prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
import os,warnings warnings.filterwarnings("ignore") import numpy as np import tensorflow as tf tf.logging.set_verbosity(tf.logging.ERROR) import tensorflow.contrib.slim as slim import scipy.io as sio from sklearn.utils import shuffle from util import gpusession,nzr,print_n_txt,remove_file_if_exists,create_gradient_clipping import matplotlib.pyplot as plt class cn_reg_class(object): # ChoiceNet def __init__(self,_name='cn_reg',_x_dim=1,_y_dim=1,_h_dims=[64,64] ,_k_mix=5,_actv=tf.nn.relu,_bn=slim.batch_norm ,_rho_ref_train=0.95,_tau_inv=1e-2,_var_eps=1e-2 ,_pi1_bias=0.0,_log_sigma_Z_val=0 ,_kl_reg_coef=1e-5,_l2_reg_coef=1e-5 ,_SCHEDULE_MDN_REG=False ,_GPU_ID=0,_VERBOSE=True): self.name = _name self.x_dim = _x_dim self.y_dim = _y_dim self.h_dims = _h_dims self.k_mix = _k_mix self.actv = _actv self.bn = _bn # slim.batch_norm / None self.rho_ref_train = _rho_ref_train # Rho for training self.tau_inv = _tau_inv self.var_eps = _var_eps # This will be used for the loss function (var+var_eps) self.pi1_bias = _pi1_bias self.log_sigma_Z_val = _log_sigma_Z_val self.kl_reg_coef = _kl_reg_coef self.l2_reg_coef = _l2_reg_coef # L2 regularizer self.SCHEDULE_MDN_REG = _SCHEDULE_MDN_REG self.GPU_ID = _GPU_ID self.VERBOSE = _VERBOSE if _GPU_ID < 0: # with CPU only (no GPU) # Build model self.build_model() # Build graph self.build_graph() # Check params self.check_params() else: # with GPU with tf.device('/device:GPU:%d' % (self.GPU_ID)): # Build model self.build_model() # Build graph self.build_graph() # Check params self.check_params() # Build model def build_model(self): # Placeholders self.x = tf.placeholder(dtype=tf.float32,shape=[None,self.x_dim],name='x') # Input [None x xdim] self.t = tf.placeholder(dtype=tf.float32,shape=[None,self.y_dim],name='t') # Output [None x ydim] self.kp = tf.placeholder(dtype=tf.float32,shape=[],name='kp') # Keep probability self.lr = tf.placeholder(dtype=tf.float32,shape=[],name='lr') # Learning rate self.is_training = tf.placeholder(dtype=tf.bool,shape=[]) # Training flag self.rho_ref = tf.placeholder(dtype=tf.float32,shape=[],name='rho_ref') # Training flag self.train_rate = tf.placeholder(dtype=tf.float32,shape=[],name='train_rate') # from 0.0~1.0 # Initializers trni = tf.random_normal_initializer tci = tf.constant_initializer self.fully_init = trni(stddev=0.01) self.bias_init = tci(0.) self.bn_init = {'beta':tci(0.),'gamma':trni(1.,0.01)} self.bn_params = {'is_training':self.is_training,'decay':0.9,'epsilon':1e-5, 'param_initializers':self.bn_init,'updates_collections':None} # Build graph with tf.variable_scope(self.name,reuse=False) as scope: with slim.arg_scope([slim.fully_connected],activation_fn=self.actv, weights_initializer=self.fully_init,biases_initializer=self.bias_init, normalizer_fn=self.bn,normalizer_params=self.bn_params, weights_regularizer=None): _net = self.x # Now we have an input self.N = tf.shape(self.x)[0] # Input dimension for h_idx in range(len(self.h_dims)): # Loop over hidden layers _hdim = self.h_dims[h_idx] _net = slim.fully_connected(_net,_hdim,scope='lin'+str(h_idx)) _net = slim.dropout(_net,keep_prob=self.kp,is_training=self.is_training ,scope='dr'+str(h_idx)) self.feat = _net # Feature [N x Q] self.Q = self.feat.get_shape().as_list()[1] # Feature dimension # Feature to K rhos (NO ACTIVATION !!!) _rho_raw = slim.fully_connected(self.feat,self.k_mix,activation_fn=None ,scope='rho_raw') # self.rho_temp = tf.nn.tanh(_rho_raw) # [N x K] between -1.0~1.0 for regression self.rho_temp = tf.nn.sigmoid(_rho_raw) # [N x K] between 0.0~1.0 for classification # Maker sure the first mixture to have 'self.rho_ref' correlation self.rho = tf.concat([self.rho_temp[:,0:1]*0.0+self.rho_ref,self.rho_temp[:,1:]] ,axis=1) # [N x K] # Variabels for the sampler self.muW = tf.get_variable(name='muW',shape=[self.Q,self.y_dim], initializer=tf.random_normal_initializer(stddev=0.1), dtype=tf.float32) # [Q x D] self.logSigmaW = tf.get_variable(name='logSigmaW' ,shape=[self.Q,self.y_dim] ,initializer=tf.constant_initializer(-2.0) ,dtype=tf.float32) # [Q x D] self.muZ = tf.constant(np.zeros((self.Q,self.y_dim)) ,name='muZ',dtype=tf.float32) # [Q x D] self.logSigmaZ = tf.constant(self.log_sigma_Z_val*np.ones((self.Q,self.y_dim)) ,name='logSigmaZ',dtype=tf.float32) # [Q x D] # Reparametrization track (THIS PART IS COMPLICATED, I KNOW) _muW_tile = tf.tile(self.muW[tf.newaxis,:,:] ,multiples=[self.N,1,1]) # [N x Q x D] _sigmaW_tile = tf.exp(tf.tile(self.logSigmaW[tf.newaxis,:,:] ,multiples=[self.N,1,1])) # [N x Q x D] _muZ_tile = tf.tile(self.muZ[tf.newaxis,:,:] ,multiples=[self.N,1,1]) # [N x Q x D] _sigmaZ_tile = tf.exp(tf.tile(self.logSigmaZ[tf.newaxis,:,:] ,multiples=[self.N,1,1])) # [N x Q x D] _samplerList = [] for jIdx in range(self.k_mix): # For all K mixtures _rho_j = self.rho[:,jIdx:jIdx+1] # [N x 1] _rho_tile = tf.tile(_rho_j[:,:,tf.newaxis] ,multiples=[1,self.Q,self.y_dim]) # [N x Q x D] _epsW = tf.random_normal(shape=[self.N,self.Q,self.y_dim],mean=0,stddev=1 ,dtype=tf.float32) # [N x Q x D] _W = _muW_tile + tf.sqrt(_sigmaW_tile)*_epsW # [N x Q x D] _epsZ = tf.random_normal(shape=[self.N,self.Q,self.y_dim] ,mean=0,stddev=1,dtype=tf.float32) # [N x Q x D] _Z = _muZ_tile + tf.sqrt(_sigmaZ_tile)*_epsZ # [N x Q x D] _Y = _rho_tile*_muW_tile + (1.0-_rho_tile**2) \ *(_rho_tile*tf.sqrt(_sigmaZ_tile)/tf.sqrt(_sigmaW_tile) \ *(_W-_muW_tile)+tf.sqrt(1-_rho_tile**2)*_Z) _samplerList.append(_Y) # Append WlistConcat = tf.convert_to_tensor(_samplerList) # K*[N x Q x D] => [K x N x Q x D] self.wSample = tf.transpose(WlistConcat,perm=[1,3,0,2]) # [N x D x K x Q] # K mean mixtures [N x D x K] _wTemp = tf.reshape(self.wSample ,shape=[self.N,self.k_mix*self.y_dim,self.Q]) # [N x KD x Q] _featRsh = tf.reshape(self.feat,shape=[self.N,self.Q,1]) # [N x Q x 1] _mu = tf.matmul(_wTemp,_featRsh) # [N x KD x Q] x [N x Q x 1] => [N x KD x 1] self.mu = tf.reshape(_mu,shape=[self.N,self.y_dim,self.k_mix]) # [N x D x K] # K variance mixtures [N x D x K] _logvar_raw = slim.fully_connected(self.feat,self.y_dim,scope='var_raw') # [N x D] _var_raw = tf.exp(_logvar_raw) # [N x D] _var_tile = tf.tile(_var_raw[:,:,tf.newaxis] ,multiples=[1,1,self.k_mix]) # [N x D x K] _rho_tile = tf.tile(self.rho[:,tf.newaxis,:] ,multiples=[1,self.y_dim,1]) # [N x D x K] _tau_inv = self.tau_inv self.var = (1.0-_rho_tile**2)*_var_tile + _tau_inv # [N x D x K] # Weight allocation probability pi [N x K] _pi_logits = slim.fully_connected(self.feat,self.k_mix ,scope='pi_logits') # [N x K] self.pi_temp = tf.nn.softmax(_pi_logits,dim=1) # [N x K] # Some heuristics to ensure that pi_1(x) is high enough if self.pi1_bias != 0: self.pi_temp = tf.concat([self.pi_temp[:,0:1]+self.pi1_bias ,self.pi_temp[:,1:]],axis=1) # [N x K] self.pi = tf.nn.softmax(self.pi_temp,dim=1) # [N