub, n_fb, p, p)) for fb in range(n_fb): for sub in range(n_sub): Xout[sub, fb] = shrink(X[sub, fb], self.shrink) return Xout # (sub , fb, compo, compo) class ProjRandomSpace(TransformerMixin): def __init__(self, n_compo=71): self.n_compo = n_compo def fit(self, X, y): n_sub, n_fb, n_chan, _ = X.shape self.filters_ = [] for fb in range(n_fb): U = np.linalg.svd(np.random.rand(n_chan, n_chan))[0][:self.n_compo] self.filters_.append(U) # (fb, compo, chan) row vec return self def transform(self, X): n_sub, n_fb, _, _ = X.shape Xout = np.empty((n_sub, n_fb, self.n_compo, self.n_compo)) for fb in range(n_fb): filters = self.filters_[fb] # (compo, chan) for sub in range(n_sub): Xout[sub, fb] = filters @ X[sub, fb] @ filters.T return Xout # (sub , fb, compo, compo) class ProjCommonWassSpace(TransformerMixin): def __init__(self, n_compo=71): self.n_compo = n_compo def fit(self, X, y): n_sub, n_fb, _, _ = X.shape self.filters_ = [] for fb in range(n_fb): covsfb = X[:, fb] C = mean_covs(covsfb, self.n_compo) eigvals, eigvecs = eigh(C) ix = np.argsort(
np.abs(eigvals)
numpy.abs
""" Library of simple image processing effects that can be applied to source images or video """ from __future__ import print_function from __future__ import division import cv2 import numpy as np from vidviz.utils import SmoothNoise class Effect(object): """Base class for vid-viz effects""" def __init__(self, style='effect'): """ Args: style (str): 'effect' | 'postproc' """ # set attributes common to all effects self.name = None self.type = style self.props = None self.max_num_styles = 1 self.auto_play = False self.style = 0 self.reinitialize = False self.random_walk = False self.chan_vec_pos = np.zeros((1, 1)) self.noise = SmoothNoise( num_samples=1, num_channels=self.chan_vec_pos.size) self.update_output = False # boolean for updating screen output self.inf = 1000 self.none_dict = { 'desc': 'unassigned', 'name': '', 'val': 0, 'init': 0, 'min': 0, 'max': 1, 'mod': self.inf, 'step': 1, 'inc': False, 'dec': False} def _process_io(self, key_list): self.update_output = -1 if key_list[ord('-')]: key_list[ord('-')] = False self.props[0]['dec'] = True self.update_output = 0 elif key_list[ord('=')]: key_list[ord('=')] = False self.props[0]['inc'] = True self.update_output = 0 elif key_list[ord('[')]: key_list[ord('[')] = False self.props[1]['dec'] = True self.update_output = 1 elif key_list[ord(']')]: key_list[ord(']')] = False self.props[1]['inc'] = True self.update_output = 1 elif key_list[ord(';')]: key_list[ord(';')] = False self.props[2]['dec'] = True self.update_output = 2 elif key_list[ord('\'')]: key_list[ord('\'')] = False self.props[2]['inc'] = True self.update_output = 2 elif key_list[ord(',')]: key_list[ord(',')] = False self.props[3]['dec'] = True self.update_output = 3 elif key_list[ord('.')]: key_list[ord('.')] = False self.props[3]['inc'] = True self.update_output = 3 elif key_list[ord('R')]: key_list[ord('R')] = False self.props[4]['dec'] = True self.update_output = 4 elif key_list[ord('T')]: key_list[ord('T')] = False self.props[4]['inc'] = True self.update_output = 4 elif key_list[ord('Q')]: key_list[ord('Q')] = False self.props[5]['dec'] = True self.update_output = 5 elif key_list[ord('S')]: key_list[ord('S')] = False self.props[5]['inc'] = True self.update_output = 5 elif key_list[ord('/')]: key_list[ord('/')] = False self.reinitialize = True elif key_list[ord('t')]: key_list[ord('t')] = False self.style = (self.style + 1) % self.max_num_styles # self.reinitialize = True # elif key_list[ord('a')]: # key_list[ord('a')] = False # self.auto_play = not self.auto_play elif key_list[ord('w')]: key_list[ord('w')] = False self.random_walk = not self.random_walk self.chan_vec_pos = np.zeros(self.chan_vec_pos.shape) self.noise.reinitialize() # process options for index, _ in enumerate(self.props): if self.props[index]['dec']: self.props[index]['dec'] = False self.props[index]['val'] -= self.props[index]['step'] if self.props[index]['inc']: self.props[index]['inc'] = False self.props[index]['val'] += self.props[index]['step'] if self.props[index]['mod'] != self.inf: self.props[index]['val'] = np.mod( self.props[index]['val'], self.props[index]['mod']) self.props[index]['val'] = np.clip( self.props[index]['val'], self.props[index]['min'], self.props[index]['max']) def process(self, frame, key_list): raise NotImplementedError def print_update(self, force=False): """Print effect settings to console""" if self.update_output > -1 or force: print() print() print() print('%s effect settings' % self.name) print('keys | min | cur | max | description') print('-----|-------|-------|-------|-------------') for index in range(6): if index == 0: keys = '-/+' elif index == 1: keys = '{/}' elif index == 2: keys = ";/'" elif index == 3: keys = '</>' elif index == 4: keys = 'u/d' elif index == 5: keys = 'l/r' print(' %s | %5g | %5g | %5g | %s' % (keys, self.props[index]['min'], self.props[index]['val'], self.props[index]['max'], self.props[index]['desc'])) # print extra updates print('t - toggle between effect types') print('w - toggle random walk') print('/ - reset effect parameters') print('q - quit %s effect' % self.name) if self.type == 'effect': print('~ - enable post-processing edit mode') print('spacebar - cycle through sources') elif self.type == 'postproc': print('tab - reverse processing order') print('backspace - quit post-processing edit mode') def reset(self): for index, _ in enumerate(self.props): self.props[index]['val'] = self.props[index]['init'] self.style = 0 self.auto_play = False self.reinitialize = False self.chan_vec_pos = np.zeros(self.chan_vec_pos.shape) self.noise.reinitialize() class Border(Effect): """ Manipulate image borders KEYBOARD INPUTS: t - toggle between border styles -/+ - decrease/increase border padding [/] - decrease/increase zoom ;/' - rotate image left/right ,/. - None lrud arrows - translate image / - reset parameters backspace - quit border effect """ def __init__(self, style='effect'): super(Border, self).__init__(style=style) self.name = 'border' # user option constants MULT_FACTOR = { 'desc': 'shrink frame and fill border', 'name': 'mult_factor', 'val': 1.0, 'init': 1.0, 'min': 0.01, 'max': 1.0, 'mod': self.inf, 'step': 0.05, 'inc': False, 'dec': False} ZOOM_FACTOR = { 'desc': 'zoom on original frame', 'name': 'zoom_factor', 'val': 1.0, 'init': 1.0, 'min': 1.0, 'max': 10.0, 'mod': self.inf, 'step': 0.05, 'inc': False, 'dec': False} ROT_ANGLE = { 'desc': 'rotation on original frame', 'name': 'rot_angle', 'val': 0, 'init': 0, 'min': -self.inf, 'max': self.inf, 'mod': 360, 'step': 5, 'inc': False, 'dec': False} SHIFT_PIX_VERT = { 'desc': 'vertical shift on original frame', 'name': 'shift_vert', 'val': 0, 'init': 0, 'min': -500, 'max': 500, 'mod': self.inf, 'step': 10, 'inc': False, 'dec': False} SHIFT_PIX_HORZ = { 'desc': 'horizontal shift on original frame', 'name': 'shift_horz', 'val': 0, 'init': 0, 'min': -500, 'max': 500, 'mod': self.inf, 'step': 10, 'inc': False, 'dec': False} self.max_num_styles = 3 # combine dicts into a list for easy general access self.props = [ MULT_FACTOR, ZOOM_FACTOR, ROT_ANGLE, self.none_dict, SHIFT_PIX_VERT, SHIFT_PIX_HORZ] def process(self, frame, key_list, key_lock=False): # process keyboard input if not key_lock: self._process_io(key_list) if self.reinitialize: self.reinitialize = False for index, _ in enumerate(self.props): self.props[index]['val'] = self.props[index]['init'] # human-readable names mult_factor = self.props[0]['val'] zoom_factor = self.props[1]['val'] rot_angle = self.props[2]['val'] shift_vert = self.props[4]['val'] shift_horz = self.props[5]['val'] # process image if len(frame.shape) == 3: [im_height, im_width, _] = frame.shape elif len(frame.shape) == 2: [im_height, im_width] = frame.shape # rotate if rot_angle is not 0: rot_mat = cv2.getRotationMatrix2D( (im_width / 2, im_height / 2), rot_angle, 1.0) frame = cv2.warpAffine( frame, rot_mat, (im_width, im_height)) # translate if shift_horz is not 0 or shift_vert is not 0: frame = cv2.warpAffine( frame, np.float32([[1, 0, shift_horz], [0, 1, shift_vert]]), (im_width, im_height)) # zoom if zoom_factor > 1.0: frame = cv2.getRectSubPix( frame, (int(im_width / zoom_factor), int(im_height / zoom_factor)), (im_width / 2, im_height / 2)) frame = cv2.resize(frame, (im_width, im_height)) # add borders if self.style == 1: # resize frame frame = cv2.resize( frame, None, fx=mult_factor, fy=mult_factor, interpolation=cv2.INTER_LINEAR) if mult_factor < 1.0: # top, bottom, left, right frame = cv2.copyMakeBorder( frame, int(im_height * (1.0 - mult_factor) / 2), int(im_height * (1.0 - mult_factor) / 2), int(im_width * (1.0 - mult_factor) / 2), int(im_width * (1.0 - mult_factor) / 2), cv2.BORDER_WRAP) elif self.style == 2: # resize frame frame = cv2.resize( frame, None, fx=mult_factor, fy=mult_factor, interpolation=cv2.INTER_LINEAR) if mult_factor < 1.0: # top, bottom, left, right frame = cv2.copyMakeBorder( frame, int(im_height * (1.0 - mult_factor) / 2), int(im_height * (1.0 - mult_factor) / 2), int(im_width * (1.0 - mult_factor) / 2), int(im_width * (1.0 - mult_factor) / 2), cv2.BORDER_REFLECT) return frame class Cell(object): """Helper class for Grating class""" def __init__(self, num_pix_cell, num_pix_cell_half, border_prop, center, vel, frame_size=[0, 0], use_full_frame=False): self.num_pix_cell = num_pix_cell self.num_pix_cell_half = num_pix_cell_half self.center = center self.vel = vel self.num_pix_img_half = None self.border_prop = None self.update_border_prop(border_prop) self.frame_size = frame_size self.use_full_frame = use_full_frame def update_border_prop(self, border_prop): self.border_prop = border_prop self.num_pix_img_half = \ [int((self.num_pix_cell[0] * (1 - self.border_prop) // 2)), int((self.num_pix_cell[1] * (1 - self.border_prop) // 2))] def update_position_lazy(self): self.center[0] += self.vel[0] self.center[1] += self.vel[1] if self.center[0] + self.num_pix_cell_half[0] >= self.frame_size[0]: self.center[0] = self.num_pix_cell_half[0] + 1 elif self.center[0] - self.num_pix_cell_half[0] <= 0: self.center[0] = self.frame_size[0] - self.num_pix_cell_half[0] - 1 if self.center[1] + self.num_pix_cell_half[1] >= self.frame_size[1]: self.center[1] = self.num_pix_cell_half[1] + 1 elif self.center[1] - self.num_pix_cell_half[1] <= 0: self.center[1] = self.frame_size[1] - self.num_pix_cell_half[1] - 1 def update_position(self): self.center[0] += self.vel[0] self.center[1] += self.vel[1] if self.center[0] + self.num_pix_cell_half[0] >= self.frame_size[0]: # set position to border self.center[0] = self.frame_size[0] - self.num_pix_cell_half[0] # reverse vertical velocity self.vel[0] *= -1 elif self.center[0] - self.num_pix_cell_half[0] <= 0: self.center[0] = self.num_pix_cell_half[0] + 1 self.vel[0] *= -1 if self.center[1] + self.num_pix_cell_half[1] >= self.frame_size[1]: self.center[1] = self.frame_size[1] - self.num_pix_cell_half[1] self.vel[1] *= -1 elif self.center[1] - self.num_pix_cell_half[1] <= 0: self.center[1] = self.num_pix_cell_half[1] + 1 self.vel[1] *= -1 def draw(self, frame, background): if self.use_full_frame: # render full frame in cell cell = frame else: # render part of frame in cell cell = cv2.getRectSubPix( frame, (self.num_pix_cell[1], self.num_pix_cell[0]), (self.center[1], self.center[0])) cell = cv2.resize( cell, (2 * self.num_pix_img_half[1] + 1, 2 * self.num_pix_img_half[0] + 1), interpolation=cv2.INTER_LINEAR) background[ self.center[0] - self.num_pix_img_half[0]: self.center[0] + self.num_pix_img_half[0] + 1, self.center[1] - self.num_pix_img_half[1]: self.center[1] + self.num_pix_img_half[1] + 1, :] = cell return background class Grating(Effect): """ Render image in rectangular cells, the aspect ratio and border thickness of which are controllable parameters KEYBOARD INPUTS: -/+ - decrease/increase border proportion [/] - None ;/' - None ,/. - None lrud arrows - decrease/increase number of cells in horz/vert direction """ def __init__(self, style='effect'): super(Grating, self).__init__(style=style) self.name = 'grating' border_prop = { 'desc': 'proportion of cell used for border', 'name': 'border_prop', 'val': 0.1, 'init': 0.2, 'min': 0.0, 'max': 1.0, 'mod': self.inf, 'step': 0.02, 'inc': False, 'dec': False} cells_horz = { 'desc': 'number of cells in horizontal direction', 'name': 'num_cells_horz', 'val': 10, 'init': 10, 'min': 1, 'max': 200, 'mod': self.inf, 'step': 1, 'inc': False, 'dec': False} cells_vert = { 'desc': 'number of cells in vertical direction', 'name': 'num_cells_vert', 'val': 5, 'init': 5, 'min': 1, 'max': 200, 'mod': self.inf, 'step': 1, 'inc': False, 'dec': False} self.max_num_styles = 3 # combine dicts into a list for easy general access self.props = [ border_prop, self.none_dict, self.none_dict, self.none_dict, cells_vert, cells_horz] # user options self.prev_border_prop = self.props[0]['val'] self.cells = [] self.cell_index = -1 # index into list of cells def process(self, frame, key_list, key_lock=False): # update if blur kernel toggled if key_list[ord('t')]: self.reinitialize = True else: self.reinitialize = False # process keyboard input if not key_lock: self._process_io(key_list) if self.reinitialize: self.reinitialize = False for index, _ in enumerate(self.props): self.props[index]['val'] = self.props[index]['init'] self.cells = [] # human-readable names border_prop = self.props[0]['val'] num_cells = [self.props[4]['val'], self.props[5]['val']] # process image if len(frame.shape) == 3: [im_height, im_width, _] = frame.shape elif len(frame.shape) == 2: [im_height, im_width] = frame.shape if self.style == -1: # original grating style; static vertical and horizontal black bars # reinitialize cells if number has changed if num_cells[0] * num_cells[1] != len(self.cells): # get initial values for cells num_pix_cell_half = [ (im_height / num_cells[0]) // 2, (im_width / num_cells[1]) // 2] num_pix_cell = [ int(2 * num_pix_cell_half[0] + 1), int(2 * num_pix_cell_half[1] + 1)] centers = [ [int(val * num_pix_cell[0] + num_pix_cell_half[0] + 1) for val in range(num_cells[0])], [int(val * num_pix_cell[1] + num_pix_cell_half[1] + 1) for val in range(num_cells[1])]] # shift center points at end centers[0][-1] = int(im_height - num_pix_cell_half[0] - 1) centers[1][-1] = int(im_width - num_pix_cell_half[1] - 1) # build cells self.cells = [] for h in range(num_cells[0]): for w in range(num_cells[1]): self.cells.append(Cell( num_pix_cell, num_pix_cell_half, border_prop, [centers[0][h], centers[1][w]], [0, 0])) # update cells if border prop has changed if self.prev_border_prop != border_prop: self.prev_border_prop = border_prop for _, cell in enumerate(self.cells): cell.update_border_prop(border_prop) # update background with frame info if border_prop == 0.0: background = frame elif border_prop == 1.0: background = np.zeros(shape=frame.shape, dtype=np.uint8) else: background = np.zeros(shape=frame.shape, dtype=np.uint8) # tile background array with image for _, cell in enumerate(self.cells): # tile background array with image background = cell.draw(frame, background) elif self.style == 0 or self.style == 1 or self.style == 2: # random horizontal translation effect # add cells if necessary while len(self.cells) < int(num_cells[1]): # get initial values for cells if self.style == 0: # render portion of frame in each cell use_full_frame = False # num_pix_cell_half = [np.random.randint(10, 30), # np.random.randint(10, 30)] num_pix_cell_half = [ np.random.randint(30, 50), np.random.randint(30, 50)] # velocity = [0, np.random.randint(2, 20)] velocity = [ np.random.randint(-20, 20), np.random.randint(-20, 20)] elif self.style == 1: # render full frame in each (larger) cell use_full_frame = True num_pix_cell_half = [ np.random.randint(50, 80), np.random.randint(70, 90)] velocity = [0, np.random.randint(-10, 10)] elif self.style == 2: use_full_frame = True # num_pix_cell_half = [np.random.randint(50, 80), # np.random.randint(70, 90)] num_pix_cell_half = [100, int(100 * 16 / 9)] # velocity = [np.random.randint(-5, 5), # np.random.randint(-5, 5)] velocity = [ np.random.randint(-8, 8), np.random.randint(-8, 8)] num_pix_cell = [ int(2 * num_pix_cell_half[0] + 1), int(2 * num_pix_cell_half[1] + 1)] # use random portion of frame lower_height = num_pix_cell_half[0] + 1 upper_height = im_height - num_pix_cell_half[0] - 1 lower_width = num_pix_cell_half[1] + 1 upper_width = im_width - num_pix_cell_half[1] - 1 centers = [np.random.randint(lower_height, upper_height), np.random.randint(lower_width, upper_width)] self.cells.append(Cell( num_pix_cell, num_pix_cell_half, border_prop, centers, velocity, frame_size=[im_height, im_width], use_full_frame=use_full_frame)) # delete cells if necessary while len(self.cells) > int(num_cells[1]): del self.cells[-1] # update cells if border prop has changed if self.prev_border_prop != border_prop: self.prev_border_prop = border_prop for _, cell in enumerate(self.cells): cell.update_border_prop(border_prop) # update background with frame info background = np.zeros(shape=frame.shape, dtype=np.uint8) # tile background array with image for _, cell in enumerate(self.cells): # update positions of cells if self.style == 0 or self.style == 1: cell.update_position_lazy() elif self.style == 2: cell.update_position() # tile background array with image background = cell.draw(frame, background) else: raise NotImplementedError return background def reset(self): super(Grating, self).reset() self.cells = [] class AdaptiveThreshold(Effect): """ Threshold individual channels in RGB frame KEYBOARD INPUTS: t - toggle between threshold types -/+ - decrease/increase adaptive threshold kernel size [/] - decrease/increase adaptive threshold offset value ;/' - None ,/. - None r/g/b - select red/green/blue channel for further processing 0 - selected channel uses original values 1 - selected channel uses all pixels as 0 2 - selected channel uses all pixels as 255 3 - selected channel uses threshold effect / - reset parameters q - quit threshold effect """ def __init__(self, style='effect'): super(AdaptiveThreshold, self).__init__(style=style) self.name = 'threshold' # user option constants THRESH_KERNEL = { 'desc': 'kernel size for adaptive thresholding', 'name': 'kernel_size', 'val': 21, 'init': 21, 'min': 3, 'max': 71, 'mod': self.inf, 'step': 2, 'inc': False, 'dec': False} THRESH_OFFSET = { 'desc': 'offset constant for adaptive thresholding', 'name': 'offset', 'val': 4, 'init': 4, 'min': 0, 'max': 30, 'mod': self.inf, 'step': 1, 'inc': False, 'dec': False} self.max_num_styles = 2 # combine dicts into a list for easy general access self.props = [ THRESH_KERNEL, THRESH_OFFSET, self.none_dict, self.none_dict, self.none_dict, self.none_dict] # user options self.style = 0 self.reinitialize = False self.random_walk = True self.chan_vec_pos = np.zeros((3, 2)) self.noise = SmoothNoise( num_samples=10, num_channels=self.chan_vec_pos.size) # other user options self.optimize = 1 # skips a smoothing step self.use_chan = [False, False, False] # rgb channel selector self.chan_style = [0, 0, 0] # effect selector for each chan self.MAX_NUM_CHAN_STYLES = 4 # opencv parameters self.THRESH_TYPE = cv2.THRESH_BINARY self.ADAPTIVE_THRESH_TYPE = cv2.ADAPTIVE_THRESH_MEAN_C def process(self, frame, key_list, key_lock=False): # process keyboard input if not key_lock: self._process_io(key_list) if key_list[ord('b')]: key_list[ord('b')] = False self.use_chan[0] = True self.use_chan[1] = False self.use_chan[2] = False elif key_list[ord('g')]: key_list[ord('g')] = False self.use_chan[0] = False self.use_chan[1] = True self.use_chan[2] = False elif key_list[ord('r')]: key_list[ord('r')] = False self.use_chan[0] = False self.use_chan[1] = False self.use_chan[2] = True if self.reinitialize: self.reinitialize = False self.chan_vec_pos = np.zeros((3, 2)) self.noise.reinitialize() for index, _ in enumerate(self.props): self.props[index]['val'] = self.props[index]['init'] # human-readable names kernel_size = self.props[0]['val'] offset = self.props[1]['val'] for chan in range(3): if self.use_chan[chan]: for chan_style in range(self.MAX_NUM_CHAN_STYLES): if key_list[ord(str(chan_style))]: self.chan_style[chan] = chan_style key_list[ord(str(chan_style))] = False # process image frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) frame_gray = cv2.medianBlur(frame_gray, 11) frame_thresh = cv2.adaptiveThreshold( frame_gray, 255, self.ADAPTIVE_THRESH_TYPE, self.THRESH_TYPE, kernel_size, offset) if self.style == 0: self.THRESH_TYPE = cv2.THRESH_BINARY elif self.style == 1: self.THRESH_TYPE = cv2.THRESH_BINARY_INV for chan in range(3): if self.chan_style[chan] == 1: frame[:, :, chan] = 0 elif self.chan_style[chan] == 2: frame[:, :, chan] = 255 elif self.chan_style[chan] == 3: frame[:, :, chan] = frame_thresh if not self.optimize: frame = cv2.medianBlur(frame, 11) return frame def reset(self): super(AdaptiveThreshold, self).reset() self.use_chan = [False, False, False] # rgb channel selector self.chan_style = [0, 0, 0] # effect selector for each chan class SimpleThreshold(Effect): """ Threshold individual channels in RGB frame KEYBOARD INPUTS: t - toggle threshold type (apply inverse threshold) -/+ - decrease/increase threshold [/] - None ;/' - None ,/. - None r/g/b/a - select red/green/blue/all channels for further processing / - reset parameters q - quit soft threshold effect """ def __init__(self, style='effect'): super(SimpleThreshold, self).__init__(style=style) self.name = 'soft-threshold' # user option constants THRESHOLD = { 'desc': 'threshold value', 'name': 'threshold', 'val': 128, 'init': 128, 'min': 0, 'max': 255, 'mod': self.inf, 'step': 1, 'inc': False, 'dec': False} self.max_num_styles = 2 # thresh_binary, thresh_binary_inv # combine dicts into a list for easy general access self.props = [ THRESHOLD, self.none_dict, self.none_dict, self.none_dict, self.none_dict, self.none_dict] # user options self.style = 0 self.reinitialize = False self.random_walk = False self.chan_vec_pos = np.zeros((3, 2)) self.noise = SmoothNoise( num_samples=10, num_channels=self.chan_vec_pos.size) # other user options self.use_chan = [False, False, False] # rgb channel selector self.chan_style = [0, 0, 0] # effect selector for each chan self.MAX_NUM_CHAN_STYLES = 5 # opencv parameters self.THRESH_TYPE = cv2.THRESH_BINARY def process(self, frame, key_list, key_lock=False): # process keyboard input if not key_lock: self._process_io(key_list) if key_list[ord('b')]: key_list[ord('b')] = False self.use_chan[0] = True self.use_chan[1] = False self.use_chan[2] = False elif key_list[ord('g')]: key_list[ord('g')] = False self.use_chan[0] = False self.use_chan[1] = True self.use_chan[2] = False elif key_list[ord('r')]: key_list[ord('r')] = False self.use_chan[0] = False self.use_chan[1] = False self.use_chan[2] = True elif key_list[ord('a')]: key_list[ord('a')] = False self.use_chan[0] = True self.use_chan[1] = True self.use_chan[2] = True if self.reinitialize: self.reinitialize = False self.chan_vec_pos = np.zeros((3, 2)) self.noise.reinitialize() for index, _ in enumerate(self.props): self.props[index]['val'] = self.props[index]['init'] # human-readable names threshold = self.props[0]['val'] for chan_style in range(self.MAX_NUM_CHAN_STYLES): if key_list[ord(str(chan_style))]: for chan in range(3): if self.use_chan[chan]: self.chan_style[chan] = chan_style key_list[ord(str(chan_style))] = False # process image frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) if self.style == 0: self.THRESH_TYPE = cv2.THRESH_BINARY elif self.style == 1: self.THRESH_TYPE = cv2.THRESH_BINARY_INV _, frame_thresh = cv2.threshold( frame_gray, threshold, 255, self.THRESH_TYPE) for chan in range(3): if self.chan_style[chan] == 1: frame[:, :, chan] = 0 elif self.chan_style[chan] == 2: frame[:, :, chan] = 255 elif self.chan_style[chan] == 3: frame[:, :, chan] = frame_thresh elif self.chan_style[chan] == 4: frame[:, :, chan] = frame_gray return frame def reset(self): super(SimpleThreshold, self).reset() self.use_chan = [False, False, False] # rgb channel selector self.chan_style = [0, 0, 0] # effect selector for each chan class PowerThreshold(Effect): """ Threshold individual channels in RGB frame KEYBOARD INPUTS: t - toggle threshold type (apply inverse threshold) -/+ - decrease/increase threshold [/] - None ;/' - None ,/. - None r/g/b/a - select red/green/blue/all channels for further processing / - reset parameters q - quit soft threshold effect """ def __init__(self, style='effect'): super(PowerThreshold, self).__init__(style=style) self.name = 'power-threshold' # user option constants THRESHOLD = { 'desc': 'threshold value', 'name': 'threshold', 'val': 128, 'init': 128, 'min': 0, 'max': 255, 'mod': self.inf, 'step': 5, 'inc': False, 'dec': False} THRESHOLD_POWER = { 'desc': 'threshold power', 'name': 'threshold_power', 'val': 1, 'init': 1, 'min': 1, 'max': 5, 'mod': self.inf, 'step': 0.05, 'inc': False, 'dec': False} self.max_num_styles = 2 # thresh_binary, thresh_binary_inv # combine dicts into a list for easy general access self.props = [ THRESHOLD, THRESHOLD_POWER, self.none_dict, self.none_dict, self.none_dict, self.none_dict] # user options self.style = 0 self.reinitialize = False self.random_walk = False # TODO - walk through power space self.chan_vec_pos = np.zeros((3, 2)) self.noise = SmoothNoise( num_samples=10, num_channels=self.chan_vec_pos.size) # other user options self.use_chan = [False, False, False] # rgb channel selector self.chan_style = [0, 0, 0] # effect selector for each chan self.MAX_NUM_CHAN_STYLES = 5 # opencv parameters self.THRESH_TYPE = cv2.THRESH_BINARY def process(self, frame, key_list, key_lock=False): # process keyboard input if not key_lock: self._process_io(key_list) if key_list[ord('b')]: key_list[ord('b')] = False self.use_chan[0] = True self.use_chan[1] = False self.use_chan[2] = False elif key_list[ord('g')]: key_list[ord('g')] = False self.use_chan[0] = False self.use_chan[1] = True self.use_chan[2] = False elif key_list[ord('r')]: key_list[ord('r')] = False self.use_chan[0] = False self.use_chan[1] = False self.use_chan[2] = True elif key_list[ord('a')]: key_list[ord('a')] = False self.use_chan[0] = True self.use_chan[1] = True self.use_chan[2] = True if self.reinitialize: self.reinitialize = False self.chan_vec_pos =
np.zeros((3, 2))
numpy.zeros
import sys import open3d as o3d from model import * from utils import * import argparse import random import numpy as np import torch import os import visdom sys.path.append("./emd/") import emd_module as emd parser = argparse.ArgumentParser() parser.add_argument('--model', type=str, default = './trained_model/network.pth', help='optional reload model path') parser.add_argument('--num_points', type=int, default = 8192, help='number of points') parser.add_argument('--n_primitives', type=int, default = 16, help='number of primitives in the atlas') parser.add_argument('--env', type=str, default ="MSN_VAL" , help='visdom environment') opt = parser.parse_args() print (opt) network = MSN(num_points = opt.num_points, n_primitives = opt.n_primitives) network.cuda() network.apply(weights_init) vis = visdom.Visdom(port = 8097, env=opt.env) # set your port if opt.model != '': network.load_state_dict(torch.load(opt.model)) print("Previous weight loaded ") network.eval() with open(os.path.join('./data/val.list')) as file: model_list = [line.strip().replace('/', '_') for line in file] partial_dir = "./data/val/" gt_dir = "./data/complete/" vis = visdom.Visdom(port = 8097, env=opt.env) # set your port def resample_pcd(pcd, n): """Drop or duplicate points so that pcd has exactly n points""" idx = np.random.permutation(pcd.shape[0]) if idx.shape[0] < n: idx = np.concatenate([idx, np.random.randint(pcd.shape[0], size = n - pcd.shape[0])]) return pcd[idx[:n]] EMD = emd.emdModule() labels_generated_points = torch.Tensor(range(1, (opt.n_primitives+1)*(opt.num_points//opt.n_primitives)+1)).view(opt.num_points//opt.n_primitives,(opt.n_primitives+1)).transpose(0,1) labels_generated_points = (labels_generated_points)%(opt.n_primitives+1) labels_generated_points = labels_generated_points.contiguous().view(-1) with torch.no_grad(): for i, model in enumerate(model_list): print(model) partial = torch.zeros((50, 5000, 3), device='cuda') gt = torch.zeros((50, opt.num_points, 3), device='cuda') for j in range(50): pcd = o3d.io.read_point_cloud(os.path.join(partial_dir, model + '_' + str(j) + '_denoised.pcd')) partial[j, :, :] = torch.from_numpy(resample_pcd(np.array(pcd.points), 5000)) pcd = o3d.io.read_point_cloud(os.path.join(gt_dir, model + '.pcd')) gt[j, :, :] = torch.from_numpy(resample_pcd(
np.array(pcd.points)
numpy.array
""" Classes holding information on global DOFs and mapping of all DOFs - equations (active DOFs). Helper functions for the equation mapping. """ import numpy as nm import scipy.sparse as sp from sfepy.base.base import assert_, Struct, basestr from sfepy.discrete.functions import Function from sfepy.discrete.conditions import get_condition_value, EssentialBC, \ PeriodicBC, DGPeriodicBC, DGEssentialBC def expand_nodes_to_dofs(nods, n_dof_per_node): """ Expand DOF node indices into DOFs given a constant number of DOFs per node. """ dofs = nm.repeat(nods, n_dof_per_node) dofs.shape = (nods.shape[0], n_dof_per_node) idof = nm.arange(n_dof_per_node, dtype=nm.int32) dofs = n_dof_per_node * dofs + idof return dofs def expand_nodes_to_equations(nods, dof_names, all_dof_names): """ Expand vector of node indices to equations (DOF indices) based on the DOF-per-node count. DOF names must be already canonized. Returns ------- eq : array The equations/DOF indices in the node-by-node order. """ dpn = len(all_dof_names) nc = len(dof_names) eq = nm.empty(len(nods) * nc, dtype=nm.int32) for ii, dof in enumerate(dof_names): idof = all_dof_names.index(dof) eq[ii::nc] = dpn * nods + idof return eq def resolve_chains(master_slave, chains): """ Resolve EPBC chains - e.g. in corner nodes. """ for chain in chains: slave = chain[-1] master_slave[chain[:-1]] = slave + 1 master_slave[slave] = - chain[0] - 1 # Any of masters... def group_chains(chain_list): """ Group EPBC chains. """ chains = [] while len(chain_list): chain = set(chain_list.pop(0)) ## print ':', chain ii = 0 while ii < len(chain_list): c1 = sorted(chain_list[ii]) ## print '--', ii, c1, chain is0 = c1[0] in chain is1 = c1[1] in chain if is0 and is1: chain_list.pop(ii) elif is0 or is1: chain.update(c1) chain_list.pop(ii) ii = 0 else: ii += 1 ## print ii, chain, chain_list ## print '->', chain ## print chain_list chains.append(list(chain)) ## print 'EPBC chain groups:', chains aux = {} for chain in chains: aux.setdefault(len(chain), [0])[0] += 1 ## print 'EPBC chain counts:', aux return chains class DofInfo(Struct): """ Global DOF information, i.e. ordering of DOFs of the state (unknown) variables in the global state vector. """ def __init__(self, name): Struct.__init__(self, name=name) self.n_var = 0 self.var_names = [] self.n_dof = {} self.ptr = [0] self.indx = {} self.details = {} def _update_after_append(self, name): self.ptr.append(self.ptr[-1] + self.n_dof[name]) ii = self.n_var self.indx[name] = slice(int(self.ptr[ii]), int(self.ptr[ii+1])) self.n_var += 1 def append_variable(self, var, active=False): """ Append DOFs of the given variable. Parameters ---------- var : Variable instance The variable to append. active : bool, optional When True, only active (non-constrained) DOFs are considered. """ name = var.name if name in self.var_names: raise ValueError('variable %s already present!' % name) self.var_names.append(name) self.n_dof[name], self.details[name] = var.get_dof_info(active=active) self._update_after_append(name) def append_raw(self, name, n_dof): """ Append raw DOFs. Parameters ---------- name : str The name of variable the DOFs correspond to. n_dof : int The number of DOFs. """ if name in self.var_names: raise ValueError('variable %s already present!' % name) self.var_names.append(name) self.n_dof[name], self.details[name] = n_dof, None self._update_after_append(name) def update(self, name, n_dof): """ Set the number of DOFs of the given variable. Parameters ---------- name : str The name of variable the DOFs correspond to. n_dof : int The number of DOFs. """ if not name in self.var_names: raise ValueError('variable %s is not present!' % name) ii = self.var_names.index(name) delta = n_dof - self.n_dof[name] self.n_dof[name] = n_dof for iv, nn in enumerate(self.var_names[ii:]): self.ptr[ii+iv+1] += delta self.indx[nn] = slice(self.ptr[ii+iv], self.ptr[ii+iv+1]) def get_info(self, var_name): """ Return information on DOFs of the given variable. Parameters ---------- var_name : str The name of the variable. """ return Struct(name='%s_dof_info' % var_name, var_name=var_name, n_dof=self.n_dof[var_name], indx=self.indx[var_name], details=self.details[var_name]) def get_subset_info(self, var_names): """ Return global DOF information for selected variables only. Silently ignores non-existing variable names. Parameters ---------- var_names : list The names of the selected variables. """ di = DofInfo(self.name + ':subset') for var_name in var_names: if var_name not in self.var_names: continue di.append_raw(var_name, self.n_dof[var_name]) return di def get_n_dof_total(self): """ Return the total number of DOFs of all state variables. """ return self.ptr[-1] def is_active_bc(bc, ts=None, functions=None): """ Check whether the given boundary condition is active in the current time. Returns ------- active : bool True if the condition `bc` is active. """ if (bc.times is None) or (ts is None): active = True elif isinstance(bc.times, list): for tt in bc.times: if tt[0] <= ts.time < tt[1]: active = True break else: active = False else: if isinstance(bc.times, basestr): if functions is not None: fun = functions[bc.times] else: raise ValueError('no functions given for bc %s!' % bc.name) elif isinstance(bc.times, Function): fun = bc.times else: raise ValueError('unknown times type! (%s)' % type(bc.times)) active = fun(ts) return active class EquationMap(Struct): """ Map all DOFs to equations for active DOFs. """ def __init__(self, name, dof_names, var_di): Struct.__init__(self, name=name, dof_names=dof_names, var_di=var_di) self.dpn = len(self.dof_names) self.eq = nm.arange(var_di.n_dof, dtype=nm.int32) self.n_dg_ebc = 0 self.dg_ebc_names = {} self.dg_ebc = {} self.dg_ebc_val = {} self.n_dg_epbc = 0 self.dg_epbc_names = [] self.dg_epbc = [] def _init_empty(self, field): self.val_ebc = nm.empty((0,), dtype=field.dtype) if field.get('unused_dofs') is None: self.eqi = nm.arange(self.var_di.n_dof, dtype=nm.int32) else: self._mark_unused(field) self.eqi = nm.compress(self.eq >= 0, self.eq) self.eq[self.eqi] = nm.arange(self.eqi.shape[0], dtype=nm.int32) self.eq_ebc = nm.empty((0,), dtype=nm.int32) self.master = nm.empty((0,), dtype=nm.int32) self.slave = nm.empty((0,), dtype=nm.int32) self.n_eq = self.eqi.shape[0] self.n_ebc = self.eq_ebc.shape[0] self.n_epbc = self.master.shape[0] def _mark_unused(self, field): unused_dofs = field.get('unused_dofs') if unused_dofs is not None: unused = expand_nodes_to_equations(field.unused_dofs, self.dof_names, self.dof_names) self.eq[unused] = -3 def map_equations(self, bcs, field, ts, functions, problem=None, warn=False): """ Create the mapping of active DOFs from/to all DOFs. Parameters ---------- bcs : Conditions instance The Dirichlet or periodic boundary conditions (single condition instances). The dof names in the conditions must already be canonized. field : Field instance The field of the variable holding the DOFs. ts : TimeStepper instance The time stepper. functions : Functions instance The registered functions. problem : Problem instance, optional The problem that can be passed to user functions as a context. warn : bool, optional If True, warn about BC on non-existent nodes. Returns ------- active_bcs : set The set of boundary conditions active in the current time. Notes ----- - Periodic bc: master and slave DOFs must belong to the same field (variables can differ, though). """ if bcs is None: self._init_empty(field) return set() eq_ebc = nm.zeros((self.var_di.n_dof,), dtype=nm.int32) val_ebc = nm.zeros((self.var_di.n_dof,), dtype=field.dtype) master_slave = nm.zeros((self.var_di.n_dof,), dtype=nm.int32) chains = [] active_bcs = set() for bc in bcs: # Skip conditions that are not active in the current time. if not is_active_bc(bc, ts=ts, functions=functions): continue active_bcs.add(bc.key) if isinstance(bc, DGEssentialBC): ntype = "DGEBC" region = bc.region elif isinstance(bc, DGPeriodicBC): ntype = "DGEPBC" region = bc.regions[0] elif isinstance(bc, EssentialBC): ntype = 'EBC' region = bc.region elif isinstance(bc, PeriodicBC): ntype = 'EPBC' region = bc.regions[0] if warn: clean_msg = ('warning: ignoring nonexistent %s node (%s) in ' % (ntype, self.var_di.var_name)) else: clean_msg = None # Get master region nodes. master_nod_list = field.get_dofs_in_region(region) if len(master_nod_list) == 0: continue if ntype == 'EBC': # EBC. dofs, val = bc.dofs ## # Evaluate EBC values. fun = get_condition_value(val, functions, 'EBC', bc.name) if isinstance(fun, Function): aux = fun fun = lambda coors: aux(ts, coors, bc=bc, problem=problem) nods, vv = field.set_dofs(fun, region, len(dofs), clean_msg) eq = expand_nodes_to_equations(nods, dofs, self.dof_names) # Duplicates removed here... eq_ebc[eq] = 1 if vv is not None: val_ebc[eq] = nm.ravel(vv) elif ntype == "DGEBC": dofs, val = bc.dofs ## # Evaluate EBC values. fun = get_condition_value(val, functions, 'EBC', bc.name) if isinstance(fun, Function): aux = fun fun = lambda coors: aux(ts, coors, bc=bc, problem=problem) values = field.get_bc_facet_values(fun, region, diff=bc.diff) bc2bfi = field.get_bc_facet_idx(region) self.dg_ebc_val.setdefault(bc.diff, []).append(values) self.dg_ebc.setdefault(bc.diff, []).append(bc2bfi) self.n_dg_ebc += 1 elif ntype == "DGEPBC": # ensure matching boundaries? master_bc2bfi = field.get_bc_facet_idx(region) slave_bc2bfi = field.get_bc_facet_idx(bc.regions[1]) self.dg_epbc.append((master_bc2bfi, slave_bc2bfi)) self.n_dg_epbc += 1 else: # EPBC. region = bc.regions[1] slave_nod_list = field.get_dofs_in_region(region) nmaster = nm.unique(master_nod_list) # Treat fields not covering the whole domain. if nmaster[0] == -1: nmaster = nmaster[1:] nslave = nm.unique(slave_nod_list) # Treat fields not covering the whole domain. if nslave[0] == -1: nslave = nslave[1:] ## print nmaster + 1 ## print nslave + 1 if nmaster.shape != nslave.shape: msg = 'EPBC list lengths do not match!\n(%s,\n %s)' %\ (nmaster, nslave) raise ValueError(msg) if (nmaster.shape[0] == 0) and (nslave.shape[0] == 0): continue mcoor = field.get_coor(nmaster) scoor = field.get_coor(nslave) fun = get_condition_value(bc.match, functions, 'EPBC', bc.name) if isinstance(fun, Function): i1, i2 = fun(mcoor, scoor) else: i1, i2 = fun ## print nm.c_[mcoor[i1], scoor[i2]] ## print nm.c_[nmaster[i1], nslave[i2]] + 1 meq = expand_nodes_to_equations(nmaster[i1], bc.dofs[0], self.dof_names) seq = expand_nodes_to_equations(nslave[i2], bc.dofs[1], self.dof_names) m_assigned =
nm.where(master_slave[meq] != 0)
numpy.where
# -*- coding: utf-8 -*- ######################################################## ### estimate mutual information (dependency) between ### ### feature vectors with different search radius for ### ### local feature estimation and target ### ######################################################## import numpy as np from sklearn import preprocessing from sklearn.feature_selection import mutual_info_classif import os import matplotlib.pyplot as plt base_path = "/media/shao/TOSHIBA EXT/data_object_velodyne/feature_matrix_with_label/train" # calculate and save statistic info about every label # def get_samples_num (): read_path = os.path.join(base_path, "data") filelist = os.listdir(read_path) for file in filelist: read_file = os.path.join(read_path, file) if os.path.isdir(read_file): continue dataset =
np.loadtxt(read_file)
numpy.loadtxt
# general libraries import warnings import numpy as np # image processing libraries from scipy import ndimage, interpolate, fft, signal from scipy.optimize import fsolve from skimage.feature import match_template from skimage.transform import radon from skimage.measure import ransac from sklearn.cluster import KMeans from ..generic.filtering_statistical import make_2D_Gaussian, mad_filtering from ..generic.handler_im import get_grad_filters from ..preprocessing.shadow_transforms import pca from .matching_tools import get_integer_peak_location def is_estimate_away_from_border(C, i, j, ds=1): if np.abs(i)+ds >= (C.shape[0]+1) // 2 or \ np.abs(j)+ds >= (C.shape[1]+1) // 2: verdict = False else: verdict = True return verdict # sub-pixel localization of the correlation peak def get_top_moment(C, ds=1, top=np.array([])): """ find location of highest score through bicubic fitting Parameters ---------- C : np.array, size=(_,_) similarity surface ds : integer, default=1 size of the radius to use neighboring information top : np.array, size=(1,2) location of the maximum score Returns ------- ddi : float estimated subpixel location on the vertical axis of the peak ddj : float estimated subpixel location on the horizontal axis of the peak i_int : integer location of highest score on the vertical axis j_int : integer location of highest score on the horizontal axis Notes ----- [1] <NAME> al. "A subpixel registration algorithm for low PSNR images" IEEE international conference on advanced computational intelligence, pp. 626-630, 2012. [2] Messerli & Grinstad, "Image georectification and feature tracking toolbox: ImGRAFT" Geoscientific instrumentation, methods and data systems, vol. 4(1) pp. 23-34, 2015. """ (subJ,subI) = np.meshgrid(np.linspace(-ds,+ds, 2*ds+1), np.linspace(-ds,+ds, 2*ds+1)) subI = subI.ravel() subJ = subJ.ravel() if top.size==0: # find highest score di,dj,max_corr,snr = get_integer_peak_location(C) else: di, dj = top[0], top[1] i_int,j_int = np.copy(di), np.copy(dj) if is_estimate_away_from_border(C,di,dj,ds): # estimate sub-pixel top idx_mid = int(np.floor((2.*ds+1)**2/2)) i_sub = C.shape[0]//2 + np.arange(-ds,+ds+1) + di j_sub = C.shape[1]//2 + np.arange(-ds,+ds+1) + dj try: Csub = C[i_sub[:,None], j_sub[None,:]].ravel() except: print('iets mis') Csub = Csub - np.mean(np.hstack((Csub[0:idx_mid],Csub[idx_mid+1:]))) IN = Csub>0 m = np.array([ np.divide(np.sum(subI[IN]*Csub[IN]), np.sum(Csub[IN])) , np.divide(np.sum(subJ[IN]*Csub[IN]), np.sum(Csub[IN]))]) ddi, ddj = m[0], m[1] else: # top at the border ddi, ddj = 0, 0 return ddi,ddj, i_int,j_int def get_top_blue(C, ds=1): # todo """ find top of correlation peak through best linear unbiased estimation """ (subJ,subI) = np.meshgrid(np.linspace(-ds,+ds, 2*ds+1), np.linspace(-ds,+ds, 2*ds+1)) subI = subI.ravel() subJ = subJ.ravel() # find highest score y,x,max_corr,snr = get_integer_peak_location(C) # estimate Jacobian H_x = np.array([[-17., 0., 17.], [-61., 0., 61.], [-17., 0., 17.]]) / 95 # estimate Hessian H_xx = 8 / np.array([[105, -46, 105], [ 50, -23, 50], [ 105, -46, 105]] ) H_xy = 11 / np.array([[-114, np.inf, +114], [np.inf, np.inf, np.inf], [+114, np.inf, -114]] ) # estimate sub-pixel top Csub = C[y-ds:y+ds+1,x-ds:x+ds+1] Jac = np.array([[Csub*H_x], [Csub*H_x.T]]) Hes = np.array([[Csub*H_xx , Csub*H_xy], [Csub*H_xy.T, Csub*H_xx.T]] ) m0 = np.array([[x], [y]]) - np.linalg.inv(Hes) * Jac return m0[0], m0[1] def get_top_gaussian(C, top=np.array([])): """ find location of highest score through 1D gaussian fit Parameters ---------- C : np.array, size=(_,_) similarity surface top : np.array, size=(1,2) location of the maximum score Returns ------- ddi : float estimated subpixel location on the vertical axis of the peak ddj : float estimated subpixel location on the horizontal axis of the peak ddi : float estimated subpixel location on the vertical axis of the peak i_int : integer location of highest score on the vertical axis j_int : integer location of highest score on the horizontal axis Notes ----- [1] Willert & Gharib, "Digital particle image velocimetry", Experiments in fluids, vol.10 pp.181-193, 1991. [2] <NAME>, "A Study of sub-pixel motion estimation using phase correlation" Proceeding of the British machine vision conference, pp.387-396, 2006. [3] Raffel et al. "Particle Image Velocimetry" Ch.6 pp.184 2018. """ if top.size==0: # find highest score di,dj,max_corr,snr = get_integer_peak_location(C) else: di, dj = top[0], top[1] i_int,j_int = np.copy(di), np.copy(dj) di += C.shape[0]//2 # using a central coordinate system dj += C.shape[1]//2 if is_estimate_away_from_border: # estimate sub-pixel along each axis ddi = (np.log(C[di+1,dj]) - np.log(C[di-1,dj])) / \ 2*( (2*np.log(C[di,dj])) -np.log(C[di-1,dj]) -np.log(C[di+1,dj])) ddj = (np.log(C[di,dj+1]) - np.log(C[di,dj-1])) / \ 2*( (2*np.log(C[di,dj])) -np.log(C[di,dj-1]) -np.log(C[di,dj+1])) else: ddi, ddj = 0, 0 return ddi,ddj, i_int,j_int def get_top_centroid(C, top=np.array([])): """ find location of highest score through 1D centorid fit Parameters ---------- C : np.array, size=(_,_) similarity surface top : np.array, size=(1,2) location of the maximum score Returns ------- ddi : float estimated subpixel location on the vertical axis of the peak ddj : float estimated subpixel location on the horizontal axis of the peak ddi : float estimated subpixel location on the vertical axis of the peak i_int : integer location of highest score on the vertical axis j_int : integer location of highest score on the horizontal axis Notes ----- [1] Raffel et al. "Particle Image Velocimetry" Ch.6 pp.184, 2018. """ if top.size==0: # find highest score di,dj,max_corr,snr = get_integer_peak_location(C) else: di, dj = top[0], top[1] i_int,j_int = np.copy(di), np.copy(dj) di += C.shape[0]//2 # using a central coordinate system dj += C.shape[1]//2 if is_estimate_away_from_border: # estimate sub-pixel along each axis ddi = ((i_int-1)*C[di-1,dj] + i_int*C[di,dj] + (i_int+1)*C[di+1,dj]) / \ (C[di-1,dj] + C[di,dj] + C[di+1,dj]) ddj = ((j_int-1)*C[di,dj-1] + j_int*C[di,dj] + (j_int+1)*C[di,dj+1]) / \ (C[di,dj-1] + C[di,dj] + C[di,dj+1]) ddi -= i_int ddj -= j_int else: ddi, ddj = 0, 0 return ddi,ddj, i_int,j_int def get_top_mass(C, top=np.array([])): """ find location of highest score through 1D center of mass Parameters ---------- C : np.array, size=(_,_) similarity surface top : np.array, size=(1,2) location of the maximum score Returns ------- ddi : float estimated subpixel location on the vertical axis of the peak ddj : float estimated subpixel location on the horizontal axis of the peak i_int : integer location of highest score on the vertical axis j_int : integer location of highest score on the horizontal axis Notes ----- [1] Fisher & Naidu, "A Comparison of algorithms for subpixel peak detection" in Image Technology - Advances in image processing, multimedia and machine vision pp.385-404, 1996. """ if top.size==0: # find highest score di,dj,_,_ = get_integer_peak_location(C) else: di, dj = top[0], top[1] i_int,j_int = np.copy(di), np.copy(dj) di += C.shape[0]//2 # using a central coordinate system dj += C.shape[1]//2 if is_estimate_away_from_border: # estimate sub-pixel along each axis ddi = (C[di+1,dj] - C[di-1,dj]) / \ ( C[di-1,dj] + C[di,dj] + C[di+1,dj]) ddj = (C[di,dj+1] - C[di,dj-1]) / \ ( C[di,dj-1] + C[di,dj] + C[di,dj+1]) else: ddi, ddj = 0, 0 def get_top_blais(C, top=np.array([])): """ find location of highest score through forth order filter Parameters ---------- C : np.array, size=(_,_) similarity surface top : np.array, size=(1,2) location of the maximum score Returns ------- ddi : float estimated subpixel location on the vertical axis of the peak ddj : float estimated subpixel location on the horizontal axis of the peak i_int : integer location of highest score on the vertical axis j_int : integer location of highest score on the horizontal axis Notes ----- [1] Blais & Rioux, "Real-time numerical peak detector" Signal processing vol.11 pp.145-155, 1986. """ if top.size==0: # find highest score di,dj,_,_ = get_integer_peak_location(C) else: di, dj = top[0], top[1] i_int,j_int = np.copy(di), np.copy(dj) di += C.shape[0]//2 # using a central coordinate system dj += C.shape[1]//2 if is_estimate_away_from_border: # estimate sub-pixel along each axis if C[di+1,dj]>C[di-1,dj]: gx_0 = C[di-2,dj] + C[di-1,dj] - C[di+1,dj] - C[di+2,dj] gx_1 = C[di-1,dj] + C[di-0,dj] - C[di+2,dj] - C[di+3,dj] ddi = (gx_0/(gx_0 - gx_1)) else: gx_0 = C[di-2,dj] + C[di-1,dj] - C[di+1,dj] - C[di+2,dj] gx_1 = C[di-3,dj] + C[di-2,dj] - C[di+0,dj] - C[di+1,dj] ddi = (gx_1/(gx_1 - gx_0)) -1 if C[di,dj+1]>C[di,dj-1]: gx_0 = C[di,dj-2] + C[di,dj-1] - C[di,dj+1] - C[di,dj+2] gx_1 = C[di,dj-1] + C[di,dj-0] - C[di,dj+2] - C[di,dj+3] ddj = (gx_0/(gx_0 - gx_1)) else: gx_0 = C[di,dj-2] + C[di,dj-1] - C[di,dj+1] - C[di,dj+2] gx_1 = C[di,dj-3] + C[di,dj-2] - C[di,dj+0] - C[di,dj+1] ddj = (gx_1/(gx_1 - gx_0)) -1 else: ddi, ddj = 0, 0 return ddi,ddj, i_int,j_int def get_top_parabolic(C, top=np.array([])): """ find location of highest score through 1D parabolic fit Parameters ---------- C : np.array, size=(_,_) similarity surface top : np.array, size=(1,2) location of the maximum score Returns ------- ddi : float estimated subpixel location on the vertical axis of the peak ddj : float estimated subpixel location on the horizontal axis of the peak i_int : integer location of highest score on the vertical axis j_int : integer location of highest score on the horizontal axis Notes ----- [1] Argyriou & Vlachos, "A Study of sub-pixel motion estimation using phase correlation" Proceeding of the British machine vision conference, pp. 387-396), 2006. [2] Raffel et al. "Particle Image Velocimetry" Ch.6 pp.184 2018. """ if top.size==0: # find highest score di,dj,_,_ = get_integer_peak_location(C) else: di, dj = top[0], top[1] i_int,j_int = np.copy(di), np.copy(dj) di += C.shape[0]//2 # using a central coordinate system dj += C.shape[1]//2 if is_estimate_away_from_border: # estimate sub-pixel along each axis ddi = (C[di+1,dj] - C[di-1,dj]) / \ 2*( (2*C[di,dj]) -C[di-1,dj] -C[di+1,dj]) ddj = (C[di,dj+1] - C[di,dj-1]) / \ 2*( (2*C[di,dj]) -C[di,dj-1] -C[di,dj+1]) else: ddi, ddj = 0, 0 return ddi,ddj, i_int,j_int def get_top_equiangular(C, top=np.array([])): """ find location of highest score along each axis by equiangular line Parameters ---------- C : np.array, size=(_,_) similarity surface top : np.array, size=(1,2) location of the crossing Returns ------- ddi : float estimated subpixel location on the vertical axis of the peak ddj : float estimated subpixel location on the horizontal axis of the peak i_int : integer location of highest score on the vertical axis j_int : integer location of highest score on the horizontal axis Notes ----- [1] Shimizu & Okutomi. "Sub-pixel estimation error cancellation on area-based matching" International journal of computer vision, vol. 63(3), pp.207–224, 2005. """ if top.size==0: # find highest score di,dj,_,_ = get_integer_peak_location(C) else: di, dj = top[0], top[1] i_int,j_int = np.copy(di), np.copy(dj) di += C.shape[0]//2 # using a central coordinate system dj += C.shape[1]//2 if is_estimate_away_from_border: # estimate sub-pixel along each axis # estimate sub-pixel along each axis if C[di+1,dj]<C[di-1,dj]: ddi = .5* (C[di+1,dj]-C[di-1,dj])/(C[di,dj]-C[di-1,dj]) else: ddi = .5* (C[di+1,dj]-C[di-1,dj])/(C[di,dj]-C[di+1,dj]) if C[di,dj+1]<C[di,dj-1]: ddj = .5* (C[di,dj+1]-C[di,dj-1])/(C[di,dj]-C[di,dj-1]) else: ddj = .5* (C[di,dj+1]-C[di,dj-1])/(C[di,dj]-C[di,dj+1]) else: ddi, ddj = 0, 0 return ddi, ddj, i_int,j_int def get_top_birchfield(C, top=np.array([])): """ find location of highest score along each axis Parameters ---------- C : np.array, size=(_,_) similarity surface top : np.array, size=(1,2) location of the maximum score Returns ------- ddi : float estimated subpixel location on the vertical axis of the peak ddj : float estimated subpixel location on the horizontal axis of the peak i_int : integer location of highest score on the vertical axis j_int : integer location of highest score on the horizontal axis Notes ----- [1] Birchfield & Tomasi. "Depth discontinuities by pixel-to-pixel stereo" International journal of computer vision, vol. 35(3)3 pp. 269-293, 1999. """ if top.size==0: # find highest score di,dj,_,_ = get_integer_peak_location(C) else: di, dj = top[0], top[1] i_int,j_int = np.copy(di), np.copy(dj) di += C.shape[0]//2 # using a central coordinate system dj += C.shape[1]//2 if is_estimate_away_from_border: # estimate sub-pixel along each axis # estimate sub-pixel along each axis I_m,I_p = .5*(C[di-1,dj] + C[di,dj]), .5*(C[di+1,dj] + C[di,dj]) I_min = np.amin([I_m, I_p, C[di,dj]]) I_max = np.amax([I_m, I_p, C[di,dj]]) # swapped, since Birchfield uses dissimilarity ddi = np.amax([0, I_max-C[di,dj], C[di,dj]-I_min]) I_m,I_p = .5*(C[di,dj-1] + C[di,dj]), .5*(C[di,dj+1] + C[di,dj]) I_min = np.amin([I_m, I_p, C[di,dj]]) I_max = np.amax([I_m, I_p, C[di,dj]]) ddj = np.amax([0, I_max-C[di,dj], C[di,dj]-I_min]) else: ddi, ddj = 0, 0 return ddi, ddj, i_int,j_int def get_top_ren(C, top=np.array([])): """ find location of highest score Parameters ---------- C : np.array, size=(_,_) similarity surface top : np.array, size=(1,2) location of the maximum score Returns ------- ddi : float estimated subpixel location on the vertical axis of the peak ddj : float estimated subpixel location on the horizontal axis of the peak i_int : integer location of highest score on the vertical axis j_int : integer location of highest score on the horizontal axis Notes ----- [1] Ren et al. "High-accuracy sub-pixel motion estimation from noisy images in Fourier domain." IEEE transactions on image processing, vol. 19(5) pp. 1379-1384, 2010. """ if top.size==0: # find highest score di,dj,_,_ = get_integer_peak_location(C) else: di, dj = top[0], top[1] i_int,j_int = np.copy(di), np.copy(dj) di += C.shape[0]//2 # using a central coordinate system dj += C.shape[1]//2 if is_estimate_away_from_border: # estimate sub-pixel along each axis # estimate sub-pixel along each axis D_i = C[di+1,dj] - C[di-1,dj] ddi = np.sign(D_i)/(1 + ( C[di,dj] / np.abs(D_i) )) D_j = C[di,dj+1] - C[di,dj-1] ddj = np.sign(D_j)/(1 + ( C[di,dj] / np.abs(D_j) )) else: ddi, ddj = 0, 0 return ddi,ddj, i_int,j_int def get_top_triangular(C, top=np.array([])): """ find location of highest score through triangular fit Parameters ---------- C : np.array, size=(_,_) similarity surface top : np.array, size=(1,2) location of the maximum score Returns ------- ddi : float estimated subpixel location on the vertical axis of the peak ddj : float estimated subpixel location on the horizontal axis of the peak i_int : integer location of highest score on the vertical axis j_int : integer location of highest score on the horizontal axis Notes ----- [1] <NAME>, "Real-time vergence control for binocular robots" International journal of computer vision, vol. 7(1), pp. 67-89, 1991. """ if top.size==0: # find highest score di,dj,_,_ = get_integer_peak_location(C) else: di, dj = top[0], top[1] i_int,j_int = np.copy(di), np.copy(dj) di += C.shape[0]//2 # using a central coordinate system dj += C.shape[1]//2 if is_estimate_away_from_border: # estimate sub-pixel along each axis I_m,I_p = C[di-1,dj], C[di+1,dj] I_min,I_max = np.amin([I_m, I_p]), np.amax([I_m, I_p]) I_sign = 2*(I_p>I_m)-1 ddi = I_sign * (1- (I_max-I_min)/(C[di,dj]-I_min) ) I_m,I_p = C[di,dj-1], C[di,dj+1] I_min,I_max = np.amin([I_m, I_p]), np.amax([I_m, I_p]) I_sign = 2*(I_p>I_m)-1 ddj = I_sign * (1- (I_max-I_min)/(C[di,dj]-I_min) ) else: ddi, ddj = 0, 0 return ddi, ddj, i_int,j_int def get_top_esinc(C, ds=1, top=np.array([])): '''find location of highest score using exponential esinc function Parameters ---------- C : np.array, size=(_,_) similarity surface top : np.array, size=(1,2) location of the maximum score Returns ------- ddi : float estimated subpixel location on the vertical axis of the peak ddj : float estimated subpixel location on the horizontal axis of the peak i_int : integer location of highest score on the vertical axis j_int : integer location of highest score on the horizontal axis Notes ----- [1] Argyriou & Vlachos, "A study of sub-pixel motion estimation using phase correlation", proceedings of the British machine vision conference, 2006 ''' if top.size==0: # find highest score di,dj,_,_ = get_integer_peak_location(C) else: di, dj = top[0], top[1] i_int,j_int = np.copy(di), np.copy(dj) di += C.shape[0]//2 # using a central coordinate system dj += C.shape[1]//2 if is_estimate_away_from_border: # estimate sub-pixel along each axis # estimate sub-pixel per axis Cj = C[di,dj-ds:dj+ds+1].ravel() def funcJ(x): a, b, c = x return [(Cj[0] - a*np.exp(-(b*(-1-c))**2)* \ ( np.sin(np.pi*(-1-c))/ np.pi*(-1-c)) )**2, (Cj[1] - a*np.exp(-(b*(+0-c))**2)* \ ( np.sin(np.pi*(+0-c))/ np.pi*(+0-c)) )**2, (Cj[2] - a*np.exp(-(b*(+1-c))**2)* \ ( np.sin(np.pi*(+1-c))/ np.pi*(+1-c)) )**2] jA, jB, jC = fsolve(funcJ, (1.0, 1.0, 0.1)) Ci = C[di-ds:di+ds+1,dj].ravel() def funcI(x): a, b, c = x return [(Ci[0] - a*np.exp(-(b*(-1-c))**2)* \ ( np.sin(np.pi*(-1-c))/ np.pi*(-1-c)) )**2, (Ci[1] - a*np.exp(-(b*(+0-c))**2)* \ ( np.sin(np.pi*(+0-c))/ np.pi*(+0-c)) )**2, (Ci[2] - a*np.exp(-(b*(+1-c))**2)* \ ( np.sin(np.pi*(+1-c))/ np.pi*(+1-c)) )**2] iA, iB, iC = fsolve(funcI, (1.0, 1.0, 0.1)) else: iC, jC = 0, 0 return iC,jC, i_int,j_int def get_top_2d_gaussian(C, top=np.array([])): '''find location of highest score using 2D Gaussian Parameters ---------- C : np.array, size=(_,_) similarity surface top : np.array, size=(1,2) location of the maximum score Returns ------- ddi : float estimated subpixel location on the vertical axis of the peak ddj : float estimated subpixel location on the horizontal axis of the peak i_int : integer location of highest score on the vertical axis j_int : integer location of highest score on the horizontal axis Notes ----- [1] Nobach & Honkanen, "Two-dimensional Gaussian regression for sub-pixel displacement estimation in particle image velocimetry or particle position estimation in particle tracking velocimetry", Experiments in Fluids, vol.38 pp.511-515, 2005 ''' (Jsub,Isub) = np.meshgrid(np.linspace(-1,+1, 3), np.linspace(-1,+1, 3)) Isub = Isub.ravel() Jsub = Jsub.ravel() if top.size==0: # find highest score di,dj,_,_ = get_integer_peak_location(C) else: di, dj = top[0], top[1] i_int,j_int = np.copy(di), np.copy(dj) di += C.shape[0]//2 # using a central coordinate system dj += C.shape[1]//2 if is_estimate_away_from_border: # estimate sub-pixel along both axis i_sub =
np.arange(-1,+2)
numpy.arange
import math import os import time import xml.etree.ElementTree as ET from xml.dom import minidom import multiprocessing as mp import cv2 import matplotlib.pyplot as plt import numpy as np import openslide from PIL import Image import pdb import h5py import math from wsi_core.wsi_utils import savePatchIter_bag_hdf5, initialize_hdf5_bag, coord_generator, save_hdf5, sample_indices, screen_coords, isBlackPatch, isWhitePatch, to_percentiles import itertools from wsi_core.util_classes import isInContourV1, isInContourV2, isInContourV3_Easy, isInContourV3_Hard, Contour_Checking_fn # from utils.file_utils import load_pkl, save_pkl Image.MAX_IMAGE_PIXELS = 933120000 class WholeSlideImage(object): def __init__(self, path): """ Args: path (str): fullpath to WSI file """ self.name = ".".join(path.split("/")[-1].split('.')[:-1]) self.wsi = openslide.open_slide(path) self.level_downsamples = self._assertLevelDownsamples() self.level_dim = self.wsi.level_dimensions self.contours_tissue = None self.contours_tumor = None self.hdf5_file = None def getOpenSlide(self): return self.wsi def initXML(self, xml_path): def _createContour(coord_list): return np.array([[[int(float(coord.attributes['X'].value)), int(float(coord.attributes['Y'].value))]] for coord in coord_list], dtype = 'int32') xmldoc = minidom.parse(xml_path) annotations = [anno.getElementsByTagName('Coordinate') for anno in xmldoc.getElementsByTagName('Annotation')] self.contours_tumor = [_createContour(coord_list) for coord_list in annotations] self.contours_tumor = sorted(self.contours_tumor, key=cv2.contourArea, reverse=True) def initTxt(self,annot_path): def _create_contours_from_dict(annot): all_cnts = [] for idx, annot_group in enumerate(annot): contour_group = annot_group['coordinates'] if annot_group['type'] == 'Polygon': for idx, contour in enumerate(contour_group): contour = np.array(contour).astype(np.int32).reshape(-1,1,2) all_cnts.append(contour) else: for idx, sgmt_group in enumerate(contour_group): contour = [] for sgmt in sgmt_group: contour.extend(sgmt) contour = np.array(contour).astype(np.int32).reshape(-1,1,2) all_cnts.append(contour) return all_cnts with open(annot_path, "r") as f: annot = f.read() annot = eval(annot) self.contours_tumor = _create_contours_from_dict(annot) self.contours_tumor = sorted(self.contours_tumor, key=cv2.contourArea, reverse=True) def initSegmentation(self, mask_file): # load segmentation results from pickle file import pickle asset_dict = load_pkl(mask_file) self.holes_tissue = asset_dict['holes'] self.contours_tissue = asset_dict['tissue'] def saveSegmentation(self, mask_file): # save segmentation results using pickle asset_dict = {'holes': self.holes_tissue, 'tissue': self.contours_tissue} save_pkl(mask_file, asset_dict) def segmentTissue(self, seg_level=0, sthresh=20, sthresh_up = 255, mthresh=7, close = 0, use_otsu=False, filter_params={'a_t':100}, ref_patch_size=512, exclude_ids=[], keep_ids=[]): """ Segment the tissue via HSV -> Median thresholding -> Binary threshold """ def _filter_contours(contours, hierarchy, filter_params): """ Filter contours by: area. """ filtered = [] # find indices of foreground contours (parent == -1) hierarchy_1 = np.flatnonzero(hierarchy[:,1] == -1) all_holes = [] # loop through foreground contour indices for cont_idx in hierarchy_1: # actual contour cont = contours[cont_idx] # indices of holes contained in this contour (children of parent contour) holes =
np.flatnonzero(hierarchy[:, 1] == cont_idx)
numpy.flatnonzero
import json import os import pickle from os import listdir from os.path import isfile, join import fire import matplotlib.image as mpimg import matplotlib.pyplot as plt import numpy as np from skimage import feature # data_list = [ # "/Users/sschickler/Code_Devel/LSSC-python/plotting_functions/demo_files/roi_list1.json", # "/Users/sschickler/Code_Devel/LSSC-python/plotting_functions/demo_files/roi_list2.json"] # background_image_path = "/Users/sschickler/Code_Devel/LSSC-python/plotting_functions/demo_files/embedding_norm_image.png" # eigen_path = "/Users/sschickler/Code_Devel/LSSC-python/plotting_functions/demo_files/eigen_vectors" # data_list = [ # "/Users/sschickler/Code_Devel/LSSC-python/plotting_functions/kdan/KDA79_A_keep121.json", # "/Users/sschickler/Code_Devel/LSSC-python/plotting_functions/kdan/roi_list.json" # ] # background_image_path = "/Users/sschickler/Code_Devel/LSSC-python/plotting_functions/kdan/embedding_norm_image.png" # eigen_path = "/Users/sschickler/Code_Devel/LSSC-python/plotting_functions/kdan/eigen_vectors" # data_list = [ # "/Users/sschickler/Code_Devel/LSSC-python/plotting_functions/kdan/KDA79_A_keep121.json", # "/Users/sschickler/Code_Devel/LSSC-python/plotting_functions/kdan/roi_list.json" # ] # background_image_path = "/Users/sschickler/Code_Devel/LSSC-python/plotting_functions/kdan/embedding_norm_image.png" # eigen_path = "/Users/sschickler/Code_Devel/LSSC-python/plotting_functions/neurofinder2.0" def create_image_from_eigen_vectors(path, shape): onlyfiles = [f for f in listdir(path) if isfile(join(path, f))] vectors = [] for x in onlyfiles: with open(os.path.join(path, x), "rb") as file: vectors.append(pickle.load(file)[:, 1:]) all_vectors = np.hstack(vectors) all_vectors_sum = np.power(np.sum(np.power(all_vectors, 2), axis=1), .5) all_vectors_shaped = np.reshape(all_vectors_sum, shape) all_vectors_shaped[all_vectors_shaped < 0] = 0 # if all_vectors_shaped.min()<0: # all_vectors_shaped+=all_vectors_shaped.min()*-1 return all_vectors_shaped * 255 / (all_vectors_shaped.max()) def create_roi_image(size, color, path, blobs=True, offset=0): image = np.zeros((size[0], size[1], 3), dtype="int") with open(path, "r") as json_true: json_b_actual = json.load(json_true) for num, x in enumerate(json_b_actual): cords = x["coordinates"] if len(cords) < 600: image_temp = np.zeros((size[0], size[1], 3), dtype="int") for pixel in cords: try: image_temp[pixel[0] + offset, pixel[1] + offset] = color except IndexError: print("bad pixel location: " + str([x + offset for x in pixel])) if not blobs: edge = feature.canny( np.sum(image_temp, axis=2) / np.max(np.sum(image_temp, axis=2))) image[edge] = color else: image[image_temp != 0] = image_temp[image_temp != 0] return image def create_graph(bg_path="", shape=None, e_dir="", data_1="", data_2="", data_3="", data_4="", out_file="", percent=99, blobs=True, pad=(0, 0), color_1=(234, 32, 39), color_2=(247, 159, 31), color_3=(6, 82, 221), color_4=(217, 128, 250), overlap_c=(211, 84, 0), offset=0): if bg_path != "": if ".npy" in bg_path: background_image = np.load(bg_path) else: background_image = mpimg.imread(bg_path) * 200 / 255 if pad[0] != 0: background_image = np.pad(background_image, [(pad[0], pad[0] + 1), (pad[1], pad[1] + 1)]) # background_image = gaussian_filter(background_image, .02) if shape is None: shape = background_image.shape if e_dir != "": background_image = (255 / 255 * create_image_from_eigen_vectors(e_dir, shape)) background_image_temp = background_image.copy() background_image[background_image < 0] = 0 background_image = (((background_image - np.percentile(background_image, 1)) / ( np.percentile(background_image, percent) - np.percentile( background_image, 1)))) if np.percentile(background_image, 30) > .25: background_image = ( ((background_image_temp - np.percentile(background_image_temp, 10)) / (
np.percentile(background_image_temp, percent)
numpy.percentile
try: from vrep import* except: print ('--------------------------------------------------------------') print ('"vrep.py" could not be imported. This means very probably that') print ('either "vrep.py" or the remoteApi library could not be found.') print ('Make sure both are in the same folder as this file,') print ('or appropriately adjust the file "vrep.py"') print ('--------------------------------------------------------------') print ('') import time import os import sys import numpy.random as random import numpy as np import math from collections import defaultdict import PIL.Image as Image import array import json import shapely from shapely.geometry import Polygon import cv2 as cv class Camera(object): """ # kinect camera in simulation """ def __init__(self, clientID): """ Initialize the Camera in simulation """ self.RAD2EDG = 180 / math.pi self.EDG2RAD = math.pi / 180 self.Save_IMG = True self.Save_PATH_COLOR = r'./color' self.Save_PATH_DEPTH = r'./depth' self.Dis_FAR = 10 self.depth_scale = 1000 self.Img_WIDTH = 224 self.Img_HEIGHT = 224 self.border_pos = [120,375,100,430]# [68,324,112,388] #up down left right of the box self.theta = 70 self.Camera_NAME = r'kinect' self.Camera_RGB_NAME = r'kinect_rgb' self.Camera_DEPTH_NAME = r'kinect_depth' self.clientID = clientID self._setup_sim_camera() self._mkdir_save(self.Save_PATH_COLOR) self._mkdir_save(self.Save_PATH_DEPTH) def _mkdir_save(self, path_name): if not os.path.isdir(path_name): os.mkdir(path_name) def _euler2rotm(self,theta): """ -- Get rotation matrix from euler angles """ R_x = np.array([[1, 0, 0 ], [0, math.cos(theta[0]), -math.sin(theta[0]) ], [0, math.sin(theta[0]), math.cos(theta[0]) ] ]) R_y = np.array([[math.cos(theta[1]), 0, math.sin(theta[1]) ], [0, 1, 0 ], [-math.sin(theta[1]), 0, math.cos(theta[1]) ] ]) R_z = np.array([[math.cos(theta[2]), -math.sin(theta[2]), 0], [math.sin(theta[2]), math.cos(theta[2]), 0], [0, 0, 1] ]) R = np.dot(R_z, np.dot( R_y, R_x )) return R def _setup_sim_camera(self): """ -- Get some param and handles from the simulation scene and set necessary parameter for camera """ # Get handle to camera _, self.cam_handle = simxGetObjectHandle(self.clientID, self.Camera_NAME, simx_opmode_oneshot_wait) _, self.kinectRGB_handle = simxGetObjectHandle(self.clientID, self.Camera_RGB_NAME, simx_opmode_oneshot_wait) _, self.kinectDepth_handle = simxGetObjectHandle(self.clientID, self.Camera_DEPTH_NAME, simx_opmode_oneshot_wait) # Get camera pose and intrinsics in simulation _, self.cam_position = simxGetObjectPosition(self.clientID, self.cam_handle, -1, simx_opmode_oneshot_wait) _, cam_orientation = simxGetObjectOrientation(self.clientID, self.cam_handle, -1, simx_opmode_oneshot_wait) self.cam_trans = np.eye(4,4) self.cam_trans[0:3,3] = np.asarray(self.cam_position) self.cam_orientation = [-cam_orientation[0], -cam_orientation[1], -cam_orientation[2]] self.cam_rotm = np.eye(4,4) self.cam_rotm[0:3,0:3] = np.linalg.inv(self._euler2rotm(cam_orientation)) self.cam_pose = np.dot(self.cam_trans, self.cam_rotm) # Compute rigid transformation representating camera pose self._intri_camera() def _intri_camera(self): #the paramter of camera """ Calculate the intrinstic parameters of camera """ fx = -self.Img_WIDTH/(2.0 * math.tan(self.theta * self.EDG2RAD / 2.0)) fy = fx u0 = self.Img_HEIGHT/ 2 v0 = self.Img_WIDTH / 2 self.intri = np.array([[fx, 0, u0], [0, fy, v0], [0, 0, 1]]) def get_camera_data(self): """ -- Read images data from vrep and convert into np array """ # Get color image from simulation res, resolution, raw_image = simxGetVisionSensorImage(self.clientID, self.kinectRGB_handle, 0, simx_opmode_oneshot_wait) # self._error_catch(res) color_img = np.array(raw_image, dtype=np.uint8) color_img.shape = (resolution[1], resolution[0], 3) color_img = color_img.astype(np.float)/255 color_img[color_img < 0] += 1 color_img *= 255 color_img = np.flipud(color_img) color_img = color_img.astype(np.uint8) # Get depth image from simulation res, resolution, depth_buffer = simxGetVisionSensorDepthBuffer(self.clientID, self.kinectDepth_handle, simx_opmode_oneshot_wait) # self._error_catch(res) depth_img = np.array(depth_buffer) #print(depth_img) depth_img.shape = (resolution[1], resolution[0]) depth_img = np.flipud(depth_img) depth_img[depth_img < 0] = 0 depth_img[depth_img > 1] = 0.9999 depth_img = depth_img * self.Dis_FAR * self.depth_scale self.cur_depth = depth_img return depth_img, color_img def save_image(self, cur_depth, cur_color, img_idx): """ -- Save Color&Depth images """ img = Image.fromarray(cur_color.astype('uint8')).convert('RGB') img_path = os.path.join(self.Save_PATH_COLOR, str(img_idx) + '_Rgb.png') img.save(img_path) depth_img = Image.fromarray(cur_depth.astype(np.uint32),mode='I') depth_path = os.path.join(self.Save_PATH_DEPTH, str(img_idx) + '_Depth.png') depth_img.save(depth_path) return depth_path, img_path def _error_catch(self, res): """ -- Deal with error unexcepted """ if res == simx_return_ok: print ("--- Image Exist!!!") elif res == simx_return_novalue_flag: print ("--- No image yet") else: print ("--- Error Raise") def pixel2ur5(self, u, v, ur5_position, push_depth, depth = 0.0, is_dst = True): """ from pixel u,v and correspondent depth z -> coor in ur5 coordinate (x,y,z) """ if is_dst == False: depth = self.cur_depth[int(u)][int(v)] / self.depth_scale x = depth * (u - self.intri[0][2]) / self.intri[0][0] y = depth * (v - self.intri[1][2]) / self.intri[1][1] camera_coor = np.array([x, y, depth - push_depth]) """ from camera coor to ur5 coor Notice the camera faces the plain directly and we needn't convert the depth to real z """ camera_coor[2] = - camera_coor[2] location = camera_coor + self.cam_position - np.asarray(ur5_position) return location, depth def world2pixel(self,location): """ from coor in world coordinate (x,y,z) to pixel u.v """ x=location[0] y=location[1] z=0.75 # extrinsic parameter if x<0.0 or x> 1.0 or abs(y)>0.7 or z<0.7: return [1024,1024] #print(self.cam_position) z_1 = self.cam_position[2]-z x_1 = x-self.cam_position[0] y_1 = y-self.cam_position[1] # internal parameter u = int((x_1 / z_1)*self.intri[0][0] +self.intri[0][2]) #u x_1 v = int((y_1 / z_1)*self.intri[1][1] +self.intri[1][2]) #v y_1 if u<0 or v<0: return [1024,1024] return [u,v] ''' x=location[0] y=location[1] z=0.75 # extrinsic parameter if x<0.0 or x> 1.0 or abs(y)>0.7 or z<0.7: return [1024,1024] z_1 = self.cam_position[2]-z x_1 = x-self.cam_position[0] y_1 = y-self.cam_position[1] f= -self.Img_WIDTH/(2.0 * math.tan(self.theta * self.EDG2RAD / 2.0)) u = f/z_1 * y_1 + self.intri[0][2] v = f/z_1 * x_1 + self.intri[1][2] ''' def pixel2world(self, u, v, push_depth = 0): """ from pixel u,v and correspondent depth z -> coor in world coordinate (x,y,z) """ if u >0: u = int(u)%224 else: u = 0 if v>0: v = int(v)%224 else: v= 0 depth = self.cur_depth[int(u)][int(v)] / self.depth_scale x = depth * (u - self.intri[0][2]) / self.intri[0][0] y = depth * (v - self.intri[1][2]) / self.intri[1][1] camera_coor = np.array([x, y, depth-push_depth]) """ from camera coor to world coor Notice the camera faces the plain directly and we needn't convert the depth to real z """ camera_coor[2] = - camera_coor[2] location = camera_coor + self.cam_position return location class UR5(object): def __init__(self,testing_file='table-00-scene-00.txt',obj_num=20): #test self.testing_file = testing_file self.targetPosition = np.zeros(3,dtype = np.float) self.targetQuaternion = np.array([0.707,0,0.707,0]) self.baseName = r'UR5' self.IkName = r'UR5_ikTip' table_file = 'data/box.txt' bound_dir = "data/boundary_size.json" bound_file = open(bound_dir,encoding='utf-8') self.bound_dic = json.load(bound_file) file = open(table_file, 'r') file_content = file.readlines() file.close() self.table_para = file_content[0].split() self.workspace_limits = np.asarray([[float(self.table_para[0]), float(self.table_para[1])], [float(self.table_para[2]), float(self.table_para[3])] ]) self.drop_height =0.1 self.color_space = np.asarray([[78.0, 121.0, 167.0], # blue [89.0, 161.0, 79.0], # green [156, 117, 95], # brown [242, 142, 43], # orange [237.0, 201.0, 72.0], # yellow [186, 176, 172], # gray [255.0, 87.0, 89.0], # red [176, 122, 161], # purple [118, 183, 178], # cyan [255, 157, 167]]) / 255.0 # pink # Read files in object mesh directory self.test_file_dir = os.path.abspath('data/test_cases/') self.test_preset_file = os.path.join(self.test_file_dir, self.testing_file) self.obj_mesh_dir= os.path.abspath('data/mesh/') self.obj_num = obj_num self.obj_dict = defaultdict(dict) simxFinish(-1) # just in case, close all opened connections self.clientID = simxStart('127.0.0.1', 19997, True, True, 5000, 5) # Connect to V-REP if self.clientID != -1: print ('Connected to remote API server') # If testing, read object meshes and poses from test case file scene_file = open(self.test_preset_file, 'r') file_content = scene_file.readlines() self.test_obj_mesh_files = [] self.test_obj_name = [] self.test_obj_type = [] self.test_obj_mesh_colors = [] self.test_obj_positions = [] self.test_obj_orientations = [] for i in range(self.obj_num): file_content_curr_object = file_content[i].split() self.test_obj_mesh_files.append(os.path.join(self.obj_mesh_dir, file_content_curr_object[0])) self.test_obj_name.append(file_content_curr_object[0]) self.test_obj_type.append(file_content_curr_object[0][:-5]) self.test_obj_positions.append( [float(file_content_curr_object[1]), float(file_content_curr_object[2]), float(file_content_curr_object[3])]) self.test_obj_orientations.append( [float(file_content_curr_object[4]), float(file_content_curr_object[5]), float(file_content_curr_object[6])]) scene_file.close() simxStartSimulation(self.clientID, simx_opmode_blocking) #self.add_objects() else: print ('Failed connecting to remote API server') _, self.ur5_handle = simxGetObjectHandle(self.clientID,self.baseName,simx_opmode_oneshot_wait) _, self.ur5_position = simxGetObjectPosition(self.clientID,self.ur5_handle,-1,simx_opmode_oneshot_wait) self.Ik_handle = simxGetObjectHandle(self.clientID,self.IkName,simx_opmode_oneshot_wait) self.add_objects() self.ankleinit() def ankleinit(self): """ # initial the ankle angle for ur5 """ simxSynchronousTrigger(self.clientID) simxPauseCommunication(self.clientID, True) simxSetIntegerSignal(self.clientID, 'ICECUBE_0', 11, simx_opmode_oneshot) simxPauseCommunication(self.clientID, False) simxSynchronousTrigger(self.clientID) simxGetPingTime(self.clientID) # pause for 1s time.sleep(1) def disconnect(self): """ # disconnect from v-rep # and stop simulation """ simxStopSimulation(self.clientID,simx_opmode_oneshot) time.sleep(2) simxFinish(self.clientID) print ('Simulation ended!') def get_clientID(self): return self.clientID def ur5push(self, move_begin, move_to): """ The action of the ur5 in a single push action including: Get to push beginning Push to the destination Return to the init pose """ time.sleep(1) self.ur5moveto(move_begin) time.sleep(0.5) self.ur5moveto(move_to) time.sleep(0.5) # Return to the initial pose self.ankleinit() time.sleep(0.5) def ur5moveto(self, dst_location): """ Push the ur5 hand to the location of dst_location """ simxSynchronousTrigger(self.clientID) self.targetPosition = dst_location simxPauseCommunication(self.clientID, True) simxSetIntegerSignal(self.clientID, 'ICECUBE_0', 21, simx_opmode_oneshot) for i in range(3): simxSetFloatSignal(self.clientID, 'ICECUBE_'+str(i+1),self.targetPosition[i],simx_opmode_oneshot) for i in range(4): simxSetFloatSignal(self.clientID, 'ICECUBE_'+str(i+4),self.targetQuaternion[i], simx_opmode_oneshot) simxPauseCommunication(self.clientID, False) simxSynchronousTrigger(self.clientID) simxGetPingTime(self.clientID) def add_objects(self): # Add objects to robot workspace at x,y location and orientation self.object_handles = [] for i in range(self.obj_num): curr_shape_name = 'shape'+str(i) curr_mesh_file = self.test_obj_mesh_files[i] curr_obj_type = self.test_obj_type[i] curr_type = 't' object_position = [self.test_obj_positions[i][0], self.test_obj_positions[i][1], self.test_obj_positions[i][2]] object_orientation = [self.test_obj_orientations[i][0]*np.pi/180, self.test_obj_orientations[i][1]*np.pi/180, self.test_obj_orientations[i][2]*np.pi/180] #print (object_position + object_orientation, [curr_mesh_file, curr_shape_name]) ret_resp,ret_ints,_,ret_strings,_ = simxCallScriptFunction(self.clientID, 'remoteApiCommandServer',sim_scripttype_childscript,'importShape',[0,0,255,0], object_position + object_orientation, [curr_mesh_file, curr_shape_name,curr_type], bytearray(), simx_opmode_blocking) time.sleep(1) if ret_resp == 8: print('Failed to add new objects to simulation. Please restart.') print (ret_strings) exit() curr_shape_handle = ret_ints[0] self.object_handles.append(curr_shape_handle) def get_obj_positions_and_orientations(self): for i in range(self.obj_num): obj_handle = self.object_handles[i] self.obj_dict[i]['handle'] = obj_handle _, object_position = simxGetObjectPosition(self.clientID, obj_handle, -1, simx_opmode_blocking) _, object_orientation = simxGetObjectOrientation(self.clientID, obj_handle, -1, simx_opmode_blocking) self.obj_dict[i]['position'] = object_position self.obj_dict[i]['orientation'] = object_orientation object_matrix = self.euler2rotm(object_orientation, object_position) # object_matrix = self.euler2rotm_1(i) self.obj_dict[i]['matrix'] = object_matrix obj_name = self.test_obj_name[i] self.obj_dict[i]['name'] = obj_name self.obj_dict[i]['boundary_size'] = self.bound_dic[obj_name] self.obj_dict[i]['rect'],self.obj_dict[i]['boundary']= self.caculate_projection_rect(object_matrix,self.bound_dic[obj_name]) #print(obj_name) #print(object_position) #print(object_orientation) #print(self.obj_dict[i]['boundary']) return self.obj_dict def adjust_obj_positions_and_oritentations(self): for i in range(self.obj_num): drop_x = (self.workspace_limits[0][1] - self.workspace_limits[0][0] - 0.2) * np.random.random_sample() + self.workspace_limits[0][0] + 0.1 drop_y = (self.workspace_limits[1][1] - self.workspace_limits[1][0] - 0.2) * np.random.random_sample() + self.workspace_limits[1][0] + 0.1 object_position = [drop_x, drop_y, 1] object_orientation = [2*np.pi*np.random.random_sample(), 2*np.pi*np.random.random_sample(), 2*np.pi*np.random.random_sample()] handle = self.object_handles[i] simxPauseCommunication(self.clientID,True) simxSetObjectOrientation(self.clientID,handle,-1,object_orientation,simx_opmode_oneshot) simxPauseCommunication(self.clientID,False) simxPauseCommunication(self.clientID,True) simxSetObjectPosition(self.clientID,handle,-1,object_position,simx_opmode_oneshot) simxPauseCommunication(self.clientID,False) time.sleep(1) def euler2rotm(self,theta,position): """ -- Get rotation matrix from euler angles """ R_x = np.array([[1, 0, 0 ], [0, math.cos(theta[0]), -math.sin(theta[0]) ], [0, math.sin(theta[0]), math.cos(theta[0]) ] ]) R_y = np.array([[math.cos(theta[1]), 0, math.sin(theta[1]) ], [0, 1, 0 ], [-math.sin(theta[1]), 0, math.cos(theta[1]) ] ]) R_z = np.array([[math.cos(theta[2]), -math.sin(theta[2]), 0], [math.sin(theta[2]), math.cos(theta[2]), 0], [0, 0, 1] ]) R = np.dot(R_z, np.dot( R_y, R_x )) position_get = np.array([position]) R1 = np.vstack((R,position_get)) return R1 def caculate_projection_rect(self,object_matrix,boundary_size): obj_points =np.array( [ [boundary_size[0]/2,boundary_size[0]/2,-boundary_size[0]/2,-boundary_size[0]/2, boundary_size[0]/2,boundary_size[0]/2,-boundary_size[0]/2,-boundary_size[0]/2], [boundary_size[1]/2,-boundary_size[0]/2,boundary_size[1]/2,-boundary_size[0]/2, boundary_size[1]/2,-boundary_size[0]/2,boundary_size[1]/2,-boundary_size[0]/2,], [boundary_size[2]/2,boundary_size[2]/2,boundary_size[2]/2,boundary_size[2]/2, -boundary_size[2]/2,-boundary_size[2]/2,-boundary_size[2]/2,-boundary_size[2]/2], [1,1,1,1,1,1,1,1] ]) obj_points = obj_points.T obj_points_transform = np.dot(obj_points,object_matrix) obj_points_transform = np.array(obj_points_transform) obj_points_transform = obj_points_transform.reshape(8,3) obj_x_array = obj_points_transform[:,0].T obj_y_array = obj_points_transform[:,1].T x_max_point = np.where(obj_x_array == np.max(obj_x_array))[0][0] x_min_point = np.where(obj_x_array ==
np.min(obj_x_array)
numpy.min
import numpy as np import pandas as pa import requests, sys import json from Bio.Seq import Seq import os class TF3DScan: def __init__(self,genes,PWM_directory,seqs=None): self.gene_names=genes self.PWM_dir=PWM_directory self.seq=None self.PWM=None self.weights=None self.proteins=None self.initialize() def initialize(self): self.seq=self.get_seq_by_name(self.gene_names) self.PWM=self.convolutional_filter_for_each_TF(self.PWM_dir) self.weights, self.proteins= self.get_Weights(self.PWM) return def softmax(self,x): e_x = np.exp(x - np.max(x)) return (e_x / e_x.sum(axis=0)) def convolutional_filter_for_each_TF(self,PWM_directory): path = PWM_directory #print(path) filelist = os.listdir(path) TF_kernel_PWM={} for file in filelist: TF_kernel_PWM[file.split("_")[0]] = pa.read_csv(path+file, sep="\t", skiprows=[0], header=None) return TF_kernel_PWM def get_reverse_scaning_weights(self, weight): return np.flipud(weight[:,[3,2,1,0]]) def get_Weights(self, filter_PWM_human): #forward and reverse scanning matrix with reverse complement #forward_and_reverse_direction_filter_list=[{k:np.dstack((filter_PWM_human[k],self.get_reverse_scaning_weights(np.array(filter_PWM_human[k]))))} for k in filter_PWM_human.keys()] #forward and reverse scanning with same matrix forward_and_reverse_direction_filter_list=[{k:np.dstack((filter_PWM_human[k],filter_PWM_human[k]))} for k in filter_PWM_human.keys()] forward_and_reverse_direction_filter_dict=dict(j for i in forward_and_reverse_direction_filter_list for j in i.items()) unequefilter_shape=pa.get_dummies([filter_PWM_human[k].shape for k in filter_PWM_human]) TF_with_common_dimmention=[{i:list(unequefilter_shape.loc[list(unequefilter_shape[i]==1),:].index)} for i in unequefilter_shape.columns] filterr={} for i in TF_with_common_dimmention: #print(list(i.keys())) aa=[list(forward_and_reverse_direction_filter_list[i].keys()) for i in list(i.values())[0]] aa=sum(aa,[]) #print(aa) xx=[forward_and_reverse_direction_filter_dict[j] for j in aa] #print(xx) xxx=np.stack(xx,axis=-1) #xxx=xxx.reshape(xxx.shape[1],xxx.shape[2],xxx.shape[3],xxx.shape[0]) filterr["-".join(aa)]=xxx weights=[v for k,v in filterr.items()] protein_names=[k for k,v in filterr.items()] protein_names=[n.split("-") for n in protein_names] return (weights,protein_names) def get_sequenceBy_Id(self, EnsemblID,content="application/json",expand_5prime=2000, formatt="fasta", species="homo_sapiens",typee="genomic"): server = "http://rest.ensembl.org" ext="/sequence/id/"+EnsemblID+"?expand_5prime="+str(expand_5prime)+";format="+formatt+";species="+species+";type="+typee r = requests.get(server+ext, headers={"Content-Type" : content}) _=r if not r.ok: r.raise_for_status() sys.exit() return(r.json()['seq'][0:int(expand_5prime)+2000]) def seq_to3Darray(self, sequence): seq3Darray=pa.get_dummies(list(sequence)) myseq=Seq(sequence) myseq=str(myseq.reverse_complement()) reverseseq3Darray=pa.get_dummies(list(myseq)) array3D=np.dstack((seq3Darray,reverseseq3Darray)) return array3D def get_seq_by_name(self, target_genes): promoter_inhancer_sequence=list(map(self.get_sequenceBy_Id, target_genes)) threeD_sequence=list(map(self.seq_to3Darray, promoter_inhancer_sequence)) input_for_convolutional_scan=np.stack((threeD_sequence)).astype('float32') return input_for_convolutional_scan def from_2DtoSeq(self, twoD_seq): indToSeq={0:"A",1:"C",2:"G",3:"T"} seq=str(''.join([indToSeq[i] for i in np.argmax(twoD_seq, axis=1)])) return seq def conv_single_step(self, seq_slice, W): s = seq_slice*W # Sum over all entries of the volume s. Z = np.sum(s) return Z def conv_single_filter(self, seq,W,stridev,strideh): (fv, fh, n_C_prev, n_C) = W.shape m=seq.shape[0] pad=0 n_H = int((((seq.shape[1]-fv)+(2*pad))/stridev)+1) n_W = int((((seq.shape[2]-fh)+(2*pad))/strideh)+1) Z = np.zeros((m, n_H, n_W ,n_C_prev, n_C)) for i in range(m): for h in range(int(n_H)): vert_start = h*stridev vert_end = stridev*h+fv for w in range(int(n_W)): horiz_start = w*strideh horiz_end = strideh*w+fh for c in range(int(n_C)): a_slice_prev = seq[i,vert_start:vert_end,horiz_start:horiz_end,:] # Convolve the (3D) slice with the correct filter W and bias b, to get back one output neuron. (≈1 line) for d in range(n_C_prev): Z[i, h, w,d, c] = self.conv_single_step(a_slice_prev[:,:,d], W[:,:,d,c]) Z=self.softmax(Z) return Z def conv_total_filter(self, Weights, seqs,stridev,strideh): return [self.conv_single_filter(seqs,i,stridev,strideh) for i in Weights] def single_sigmoid_pool(self, motif_score): n=sum(motif_score>.5) score=[motif_score[i] for i in np.argsort(motif_score)[::-1][:n]] index=[j for j in
np.argsort(motif_score)
numpy.argsort
# Copyright (c) 2020 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import numpy as np def linear1(x_matrix, is_benefit_x): """Python implementation of the Linear1 normalization method. For more information, see the following publications: * <NAME> and <NAME>, Multiple attribute decision making, ser. Lecture Notes in Economics and Mathematical Systems. Springer-Verlag Berlin Heidelberg, 1981, vol. 186, ISBN: 9783540105589. * <NAME>, <NAME>, and <NAME>, "An extension of TOPSIS for group decision making," Mathematical and Computer Modelling, vol. 45, no. 7--8, pp. 801--813, 2007. DOI: 10.1016/j.mcm.2006.03.023. """ # Make sure that the decision matrix is a float64 NumPy array x_matrix = np.array(x_matrix, dtype=np.float64) # Sanity check if len(is_benefit_x) != x_matrix.shape[1]: raise ValueError("The number of variables in the list that " "determines whether each criterion is a benefit " "or a cost criterion does not match the number " "of columns in the decision matrix") # Make sure that it does not contain any negative numbers if np.sum(np.less(x_matrix, 0.0)) > 0: raise ValueError("The decision matrix must not contain any " "negative numbers in order to apply the " "Linear1 normalization method") # Construct the normalized decision matrix z_matrix = np.zeros(x_matrix.shape, dtype=np.float64) for j in range(x_matrix.shape[1]): if is_benefit_x[j]: max_value =
np.amax(x_matrix[:, j])
numpy.amax
import os import unittest import time from datetime import datetime try: import torch GPU = torch.cuda.is_available() and not os.environ.get("USE_CPU") TORCH_INSTALLED = True except ModuleNotFoundError: GPU = False TORCH_INSTALLED = False class TestModule(unittest.TestCase): def test_hbb(self): from deep_sort_realtime.deepsort_tracker import DeepSort import numpy as np today = datetime.now().date() if TORCH_INSTALLED: embedder = 'mobilenet' embeds = None else: embedder = None tracker = DeepSort( max_age=30, nn_budget=100, nms_max_overlap=1.0, embedder=embedder, today=today, embedder_gpu=GPU, ) tic = time.perf_counter() print() print("FRAME1") frame1 = np.ones((1080, 1920, 3), dtype=np.uint8) * 255 detections1 = [ ([0, 0, 50, 50], 0.5, "person"), ([50, 50, 50, 50], 0.5, "person"), ] if embedder is None: embeds = [np.array([0.1, 0.1, 0.1, 0.1]), np.array([-1.0, 1.0, 0.5, -0.5])] tracks = tracker.update_tracks( detections1, frame=frame1, today=datetime.now().date(), embeds=embeds ) for track in tracks: print(track.track_id) print(track.to_tlwh()) print() print("FRAME2") # assume new frame frame2 = frame1 detections2 = [ ([10, 10, 60, 60], 0.8, "person"), ([60, 50, 50, 50], 0.7, "person"), ] if embedder is None: embeds = [np.array([0.1, 0.1, 0.1, 0.1]), np.array([-1.1, 1.0, 0.5, -0.5])] tracks = tracker.update_tracks( detections2, frame=frame2, today=datetime.now().date(), embeds=embeds ) for track in tracks: print(track.track_id) print(track.to_tlwh()) print() print("FRAME3") # assume new frame frame3 = frame1 detections3 = [ ([20, 20, 70, 70], 0.8, "person"), ([70, 50, 50, 50], 0.7, "person"), ] if embedder is None: embeds = [np.array([0.1, 0.1, 0.1, 0.1]), np.array([-1.1, 1.0, 0.5, -0.5])] tracks = tracker.update_tracks( detections3, frame=frame3, today=datetime.now().date(), embeds=embeds ) for track in tracks: print(track.track_id) print(track.to_tlwh()) print() print("FRAME4") # assume new frame frame4 = frame1 detections4 = [([10, 10, 60, 60], 0.8, "person")] if embedder is None: embeds = [np.array([0.1, 0.1, 0.1, 0.1])] tracks = tracker.update_tracks(detections4, frame=frame4, embeds=embeds) for track in tracks: print(track.track_id) print(track.to_tlwh()) toc = time.perf_counter() print(f"Avrg Duration per update: {(toc-tic)/4}") return True def test_obb(self): from deep_sort_realtime.deepsort_tracker import DeepSort import numpy as np if TORCH_INSTALLED: embedder = 'mobilenet' embeds = None else: embedder = None embeds = [np.array([0., 0., 0., 0.]), np.array([0.1, 0.1, 0.1, 0.1])] tracker = DeepSort( max_age=30, nn_budget=100, nms_max_overlap=1.0, embedder=embedder, polygon=True, embedder_gpu=GPU, ) tic = time.perf_counter() print() print("FRAME1") frame1 = np.ones((1080, 1920, 3), dtype=np.uint8) * 255 detections1 = [ [[0, 0, 10, 0, 10, 10, 0, 10], [20, 20, 30, 20, 30, 30, 20, 30]], [0, 1], [0.5, 0.5], ] tracks = tracker.update_tracks(detections1, frame=frame1, embeds=embeds) correct_ans = [ np.array([0.0, 0.0, 11.0, 11.0]), np.array([20.0, 20.0, 11.0, 11.0]), ] for track, ans in zip(tracks, correct_ans): print(track.track_id) ltwh = track.to_ltwh() print(ltwh) np.testing.assert_allclose(ltwh, ans) print() print("FRAME2") # assume new frame frame2 = frame1 detections2 = [ [[0, 0, 10, 0, 15, 10, 0, 15], [25, 20, 30, 20, 30, 30, 25, 30]], [0, 1], [0.5, 0.6], ] tracks = tracker.update_tracks(detections2, frame=frame2, embeds=embeds) correct_ans = [
np.array([0.0, 0.0, 15.33884298, 15.33884298])
numpy.array
from collections import defaultdict import copy import numpy as np ACTIVE = 1 INACTIVE = 0 def day17a(input_path): num_cycles = 6 dimension = Dimension(input_path, 3) print(dimension.total) for step in range(num_cycles): dimension.step() return dimension.total def test17a(): assert 112 == day17a('test_input.txt') class Dimension: def __init__(self, input_path, n_dims): self.n_dims = n_dims self.state = defaultdict(int) lines = np.array([list(line.strip()) for line in open(input_path)]) lines[lines == '#'] = 1 lines[lines == '.'] = 0 init_slice = 0 x, y = np.meshgrid(np.arange(lines.shape[0]), np.arange(lines.shape[1])) x = x.flatten().tolist() y = y.flatten().tolist() for ix, iy in zip(x, y): self.state[(ix, iy) + (n_dims - 2) * (0,)] = int(lines[ix, iy]) meshgrid_input = n_dims * ((-1, 0, 1),) self.deltas = np.stack(np.meshgrid(*meshgrid_input)) self.deltas = np.reshape(np.transpose(self.deltas), (-1, n_dims)) all_zeros = np.all(self.deltas == 0, axis=1) self.deltas = self.deltas[~all_zeros, :] @property def total(self): return sum(self.state.values()) def step(self): next_state = copy.deepcopy(self.state) current_keys = list(self.state.keys()) mins =
np.array(current_keys)
numpy.array
''' ------------------------- SETUP THE MODEL ------------------------- A) Environmental parameters B) True wind angle and velocity range C) Initial guess for solving the VPP D) Delft coefficients for resistance estimation E) Derivated elementary dimensions ------------------------- VPP MAIN ROUTINE ------------------------- 1 PRE-CALCULATION 2 LIFT FORCES AND MOMENTS A) Keel lift force B) Bulb lift force C) Rudder lift force D) Canoe body side force E) GZ estimation F) Righting Moment G) Munk moment H) Centre of Effort (CE) 3 RESISTANCE CALCULATION 3.1 Viscous Resistance A) Parameters B) Canoe body resistance C) Keel and bulb resistance D) Rudder resistance E) Total viscous resistance 3.2 Residual Resistance A) Canoe body resitance B) Keel residual resistance C) Total residual resistance 3.3 Induced resistance A) Canoe body induced resistance B) Keel induced resistance C) Rudder induced resistance D) Total induced resistance 3.4 Resistance increase due to heel A) Canoe body viscous resistance B) Canoe body residual resistance C) Keel residual resistance D) Total heel resistance 3.5 Added resistance in waves 3.6 Total resistance 4) AERODYNAMIC MODELING 4.1) Sail area and centre of effort A) Main sail B) Jib and foretriangle C) Spinnaker D) Mizzen E) Nominal area F) Centre of effort above deck line 4.2) Lift and drag coefficients for each sail A) Main sail B) Jib sail C) Spinnaker D) Mast drag coefficient E) Lift and drag for all sails combined 4.3) Lift and drag forces and centre of efforts 5 FORCES AND MOMENTS IN GLOBAL COORDINATES [X, Y, Z] 5.1 Coordinates matrix A) Leeway B) Heel angle C) Keel angle attack due to heel D) Rudder angle due to heel E) Rudder angle attack due to rudder angle F) Rudder angle attack due to rudder with no lift G) Sail angle attack due to heel 5.2 Forces A) Total resistance B) Lift force keel C) Lift force rudder D) Lift force rudder for delta = 0 E) Bulb side force F) Canoe body side force G) Sail lift force H) Sail drag force 5.3 Centre of effort A) Aerodynamic CE B) Hydrodynamic CE C) Rudder hydrodynamic CE 5.4 Moments A) Munk Moment B) Righting Moment C) Aerodrynamic moment D) Hydrodynamic moment E) Rudder moment 5.5 Resulting forces and moments 5.6 Equilibrium system to be solved ------------------------- NOMENCLATURE & ACRONYMS ------------------------- - Variables' name are composed of "attribute" + "_" + "object", e.g. velocity_boat, angle_rudder - Dimensions are given in radians and meters per second, otherwise a suffix will be added, e.g. angle_tw_deg tw: true wind aw: apparent wind cb: canoe body deg: degrees temp: temporary avg: average ------------------------- REFERENCES ------------------------- <NAME>. Sailing yacht performance in calm water and in waves. The 11th Chesapeake Sailing Yacht Symposium SNAME, Jan. 1993. <NAME>., and <NAME>. Approximation of the hydrodynamic forces on a sailing yacht based on the 'Delft Systematic Yacht Hull Series'. Delft University of Technology, Faculty of Mechanical Engineering and Marine Technology, Ship Hydromechanics Laboratory, 1998. <NAME>., <NAME>, and <NAME>. An approximation Method for the added resistance in waves of a sailing yacht. 2 nd International Symposium on Design and Production of Motor and Sailing Yachts MDY ‘06, Madrid, Spain. 2006. <NAME>. Predicting the speed of sailing yachts, 1993. <NAME>. A concept exploration model for sailing yachts. Transactions of RINA, p. 17–28, 2003. <NAME>. Basic Naval Architecture: Ship Stability. Springer, 2018. ''' ### IMPORT PACKAGES import numpy as np # high-level mathematical functions from scipy import optimize # optimization functions to solve the VPP's system of equations from scipy import interpolate # interpolatation methods applied to obtain the Delft coefficients import csv # export the results as CSV import codecs, json # export the results as JSON import re, os, os.path # uxiliary package to build the JSON files from _ctypes import PyObj_FromPtr # see https://stackoverflow.com/a/15012814/355230 def vpp_solve(sailset, loa, lwl, boa, bwl, tc, lcb, lcf, cb, cm, cp, cwp, lat_surface_cb, KG, free_board, lead_rudder, lead_sail, \ mass_crew, height_mainsail, base_mainsail, height_foretriangle, base_foretriangle, boom_heigth_deck, length_spinnaker, \ perpendicular_jib, span_rudder, tip_chord_rudder, root_chord_rudder, tip_thickness_rudder, root_thickness_rudder, \ sweep_rudder_deg, span_keel, tip_chord_keel, root_chord_keel, tip_thickness_keel, root_thickness_keel, sweep_keel_deg, \ naca_keel, naca_rudder, height_mast, diameter_mast, height_surface_rudder, height_mizzen, base_mizzen, boom_height_mizzen, \ chord_bulb_keel, diameter_bulb, surface_area_bulb, minimum_tw_knots, maximum_tw_knots, minimum_tw_angle, maximum_tw_angle): ### SETUP THE MODEL # A) Environmental parameters density_air = 1.3 # air density [kg/m3] density_water = 1025 # water density [kg/m3] viscosity_water = 1e-6 # water kynematic viscosity [m2/s] gravity = 9.80665 # gravity acceleration [m/s2] # B) True wind angle and velocity range pi = np.pi # pi number step_angle = 30 # true wind angle step [degrees] step_velocity = 1.02889 # true wind speed step [m/s] equivalent to 2 knots minimum_tw = minimum_tw_knots*0.514444 # true wind speed range [m/s] maximum_tw = maximum_tw_knots*0.514444 if (maximum_tw - minimum_tw) < step_velocity: # in case the range of wind speed is lower than its step step_velocity = (maximum_tw - minimum_tw)*0.99 # Arrays for true wind angle and velocity angle_tw_deg = np.arange(minimum_tw_angle, maximum_tw_angle, step_angle) # polar diagram range angle_tw = np.radians(angle_tw_deg) velocity_tw = np.arange(minimum_tw, maximum_tw, step_velocity) # Matrix to store the boat velocity for each true wind angle and speed angle_tw_matrix = np.zeros((np.size(velocity_tw), np.size(angle_tw_deg))) velocity_boat_matrix = np.zeros((np.size(velocity_tw), np.size(angle_tw_deg))) vmg_matrix = np.zeros((np.size(velocity_tw), np.size(angle_tw_deg))) # C) Initial guess for solving the VPP # Velocity [m/s], leeway [rad], heel [rad], rudder angle [rad]) initial_guess = np.array([4, np.radians(5), np.radians(15) ,np.radians(-4)]) # D) Delft coefficients for resistance estimation (Keuning et al, 1998) # Residual resistance - bare hull coefficient_residual_hull = [ ['FroudeNo' 'a0' 'a1' 'a2' 'a3' 'a4' 'a5' 'a6' 'a7' 'a8'], [0.10, -0.0014, 0.0403, 0.047, -0.0227, -0.0119, 0.0061, -0.0086, -0.0307, -0.0553], [0.15, 0.0004, -0.1808, 0.1793, -0.0004, 0.0097, 0.0118, -0.0055, 0.1721, -0.1728], [0.20, 0.0014, -0.1071, 0.0637, 0.009, 0.0153, 0.0011, 0.0012,0.1021, -0.0648], [0.25, 0.0027, 0.0463, -0.1263, 0.015, 0.0274, -0.0299, 0.011, -0.0595, 0.122], [0.30, 0.0056, -0.8005, 0.4891, 0.0269, 0.0519, -0.0313, 0.0292, 0.7314, -0.3619], [0.35, 0.0032, -0.1011, -0.0813, -0.0382, 0.032, -0.1481, 0.0837, 0.0233, 0.1587], [0.40, -0.0064, 2.3095, -1.5152, 0.0751, -0.0858, -0.5349, 0.1715, -2.455, 1.1865], [0.45, -0.0171, 3.4017, -1.9862, 0.3242, -0.145, -0.8043, 0.2952, -3.5284, 1.3575], [0.50, -0.0201, 7.1576, -6.3304, 0.5829, 0.163, -0.3966, 0.5023, -7.1579, 5.2534], [0.55, 0.0495, 1.5618, -6.0661, 0.8641, 1.1702, 1.761, 0.9176, -2.1191, 5.4281], [0.60, 0.0808, -5.3233, -1.1513, 0.9663, 1.6084, 2.7459, 0.8491, 4.7129, 1.1089] ] # Residual resistance - keel coefficient_residual_keel = [ ['FroudeNo' 'A0' 'A1' 'A2' 'A3'], [0.2, -0.00104, 0.00172, 0.00117, -0.00008], [0.25, -0.0055, 0.00597, 0.0039, -0.00009], [0.3, -0.0111, 0.01421, 0.00069, 0.00021], [0.35, -0.00713, 0.02632, -0.00232, 0.00039], [0.4, -0.03581, 0.08649, 0.00999, 0.00017], [0.45, -0.0047, 0.11592, -0.00064, 0.00035], [0.5, 0.00553, 0.07371, 0.05991, -0.00114], [0.55, 0.04822, 0.0066, 0.07048, -0.00035], [0.6, 0.01021, 0.14173, 0.06409, -0.00192] ] # Residual resistance increase due to heel coefficient_residual_heel = [ ['FroudeNo' 'u0' 'u1' 'u2' 'u3' 'u4' 'u5'], [0.25, -0.0268, -0.0014, -0.0057, 0.0016, -0.007, -0.0017], [0.30, 0.6628, -0.0632, -0.0699, 0.0069, 0.0459, -0.0004], [0.35, 1.6433, -0.2144, -0.164, 0.0199, -0.054, -0.0268], [0.40,-0.8659, -0.0354, 0.2226, 0.0188, -0.58, -0.1133], [0.45, -3.2715, 0.1372, 0.5547, 0.0268, -1.0064, 0.2026], [0.50, -0.1976, -0.148, -0.6593, 0.1862, -0.7489, -0.1648], [0.55, 1.5873, -0.3749, -0.7105, 0.2146, -0.4818, -0.1174] ] # Viscous resistance increase due to heel coefficient_viscous_heel = [ ['phi' 's0' 's1' 's2' 's3'], [5, -4.112, 0.054, -0.027, 6.329], [10, -4.522, -0.132, -0.077, 8.738], [15, -3.291, -0.389, -0.118, 8.949], [20, 1.85, -1.2, -0.109, 5.364], [25, 6.51, -2.305, -0.066, 3.443], [30, 12.334, -3.911, 0.024, 1.767], [35, 14.648, -5.182, 0.102, 3.497] ] # Added resistance in waves for a = 100 and wavelength/lwl = 1 coefficient_waves = [ ['FroudeNo' 'a0' 'a1' 'a2' 'a3' 'a4' 'a5' 'a6' 'a7' 'a8' 'a9'], [0.20, 0.135971706, -0.079712707, 0.011040044, -0.000512737, 0.00177368, -0.000207076, 0.000133095 , 0.252647483, -0.359794615, 0.14069324], [0.25, 0.144740648, -0.087875806, 0.0121882, -0.000563218, 0.00256833, -0.00033302, 5.17839E-05, 0.223659113, -0.160193869, -0.073440481], [0.30, 0.125369414, -0.092281743, 0.012800398, -0.000592109, 0.00119098, -0.000139619, 8.14003E-05, 0.357822779, -0.327040392, -0.020221069], [0.35, 0.139011133, -0.108178384, 0.01491584, -0.000692116, 0.004351508, -0.000336362, 0.000360906, 0.319067432, -0.031271366, -0.332228687], [0.40, 0.125891281, -0.120856359, 0.01672588, -0.0007783, 0.003887939, -0.000272325, 0.00038914, 0.481253166, -0.176587773, -0.344081072], [0.45, 0.139240049, -0.142907914, 0.019939832, -0.000934437, 0.006308615, -0.000543945, 0.000457244, 0.578174665, -0.22452672, -0.390073693] ] # E) Derivated elementary dimensions # Displacement [m3] disp = cb*lwl*bwl*tc # Waterplane area [m2] awp = cwp*lwl*bwl # awp = lwl*bwl*(1.313*cp - 0.0857*cp*lwl/disp**(1/3) + 0.0371*lwl/disp**(1/3)) # Rudder and keel sweep angle [rad] sweep_rudder = np.radians(sweep_rudder_deg) sweep_keel = np.radians(sweep_keel_deg) # Rudder and keel average chord [m] avg_chord_keel = (root_chord_keel + tip_chord_keel)/2 avg_chord_rudder = (root_chord_rudder + tip_chord_rudder)/2 # Surface area for canoe body, keel, and rudder [m2] surface_area_cb = (1.97 + 0.171*bwl/tc)*(0.65/cm)**(1/3)*(disp*lwl)**0.5 # Gerritsma et al (1992) lat_surface_keel = avg_chord_keel*span_keel surface_area_keel = 2*lat_surface_keel lat_surface_rudder = avg_chord_rudder*span_rudder surface_area_rudder = 2*lat_surface_rudder # Rudder and keel average thickness [m] avg_thickness_rudder = (tip_thickness_rudder + root_thickness_rudder)/2 avg_thickness_keel = (tip_thickness_keel + root_thickness_keel)/2 # Taper ratio: ratio of the chord length at the tip to that at the root [-] taper_ratio_keel = tip_chord_keel/root_chord_keel taper_ratio_rudder = tip_chord_rudder/root_chord_rudder # Effective aspect ratio [-] aspect_ratio_keel = 2*(span_keel+diameter_bulb/5)**2/lat_surface_keel # Canoe body ratio [-] ratio_cb = 2*tc/(0.75*lwl) # Keel displacement and volumetric centre, if not provide [m3] kb_keel = span_keel*(2*tip_chord_keel + root_chord_keel)/(3*(tip_chord_keel + root_chord_keel)) disp_keel = 0.6*span_keel*avg_thickness_keel*avg_chord_keel**2 # LCB and LCF measured from the stern's perpendicular [m] LCBfpp = lwl/2 + lcb LCFfpp = lwl/2 + lcf # Form coefficient [-] form_coeff_cb = 0.09 if naca_keel == '6digit': form_coeff_keel = 2*(avg_thickness_keel) + 60*(avg_thickness_keel)**4 visc_keel = 1 # efeito da viscosidade na inclinacao da curva de sustentacao do escoamento 2D else: form_coeff_keel = 1.2*(avg_thickness_keel) + 70*(avg_thickness_keel)**4 visc_keel = 0.9 if naca_rudder == '6digit': form_coeff_rudder = 2*(avg_thickness_rudder) + 60*(avg_thickness_rudder)**4 visc_rudder = 1 else: form_coeff_rudder = 1.2*(avg_thickness_rudder) + 70*(avg_thickness_rudder)**4 visc_rudder = 0.9 # Cross-flow drag coefficient [-] crossflow_coeff_rudder = 0.1 + 0.7*taper_ratio_rudder if chord_bulb_keel > 0: crossflow_coeff_keel = 0 else: crossflow_coeff_keel = 0.1 + 0.7*taper_ratio_keel # faired tip # crossflow_coeff_keel = 0.1 + 1.6*taper_ratio_keel # squared tip ### VELOCITY PREDICTION PROGRAMME def vpp_solve_main(solution): ### 1 PRE-CALCULATION # The solution for the VPP routine optimization is given in terms of four parameters velocity_boat = solution[0] # Boat velocity [m/s] leeway = solution[1] # Leeway angle [radians] heel = solution[2] # Heel angle [radians] angle_rudder = solution[3] # Rudder angle [radians] # Velocity and leeway will be positive velocity_boat = abs(velocity_boat) leeway = abs(leeway) # Froude number Fn = (velocity_boat)/(gravity * lwl)**0.5 # Froude number hull [-] Fn_rudder = velocity_boat/(gravity*avg_chord_rudder)**0.5 # Froude number rudder [-] # Apparent wind calculation velocity_aw = (velocity_boat**2 + velocity_tw[t]**2 - 2*velocity_boat*velocity_tw[t]*np.cos(pi - leeway - angle_tw[u]))**0.5 angle_aw = np.arctan2((velocity_tw[t]*np.sin(angle_tw[u]) - velocity_boat*np.sin(leeway)), (velocity_tw[t]*np.cos(angle_tw[u]) + velocity_boat*np.cos(leeway))) # Heel and leeway shall have opposite signs if leeway > 0 and heel > 0: heel = -heel if leeway < 0 and heel < 0: heel = -heel ### 2 LIFT FORCES AND MOMENTS # Lift forces calculated according to Oossanen, 1993, page 27 # A) Keel lift force [N] angle_keel = np.arctan2(np.cos(heel)*np.sin(leeway), np.cos(leeway)) # Keel lift force influencing factors keel_linear_factor = 2*pi*visc_keel*aspect_ratio_keel/(2*visc_keel + np.cos(sweep_keel)*(4 + aspect_ratio_keel**2/(np.cos(sweep_keel))**4)**0.5) keel_quad_factor = crossflow_coeff_keel/aspect_ratio_keel keel_tip_factor = 1 - 0.135/aspect_ratio_keel**(2/3) # faired tip #keel_tip_factor = 1 # squared tip keel_cb_factor = 1 keel_bulb_factor = (1 + 0.4*diameter_bulb/span_keel)**2 keel_factor_total = keel_linear_factor*keel_tip_factor*keel_cb_factor*keel_bulb_factor + keel_quad_factor*abs(angle_keel) # Keel lift force lift_keel = - 0.5*density_water*(velocity_boat**2)*angle_keel*lat_surface_keel*keel_factor_total # B) Bulb lift force [N] if chord_bulb_keel > 0 and surface_area_bulb > 0: side_force_bulb = - 0.5*density_water*(velocity_boat**2)*(pi*diameter_bulb**2/2 + 1.8*surface_area_bulb*abs(angle_keel))*angle_keel else: side_force_bulb = 0 # C) Rudder lift force [N] # Free-surface influence factor of the rudder fsr = 1 - 4*height_surface_rudder/(avg_chord_rudder) if fsr > 0: if Fn_rudder <= 0.5: factor_aspect_ratio_rudder = 2 elif Fn_rudder > 0.5 and Fn_rudder < 0.6413: factor_aspect_ratio_rudder = 4.246*Fn_rudder - 0.1230 else: factor_aspect_ratio_rudder = 1 + 0.422/(Fn_rudder)**3 aspect_ratio_rudder = fsr*factor_aspect_ratio_rudder*(span_rudder**2/lat_surface_rudder) else: aspect_ratio_rudder = 2*(span_rudder**2/lat_surface_rudder) # Taylor wake fraction [-] w = 0.10 + 4.5*(tc/(height_surface_rudder + span_rudder))*cb*cp*bwl/(lwl*(7*cwp - 6*cb)*(2.8 - 1.8*cp)) # Induced flow angle at the keel [rad] angle_induced_keel = 1.5*(lead_rudder/(3*avg_chord_keel))**0.25*keel_factor_total*angle_keel/(pi*aspect_ratio_keel) # Induced flow angle at the rudder due to the downwash of the keel [rad] angle_rudder_attack = - angle_induced_keel + np.arctan2(-np.cos(leeway)*np.sin(angle_rudder) + np.cos(heel)*np.sin(leeway)*np.cos(angle_rudder), np.cos(leeway)*np.cos(angle_rudder) + np.cos(heel)*np.sin(leeway)*np.sin(angle_rudder)) angle_rudder_delta0 = angle_keel - angle_induced_keel # Rudder lift force influencing factors rudder_linear_factor = 2*pi*visc_rudder*aspect_ratio_rudder/(2*visc_rudder + np.cos(sweep_rudder)*(4 + aspect_ratio_rudder**2/(np.cos(sweep_rudder))**4)**0.5) rudder_quad_factor = crossflow_coeff_rudder/aspect_ratio_rudder rudder_tip_factor = 1 - 0.135/aspect_ratio_rudder**(2/3) rudder_factor_total = rudder_linear_factor*rudder_tip_factor + rudder_quad_factor*abs(angle_rudder_attack) rudder_factor_delta0_total = rudder_linear_factor*rudder_tip_factor + rudder_quad_factor*abs(angle_rudder_delta0) # Rudder lift force lift_rudder = - 0.5*density_water*((1 - w)*velocity_boat)**2*lat_surface_rudder*rudder_factor_total*angle_rudder_attack lift_rudder_delta0 = - 0.5 * density_water * ((1 - w) * velocity_boat)**2 * lat_surface_rudder * rudder_factor_delta0_total * angle_rudder_delta0 # D) Canoe body side force [N] side_force_cb = - 0.5*density_water*(velocity_boat**2)*(0.5*pi*tc**2 + 1.8*lat_surface_cb*abs(angle_keel))*angle_keel # E) GZ estimation (Oossanen, 2003) # coefficients b0 and b1 built as fitting polynomials from the plot provided in the paper above b0 = 8*10**(-10)*np.degrees(heel)**4 - 3*10**(-7)*np.degrees(heel)**3 + 4*10**(-5)*np.degrees(heel)**2 - 0.002*np.degrees(heel) + 0.0754 b1 = 5*10**(-12)*np.degrees(heel)**5 - 4*10**(-9)*np.degrees(heel)**4 + 9*10**(-7)*np.degrees(heel)**3 + 9*10**(-5)*np.degrees(heel)**2 + 0.0038*np.degrees(heel) + 0.0153 c1 = b0 + b1*(boa/bwl)**2*(tc/bwl)/cb BM = c1*bwl**2/tc KB = tc*(5/6-cb/(3*cwp)) # Wilson, 2018 GZ = (KB + BM - KG)*np.sin(heel) # F) Righting moment # Tranversal righting moment [N*m] M_hull_trans = GZ*disp*density_water*gravity # Righting moment of crew sitting on weather rail [N*m] factor_esc = 1 if abs(angle_tw[u]) <= (pi/3): arm_crew = factor_esc*(0.475*boa - 0.305) elif abs(angle_tw[u]) < (2*pi/3): arm_crew = factor_esc*(0.475*boa - 0.305)*np.cos(abs(angle_tw[u])*3/2 - pi/2) else: arm_crew = 0 M_crew = np.sign(M_hull_trans)*abs(mass_crew*gravity*arm_crew*np.cos(heel)) # Total righting moment [N*m] M_righting = M_hull_trans + M_crew # G) Munk moment [N*m] # Slender bodies in near-axial flow experience a destabilising moment M_munk = - 0.9*disp*density_water*leeway*velocity_boat**2 # H) Centre of Effort (CE) # Rudder hydrodynamic CE [m] CE_rudder_x = -lwl/2 - root_chord_rudder/4 - np.tan(sweep_rudder)*span_rudder/3*(1 + 2*taper_ratio_rudder)/(1 + taper_ratio_rudder) CE_rudder_z = height_surface_rudder + span_rudder/3*(1 + 2*taper_ratio_rudder)/(1 + taper_ratio_rudder) # Global hydrodynamic CE [m] CE_hydro_x = CE_rudder_x + lead_rudder CE_hydro_z = 0.45*(span_keel + tc) ### 3 RESISTANCE CALCULATION ### 3.1 Viscous Resistance # A) Parameters # Reynolds number [-] reynolds_cb = (velocity_boat*0.7*lwl)/viscosity_water reynolds_keel = (velocity_boat*avg_chord_keel)/viscosity_water reynolds_rudder = (velocity_boat*avg_chord_rudder)/viscosity_water reynolds_bulb = (velocity_boat*chord_bulb_keel)/viscosity_water # Friction coefficient [-] friction_coeff_cb = (0.075/((np.log(reynolds_cb)/np.log(10)) - 2)**2) - (1800/reynolds_cb) friction_coeff_keel = (0.075/((np.log(reynolds_keel)/np.log(10)) - 2)**2) - (1800/reynolds_keel) friction_coeff_rudder = (0.075/((np.log(reynolds_rudder)/np.log(10)) - 2)**2) - (1800/reynolds_rudder) if chord_bulb_keel > 0: friction_coeff_bulb = (0.075/((np.log(reynolds_bulb)/np.log(10)) - 2)**2) - (1800/reynolds_bulb) else: friction_coeff_bulb = 0 # B) Canoe body resistance [N] Rv_cb = 0.5*density_water*velocity_boat**2*friction_coeff_cb*(1 + form_coeff_cb)*surface_area_cb # C) Keel and bulb resistance [N] Rv_keel = 0.5*density_water*velocity_boat**2*friction_coeff_keel*(1 + form_coeff_keel)*surface_area_keel Rv_bulb = 0.5*density_water*velocity_boat**2*friction_coeff_bulb*surface_area_bulb # D) Rudder resistance [N] Rv_rudder = 0.5*density_water*velocity_boat**2*friction_coeff_rudder*(1 + form_coeff_rudder)*surface_area_rudder # E) Total viscous resistance [N] R_viscous = Rv_cb + Rv_keel + Rv_rudder + Rv_bulb ### 3.2 Residual resistance # A) Canoe Body resistance [N] vector_res_cb = np.zeros(9) if Fn > 0.6: Fn_temp = 0.6 elif Fn < 0.1: Fn_temp = 0.1 else: Fn_temp = Fn for k in range (1, 10, 1): if float(coefficient_residual_hull[k][0]) <= Fn_temp and Fn_temp <= float(coefficient_residual_hull[k + 1][0]): CC = [float(coefficient_residual_hull[k][0]), float(coefficient_residual_hull[k + 1][0])] for j in range (1, 10, 1): DD = [float(coefficient_residual_hull[k][j]), float(coefficient_residual_hull[k + 1][j])] vector_res_cb[j - 1] = interpolate.interp1d(CC, DD)(Fn_temp) if Fn_temp < 0.1: Rr_cb = 0 else: Rr_cb = disp*density_water*gravity*(vector_res_cb[0] + (vector_res_cb[1]*LCBfpp/lwl + vector_res_cb[2]*cp + vector_res_cb[3]*disp**(2/3)/awp + \ vector_res_cb[4]*bwl/lwl)*disp**(1/3)/lwl + (vector_res_cb[5]*disp**(2/3)/surface_area_cb + vector_res_cb[6]*LCBfpp/LCFfpp + \ vector_res_cb[7]*(LCBfpp/lwl)**2 + vector_res_cb[8]*cp**2)*disp**(1/3)/lwl) # B) Keel residual resitance [N] vector_res_keel = np.zeros(4) if Fn > 0.6: Fn3 = 0.6 elif Fn < 0.2: Fn3 = 0.2 else: Fn3 = Fn for k in range (1, 9, 1): if float(coefficient_residual_keel[k][0]) <= Fn3 and Fn3 <= float(coefficient_residual_keel[k + 1][0]): GG = [float(coefficient_residual_keel[k][0]), float(coefficient_residual_keel[k + 1][0])] for j in range (1, 5, 1): HH = [float(coefficient_residual_keel[k][j]), float(coefficient_residual_keel[k + 1][j])] vector_res_keel[j - 1] = interpolate.interp1d(GG, HH)(Fn3) if Fn3 < 0.2: Rr_keel = 0 else: Rr_keel = disp_keel*density_water*gravity*(vector_res_keel[0] + vector_res_keel[1]*((tc + span_keel)/bwl) + \ vector_res_keel[2]*((tc + kb_keel)**3/disp_keel) + vector_res_keel[3]*(disp/disp_keel)) # C) Total residual resistance R_residual = Rr_cb + Rr_keel ### 3.3 Induced resistance # Fator de correcao para folios de carregamento nao-eliptico tr_cb = 0.3 # razao de afilamento do casco sig_keel = aspect_ratio_keel*(0.012 - 0.057*taper_ratio_keel + 0.095*taper_ratio_keel**2 - 0.04*taper_ratio_keel**3) sig_rudder = aspect_ratio_rudder*(0.012 - 0.057*taper_ratio_rudder + 0.095*taper_ratio_rudder**2 - 0.04*taper_ratio_rudder**3) sig_cb = ratio_cb*(0.012 - 0.057*tr_cb + 0.095*tr_cb**2 - 0.04*tr_cb**3) # A) Canoe body induced resistance [N] Ri_cb = (side_force_cb/np.cos(heel))**2*(1 + sig_cb)/(0.5*density_water*velocity_boat**2*lat_surface_cb*pi*ratio_cb) # B) Keel induced resistance [N] Ri_keel = ((lift_keel**2)*(1 + sig_keel))/(0.5*density_water*(velocity_boat**2)*lat_surface_keel*pi*aspect_ratio_keel) # C) Rudder induced resistance [N] Ri_rudder = ((lift_rudder**2)*(1 + sig_rudder))/(0.5*density_water*(velocity_boat**2)*lat_surface_rudder*pi*aspect_ratio_rudder) # D) Total induced resistance [N] R_induced = Ri_cb + Ri_keel + Ri_rudder ### 3.4 Resitance increase due to heel # A) Canoe body viscous resitance [N] vector_heel_visc = np.zeros(4) if (abs(heel)) > 0.35: heel_temp = 0.35 else: heel_temp = abs(heel) heel_temp = np.degrees(heel_temp) for k in range (1, 7, 1): if float(coefficient_viscous_heel[k][0]) <= heel_temp and heel_temp <= float(coefficient_viscous_heel[k + 1][0]): AA = [float(coefficient_viscous_heel[k][0]), float(coefficient_viscous_heel[k + 1][0])] for j in range (1, 5, 1): BB = [float(coefficient_viscous_heel[k][j]), float(coefficient_viscous_heel[k + 1][j])] vector_heel_visc[j - 1] = interpolate.interp1d(AA, BB)(heel_temp) if abs(heel) < np.radians(5): surface_area_cb_incl = surface_area_cb else: surface_area_cb_incl = surface_area_cb*(1 + 1/100*(vector_heel_visc[0] + vector_heel_visc[1]*bwl/tc + vector_heel_visc[2]*(bwl/tc)**2 + vector_heel_visc[3]*cm)) Rv_heel_cb = 0.5*density_water*velocity_boat**2*friction_coeff_cb*surface_area_cb_incl - Rv_cb # B) Canoe body residual resistance increase [N] vector_heel_cb = np.zeros(6) if Fn > 0.55: Fn_temp = 0.55 elif Fn < 0.25: Fn_temp = 0.25 else: Fn_temp = Fn for k in range (1, 7 , 1): if float(coefficient_residual_heel[k][0]) <= Fn_temp and Fn_temp <= float(coefficient_residual_heel[k + 1][0]): EE = [float(coefficient_residual_heel[k][0]), float(coefficient_residual_heel[k + 1][0])] for j in range(1, 7, 1): FF = [float(coefficient_residual_heel[k][j]), float(coefficient_residual_heel[k + 1][j])] vector_heel_cb[j - 1] = interpolate.interp1d(EE, FF)(Fn_temp) vector_heel_cb[:] = [x / 1000 for x in vector_heel_cb] # Extrapolating resistance from 20 degrees to the real heel angle if Fn_temp < 0.25: Rincli20 = 0 else: Rincli20 = disp*density_water*gravity*(vector_heel_cb[0] + vector_heel_cb[1]*lwl/bwl + vector_heel_cb[2]*bwl/tc + \ vector_heel_cb[3]*(bwl/tc)**2 + vector_heel_cb[4]*lcb + vector_heel_cb[5]*lcb**2) Rr_heel_cb = Rincli20*6*abs(heel)**1.7 # C) Keel residual resistance increase [N] CH = -3.5837*(tc/(tc + span_keel)) - 0.0518*(bwl/tc) + 0.5958*(bwl/(tc+span_keel)) + 0.2055*(lwl/disp**(1/3)) Rr_heel_keel = density_water*gravity*disp_keel*Fn**2*abs(heel)*CH # D) Total heel resistance [N] R_heel = Rv_heel_cb + Rr_heel_cb + Rr_heel_keel ### 3.5 Added resistance in waves (Keuning et al, 2006) vector_addwave = np.zeros(10) if Fn > 0.45: Fn_temp = 0.45 if Fn < 0.20: Fn_temp = 0.20 else: Fn_temp = Fn for k in range(1, 6, 1): if float(coefficient_waves[k][0]) <= Fn_temp and Fn_temp <= float(coefficient_waves[k + 1][0]): GG = [float(coefficient_waves[k][0]), float(coefficient_waves[k + 1][0])] for j in range(1, 11, 1): HH = [float(coefficient_waves[k][j]), float(coefficient_waves[k + 1][j])] vector_addwave[j - 1] = interpolate.interp1d(GG, HH)(Fn_temp) # Added resistance in waves for Froude > 0.25 if Fn_temp < 0.25: R_addwaves = 0 else: R_addwaves = vector_addwave[0]+vector_addwave[1]*(lwl/disp**(1/3)) + vector_addwave[2]*(lwl/disp**(1/3))**2 + \ vector_addwave[3]*(lwl/disp**(1/3))**3 + vector_addwave[4]*(lwl/bwl) + vector_addwave[5]*(lwl/bwl)**2 + \ vector_addwave[6]*(bwl/tc) + vector_addwave[7]*cp + vector_addwave[8]*cp**2 + vector_addwave[9]*cp**3 wave_amplitude = 0.3 R_addwaves = R_addwaves*gravity*density_water*lwl*wave_amplitude**2 ### 3.6 Total resistance [N] R_total = abs(R_viscous) + abs(R_residual) + abs(R_induced) + abs(R_heel) + abs(R_addwaves) ### 4 AERODYNAMIC MODELING ### 4.1 Sail area and centre of effort # A) Main sail (m) Am = 0.5*height_mainsail*base_mainsail CEm = (0.39*height_mainsail) + boom_heigth_deck # B) Jib (j) and Foretriangle (f) if sailset == 'main+genoa' or sailset == 'main+genoa+spinnaker': Aj = perpendicular_jib*(height_foretriangle**2 + base_foretriangle**2)**0.5/2 CEj = 0.39*height_foretriangle Af = 0.5*height_foretriangle*base_foretriangle else: Aj = 0 CEj = 0 Af = 0 # C) Spinnaker (s) if (sailset == 'main+spinnaker' and angle_tw[u] > (2*pi/3)) or (sailset == 'main+genoa+spinnaker' and angle_tw[u] > (2*pi/3)): As = 1.15*length_spinnaker*base_foretriangle CEs = 0.59*height_foretriangle else: As = 0 CEs = 0 # D) Mizzen (mz) Amz = 0.5*height_mizzen*base_mizzen Cbase_mizzen = 0.39*height_mizzen + boom_height_mizzen # E) Nominal area An = Af + Am/1.16 # F) Centre of effort above deck line CE_sail = (CEm*Am + CEj*Aj + CEs*As + Cbase_mizzen*Amz)/An ### 4.2 Lift and drag coefficients for each sail angle_sail = np.arctan2(np.cos(heel)*np.sin(angle_aw), np.cos(angle_aw)) # A) Main sail (full) # coefficients of clm (y) and cdm (z) x = [0.0, 0.12211111, 0.157, 0.20933333, 1.04666667, 1.57, 2.09333333, 2.61666667, 3.14] y = [0, 1.15, 1.4,1.55, 1.44, 0.96, 0.58, 0.25, -0.1] z = [0.027, 0.027, 0.027, 0.027, 0.103, 0.275, 0.671, 1.11, 1.2] Clm = np.interp(angle_sail, x, y) Cdm = np.interp(angle_sail, x, z) # B) Jib # coefficients of clj (y) and cdj (z) x = [0.12211111, 0.26166667, 0.34888889, 0.471, 0.87222222, 1.04666667, 1.74444444, 2.61666667, 3.14] y = [0.0, 1.0, 1.375, 1.45, 1.43, 1.25, 0.4, 0.0, -0.1] z = [0.05, 0.023, 0.031, 0.037, 0.25, 0.35, 0.73, 0.95, 0.9] Clj = np.interp(angle_sail, x, y) Cdj = np.interp(angle_sail, x, z) # C) Spinnaker # coefficients of cls (y) and cds (z) x = [0.48844444, 0.72, 0.8, 1.05, 1.31, 1.74, 2.27, 2.62, 3.14] y = [0.0, 1.31, 1.56, 1.71, 1.69, 1.4, 0.83, 0.5, 0.0] z = [0.1, 0.15, 0.2, 0.4, 0.7, 1.0, 1.1, 1.1, 1.1] Cls = np.interp(angle_sail, x, y) Cds = np.interp(angle_sail, x, z) # Coefficient drag separacao KPm = 0.016 KPj = 0.016 KPs = 0.019 # D) Mast drag coefficient coeff_drag_mast = 1.13*((boa*free_board) + (height_mast*diameter_mast))/An # E) Lift and drag for all sails combined # Sail aspect ratio if (angle_tw[u]) < (pi/3): aspect_ratio_sail = (1.1*(height_mast + free_board))**2/An else: aspect_ratio_sail = (1.1*height_mast)**2/An if sailset == 'main' or sailset == 'main+genoa' or (sailset == 'main+spinnaker' and angle_tw[u] < (2*pi/3)) or (sailset == 'main+genoa+spinnaker' and angle_tw[u] < (2*pi/3)): coeff_lift = (Clm*Am + Clj*Aj)/An coeff_drag_par = (Cdm*Am + Cdj*Aj)/An coeff_drag_ind = (Clm**2*Am + Clj**2*Aj)/(An*pi*aspect_ratio_sail) coeff_drag_sep = (Clm**2*Am*KPm + Clj**2*Aj*KPj)/An coeff_drag_global = coeff_drag_par + coeff_drag_ind + coeff_drag_sep + coeff_drag_mast elif (sailset == 'main+spinnaker' or sailset == 'main+genoa+spinnaker') and angle_tw > (2*pi/3): coeff_lift = (Clm*Am + Cls*As)/An coeff_drag_par = (Cdm*Am + Cds*As)/An coeff_drag_ind = (Clm**2*Am + Cls**2*As)/(An*pi*aspect_ratio_sail) coeff_drag_sep = (Clm**2*Am*KPm + Cls**2*As*KPs)/An coeff_drag_global = coeff_drag_par + coeff_drag_ind + coeff_drag_sep + coeff_drag_mast ### 4.3 Lift and draf forces and centre of efforts # Forces lift_force_sail = 0.5*density_air*velocity_aw**2*(1 - np.sin(heel)**2*np.sin(angle_aw)**2)*coeff_lift*An*np.sign(angle_sail) drag_force_sail = - 0.5*density_air*velocity_aw**2*(1 - np.sin(heel)**2*np.sin(angle_aw)**2)*coeff_drag_global*An # Centre of effort CE_aero_x = CE_hydro_x + lead_sail CE_aero_z = - CE_sail - free_board heel = abs(heel) ### 5 FORCES AND MOMENTS IN GLOBAL COORDINATES [X, Y, Z] ### 5.1 Coordinates matrix # A) Leeway Mrot_leeway = np.matrix([ [np.cos(leeway), -np.sin(leeway), 0], [np.sin(leeway), np.cos(leeway), 0], [0, 0, 1] ]) # B) Heel angle Mrot_heel = np.matrix([ [1, 0, 0], [0, np.cos(heel), - np.sin(heel)], [0, np.sin(heel), np.cos(heel)] ]) # C) Keel angle attack due to heel Mrot_keel_heel = np.matrix([ [np.cos(angle_keel), -np.sin(angle_keel), 0], [np.sin(angle_keel), np.cos(angle_keel), 0], [0, 0, 1] ]) # D) Rudder angle due to heel Mrot_rudder_heel = np.matrix([ [np.cos(angle_rudder), -np.sin(angle_rudder), 0], [np.sin(angle_rudder), np.cos(angle_rudder), 0], [0, 0, 1] ]) # E) Rudder angle attack due to rudder angle Mrot_rudder_attack = np.matrix([ [np.cos(angle_rudder_attack), -np.sin(angle_rudder_attack), 0], [np.sin(angle_rudder_attack), np.cos(angle_rudder_attack), 0], [0, 0, 1] ]) # F) Rudder angle attack due to rudder with no lift Mrot_rudder_delta0 = np.matrix([ [np.cos(angle_rudder_delta0), -np.sin(angle_rudder_delta0), 0], [np.sin(angle_rudder_delta0), np.cos(angle_rudder_delta0), 0], [0, 0, 1] ]) # G) Sail angle attack due to heel Mrot_sail_heel = np.matrix([ [
np.cos(angle_sail)
numpy.cos
#Author: <NAME> import numpy as np import matplotlib.pyplot as plt #perform experiments def main(): training_data = read_training_data("train-images-idx3-ubyte") training_data = np.divide(training_data, 255) training_label = read_training_label("train-labels-idx1-ubyte") test_data = read_test_data("t10k-images-idx3-ubyte") test_data = np.divide(test_data, 255) test_label = read_test_label("t10k-labels-idx1-ubyte") experiment1(training_data, training_label, test_data, test_label) experiment2(training_data, training_label, test_data, test_label) experiment3(training_data, training_label, test_data, test_label) def experiment1(training_data, training_label, test_data, test_label): hidden_units = 20 input_weights = np.random.uniform(low=-.05, high=.05, size=(hidden_units,784)) input_bias = np.random.uniform(low=-.05, high=.05, size=(hidden_units)) hidden_weights = np.random.uniform(low=-.05, high=.05, size=(10,hidden_units)) hidden_bias = np.random.uniform(low=-.05, high=.05, size=(10)) momentum = 0.9 learning_rate = 0.1 x = np.linspace(0,50,51) training_20_nodes = np.zeros(51) training_50_nodes = np.zeros(51) training_100_nodes = np.zeros(51) test_20_nodes = np.zeros(51) test_50_nodes = np.zeros(51) test_100_nodes = np.zeros(51) #train model with 20 nodes for i in range(51): permutation = np.random.permutation(training_data.shape[0]) training_data = training_data[permutation] training_label = training_label[permutation] training_20_nodes[i] = network_accuracy(input_weights, input_bias, hidden_weights, hidden_bias, hidden_units, training_data, training_label) test_20_nodes[i] = network_accuracy(input_weights, input_bias, hidden_weights, hidden_bias, hidden_units, test_data, test_label) if (i == 50): break train_network(input_weights, input_bias, hidden_weights, hidden_bias, hidden_units, learning_rate, momentum, training_data, training_label) matrix_1 = confusion_matrix(input_weights, input_bias, hidden_weights, hidden_bias, hidden_units, test_data, test_label) hidden_units = 50 input_weights = np.random.uniform(low=-.05, high=.05, size=(hidden_units,784)) input_bias = np.random.uniform(low=-.05, high=.05, size=(hidden_units)) hidden_weights = np.random.uniform(low=-.05, high=.05, size=(10,hidden_units)) hidden_bias = np.random.uniform(low=-.05, high=.05, size=(10)) #train model with 50 nodes for i in range(51): permutation = np.random.permutation(training_data.shape[0]) training_data = training_data[permutation] training_label = training_label[permutation] training_50_nodes[i] = network_accuracy(input_weights, input_bias, hidden_weights, hidden_bias, hidden_units, training_data, training_label) test_50_nodes[i] = network_accuracy(input_weights, input_bias, hidden_weights, hidden_bias, hidden_units, test_data, test_label) if (i == 50): break train_network(input_weights, input_bias, hidden_weights, hidden_bias, hidden_units, learning_rate, momentum, training_data, training_label) matrix_2 = confusion_matrix(input_weights, input_bias, hidden_weights, hidden_bias, hidden_units, test_data, test_label) hidden_units = 100 input_weights = np.random.uniform(low=-.05, high=.05, size=(hidden_units,784)) input_bias = np.random.uniform(low=-.05, high=.05, size=(hidden_units)) hidden_weights = np.random.uniform(low=-.05, high=.05, size=(10,hidden_units)) hidden_bias = np.random.uniform(low=-.05, high=.05, size=(10)) #train model with 100 nodes for i in range(51): permutation = np.random.permutation(training_data.shape[0]) training_data = training_data[permutation] training_label = training_label[permutation] training_100_nodes[i] = network_accuracy(input_weights, input_bias, hidden_weights, hidden_bias, hidden_units, training_data, training_label) test_100_nodes[i] = network_accuracy(input_weights, input_bias, hidden_weights, hidden_bias, hidden_units, test_data, test_label) if (i == 50): break train_network(input_weights, input_bias, hidden_weights, hidden_bias, hidden_units, learning_rate, momentum, training_data, training_label) matrix_3 = confusion_matrix(input_weights, input_bias, hidden_weights, hidden_bias, hidden_units, test_data, test_label) #print confusion matricies print("20 nodes:") print(matrix_1) print("50 nodes:") print(matrix_2) print("100 nodes:") print(matrix_3) #print graph plt.figure() plt.axis([0,50,0,1]) plt.plot(x, training_20_nodes, 'r', label='20 nodes') plt.plot(x,test_20_nodes, 'r--') plt.plot(x, training_50_nodes, 'g', label='50 nodes') plt.plot(x,test_50_nodes, 'g--') plt.plot(x,training_100_nodes, 'b', label='100 nodes') plt.plot(x, test_100_nodes, 'b--') plt.legend() plt.show() def experiment2(training_data, training_label, test_data, test_label): hidden_units = 100 input_weights = np.random.uniform(low=-.05, high=.05, size=(hidden_units,784)) input_bias = np.random.uniform(low=-.05, high=.05, size=(hidden_units)) hidden_weights = np.random.uniform(low=-.05, high=.05, size=(10,hidden_units)) hidden_bias = np.random.uniform(low=-.05, high=.05, size=(10)) momentum = 0 learning_rate = 0.1 x = np.linspace(0,50,51) training_0_momentum = np.zeros(51) training_25_momentum = np.zeros(51) training_50_momentum = np.zeros(51) test_0_momentum = np.zeros(51) test_25_momentum = np.zeros(51) test_50_momentum = np.zeros(51) #train model with 0 momentum for i in range(51): permutation =
np.random.permutation(training_data.shape[0])
numpy.random.permutation
import unittest import numpy as np from io import BytesIO import h5py from exetera.core import session from exetera.core import fields from exetera.core import persistence as per from exetera.core import operations as ops from exetera.core import utils class TestOpsUtils(unittest.TestCase): def test_chunks(self): lc_it = iter(ops.chunks(54321, 10000)) self.assertTupleEqual(next(lc_it), (0, 10000)) self.assertTupleEqual(next(lc_it), (10000, 20000)) self.assertTupleEqual(next(lc_it), (20000, 30000)) self.assertTupleEqual(next(lc_it), (30000, 40000)) self.assertTupleEqual(next(lc_it), (40000, 50000)) self.assertTupleEqual(next(lc_it), (50000, 54321)) with self.assertRaises(StopIteration): next(lc_it) actual = list(ops.chunks(54321, 10000)) self.assertListEqual(actual, [(0, 10000), (10000, 20000), (20000, 30000), (30000, 40000), (40000, 50000), (50000, 54321)]) def test_count_back(self): self.assertEqual(ops.count_back(np.asarray([1, 2, 3, 4, 5], dtype=np.int32)), 4) self.assertEqual(ops.count_back(np.asarray([1, 2, 3, 4, 4], dtype=np.int32)), 3) self.assertEqual(ops.count_back(np.asarray([1, 2, 3, 3, 3], dtype=np.int32)), 2) self.assertEqual(ops.count_back(np.asarray([1, 2, 2, 2, 2], dtype=np.int32)), 1) self.assertEqual(ops.count_back(np.asarray([1, 1, 1, 1, 1], dtype=np.int32)), 0) def test_next_chunk(self): self.assertTupleEqual(ops.next_chunk(0, 4, 3), (0, 3)) self.assertTupleEqual(ops.next_chunk(0, 4, 4), (0, 4)) self.assertTupleEqual(ops.next_chunk(0, 4, 5), (0, 4)) self.assertTupleEqual(ops.next_chunk(4, 8, 3), (4, 7)) self.assertTupleEqual(ops.next_chunk(4, 8, 4), (4, 8)) self.assertTupleEqual(ops.next_chunk(4, 8, 5), (4, 8)) def test_calculate_chunk_decomposition(self): def _impl(indices, chunk_size, expected): actual = list() ops.calculate_chunk_decomposition(0, len(indices)-1, indices, chunk_size, actual) self.assertListEqual(actual, expected) indices = [0, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000] _impl(indices, 5000, [(0, 8)]) _impl(indices, 4000, [(0, 8)]) _impl(indices, 3999, [(0, 4), (4, 8)]) _impl(indices, 2000, [(0, 4), (4, 8)]) _impl(indices, 1999, [(0, 2), (2, 4), (4, 6), (6, 8)]) _impl(indices, 1000, [(0, 2), (2, 4), (4, 6), (6, 8)]) _impl(indices, 999, [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8)]) _impl(indices, 500, [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8)]) _impl(indices, 499, [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8)]) indices = [0, 1000, 2000, 2500, 3000, 3500, 4000] _impl(indices, 5000, [(0, 6)]) _impl(indices, 4000, [(0, 6)]) _impl(indices, 3999, [(0, 3), (3, 6)]) _impl(indices, 2000, [(0, 1), (1, 3), (3, 6)]) _impl(indices, 1999, [(0, 1), (1, 3), (3, 6)]) _impl(indices, 1000, [(0, 1), (1, 2), (2, 3), (3, 4), (4, 6)]) _impl(indices, 999, [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]) _impl(indices, 500, [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]) _impl(indices, 499, [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]) indices = [0, 0, 0, 0, 1000, 1000, 1000] _impl(indices, 1000, [(0, 6)]) _impl(indices, 999, [(0, 3), (3, 4), (4, 6)]) def test_get_valid_value_extents(self): chunk = np.asarray([-1, -1, -1, -1, -1], dtype=np.int32) first, last = ops.get_valid_value_extents(chunk, 0, len(chunk), -1) self.assertListEqual([first, last], [-1, -1]) chunk = np.asarray([-1], dtype=np.int32) first, last = ops.get_valid_value_extents(chunk, 0, len(chunk), -1) self.assertListEqual([first, last], [-1, -1]) chunk = np.asarray([3], dtype=np.int32) first, last = ops.get_valid_value_extents(chunk, 0, len(chunk), -1) self.assertListEqual([first, last], [3, 3]) chunk = np.asarray([-1, -1, 3], dtype=np.int32) first, last = ops.get_valid_value_extents(chunk, 0, len(chunk), -1) self.assertListEqual([first, last], [3, 3]) chunk = np.asarray([3, -1, -1], dtype=np.int32) first, last = ops.get_valid_value_extents(chunk, 0, len(chunk), -1) self.assertListEqual([first, last], [3, 3]) chunk = np.asarray([3, -1, -1, 3], dtype=np.int32) first, last = ops.get_valid_value_extents(chunk, 0, len(chunk), -1) self.assertListEqual([first, last], [3, 3]) chunk = np.asarray([-1, 2, 3, -1, 4, 5, -1], dtype=np.int32) first, last = ops.get_valid_value_extents(chunk, 0, len(chunk), -1) self.assertListEqual([first, last], [2, 5]) chunk = np.asarray([2, 3, -1, 4, 5], dtype=np.int32) first, last = ops.get_valid_value_extents(chunk, 0, len(chunk), -1) self.assertListEqual([first, last], [2, 5]) chunk = np.asarray([2, 3, 4, 5], dtype=np.int32) first, last = ops.get_valid_value_extents(chunk, 0, len(chunk), -1) self.assertListEqual([first, last], [2, 5]) def test_next_map_subchunk(self): map_values = np.asarray([-1, -1, -1, -1, -1, -1]) result = ops.next_map_subchunk(map_values, 0, -1, 4) self.assertEqual(result, 6) map_values = np.asarray([-1, 1, 10, 10, 11]) result = ops.next_map_subchunk(map_values, 0, -1, 4) self.assertEqual(result, 2) result = ops.next_map_subchunk(map_values, result, -1, 4) self.assertEqual(result, 5) map_values = np.asarray([0, 10, 10]) result = ops.next_map_subchunk(map_values, 0, -1, 4) self.assertEqual(result, 1) result = ops.next_map_subchunk(map_values, result, -1, 4) self.assertEqual(result, 3) map_values = np.asarray([0, 0, 10]) result = ops.next_map_subchunk(map_values, 0, -1, 4) self.assertEqual(result, 2) result = ops.next_map_subchunk(map_values, result, -1, 4) self.assertEqual(result, 3) map_values = np.asarray([0, 0, 0]) result = ops.next_map_subchunk(map_values, 0, -1, 4) self.assertEqual(result, 3) result = ops.next_map_subchunk(map_values, result, -1, 4) self.assertEqual(result, 3) map_values = np.asarray([1, 2, 3, 4]) result = ops.next_map_subchunk(map_values, 0, -1, 4) self.assertEqual(result, 4) class TestSafeMap(unittest.TestCase): def _impl_safe_map_index_values(self, indices, values, map_indices, expected_indices, expected_values, empty_value): map_filter = map_indices != ops.INVALID_INDEX actual_indices, actual_values =\ ops.safe_map_indexed_values(indices, values, map_indices, map_filter, empty_value) self.assertTrue(np.array_equal(actual_indices, expected_indices)) self.assertTrue(np.array_equal(actual_values, expected_values)) def test_safe_map_index_values(self): self._impl_safe_map_index_values( np.asarray([0, 1, 3, 6, 10, 15, 15, 20, 24, 27, 29, 30], dtype=np.int32), np.frombuffer(b'abbcccddddeeeeeggggghhhhiiijjk', dtype='S1'), np.asarray([0, 4, 10, ops.INVALID_INDEX, 8, 2, 1, ops.INVALID_INDEX, 6, 5, 9]), np.asarray([0, 1, 6, 7, 8, 11, 14, 16, 17, 22, 22, 24]), np.frombuffer(b'aeeeeekxiiicccbbxgggggjj', dtype='S1'), b'x') def test_safe_map_index_values_zero_empty(self): self._impl_safe_map_index_values( np.asarray([0, 1, 3, 6, 10, 15, 15, 20, 24, 27, 29, 30], dtype=np.int32), np.frombuffer(b'abbcccddddeeeeeggggghhhhiiijjk', dtype='S1'), np.asarray([0, 4, 10, ops.INVALID_INDEX, 8, 2, 1, ops.INVALID_INDEX, 6, 5, 9]), np.asarray([0, 1, 6, 7, 7, 10, 13, 15, 15, 20, 20, 22]), np.frombuffer(b'aeeeeekiiicccbbgggggjj', dtype='S1'), b'') def _impl_safe_map_values(self, values, map_indices, expected_values, empty_value): map_filter = map_indices != ops.INVALID_INDEX actual_values = ops.safe_map_values(values, map_indices, map_filter, empty_value) self.assertTrue(np.array_equal(actual_values, expected_values)) def test_safe_map_values(self): self._impl_safe_map_values( np.asarray([1, 3, 6, 10, 15, 21, 28, 36, 45, 55]), np.asarray([1, 8, 2, 7, ops.INVALID_INDEX, 0, 9, 1, 8]), np.asarray([3, 45, 6, 36, -1, 1, 55, 3, 45]), -1) def test_safe_map_values(self): self._impl_safe_map_values( np.asarray([1, 3, 6, 10, 15, 21, 28, 36, 45, 55]), np.asarray([1, 8, 2, 7, ops.INVALID_INDEX, 0, 9, 1, 8]), np.asarray([3, 45, 6, 36, 0, 1, 55, 3, 45]), 0) class TestAggregation(unittest.TestCase): def test_apply_spans_indexed_field(self): indices = np.asarray([0, 2, 4, 7, 10, 12, 14, 16, 18, 20, 22, 24], dtype=np.int32) values = np.frombuffer(b'a1a2a2ab2ab2b1c1c2d2d1e1', dtype=np.int8) spans = np.asarray([0, 3, 6, 8, 10, 11], dtype=np.int32) dest = np.zeros(len(spans)-1, dtype=np.int32) ops.apply_spans_index_of_min_indexed(spans, indices, values, dest) self.assertListEqual(dest.tolist(), [0, 5, 6, 9, 10]) ops.apply_spans_index_of_max_indexed(spans, indices, values, dest) self.assertListEqual(dest.tolist(), [2, 3, 7, 8, 10]) def test_non_indexed_apply_spans(self): values = np.asarray([1, 2, 3, 3, 2, 1, 1, 2, 2, 1, 1], dtype=np.int32) spans = np.asarray([0, 3, 6, 8, 10, 11], dtype=np.int32) dest = np.zeros(len(spans)-1, dtype=np.int32) ops.apply_spans_index_of_min(spans, values, dest) self.assertTrue(np.array_equal(dest, np.asarray([0, 5, 6, 9, 10], dtype=np.int32))) ops.apply_spans_index_of_max(spans, values, dest) self.assertTrue(np.array_equal(dest, np.asarray([2, 3, 7, 8, 10], dtype=np.int32))) ops.apply_spans_index_of_first(spans, dest) self.assertTrue(np.array_equal(dest, np.asarray([0, 3, 6, 8, 10], dtype=np.int32))) ops.apply_spans_index_of_last(spans, dest) self.assertTrue(np.array_equal(dest, np.asarray([2, 5, 7, 9, 10], dtype=np.int32))) def test_non_indexed_apply_spans_filter(self): values = np.asarray([1, 2, 3, 3, 2, 1, 1, 2, 2, 1, 1], dtype=np.int32) spans = np.asarray([0, 3, 6, 8, 10, 11], dtype=np.int32) dest = np.zeros(len(spans)-1, dtype=np.int32) flt = np.zeros(len(spans)-1, dtype=np.int32) ops.apply_spans_index_of_min_filter(spans, values, dest, flt) self.assertTrue(np.array_equal(dest, np.asarray([0, 5, 6, 9, 10], dtype=np.int32))) self.assertTrue(np.array_equal(flt, np.asarray([1, 1, 1, 1, 1], dtype=bool))) ops.apply_spans_index_of_max_filter(spans, values, dest, flt) self.assertTrue(np.array_equal(dest, np.asarray([2, 3, 7, 8, 10], dtype=np.int32))) self.assertTrue(np.array_equal(flt, np.asarray([1, 1, 1, 1, 1], dtype=bool))) ops.apply_spans_index_of_first_filter(spans, dest, flt) self.assertTrue(np.array_equal(dest, np.asarray([0, 3, 6, 8, 10], dtype=np.int32))) self.assertTrue(np.array_equal(flt, np.asarray([1, 1, 1, 1, 1], dtype=bool))) ops.apply_spans_index_of_last_filter(spans, dest, flt) self.assertTrue(np.array_equal(dest, np.asarray([2, 5, 7, 9, 10], dtype=np.int32))) self.assertTrue(np.array_equal(flt, np.asarray([1, 1, 1, 1, 1], dtype=bool))) spans = np.asarray([0, 3, 3, 6, 8, 8, 10, 11], dtype=np.int32) dest = np.zeros(len(spans)-1, dtype=np.int32) flt = np.zeros(len(spans)-1, dtype=np.int32) ops.apply_spans_index_of_min_filter(spans, values, dest, flt) self.assertTrue(np.array_equal(dest, np.asarray([0, 0, 5, 6, 0, 9, 10], dtype=np.int32))) self.assertTrue(np.array_equal(flt, np.asarray([1, 0, 1, 1, 0, 1, 1], dtype=bool))) ops.apply_spans_index_of_max_filter(spans, values, dest, flt) self.assertTrue(np.array_equal(dest, np.asarray([2, 0, 3, 7, 0, 8, 10], dtype=np.int32))) self.assertTrue(np.array_equal(flt, np.asarray([1, 0, 1, 1, 0, 1, 1], dtype=bool))) ops.apply_spans_index_of_first_filter(spans, dest, flt) self.assertTrue(np.array_equal(dest, np.asarray([0, 0, 3, 6, 0, 8, 10], dtype=np.int32))) self.assertTrue(np.array_equal(flt, np.asarray([1, 0, 1, 1, 0, 1, 1], dtype=bool))) ops.apply_spans_index_of_last_filter(spans, dest, flt) self.assertTrue(np.array_equal(dest, np.asarray([2, 0, 5, 7, 0, 9, 10], dtype=np.int32))) self.assertTrue(np.array_equal(flt, np.asarray([1, 0, 1, 1, 0, 1, 1], dtype=bool))) class TestOrderedMap(unittest.TestCase): def test_ordered_map_valid_stream_old(self): bio = BytesIO() with session.Session() as s: dst = s.open_dataset(bio, 'r+', 'dst') hf = dst.create_dataframe('hf') map_field = np.asarray([0, 0, 0, 1, 1, 3, 3, 3, 3, 5, 5, 5, 5, -1, -1, 7, 7, 7], dtype=np.int64) data_field = np.asarray([-1, -2, -3, -4, -5, -6, -8, -9], dtype=np.int32) f_map_field = s.create_numeric(hf, "map_field", "int64") f_map_field.data.write(map_field) f_data_field = s.create_numeric(hf, "data_field", "int32") f_data_field.data.write(data_field) result_field = np.zeros(len(map_field), dtype=np.int32) ops.ordered_map_valid_stream_old(f_data_field, f_map_field, result_field, -1, chunksize=4) expected = np.asarray([-1, -1, -1, -2, -2, -4, -4, -4, -4, -6, -6, -6, -6, 0, 0, -9, -9, -9], dtype=np.int32) self.assertTrue(np.array_equal(result_field, expected)) def test_ordered_map_valid_indexed(self): s = session.Session() src = fields.IndexedStringMemField(s) src.data.write(['a', 'bb', 'ccc', 'dddd', 'eeeee']) map = fields.NumericMemField(s, 'int32') map.data.write(np.asarray([0, 2, 2, -1, 4, 4])) map_ = map.data[0:4] src_indices_ = src.indices[0:5] src_values_ = src.values[src_indices_[0]:src_indices_[-1]] result_i = np.zeros(4, dtype=np.int32) result_v = np.zeros(32, dtype=np.uint8) i_off, m_off, i, m, ri, rv, r_accum = 0, 0, 0, 0, 0, 0, 0 ops.ordered_map_valid_indexed_partial(map_, 0, 4, src_indices_, 0, 4, src_values_, 0, result_i, result_v, -1, m, ri, rv, r_accum) # streaming - left to right - neither unique def test_ordered_map_right_to_left_partial(self): i_off, j_off, i, j, r, ii, jj, iimax, jjmax, inner = 0, 0, 0, 0, 0, 0, 0, -1, -1, False left = np.asarray([10, 20, 30, 40, 40, 50, 50], dtype=np.int32) right = np.asarray([20, 30, 40, 40, 40, 60, 70], dtype=np.int32) l_results = np.zeros(8, dtype=np.int32) r_results = np.zeros(8, dtype=np.int32) res = ops.generate_ordered_map_to_left_partial( left, len(left), right, len(right), l_results, r_results, -1, i_off, j_off, i, j, r, ii, jj, iimax, jjmax, inner) self.assertTupleEqual(res, (3, 2, 8, 1, 2, 2, 3, True)) self.assertListEqual(r_results.tolist(), [-1, 0, 1, 2, 3, 4, 2, 3]) l_results = np.zeros(8, dtype=np.int32) r_results = np.zeros(8, dtype=np.int32) res = ops.generate_ordered_map_to_left_partial( left, len(left), right, len(right), l_results, r_results, -1, 0, 0, 3, 2, 0, 1, 2, 2, 3, True) def test_generate_ordered_map_right_to_left_streaming_right_final(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 40, 40, 50, 50], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 30, 40, 40, 40, 60, 70], dtype=np.int32)) l_result = fields.NumericMemField(None, 'int32') r_result = fields.NumericMemField(None, 'int32') l_expected = [0, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6] r_expected = [-1, 0, 1, 2, 3, 4, 2, 3, 4, -1, -1] ops.generate_ordered_map_to_left_streamed(left, right, l_result, r_result, -1, chunksize=4) self.assertListEqual(l_result.data[:].tolist(), l_expected) self.assertListEqual(r_result.data[:].tolist(), r_expected) def test_generate_ordered_map_right_to_left_streaming_left_final(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 40, 40, 50, 80], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 30, 40, 40, 40, 60, 70], dtype=np.int32)) l_result = fields.NumericMemField(None, 'int32') r_result = fields.NumericMemField(None, 'int32') l_expected = [0, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6] r_expected = [-1, 0, 1, 2, 3, 4, 2, 3, 4, -1, -1] ops.generate_ordered_map_to_left_streamed(left, right, l_result, r_result, -1, chunksize=4) self.assertListEqual(l_result.data[:].tolist(), l_expected) self.assertListEqual(r_result.data[:].tolist(), r_expected) def test_generate_ordered_map_right_to_left_streaming_left_final_multi(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 40, 40, 50, 80, 90, 100, 110, 120, 130, 140, 150], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 30, 40, 40, 40, 60, 70], dtype=np.int32)) l_result = fields.NumericMemField(None, 'int32') r_result = fields.NumericMemField(None, 'int32') l_expected = [0, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] r_expected = [-1, 0, 1, 2, 3, 4, 2, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1] ops.generate_ordered_map_to_left_streamed(left, right, l_result, r_result, -1, chunksize=4) self.assertListEqual(l_result.data[:].tolist(), l_expected) self.assertListEqual(r_result.data[:].tolist(), r_expected) # streaming - map right to left - left unique # ------------------------------------------- def test_generate_ordered_map_right_to_left_left_unique_streaming_right_final(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 40, 50], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 20, 30, 40, 40, 40, 60, 60, 70], dtype=np.int32)) l_result = fields.NumericMemField(None, 'int32') r_result = fields.NumericMemField(None, 'int32') l_expected = [0, 1, 1, 2, 3, 3, 3, 4] r_expected = [-1, 0, 1, 2, 3, 4, 5, -1] ops.generate_ordered_map_to_left_left_unique_streamed(left, right, l_result, r_result, -1, chunksize=4) self.assertListEqual(l_result.data[:].tolist(), l_expected) self.assertListEqual(r_result.data[:].tolist(), r_expected) def test_generate_ordered_map_right_to_left_left_unique_streaming_left_final(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 40, 50, 80], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 20, 30, 40, 40, 40, 60, 60, 70], dtype=np.int32)) l_result = fields.NumericMemField(None, 'int32') r_result = fields.NumericMemField(None, 'int32') l_expected = [0, 1, 1, 2, 3, 3, 3, 4, 5] r_expected = [-1, 0, 1, 2, 3, 4, 5, -1, -1] ops.generate_ordered_map_to_left_left_unique_streamed(left, right, l_result, r_result, -1, chunksize=4) self.assertListEqual(l_result.data[:].tolist(), l_expected) self.assertListEqual(r_result.data[:].tolist(), r_expected) def test_generate_ordered_map_right_to_left_left_unique_streaming_left_final_multi(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 40, 50, 80, 90, 100, 110, 120, 130, 140], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 20, 30, 40, 40, 40, 60, 60, 70], dtype=np.int32)) l_result = fields.NumericMemField(None, 'int32') r_result = fields.NumericMemField(None, 'int32') l_expected = [0, 1, 1, 2, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11] r_expected = [-1, 0, 1, 2, 3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1] ops.generate_ordered_map_to_left_left_unique_streamed(left, right, l_result, r_result, -1, chunksize=4) self.assertListEqual(l_result.data[:].tolist(), l_expected) self.assertListEqual(r_result.data[:].tolist(), r_expected) # streaming - map right to left - right unique # -------------------------------------------- def test_generate_ordered_map_right_to_left_right_unique_streaming_right_final(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 40, 40, 50, 50], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 30, 40, 60, 70], dtype=np.int32)) r_result = fields.NumericMemField(None, 'int32') r_expected = [-1, 0, 1, 2, 2, -1, -1] ops.generate_ordered_map_to_left_right_unique_streamed(left, right, r_result, -1, chunksize=4) self.assertListEqual(r_result.data[:].tolist(), r_expected) def test_generate_ordered_map_right_to_left_right_unique_streaming_left_final(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 40, 40, 50, 50, 80], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 30, 40, 60, 70], dtype=np.int32)) r_result = fields.NumericMemField(None, 'int32') r_expected = [-1, 0, 1, 2, 2, -1, -1, -1] ops.generate_ordered_map_to_left_right_unique_streamed(left, right, r_result, -1, chunksize=4) self.assertListEqual(r_result.data[:].tolist(), r_expected) def test_generate_ordered_map_right_to_left_right_unique_streaming_left_final_multi(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 40, 40, 50, 50, 80, 90, 100, 110, 120, 130, 140, 150], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 30, 40, 60, 70], dtype=np.int32)) r_result = fields.NumericMemField(None, 'int32') r_expected = [-1, 0, 1, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ops.generate_ordered_map_to_left_right_unique_streamed(left, right, r_result, -1, chunksize=4) self.assertListEqual(r_result.data[:].tolist(), r_expected) # streaming - map right to left - both unique # ------------------------------------------- def test_generate_ordered_map_right_to_left_both_unique_streaming_right_final(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 40, 50], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 30, 40, 60, 70], dtype=np.int32)) l_result = fields.NumericMemField(None, 'int32') r_result = fields.NumericMemField(None, 'int32') # l_expected = [0, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6] r_expected = [-1, 0, 1, 2, -1] ops.generate_ordered_map_to_left_both_unique_streamed(left, right, r_result, -1, chunksize=4) # self.assertListEqual(l_result.data[:].tolist(), l_expected) self.assertListEqual(r_result.data[:].tolist(), r_expected) def test_generate_ordered_map_right_to_left_both_unique_streaming_left_final(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 40, 50, 80], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 30, 40, 60, 70], dtype=np.int32)) l_result = fields.NumericMemField(None, 'int32') r_result = fields.NumericMemField(None, 'int32') # l_expected = [0, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6] r_expected = [-1, 0, 1, 2, -1, -1] ops.generate_ordered_map_to_left_both_unique_streamed(left, right, r_result, -1, chunksize=4) # self.assertListEqual(l_result.data[:].tolist(), l_expected) self.assertListEqual(r_result.data[:].tolist(), r_expected) def test_generate_ordered_map_right_to_left_both_unique_streaming_left_final_multi(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 40, 50, 80, 90, 100, 110, 120, 130, 140], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 30, 40, 60, 70], dtype=np.int32)) l_result = fields.NumericMemField(None, 'int32') r_result = fields.NumericMemField(None, 'int32') # l_expected = [0, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6] r_expected = [-1, 0, 1, 2, -1, -1, -1, -1, -1, -1, -1, -1] ops.generate_ordered_map_to_left_both_unique_streamed(left, right, r_result, -1, chunksize=4) # self.assertListEqual(l_result.data[:].tolist(), l_expected) self.assertListEqual(r_result.data[:].tolist(), r_expected) # non-streaming - map right to left - both unique # ----------------------------------------------- def test_ordered_map_to_right_both_unique(self): raw_ids = [0, 1, 2, 3, 5, 6, 7, 9] a_ids = np.asarray(raw_ids, dtype=np.int64) b_ids = np.asarray([1, 2, 3, 4, 5, 7, 8, 9], dtype=np.int64) results = np.zeros(len(b_ids), dtype=np.int64) ops.generate_ordered_map_to_left_both_unique(b_ids, a_ids, results, -1) expected = np.array([1, 2, 3, -1, 4, 6, -1, 7], dtype=np.int64) self.assertTrue(np.array_equal(results, expected)) def test_ordered_map_to_right_right_unique(self): raw_ids = [0, 1, 2, 3, 5, 6, 7, 9] a_ids = np.asarray(raw_ids, dtype=np.int64) b_ids = np.asarray([1, 2, 3, 4, 5, 7, 8, 9], dtype=np.int64) results = np.zeros(len(b_ids), dtype=np.int64) ops.generate_ordered_map_to_left_right_unique(b_ids, a_ids, results, -1) expected = np.array([1, 2, 3, -1, 4, 6, -1, 7], dtype=np.int64) self.assertTrue(np.array_equal(results, expected)) def test_ordered_map_to_right_right_unique_2(self): a_ids = np.asarray([10, 20, 30, 40, 50], dtype=np.int64) b_ids = np.asarray([20, 20, 30, 30, 60], dtype=np.int64) results = np.zeros(len(b_ids), dtype=np.int64) ops.generate_ordered_map_to_left_right_unique(b_ids, a_ids, results, -1) expected = np.array([1, 1, 2, 2, -1], dtype=np.int64) self.assertListEqual(results.tolist(), expected.tolist()) def test_ordered_map_to_right_right_unique_3(self): a_ids = np.asarray([10, 20, 30, 40, 60], dtype=np.int64) b_ids = np.asarray([20, 20, 30, 30, 50], dtype=np.int64) results = np.zeros(len(b_ids), dtype=np.int64) ops.generate_ordered_map_to_left_right_unique(b_ids, a_ids, results, -1) expected = np.array([1, 1, 2, 2, -1], dtype=np.int64) self.assertListEqual(results.tolist(), expected.tolist()) def test_ordered_map_to_right_left_unique_streamed(self): bio = BytesIO() with session.Session() as s: dst = s.open_dataset(bio, 'r+', 'dst') hf = dst.create_dataframe('hf') a_ids = np.asarray([0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18], dtype=np.int64) b_ids = np.asarray([0, 1, 1, 2, 4, 5, 5, 6, 8, 9, 9, 10, 12, 13, 13, 14, 16, 17, 17, 18], dtype=np.int64) a_ids_f = s.create_numeric(hf, 'a_ids', 'int64') a_ids_f.data.write(a_ids) b_ids_f = s.create_numeric(hf, 'b_ids', 'int64') b_ids_f.data.write(b_ids) left_to_right_result = s.create_numeric(hf, 'left_result', 'int64') ops.generate_ordered_map_to_left_right_unique_streamed_old(a_ids_f, b_ids_f, left_to_right_result) expected = np.asarray([0, 1, 3, -1, 5, 7, -1, 8, 11, -1, 12, 13, -1, 16, 17, 19]) self.assertTrue(np.array_equal(left_to_right_result.data[:], expected)) # streaming - inner - neither unique def test_ordered_inner_map_streamed_right_final(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 30, 40, 40, 50, 50], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 30, 40, 40, 40, 60, 70], dtype=np.int32)) l_result = fields.NumericMemField(None, 'int32') r_result = fields.NumericMemField(None, 'int32') l_expected = [1, 2, 3, 4, 4, 4, 5, 5, 5] r_expected = [0, 1, 1, 2, 3, 4, 2, 3, 4] ops.generate_ordered_map_to_inner_streamed(left, right, l_result, r_result, chunksize=4) self.assertListEqual(l_result.data[:].tolist(), l_expected) self.assertListEqual(r_result.data[:].tolist(), r_expected) def test_ordered_inner_map_streaming_left_final(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 30, 40, 40, 50, 80], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 30, 40, 40, 40, 60, 70], dtype=np.int32)) l_result = fields.NumericMemField(None, 'int32') r_result = fields.NumericMemField(None, 'int32') l_expected = [1, 2, 3, 4, 4, 4, 5, 5, 5] r_expected = [0, 1, 1, 2, 3, 4, 2, 3, 4] ops.generate_ordered_map_to_inner_streamed(left, right, l_result, r_result, chunksize=4) self.assertListEqual(l_result.data[:].tolist(), l_expected) self.assertListEqual(r_result.data[:].tolist(), r_expected) # streaming - inner - left unique def test_ordered_inner_map_left_unique_streamed_left_final(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 40, 50], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 30, 40, 40, 40, 60, 70], dtype=np.int32)) l_result = fields.NumericMemField(None, 'int32') r_result = fields.NumericMemField(None, 'int32') l_expected = [1, 2, 3, 3, 3] r_expected = [0, 1, 2, 3, 4] ops.generate_ordered_map_to_inner_left_unique_streamed(left, right, l_result, r_result, -1, chunksize=4) self.assertListEqual(l_result.data[:].tolist(), l_expected) self.assertListEqual(r_result.data[:].tolist(), r_expected) def test_ordered_inner_map_left_unique_streaming_right_final(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 40, 50, 80], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 30, 40, 40, 40, 60, 70], dtype=np.int32)) l_result = fields.NumericMemField(None, 'int32') r_result = fields.NumericMemField(None, 'int32') l_expected = [1, 2, 3, 3, 3] r_expected = [0, 1, 2, 3, 4] ops.generate_ordered_map_to_inner_left_unique_streamed(left, right, l_result, r_result, -1, chunksize=4) self.assertListEqual(l_result.data[:].tolist(), l_expected) self.assertListEqual(r_result.data[:].tolist(), r_expected) # streaming - inner - left unique def test_ordered_inner_map_right_unique_streamed_left_final(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 30, 30, 40, 40, 50, 50], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 30, 40, 60, 70], dtype=np.int32)) l_result = fields.NumericMemField(None, 'int32') r_result = fields.NumericMemField(None, 'int32') l_expected = [1, 2, 3, 4, 5, 6] r_expected = [0, 1, 1, 1, 2, 2] ops.generate_ordered_map_to_inner_right_unique_streamed(left, right, l_result, r_result, -1, chunksize=4) self.assertListEqual(l_result.data[:].tolist(), l_expected) self.assertListEqual(r_result.data[:].tolist(), r_expected) def test_ordered_inner_map_right_unique_streaming_right_final(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 30, 30, 40, 40, 50, 80], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 30, 40, 60, 70], dtype=np.int32)) l_result = fields.NumericMemField(None, 'int32') r_result = fields.NumericMemField(None, 'int32') l_expected = [1, 2, 3, 4, 5, 6] r_expected = [0, 1, 1, 1, 2, 2] ops.generate_ordered_map_to_inner_right_unique_streamed(left, right, l_result, r_result, -1, chunksize=4) self.assertListEqual(l_result.data[:].tolist(), l_expected) self.assertListEqual(r_result.data[:].tolist(), r_expected) # streaming - inner - right unique def test_ordered_inner_map_right_unique_streamed_left_final(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 40, 50, 50], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 30, 40, 60, 70], dtype=np.int32)) l_result = fields.NumericMemField(None, 'int32') r_result = fields.NumericMemField(None, 'int32') l_expected = [1, 2, 3] r_expected = [0, 1, 2] ops.generate_ordered_map_to_inner_right_unique_streamed(left, right, l_result, r_result, -1, chunksize=4) self.assertListEqual(l_result.data[:].tolist(), l_expected) self.assertListEqual(r_result.data[:].tolist(), r_expected) def test_ordered_inner_map_right_unique_streamed_left_final_2(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 50, 50, 60], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 30, 40, 60, 70], dtype=np.int32)) l_result = fields.NumericMemField(None, 'int32') r_result = fields.NumericMemField(None, 'int32') l_expected = [1, 2, 5] r_expected = [0, 1, 3] ops.generate_ordered_map_to_inner_right_unique_streamed(left, right, l_result, r_result, -1, chunksize=4) self.assertListEqual(l_result.data[:].tolist(), l_expected) self.assertListEqual(r_result.data[:].tolist(), r_expected) def test_ordered_inner_map_right_unique_streaming_right_final(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 40, 50, 80], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 30, 40, 60, 70], dtype=np.int32)) l_result = fields.NumericMemField(None, 'int32') r_result = fields.NumericMemField(None, 'int32') l_expected = [1, 2, 3] r_expected = [0, 1, 2] ops.generate_ordered_map_to_inner_right_unique_streamed(left, right, l_result, r_result, -1, chunksize=4) self.assertListEqual(l_result.data[:].tolist(), l_expected) self.assertListEqual(r_result.data[:].tolist(), r_expected) def test_ordered_inner_map_right_unique_streaming_right_final_2(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 50, 50, 60, 80], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 30, 40, 60, 70], dtype=np.int32)) l_result = fields.NumericMemField(None, 'int32') r_result = fields.NumericMemField(None, 'int32') l_expected = [1, 2, 5] r_expected = [0, 1, 3] ops.generate_ordered_map_to_inner_right_unique_streamed(left, right, l_result, r_result, -1, chunksize=4) self.assertListEqual(l_result.data[:].tolist(), l_expected) self.assertListEqual(r_result.data[:].tolist(), r_expected) # streaming - inner - right unique def test_ordered_inner_map_both_unique_streamed_left_final(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 40, 50, 50], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 30, 40, 60, 70], dtype=np.int32)) l_result = fields.NumericMemField(None, 'int32') r_result = fields.NumericMemField(None, 'int32') l_expected = [1, 2, 3] r_expected = [0, 1, 2] ops.generate_ordered_map_to_inner_both_unique_streamed(left, right, l_result, r_result, -1, chunksize=4) self.assertListEqual(l_result.data[:].tolist(), l_expected) self.assertListEqual(r_result.data[:].tolist(), r_expected) def test_ordered_inner_map_both_unique_streamed_left_final_2(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 50, 50, 60], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 30, 40, 60, 70], dtype=np.int32)) l_result = fields.NumericMemField(None, 'int32') r_result = fields.NumericMemField(None, 'int32') l_expected = [1, 2, 5] r_expected = [0, 1, 3] ops.generate_ordered_map_to_inner_both_unique_streamed(left, right, l_result, r_result, -1, chunksize=4) self.assertListEqual(l_result.data[:].tolist(), l_expected) self.assertListEqual(r_result.data[:].tolist(), r_expected) def test_ordered_inner_map_both_unique_streaming_right_final(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 40, 50, 80], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 30, 40, 60, 70], dtype=np.int32)) l_result = fields.NumericMemField(None, 'int32') r_result = fields.NumericMemField(None, 'int32') l_expected = [1, 2, 3] r_expected = [0, 1, 2] ops.generate_ordered_map_to_inner_both_unique_streamed(left, right, l_result, r_result, -1, chunksize=4) self.assertListEqual(l_result.data[:].tolist(), l_expected) self.assertListEqual(r_result.data[:].tolist(), r_expected) def test_ordered_inner_map_both_unique_streaming_right_final_2(self): left = fields.NumericMemField(None, 'int32') left.data.write(np.asarray([10, 20, 30, 50, 50, 60, 80], dtype=np.int32)) right = fields.NumericMemField(None, 'int32') right.data.write(np.asarray([20, 30, 40, 60, 70], dtype=np.int32)) l_result = fields.NumericMemField(None, 'int32') r_result = fields.NumericMemField(None, 'int32') l_expected = [1, 2, 5] r_expected = [0, 1, 3] ops.generate_ordered_map_to_inner_right_unique_streamed(left, right, l_result, r_result, -1, chunksize=4) self.assertListEqual(l_result.data[:].tolist(), l_expected) self.assertListEqual(r_result.data[:].tolist(), r_expected) # old inner / outer map functionality # =========================== def test_ordered_inner_map_result_size(self): a_ids = np.asarray([0, 1, 2, 2, 3, 5, 5, 5, 6, 8], dtype=np.int64) b_ids =