x K] else: self.pi = self.pi_temp # [N x K] # Build graph def build_graph(self): # Parse _M = tf.shape(self.x)[0] # Current batch size t,pi,mu,var = self.t,self.pi,self.mu,self.var # Mixture density network loss trepeat = tf.tile(t[:,:,tf.newaxis],[1,1,self.k_mix]) # (N x D x K) self.quadratics = -0.5*tf.reduce_sum(((trepeat-mu)**2)/(var+self.var_eps),axis=1) # (N x K) self.logdet = -0.5*tf.reduce_sum(tf.log(var+self.var_eps),axis=1) # (N x K) self.logconstant = - 0.5*self.y_dim*tf.log(2*np.pi) # (1) self.logpi = tf.log(pi) # (N x K) self.exponents = self.quadratics + self.logdet + self.logpi # + self.logconstant self.logprobs = tf.reduce_logsumexp(self.exponents,axis=1) # (N) self.gmm_prob = tf.exp(self.logprobs) # (N) self.gmm_nll = -tf.reduce_mean(self.logprobs) # (1) # Regression loss maxIdx = tf.argmax(input=pi,axis=1, output_type=tf.int32) # Argmax Index [N] maxIdx = 0*tf.ones_like(maxIdx) coords = tf.stack([tf.transpose(gv) for gv in tf.meshgrid(tf.range(self.N),tf.range(self.y_dim))] + [tf.reshape(tf.tile(maxIdx[:,tf.newaxis],[1,self.y_dim]),shape=(self.N,self.y_dim))] ,axis=2) # [N x D x 3] self.mu_bar = tf.gather_nd(mu,coords) # [N x D] fit_mse_coef = 1e-2 self.fit_mse = fit_mse_coef*tf.maximum((1.0-2.0*self.train_rate),0.0) \ *tf.reduce_sum(tf.pow(self.mu_bar-self.t,2))/(tf.cast(self.N,tf.float32)) # (1) # KL-divergence _eps = 1e-2 self.rho_pos = self.rho+1.0 # Make it positive self._kl_reg = self.kl_reg_coef*tf.reduce_sum(-self.rho_pos *(tf.log(self.pi+_eps)-tf.log(self.rho_pos+_eps)),axis=1) # (N) self.kl_reg = tf.reduce_mean(self._kl_reg) # (1) # Weight decay _g_vars = tf.trainable_variables() self.c_vars = [var for var in _g_vars if '%s/'%(self.name) in var.name] self.l2_reg = self.l2_reg_coef*tf.reduce_sum(tf.stack([tf.nn.l2_loss(v) for v in self.c_vars])) # [1] # Schedule MDN loss and regression loss if self.SCHEDULE_MDN_REG: self.gmm_nll = tf.minimum((2.0*self.train_rate+0.1),1.0)*self.gmm_nll self.fit_mse = tf.maximum((1.0-2.0*self.train_rate),0.0)*self.fit_mse self.loss_total = self.gmm_nll+self.kl_reg+self.l2_reg+self.fit_mse # [1] else: self.gmm_nll = self.gmm_nll self.fit_mse = tf.constant(0.0) self.loss_total = self.gmm_nll+self.kl_reg+self.l2_reg # Optimizer USE_ADAM = True GRAD_CLIP = True if GRAD_CLIP: # Gradient clipping if USE_ADAM: _optm = tf.train.AdamOptimizer(learning_rate=self.lr ,beta1=0.9,beta2=0.999,epsilon=1e-1) # 1e-4 else: _optm = tf.train.MomentumOptimizer(learning_rate=self.lr,momentum=0.0) self.optm = create_gradient_clipping(self.loss_total ,_optm,tf.trainable_variables(),clipVal=1.0) else: if USE_ADAM: self.optm = tf.train.AdamOptimizer(learning_rate=self.lr ,beta1=0.9,beta2=0.999,epsilon=1e-1).minimize(self.loss_total) else: self.optm = tf.train.MomentumOptimizer(learning_rate=self.lr ,momentum=0.0).minimize(self.loss_total) # Check parameters def check_params(self): _g_vars = tf.global_variables() self.g_vars = [var for var in _g_vars if '%s/'%(self.name) in var.name] if self.VERBOSE: print ("==== Global Variables ====") for i in range(len(self.g_vars)): w_name = self.g_vars[i].name w_shape = self.g_vars[i].get_shape().as_list() if self.VERBOSE: print (" [%02d] Name:[%s] Shape:[%s]" % (i,w_name,w_shape)) # Sampler def sampler(self,_sess,_x,n_samples=1,_deterministic=True): pi, mu, var = _sess.run([self.pi, self.mu, self.var], feed_dict={self.x:_x,self.kp:1.0,self.is_training:False ,self.rho_ref:1.0}) # n_points = _x.shape[0] _y_sampled = np.zeros([n_points,self.y_dim,n_samples]) for i in range(n_points): for j in range(n_samples): if _deterministic: k = 0 else: k = np.random.choice(self.k_mix,p=pi[i,:]) _y_sampled[i,:,j] = mu[i,:,k] # + np.random.randn(1,self.y_dim)*np.sqrt(var[i,:,k]) return _y_sampled def save2npz(self,_sess,_save_name=None): """ Save name """ if _save_name==None: _save_name='net/net_%s.npz'%(self.name) """ Get global variables """ self.g_wnames,self.g_wvals,self.g_wshapes = [],[],[] for i in range(len(self.g_vars)): curr_wname = self.g_vars[i].name curr_wvar = [v for v in tf.global_variables() if v.name==curr_wname][0] curr_wval = _sess.run(curr_wvar) curr_wval_sqz = curr_wval.squeeze() self.g_wnames.append(curr_wname) self.g_wvals.append(curr_wval_sqz) self.g_wshapes.append(curr_wval.shape) """ Save """ np.savez(_save_name,g_wnames=self.g_wnames,g_wvals=self.g_wvals,g_wshapes=self.g_wshapes) if self.VERBOSE: print ("[%s] saved. Size is [%.4f]MB" % (_save_name,os.path.getsize(_save_name)/1000./1000.)) def restore_from_npz(self,_sess,_loadname=None): if _loadname==None: _loadname='net/net_%s_final.npz'%(self.name) l = np.load(_loadname) g_wnames = l['g_wnames'] g_wvals = l['g_wvals'] g_wshapes = l['g_wshapes'] for widx,wname in enumerate(g_wnames): curr_wvar = [v for v in tf.global_variables() if v.name==wname][0] _sess.run(tf.assign(curr_wvar,g_wvals[widx].reshape(g_wshapes[widx]))) if self.VERBOSE: print ("Weight restored from [%s] Size is [%.4f]MB" % (_loadname,os.path.getsize(_loadname)/1000./1000.)) def save2mat_from_npz(self,_x_train='',_y_train='',_save_name=None,_npz_path=None): # Save weights to mat file so that MATLAB can use it. if _npz_path == None: _npz_path = 'net/net_%s.npz'%(self.name) l = np.load(_npz_path) g_wnames = l['g_wnames'] g_wvals = l['g_wvals'] g_wshapes = l['g_wshapes'] D = {} for w_idx,w_name in enumerate(g_wnames): curr_name = w_name.replace(':0','') curr_name = curr_name.replace(self.name+'/','') curr_name = curr_name.replace('/','_') curr_val = g_wvals[w_idx].reshape(g_wshapes[w_idx]) D[curr_name] = curr_val # Save train data if _x_train!='': D['x_train'] = _x_train if _y_train!='': D['y_train'] = _y_train # Save dictionary D to the mat file if _save_name == None: _save_name = 'net/net_%s.mat'%(self.name) sio.savemat(_save_name,D) if self.VERBOSE: print ("[%s] saved. Size is [%.4f]MB" % (_save_name,os.path.getsize(_save_name)/1000./1000.)) # Train def train(self,_sess,_x_train,_y_train,_lr=1e-3,_batch_size=512,_max_epoch=1e4,_kp=1.0 ,_LR_SCHEDULE=True,_PRINT_EVERY=20,_PLOT_EVERY=20 ,_SAVE_TXT=True,_SAVE_BEST_NET=True,_SAVE_FINAL=True,_REMOVE_PREVS=True ,_x_dim4plot=0,_x_name4plot=None): self.x_dim4plot = _x_dim4plot self.x_name4plot = _x_name4plot # Remove existing files if _REMOVE_PREVS: remove_file_if_exists('net/net_%s_best.npz'%(self.name),_VERBOSE=self.VERBOSE) remove_file_if_exists('net/net_%s_best.mat'%(self.name),_VERBOSE=self.VERBOSE) remove_file_if_exists('net/net_%s_final.npz'%(self.name),_VERBOSE=self.VERBOSE) remove_file_if_exists('net/net_%s_final.mat'%(self.name),_VERBOSE=self.VERBOSE) remove_file_if_exists('res/res_%s.txt'%(self.name),_VERBOSE=self.VERBOSE) # Reference training data x_train,y_train = _x_train,_y_train if len(np.shape(y_train)) == 1: # if y is a vector y_train = np.reshape(y_train,newshape=[-1,1]) # make it rank two self.nzr_x,self.nzr_y = nzr(x_train),nzr(y_train) # get normalizer # Iterate if _PRINT_EVERY == 0: print_period = 0 else: print_period = _max_epoch//_PRINT_EVERY if _PLOT_EVERY == 0: plot_period = 0 else: plot_period = _max_epoch//_PLOT_EVERY max_iter = max(x_train.shape[0]//_batch_size, 1) best_loss_val = np.inf if _SAVE_TXT: txt_name = ('res/res_%s.txt'%(self.name));f = open(txt_name,'w') # Open txt file print_n_txt(_f=f,_chars='Text name: '+txt_name,_DO_PRINT=self.VERBOSE) for epoch in range((int)(_max_epoch)+1): # For every epoch train_rate = (float)(epoch/_max_epoch) x_train,y_train = shuffle(x_train,y_train) nzd_x_train,nzd_y_train = self.nzr_x.get_nzdval(x_train),self.nzr_y.get_nzdval(y_train) for iter in range(max_iter): # For every iteration start,end = iter*_batch_size,(iter+1)*_batch_size if _LR_SCHEDULE: if epoch < 0.5*_max_epoch: lr_use = _lr elif epoch < 0.75*_max_epoch: lr_use = _lr/5. else: lr_use = _lr/10. else: lr_use = _lr feeds = {self.x:nzd_x_train[start:end,:],self.t:nzd_y_train[start:end,:] ,self.kp:_kp,self.lr:lr_use,self.train_rate:(float)(epoch/_max_epoch) ,self.rho_ref:self.rho_ref_train,self.is_training:True} # Optimize _sess.run(self.optm,feeds) # Track the Best result BEST_FLAG = False check_period = _max_epoch//100 if (epoch%check_period)==0: feeds = {self.x:nzd_x_train,self.t:nzd_y_train,self.kp:1.0,self.train_rate:train_rate ,self.rho_ref:self.rho_ref_train,self.is_training:False} opers = [self.loss_total,self.gmm_nll,self.kl_reg,self.l2_reg,self.fit_mse] loss_val,gmm_nll,kl_reg,l2_reg,fit_mse = _sess.run(opers,feeds) if (loss_val < best_loss_val) & (train_rate >= 0.5): best_loss_val = loss_val BEST_FLAG = True if _SAVE_BEST_NET: if self.VERBOSE: print ("Epoch:[%d] saving current network (best loss:[%.3f])"%(epoch,best_loss_val)) self.save2npz(_sess,'net/net_%s_best.npz'%(self.name)) # Save the current best model self.save2mat_from_npz(_x_train=x_train,_y_train=y_train, _save_name='net/net_%s_best.mat'%(self.name), _npz_path='net/net_%s_best.npz'%(self.name)) # Print current result if (print_period!=0) and ((epoch%print_period)==0 or (epoch==(_max_epoch-1))): # Print # Feed total dataset feeds = {self.x:nzd_x_train,self.t:nzd_y_train,self.kp:1.0,self.train_rate:(float)(epoch/_max_epoch) ,self.rho_ref:self.rho_ref_train,self.is_training:False} opers = [self.loss_total,self.gmm_nll,self.kl_reg,self.l2_reg,self.fit_mse] loss_val,gmm_nll,kl_reg,l2_reg,fit_mse = _sess.run(opers,feeds) if _SAVE_TXT: strTemp = ("[%d/%d] loss:%.3f(gmm:%.3f+kl:%.3f+l2:%.3f+fit:%.3f) bestLoss:%.3f" %(epoch,_max_epoch,loss_val,gmm_nll,kl_reg,l2_reg,fit_mse,best_loss_val)) print_n_txt(_f=f,_chars=strTemp,_DO_PRINT=self.VERBOSE) else: if self.VERBOSE: print ("[%d/%d] loss:%.3f(gmm:%.3f+kl:%.3f+l2:%.3f+fit:%.3f) bestLoss:%.3f" %(epoch,_max_epoch,loss_val,gmm_nll,kl_reg,l2_reg,fit_mse,best_loss_val)) # Plot current result if (plot_period!=0) and ((epoch%plot_period)==0 or (epoch==(_max_epoch-1))): # Plot # Get loss values feeds = {self.x:nzd_x_train,self.t:nzd_y_train,self.kp:1.0,self.train_rate:(float)(epoch/_max_epoch) ,self.rho_ref:self.rho_ref_train,self.is_training:False} opers = [self.loss_total,self.gmm_nll,self.kl_reg,self.l2_reg,self.fit_mse] loss_val,gmm_nll,kl_reg,l2_reg,fit_mse = _sess.run(opers,feeds) # Sampling n_sample = 1 nzd_y_pred = self.sampler(_sess=_sess,_x=nzd_x_train,n_samples=n_sample) # Plot first dimensions of both input and output x_plot,y_plot = x_train[:,self.x_dim4plot],y_train[:,0] # Traning data plt.figure(figsize=(8,4)) plt.axis([np.min(x_plot),np.max(x_plot),np.min(y_plot)-0.1,np.max(y_plot)+0.1]) h_tr,=plt.plot(x_plot,y_plot,'k.') # Plot training data for i in range(n_sample): ith_nzd_y_pred = nzd_y_pred[:,0:1,i] h_pr,=plt.plot(x_plot,self.nzr_y.get_orgval(ith_nzd_y_pred),'b.') # Plot prediction plt.title("[%d/%d] name:[%s] loss_val:[%.3e]"%(epoch,_max_epoch,self.name,loss_val)) plt.legend([h_tr,h_pr],['Train data','Predictions'],fontsize=13,loc='upper left') if self.x_name4plot != None: plt.xlabel(self.x_name4plot,fontsize=13) plt.show() # Save final weights if _SAVE_FINAL: self.save2npz(_sess,'net/net_%s_final.npz'%(self.name)) # Save the current best model self.save2mat_from_npz(_x_train=x_train,_y_train=y_train, _save_name='net/net_%s_final.mat'%(self.name), _npz_path='net/net_%s_final.npz'%(self.name)) # Test def test(self,_sess,_x_train,_y_train,_x_test=None,_y_test=None, _title_str4data=None,_title_str4test=None, _PLOT_TRAIN=False,_PLOT_TEST=False,_SAVE_FIG=False, _x_dim4plot=0,_x_name4plot=None): self.x_dim4plot = _x_dim4plot self.x_name4plot = _x_name4plot # Get normalizer if len(np.shape(_y_train)) == 1: # if y is a vector _y_train = np.reshape(_y_train,newshape=[-1,1]) # make it rank two self.nzr_x,self.nzr_y = nzr(_x_train),nzr(_y_train) # get normalizer # Plot train data and predictions if _PLOT_TRAIN: if len(np.shape(_y_train)) == 1: # if y is a vector _y_train = np.reshape(_y_train,newshape=[-1,1]) # make it rank two x_train4plot,y_train4plot = _x_train[:,self.x_dim4plot],_y_train[:,0] # traning data nzd_y_pred = self.sampler(_sess=_sess,_x=self.nzr_x.get_nzdval(_x_train)) y_pred_train = self.nzr_y.get_orgval(nzd_y_pred)[:,0] plt.figure(figsize=(8,4)) plt.axis([np.min(x_train4plot),np.max(x_train4plot),np.min(y_train4plot)-0.1,np.max(y_train4plot)+0.1]) h_tr,=plt.plot(x_train4plot,y_train4plot,'k.') # plot train data h_pr,=plt.plot(x_train4plot,y_pred_train,'b.') # plot prediction for train data plt.legend([h_tr,h_pr],['Train data','Train predictions'],fontsize=13,loc='upper left') if self.x_name4plot != None: plt.xlabel(self.x_name4plot,fontsize=13) plt.ylabel('Output',fontsize=13) if _title_str4data != None: plt.title(_title_str4data,fontsize=15); if _SAVE_FIG: plt.savefig('fig/fig_%s_data.png'%(self.name)) plt.show() # Plot test data and predictions if len(np.shape(_y_train)) == 1: # if y is a vector _y_train = np.reshape(_y_train,newshape=[-1,1]) # make it rank two if len(np.shape(_y_test)) == 1: # if y is a vector _y_test = np.reshape(_y_test,newshape=[-1,1]) # make it rank two x_data4plot,y_data4plot = _x_train[:,self.x_dim4plot],_y_train[:,0] # traning data x_test4plot,y_test4plot = _x_test[:,self.x_dim4plot],_y_test[:,0] # test data nzd_y_pred = self.sampler(_sess=_sess,_x=self.nzr_x.get_nzdval(_x_test)) y_pred_test = self.nzr_y.get_orgval(nzd_y_pred[:,0:1,0]) if _PLOT_TEST: fig = plt.figure(figsize=(8,4)) plt.axis([np.min(x_data4plot),np.max(x_data4plot),np.min(y_data4plot)-0.1,
np.max(y_data4plot)
numpy.max
import numpy as np import nnabla as nn import nnabla.functions as F import nnabla.parametric_functions as PF import nnabla.solvers as S import nnabla.random as random import math import argparse import gym from nnabla.ext_utils import get_extension_context from nnabla.parameter import get_parameter_or_create from nnabla.initializer import ConstantInitializer from common.buffer import ReplayBuffer from common.log import prepare_monitor from common.experiment import evaluate, train from common.exploration import EmptyNoise from sac import q_network, policy_network from sac import _squash_action class SAC: def __init__(self, obs_shape, action_size, batch_size, critic_lr, actor_lr, temp_lr, tau, gamma): self.obs_shape = obs_shape self.action_size = action_size self.batch_size = batch_size self.critic_lr = critic_lr self.actor_lr = actor_lr self.temp_lr = temp_lr self.gamma = gamma self.tau = tau self._build() def _build(self): # inference graph self.infer_obs_t = nn.Variable((1,) + self.obs_shape) with nn.parameter_scope('trainable'): infer_dist = policy_network(self.infer_obs_t, self.action_size, 'actor') self.infer_act_t, _ = _squash_action(infer_dist) self.deterministic_act_t = infer_dist.mean() # training graph self.obss_t = nn.Variable((self.batch_size,) + self.obs_shape) self.acts_t = nn.Variable((self.batch_size, self.action_size)) self.rews_tp1 = nn.Variable((self.batch_size, 1)) self.obss_tp1 = nn.Variable((self.batch_size,) + self.obs_shape) self.ters_tp1 = nn.Variable((self.batch_size, 1)) with nn.parameter_scope('trainable'): self.log_temp = get_parameter_or_create('temp', [1, 1], ConstantInitializer(0.0)) dist_t = policy_network(self.obss_t, self.action_size, 'actor') dist_tp1 = policy_network(self.obss_tp1, self.action_size, 'actor') squashed_act_t, log_prob_t = _squash_action(dist_t) squashed_act_tp1, log_prob_tp1 = _squash_action(dist_tp1) q1_t = q_network(self.obss_t, self.acts_t, 'critic/1') q2_t = q_network(self.obss_t, self.acts_t, 'critic/2') q1_t_with_actor = q_network(self.obss_t, squashed_act_t, 'critic/1') q2_t_with_actor = q_network(self.obss_t, squashed_act_t, 'critic/2') with nn.parameter_scope('target'): q1_tp1 = q_network(self.obss_tp1, squashed_act_tp1, 'critic/1') q2_tp1 = q_network(self.obss_tp1, squashed_act_tp1, 'critic/2') # q function loss q_tp1 = F.minimum2(q1_tp1, q2_tp1) entropy_tp1 = F.exp(self.log_temp) * log_prob_tp1 mask = (1.0 - self.ters_tp1) q_target = self.rews_tp1 + self.gamma * (q_tp1 - entropy_tp1) * mask q_target.need_grad = False q1_loss = 0.5 * F.mean(F.squared_error(q1_t, q_target)) q2_loss = 0.5 * F.mean(F.squared_error(q2_t, q_target)) self.critic_loss = q1_loss + q2_loss # policy function loss q_t = F.minimum2(q1_t_with_actor, q2_t_with_actor) entropy_t = F.exp(self.log_temp) * log_prob_t self.actor_loss = F.mean(entropy_t - q_t) # temperature loss temp_target = log_prob_t - self.action_size temp_target.need_grad = False self.temp_loss = -F.mean(F.exp(self.log_temp) * temp_target) # trainable parameters with nn.parameter_scope('trainable'): with nn.parameter_scope('critic'): critic_params = nn.get_parameters() with nn.parameter_scope('actor'): actor_params = nn.get_parameters() # target parameters with nn.parameter_scope('target/critic'): target_params = nn.get_parameters() # target update update_targets = [] sync_targets = [] for key, src in critic_params.items(): dst = target_params[key] updated_dst = (1.0 - self.tau) * dst + self.tau * src update_targets.append(F.assign(dst, updated_dst)) sync_targets.append(F.assign(dst, src)) self.update_target_expr = F.sink(*update_targets) self.sync_target_expr = F.sink(*sync_targets) # setup solvers self.critic_solver = S.Adam(self.critic_lr) self.critic_solver.set_parameters(critic_params) self.actor_solver = S.Adam(self.actor_lr) self.actor_solver.set_parameters(actor_params) self.temp_solver = S.Adam(self.temp_lr) self.temp_solver.set_parameters({'temp': self.log_temp}) def infer(self, obs_t): self.infer_obs_t.d = np.array([obs_t]) self.infer_act_t.forward(clear_buffer=True) return np.clip(self.infer_act_t.d[0], -1.0, 1.0) def evaluate(self, obs_t): self.infer_obs_t.d =
np.array([obs_t])
numpy.array
from pystan import StanModel import statistics import numpy as np import os #load and compile model (may take a few minutes) sm = StanModel(file="xy_model.stan") #set out file filename = "energy_data.csv" #write file header if necessary if os.path.exists(filename): pass else: with open(filename, 'w') as f: f.write("temp,dim_x,dim_y,energy,energy_var,c,vortex_density,rhat,n_eff\n") #basic parameters chains = 4 vorticity_samples = 1000 iterations = 5000 dim_x = dim_y = 4 #create the initial state for the lowest temperature calculation unit_vect_array =
np.zeros((dim_x,dim_y,2),dtype='float')
numpy.zeros
import argparse import os import time import h5py import numpy as np import pymesh import trimesh from joblib import Parallel, delayed from scipy.interpolate import RegularGridInterpolator import create_file_lst CUR_PATH = os.path.dirname(os.path.realpath(__file__)) parser = argparse.ArgumentParser() parser.add_argument('--thread_num', type=int, default='9', help='how many objs are creating at the same time') parser.add_argument('--category', type=str, default="all", help='Which single class to generate on [default: all, can ' 'be chair or plane, etc.]') FLAGS = parser.parse_args() def get_sdf_value(sdf_pt, sdf_params_ph, sdf_ph, sdf_res): x = np.linspace(sdf_params_ph[0], sdf_params_ph[3], num=sdf_res + 1) y = np.linspace(sdf_params_ph[1], sdf_params_ph[4], num=sdf_res + 1) z = np.linspace(sdf_params_ph[2], sdf_params_ph[5], num=sdf_res + 1) my_interpolating_function = RegularGridInterpolator((z, y, x), sdf_ph) sdf_value = my_interpolating_function(sdf_pt) print("sdf_value:", sdf_value.shape) return np.expand_dims(sdf_value, axis=1) def get_sdf(sdf_file, sdf_res): intsize = 4 floatsize = 8 sdf = { "param": [], "value": [] } with open(sdf_file, "rb") as f: try: bytes = f.read() ress = np.frombuffer(bytes[:intsize * 3], dtype=np.int32) if -1 * ress[0] != sdf_res or ress[1] != sdf_res or ress[2] != sdf_res: raise Exception(sdf_file, "res not consistent with ", str(sdf_res)) positions = np.frombuffer(bytes[intsize * 3:intsize * 3 + floatsize * 6], dtype=np.float64) # bottom left corner, x,y,z and top right corner, x, y, z sdf["param"] = [positions[0], positions[1], positions[2], positions[3], positions[4], positions[5]] sdf["param"] = np.float32(sdf["param"]) sdf["value"] = np.frombuffer(bytes[intsize * 3 + floatsize * 6:], dtype=np.float32) sdf["value"] = np.reshape(sdf["value"], (sdf_res + 1, sdf_res + 1, sdf_res + 1)) finally: f.close() return sdf def get_offset_ball(num, bandwidth): u = np.random.normal(0, 1, size=(num, 1)) v = np.random.normal(0, 1, size=(num, 1)) w = np.random.normal(0, 1, size=(num, 1)) r = np.random.uniform(0, 1, size=(num, 1)) ** (1. / 3) * bandwidth norm = np.linalg.norm(np.concatenate([u, v, w], axis=1), axis=1, keepdims=1) # print("u.shape",u.shape) # print("norm.shape",norm.shape) # print("r.shape",r.shape) (x, y, z) = r * (u, v, w) / norm return np.concatenate([x, y, z], axis=1) def get_offset_cube(num, bandwidth): u = np.random.normal(0, 1, size=(num, 1)) v =