np.asarray([1, 1, 2, 3, 5, 5, 6, 7, 8, 8, 8], dtype=np.int64)
numpy.asarray
''' measure/prepare.py TODO: - data fitting - data evaluation/interpolation ''' import os import sys import time import numpy as np import scipy.linalg as linalg import matplotlib.pyplot as plt def weighted_average_filter(a, w, count=1, overwrite_a=False, overwrite_w=False): '''Weighted mean filter along first dimension. Returns ------- a : numpy.ndarray (nD) The array after the filtering has been applied `count` times. w : numpy.ndarray (1D) ''' a = np.array(a, float, ndmin=1, copy=not overwrite_a) w = np.array(w, float, ndmin=1, copy=not overwrite_w) if len(w) % 2 != 1: raise ValueError('Number of weights (`len(w)`) must be an odd number.') a_tmp = [] w /= w.sum() i0 = (len(w)-1)//2 for _ in range(count): for i in range(i0, len(a)-i0): a_tmp.append(w.dot(a[i-i0:i+i0+1])) a[i0:len(a)-i0] = a_tmp; a_tmp.clear() return a class ForceMeasurement: def __init__(self, uk, fk): ''' Parameters ---------- uk : 1D or 2D array of floats Displacement vector (row) of a point at each time. fk : 1D or 2D array of floats Correspondin force vector (row) for each time. Returns ------- None ''' uk =
np.asarray(uk, float)
numpy.asarray
# ---------------------------------------------------------------------------- # - Open3D: www.open3d.org - # ---------------------------------------------------------------------------- # The MIT License (MIT) # # Copyright (c) 2018-2021 www.open3d.org # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # ---------------------------------------------------------------------------- import open3d as o3d import numpy as np import pytest import sys import os sys.path.append(os.path.dirname(os.path.realpath(__file__)) + "/..") from open3d_test import list_devices @pytest.mark.parametrize("device", list_devices()) @pytest.mark.parametrize("dtype", [ o3d.core.Dtype.Int32, o3d.core.Dtype.Int64, o3d.core.Dtype.Float32, o3d.core.Dtype.Float64 ]) def test_matmul(device, dtype): # Shape takes tuple, list or o3d.core.SizeVector a = o3d.core.Tensor([[1, 2.5, 3], [4, 5, 6.2]], dtype=dtype, device=device) b = o3d.core.Tensor([[7.5, 8, 9, 10], [11, 12, 13, 14], [15, 16, 17.8, 18]], dtype=dtype, device=device) c = o3d.core.matmul(a, b) assert c.shape == o3d.core.SizeVector([2, 4]) c_numpy = a.cpu().numpy() @ b.cpu().numpy() np.testing.assert_allclose(c.cpu().numpy(), c_numpy, 1e-6) # Non-contiguous test a = a[:, 1:] b = b[[0, 2], :] c = a.matmul(b) assert c.shape == o3d.core.SizeVector([2, 4]) c_numpy = a.cpu().numpy() @ b.cpu().numpy() np.testing.assert_allclose(c.cpu().numpy(), c_numpy, 1e-6) # Incompatible shape test with pytest.raises(RuntimeError) as excinfo: a = o3d.core.Tensor.zeros((3, 4, 5), dtype=dtype) b = o3d.core.Tensor.zeros((4, 5), dtype=dtype) c = a @ b assert 'Tensor A must be 2D' in str(excinfo.value) with pytest.raises(RuntimeError) as excinfo: a = o3d.core.Tensor.zeros((3, 4), dtype=dtype) b = o3d.core.Tensor.zeros((4, 5, 6), dtype=dtype) c = a @ b assert 'Tensor B must be 1D (vector) or 2D (matrix)' in str( excinfo.value) with pytest.raises(RuntimeError) as excinfo: a = o3d.core.Tensor.zeros((3, 4), dtype=dtype) b = o3d.core.Tensor.zeros((3, 7), dtype=dtype) c = a @ b assert 'mismatch with' in str(excinfo.value) for shapes in [((0, 0), (0, 0)), ((2, 0), (0, 3)), ((0, 2), (2, 0)), ((2, 0), (0, 0))]: with pytest.raises(RuntimeError) as excinfo: a_shape, b_shape = shapes a = o3d.core.Tensor.zeros(a_shape, dtype=dtype, device=device) b = o3d.core.Tensor.zeros(b_shape, dtype=dtype, device=device) c = a @ b assert 'dimensions with zero' in str(excinfo.value) @pytest.mark.parametrize("device", list_devices()) @pytest.mark.parametrize("dtype", [ o3d.core.Dtype.Int32, o3d.core.Dtype.Int64, o3d.core.Dtype.Float32, o3d.core.Dtype.Float64 ]) def test_det(device, dtype): a = o3d.core.Tensor([[-5, 0, -1], [1, 2, -1], [-3, 4, 1]], dtype=dtype, device=device) if dtype in [o3d.core.Dtype.Int32, o3d.core.Dtype.Int64]: with pytest.raises(RuntimeError) as excinfo: a.det() assert 'Only tensors with Float32 or Float64 are supported' in str( excinfo.value) return np.testing.assert_allclose(a.det(), np.linalg.det(a.cpu().numpy())) # Non-2D for shape in [(), [1], (3, 4, 5)]: with pytest.raises(RuntimeError) as excinfo: a = o3d.core.Tensor.zeros(shape, dtype=dtype, device=device) a.det() assert 'must be 2D' in str(excinfo.value) # Non-square with pytest.raises(RuntimeError) as excinfo: a = o3d.core.Tensor.zeros((2, 3), dtype=dtype, device=device) a.det() assert 'must be square' in str(excinfo.value) @pytest.mark.parametrize("device", list_devices()) @pytest.mark.parametrize("dtype", [ o3d.core.Dtype.Int32, o3d.core.Dtype.Int64, o3d.core.Dtype.Float32, o3d.core.Dtype.Float64 ]) def test_lu(device, dtype): a = o3d.core.Tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], dtype=dtype, device=device) if dtype in [o3d.core.Dtype.Int32, o3d.core.Dtype.Int64]: with pytest.raises(RuntimeError) as excinfo: o3d.core.lu(a) assert 'Only tensors with Float32 or Float64 are supported' in str( excinfo.value) return p, l, u = o3d.core.lu(a) np.testing.assert_allclose(a.cpu().numpy(), (p @ l @ u).cpu().numpy(), rtol=1e-5, atol=1e-5) p, l2, u2 = o3d.core.lu(a, True) np.testing.assert_allclose(a.cpu().numpy(), (l2 @ u2).cpu().numpy(), rtol=1e-5, atol=1e-5) # Non-2D for shape in [(), [1], (3, 4, 5)]: with pytest.raises(RuntimeError) as excinfo: a_ = o3d.core.Tensor.zeros(shape, dtype=dtype, device=device) o3d.core.lu(a_) assert 'must be 2D' in str(excinfo.value) @pytest.mark.parametrize("device", list_devices()) @pytest.mark.parametrize("dtype", [ o3d.core.Dtype.Int32, o3d.core.Dtype.Int64, o3d.core.Dtype.Float32, o3d.core.Dtype.Float64 ]) def test_lu_ipiv(device, dtype): a = o3d.core.Tensor([[2, 3, 1], [3, 3, 1], [2, 4, 1]], dtype=dtype, device=device) if dtype in [o3d.core.Dtype.Int32, o3d.core.Dtype.Int64]: with pytest.raises(RuntimeError) as excinfo: o3d.core.lu_ipiv(a) assert 'Only tensors with Float32 or Float64 are supported' in str( excinfo.value) return ipiv, a_lu = o3d.core.lu_ipiv(a) a_lu_ = o3d.core.Tensor( [[3.0, 3.0, 1.0], [0.666667, 2.0, 0.333333], [0.666667, 0.5, 0.166667]], dtype=dtype) ipiv_ = o3d.core.Tensor([2, 3, 3], dtype=dtype) np.testing.assert_allclose(a_lu.cpu().numpy(), a_lu_.numpy(), rtol=1e-5, atol=1e-5) np.testing.assert_allclose(ipiv.cpu().numpy(), ipiv_.numpy(), 1e-6) # Non-2D for shape in [(), [1], (3, 4, 5)]: with pytest.raises(RuntimeError) as excinfo: a_ = o3d.core.Tensor.zeros(shape, dtype=dtype, device=device) o3d.core.lu_ipiv(a_) assert 'must be 2D' in str(excinfo.value) @pytest.mark.parametrize("device", list_devices()) @pytest.mark.parametrize("dtype", [ o3d.core.Dtype.Int32, o3d.core.Dtype.Int64, o3d.core.Dtype.Float32, o3d.core.Dtype.Float64 ]) def test_inverse(device, dtype): a = o3d.core.Tensor([[7, 2, 1], [0, 3, -1], [-3, 4, 2]], dtype=dtype, device=device) if dtype in [o3d.core.Dtype.Int32, o3d.core.Dtype.Int64]: with pytest.raises(RuntimeError) as excinfo: o3d.core.inv(a) assert 'Only tensors with Float32 or Float64 are supported' in str( excinfo.value) return a_inv = o3d.core.inv(a) a_inv_numpy = np.linalg.inv(a.cpu().numpy()) np.testing.assert_allclose(a_inv.cpu().numpy(), a_inv_numpy, rtol=1e-5, atol=1e-5) # Non-2D for shape in [(), [1], (3, 4, 5)]: with pytest.raises(RuntimeError) as excinfo: a = o3d.core.Tensor.zeros(shape, dtype=dtype, device=device) a.inv() assert 'must be 2D' in str(excinfo.value) # Non-square with pytest.raises(RuntimeError) as excinfo: a = o3d.core.Tensor.zeros((2, 3), dtype=dtype, device=device) a.inv() assert 'must be square' in str(excinfo.value) a = o3d.core.Tensor([[1]], dtype=dtype, device=device) np.testing.assert_allclose(a.cpu().numpy(), a.inv().cpu().numpy(), 1e-6) # Singular condition for a in [ o3d.core.Tensor([[0, 0], [0, 1]], dtype=dtype, device=device), o3d.core.Tensor([[0]], dtype=dtype, device=device) ]: with pytest.raises(RuntimeError) as excinfo: a_inv = a.inv() assert 'singular condition' in str(excinfo.value) with pytest.raises(np.linalg.LinAlgError) as excinfo: a_inv = np.linalg.inv(a.cpu().numpy()) assert 'Singular matrix' in str(excinfo.value) @pytest.mark.parametrize("device", list_devices()) @pytest.mark.parametrize("dtype", [ o3d.core.Dtype.Int32, o3d.core.Dtype.Int64, o3d.core.Dtype.Float32, o3d.core.Dtype.Float64 ]) def test_svd(device, dtype): a = o3d.core.Tensor([[2, 4], [1, 3], [0, 0], [0, 0]], dtype=dtype, device=device) if dtype in [o3d.core.Dtype.Int32, o3d.core.Dtype.Int64]: with pytest.raises(RuntimeError) as excinfo: o3d.core.svd(a) assert 'Only tensors with Float32 or Float64 are supported' in str( excinfo.value) return u, s, vt = o3d.core.svd(a) assert u.shape == o3d.core.SizeVector([4, 4]) assert s.shape == o3d.core.SizeVector([2]) assert vt.shape == o3d.core.SizeVector([2, 2]) # u and vt are orthogonal matrices uut = u @ u.T() eye_uut = o3d.core.Tensor.eye(4, dtype=dtype) np.testing.assert_allclose(uut.cpu().numpy(), eye_uut.cpu().numpy(), atol=1e-6) vvt = vt.T() @ vt eye_vvt = o3d.core.Tensor.eye(2, dtype=dtype) np.testing.assert_allclose(vvt.cpu().numpy(), eye_vvt.cpu().numpy(), atol=1e-6) usvt = u[:, :2] @ o3d.core.Tensor.diag(s) @ vt # The accuracy of svd over Float32 is very low... np.testing.assert_allclose(a.cpu().numpy(), usvt.cpu().numpy(), atol=1e-5) u = u.cpu().numpy() s = s.cpu().numpy() vt = vt.cpu().numpy() u_numpy, s_numpy, vt_numpy = np.linalg.svd(a.cpu().numpy()) # u, vt can be different by several signs np.testing.assert_allclose(np.abs(u), np.abs(u_numpy), 1e-6) np.testing.assert_allclose(np.abs(vt), np.abs(vt_numpy), 1e-6)
np.testing.assert_allclose(s, s_numpy, 1e-6)
numpy.testing.assert_allclose
"""ResNet50 model for Keras. Adapted from tf.keras.applications.resnet50.ResNet50(). This is ResNet model version 1.5. Related papers/blogs: - https://arxiv.org/abs/1512.03385 - https://arxiv.org/pdf/1603.05027v2.pdf - http://torch.ch/blog/2016/02/04/resnets.html """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.python.keras import backend from tensorflow.python.keras import initializers from tensorflow.python.keras import models from tensorflow.python.keras import regularizers layers = tf.keras.layers def _gen_l2_regularizer(use_l2_regularizer=True, l2_weight_decay=1e-4): return regularizers.l2(l2_weight_decay) if use_l2_regularizer else None def fixed_padding(inputs, kernel_size, data_format='channels_last'): """Pads the input along the spatial dimensions independently of input size. Args: inputs: `Tensor` of size `[batch, channels, height, width]` or `[batch, height, width, channels]` depending on `data_format`. kernel_size: `int` kernel size to be used for `conv2d` or max_pool2d` operations. Should be a positive integer. data_format: `str` either "channels_first" for `[batch, channels, height, width]` or "channels_last for `[batch, height, width, channels]`. Returns: A padded `Tensor` of the same `data_format` with size either intact (if `kernel_size == 1`) or padded (if `kernel_size > 1`). """ pad_total = kernel_size - 1 pad_beg = pad_total // 2 pad_end = pad_total - pad_beg if data_format == 'channels_first': padded_inputs = tf.pad(inputs, [[0, 0], [0, 0], [pad_beg, pad_end], [pad_beg, pad_end]]) else: padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]]) return padded_inputs def identity_block(input_tensor, kernel_size, filters, stage, block, use_l2_regularizer=True, batch_norm_decay=0.9, batch_norm_epsilon=1e-5, batch_norm_trainable=True): """The identity block is the block that has no conv layer at shortcut. Args: input_tensor: input tensor kernel_size: default 3, the kernel size of middle conv layer at main path filters: list of integers, the filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names use_l2_regularizer: whether to use L2 regularizer on Conv layer. batch_norm_decay: Moment of batch norm layers. batch_norm_epsilon: Epsilon of batch borm layers. Returns: Output tensor for the block. """ filters1, filters2, filters3 = filters if backend.image_data_format() == 'channels_last': bn_axis = 3 else: bn_axis = 1 conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' # Kernel: 1 # Strides: 1 x = layers.Conv2D( filters1, kernel_size=(1, 1), strides=(1, 1), use_bias=False, kernel_initializer='he_normal', kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer), name=conv_name_base + '2a')( input_tensor) x = layers.BatchNormalization( axis=bn_axis, momentum=batch_norm_decay, epsilon=batch_norm_epsilon, trainable=batch_norm_trainable, name=bn_name_base + '2a')( x) x = layers.Activation('relu')(x) # Kernel: 3 # Strides: 1 x = layers.Conv2D( filters2, kernel_size=kernel_size, strides=(1,1), padding='same', use_bias=False, kernel_initializer='he_normal', kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer), name=conv_name_base + '2b')(x) x = layers.BatchNormalization( axis=bn_axis, momentum=batch_norm_decay, epsilon=batch_norm_epsilon, trainable=batch_norm_trainable, name=bn_name_base + '2b')(x) x = layers.Activation('relu')(x) # Kernel: 1 # Strides: 1 x = layers.Conv2D( filters3, kernel_size=(1, 1), strides=(1, 1), use_bias=False, kernel_initializer='he_normal', kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer), name=conv_name_base + '2c')(x) x = layers.BatchNormalization( axis=bn_axis, momentum=batch_norm_decay, epsilon=batch_norm_epsilon, trainable=batch_norm_trainable, name=bn_name_base + '2c')(x) x = layers.add([x, input_tensor]) x = layers.Activation('relu')(x) return x def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2), use_l2_regularizer=True, batch_norm_decay=0.9, batch_norm_epsilon=1e-5, batch_norm_trainable=True): """A block that has a conv layer at shortcut. Note that from stage 3, the second conv layer at main path is with strides=(2, 2) And the shortcut should have strides=(2, 2) as well Args: input_tensor: input tensor kernel_size: default 3, the kernel size of middle conv layer at main path filters: list of integers, the filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names strides: Strides for the second conv layer in the block. use_l2_regularizer: whether to use L2 regularizer on Conv layer. batch_norm_decay: Moment of batch norm layers. batch_norm_epsilon: Epsilon of batch borm layers. Returns: Output tensor for the block. """ filters1, filters2, filters3 = filters if backend.image_data_format() == 'channels_last': bn_axis = 3 else: bn_axis = 1 conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' # Kernel: 1 # Stride: Dynamic shortcut = layers.Conv2D( filters3, kernel_size=(1, 1), strides=strides, use_bias=False, kernel_initializer='he_normal', kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer), name=conv_name_base + '1')(input_tensor) shortcut = layers.BatchNormalization( axis=bn_axis, momentum=batch_norm_decay, epsilon=batch_norm_epsilon, trainable=batch_norm_trainable, name=bn_name_base + '1')(shortcut) # Kernel: 1 # Stride: 1 x = layers.Conv2D( filters1, kernel_size=(1, 1), strides=(1, 1), use_bias=False, kernel_initializer='he_normal', kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer), name=conv_name_base + '2a')(input_tensor) x = layers.BatchNormalization( axis=bn_axis, momentum=batch_norm_decay, epsilon=batch_norm_epsilon, trainable=batch_norm_trainable, name=bn_name_base + '2a')(x) x = layers.Activation('relu')(x) # Kernel: 3 # Strides: Dynamic if strides[0] > 1: x = fixed_padding(x, kernel_size, data_format=backend.image_data_format()) padding = 'valid' else: padding = 'same' x = layers.Conv2D( filters2, kernel_size=kernel_size, strides=strides, padding=padding, use_bias=False, kernel_initializer='he_normal', kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer), name=conv_name_base + '2b')(x) x = layers.BatchNormalization( axis=bn_axis, momentum=batch_norm_decay, epsilon=batch_norm_epsilon, trainable=batch_norm_trainable, name=bn_name_base + '2b')(x) x = layers.Activation('relu')(x) # Kernel: 1 # Stride: 1 x = layers.Conv2D( filters3, kernel_size=(1, 1), strides=(1, 1), use_bias=False, kernel_initializer='he_normal', kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer), name=conv_name_base + '2c')(x) x = layers.BatchNormalization( axis=bn_axis, momentum=batch_norm_decay, epsilon=batch_norm_epsilon, trainable=batch_norm_trainable, name=bn_name_base + '2c')(x) x = layers.add([x, shortcut]) x = layers.Activation('relu')(x) return x def resnet50( include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, batch_size=None, use_l2_regularizer=True, rescale_inputs=False, batch_norm_decay=0.9, batch_norm_epsilon=1e-5, batch_norm_trainable=True, width_multiplier=1): """Instantiates the ResNet50 architecture. Args: num_classes: `int` number of classes for image classification. batch_size: Size of the batches for each step. use_l2_regularizer: whether to use L2 regularizer on Conv/Dense layer. rescale_inputs: whether to rescale inputs from 0 to 1. batch_norm_decay: Moment of batch norm layers. batch_norm_epsilon: Epsilon of batch borm layers. Returns: A Keras model instance. """ if input_tensor is None: img_input = layers.Input(shape=input_shape, batch_size=batch_size) else: if not tf.keras.backend.is_keras_tensor(input_tensor): img_input = layers.Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor x = img_input if backend.image_data_format() == 'channels_first': x = layers.Permute((3, 1, 2))(x) bn_axis = 1 else: # channels_last bn_axis = 3 block_config = dict( use_l2_regularizer=use_l2_regularizer, batch_norm_decay=batch_norm_decay, batch_norm_epsilon=batch_norm_epsilon, batch_norm_trainable=batch_norm_trainable) #x = layers.ZeroPadding2D(padding=(3, 3), name='conv1_pad')(x) x = fixed_padding(x, 7, backend.image_data_format()) x = layers.Conv2D( 64 * width_multiplier, kernel_size=(7, 7), strides=(2, 2), padding='valid', use_bias=False, kernel_initializer='he_normal', kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer), name='conv1')(x) x = layers.BatchNormalization( axis=bn_axis, momentum=batch_norm_decay, epsilon=batch_norm_epsilon, trainable=batch_norm_trainable, name='bn_conv1')(x) x = layers.Activation('relu')(x) x = layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x) x = conv_block(x, 3, np.array([64, 64, 256]) * width_multiplier, stage=2, block='a', strides=(1, 1), **block_config) x = identity_block(x, 3, np.array([64, 64, 256]) * width_multiplier, stage=2, block='b', **block_config) x = identity_block(x, 3, np.array([64, 64, 256]) * width_multiplier, stage=2, block='c', **block_config) x = conv_block(x, 3, np.array([128, 128, 512]) * width_multiplier, stage=3, block='a', **block_config) x = identity_block(x, 3, np.array([128, 128, 512]) * width_multiplier, stage=3, block='b', **block_config) x = identity_block(x, 3,
np.array([128, 128, 512])
numpy.array
import numpy as np import PIL, PIL.Image import math def imbounds(width, height, transform): # calc output bounds based on transforming source image pixel edges and diagonal distance, ala GDAL # TODO: alternatively based on internal grid or just all the pixels # see https://github.com/OSGeo/gdal/blob/60d8a9ca09c466225508cb82e30a64aefa899a41/gdal/alg/gdaltransformer.cpp#L135 # NOTE: uses forward transform to calc output bounds, and backward transform for resampling # but for polynomial order >1 backward transform is reestimated on the points (inverse doesnt work) # and can be noticably different than the forward transform, thus miscalculating the bounds # TODO: maybe need a fix somehow... # get sample pixels at intervals imw,imh = width,height cols = np.linspace(0, imw-1, 100) rows = np.linspace(0, imh-1, 100) cols,rows =
np.meshgrid(cols, rows)
numpy.meshgrid
import cv2,torch import numpy as np from PIL import Image import torchvision.transforms as T import torch.nn.functional as F import scipy.signal mse2psnr = lambda x : -10. * torch.log(x) / torch.log(torch.Tensor([10.])) def visualize_depth_numpy(depth, minmax=None, cmap=cv2.COLORMAP_JET): """ depth: (H, W) """ x = np.nan_to_num(depth) # change nan to 0 if minmax is None: mi = np.min(x[x>0]) # get minimum positive depth (ignore background) ma = np.max(x) else: mi,ma = minmax x = (x-mi)/(ma-mi+1e-8) # normalize to 0~1 x = (255*x).astype(np.uint8) x_ = cv2.applyColorMap(x, cmap) return x_, [mi,ma] def init_log(log, keys): for key in keys: log[key] = torch.tensor([0.0], dtype=float) return log def visualize_depth(depth, minmax=None, cmap=cv2.COLORMAP_JET): """ depth: (H, W) """ if type(depth) is not np.ndarray: depth = depth.cpu().numpy() x = np.nan_to_num(depth) # change nan to 0 if minmax is None: mi =
np.min(x[x>0])
numpy.min
import numpy as np from math import * from pylab import * from matplotlib import pyplot as plt mRatio = 2.0 #0.223/0.203 #Mass ratio M_1/M_2 = M_1 (because M_2 = 1) L=4.5 # Distance between nuclei times number of nuclei (for lattice constant a=1) #xMass = range(1,int(L)) xMass = np.arange(0.5,L,0.5) #n = 2 # Normal mode number n => (1,..,L-1) mass=0.203 def getK(n): return float(n)*np.pi/float(L) # Constant k = (n*pi)/(L*a) period = 0.72116470588235293 C = 0.04*(2.0*np.pi/period)**2 omega0 = np.sqrt(C*(1+mRatio)/mass) def getAmplitudes(n,xMass): k = getK(n) AmplRatio = getAmplRatio(n) fjMassa = len(xMass) Ampl = [0]*fjMassa # Initialize array of amplitudes (one for each mass). g=0 while g < fjMassa: #Calculate the actual amplitudes of each mass Ampl[g] = AmplRatio*np.sin(k*xMass[g]) if (g+1) < fjMassa: Ampl[g+1] =
np.sin(k*xMass[g+1])
numpy.sin
#<NAME> #(cc) <EMAIL> import numpy as np import pandas as pd # standard parameters after Carsel & Parrish 1988 carsel=pd.DataFrame( [[ 'C', 30., 15., 55., 0.068, 0.38, 0.008*100., 1.09, 0.200/360000.], [ 'CL', 37., 30., 33., 0.095, 0.41, 0.019*100., 1.31, 0.258/360000.], [ 'L', 40., 40., 20., 0.078, 0.43, 0.036*100., 1.56, 1.042/360000.], [ 'LS', 13., 81., 6., 0.057, 0.43, 0.124*100., 2.28, 14.592/360000.], [ 'S', 4., 93., 3., 0.045, 0.43, 0.145*100., 2.68, 29.700/360000.], [ 'SC', 11., 48., 41., 0.100, 0.38, 0.027*100., 1.23, 0.121/360000.], [ 'SCL', 19., 54., 27., 0.100, 0.39, 0.059*100., 1.48, 1.308/360000.], [ 'SI', 85., 6., 9., 0.034, 0.46, 0.016*100., 1.37, 0.250/360000.], [ 'SIC', 48., 6., 46., 0.070, 0.36, 0.005*100., 1.09, 0.021/360000.], ['SICL', 59., 8., 33., 0.089, 0.43, 0.010*100., 1.23, 0.071/360000.], [ 'SIL', 65., 17., 18., 0.067, 0.45, 0.020*100., 1.41, 0.450/360000.], [ 'SL', 26., 63., 11., 0.065, 0.41, 0.075*100., 1.89, 4.421/360000.]], columns=['Typ','Silt','Sand','Clay','thr','ths','alpha','n','ks'],index=np.arange(12).astype(int)+1) #DEBUG: in the calculations type errors occur. #This should be fixed some time. However, I override warnings for now: np.seterr(all='ignore') # conversions def ku_psi(psi, ks, alpha, n, m=None, l=0.5): #Calculate unsaturated hydraulic conductivity (ku) from matrix head (psi) if m is None: m=1.-1./n v = 1. + (alpha*np.abs(psi))**n ku = ks* v**(-1.*m*l) * (1. - (1. - 1/v)**m)**2 return ku def ku_thst(thst, ks, alpha, n, m=None, l=0.5): #Calculate unsaturated hydraulic conductivity (ku) relative saturation (theta*) if m is None: m=1.-1./n ku = ks*thst**l * (1 - (1-thst**(1/m))**m)**2# return ku def ku_theta(theta, ths, thr, ks, alpha, n, m=None): #Calculate unsaturated hydraulic conductivity (ku) from matrix head (psi) if m is None: m=1.-1./n th_star=thst_theta(theta,ths,thr) ku = ku_thst(th_star,ks, alpha, n, m) return ku def thst_theta(theta,ths,thr): #Calculate relative saturation (theta*) from soil moisture (theta) th_star=(theta-thr)/(ths-thr) # return th_star def theta_thst(th_star,ths,thr): #Calculate soil moisture (theta) from relative saturation (theta*) theta=th_star*(ths-thr)+thr return theta def theta_psi(psi,ths,thr,alpha,n,m=None): #Calculate soil moisture (theta) from matrix head (psi) if m is None: m=1.-1./n theta=theta_thst(thst_psi(psi,alpha,n,m),ths,thr) return theta def psi_thst(th_star,alpha,n,m=None): #Calculate matrix head (psi) from relative saturation (theta*) if m is None: m=1.-1./n psi = -1./alpha * ( (1-th_star**(1/m))/(th_star**(1/m)) )**(1./n) if (np.iterable(psi)): if any(np.isinf(psi)): if type(alpha)==float: psi[np.isinf(psi)]=(-1./alpha * ( (1-0.98**(1/m))/(0.98**(1/m)) )**(1./n)) else: psi[np.isinf(psi)]=(-1./alpha * ( (1-0.98**(1/m))/(0.98**(1/m)) )**(1./n))[np.isinf(psi)] return psi def psi_theta(theta,ths,thr,alpha,n,m=None): #Calculate matrix head (psi) from soil moisture (theta) if m is None: m=1.-1./n th_star=thst_theta(theta,ths,thr) psi= -1. * ( (1 - th_star**(1./m)) / (th_star**(1./m)) )**(1./n) / alpha if (np.iterable(psi)): if any(np.isinf(psi)): if type(alpha)==float: psi[np.isinf(psi)]=(-1./alpha * ( (1-0.98**(1/m))/(0.98**(1/m)) )**(1./n)) else: psi[np.isinf(psi)]=(-1./alpha * ( (1-0.98**(1/m))/(0.98**(1/m)) )**(1./n))[np.isinf(psi)] return psi def thst_psi(psi,alpha,n,m=None): #Calculate relative saturation (theta*) from matrix head (psi) if m is None: m=1.-1./n th_star = (1./(1.+(
np.abs(psi)
numpy.abs
import numpy as np import pandas as pd import h5py from numpy.lib.arraysetops import isin from scipy.special import erf from scipy.special import erf from scipy.signal import find_peaks, convolve from math import floor, ceil import time import matplotlib.pyplot as plt import multiprocessing as mp #================================= Wavelet functions =================================# def ricker(scale=10, N=1, window=1, dt=1): resolution = scale/dt # print(resolution) length = int((10*window)*resolution) a = resolution/1.25187536 t = np.arange(length) s = 2/(np.sqrt(3*a)*np.pi**1/4)*(1-(t-length/2)**2/a**2)\ *np.exp(-(t-length/2)**2/(2*a**2)) s_square_norm = np.trapz(s**2, dx=1) s -= np.mean(s) # return s*(s_square_norm**2) return s/np.sqrt(s_square_norm) def morlet(scale=10, N=6, window=1, is_complex=False, dt=1): resolution = scale/dt length = int(2*(N+4)*window*resolution) t = np.arange(length) sigma = length/(10*window) s_exp = np.exp(-(t-length/2)**2/(2*sigma**2)) if (is_complex): s_sin = np.exp(1j*(2*np.pi/resolution*(t-length/2)-np.pi*(0.75-N%2))) else: s_sin = np.sin((2*np.pi/resolution*(t-length/2)-np.pi*(0.5-N%2))) s = s_exp*s_sin s -= np.mean(s) s_square_norm = np.trapz(np.abs(s)**2, dx=1) return s/np.sqrt(s_square_norm) def skew_normal(x, mu, sigma, alpha=0): # mean = mu - sigma*alpha/np.sqrt(1+alpha**2)*np.sqrt(2/np.pi) delta = alpha/(np.sqrt(1+alpha**2)) mu_z = np.sqrt(2/np.pi)*delta sigma_z = np.sqrt(1-mu_z**2) gamma_1 = (4-np.pi)/2*(delta*np.sqrt(2/np.pi))**3/((1-2*delta**2/np.pi)**(3/2)) if alpha == 0: m_0 = 0 else: m_0 = mu_z - gamma_1*sigma_z/2 - np.sign(alpha)/2*np.exp(-2*np.pi/np.abs(alpha)) mode = mu + sigma*m_0 xi = mu - sigma*m_0 phi = 1/
np.sqrt(2*np.pi)
numpy.sqrt
# Copyright 2019 <NAME>, <NAME> and <NAME> # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import scipy.sparse as sp from numpy.testing import ( run_module_suite, assert_equal, assert_almost_equal ) import normalized_matrix as nm class TestNormalizedMatrix(object): s = np.matrix([[1.0, 2.0], [4.0, 3.0], [5.0, 6.0], [8.0, 7.0], [9.0, 1.0]]) k = [np.array([0, 1, 1, 0, 1])] r = [np.matrix([[1.1, 2.2], [3.3, 4.4]])] m = np.matrix([[1.0, 2.0, 1.1, 2.2], [4.0, 3.0, 3.3, 4.4], [5.0, 6.0, 3.3, 4.4], [8.0, 7.0, 1.1, 2.2], [9.0, 1.0, 3.3, 4.4]]) n_matrix = nm.NormalizedMatrix(s, r, k) def test_add(self): n_matrix = self.n_matrix local_matrix = n_matrix + 2 assert_equal(local_matrix.b, 2) local_matrix = 3 + n_matrix assert_equal(local_matrix.b, 3) def test_sub(self): n_matrix = self.n_matrix local_matrix = n_matrix - 2 assert_equal(local_matrix.b, -2) local_matrix = 3 - n_matrix assert_equal(local_matrix.a, -1) assert_equal(local_matrix.b, 3) def test_mul(self): n_matrix = self.n_matrix local_matrix = n_matrix * 2 assert_equal(local_matrix.a, 2) local_matrix = 3 * n_matrix
assert_equal(local_matrix.a, 3)
numpy.testing.assert_equal
# -*- coding: utf-8 -*- """ Academy Color Encoding System - Log Encodings ============================================= Defines the *Academy Color Encoding System* (ACES) log encodings: - :func:`colour.models.log_encoding_ACESproxy` - :func:`colour.models.log_decoding_ACESproxy` - :func:`colour.models.log_encoding_ACEScc` - :func:`colour.models.log_decoding_ACEScc` - :func:`colour.models.log_encoding_ACEScct` - :func:`colour.models.log_decoding_ACEScct` References ---------- - :cite:`TheAcademyofMotionPictureArtsandSciences2014q` : The Academy of Motion Picture Arts and Sciences, Science and Technology Council, & Academy Color Encoding System (ACES) Project Subcommittee. (2014). Technical Bulletin TB-2014-004 - Informative Notes on SMPTE ST 2065-1 - Academy Color Encoding Specification (ACES). Retrieved from https://github.com/ampas/aces-dev/tree/master/documents - :cite:`TheAcademyofMotionPictureArtsandSciences2014r` : The Academy of Motion Picture Arts and Sciences, Science and Technology Council, & Academy Color Encoding System (ACES) Project Subcommittee. (2014). Technical Bulletin TB-2014-012 - Academy Color Encoding System Version 1.0 Component Names. Retrieved from https://github.com/ampas/aces-dev/tree/master/documents - :cite:`TheAcademyofMotionPictureArtsandSciences2014s` : The Academy of Motion Picture Arts and Sciences, Science and Technology Council, & Academy Color Encoding System (ACES) Project Subcommittee. (2014). Specification S-2013-001 - ACESproxy, an Integer Log Encoding of ACES Image Data. Retrieved from https://github.com/ampas/aces-dev/tree/master/documents - :cite:`TheAcademyofMotionPictureArtsandSciences2014t` : The Academy of Motion Picture Arts and Sciences, Science and Technology Council, & Academy Color Encoding System (ACES) Project Subcommittee. (2014). Specification S-2014-003 - ACEScc, A Logarithmic Encoding of ACES Data for use within Color Grading Systems. Retrieved from https://github.com/ampas/aces-dev/tree/master/documents - :cite:`TheAcademyofMotionPictureArtsandSciences2016c` : The Academy of Motion Picture Arts and Sciences, Science and Technology Council, & Academy Color Encoding System (ACES) Project. (2016). Specification S-2016-001 - ACEScct, A Quasi-Logarithmic Encoding of ACES Data for use within Color Grading Systems. Retrieved October 10, 2016, from https://github.com/ampas/aces-dev/tree/v1.0.3/documents - :cite:`TheAcademyofMotionPictureArtsandSciencese` : The Academy of Motion Picture Arts and Sciences, Science and Technology Council, & Academy Color Encoding System (ACES) Project Subcommittee. (n.d.). Academy Color Encoding System. Retrieved February 24, 2014, from http://www.oscars.org/science-technology/council/projects/aces.html """ from __future__ import division, unicode_literals import numpy as np from colour.utilities import (Structure, as_float, as_int, from_range_1, to_domain_1) __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2020 - Colour Developers' __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = '<EMAIL>' __status__ = 'Production' __all__ = [ 'ACES_PROXY_10_CONSTANTS', 'ACES_PROXY_12_CONSTANTS', 'ACES_PROXY_CONSTANTS', 'ACES_CCT_CONSTANTS', 'log_encoding_ACESproxy', 'log_decoding_ACESproxy', 'log_encoding_ACEScc', 'log_decoding_ACEScc', 'log_encoding_ACEScct', 'log_decoding_ACEScct' ] ACES_PROXY_10_CONSTANTS = Structure( CV_min=64, CV_max=940, steps_per_stop=50, mid_CV_offset=425, mid_log_offset=2.5) """ *ACESproxy* 10 bit colourspace constants. ACES_PROXY_10_CONSTANTS : Structure """ ACES_PROXY_12_CONSTANTS = Structure( CV_min=256, CV_max=3760, steps_per_stop=200, mid_CV_offset=1700, mid_log_offset=2.5) """ *ACESproxy* 12 bit colourspace constants. ACES_PROXY_12_CONSTANTS : Structure """ ACES_PROXY_CONSTANTS = { 10: ACES_PROXY_10_CONSTANTS, 12: ACES_PROXY_12_CONSTANTS } """ Aggregated *ACESproxy* colourspace constants. ACES_PROXY_CONSTANTS : dict **{10, 12}** """ ACES_CCT_CONSTANTS = Structure( X_BRK=0.0078125, Y_BRK=0.155251141552511, A=10.5402377416545, B=0.0729055341958355) """ *ACEScct* colourspace constants. ACES_CCT_CONSTANTS : Structure """ # pylint: disable=W0102 def log_encoding_ACESproxy(lin_AP1, bit_depth=10, out_int=False, constants=ACES_PROXY_CONSTANTS): """ Defines the *ACESproxy* colourspace log encoding curve / opto-electronic transfer function. Parameters ---------- lin_AP1 : numeric or array_like *lin_AP1* value. bit_depth : int, optional **{10, 12}**, *ACESproxy* bit depth. out_int : bool, optional Whether to return value as integer code value or float equivalent of a code value at a given bit depth. constants : Structure, optional *ACESproxy* constants. Returns ------- numeric or ndarray *ACESproxy* non-linear value. Notes ----- +----------------+-----------------------+---------------+ | **Domain \\*** | **Scale - Reference** | **Scale - 1** | +================+=======================+===============+ | ``lin_AP1`` | [0, 1] | [0, 1] | +----------------+-----------------------+---------------+ +----------------+-----------------------+---------------+ | **Range \\*** | **Scale - Reference** | **Scale - 1** | +================+=======================+===============+ | ``ACESproxy`` | [0, 1] | [0, 1] | +----------------+-----------------------+---------------+ \\* This definition has an output integer switch, thus the domain-range scale information is only given for the floating point mode. References ---------- :cite:`TheAcademyofMotionPictureArtsandSciences2014q`, :cite:`TheAcademyofMotionPictureArtsandSciences2014r`, :cite:`TheAcademyofMotionPictureArtsandSciences2014s`, :cite:`TheAcademyofMotionPictureArtsandSciencese` Examples -------- >>> log_encoding_ACESproxy(0.18) # doctest: +ELLIPSIS 0.4164222... >>> log_encoding_ACESproxy(0.18, out_int=True) 426 """ lin_AP1 = to_domain_1(lin_AP1) constants = constants[bit_depth] CV_min =
np.resize(constants.CV_min, lin_AP1.shape)
numpy.resize
# Copyright (C) 2022 <NAME> # # SPDX-License-Identifier: MIT import numpy as np import pytest import ufl from dolfinx.cpp.mesh import to_type from dolfinx.io import XDMFFile import dolfinx.fem as _fem from dolfinx.graph import create_adjacencylist from dolfinx.mesh import (CellType, create_mesh, locate_entities_boundary, meshtags) from mpi4py import MPI import dolfinx_contact import dolfinx_contact.cpp def create_functionspaces(ct, gap, delta): ''' This is a helper function to create the two element function spaces for custom assembly using quads, triangles, hexes and tetrahedra''' cell_type = to_type(ct) if cell_type == CellType.quadrilateral: x_1 = np.array([[0, 0], [0.8, 0], [0.1, 1.3], [0.7, 1.2]]) x_2 = np.array([[0, 0], [0.8, 0], [-0.1, -1.2], [0.8, -1.1]]) for point in x_2: point[0] += delta point[1] -= gap x_3 = np.array([x_2[0].copy() + [1.6, 0], x_2[2].copy() + [1.6, 0]]) x = np.vstack([x_1, x_2, x_3]) cells = np.array([[0, 1, 2, 3], [4, 5, 6, 7], [5, 8, 7, 9]], dtype=np.int32) elif cell_type == CellType.triangle: x = np.array([[0, 0, 0], [0.8, 0, 0], [0.3, 1.3, 0.0], [ 0 + delta, -gap, 0], [0.8 + delta, -gap, 0], [0.4 + delta, -1.2 - gap, 0.0]]) for point in x: point[2] = 3 * point[0] + 2 * point[1] # plane given by z = 3x +2y cells = np.array([[0, 1, 2], [3, 4, 5]], dtype=np.int32) elif cell_type == CellType.tetrahedron: x = np.array([[0, 0, 0], [1.1, 0, 0], [0.3, 1.0, 0], [1, 1.2, 1.5], [ 0 + delta, 0, -gap], [1.1 + delta, 0, -gap], [0.3 + delta, 1.0, -gap], [0.8 + delta, 1.2, -1.6 - gap]]) cells = np.array([[0, 1, 2, 3], [4, 5, 6, 7]], dtype=np.int32) elif cell_type == CellType.hexahedron: x_1 = np.array([[0, 0, 0], [1.1, 0, 0], [0.1, 1, 0], [1, 1.2, 0], [0, 0, 1.2], [1.0, 0, 1], [0, 1, 1], [1, 1, 1]]) x_2 = np.array([[0, 0, -1.2], [1.0, 0, -1.3], [0.1, 1, -1], [1, 1, -1], [0, 0, 0], [1.1, 0, 0], [0.1, 1, 0], [1, 1.2, 0]]) for point in x_2: point[0] += delta point[2] -= gap x_3 = np.array([x_2[0].copy() + [2.0, 0, 0], x_2[2].copy() + [2.0, 0, 0], x_2[4].copy() + [2.0, 0, 0], x_2[6].copy() + [2.0, 0, 0]]) x = np.vstack([x_1, x_2, x_3]) cells = np.array([[0, 1, 2, 3, 4, 5, 6, 7], [8, 9, 10, 11, 12, 13, 14, 15], [9, 16, 10, 17, 13, 18, 15, 19]], dtype=np.int32) else: raise ValueError(f"Unsupported mesh type {ct}") cell = ufl.Cell(ct, geometric_dimension=x.shape[1]) domain = ufl.Mesh(ufl.VectorElement("Lagrange", cell, 1)) mesh = create_mesh(MPI.COMM_WORLD, cells, x, domain) el = ufl.VectorElement("CG", mesh.ufl_cell(), 1) V = _fem.FunctionSpace(mesh, el) with XDMFFile(mesh.comm, "test_mesh.xdmf", "w") as xdmf: xdmf.write_mesh(mesh) return V @pytest.mark.parametrize("ct", ["quadrilateral", "triangle", "tetrahedron", "hexahedron"]) @pytest.mark.parametrize("gap", [0.5, -0.5]) @pytest.mark.parametrize("q_deg", [1, 2, 3]) @pytest.mark.parametrize("delta", [0.0, -0.5]) @pytest.mark.parametrize("surface", [0, 1]) def test_pack_test_fn(ct, gap, q_deg, delta, surface): # Create function space V = create_functionspaces(ct, gap, delta) # Retrieve mesh and mesh data mesh = V.mesh tdim = mesh.topology.dim gdim = mesh.geometry.dim cmap = mesh.geometry.cmap geometry_dofmap = mesh.geometry.dofmap # locate facets facets1 = locate_entities_boundary(mesh, tdim - 1, lambda x: np.isclose(x[tdim - 1], 0)) facets2 = locate_entities_boundary(mesh, tdim - 1, lambda x: np.isclose(x[tdim - 1], -gap)) facets = [facets1, facets2] # create meshtags val0 = np.full(len(facets1), 0, dtype=np.int32) val1 = np.full(len(facets2), 1, dtype=np.int32) values = np.hstack([val0, val1]) indices = np.concatenate([facets1, facets2]) sorted_facets = np.argsort(indices) facet_marker = meshtags(mesh, tdim - 1, indices[sorted_facets], values[sorted_facets]) def func(x): vals = np.zeros((gdim, x.shape[1])) vals[0] = 0.1 * x[0] vals[1] = 0.23 * x[1] return vals # Compute function that is known on each side u = _fem.Function(V) u.interpolate(func) # create contact class opposites = [1, 0] s = surface o = opposites[surface] data = np.array([0, 1], dtype=np.int32) offsets = np.array([0, 2], dtype=np.int32) surfaces = create_adjacencylist(data, offsets) contact = dolfinx_contact.cpp.Contact([facet_marker], surfaces, [(s, o)], V._cpp_object, quadrature_degree=q_deg) contact.update_submesh_geometry(u._cpp_object) contact.create_distance_map(0) # Pack gap on surface, pack test functions and jacobian on opposite surface gap = contact.pack_gap(0) test_fn = contact.pack_test_functions(0, gap) u_packed = contact.pack_u_contact(0, u._cpp_object, gap) # Retrieve surface facets s_facets = np.sort(facets[s]) lookup = contact.facet_map(0) # Create facet to cell connectivity mesh.topology.create_connectivity(tdim - 1, tdim) mesh.topology.create_connectivity(tdim, tdim - 1) f_to_c = mesh.topology.connectivity(tdim - 1, tdim) # loop over facets in surface for f in range(len(s_facets)): # Compute evaluation points qp_phys = contact.qp_phys(s, f) num_q_points = qp_phys.shape[0] points = np.zeros((num_q_points, 3)) points[:, :gdim] = qp_phys[:, :gdim] + \ gap[f].reshape((num_q_points, gdim)) - u_packed[f].reshape((num_q_points, gdim)) # retrieve connected facets connected_facets = lookup.links(f) unique_facets = np.unique(np.sort(connected_facets)) # loop over unique connected facets for link, facet_o in enumerate(unique_facets): # retrieve cell index and cell dofs for facet_o cell = f_to_c.links(facet_o) dofs = V.dofmap.cell_dofs(cell) # find quadrature points linked to facet_o q_indices = np.argwhere(connected_facets == facet_o) zero_ind = np.argwhere(connected_facets != facet_o) # retrieve cell geometry and compute pull back of physical points to reference cell gdofs = geometry_dofmap.links(cell) xg = mesh.geometry.x[gdofs] x_ref = cmap.pull_back(points, xg) bs = V.dofmap.index_map_bs for i, dof in enumerate(dofs): for k in range(bs): # Create fem function that is identical with desired test function v = _fem.Function(V) v.x.array[:] = 0 v.x.array[dof * bs + k] = 1 # Create expression vor evaluating test function and evaluate expr = _fem.Expression(v, x_ref) expr_vals = expr.eval([cell]) # compare values of test functions offset = link * num_q_points * len(dofs) * bs + i * num_q_points * bs assert(np.allclose(expr_vals[0][q_indices * bs + k], test_fn[f][offset + q_indices * bs + k])) # ensure values are zero if q not connected to quadrature point offset = link * num_q_points * len(dofs) * bs + i * num_q_points * bs assert(np.allclose(0, test_fn[f][offset + zero_ind * bs + k])) @pytest.mark.parametrize("ct", ["quadrilateral", "triangle", "tetrahedron", "hexahedron"]) @pytest.mark.parametrize("gap", [0.5, -0.5]) @pytest.mark.parametrize("q_deg", [1, 2, 3]) @pytest.mark.parametrize("delta", [0.0, -0.5]) @pytest.mark.parametrize("surface", [0, 1]) def test_pack_u(ct, gap, q_deg, delta, surface): # Create function space V = create_functionspaces(ct, gap, delta) # Retrieve mesh and mesh data mesh = V.mesh tdim = mesh.topology.dim gdim = mesh.geometry.dim cmap = mesh.geometry.cmap geometry_dofmap = mesh.geometry.dofmap bs = V.dofmap.index_map_bs # locate facets facets1 = locate_entities_boundary(mesh, tdim - 1, lambda x:
np.isclose(x[tdim - 1], 0)
numpy.isclose
import unittest import mapf_gym as MAPF_Env import numpy as np # Agent 1 num_agents1 = 1 world1 = [[ 1, 0, 0, -1, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [-1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] goals1 = [[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] # Agent 1 num_agents2 = 1 world2 = [[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, -1, 0, 0, 0, 0, 0, 0], [ 0, 0, -1, 1, -1, 0, 0, 0, 0, 0], [ 0, 0, 0, -1, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] goals2 = [[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] # Agent 1 and 2 num_agents3 = 2 world3 = [[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, -1, -1, 0, 0, 0, 0, 0], [ 0, 0, -1, 1, 2, -1, 0, 0, 0, 0], [ 0, 0, 0, -1, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] goals3 = [[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 2, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] # Agent 1 and 2 num_agents4 = 2 world4 = [[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, -1, -1, -1, 0, 0, 0, 0], [ 0, 0, -1, 1, 2, -1, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] goals4 = [[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 2, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] # action: {0:NOP, 1:MOVE_NORTH, 2:MOVE_EAST, 3:MOVE_south, 4:MOVE_WEST} # MAPF_Env.ACTION_COST, MAPF_Env.IDLE_COST, MAPF_Env.GOAL_REWARD, MAPF_Env.COLLISION_REWARD FULL_HELP = False class MAPFTests(unittest.TestCase): # Bruteforce tests def test_validActions1(self): # MAPF_Env.MAPFEnv(self, num_agents=1, world0=None, goals0=None, DIAGONAL_MOVEMENT=False, SIZE=10, PROB=.2, FULL_HELP=False) gameEnv1 = MAPF_Env.MAPFEnv(num_agents1, world0=np.array(world1), goals0=np.array(goals1), DIAGONAL_MOVEMENT=False) validActions1 = gameEnv1._listNextValidActions(1) self.assertEqual(validActions1, [0,1,2]) # With diagonal actions gameEnv1 = MAPF_Env.MAPFEnv(num_agents1, world0=np.array(world1), goals0=np.array(goals1), DIAGONAL_MOVEMENT=True) validActions1 = gameEnv1._listNextValidActions(1) self.assertEqual(validActions1, [0,1,2,5]) def test_validActions2(self): gameEnv2 = MAPF_Env.MAPFEnv(num_agents2, world0=np.array(world2), goals0=np.array(goals2), DIAGONAL_MOVEMENT=False) validActions2 = gameEnv2._listNextValidActions(1) self.assertEqual(validActions2, [0]) # With diagonal actions gameEnv2 = MAPF_Env.MAPFEnv(num_agents2, world0=np.array(world2), goals0=np.array(goals2), DIAGONAL_MOVEMENT=True) validActions2 = gameEnv2._listNextValidActions(1) self.assertEqual(validActions2, [0,5,6,7,8]) def test_validActions3(self): gameEnv3 = MAPF_Env.MAPFEnv(num_agents3, world0=np.array(world3), goals0=np.array(goals3), DIAGONAL_MOVEMENT=False) validActions3a = gameEnv3._listNextValidActions(1) validActions3b = gameEnv3._listNextValidActions(2) self.assertEqual(validActions3a, [0]) self.assertEqual(validActions3b, [0,2]) # With diagonal actions gameEnv3 = MAPF_Env.MAPFEnv(num_agents3, world0=np.array(world3), goals0=np.array(goals3), DIAGONAL_MOVEMENT=True) validActions3a = gameEnv3._listNextValidActions(1) validActions3b = gameEnv3._listNextValidActions(2) self.assertEqual(validActions3a, [0,5,6,7]) self.assertEqual(validActions3b, [0,2,5,8]) def test_validActions4(self): gameEnv4 = MAPF_Env.MAPFEnv(num_agents4, world0=np.array(world4), goals0=np.array(goals4),DIAGONAL_MOVEMENT=False) validActions4a = gameEnv4._listNextValidActions(1) validActions4b = gameEnv4._listNextValidActions(2) self.assertEqual(validActions4a, [0,2]) self.assertEqual(validActions4b, [0,2]) # With diagonal actions gameEnv4 = MAPF_Env.MAPFEnv(num_agents4, world0=np.array(world4), goals0=np.array(goals4),DIAGONAL_MOVEMENT=True) validActions4a = gameEnv4._listNextValidActions(1) validActions4b = gameEnv4._listNextValidActions(2) self.assertEqual(validActions4a, [0,2,5,6,7]) self.assertEqual(validActions4b, [0,2,5,6]) def testIdle1(self): gameEnv1 = MAPF_Env.MAPFEnv(num_agents1, world0=np.array(world1), goals0=np.array(goals1)) s0 = gameEnv1.world.state.copy() # return state, reward, done, nextActions, on_goal, blocking, valid_action s1, r, d, _, o_g, _, _ = gameEnv1.step((1,0)) s2 = gameEnv1.world.state.copy() self.assertEqual(r, MAPF_Env.IDLE_COST) self.assertFalse(d) self.assertFalse(o_g) self.assertEqual(np.sum(s0), np.sum(s2)) def testIdle2(self): gameEnv2 = MAPF_Env.MAPFEnv(num_agents2, world0=np.array(world2), goals0=np.array(goals2)) s0 = gameEnv2.world.state.copy() s1, r, d, _, o_g, _, _ = gameEnv2.step((1,0)) s2 = gameEnv2.world.state.copy() self.assertEqual(r, MAPF_Env.GOAL_REWARD) self.assertTrue(d) self.assertTrue(o_g) self.assertEqual(np.sum(s0), np.sum(s2)) def testIdle3(self): gameEnv3 = MAPF_Env.MAPFEnv(num_agents3, world0=np.array(world3), goals0=np.array(goals3)) s0 = gameEnv3.world.state.copy() # Agent 1 s1, r, d, _, o_g, _, _ = gameEnv3.step((1,0)) s2 = gameEnv3.world.state.copy() self.assertEqual(r, MAPF_Env.GOAL_REWARD) self.assertFalse(d) self.assertTrue(o_g) self.assertEqual(np.sum(s0), np.sum(s2)) # Agent 2 s1, r, d, _, o_g, _, _ = gameEnv3.step((2,0)) s2 = gameEnv3.world.state.copy() self.assertEqual(r, MAPF_Env.IDLE_COST) self.assertFalse(d) self.assertFalse(o_g) self.assertEqual(np.sum(s0), np.sum(s2)) def testIdle4(self): gameEnv4 = MAPF_Env.MAPFEnv(num_agents4, world0=np.array(world4), goals0=np.array(goals4),DIAGONAL_MOVEMENT=False) s0 = gameEnv4.world.state.copy() # Agent 1 s1, r, d, _, o_g, _, _ = gameEnv4.step((1,0)) s2 = gameEnv4.world.state.copy() self.assertEqual(r, MAPF_Env.GOAL_REWARD) self.assertFalse(d) self.assertTrue(o_g) self.assertEqual(np.sum(s0), np.sum(s2)) # Agent 2 s1, r, d, _, o_g, _, _ = gameEnv4.step((2,0)) s2 = gameEnv4.world.state.copy() self.assertEqual(r, MAPF_Env.IDLE_COST) self.assertFalse(d) self.assertFalse(o_g) self.assertEqual(np.sum(s0), np.sum(s2)) def test_move_east1(self): gameEnv1 = MAPF_Env.MAPFEnv(num_agents1, world0=np.array(world1), goals0=np.array(goals1)) s0 = gameEnv1.world.state.copy() # return state, reward, done, nextActions, on_goal s1, r, d, _, o_g, _, _ = gameEnv1.step((1,1)) s2 = gameEnv1.world.state.copy() self.assertEqual(r, MAPF_Env.GOAL_REWARD) self.assertTrue(d) self.assertTrue(o_g) self.assertEqual(np.sum(s0), np.sum(s2)) def test_move_east2(self): gameEnv2 = MAPF_Env.MAPFEnv(num_agents2, world0=np.array(world2), goals0=np.array(goals2)) s0 = gameEnv2.world.state.copy() s1, r, d, _, o_g, _, _ = gameEnv2.step((1,1)) s2 = gameEnv2.world.state.copy() self.assertEqual(r, MAPF_Env.COLLISION_REWARD) self.assertTrue(d) self.assertTrue(o_g) self.assertEqual(np.sum(s0), np.sum(s2)) def test_move_east3a(self): gameEnv3 = MAPF_Env.MAPFEnv(num_agents3, world0=np.array(world3), goals0=np.array(goals3)) s0 = gameEnv3.world.state.copy() # Agent 1 s1, r, d, _, o_g, _, _ = gameEnv3.step((1,1)) s2 = gameEnv3.world.state.copy() self.assertEqual(r, MAPF_Env.COLLISION_REWARD) self.assertFalse(d) self.assertTrue(o_g) self.assertEqual(np.sum(s0), np.sum(s2)) # Agent 2 s1, r, d, _, o_g, _, _ = gameEnv3.step((2,1)) s2 = gameEnv3.world.state.copy() self.assertEqual(r, MAPF_Env.COLLISION_REWARD) self.assertFalse(d) self.assertFalse(o_g) self.assertEqual(np.sum(s0), np.sum(s2)) def test_move_east3b(self): gameEnv3 = MAPF_Env.MAPFEnv(num_agents3, world0=np.array(world3), goals0=np.array(goals3)) s0 = gameEnv3.world.state.copy() # Agent 2 s1, r, d, _, o_g, _, _ = gameEnv3.step((2,1)) s2 = gameEnv3.world.state.copy() self.assertEqual(r, MAPF_Env.COLLISION_REWARD) self.assertFalse(d) self.assertFalse(o_g) self.assertEqual(np.sum(s0), np.sum(s2)) # Agent 1 s1, r, d, _, o_g, _, _ = gameEnv3.step((1,1)) s2 = gameEnv3.world.state.copy() self.assertEqual(r, MAPF_Env.COLLISION_REWARD) self.assertFalse(d) self.assertTrue(o_g) self.assertEqual(np.sum(s0), np.sum(s2)) def test_move_east4a(self): gameEnv4 = MAPF_Env.MAPFEnv(num_agents4, world0=np.array(world4), goals0=np.array(goals4)) s0 = gameEnv4.world.state.copy() # Agent 1 s1, r, d, _, o_g, _, _ = gameEnv4.step((1,1)) s2 = gameEnv4.world.state.copy() self.assertEqual(r, MAPF_Env.COLLISION_REWARD) self.assertFalse(d) self.assertTrue(o_g) self.assertEqual(np.sum(s0), np.sum(s2)) # Agent 2 s1, r, d, _, o_g, _, _ = gameEnv4.step((2,1)) s2 = gameEnv4.world.state.copy() self.assertEqual(r, MAPF_Env.COLLISION_REWARD) self.assertFalse(d) self.assertFalse(o_g) self.assertEqual(np.sum(s0), np.sum(s2)) def test_move_east4b(self): gameEnv4 = MAPF_Env.MAPFEnv(num_agents4, world0=np.array(world4), goals0=np.array(goals4)) s0 = gameEnv4.world.state.copy() # Agent 2 s1, r, d, _, o_g, _, _ = gameEnv4.step((2,1)) s2 = gameEnv4.world.state.copy() self.assertEqual(r, MAPF_Env.COLLISION_REWARD) self.assertFalse(d) self.assertFalse(o_g) self.assertEqual(np.sum(s0), np.sum(s2)) # Agent 1 s1, r, d, _, o_g, _, _ = gameEnv4.step((1,1)) s2 = gameEnv4.world.state.copy() self.assertEqual(r, MAPF_Env.COLLISION_REWARD) self.assertFalse(d) self.assertTrue(o_g) self.assertEqual(np.sum(s0), np.sum(s2)) def test_move_north1(self): gameEnv1 = MAPF_Env.MAPFEnv(num_agents1, world0=np.array(world1), goals0=np.array(goals1)) s0 = gameEnv1.world.state.copy() # return state, reward, done, nextActions, on_goal s1, r, d, _, o_g, _, _ = gameEnv1.step((1,2)) s2 = gameEnv1.world.state.copy() self.assertEqual(r, MAPF_Env.ACTION_COST) self.assertFalse(d) self.assertFalse(o_g) self.assertEqual(np.sum(s0), np.sum(s2)) def test_move_north2(self): gameEnv2 = MAPF_Env.MAPFEnv(num_agents2, world0=np.array(world2), goals0=np.array(goals2)) s0 = gameEnv2.world.state.copy() s1, r, d, _, o_g, _, _ = gameEnv2.step((1,2)) s2 = gameEnv2.world.state.copy() self.assertEqual(r, MAPF_Env.COLLISION_REWARD) self.assertTrue(d) self.assertTrue(o_g) self.assertEqual(np.sum(s0), np.sum(s2)) def test_move_north3a(self): gameEnv3 = MAPF_Env.MAPFEnv(num_agents3, world0=np.array(world3), goals0=np.array(goals3)) s0 = gameEnv3.world.state.copy() # Agent 1 s1, r, d, _, o_g, _, _ = gameEnv3.step((1,2)) s2 = gameEnv3.world.state.copy() self.assertEqual(r, MAPF_Env.COLLISION_REWARD) self.assertFalse(d) self.assertTrue(o_g) self.assertEqual(np.sum(s0), np.sum(s2)) # Agent 2 s1, r, d, _, o_g, _, _ = gameEnv3.step((2,2)) s2 = gameEnv3.world.state.copy() self.assertEqual(r, MAPF_Env.GOAL_REWARD) self.assertTrue(d) self.assertTrue(o_g) self.assertEqual(np.sum(s0), np.sum(s2)) def test_move_north3b(self): gameEnv3 = MAPF_Env.MAPFEnv(num_agents3, world0=
np.array(world3)
numpy.array
# -*- mode: python; coding: utf-8 -* # Copyright (c) 2018 Radio Astronomy Software Group # Licensed under the 2-clause BSD License """Commonly used utility functions.""" from __future__ import absolute_import, division, print_function import numpy as np import six import warnings import copy from scipy.spatial.distance import pdist, squareform from astropy.time import Time from astropy.coordinates import Angle from astropy.utils import iers if six.PY2: from collections import Iterable else: from collections.abc import Iterable # parameters for transforming between xyz & lat/lon/alt gps_b = 6356752.31424518 gps_a = 6378137 e_squared = 6.69437999014e-3 e_prime_squared = 6.73949674228e-3 if six.PY2: def _str_to_bytes(s): return s def _bytes_to_str(b): return b else: def _str_to_bytes(s): return s.encode('utf8') def _bytes_to_str(b): return b.decode('utf8') # polarization constants # maps polarization strings to polarization integers POL_STR2NUM_DICT = {'pI': 1, 'pQ': 2, 'pU': 3, 'pV': 4, 'I': 1, 'Q': 2, 'U': 3, 'V': 4, # support straight stokes names 'rr': -1, 'll': -2, 'rl': -3, 'lr': -4, 'xx': -5, 'yy': -6, 'xy': -7, 'yx': -8} # maps polarization integers to polarization strings POL_NUM2STR_DICT = {1: 'pI', 2: 'pQ', 3: 'pU', 4: 'pV', -1: 'rr', -2: 'll', -3: 'rl', -4: 'lr', -5: 'xx', -6: 'yy', -7: 'xy', -8: 'yx'} # maps how polarizations change when antennas are swapped CONJ_POL_DICT = {'xx': 'xx', 'yy': 'yy', 'xy': 'yx', 'yx': 'xy', 'ee': 'ee', 'nn': 'nn', 'en': 'ne', 'ne': 'en', 'rr': 'rr', 'll': 'll', 'rl': 'lr', 'lr': 'rl', 'I': 'I', 'Q': 'Q', 'U': 'U', 'V': 'V', 'pI': 'pI', 'pQ': 'pQ', 'pU': 'pU', 'pV': 'pV'} # maps jones matrix element strings to jones integers JONES_STR2NUM_DICT = {'Jxx': -5, 'Jyy': -6, 'Jxy': -7, 'Jyx': -8, 'xx': -5, 'x': -5, 'yy': -6, 'y': -6, 'xy': -7, 'yx': -8, # Allow shorthand 'Jrr': -1, 'Jll': -2, 'Jrl': -3, 'Jlr': -4, 'rr': -1, 'r': -1, 'll': -2, 'l': -2, 'rl': -3, 'lr': -4} # maps jones integers to jones matrix element strings JONES_NUM2STR_DICT = {-1: 'Jrr', -2: 'Jll', -3: 'Jrl', -4: 'Jlr', -5: 'Jxx', -6: 'Jyy', -7: 'Jxy', -8: 'Jyx'} def LatLonAlt_from_XYZ(xyz, check_acceptability=True): """ Calculate lat/lon/alt from ECEF x,y,z. Parameters ---------- xyz : ndarray of float numpy array, shape (Npts, 3), with ECEF x,y,z coordinates. check_acceptability : bool Flag to check XYZ coordinates are reasonable. Returns ------- latitude : ndarray or float latitude, numpy array (if Npts > 1) or value (if Npts = 1) in radians longitude : ndarray or float longitude, numpy array (if Npts > 1) or value (if Npts = 1) in radians altitude : ndarray or float altitude, numpy array (if Npts > 1) or value (if Npts = 1) in meters """ # convert to a numpy array xyz = np.array(xyz) if xyz.ndim > 1 and xyz.shape[1] != 3: if xyz.shape[0] == 3: warnings.warn('The expected shape of ECEF xyz array is (Npts, 3). ' 'Support for arrays shaped (3, Npts) will go away in ' 'version 1.5', DeprecationWarning) xyz_use = xyz.T else: raise ValueError('The expected shape of ECEF xyz array is (Npts, 3).') else: xyz_use = xyz if xyz.shape == (3, 3): warnings.warn('The xyz array in LatLonAlt_from_XYZ is being ' 'interpreted as (Npts, 3). Historically this function ' 'has supported (3, Npts) arrays, please verify that ' 'array ordering is as expected. This warning will be ' 'removed in version 1.5', DeprecationWarning) if xyz_use.ndim == 1: xyz_use = xyz_use[np.newaxis, :] # checking for acceptable values if check_acceptability: if (np.any(np.linalg.norm(xyz_use, axis=1) < 6.35e6) or np.any(np.linalg.norm(xyz_use, axis=1) > 6.39e6)): raise ValueError( 'xyz values should be ECEF x, y, z coordinates in meters') # see wikipedia geodetic_datum and Datum transformations of # GPS positions PDF in docs/references folder gps_p = np.sqrt(xyz_use[:, 0]**2 + xyz_use[:, 1]**2) gps_theta = np.arctan2(xyz_use[:, 2] * gps_a, gps_p * gps_b) latitude = np.arctan2(xyz_use[:, 2] + e_prime_squared * gps_b * np.sin(gps_theta)**3, gps_p - e_squared * gps_a * np.cos(gps_theta)**3) longitude = np.arctan2(xyz_use[:, 1], xyz_use[:, 0]) gps_N = gps_a / np.sqrt(1 - e_squared * np.sin(latitude)**2) altitude = ((gps_p / np.cos(latitude)) - gps_N) if xyz.ndim == 1: longitude = longitude[0] latitude = latitude[0] altitude = altitude[0] return latitude, longitude, altitude def XYZ_from_LatLonAlt(latitude, longitude, altitude): """ Calculate ECEF x,y,z from lat/lon/alt values. Parameters ---------- latitude : ndarray or float latitude, numpy array (if Npts > 1) or value (if Npts = 1) in radians longitude : ndarray or float longitude, numpy array (if Npts > 1) or value (if Npts = 1) in radians altitude : ndarray or float altitude, numpy array (if Npts > 1) or value (if Npts = 1) in meters Returns ------- xyz : ndarray of float numpy array, shape (Npts, 3), with ECEF x,y,z coordinates. """ latitude = np.array(latitude) longitude = np.array(longitude) altitude = np.array(altitude) Npts = latitude.size if longitude.size != Npts: raise ValueError( 'latitude, longitude and altitude must all have the same length') if altitude.size != Npts: raise ValueError( 'latitude, longitude and altitude must all have the same length') # see wikipedia geodetic_datum and Datum transformations of # GPS positions PDF in docs/references folder gps_N = gps_a / np.sqrt(1 - e_squared * np.sin(latitude)**2) xyz = np.zeros((Npts, 3)) xyz[:, 0] = ((gps_N + altitude) * np.cos(latitude) * np.cos(longitude)) xyz[:, 1] = ((gps_N + altitude) * np.cos(latitude) * np.sin(longitude)) xyz[:, 2] = ((gps_b**2 / gps_a**2 * gps_N + altitude) * np.sin(latitude)) xyz = np.squeeze(xyz) return xyz def rotECEF_from_ECEF(xyz, longitude): """ Get rotated ECEF positions such that the x-axis goes through the longitude. Miriad and uvfits expect antenna positions in this frame (with longitude of the array center/telescope location) Parameters ---------- xyz : ndarray of float numpy array, shape (Npts, 3), with ECEF x,y,z coordinates. longitude : float longitude in radians to rotate coordinates to (usually the array center/telescope location). Returns ------- ndarray of float Rotated ECEF coordinates, shape (Npts, 3). """ angle = -1 * longitude rot_matrix = np.array([[np.cos(angle), -1 * np.sin(angle), 0], [np.sin(angle), np.cos(angle), 0], [0, 0, 1]]) return rot_matrix.dot(xyz.T).T def ECEF_from_rotECEF(xyz, longitude): """ Calculate ECEF from a rotated ECEF (Inverse of rotECEF_from_ECEF). Parameters ---------- xyz : ndarray of float numpy array, shape (Npts, 3), with rotated ECEF x,y,z coordinates. longitude : float longitude in radians giving the x direction of the rotated coordinates (usually the array center/telescope location). Returns ------- ndarray of float ECEF coordinates, shape (Npts, 3). """ angle = longitude rot_matrix = np.array([[np.cos(angle), -1 * np.sin(angle), 0], [np.sin(angle), np.cos(angle), 0], [0, 0, 1]]) return rot_matrix.dot(xyz.T).T def ENU_from_ECEF(xyz, latitude, longitude, altitude): """ Calculate local ENU (east, north, up) coordinates from ECEF coordinates. Parameters ---------- xyz : ndarray of float numpy array, shape (Npts, 3), with ECEF x,y,z coordinates. latitude : float Latitude of center of ENU coordinates in radians. longitude : float Longitude of center of ENU coordinates in radians. altitude : float Altitude of center of ENU coordinates in radians. Returns ------- ndarray of float numpy array, shape (Npts, 3), with local ENU coordinates """ xyz = np.array(xyz) if xyz.ndim > 1 and xyz.shape[1] != 3: if xyz.shape[0] == 3: warnings.warn('The expected shape of ECEF xyz array is (Npts, 3). ' 'Support for arrays shaped (3, Npts) will go away in ' 'version 1.5', DeprecationWarning) xyz_in = xyz.T transpose = True else: raise ValueError('The expected shape of ECEF xyz array is (Npts, 3).') else: xyz_in = xyz transpose = False if xyz.shape == (3, 3): warnings.warn('The xyz array in ENU_from_ECEF is being ' 'interpreted as (Npts, 3). Historically this function ' 'has supported (3, Npts) arrays, please verify that ' 'array ordering is as expected. This warning will be ' 'removed in version 1.5', DeprecationWarning) if xyz_in.ndim == 1: xyz_in = xyz_in[np.newaxis, :] # check that these are sensible ECEF values -- their magnitudes need to be # on the order of Earth's radius ecef_magnitudes = np.linalg.norm(xyz_in, axis=1) sensible_radius_range = (6.35e6, 6.39e6) if (np.any(ecef_magnitudes <= sensible_radius_range[0]) or np.any(ecef_magnitudes >= sensible_radius_range[1])): raise ValueError( 'ECEF vector magnitudes must be on the order of the radius of the earth') xyz_center = XYZ_from_LatLonAlt(latitude, longitude, altitude) xyz_use = np.zeros_like(xyz_in) xyz_use[:, 0] = xyz_in[:, 0] - xyz_center[0] xyz_use[:, 1] = xyz_in[:, 1] - xyz_center[1] xyz_use[:, 2] = xyz_in[:, 2] - xyz_center[2] enu = np.zeros_like(xyz_use) enu[:, 0] = (-np.sin(longitude) * xyz_use[:, 0] + np.cos(longitude) * xyz_use[:, 1]) enu[:, 1] = (-np.sin(latitude) * np.cos(longitude) * xyz_use[:, 0] - np.sin(latitude) * np.sin(longitude) * xyz_use[:, 1] + np.cos(latitude) * xyz_use[:, 2]) enu[:, 2] = (np.cos(latitude) * np.cos(longitude) * xyz_use[:, 0] + np.cos(latitude) * np.sin(longitude) * xyz_use[:, 1] + np.sin(latitude) * xyz_use[:, 2]) if len(xyz.shape) == 1: enu = np.squeeze(enu) elif transpose: return enu.T return enu def ECEF_from_ENU(enu, latitude, longitude, altitude): """ Calculate ECEF coordinates from local ENU (east, north, up) coordinates. Parameters ---------- enu : ndarray of float numpy array, shape (Npts, 3), with local ENU coordinates. latitude : float Latitude of center of ENU coordinates in radians. longitude : float Longitude of center of ENU coordinates in radians. altitude : float Altitude of center of ENU coordinates in radians. Returns ------- xyz : ndarray of float numpy array, shape (Npts, 3), with ECEF x,y,z coordinates. """ enu = np.array(enu) if enu.ndim > 1 and enu.shape[1] != 3: if enu.shape[0] == 3: warnings.warn('The expected shape of the ENU array is (Npts, 3). ' 'Support for arrays shaped (3, Npts) will go away in ' 'version 1.5', DeprecationWarning) enu_use = enu.T transpose = True else: raise ValueError('The expected shape of the ENU array array is (Npts, 3).') else: enu_use = enu transpose = False if enu.shape == (3, 3): warnings.warn('The enu array in ECEF_from_ENU is being ' 'interpreted as (Npts, 3). Historically this function ' 'has supported (3, Npts) arrays, please verify that ' 'array ordering is as expected. This warning will be ' 'removed in version 1.5', DeprecationWarning) if enu_use.ndim == 1: enu_use = enu_use[np.newaxis, :] xyz = np.zeros_like(enu_use) xyz[:, 0] = (-np.sin(latitude) * np.cos(longitude) * enu_use[:, 1] - np.sin(longitude) * enu_use[:, 0] + np.cos(latitude) * np.cos(longitude) * enu_use[:, 2]) xyz[:, 1] = (-np.sin(latitude) * np.sin(longitude) * enu_use[:, 1] + np.cos(longitude) * enu_use[:, 0] + np.cos(latitude) * np.sin(longitude) * enu_use[:, 2]) xyz[:, 2] = (np.cos(latitude) * enu_use[:, 1] + np.sin(latitude) * enu_use[:, 2]) xyz_center = XYZ_from_LatLonAlt(latitude, longitude, altitude) xyz[:, 0] = xyz[:, 0] + xyz_center[0] xyz[:, 1] = xyz[:, 1] + xyz_center[1] xyz[:, 2] = xyz[:, 2] + xyz_center[2] if len(enu.shape) == 1: xyz = np.squeeze(xyz) elif transpose: return xyz.T return xyz def phase_uvw(ra, dec, initial_uvw): """ Calculate phased uvws/positions from unphased ones in an icrs or gcrs frame. This code expects input uvws or positions relative to the telescope location in the same frame that ra/dec are in (e.g. icrs or gcrs) and returns phased ones in the same frame. Note that this code is nearly identical to ENU_from_ECEF, except that it uses an arbitrary phasing center rather than a coordinate center. Parameters ---------- ra : float Right ascension of phase center. dec : float Declination of phase center. initial_uvw : ndarray of float Unphased uvws or positions relative to the array center, shape (Nlocs, 3). Returns ------- uvw : ndarray of float uvw array in the same frame as initial_uvws, ra and dec. """ if initial_uvw.ndim == 1: initial_uvw = initial_uvw[np.newaxis, :] uvw = np.zeros_like(initial_uvw) uvw[:, 0] = (-np.sin(ra) * initial_uvw[:, 0] + np.cos(ra) * initial_uvw[:, 1]) uvw[:, 1] = (-np.sin(dec) * np.cos(ra) * initial_uvw[:, 0] - np.sin(dec) * np.sin(ra) * initial_uvw[:, 1] + np.cos(dec) * initial_uvw[:, 2]) uvw[:, 2] = (np.cos(dec) * np.cos(ra) * initial_uvw[:, 0] + np.cos(dec) * np.sin(ra) * initial_uvw[:, 1] + np.sin(dec) * initial_uvw[:, 2]) return(uvw) def unphase_uvw(ra, dec, uvw): """ Calculate unphased uvws/positions from phased ones in an icrs or gcrs frame. This code expects phased uvws or positions in the same frame that ra/dec are in (e.g. icrs or gcrs) and returns unphased ones in the same frame. Parameters ---------- ra : float Right ascension of phase center. dec : float Declination of phase center. uvw : ndarray of float Phased uvws or positions relative to the array center, shape (Nlocs, 3). Returns ------- unphased_uvws : ndarray of float Unphased uvws or positions relative to the array center, shape (Nlocs, 3). """ if uvw.ndim == 1: uvw = uvw[np.newaxis, :] unphased_uvws = np.zeros_like(uvw) unphased_uvws[:, 0] = (-np.sin(ra) * uvw[:, 0] - np.sin(dec) *
np.cos(ra)
numpy.cos
import ctypes as ct import numpy as np import numpy.ctypeslib as ctl from .base import NullableFloatArrayType from smlmlib.context import Context from smlmlib.calib import sCMOS_Calib import scipy.stats class PSF: def __init__(self, ctx:Context, psfInst): self.inst = psfInst self.ctx = ctx lib = ctx.smlm.lib self.copyROI = False InstancePtrType = ct.c_void_p self._PSF_Delete = lib.PSF_Delete self._PSF_Delete.argtypes = [InstancePtrType] self._PSF_ThetaSize = lib.PSF_ThetaSize self._PSF_ThetaSize.restype = ct.c_int32 self._PSF_ThetaSize.argtypes = [InstancePtrType] self._PSF_ThetaFormat = lib.PSF_ThetaFormat self._PSF_ThetaFormat.restype = ct.c_char_p self._PSF_ThetaFormat.argtypes = [InstancePtrType] self._PSF_NumConstants = lib.PSF_NumConstants self._PSF_NumConstants.restype = ct.c_int32 self._PSF_NumConstants.argtypes = [InstancePtrType] self._PSF_NumDiag = lib.PSF_NumDiag self._PSF_NumDiag.restype = ct.c_int32 self._PSF_NumDiag.argtypes = [InstancePtrType] self._PSF_SampleSize = lib.PSF_SampleSize self._PSF_SampleSize.argtypes = [InstancePtrType, ct.c_int32] self._PSF_SampleSize.restype = ct.c_int32 self._PSF_SampleIndexDims = lib.PSF_SampleIndexDims self._PSF_SampleIndexDims.restype = ct.c_int32 self._PSF_SampleIndexDims.argtypes = [InstancePtrType] self._PSF_SampleCount = lib.PSF_SampleCount self._PSF_SampleCount.restype = ct.c_int32 self._PSF_SampleCount.argtypes = [InstancePtrType] # CDLL_EXPORT void PSF_ComputeExpectedValue(PSF* psf, int numspots, const float* theta, const float* constants, const int* spotpos, float* ev); self._PSF_ComputeExpectedValue = lib.PSF_ComputeExpectedValue self._PSF_ComputeExpectedValue.argtypes = [ InstancePtrType, ct.c_int32, ctl.ndpointer(np.float32, flags="aligned, c_contiguous"), #theta ctl.ndpointer(np.float32, flags="aligned, c_contiguous"), # constants ctl.ndpointer(np.int32, flags="aligned, c_contiguous"), # spotpos ctl.ndpointer(np.float32, flags="aligned, c_contiguous"), # ev ] # CDLL_EXPORT void PSF_ComputeFisherMatrix(PSF* psf, int numspots, const float* theta, const float* constants,const int* spotpos, float* fi); self._PSF_ComputeFisherMatrix = lib.PSF_ComputeFisherMatrix self._PSF_ComputeFisherMatrix.argtypes = [ InstancePtrType, ct.c_int32, ctl.ndpointer(np.float32, flags="aligned, c_contiguous"), ctl.ndpointer(np.float32, flags="aligned, c_contiguous"), ctl.ndpointer(np.int32, flags="aligned, c_contiguous"), # spotpos ctl.ndpointer(np.float32, flags="aligned, c_contiguous"), #fi ] # CDLL_EXPORT void PSF_ComputeDerivatives(PSF* psf, int numspots, const float* theta, const float* constants, const int* spotpos, float* derivatives, float* ev); self._PSF_ComputeDerivatives = lib.PSF_ComputeDerivatives self._PSF_ComputeDerivatives.argtypes = [ InstancePtrType, ct.c_int32, ctl.ndpointer(np.float32, flags="aligned, c_contiguous"), ctl.ndpointer(np.float32, flags="aligned, c_contiguous"), ctl.ndpointer(np.int32, flags="aligned, c_contiguous"), # spotpos ctl.ndpointer(np.float32, flags="aligned, c_contiguous"), ctl.ndpointer(np.float32, flags="aligned, c_contiguous"), ] self.fitInfoDType = np.dtype([('likelihood', '<f4'), ('iterations', '<i4')]) # CDLL_EXPORT void PSF_ComputeMLE(PSF* psf, int numspots, const float* sample, const float* constants,const int* spotpos, # const float* initial, float* theta, int* iterations, int maxiterations, float levmarAlpha, float* trace, int traceBufLen); self._PSF_ComputeMLE = lib.PSF_ComputeMLE self._PSF_ComputeMLE.argtypes = [ InstancePtrType, ct.c_int32, ctl.ndpointer(np.float32, flags="aligned, c_contiguous"), # sample ctl.ndpointer(np.float32, flags="aligned, c_contiguous"), # constants ctl.ndpointer(np.int32, flags="aligned, c_contiguous"), # spotpos NullableFloatArrayType, # initial ctl.ndpointer(np.float32, flags="aligned, c_contiguous"), # theta ctl.ndpointer(np.float32, flags="aligned, c_contiguous"), # diagnostics ctl.ndpointer(np.int32, flags="aligned, c_contiguous"), # iterations ctl.ndpointer(np.float32, flags="aligned, c_contiguous"), # tracebuf [theta*numspots*tracebuflen] ct.c_int32, ] self.thetasize = self._PSF_ThetaSize(self.inst) self.numconst = self._PSF_NumConstants(self.inst) self.samplecount = self._PSF_SampleCount(self.inst) self.indexdims = self._PSF_SampleIndexDims(self.inst) self.samplesize = [0]*self.indexdims for i in range(self.indexdims): self.samplesize[i] = self._PSF_SampleSize(self.inst, i) self.numdiag = self._PSF_NumDiag(self.inst) self.fmt = self.ThetaFormat() self.colnames = self.fmt.split(',') #print(f"Created PSF Parameters: {self.fmt}, #const={self.numconst}. #diag={self.numdiag} samplesize={self.samplesize}." ) def ThetaColNames(self): return self.colnames def _checkparams(self, theta, constants, roipos): theta = np.array(theta) if len(theta.shape) == 1: theta = [theta] theta = np.ascontiguousarray(theta, dtype=np.float32) numspots = len(theta) if constants is None: constants = np.zeros((numspots, self.numconst), dtype=np.float32) else: constants = np.ascontiguousarray(constants, dtype=np.float32) assert(np.array_equal(constants.shape, [numspots, self.numconst])) if roipos is None: roipos = np.zeros((numspots, self.indexdims), dtype=np.int32) else: roipos = np.ascontiguousarray(roipos, dtype=np.int32) assert(np.array_equal( roipos.shape, [numspots, self.indexdims])) if theta.shape[1] != self.thetasize: print(f"{self.fmt} expected, {theta.shape[1]} parameters given") assert(theta.shape[1]==self.thetasize) return theta,constants,roipos def ExpectedValue(self, theta, roipos=None, constants=None): theta,constants,roipos=self._checkparams(theta,constants,roipos) ev = np.zeros((len(theta), *self.samplesize), dtype=np.float32) self._PSF_ComputeExpectedValue(self.inst, len(theta), theta, constants, roipos, ev) return ev def GenerateSample(self, theta, roipos=None, constants=None): ev = self.ExpectedValue(theta, roipos, constants) return