np.random.normal(0, 1, size=(num, 1))
numpy.random.normal
import numpy as np import os from notears import utils, linear, noleaks def read_tsv(filename, priv_size, pub_size): with open(filename) as f: headers = [h[1:-1] for h in f.readline().strip().split('\t')] discrete2num = {h:{} for h in headers} discrete2idx = {h:0 for h in headers} frequencies = {h:{} for h in headers} lines = f.readlines() X = [] for line in lines: point = line.strip().split('\t') num_point = [] for idx, val in enumerate(point): col = headers[idx] if val not in discrete2num[col]: mapping = np.ceil(discrete2idx[col] / 2) if discrete2idx[col] % 2 == 0: mapping *= -1 discrete2num[col][val] = discrete2idx[col] discrete2idx[col] += 1 num_val = discrete2num[col][val] if num_val not in frequencies[col]: frequencies[col][num_val] = 1 else: frequencies[col][num_val] += 1 num_point.append(num_val) X.append(num_point) X = np.array(X, dtype=np.float) X = discrete2continuous(X, headers, frequencies) * 20 X = X - np.mean(X, axis=0, keepdims=True) priv_X = X[:priv_size] if pub_size != 0: pub_X = X[priv_size:priv_size+pub_size] else: pub_X = None return priv_X, pub_X, headers def discrete2continuous(X, headers, frequencies): data_size = X.shape[0] models = {h:create_model(frequencies[h]) for h in headers} for row_idx in range(data_size): for col_idx, h in enumerate(headers): val = models[h](X[row_idx][col_idx]) X[row_idx][col_idx] = val return X def normal(x, mu, sig): return 1. / (np.sqrt(2 * np.pi) * sig) * np.exp(-0.5 *
np.square(x - mu)
numpy.square
""" Use info from TEF sections to calculate values for the Geyer and MacCready 2014 parameter space diagram. """ # imports import matplotlib.pyplot as plt import numpy as np import pickle import pandas as pd from datetime import datetime, timedelta import netCDF4 as nc import os; import sys sys.path.append(os.path.abspath('../alpha')) import Lfun import zrfun import zfun import tef_fun import flux_fun from time import time from warnings import filterwarnings filterwarnings('ignore') # skip some warning messages # associated with lines like QQp[QQ<=0] = np.nan import argparse parser = argparse.ArgumentParser() parser.add_argument('-g', '--gridname', type=str, default='cas6') parser.add_argument('-t', '--tag', type=str, default='v3') parser.add_argument('-x', '--ex_name', type=str, default='lo8b') parser.add_argument('-y', '--year', type=int, default=2017) args = parser.parse_args() year_str = str(args.year) # Get Ldir Ldir = Lfun.Lstart(args.gridname, args.tag) gtagex = args.gridname + '_' + args.tag + '_' + args.ex_name # select input/output location run_name = gtagex+'_'+year_str+'.01.01_'+year_str+'.12.31' indir00 = Ldir['LOo'] + 'tef2/' indir0 = indir00 + run_name + '/' indir = indir0 + 'flux/' x_indir = indir0 + 'extractions/' outdir = indir00 + 'sill_dyn_plots/' Lfun.make_dir(outdir) # get section definitions sect_df = tef_fun.get_sect_df() testing = False if testing: sect_list = ['ai1'] else: sect_list = list(sect_df.index) # initialize DataFrame q_df = pd.DataFrame(index=sect_list, columns=['Ut', 'Qprism','H', 'Qr','Ur', 'M', 'Fr', 'Qe', 'Ue', 'DS', 'Sbar', 'c', 'Ue_non', 'DS_non']) # get Socn jdf1_tef_df, jdf1_in_sign = flux_fun.get_fluxes(indir0, 'jdf1') Socn = jdf1_tef_df['Sin'].max() print('Socn = %0.2f' % (Socn)) # constants Cd = 2.5e-3 om = 1.4e-4 beta = 7.7e-4 g = 9.8 for sect_name in sect_list: tef_df, in_sign = flux_fun.get_fluxes(indir0, sect_name) Qe = (tef_df['Qin'] - tef_df['Qout']).mean()/2 DS = (tef_df['Sin'] - tef_df['Sout']).mean() Sbar = (tef_df['Sin'] + tef_df['Sout']).mean()/2 if False: if sect_name in ['jdf1', 'sog5']: # check out mean net salt flux through a couple of sections print(sect_name) print((tef_df['Qin']*tef_df['Sin']).mean() + (tef_df['Qout']*tef_df['Sout']).mean()) ds = nc.Dataset(x_indir + sect_name + '.nc') H = ds['h'][:].max() # max depth [m] A = ds['DA0'][:].sum() # cross-sectional area [m2] N0 = np.sqrt(beta*g*Socn/H) c = np.sqrt(beta*g*Socn*H) Qprism = tef_df['Qtide'].mean() / 2 Ut = (np.pi/2) * tef_df['Qtide'].mean() / A # use Freshwater Flux as an alternate way to calculate Qr and Ur Qr = -( tef_df['Qin']*(Socn-tef_df['Sin']) + tef_df['Qout']*(Socn-tef_df['Sout']) ).mean()/Socn do_sect = True if Qr < 1: print('Dropping Section: Qr negative for ' + sect_name) do_sect = False q_df = q_df.drop(sect_name) if do_sect: q_df.loc[sect_name,'Qprism'] = Qprism Ur = np.abs(Qr/A) if Qe < 0: print('Qe negative for ' + sect_name) Ue = np.abs(Qe/A) # should we use A/2? q_df.loc[sect_name,'H'] = H q_df.loc[sect_name,'Ut'] = Ut q_df.loc[sect_name,'Qe'] = Qe q_df.loc[sect_name,'Qr'] = Qr q_df.loc[sect_name,'Ur'] = Ur q_df.loc[sect_name,'Ue'] = Ue q_df.loc[sect_name,'DS'] = DS q_df.loc[sect_name,'Sbar'] = Sbar # derived quantities M2 = (Cd*Ut*Ut)/(om*N0*H*H) M =
np.sqrt(M2)
numpy.sqrt
import numpy as np import sys import os import h5py import pandas as pd from constants import * from scipy.spatial import cKDTree import time import copy class Snapshots: def __init__(self, path, snaplist, partType=1, useIDs=True, conversions=[1, 1, 1, 1], softeningLength = 0.002, bigFile=False, physical_units=False): self.snapshot = {} for i in snaplist: self.snapshot[i] = Snapshot(path, i, partType=partType, useIDs=useIDs, conversions=conversions, softeningLength=softeningLength, bigFile=bigFile, physical_units=physical_units) class Snapshot: def __init__(self, path, nsnap, partType=1, useIDs=True, conversions=[1, 1, 1, 1], softeningLength = 0.002, bigFile=False, physical_units=False, read_only_coords=False): self.lengte_to_Mpc = conversions[0] self.snelheid_to_kms = conversions[1] self.dichtheid_to_Mpc3 = conversions[2] self.massa_to_10msun = conversions[3] self.softeningLength = softeningLength self.bigFile=bigFile self.physical_units = physical_units self.snappath = path self.nsnap = nsnap self.partType = partType self.useIDs = useIDs self.dataopen = self.open_snap(self.snappath, nsnap) Header = self.dataopen['Header'] self.time = Header.attrs['Time'] self.boxsize = Header.attrs['BoxSize']*self.lengte_to_Mpc self.npart = Header.attrs['NumPart_ThisFile'][:] self.redshift = Header.attrs['Redshift'] self.tree = [] self.mass = Header.attrs['MassTable'][:]*self.massa_to_10msun self.temphalo = {} self.temphalo['exists'] = False if not self.bigFile: if partType < 6: if not read_only_coords: self.velocities = self.dataopen['PartType{}/Velocities'.format(int(partType))][:,:]*self.snelheid_to_kms*np.sqrt(1./(1.