np.random.poisson(ev)
numpy.random.poisson
import numpy as np from .Track import Track # Track descriptor information: # 0 - straight, 1 - corner # 0 - left, 1 - right # [type,length/sweep,radius,direction] segments = np.array( [ [0, 150, 0, -1], [1, np.pi / 2, 50, 0], [0, 100, 0, -1], [1, np.pi / 2, 90, 0], [0, 300, 0, -1], [1, np.pi / 2, 50, 0], [0, 100, 0, -1], [1, np.pi / 2, 90, 0], [0, 155, 0, -1], ] ) ovaltrack = Track(segments) segments = np.array( [ [0, 550, 0, -1], [1, 2.7, 12, 1], [0, 300, 0, -1], [1, 0.2, 160, 1], [0, 340, 0, -1], [1, 0.3, 120, 0], [0, 40, 0, -1], [1, 0.8, 120, 1], [0, 40, 0, -1], [1, 0.4, 120, 0], [0, 260, 0, -1], [1, 0.4, 160, 1], [0, 750, 0, -1], [1, 1.2, 30, 1], [0, 30, 0, -1], [1, 1.1, 40, 0], [0, 80, 0, -1], [1, 1.4, 55, 1], [0, 310, 0, -1], [1, 3.14, 55, 1], [0, 140, 0, -1], [1, 1.45, 50, 0], [0, 440, 0, -1], [1, 1.4, 70, 0], [0, 60, 0, -1], [1, 1.2, 130, 0], [0, 340, 0, -1], [1, 1.45, 66, 1], [0, 60, 0, -1], [1, 1.35, 66, 0], [0, 200, 0, -1], [1, 1.57, 50, 1], [0, 140, 0, -1], [1, 1.6, 140, 1], [0, 200, 0, -1], [1, 0.7, 150, 1], [0, 270, 0, -1], [1, 0.5, 160, 0], [0, 220, 0, -1], [1, 1.1, 140, 0], [0, 481.920, 0, -1], [1, 1.90, 10, 1], [0, 23.9815, 0, -1], [1, 1.94, 17, 0], ] ) Spa = Track(segments) segments = np.array( [ [0, 927, 0, -1], [1, 1.48, 40, 1], [0, 32, 0, -1], [1, 1.04, 50, 0], [0, 87, 0, -1], [1, 1.10, 104, 1], [0, 30, 0, -1], [1, 1.60, 150, 1], [0, 263, 0, -1], [1, 1.48, 44, 1], [0, 10, 0, -1], [1, 1.56, 100, 1], [0, 177, 0, -1], [1, 2.54, 42, 0], [0, 130, 0, -1], [1, 0.55, 150, 0], [0, 115, 0, -1], [1, 1.48, 52, 0], [0, 45, 0, -1], [1, 0.4, 100, 1], [0, 181, 0, -1], [1, 1.72, 85, 1], [0, 505, 0, -1], [1, 2.60, 34, 0], [0, 100, 0, -1], [1, 0.8, 30, 0], [0, 10, 0, -1], [1, 3.20, 60, 1], [0, 135, 0, -1], [1, 1.40, 30, 1], [0, 100, 0, -1], [1, 1.65, 25, 0], [0, 10, 0, -1], [1, 1.50, 33, 1], [0, 74.84, 0, -1], [1, 1.503, 90, 1], [0, 142.0, 0, -1], ] ) Barcelona = Track(segments) segments = np.array( [ [0, 483.85, 0, -1], [1, 1.50, 20, 1], [0, 367, 0, -1], [1, 2.3, 92, 0], [0, 40, 0, -1], [1, 1.75, 30, 1], [0, 161, 0, -1], [1, 2.4, 25, 1], [0, 10, 0, -1], [1, 0.4, 30, 0], [0, 60, 0, -1], [1, 3.2, 11, 0], [0, 55, 0, -1], [1, 1.6, 17, 1], [0, 52, 0, -1], [1, 1.9, 17, 1], [0, 180, 0, -1], [1, 1.05, 160, 1], [0, 100, 0, -1], [1, 0.4, 150, 1], [0, 100, 0, -1], [1, 1.54, 12, 0], [0, 1, 0, -1], [1, 1.54, 12, 1], [0, 20, 0, -1], [1, 0.9, 30, 1], [0, 1, 0, -1], [1, 0.9, 40, 0], [0, 140, 0, -1], [1, 1.5, 40, 0], [0, 111, 0, -1], [1, 1.0, 40, 0], [0, 1, 0, -1], [1, 0.90, 40, 1], [0, 125, 0, -1], [1, 1.4, 20, 1], [0, 1, 0, -1], [1, 1.5, 30, 0], [0, 92, 0, -1], [1, 0.7, 70, 0], [0, 44, 0, -1], [1, 2.6, 18, 1], [0, 40, 0, -1], [1, 1.4, 30, 1], [0, 5, 0, -1], [1, 0.4, 20, 0], [0, 51.6, 0, -1], [1, 0.4, 80, 1], ] ) Monaco = Track(segments) segments = np.array( [ [0, 1042, 0, -1], [1, 1.54, 16, 1], [0, 15, 0, -1], [1, 1.80, 19, 0], [0, 101, 0, -1], [1, 0.26, 140, 1], [0, 102, 0, -1], [1, 1.40, 200, 1], [0, 400, 0, -1], [1, 1.30, 15, 0], [0, 19, 0, -1], [1, 1.20, 15, 1], [0, 280, 0, -1], [1, 1.70, 67, 1], [0, 226, 0, -1], [1, 1.30, 40, 1], [0, 285, 0, -1], [1, 0.25, 160, 0], [0, 441, 0, -1], [1, 1.1, 28, 0], [0, 40, 0, -1], [1, 0.99, 86, 1], [0, 20, 0, -1], [1, 0.8, 35, 0], [0, 921.55, 0, -1], [1, 1.56, 70, 1], [0, 0.13, 0, -1], [1, 1.58, 200, 1], ] ) Monza = Track(segments) segments = np.array([[0, 200, 0, -1], [1, np.pi / 2, 20, 1], [0, 200, 0, -1]]) singleturn = Track(segments) segments = np.array( [ [0, 60, 0, -1], [1, np.pi / 2, 30, 1], [0, 60, 0, -1], [1, np.pi / 2, 100, 0], [0, 60, 0, -1], ] ) doubleturn = Track(segments) segments = np.array([[0, 120, 0, -1], [1, np.pi, 30, 1], [0, 120, 0, -1]]) uturn = Track(segments) segments = np.array( [ [0, 150, 0, -1], [1, np.pi / 4, 50, 0], [0, 10, 0, -1], [1, np.pi / 4, 50, 1], [0, 50, 0, -1], [1, np.pi, 25, 0], [0, 100, 0, -1], ] ) multiturn = Track(segments) segments = np.array([[0, 100, 0, -1]]) straight = Track(segments) segments = np.array( [ [0, 450, 0, -1], [1, np.deg2rad(133), 17, 1], [0, 67, 0, -1], [1, np.deg2rad(64), 21, 0], [0, 80, 0, -1], [1, np.deg2rad(28.6), 90, 1], [0, 530, 0, -1], [1, np.deg2rad(117), 35, 1], [0, 1, 0, -1], [1, np.deg2rad(25), 150, 1], [0, 1, 0, -1], [1, np.deg2rad(16), 100, 0], [0, 120, 0, -1], [1, np.deg2rad(30), 100, 0], [0, 20, 0, -1], [1, np.deg2rad(82.5), 58, 1], [0, 55, 0, -1], [1, np.deg2rad(60), 60, 0], [0, 198, 0, -1], [1, np.deg2rad(150), 20, 1], [0, 300, 0, -1], [1, np.deg2rad(60), 95, 0], [0, 28, 0, -1], [1, np.deg2rad(121), 15, 0], [0, 120, 0, -1], [1, np.deg2rad(5.35), 120, 0], [0, 553, 0, -1], [1, np.deg2rad(80), 35, 0], [0, 1, 0, -1], [1, np.deg2rad(83), 135, 0], [0, 60, 0, -1], [1, np.deg2rad(98), 125, 1], [0, 107, 0, -1], [1, np.deg2rad(30), 70, 1], [0, 20, 0, -1], [1, np.deg2rad(93.5), 40, 1], [0, 735, 0, -1], [1, np.deg2rad(100), 30, 1], [0, 47.3, 0, -1], [1,
np.deg2rad(21.5)
numpy.deg2rad
import config from utils import SumTree import numpy as np import random import torch TD_INIT = config.td_init EPSILON = config.epsilon ALPHA = config.alpha class Replay_buffer: ''' basic replay buffer ''' def __init__(self, capacity = int(1e6), batch_size = None): self.capacity = capacity self.memory = [None for _ in range(capacity)] #list to save tuples self.ind_max = 0 #how many transitions have been stored def remember(self, state, action, reward, next_state, done): ind = self.ind_max % self.capacity self.memory[ind] = (state, action, reward, next_state, done) self.ind_max += 1 def sample(self, k): ''' return sampled transitions. make sure there are at least k transitions ''' index_set = random.sample(list(range(len(self))), k) states = torch.from_numpy(
np.vstack([self.memory[ind][0] for ind in index_set])
numpy.vstack
# coding=utf-8 """ Module to apply a previously trained model to estimate the epigenome for a specific cell type in a different species """ import os as os import pandas as pd import numpy as np import numpy.random as rng import operator as op import multiprocessing as mp import json as json import pickle as pck from scipy.interpolate import LSQUnivariateSpline as kspline from crplib.auxiliary.seq_parsers import get_twobit_seq from crplib.auxiliary.hdf_ops import load_masked_sigtrack, get_valid_hdf5_groups, get_mapindex_groups from crplib.auxiliary.file_ops import create_filepath from crplib.auxiliary.modeling import select_dataset_subset, load_model, \ load_model_metadata, get_scorer, load_ml_dataset, determine_scoring_method, apply_preprocessor from crplib.mlfeat.featdef import feat_mapsig, get_online_version from crplib.auxiliary.constants import CHROMOSOME_BOUNDARY from crplib.metadata.md_signal import MD_SIGNAL_COLDEFS from crplib.metadata.md_signal import gen_obj_and_md as gen_sigobj from crplib.metadata.md_regions import MD_REGION_COLDEFS from crplib.metadata.md_regions import gen_obj_and_md as genregobj def load_dataset(fpath, groups, features, subset='', ycol='', ytype=None): """ :param fpath: :param groups: :param features: :param subset: :param ycol: :param ytype: :return: """ with pd.HDFStore(fpath, 'r') as hdf: if isinstance(groups, (list, tuple)): dataset = pd.concat([hdf[grp] for grp in sorted(groups)], ignore_index=True) else: dataset = hdf[groups] dataset = select_dataset_subset(dataset, subset) y_depvar = None if ytype is not None: y_depvar = dataset.loc[:, ycol].astype(ytype, copy=True) name_col = [cn for cn in dataset.columns if cn in ['name', 'source']] sample_names = [] if name_col: sample_names = dataset.loc[:, name_col[0]].tolist() predictors = dataset.loc[:, features] return predictors, sample_names, y_depvar def run_permutation_test(data, output, model, numperm, scorer, extra_scorer=''): """ :param data: :param output: :param model: :param numperm: :param scorer: :return: """ perm_scores = [] extra_scores = [] if extra_scorer: extra_name = extra_scorer extra_scorer = get_scorer(extra_scorer) for _ in range(numperm): perm_out = rng.permutation(output) perm_scores.append(scorer(model, data, perm_out)) if extra_scorer: extra_scores.append(extra_scorer(model, data, perm_out)) # the float here for later JSONification assert len(perm_scores) == numperm, \ 'Permutation failed, generated only {} permutation scores, needed {}'.format(len(perm_scores), numperm) perm_stats = {'perm_mean': float(np.mean(perm_scores)), 'perm_median': float(np.median(perm_scores)), 'perm_min': float(np.min(perm_scores)), 'perm_std': float(np.std(perm_scores)), 'perm_var': float(np.var(perm_scores)), 'perm_max': float(np.max(perm_scores)), 'perm_95pct': float(np.percentile(perm_scores, 95)), 'perm_5pct': float(np.percentile(perm_scores, 5))} if extra_scorer: extra_stats = {'perm_mean': float(np.mean(extra_scores)), 'perm_median': float(np.median(extra_scores)), 'perm_min': float(np.min(extra_scores)), 'perm_std': float(np.std(extra_scores)), 'perm_var': float(np.var(extra_scores)), 'perm_max': float(np.max(extra_scores)), 'perm_95pct': float(np.percentile(extra_scores, 95)), 'perm_5pct': float(np.percentile(extra_scores, 5))} perm_stats['perm_extra_{}'.format(extra_name)] = extra_stats return perm_stats ############################ def smooth_signal_estimate(signal, res): """ :param signal: :param res: :return: """ # for default resolution of 25, spans roughly one nucleosome window = res * 10 for pos in range(CHROMOSOME_BOUNDARY, len(signal), window): try: smoother = kspline(range(pos, pos+window), # x-axis signal[pos:pos+window], # y-axis t=[j+res for j in range(pos, pos + window - res, res)], # knots k=3) # degree of polynomial, cubic is default signal[pos:pos+window] = smoother(range(pos, pos+window)) except Exception as err: if pos + window > len(signal): break else: raise err signal = np.clip(signal, 0, signal.max()) return signal def make_signal_estimate(params): """ :param params: :return: """ chrom = params['chrom'] model = pck.load(open(params['modelfile'], 'rb')) seq = get_twobit_seq(params['seqfile'], params['chrom']) chromlen = len(seq) res = params['resolution'] index_groups = get_mapindex_groups(params['targetindex'], '') with pd.HDFStore(params['targetindex'], 'r') as idx: mask = idx[index_groups[chrom]['mask']] map_sig = load_masked_sigtrack(params['inputfile'], '', params['inputgroup'], chrom, chromlen, mask=mask) mapfeat = feat_mapsig est_sig = np.zeros(chromlen, dtype=np.float64) lolim = CHROMOSOME_BOUNDARY hilim = int(chromlen // res * res) comp_seqfeat = get_online_version(params['features'], params['kmers']) get_values = op.itemgetter(*tuple(params['feature_order'])) chunks = [] positions = [] for pos in range(lolim, hilim, res): chunk = {'seq': seq[pos:pos+res]} positions.append(pos) chunk.update(mapfeat(map_sig[pos:pos+res])) chunk = comp_seqfeat(chunk) chunks.append(get_values(chunk)) if len(chunks) >= 10000: y_hat = model.predict(np.array(chunks)) for idx, val in zip(positions, y_hat): est_sig[idx:idx+res] = val chunks = [] positions = [] if len(chunks) > 0: y_hat = model.predict(np.array(chunks)) for idx, val in zip(positions, y_hat): est_sig[idx:idx+res] = val if not params['nosmooth']: est_sig = smooth_signal_estimate(est_sig, res) return chrom, est_sig def assemble_params_estsig(args): """ :param args: :return: """ all_groups = get_valid_hdf5_groups(args.inputfile, args.inputgroup) model_md = load_model_metadata(args) commons = {'modelfile': args.modelfile, 'resolution': int(model_md['resolution']), 'seqfile': args.seqfile, 'targetindex': args.targetindex, 'inputfile': args.inputfile, 'inputgroup': args.inputgroup, 'features': model_md['features'], 'kmers': model_md['kmers'], 'feature_order': model_md['feature_order'], 'nosmooth': args.nosmooth} arglist = [] for g in all_groups: chrom = g.rsplit('/', 1)[1] tmp = dict(commons) tmp['chrom'] = chrom arglist.append(tmp) return arglist def run_estimate_signal(logger, args): """ :param logger: :param args: :return: """ logger.debug('Assembling worker parameters') arglist = assemble_params_estsig(args) logger.debug('Created parameter list of size {}'.format(len(arglist))) with pd.HDFStore(args.outputfile, 'w', complevel=9, complib='blosc', encoding='utf-8') as hdfout: metadata = pd.DataFrame(columns=MD_SIGNAL_COLDEFS) with mp.Pool(args.workers) as pool: logger.debug('Start processing...') resit = pool.imap_unordered(make_signal_estimate, arglist, chunksize=1) for chrom, valobj in resit: logger.debug('Processed chromosome {}'.format(chrom)) group, valobj, metadata = gen_sigobj(metadata, args.outputgroup, chrom, args.inputfile, valobj) hdfout.put(group, valobj, format='fixed') hdfout.flush() logger.debug('Estimated signal data saved') logger.debug('Saving metadata') hdfout.put('metadata', metadata) hdfout.flush() logger.debug('All chromosomes processed') return 0 def build_output_dataframe(dset, pred, probs, classes, merge, reduce): """ :param dset: :param pred: :param probs: :param classes: :param merge: :return: """ dset = dset.assign(class_pred=pred) class_cols = ['class_prob_' + cls for cls in map(str, list(map(int, classes)))] dset = pd.concat([dset, pd.DataFrame(probs, columns=class_cols)], axis='columns') if reduce: dset = dset.loc[dset.class_pred.isin(reduce), :] if merge: assert len(reduce) == 1, 'Merging overlapping regions in dataset w/o reducing to single class not supported' dset.drop([col for col in dset.columns if col.startswith('ft')], axis='columns', inplace=True) dset.sort_values(by=['start', 'end'], axis='index', ascending=True, inplace=True) dset.index = np.arange(dset.shape[0]) # TODO # in spare time, find out if there is a more # native way in Pandas to merge overlapping intervals... new_rows = [] cur_start = dset.loc[0, 'start'] cur_end = dset.loc[0, 'end'] cur_probs = [] cur_names = set() get_name = 'name' if 'name' in dset.columns else 'source' assert get_name in dset.columns, 'No naming column exists for regions' class_prob = 'class_prob_' + str(reduce[0]) for row in dset.itertuples(index=False): if row.start <= cur_end: cur_end = row.end cur_probs.append(row.__getattribute__(class_prob)) cur_names.add(row.__getattribute__(get_name)) else: regname = cur_names.pop() # return any or unique new_rows.append([cur_start, cur_end, regname, np.average(cur_probs)]) cur_names = set() cur_probs = [] cur_start = row.start cur_end = row.end cur_probs.append(row.__getattribute__(class_prob)) cur_names.add(row.__getattribute__(get_name)) new_cols = ['start', 'end', 'name', 'class_prob'] dset = pd.DataFrame(new_rows, columns=new_cols) return dset def model_scan_regions(params): """ :param params: :return: """ model_md = json.load(open(params['modelmetadata'], 'r')) model = pck.load(open(params['modelfile'], 'rb')) feat_order = model_md['feature_order'] featdata, _, _ = load_region_data(params['inputfile'], params['inputgroup'], feat_order, params['classlabels']) y_pred = model.predict(featdata) y_prob = model.predict_proba(featdata) class_order = model.classes_ with pd.HDFStore(params['inputfile'], 'r') as hdf: full_dataset = hdf[params['inputgroup']] df = build_output_dataframe(full_dataset, y_pred, y_prob, class_order, params['merge'], params['reduce']) return params['chrom'], df def assemble_params_scnreg(args, logger): """ :return: """ all_groups = get_valid_hdf5_groups(args.inputfile, args.inputgroup) logger.debug('Identified {} valid groups in input file'.format(len(all_groups))) merge_regions = False with pd.HDFStore(args.inputfile, 'r') as hdf: md = hdf['metadata'] res = md.loc[0, 'resolution'] if res > 0: merge_regions = True logger.debug('Detected - merge regions: {}'.format(merge_regions)) if not args.modelmetadata: fpath_md = args.modelfile.rsplit('.', 1)[0] + '.json' else: fpath_md = args.modelmetadata commons = vars(args) del commons['module_logger'] del commons['execute'] commons['modelmetadata'] = fpath_md arglist = [] for g in all_groups: tmp = dict(commons) tmp['inputgroup'] = g _, tmp['chrom'] = os.path.split(g) tmp['merge'] = merge_regions arglist.append(tmp) logger.debug('Build argument list of size {} to process'.format(len(arglist))) return arglist def run_scan_regions(logger, args): """ :param logger: :param args: :return: """ arglist = assemble_params_scnreg(args, logger) with pd.HDFStore(args.outputfile, 'w') as hdf: metadata = pd.DataFrame(columns=MD_REGION_COLDEFS) with mp.Pool(args.workers) as pool: resit = pool.imap_unordered(model_scan_regions, arglist, chunksize=1) for chrom, dataobj in resit: logger.debug('Received data for chromosome {}'.format(chrom)) grp, dataobj, metadata = genregobj(metadata, args.outputgroup, chrom, [args.inputfile, args.modelfile], dataobj) hdf.put(grp, dataobj, format='fixed') hdf.flush() logger.debug('Flushed data to file') hdf.put('metadata', metadata, format='table') return 0 def run_regression_testdata(args, model, model_md, dataset, y_true, logger): """ :param args: :param model: :param model_md: :param dataset: :param y_true: :return: """ logger.debug('Making prediction for test dataset') scoring_method = determine_scoring_method(args, model_md, logger) scorer = get_scorer(scoring_method) y_pred = model.predict(dataset) model_perf = scorer(model, dataset, y_true) out_metadata = {} if args.numperm > 0: logger.debug('Running permutation test') perf_score, permscores, permstats, permparams = run_permutation_test(dataset, y_true, model, args.cvperm, args.numperm, args.workers, scorer) if not
np.isclose(model_perf, perf_score, rtol=1e-05, atol=1e-05)
numpy.isclose
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2018 <NAME> <<EMAIL>> # # Distributed under terms of the GNU-License license. """ """ import numpy as np import numpy.linalg as LA import scipy.stats as scistats import matplotlib.pyplot as plt import sklearn.gaussian_process as skgp from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel, RBF from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF, WhiteKernel def _hermite_moment_nonlinear(u,mu,sigma,mu3,mu4,fisher=True): """ Hermite moment models for nonlinear responses """ if fisher: mu4 = mu4 + 3 if mu4 > 3 : h3 = mu3/6 h4 = (mu4-3)/24 c4 = (np.sqrt(1+36*h4)-1)/18 c3 = h3/(1+6*c4) k = 1/(np.sqrt(1+2*c3**2+6*c4**2)) x = mu + k*sigma*(u+c3*(u**2-1) + c4*(u**3-3*u)) elif mu4 < 3: h4 = (mu4-3) / 24 h3 = mu3 / 6 a = h3/(3*h4) b = -1/(3*h4) k = (b - 1 - a**2)**3 c = 1.5*b*(a+u) - a**3 x = mu + sigma * ((np.sqrt(c**2+k)+c)**1/3 - (np.sqrt(c**2+k)-c)**1/3 - a) else: x = mu + sigma * u return x def _mean_up_crossing_rate(data, dt=1): """ Calculate the mean upcrossing rate for data of shape [m,ndofs] """ data_shape = data.shape data_mean = np.mean(data,axis=0) data = data - data_mean data1 = data[:,0:-1] data2 = data[:,1:] cross_points = data1 * data2 up_points = data2 - data1 mucr = [] for i in np.arange(data.shape[0]): candidatex = np.arange(data1.shape[1]) condition1 = cross_points[i,:] < 0 condition2 = up_points[i,:] > 0 condition = condition1 & condition2 up_cross_idx = candidatex[np.where(condition)] T = (up_cross_idx[-1] - up_cross_idx[0]) * dt ## Only counting complete circles mucr.append((len(up_cross_idx)-1)/T) return np.array(mucr).reshape(-1,1) np.set_printoptions(precision=3) filename = 'GQ/GQ9_' datax = [] datay = [] time_ramp = 50 for i in np.arange(10): _datax = np.load(filename+'x{:d}.npy'.format(i)) _datay = np.load(filename+'y{:d}.npy'.format(i)) datax.append(np.squeeze(_datax[0])) ## quadrature, (coords, weights) dt = _datay[0,0,1,0] - _datay[0,0,0,0] time_ramp_idx = int(time_ramp/dt) _datay = _datay[:,:,time_ramp_idx:,:] y_max = np.max(_datay[:,:,:,1], axis=2) y_std = np.std(_datay[:,:,:,1], axis=2) y_mu3 = scistats.skew(_datay[:,:,:,1], axis=2) y_mu4 = scistats.kurtosis(_datay[:,:,:,1], axis=2) y_mucr=_mean_up_crossing_rate(np.squeeze(_datay[:,:,:,1]), dt=dt) print('Skewness:{} '.format(y_mu3.T)) print('Kurtosis:{} '.format(y_mu4.T)) # print(_datay[0,0,1,0] , _datay[0,0,0,0]) # datay.append([np.squeeze(y_max), np.squeeze(y_std), np.squeeze(y_mu3), np.squeeze(y_mu4)]) datay.append([np.squeeze(y_max), np.squeeze(y_std), np.squeeze(y_mu3), np.squeeze(y_mu4), np.squeeze(y_mucr)]) datax = np.array(datax) datay = np.array(datay) print('*******') print(np.array(datax).shape, np.array(datay).shape) # filename = 'MC2500' # datax = np.load('MC2500x.npy') # datay = np.load('MC2500y.npy') # X = datax.T # y = np.max(datay[:,:,:,1],axis=2) # print(X.shape,y.shape) # plt.plot(datax.T,datay.T,'-.o') # plt.xlabel(r'Spectrum parameter $c$') # plt.ylabel(r'Max$(Y_t)$') # plt.savefig('Max_vs_c_observation.eps') # X = datax.reshape((datax.size,1 )) # y = datay.reshape((datay.size,1 )) X = np.mean(datax,axis=0).reshape(datax.shape[1],-1) y_max = np.squeeze(datay[:,0,:]) # print(y_max) y_max_mean= np.mean(y_max, axis=0) # print(y_max_mean) y_max = y_max - y_max_mean # print(y_max) y_max_std =
np.std(y_max, axis=0,ddof=1 )
numpy.std
import numpy as np import numpy.linalg as lg class atom: def __init__(self,name,pos): self.type=name self.pos=pos self.rank=0 self.q=0 self.d=np.zeros(3) self.quad=np.zeros(5) self.pol=np.zeros([3,3]) def setmultipoles(self,q,d,quad,pol): self.q=q self.d=d self.quad=quad self.detrank() self.pol=pol def CartesianQuadrupoles(self): cartesian=np.zeros([3,3]) sqrt3=np.sqrt(3) cartesian[0][0] = 0.5 * (sqrt3 * self.quad[3] - self.quad[0]) cartesian[1][1] = -0.5 * (sqrt3 * self.quad[3] + self.quad[0]); cartesian[2][2] = self.quad[0]; cartesian[0][1] = 0.5 * sqrt3 * self.quad[4]; cartesian[1][0] = cartesian[0][1]; cartesian[0][2] = 0.5 * sqrt3 * self.quad[1]; cartesian[2][0] = cartesian[0][2]; cartesian[1][2] = 0.5 * sqrt3 * self.quad[2]; cartesian[2][1] = cartesian[1][2]; return cartesian def detrank(self): rank=0 if any(self.d!=0): rank=1 if any(self.quad!=0): rank=2 self.rank=rank def shift(self,shift): #print self.pos #print shift self.pos+=shift #print self.pos def xyzline(self): return "{:<3s} {:.6f} {:.6f} {:.6f}\n".format(self.type,self.pos[0],self.pos[1],self.pos[2]) def splitup(self,spacing=0.01): multipolelist=[] m=atom(self.type,self.pos) m.setmultipoles(self.q,np.zeros(3),np.zeros(5),self.pol) multipolelist.append(m) if self.rank>0 and any(self.d!=0): cartesian=np.array([self.d[1],self.d[2],self.d[0]]) norm=cartesian/np.linalg.norm(self.d) posA=self.pos+0.5*spacing*norm posB=self.pos-0.5*spacing*norm qA=np.linalg.norm(self.d)/spacing if np.absolute(qA) >1.e-9: qB=-qA d1=atom("D",posA); d1.setmultipoles(qA,np.zeros(3),np.zeros(5),np.zeros([3,3])) d2 = atom("D", posB); d2.setmultipoles(qB, np.zeros(3), np.zeros(5), np.zeros([3, 3])) multipolelist.append(d1) multipolelist.append(d2) if self.rank>1: cartesian=self.CartesianQuadrupoles() eigenval,eigenvec=np.linalg.eigh(cartesian) fullcharge=0 for val,vec in zip(eigenval,eigenvec.T): q=1/3.0*val/(spacing**2) if np.absolute(q)<1.e-9: continue vecA=self.pos+spacing*vec vecB = self.pos-spacing * vec q1 = atom("Q", vecA); q1.setmultipoles(q, np.zeros(3), np.zeros(5), np.zeros([3, 3])) q2 = atom("Q", vecB); q2.setmultipoles(q, np.zeros(3),
np.zeros(5)
numpy.zeros
import numpy as np from numpy.testing import assert_array_equal, assert_raises from nilabels.tools.aux_methods.morpological_operations import get_morphological_patch, get_morphological_mask, \ get_values_below_patch, get_circle_shell_for_given_radius # TEST aux_methods.morphological.py def test_get_morpological_patch(): expected = np.ones([3, 3]).astype(np.bool) expected[0, 0] = False expected[0, 2] = False expected[2, 0] = False expected[2, 2] = False assert_array_equal(get_morphological_patch(2, 'circle'), expected) assert_array_equal(get_morphological_patch(2, 'square'),
np.ones([3, 3])
numpy.ones
""" Collection of environment classes that are based on rai-python """ import sys import os import time import tqdm import numpy as np import matplotlib.pyplot as plt sys.path.append(os.getenv("HOME") + '/git/rai-python/rai/rai/ry') if os.getenv("HOME") + '/git/rai-python/rai/rai/ry' in sys.path: import libry as ry class DiskEnv(): """ Wrapper class for the disk-on-a-table environment, simulated using PhysX """ def __init__( self, action_duration=0.5, action_length=0.1, break_pos_thres=0.03, floor_level=0.65, finger_relative_level=0.14, tau=.01, safety_distance=0.1, spherically_symmetric_neighbours=False, file=None, display=False ): self.action_duration = action_duration self.action_length = action_length self.break_pos_thres = break_pos_thres self.floor_level = floor_level self.finger_relative_level = finger_relative_level self.tau = tau self.safety_distance = safety_distance self.spherically_symmetric_neighbours = spherically_symmetric_neighbours self.n_steps = int(self.action_duration/self.tau) self.proportion_per_step = 1/self.n_steps self.config = ry.Config() if file is not None: self.config.addFile(file) else: self.config.addFile(os.getenv("HOME") + '/git/ryenv/ryenv/z.push_default.g') self.config.makeObjectsFree(['finger']) self.config.setJointState([0.3, 0.3, 0.15, 1., 0., 0., 0.]) self.finger_radius = self.config.frame('finger').info()['size'][0] self.simulation = self.config.simulation( ry.SimulatorEngine.physx, display) self.reset_disk() self.disk_dimensions = [0.2, 0.25] self.reset([0.3, 0.3]) def view(self): """ Create view of current configuration """ return self.config.view() def add_and_show_target(self, target_state): """ Add target state and visualize it in view """ target = self.config.addFrame(name="target") target.setShape(ry.ST.cylinder, size=self.disk_dimensions) target.setColor([1, 1, 0, 0.4]) self.set_frame_state( target_state, "target" ) def get_disk_state(self): """ Get the current position of the disk """ return np.array(self.config.frame('box').getPosition()[:2]) def reset_disk(self, coords=(0, 0)): """ Reset the disk to an arbitrary position """ # always reset box to the center self.set_frame_state( coords, 'box' ) state_now = self.config.getFrameState() self.simulation.setState(state_now, np.zeros((state_now.shape[0], 6))) def allowed_state( self, finger_position, disk_position=np.array([0, 0]) ): """ Return whether a state of the finger is within the allowed area or not """ return np.linalg.norm( finger_position - disk_position ) > self.disk_dimensions[0] + self.safety_distance def reset( self, finger_position, disk_position=(0, 0) ): """ Reset the state (i.e. the finger state) to an arbitrary position """ assert self.allowed_state( finger_position, disk_position=np.array(disk_position) ) joint_q = np.array([ *finger_position, self.finger_relative_level, 1., 0., 0., 0. ]) self.config.setJointState(joint_q) self.simulation.step(u_control=[], tau=self.tau) self.reset_disk(coords=disk_position) def evolve( self, n_steps=1000, fps=None ): """ Evolve the simulation for n_steps time steps of length self.tau """ for _ in range(n_steps): self.simulation.step(u_control=[], tau=self.tau) if fps is not None: time.sleep(1/fps) def set_frame_state( self, state, frame_name ): """ Set an arbitrary frame of the configuration to and arbitrary state """ self.config.frame(frame_name).setPosition([ *state[:2], self.floor_level ]) def transition( self, action, fps=None ): """ Simulate the system's transition under an action """ # gradual pushing movement joint_q = self.config.getJointState() for _ in range(self.n_steps): joint_q[0] += self.proportion_per_step * action[0] joint_q[1] += self.proportion_per_step * action[1] self.config.setJointState(joint_q) self.simulation.step(u_control=[], tau=self.tau) if fps is not None: time.sleep(1/fps) change = np.array( self.config.frame('box').getPosition()[:2] ) return change def get_state(self): """ Get the current state, i.e. position of the finger """ return self.config.getJointState()[:2] def get_relative_finger_state(self): """" Get the current state (position of the finger) relative to the position of the disk """ disk = self.get_disk_state() finger = self.get_state() finger_shifted = finger - disk return finger_shifted def sample_random_goals(self, n_goals): """ This function samples uniformly from the goal distribution """ angle_dir = np.pi*(2*np.random.rand(n_goals)-1) return np.stack(( np.cos(angle_dir), np.sin(angle_dir) ), axis=-1) def calculate_thresholded_change(self, change): """Apply threshold to change in order to avoid giving rewards fors numerical noise""" change_thresholded = change.copy() if np.linalg.norm(change_thresholded) < self.break_pos_thres: change_thresholded[0] = 0 change_thresholded[1] = 0 return change_thresholded def calculate_reward(self, change, goal): """calculate reward from intended goal and actual change of disk coordinates""" change = self.calculate_thresholded_change(change) direction_changed = not sum(change) == 0 if direction_changed: direction_cosine = np.sum(change[:2]*goal[:2])/np.linalg.norm( change[:2] )/np.linalg.norm(goal[:2]) if direction_cosine > 0.9: return 1 return -1 return 0 def find_near_neighbours( self, states, goals, state, goal, scale ): """ This function does a rapneid pre-choice of possible near neighbours only by putting constraints on single-coordinate differences on the 5 coordinates state_x,state_y,goal_dir_x,goal_dir_y,goal_orientation. This greatly reduces the number of pairs the actual distance has to be calculated for. """ # only consider samples who have a smaller difference than action_length # in all of their state coordinates... subset = np.where( np.abs( states[:, 0] - state[0] ) < self.action_length * scale )[0] subset = subset[ np.abs( states[subset, 1] - state[1] ) < self.action_length * scale ] # ...and who have a smaller difference than 0.1 # in both of the goal direction coordinates subset = subset[ np.abs( goals[subset, 0] - goal[0] ) < 0.1 * scale ] subset = subset[ np.abs( goals[subset, 1] - goal[1] ) < 0.1 * scale ] if self.spherically_symmetric_neighbours: # angle-dependent cut-out in goal space subset = subset[ np.sum( goals[subset, :] * goal[None, :], axis=-1 ) > np.cos(0.1 * scale) ] # circular cut-out in state-space subset = subset[ np.linalg.norm( states[subset, :] - state[None, :], axis=-1 ) < self.action_length * scale ] return subset def get_augmented_targets(self, states, targets): """ Create handcrafted targets for the values of some of the states """ targets[ np.linalg.norm( states, axis=-1 ) > 2 ] = 0 def visualize_states(self, states, save_name=None): """ Helper function to visualize a collection of states """ plt.plot( states[:, 0], states[:, 1], '*' ) plt.xlim(-1, 1) plt.ylim(-1, 1) if save_name is not None: plt.savefig(save_name + '.png') plt.show() def test_controller( self, controller, n_of_n_splits=(0, 1), n_trial_numbers=20, rollout_length=50 ): """ Create data for a circular plot of the performance of the controller in this environment """ direction_angles_all = np.linspace(0, 2*np.pi, 16, endpoint=False) direction_angles = np.split( direction_angles_all, n_of_n_splits[1] )[n_of_n_splits[0]] all_rewards = [] for direction_angle in tqdm.tqdm(direction_angles): goal = np.array([ np.cos(direction_angle), np.sin(direction_angle) ]) rewards = [] trial_number = 0 while trial_number < n_trial_numbers: possible_finger_state = 1*(np.random.rand(2)-0.5) if self.allowed_state(possible_finger_state) and ( sum(goal*possible_finger_state)/np.linalg.norm( goal)/np.linalg.norm(possible_finger_state) < 0 ): trial_number += 1 self.reset( possible_finger_state, disk_position=[0, 0] ) for __ in range(rollout_length): action = controller.get_action( self.get_state(), goal ) if any(np.isnan(action)): raise Exception('action is nan') change = self.transition(action) if np.sum(np.abs( self.calculate_thresholded_change(change) )) != 0: break if np.sum(np.abs( self.calculate_thresholded_change(change) )) == 0: reward = -10 else: reward = np.sum(np.array(change)*np.array( goal))/np.linalg.norm(change)/np.linalg.norm(goal) print(goal, self.calculate_thresholded_change(change), reward) rewards.append(reward) all_rewards.append(rewards) return all_rewards class DiskMazeEnv(): """ Wrapper class for the disk-on-a-table environment, simulated using PhysX """ def __init__( self, action_duration=0.5, action_length=0.1, floor_level=0.075, wall_height=0.1, wall_thickness=0.01, finger_relative_level=0.075, tau=.01, file=None, display=False ): self.action_duration = action_duration self.action_length = action_length self.floor_level = floor_level self.wall_height = wall_height self.wall_thickness = wall_thickness self.finger_relative_level = finger_relative_level self.tau = tau self.n_steps = int(self.action_duration/self.tau) self.proportion_per_step = 1/self.n_steps self.config = ry.Config() if file is not None: self.config.addFile(file) else: self.config.addFile(os.getenv("HOME") + '/git/ryenv/ryenv/z.push_maze.g') self.config.makeObjectsFree(['finger']) self.simulation = self.config.simulation( ry.SimulatorEngine.physx, display) self.wall_num = 0 self.reset([0, -0.1]) def view(self): """ Create view of current configuration """ return self.config.view() def get_disk_state(self): """ Get the current state of the disk """ return np.array(self.config.frame('disk').getPosition()[:2]) def get_finger_state(self): """ Get the current state of the finger """ # for some reason, the finger has the middle of the table # as reference return self.config.getJointState()[:2] + np.array([ 0.5, 0.5 ]) def get_relative_finger_state(self): """" Get the current state of the finger relative to the state of the disk """ disk = self.get_disk_state() finger = self.get_finger_state() finger_shifted = finger - disk return finger_shifted def get_state(self): """ Get the current state of both finger and disk """ return np.concatenate(( self.get_finger_state(), self.get_disk_state() )) def reset_disk(self, coords=(0, 0)): """ Reset the disk to an arbitrary position """ # reset disk disk = self.config.frame('disk') disk.setPosition([ *coords, self.floor_level ]) disk.setQuaternion([ 1., 0., 0., 0. ]) state_now = self.config.getFrameState() self.simulation.setState(state_now, np.zeros((state_now.shape[0], 6))) def reset( self, finger_position, disk_position=(0.1, 0.1) ): """ Reset the state (i.e. the finger state) to an arbitrary position """ finger_position_relative_to_table = np.array( finger_position ) - np.array([0.5, 0.5]) joint_q = np.array([ *finger_position_relative_to_table, self.finger_relative_level, 1., 0., 0., 0. ]) self.config.setJointState(joint_q) self.simulation.step(u_control=[], tau=self.tau) self.reset_disk(coords=disk_position) def transition( self, action, fps=None ): """ Simulate the system's transition under an action """ pos_before = np.array( self.config.frame('disk').getPosition()[:2] ) # gradual pushing movement joint_q = self.config.getJointState() for _ in range(self.n_steps): joint_q[0] += self.proportion_per_step * action[0] joint_q[1] += self.proportion_per_step * action[1] self.config.setJointState(joint_q) self.simulation.step(u_control=[], tau=self.tau) if fps is not None: time.sleep(1/fps) change = np.array( self.config.frame('disk').getPosition()[:2] ) - pos_before return change def add_wall(self, start_end): """ Add a wall to the maze based on start and end position """ start, end = start_end # make sure the wall extends into exactly one direction assert sum(start == end) == 1 box_position = (end+start)/2 box_position = np.append( box_position, (self.floor_level + self.wall_height)/2 ) xy_dim = self.wall_thickness*(start == end) + np.abs(end-start) wall = self.config.frame('wall_'+str(self.wall_num)) wall.setShape(ry.ST.box, [ xy_dim[0], xy_dim[1], self.wall_height, 0.0 ]) wall.setPosition(box_position) wall.setQuaternion([1, 0, 0, 0]) wall.setContact(-1) wall.setColor([1, 1, 0]) self.wall_num += 1 def remove_remaining_walls(self): """ Remove non-used walls from .g file """ while self.wall_num < 30: wall = self.config.delFrame('wall_'+str(self.wall_num)) self.wall_num += 1 def add_maze(self, maze_array): """ Translate the maze array to a physical maze in the simulation """ walls_left = maze_array n_dim, m_dim = walls_left.shape start_ends = [] for i in range(n_dim): for j in range(m_dim): if i == 0 or i == n_dim-1 or j == 0 or j == n_dim-1: walls_left[i, j] = 0 if walls_left[i, j]: for neighbour in [ (1, 0), (0, 1), (-1, 0), (0, -1) ]: length = 0 while ( i + (length+1) * neighbour[0] >= 0 and i + (length+1) * neighbour[0] <= n_dim-1 and j + (length+1) * neighbour[1] >= 0 and j + (length+1) * neighbour[1] <= m_dim-1 and walls_left[ i + (length+1) * neighbour[0], j + (length+1) * neighbour[1] ] ): walls_left[ i + (length+1) * neighbour[0], j + (length+1) * neighbour[1] ] = 0 length += 1 if length > 0: start_ends.append([ [ i, j ], [ i + length * neighbour[0], j + length * neighbour[1] ] ]) start_ends = np.array(start_ends) / ( np.array( maze_array.shape )[None, None, :] - 1 ) for start_end in start_ends: self.add_wall( start_end ) self.remove_remaining_walls() def visualize_states(self, states, save_name=None): """ Helper function to visualize a collection of states """ plt.plot( states[:, 0], states[:, 1], '*' ) plt.xlim(0, 1) plt.ylim(0, 1) if save_name is not None: plt.savefig(save_name + '.png') plt.show() class BoxEnv(): """ This env is meant as the open source version of the 'FetchPush-v1' environemnt in the open ai gym baseline """ def __init__( self, action_duration=0.5, floor_level=0.65, finger_relative_level=0.14, tau=.01, file=None, display=False ): self.action_duration = action_duration self.floor_level = floor_level self.finger_relative_level = finger_relative_level self.tau = tau self.n_steps = int(self.action_duration/self.tau) self.proportion_per_step = 1/self.n_steps self.target_tolerance = 0.1 self.config = ry.Config() if file is not None: self.config.addFile(file) else: self.config.addFile(os.getenv("HOME") + '/git/ryenv/ryenv/z.push_box.g') self.config.makeObjectsFree(['finger']) self.config.setJointState([0.3, 0.3, 0.15, 1., 0., 0., 0.]) self.finger_radius = self.config.frame('finger').info()['size'][0] self.simulation = self.config.simulation( ry.SimulatorEngine.physx, display) self.reset_box() self.box_dimensions = [0.4, 0.4, 0.2, 0.05] self.reset([0.3, 0.3]) self.maximum_xy_for_finger = 1.7 self.minimum_rel_z_for_finger = 0.05 + 0.03 self.maximum_rel_z_for_finger = 1 self.config.frame('floor').setColor( np.array((200, 200, 200))/255, ) rgb = [93, 87, 94] self.config.frame('finger').setColor(np.array([ *rgb, 255 ])/255) self.config.frame('box').setColor(np.array([ *rgb, 255 ])/255) def view(self): """ Create view of current configuration """ return self.config.view() def add_and_show_target(self, target_state): """ Add target state and visualize it in view """ self.config.delFrame('target') target = self.config.addFrame(name="target") target.setShape(ry.ST.sphere, size=[self.target_tolerance]) target.setColor([1, 1, 0, 0.4]) self.set_frame_state( target_state, "target" ) self.config.frame('target').setColor( np.array((81, 203, 32, 130))/255 ) def reset_box(self, coords=(0, 0)): """ Reset the box to an arbitrary position """ print('Test for collision here') # always reset box to the center self.set_frame_state( coords, 'box' ) state_now = self.config.getFrameState() self.simulation.setState(state_now,
np.zeros((state_now.shape[0], 6))
numpy.zeros
import numpy as np import astropy.units as u import astropy.time as at import astropy.coordinates as coord import scipy.interpolate as interp import scipy.ndimage as img import scipy.sparse import numpy.random as random def dict_from_h5(hf,data): import h5py for key in hf.keys(): if key == 'obs_times': try: print(hf[key]) data[key] = at.Time(
np.array(hf[key])
numpy.array
import tensorflow as tf import numpy as np import sac_dev.util.tf_util as TFUtil import sac_dev.util.mpi_util as MPIUtil from sac_dev.util.logger import Logger class MPISolver(): CHECK_SYNC_ITERS = 1000 def __init__(self, sess, optimizer, vars): self._vars = vars self._sess = sess self._optimizer = optimizer self._build_grad_feed(vars) self._update = optimizer.apply_gradients(zip(self._grad_ph_list, self._vars)) self._set_flat_vars = TFUtil.SetFromFlat(sess, self._vars) self._get_flat_vars = TFUtil.GetFlat(sess, self._vars) self._iters = 0 grad_dim = self._calc_grad_dim() self._flat_grad = np.zeros(grad_dim, dtype=np.float32) self._global_flat_grad =
np.zeros(grad_dim, dtype=np.float32)
numpy.zeros
#coding:utf-8 import numpy as np import time from videocore.assembler import qpu from videocore.driver import Driver def mask(idx): values = [1]*16 values[idx] = 0 return values @qpu def piadd(asm): A_ADDR=0 #インデックス B_ADDR=1 C_ADDR=2 IO_ITER=3 THR_ID=4 THR_NM=5 COMPLETED=0 #セマフォ用 ldi(null,mask(A_ADDR),set_flags=True)#r2にuniformを格納 mov(r2,uniform,cond='zs') ldi(null,mask(B_ADDR),set_flags=True) mov(r2,uniform,cond='zs') ldi(null,mask(C_ADDR),set_flags=True) mov(r2,uniform,cond='zs') ldi(null,mask(IO_ITER),set_flags=True) mov(r2,uniform,cond='zs') ldi(null,mask(THR_ID),set_flags=True) mov(r2,uniform,cond='zs') ldi(null,mask(THR_NM),set_flags=True) mov(r2,uniform,cond='zs') imul24(r3,element_number,4) rotate(broadcast,r2,-A_ADDR) iadd(r0,r5,r3) rotate(broadcast,r2,-B_ADDR) iadd(r1,r5,r3) #r0:A_ADDR #r1:B_ADDR L.loop ldi(broadcast,16*4) for i in range(32): #ra mov(tmu0_s,r0) mov(tmu1_s,r1) nop(sig='load tmu0') iadd(r0,r0,r5) iadd(r1,r1,r5) mov(r3,r4,sig='load tmu1') fadd(ra[i],r3,r4) #rb mov(tmu0_s,r0) mov(tmu1_s,r1) nop(sig='load tmu0') iadd(r0,r0,r5) iadd(r1,r1,r5) mov(r3,r4,sig='load tmu1') fadd(rb[i],r3,r4) ldi(r3,64*16*4) mutex_acquire() rotate(broadcast,r2,-C_ADDR) setup_vpm_write(mode='32bit horizontal',Y=0,X=0) for i in range(32): mov(vpm,ra[i]) mov(vpm,rb[i]) setup_dma_store(mode='32bit horizontal',Y=0,nrows=64) start_dma_store(r5) wait_dma_store() mutex_release() ldi(null,mask(IO_ITER),set_flags=True) isub(r2,r2,1,cond='zs') jzc(L.loop) ldi(null,mask(C_ADDR),set_flags=True) iadd(r2,r2,r3,cond='zs') nop() #====semaphore===== sema_up(COMPLETED) rotate(broadcast,r2,-THR_ID) iadd(null,r5,-1,set_flags=True) jzc(L.skip_fin) nop() nop() nop() rotate(broadcast,r2,-THR_NM) iadd(r0, r5, -1,set_flags=True) L.sem_down jzc(L.sem_down) sema_down(COMPLETED) # すべてのスレッドが終了するまで待つ nop() iadd(r0, r0, -1) interrupt() L.skip_fin exit(interrupt=False) with Driver() as drv: H=1920 W=1088 n_threads=12 SIMD=16 R=64 th_H=int(H/n_threads) #1スレッドの担当行 th_ele=th_H*W #1スレッドの担当要素 io_iter=int(th_ele/(R*SIMD)) #何回転送するか A=drv.alloc((H,W),'float32') B=drv.alloc((H,W),'float32') C=drv.alloc((H,W),'float32') C[:]=0.0 A[:]=np.random.randn(H,W) B[:]=np.random.randn(H,W) start = time.time() CC=A+B #CPUの行列和 elapsed_cpu = time.time() - start uniforms=drv.alloc((n_threads,6),'uint32') for th in range(n_threads): uniforms[th,0]=A.addresses()[int(th_H*th),0] uniforms[th,1]=B.addresses()[int(th_H*th),0] uniforms[th,2]=C.addresses()[int(th_H*th),0] uniforms[:,3]=int(io_iter) uniforms[:,4]=np.arange(1,(n_threads+1)) uniforms[:,5]=n_threads code=drv.program(piadd) elapsed_gpu=0 iter=1 for i in range(iter): start = time.time() drv.execute( n_threads=n_threads, program=code, uniforms=uniforms ) elapsed_gpu += time.time() - start elapsed_gpu=elapsed_gpu/iter print ("GPU:elapsed_time:{0}".format(elapsed_gpu*1000) + "[msec]") print ("CPU:elapsed_time:{0}".format(elapsed_cpu*1000) + "[msec]") print('maximum absolute error: {:.4e}'.format( float(np.max(
np.abs(C - CC)
numpy.abs
import os import numpy as np import pyccl as ccl # Set cosmology cosmo = ccl.Cosmology(Omega_c=0.25, Omega_b=0.05, Omega_g=0, Omega_k=0, h=0.7, sigma8=0.8, n_s=0.96, Neff=0, m_nu=0.0, w0=-1, wa=0, T_CMB=2.7255, transfer_function='eisenstein_hu') # Read data dirdat = os.path.join(os.path.dirname(__file__), 'data') # Redshifts zs = np.array([0., 0.5, 1.]) def test_hmf_despali16(): hmd = ccl.halos.MassDef('vir', 'critical') mf = ccl.halos.MassFuncDespali16(cosmo, hmd) d_hmf = np.loadtxt(os.path.join(dirdat, 'hmf_despali16.txt'), unpack=True) m = d_hmf[0] for iz, z in enumerate(zs): nm_d = d_hmf[iz+1] nm_h = mf.get_mass_function(cosmo, m, 1. / (1 + z)) assert np.all(np.fabs(nm_h / nm_d - 1) < 0.01) def test_hmf_bocquet16(): hmd = ccl.halos.MassDef200c() mf = ccl.halos.MassFuncBocquet16(cosmo, hmd) d_hmf = np.loadtxt(os.path.join(dirdat, 'hmf_bocquet16.txt'), unpack=True) m = d_hmf[0] for iz, z in enumerate(zs): nm_d = d_hmf[iz+1] nm_h = mf.get_mass_function(cosmo, m, 1. / (1 + z)) assert np.all(np.fabs(nm_h / nm_d - 1) < 0.01) def test_hmf_watson13(): mf = ccl.halos.MassFuncWatson13(cosmo) d_hmf = np.loadtxt(os.path.join(dirdat, 'hmf_watson13.txt'), unpack=True) m = d_hmf[0] for iz, z in enumerate(zs): nm_d = d_hmf[iz+1] nm_h = mf.get_mass_function(cosmo, m, 1. / (1 + z)) assert np.all(np.fabs(nm_h / nm_d - 1) < 0.01) def test_hmf_tinker08(): mf = ccl.halos.MassFuncTinker08(cosmo) d_hmf = np.loadtxt(os.path.join(dirdat, 'hmf_tinker08.txt'), unpack=True) m = d_hmf[0] for iz, z in enumerate(zs): nm_d = d_hmf[iz+1] nm_h = mf.get_mass_function(cosmo, m, 1. / (1 + z)) assert np.all(np.fabs(nm_h / nm_d - 1) < 0.01) def test_hmf_press74(): mf = ccl.halos.MassFuncPress74(cosmo) d_hmf = np.loadtxt(os.path.join(dirdat, 'hmf_press74.txt'), unpack=True) m = d_hmf[0] for iz, z in enumerate(zs): nm_d = d_hmf[iz+1] nm_h = mf.get_mass_function(cosmo, m, 1. / (1 + z)) assert np.all(np.fabs(nm_h / nm_d - 1) < 0.01) def test_hmf_angulo12(): mf = ccl.halos.MassFuncAngulo12(cosmo) d_hmf = np.loadtxt(os.path.join(dirdat, 'hmf_angulo12.txt'), unpack=True) m = d_hmf[0] for iz, z in enumerate(zs): nm_d = d_hmf[iz+1] nm_h = mf.get_mass_function(cosmo, m, 1. / (1 + z)) assert np.all(np.fabs(nm_h / nm_d - 1) < 0.01) def test_hmf_sheth99(): mf = ccl.halos.MassFuncSheth99(cosmo) d_hmf = np.loadtxt(os.path.join(dirdat, 'hmf_sheth99.txt'), unpack=True) m = d_hmf[0] for iz, z in enumerate(zs): nm_d = d_hmf[iz+1] nm_h = mf.get_mass_function(cosmo, m, 1. / (1 + z)) assert np.all(
np.fabs(nm_h / nm_d - 1)
numpy.fabs
# -*- coding: utf-8 -*- """ Created on Tue Dec 18 11:45:32 2018 Empirical Wavelet Transform implementation for 1D signals Original paper: <NAME>., 2013. Empirical Wavelet Transform. IEEE Transactions on Signal Processing, 61(16), pp.3999–4010. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6522142. Original Matlab toolbox: https://www.mathworks.com/matlabcentral/fileexchange/42141-empirical-wavelet-transforms @author: <NAME> Programa de pós graduação em engenharia elétrica - PPGEE UFMG Universidade Federal de Minas Gerais - Belo Horizonte, Brazil Núcleo de Neurociências - NNC """ import numpy as np #%EWT functions def EWT1D(f, N = 5, log = 0,detect = "locmax", completion = 0, reg = 'average', lengthFilter = 10,sigmaFilter = 5): """ ========================================================================= ewt, mfb ,boundaries = EWT1D(f, N = 5, log = 0,detect = "locmax", completion = 0, reg = 'average', lengthFilter = 10,sigmaFilter = 5): Perform the Empirical Wavelet Transform of f over N scales. See also the documentation of EWT_Boundaries_Detect for more details about the available methods and their parameters. Inputs: -f: the 1D input signal Optional Inputs: -log: 0 or 1 to indicate if we want to work with the log spectrum -method: 'locmax','locmaxmin','locmaxminf' -reg: 'none','gaussian','average' -lengthFilter: width of the above filters (Gaussian or average) -sigmaFilter: standard deviation of the above Gaussian filter -N: maximum number of supports (modes or signal components) -completion: 0 or 1 to indicate if we try to complete or not the number of modes if the detection find a lower number of mode than N Outputs: -ewt: contains first the low frequency component and then the successives frequency subbands -mfb: contains the filter bank (in the Fourier domain) -boundaries: vector containing the set of boundaries corresponding to the Fourier line segmentation (normalized between 0 and Pi) Original MATLAB Version: Author: <NAME> Institution: UCLA - Department of Mathematics Year: 2013 Version: 2.0 Python Version: <NAME> - <EMAIL> Universidade Federal de Minas Gerais - Brasil Núcleo de Neurociências % ========================================================================= """ #signal spectrum ff = np.fft.fft(f) ff = abs(ff[0:int(np.ceil(ff.size/2))])#one-sided magnitude #extract boundaries of Fourier Segments boundaries = EWT_Boundaries_Detect(ff,log,detect,N,reg,lengthFilter,sigmaFilter) boundaries = boundaries*np.pi/round(ff.size) if completion == 1 and len(boundaries)<N-1: boundaries = EWT_Boundaries_Completion(boundaries,N-1) #Filtering #extend the signal by mirroring to deal with boundaries ltemp = int(np.ceil(f.size/2)) #to behave the same as matlab's round fMirr = np.append(np.flip(f[0:ltemp-1],axis = 0),f) fMirr = np.append(fMirr,np.flip(f[-ltemp-1:-1],axis = 0)) ffMirr = np.fft.fft(fMirr) #build the corresponding filter bank mfb=EWT_Meyer_FilterBank(boundaries,ffMirr.size) #filter the signal to extract each subband ewt = np.zeros(mfb.shape) for k in range(mfb.shape[1]): ewt[:,k] = np.real(np.fft.ifft(np.conjugate(mfb[:,k])*ffMirr)) ewt = ewt[ltemp-1:-ltemp,:] return ewt, mfb ,boundaries def EWT_Boundaries_Detect(ff,log,detect, N, reg, lengthFilter,sigmaFilter): """This function segments f into a certain amount of supports by using different technics: - middle point between consecutive local maxima (default), - lowest minima between consecutive local maxima (locmaxmin), - lowest minima between consecutive local maxima of original spectrum (locmaxminf), Regularized version of the spectrum can be obtained by the following methods: - Gaussian filtering (its parameters are filter of width lengthFilter and standard deviation sigmaFilter)scalesp - Average filtering (its parameters are filter of width lengthFilter) Note: the detected boundaries are given in term of indices Inputs: -f: the function to segment Optional parameters: -log: 0 or 1 to indicate if we want to work with the log of the ff -reg: 'none','gaussian','average' -lengthFilter: width of the above filters (Gaussian or average) -sigmaFilter: standard deviation of the above Gaussian filter -N: maximum number of supports (modes or signal components) -completion: 0 or 1 to indicate if we try to complete or not the number of modes if the detection find a lower number of mode than N Outputs: -boundaries: list of detected boundaries TODO Preprocessing steps not yet implemented Original MATLAB version: Author: <NAME> + <NAME> Institution: UCLA - Department of Mathematics Year: 2013 Version: 2.0 Python Version: <NAME> - <EMAIL> Universidade Federal de Minas Gerais - Brasil Núcleo de Neurociências """ from scipy.ndimage.filters import gaussian_filter #apply log if needed if log == 1: ff = np.log(ff) #Global trend removal - TODO #Regularization if reg == 'average': regFilter = np.ones(lengthFilter)/lengthFilter presig = np.convolve(ff,regFilter,mode = 'same') #for even lenght, numpy's convolve is shifted when compared with MATLAB's elif reg == 'gaussian': regFilter = np.zeros(lengthFilter) regFilter[regFilter.size//2] = 1 #prefer odd filter lengths - otherwise the gaussian is skewed presig = np.convolve(ff,gaussian_filter(regFilter,sigmaFilter),mode = 'same') else: presig = ff #Boundaries detection if detect == "locmax":#Mid-point between two consecutive local maxima computed on the regularized spectrum boundaries = LocalMax(presig,N) elif detect == "locmaxmin":#extract the lowest local minima between two selected local maxima boundaries = LocalMaxMin(presig,N) elif detect == "locmaxminf":#We extract the lowest local minima on the original spectrum between #two local maxima selected on the regularized signal boundaries = LocalMaxMin(presig,N,fm = ff) #elif detect == "adaptivereg": #TODO return boundaries+1 def LocalMax(ff, N): """ ================================================================ bound = LocalMax(f,N) This function segments f into a maximum of N supports by taking the middle point between the N largest local maxima. Note: the detected boundaries are given in term of indices Inputs: -f: the function to segment -N: maximal number of bands Outputs: -bound: list of detected boundaries Original MATLAB version: Author: <NAME> + <NAME> Institution: UCLA - Department of Mathematics Year: 2013 Version: 1.0 Python Version: <NAME> - <EMAIL> Universidade Federal de Minas Gerais - Brasil Núcleo de Neurociências %=============================================================== """ N=N-1 locmax = np.zeros(ff.size) locmin = max(ff)*np.ones(ff.size) for i in np.arange(1,ff.size-1): if ff[i-1]<ff[i] and ff[i]>ff[i+1]: locmax[i] = ff[i] if ff[i-1]> ff[i] and ff[i] <= ff[i+1]: locmin[i] = ff[i] N = min(N,locmax.size) #keep the N-th highest maxima maxidxs = np.sort(locmax.argsort()[::-1][:N]) #middle point between consecutive maxima bound = np.zeros(N) for i in range(N): if i == 0: a = 0 else: a = maxidxs[i-1] bound[i] = (a + maxidxs[i])/2 return bound def LocalMaxMin(f,N,fm = 0): """ =================================================================== bound = LocalMaxMin(f,N,fm) This function segments f into a maximum of N supports by detecting the lowest local minima between the N largest local maxima. If the input fm is provided then the local maxima are computed on f and the local minima on fm otherwise both are computed on f (this is useful if you want to compute the maxima on a regularized version of your signal while detecting the "true" minima). Note: the detected boundaries are given in term of indices Inputs: -f: the function to segment -N: maximal number of bands Optional input: -fm: function on which the local minima will be computed Outputs: -bound: list of detected boundaries Author: <NAME> Institution: UCLA - Department of Mathematics Year: 2013 Version: 2.0 Python Version: <NAME> - <EMAIL> Universidade Federal de Minas Gerais - Brasil Núcleo de Neurociências =================================================================== """ locmax= np.zeros(f.size) if type(fm) == int: f2 = f else: f2 = fm locmin = max(f2)*np.ones(f2.size) #detect local minima and maxima for i in np.arange(1,f.size-1): if ((f[i-1]<f[i]) and (f[i]>f[i+1])): locmax[i] = f[i] if ((f2[i-1]>f2[i]) and (f2[i]<f2[i+1])): locmin[i] = f2[i] #keep the N-th highest maxima and their index if N!=-1: N = N-1 #keep the N-th highest maxima Imax = np.sort(locmax.argsort()[::-1][:N]) #detect the lowest minima between two consecutive maxima bound = np.zeros(N) for i in range(N): if i == 0: a = 1 else: a = Imax[i-1] lmin = np.sort(locmin[a:Imax[i]]) ind = np.argsort(locmin[a:Imax[i]]) tmpp = lmin[0] n = 0 if n < len(lmin): n = 1 while ((n<len(lmin)) and (tmpp==lmin[n])): n = n+1 bound[i] = a + ind[n//2]-1 else: k = 0 for i in range(locmin): if locmin[i]<max(f2): bound[k] = i-1 k = k+1 return bound #TODO def Adaptive_Bounds_Adapt(): def EWT_Boundaries_Completion(boundaries,NT): """ ====================================================================== boundaries=EWT_Boundaries_Completion(boundaries,NT) This function permits to complete the boundaries vector to get a total of NT boundaries by equally splitting the last band (highest frequencies) Inputs: -boundaries: the boundaries vector you want to complete -NT: the total number of boundaries wanted Output: -boundaries: the completed boundaries vector Author: <NAME> Institution: UCLA - Department of Mathematics Year: 2013 Version: 1.0 Python Version: Vinícius Rezende Carvalho - <EMAIL> Universidade Federal de Minas Gerais - Brasil Núcleo de Neurociências %====================================================================== """ Nd=NT-len(boundaries) deltaw=(np.pi-boundaries[-1])/(Nd+1) for k in range(Nd): boundaries =
np.append(boundaries,boundaries[-1]+deltaw)
numpy.append
#!/usr/bin/env python from datetime import datetime import copy import traceback import os, subprocess, time, signal #from cv_bridge import CvBridge import gym import math import random # u import numpy as np import cv2 as cv import rospy # Brings in the SimpleActionClient import actionlib # Brings in the .action file and messages used by the move base action from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal from sensor_msgs.msg import LaserScan from sensor_msgs.msg import Image from gazebo_msgs.msg import ModelState from geometry_msgs.msg import Point from geometry_msgs.msg import Point32 from geometry_msgs.msg import TransformStamped from rosgraph_msgs.msg import Clock from costmap_converter.msg import ObstacleArrayMsg from costmap_converter.msg import ObstacleMsg from gazebo_msgs.msg import ModelStates from geometry_msgs.msg import Twist from gazebo_msgs.srv import SetModelState from gym.utils import seeding import threading import _thread from squaternion import Quaternion from simple_pid import PID import pickle import logging logger = logging.getLogger(__name__) # Environment Parameters class EnvConfig: # Boolean to make robots spawn at constant locations USE_TESTING = False # If False, Moves obstacles out of the way USE_OBSTACLES = False # Pattern to init obstacles # 0: Places obstacles between robot and person # 1: Places obstacles randomly within circle OBSTACLE_MODE = 1 # Radius(meters) away from person robot for random placement(mode 1) of objects OBSTACLE_RADIUS_AWAY = 3 # Obstacle size OBSTACLE_SIZE = 0.5 # Allows/Denies Robot TEB Local Planner to avoid obstacles SEND_TEB_OBSTACLES = True # Gets person robot to use move base PERSON_USE_MB = True # Episode Length EPISODE_LEN = 15 # Returns Human State only in get_observations if True RETURN_HINN_STATE = False # was True # Size to reduce laser scan to SCAN_REDUCTION_SIZE = 20 # If True, calls init_simulator() on set_agent() call INIT_SIM_ON_AGENT = False # If True, moves jackal bot out of the way and puts obstacles around person TRAIN_HINN = False # For NON-HINN OUTPUT ONLY: Outputs laser scan if true OUTPUT_OBSTACLES_IN_STATE = True # Evaluation Mode, Removes stochasticity when initializing environment EVALUATION_MODE = True class History(): def __init__(self, window_size, update_rate, save_rate=10): self.idx = 0 self.update_rate = update_rate self.save_rate = save_rate self.lock = threading.Lock() self.memory_size = int(math.ceil(save_rate/update_rate*window_size)+1) self.data = [None for x in range(self.memory_size)] self.prev_add_time = rospy.Time.now().to_sec() - 1 self.window_size = window_size self.avg_frame_rate = None self.time_data_ = [] def add_element(self, element): """ element: the data that we put inside the history data array """ if abs(rospy.Time.now().to_sec() - self.prev_add_time) < 1./self.save_rate: return with self.lock: self.idx = (self.idx + 1) % self.window_size self.prev_add_time = rospy.Time.now().to_sec() if self.data[self.idx] is None: for idx in range(self.memory_size): self.data[idx] = element self.data[self.idx] = element if not len(self.time_data_) > 50: self.time_data_.append(self.prev_add_time) if len(self.time_data_) > 3: prev_t = self.time_data_[0] time_intervals = [] for t in self.time_data_[1:]: time_intervals.append(t - prev_t) prev_t = t self.avg_frame_rate = 1.0 / np.average(time_intervals) def get_elemets(self): return_data = [] while self.avg_frame_rate is None: time.sleep(0.1) skip_frames = -int(math.ceil(self.avg_frame_rate / self.update_rate)) with self.lock: index = self.idx # (self.idx - 1)% self.window_size if self.window_size * abs(skip_frames) >= self.memory_size: rospy.logerr("error in get element memory not enough update rate{} avg_frame_rate{} mem_size {} skipf: {}".format(self.update_rate, self.avg_frame_rate, self.memory_size, skip_frames)) for i in range(self.window_size): return_data.append(self.data[index]) index = (index + skip_frames) % self.window_size return return_data def get_latest(self): with self.lock: return self.data[self.idx] class Robot(): def __init__(self, name, max_angular_speed=1, max_linear_speed=1, relative=None, agent_num=None, use_goal=False, use_movebase=False, use_jackal=False, window_size=10, is_testing=False): self.name = name self.use_jackal = use_jackal self.init_node = False self.alive = True self.prev_call_gazeboros_ = None if relative is None: relative = self self.relative = relative self.is_testing = is_testing if self.is_testing: self.all_pose_ = [] self.last_time_added = rospy.Time.now().to_sec() self.log_history = [] self.agent_num = agent_num self.init_node = True self.deleted = False self.update_rate_states = 2.0 self.window_size_history = window_size self.current_vel_ = Twist() self.goal = {"pos": None, "orientation": None} self.use_goal = use_goal self.use_movebase = use_movebase self.max_angular_vel = max_angular_speed self.max_linear_vel = max_linear_speed self.max_rel_pos_range = 5.0 # meter self.width_laserelement_image = 100 self.height_laser_image = 50 self.state_ = {'position': (None, None), 'orientation': None} if self.use_jackal: self.cmd_vel_pub = rospy.Publisher( '/{}/jackal_velocity_controller/cmd_vel'.format(name), Twist, queue_size=1) else: self.cmd_vel_pub = rospy.Publisher( '/{}/cmd_vel'.format(name), Twist, queue_size=1) if "tb3" in self.name and self.use_movebase: # Create an action client called "move_base" with action definition file "MoveBaseAction" self.action_client_ = actionlib.SimpleActionClient( '/move_base_{}'.format(self.agent_num), MoveBaseAction) # Waits until the action server has started up and started listening for goals. self.action_client_.wait_for_server(rospy.rostime.Duration(0.4)) else: self.action_client_ = None if "person" == self.name: self.angular_pid = PID(0.5, 0, 0.03, setpoint=0) self.linear_pid = PID(1.0, 0, 0.05, setpoint=0) else: self.angular_pid = PID(2.5, 0, 0.03, setpoint=0) self.linear_pid = PID(2.5, 0, 0.05, setpoint=0) self.pos_history = History( self.window_size_history, self.update_rate_states) self.orientation_history = History( self.window_size_history, self.update_rate_states) self.velocity_history = History( self.window_size_history, self.update_rate_states) self.is_collided = False self.is_pause = False self.reset = False self.scan_image = None def calculate_ahead(self, distance): x = self.state_['position'][0] + \ math.cos(self.state_["orientation"]) * distance y = self.state_['position'][1] + \ math.sin(self.state_["orientation"]) * distance return (x, y) def movebase_cancel_goals(self): self.action_client_.cancel_all_goals() self.stop_robot() def movebase_client_goal(self, goal_pos, goal_orientation): # Creates a new goal with the MoveBaseGoal constructor move_base_goal = MoveBaseGoal() move_base_goal.target_pose.header.frame_id = "tb3_{}/odom".format(self.agent_num) move_base_goal.target_pose.header.stamp = rospy.Time.now() move_base_goal.target_pose.pose.position.x = goal_pos[0] move_base_goal.target_pose.pose.position.y = goal_pos[1] quaternion_rotation = Quaternion.from_euler(0, goal_orientation, 0) move_base_goal.target_pose.pose.orientation.x = quaternion_rotation[3] move_base_goal.target_pose.pose.orientation.y = quaternion_rotation[1] move_base_goal.target_pose.pose.orientation.z = quaternion_rotation[2] move_base_goal.target_pose.pose.orientation.w = quaternion_rotation[0] # Sends the move_base_goal to the action server. self.action_client_.send_goal(move_base_goal) # Waits for the server to finish performing the action. #wait = self.action_client_.wait_for_result(rospy.rostime.Duration(0.4)) # If the result doesn't arrive, assume the Server is not available # if not wait: # rospy.logerr("Action server not available!") # else: # # Result of executing the action # return self.action_client_.get_result() def get_pos(self): counter_problem = 0 while self.state_['position'] is None: if self.reset: return (None, None) if counter_problem > 20: rospy.logdebug("waiting for pos to be available {}/{}".format(counter_problem/10, 20)) time.sleep(0.001) counter_problem += 1 if counter_problem > 200: raise Exception('Probable shared memory issue happend') return self.state_['position'] def get_orientation(self): counter_problem = 0 while self.state_['orientation'] is None: if self.reset: return None if counter_problem > 20: rospy.logdebug("waiting for pos to be available {}/{}".format(counter_problem/10, 20)) time.sleep(0.001) counter_problem += 1 if counter_problem > 200: raise Exception('Probable shared memory issue happend') return self.state_['orientation'] def is_current_state_ready(self): return (self.state_['position'][0] is not None) def is_observation_ready(self): return (self.pos_history.avg_frame_rate is not None and self.orientation_history.avg_frame_rate is not None and self.velocity_history.avg_frame_rate is not None) def update(self, init_pose): self.alive = True self.goal = {"pos": None, "orientation": None} if "person" == self.name: self.angular_pid = PID(0.5, 0, 0.03, setpoint=0) self.linear_pid = PID(1.0, 0, 0.05, setpoint=0) else: self.angular_pid = PID(2.5, 0, 0.03, setpoint=0) self.linear_pid = PID(2.5, 0, 0.05, setpoint=0) self.pos_history = History(self.window_size_history, self.update_rate_states) self.orientation_history = History(self.window_size_history, self.update_rate_states) self.velocity_history = History(self.window_size_history, self.update_rate_states) self.velocity_history.add_element((0,0)) self.pos_history.add_element((init_pose["pos"][0],init_pose["pos"][1])) self.orientation_history.add_element(init_pose["orientation"]) self.log_history = [] if self.is_testing: self.all_pose_ = [] #self.prev_call_gazeboros_ = None #self.is_collided = False self.is_pause = False self.reset = False def add_log(self, log): self.log_history.append(log) def remove(self): self.reset = True def set_state(self, state): self.state_["position"] = state["position"] self.state_["orientation"] = state["orientation"] self.state_["velocity"] = state["velocity"] self.orientation_history.add_element(state["orientation"]) self.pos_history.add_element(state["position"]) self.velocity_history.add_element(state["velocity"]) if self.is_testing and abs(rospy.Time.now().to_sec() - self.last_time_added) > 0.01: self.all_pose_.append(self.state_.copy()) self.last_time_added = rospy.Time.now().to_sec() def get_state(self): return self.state_ def get_velocity(self): return self.velocity_history.get_latest() def pause(self): self.is_pause = True self.stop_robot() def resume(self): self.is_pause = False def take_action(self, action, target_orientation=None): if self.is_pause: return if self.use_goal: if "person" in self.name: pose = self.get_pos() pos_global = [pose[0]+action[0], pose[1]+action[1]] else: pos = GazeborosEnv.denormalize(action[0:2], self.max_rel_pos_range) pos_global = GazeborosEnv.get_global_position(pos, self.relative) if target_orientation: self.goal["orientation"] = target_orientation else: self.goal["orientation"] = self.get_orientation() self.goal["pos"] = pos_global if self.use_movebase: self.movebase_client_goal(pos_global, self.goal["orientation"]) else: linear_vel = max(min(action[0]*self.max_linear_vel, self.max_linear_vel), -self.max_linear_vel) angular_vel = max(min(action[1]*self.max_angular_vel, self.max_angular_vel), -self.max_angular_vel) cmd_vel = Twist() cmd_vel.linear.x = linear_vel #float(self.current_vel_.linear.x -(self.current_vel_.linear.x - linear_vel)*0.9) cmd_vel.angular.z = angular_vel #-float(self.current_vel_.angular.z - (self.current_vel_.angular.z - angular_vel)*0.9) self.current_vel_ = cmd_vel self.cmd_vel_pub.publish(cmd_vel) def stop_robot(self): self.cmd_vel_pub.publish(Twist()) def angle_distance_to_point(self, pos): current_pos = self.get_pos() if current_pos[0] is None: return None, None angle = math.atan2(pos[1] - current_pos[1], pos[0] - current_pos[0]) distance = math.hypot(pos[0] - current_pos[0], pos[1] - current_pos[1]) angle = (angle - self.state_["orientation"] + math.pi) % (math.pi * 2) - math.pi return angle, distance def publish_cmd_vel(self, linear, angular): cmd_vel = Twist() angular_vel = min(max(angular, -self.max_angular_vel), self.max_angular_vel) linear_vel = min(max(linear, 0), self.max_linear_vel) cmd_vel.linear.x = float(linear_vel) cmd_vel.angular.z = float(angular_vel) self.cmd_vel_pub.publish(cmd_vel) def use_selected_person_mod(self, person_mode): while person_mode <= 6: if self.is_pause: self.stop_robot() return if self.reset: self.stop_robot() return angular_vel = 0 linear_vel = 0 if person_mode == 0: linear_vel = self.max_linear_vel if person_mode == 1: #linear_vel = self.max_linear_vel * random.random() linear_vel = self.max_linear_vel * 0.35 elif person_mode == 2: linear_vel = self.max_linear_vel/2 angular_vel = self.max_angular_vel/6 elif person_mode == 3: linear_vel = self.max_linear_vel/2 angular_vel = -self.max_angular_vel/6 elif person_mode == 4: linear_vel, angular_vel = self.get_velocity() linear_vel = linear_vel - (linear_vel - (random.random()/2 + 0.5))/2. angular_vel = -self.max_angular_vel/6 elif person_mode == 5: linear_vel, angular_vel = self.get_velocity() linear_vel = linear_vel - (linear_vel - (random.random()/2 + 0.5))/2. angular_vel = self.max_angular_vel/6 elif person_mode == 6: linear_vel, angular_vel = self.get_velocity() linear_vel = linear_vel - (linear_vel - (random.random()/2 + 0.5))/2. angular_vel = angular_vel - (angular_vel - (random.random()-0.5)*2)/2. self.publish_cmd_vel(linear_vel, angular_vel) time.sleep(0.002) def go_to_goal(self): while True: if self.reset: return while self.goal["pos"] is None: time.sleep(0.1) continue diff_angle, distance = self.angle_distance_to_point(self.goal["pos"]) time_prev = rospy.Time.now().to_sec() while not distance < 0.1 and abs(rospy.Time.now().to_sec() - time_prev) < 5: if self.is_pause: self.stop_robot() return if self.reset: self.stop_robot() return diff_angle, distance = self.angle_distance_to_point(self.goal["pos"]) if distance is None: return if self.reset: return angular_vel = -min(max(self.angular_pid(diff_angle), -self.max_angular_vel), self.max_angular_vel) linear_vel = min(max(self.linear_pid(-distance), 0), self.max_linear_vel) linear_vel = linear_vel * math.pow((abs(math.pi - abs(diff_angle))/math.pi), 1.5) self.publish_cmd_vel(linear_vel, angular_vel) time.sleep(0.01) self.stop_robot() def go_to_pos(self, pos, stop_after_getting=False): if self.is_pause: self.stop_robot() return if self.reset: return diff_angle, distance = self.angle_distance_to_point(pos) if distance is None: print(self.get_pos()) return time_prev = rospy.Time.now().to_sec() while not distance < 0.2 and abs(rospy.Time.now().to_sec() - time_prev) < 5: if self.is_pause: self.stop_robot() return if self.reset: return diff_angle, distance = self.angle_distance_to_point(pos) if distance is None: return if self.reset: return angular_vel = -min(max(self.angular_pid(diff_angle), -self.max_angular_vel),self.max_angular_vel) linear_vel = min(max(self.linear_pid(-distance), 0), self.max_linear_vel) linear_vel = linear_vel * math.pow((abs(math.pi - abs(diff_angle))/math.pi), 2) self.publish_cmd_vel(linear_vel, angular_vel) time.sleep(0.01) if stop_after_getting: self.stop_robot() def get_goal(self): counter_problem = 0 while self.goal["pos"] is None: if self.reset: return (None, None) if counter_problem > 20: rospy.logwarn("waiting for goal to be available {}/{}".format(counter_problem/10, 20)) time.sleep(0.01) counter_problem += 1 if counter_problem > 200: raise Exception('Probable shared memory issue happend') # if not self.use_movebase: # pos = GazeborosEnv.get_global_position(self.goal["pos"], self) # goal = {"pos":pos, "orientation":None} # else: # goal = self.goal return self.goal def get_laser_image(self): return np.expand_dims(self.scan_image, axis=2) class GazeborosEnv(gym.Env): def __init__(self, is_evaluation=False): self.is_evaluation_ = is_evaluation # self.bridge = CvBridge() # self.image_pub = rospy.Publisher("image_observation", Image) # self.image_pub_gt = rospy.Publisher("image_observation_gt", Image) self.is_reseting = True self.use_path = True self.use_jackal = True self.lock = _thread.allocate_lock() self.path_follower_test_settings = {0:(0,0, "straight",False), 1:(2,0, "right", False), 2:(3,0, "left", False),\ 3:(1,4, "straight_Behind", False), 4:(2,3, "right_behind", False), 5:(3,3, "left_behind", False), 6:(7,2, "traj_1", True, True),\ 7:(7, 12, "traj_2", True, True), 8:(7, 43, "traj_3", True),\ 9:(2,1, "right_left", False), 10:(2,2, "right_right", False),\ 11:(3,1, "left_left", False), 12:(3,2, "left_right", False)\ } #self.path_follower_test_settings = {0:(7, 43, "traj_3", True)#(7,2, "traj_1", True, True), 1:(7, 12, "traj_2", True, True)} self.is_testing = EnvConfig.USE_TESTING self.small_window_size = False self.use_predifined_mode_person = True self.use_goal = True self.use_orientation_in_observation = True self.collision_distance = 0.3 self.best_distance = 1.5 self.robot_mode = 0 self.window_size = 10 self.use_movebase = True self.use_reachability = False self.use_obstacles = EnvConfig.USE_OBSTACLES self.obstacle_mode = EnvConfig.OBSTACLE_MODE self.obstacle_names = [] self.person_scan = [1000.0 for i in range(EnvConfig.SCAN_REDUCTION_SIZE)] self.person_use_move_base = EnvConfig.PERSON_USE_MB self.person_mode = 0 self.position_thread = None self.eval_x = -4 self.eval_y = -4 self.eval_orientation = 0 self.robot_eval_x = -1 self.robot_eval_y = -1 self.path_follower_current_setting_idx = 0 self.use_supervise_action = False self.mode_person = 0 self.use_noise = True self.is_use_test_setting = False self.use_reverse = True if self.small_window_size: self.window_size = 5 if self.is_testing: self.use_noise = False self.use_reverse = False self.is_use_test_setting = True self.fallen = False self.is_max_distance = False self.use_random_around_person_ = False self.max_mod_person_ = 7 self.wait_observation_ = 0 # being use for observation visualization self.center_pos_ = (0, 0) self.colors_visualization = cv.cvtColor(cv.applyColorMap(np.arange(0, 255, dtype=np.uint8), cv.COLORMAP_WINTER), cv.COLOR_BGR2RGB).reshape(255, 3).tolist() self.color_index = 0 self.first_call_observation = True self.test_simulation_ = False self.person_scan = [1000.0 for i in range(EnvConfig.SCAN_REDUCTION_SIZE)] self.person_use_move_base = EnvConfig.PERSON_USE_MB self.person_mode = 0 self.position_thread = None self.eval_x = -4 self.eval_y = -4 self.eval_orientation = 0 self.robot_eval_x = -1 self.robot_eval_y = -1 self.min_distance = 1 self.max_distance = 2.5 if self.test_simulation_ or self.is_evaluation_: self.max_numb_steps = 80 elif self.is_use_test_setting: self.max_numb_steps = 100 else: self.max_numb_steps = 80 self.reward_range = [-1, 1] self.reachabilit_value = None if self.use_reachability: with open('data/reachability.pkl', 'rb') as f: self.reachabilit_value = pickle.load(f) def get_person_pos(self): theta = self.person.get_orientation() xy = self.person.get_pos() return [xy[0], xy[1], theta] def get_system_velocities(self): robot_state = self.robot.get_state() person_state = self.person.get_state() robot_lin_velocity = robot_state["velocity"][0] robot_angular_velocity = robot_state["velocity"][1] robot_orientation = robot_state["orientation"] person_lin_velocity = person_state["velocity"][0] person_angular_velocity = person_state["velocity"][1] x_distance_between = person_state["position"][0] - robot_state["position"][0] y_distance_between = person_state["position"][1] - robot_state["position"][1] dx_dt = -person_lin_velocity + robot_lin_velocity * math.cos(robot_orientation) + person_angular_velocity * y_distance_between dy_dt = robot_lin_velocity * math.sin(robot_orientation) - person_angular_velocity * x_distance_between da_dt = robot_angular_velocity - person_angular_velocity return (dx_dt, dy_dt, da_dt) def get_test_path_number(self): rospy.loginfo("current path idx: {}".format(self.path_follower_current_setting_idx)) return self.path_follower_test_settings[self.path_follower_current_setting_idx][2] def use_test_setting(self): self.is_use_test_setting = True def set_person_mode(self, setting): self.person_mode = setting def set_use_obstacles(self, setting): self.use_obstacles = setting def set_agent(self, agent_num): try: self.node = rospy.init_node('gym_gazeboros_{}'.format(agent_num)) except Exception as e: rospy.logerr("probably already init in another node {}".format(e)) rospy.wait_for_service('/gazebo/set_model_state') self.set_model_state_sp = rospy.ServiceProxy('/gazebo/set_model_state', SetModelState) date_time = datetime.now().strftime("%m_%d_%Y_%H_%M_%S") self.agent_num = agent_num self.obstacle_pub_ = rospy.Publisher('/move_base_node_tb3_{}/TebLocalPlannerROS/obstacles'.format(self.agent_num), ObstacleArrayMsg, queue_size=1) self.person_obstacle_pub_ = rospy.Publisher('/move_base_node_person_{}/TebLocalPlannerROS/obstacles'.format(self.agent_num), ObstacleArrayMsg, queue_size=1) self.create_robots() self.path = {} self.paths = [] self.log_file = None try: with open('data/person_trajectories_rl.pkl', 'rb') as f: paths = pickle.load(f) for path in paths: angle_person = path['start_person']['orientation'] for angle in [x for x in range(0, 360, 10)]: for angle_robot_person in [x for x in range(0, 360, 90)]: path_angle = path.copy() angle_from_person = np.deg2rad(angle) + angle_person angle_person_robot = np.deg2rad(angle_robot_person) + angle_person path_angle['start_robot']['pos'] = (path_angle['start_person']['pos'][0] + math.cos(angle_from_person)*2, path_angle['start_person']['pos'][1] + math.sin(angle_from_person)*2) path_angle['start_robot']['orientation'] = angle_person_robot path_angle['name'] = path['name'] + " " + str(angle) +" " + str(angle_robot_person) self.paths.append(path_angle) self.path_idx = -1 self.path = self.paths[self.path_idx] except Exception as e: print("error happend in writing {}".format(e)) self.agent_num = agent_num self.state_cb_prev_time = None self.model_states_sub = rospy.Subscriber("/gazebo/model_states", ModelStates, self.model_states_cb) self.scan_sub = rospy.Subscriber("/person_{}/scan".format(self.agent_num), LaserScan, self.scan_cb) if EnvConfig.INIT_SIM_ON_AGENT: with self.lock: self.init_simulator() def scan_cb(self, msg): reduced_size = EnvConfig.SCAN_REDUCTION_SIZE large_n = 1000.0 div = int(len(msg.ranges)/reduced_size) reduced_scan = [] count = 0 a_size = 0 avg = 0 # Reduce from 720 to reduced size for r in msg.ranges: if r > 0 and r < 20: avg += r a_size += 1 count += 1 if count == div: if a_size != 0: avg /= a_size else: avg = large_n reduced_scan.append(avg) count = 0 a_size = 0 avg = 0 self.person_scan = reduced_scan pass def create_obstacle_msg(self, name, pose): obstacle_msg = ObstacleMsg() obstacle_msg.id = 1 point = Point32() point.x = pose.position.x point.y = pose.position.y point.z = pose.position.z obstacle_msg.polygon.points.append(point) # TODO probably needs some tweaking but works for regular cyn/box # - I think the robot could be ok to get closer to the obstacles? # TODO polygon for box instead of using a circle obstacle_msg.radius = EnvConfig.OBSTACLE_SIZE/2 obstacle_msg.orientation.x = pose.orientation.x obstacle_msg.orientation.y = pose.orientation.y obstacle_msg.orientation.z = pose.orientation.z obstacle_msg.orientation.w = pose.orientation.w obstacle_msg.velocities.twist.linear.x = 0 obstacle_msg.velocities.twist.angular.z = 0 return obstacle_msg def model_states_cb(self, states_msg): # Grab Obstacle Names for Agent if not self.obstacle_names: for name in states_msg.name: if "obstacle" in name: for char in name: if char.isdigit(): if int(char) == self.agent_num: self.obstacle_names.append(name) obstacle_msg_array = ObstacleArrayMsg() obstacle_msg_array.header.stamp = rospy.Time.now() obstacle_msg_array.header.frame_id = "tb3_{}/odom".format(self.agent_num) person_obs_msg_array = ObstacleArrayMsg() person_obs_msg_array.header.stamp = rospy.Time.now() person_obs_msg_array.header.frame_id = "person_{}/odom".format(self.agent_num) for model_idx in range(len(states_msg.name)): found = False for robot in [self.robot, self.person]: if states_msg.name[model_idx] == robot.name: found = True break elif "obstacle" in states_msg.name[model_idx] and EnvConfig.SEND_TEB_OBSTACLES: obstacle_msg_array.obstacles.append( self.create_obstacle_msg( states_msg.name[model_idx], states_msg.pose[model_idx] ) ) person_obs_msg_array.obstacles.append( self.create_obstacle_msg( states_msg.name[model_idx], states_msg.pose[model_idx] ) ) if not found: continue pos = states_msg.pose[model_idx] euler = Quaternion(w=pos.orientation.w, x=pos.orientation.x, y=pos.orientation.y, z=pos.orientation.z).to_euler() if EnvConfig.PERSON_USE_MB: orientation = euler[2] else: # Preserve how Payam had it setup... orientation = euler[0] fall_angle = np.deg2rad(90) if abs(abs(euler[1]) - fall_angle)< 0.1 or abs(abs(euler[2]) - fall_angle)<0.1: self.fallen = True # get velocity twist = states_msg.twist[model_idx] linear_vel = twist.linear.x angular_vel = twist.angular.z pos_x = pos.position.x pos_y = pos.position.y state = {} state["velocity"] = (linear_vel, angular_vel) state["position"] = (pos_x, pos_y) state["orientation"] = orientation robot.set_state(state) if self.use_movebase: obstacle_msg = ObstacleMsg() obstacle_msg.id = 0 for x in range (5): for y in range (5): point = Point32() point.x = pos.position.x + (x-2)*0.1 point.y = pos.position.y + (y-2)*0.1 point.z = pos.position.z obstacle_msg.polygon.points.append(point) obstacle_msg.orientation.x = pos.orientation.x obstacle_msg.orientation.y = pos.orientation.y obstacle_msg.orientation.z = pos.orientation.z obstacle_msg.orientation.w = pos.orientation.w obstacle_msg.velocities.twist.linear.x = twist.linear.x obstacle_msg.velocities.twist.angular.z = twist.linear.z if robot.name == self.person.name: obstacle_msg.header = obstacle_msg_array.header obstacle_msg_array.obstacles.append(obstacle_msg) else: obstacle_msg.header = person_obs_msg_array.header person_obs_msg_array.obstacles.append(obstacle_msg) self.obstacle_pub_.publish(obstacle_msg_array) self.person_obstacle_pub_.publish(person_obs_msg_array) def create_robots(self): self.person = Robot('person_{}'.format(self.agent_num), max_angular_speed=1, max_linear_speed=.6, agent_num=self.agent_num, window_size=self.window_size, is_testing=self.is_testing, use_goal=self.use_goal, use_movebase=self.use_movebase) relative = self.person self.robot = Robot('tb3_{}'.format(self.agent_num), max_angular_speed=1.8, max_linear_speed=0.8, relative=relative, agent_num=self.agent_num, use_goal=self.use_goal, use_movebase=self.use_movebase ,use_jackal=self.use_jackal, window_size=self.window_size, is_testing=self.is_testing) def find_random_point_in_circle(self, radious, min_distance, around_point): max_r = 2 r = (radious - min_distance) * math.sqrt(random.random()) + min_distance theta = random.random() * 2 * math.pi x = around_point[0] + r * math.cos(theta) y = around_point[1] + r * math.sin(theta) return (x, y) def set_mode_person_based_on_episode_number(self, episode_number): if episode_number < 500: self.mode_person = 0 elif episode_number < 510: self.mode_person = 1 elif episode_number < 700: self.mode_person = 3 elif episode_number < 900: self.mode_person = 5 elif episode_number < 1000: self.mode_person = 6 else: #self.mode_person = 7 if random.random() > 0.5: self.mode_person = 7 else: self.mode_person = random.randint(0, 6) def get_init_pos_robot_person(self): if self.is_evaluation_: idx_start = 0 elif self.is_use_test_setting: idx_start = self.path_follower_test_settings[self.path_follower_current_setting_idx][1] else: idx_start = random.randint(0, len(self.path["points"]) - 20) self.current_path_idx = idx_start if not self.is_use_test_setting and self.use_reverse and random.random() > 0.5: self.path["points"].reverse() if self.person_use_move_base: if EnvConfig.EVALUATION_MODE: if self.eval_x > 4: self.eval_x = -4 self.eval_y = -4 self.eval_orientation = 0 self.robot_eval_x = -1 self.robot_eval_y = -1 if self.robot_eval_x > 1: self.robot_eval_x = -1 self.robot_eval_y = 1 init_pos_person = {"pos": (self.eval_x, self.eval_y), "orientation":self.eval_orientation} init_pos_robot = {"pos": (self.robot_eval_x, self.robot_eval_y), "orientation":self.eval_orientation} self.eval_x += 1 self.eval_y += 1 self.eval_orientation += math.pi/4 self.robot_eval_x += 2 self.robot_eval_y += 2 return init_pos_robot, init_pos_person else: x = random.uniform(-3,3) y = random.uniform(-3,3) init_pos_person = {"pos": (x, y), "orientation":random.uniform(0, math.pi)} random_pos_robot = self.find_random_point_in_circle(1.5, 2.5, init_pos_person["pos"]) init_pos_robot = {"pos": random_pos_robot, "orientation":random.uniform(0, math.pi)} return init_pos_robot, init_pos_person if self.is_evaluation_: init_pos_person = self.path["start_person"] init_pos_robot = self.path["start_robot"] elif self.is_use_test_setting and not self.path_follower_test_settings[self.path_follower_current_setting_idx][3]: init_pos_person = {"pos": (0, 0), "orientation": 0} mode = self.path_follower_test_settings[self.path_follower_current_setting_idx][1] if mode == 0: orinetation_person_rob = 0 elif mode == 1: orinetation_person_rob = -math.pi / 4. elif mode == 2: orinetation_person_rob = math.pi / 4. elif mode == 3: orinetation_person_rob = -math.pi else: orinetation_person_rob = math.pi/8*7 pos_robot = (1.5*math.cos(orinetation_person_rob), 1.5*math.sin(orinetation_person_rob)) init_pos_robot = {"pos": pos_robot, "orientation": 0} elif not self.use_path: init_pos_person = {"pos": (0, 0), "orientation": random.random()*2*math.pi - math.pi} ahead_person = (init_pos_person['pos'][0] + math.cos(init_pos_person["orientation"]) * 2, init_pos_person['pos'][1] + math.sin(init_pos_person["orientation"]) * 2) random_pos_robot = self.find_random_point_in_circle(1.5, 2.5, init_pos_person["pos"]) init_pos_robot = {"pos": random_pos_robot,\ "orientation": init_pos_person["orientation"]}#random.random()*2*math.pi - math.pi}#self.calculate_angle_using_path(idx_start)} elif self.use_random_around_person_: init_pos_person = {"pos": self.path["points"][idx_start], "orientation": self.calculate_angle_using_path(idx_start)} init_pos_robot = {"pos": self.find_random_point_in_circle(1.5, 1, self.path["points"][idx_start]),\ "orientation": random.random()*2*math.pi - math.pi}#self.calculate_angle_using_path(idx_start)} else: init_pos_person = {"pos": self.path["points"][idx_start], "orientation": self.calculate_angle_using_path(idx_start)} if self.is_use_test_setting and len(self.path_follower_test_settings[self.path_follower_current_setting_idx])>4 and self.path_follower_test_settings[self.path_follower_current_setting_idx][4] : orinetation_person_rob = math.pi/2.2 pos_robot = (self.path["points"][idx_start][0] + 2*math.cos(orinetation_person_rob+init_pos_person["orientation"]), self.path["points"][idx_start][1] + 2*math.sin(orinetation_person_rob+init_pos_person["orientation"])) init_pos_robot = {"pos": pos_robot, "orientation":self.calculate_angle_using_path(idx_start+5)} else: idx_robot = idx_start + 1 while (math.hypot(self.path["points"][idx_robot][1] - self.path["points"][idx_start][1], self.path["points"][idx_robot][0] - self.path["points"][idx_start][0]) < 1.6): idx_robot += 1 init_pos_robot = {"pos": self.path["points"][idx_robot],\ "orientation": self.calculate_angle_using_path(idx_robot)} if not self.is_testing: init_pos_robot["pos"] = (init_pos_robot["pos"][0]+ random.random()-0.5, \ init_pos_robot["pos"][1]+ random.random()-0.5) init_pos_robot["orientation"] = GazeborosEnv.wrap_pi_to_pi(init_pos_robot["orientation"] + random.random()-0.5) return init_pos_robot, init_pos_person def set_marker_pose(self, xy): pose = {"pos": (xy[0], xy[1]), "orientation": 0} self.set_pos("marker", pose) def set_pos(self, name, pose): set_model_msg = ModelState() set_model_msg.model_name = name self.prev_action = (0, 0) quaternion_rotation = Quaternion.from_euler(0, pose["orientation"], 0) set_model_msg.pose.orientation.x = quaternion_rotation[3] set_model_msg.pose.orientation.y = quaternion_rotation[1] set_model_msg.pose.orientation.z = quaternion_rotation[2] set_model_msg.pose.orientation.w = quaternion_rotation[0] if self.use_jackal and "tb3" in name: set_model_msg.pose.position.z = 2.6 * self.agent_num + 0.1635 elif "marker" in name: set_model_msg.pose.position.z = 1.6 else: set_model_msg.pose.position.z = 2.6 * self.agent_num + 0.099 set_model_msg.pose.position.x = pose["pos"][0] set_model_msg.pose.position.y = pose["pos"][1] rospy.wait_for_service('/gazebo/set_model_state') self.set_model_state_sp(set_model_msg) def get_obstacle_init_pos(self, init_pos_robot, init_pos_person): num_obstacles = len(self.obstacle_names) out_of_the_way_pose = {"pos": (15,15), "orientation":0} if not self.use_obstacles: return [out_of_the_way_pose for i in range(num_obstacles)] elif self.obstacle_mode == 0: # Place obstacles between robot and person # Calculate distance between robots, subtract some buffer room x_range = abs(init_pos_robot["pos"][0] - init_pos_person["pos"][0]) y_range = abs(init_pos_robot["pos"][1] - init_pos_person["pos"][1]) if x_range != 0: x_range -= EnvConfig.OBSTACLE_SIZE if y_range != 0: y_range -= EnvConfig.OBSTACLE_SIZE # Check if we have enough space for obstacles between robots x_buffer_space = y_buffer_space = -1 num_obs_to_place = num_obstacles + 1 while x_buffer_space < 0 and y_buffer_space < 0: num_obs_to_place -= 1 x_buffer_space = x_range - (EnvConfig.OBSTACLE_SIZE * num_obs_to_place) y_buffer_space = y_range - ((EnvConfig.OBSTACLE_SIZE * num_obs_to_place)) if num_obs_to_place == 0: # No space for obstacles so put them away rospy.logwarn("Not enough space for obstacles between robots.") return [out_of_the_way_pose for i in range(num_obstacles)] x_spacing = x_range / num_obs_to_place y_spacing = y_range / num_obs_to_place if init_pos_robot["pos"][0] < init_pos_person["pos"][0]: base_x = init_pos_robot["pos"][0] else: base_x = init_pos_person["pos"][0] if init_pos_robot["pos"][1] < init_pos_person["pos"][1]: base_y = init_pos_robot["pos"][1] else: base_y = init_pos_person["pos"][1] # Place obstacles on line between robot and person obstacle_positions = [] for i in range(num_obs_to_place): base_x += x_spacing base_y += y_spacing obstacle_positions.append({"pos": (base_x, base_y), "orientation":0}) obstacle_positions.extend([out_of_the_way_pose for i in range(num_obstacles - num_obs_to_place)]) return obstacle_positions elif self.obstacle_mode == 1: # Put obstacles randomly within area obstacle_radius = EnvConfig.OBSTACLE_RADIUS_AWAY min_distance_away_from_robot = EnvConfig.OBSTACLE_SIZE * 1.25 obstacle_positions = [] if EnvConfig.EVALUATION_MODE: x_diff = -1 y_diff = -1 count = 0 for obs_idx in range(num_obstacles): p_xy = init_pos_robot["pos"] point = (p_xy[0] + x_diff*1.25, p_xy[1] + y_diff*1.25) point = self.prevent_overlap(init_pos_person["pos"], point, min_distance_away_from_robot) point = self.prevent_overlap(init_pos_robot["pos"], point, min_distance_away_from_robot) obstacle_positions.append({"pos": point, "orientation":0}) if count % 2 == 0: x_diff += 1 else: y_diff += 1 x_diff -= 0.5 count += 1 else: for obs_idx in range(num_obstacles): random_point = self.find_random_point_in_circle(obstacle_radius, min_distance_away_from_robot, init_pos_robot["pos"]) random_point = self.prevent_overlap(init_pos_person["pos"], random_point, min_distance_away_from_robot) obstacle_positions.append({"pos": random_point, "orientation":0}) return obstacle_positions # Prevent point b from overlapping point a def prevent_overlap(self, point_a, point_b, min_distance): x = point_b[0] y = point_b[1] if abs(point_b[0] - point_a[0]) < min_distance: x += min_distance if abs(point_b[1] - point_a[1]) < min_distance: y += min_distance return (x, y) def set_obstacle_pos(self, init_pos_robot, init_pos_person): obs_positions = self.get_obstacle_init_pos(init_pos_robot, init_pos_person) for obs_idx in range(len(self.obstacle_names)): self.set_pos(self.obstacle_names[obs_idx], obs_positions[obs_idx]) def init_simulator(self): self.number_of_steps = 0 rospy.loginfo("init simulation called") self.is_pause = True init_pos_robot, init_pos_person = self.get_init_pos_robot_person() self.center_pos_ = init_pos_person["pos"] self.color_index = 0 self.fallen = False self.is_max_distance = False self.first_call_observation = True rospy.loginfo("Waiting for path follower to die") if self.position_thread: self.position_thread.join() rospy.loginfo("Done waiting") self.current_obsevation_image_.fill(255) if self.use_movebase: self.robot.movebase_cancel_goals() if self.person_use_move_base: self.person.movebase_cancel_goals() rospy.sleep(0.5) self.person.stop_robot() self.robot.stop_robot() # if self.use_movebase: # self.prev_action = (0,0, 0) # else: self.prev_action = (0, 0) if EnvConfig.TRAIN_HINN: init_pos_robot = {"pos": (30,30), "orientation": 0} # Set positions of robots and obstacles self.set_pos(self.robot.name, init_pos_robot) self.set_pos(self.person.name, init_pos_person) if EnvConfig.TRAIN_HINN: self.set_obstacle_pos(init_pos_person, init_pos_robot) else: self.set_obstacle_pos(init_pos_robot, init_pos_person) self.robot.update(init_pos_robot) self.person.update(init_pos_person) self.path_finished = False self.position_thread = threading.Thread(target=self.path_follower, args=(self.current_path_idx, self.robot, init_pos_person,)) self.position_thread.daemon = True self.is_reseting = False self.position_thread.start() self.wait_observation_ = 0 self.is_reseting = False self.robot.reset = False self.person.reset = False # self.resume_simulator() rospy.loginfo("init simulation finished") self.is_pause = False def pause(self): self.is_pause = True self.person.pause() self.robot.pause() def resume_simulator(self): rospy.loginfo("resume simulator") self.is_pause = False self.person.resume() self.robot.resume() rospy.loginfo("resumed simulator") def calculate_angle_using_path(self, idx): return math.atan2(self.path["points"][idx+1][1] - self.path["points"][idx][1], self.path["points"][idx+1][0] - self.path["points"][idx][0]) @staticmethod def denormalize(value, max_val): if type(value) == tuple or type(value) == list: norm_val = [float(x) * max_val for x in value] else: norm_val = value * float(max_val) return norm_val @staticmethod def normalize(value, max_val, zero_to_one=None): if type(value) == tuple or type(value) == list: norm_val = [x/float(max_val) for x in value] else: norm_val = value/float(max_val) if zero_to_one is not None: if type(value) == tuple or type(value) == list: norm_val = [(x + 1)/2 for x in norm_val] else: norm_val = (norm_val + 1)/2. return norm_val @staticmethod def get_global_position(pos_goal, center): while not center.is_current_state_ready(): if center.reset: rospy.logwarn("reseting so return none in rel pos rel: {} center".format(relative.is_current_state_ready(), center.is_current_state_ready())) return (None, None) time.sleep(0.01) rospy.logwarn("waiting for observation to be ready") #relative_orientation = relative.state_['orientation'] center_pos = np.asarray(center.state_['position']) center_orientation = center.state_['orientation'] #pos = [x * 5 for x in pos_goal] relative_pos = np.asarray(pos_goal) # transform the relative to center coordinat rotation_matrix = np.asarray([[np.cos(center_orientation), np.sin(center_orientation)], [-np.sin(center_orientation), np.cos(center_orientation)]]) relative_pos = np.matmul(relative_pos, rotation_matrix) global_pos = np.asarray(relative_pos + center_pos) return global_pos @staticmethod def get_global_position_orientation(pos_goal, orientation_goal, center): while not center.is_current_state_ready(): if center.reset: rospy.logwarn("reseting so return none in rel pos rel: {} center".format(relative.is_current_state_ready(), center.is_current_state_ready())) return (None, None) time.sleep(0.01) rospy.logwarn("waiting for observation to be ready") #relative_orientation = relative.state_['orientation'] center_pos = np.asarray(center.state_['position']) center_orientation = center.state_['orientation'] #pos = [x * 5 for x in pos_goal] relative_pos = np.asarray(pos_goal) relative_pos2 = np.asarray((relative_pos[0] + math.cos(orientation_goal), relative_pos[1] + math.sin(orientation_goal))) # transform the relative to center coordinat rotation_matrix = np.asarray([[np.cos(center_orientation), np.sin(center_orientation)], [-np.sin(center_orientation), np.cos(center_orientation)]]) relative_pos = np.matmul(relative_pos, rotation_matrix) relative_pos2 = np.matmul(relative_pos2, rotation_matrix) global_pos = np.asarray(relative_pos + center_pos) global_pos2 = np.asarray(relative_pos2 + center_pos) new_orientation = np.arctan2(global_pos2[1]-global_pos[1], global_pos2[0]-global_pos[0]) return global_pos, new_orientation @staticmethod def wrap_pi_to_pi(angle): while angle > math.pi: angle -= 2*math.pi while angle < - math.pi: angle += 2*math.pi return angle @staticmethod def get_relative_heading_position(relative, center): while not relative.is_current_state_ready() or not center.is_current_state_ready(): if relative.reset: rospy.logwarn("reseting so return none in rel pos rel: {} center".format(relative.is_current_state_ready(), center.is_current_state_ready())) return (None, None) time.sleep(0.1) rospy.loginfo("waiting for observation to be ready heading pos") relative_orientation = relative.state_['orientation'] center_pos = np.asarray(center.state_['position']) center_orientation = center.state_['orientation'] # transform the relative to center coordinat relative_pos = np.asarray(relative.state_['position'] - center_pos) relative_pos2 = np.asarray((relative_pos[0] + math.cos(relative_orientation) , relative_pos[1] + math.sin(relative_orientation))) rotation_matrix = np.asarray([[
np.cos(-center_orientation)
numpy.cos
# -*- coding: utf-8 -*- """ Created on Mon Aug 11 16:19:39 2014 """ import os import sys import imp # Put location of sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..\\..')) + '\\modules') # add ODYM module directory to system path #NOTE: Hidden variable __file__ must be know to script for the directory structure to work. # Therefore: When first using the model, run the entire script with F5 so that the __file__ variable can be created. import dynamic_stock_model as dsm # remove and import the class manually if this unit test is run as standalone script imp.reload(dsm) import numpy as np import unittest import scipy ############################################################################### """My Input for fixed lifetime""" Time_T_FixedLT = np.arange(0,10) Time_T_30 = np.arange(0,30) Inflow_T_FixedLT = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] lifetime_FixedLT = {'Type': 'Fixed', 'Mean': np.array([5])} lifetime_FixedLT0 = {'Type': 'Fixed', 'Mean': np.array([0])} #lifetime_FixedLT = {'Type': 'Fixed', 'Mean': np.array([5,5,5,5,5,5,5,5,5,5])} lifetime_NormLT = {'Type': 'Normal', 'Mean': np.array([5]), 'StdDev': np.array([1.5])} lifetime_NormLT0 = {'Type': 'Normal', 'Mean': np.array([0]), 'StdDev': np.array([1.5])} lifetime_NormLT8 = {'Type': 'Normal', 'Mean': np.array([8]), 'StdDev': np.array([3])} ############################################################################### """My Output for fixed lifetime""" Outflow_T_FixedLT = np.array([0, 0, 0, 0, 0, 1, 2, 3, 4, 5]) Outflow_TC_FixedLT = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 2, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 3, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 4, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 5, 0, 0, 0, 0, 0]]) Stock_T_FixedLT = np.array([1, 3, 6, 10, 15, 20, 25, 30, 35, 40]) StockChange_T_FixedLT = np.array([1, 2, 3, 4, 5, 5, 5, 5, 5, 5]) Stock_TC_FixedLT = np.array([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2, 3, 0, 0, 0, 0, 0, 0, 0], [1, 2, 3, 4, 0, 0, 0, 0, 0, 0], [1, 2, 3, 4, 5, 0, 0, 0, 0, 0], [0, 2, 3, 4, 5, 6, 0, 0, 0, 0], [0, 0, 3, 4, 5, 6, 7, 0, 0, 0], [0, 0, 0, 4, 5, 6, 7, 8, 0, 0], [0, 0, 0, 0, 5, 6, 7, 8, 9, 0], [0, 0, 0, 0, 0, 6, 7, 8, 9, 10]]) Bal = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) Bal9 = np.zeros((9)) Bal30 = np.zeros((30)) """My Output for normally distributed lifetime""" Stock_TC_NormLT = np.array([[ 9.99570940e-01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [ 9.96169619e-01, 1.99914188e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [ 9.77249868e-01, 1.99233924e+00, 2.99871282e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [ 9.08788780e-01, 1.95449974e+00, 2.98850886e+00, 3.99828376e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [ 7.47507462e-01, 1.81757756e+00, 2.93174960e+00, 3.98467848e+00, 4.99785470e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [ 5.00000000e-01, 1.49501492e+00, 2.72636634e+00, 3.90899947e+00, 4.98084810e+00, 5.99742564e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [ 2.52492538e-01, 1.00000000e+00, 2.24252239e+00, 3.63515512e+00, 4.88624934e+00, 5.97701772e+00, 6.99699658e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [ 9.12112197e-02, 5.04985075e-01, 1.50000000e+00, 2.99002985e+00, 4.54394390e+00, 5.86349921e+00, 6.97318734e+00, 7.99656752e+00, 0.00000000e+00, 0.00000000e+00], [ 2.27501319e-02, 1.82422439e-01, 7.57477613e-01, 2.00000000e+00, 3.73753731e+00, 5.45273268e+00, 6.84074908e+00, 7.96935696e+00, 8.99613846e+00, 0.00000000e+00], [ 3.83038057e-03, 4.55002639e-02, 2.73633659e-01, 1.00997015e+00, 2.50000000e+00, 4.48504477e+00, 6.36152146e+00, 7.81799894e+00, 8.96552657e+00, 9.99570940e+00]]) Stock_T_NormLT = np.array([ 0.99957094, 2.9953115 , 5.96830193, 9.85008113, 14.4793678 , 19.60865447, 24.99043368, 30.46342411, 35.95916467, 41.45873561]) Stock_SDM_NegInflow_NormLT = np.array([0.0,0,1,2,3,5,6,8,8,6,6,6,6,6,8,8,8,9,10,12,9,9,9,9,9,9,9,9.0,9,9]) Stock_SDM_NegInflow_NormLTNeg = np.array([0.0,0,0,0,0,0,0,0,8,6,6,6,6,6,3,3,3,3,4,5,6,7,8,9,9,9,7.1,8,8.0,8]) Stock_SDM_PosInflow_NormLTNeg = np.array([0.0,0,0,0,0,0,0,0,8,8,8,8.2,9,9,8.5,8,7.5,7,6.5,6,5.5,7,8,9,8.8,8.5,8.1,8,8.0,8]) Outflow_T_NormLT = np.array([ 4.29060333e-04, 4.25944090e-03, 2.70095728e-02, 1.18220793e-01, 3.70713330e-01, 8.70713330e-01, 1.61822079e+00, 2.52700957e+00, 3.50425944e+00, 4.50042906e+00]) Outflow_TC_NormLT = np.array([[ 4.29060333e-04, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [ 3.40132023e-03, 8.58120666e-04, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00], [ 1.89197514e-02, 6.80264047e-03, 1.28718100e-03, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00], [ 6.84610878e-02, 3.78395028e-02, 1.02039607e-02, 1.71624133e-03, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00], [ 1.61281318e-01, 1.36922176e-01, 5.67592541e-02, 1.36052809e-02, 2.14530167e-03, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00], [ 2.47507462e-01, 3.22562636e-01, 2.05383263e-01, 7.56790055e-02, 1.70066012e-02, 2.57436200e-03, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00], [ 2.47507462e-01, 4.95014925e-01, 4.83843953e-01, 2.73844351e-01, 9.45987569e-02, 2.04079214e-02, 3.00342233e-03, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00], [ 1.61281318e-01, 4.95014925e-01, 7.42522387e-01, 6.45125271e-01, 3.42305439e-01, 1.13518508e-01, 2.38092416e-02, 3.43248267e-03, -0.00000000e+00, -0.00000000e+00], [ 6.84610878e-02, 3.22562636e-01, 7.42522387e-01, 9.90029850e-01, 8.06406589e-01, 4.10766527e-01, 1.32438260e-01, 2.72105619e-02, 3.86154300e-03, -0.00000000e+00], [ 1.89197514e-02, 1.36922176e-01, 4.83843953e-01, 9.90029850e-01, 1.23753731e+00, 9.67687907e-01, 4.79227614e-01, 1.51358011e-01, 3.06118821e-02, 4.29060333e-03]]) StockChange_T_NormLT = np.array([ 0.99957094, 1.99574056, 2.97299043, 3.88177921, 4.62928667, 5.12928667, 5.38177921, 5.47299043, 5.49574056, 5.49957094]) """My Output for Weibull-distributed lifetime""" Stock_TC_WeibullLT = np.array([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0], # computed with Excel and taken from there [0.367879441, 2, 0, 0, 0, 0, 0, 0, 0, 0], [0.100520187, 0.735758882, 3, 0, 0, 0, 0, 0, 0, 0], [0.023820879, 0.201040373, 1.103638324, 4, 0, 0, 0, 0, 0, 0], [0.005102464, 0.047641758, 0.30156056, 1.471517765,5, 0, 0, 0, 0, 0], [0.001009149, 0.010204929, 0.071462637, 0.402080746,1.839397206, 6, 0, 0, 0, 0], [0.000186736, 0.002018297, 0.015307393, 0.095283516, 0.502600933, 2.207276647, 7, 0, 0, 0], [3.26256E-05, 0.000373472, 0.003027446, 0.020409858, 0.119104394, 0.60312112, 2.575156088, 8, 0, 0], [5.41828E-06, 6.52513E-05, 0.000560208, 0.004036594, 0.025512322, 0.142925273, 0.703641306, 2.943035529, 9, 0], [8.59762E-07, 1.08366E-05, 9.78769E-05, 0.000746944, 0.005045743, 0.030614786, 0.166746152, 0.804161493, 3.310914971, 10]]) Stock_T_WeibullLT = np.array([1,2.367879441,3.836279069,5.328499576,6.825822547,8.324154666,9.822673522,11.321225,12.8197819,14.31833966]) Outflow_T_WeibullLT = np.array([0,0.632120559,1.531600372,2.507779493,3.502677029,4.50166788,5.501481144,6.501448519,7.5014431,8.501442241]) Outflow_TC_WeibullLT = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0.632120559, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0.267359255, 1.264241118, 0, 0, 0, 0, 0, 0, 0, 0], [0.076699308, 0.534718509, 1.896361676, 0, 0, 0, 0, 0, 0, 0], [0.018718414, 0.153398615, 0.802077764, 2.528482235, 0, 0, 0, 0, 0, 0], [0.004093316, 0.037436829, 0.230097923, 1.069437018, 3.160602794, 0, 0, 0, 0, 0], [0.000822413, 0.008186632, 0.056155243, 0.306797231, 1.336796273, 3.792723353, 0, 0, 0, 0], [0.00015411, 0.001644825, 0.012279947, 0.074873658, 0.383496539, 1.604155527, 4.424843912, 0, 0, 0], [2.72074E-05, 0.000308221, 0.002467238, 0.016373263, 0.093592072, 0.460195846, 1.871514782, 5.056964471, 0, 0], [4.55852E-06, 5.44147E-05 , 0.000462331 , 0.00328965, 0.020466579, 0.112310487, 0.536895154, 2.138874037, 5.689085029, 0]]) StockChange_T_WeibullLT = np.array([1,1.367879441,1.468399628,1.492220507,1.497322971,1.49833212,1.498518856,1.498551481,1.4985569,1.498557759]) lifetime_WeibullLT = {'Type': 'Weibull', 'Shape': np.array([1.2]), 'Scale': np.array([1])} InitialStock_WB = np.array([0.01, 0.01, 0.08, 0.2, 0.2, 2, 2, 3, 4, 7.50]) Inflow_WB = np.array([11631.1250671964, 1845.6048709861, 2452.0593141014, 1071.0305279511, 198.1868742385, 391.9674590243, 83.9599583940, 29.8447516023, 10.8731273138, 7.5000000000]) # We need 10 digits AFTER the . to get a 9 digits after the . overlap with np.testing. # The total number of counting digits is higher, because there are up to 5 digits before the . # For the stock-driven model with initial stock, colculated with Excel Sc_InitialStock_2_Ref = np.array([[ 3.29968072, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 3.28845263, 5.1142035 , 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [ 3.2259967 , 5.09680099, 2.0068288 , 0. , 0. , 0. , 0. , 0. , 0. ], [ 3. , 5. , 2. , 4. , 0. , 0. , 0. , 0. , 0. ], [ 2.46759471, 4.64972578, 1.962015 , 3.98638888, 4.93427563, 0. , 0. , 0. , 0. ], [ 1.65054855, 3.82454624, 1.82456634, 3.91067739, 4.91748538, 3.8721761 , 0. , 0. , 0. ], [ 0.83350238, 2.55819937, 1.50076342, 3.63671549, 4.82409004, 3.85899993, 2.78772936, 0. , 0. ], [ 0.30109709, 1.2918525 , 1.00384511, 2.9913133 , 4.48613916, 3.78570788, 2.77824333, 3.36180162, 0. ], [ 0.07510039, 0.46667297, 0.5069268 , 2.00085849, 3.68999109, 3.5205007 , 2.72547754, 3.35036215, 3.66410986]]) Sc_InitialStock_2_Ref_Sum = np.array([ 3.29968072, 8.40265614, 10.32962649, 14. , 18. , 20. , 20. , 20. , 20. ]) Oc_InitialStock_2_Ref = np.array([[ 1.41636982e-03, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [ 1.12280883e-02, 2.19524375e-03, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00], [ 6.24559363e-02, 1.74025106e-02, 8.61420234e-04, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00], [ 2.25996698e-01, 9.68009922e-02, 6.82879736e-03, 1.71697802e-03, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00], [ 5.32405289e-01, 3.50274224e-01, 3.79849998e-02, 1.36111209e-02, 2.11801070e-03, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00], [ 8.17046165e-01, 8.25179532e-01, 1.37448656e-01, 7.57114903e-02, 1.67902556e-02, 1.66211031e-03, -0.00000000e+00, -0.00000000e+00, -0.00000000e+00], [ 8.17046165e-01, 1.26634687e+00, 3.23802924e-01, 2.73961897e-01, 9.33953405e-02, 1.31761643e-02, 1.19661751e-03, -0.00000000e+00, -0.00000000e+00], [ 5.32405289e-01, 1.26634687e+00, 4.96918311e-01, 6.45402188e-01, 3.37950879e-01, 7.32920558e-02, 9.48603036e-03, 1.44303487e-03, -0.00000000e+00], [ 2.25996698e-01, 8.25179532e-01, 4.96918311e-01, 9.90454815e-01, 7.96148072e-01, 2.65207178e-01, 5.27657861e-02, 1.14394721e-02, 1.57279902e-03]]) I_InitialStock_2_Ref = np.array([ 3.30109709, 5.11639875, 2.00769022, 4.00171698, 4.93639364, 3.87383821, 2.78892598, 3.36324466, 3.66568266]) """ Test case with fixed lifetime for initial stock""" Time_T_FixedLT_X = np.arange(1, 9, 1) lifetime_FixedLT_X = {'Type': 'Fixed', 'Mean': np.array([5])} InitialStock_X = np.array([0, 0, 0, 7, 5, 4, 3, 2]) Inflow_X = np.array([0, 0, 0, 7, 5, 4, 3, 2]) Time_T_FixedLT_XX = np.arange(1, 11, 1) lifetime_NormLT_X = {'Type': 'Normal', 'Mean': np.array([5]), 'StdDev': np.array([1.5])} InitialStock_XX = np.array([0.01, 0.01, 0.08, 0.2, 0.2, 2, 2, 3, 4, 7.50]) Inflow_XX = np.array([ 2.61070664, 0.43955789, 0.87708508, 0.79210262, 0.4, 2.67555857, 2.20073139, 3.06983925, 4.01538044, 7.50321933]) """ Test case with normally distributed lifetime for initial stock and stock-driven model""" Time_T_FixedLT_2 = np.arange(1, 10, 1) Time_T_FixedLT_3 = np.arange(0, 30, 1) lifetime_NormLT_2 = {'Type': 'Normal', 'Mean': np.array([5]), 'StdDev': np.array([1.5])} lifetime_NormLT_3 = {'Type': 'LogNormal', 'Mean': np.array([6]), 'StdDev': np.array([3])} lifetime_NormLT_4 = {'Type': 'Normal', 'Mean': np.array([7]), 'StdDev': np.array([2])} InitialStock_2 =
np.array([3,5,2,4])
numpy.array
# Imported and adapated from Trimesh # # Copyright (c) 2019 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # https://github.com/mikedh/trimesh/blob/510b4468d65ecb52759c9c660bf5c4791361d63f/trimesh/intersections.py#L429-L617 # https://github.com/mikedh/trimesh/blob/510b4468d65ecb52759c9c660bf5c4791361d63f/trimesh/constants.py import logging import numpy as np from ..tri import FACE_DTYPE, quads_to_tris log = logging.getLogger("polliwog.plane._trimesh_intersections") class ToleranceMesh(object): """ ToleranceMesh objects hold tolerance information about meshes. Parameters ---------------- tol.merge : float When merging vertices, consider vertices closer than this to be the same vertex. Here we use the same value (1e-8) as SolidWorks uses, according to their documentation. """ def __init__(self, **kwargs): # vertices closer than this should be merged self.merge = 1e-8 tol = ToleranceMesh() def unique_bincount(values, minlength=0): """ For arrays of integers find unique values using bin counting. Roughly 10x faster for correct input than np.unique Parameters -------------- values : (n,) int Values to find unique members of minlength : int Maximum value that will occur in values (values.max()) Returns ------------ unique : (m,) int Unique values in original array inverse : (n,) int, optional An array such that unique[inverse] == values """ values = np.asanyarray(values) if len(values.shape) != 1 or values.dtype.kind != "i": # pragma: no cover raise ValueError("input must be 1D integers!") # count the number of occurrences of each value counts = np.bincount(values, minlength=minlength) # which bins are occupied at all # counts are integers so this works unique_bin = counts.astype(bool) # which values are unique # indexes correspond to original values unique = np.where(unique_bin)[0] # find the inverse to reconstruct original inverse = (np.cumsum(unique_bin) - 1)[values] return unique, inverse def slice_faces_plane( vertices, faces, plane_normal, plane_origin, face_index=None, cached_dots=None, return_face_mapping=False, ): """ Slice a mesh (given as a set of faces and vertices) with a plane, returning a new mesh (again as a set of faces and vertices) that is the portion of the original mesh to the positive normal side of the plane. Parameters --------- vertices : (n, 3) float Vertices of source mesh to slice faces : (n, 3) int Faces of source mesh to slice plane_normal : (3,) float Normal vector of plane to intersect with mesh plane_origin : (3,) float Point on plane to intersect with mesh face_index : ((m,) int) Indexes of faces to slice. When no mask is provided, the default is to slice all faces. cached_dots : (n, 3) float If an external function has stored dot products pass them here to avoid recomputing return_face_mapping : bool When True, return the indices of the old faces to which the new faces correspond. Returns ---------- new_vertices : (n, 3) float Vertices of sliced mesh new_faces : (n, 3) int Faces of sliced mesh """ if len(vertices) == 0: empty = (vertices, faces) if return_face_mapping: return (*empty, np.arange(len(faces))) else: return empty # Construct a mask for the faces to slice. if face_index is None: mask = np.ones(len(faces), dtype=np.bool) else: mask = np.zeros(len(faces), dtype=np.bool) mask[face_index] = True if cached_dots is not None: # pragma: no cover dots = cached_dots else: # dot product of each vertex with the plane normal indexed by face # so for each face the dot product of each vertex is a row # shape is the same as faces (n,3) dots = np.einsum("i,ij->j", plane_normal, (vertices - plane_origin).T) # Find vertex orientations w.r.t. faces for all triangles: # -1 -> vertex "inside" plane (positive normal direction) # 0 -> vertex on plane # 1 -> vertex "outside" plane (negative normal direction) signs = np.zeros(len(vertices), dtype=np.int8) signs[dots < -tol.merge] = 1 signs[dots > tol.merge] = -1 signs = signs[faces] # Find all triangles that intersect this plane # onedge <- indices of all triangles intersecting the plane # inside <- indices of all triangles "inside" the plane (positive normal) signs_sum = signs.sum(axis=1, dtype=np.int8) signs_asum = np.abs(signs).sum(axis=1, dtype=np.int8) # Cases: # (0,0,0), (-1,0,0), (-1,-1,0), (-1,-1,-1) <- inside # (1,0,0), (1,1,0), (1,1,1) <- outside # (1,0,-1), (1,-1,-1), (1,1,-1) <- onedge onedge = np.logical_and( np.logical_and(signs_asum >= 2, np.abs(signs_sum) <= 1), mask ) inside = np.logical_or((signs_sum == -signs_asum), ~mask) # Automatically include all faces that are "inside" new_faces = faces[inside] if return_face_mapping: new_face_mapping = inside.nonzero()[0] # Separate faces on the edge into two cases: those which will become # quads (two vertices inside plane) and those which will become triangles # (one vertex inside plane) onedge_quad = np.logical_and(onedge, signs_sum < 0).nonzero()[0] cut_faces_quad = faces[onedge_quad] cut_signs_quad = signs[onedge_quad] onedge_tri = np.logical_and(onedge, signs_sum >= 0).nonzero()[0] cut_faces_tri = faces[onedge_tri] cut_signs_tri = signs[onedge_tri] # If no faces to cut, the surface is not in contact with this plane. # Thus, return a mesh with only the inside faces if len(cut_faces_quad) + len(cut_faces_tri) == 0: if len(new_faces) == 0: # if no new faces at all return empty arrays empty = ( np.zeros((0, 3), dtype=np.float64), np.zeros((0, 3), dtype=FACE_DTYPE), ) if return_face_mapping: return (*empty, new_face_mapping) else: return empty # Renumber vertices, dropping any which have been orphaned. unique, inverse = unique_bincount(new_faces.ravel()) final = ( vertices[unique], inverse.reshape((-1, 3)), ) if return_face_mapping: return (*final, new_face_mapping) else: return final # Extract the intersections of each triangle's edges with the plane o = vertices[faces][onedge] # origins d =
np.roll(o, -1, axis=1)
numpy.roll
# -*- coding: utf-8 -*- """ Test nematusLL for consistency with nematus """ import os import unittest import sys import numpy as np import logging import Pyro4 nem_path = os.path.abspath(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../')) sys.path.insert(1, nem_path) from nematus.pyro_utils import setup_remotes, get_random_key, get_unused_port from nematus.util import load_dict from unit_test_utils import initialize GPU_ID = 0 VOCAB_SIZE = 90000 SRC = 'ro' TGT = 'en' DATA_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'test_data') model_options = dict(factors=1, # input factors dim_per_factor=None, # list of word vector dimensionalities (one per factor): [250,200,50] for dimensionality of 500 encoder='gru', decoder='gru_cond', patience=10, # early stopping patience max_epochs=5000, finish_after=10000000, # finish after this many updates map_decay_c=0., # L2 regularization penalty towards original weights alpha_c=0., # alignment regularization shuffle_each_epoch=True, finetune=False, finetune_only_last=False, sort_by_length=True, use_domain_interpolation=False, domain_interpolation_min=0.1, domain_interpolation_inc=0.1, domain_interpolation_indomain_datasets=['indomain.en', 'indomain.fr'], maxibatch_size=20, # How many minibatches to load at one time model_version=0.1, # store version used for training for compatibility pyro_key=None, # pyro hmac key pyro_port=None, # pyro nameserver port pyro_name=None, # if None, will import instead of assuming a server is running saveto='model.npz', reload_=True, dim_word=500, dim=1024, n_words=VOCAB_SIZE, n_words_src=VOCAB_SIZE, decay_c=0., clip_c=1., lrate=0.0001, optimizer='adadelta', maxlen=50, batch_size=80, valid_batch_size=80, datasets=[DATA_DIR + '/corpus.bpe.' + SRC, DATA_DIR + '/corpus.bpe.' + TGT], valid_datasets=[DATA_DIR + '/newsdev2016.bpe.' + SRC, DATA_DIR + '/newsdev2016.bpe.' + TGT], dictionaries=[DATA_DIR + '/corpus.bpe.' + SRC + '.json', DATA_DIR + '/corpus.bpe.' + TGT + '.json'], validFreq=10000, dispFreq=10, saveFreq=30000, sampleFreq=10000, use_dropout=False, dropout_embedding=0.2, # dropout for input embeddings (0: no dropout) dropout_hidden=0.2, # dropout for hidden layers (0: no dropout) dropout_source=0.1, # dropout source words (0: no dropout) dropout_target=0.1, # dropout target words (0: no dropout) overwrite=False, external_validation_script='./validate.sh', ) x0 = np.array([[[3602], [8307], [7244], [7], [58], [9], [5893], [62048], [11372], [4029], [25], [34], [2278], [5], [4266], [11], [2852], [3], [2298], [2], [23912], [6], [16358], [3], [730], [2328], [5], [28], [353], [4], [0], ]]) # 0 = EOS xx0 =
np.tile(x0, [1, 1, 2])
numpy.tile
# AUTO GENERATED. DO NOT CHANGE! from ctypes import * import numpy as np class MJCONTACT(Structure): _fields_ = [ ("dist", c_double), ("pos", c_double * 3), ("frame", c_double * 9), ("includemargin", c_double), ("friction", c_double * 5), ("solref", c_double * 2), ("solimp", c_double * 3), ("mu", c_double), ("coef", c_double * 5), ("zone", c_int), ("dim", c_int), ("geom1", c_int), ("geom2", c_int), ("exclude", c_int), ("efc_address", c_int), ] class MJRRECT(Structure): _fields_ = [ ("left", c_int), ("bottom", c_int), ("width", c_int), ("height", c_int), ] class MJVCAMERAPOSE(Structure): _fields_ = [ ("head_pos", c_double * 3), ("head_right", c_double * 3), ("window_pos", c_double * 3), ("window_right", c_double * 3), ("window_up", c_double * 3), ("window_normal", c_double * 3), ("window_size", c_double * 2), ("scale", c_double), ("ipd", c_double), ] class MJROPTION(Structure): _fields_ = [ ("stereo", c_ubyte), ("flags", c_ubyte * 6), ] class MJRCONTEXT(Structure): _fields_ = [ ("linewidth", c_float), ("znear", c_float), ("zfar", c_float), ("shadowclip", c_float), ("shadowscale", c_float), ("shadowsize", c_int), ("offwidth", c_uint), ("offheight", c_uint), ("offFBO", c_uint), ("offColor", c_uint), ("offDepthStencil", c_uint), ("shadowFBO", c_uint), ("shadowTex", c_uint), ("ntexture", c_uint), ("texture", c_int * 100), ("textureType", c_int * 100), ("basePlane", c_uint), ("baseMesh", c_uint), ("baseHField", c_uint), ("baseBuiltin", c_uint), ("baseFontNormal", c_uint), ("baseFontBack", c_uint), ("baseFontBig", c_uint), ("rangePlane", c_int), ("rangeMesh", c_int), ("rangeHField", c_int), ("rangeBuiltin", c_int), ("rangeFont", c_int), ("charWidth", c_int * 127), ("charWidthBig", c_int * 127), ("charHeight", c_int), ("charHeightBig", c_int), ("glewInitialized", c_int), ] class MJVCAMERA(Structure): _fields_ = [ ("fovy", c_double), ("camid", c_int), ("trackbodyid", c_int), ("lookat", c_double * 3), ("azimuth", c_double), ("elevation", c_double), ("distance", c_double), ("pose", MJVCAMERAPOSE), ("VR", c_ubyte), ] class MJVOPTION(Structure): _fields_ = [ ("label", c_int), ("frame", c_int), ("geomgroup", c_ubyte * 5), ("sitegroup", c_ubyte * 5), ("flags", c_ubyte * 18), ] class MJVGEOM(Structure): _fields_ = [ ("type", c_int), ("dataid", c_int), ("objtype", c_int), ("objid", c_int), ("category", c_int), ("texid", c_int), ("texuniform", c_int), ("texrepeat", c_float * 2), ("size", c_float * 3), ("pos", c_float * 3), ("mat", c_float * 9), ("rgba", c_float * 4), ("emission", c_float), ("specular", c_float), ("shininess", c_float), ("reflectance", c_float), ("label", c_char * 100), ("camdist", c_float), ("rbound", c_float), ("transparent", c_ubyte), ] class MJVLIGHT(Structure): _fields_ = [ ("pos", c_float * 3), ("dir", c_float * 3), ("attenuation", c_float * 3), ("cutoff", c_float), ("exponent", c_float), ("ambient", c_float * 3), ("diffuse", c_float * 3), ("specular", c_float * 3), ("headlight", c_ubyte), ("directional", c_ubyte), ("castshadow", c_ubyte), ] class MJVOBJECTS(Structure): _fields_ = [ ("nlight", c_int), ("ngeom", c_int), ("maxgeom", c_int), ("lights", MJVLIGHT * 8), ("geoms", POINTER(MJVGEOM)), ("geomorder", POINTER(c_int)), ] class MJOPTION(Structure): _fields_ = [ ("timestep", c_double), ("apirate", c_double), ("tolerance", c_double), ("impratio", c_double), ("gravity", c_double * 3), ("wind", c_double * 3), ("magnetic", c_double * 3), ("density", c_double), ("viscosity", c_double), ("o_margin", c_double), ("o_solref", c_double * 2), ("o_solimp", c_double * 3), ("mpr_tolerance", c_double), ("mpr_iterations", c_int), ("integrator", c_int), ("collision", c_int), ("impedance", c_int), ("reference", c_int), ("solver", c_int), ("iterations", c_int), ("disableflags", c_int), ("enableflags", c_int), ] class MJVISUAL(Structure): class ANON_GLOBAL(Structure): _fields_ = [ ("fovy", c_float), ("ipd", c_float), ("linewidth", c_float), ("glow", c_float), ("offwidth", c_int), ("offheight", c_int), ] class ANON_QUALITY(Structure): _fields_ = [ ("shadowsize", c_int), ("numSlices", c_int), ("numStacks", c_int), ("numArrows", c_int), ("numQuads", c_int), ] class ANON_HEADLIGHT(Structure): _fields_ = [ ("ambient", c_float * 3), ("diffuse", c_float * 3), ("specular", c_float * 3), ("active", c_int), ] class ANON_MAP(Structure): _fields_ = [ ("stiffness", c_float), ("force", c_float), ("torque", c_float), ("alpha", c_float), ("fogstart", c_float), ("fogend", c_float), ("znear", c_float), ("zfar", c_float), ("shadowclip", c_float), ("shadowscale", c_float), ] class ANON_SCALE(Structure): _fields_ = [ ("forcewidth", c_float), ("contactwidth", c_float), ("contactheight", c_float), ("connect", c_float), ("com", c_float), ("camera", c_float), ("light", c_float), ("selectpoint", c_float), ("jointlength", c_float), ("jointwidth", c_float), ("actuatorlength", c_float), ("actuatorwidth", c_float), ("framelength", c_float), ("framewidth", c_float), ("constraint", c_float), ("slidercrank", c_float), ] class ANON_RGBA(Structure): _fields_ = [ ("fog", c_float * 4), ("force", c_float * 4), ("inertia", c_float * 4), ("joint", c_float * 4), ("actuator", c_float * 4), ("com", c_float * 4), ("camera", c_float * 4), ("light", c_float * 4), ("selectpoint", c_float * 4), ("connect", c_float * 4), ("contactpoint", c_float * 4), ("contactforce", c_float * 4), ("contactfriction", c_float * 4), ("contacttorque", c_float * 4), ("constraint", c_float * 4), ("slidercrank", c_float * 4), ("crankbroken", c_float * 4), ] _fields_ = [ ("global_", ANON_GLOBAL), ("quality", ANON_QUALITY), ("headlight", ANON_HEADLIGHT), ("map_", ANON_MAP), ("scale", ANON_SCALE), ("rgba", ANON_RGBA), ] class MJSTATISTIC(Structure): _fields_ = [ ("meanmass", c_double), ("meansize", c_double), ("extent", c_double), ("center", c_double * 3), ] class MJDATA(Structure): _fields_ = [ ("nstack", c_int), ("nbuffer", c_int), ("pstack", c_int), ("maxstackuse", c_int), ("ne", c_int), ("nf", c_int), ("nefc", c_int), ("ncon", c_int), ("nwarning", c_int * 8), ("warning_info", c_int * 8), ("timer_duration", c_double * 14), ("timer_ncall", c_double * 14), ("mocaptime", c_double * 3), ("time", c_double), ("energy", c_double * 2), ("solverstat", c_double * 4), ("solvertrace", c_double * 200), ("buffer", POINTER(c_ubyte)), ("stack", POINTER(c_double)), ("qpos", POINTER(c_double)), ("qvel", POINTER(c_double)), ("act", POINTER(c_double)), ("ctrl", POINTER(c_double)), ("qfrc_applied", POINTER(c_double)), ("xfrc_applied", POINTER(c_double)), ("qacc", POINTER(c_double)), ("act_dot", POINTER(c_double)), ("mocap_pos", POINTER(c_double)), ("mocap_quat", POINTER(c_double)), ("userdata", POINTER(c_double)), ("sensordata", POINTER(c_double)), ("xpos", POINTER(c_double)), ("xquat", POINTER(c_double)), ("xmat", POINTER(c_double)), ("xipos", POINTER(c_double)), ("ximat", POINTER(c_double)), ("xanchor", POINTER(c_double)), ("xaxis", POINTER(c_double)), ("geom_xpos", POINTER(c_double)), ("geom_xmat", POINTER(c_double)), ("site_xpos", POINTER(c_double)), ("site_xmat", POINTER(c_double)), ("cam_xpos", POINTER(c_double)), ("cam_xmat", POINTER(c_double)), ("light_xpos", POINTER(c_double)), ("light_xdir", POINTER(c_double)), ("com_subtree", POINTER(c_double)), ("cdof", POINTER(c_double)), ("cinert", POINTER(c_double)), ("ten_wrapadr", POINTER(c_int)), ("ten_wrapnum", POINTER(c_int)), ("ten_length", POINTER(c_double)), ("ten_moment", POINTER(c_double)), ("wrap_obj", POINTER(c_int)), ("wrap_xpos", POINTER(c_double)), ("actuator_length", POINTER(c_double)), ("actuator_moment", POINTER(c_double)), ("crb", POINTER(c_double)), ("qM", POINTER(c_double)), ("qLD", POINTER(c_double)), ("qLDiagInv", POINTER(c_double)), ("qLDiagSqrtInv", POINTER(c_double)), ("contact", POINTER(MJCONTACT)), ("efc_type", POINTER(c_int)), ("efc_id", POINTER(c_int)), ("efc_rownnz", POINTER(c_int)), ("efc_rowadr", POINTER(c_int)), ("efc_colind", POINTER(c_int)), ("efc_rownnz_T", POINTER(c_int)), ("efc_rowadr_T", POINTER(c_int)), ("efc_colind_T", POINTER(c_int)), ("efc_solref", POINTER(c_double)), ("efc_solimp", POINTER(c_double)), ("efc_margin", POINTER(c_double)), ("efc_frictionloss", POINTER(c_double)), ("efc_pos", POINTER(c_double)), ("efc_J", POINTER(c_double)), ("efc_J_T", POINTER(c_double)), ("efc_diagApprox", POINTER(c_double)), ("efc_D", POINTER(c_double)), ("efc_R", POINTER(c_double)), ("efc_AR", POINTER(c_double)), ("e_ARchol", POINTER(c_double)), ("fc_e_rect", POINTER(c_double)), ("fc_AR", POINTER(c_double)), ("ten_velocity", POINTER(c_double)), ("actuator_velocity", POINTER(c_double)), ("cvel", POINTER(c_double)), ("cdof_dot", POINTER(c_double)), ("qfrc_bias", POINTER(c_double)), ("qfrc_passive", POINTER(c_double)), ("efc_vel", POINTER(c_double)), ("efc_aref", POINTER(c_double)), ("actuator_force", POINTER(c_double)), ("qfrc_actuator", POINTER(c_double)), ("qfrc_unc", POINTER(c_double)), ("qacc_unc", POINTER(c_double)), ("efc_b", POINTER(c_double)), ("fc_b", POINTER(c_double)), ("efc_force", POINTER(c_double)), ("qfrc_constraint", POINTER(c_double)), ("qfrc_inverse", POINTER(c_double)), ("cacc", POINTER(c_double)), ("cfrc_int", POINTER(c_double)), ("cfrc_ext", POINTER(c_double)), ] class MJMODEL(Structure): _fields_ = [ ("nq", c_int), ("nv", c_int), ("nu", c_int), ("na", c_int), ("nbody", c_int), ("njnt", c_int), ("ngeom", c_int), ("nsite", c_int), ("ncam", c_int), ("nlight", c_int), ("nmesh", c_int), ("nmeshvert", c_int), ("nmeshface", c_int), ("nmeshgraph", c_int), ("nhfield", c_int), ("nhfielddata", c_int), ("ntex", c_int), ("ntexdata", c_int), ("nmat", c_int), ("npair", c_int), ("nexclude", c_int), ("neq", c_int), ("ntendon", c_int), ("nwrap", c_int), ("nsensor", c_int), ("nnumeric", c_int), ("nnumericdata", c_int), ("ntext", c_int), ("ntextdata", c_int), ("nkey", c_int), ("nuser_body", c_int), ("nuser_jnt", c_int), ("nuser_geom", c_int), ("nuser_site", c_int), ("nuser_tendon", c_int), ("nuser_actuator", c_int), ("nuser_sensor", c_int), ("nnames", c_int), ("nM", c_int), ("nemax", c_int), ("njmax", c_int), ("nconmax", c_int), ("nstack", c_int), ("nuserdata", c_int), ("nmocap", c_int), ("nsensordata", c_int), ("nbuffer", c_int), ("opt", MJOPTION), ("vis", MJVISUAL), ("stat", MJSTATISTIC), ("buffer", POINTER(c_ubyte)), ("qpos0", POINTER(c_double)), ("qpos_spring", POINTER(c_double)), ("body_parentid", POINTER(c_int)), ("body_rootid", POINTER(c_int)), ("body_weldid", POINTER(c_int)), ("body_mocapid", POINTER(c_int)), ("body_jntnum", POINTER(c_int)), ("body_jntadr", POINTER(c_int)), ("body_dofnum", POINTER(c_int)), ("body_dofadr", POINTER(c_int)), ("body_geomnum", POINTER(c_int)), ("body_geomadr", POINTER(c_int)), ("body_pos", POINTER(c_double)), ("body_quat", POINTER(c_double)), ("body_ipos", POINTER(c_double)), ("body_iquat", POINTER(c_double)), ("body_mass", POINTER(c_double)), ("body_inertia", POINTER(c_double)), ("body_invweight0", POINTER(c_double)), ("body_user", POINTER(c_double)), ("jnt_type", POINTER(c_int)), ("jnt_qposadr", POINTER(c_int)), ("jnt_dofadr", POINTER(c_int)), ("jnt_bodyid", POINTER(c_int)), ("jnt_limited", POINTER(c_ubyte)), ("jnt_solref", POINTER(c_double)), ("jnt_solimp", POINTER(c_double)), ("jnt_pos", POINTER(c_double)), ("jnt_axis", POINTER(c_double)), ("jnt_stiffness", POINTER(c_double)), ("jnt_range", POINTER(c_double)), ("jnt_margin", POINTER(c_double)), ("jnt_user", POINTER(c_double)), ("dof_bodyid", POINTER(c_int)), ("dof_jntid", POINTER(c_int)), ("dof_parentid", POINTER(c_int)), ("dof_Madr", POINTER(c_int)), ("dof_frictional", POINTER(c_ubyte)), ("dof_solref", POINTER(c_double)), ("dof_solimp", POINTER(c_double)), ("dof_frictionloss", POINTER(c_double)), ("dof_armature", POINTER(c_double)), ("dof_damping", POINTER(c_double)), ("dof_invweight0", POINTER(c_double)), ("geom_type", POINTER(c_int)), ("geom_contype", POINTER(c_int)), ("geom_conaffinity", POINTER(c_int)), ("geom_condim", POINTER(c_int)), ("geom_bodyid", POINTER(c_int)), ("geom_dataid", POINTER(c_int)), ("geom_matid", POINTER(c_int)), ("geom_group", POINTER(c_int)), ("geom_solmix", POINTER(c_double)), ("geom_solref", POINTER(c_double)), ("geom_solimp", POINTER(c_double)), ("geom_size", POINTER(c_double)), ("geom_rbound", POINTER(c_double)), ("geom_pos", POINTER(c_double)), ("geom_quat", POINTER(c_double)), ("geom_friction", POINTER(c_double)), ("geom_margin", POINTER(c_double)), ("geom_gap", POINTER(c_double)), ("geom_user", POINTER(c_double)), ("geom_rgba", POINTER(c_float)), ("site_type", POINTER(c_int)), ("site_bodyid", POINTER(c_int)), ("site_matid", POINTER(c_int)), ("site_group", POINTER(c_int)), ("site_size", POINTER(c_double)), ("site_pos", POINTER(c_double)), ("site_quat", POINTER(c_double)), ("site_user", POINTER(c_double)), ("site_rgba", POINTER(c_float)), ("cam_mode", POINTER(c_int)), ("cam_bodyid", POINTER(c_int)), ("cam_targetbodyid", POINTER(c_int)), ("cam_pos", POINTER(c_double)), ("cam_quat", POINTER(c_double)), ("cam_poscom0", POINTER(c_double)), ("cam_pos0", POINTER(c_double)), ("cam_mat0", POINTER(c_double)), ("cam_fovy", POINTER(c_double)), ("cam_ipd", POINTER(c_double)), ("light_mode", POINTER(c_int)), ("light_bodyid", POINTER(c_int)), ("light_targetbodyid", POINTER(c_int)), ("light_directional", POINTER(c_ubyte)), ("light_castshadow", POINTER(c_ubyte)), ("light_active", POINTER(c_ubyte)), ("light_pos", POINTER(c_double)), ("light_dir", POINTER(c_double)), ("light_poscom0", POINTER(c_double)), ("light_pos0", POINTER(c_double)), ("light_dir0", POINTER(c_double)), ("light_attenuation", POINTER(c_float)), ("light_cutoff", POINTER(c_float)), ("light_exponent", POINTER(c_float)), ("light_ambient", POINTER(c_float)), ("light_diffuse", POINTER(c_float)), ("light_specular", POINTER(c_float)), ("mesh_faceadr", POINTER(c_int)), ("mesh_facenum", POINTER(c_int)), ("mesh_vertadr", POINTER(c_int)), ("mesh_vertnum", POINTER(c_int)), ("mesh_graphadr", POINTER(c_int)), ("mesh_vert", POINTER(c_float)), ("mesh_normal", POINTER(c_float)), ("mesh_face", POINTER(c_int)), ("mesh_graph", POINTER(c_int)), ("hfield_size", POINTER(c_double)), ("hfield_nrow", POINTER(c_int)), ("hfield_ncol", POINTER(c_int)), ("hfield_adr", POINTER(c_int)), ("hfield_data", POINTER(c_float)), ("tex_type", POINTER(c_int)), ("tex_height", POINTER(c_int)), ("tex_width", POINTER(c_int)), ("tex_adr", POINTER(c_int)), ("tex_rgb", POINTER(c_ubyte)), ("mat_texid", POINTER(c_int)), ("mat_texuniform", POINTER(c_ubyte)), ("mat_texrepeat", POINTER(c_float)), ("mat_emission", POINTER(c_float)), ("mat_specular", POINTER(c_float)), ("mat_shininess", POINTER(c_float)), ("mat_reflectance", POINTER(c_float)), ("mat_rgba", POINTER(c_float)), ("pair_dim", POINTER(c_int)), ("pair_geom1", POINTER(c_int)), ("pair_geom2", POINTER(c_int)), ("pair_signature", POINTER(c_int)), ("pair_solref", POINTER(c_double)), ("pair_solimp", POINTER(c_double)), ("pair_margin", POINTER(c_double)), ("pair_gap", POINTER(c_double)), ("pair_friction", POINTER(c_double)), ("exclude_signature", POINTER(c_int)), ("eq_type", POINTER(c_int)), ("eq_obj1id", POINTER(c_int)), ("eq_obj2id", POINTER(c_int)), ("eq_active", POINTER(c_ubyte)), ("eq_solref", POINTER(c_double)), ("eq_solimp", POINTER(c_double)), ("eq_data", POINTER(c_double)), ("tendon_adr", POINTER(c_int)), ("tendon_num", POINTER(c_int)), ("tendon_matid", POINTER(c_int)), ("tendon_limited", POINTER(c_ubyte)), ("tendon_frictional", POINTER(c_ubyte)), ("tendon_width", POINTER(c_double)), ("tendon_solref_lim", POINTER(c_double)), ("tendon_solimp_lim", POINTER(c_double)), ("tendon_solref_fri", POINTER(c_double)), ("tendon_solimp_fri", POINTER(c_double)), ("tendon_range", POINTER(c_double)), ("tendon_margin", POINTER(c_double)), ("tendon_stiffness", POINTER(c_double)), ("tendon_damping", POINTER(c_double)), ("tendon_frictionloss", POINTER(c_double)), ("tendon_lengthspring", POINTER(c_double)), ("tendon_length0", POINTER(c_double)), ("tendon_invweight0", POINTER(c_double)), ("tendon_user", POINTER(c_double)), ("tendon_rgba", POINTER(c_float)), ("wrap_type", POINTER(c_int)), ("wrap_objid", POINTER(c_int)), ("wrap_prm", POINTER(c_double)), ("actuator_trntype", POINTER(c_int)), ("actuator_dyntype", POINTER(c_int)), ("actuator_gaintype", POINTER(c_int)), ("actuator_biastype", POINTER(c_int)), ("actuator_trnid", POINTER(c_int)), ("actuator_ctrllimited", POINTER(c_ubyte)), ("actuator_forcelimited", POINTER(c_ubyte)), ("actuator_dynprm", POINTER(c_double)), ("actuator_gainprm", POINTER(c_double)), ("actuator_biasprm", POINTER(c_double)), ("actuator_ctrlrange", POINTER(c_double)), ("actuator_forcerange", POINTER(c_double)), ("actuator_gear", POINTER(c_double)), ("actuator_cranklength", POINTER(c_double)), ("actuator_invweight0", POINTER(c_double)), ("actuator_length0", POINTER(c_double)), ("actuator_lengthrange", POINTER(c_double)), ("actuator_user", POINTER(c_double)), ("sensor_type", POINTER(c_int)), ("sensor_objid", POINTER(c_int)), ("sensor_dim", POINTER(c_int)), ("sensor_adr", POINTER(c_int)), ("sensor_scale", POINTER(c_double)), ("sensor_user", POINTER(c_double)), ("numeric_adr", POINTER(c_int)), ("numeric_size", POINTER(c_int)), ("numeric_data", POINTER(c_double)), ("text_adr", POINTER(c_int)), ("text_data", POINTER(c_char)), ("key_time", POINTER(c_double)), ("key_qpos", POINTER(c_double)), ("key_qvel", POINTER(c_double)), ("key_act", POINTER(c_double)), ("name_bodyadr", POINTER(c_int)), ("name_jntadr", POINTER(c_int)), ("name_geomadr", POINTER(c_int)), ("name_siteadr", POINTER(c_int)), ("name_camadr", POINTER(c_int)), ("name_lightadr", POINTER(c_int)), ("name_meshadr", POINTER(c_int)), ("name_hfieldadr", POINTER(c_int)), ("name_texadr", POINTER(c_int)), ("name_matadr", POINTER(c_int)), ("name_eqadr", POINTER(c_int)), ("name_tendonadr", POINTER(c_int)), ("name_actuatoradr", POINTER(c_int)), ("name_sensoradr", POINTER(c_int)), ("name_numericadr", POINTER(c_int)), ("name_textadr", POINTER(c_int)), ("names", POINTER(c_char)), ] class MjContactWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def dist(self): return self._wrapped.contents.dist @dist.setter def dist(self, value): self._wrapped.contents.dist = value @property def pos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.pos, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @pos.setter def pos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.pos, val_ptr, 3 * sizeof(c_double)) @property def frame(self): arr = np.reshape(np.fromiter(self._wrapped.contents.frame, dtype=np.double, count=(9)), (9, )) arr.setflags(write=False) return arr @frame.setter def frame(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.frame, val_ptr, 9 * sizeof(c_double)) @property def includemargin(self): return self._wrapped.contents.includemargin @includemargin.setter def includemargin(self, value): self._wrapped.contents.includemargin = value @property def friction(self): arr = np.reshape(np.fromiter(self._wrapped.contents.friction, dtype=np.double, count=(5)), (5, )) arr.setflags(write=False) return arr @friction.setter def friction(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.friction, val_ptr, 5 * sizeof(c_double)) @property def solref(self): arr = np.reshape(np.fromiter(self._wrapped.contents.solref, dtype=np.double, count=(2)), (2, )) arr.setflags(write=False) return arr @solref.setter def solref(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.solref, val_ptr, 2 * sizeof(c_double)) @property def solimp(self): arr = np.reshape(np.fromiter(self._wrapped.contents.solimp, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @solimp.setter def solimp(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.solimp, val_ptr, 3 * sizeof(c_double)) @property def mu(self): return self._wrapped.contents.mu @mu.setter def mu(self, value): self._wrapped.contents.mu = value @property def coef(self): arr = np.reshape(np.fromiter(self._wrapped.contents.coef, dtype=np.double, count=(5)), (5, )) arr.setflags(write=False) return arr @coef.setter def coef(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.coef, val_ptr, 5 * sizeof(c_double)) @property def zone(self): return self._wrapped.contents.zone @zone.setter def zone(self, value): self._wrapped.contents.zone = value @property def dim(self): return self._wrapped.contents.dim @dim.setter def dim(self, value): self._wrapped.contents.dim = value @property def geom1(self): return self._wrapped.contents.geom1 @geom1.setter def geom1(self, value): self._wrapped.contents.geom1 = value @property def geom2(self): return self._wrapped.contents.geom2 @geom2.setter def geom2(self, value): self._wrapped.contents.geom2 = value @property def exclude(self): return self._wrapped.contents.exclude @exclude.setter def exclude(self, value): self._wrapped.contents.exclude = value @property def efc_address(self): return self._wrapped.contents.efc_address @efc_address.setter def efc_address(self, value): self._wrapped.contents.efc_address = value class MjrRectWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def left(self): return self._wrapped.contents.left @left.setter def left(self, value): self._wrapped.contents.left = value @property def bottom(self): return self._wrapped.contents.bottom @bottom.setter def bottom(self, value): self._wrapped.contents.bottom = value @property def width(self): return self._wrapped.contents.width @width.setter def width(self, value): self._wrapped.contents.width = value @property def height(self): return self._wrapped.contents.height @height.setter def height(self, value): self._wrapped.contents.height = value class MjvCameraPoseWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def head_pos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.head_pos, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @head_pos.setter def head_pos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.head_pos, val_ptr, 3 * sizeof(c_double)) @property def head_right(self): arr = np.reshape(np.fromiter(self._wrapped.contents.head_right, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @head_right.setter def head_right(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.head_right, val_ptr, 3 * sizeof(c_double)) @property def window_pos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.window_pos, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @window_pos.setter def window_pos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.window_pos, val_ptr, 3 * sizeof(c_double)) @property def window_right(self): arr = np.reshape(np.fromiter(self._wrapped.contents.window_right, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @window_right.setter def window_right(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.window_right, val_ptr, 3 * sizeof(c_double)) @property def window_up(self): arr = np.reshape(np.fromiter(self._wrapped.contents.window_up, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @window_up.setter def window_up(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.window_up, val_ptr, 3 * sizeof(c_double)) @property def window_normal(self): arr = np.reshape(np.fromiter(self._wrapped.contents.window_normal, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @window_normal.setter def window_normal(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.window_normal, val_ptr, 3 * sizeof(c_double)) @property def window_size(self): arr = np.reshape(np.fromiter(self._wrapped.contents.window_size, dtype=np.double, count=(2)), (2, )) arr.setflags(write=False) return arr @window_size.setter def window_size(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.window_size, val_ptr, 2 * sizeof(c_double)) @property def scale(self): return self._wrapped.contents.scale @scale.setter def scale(self, value): self._wrapped.contents.scale = value @property def ipd(self): return self._wrapped.contents.ipd @ipd.setter def ipd(self, value): self._wrapped.contents.ipd = value class MjrOptionWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def stereo(self): return self._wrapped.contents.stereo @stereo.setter def stereo(self, value): self._wrapped.contents.stereo = value @property def flags(self): arr = np.reshape(np.fromiter(self._wrapped.contents.flags, dtype=np.uint8, count=(6)), (6, )) arr.setflags(write=False) return arr @flags.setter def flags(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_ubyte)) memmove(self._wrapped.contents.flags, val_ptr, 6 * sizeof(c_ubyte)) class MjrContextWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def linewidth(self): return self._wrapped.contents.linewidth @linewidth.setter def linewidth(self, value): self._wrapped.contents.linewidth = value @property def znear(self): return self._wrapped.contents.znear @znear.setter def znear(self, value): self._wrapped.contents.znear = value @property def zfar(self): return self._wrapped.contents.zfar @zfar.setter def zfar(self, value): self._wrapped.contents.zfar = value @property def shadowclip(self): return self._wrapped.contents.shadowclip @shadowclip.setter def shadowclip(self, value): self._wrapped.contents.shadowclip = value @property def shadowscale(self): return self._wrapped.contents.shadowscale @shadowscale.setter def shadowscale(self, value): self._wrapped.contents.shadowscale = value @property def shadowsize(self): return self._wrapped.contents.shadowsize @shadowsize.setter def shadowsize(self, value): self._wrapped.contents.shadowsize = value @property def offwidth(self): return self._wrapped.contents.offwidth @offwidth.setter def offwidth(self, value): self._wrapped.contents.offwidth = value @property def offheight(self): return self._wrapped.contents.offheight @offheight.setter def offheight(self, value): self._wrapped.contents.offheight = value @property def offFBO(self): return self._wrapped.contents.offFBO @offFBO.setter def offFBO(self, value): self._wrapped.contents.offFBO = value @property def offColor(self): return self._wrapped.contents.offColor @offColor.setter def offColor(self, value): self._wrapped.contents.offColor = value @property def offDepthStencil(self): return self._wrapped.contents.offDepthStencil @offDepthStencil.setter def offDepthStencil(self, value): self._wrapped.contents.offDepthStencil = value @property def shadowFBO(self): return self._wrapped.contents.shadowFBO @shadowFBO.setter def shadowFBO(self, value): self._wrapped.contents.shadowFBO = value @property def shadowTex(self): return self._wrapped.contents.shadowTex @shadowTex.setter def shadowTex(self, value): self._wrapped.contents.shadowTex = value @property def ntexture(self): return self._wrapped.contents.ntexture @ntexture.setter def ntexture(self, value): self._wrapped.contents.ntexture = value @property def texture(self): arr = np.reshape(np.fromiter(self._wrapped.contents.texture, dtype=np.int, count=(100)), (100, )) arr.setflags(write=False) return arr @texture.setter def texture(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.texture, val_ptr, 100 * sizeof(c_int)) @property def textureType(self): arr = np.reshape(np.fromiter(self._wrapped.contents.textureType, dtype=np.int, count=(100)), (100, )) arr.setflags(write=False) return arr @textureType.setter def textureType(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.textureType, val_ptr, 100 * sizeof(c_int)) @property def basePlane(self): return self._wrapped.contents.basePlane @basePlane.setter def basePlane(self, value): self._wrapped.contents.basePlane = value @property def baseMesh(self): return self._wrapped.contents.baseMesh @baseMesh.setter def baseMesh(self, value): self._wrapped.contents.baseMesh = value @property def baseHField(self): return self._wrapped.contents.baseHField @baseHField.setter def baseHField(self, value): self._wrapped.contents.baseHField = value @property def baseBuiltin(self): return self._wrapped.contents.baseBuiltin @baseBuiltin.setter def baseBuiltin(self, value): self._wrapped.contents.baseBuiltin = value @property def baseFontNormal(self): return self._wrapped.contents.baseFontNormal @baseFontNormal.setter def baseFontNormal(self, value): self._wrapped.contents.baseFontNormal = value @property def baseFontBack(self): return self._wrapped.contents.baseFontBack @baseFontBack.setter def baseFontBack(self, value): self._wrapped.contents.baseFontBack = value @property def baseFontBig(self): return self._wrapped.contents.baseFontBig @baseFontBig.setter def baseFontBig(self, value): self._wrapped.contents.baseFontBig = value @property def rangePlane(self): return self._wrapped.contents.rangePlane @rangePlane.setter def rangePlane(self, value): self._wrapped.contents.rangePlane = value @property def rangeMesh(self): return self._wrapped.contents.rangeMesh @rangeMesh.setter def rangeMesh(self, value): self._wrapped.contents.rangeMesh = value @property def rangeHField(self): return self._wrapped.contents.rangeHField @rangeHField.setter def rangeHField(self, value): self._wrapped.contents.rangeHField = value @property def rangeBuiltin(self): return self._wrapped.contents.rangeBuiltin @rangeBuiltin.setter def rangeBuiltin(self, value): self._wrapped.contents.rangeBuiltin = value @property def rangeFont(self): return self._wrapped.contents.rangeFont @rangeFont.setter def rangeFont(self, value): self._wrapped.contents.rangeFont = value @property def charWidth(self): arr = np.reshape(np.fromiter(self._wrapped.contents.charWidth, dtype=np.int, count=(127)), (127, )) arr.setflags(write=False) return arr @charWidth.setter def charWidth(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.charWidth, val_ptr, 127 * sizeof(c_int)) @property def charWidthBig(self): arr = np.reshape(np.fromiter(self._wrapped.contents.charWidthBig, dtype=np.int, count=(127)), (127, )) arr.setflags(write=False) return arr @charWidthBig.setter def charWidthBig(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.charWidthBig, val_ptr, 127 * sizeof(c_int)) @property def charHeight(self): return self._wrapped.contents.charHeight @charHeight.setter def charHeight(self, value): self._wrapped.contents.charHeight = value @property def charHeightBig(self): return self._wrapped.contents.charHeightBig @charHeightBig.setter def charHeightBig(self, value): self._wrapped.contents.charHeightBig = value @property def glewInitialized(self): return self._wrapped.contents.glewInitialized @glewInitialized.setter def glewInitialized(self, value): self._wrapped.contents.glewInitialized = value class MjvCameraWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def fovy(self): return self._wrapped.contents.fovy @fovy.setter def fovy(self, value): self._wrapped.contents.fovy = value @property def camid(self): return self._wrapped.contents.camid @camid.setter def camid(self, value): self._wrapped.contents.camid = value @property def trackbodyid(self): return self._wrapped.contents.trackbodyid @trackbodyid.setter def trackbodyid(self, value): self._wrapped.contents.trackbodyid = value @property def lookat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.lookat, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @lookat.setter def lookat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.lookat, val_ptr, 3 * sizeof(c_double)) @property def azimuth(self): return self._wrapped.contents.azimuth @azimuth.setter def azimuth(self, value): self._wrapped.contents.azimuth = value @property def elevation(self): return self._wrapped.contents.elevation @elevation.setter def elevation(self, value): self._wrapped.contents.elevation = value @property def distance(self): return self._wrapped.contents.distance @distance.setter def distance(self, value): self._wrapped.contents.distance = value @property def pose(self): return self._wrapped.contents.pose @pose.setter def pose(self, value): self._wrapped.contents.pose = value @property def VR(self): return self._wrapped.contents.VR @VR.setter def VR(self, value): self._wrapped.contents.VR = value class MjvOptionWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def label(self): return self._wrapped.contents.label @label.setter def label(self, value): self._wrapped.contents.label = value @property def frame(self): return self._wrapped.contents.frame @frame.setter def frame(self, value): self._wrapped.contents.frame = value @property def geomgroup(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geomgroup, dtype=np.uint8, count=(5)), (5, )) arr.setflags(write=False) return arr @geomgroup.setter def geomgroup(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_ubyte)) memmove(self._wrapped.contents.geomgroup, val_ptr, 5 * sizeof(c_ubyte)) @property def sitegroup(self): arr = np.reshape(np.fromiter(self._wrapped.contents.sitegroup, dtype=np.uint8, count=(5)), (5, )) arr.setflags(write=False) return arr @sitegroup.setter def sitegroup(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_ubyte)) memmove(self._wrapped.contents.sitegroup, val_ptr, 5 * sizeof(c_ubyte)) @property def flags(self): arr = np.reshape(np.fromiter(self._wrapped.contents.flags, dtype=np.uint8, count=(18)), (18, )) arr.setflags(write=False) return arr @flags.setter def flags(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_ubyte)) memmove(self._wrapped.contents.flags, val_ptr, 18 * sizeof(c_ubyte)) class MjvGeomWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def type(self): return self._wrapped.contents.type @type.setter def type(self, value): self._wrapped.contents.type = value @property def dataid(self): return self._wrapped.contents.dataid @dataid.setter def dataid(self, value): self._wrapped.contents.dataid = value @property def objtype(self): return self._wrapped.contents.objtype @objtype.setter def objtype(self, value): self._wrapped.contents.objtype = value @property def objid(self): return self._wrapped.contents.objid @objid.setter def objid(self, value): self._wrapped.contents.objid = value @property def category(self): return self._wrapped.contents.category @category.setter def category(self, value): self._wrapped.contents.category = value @property def texid(self): return self._wrapped.contents.texid @texid.setter def texid(self, value): self._wrapped.contents.texid = value @property def texuniform(self): return self._wrapped.contents.texuniform @texuniform.setter def texuniform(self, value): self._wrapped.contents.texuniform = value @property def texrepeat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.texrepeat, dtype=np.float, count=(2)), (2, )) arr.setflags(write=False) return arr @texrepeat.setter def texrepeat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_float)) memmove(self._wrapped.contents.texrepeat, val_ptr, 2 * sizeof(c_float)) @property def size(self): arr = np.reshape(np.fromiter(self._wrapped.contents.size, dtype=np.float, count=(3)), (3, )) arr.setflags(write=False) return arr @size.setter def size(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_float)) memmove(self._wrapped.contents.size, val_ptr, 3 * sizeof(c_float)) @property def pos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.pos, dtype=np.float, count=(3)), (3, )) arr.setflags(write=False) return arr @pos.setter def pos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_float)) memmove(self._wrapped.contents.pos, val_ptr, 3 * sizeof(c_float)) @property def mat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.mat, dtype=np.float, count=(9)), (9, )) arr.setflags(write=False) return arr @mat.setter def mat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_float)) memmove(self._wrapped.contents.mat, val_ptr, 9 * sizeof(c_float)) @property def rgba(self): arr = np.reshape(np.fromiter(self._wrapped.contents.rgba, dtype=np.float, count=(4)), (4, )) arr.setflags(write=False) return arr @rgba.setter def rgba(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_float)) memmove(self._wrapped.contents.rgba, val_ptr, 4 * sizeof(c_float)) @property def emission(self): return self._wrapped.contents.emission @emission.setter def emission(self, value): self._wrapped.contents.emission = value @property def specular(self): return self._wrapped.contents.specular @specular.setter def specular(self, value): self._wrapped.contents.specular = value @property def shininess(self): return self._wrapped.contents.shininess @shininess.setter def shininess(self, value): self._wrapped.contents.shininess = value @property def reflectance(self): return self._wrapped.contents.reflectance @reflectance.setter def reflectance(self, value): self._wrapped.contents.reflectance = value @property def label(self): return self._wrapped.contents.label @label.setter def label(self, value): self._wrapped.contents.label = value @property def camdist(self): return self._wrapped.contents.camdist @camdist.setter def camdist(self, value): self._wrapped.contents.camdist = value @property def rbound(self): return self._wrapped.contents.rbound @rbound.setter def rbound(self, value): self._wrapped.contents.rbound = value @property def transparent(self): return self._wrapped.contents.transparent @transparent.setter def transparent(self, value): self._wrapped.contents.transparent = value class MjvLightWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def pos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.pos, dtype=np.float, count=(3)), (3, )) arr.setflags(write=False) return arr @pos.setter def pos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_float)) memmove(self._wrapped.contents.pos, val_ptr, 3 * sizeof(c_float)) @property def dir(self): arr = np.reshape(np.fromiter(self._wrapped.contents.dir, dtype=np.float, count=(3)), (3, )) arr.setflags(write=False) return arr @dir.setter def dir(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_float)) memmove(self._wrapped.contents.dir, val_ptr, 3 * sizeof(c_float)) @property def attenuation(self): arr = np.reshape(np.fromiter(self._wrapped.contents.attenuation, dtype=np.float, count=(3)), (3, )) arr.setflags(write=False) return arr @attenuation.setter def attenuation(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_float)) memmove(self._wrapped.contents.attenuation, val_ptr, 3 * sizeof(c_float)) @property def cutoff(self): return self._wrapped.contents.cutoff @cutoff.setter def cutoff(self, value): self._wrapped.contents.cutoff = value @property def exponent(self): return self._wrapped.contents.exponent @exponent.setter def exponent(self, value): self._wrapped.contents.exponent = value @property def ambient(self): arr = np.reshape(np.fromiter(self._wrapped.contents.ambient, dtype=np.float, count=(3)), (3, )) arr.setflags(write=False) return arr @ambient.setter def ambient(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_float)) memmove(self._wrapped.contents.ambient, val_ptr, 3 * sizeof(c_float)) @property def diffuse(self): arr = np.reshape(np.fromiter(self._wrapped.contents.diffuse, dtype=np.float, count=(3)), (3, )) arr.setflags(write=False) return arr @diffuse.setter def diffuse(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_float)) memmove(self._wrapped.contents.diffuse, val_ptr, 3 * sizeof(c_float)) @property def specular(self): arr = np.reshape(np.fromiter(self._wrapped.contents.specular, dtype=np.float, count=(3)), (3, )) arr.setflags(write=False) return arr @specular.setter def specular(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_float)) memmove(self._wrapped.contents.specular, val_ptr, 3 * sizeof(c_float)) @property def headlight(self): return self._wrapped.contents.headlight @headlight.setter def headlight(self, value): self._wrapped.contents.headlight = value @property def directional(self): return self._wrapped.contents.directional @directional.setter def directional(self, value): self._wrapped.contents.directional = value @property def castshadow(self): return self._wrapped.contents.castshadow @castshadow.setter def castshadow(self, value): self._wrapped.contents.castshadow = value class MjvObjectsWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def nlight(self): return self._wrapped.contents.nlight @nlight.setter def nlight(self, value): self._wrapped.contents.nlight = value @property def ngeom(self): return self._wrapped.contents.ngeom @ngeom.setter def ngeom(self, value): self._wrapped.contents.ngeom = value @property def maxgeom(self): return self._wrapped.contents.maxgeom @maxgeom.setter def maxgeom(self, value): self._wrapped.contents.maxgeom = value @property def lights(self): return self._wrapped.contents.lights @lights.setter def lights(self, value): self._wrapped.contents.lights = value class MjOptionWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def timestep(self): return self._wrapped.contents.timestep @timestep.setter def timestep(self, value): self._wrapped.contents.timestep = value @property def apirate(self): return self._wrapped.contents.apirate @apirate.setter def apirate(self, value): self._wrapped.contents.apirate = value @property def tolerance(self): return self._wrapped.contents.tolerance @tolerance.setter def tolerance(self, value): self._wrapped.contents.tolerance = value @property def impratio(self): return self._wrapped.contents.impratio @impratio.setter def impratio(self, value): self._wrapped.contents.impratio = value @property def gravity(self): arr = np.reshape(np.fromiter(self._wrapped.contents.gravity, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @gravity.setter def gravity(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.gravity, val_ptr, 3 * sizeof(c_double)) @property def wind(self): arr = np.reshape(np.fromiter(self._wrapped.contents.wind, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @wind.setter def wind(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.wind, val_ptr, 3 * sizeof(c_double)) @property def magnetic(self): arr = np.reshape(np.fromiter(self._wrapped.contents.magnetic, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @magnetic.setter def magnetic(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.magnetic, val_ptr, 3 * sizeof(c_double)) @property def density(self): return self._wrapped.contents.density @density.setter def density(self, value): self._wrapped.contents.density = value @property def viscosity(self): return self._wrapped.contents.viscosity @viscosity.setter def viscosity(self, value): self._wrapped.contents.viscosity = value @property def o_margin(self): return self._wrapped.contents.o_margin @o_margin.setter def o_margin(self, value): self._wrapped.contents.o_margin = value @property def o_solref(self): arr = np.reshape(np.fromiter(self._wrapped.contents.o_solref, dtype=np.double, count=(2)), (2, )) arr.setflags(write=False) return arr @o_solref.setter def o_solref(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.o_solref, val_ptr, 2 * sizeof(c_double)) @property def o_solimp(self): arr = np.reshape(np.fromiter(self._wrapped.contents.o_solimp, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @o_solimp.setter def o_solimp(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.o_solimp, val_ptr, 3 * sizeof(c_double)) @property def mpr_tolerance(self): return self._wrapped.contents.mpr_tolerance @mpr_tolerance.setter def mpr_tolerance(self, value): self._wrapped.contents.mpr_tolerance = value @property def mpr_iterations(self): return self._wrapped.contents.mpr_iterations @mpr_iterations.setter def mpr_iterations(self, value): self._wrapped.contents.mpr_iterations = value @property def integrator(self): return self._wrapped.contents.integrator @integrator.setter def integrator(self, value): self._wrapped.contents.integrator = value @property def collision(self): return self._wrapped.contents.collision @collision.setter def collision(self, value): self._wrapped.contents.collision = value @property def impedance(self): return self._wrapped.contents.impedance @impedance.setter def impedance(self, value): self._wrapped.contents.impedance = value @property def reference(self): return self._wrapped.contents.reference @reference.setter def reference(self, value): self._wrapped.contents.reference = value @property def solver(self): return self._wrapped.contents.solver @solver.setter def solver(self, value): self._wrapped.contents.solver = value @property def iterations(self): return self._wrapped.contents.iterations @iterations.setter def iterations(self, value): self._wrapped.contents.iterations = value @property def disableflags(self): return self._wrapped.contents.disableflags @disableflags.setter def disableflags(self, value): self._wrapped.contents.disableflags = value @property def enableflags(self): return self._wrapped.contents.enableflags @enableflags.setter def enableflags(self, value): self._wrapped.contents.enableflags = value class MjVisualWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def global_(self): return self._wrapped.contents.global_ @global_.setter def global_(self, value): self._wrapped.contents.global_ = value @property def quality(self): return self._wrapped.contents.quality @quality.setter def quality(self, value): self._wrapped.contents.quality = value @property def headlight(self): return self._wrapped.contents.headlight @headlight.setter def headlight(self, value): self._wrapped.contents.headlight = value @property def map_(self): return self._wrapped.contents.map_ @map_.setter def map_(self, value): self._wrapped.contents.map_ = value @property def scale(self): return self._wrapped.contents.scale @scale.setter def scale(self, value): self._wrapped.contents.scale = value @property def rgba(self): return self._wrapped.contents.rgba @rgba.setter def rgba(self, value): self._wrapped.contents.rgba = value class MjStatisticWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def meanmass(self): return self._wrapped.contents.meanmass @meanmass.setter def meanmass(self, value): self._wrapped.contents.meanmass = value @property def meansize(self): return self._wrapped.contents.meansize @meansize.setter def meansize(self, value): self._wrapped.contents.meansize = value @property def extent(self): return self._wrapped.contents.extent @extent.setter def extent(self, value): self._wrapped.contents.extent = value @property def center(self): arr = np.reshape(np.fromiter(self._wrapped.contents.center, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @center.setter def center(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.center, val_ptr, 3 * sizeof(c_double)) class MjDataWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def nstack(self): return self._wrapped.contents.nstack @nstack.setter def nstack(self, value): self._wrapped.contents.nstack = value @property def nbuffer(self): return self._wrapped.contents.nbuffer @nbuffer.setter def nbuffer(self, value): self._wrapped.contents.nbuffer = value @property def pstack(self): return self._wrapped.contents.pstack @pstack.setter def pstack(self, value): self._wrapped.contents.pstack = value @property def maxstackuse(self): return self._wrapped.contents.maxstackuse @maxstackuse.setter def maxstackuse(self, value): self._wrapped.contents.maxstackuse = value @property def ne(self): return self._wrapped.contents.ne @ne.setter def ne(self, value): self._wrapped.contents.ne = value @property def nf(self): return self._wrapped.contents.nf @nf.setter def nf(self, value): self._wrapped.contents.nf = value @property def nefc(self): return self._wrapped.contents.nefc @nefc.setter def nefc(self, value): self._wrapped.contents.nefc = value @property def ncon(self): return self._wrapped.contents.ncon @ncon.setter def ncon(self, value): self._wrapped.contents.ncon = value @property def nwarning(self): arr = np.reshape(np.fromiter(self._wrapped.contents.nwarning, dtype=np.int, count=(8)), (8, )) arr.setflags(write=False) return arr @nwarning.setter def nwarning(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.nwarning, val_ptr, 8 * sizeof(c_int)) @property def warning_info(self): arr = np.reshape(np.fromiter(self._wrapped.contents.warning_info, dtype=np.int, count=(8)), (8, )) arr.setflags(write=False) return arr @warning_info.setter def warning_info(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.warning_info, val_ptr, 8 * sizeof(c_int)) @property def timer_duration(self): arr = np.reshape(np.fromiter(self._wrapped.contents.timer_duration, dtype=np.double, count=(14)), (14, )) arr.setflags(write=False) return arr @timer_duration.setter def timer_duration(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.timer_duration, val_ptr, 14 * sizeof(c_double)) @property def timer_ncall(self): arr = np.reshape(np.fromiter(self._wrapped.contents.timer_ncall, dtype=np.double, count=(14)), (14, )) arr.setflags(write=False) return arr @timer_ncall.setter def timer_ncall(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.timer_ncall, val_ptr, 14 * sizeof(c_double)) @property def mocaptime(self): arr = np.reshape(np.fromiter(self._wrapped.contents.mocaptime, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @mocaptime.setter def mocaptime(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.mocaptime, val_ptr, 3 * sizeof(c_double)) @property def time(self): return self._wrapped.contents.time @time.setter def time(self, value): self._wrapped.contents.time = value @property def energy(self): arr = np.reshape(np.fromiter(self._wrapped.contents.energy, dtype=np.double, count=(2)), (2, )) arr.setflags(write=False) return arr @energy.setter def energy(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.energy, val_ptr, 2 * sizeof(c_double)) @property def solverstat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.solverstat, dtype=np.double, count=(4)), (4, )) arr.setflags(write=False) return arr @solverstat.setter def solverstat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.solverstat, val_ptr, 4 * sizeof(c_double)) @property def solvertrace(self): arr = np.reshape(np.fromiter(self._wrapped.contents.solvertrace, dtype=np.double, count=(200)), (200, )) arr.setflags(write=False) return arr @solvertrace.setter def solvertrace(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.solvertrace, val_ptr, 200 * sizeof(c_double)) @property def buffer(self): arr = np.reshape(np.fromiter(self._wrapped.contents.buffer, dtype=np.uint8, count=(self.nbuffer)), (self.nbuffer, )) arr.setflags(write=False) return arr @buffer.setter def buffer(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_ubyte)) memmove(self._wrapped.contents.buffer, val_ptr, self.nbuffer * sizeof(c_ubyte)) @property def stack(self): arr = np.reshape(np.fromiter(self._wrapped.contents.stack, dtype=np.double, count=(self.nstack)), (self.nstack, )) arr.setflags(write=False) return arr @stack.setter def stack(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.stack, val_ptr, self.nstack * sizeof(c_double)) @property def qpos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qpos, dtype=np.double, count=(self._size_src.nq*1)), (self._size_src.nq, 1, )) arr.setflags(write=False) return arr @qpos.setter def qpos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qpos, val_ptr, self._size_src.nq*1 * sizeof(c_double)) @property def qvel(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qvel, dtype=np.double, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @qvel.setter def qvel(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qvel, val_ptr, self._size_src.nv*1 * sizeof(c_double)) @property def act(self): arr = np.reshape(np.fromiter(self._wrapped.contents.act, dtype=np.double, count=(self._size_src.na*1)), (self._size_src.na, 1, )) arr.setflags(write=False) return arr @act.setter def act(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.act, val_ptr, self._size_src.na*1 * sizeof(c_double)) @property def ctrl(self): arr = np.reshape(np.fromiter(self._wrapped.contents.ctrl, dtype=np.double, count=(self._size_src.nu*1)), (self._size_src.nu, 1, )) arr.setflags(write=False) return arr @ctrl.setter def ctrl(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.ctrl, val_ptr, self._size_src.nu*1 * sizeof(c_double)) @property def qfrc_applied(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qfrc_applied, dtype=np.double, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @qfrc_applied.setter def qfrc_applied(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qfrc_applied, val_ptr, self._size_src.nv*1 * sizeof(c_double)) @property def xfrc_applied(self): arr = np.reshape(np.fromiter(self._wrapped.contents.xfrc_applied, dtype=np.double, count=(self._size_src.nbody*6)), (self._size_src.nbody, 6, )) arr.setflags(write=False) return arr @xfrc_applied.setter def xfrc_applied(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.xfrc_applied, val_ptr, self._size_src.nbody*6 * sizeof(c_double)) @property def qacc(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qacc, dtype=np.double, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @qacc.setter def qacc(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qacc, val_ptr, self._size_src.nv*1 * sizeof(c_double)) @property def act_dot(self): arr = np.reshape(np.fromiter(self._wrapped.contents.act_dot, dtype=np.double, count=(self._size_src.na*1)), (self._size_src.na, 1, )) arr.setflags(write=False) return arr @act_dot.setter def act_dot(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.act_dot, val_ptr, self._size_src.na*1 * sizeof(c_double)) @property def mocap_pos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.mocap_pos, dtype=np.double, count=(self._size_src.nmocap*3)), (self._size_src.nmocap, 3, )) arr.setflags(write=False) return arr @mocap_pos.setter def mocap_pos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.mocap_pos, val_ptr, self._size_src.nmocap*3 * sizeof(c_double)) @property def mocap_quat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.mocap_quat, dtype=np.double, count=(self._size_src.nmocap*4)), (self._size_src.nmocap, 4, )) arr.setflags(write=False) return arr @mocap_quat.setter def mocap_quat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.mocap_quat, val_ptr, self._size_src.nmocap*4 * sizeof(c_double)) @property def userdata(self): arr = np.reshape(np.fromiter(self._wrapped.contents.userdata, dtype=np.double, count=(self._size_src.nuserdata*1)), (self._size_src.nuserdata, 1, )) arr.setflags(write=False) return arr @userdata.setter def userdata(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.userdata, val_ptr, self._size_src.nuserdata*1 * sizeof(c_double)) @property def sensordata(self): arr = np.reshape(np.fromiter(self._wrapped.contents.sensordata, dtype=np.double, count=(self._size_src.nsensordata*1)), (self._size_src.nsensordata, 1, )) arr.setflags(write=False) return arr @sensordata.setter def sensordata(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.sensordata, val_ptr, self._size_src.nsensordata*1 * sizeof(c_double)) @property def xpos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.xpos, dtype=np.double, count=(self._size_src.nbody*3)), (self._size_src.nbody, 3, )) arr.setflags(write=False) return arr @xpos.setter def xpos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.xpos, val_ptr, self._size_src.nbody*3 * sizeof(c_double)) @property def xquat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.xquat, dtype=np.double, count=(self._size_src.nbody*4)), (self._size_src.nbody, 4, )) arr.setflags(write=False) return arr @xquat.setter def xquat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.xquat, val_ptr, self._size_src.nbody*4 * sizeof(c_double)) @property def xmat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.xmat, dtype=np.double, count=(self._size_src.nbody*9)), (self._size_src.nbody, 9, )) arr.setflags(write=False) return arr @xmat.setter def xmat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.xmat, val_ptr, self._size_src.nbody*9 * sizeof(c_double)) @property def xipos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.xipos, dtype=np.double, count=(self._size_src.nbody*3)), (self._size_src.nbody, 3, )) arr.setflags(write=False) return arr @xipos.setter def xipos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.xipos, val_ptr, self._size_src.nbody*3 * sizeof(c_double)) @property def ximat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.ximat, dtype=np.double, count=(self._size_src.nbody*9)), (self._size_src.nbody, 9, )) arr.setflags(write=False) return arr @ximat.setter def ximat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.ximat, val_ptr, self._size_src.nbody*9 * sizeof(c_double)) @property def xanchor(self): arr = np.reshape(np.fromiter(self._wrapped.contents.xanchor, dtype=np.double, count=(self._size_src.njnt*3)), (self._size_src.njnt, 3, )) arr.setflags(write=False) return arr @xanchor.setter def xanchor(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.xanchor, val_ptr, self._size_src.njnt*3 * sizeof(c_double)) @property def xaxis(self): arr = np.reshape(np.fromiter(self._wrapped.contents.xaxis, dtype=np.double, count=(self._size_src.njnt*3)), (self._size_src.njnt, 3, )) arr.setflags(write=False) return arr @xaxis.setter def xaxis(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.xaxis, val_ptr, self._size_src.njnt*3 * sizeof(c_double)) @property def geom_xpos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_xpos, dtype=np.double, count=(self._size_src.ngeom*3)), (self._size_src.ngeom, 3, )) arr.setflags(write=False) return arr @geom_xpos.setter def geom_xpos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.geom_xpos, val_ptr, self._size_src.ngeom*3 * sizeof(c_double)) @property def geom_xmat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_xmat, dtype=np.double, count=(self._size_src.ngeom*9)), (self._size_src.ngeom, 9, )) arr.setflags(write=False) return arr @geom_xmat.setter def geom_xmat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.geom_xmat, val_ptr, self._size_src.ngeom*9 * sizeof(c_double)) @property def site_xpos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.site_xpos, dtype=np.double, count=(self._size_src.nsite*3)), (self._size_src.nsite, 3, )) arr.setflags(write=False) return arr @site_xpos.setter def site_xpos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.site_xpos, val_ptr, self._size_src.nsite*3 * sizeof(c_double)) @property def site_xmat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.site_xmat, dtype=np.double, count=(self._size_src.nsite*9)), (self._size_src.nsite, 9, )) arr.setflags(write=False) return arr @site_xmat.setter def site_xmat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.site_xmat, val_ptr, self._size_src.nsite*9 * sizeof(c_double)) @property def cam_xpos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cam_xpos, dtype=np.double, count=(self._size_src.ncam*3)), (self._size_src.ncam, 3, )) arr.setflags(write=False) return arr @cam_xpos.setter def cam_xpos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cam_xpos, val_ptr, self._size_src.ncam*3 * sizeof(c_double)) @property def cam_xmat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cam_xmat, dtype=np.double, count=(self._size_src.ncam*9)), (self._size_src.ncam, 9, )) arr.setflags(write=False) return arr @cam_xmat.setter def cam_xmat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cam_xmat, val_ptr, self._size_src.ncam*9 * sizeof(c_double)) @property def light_xpos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.light_xpos, dtype=np.double, count=(self._size_src.nlight*3)), (self._size_src.nlight, 3, )) arr.setflags(write=False) return arr @light_xpos.setter def light_xpos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.light_xpos, val_ptr, self._size_src.nlight*3 * sizeof(c_double)) @property def light_xdir(self): arr = np.reshape(np.fromiter(self._wrapped.contents.light_xdir, dtype=np.double, count=(self._size_src.nlight*3)), (self._size_src.nlight, 3, )) arr.setflags(write=False) return arr @light_xdir.setter def light_xdir(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.light_xdir, val_ptr, self._size_src.nlight*3 * sizeof(c_double)) @property def com_subtree(self): arr = np.reshape(np.fromiter(self._wrapped.contents.com_subtree, dtype=np.double, count=(self._size_src.nbody*3)), (self._size_src.nbody, 3, )) arr.setflags(write=False) return arr @com_subtree.setter def com_subtree(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.com_subtree, val_ptr, self._size_src.nbody*3 * sizeof(c_double)) @property def cdof(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cdof, dtype=np.double, count=(self._size_src.nv*6)), (self._size_src.nv, 6, )) arr.setflags(write=False) return arr @cdof.setter def cdof(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cdof, val_ptr, self._size_src.nv*6 * sizeof(c_double)) @property def cinert(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cinert, dtype=np.double, count=(self._size_src.nbody*10)), (self._size_src.nbody, 10, )) arr.setflags(write=False) return arr @cinert.setter def cinert(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cinert, val_ptr, self._size_src.nbody*10 * sizeof(c_double)) @property def ten_wrapadr(self): arr = np.reshape(np.fromiter(self._wrapped.contents.ten_wrapadr, dtype=np.int, count=(self._size_src.ntendon*1)), (self._size_src.ntendon, 1, )) arr.setflags(write=False) return arr @ten_wrapadr.setter def ten_wrapadr(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.ten_wrapadr, val_ptr, self._size_src.ntendon*1 * sizeof(c_int)) @property def ten_wrapnum(self): arr = np.reshape(np.fromiter(self._wrapped.contents.ten_wrapnum, dtype=np.int, count=(self._size_src.ntendon*1)), (self._size_src.ntendon, 1, )) arr.setflags(write=False) return arr @ten_wrapnum.setter def ten_wrapnum(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.ten_wrapnum, val_ptr, self._size_src.ntendon*1 * sizeof(c_int)) @property def ten_length(self): arr = np.reshape(np.fromiter(self._wrapped.contents.ten_length, dtype=np.double, count=(self._size_src.ntendon*1)), (self._size_src.ntendon, 1, )) arr.setflags(write=False) return arr @ten_length.setter def ten_length(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.ten_length, val_ptr, self._size_src.ntendon*1 * sizeof(c_double)) @property def ten_moment(self): arr = np.reshape(np.fromiter(self._wrapped.contents.ten_moment, dtype=np.double, count=(self._size_src.ntendon*self._size_src.nv)), (self._size_src.ntendon, self._size_src.nv, )) arr.setflags(write=False) return arr @ten_moment.setter def ten_moment(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.ten_moment, val_ptr, self._size_src.ntendon*self._size_src.nv * sizeof(c_double)) @property def wrap_obj(self): arr = np.reshape(np.fromiter(self._wrapped.contents.wrap_obj, dtype=np.int, count=(self._size_src.nwrap*2)), (self._size_src.nwrap, 2, )) arr.setflags(write=False) return arr @wrap_obj.setter def wrap_obj(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.wrap_obj, val_ptr, self._size_src.nwrap*2 * sizeof(c_int)) @property def wrap_xpos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.wrap_xpos, dtype=np.double, count=(self._size_src.nwrap*6)), (self._size_src.nwrap, 6, )) arr.setflags(write=False) return arr @wrap_xpos.setter def wrap_xpos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.wrap_xpos, val_ptr, self._size_src.nwrap*6 * sizeof(c_double)) @property def actuator_length(self): arr = np.reshape(np.fromiter(self._wrapped.contents.actuator_length, dtype=np.double, count=(self._size_src.nu*1)), (self._size_src.nu, 1, )) arr.setflags(write=False) return arr @actuator_length.setter def actuator_length(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.actuator_length, val_ptr, self._size_src.nu*1 * sizeof(c_double)) @property def actuator_moment(self): arr = np.reshape(np.fromiter(self._wrapped.contents.actuator_moment, dtype=np.double, count=(self._size_src.nu*self._size_src.nv)), (self._size_src.nu, self._size_src.nv, )) arr.setflags(write=False) return arr @actuator_moment.setter def actuator_moment(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.actuator_moment, val_ptr, self._size_src.nu*self._size_src.nv * sizeof(c_double)) @property def crb(self): arr = np.reshape(np.fromiter(self._wrapped.contents.crb, dtype=np.double, count=(self._size_src.nbody*10)), (self._size_src.nbody, 10, )) arr.setflags(write=False) return arr @crb.setter def crb(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.crb, val_ptr, self._size_src.nbody*10 * sizeof(c_double)) @property def qM(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qM, dtype=np.double, count=(self._size_src.nM*1)), (self._size_src.nM, 1, )) arr.setflags(write=False) return arr @qM.setter def qM(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qM, val_ptr, self._size_src.nM*1 * sizeof(c_double)) @property def qLD(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qLD, dtype=np.double, count=(self._size_src.nM*1)), (self._size_src.nM, 1, )) arr.setflags(write=False) return arr @qLD.setter def qLD(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qLD, val_ptr, self._size_src.nM*1 * sizeof(c_double)) @property def qLDiagInv(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qLDiagInv, dtype=np.double, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @qLDiagInv.setter def qLDiagInv(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qLDiagInv, val_ptr, self._size_src.nv*1 * sizeof(c_double)) @property def qLDiagSqrtInv(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qLDiagSqrtInv, dtype=np.double, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @qLDiagSqrtInv.setter def qLDiagSqrtInv(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qLDiagSqrtInv, val_ptr, self._size_src.nv*1 * sizeof(c_double)) @property def efc_type(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_type, dtype=np.int, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_type.setter def efc_type(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.efc_type, val_ptr, self._size_src.njmax*1 * sizeof(c_int)) @property def efc_id(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_id, dtype=np.int, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_id.setter def efc_id(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.efc_id, val_ptr, self._size_src.njmax*1 * sizeof(c_int)) @property def efc_rownnz(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_rownnz, dtype=np.int, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_rownnz.setter def efc_rownnz(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.efc_rownnz, val_ptr, self._size_src.njmax*1 * sizeof(c_int)) @property def efc_rowadr(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_rowadr, dtype=np.int, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_rowadr.setter def efc_rowadr(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.efc_rowadr, val_ptr, self._size_src.njmax*1 * sizeof(c_int)) @property def efc_colind(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_colind, dtype=np.int, count=(self._size_src.njmax*self._size_src.nv)), (self._size_src.njmax, self._size_src.nv, )) arr.setflags(write=False) return arr @efc_colind.setter def efc_colind(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.efc_colind, val_ptr, self._size_src.njmax*self._size_src.nv * sizeof(c_int)) @property def efc_rownnz_T(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_rownnz_T, dtype=np.int, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @efc_rownnz_T.setter def efc_rownnz_T(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.efc_rownnz_T, val_ptr, self._size_src.nv*1 * sizeof(c_int)) @property def efc_rowadr_T(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_rowadr_T, dtype=np.int, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @efc_rowadr_T.setter def efc_rowadr_T(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.efc_rowadr_T, val_ptr, self._size_src.nv*1 * sizeof(c_int)) @property def efc_colind_T(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_colind_T, dtype=np.int, count=(self._size_src.nv*self._size_src.njmax)), (self._size_src.nv, self._size_src.njmax, )) arr.setflags(write=False) return arr @efc_colind_T.setter def efc_colind_T(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.efc_colind_T, val_ptr, self._size_src.nv*self._size_src.njmax * sizeof(c_int)) @property def efc_solref(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_solref, dtype=np.double, count=(self._size_src.njmax*2)), (self._size_src.njmax, 2, )) arr.setflags(write=False) return arr @efc_solref.setter def efc_solref(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_solref, val_ptr, self._size_src.njmax*2 * sizeof(c_double)) @property def efc_solimp(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_solimp, dtype=np.double, count=(self._size_src.njmax*3)), (self._size_src.njmax, 3, )) arr.setflags(write=False) return arr @efc_solimp.setter def efc_solimp(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_solimp, val_ptr, self._size_src.njmax*3 * sizeof(c_double)) @property def efc_margin(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_margin, dtype=np.double, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_margin.setter def efc_margin(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_margin, val_ptr, self._size_src.njmax*1 * sizeof(c_double)) @property def efc_frictionloss(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_frictionloss, dtype=np.double, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_frictionloss.setter def efc_frictionloss(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_frictionloss, val_ptr, self._size_src.njmax*1 * sizeof(c_double)) @property def efc_pos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_pos, dtype=np.double, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_pos.setter def efc_pos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_pos, val_ptr, self._size_src.njmax*1 * sizeof(c_double)) @property def efc_J(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_J, dtype=np.double, count=(self._size_src.njmax*self._size_src.nv)), (self._size_src.njmax, self._size_src.nv, )) arr.setflags(write=False) return arr @efc_J.setter def efc_J(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_J, val_ptr, self._size_src.njmax*self._size_src.nv * sizeof(c_double)) @property def efc_J_T(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_J_T, dtype=np.double, count=(self._size_src.nv*self._size_src.njmax)), (self._size_src.nv, self._size_src.njmax, )) arr.setflags(write=False) return arr @efc_J_T.setter def efc_J_T(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_J_T, val_ptr, self._size_src.nv*self._size_src.njmax * sizeof(c_double)) @property def efc_diagApprox(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_diagApprox, dtype=np.double, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_diagApprox.setter def efc_diagApprox(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_diagApprox, val_ptr, self._size_src.njmax*1 * sizeof(c_double)) @property def efc_D(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_D, dtype=np.double, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_D.setter def efc_D(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_D, val_ptr, self._size_src.njmax*1 * sizeof(c_double)) @property def efc_R(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_R, dtype=np.double, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_R.setter def efc_R(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_R, val_ptr, self._size_src.njmax*1 * sizeof(c_double)) @property def efc_AR(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_AR, dtype=np.double, count=(self._size_src.njmax*self._size_src.njmax)), (self._size_src.njmax, self._size_src.njmax, )) arr.setflags(write=False) return arr @efc_AR.setter def efc_AR(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_AR, val_ptr, self._size_src.njmax*self._size_src.njmax * sizeof(c_double)) @property def e_ARchol(self): arr = np.reshape(np.fromiter(self._wrapped.contents.e_ARchol, dtype=np.double, count=(self._size_src.nemax*self._size_src.nemax)), (self._size_src.nemax, self._size_src.nemax, )) arr.setflags(write=False) return arr @e_ARchol.setter def e_ARchol(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.e_ARchol, val_ptr, self._size_src.nemax*self._size_src.nemax * sizeof(c_double)) @property def fc_e_rect(self): arr = np.reshape(np.fromiter(self._wrapped.contents.fc_e_rect, dtype=np.double, count=(self._size_src.njmax*self._size_src.nemax)), (self._size_src.njmax, self._size_src.nemax, )) arr.setflags(write=False) return arr @fc_e_rect.setter def fc_e_rect(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.fc_e_rect, val_ptr, self._size_src.njmax*self._size_src.nemax * sizeof(c_double)) @property def fc_AR(self): arr = np.reshape(np.fromiter(self._wrapped.contents.fc_AR, dtype=np.double, count=(self._size_src.njmax*self._size_src.njmax)), (self._size_src.njmax, self._size_src.njmax, )) arr.setflags(write=False) return arr @fc_AR.setter def fc_AR(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.fc_AR, val_ptr, self._size_src.njmax*self._size_src.njmax * sizeof(c_double)) @property def ten_velocity(self): arr = np.reshape(np.fromiter(self._wrapped.contents.ten_velocity, dtype=np.double, count=(self._size_src.ntendon*1)), (self._size_src.ntendon, 1, )) arr.setflags(write=False) return arr @ten_velocity.setter def ten_velocity(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.ten_velocity, val_ptr, self._size_src.ntendon*1 * sizeof(c_double)) @property def actuator_velocity(self): arr = np.reshape(np.fromiter(self._wrapped.contents.actuator_velocity, dtype=np.double, count=(self._size_src.nu*1)), (self._size_src.nu, 1, )) arr.setflags(write=False) return arr @actuator_velocity.setter def actuator_velocity(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.actuator_velocity, val_ptr, self._size_src.nu*1 * sizeof(c_double)) @property def cvel(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cvel, dtype=np.double, count=(self._size_src.nbody*6)), (self._size_src.nbody, 6, )) arr.setflags(write=False) return arr @cvel.setter def cvel(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cvel, val_ptr, self._size_src.nbody*6 * sizeof(c_double)) @property def cdof_dot(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cdof_dot, dtype=np.double, count=(self._size_src.nv*6)), (self._size_src.nv, 6, )) arr.setflags(write=False) return arr @cdof_dot.setter def cdof_dot(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cdof_dot, val_ptr, self._size_src.nv*6 * sizeof(c_double)) @property def qfrc_bias(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qfrc_bias, dtype=np.double, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @qfrc_bias.setter def qfrc_bias(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qfrc_bias, val_ptr, self._size_src.nv*1 * sizeof(c_double)) @property def qfrc_passive(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qfrc_passive, dtype=np.double, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @qfrc_passive.setter def qfrc_passive(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qfrc_passive, val_ptr, self._size_src.nv*1 * sizeof(c_double)) @property def efc_vel(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_vel, dtype=np.double, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_vel.setter def efc_vel(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_vel, val_ptr, self._size_src.njmax*1 * sizeof(c_double)) @property def efc_aref(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_aref, dtype=np.double, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_aref.setter def efc_aref(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_aref, val_ptr, self._size_src.njmax*1 * sizeof(c_double)) @property def actuator_force(self): arr = np.reshape(np.fromiter(self._wrapped.contents.actuator_force, dtype=np.double, count=(self._size_src.nu*1)), (self._size_src.nu, 1, )) arr.setflags(write=False) return arr @actuator_force.setter def actuator_force(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.actuator_force, val_ptr, self._size_src.nu*1 * sizeof(c_double)) @property def qfrc_actuator(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qfrc_actuator, dtype=np.double, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @qfrc_actuator.setter def qfrc_actuator(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qfrc_actuator, val_ptr, self._size_src.nv*1 * sizeof(c_double)) @property def qfrc_unc(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qfrc_unc, dtype=np.double, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @qfrc_unc.setter def qfrc_unc(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qfrc_unc, val_ptr, self._size_src.nv*1 * sizeof(c_double)) @property def qacc_unc(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qacc_unc, dtype=np.double, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @qacc_unc.setter def qacc_unc(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qacc_unc, val_ptr, self._size_src.nv*1 * sizeof(c_double)) @property def efc_b(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_b, dtype=np.double, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_b.setter def efc_b(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_b, val_ptr, self._size_src.njmax*1 * sizeof(c_double)) @property def fc_b(self): arr = np.reshape(np.fromiter(self._wrapped.contents.fc_b, dtype=np.double, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @fc_b.setter def fc_b(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.fc_b, val_ptr, self._size_src.njmax*1 * sizeof(c_double)) @property def efc_force(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_force, dtype=np.double, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_force.setter def efc_force(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_force, val_ptr, self._size_src.njmax*1 * sizeof(c_double)) @property def qfrc_constraint(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qfrc_constraint, dtype=np.double, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @qfrc_constraint.setter def qfrc_constraint(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qfrc_constraint, val_ptr, self._size_src.nv*1 * sizeof(c_double)) @property def qfrc_inverse(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qfrc_inverse, dtype=np.double, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @qfrc_inverse.setter def qfrc_inverse(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qfrc_inverse, val_ptr, self._size_src.nv*1 * sizeof(c_double)) @property def cacc(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cacc, dtype=np.double, count=(self._size_src.nbody*6)), (self._size_src.nbody, 6, )) arr.setflags(write=False) return arr @cacc.setter def cacc(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cacc, val_ptr, self._size_src.nbody*6 * sizeof(c_double)) @property def cfrc_int(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cfrc_int, dtype=np.double, count=(self._size_src.nbody*6)), (self._size_src.nbody, 6, )) arr.setflags(write=False) return arr @cfrc_int.setter def cfrc_int(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cfrc_int, val_ptr, self._size_src.nbody*6 * sizeof(c_double)) @property def cfrc_ext(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cfrc_ext, dtype=np.double, count=(self._size_src.nbody*6)), (self._size_src.nbody, 6, )) arr.setflags(write=False) return arr @cfrc_ext.setter def cfrc_ext(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cfrc_ext, val_ptr, self._size_src.nbody*6 * sizeof(c_double)) class MjModelWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def nq(self): return self._wrapped.contents.nq @nq.setter def nq(self, value): self._wrapped.contents.nq = value @property def nv(self): return self._wrapped.contents.nv @nv.setter def nv(self, value): self._wrapped.contents.nv = value @property def nu(self): return self._wrapped.contents.nu @nu.setter def nu(self, value): self._wrapped.contents.nu = value @property def na(self): return self._wrapped.contents.na @na.setter def na(self, value): self._wrapped.contents.na = value @property def nbody(self): return self._wrapped.contents.nbody @nbody.setter def nbody(self, value): self._wrapped.contents.nbody = value @property def njnt(self): return self._wrapped.contents.njnt @njnt.setter def njnt(self, value): self._wrapped.contents.njnt = value @property def ngeom(self): return self._wrapped.contents.ngeom @ngeom.setter def ngeom(self, value): self._wrapped.contents.ngeom = value @property def nsite(self): return self._wrapped.contents.nsite @nsite.setter def nsite(self, value): self._wrapped.contents.nsite = value @property def ncam(self): return self._wrapped.contents.ncam @ncam.setter def ncam(self, value): self._wrapped.contents.ncam = value @property def nlight(self): return self._wrapped.contents.nlight @nlight.setter def nlight(self, value): self._wrapped.contents.nlight = value @property def nmesh(self): return self._wrapped.contents.nmesh @nmesh.setter def nmesh(self, value): self._wrapped.contents.nmesh = value @property def nmeshvert(self): return self._wrapped.contents.nmeshvert @nmeshvert.setter def nmeshvert(self, value): self._wrapped.contents.nmeshvert = value @property def nmeshface(self): return self._wrapped.contents.nmeshface @nmeshface.setter def nmeshface(self, value): self._wrapped.contents.nmeshface = value @property def nmeshgraph(self): return self._wrapped.contents.nmeshgraph @nmeshgraph.setter def nmeshgraph(self, value): self._wrapped.contents.nmeshgraph = value @property def nhfield(self): return self._wrapped.contents.nhfield @nhfield.setter def nhfield(self, value): self._wrapped.contents.nhfield = value @property def nhfielddata(self): return self._wrapped.contents.nhfielddata @nhfielddata.setter def nhfielddata(self, value): self._wrapped.contents.nhfielddata = value @property def ntex(self): return self._wrapped.contents.ntex @ntex.setter def ntex(self, value): self._wrapped.contents.ntex = value @property def ntexdata(self): return self._wrapped.contents.ntexdata @ntexdata.setter def ntexdata(self, value): self._wrapped.contents.ntexdata = value @property def nmat(self): return self._wrapped.contents.nmat @nmat.setter def nmat(self, value): self._wrapped.contents.nmat = value @property def npair(self): return self._wrapped.contents.npair @npair.setter def npair(self, value): self._wrapped.contents.npair = value @property def nexclude(self): return self._wrapped.contents.nexclude @nexclude.setter def nexclude(self, value): self._wrapped.contents.nexclude = value @property def neq(self): return self._wrapped.contents.neq @neq.setter def neq(self, value): self._wrapped.contents.neq = value @property def ntendon(self): return self._wrapped.contents.ntendon @ntendon.setter def ntendon(self, value): self._wrapped.contents.ntendon = value @property def nwrap(self): return self._wrapped.contents.nwrap @nwrap.setter def nwrap(self, value): self._wrapped.contents.nwrap = value @property def nsensor(self): return self._wrapped.contents.nsensor @nsensor.setter def nsensor(self, value): self._wrapped.contents.nsensor = value @property def nnumeric(self): return self._wrapped.contents.nnumeric @nnumeric.setter def nnumeric(self, value): self._wrapped.contents.nnumeric = value @property def nnumericdata(self): return self._wrapped.contents.nnumericdata @nnumericdata.setter def nnumericdata(self, value): self._wrapped.contents.nnumericdata = value @property def ntext(self): return self._wrapped.contents.ntext @ntext.setter def ntext(self, value): self._wrapped.contents.ntext = value @property def ntextdata(self): return self._wrapped.contents.ntextdata @ntextdata.setter def ntextdata(self, value): self._wrapped.contents.ntextdata = value @property def nkey(self): return self._wrapped.contents.nkey @nkey.setter def nkey(self, value): self._wrapped.contents.nkey = value @property def nuser_body(self): return self._wrapped.contents.nuser_body @nuser_body.setter def nuser_body(self, value): self._wrapped.contents.nuser_body = value @property def nuser_jnt(self): return self._wrapped.contents.nuser_jnt @nuser_jnt.setter def nuser_jnt(self, value): self._wrapped.contents.nuser_jnt = value @property def nuser_geom(self): return self._wrapped.contents.nuser_geom @nuser_geom.setter def nuser_geom(self, value): self._wrapped.contents.nuser_geom = value @property def nuser_site(self): return self._wrapped.contents.nuser_site @nuser_site.setter def nuser_site(self, value): self._wrapped.contents.nuser_site = value @property def nuser_tendon(self): return self._wrapped.contents.nuser_tendon @nuser_tendon.setter def nuser_tendon(self, value): self._wrapped.contents.nuser_tendon = value @property def nuser_actuator(self): return self._wrapped.contents.nuser_actuator @nuser_actuator.setter def nuser_actuator(self, value): self._wrapped.contents.nuser_actuator = value @property def nuser_sensor(self): return self._wrapped.contents.nuser_sensor @nuser_sensor.setter def nuser_sensor(self, value): self._wrapped.contents.nuser_sensor = value @property def nnames(self): return self._wrapped.contents.nnames @nnames.setter def nnames(self, value): self._wrapped.contents.nnames = value @property def nM(self): return self._wrapped.contents.nM @nM.setter def nM(self, value): self._wrapped.contents.nM = value @property def nemax(self): return self._wrapped.contents.nemax @nemax.setter def nemax(self, value): self._wrapped.contents.nemax = value @property def njmax(self): return self._wrapped.contents.njmax @njmax.setter def njmax(self, value): self._wrapped.contents.njmax = value @property def nconmax(self): return self._wrapped.contents.nconmax @nconmax.setter def nconmax(self, value): self._wrapped.contents.nconmax = value @property def nstack(self): return self._wrapped.contents.nstack @nstack.setter def nstack(self, value): self._wrapped.contents.nstack = value @property def nuserdata(self): return self._wrapped.contents.nuserdata @nuserdata.setter def nuserdata(self, value): self._wrapped.contents.nuserdata = value @property def nmocap(self): return self._wrapped.contents.nmocap @nmocap.setter def nmocap(self, value): self._wrapped.contents.nmocap = value @property def nsensordata(self): return self._wrapped.contents.nsensordata @nsensordata.setter def nsensordata(self, value): self._wrapped.contents.nsensordata = value @property def nbuffer(self): return self._wrapped.contents.nbuffer @nbuffer.setter def nbuffer(self, value): self._wrapped.contents.nbuffer = value @property def opt(self): return self._wrapped.contents.opt @opt.setter def opt(self, value): self._wrapped.contents.opt = value @property def vis(self): return self._wrapped.contents.vis @vis.setter def vis(self, value): self._wrapped.contents.vis = value @property def stat(self): return self._wrapped.contents.stat @stat.setter def stat(self, value): self._wrapped.contents.stat = value @property def buffer(self): arr = np.reshape(np.fromiter(self._wrapped.contents.buffer, dtype=np.uint8, count=(self.nbuffer)), (self.nbuffer, )) arr.setflags(write=False) return arr @buffer.setter def buffer(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_ubyte)) memmove(self._wrapped.contents.buffer, val_ptr, self.nbuffer * sizeof(c_ubyte)) @property def qpos0(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qpos0, dtype=np.double, count=(self.nq*1)), (self.nq, 1, )) arr.setflags(write=False) return arr @qpos0.setter def qpos0(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qpos0, val_ptr, self.nq*1 * sizeof(c_double)) @property def qpos_spring(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qpos_spring, dtype=np.double, count=(self.nq*1)), (self.nq, 1, )) arr.setflags(write=False) return arr @qpos_spring.setter def qpos_spring(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qpos_spring, val_ptr, self.nq*1 * sizeof(c_double)) @property def body_parentid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_parentid, dtype=np.int, count=(self.nbody*1)), (self.nbody, 1, )) arr.setflags(write=False) return arr @body_parentid.setter def body_parentid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.body_parentid, val_ptr, self.nbody*1 * sizeof(c_int)) @property def body_rootid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_rootid, dtype=np.int, count=(self.nbody*1)), (self.nbody, 1, )) arr.setflags(write=False) return arr @body_rootid.setter def body_rootid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.body_rootid, val_ptr, self.nbody*1 * sizeof(c_int)) @property def body_weldid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_weldid, dtype=np.int, count=(self.nbody*1)), (self.nbody, 1, )) arr.setflags(write=False) return arr @body_weldid.setter def body_weldid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.body_weldid, val_ptr, self.nbody*1 * sizeof(c_int)) @property def body_mocapid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_mocapid, dtype=np.int, count=(self.nbody*1)), (self.nbody, 1, )) arr.setflags(write=False) return arr @body_mocapid.setter def body_mocapid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.body_mocapid, val_ptr, self.nbody*1 * sizeof(c_int)) @property def body_jntnum(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_jntnum, dtype=np.int, count=(self.nbody*1)), (self.nbody, 1, )) arr.setflags(write=False) return arr @body_jntnum.setter def body_jntnum(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.body_jntnum, val_ptr, self.nbody*1 * sizeof(c_int)) @property def body_jntadr(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_jntadr, dtype=np.int, count=(self.nbody*1)), (self.nbody, 1, )) arr.setflags(write=False) return arr @body_jntadr.setter def body_jntadr(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.body_jntadr, val_ptr, self.nbody*1 * sizeof(c_int)) @property def body_dofnum(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_dofnum, dtype=np.int, count=(self.nbody*1)), (self.nbody, 1, )) arr.setflags(write=False) return arr @body_dofnum.setter def body_dofnum(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.body_dofnum, val_ptr, self.nbody*1 * sizeof(c_int)) @property def body_dofadr(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_dofadr, dtype=np.int, count=(self.nbody*1)), (self.nbody, 1, )) arr.setflags(write=False) return arr @body_dofadr.setter def body_dofadr(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.body_dofadr, val_ptr, self.nbody*1 * sizeof(c_int)) @property def body_geomnum(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_geomnum, dtype=np.int, count=(self.nbody*1)), (self.nbody, 1, )) arr.setflags(write=False) return arr @body_geomnum.setter def body_geomnum(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.body_geomnum, val_ptr, self.nbody*1 * sizeof(c_int)) @property def body_geomadr(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_geomadr, dtype=np.int, count=(self.nbody*1)), (self.nbody, 1, )) arr.setflags(write=False) return arr @body_geomadr.setter def body_geomadr(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.body_geomadr, val_ptr, self.nbody*1 * sizeof(c_int)) @property def body_pos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_pos, dtype=np.double, count=(self.nbody*3)), (self.nbody, 3, )) arr.setflags(write=False) return arr @body_pos.setter def body_pos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.body_pos, val_ptr, self.nbody*3 * sizeof(c_double)) @property def body_quat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_quat, dtype=np.double, count=(self.nbody*4)), (self.nbody, 4, )) arr.setflags(write=False) return arr @body_quat.setter def body_quat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.body_quat, val_ptr, self.nbody*4 * sizeof(c_double)) @property def body_ipos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_ipos, dtype=np.double, count=(self.nbody*3)), (self.nbody, 3, )) arr.setflags(write=False) return arr @body_ipos.setter def body_ipos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.body_ipos, val_ptr, self.nbody*3 * sizeof(c_double)) @property def body_iquat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_iquat, dtype=np.double, count=(self.nbody*4)), (self.nbody, 4, )) arr.setflags(write=False) return arr @body_iquat.setter def body_iquat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.body_iquat, val_ptr, self.nbody*4 * sizeof(c_double)) @property def body_mass(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_mass, dtype=np.double, count=(self.nbody*1)), (self.nbody, 1, )) arr.setflags(write=False) return arr @body_mass.setter def body_mass(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.body_mass, val_ptr, self.nbody*1 * sizeof(c_double)) @property def body_inertia(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_inertia, dtype=np.double, count=(self.nbody*3)), (self.nbody, 3, )) arr.setflags(write=False) return arr @body_inertia.setter def body_inertia(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.body_inertia, val_ptr, self.nbody*3 * sizeof(c_double)) @property def body_invweight0(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_invweight0, dtype=np.double, count=(self.nbody*2)), (self.nbody, 2, )) arr.setflags(write=False) return arr @body_invweight0.setter def body_invweight0(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.body_invweight0, val_ptr, self.nbody*2 * sizeof(c_double)) @property def body_user(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_user, dtype=np.double, count=(self.nbody*self.nuser_body)), (self.nbody, self.nuser_body, )) arr.setflags(write=False) return arr @body_user.setter def body_user(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.body_user, val_ptr, self.nbody*self.nuser_body * sizeof(c_double)) @property def jnt_type(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_type, dtype=np.int, count=(self.njnt*1)), (self.njnt, 1, )) arr.setflags(write=False) return arr @jnt_type.setter def jnt_type(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.jnt_type, val_ptr, self.njnt*1 * sizeof(c_int)) @property def jnt_qposadr(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_qposadr, dtype=np.int, count=(self.njnt*1)), (self.njnt, 1, )) arr.setflags(write=False) return arr @jnt_qposadr.setter def jnt_qposadr(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.jnt_qposadr, val_ptr, self.njnt*1 * sizeof(c_int)) @property def jnt_dofadr(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_dofadr, dtype=np.int, count=(self.njnt*1)), (self.njnt, 1, )) arr.setflags(write=False) return arr @jnt_dofadr.setter def jnt_dofadr(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.jnt_dofadr, val_ptr, self.njnt*1 * sizeof(c_int)) @property def jnt_bodyid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_bodyid, dtype=np.int, count=(self.njnt*1)), (self.njnt, 1, )) arr.setflags(write=False) return arr @jnt_bodyid.setter def jnt_bodyid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.jnt_bodyid, val_ptr, self.njnt*1 * sizeof(c_int)) @property def jnt_limited(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_limited, dtype=np.uint8, count=(self.njnt*1)), (self.njnt, 1, )) arr.setflags(write=False) return arr @jnt_limited.setter def jnt_limited(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_ubyte)) memmove(self._wrapped.contents.jnt_limited, val_ptr, self.njnt*1 * sizeof(c_ubyte)) @property def jnt_solref(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_solref, dtype=np.double, count=(self.njnt*2)), (self.njnt, 2, )) arr.setflags(write=False) return arr @jnt_solref.setter def jnt_solref(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.jnt_solref, val_ptr, self.njnt*2 * sizeof(c_double)) @property def jnt_solimp(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_solimp, dtype=np.double, count=(self.njnt*3)), (self.njnt, 3, )) arr.setflags(write=False) return arr @jnt_solimp.setter def jnt_solimp(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.jnt_solimp, val_ptr, self.njnt*3 * sizeof(c_double)) @property def jnt_pos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_pos, dtype=np.double, count=(self.njnt*3)), (self.njnt, 3, )) arr.setflags(write=False) return arr @jnt_pos.setter def jnt_pos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.jnt_pos, val_ptr, self.njnt*3 * sizeof(c_double)) @property def jnt_axis(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_axis, dtype=np.double, count=(self.njnt*3)), (self.njnt, 3, )) arr.setflags(write=False) return arr @jnt_axis.setter def jnt_axis(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.jnt_axis, val_ptr, self.njnt*3 * sizeof(c_double)) @property def jnt_stiffness(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_stiffness, dtype=np.double, count=(self.njnt*1)), (self.njnt, 1, )) arr.setflags(write=False) return arr @jnt_stiffness.setter def jnt_stiffness(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.jnt_stiffness, val_ptr, self.njnt*1 * sizeof(c_double)) @property def jnt_range(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_range, dtype=np.double, count=(self.njnt*2)), (self.njnt, 2, )) arr.setflags(write=False) return arr @jnt_range.setter def jnt_range(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.jnt_range, val_ptr, self.njnt*2 * sizeof(c_double)) @property def jnt_margin(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_margin, dtype=np.double, count=(self.njnt*1)), (self.njnt, 1, )) arr.setflags(write=False) return arr @jnt_margin.setter def jnt_margin(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.jnt_margin, val_ptr, self.njnt*1 * sizeof(c_double)) @property def jnt_user(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_user, dtype=np.double, count=(self.njnt*self.nuser_jnt)), (self.njnt, self.nuser_jnt, )) arr.setflags(write=False) return arr @jnt_user.setter def jnt_user(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.jnt_user, val_ptr, self.njnt*self.nuser_jnt * sizeof(c_double)) @property def dof_bodyid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.dof_bodyid, dtype=np.int, count=(self.nv*1)), (self.nv, 1, )) arr.setflags(write=False) return arr @dof_bodyid.setter def dof_bodyid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.dof_bodyid, val_ptr, self.nv*1 * sizeof(c_int)) @property def dof_jntid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.dof_jntid, dtype=np.int, count=(self.nv*1)), (self.nv, 1, )) arr.setflags(write=False) return arr @dof_jntid.setter def dof_jntid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.dof_jntid, val_ptr, self.nv*1 * sizeof(c_int)) @property def dof_parentid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.dof_parentid, dtype=np.int, count=(self.nv*1)), (self.nv, 1, )) arr.setflags(write=False) return arr @dof_parentid.setter def dof_parentid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.dof_parentid, val_ptr, self.nv*1 * sizeof(c_int)) @property def dof_Madr(self): arr = np.reshape(np.fromiter(self._wrapped.contents.dof_Madr, dtype=np.int, count=(self.nv*1)), (self.nv, 1, )) arr.setflags(write=False) return arr @dof_Madr.setter def dof_Madr(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.dof_Madr, val_ptr, self.nv*1 * sizeof(c_int)) @property def dof_frictional(self): arr = np.reshape(np.fromiter(self._wrapped.contents.dof_frictional, dtype=np.uint8, count=(self.nv*1)), (self.nv, 1, )) arr.setflags(write=False) return arr @dof_frictional.setter def dof_frictional(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_ubyte)) memmove(self._wrapped.contents.dof_frictional, val_ptr, self.nv*1 * sizeof(c_ubyte)) @property def dof_solref(self): arr = np.reshape(np.fromiter(self._wrapped.contents.dof_solref, dtype=np.double, count=(self.nv*2)), (self.nv, 2, )) arr.setflags(write=False) return arr @dof_solref.setter def dof_solref(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.dof_solref, val_ptr, self.nv*2 * sizeof(c_double)) @property def dof_solimp(self): arr = np.reshape(np.fromiter(self._wrapped.contents.dof_solimp, dtype=np.double, count=(self.nv*3)), (self.nv, 3, )) arr.setflags(write=False) return arr @dof_solimp.setter def dof_solimp(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.dof_solimp, val_ptr, self.nv*3 * sizeof(c_double)) @property def dof_frictionloss(self): arr = np.reshape(np.fromiter(self._wrapped.contents.dof_frictionloss, dtype=np.double, count=(self.nv*1)), (self.nv, 1, )) arr.setflags(write=False) return arr @dof_frictionloss.setter def dof_frictionloss(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.dof_frictionloss, val_ptr, self.nv*1 * sizeof(c_double)) @property def dof_armature(self): arr = np.reshape(np.fromiter(self._wrapped.contents.dof_armature, dtype=np.double, count=(self.nv*1)), (self.nv, 1, )) arr.setflags(write=False) return arr @dof_armature.setter def dof_armature(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.dof_armature, val_ptr, self.nv*1 * sizeof(c_double)) @property def dof_damping(self): arr = np.reshape(np.fromiter(self._wrapped.contents.dof_damping, dtype=np.double, count=(self.nv*1)), (self.nv, 1, )) arr.setflags(write=False) return arr @dof_damping.setter def dof_damping(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.dof_damping, val_ptr, self.nv*1 * sizeof(c_double)) @property def dof_invweight0(self): arr = np.reshape(np.fromiter(self._wrapped.contents.dof_invweight0, dtype=np.double, count=(self.nv*1)), (self.nv, 1, )) arr.setflags(write=False) return arr @dof_invweight0.setter def dof_invweight0(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.dof_invweight0, val_ptr, self.nv*1 * sizeof(c_double)) @property def geom_type(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_type, dtype=np.int, count=(self.ngeom*1)), (self.ngeom, 1, )) arr.setflags(write=False) return arr @geom_type.setter def geom_type(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.geom_type, val_ptr, self.ngeom*1 * sizeof(c_int)) @property def geom_contype(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_contype, dtype=np.int, count=(self.ngeom*1)), (self.ngeom, 1, )) arr.setflags(write=False) return arr @geom_contype.setter def geom_contype(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.geom_contype, val_ptr, self.ngeom*1 * sizeof(c_int)) @property def geom_conaffinity(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_conaffinity, dtype=np.int, count=(self.ngeom*1)), (self.ngeom, 1, )) arr.setflags(write=False) return arr @geom_conaffinity.setter def geom_conaffinity(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.geom_conaffinity, val_ptr, self.ngeom*1 * sizeof(c_int)) @property def geom_condim(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_condim, dtype=np.int, count=(self.ngeom*1)), (self.ngeom, 1, )) arr.setflags(write=False) return arr @geom_condim.setter def geom_condim(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.geom_condim, val_ptr, self.ngeom*1 * sizeof(c_int)) @property def geom_bodyid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_bodyid, dtype=np.int, count=(self.ngeom*1)), (self.ngeom, 1, )) arr.setflags(write=False) return arr @geom_bodyid.setter def geom_bodyid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.geom_bodyid, val_ptr, self.ngeom*1 * sizeof(c_int)) @property def geom_dataid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_dataid, dtype=np.int, count=(self.ngeom*1)), (self.ngeom, 1, )) arr.setflags(write=False) return arr @geom_dataid.setter def geom_dataid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.geom_dataid, val_ptr, self.ngeom*1 * sizeof(c_int)) @property def geom_matid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_matid, dtype=np.int, count=(self.ngeom*1)), (self.ngeom, 1, )) arr.setflags(write=False) return arr @geom_matid.setter def geom_matid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.geom_matid, val_ptr, self.ngeom*1 * sizeof(c_int)) @property def geom_group(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_group, dtype=np.int, count=(self.ngeom*1)), (self.ngeom, 1, )) arr.setflags(write=False) return arr @geom_group.setter def geom_group(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.geom_group, val_ptr, self.ngeom*1 * sizeof(c_int)) @property def geom_solmix(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_solmix, dtype=np.double, count=(self.ngeom*1)), (self.ngeom, 1, )) arr.setflags(write=False) return arr @geom_solmix.setter def geom_solmix(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.geom_solmix, val_ptr, self.ngeom*1 * sizeof(c_double)) @property def geom_solref(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_solref, dtype=np.double, count=(self.ngeom*2)), (self.ngeom, 2, )) arr.setflags(write=False) return arr @geom_solref.setter def geom_solref(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.geom_solref, val_ptr, self.ngeom*2 * sizeof(c_double)) @property def geom_solimp(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_solimp, dtype=np.double, count=(self.ngeom*3)), (self.ngeom, 3, )) arr.setflags(write=False) return arr @geom_solimp.setter def geom_solimp(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.geom_solimp, val_ptr, self.ngeom*3 * sizeof(c_double)) @property def geom_size(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_size, dtype=np.double, count=(self.ngeom*3)), (self.ngeom, 3, )) arr.setflags(write=False) return arr @geom_size.setter def geom_size(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.geom_size, val_ptr, self.ngeom*3 * sizeof(c_double)) @property def geom_rbound(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_rbound, dtype=np.double, count=(self.ngeom*1)), (self.ngeom, 1, )) arr.setflags(write=False) return arr @geom_rbound.setter def geom_rbound(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.geom_rbound, val_ptr, self.ngeom*1 * sizeof(c_double)) @property def geom_pos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_pos, dtype=np.double, count=(self.ngeom*3)), (self.ngeom, 3, )) arr.setflags(write=False) return arr @geom_pos.setter def geom_pos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.geom_pos, val_ptr, self.ngeom*3 * sizeof(c_double)) @property def geom_quat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_quat, dtype=np.double, count=(self.ngeom*4)), (self.ngeom, 4, )) arr.setflags(write=False) return arr @geom_quat.setter def geom_quat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.geom_quat, val_ptr, self.ngeom*4 * sizeof(c_double)) @property def geom_friction(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_friction, dtype=np.double, count=(self.ngeom*3)), (self.ngeom, 3, )) arr.setflags(write=False) return arr @geom_friction.setter def geom_friction(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.geom_friction, val_ptr, self.ngeom*3 * sizeof(c_double)) @property def geom_margin(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_margin, dtype=np.double, count=(self.ngeom*1)), (self.ngeom, 1, )) arr.setflags(write=False) return arr @geom_margin.setter def geom_margin(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.geom_margin, val_ptr, self.ngeom*1 * sizeof(c_double)) @property def geom_gap(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_gap, dtype=np.double, count=(self.ngeom*1)), (self.ngeom, 1, )) arr.setflags(write=False) return arr @geom_gap.setter def geom_gap(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.geom_gap, val_ptr, self.ngeom*1 * sizeof(c_double)) @property def geom_user(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_user, dtype=np.double, count=(self.ngeom*self.nuser_geom)), (self.ngeom, self.nuser_geom, )) arr.setflags(write=False) return arr @geom_user.setter def geom_user(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.geom_user, val_ptr, self.ngeom*self.nuser_geom * sizeof(c_double)) @property def geom_rgba(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_rgba, dtype=np.float, count=(self.ngeom*4)), (self.ngeom, 4, )) arr.setflags(write=False) return arr @geom_rgba.setter def geom_rgba(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_float)) memmove(self._wrapped.contents.geom_rgba, val_ptr, self.ngeom*4 * sizeof(c_float)) @property def site_type(self): arr = np.reshape(np.fromiter(self._wrapped.contents.site_type, dtype=np.int, count=(self.nsite*1)), (self.nsite, 1, )) arr.setflags(write=False) return arr @site_type.setter def site_type(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.site_type, val_ptr, self.nsite*1 * sizeof(c_int)) @property def site_bodyid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.site_bodyid, dtype=np.int, count=(self.nsite*1)), (self.nsite, 1, )) arr.setflags(write=False) return arr @site_bodyid.setter def site_bodyid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.site_bodyid, val_ptr, self.nsite*1 * sizeof(c_int)) @property def site_matid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.site_matid, dtype=np.int, count=(self.nsite*1)), (self.nsite, 1, )) arr.setflags(write=False) return arr @site_matid.setter def site_matid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.site_matid, val_ptr, self.nsite*1 * sizeof(c_int)) @property def site_group(self): arr = np.reshape(np.fromiter(self._wrapped.contents.site_group, dtype=np.int, count=(self.nsite*1)), (self.nsite, 1, )) arr.setflags(write=False) return arr @site_group.setter def site_group(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.site_group, val_ptr, self.nsite*1 * sizeof(c_int)) @property def site_size(self): arr = np.reshape(np.fromiter(self._wrapped.contents.site_size, dtype=np.double, count=(self.nsite*3)), (self.nsite, 3, )) arr.setflags(write=False) return arr @site_size.setter def site_size(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.site_size, val_ptr, self.nsite*3 * sizeof(c_double)) @property def site_pos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.site_pos, dtype=np.double, count=(self.nsite*3)), (self.nsite, 3, )) arr.setflags(write=False) return arr @site_pos.setter def site_pos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.site_pos, val_ptr, self.nsite*3 * sizeof(c_double)) @property def site_quat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.site_quat, dtype=np.double, count=(self.nsite*4)), (self.nsite, 4, )) arr.setflags(write=False) return arr @site_quat.setter def site_quat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.site_quat, val_ptr, self.nsite*4 * sizeof(c_double)) @property def site_user(self): arr = np.reshape(np.fromiter(self._wrapped.contents.site_user, dtype=np.double, count=(self.nsite*self.nuser_site)), (self.nsite, self.nuser_site, )) arr.setflags(write=False) return arr @site_user.setter def site_user(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.site_user, val_ptr, self.nsite*self.nuser_site * sizeof(c_double)) @property def site_rgba(self): arr = np.reshape(np.fromiter(self._wrapped.contents.site_rgba, dtype=np.float, count=(self.nsite*4)), (self.nsite, 4, )) arr.setflags(write=False) return arr @site_rgba.setter def site_rgba(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_float)) memmove(self._wrapped.contents.site_rgba, val_ptr, self.nsite*4 * sizeof(c_float)) @property def cam_mode(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cam_mode, dtype=np.int, count=(self.ncam*1)), (self.ncam, 1, )) arr.setflags(write=False) return arr @cam_mode.setter def cam_mode(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.cam_mode, val_ptr, self.ncam*1 * sizeof(c_int)) @property def cam_bodyid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cam_bodyid, dtype=np.int, count=(self.ncam*1)), (self.ncam, 1, )) arr.setflags(write=False) return arr @cam_bodyid.setter def cam_bodyid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.cam_bodyid, val_ptr, self.ncam*1 * sizeof(c_int)) @property def cam_targetbodyid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cam_targetbodyid, dtype=np.int, count=(self.ncam*1)), (self.ncam, 1, )) arr.setflags(write=False) return arr @cam_targetbodyid.setter def cam_targetbodyid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.cam_targetbodyid, val_ptr, self.ncam*1 * sizeof(c_int)) @property def cam_pos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cam_pos, dtype=np.double, count=(self.ncam*3)), (self.ncam, 3, )) arr.setflags(write=False) return arr @cam_pos.setter def cam_pos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cam_pos, val_ptr, self.ncam*3 * sizeof(c_double)) @property def cam_quat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cam_quat, dtype=np.double, count=(self.ncam*4)), (self.ncam, 4, )) arr.setflags(write=False) return arr @cam_quat.setter def cam_quat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cam_quat, val_ptr, self.ncam*4 * sizeof(c_double)) @property def cam_poscom0(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cam_poscom0, dtype=np.double, count=(self.ncam*3)), (self.ncam, 3, )) arr.setflags(write=False) return arr @cam_poscom0.setter def cam_poscom0(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cam_poscom0, val_ptr, self.ncam*3 * sizeof(c_double)) @property def cam_pos0(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cam_pos0, dtype=np.double, count=(self.ncam*3)), (self.ncam, 3, )) arr.setflags(write=False) return arr @cam_pos0.setter def cam_pos0(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cam_pos0, val_ptr, self.ncam*3 * sizeof(c_double)) @property def cam_mat0(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cam_mat0, dtype=np.double, count=(self.ncam*9)), (self.ncam, 9, )) arr.setflags(write=False) return arr @cam_mat0.setter def cam_mat0(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cam_mat0, val_ptr, self.ncam*9 * sizeof(c_double)) @property def cam_fovy(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cam_fovy, dtype=np.double, count=(self.ncam*1)), (self.ncam, 1, )) arr.setflags(write=False) return arr @cam_fovy.setter def cam_fovy(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cam_fovy, val_ptr, self.ncam*1 * sizeof(c_double)) @property def cam_ipd(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cam_ipd, dtype=np.double, count=(self.ncam*1)), (self.ncam, 1, )) arr.setflags(write=False) return arr @cam_ipd.setter def cam_ipd(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cam_ipd, val_ptr, self.ncam*1 * sizeof(c_double)) @property def light_mode(self): arr = np.reshape(np.fromiter(self._wrapped.contents.light_mode, dtype=np.int, count=(self.nlight*1)), (self.nlight, 1, )) arr.setflags(write=False) return arr @light_mode.setter def light_mode(self, value): val_ptr =
np.array(value, dtype=np.float64)