+self.redshift)) #self.densities = dataopen['PartType{}/Density'.format(int(partType))][:] self.IDs = self.dataopen['PartType{}/ParticleIDs'.format(int(partType))][:] self.masses = np.ones(len(self.IDs))*self.mass[self.partType] if partType == 5: self.masses = self.dataopen['PartType5/Masses'][:]*self.massa_to_10msun if partType == 0: self.internalEnergy = self.dataopen['PartType0/InternalEnergy'][:]*self.massa_to_10msun*self.snelheid_to_kms**2 self.density = self.dataopen['PartType0/Density'][:]*self.dichtheid_to_Mpc3 self.coordinates = self.dataopen['PartType{}/Coordinates'.format(int(self.partType))][:,:]*self.lengte_to_Mpc elif partType == 6: if not read_only_coords: self.mass = Header.attrs['MassTable'][:]*self.massa_to_10msun self.velocities = self.dataopen['PartType1/Velocities'][:,:] self.IDs = self.dataopen['PartType1/ParticleIDs'][:] self.masses = self.mass[1]*np.ones(len(self.IDs)) self.velocities = np.append(self.velocities, self.dataopen['PartType5/Velocities'][:,:], axis=0)*self.snelheid_to_kms*np.sqrt(1./(1.+self.redshift)) self.IDs = np.append(self.IDs, self.dataopen['PartType5/ParticleIDs'][:]) self.masses = np.append(self.masses, self.dataopen['PartType5/Masses'][:]*self.massa_to_10msun) self.coordinates = self.dataopen['PartType1/Coordinates'][:,:] self.coordinates = np.append(self.coordinates, self.dataopen['PartType5/Coordinates'][:,:], axis=0)*self.lengte_to_Mpc elif partType == 7: if not read_only_coords: self.mass = Header.attrs['MassTable'][:]*self.massa_to_10msun self.velocities = self.dataopen['PartType1/Velocities'][:,:] self.IDs = self.dataopen['PartType1/ParticleIDs'][:] self.masses = self.mass[1]*np.ones(len(self.IDs)) self.internalEnergy = np.zeros_like(self.masses) self.velocities = np.append(self.velocities, self.dataopen['PartType0/Velocities'][:,:], axis=0)*self.snelheid_to_kms*np.sqrt(1./(1.+self.redshift)) self.IDs = np.append(self.IDs, self.dataopen['PartType0/ParticleIDs'][:]) self.masses = np.append(self.masses, self.mass[0]*np.ones(len(self.dataopen['PartType0/ParticleIDs'][:]))) self.internalEnergy = np.append(self.internalEnergy, self.dataopen['PartType0/InternalEnergy'][:]) self.temperature = self.internalEnergy*80.8 self.coordinates = self.dataopen['PartType1/Coordinates'][:,:] self.coordinates = np.append(self.coordinates, self.dataopen['PartType0/Coordinates'][:,:], axis=0)*self.lengte_to_Mpc self.dataopen.close() def open_property(self, prop): if self.partType < 6: return self.dataopen['PartType{}/'.format(int(self.partType))+prop][:] elif self.partType == 6: een = self.dataopen['PartType1/'+prop][:] return np.append(een, self.dataopen['PartType5/'+prop][:], axis=0) elif self.partType == 7: een = self.dataopen['PartType1/'+prop][:] return np.append(een, self.dataopen['PartType0/'+prop][:], axis=0) def get_IDs(self): if self.bigFile: return self.open_property('ParticleIDs') else: return self.IDs def get_coordinates(self): if self.bigFile: return self.open_property('Coordinates')*self.lengte_to_Mpc else: return self.coordinates def get_velocities(self): if self.bigFile: return self.open_property('Velocities')*self.snelheid_to_kms else: return self.velocities def get_internalEnergy(self): if self.partType == 0 or self.partType == 7: return self.internalEnergy # elif self.partType == 7: # iE = np.zeros(np.sum(self.npart)) # iE[self.npart[1]:] = self.dataopen['PartType0/InternalEnergy'][:] # return iE else: return [] def get_temperature(self): if self.partType == 0 or self.partType == 7: return self.temperature else: return [] def get_density(self): if self.partType == 0: return self.density elif self.partType == 7: den = np.zeros(np.sum(self.npart)) den[self.npart[1]:] = self.dataopen['PartType0/Density'][:] return den else: return [] def get_masses(self): if self.bigFile: if self.partType < 6: if self.mass[self.partType] == 0: return self.open_property('Masses')*self.massa_to_10msun else: return np.ones(self.get_number_of_particles())*self.mass[self.partType] else: if self.partType == 6: if self.mass[1] == 0: een = self.dataopen['PartType1/Masses'][:]*self.massa_to_10msun else: een = np.ones(self.get_number_of_particles())*self.mass[1] if self.mass[5] == 0: return np.append(een, self.dataopen['PartType5/Masses'][:]*self.massa_to_10msun) else: return np.append(een, np.ones(self.get_number_of_particles)*self.mass[5]) if self.partType == 7: if self.mass[1] == 0: een = self.dataopen['PartType1/Masses'][:]*self.massa_to_10msun else: een = np.ones(self.get_number_of_particles())*self.mass[1] if self.mass[0] == 0: return np.append(een, self.dataopen['PartType0/Masses'][:]*self.massa_to_10msun) else: return np.append(een, np.ones(self.get_number_of_particles())*self.mass[0]) else: return self.masses def get_masscenter_temphalo(self, particles): coords = self.get_coordinates()[particles] mass = self.get_masses()[particles] comtemp = 1./np.sum(mass)*np.sum((mass*coords.T).T, axis=0) tree = cKDTree(coords, boxsize=self.boxsize) particles2 = copy.deepcopy(particles) comnew = copy.deepcopy(comtemp) comtemp *= 2 while (np.sum(comtemp - comnew)/3. > self.softeningLength/20.): print(comnew) dist, ind = tree.query([comnew], k=int(np.min([int(len(particles2)/2), 5000]))) print(np.sum(dist[0])/len(dist[0])) particles2 = particles[ind[0]] coords2 = coords[ind[0]] print(np.sum(np.sqrt((coords2[:, 0]-comnew[0])**2 + (coords2[:, 1]-comnew[1])**2 + (coords2[:, 2]-comnew[2])**2))/len(dist[0])) mass2 = mass[ind[0]] comtemp = copy.deepcopy(comnew) comnew = 1./np.sum(mass2)*np.sum((mass2*coords2.T).T, axis=0) print(comnew) return comnew def get_temphalo(self, coord, radius, fixedRadius=np.logspace(-3, 0, 60), r200fac=1, partlim=200, satellite=False): if not isinstance(self.tree, cKDTree): sys.exit("Error: no KDTree present") massa = self.get_masses() c = constant(redshift=self.redshift) c.change_constants(self.redshift) comoving_rhocrit200 = deltaVir*c.rhocrit_Ms_Mpci3*h/(h*(1+self.redshift))**3 self.temphalo['BinMiddleRadius'] = fixedRadius self.temphalo['MaxRadIndex'] = np.abs(fixedRadius - r200fac*radius).argmin() self.temphalo['Radius'] = np.logspace(np.log10(fixedRadius[0]) - 0.5*(np.log10(fixedRadius[-1])-np.log10(fixedRadius[0]))/len(fixedRadius), np.log10(fixedRadius[-1]) - 0.5*(np.log10(fixedRadius[-1])-np.log10(fixedRadius[0]))/len(fixedRadius), len(fixedRadius)) self.temphalo['indices'] = np.array(self.tree.query_ball_point(coord, r=np.min([r200fac*radius, self.temphalo['Radius'][-1]]))) if len(self.temphalo['indices']) < partlim: self.temphalo['Npart'] = 0 return 0 self.temphalo['distance'] = self.get_radius(point=coord, coords=self.get_coordinates()[self.temphalo['indices']]) sortorder = np.argsort(self.temphalo['distance']).astype(int) self.temphalo['indices'] = self.temphalo['indices'][sortorder] self.temphalo['distance'] = self.temphalo['distance'][sortorder] if self.temphalo['distance'][0] == 0.0: self.temphalo['distance'][0] = 0.001*self.temphalo['distance'][1] self.temphalo['Coord'] = coord #Compute initial density profile self.temphalo['densityprofile'] = np.cumsum(massa[self.temphalo['indices']])/(4./3.