numpy.array
import torch as torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence, pad_sequence from torch.utils.data import Dataset, DataLoader from torch.utils.tensorboard import SummaryWriter import collections import glob import numpy as np import tqdm import os import time import datetime from pytz import timezone from fnm_ccar_dset import FNMCCARDataset, paddingCollator, load_data class LinearBlock(nn.Module): def __init__(self, input_size, linear_conf): super(LinearBlock, self).__init__() dc = collections.OrderedDict() prev_s = input_size for i, (s, r) in enumerate(linear_conf): dc['linear'+str(i+1)]=nn.Linear(prev_s, s) dc['relu'+str(i+1)] = nn.ReLU(inplace=True) dc['batchn'+str(i+1)] = nn.BatchNorm1d(s) dc['drpout'+str(i+1)] = nn.Dropout(r) prev_s = s self.linblock = nn.Sequential(dc) def forward(self, x): return self.linblock(x) class MacroMortEcoder(nn.Module): def __init__(self, seq_n_features, lstm_conf, emb_acq_dims, emb_seq_dims, linear_conf): super(MacroMortEcoder, self).__init__() emb_acq_dict = collections.OrderedDict() emb_acq_dim_sum = 0 for name, c, d in emb_acq_dims: emb_acq_dict[name] = nn.Embedding(c, d) emb_acq_dim_sum += d self.emb_acq = nn.ModuleDict(emb_acq_dict) emb_seq_dict = collections.OrderedDict() emb_seq_dim_sum = 0 for name, c, d in emb_seq_dims: emb_seq_dict[name] = nn.Embedding(c, d) emb_seq_dim_sum += d self.emb_seq = nn.ModuleDict(emb_seq_dict) emb_dim_total = emb_acq_dim_sum + emb_seq_dim_sum lstm_size = lstm_conf['lstm_size'] lstm_layers = lstm_conf['lstm_layers'] lstm_dropout = lstm_conf['lstm_dropout'] self.lstm = nn.LSTM( input_size = seq_n_features + emb_dim_total, hidden_size = lstm_size, num_layers = lstm_layers, dropout = lstm_dropout, batch_first = True, bidirectional = True ) #lin_block_input = (1 + self.lstm.bidirectional) * \ # self.lstm.num_layers * self.lstm.hidden_size self.linblock = LinearBlock(self.lstm.hidden_size, linear_conf) def forward(self, seq, seq_len, ymd, acq): ea = [x(acq[:,i]) for i, (a, x) in enumerate(self.emb_acq.items())] ea = torch.cat(ea, 1) ea = ea.reshape(seq.shape[0], -1, ea.shape[1])\ .expand(-1, seq.shape[1], -1) ey = [x(ymd[:,:,i]) for i, (a, x) in enumerate(self.emb_seq.items())] ey = torch.cat(ey, 2) s = torch.cat([seq, ea, ey], 2) self.lstm.flatten_parameters() packed_input = pack_padded_sequence(s, seq_len, batch_first=True) _, (ht, _) = self.lstm(packed_input) # move batch from dim 1 to 0 #out = ht.permute(1, 0, 2).view(-1, # 2 * self.lstm.num_layers * self.lstm.hidden_size) out = ht.view(self.lstm.num_layers, 2, -1, self.lstm.hidden_size) out = out[-1, 0, :, :] + out[-1, 1, :, :] out = self.linblock(out) # middle = int(out.shape[1]/2) # m = out[:, :middle] # s = out[:, middle:] # return m,s batch_idx = torch.arange(seq.shape[0], device=seq.device) dlq = seq[batch_idx, seq_len.long()-1, -9:] return out, dlq class MacroMortDecoder(nn.Module): def __init__(self, input_size, lstm_conf, pre_lin_conf, post_lin_conf): super(MacroMortDecoder, self).__init__() self.pre_linblock = LinearBlock(input_size, pre_lin_conf) self.lstm = nn.LSTM( input_size = lstm_conf['input_size'], hidden_size = lstm_conf['lstm_size'], num_layers = lstm_conf['lstm_layers'], dropout = lstm_conf['lstm_dropout'], batch_first = False, bidirectional = False ) #post_input_size = (1 + self.lstm.bidirectional) * \ # self.lstm.num_layers * self.lstm.hidden_size self.post_linblock = LinearBlock(self.lstm.hidden_size+9, post_lin_conf) def forward(self, zim, dlq, macro): self.lstm.flatten_parameters() zim = self.pre_linblock(zim) out = [] for t in range(12): decinp = torch.cat([zim, dlq, macro[:, t, :]], 1) decinp = decinp.unsqueeze(0) # sequence length is 1 _, (hx, _) = self.lstm(decinp) lstm_out = hx[-1, :, :] lstm_out = torch.cat([dlq, lstm_out], 1) dlq_dist = self.post_linblock(lstm_out) out.append(dlq_dist) # batch, 9 _, idx = F.softmax(dlq_dist, 1).max(1) dlq = torch.zeros_like(dlq) dlq[torch.arange(dlq.shape[0]), idx]=1 dlq_seq = torch.stack(out, 2) # (batch, 9[0,...,7,EOS], 12) return dlq_seq class CCARM4Model(nn.Module): r""" Fill up """ def __init__(self, macroMortEcoder, macroMortDecoder): """ Parameters: seq_n_features: number of features inside sequence. note that first 9 (0-6 + 12) represent one hot encoding for DLQ lstm_size: the size of hidden unit in LSTM linear_size: the number of of output units for the first linear embed_dims: the list of tuples, where the first element of tuple represents the number of categories and second element of the tuple if the embedding size embed_drp: drop out percentage after embedding layer """ super(CCARM4Model, self).__init__() self.encoder = macroMortEcoder self.decoder = macroMortDecoder def forward(self, seq, seq_len, ymd, acq, macro_pred): out, dlq = self.encoder(seq, seq_len, ymd, acq) dlq_seq = self.decoder(out, dlq, macro_pred) return dlq_seq def moving_average(a, n=3) : ret = np.cumsum(a, dtype=float) ret[n:] = ret[n:] - ret[:-n] return ret[n - 1:] / n class Losses: def __init__(self, patience=10): self.train_losses = [] self.valid_losses = [] self.test_losses = [] def addValidLoss(self, item): self.valid_losses.append(item) class TrainingContext: def __init__(self, model_path, model, loss_function, optimizer, trainDL, validDL, SAVE_EVERY, PRINT_EVERY): self.model_path = model_path self.model = model self.loss_function = loss_function self.optimizer = optimizer self.trainDL = trainDL self.validDL = validDL self.train_losses = [] self.valid_losses = [] self.SAVE_EVERY = SAVE_EVERY self.PRINT_EVERY = PRINT_EVERY self.device = torch.device("cpu") def trainStep(self, seq, seq_len, ymd, acq, macro_pred, target): self.model.zero_grad() target_hat = self.model(seq, seq_len, ymd, acq, macro_pred) target = target.to(target_hat.device) loss = self.loss_function(target_hat, target) loss_item = loss.item() loss.backward() self.optimizer.step() return loss_item def trainLoop(self, epoch): self.model.train() tq = tqdm.tqdm(self.trainDL) losses = [] for bidx, (seq, seq_len, ymd, acq, macro_pred, target) in enumerate(tq): tq.set_description('Train: %i' % bidx) loss_item = self.trainStep(seq, seq_len, ymd, acq, macro_pred, target) losses.append(loss_item) if bidx % self.PRINT_EVERY == 0: mean_loss =
np.mean(losses)
numpy.mean
#!/usr/bin/env python """ Remove nan from vertex coordinates and uv coordinates """ import argparse import pymesh import numpy as np def parse_args(): parser = argparse.ArgumentParser(__doc__); parser.add_argument("input_mesh"); parser.add_argument("output_mesh"); return parser.parse_args(); def main(): args = parse_args(); mesh = pymesh.load_mesh(args.input_mesh); assert(mesh.has_attribute("corner_texture")); mesh.enable_connectivity(); vertices = np.copy(mesh.vertices); bad_vertex = np.logical_not(np.all(np.isfinite(mesh.vertices), axis=1)); bad_vertex_indices =
np.arange(mesh.num_vertices, dtype=int)
numpy.arange
#!/usr/bin/env python # Software License Agreement (BSD License) # # Copyright (c) 2014, <NAME>, Social Robotics Lab, University of Freiburg # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # Allows to reconstruct odometry from /additional_odom_data topic, using # new calibration factors, as well as plotting the overall path that was travelled. # Requires a bag file to be played back using rosbag play / rqt_bag. import rospy, math, numpy, tf from collections import deque from spencer_bagfile_tools.msg import AdditionalOdometryData from dynamic_reconfigure.server import Server from spencer_bagfile_tools.cfg import ReconstructOdometryConfig from visualization_msgs.msg import MarkerArray, Marker from geometry_msgs.msg import Point, Quaternion from std_msgs.msg import ColorRGBA from nav_msgs.msg import Odometry class State(object): def __init__(self): self.x = self.y = self.theta = 0 self.totalDistance = 0 self.stamp = rospy.Time(0) class OdometryController(object): def __init__(self): self.msgHistory = [] self.stateHistory = self.emptyStateHistory() self.previousMsg = self.previousState = None self.rebuildingEntirePath = False self.zeroPosition() self.WHEEL_BASE = 0.665 self.TICKS_PER_METER_LEFT = 56263.5 self.TICKS_PER_METER_RIGHT = 57099.7 self.previousTimestampMarkerCount = 0 def zeroPosition(self): self.stateHistory.append(State()) self.previousState = self.stateHistory[0] def run(self): self.markerArrayPublisher = rospy.Publisher("/spencer_bagfile_tools/reconstructed_odom_path", MarkerArray, queue_size=1) self.odomPublisher = rospy.Publisher("/spencer/sensors/odom", Odometry, queue_size=3) reconfigureServer = Server(ReconstructOdometryConfig, self.reconfigure) topicName = "/spencer/sensors/additional_odom_data" self.subscriber = rospy.Subscriber(topicName, AdditionalOdometryData, self.additionalOdometryDataCallback) rospy.loginfo("Reconstructing odometry from " + topicName + ", now listening for messages...") rospy.spin() def additionalOdometryDataCallback(self, msg): if not self.rebuildingEntirePath: self.updateState(msg) self.msgHistory.append(msg) self.publishOdom() self.visualizePath() def reconfigure(self, config, level): self.extraCalibOverallMultiplier = config["extra_calib_overall_multiplier"] self.extraCalibLeftMultiplier = config["extra_calib_left_multiplier"] self.lineWidth = config["line_width"] self.arrowLength = config["arrow_length"] self.showWaypoints = config["show_waypoints"] self.recalculatePath = config["recalculate_path"] if level > 0 and self.recalculatePath: self.rebuildEntirePath() return config def emptyStateHistory(self): # Limit max. state history length to prevent bad performance after driving for a while # NOTE: msgHistory might still grow unboundedly, but there's no way of avoiding that... # However, that is mainly a memory issue as the whole history is only processed in rebuildEntirePath() return deque(maxlen=5000) def rebuildEntirePath(self): rospy.loginfo("Odometry parameters have changed! Rebuilding entire path!") if self.rebuildingEntirePath: return self.rebuildingEntirePath = True self.stateHistory = self.emptyStateHistory() self.zeroPosition() self.previousMsg = None for msg in self.msgHistory: self.updateState(msg) self.rebuildingEntirePath = False self.publishOdom() self.visualizePath() def updateState(self, msg): newState = State() newState.stamp = msg.header.stamp previousLeftTicks = self.previousMsg.ticksLeft if self.previousMsg else msg.ticksLeft previousRightTicks = self.previousMsg.ticksRight if self.previousMsg else msg.ticksRight leftDiff = msg.ticksLeft - previousLeftTicks rightDiff = msg.ticksRight - previousRightTicks # Calculate metric travelled distances of both wheels and the base metersTravelledLeft = leftDiff * msg.calibOverallMultiplier * self.extraCalibOverallMultiplier * msg.calibLeftEncMultiplier * self.extraCalibLeftMultiplier / self.TICKS_PER_METER_LEFT metersTravelledRight = rightDiff * msg.calibOverallMultiplier * self.extraCalibOverallMultiplier / self.TICKS_PER_METER_RIGHT distance = (metersTravelledLeft + metersTravelledRight) / 2.0 # Update position and bearing newState.theta = self.previousState.theta + (metersTravelledLeft - metersTravelledRight) / self.WHEEL_BASE newState.theta -= (int((newState.theta/(2*math.pi) ))) * 2*math.pi # clip to 2pi newState.totalDistance = self.previousState.totalDistance + math.fabs(distance) newState.x = self.previousState.x + distance * math.sin(newState.theta) newState.y = self.previousState.y + distance * math.cos(newState.theta) positionTolerance = 0.1 # in meters if math.hypot(newState.x - self.stateHistory[-1].x, newState.y - self.stateHistory[-1].y) > positionTolerance: # Do not cache every single state if the change in position is minimal, otherwise we'll soon run # out of memory (note we still store previousState, since it is needed by publishOdom() and updateState()) self.stateHistory.append(newState) self.previousState = newState # FIXME self.previousMsg = msg def publishOdom(self): odom = Odometry() odom.header.stamp = self.previousMsg.header.stamp if self.previousMsg else rospy.Time.now() odom.header.frame_id = "odom" odom.pose.pose.position.x = self.previousState.x odom.pose.pose.position.y = self.previousState.y for row in xrange(0, 6): for col in xrange(0, 6): odom.pose.covariance[6*row+col] = 0 if row != col else 0.1 odom.twist.covariance[6*row+col] = 0 if row != col else 999999 q = tf.transformations.quaternion_from_euler(0, 0, -self.previousState.theta + math.pi/2) odom.pose.pose.orientation = Quaternion(x=q[0], y=q[1], z=q[2], w=q[3]) if len(self.stateHistory) >= 2: odom.twist.twist.linear.x = odom.pose.pose.position.x - self.stateHistory[-2].x odom.twist.twist.linear.y = odom.pose.pose.position.y - self.stateHistory[-2].y self.odomPublisher.publish(odom) def visualizePath(self): if self.markerArrayPublisher.get_num_connections() <= 0: return markerArray = MarkerArray() pathMarker = Marker() pathMarker.header.stamp = rospy.Time.now() pathMarker.header.frame_id = "odom" pathMarker.ns = "Path" pathMarker.type = Marker.LINE_STRIP pathMarker.id = 0 pathMarker.color = ColorRGBA(r=1, g=1, a=1) pathMarker.scale.x = 0.05 * self.lineWidth waypointMarker = Marker() waypointMarker.header = pathMarker.header waypointMarker.ns = "Waypoints" waypointMarker.type = Marker.SPHERE_LIST waypointMarker.id = 1 waypointMarker.color = ColorRGBA(r=1, g=1, a=1) waypointMarker.scale.x = waypointMarker.scale.y = 0.1 * self.lineWidth lastWaypointTime = float("-inf") lastWaypointPos = (float("99999"), float("99999")) # Generate path and waypoints for state in self.stateHistory: pathMarker.points.append(Point(x=state.x, y=state.y)) if state.stamp.to_sec() - lastWaypointTime > 5 and self.showWaypoints: dx = state.x - lastWaypointPos[0] dy = state.y - lastWaypointPos[1] if math.sqrt(dx*dx + dy*dy) > 1: lastWaypointTime = state.stamp.to_sec() lastWaypointPos = (state.x, state.y) waypointMarker.points.append(Point(x=state.x, y=state.y)) timestampMarker = Marker() timestampMarker.header = waypointMarker.header timestampMarker.ns = "Timestamps" timestampMarker.type = Marker.TEXT_VIEW_FACING timestampMarker.id = 3 + len(markerArray.markers) timestampMarker.color = ColorRGBA(r=0.6, a=1) timestampMarker.scale.z = 0.1 * self.lineWidth timestampMarker.pose.position.x = state.x timestampMarker.pose.position.y = state.y timestampMarker.text = "%.1f" % state.stamp.to_sec() markerArray.markers.append(timestampMarker) # Delete old markers currentTimestampMarkerCount = len(markerArray.markers) for i in xrange(0, self.previousTimestampMarkerCount - currentTimestampMarkerCount): timestampMarker = Marker() timestampMarker.header = waypointMarker.header timestampMarker.ns = "Timestamps" timestampMarker.action = Marker.DELETE timestampMarker.id = 3 + currentTimestampMarkerCount + i markerArray.markers.append(timestampMarker) self.previousTimestampMarkerCount = currentTimestampMarkerCount # Velocity arrow velocitySmoothingNoPoints = 5 if len(pathMarker.points) > velocitySmoothingNoPoints: arrowHeadMarker = Marker() arrowHeadMarker.header = pathMarker.header arrowHeadMarker.ns = "Path-ArrowHead" arrowHeadMarker.type = Marker.LINE_STRIP arrowHeadMarker.id = 2 arrowHeadMarker.color = ColorRGBA(r=1, g=1, a=1) arrowHeadMarker.scale.x = arrowHeadMarker.scale.y = 0.1 * self.lineWidth pointTip = numpy.array([pathMarker.points[-1].x, pathMarker.points[-1].y]) lastVelocity = numpy.array([pathMarker.points[-1].x - pathMarker.points[-velocitySmoothingNoPoints].x, pathMarker.points[-1].y - pathMarker.points[-velocitySmoothingNoPoints].y]) speed =
numpy.linalg.norm(lastVelocity)
numpy.linalg.norm
#!/usr/bin/env python # coding: utf-8 # # Imports import numpy as np import tensorflow as tf import tensorflow_model_optimization as tfmot import matplotlib.pyplot as plt import json import tempfile import itertools #from google.colab import drive from mat4py import loadmat print(tf.__version__) # # Data pre-processing def downscale(data, resolution): # 10 min resolution.. (data.shape[0], 3, 1440) -> (data.shape[0], 10, 3, 144).. breaks one 3,1440 length trajectory into ten 3,144 length trajectories # Use ~12 timesteps -> 2-5 timesteps (Use ~2 hours to predict 20-50 mins) return np.mean(data.reshape(data.shape[0], data.shape[1], int(data.shape[2]/resolution), resolution), axis=3) def process_data(aligned_data, time_horizon, ph): # 10 min resolution.. breaks each (3,144) trajectory into (144-ph-time_horizon,3,time_horizon) samples data = np.zeros((aligned_data.shape[0] * (aligned_data.shape[2]-ph-time_horizon), aligned_data.shape[1], time_horizon)) label = np.zeros((aligned_data.shape[0] * (aligned_data.shape[2]-ph-time_horizon), ph)) count = 0 for i in range(aligned_data.shape[0]): # for each sample for j in range(aligned_data.shape[2]-ph-time_horizon): # TH length sliding window across trajectory data[count] = aligned_data[i,:,j:j+time_horizon] label[count] = aligned_data[i,0,j+time_horizon:j+time_horizon+ph] count+=1 return data, label def load_mpc(time_horizon, ph, resolution, batch): # int, int, int, bool # Load train data g = np.loadtxt('CGM_prediction_data/glucose_readings_train.csv', delimiter=',') c = np.loadtxt('CGM_prediction_data/meals_carbs_train.csv', delimiter=',') it = np.loadtxt('CGM_prediction_data/insulin_therapy_train.csv', delimiter=',') # Load test data g_ = np.loadtxt('CGM_prediction_data/glucose_readings_test.csv', delimiter=',') c_ = np.loadtxt('CGM_prediction_data/meals_carbs_test.csv', delimiter=',') it_ = np.loadtxt('CGM_prediction_data/insulin_therapy_test.csv', delimiter=',') # Time align train & test data aligned_train_data = downscale(np.array([(g[i,:], c[i,:], it[i,:]) for i in range(g.shape[0])]), resolution) aligned_test_data = downscale(np.array([(g_[i,:], c_[i,:], it_[i,:]) for i in range(g_.shape[0])]), resolution) print(aligned_train_data.shape) # Break time aligned data into train & test samples if batch: train_data, train_label = process_data(aligned_train_data, time_horizon, ph) test_data, test_label = process_data(aligned_test_data, time_horizon, ph) return np.swapaxes(train_data,1,2), train_label, np.swapaxes(test_data,1,2), test_label else: return aligned_train_data, aligned_test_data def load_uva(time_horizon, ph, resolution, batch): data = loadmat('uva-padova-data/sim_results.mat') train_data = np.zeros((231,3,1440)) test_data = np.zeros((99,3,1440)) # Separate train and test sets.. last 3 records of each patient will be used for testing count_train = 0 count_test = 0 for i in range(33): for j in range(10): if j>=7: test_data[count_test,0,:] = np.asarray(data['data']['results']['sensor'][count_test+count_train]['signals']['values']).flatten()[:1440] test_data[count_test,1,:] = np.asarray(data['data']['results']['CHO'][count_test+count_train]['signals']['values']).flatten()[:1440] test_data[count_test,2,:] = np.asarray(data['data']['results']['BOLUS'][count_test+count_train]['signals']['values']).flatten()[:1440] + np.asarray(data['data']['results']['BASAL'][i]['signals']['values']).flatten()[:1440] count_test+=1 else: train_data[count_train,0,:] = np.asarray(data['data']['results']['sensor'][count_test+count_train]['signals']['values']).flatten()[:1440] train_data[count_train,1,:] = np.asarray(data['data']['results']['CHO'][count_test+count_train]['signals']['values']).flatten()[:1440] train_data[count_train,2,:] = np.asarray(data['data']['results']['BOLUS'][count_test+count_train]['signals']['values']).flatten()[:1440] + np.asarray(data['data']['results']['BASAL'][i]['signals']['values']).flatten()[:1440] count_train+=1 train_data = downscale(train_data, resolution) test_data = downscale(test_data, resolution) if batch: train_data, train_label = process_data(train_data, time_horizon, ph) test_data, test_label = process_data(test_data, time_horizon, ph) return np.swapaxes(train_data,1,2)*0.0555, train_label*0.0555, np.swapaxes(test_data,1,2)*0.0555, test_label*0.0555 # convert to mmol/L else: return train_data, test_data # # Make bidirectional LSTM prunable & define custom metrics class PruneBidirectional(tf.keras.layers.Bidirectional, tfmot.sparsity.keras.PrunableLayer): def get_prunable_weights(self): # print(self.forward_layer._trainable_weights) # print(self.backward_layer._trainable_weights) # print(len(self.get_trainable_weights())) # print(self.get_weights()[0], self.get_weights()[0].shape) # return self.get_weights() return self.trainable_weights def loss_metric1(y_true, y_pred): loss = tf.keras.losses.MeanSquaredError() return loss(y_true[:,0], y_pred[:,0]) def loss_metric2(y_true, y_pred): loss = tf.keras.losses.MeanSquaredError() return loss(y_true[:,1], y_pred[:,1]) def loss_metric3(y_true, y_pred): loss = tf.keras.losses.MeanSquaredError() return loss(y_true[:,2], y_pred[:,2]) def loss_metric4(y_true, y_pred): loss = tf.keras.losses.MeanSquaredError() return loss(y_true[:,3], y_pred[:,3]) def loss_metric5(y_true, y_pred): loss = tf.keras.losses.MeanSquaredError() return loss(y_true[:,4], y_pred[:,4]) def loss_metric6(y_true, y_pred): loss = tf.keras.losses.MeanSquaredError() return loss(y_true[:,5], y_pred[:,5]) def bilstm(ph, training): inp = tf.keras.Input(shape=(train_data.shape[1], train_data.shape[2])) model = PruneBidirectional(tf.keras.layers.LSTM(200, return_sequences=True))(inp) model = tf.keras.layers.Dropout(rate=0.5)(model, training=training) model = PruneBidirectional(tf.keras.layers.LSTM(200, return_sequences=True))(model) model = tf.keras.layers.Dropout(rate=0.5)(model, training=training) model = tf.keras.layers.Flatten()(model) model = tf.keras.layers.Dense(ph, activation=None)(model) x = tf.keras.Model(inputs=inp, outputs=model) x.compile(optimizer='adam', loss='mean_squared_error', metrics=[tf.keras.metrics.RootMeanSquaredError(), loss_metric1, loss_metric2, loss_metric3, loss_metric4, loss_metric5, loss_metric6]) return x def crnn(ph, training): inp = tf.keras.Input(shape=(train_data.shape[1], train_data.shape[2])) model = tf.keras.layers.Conv1D(256, 4, activation='relu', padding='same')(inp) model = tf.keras.layers.MaxPool1D(pool_size=2, strides=1, padding='same')(model) model = tf.keras.layers.Dropout(rate=0.5)(model, training=training) model = tf.keras.layers.Conv1D(512, 4, activation='relu', padding='same')(model) model = tf.keras.layers.MaxPool1D(pool_size=2, strides=1, padding='same')(model) model = tf.keras.layers.Dropout(rate=0.5)(model, training=training) model = tf.keras.layers.LSTM(200, return_sequences=True)(model) model = tf.keras.layers.Dropout(rate=0.5)(model, training=training) model = tf.keras.layers.Flatten()(model) model = tf.keras.layers.Dense(ph, activation=None)(model) x = tf.keras.Model(inputs=inp, outputs=model) x.compile(optimizer='adam', loss='mean_squared_error', metrics=[tf.keras.metrics.RootMeanSquaredError(), loss_metric1, loss_metric2, loss_metric3, loss_metric4, loss_metric5, loss_metric6]) return x # # Custom callback to save pruning results # Custom sparsity callback import re import csv class SparsityCallback(tf.keras.callbacks.Callback):##tf.keras.callbacks.Callback): def on_epoch_end(self, epoch, logs={}): non_trainable = [i.name for i in self.model.non_trainable_weights] masks = [] for i in range(len(non_trainable)): if re.match('(.*)mask(.*)', non_trainable[i]): masks.append(self.model.non_trainable_weights[i].numpy()) masks = [i.flatten() for i in masks] masks = np.concatenate(masks).ravel() print('\n', np.count_nonzero(masks), 1-(np.count_nonzero(masks)/float(masks.shape[0]))) # with open('saved_models/uva_bilstm_sparsity.csv','ab') as f: #uva_crnn_sparisty.csv, uva_lstm_sparsity.csv, uva_bilstm_sparsity.csv # np.savetxt(f,np.asarray([1-(np.count_nonzero(masks)/float(masks.shape[0]))])) # csv_writer = csv.writer(f) # csv_writer.writerow(str(1-(np.count_nonzero(masks)/float(masks.shape[0]))))#,delimiter=',') # f.close() # print(np.concatenate(masks).ravel(), np.concatenate(masks).ravel().shape) # # Prune MPC generated models # ## CRNN # pruning crnn #get_ipython().run_line_magic('load_ext', 'tensorboard') PH = 6 TIME_HORIZON = 12 RESOLUTION = 10 BATCH_SIZE = 32 EPOCHS = 50 BATCH = True # indicates whether to convert data into batches training = True train_data, train_label, test_data, test_label = load_mpc(TIME_HORIZON, PH, RESOLUTION, BATCH) model = tf.keras.models.load_model('../saved/postgraduate_dissertation/saved_models/mpc_guided_crnn.h5',custom_objects={'loss_metric1':loss_metric1, 'loss_metric2':loss_metric2, 'loss_metric3':loss_metric3, 'loss_metric4':loss_metric4,'loss_metric5':loss_metric5,'loss_metric6':loss_metric6}) #model = bilstm(PH, training) pruning_params = { 'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(initial_sparsity=0, final_sparsity=0.98, begin_step=2997, end_step=2997*EPOCHS, frequency=2977) } print(model.summary()) logdir = tempfile.mkdtemp() print(logdir) callbacks = [ tfmot.sparsity.keras.UpdatePruningStep(), # tfmot.sparsity.keras.PruningSummaries(log_dir=logdir), SparsityCallback() ] model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(model, **pruning_params) model_for_pruning.compile(optimizer='adam', loss='mean_squared_error', metrics=[tf.keras.metrics.RootMeanSquaredError(), loss_metric1, loss_metric2, loss_metric3, loss_metric4, loss_metric5, loss_metric6]) print(model_for_pruning.summary()) pruned_crnn = model_for_pruning.fit(x=train_data, y=train_label, batch_size=BATCH_SIZE, epochs=EPOCHS, validation_data=(test_data, test_label), callbacks=callbacks) model_for_export = tfmot.sparsity.keras.strip_pruning(model_for_pruning) #tf.keras.models.save_model(model_for_export, '../saved/history/pruned_mpc_guided_crnn.h5', include_optimizer=False) #get_ipython().system('ls saved_models') #print(pruned_model.summary()) #%tensorboard --logdir={logdir} #model.save('../saved/history/pruned_mpc_guided_bilstm.h5') #json.dump(pruned_crnn.history, open('../saved/history/pruned_mpc_guided_crnn_history', 'w')) #!ls saved_models #%tensorboard --logdir={log_dir} # ## LSTM # In[ ]: PH = 6 TIME_HORIZON = 12 RESOLUTION = 10 BATCH_SIZE = 32 EPOCHS = 50 BATCH = True # indicates whether to convert data into batches training = True train_data, train_label, test_data, test_label = load_mpc(TIME_HORIZON, PH, RESOLUTION, BATCH) model = tf.keras.models.load_model('../saved/postgraduate_dissertation/saved_models/mpc_guided_lstm.h5',custom_objects={'loss_metric1':loss_metric1, 'loss_metric2':loss_metric2, 'loss_metric3':loss_metric3, 'loss_metric4':loss_metric4,'loss_metric5':loss_metric5,'loss_metric6':loss_metric6}) #model = bilstm(PH, training) pruning_params = { 'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(initial_sparsity=0, final_sparsity=0.98, begin_step=2997, end_step=2997*EPOCHS, frequency=2977) } print(model.summary()) logdir = tempfile.mkdtemp() print(logdir) callbacks = [ tfmot.sparsity.keras.UpdatePruningStep(), # tfmot.sparsity.keras.PruningSummaries(log_dir=logdir), SparsityCallback() ] model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(model, **pruning_params) model_for_pruning.compile(optimizer='adam', loss='mean_squared_error', metrics=[tf.keras.metrics.RootMeanSquaredError(), loss_metric1, loss_metric2, loss_metric3, loss_metric4, loss_metric5, loss_metric6]) print(model_for_pruning.summary()) pruned_lstm = model_for_pruning.fit(x=train_data, y=train_label, batch_size=BATCH_SIZE, epochs=EPOCHS, validation_data=(test_data, test_label), callbacks=callbacks) model_for_export = tfmot.sparsity.keras.strip_pruning(model_for_pruning) #tf.keras.models.save_model(model_for_export, '../saved/history/pruned_mpc_guided_lstm.h5', include_optimizer=False) #json.dump(pruned_lstm.history, open('../saved/history/pruned_mpc_guided_lstm_history', 'w')) #get_ipython().system('ls saved_models') # ## Bidirectional LSTM PH = 6 TIME_HORIZON = 12 RESOLUTION = 10 BATCH_SIZE = 32 EPOCHS = 150 BATCH = True # indicates whether to convert data into batches training = True train_data, train_label, test_data, test_label = load_mpc(TIME_HORIZON, PH, RESOLUTION, BATCH) #model = tf.keras.models.load_model('saved_models/mpc_guided_lstm.h5',custom_objects={'loss_metric1':loss_metric1, 'loss_metric2':loss_metric2, 'loss_metric3':loss_metric3, 'loss_metric4':loss_metric4,'loss_metric5':loss_metric5,'loss_metric6':loss_metric6}) model = bilstm(PH, training) pruning_params = { 'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(initial_sparsity=0, final_sparsity=0.98, begin_step=2997*100, end_step=2997*EPOCHS, frequency=2977) } print(model.summary()) logdir = tempfile.mkdtemp() print(logdir) callbacks = [ tfmot.sparsity.keras.UpdatePruningStep(), # tfmot.sparsity.keras.PruningSummaries(log_dir=logdir), SparsityCallback() ] model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(model, **pruning_params) model_for_pruning.compile(optimizer='adam', loss='mean_squared_error', metrics=[tf.keras.metrics.RootMeanSquaredError(), loss_metric1, loss_metric2, loss_metric3, loss_metric4, loss_metric5, loss_metric6]) print(model_for_pruning.summary()) pruned_lstm = model_for_pruning.fit(x=train_data, y=train_label, batch_size=BATCH_SIZE, epochs=EPOCHS, validation_data=(test_data, test_label), callbacks=callbacks) model_for_export = tfmot.sparsity.keras.strip_pruning(model_for_pruning) #tf.keras.models.save_model(model_for_export, '../saved/history/pruned_mpc_guided_bilstm.h5', include_optimizer=False) #json.dump(pruned_lstm.history, open('../saved/history/pruned_mpc_guided_bilstm_history', 'w')) #get_ipython().system('ls saved_models') # # MPC Pruning results # In[ ]: lstm_val_loss_10 = json.load(open('../saved/history/pruned_mpc_guided_lstm_history'))['val_loss_metric1'] lstm_val_loss_20 = json.load(open('../saved/history/pruned_mpc_guided_lstm_history'))['val_loss_metric2'] lstm_val_loss_30 = json.load(open('../saved/history/pruned_mpc_guided_lstm_history'))['val_loss_metric3'] lstm_val_loss_40 = json.load(open('../saved/history/pruned_mpc_guided_lstm_history'))['val_loss_metric4'] lstm_val_loss_50 = json.load(open('../saved/history/pruned_mpc_guided_lstm_history'))['val_loss_metric5'] lstm_val_loss_60 = json.load(open('../saved/history/pruned_mpc_guided_lstm_history'))['val_loss_metric6'] crnn_val_loss_10 = json.load(open('../saved/history/pruned_mpc_guided_crnn_history'))['val_loss_metric1'] crnn_val_loss_20 = json.load(open('../saved/history/pruned_mpc_guided_crnn_history'))['val_loss_metric2'] crnn_val_loss_30 = json.load(open('../saved/history/pruned_mpc_guided_crnn_history'))['val_loss_metric3'] crnn_val_loss_40 = json.load(open('../saved/history/pruned_mpc_guided_crnn_history'))['val_loss_metric4'] crnn_val_loss_50 = json.load(open('../saved/history/pruned_mpc_guided_crnn_history'))['val_loss_metric5'] crnn_val_loss_60 = json.load(open('../saved/history/pruned_mpc_guided_crnn_history'))['val_loss_metric6'] bilstm_val_loss_10 = json.load(open('../saved/history/pruned_mpc_guided_bilstm_history'))['val_loss_metric1'][100:] bilstm_val_loss_20 = json.load(open('../saved/history/pruned_mpc_guided_bilstm_history'))['val_loss_metric2'][100:] bilstm_val_loss_30 = json.load(open('../saved/history/pruned_mpc_guided_bilstm_history'))['val_loss_metric3'][100:] bilstm_val_loss_40 = json.load(open('../saved/history/pruned_mpc_guided_bilstm_history'))['val_loss_metric4'][100:] bilstm_val_loss_50 = json.load(open('../saved/history/pruned_mpc_guided_bilstm_history'))['val_loss_metric5'][100:] bilstm_val_loss_60 = json.load(open('../saved/history/pruned_mpc_guided_bilstm_history'))['val_loss_metric6'][100:] x_crnn = np.genfromtxt('../saved/history/crnn_sparsity.csv') x_lstm = np.genfromtxt('../saved/history/lstm_sparsity.csv') x_bilstm = np.genfromtxt('../saved/history/bilstm_sparsity.csv')[100:] fig, axes = plt.subplots(2,3) plt.rcParams["figure.figsize"] = (20,10) axes[0,0].plot(x_lstm, np.sqrt(lstm_val_loss_10), label='LSTM') axes[0,1].plot(x_lstm, np.sqrt(lstm_val_loss_20), label='LSTM') axes[0,2].plot(x_lstm, np.sqrt(lstm_val_loss_30), label='LSTM') axes[1,0].plot(x_lstm, np.sqrt(lstm_val_loss_40), label='LSTM') axes[1,1].plot(x_lstm, np.sqrt(lstm_val_loss_50), label='LSTM') axes[1,2].plot(x_lstm, np.sqrt(lstm_val_loss_60), label='LSTM') axes[0,0].plot(x_crnn, np.sqrt(crnn_val_loss_10), label='CRNN') axes[0,1].plot(x_crnn, np.sqrt(crnn_val_loss_20), label='CRNN') axes[0,2].plot(x_crnn, np.sqrt(crnn_val_loss_30), label='CRNN') axes[1,0].plot(x_crnn, np.sqrt(crnn_val_loss_40), label='CRNN') axes[1,1].plot(x_crnn, np.sqrt(crnn_val_loss_50), label='CRNN') axes[1,2].plot(x_crnn, np.sqrt(crnn_val_loss_60), label='CRNN') axes[0,0].plot(x_bilstm, np.sqrt(bilstm_val_loss_10), label='Bidirectional LSTM') axes[0,1].plot(x_bilstm, np.sqrt(bilstm_val_loss_20), label='Bidirectional LSTM') axes[0,2].plot(x_bilstm, np.sqrt(bilstm_val_loss_30), label='Bidirectional LSTM') axes[1,0].plot(x_bilstm, np.sqrt(bilstm_val_loss_40), label='Bidirectional LSTM') axes[1,1].plot(x_bilstm, np.sqrt(bilstm_val_loss_50), label='Bidirectional LSTM') axes[1,2].plot(x_bilstm, np.sqrt(bilstm_val_loss_60), label='Bidirectional LSTM') axes[0,0].title.set_text('10 minute prediction validation loss') axes[0,1].title.set_text('20 minute prediction validation loss') axes[0,2].title.set_text('30 minute prediction validation loss') axes[1,0].title.set_text('40 minute prediction validation loss') axes[1,1].title.set_text('50 minute prediction validation loss') axes[1,2].title.set_text('60 minute prediction validation loss') axes[0,0].set_ylabel('RMSE (mmol/L)') axes[1,0].set_ylabel('RMSE (mmol/L)') axes[1,0].set_xlabel('Sparsity (%)') axes[1,1].set_xlabel('Sparsity (%)') axes[1,2].set_xlabel('Sparsity (%)') axes[0,0].legend() axes[0,1].legend() axes[0,2].legend() axes[1,0].legend() axes[1,1].legend() axes[1,2].legend() #plt.rcParams["figure.figsize"] = (20,10) custom_ylim = (0,2) plt.setp(axes, ylim=custom_ylim) plt.show() # # Prune UVA Padova models # ## CRNN # In[ ]: # pruning crnn #get_ipython().run_line_magic('load_ext', 'tensorboard') PH = 6 TIME_HORIZON = 12 RESOLUTION = 10 BATCH_SIZE = 32 EPOCHS = 50 BATCH = True # indicates whether to convert data into batches training = True train_data, train_label, test_data, test_label = load_uva(TIME_HORIZON, PH, RESOLUTION, BATCH) model = tf.keras.models.load_model('../saved/postgraduate_dissertation/saved_models/uva_padova_crnn.h5',custom_objects={'loss_metric1':loss_metric1, 'loss_metric2':loss_metric2, 'loss_metric3':loss_metric3, 'loss_metric4':loss_metric4,'loss_metric5':loss_metric5,'loss_metric6':loss_metric6}) #model = bilstm(PH, training) pruning_params = { 'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(initial_sparsity=0, final_sparsity=0.98, begin_step=910, end_step=910*EPOCHS, frequency=910) } print(model.summary()) logdir = tempfile.mkdtemp() print(logdir) callbacks = [ tfmot.sparsity.keras.UpdatePruningStep(), # tfmot.sparsity.keras.PruningSummaries(log_dir=logdir), SparsityCallback() ] model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(model, **pruning_params) model_for_pruning.compile(optimizer='adam', loss='mean_squared_error', metrics=[tf.keras.metrics.RootMeanSquaredError(), loss_metric1, loss_metric2, loss_metric3, loss_metric4, loss_metric5, loss_metric6]) print(model_for_pruning.summary()) pruned_crnn = model_for_pruning.fit(x=train_data, y=train_label, batch_size=BATCH_SIZE, epochs=EPOCHS, validation_data=(test_data, test_label), callbacks=callbacks) model_for_export = tfmot.sparsity.keras.strip_pruning(model_for_pruning) #tf.keras.models.save_model(model_for_export, '../saved/history/pruned_uva_padova_crnn.h5', include_optimizer=False) # #get_ipython().system('ls saved_models') #print(pruned_model.summary()) #%tensorboard --logdir={logdir} #model.save('../saved/history/pruned_mpc_guided_bilstm.h5') #json.dump(pruned_crnn.history, open('../saved/history/pruned_uva_padova_crnn_history', 'w')) # ## LSTM # In[ ]: PH = 6 TIME_HORIZON = 12 RESOLUTION = 10 BATCH_SIZE = 32 EPOCHS = 50 BATCH = True # indicates whether to convert data into batches training = True train_data, train_label, test_data, test_label = load_uva(TIME_HORIZON, PH, RESOLUTION, BATCH) model = tf.keras.models.load_model('../saved/postgraduate_dissertation/saved_models/uva_padova_lstm.h5',custom_objects={'loss_metric1':loss_metric1, 'loss_metric2':loss_metric2, 'loss_metric3':loss_metric3, 'loss_metric4':loss_metric4,'loss_metric5':loss_metric5,'loss_metric6':loss_metric6}) #model = bilstm(PH, training) pruning_params = { 'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(initial_sparsity=0, final_sparsity=0.98, begin_step=910, end_step=910*EPOCHS, frequency=910) } print(model.summary()) logdir = tempfile.mkdtemp() print(logdir) callbacks = [ tfmot.sparsity.keras.UpdatePruningStep(), # tfmot.sparsity.keras.PruningSummaries(log_dir=logdir), SparsityCallback() ] model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(model, **pruning_params) model_for_pruning.compile(optimizer='adam', loss='mean_squared_error', metrics=[tf.keras.metrics.RootMeanSquaredError(), loss_metric1, loss_metric2, loss_metric3, loss_metric4, loss_metric5, loss_metric6]) print(model_for_pruning.summary()) pruned_lstm = model_for_pruning.fit(x=train_data, y=train_label, batch_size=BATCH_SIZE, epochs=EPOCHS, validation_data=(test_data, test_label), callbacks=callbacks) model_for_export = tfmot.sparsity.keras.strip_pruning(model_for_pruning) #tf.keras.models.save_model(model_for_export, '../saved/history/pruned_uva_padova_lstm.h5', include_optimizer=False) #json.dump(pruned_lstm.history, open('../saved/history/pruned_uva_padova_lstm_history', 'w')) #get_ipython().system('ls saved_models') # ## BiLSTM # In[ ]: PH = 6 TIME_HORIZON = 12 RESOLUTION = 10 BATCH_SIZE = 32 EPOCHS = 150 BATCH = True # indicates whether to convert data into batches training = True train_data, train_label, test_data, test_label = load_uva(TIME_HORIZON, PH, RESOLUTION, BATCH) #model = tf.keras.models.load_model('saved_models/mpc_guided_lstm.h5',custom_objects={'loss_metric1':loss_metric1, 'loss_metric2':loss_metric2, 'loss_metric3':loss_metric3, 'loss_metric4':loss_metric4,'loss_metric5':loss_metric5,'loss_metric6':loss_metric6}) model = bilstm(PH, training) pruning_params = { 'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(initial_sparsity=0, final_sparsity=0.98, begin_step=910*100, end_step=910*EPOCHS, frequency=910) } print(model.summary()) logdir = tempfile.mkdtemp() print(logdir) callbacks = [ tfmot.sparsity.keras.UpdatePruningStep(), # tfmot.sparsity.keras.PruningSummaries(log_dir=logdir), SparsityCallback() ] model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(model, **pruning_params) model_for_pruning.compile(optimizer='adam', loss='mean_squared_error', metrics=[tf.keras.metrics.RootMeanSquaredError(), loss_metric1, loss_metric2, loss_metric3, loss_metric4, loss_metric5, loss_metric6]) print(model_for_pruning.summary()) pruned_lstm = model_for_pruning.fit(x=train_data, y=train_label, batch_size=BATCH_SIZE, epochs=EPOCHS, validation_data=(test_data, test_label), callbacks=callbacks) model_for_export = tfmot.sparsity.keras.strip_pruning(model_for_pruning) #tf.keras.models.save_model(model_for_export, '../saved/history/pruned_uva_padova_bilstm.h5', include_optimizer=False) #json.dump(pruned_lstm.history, open('../saved/history/pruned_uva_padova_bilstm_history', 'w')) #get_ipython().system('ls saved_models') # # UVA Padova Pruning results # In[ ]: lstm_val_loss_10 = json.load(open('../saved/history/pruned_uva_padova_lstm_history'))['val_loss_metric1'] lstm_val_loss_20 = json.load(open('../saved/history/pruned_uva_padova_lstm_history'))['val_loss_metric2'] lstm_val_loss_30 = json.load(open('../saved/history/pruned_uva_padova_lstm_history'))['val_loss_metric3'] lstm_val_loss_40 = json.load(open('../saved/history/pruned_uva_padova_lstm_history'))['val_loss_metric4'] lstm_val_loss_50 = json.load(open('../saved/history/pruned_uva_padova_lstm_history'))['val_loss_metric5'] lstm_val_loss_60 = json.load(open('../saved/history/pruned_uva_padova_lstm_history'))['val_loss_metric6'] crnn_val_loss_10 = json.load(open('../saved/history/pruned_uva_padova_crnn_history'))['val_loss_metric1'] crnn_val_loss_20 = json.load(open('../saved/history/pruned_uva_padova_crnn_history'))['val_loss_metric2'] crnn_val_loss_30 = json.load(open('../saved/history/pruned_uva_padova_crnn_history'))['val_loss_metric3'] crnn_val_loss_40 = json.load(open('../saved/history/pruned_uva_padova_crnn_history'))['val_loss_metric4'] crnn_val_loss_50 = json.load(open('../saved/history/pruned_uva_padova_crnn_history'))['val_loss_metric5'] crnn_val_loss_60 = json.load(open('../saved/history/pruned_uva_padova_crnn_history'))['val_loss_metric6'] bilstm_val_loss_10 = json.load(open('../saved/history/pruned_uva_padova_bilstm_history'))['val_loss_metric1'][100:] bilstm_val_loss_20 = json.load(open('../saved/history/pruned_uva_padova_bilstm_history'))['val_loss_metric2'][100:] bilstm_val_loss_30 = json.load(open('../saved/history/pruned_uva_padova_bilstm_history'))['val_loss_metric3'][100:] bilstm_val_loss_40 = json.load(open('../saved/history/pruned_uva_padova_bilstm_history'))['val_loss_metric4'][100:] bilstm_val_loss_50 = json.load(open('../saved/history/pruned_uva_padova_bilstm_history'))['val_loss_metric5'][100:] bilstm_val_loss_60 = json.load(open('../saved/history/pruned_uva_padova_bilstm_history'))['val_loss_metric6'][100:] x_crnn = np.genfromtxt('../saved/history/uva_crnn_sparsity.csv')#[6:] x_lstm = np.genfromtxt('../saved/history/uva_lstm_sparsity.csv') x_bilstm = np.genfromtxt('../saved/history/uva_bilstm_sparsity.csv')[100:] print(x_crnn.shape, x_lstm.shape, x_bilstm.shape) fig, axes = plt.subplots(2,3) plt.rcParams["figure.figsize"] = (20,10) axes[0,0].plot(x_lstm,
np.sqrt(lstm_val_loss_10)
numpy.sqrt
import unittest import matplotlib import matplotlib.pyplot matplotlib.use("Agg") matplotlib.pyplot.switch_backend("Agg") class Test(unittest.TestCase): def test_cantilever_beam(self): import numpy as np import matplotlib.pyplot as plt from smt.problems import CantileverBeam ndim = 3 problem = CantileverBeam(ndim=ndim) num = 100 x = np.ones((num, ndim)) x[:, 0] = np.linspace(0.01, 0.05, num) x[:, 1] = 0.5 x[:, 2] = 0.5 y = problem(x) yd = np.empty((num, ndim)) for i in range(ndim): yd[:, i] = problem(x, kx=i).flatten() print(y.shape) print(yd.shape) plt.plot(x[:, 0], y[:, 0]) plt.xlabel("x") plt.ylabel("y") plt.show() def test_robot_arm(self): import numpy as np import matplotlib.pyplot as plt from smt.problems import RobotArm ndim = 2 problem = RobotArm(ndim=ndim) num = 100 x = np.ones((num, ndim)) x[:, 0] = np.linspace(0.0, 1.0, num) x[:, 1] = np.pi y = problem(x) yd = np.empty((num, ndim)) for i in range(ndim): yd[:, i] = problem(x, kx=i).flatten() print(y.shape) print(yd.shape) plt.plot(x[:, 0], y[:, 0]) plt.xlabel("x") plt.ylabel("y") plt.show() def test_rosenbrock(self): import numpy as np import matplotlib.pyplot as plt from smt.problems import Rosenbrock ndim = 2 problem = Rosenbrock(ndim=ndim) num = 100 x = np.ones((num, ndim)) x[:, 0] = np.linspace(-2, 2.0, num) x[:, 1] = 0.0 y = problem(x) yd = np.empty((num, ndim)) for i in range(ndim): yd[:, i] = problem(x, kx=i).flatten() print(y.shape) print(yd.shape) plt.plot(x[:, 0], y[:, 0]) plt.xlabel("x") plt.ylabel("y") plt.show() def test_sphere(self): import numpy as np import matplotlib.pyplot as plt from smt.problems import Sphere ndim = 2 problem = Sphere(ndim=ndim) num = 100 x = np.ones((num, ndim)) x[:, 0] = np.linspace(-10, 10.0, num) x[:, 1] = 0.0 y = problem(x) yd = np.empty((num, ndim)) for i in range(ndim): yd[:, i] = problem(x, kx=i).flatten() print(y.shape) print(yd.shape) plt.plot(x[:, 0], y[:, 0]) plt.xlabel("x") plt.ylabel("y") plt.show() def test_branin(self): import numpy as np import matplotlib.pyplot as plt from smt.problems import Branin ndim = 2 problem = Branin(ndim=ndim) num = 100 x =
np.ones((num, ndim))
numpy.ones
# coding: utf-8 # !/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Sep 19 11:05:23 2017 @author: zhangji """ from matplotlib import pyplot as plt # plt.rcParams['figure.figsize'] = (18.5, 10.5) # fontsize = 40 import os # import glob import numpy as np from datetime import datetime # import matplotlib import re from scanf import scanf from scipy import interpolate, integrate from mpl_toolkits.axes_grid1.inset_locator import inset_axes from mpl_toolkits.mplot3d.art3d import Line3DCollection from matplotlib.patches import FancyArrowPatch from mpl_toolkits.mplot3d.proj3d import proj_transform from mpl_toolkits.mplot3d.axes3d import Axes3D from matplotlib.colors import Normalize from matplotlib.ticker import Locator from matplotlib.collections import LineCollection from matplotlib.offsetbox import AnchoredOffsetbox, TextArea, HPacker, VPacker # from scipy.optimize import curve_fit # font = {'size': 20} # matplotlib.rc('font', **font) # np.set_printoptions(linewidth=90, precision=5) markerstyle_list = ['^', 'v', 'o', 's', 'p', 'd', 'H', '1', '2', '3', '4', '8', 'P', '*', 'h', '+', 'x', 'X', 'D', '|', '_', ] color_list = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] def read_array(text_headle, FILE_DATA, array_length=6): t_match = re.search(text_headle, FILE_DATA) if t_match is not None: t1 = t_match.end() myformat = ('%f ' * array_length)[:-1] temp1 = np.array(scanf(myformat, FILE_DATA[t1:])) else: temp1 = np.ones(array_length) temp1[:] = np.nan return temp1 class fullprint: 'context manager for printing full numpy arrays' def __init__(self, **kwargs): kwargs.setdefault('threshold', np.inf) self.opt = kwargs def __enter__(self): self._opt = np.get_printoptions() np.set_printoptions(**self.opt) def __exit__(self, type, value, traceback): np.set_printoptions(**self._opt) def func_line(x, a0, a1): y = a0 + a1 * x return y def fit_line(ax, x, y, x0, x1, ifprint=1, linestyle='-.', linewidth=1, extendline=False, color='k', alpha=0.7): idx = np.array(x >= x0) & np.array(x <= x1) & np.isfinite(x) & np.isfinite(y) tx = x[idx] ty = y[idx] fit_para = np.polyfit(tx, ty, 1) pol_y = np.poly1d(fit_para) if extendline: fit_x = np.linspace(x.min(), x.max(), 100) else: fit_x = np.linspace(max(x.min(), x0), min(x.max(), x1), 100) if ax is not None: ax.plot(fit_x, pol_y(fit_x), linestyle, linewidth=linewidth, color=color, alpha=alpha) if ifprint: print('y = %f + %f * x' % (fit_para[1], fit_para[0]), 'in range', (x[idx].min(), x[idx].max())) return fit_para def fit_power_law(ax, x, y, x0, x1, ifprint=1, linestyle='-.', linewidth=1, extendline=False, color='k', alpha=0.7): idx = np.array(x >= x0) & np.array(x <= x1) & np.isfinite((np.log10(x))) & np.isfinite( (np.log10(y))) tx = np.log10(x[idx]) ty = np.log10(y[idx]) fit_para = np.polyfit(tx, ty, 1) pol_y = np.poly1d(fit_para) if extendline: fit_x = np.log10(np.linspace(x.min(), x.max(), 30)) else: fit_x = np.log10(np.linspace(max(x.min(), x0), min(x.max(), x1), 30)) if ax is not None: ax.loglog(10 ** fit_x, 10 ** pol_y(fit_x), linestyle, linewidth=linewidth, color=color, alpha=alpha) if ifprint: print('log(y) = %f + %f * log(x)' % (fit_para[1], fit_para[0]), 'in range', (10 ** tx.min(), 10 ** tx.max())) print('ln(y) = %f + %f * ln(x)' % (fit_para[1] * np.log(10), fit_para[0]), 'in range', (10 ** tx.min(), 10 ** tx.max())) return fit_para def fit_semilogy(ax, x, y, x0, x1, ifprint=1, linestyle='-.', linewidth=1, extendline=False, color='k', alpha=0.7): idx = np.array(x >= x0) & np.array(x <= x1) & np.isfinite(x) & np.isfinite(np.log10(y)) tx = x[idx] ty = np.log10(y[idx]) fit_para = np.polyfit(tx, ty, 1) pol_y = np.poly1d(fit_para) if extendline: fit_x = np.linspace(x.min(), x.max(), 30) else: fit_x = np.linspace(max(x.min(), x0), min(x.max(), x1), 30) if ax is not None: ax.plot(fit_x, 10 ** pol_y(fit_x), linestyle, linewidth=linewidth, color=color, alpha=alpha) if ifprint: print('log(y) = %f + %f * x' % (fit_para[1], fit_para[0]), 'in range', (tx.min(), tx.max())) fit_para = fit_para * np.log(10) print('ln(y) = %f + %f * x' % (fit_para[1], fit_para[0]), 'in range', (tx.min(), tx.max())) return fit_para def norm_self(v): return v / np.linalg.norm(v) def angle_2vectors(v1, v2, vct_direct=None): v1 = norm_self(np.array(v1).ravel()) v2 = norm_self(np.array(v2).ravel()) err_msg = 'inputs are not 3 dimensional vectors. ' assert v1.size == 3, err_msg assert v2.size == 3, err_msg t1 = np.dot(v1, v2) if vct_direct is None: sign = 1 else: vct_direct = norm_self(np.array(vct_direct).ravel()) assert vct_direct.size == 3, err_msg sign = np.sign(np.dot(vct_direct, np.cross(v1, v2))) theta = sign * np.arccos(t1) return theta def get_rot_matrix(*args, **kwargs): from src import support_class as spc return spc.get_rot_matrix(*args, **kwargs) def mycot(x): return 1 / np.tan(x) def mycsc(x): return 1 / np.sin(x) def mysec(x): return 1 / np.cos(x) def write_pbs_head(fpbs, job_name, nodes=1): fpbs.write('#! /bin/bash\n') fpbs.write('#PBS -M <EMAIL>\n') fpbs.write('#PBS -l nodes=%d:ppn=24\n' % nodes) fpbs.write('#PBS -l walltime=72:00:00\n') fpbs.write('#PBS -q common\n') fpbs.write('#PBS -N %s\n' % job_name) fpbs.write('\n') fpbs.write('cd $PBS_O_WORKDIR\n') fpbs.write('\n') return True def write_pbs_head_dbg(fpbs, job_name, nodes=1): assert np.isclose(nodes, 1) fpbs.write('#! /bin/bash\n') fpbs.write('#PBS -M <EMAIL>@csrc.ac.cn\n') fpbs.write('#PBS -l nodes=%d:ppn=24\n' % nodes) fpbs.write('#PBS -l walltime=24:00:00\n') fpbs.write('#PBS -q debug\n') fpbs.write('#PBS -N %s\n' % job_name) fpbs.write('\n') fpbs.write('cd $PBS_O_WORKDIR\n') fpbs.write('\n') return True def write_pbs_head_serial(fpbs, job_name, nodes=1): assert np.isclose(nodes, 1) fpbs.write('#! /bin/bash\n') fpbs.write('#PBS -M <EMAIL>\n') fpbs.write('#PBS -l nodes=%d:ppn=1\n' % nodes) fpbs.write('#PBS -l walltime=1000:00:00\n') fpbs.write('#PBS -q serial\n') fpbs.write('#PBS -N %s\n' % job_name) fpbs.write('\n') fpbs.write('cd $PBS_O_WORKDIR\n') fpbs.write('\n') return True def write_pbs_head_q03(fpbs, job_name, nodes=1): fpbs.write('#! /bin/bash\n') fpbs.write('#PBS -M <EMAIL>\n') fpbs.write('#PBS -l nodes=%d:ppn=24\n' % nodes) fpbs.write('#PBS -l walltime=72:00:00\n') fpbs.write('#PBS -q q03\n') fpbs.write('#PBS -N %s\n' % job_name) fpbs.write('\n') fpbs.write('cd $PBS_O_WORKDIR\n') fpbs.write('\n') return True def write_pbs_head_newturb(fpbs, job_name, nodes=1): fpbs.write('#!/bin/sh\n') fpbs.write('#PBS -M <EMAIL>\n') fpbs.write('#PBS -l nodes=%d:ppn=24\n' % nodes) fpbs.write('#PBS -l walltime=24:00:00\n') fpbs.write('#PBS -N %s\n' % job_name) fpbs.write('\n') fpbs.write('cd $PBS_O_WORKDIR\n') fpbs.write('source /storage/zhang/.bashrc\n') fpbs.write('\n') return True def write_pbs_head_haiguang(fpbs, job_name, nodes=1): fpbs.write('#!/bin/sh\n') fpbs.write('# run the job in the main node directly. ') fpbs.write('\n') return True def _write_main_run_top(frun, main_hostname='ln0'): frun.write('t_dir=$PWD \n') frun.write('bash_dir="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )" \n\n') # check if the script run on the main node. frun.write('if [ $(hostname) == \'%s\' ]; then\n' % main_hostname) frun.write(' echo \'this node is %s. \' \n' % main_hostname) frun.write('else \n') frun.write(' echo \'please run in the node %s. \' \n' % main_hostname) frun.write(' exit \n') frun.write('fi \n\n') return True def write_main_run(write_pbs_head, job_dir, ncase): tname = os.path.join(job_dir, 'main_run.pbs') print('ncase =', ncase) print('write parallel pbs file to %s' % tname) with open(tname, 'w') as fpbs: write_pbs_head(fpbs, job_dir, nodes=ncase) fpbs.write('seq 0 %d | parallel -j 1 -u --sshloginfile $PBS_NODEFILE \\\n' % (ncase - 1)) fpbs.write('\"cd $PWD;echo $PWD;bash myscript.csh {}\"') return True def write_main_run_comm_list(comm_list, txt_list, use_node, njob_node, job_dir, write_pbs_head000=write_pbs_head, n_job_pbs=None, random_order=False, ): def _parallel_pbs_ln0(n_use_comm, njob_node, csh_name): t2 = 'seq 0 %d | parallel -j %d -u ' % (n_use_comm - 1, njob_node) t2 = t2 + ' --sshloginfile $PBS_NODEFILE --sshdelay 0.1 ' t2 = t2 + ' "cd $PWD; echo $PWD; echo; bash %s {} true " \n\n ' % csh_name return t2 def _parallel_pbs_newturb(n_use_comm, njob_node, csh_name): t2 = 'seq 0 %d | parallel -j %d -u ' % (n_use_comm - 1, njob_node) t2 = t2 + ' --sshdelay 0.1 ' t2 = t2 + ' "cd $PWD; echo $PWD; echo; bash %s {} true " \n\n ' % csh_name return t2 PWD = os.getcwd() comm_list = np.array(comm_list) txt_list = np.array(txt_list) t_path = os.path.join(PWD, job_dir) if not os.path.exists(t_path): os.makedirs(t_path) print('make folder %s' % t_path) else: print('exist folder %s' % t_path) n_case = len(comm_list) if n_job_pbs is None: n_job_pbs = use_node * njob_node n_pbs = (n_case // n_job_pbs) + np.sign(n_case % n_job_pbs) if random_order: tidx = np.arange(n_case) np.random.shuffle(tidx) comm_list = comm_list[tidx] txt_list = txt_list[tidx] # generate comm_list.sh t_name0 = os.path.join(t_path, 'comm_list.sh') with open(t_name0, 'w') as fcomm: for i0, ts, f in zip(range(n_case), comm_list, txt_list): fcomm.write('%s > %s.txt 2> %s.err \n' % (ts, f, f)) fcomm.write('echo \'%d / %d, %s start.\' \n\n' % (i0 + 1, n_case, f)) assert callable(write_pbs_head000) if write_pbs_head000 is write_pbs_head: main_hostname = 'ln0' _parallel_pbs_use = _parallel_pbs_ln0 run_fun = 'qsub %s\n\n' # elif write_pbs_head000 is write_pbs_head_q03: # main_hostname = 'ln0' # _parallel_pbs_use = _parallel_pbs_ln0 # run_fun = 'qsub %s\n\n' elif write_pbs_head000 is write_pbs_head_dbg: main_hostname = 'ln0' _parallel_pbs_use = _parallel_pbs_ln0 run_fun = 'qsub %s\n\n' elif write_pbs_head000 is write_pbs_head_q03: main_hostname = 'ln0' _parallel_pbs_use = _parallel_pbs_ln0 run_fun = 'qsub %s\n\n' elif write_pbs_head000 is write_pbs_head_serial: main_hostname = 'ln0' _parallel_pbs_use = _parallel_pbs_ln0 run_fun = 'qsub %s\n\n' elif write_pbs_head000 is write_pbs_head_newturb: main_hostname = 'newturb' _parallel_pbs_use = _parallel_pbs_newturb run_fun = 'qsub %s\n\n' assert np.isclose(use_node, 1) elif write_pbs_head000 is write_pbs_head_haiguang: main_hostname = 'bogon' _parallel_pbs_use = _parallel_pbs_newturb run_fun = 'cd $bash_dir \nnohup bash %s &\ncd $t_dir\n\n' assert np.isclose(use_node, 1) else: raise ValueError('wrong write_pbs_head000') # generate .pbs file and .csh file t_name0 = os.path.join(t_path, 'main_run.sh') with open(t_name0, 'w') as frun: _write_main_run_top(frun, main_hostname=main_hostname) # noinspection PyTypeChecker for t1 in np.arange(n_pbs, dtype='int'): use_comm = comm_list[t1 * n_job_pbs: np.min(((t1 + 1) * n_job_pbs, n_case))] use_txt = txt_list[t1 * n_job_pbs: np.min(((t1 + 1) * n_job_pbs, n_case))] n_use_comm = len(use_comm) tnode = np.min((use_node, np.ceil(n_use_comm / njob_node))) pbs_name = 'run%03d.pbs' % t1 csh_name = 'run%03d.csh' % t1 # generate .pbs file t_name = os.path.join(t_path, pbs_name) with open(t_name, 'w') as fpbs: # pbs_head = '%s_%s' % (job_dir, pbs_name) pbs_head = '%s_%d' % (job_dir, t1) write_pbs_head000(fpbs, pbs_head, nodes=tnode) fpbs.write(_parallel_pbs_use(n_use_comm, njob_node, csh_name)) # generate .csh file for submit t_name = os.path.join(t_path, csh_name) with open(t_name, 'w') as fcsh: fcsh.write('#!/bin/csh -fe \n\n') t2 = 'comm_list=(' for t3 in use_comm: t2 = t2 + '"%s" ' % t3 t2 = t2 + ') \n\n' fcsh.write(t2) t2 = 'txt_list=(' for t3 in use_txt: t2 = t2 + '"%s" ' % t3 t2 = t2 + ') \n\n' fcsh.write(t2) fcsh.write('echo ${comm_list[$1]} \'>\' ${txt_list[$1]}.txt' ' \'2>\' ${txt_list[$1]}.err \n') fcsh.write('echo $(expr $1 + 1) / %d, ${txt_list[$1]} start. \n' % n_case) fcsh.write('echo \n') fcsh.write('if [ ${2:-false} = true ]; then \n') fcsh.write(' ${comm_list[$1]} > ${txt_list[$1]}.txt 2> ${txt_list[$1]}.err \n') fcsh.write('fi \n\n') frun.write(run_fun % pbs_name) frun.write('\n') print('input %d cases.' % n_case) print('generate %d pbs files in total.' % n_pbs) if random_order: print(' --->>random order mode is ON. ') print('Command of first case is:') print(comm_list[0]) return True def write_main_run_local(comm_list, njob_node, job_dir, random_order=False, ): PWD = os.getcwd() comm_list = np.array(comm_list) n_comm = comm_list.size sh_name = 'main_run.sh' pbs_name = 'pbs.main_run' csh_name = 'csh.main_run' t_path = os.path.join(PWD, job_dir) if not os.path.exists(t_path): os.makedirs(t_path) print('make folder %s' % t_path) else: print('exist folder %s' % t_path) if random_order: tidx = np.arange(n_comm) np.random.shuffle(tidx) comm_list = comm_list[tidx] # generate comm_list.sh t_name0 = os.path.join(t_path, 'comm_list.sh') with open(t_name0, 'w') as fcomm: for i0, ts in enumerate(comm_list): fcomm.write('%s \n' % ts) fcomm.write('echo \'%d / %d start.\' \n\n' % (i0 + 1, n_comm)) # generate .pbs file t_name = os.path.join(t_path, pbs_name) with open(t_name, 'w') as fpbs: fpbs.write('#!/bin/sh\n') fpbs.write('# run the job locally. \n') fpbs.write('echo start job at $(date) \n') t2 = 'seq 0 %d | parallel -j %d -u ' % (n_comm - 1, njob_node) t2 = t2 + ' --sshdelay 0.1 ' t2 = t2 + ' "cd $PWD; echo $PWD; echo; bash %s {} true " \n ' % csh_name fpbs.write(t2) fpbs.write('echo finish job at $(date) \n') fpbs.write('\n') # generate .csh file t_name = os.path.join(t_path, csh_name) with open(t_name, 'w') as fcsh: fcsh.write('#!/bin/csh -fe \n\n') t2 = 'comm_list=(' for t3 in comm_list: t2 = t2 + '"%s" ' % t3 t2 = t2 + ') \n\n' fcsh.write(t2) fcsh.write('echo ${comm_list[$1]} \n') fcsh.write('echo $(expr $1 + 1) / %d start. \n' % n_comm) fcsh.write('echo \n') fcsh.write('if [ ${2:-false} = true ]; then \n') fcsh.write(' ${comm_list[$1]} \n') fcsh.write('fi \n\n') # generate .sh file t_name = os.path.join(t_path, sh_name) with open(t_name, 'w') as fsh: fsh.write('t_dir=$PWD \n ') fsh.write('bash_dir="$( cd "$( dirname "${BASH_SOURCE[0]}" )" ' '>/dev/null 2>&1 && pwd )" \n ') fsh.write('echo $bash_dir \n ') fsh.write('cd $bash_dir \n ') nohup_name = 'nohup_%s.out' % '$(date +"%Y%m%d_%H%M%S")' fsh.write('nohup bash %s > %s 2>&1 & \n' % (pbs_name, nohup_name)) fsh.write('echo Try the command to see the output information. \n ') fsh.write('echo tail -f %s \n ' % nohup_name) fsh.write('cd $t_dir \n ') fsh.write('\n ') print('Input %d cases. ' % n_comm) print('Random order mode is %s. ' % random_order) print('Command of first case is:') print(comm_list[0]) return True def write_myscript(job_name_list, job_dir): t1 = ' '.join(['\"%s\"' % job_name for job_name in job_name_list]) tname = os.path.join(job_dir, 'myscript.csh') print('write myscript csh file to %s' % tname) with open(tname, 'w') as fcsh: fcsh.write('#!/bin/sh -fe\n') fcsh.write('job_name_list=(%s)\n' % t1) fcsh.write('\n') fcsh.write('echo ${job_name_list[$1]}\n') fcsh.write('cd ${job_name_list[$1]}\n') fcsh.write('bash ${job_name_list[$1]}.sh\n') return True def set_axes_equal(ax, rad_fct=0.5): figsize = ax.figure.get_size_inches() l1, l2 = ax.get_position().bounds[2:] * figsize lmax = np.max((l1, l2)) if ax.name == "3d": '''Make axes of 3D plot have equal scale so that spheres appear as spheres, cubes as cubes, etc.. This is one possible solution to Matplotlib's ax.set_aspect('equal') and ax.axis('equal') not working for 3D. Input ax: a matplotlib axis, e.g., as output from plt.gca(). ''' limits = np.array([ ax.get_xlim3d(), ax.get_ylim3d(), ax.get_zlim3d(), ]) origin = np.mean(limits, axis=1) radius = rad_fct * np.max(np.abs(limits[:, 1] - limits[:, 0])) radius_x = l1 / lmax * radius radius_y = l1 / lmax * radius radius_z = l2 / lmax * radius ax.set_xlim3d([origin[0] - radius_x, origin[0] + radius_x]) ax.set_ylim3d([origin[1] - radius_y, origin[1] + radius_y]) ax.set_zlim3d([origin[2] - radius_z, origin[2] + radius_z]) else: limits = np.array([ ax.get_xlim(), ax.get_ylim(), ]) origin = np.mean(limits, axis=1) radius = rad_fct * np.max(np.abs(limits[:, 1] - limits[:, 0])) radius_x = l1 / lmax * radius radius_y = l2 / lmax * radius ax.set_xlim([origin[0] - radius_x, origin[0] + radius_x]) ax.set_ylim([origin[1] - radius_y, origin[1] + radius_y]) return ax # Topics: line, color, LineCollection, cmap, colorline, codex ''' Defines a function colorline that draws a (multi-)colored 2D line with coordinates x and y. The color is taken from optional data in z, and creates a LineCollection. z can be: - empty, in which case a default coloring will be used based on the position along the input arrays - a single number, for a uniform color [this can also be accomplished with the usual plt.plot] - an array of the length of at least the same length as x, to color according to this data - an array of a smaller length, in which case the colors are repeated along the curve The function colorline returns the LineCollection created, which can be modified afterwards. See also: plt.streamplot ''' # Data manipulation: def make_segments(x, y): ''' Create list of line segments from x and y coordinates, in the correct format for LineCollection: an array of the form numlines x (points per line) x 2 (x and y) array ''' points = np.array([x, y]).T.reshape(-1, 1, 2) segments = np.concatenate([points[:-1], points[1:]], axis=1) return segments # Interface to LineCollection: def colorline(x, y, z=None, cmap=plt.get_cmap('copper'), ax=None, norm=plt.Normalize(0.0, 1.0), label='', linewidth=3, alpha=1.0): ''' Plot a colored line with coordinates x and y Optionally specify colors in the array z Optionally specify a colormap, a norm function and a line width ''' # Default colors equally spaced on [0,1]: if z is None: z = np.linspace(0.0, 1.0, x.size) # Special case if a single number: if not hasattr(z, "__iter__"): # to check for numerical input -- this is a hack z = np.array([z]) z = np.asarray(z) if ax is None: fig, ax = plt.subplots(nrows=1, ncols=1) fig.patch.set_facecolor('white') else: plt.sca(ax) # fig = plt.gcf() segments = make_segments(x, y) lc = LineCollection(segments, array=z, cmap=cmap, norm=norm, linewidth=linewidth, alpha=alpha) ax.add_collection(lc) return lc def colorline3d(tnodes, tcl, quiver_length_fct=None, clb_title='', show_project=False, tu=None, nu_show=50, return_fig=False, ax0=None, tcl_lim=None, tcl_fontsize=10, cmap=plt.get_cmap('jet')): if ax0 is None: fig = plt.figure(figsize=(8, 8), dpi=100) fig.patch.set_facecolor('white') ax0 = fig.add_subplot(1, 1, 1, projection='3d') else: assert hasattr(ax0, 'get_zlim') plt.sca(ax0) fig = plt.gcf() if tcl_lim is None: tcl_lim = (tcl.min(), tcl.max()) ax0.plot(tnodes[:, 0], tnodes[:, 1], tnodes[:, 2]).pop(0).remove() cax1 = inset_axes(ax0, width="80%", height="5%", bbox_to_anchor=(0.1, 0.1, 0.8, 1), loc=9, bbox_transform=ax0.transAxes, borderpad=0, ) norm = plt.Normalize(*tcl_lim) cmap = cmap # Create the 3D-line collection object points = tnodes.reshape(-1, 1, 3) segments = np.concatenate([points[:-1], points[1:]], axis=1) lc = Line3DCollection(segments, cmap=cmap, norm=norm) lc.set_array(tcl) ax0.add_collection3d(lc, zs=points[:, :, 2].flatten(), zdir='z') clb = fig.colorbar(lc, cax=cax1, orientation="horizontal") clb.ax.tick_params(labelsize=tcl_fontsize) clb.ax.set_title(clb_title) clb_ticks = np.linspace(*tcl_lim, 5) clb.set_ticks(clb_ticks) clb.ax.set_yticklabels(clb_ticks) set_axes_equal(ax0) if show_project: ax0.plot(np.ones_like(tnodes[:, 0]) * ax0.get_xlim()[0], tnodes[:, 1], tnodes[:, 2], '--k', alpha=0.2) ax0.plot(tnodes[:, 0], np.ones_like(tnodes[:, 1]) * ax0.get_ylim()[1], tnodes[:, 2], '--k', alpha=0.2) ax0.plot(tnodes[:, 0], tnodes[:, 1], np.ones_like(tnodes[:, 0]) * ax0.get_zlim()[0], '--k', alpha=0.2) if not tu is None: assert not quiver_length_fct is None t_stp = np.max((1, tu.shape[0] // nu_show)) color_len = tnodes[::t_stp, 0].size quiver_length = np.max(tnodes.max(axis=0) - tnodes.min(axis=0)) * quiver_length_fct # colors = [cmap(1.0 * i / color_len) for i in range(color_len)] # ax0.quiver(tnodes[::t_stp, 0], tnodes[::t_stp, 1], tnodes[::t_stp, 2], # tu[::t_stp, 0], tu[::t_stp, 1], tu[::t_stp, 2], # length=quiver_length, arrow_length_ratio=0.2, pivot='tail', normalize=False, # colors=colors) ax0.quiver(tnodes[::t_stp, 0], tnodes[::t_stp, 1], tnodes[::t_stp, 2], tu[::t_stp, 0], tu[::t_stp, 1], tu[::t_stp, 2], length=quiver_length, arrow_length_ratio=0.2, pivot='tail', normalize=False, colors='k') plt.sca(ax0) ax0.set_xlabel('$X_1$') ax0.set_ylabel('$X_2$') ax0.set_zlabel('$X_3$') # for spine in ax0.spines.values(): # spine.set_visible(False) # plt.tight_layout() t1 = fig if return_fig else True return t1 def add_inset(ax0, rect, *args, **kwargs): box = ax0.get_position() xlim = ax0.get_xlim() ylim = ax0.get_ylim() inptx = interpolate.interp1d(xlim, (0, box.x1 - box.x0)) inpty = interpolate.interp1d(ylim, (0, box.y1 - box.y0)) left = inptx(rect[0]) + box.x0 bottom = inpty(rect[1]) + box.y0 width = inptx(rect[2] + rect[0]) - inptx(rect[0]) height = inpty(rect[3] + rect[1]) - inpty(rect[1]) new_rect = np.hstack((left, bottom, width, height)) return ax0.figure.add_axes(new_rect, *args, **kwargs) def multicolor_ylabel(ax, list_of_strings, list_of_colors, axis='x', anchorpad=0, **kw): """this function creates axes labels with multiple colors ax specifies the axes object where the labels should be drawn list_of_strings is a list of all of the text items list_if_colors is a corresponding list of colors for the strings axis='x', 'y', or 'both' and specifies which label(s) should be drawn""" # x-axis label if axis == 'x' or axis == 'both': boxes = [TextArea(text, textprops=dict(color=color, ha='left', va='bottom', **kw)) for text, color in zip(list_of_strings, list_of_colors)] xbox = HPacker(children=boxes, align="center", pad=0, sep=5) anchored_xbox = AnchoredOffsetbox(loc='lower left', child=xbox, pad=anchorpad, frameon=False, bbox_to_anchor=(0.2, -0.09), bbox_transform=ax.transAxes, borderpad=0.) ax.add_artist(anchored_xbox) # y-axis label if axis == 'y' or axis == 'both': boxes = [TextArea(text, textprops=dict(color=color, ha='left', va='bottom', rotation=90, **kw)) for text, color in zip(list_of_strings[::-1], list_of_colors)] ybox = VPacker(children=boxes, align="center", pad=0, sep=5) anchored_ybox = AnchoredOffsetbox(loc='lower left', child=ybox, pad=anchorpad, frameon=False, bbox_to_anchor=(-0.105, 0.25), bbox_transform=ax.transAxes, borderpad=0.) ax.add_artist(anchored_ybox) class MinorSymLogLocator(Locator): """ Dynamically find minor tick positions based on the positions of major ticks for a symlog scaling. """ def __init__(self, linthresh): """ Ticks will be placed between the major ticks. The placement is linear for x between -linthresh and linthresh, otherwise its logarithmically """ self.linthresh = linthresh def __call__(self): 'Return the locations of the ticks' majorlocs = self.axis.get_majorticklocs() view_interval = self.axis.get_view_interval() if view_interval[-1] > majorlocs[-1]: majorlocs = np.hstack((majorlocs, view_interval[-1])) assert np.all(majorlocs >= 0) if np.isclose(majorlocs[0], 0): majorlocs = majorlocs[1:] # # iterate through minor locs, handle the lowest part, old version # minorlocs = [] # for i in range(1, len(majorlocs)): # majorstep = majorlocs[i] - majorlocs[i - 1] # if abs(majorlocs[i - 1] + majorstep / 2) < self.linthresh: # ndivs = 10 # else: # ndivs = 9 # minorstep = majorstep / ndivs # locs = np.arange(majorlocs[i - 1], majorlocs[i], minorstep)[1:] # minorlocs.extend(locs) # iterate through minor locs, handle the lowest part, my version minorlocs = [] for i in range(1, len(majorlocs)): tloc = majorlocs[i - 1] tgap = majorlocs[i] - majorlocs[i - 1] tstp = majorlocs[i - 1] * self.linthresh * 10 while tloc < tgap and not np.isclose(tloc, tgap): tloc = tloc + tstp minorlocs.append(tloc) return self.raise_if_exceeds(np.array(minorlocs)) def tick_values(self, vmin, vmax): raise NotImplementedError('Cannot get tick locations for a ' '%s type.' % type(self)) # user define color norm class midPowerNorm(Normalize): def __init__(self, gamma=10, midpoint=1, vmin=None, vmax=None, clip=False): Normalize.__init__(self, vmin, vmax, clip) assert gamma > 1 self.gamma = gamma self.midpoint = midpoint def __call__(self, value, clip=None): if clip is None: clip = self.clip result, is_scalar = self.process_value(value) self.autoscale_None(result) gamma = self.gamma midpoint = self.midpoint logmid = np.log(midpoint) / np.log(gamma) vmin, vmax = self.vmin, self.vmax if vmin > vmax: raise ValueError("minvalue must be less than or equal to maxvalue") elif vmin == vmax: result.fill(0) else: if clip: mask =
np.ma.getmask(result)
numpy.ma.getmask
import numpy as np import tensorflow as tf #定义函数:将中心点、高、宽坐标 转化为[x0, y0, x1, y1]坐标形式 def detections_boxes(detections): center_x, center_y, width, height, attrs = tf.split(detections, [1, 1, 1, 1, -1], axis=-1) w2 = width / 2 h2 = height / 2 x0 = center_x - w2 y0 = center_y - h2 x1 = center_x + w2 y1 = center_y + h2 boxes = tf.concat([x0, y0, x1, y1], axis=-1) detections = tf.concat([boxes, attrs], axis=-1) return detections #定义函数计算两个框的内部重叠情况(IOU)box1,box2为左上、右下的坐标[x0, y0, x1, x2] def _iou(box1, box2): b1_x0, b1_y0, b1_x1, b1_y1 = box1 b2_x0, b2_y0, b2_x1, b2_y1 = box2 int_x0 = max(b1_x0, b2_x0) int_y0 = max(b1_y0, b2_y0) int_x1 = min(b1_x1, b2_x1) int_y1 = min(b1_y1, b2_y1) int_area = (int_x1 - int_x0) * (int_y1 - int_y0) b1_area = (b1_x1 - b1_x0) * (b1_y1 - b1_y0) b2_area = (b2_x1 - b2_x0) * (b2_y1 - b2_y0) #分母加个1e-05,避免除数为 0 iou = int_area / (b1_area + b2_area - int_area + 1e-05) return iou #使用NMS方法,对结果去重 # 或者调用 tf.image.non_max_suppression def non_max_suppression(predictions_with_boxes, confidence_threshold, iou_threshold=0.4): conf_mask = np.expand_dims( (predictions_with_boxes[:, :, 4] > confidence_threshold), -1) predictions = predictions_with_boxes * conf_mask result = {} for i, image_pred in enumerate(predictions): shape = image_pred.shape print("shape1", shape) non_zero_idxs = np.nonzero(image_pred) image_pred = image_pred[non_zero_idxs[0]] print("shape2", image_pred.shape) image_pred = image_pred.reshape(-1, shape[-1]) bbox_attrs = image_pred[:, :5] classes = image_pred[:, 5:] classes = np.argmax(classes, axis=-1) unique_classes = list(set(classes.reshape(-1))) for cls in unique_classes: cls_mask = classes == cls cls_boxes = bbox_attrs[np.nonzero(cls_mask)] cls_boxes = cls_boxes[cls_boxes[:, -1].argsort()[::-1]] cls_scores = cls_boxes[:, -1] cls_boxes = cls_boxes[:, :-1] while len(cls_boxes) > 0: box = cls_boxes[0] score = cls_scores[0] if not cls in result: result[cls] = [] result[cls].append((box, score)) cls_boxes = cls_boxes[1:] ious = np.array([_iou(box, x) for x in cls_boxes]) iou_mask = ious < iou_threshold cls_boxes = cls_boxes[
np.nonzero(iou_mask)
numpy.nonzero
"""Serialization Unit Tests""" import numpy as np from pytest import raises from proxystore.serialize import serialize, deserialize from proxystore.serialize import SerializationError def test_serialization() -> None: """Test serialization""" x = b'test string' b = serialize(x) assert deserialize(b) == x x = 'test string' b = serialize(x) assert deserialize(b) == x x =
np.array([1, 2, 3])
numpy.array
import matplotlib.pyplot as plt import numpy as np import matplotlib as mpl colors = ['navy', 'turquoise', 'darkorange'] def make_ellipses(gmm, ax): for n, color in enumerate(colors): if gmm.covariance_type == 'full': covariances = gmm.covariances_[n][:2, :2] elif gmm.covariance_type == 'tied': covariances = gmm.covariances_[:2, :2] elif gmm.covariance_type == 'diag': covariances = np.diag(gmm.covariances_[n][:2]) elif gmm.covariance_type == 'spherical': covariances = np.eye(gmm.means_.shape[1]) * gmm.covariances_[n] v, w = np.linalg.eigh(covariances) u = w[0] / np.linalg.norm(w[0]) angle = np.arctan2(u[1], u[0]) angle = 180 * angle / np.pi # convert to degrees v = 2. *
np.sqrt(2.)
numpy.sqrt
import matplotlib.pyplot as plt import modelmiezelb.arg_inel_mieze_model as arg import os ############################################################################### from numpy import linspace, tile, trapz, all, isclose, arange, ones, atleast_2d, where from pprint import pprint from time import time ############################################################################### from modelmiezelb.correction import CorrectionFactor, DetectorEfficiencyCorrectionFactor, EnergyCutOffCorrectionFactor from modelmiezelb.lineshape import LorentzianLine, F_cLine, F_ILine from modelmiezelb.sqe_model import SqE, UPPER_INTEGRATION_LIMIT ############################################################################### from modelmiezelb.utils.util import detector_efficiency, triangle_distribution, energy_from_lambda, energy_lambda_nrange ############################################################################### from pprint import pprint ############################################################################### # Path quarrels testdir = os.path.dirname(os.path.abspath(__file__)) def test_CorrectionFactor_instantiation(): corrf1 = CorrectionFactor(None) print(f"Instance required calculation parameters {corrf1._required_params}") print(f"Class required calculation parameters {CorrectionFactor._required_params}") #------------------------------------------------------------------------------ def test_DetectorEfficiencyCorrectionFactor(): # We need some lines L1 = LorentzianLine("Lorentzian1", (-5.0, 5.0), x0=0.0, width=0.4, c=0.0, weight=2) L2 = LorentzianLine(name="Lorentzian2", domain=(-5.0, 5.0), x0=-1.0, width=0.4, c=0.02, weight=1) # Contruct a SqE model sqe = SqE(lines=(L1, L2), lam=6.0, dlam=0.12, lSD=3.43, T=20) # Instantiate a detector efficiency corr factor decf = DetectorEfficiencyCorrectionFactor(sqe) ne = 10 nlam = 5 lam = 6.0 * linspace(1-0.12*1.01, 1+0.12*1.01, nlam) lams = tile(lam, (ne, 1)) a = -0.99999 * energy_from_lambda(lam) b = 15.0 + a es = linspace(a, b, ne) deteff = detector_efficiency(es, lams, 1) tria = triangle_distribution(lams, 6.0, 0.12) print("Triangular wavelenght distr.: ", tria) print("Triangular wavelength distr. shape: ", tria.shape) print("Det. eff. values: ", deteff) print("Det. eff. values shape: :", deteff.shape) sqevals = sqe(es) print("Manual mult.: ", sqevals * deteff * tria) print("Class result: ", decf(es, lams)) print("Are manual and deteffcorrfac identical?: ", all((sqevals * deteff * tria) == decf(es, lams))) #------------------------------------------------------------------------------ def test_DetectorEfficiencyCorrectionFactor_compare_with_arg(): # We need some lines L1 = LorentzianLine(name="Lorentzian1", domain=(-16.0, 16.0), x0=-1.0, width=0.4, c=0.0, weight=1) # Contruct a SqE model sqe = SqE(lines=(L1,), lam=6.0, dlam=0.12, lSD=3.43, T=20) # Instantiate a detector efficiency corr factor decf = DetectorEfficiencyCorrectionFactor(sqe) ne = 15000 nlam = 20 lam = 6.0 * linspace(1-0.12*1.01, 1+0.12*1.01, nlam) lams = tile(lam, (ne, 1)) a = -0.99999 * energy_from_lambda(lam) b = 15.0 + a es = linspace(a, b, ne) test_decf_val = arg.DetFac_Eint_lamInt( arg.fqe_I, -1.0, 0.4, 15000, 20, 6.0, 0.12, 1, 0.0, 1.0, 20, 0.5, 0.00001, 350. ) decf_val_man_int = decf(es, lams) decf_val = decf.correction(es, lams) print("arg res: ", test_decf_val) print("class calc res manualy integrated: ", decf_val_man_int) print("class res: ", decf_val) #------------------------------------------------------------------------------ def test_EnergyCutOffCorrectionFactor_vs_arg(): # We need some lines L1 = LorentzianLine(name="Lorentzian1", domain=(-16.0, 16.0), x0=-1.0, width=0.4, c=0.0, weight=1) # Contruct a SqE model sqe = SqE(lines=(L1,), lam=6.0, dlam=0.12, lSD=3.43, T=20) # Instantiate a energy cutoff corr factor eccf = EnergyCutOffCorrectionFactor(sqe) ne = 15000 nlam = 20 lam = 6.0 * linspace(1-0.12*1.01, 1+0.12*1.01, nlam) lams = tile(lam, (ne, 1)) a = -0.99999 * energy_from_lambda(lam) b = 15.0 + a es = linspace(a, b, ne) test_eccf_vals = arg.CutFac_Eint( arg.lorentzian, -1.0, 0.4, 15000, 20, 6.0, 0.12, 1, 0.0, 1.0, 20, 0.5, 0.00001, 350. ) eccf_vals = eccf.correction(es, lams) # print(test_eccf_vals.shape) print(test_eccf_vals) # print(eccf_vals.shape) print(eccf_vals) # print(isclose(eccf_vals, test_eccf_vals, atol=0.01)) # argsqe = arg.SvqE(arg.lorentzian, # es[::50,0], # -1.0, # 0.4, # 0.0, # 1.0, # 6.0, # 20, # 0.000001, # 0.1, # 350.) # print(argsqe) # plt.plot(es[::50,0], sqe(es[::50,0])) # plt.plot(es[::50,0], argsqe) # plt.show() #------------------------------------------------------------------------------ def test_correctionFactor_dimensionality(): # We need some lines L1 = LorentzianLine(name="Lorentzian1", domain=(-16.0, 16.0), x0=-1.0, width=0.4, c=0.0, weight=1) # Contruct a SqE model sqe = SqE(lines=(L1,), lam=6.0, dlam=0.12, lSD=3.43, T=20) # Instantiate a detector efficiency corr factor decf = DetectorEfficiencyCorrectionFactor(sqe) # Instantiate a energy cutoff corr factor eccf = EnergyCutOffCorrectionFactor(sqe) ne = 15 nlam = 5 lam = 6.0 * linspace(1-0.12*1.01, 1+0.12*1.01, nlam) lams = tile(lam, (ne, 1)) a = -0.99999 * energy_from_lambda(lam) b = 15.0 + a es = linspace(a, b, ne) print(lams) print(es) print(decf.calc(es, lams)) print(eccf.calc(es, lams)) #------------------------------------------------------------------------------ def test_EnergyCutoffCorrectionFactor(): # We need some lines L1 = LorentzianLine("Lorentzian1", (-5.0, 5.0), x0=0.0, width=0.4, c=0.0, weight=2) L2 = LorentzianLine(name="Lorentzian2", domain=(-5.0, 5.0), x0=-1.0, width=0.4, c=0.02, weight=1) # Contruct a SqE model sqe = SqE(lines=(L1, L2), lam=6.0, dlam=0.12, lSD=3.43, T=20) new_domain = (-1 * energy_from_lambda(6.0), UPPER_INTEGRATION_LIMIT) sqe.update_domain(new_domain) # init energycutoff eccf = EnergyCutOffCorrectionFactor(sqe, ne=10000, nlam=20) ne = 10000 nlam = 5 lam = 6.0 * linspace(1-0.12*1.01, 1+0.12*1.01, nlam) lams = tile(lam, (ne, 1)) a = -0.99999 * energy_from_lambda(lam) b = 15.0 + a es = linspace(a, b, ne) ### Calculate the trapz integral over the S(q,E) # Only over domain (interval length: 15 meV) I_over_dom_only = trapz(sqe(es[:, 2]), es[:, 2]) print("Trapz integration over the domain.") print(f"Interval {a[2]:.4f} - {b[2]:.4f} -> length {b[2]-a[2]:.4f} meV.") print(f"#Steps = {ne}") print(f"Integral value: {I_over_dom_only:.4f}") # plt.plot(es[:,2], sqe(es[:,2]), label="Over domain only") # plt.show() # Beyond domain same array length es_same_length = linspace(-UPPER_INTEGRATION_LIMIT, UPPER_INTEGRATION_LIMIT, ne) I_beyond_dom_same_length = trapz(sqe(es_same_length), es_same_length) print("\nTrapz integration beyond the domain with varrying stepsize.") print(f"Interval {-UPPER_INTEGRATION_LIMIT} - {UPPER_INTEGRATION_LIMIT} -> length {30.0} meV.") print(f"#Steps = {ne}") print(f"Integral value: {I_beyond_dom_same_length:.4f}") # plt.plot(es_same_length, sqe(es_same_length), ls="--", label="Beyond domain ne=10000") # plt.show() # Beyond domain same step size es_same_stepsize =
arange(-UPPER_INTEGRATION_LIMIT, UPPER_INTEGRATION_LIMIT+0.001, 15e-3)
numpy.arange
# Author: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # License: BSD (3-clause) import os.path as op from nose.tools import assert_true, assert_raises, assert_equal import numpy as np from numpy.testing import assert_array_almost_equal, assert_array_equal from mne import io, Epochs, read_events, pick_types from mne.decoding.csp import CSP, _ajd_pham from mne.utils import requires_sklearn, slow_test data_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') raw_fname = op.join(data_dir, 'test_raw.fif') event_name = op.join(data_dir, 'test-eve.fif') tmin, tmax = -0.2, 0.5 event_id = dict(aud_l=1, vis_l=3) # if stop is too small pca may fail in some cases, but we're okay on this file start, stop = 0, 8 @slow_test def test_csp(): """Test Common Spatial Patterns algorithm on epochs """ raw = io.read_raw_fif(raw_fname, preload=False) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') picks = picks[2:12:3] # subselect channels -> disable proj! raw.add_proj([], remove_existing=True) epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, proj=False) epochs_data = epochs.get_data() n_channels = epochs_data.shape[1] y = epochs.events[:, -1] # Init assert_raises(ValueError, CSP, n_components='foo') for reg in ['foo', -0.1, 1.1]: assert_raises(ValueError, CSP, reg=reg) for reg in ['oas', 'ledoit_wolf', 0, 0.5, 1.]: CSP(reg=reg) for cov_est in ['foo', None]: assert_raises(ValueError, CSP, cov_est=cov_est) for cov_est in ['concat', 'epoch']: CSP(cov_est=cov_est) n_components = 3 csp = CSP(n_components=n_components) # Fit csp.fit(epochs_data, epochs.events[:, -1]) assert_equal(len(csp.mean_), n_components) assert_equal(len(csp.std_), n_components) # Transform X = csp.fit_transform(epochs_data, y) sources = csp.transform(epochs_data) assert_true(sources.shape[1] == n_components) assert_true(csp.filters_.shape == (n_channels, n_channels)) assert_true(csp.patterns_.shape == (n_channels, n_channels)) assert_array_almost_equal(sources, X) # Test data exception assert_raises(ValueError, csp.fit, epochs_data, np.zeros_like(epochs.events)) assert_raises(ValueError, csp.fit, epochs, y) assert_raises(ValueError, csp.transform, epochs) # Test plots epochs.pick_types(meg='mag') cmap = ('RdBu', True) components = np.arange(n_components) for plot in (csp.plot_patterns, csp.plot_filters): plot(epochs.info, components=components, res=12, show=False, cmap=cmap) # Test covariance estimation methods (results should be roughly equal) np.random.seed(0) csp_epochs = CSP(cov_est="epoch") csp_epochs.fit(epochs_data, y) for attr in ('filters_', 'patterns_'): corr = np.corrcoef(getattr(csp, attr).ravel(), getattr(csp_epochs, attr).ravel())[0, 1] assert_true(corr >= 0.94) # Test with more than 2 classes epochs = Epochs(raw, events, tmin=tmin, tmax=tmax, picks=picks, event_id=dict(aud_l=1, aud_r=2, vis_l=3, vis_r=4), baseline=(None, 0), proj=False, preload=True) epochs_data = epochs.get_data() n_channels = epochs_data.shape[1] n_channels = epochs_data.shape[1] for cov_est in ['concat', 'epoch']: csp = CSP(n_components=n_components, cov_est=cov_est) csp.fit(epochs_data, epochs.events[:, 2]).transform(epochs_data) assert_equal(len(csp._classes), 4) assert_array_equal(csp.filters_.shape, [n_channels, n_channels]) assert_array_equal(csp.patterns_.shape, [n_channels, n_channels]) @requires_sklearn def test_regularized_csp(): """Test Common Spatial Patterns algorithm using regularized covariance """ raw = io.read_raw_fif(raw_fname, preload=False) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') picks = picks[1:13:3] epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) epochs_data = epochs.get_data() n_channels = epochs_data.shape[1] n_components = 3 reg_cov = [None, 0.05, 'ledoit_wolf', 'oas'] for reg in reg_cov: csp = CSP(n_components=n_components, reg=reg) csp.fit(epochs_data, epochs.events[:, -1]) y = epochs.events[:, -1] X = csp.fit_transform(epochs_data, y) assert_true(csp.filters_.shape == (n_channels, n_channels)) assert_true(csp.patterns_.shape == (n_channels, n_channels)) assert_array_almost_equal(csp.fit(epochs_data, y). transform(epochs_data), X) # test init exception assert_raises(ValueError, csp.fit, epochs_data, np.zeros_like(epochs.events)) assert_raises(ValueError, csp.fit, epochs, y) assert_raises(ValueError, csp.transform, epochs) csp.n_components = n_components sources = csp.transform(epochs_data) assert_true(sources.shape[1] == n_components) @requires_sklearn def test_csp_pipeline(): """Test if CSP works in a pipeline """ from sklearn.svm import SVC from sklearn.pipeline import Pipeline csp = CSP(reg=1) svc = SVC() pipe = Pipeline([("CSP", csp), ("SVC", svc)]) pipe.set_params(CSP__reg=0.2) assert_true(pipe.get_params()["CSP__reg"] == 0.2) def test_ajd(): """Test if Approximate joint diagonalization implementation obtains same results as the Matlab implementation by <NAME>. """ # Generate a set of cavariances matrices for test purpose n_times, n_channels = 10, 3 seed = np.random.RandomState(0) diags = 2.0 + 0.1 * seed.randn(n_times, n_channels) A = 2 * seed.rand(n_channels, n_channels) - 1 A /= np.atleast_2d(np.sqrt(np.sum(A ** 2, 1))).T covmats = np.empty((n_times, n_channels, n_channels)) for i in range(n_times): covmats[i] = np.dot(np.dot(A, np.diag(diags[i])), A.T) V, D = _ajd_pham(covmats) # Results obtained with original matlab implementation V_matlab = [[-3.507280775058041, -5.498189967306344, 7.720624541198574], [0.694689013234610, 0.775690358505945, -1.162043086446043], [-0.592603135588066, -0.598996925696260, 1.009550086271192]]
assert_array_almost_equal(V, V_matlab)
numpy.testing.assert_array_almost_equal
import os import numpy as np def load_networks(data_path): '''Get a list of paths for all the files inside data_path''' networks_dir = [] for file in os.listdir(data_path): networks_dir += [os.path.join(data_path, file)] return networks_dir def get_degree_distribution(degrees): degrees = np.fromiter(dict(degrees).values(), dtype=int) nodes, counts = np.unique(degrees, return_counts=True) prob_dens = counts / np.sum(counts) return nodes, prob_dens # Analytic solutions to the model def barabasi_sol(m, t_i, t): """ Returns the degree evolution of the Barabasi-Albert Model. Parameters: m : int = Number of initial edges t_i : int = Time at which the node attached to the network with m edges. t : int = Time vector for the range of time expected. Returns: ndarray = Degree evolution of the node attached at time t_i """ return m *
np.sqrt(t / t_i)
numpy.sqrt
"""Unit tests for raw_ships_io.py.""" import copy import unittest import numpy from ml4tc.io import raw_ships_io TOLERANCE = 1e-6 DISTANCES_METRES = numpy.array([-200, -100, -50, 0, 100, 150, 200], dtype=float) DISTANCES_KM = numpy.array([-0.2, -0.1, -0.05, 0, 0.1, 0.15, 0.2]) TEMPERATURES_DECICELSIUS = numpy.array( [-200, -100, -50, 0, 100, 150, 200], dtype=float ) TEMPERATURES_KELVINS = numpy.array([ 253.15, 263.15, 268.15, 273.15, 283.15, 288.15, 293.15 ]) PRESSURES_1000MB_DEPARTURES_DECAPASCALS = numpy.array( [-200, -100, -50, 0, 100, 150, 200], dtype=float ) PRESSURES_PASCALS = numpy.array( [98000, 99000, 99500, 100000, 101000, 101500, 102000], dtype=float ) FORECAST_HOUR_LINE_5DAY = ( ' -12 -6 0 6 12 18 24 30 36 42 48 54 60 66 ' '72 78 84 90 96 102 108 114 120 TIME' ) HOUR_INDEX_TO_CHAR_INDICES_5DAY = { 0: numpy.array([1, 5], dtype=int), 1: numpy.array([6, 10], dtype=int), 2: numpy.array([11, 15], dtype=int), 3: numpy.array([16, 20], dtype=int), 4: numpy.array([21, 25], dtype=int), 5: numpy.array([26, 30], dtype=int), 6: numpy.array([31, 35], dtype=int), 7: numpy.array([36, 40], dtype=int), 8: numpy.array([41, 45], dtype=int), 9: numpy.array([46, 50], dtype=int), 10: numpy.array([51, 55], dtype=int), 11: numpy.array([56, 60], dtype=int), 12: numpy.array([61, 65], dtype=int), 13: numpy.array([66, 70], dtype=int), 14: numpy.array([71, 75], dtype=int), 15: numpy.array([76, 80], dtype=int), 16: numpy.array([81, 85], dtype=int), 17: numpy.array([86, 90], dtype=int), 18: numpy.array([91, 95], dtype=int), 19:
numpy.array([96, 100], dtype=int)
numpy.array
"""Calculate.""" # --- import -------------------------------------------------------------------------------------- import numpy as np from .. import units as wt_units # --- define -------------------------------------------------------------------------------------- __all__ = ["mono_resolution", "nm_width", "symmetric_sqrt"] # --- functions ----------------------------------------------------------------------------------- def mono_resolution(grooves_per_mm, slit_width, focal_length, output_color, output_units="wn"): """Calculate the resolution of a monochromator. Parameters ---------- grooves_per_mm : number Grooves per millimeter. slit_width : number Slit width in microns. focal_length : number Focal length in mm. output_color : number Output color in nm. output_units : string (optional) Output units. Default is wn. Returns ------- float Resolution. """ d_lambda = 1e6 * slit_width / (grooves_per_mm * focal_length) # nm upper = output_color + d_lambda / 2 # nm lower = output_color - d_lambda / 2 # nm return abs( wt_units.converter(upper, "nm", output_units) - wt_units.converter(lower, "nm", output_units) ) def nm_width(center, width, units="wn"): """Given a center and width, in energy units, get back a width in nm. Parameters ---------- center : number Center (in energy units). width : number Width (in energy units). units : string (optional) Input units. Default is wn. Returns ------- number Width in nm. """ red = wt_units.converter(center - width / 2., units, "nm") blue = wt_units.converter(center + width / 2., units, "nm") return red - blue def symmetric_sqrt(x, out=None): """Compute the 'symmetric' square root: sign(x) * sqrt(abs(x)). Parameters ---------- x : array_like or number Input array. out : ndarray, None, or tuple of ndarray and None (optional) A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns ------- np.ndarray Symmetric square root of arr. """ factor =
np.sign(x)
numpy.sign
#!/usr/bin/env python # coding: utf-8 # In[1]: import tensorflow as tf import os import sys import keras from keras.models import Sequential, Model from keras.layers import Dense, Activation, Dropout, Embedding, LSTM, Bidirectional,Multiply # Merge, from keras.layers import BatchNormalization, merge, add from keras.layers.core import Flatten, Reshape from keras.layers.merge import Concatenate, concatenate, subtract, multiply from keras.layers.convolutional import Conv1D from keras.layers.pooling import MaxPooling1D, AveragePooling1D, GlobalAveragePooling1D, GlobalMaxPooling1D from keras.optimizers import Adam, RMSprop import keras.backend.tensorflow_backend as KTF import numpy as np from tqdm import tqdm from keras.layers import Input, CuDNNGRU, GRU from numpy import linalg as LA import scipy #from sklearn.model_selection import KFold, ShuffleSplit from keras import backend as K import re #from multiHead import SparseSelfAttention os.environ["CUDA_VISIBLE_DEVICES"] = "4" config = tf.ConfigProto() config.gpu_options.allow_growth=True #不全部占满显存, 按需分配 sess = tf.Session(config=config) KTF.set_session(sess) # In[2]: hidden_dim = 256 #256 from six.moves import cPickle as pickle #for performance def save_dict(di_, filename_): with open(filename_, 'wb') as f: pickle.dump(di_, f) def load_dict(filename_): with open(filename_, 'rb') as f: ret_di = pickle.load(f) return ret_di # In[ ]: all_protein_seqs_emb = [] all_smiles_seqs_emb = [] EMB_NO = 12 for i in range(1,EMB_NO+1): if i < 10: embedding_no = '0'+str(i) else: embedding_no = i protein_seqs_emb = load_dict('dataset/embedding256-12layers/atomwise_BindingDB-full_protein_maxlen1022_dim256-layer{}.pkl'.format(embedding_no)) smiles_seqs_emb = load_dict('dataset/DTADATA/embedding256-12layers/atomwise_BindingDB-full_smiles_maxlen100_dim256-layer{}.pkl'.format(embedding_no)) all_protein_seqs_emb.append(protein_seqs_emb) all_smiles_seqs_emb.append(smiles_seqs_emb) def dict_mean(all_emb): sums = Counter() counters = Counter() for itemset in all_emb: sums.update(itemset) counters.update(itemset.keys()) ret = {x: sums[x]/counters[x] for x in sums.keys()} return ret from collections import Counter protein_mean_emb = dict_mean(all_protein_seqs_emb) smiles_mean_emb = dict_mean(all_smiles_seqs_emb) # In[ ]: def cindex_score(y_true, y_pred): g = tf.subtract(tf.expand_dims(y_pred, -1), y_pred) g = tf.cast(g == 0.0, tf.float32) * 0.5 + tf.cast(g > 0.0, tf.float32) f = tf.subtract(tf.expand_dims(y_true, -1), y_true) > 0.0 f = tf.matrix_band_part(tf.cast(f, tf.float32), -1, 0) g = tf.reduce_sum(tf.multiply(g, f)) f = tf.reduce_sum(f) return tf.where(tf.equal(g, 0), 0.0, g/f) #select # In[4]: def load_emb_from_dict(emb_dict, key, max_len): X = np.zeros(( max_len,hidden_dim )) emb = emb_dict[key] emb_shape = emb.shape[0] if emb_shape > max_len: X = emb[:max_len] else: X[:emb_shape,:] = emb return X import keras class DataGenerator(keras.utils.Sequence): 'Generates data for Keras' def __init__(self, prots, drugs, Y, batch_size=256): 'Initialization' self.batch_size = batch_size self.prots = prots self.drugs = drugs self.Y = Y self.on_epoch_end() def __len__(self): 'Denotes the number of batches per epoch' return int(np.floor(len(self.prots) / self.batch_size)) def __getitem__(self, index): 'Generate one batch of data' # Generate indexes of the batch indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size] # Generate data X, y = self.__data_generation(indexes) return X, y def on_epoch_end(self): 'Updates indexes after each epoch' self.indexes = np.arange(len(self.prots)) np.random.shuffle(self.indexes) def __data_generation(self, list_IDs_temp): 'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels) # Initialization input_list = [] X_drug = np.zeros((self.batch_size, smilen,hidden_dim)) X_prot_seq = np.zeros((self.batch_size, seq_len,hidden_dim)) for i, ID in enumerate(list_IDs_temp): X_drug[i] = load_emb_from_dict(smiles_mean_emb, self.drugs[ID], smilen) X_prot_seq[i] = load_emb_from_dict(protein_mean_emb, self.prots[ID], seq_len) input_list.append(X_drug) input_list.append(X_prot_seq) y = np.zeros((self.batch_size)) # Generate data for i, ID in enumerate(list_IDs_temp): y[i] = self.Y[ID] return input_list , y # In[ ]: def Highway(value, n_layers, activation="tanh", gate_bias=0): """ Highway layers: a minus bias means the network is biased towards carry behavior in the initial stages""" dim = K.int_shape(value)[-1] bias = keras.initializers.Constant(gate_bias) for i in range(n_layers): T_gate = Dense(units=dim, bias_initializer=bias, activation="sigmoid")(value) C_gate = Lambda(lambda x: 1.0 - x, output_shape=(dim,))(T_gate) transform = Dense(units=dim, activation=activation)(value) transform_gated = Multiply()([T_gate, transform]) carry_gated = Multiply()([C_gate, value]) value = Add()([transform_gated, carry_gated]) return value # In[7]: #from keras_radam import RAdam #from keras_lookahead import Lookahead from keras.layers import Lambda,Add, CuDNNGRU,TimeDistributed, Bidirectional,Softmax from keras import regularizers from keras.regularizers import l2 import tensorflow as tf from keras import regularizers from sklearn.model_selection import KFold, ShuffleSplit smilen = 100 seq_len = 1000 # Squeeze and Excitation def se_block(input, channels, r=8): # Squeeze x = GlobalAveragePooling1D()(input) # Excitation x = Dense(channels//r, activation="relu")(x) x = Dense(channels, activation="sigmoid")(x) return Multiply()([input, x]) def coeff_fun_prot(x): import tensorflow as tf import keras tmp_a_1=tf.keras.backend.mean(x[0],axis=-1,keepdims=True) tmp_a_1=tf.nn.softmax(tmp_a_1) tmp=tf.tile(tmp_a_1,(1,1,keras.backend.int_shape(x[1])[2])) return tf.multiply(x[1],tmp) def att_func(x): import tensorflow as tf import keras tmp_a_2=tf.keras.backend.permute_dimensions(x[1],(0,2,1)) mean_all=tf.keras.backend.sigmoid(tf.keras.backend.batch_dot(tf.keras.backend.mean(x[0],axis=1,keepdims=True),tf.keras.backend.mean(tmp_a_2,axis=-1,keepdims=True))) tmp_a=tf.keras.backend.sigmoid(tf.keras.backend.batch_dot(x[0],tmp_a_2))*mean_all #tmp_a=tf.nn.softmax(tmp_a) return tmp_a def coeff_fun_lig(x): import tensorflow as tf import keras tmp1=tf.keras.backend.permute_dimensions(x[0],(0,2,1)) tmp_a_1=tf.keras.backend.mean(tmp1,axis=-1,keepdims=True) tmp_a_1=tf.nn.softmax(tmp_a_1) tmp=tf.tile(tmp_a_1,(1,1,keras.backend.int_shape(x[1])[2])) return tf.multiply(x[1],tmp) def conv_block(inputs, seblock, NUM_FILTERS,FILTER_LENGTH1): conv1_encode = Conv1D(filters=NUM_FILTERS, kernel_size=FILTER_LENGTH1, activation='relu', padding='valid', strides=1)(inputs) if seblock: conv1_encode = se_block(conv1_encode,NUM_FILTERS) conv2_encode = Conv1D(filters=NUM_FILTERS*2, kernel_size=FILTER_LENGTH1, activation='relu', padding='valid', strides=1)(conv1_encode) if seblock: conv2_encode = se_block(conv2_encode,NUM_FILTERS*2) return conv2_encode def fc_net(encode_interaction): n_layers = 4 gate = Highway(n_layers = n_layers, value=encode_interaction, gate_bias=-2) FC1 = Dense(1024, activation='relu', kernel_regularizer=regularizers.l2(0.01))(gate) FC2 = Dropout(0.4)(FC1) FC2 = Dense(1024, activation='relu', kernel_regularizer=regularizers.l2(0.01))(FC2) FC2 = Dropout(0.4)(FC2) FC2 = Dense(512, activation='relu', kernel_regularizer=regularizers.l2(0.01))(FC2) # FC2 = Dropout(0.3)(FC2) # And add a logistic regression on top predictions = Dense(1, kernel_initializer='normal')(FC2) return predictions def share_conv_block(protein_conv1_encode, protein_conv2_encode,comp_conv1_encode,comp_conv2_encode,prot_emb, comp_emb): prot_emb = protein_conv1_encode(prot_emb) prot_emb = protein_conv2_encode(prot_emb) comp_emb = comp_conv1_encode(comp_emb) comp_emb = comp_conv2_encode(comp_emb) encode_protein = GlobalMaxPooling1D()(prot_emb) encode_smiles = GlobalMaxPooling1D()(comp_emb) encode_interaction = Concatenate()([encode_smiles, encode_protein]) predictions = fc_net(encode_interaction) return predictions def FFN(inputs): encode = Dense(256, activation='relu')(inputs) encode = Dense(256)(encode) return encode def build_model(): drugInput = Input(shape=(smilen,hidden_dim)) protInput = Input(shape=(seq_len,hidden_dim)) # share CNN NUM_FILTERS = hidden_dim FILTER_LENGTH1 = 3 n_layers = 4 seblock = True # encode_prot = FFN(protInput) # encode_smiles = FFN(drugInput) # # att_tmp=TimeDistributed(Dense(hidden_dim,use_bias=False))(encode_prot) # att=Lambda(att_func)([encode_prot,encode_smiles]) # encode_prot=Lambda(coeff_fun_prot)([att,encode_prot]) # encode_smiles=Lambda(coeff_fun_lig)([att,encode_smiles]) encode_smiles = conv_block(drugInput,seblock, NUM_FILTERS, 3) encode_prot = conv_block(protInput,seblock, NUM_FILTERS, 3) encode_smiles = GlobalMaxPooling1D()(encode_smiles) encode_prot = GlobalMaxPooling1D()(encode_prot) encode_interaction = Concatenate()([encode_smiles, encode_prot]) # gate = Highway(n_layers = n_layers, value=encode_interaction, gate_bias=-2) predictions = fc_net(encode_interaction) # And add a logistic regression on top # predictions = Dense(1, kernel_initializer='normal')(gate) #OR no activation, rght now it's between 0-1, do I want this??? activation='sigmoid' interactionModel = Model(inputs= [drugInput,protInput ], outputs=[predictions]) # adam = keras.optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.01, amsgrad=False) # ranger = Lookahead(RAdam()) interactionModel.compile(optimizer= 'adam', loss='mse', metrics=[cindex_score]) #, metrics=['cindex_score'] return interactionModel model = build_model() print(model.summary()) # In[ ]: from keras.callbacks import ModelCheckpoint, EarlyStopping,ReduceLROnPlateau from keras.callbacks import TensorBoard #from sklearn.metrics import mean_squared_error from rlscore.measure import cindex from sklearn.model_selection import KFold from emtrics import * all_loss = np.zeros((5,1)) all_ci = np.zeros((5,1)) all_ci2 = np.zeros((5,1)) all_mse2 = np.zeros((5,1)) all_r = np.zeros((5,1)) all_aupr = np.zeros((5,1)) all_rm2 = np.zeros((5,1)) data_file = 'dataset/BindingDB-uniq-data.csv' all_drug = [] all_protein = [] all_Y = [] with open(data_file, 'r') as f: all_lines = f.readlines() for line in all_lines: row = line.rstrip().split(',') all_drug.append(row[0]) all_protein.append(row[1]) all_Y.append(float(row[2])) print(len(all_Y), len(all_drug), len(all_protein)) batch_size = 256 # set random_state as kf = KFold(n_splits=5, shuffle=True) for split, ( train_index, test_index) in enumerate( kf.split(all_Y)): print(train_index,test_index ) train_protein_cv = np.array(all_protein)[train_index] train_drug_cv = np.array(all_drug)[train_index] train_Y_cv = np.array(all_Y)[train_index] test_protein_cv = np.array(all_protein)[test_index] test_drug_cv = np.array(all_drug)[test_index] test_Y_cv = np.array(all_Y)[test_index] train_size = train_protein_cv.shape[0] valid_size = 0 #int(len(all_Y)/5.0) # 7051 #? training_generator = DataGenerator( train_protein_cv[:train_size-valid_size], train_drug_cv[:train_size-valid_size], np.array(train_Y_cv[:train_size-valid_size]),batch_size=batch_size) # validate_generator = DataGenerator( train_protein_cv[train_size-valid_size:], # train_drug_cv[train_size-valid_size:], # np.array(train_Y_cv[train_size-valid_size:]),batch_size=batch_size) save_model_name = 'models/bdbki-embedding-avg'+str(split) model = build_model() save_checkpoint = ModelCheckpoint(save_model_name, verbose=1,save_best_only=True, monitor='loss', save_weights_only=True, mode='min') earlyStopping = EarlyStopping(monitor='loss', patience=25, verbose=1,mode='min') lr_reducer = ReduceLROnPlateau(factor=np.sqrt(0.1), cooldown=0, patience=5, min_lr=0.5e-6) model.fit_generator(generator=training_generator, epochs = 500 , verbose=1,callbacks=[earlyStopping, save_checkpoint]) # model.fit_generator(generator=training_generator, # epochs = 500 , # verbose=1, validation_data=validate_generator, # callbacks=[earlyStopping, save_checkpoint]) input_list = [] X_drug = np.zeros((len(test_drug_cv), smilen,hidden_dim)) X_prot_seq = np.zeros((len(test_protein_cv), seq_len,hidden_dim)) for i in range(len(test_protein_cv)): X_drug[i] = load_emb_from_dict(smiles_mean_emb, test_drug_cv[i], smilen) X_prot_seq[i] = load_emb_from_dict(protein_mean_emb, test_protein_cv[i], seq_len) input_list.append(X_drug) input_list.append(X_prot_seq) model.load_weights(save_model_name) y_pred = model.predict(input_list) test_Y_cv = np.float64(np.array(test_Y_cv)) y_pred = np.float64(np.array(y_pred)) ci2 = cindex(test_Y_cv, y_pred) rm2 = get_rm2(test_Y_cv, y_pred[:,0]) mse = get_mse(test_Y_cv, y_pred[:,0]) pearson = get_pearson(test_Y_cv, y_pred[:,0]) spearman = get_spearman(test_Y_cv, y_pred[:,0]) rmse = get_rmse(test_Y_cv, y_pred[:,0]) aupr = get_aupr(test_Y_cv, y_pred[:,0], threshold=12.1) print('rm2:', rm2) print('mse:', mse) print('pearson', pearson) print('ci:', ci2) print('AUPR', aupr) all_mse2[split] = mse all_r[split] = pearson all_aupr[split] = aupr all_rm2[split] = rm2 all_ci2[split] = ci2 # In[10]: print('cindex:',np.mean(all_ci), np.std(all_ci)) print('rm2:',
np.mean(all_rm2)
numpy.mean
""" oksar3 Program to calcuate forward models of interferograms, strain tensor, etc. from Okada subroutine. Heritage: - originally fringes.c written by <NAME> - updated to oksar tjw - oksar_strain: added strain tensor calculation tjw - oksar3: added new line of sight calculator tjw feb 2003 - Modified into Python by RowanCockett, 3point Science Aug 2014 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np import properties import vectormath as vmath import utm import matplotlib.pyplot as plt class EarthquakeInterferogram(properties.HasProperties): title = properties.String( 'name of the earthquake', required=True ) description = properties.String( 'description of the event', required=False ) location = properties.Vector2( 'interferogram location (bottom N, left E)', required=True ) location_UTM_zone = properties.Integer( 'UTM zone', required=True ) shape = properties.Array( 'number of pixels in the interferogram', shape=(2,), dtype=int, required=True ) pixel_size = properties.Array( 'Size of each pixel (northing, easting)', shape=(2,), dtype=float, required=True ) data = properties.Array( 'Processed interferogram data (unwrapped)', dtype=float, required=True ) ref = properties.Vector2( 'interferogram reference', required=True ) ref_incidence = properties.Float( 'Incidence angle', required=True ) scaling = properties.Float( 'Scaling of the interferogram', default=1.0 ) satellite_name = properties.String('Name of the satelite.') satellite_fringe_interval = properties.Float( 'Fringe interval', default=0.028333 ) satellite_azimuth = properties.Float( 'satellite_azimuth', required=True ) satellite_altitude = properties.Float( 'satellite_altitude', required=True ) local_rigidity = properties.Float( 'Local rigidity', default=3e10 ) local_earth_radius = properties.Float( 'Earth radius', default=6371000. ) date1 = properties.DateTime( 'date1', required=True ) date2 = properties.DateTime( 'date2', required=True ) processed_by = properties.String( 'processed_by', required=True ) processed_date = properties.DateTime( 'processed_date', required=True ) copyright = properties.String( 'copyright', required=True ) data_source = properties.String( 'data_source', required=True ) event_date = properties.DateTime('Date of the earthquake') event_gcmt_id = properties.String('GCMT ID') event_name = properties.String('Earthquake name') event_country = properties.String('Earthquake country') def _get_plot_data(self): vectorNx = ( np.r_[ 0, np.cumsum( (self.pixel_size[0],) * self.shape[0] ) ] + self.location[0] ) vectorNy = ( np.r_[ 0, np.cumsum( (self.pixel_size[1],) * self.shape[1] ) ] + self.location[1] ) - self.pixel_size[1] * self.shape[1] data = self.data.copy() data = np.flipud(data.reshape(self.shape, order='F').T) data[data == 0] = np.nan data *= self.scaling return vectorNx, vectorNy, data def plot_interferogram(self, wrap=True, ax=None): self.assert_valid if ax is None: plt.figure() ax = plt.subplot(111) vectorNx, vectorNy, data = self._get_plot_data() if wrap: cmap = plt.cm.hsv data = data % self.satellite_fringe_interval vmin, vmax = 0.0, self.satellite_fringe_interval else: cmap = plt.cm.jet vmin = np.nanmin(data) vmax = np.nanmax(data) out = ax.pcolormesh( vectorNx, vectorNy, np.ma.masked_where(np.isnan(data), data), vmin=vmin, vmax=vmax, cmap=cmap ) ax.set_title(self.title) ax.axis('equal') ax.set_xlabel('Easting, m (UTM Zone {})'.format( self.location_UTM_zone )) ax.set_ylabel('Northing, m') cb = plt.colorbar(out, ax=ax) cb.set_label('Displacement, m') return out def plot_mask(self, ax=None, opacity=0.2): if ax is None: plt.figure() ax = plt.subplot(111) vectorNx, vectorNy, data = self._get_plot_data() from matplotlib import colors cmap = colors.ListedColormap([(1, 1, 1, opacity)]) out = ax.pcolormesh( vectorNx, vectorNy, np.ma.masked_where(~np.isnan(data), data), cmap=cmap ) ax.set_title(self.title) ax.axis('equal') ax.set_xlabel('Easting, m (UTM Zone {})'.format( self.location_UTM_zone )) ax.set_ylabel('Northing, m') return out def get_LOS_vector(self, locations): """ calculate beta - the angle at earth center between reference point and satellite nadir """ if not isinstance(locations, list): locations = [locations] utmZone = self.location_UTM_zone refPoint = vmath.Vector3(self.ref.x, self.ref.y, 0) satAltitude = self.satellite_altitude satAzimuth = self.satellite_azimuth satIncidence = self.ref_incidence earthRadius = self.local_earth_radius DEG2RAD = np.pi / 180. alpha = satIncidence * DEG2RAD beta = (earthRadius / (satAltitude + earthRadius)) * np.sin(alpha) beta = alpha - np.arcsin(beta) beta = beta / DEG2RAD # calculate angular separation of (x,y) from satellite track passing # through (origx, origy) with azimuth satAzimuth # Long lat **NOT** lat long origy, origx = utm.to_latlon( refPoint.x, refPoint.y, np.abs(utmZone), northern=utmZone > 0 ) xy = np.array([ utm.to_latlon(u[0], u[1], np.abs(utmZone), northern=utmZone > 0) for u in locations ]) y = xy[:, 0] x = xy[:, 1] angdist = self._ang_to_gc(x, y, origx, origy, satAzimuth) # calculate beta2, the angle at earth center between roaming point and # satellite nadir track, assuming right-looking satellite beta2 = beta - angdist beta2 = beta2 * DEG2RAD # calculate alpha2, the new incidence angle alpha2 = np.sin(beta2) / ( np.cos(beta2) - (earthRadius / (earthRadius + satAltitude)) ) alpha2 = np.arctan(alpha2) alpha2 = alpha2 / DEG2RAD # calculate pointing vector satIncidence = 90 - alpha2 satAzimuth = 360 - satAzimuth los_x = -np.cos(satAzimuth * DEG2RAD) * np.cos(satIncidence * DEG2RAD) los_y = -np.sin(satAzimuth * DEG2RAD) * np.cos(satIncidence * DEG2RAD) los_z = np.sin(satIncidence * DEG2RAD) return vmath.Vector3Array([los_x, los_y, los_z]) @staticmethod def _ang_to_gc(x, y, origx, origy, satAzimuth): """ Calculate angular distance to great circle passing through given point """ Ngc = np.zeros(3) cartxy = np.zeros((len(x), 3)) satAzimuth = np.deg2rad(satAzimuth) origx = np.deg2rad(origx) origy = np.deg2rad(origy) x = np.deg2rad(x) y = np.deg2rad(y) # 1. calc geocentric norm vec to great circle, Ngc = Rz*Ry*Rx*[0;1;0] # where Rz = rotation of origx about geocentric z-axis # where Ry = rotation of origy about geocentric y-axis # where Rx = rotation of satAzimuth about geocentric x-axis # and [0;1;0] is geocentric norm vec to N-S Great Circle through 0 0 Ngc[0] = ( (np.sin(satAzimuth) * np.sin(origy) * np.cos(origx)) - (np.cos(satAzimuth) * np.sin(origx)) ) Ngc[1] = ( (np.sin(satAzimuth) * np.sin(origy) * np.sin(origx)) + (np.cos(satAzimuth) * np.cos(origx)) ) Ngc[2] = -np.sin(satAzimuth) * np.cos(origy) # 2. calculate unit vector geocentric coordinates for lon/lat # position (x,y) cartxy[:, 0] = np.cos(x) * np.cos(y) cartxy[:, 1] = np.sin(x) * np.cos(y) cartxy[:, 2] = np.sin(y) # 3. Dot product between Ngc and cartxy gives angle 90 degrees # bigger than what we want angdist = ( Ngc[0]*cartxy[:, 0] + Ngc[1]*cartxy[:, 1] + Ngc[2]*cartxy[:, 2] ) angdist = np.rad2deg(np.arccos(angdist)) - 90 return angdist class Oksar(properties.HasProperties): beta = properties.Float('beta', default=3E10) mu = properties.Float('mu', default=3E10) strike = properties.Float('Strike', min=0, max=360) dip = properties.Float('Dip', default=45, min=0, max=90) rake = properties.Float('Rake', default=90, min=-180, max=180) slip = properties.Float('Slip', default=0.5, min=0) length = properties.Float('Fault length', default=10000., min=0) center = properties.Vector2('Center of the fault plane.') depth_top = properties.Float('Top of fault', min=0) depth_bottom = properties.Float('Bottom of fault', default=10000, min=0) O = properties.Vector2( 'Origin of the simulation domain', required=True ) U = properties.Vector2( 'U direction of the simulation domain', required=True ) V = properties.Vector2( 'V direction of the simulation domain', required=True ) shape = properties.Array( 'number of pixels in the simulation', shape=(2,), default=(300, 300), dtype=int, # required=True ) @property def simulation_grid(self): self.assert_valid vec, shape = vmath.ouv2vec( vmath.Vector3(self.O[0], self.O[1], 0), vmath.Vector3(self.U[0], self.U[1], 0), vmath.Vector3(self.V[0], self.V[1], 0), self.shape ) return vec @property def displacement_vector(self): self.assert_valid vec = self.simulation_grid x, y = vec.x, vec.y DEG2RAD = 0.017453292519943 alpha = (self.beta + self.mu) / (self.beta + 2.0 * self.mu) # Here we could loop over models flt_x = self.center[0] flt_y = self.center[1] strike = self.strike dip = self.dip rake = self.rake slip = self.slip length = self.length hmin = self.depth_top hmax = self.depth_bottom rrake = (rake+90.0)*DEG2RAD sindip = np.sin(dip*DEG2RAD) w = (hmax-hmin)/sindip ud = slip*np.cos(rrake) us = -slip*np.sin(rrake) halflen = length/2.0 al2 = halflen al1 = -al2 aw1 = hmin/sindip aw2 = hmax/sindip if(hmin < 0.0): raise Exception('ERROR: Fault top above ground surface') if(hmin == 0.0): hmin = 0.00001 sstrike = (strike+90.0)*DEG2RAD ct = np.cos(sstrike) st = np.sin(sstrike) X = ct * (-flt_x + x) - st * (-flt_y + y) Y = ct * (-flt_y + y) + st * (-flt_x + x) u = self._dc3d3(alpha, X, Y, -dip, al1, al2, aw1, aw2, us, ud) UX = ct*u.x + st*u.y UY = -st*u.x + ct*u.y UZ = u.z return vmath.Vector3(UX, UY, UZ) def _dc3d3(self, alpha, X, Y, dip, al1, al2, aw1, aw2, disl1, disl2): F0 = 0.0 F1 = 1.0 F2 = 2.0 PI2 = 6.283185307179586 EPS = 1.0E-6 u = vmath.Vector3(F0, F0, F0) dub = vmath.Vector3(F0, F0, F0) # %%dccon0 subroutine # Calculates medium and fault dip constants c0_alp3 = (F1 - alpha) / alpha # PI2/360 pl8 = 0.017453292519943 c0_sd = np.sin(dip*pl8) c0_cd = np.cos(dip*pl8) if(np.abs(c0_cd) < EPS): c0_cd = F0 if(c0_sd > F0): c0_sd = F1 if(c0_sd < F0): c0_sd = -F1 c0_cdcd = c0_cd * c0_cd c0_sdcd = c0_sd * c0_cd # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p = Y * c0_cd q = Y * c0_sd jxi = ((X - al1) * (X - al2)) <= F0 # BOOLEAN jet = ((p - aw1) * (p - aw2)) <= F0 # BOOLEAN for k in [1., 2.]: et = 0.0 if(k == 1): et = p-aw1 else: et = p-aw2 for j in [1., 2.]: xi = 0.0 if(j == 1): xi = X-al1 else: xi = X-al2 # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%dccon2 subroutine # % calculates station geometry constants for finite source dc_max = np.max(np.abs(np.c_[xi, et, q])) # dc_max = max(np.abs(xi),max(np.abs(et),np.abs(q))) xi[(np.abs(xi/dc_max) < EPS) | (np.abs(xi) < EPS)] = F0 et[(np.abs(et/dc_max) < EPS) | (np.abs(et) < EPS)] = F0 q[(np.abs(q/dc_max) < EPS) | (np.abs(q) < EPS)] = F0 dc_xi = xi dc_et = et dc_q = q c2_r = np.sqrt(dc_xi*dc_xi + dc_et*dc_et + dc_q*dc_q) if np.any(c2_r == F0): raise Exception('singularity error ???') c2_y = dc_et * c0_cd + dc_q * c0_sd c2_d = dc_et * c0_sd - dc_q * c0_cd c2_tt = np.arctan(dc_xi * dc_et / (dc_q * c2_r)) c2_tt[dc_q == F0] = F0 rxi = c2_r + dc_xi c2_x11 = F1/(c2_r*rxi) c2_x11[(dc_xi < F0) & (dc_q == F0) & (dc_et == F0)] = F0 ret = c2_r + dc_et if np.any(ret < 1e-14): raise Exception('dccon2 b %f %f %f %f' % ( ret, c2_r, dc_et, dc_q, dc_xi )) c2_ale = np.log(ret) c2_y11 = F1/(c2_r*ret) ind = (dc_et < F0) & (dc_q == F0) & (dc_xi == F0) # if((c2_r-dc_et) < 1e-14): # raise Exception('dccon2 a %f %f %f %f %f' % ( # c2_3-dc_et, c2_r, dc_et, dc_q, dc_xi) # ) c2_ale[ind] = -np.log(c2_r[ind]-dc_et[ind]) c2_y11[ind] = F0 # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if np.any( ( (q == F0) & ( ((jxi) & (et == F0)) | ((jet) & (xi == F0)) ) ) | (c2_r == F0) ): raise Exception('singular problems: 2') # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # ub subroutine # part B of displacement and strain at depth due to buried # faults in semi-infinite medium rd = c2_r + c2_d if np.any(rd < 1e-14): raise Exception('ub %f %f %f %f %f %f' % ( rd, c2_r, c2_d, xi, et, q )) ai3 = 0.0 ai4 = 0.0 if(c0_cd != F0): # xx replaces x in original subroutine xx =
np.sqrt(xi*xi+q*q)
numpy.sqrt
# Copyright (C) 2018-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import numpy as np import os import pytest import time from openvino.inference_engine import ie_api as ie from tests_compatibility.conftest import model_path from ..test_utils.test_utils import generate_image # TODO: reformat into an absolute path is_myriad = os.environ.get("TEST_DEVICE") == "MYRIAD" test_net_xml, test_net_bin = model_path(is_myriad) def test_infer(device): ie_core = ie.IECore() net = ie_core.read_network(model=test_net_xml, weights=test_net_bin) exec_net = ie_core.load_network(net, device) img = generate_image() res = exec_net.infer({'data': img}) assert np.argmax(res['fc_out'][0]) == 9 del exec_net del ie_core def test_infer_net_from_buffer(device): ie_core = ie.IECore() with open(test_net_bin, 'rb') as f: bin = f.read() with open(test_net_xml, 'rb') as f: xml = f.read() net = ie_core.read_network(model=xml, weights=bin, init_from_buffer=True) net2 = ie_core.read_network(model=test_net_xml, weights=test_net_bin) exec_net = ie_core.load_network(net, device) exec_net2 = ie_core.load_network(net2, device) img = generate_image() res = exec_net.infer({'data': img}) res2 = exec_net2.infer({'data': img}) del ie_core del exec_net del exec_net2 assert np.allclose(res['fc_out'], res2['fc_out'], atol=1E-4, rtol=1E-4) def test_infer_wrong_input_name(device): ie_core = ie.IECore() net = ie_core.read_network(model=test_net_xml, weights=test_net_bin) exec_net = ie_core.load_network(net, device) img = generate_image() with pytest.raises(AssertionError) as e: exec_net.infer({'_data_': img}) assert "No input with name _data_ found in network" in str(e.value) del exec_net del ie_core def test_input_info(device): ie_core = ie.IECore() net = ie_core.read_network(model=test_net_xml, weights=test_net_bin) exec_net = ie_core.load_network(net, device, num_requests=5) assert isinstance(exec_net.input_info['data'], ie.InputInfoCPtr) assert exec_net.input_info['data'].name == "data" assert exec_net.input_info['data'].precision == "FP32" assert isinstance(exec_net.input_info['data'].input_data, ie.DataPtr) del exec_net del ie_core def test_outputs(device): ie_core = ie.IECore() net = ie_core.read_network(model=test_net_xml, weights=test_net_bin) exec_net = ie_core.load_network(net, device, num_requests=5) assert len(exec_net.outputs) == 1 assert "fc_out" in exec_net.outputs assert isinstance(exec_net.outputs['fc_out'], ie.CDataPtr) del exec_net del ie_core def test_access_requests(device): ie_core = ie.IECore() net = ie_core.read_network(model=test_net_xml, weights=test_net_bin) exec_net = ie_core.load_network(net, device, num_requests=5) assert len(exec_net.requests) == 5 assert isinstance(exec_net.requests[0], ie.InferRequest) del exec_net del ie_core def test_async_infer_one_req(device): ie_core = ie.IECore() net = ie_core.read_network(model=test_net_xml, weights=test_net_bin) exec_net = ie_core.load_network(net, device, num_requests=1) img = generate_image() request_handler = exec_net.start_async(request_id=0, inputs={'data': img}) request_handler.wait() res = request_handler.output_blobs['fc_out'].buffer assert np.argmax(res) == 9 del exec_net del ie_core def test_async_infer_many_req(device): ie_core = ie.IECore() net = ie_core.read_network(model=test_net_xml, weights=test_net_bin) exec_net = ie_core.load_network(net, device, num_requests=5) img = generate_image() for id in range(5): request_handler = exec_net.start_async(request_id=id, inputs={'data': img}) request_handler.wait() res = request_handler.output_blobs['fc_out'].buffer assert np.argmax(res) == 9 del exec_net del ie_core def test_async_infer_many_req_get_idle(device): ie_core = ie.IECore() net = ie_core.read_network(model=test_net_xml, weights=test_net_bin) num_requests = 5 exec_net = ie_core.load_network(net, device, num_requests=num_requests) img = generate_image() check_id = set() for id in range(2*num_requests): request_id = exec_net.get_idle_request_id() if request_id == -1: status = exec_net.wait(num_requests=1, timeout=ie.WaitMode.RESULT_READY) assert(status == ie.StatusCode.OK) request_id = exec_net.get_idle_request_id() assert(request_id >= 0) request_handler = exec_net.start_async(request_id=request_id, inputs={'data': img}) check_id.add(request_id) status = exec_net.wait(timeout=ie.WaitMode.RESULT_READY) assert status == ie.StatusCode.OK for id in range(num_requests): if id in check_id: assert
np.argmax(exec_net.requests[id].output_blobs['fc_out'].buffer)
numpy.argmax
import pytest import numpy as np from scipy import sparse from scipy.sparse import csgraph from scipy.linalg import eigh from sklearn.manifold import SpectralEmbedding from sklearn.manifold._spectral_embedding import _graph_is_connected from sklearn.manifold._spectral_embedding import _graph_connected_component from sklearn.manifold import spectral_embedding from sklearn.metrics.pairwise import rbf_kernel from sklearn.metrics import normalized_mutual_info_score from sklearn.neighbors import NearestNeighbors from sklearn.cluster import KMeans from sklearn.datasets import make_blobs from sklearn.utils.extmath import _deterministic_vector_sign_flip from sklearn.utils._testing import assert_array_almost_equal from sklearn.utils._testing import assert_array_equal # non centered, sparse centers to check the centers = np.array( [ [0.0, 5.0, 0.0, 0.0, 0.0], [0.0, 0.0, 4.0, 0.0, 0.0], [1.0, 0.0, 0.0, 5.0, 1.0], ] ) n_samples = 1000 n_clusters, n_features = centers.shape S, true_labels = make_blobs( n_samples=n_samples, centers=centers, cluster_std=1.0, random_state=42 ) def _assert_equal_with_sign_flipping(A, B, tol=0.0): """Check array A and B are equal with possible sign flipping on each columns""" tol_squared = tol ** 2 for A_col, B_col in zip(A.T, B.T): assert ( np.max((A_col - B_col) ** 2) <= tol_squared or np.max((A_col + B_col) ** 2) <= tol_squared ) def test_sparse_graph_connected_component(): rng = np.random.RandomState(42) n_samples = 300 boundaries = [0, 42, 121, 200, n_samples] p = rng.permutation(n_samples) connections = [] for start, stop in zip(boundaries[:-1], boundaries[1:]): group = p[start:stop] # Connect all elements within the group at least once via an # arbitrary path that spans the group. for i in range(len(group) - 1): connections.append((group[i], group[i + 1])) # Add some more random connections within the group min_idx, max_idx = 0, len(group) - 1 n_random_connections = 1000 source = rng.randint(min_idx, max_idx, size=n_random_connections) target = rng.randint(min_idx, max_idx, size=n_random_connections) connections.extend(zip(group[source], group[target])) # Build a symmetric affinity matrix row_idx, column_idx = tuple(np.array(connections).T) data = rng.uniform(0.1, 42, size=len(connections)) affinity = sparse.coo_matrix((data, (row_idx, column_idx))) affinity = 0.5 * (affinity + affinity.T) for start, stop in zip(boundaries[:-1], boundaries[1:]): component_1 = _graph_connected_component(affinity, p[start]) component_size = stop - start assert component_1.sum() == component_size # We should retrieve the same component mask by starting by both ends # of the group component_2 = _graph_connected_component(affinity, p[stop - 1]) assert component_2.sum() == component_size assert_array_equal(component_1, component_2) def test_spectral_embedding_two_components(seed=36): # Test spectral embedding with two components random_state = np.random.RandomState(seed) n_sample = 100 affinity = np.zeros(shape=[n_sample * 2, n_sample * 2]) # first component affinity[0:n_sample, 0:n_sample] = ( np.abs(random_state.randn(n_sample, n_sample)) + 2 ) # second component affinity[n_sample::, n_sample::] = ( np.abs(random_state.randn(n_sample, n_sample)) + 2 ) # Test of internal _graph_connected_component before connection component = _graph_connected_component(affinity, 0) assert component[:n_sample].all() assert not component[n_sample:].any() component = _graph_connected_component(affinity, -1) assert not component[:n_sample].any() assert component[n_sample:].all() # connection affinity[0, n_sample + 1] = 1 affinity[n_sample + 1, 0] = 1 affinity.flat[:: 2 * n_sample + 1] = 0 affinity = 0.5 * (affinity + affinity.T) true_label = np.zeros(shape=2 * n_sample) true_label[0:n_sample] = 1 se_precomp = SpectralEmbedding( n_components=1, affinity="precomputed", random_state=np.random.RandomState(seed) ) embedded_coordinate = se_precomp.fit_transform(affinity) # Some numpy versions are touchy with types embedded_coordinate = se_precomp.fit_transform(affinity.astype(np.float32)) # thresholding on the first components using 0. label_ = np.array(embedded_coordinate.ravel() < 0, dtype="float") assert normalized_mutual_info_score(true_label, label_) == pytest.approx(1.0) @pytest.mark.parametrize("X", [S, sparse.csr_matrix(S)], ids=["dense", "sparse"]) def test_spectral_embedding_precomputed_affinity(X, seed=36): # Test spectral embedding with precomputed kernel gamma = 1.0 se_precomp = SpectralEmbedding( n_components=2, affinity="precomputed", random_state=np.random.RandomState(seed) ) se_rbf = SpectralEmbedding( n_components=2, affinity="rbf", gamma=gamma, random_state=np.random.RandomState(seed), ) embed_precomp = se_precomp.fit_transform(rbf_kernel(X, gamma=gamma)) embed_rbf = se_rbf.fit_transform(X) assert_array_almost_equal(se_precomp.affinity_matrix_, se_rbf.affinity_matrix_) _assert_equal_with_sign_flipping(embed_precomp, embed_rbf, 0.05) def test_precomputed_nearest_neighbors_filtering(): # Test precomputed graph filtering when containing too many neighbors n_neighbors = 2 results = [] for additional_neighbors in [0, 10]: nn = NearestNeighbors(n_neighbors=n_neighbors + additional_neighbors).fit(S) graph = nn.kneighbors_graph(S, mode="connectivity") embedding = ( SpectralEmbedding( random_state=0, n_components=2, affinity="precomputed_nearest_neighbors", n_neighbors=n_neighbors, ) .fit(graph) .embedding_ ) results.append(embedding) assert_array_equal(results[0], results[1]) @pytest.mark.parametrize("X", [S, sparse.csr_matrix(S)], ids=["dense", "sparse"]) def test_spectral_embedding_callable_affinity(X, seed=36): # Test spectral embedding with callable affinity gamma = 0.9 kern = rbf_kernel(S, gamma=gamma) se_callable = SpectralEmbedding( n_components=2, affinity=(lambda x: rbf_kernel(x, gamma=gamma)), gamma=gamma, random_state=np.random.RandomState(seed), ) se_rbf = SpectralEmbedding( n_components=2, affinity="rbf", gamma=gamma, random_state=np.random.RandomState(seed), ) embed_rbf = se_rbf.fit_transform(X) embed_callable = se_callable.fit_transform(X) assert_array_almost_equal(se_callable.affinity_matrix_, se_rbf.affinity_matrix_) assert_array_almost_equal(kern, se_rbf.affinity_matrix_) _assert_equal_with_sign_flipping(embed_rbf, embed_callable, 0.05) # TODO: Remove when pyamg does replaces sp.rand call with np.random.rand # https://github.com/scikit-learn/scikit-learn/issues/15913 @pytest.mark.filterwarnings( "ignore:scipy.rand is deprecated:DeprecationWarning:pyamg.*" ) # TODO: Remove when pyamg removes the use of np.float @pytest.mark.filterwarnings( "ignore:`np.float` is a deprecated alias:DeprecationWarning:pyamg.*" ) # TODO: Remove when pyamg removes the use of pinv2 @pytest.mark.filterwarnings( "ignore:scipy.linalg.pinv2 is deprecated:DeprecationWarning:pyamg.*" ) def test_spectral_embedding_amg_solver(seed=36): # Test spectral embedding with amg solver pytest.importorskip("pyamg") se_amg = SpectralEmbedding( n_components=2, affinity="nearest_neighbors", eigen_solver="amg", n_neighbors=5, random_state=np.random.RandomState(seed), ) se_arpack = SpectralEmbedding( n_components=2, affinity="nearest_neighbors", eigen_solver="arpack", n_neighbors=5, random_state=np.random.RandomState(seed), ) embed_amg = se_amg.fit_transform(S) embed_arpack = se_arpack.fit_transform(S) _assert_equal_with_sign_flipping(embed_amg, embed_arpack, 1e-5) # same with special case in which amg is not actually used # regression test for #10715 # affinity between nodes row = [0, 0, 1, 2, 3, 3, 4] col = [1, 2, 2, 3, 4, 5, 5] val = [100, 100, 100, 1, 100, 100, 100] affinity = sparse.coo_matrix( (val + val, (row + col, col + row)), shape=(6, 6) ).toarray() se_amg.affinity = "precomputed" se_arpack.affinity = "precomputed" embed_amg = se_amg.fit_transform(affinity) embed_arpack = se_arpack.fit_transform(affinity) _assert_equal_with_sign_flipping(embed_amg, embed_arpack, 1e-5) # TODO: Remove filterwarnings when pyamg does replaces sp.rand call with # np.random.rand: # https://github.com/scikit-learn/scikit-learn/issues/15913 @pytest.mark.filterwarnings( "ignore:scipy.rand is deprecated:DeprecationWarning:pyamg.*" ) # TODO: Remove when pyamg removes the use of np.float @pytest.mark.filterwarnings( "ignore:`np.float` is a deprecated alias:DeprecationWarning:pyamg.*" ) # TODO: Remove when pyamg removes the use of pinv2 @pytest.mark.filterwarnings( "ignore:scipy.linalg.pinv2 is deprecated:DeprecationWarning:pyamg.*" ) def test_spectral_embedding_amg_solver_failure(): # Non-regression test for amg solver failure (issue #13393 on github) pytest.importorskip("pyamg") seed = 36 num_nodes = 100 X = sparse.rand(num_nodes, num_nodes, density=0.1, random_state=seed) upper = sparse.triu(X) - sparse.diags(X.diagonal()) sym_matrix = upper + upper.T embedding = spectral_embedding( sym_matrix, n_components=10, eigen_solver="amg", random_state=0 ) # Check that the learned embedding is stable w.r.t. random solver init: for i in range(3): new_embedding = spectral_embedding( sym_matrix, n_components=10, eigen_solver="amg", random_state=i + 1 ) _assert_equal_with_sign_flipping(embedding, new_embedding, tol=0.05) @pytest.mark.filterwarnings("ignore:the behavior of nmi will " "change in version 0.22") def test_pipeline_spectral_clustering(seed=36): # Test using pipeline to do spectral clustering random_state = np.random.RandomState(seed) se_rbf = SpectralEmbedding( n_components=n_clusters, affinity="rbf", random_state=random_state ) se_knn = SpectralEmbedding( n_components=n_clusters, affinity="nearest_neighbors", n_neighbors=5, random_state=random_state, ) for se in [se_rbf, se_knn]: km = KMeans(n_clusters=n_clusters, random_state=random_state) km.fit(se.fit_transform(S)) assert_array_almost_equal( normalized_mutual_info_score(km.labels_, true_labels), 1.0, 2 ) def test_spectral_embedding_unknown_eigensolver(seed=36): # Test that SpectralClustering fails with an unknown eigensolver se = SpectralEmbedding( n_components=1, affinity="precomputed", random_state=np.random.RandomState(seed), eigen_solver="<unknown>", ) with pytest.raises(ValueError): se.fit(S) def test_spectral_embedding_unknown_affinity(seed=36): # Test that SpectralClustering fails with an unknown affinity type se = SpectralEmbedding( n_components=1, affinity="<unknown>", random_state=np.random.RandomState(seed) ) with pytest.raises(ValueError): se.fit(S) def test_connectivity(seed=36): # Test that graph connectivity test works as expected graph = np.array( [ [1, 0, 0, 0, 0], [0, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [0, 0, 0, 1, 1], ] ) assert not _graph_is_connected(graph) assert not _graph_is_connected(sparse.csr_matrix(graph)) assert not _graph_is_connected(sparse.csc_matrix(graph)) graph = np.array( [ [1, 1, 0, 0, 0], [1, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [0, 0, 0, 1, 1], ] ) assert _graph_is_connected(graph) assert _graph_is_connected(sparse.csr_matrix(graph)) assert _graph_is_connected(sparse.csc_matrix(graph)) def test_spectral_embedding_deterministic(): # Test that Spectral Embedding is deterministic random_state = np.random.RandomState(36) data = random_state.randn(10, 30) sims = rbf_kernel(data) embedding_1 = spectral_embedding(sims) embedding_2 = spectral_embedding(sims) assert_array_almost_equal(embedding_1, embedding_2) def test_spectral_embedding_unnormalized(): # Test that spectral_embedding is also processing unnormalized laplacian # correctly random_state = np.random.RandomState(36) data = random_state.randn(10, 30) sims = rbf_kernel(data) n_components = 8 embedding_1 = spectral_embedding( sims, norm_laplacian=False, n_components=n_components, drop_first=False ) # Verify using manual computation with dense eigh laplacian, dd = csgraph.laplacian(sims, normed=False, return_diag=True) _, diffusion_map = eigh(laplacian) embedding_2 = diffusion_map.T[:n_components] embedding_2 = _deterministic_vector_sign_flip(embedding_2).T assert_array_almost_equal(embedding_1, embedding_2) def test_spectral_embedding_first_eigen_vector(): # Test that the first eigenvector of spectral_embedding # is constant and that the second is not (for a connected graph) random_state = np.random.RandomState(36) data = random_state.randn(10, 30) sims = rbf_kernel(data) n_components = 2 for seed in range(10): embedding = spectral_embedding( sims, norm_laplacian=False, n_components=n_components, drop_first=False, random_state=seed, ) assert np.std(embedding[:, 0]) == pytest.approx(0) assert
np.std(embedding[:, 1])
numpy.std