*np.pi*self.temphalo['distance']**3)*1.e10 #Compute virial radius and mass if not satellite: virialradiusindex = np.where(self.temphalo['densityprofile'] <= comoving_rhocrit200)[0] if len(virialradiusindex) == 0: print("Something is wrong with this halo", self.temphalo['densityprofile'][-1]/comoving_rhocrit200, self.temphalo['distance'][0], len(self.temphalo['indices'])) self.temphalo['indices'] = [] self.temphalo['Npart'] = 0 return 0 virialradiusindex = virialradiusindex[0] if virialradiusindex < partlim: self.temphalo['indices'] = [] self.temphalo['Npart'] = 0 return 0 self.temphalo['virialradiusindex'] = virialradiusindex self.temphalo['R200'] = self.temphalo['distance'][virialradiusindex] indicestemp = self.temphalo['indices'][:virialradiusindex] self.temphalo['Npart'] = len(indicestemp) #[np.where(self.temphalo['distance'] < self.temphalo['R200'])[0]] self.temphalo['M200'] = np.sum(massa[indicestemp]) else: self.temphalo['R200'] = -1 self.temphalo['M200'] = -1 self.temphalo['exists'] = True if self.partType < 6: self.temphalo['indicesdictCu'] = {} self.temphalo['indicesdict'] = {} for i in range(len(self.temphalo['Radius'])): self.temphalo['indicesdictCu'][i] = np.zeros(0).astype(int) self.temphalo['indicesdict'][i] = np.zeros(0).astype(int) for i in range(0, self.temphalo['MaxRadIndex']+1): temp2 = np.where(self.temphalo['distance'] <= self.temphalo['BinMiddleRadius'][i])[0] self.temphalo['indicesdictCu'][i] = temp2 if i == 0: temp = np.where(self.temphalo['distance'] <= self.temphalo['Radius'][0])[0] else: temp = np.where((self.temphalo['distance'] > self.temphalo['Radius'][i-1]) & (self.temphalo['distance'] <= self.temphalo['Radius'][i]))[0] self.temphalo['indicesdict'][i] = temp elif self.partType == 7: massanu = self.get_masses()[self.temphalo['indices']] self.temphalo['DMparticles'] = np.zeros(len(self.temphalo['indices'])) self.temphalo['Hparticles'] = np.zeros(len(self.temphalo['indices'])) self.temphalo['DMindices'] = np.where(massanu == self.mass[1])[0] self.temphalo['Hindices'] = np.where(massanu == self.mass[0])[0] self.temphalo['DMparticles'][self.temphalo['DMindices']] = 1 self.temphalo['Hparticles'][self.temphalo['Hindices']] = 1 if not satellite: self.temphalo['virialradiusindex'] = virialradiusindex self.temphalo['DMindicesM200'] = np.where(self.get_masses()[self.temphalo['indices'][:virialradiusindex]] == self.mass[1])[0] self.temphalo['HindicesM200'] = np.where(self.get_masses()[self.temphalo['indices'][:virialradiusindex]] == self.mass[0])[0] self.temphalo['DMFraction'] = self.mass[1]*len(self.temphalo['DMindicesM200'])/(self.mass[1]*len(self.temphalo['DMindicesM200']) + self.mass[0]*len(self.temphalo['HindicesM200'])) else: self.temphalo['DMFraction'] = -1 #Saving particles per shell that can be used by other functions: # - get_angular_momentum_radius() # - get_temphalo_profiles() self.temphalo['Hindicesdict'] = {} self.temphalo['DMindicesdict'] = {} self.temphalo['HindicesdictCu'] = {} self.temphalo['DMindicesdictCu'] = {} self.temphalo['indicesdictCu'] = {} self.temphalo['indicesdict'] = {} for i in range(len(self.temphalo['Radius'])): self.temphalo['Hindicesdict'][i] = np.zeros(0).astype(int) self.temphalo['DMindicesdict'][i] = np.zeros(0).astype(int) self.temphalo['HindicesdictCu'][i] = np.zeros(0).astype(int) self.temphalo['DMindicesdictCu'][i] = np.zeros(0).astype(int) self.temphalo['indicesdictCu'][i] = np.zeros(0).astype(int) self.temphalo['indicesdict'][i] = np.zeros(0).astype(int) for i in range(0, self.temphalo['MaxRadIndex']+1): temp2 = np.where(self.temphalo['distance'] <= self.temphalo['BinMiddleRadius'][i])[0] self.temphalo['indicesdictCu'][i] = temp2 self.temphalo['HindicesdictCu'][i] = np.where(self.temphalo['Hparticles'][temp2] != 0)[0] self.temphalo['DMindicesdictCu'][i] = np.where(self.temphalo['DMparticles'][temp2] != 0)[0] if i == 0: temp = np.where(self.temphalo['distance'] <= self.temphalo['Radius'][0])[0] else: temp = np.where((self.temphalo['distance'] > self.temphalo['Radius'][i-1]) & (self.temphalo['distance'] <= self.temphalo['Radius'][i]))[0] self.temphalo['Hindicesdict'][i] = np.where(self.temphalo['Hparticles'][temp] != 0)[0] self.temphalo['DMindicesdict'][i] = np.where(self.temphalo['DMparticles'][temp] != 0)[0] self.temphalo['indicesdict'][i] = temp def get_number_of_particles(self): return len(self.get_IDs()) def get_time(self): return self.time def get_boxsize(self): return self.boxsize def get_radius(self, point=np.array([0, 0, 0]), coords = np.zeros((0, 3))): if len(coords) == 0 : coords = self.get_coordinates() coords = (coords - point) coords = np.where(np.abs(coords) > 0.5*self.boxsize, coords - np.sign(coords)*self.boxsize, coords) return np.sqrt((coords[:, 0])**2 + (coords[:, 1])**2 + (coords[:, 2])**2) def get_average_velocity(self): vel = self.get_velocities() return np.sqrt(vel[:, 0]**2 + vel[:, 1]**2 + vel[:, 2]**2) def get_radialvelocity(self, coord, IDs=[], indices=[]): if len(indices) > 0: start_time = time.time() coords = (self.get_coordinates()[indices]-coord)*Mpc_to_km velocity = self.get_velocities()[indices] r = np.sqrt((coords[:, 0])**2 + (coords[:, 1])**2 + (coords[:, 2])**2) elif len(IDs) > 0: self.useIDs = True indices = self.get_indices(IDs = IDs) coords = (self.get_coordinates()[indices]-coord)*Mpc_to_km velocity = self.get_velocities()[indices] r = self.get_radius(point = coord)[indices]*Mpc_to_km else: coords = (self.get_coordinates() - coord)*Mpc_to_km velocity = self.get_velocities() r = self.get_radius(point = coord)*Mpc_to_km vel = (velocity[:, 0]*(coords[:, 0]) + velocity[:, 1]*(coords[:, 1]) + velocity[:, 2]*(coords[:, 2])) vel_rad = np.zeros(len(velocity[:,0])) vel_rad[np.where(r > 0)] = vel[np.where(r > 0)]/r[np.where(r > 0)] return vel_rad def get_angular_momentum_from_coords(self, coords, radius): coord = self.get_coordinates() - coords rad = self.get_radius(point=coords) indices = np.where(rad <= radius)[0] xr, xteta, xphi, vr, vteta, vphi = self.get_spherical_coord_velocity(coords, indices) Jx = np.sum((xteta*vphi - xphi*vteta)*self.get_masses()[indices]) Jy = np.sum((xphi*vr - xr*vphi)*self.get_masses()[indices]) Jz = np.sum((xr*vteta - xteta*vr)*self.get_masses()[indices]) return np.sqrt(Jx*Jx+Jy*Jy+Jz*Jz)*self.mass[self.partType] def get_spherical_coords(self, coords, indices): coord = self.get_coordinates()[indices, :] - coords xr = self.get_radius(point=coords)[indices] xteta = np.arctan(coord[:, 1]/coord[:, 0]) xphi = np.arccos(coord[:, 2]/xr) xr[np.where(np.isnan(xr))] = 0 xteta[np.where(np.isnan(xteta))] = 0 xphi[np.where(np.isnan(xphi))] = 0 return xr, xteta, xphi def get_spherical_coord_velocity(self, coords, indices): xr, xteta, xphi = self.get_spherical_coords(coords, indices) coord = self.get_coordinates()[indices, :] - coords vel = self.get_velocities()[indices, :] vr = self.get_radius(point=coords)[indices] coord *= Mpc_to_km vteta = (vel[:, 0]*coord[:, 1] - vel[:, 1]*coord[:, 0])/(coord[:, 0]**2+ coord[:, 1]**2) vphi = (coord[:, 2]*(coord[:, 0]*vel[:, 0] + coord[:, 1]*vel[:, 1]) - (coord[:, 0]**2 + coord[:, 1]**2)*vel[:, 2])/(xr*Mpc_to_km*np.sqrt(coord[:, 0]**2 + coord[:, 1]**2)) vr[np.where(np.isnan(vr))] = 0 vteta[np.where(np.isnan(vteta))] = 0 vphi[np.where(np.isnan(vphi))] = 0 return xr, xteta, xphi, vr, vteta, vphi def get_number_density_profile(self, coords, IDs, radius): if not self.temphalo['exists']: indices = self.get_indices(coords, IDs = [], radius=radius[-1]) radcoord = self.get_radius(point=coords)[indices] else: indices = self.temphalo['indices'] radcoord = self.temphalo['distance'] radius = self.temphalo['Radius'] n = np.zeros(len(radius)-1) H_per_particle = self.get_masses()[indices]*1e10*Msun_g/hydrogen_g for i in range(len(radius)-1): V = 4./3*np.pi*((radius[i+1]*Mpc_to_cm)**3 - (radius[i]*Mpc_to_cm)**3) temp = np.where((radcoord > radius[i]) & (radcoord <= radius[i+1]))[0] n[i] = np.sum(H_per_particle[temp])/V return n def get_virial_ratio(self, amount): #Werkt niet als er verschillende massa's in een parType zitten!!! #Eerst moet get_temphalo_profiles gerund worden. if self.temphalo['virialradiusindex'] < amount: indices = self.temphalo['indices'][:self.temphalo['virialradiusindex']] else: indices = np.random.choice(self.temphalo['indices'], size=amount, replace=False)#[np.random.randint(self.temphalo['virialradiusindex'], size=amount)] if self.partType == 1: DMmass = self.mass[1] #Hmass = self.mass[0] #fM = DMmass/Hmass DMindices = indices #Hindices = np.where(self.get_masses()[indices]==Hmass)[0] DMparts = len(DMindices) #Hparts = len(Hindices) if amount < self.temphalo['virialradiusindex']: DMparttot = self.temphalo['virialradiusindex'] #Hparttot = np.sum(self.temphalo['Hparticles'][:self.temphalo['virialradiusindex']]) DMmass = DMparttot/DMparts * DMmass #Hmass = Hparttot/Hparts * Hmass indices = DMindices coords = self.get_coordinates()[DMindices] #mi = np.ones(len(indices)) #mi[DMindices] = DMmass #if Hparts > 0: # mi[Hindices] = Hmass U = 0 lengte = len(indices) - 1 #print("--- %s seconds ---" % (time.time() - start_time), 'making arrays', len(indices)) #start_time = time.time() for i in range(len(indices)): coordstemp = np.delete(coords, i, axis=0) #mij = np.delete(mi, i)*mi[i] mij = DMmass*DMmass rij = self.get_radius(point = coords[i], coords = coordstemp) rij[rij==0] = self.softeningLength U += np.sum(mij/rij) U *= G_Mpc_km2_Msi_si2 * 0.5 * 1.e10 indices = self.temphalo['indices'][:self.temphalo['virialradiusindex']] velocities = self.get_velocities()[indices] velocities -= self.temphalo['Vel'] K = np.sum(0.5*self.mass[1]*np.sum(velocities*velocities, axis=1))# + np.sum(self.get_internalEnergy()[indices])*self.mass[0] self.temphalo['Virial_ratio'] = 2*K/U return self.temphalo['Virial_ratio'] elif self.partType == 7: DMmass = self.mass[1] #Hmass = self.mass[0] #fM = DMmass/Hmass DMindices = indices[np.where(self.get_masses()[indices]==DMmass)[0]] #Hindices = np.where(self.get_masses()[indices]==Hmass)[0] DMparts = len(DMindices) #Hparts = len(Hindices) if amount < self.temphalo['virialradiusindex']: DMparttot = np.sum(self.temphalo['DMparticles'][:self.temphalo['virialradiusindex']]) #Hparttot = np.sum(self.temphalo['Hparticles'][:self.temphalo['virialradiusindex']]) DMmass = DMparttot/DMparts * DMmass #Hmass = Hparttot/Hparts * Hmass indices = DMindices coords = self.get_coordinates()[DMindices] #mi = np.ones(len(indices)) #mi[DMindices] = DMmass #if Hparts > 0: # mi[Hindices] = Hmass U = 0 lengte = len(indices) - 1 #print("--- %s seconds ---" % (time.time() - start_time), 'making arrays', len(indices)) #start_time = time.time() for i in range(len(indices)): coordstemp = np.delete(coords, i, axis=0) #mij = np.delete(mi, i)*mi[i] mij = DMmass*DMmass rij = self.get_radius(point = coords[i], coords = coordstemp) rij[rij==0] = self.softeningLength U += np.sum(mij/rij) U *= G_Mpc_km2_Msi_si2 * 0.5 * 1.e10 indices = self.temphalo['indices'][:self.temphalo['virialradiusindex']] booldm = self.temphalo['DMparticles'][:self.temphalo['virialradiusindex']].astype(bool) indices = indices[booldm] velocities = self.get_velocities()[indices] velocities -= self.temphalo['Vel'] K = np.sum(0.5*self.mass[1]*np.sum(velocities*velocities, axis=1))# + np.sum(self.get_internalEnergy()[indices])*self.mass[0] self.temphalo['Virial_ratio'] = 2*K/U return self.temphalo['Virial_ratio'] def get_temphalo_profiles(self): if self.partType == 7: self.get_temphalo_profiles_pt7() return indices = self.temphalo['indices'] radcoord = self.temphalo['distance'] radius = self.temphalo['Radius'] self.temphalo['profile_density'] = np.zeros(len(radius)) self.temphalo['profile_volume'] = np.zeros(len(radius)) self.temphalo['profile_npart'] = np.zeros(len(radius)) self.temphalo['profile_vrad'] = np.zeros(len(radius)) #self.temphalo['profile_v'] = np.zeros(len(radius)) self.temphalo['profile_mass'] = np.zeros(len(radius)) coords = (self.get_coordinates()[indices]-self.temphalo['Coord']) coords = np.where(np.abs(coords) > 0.5*self.boxsize, coords - np.sign(coords)*self.boxsize, coords)*Mpc_to_km velocity = self.get_velocities()[indices] if self.temphalo['virialradiusindex'] > 1000: self.temphalo['Vel'] = np.average(velocity[:np.max([int(self.temphalo['virialradiusindex']*0.10), 1000])], axis=0) else: self.temphalo['Vel'] = np.average(velocity[:self.temphalo['virialradiusindex']], axis=0) velocity -= self.temphalo['Vel'] vel = (velocity[:, 0]*(coords[:, 0]) + velocity[:, 1]*(coords[:, 1]) + velocity[:, 2]*(coords[:, 2])) r = radcoord*Mpc_to_km vr = np.zeros(len(velocity[:,0])) vr[np.where(r > 0)] = vel[np.where(r > 0)]/r[np.where(r > 0)] M_per_particle = self.get_masses()[indices]*1e10 if self.partType==0: self.temphalo['profile_temperature'] = np.zeros(len(radius)-1) ie = self.get_temperature()[indices] for i in range(self.temphalo['MaxRadIndex'] + 1): temp = self.temphalo['indicesdict'][i] tempCu = self.temphalo['indicesdictCu'][i] if i == 0: self.temphalo['profile_volume'][i] = 4./3*np.pi*(radius[i])**3 else: self.temphalo['profile_volume'][i] = 4./3*np.pi*((radius[i])**3 - (radius[i-1])**3) if len(temp) > 0: self.temphalo['profile_npart'][i] = len(temp) self.temphalo['profile_vrad'][i] = np.sum(vr[temp])/len(temp) masstemp = np.sum(M_per_particle[temp]) if self.partType==0 or self.partType==1: self.temphalo['profile_density'][i] =masstemp/self.temphalo['profile_volume'][i] if self.partType==0: self.temphalo['profile_temperature'][i] = np.sum(ie[temp])/len(temp) if len(tempCu) > 0: #self.temphalo['profile_v'][i] = np.sum(velocity[tempCu])/len(tempCu) self.temphalo['profile_mass'][i] = np.sum(M_per_particle[tempCu]) def get_temphalo_profiles_pt7(self): indices = self.temphalo['indices'] radcoord = self.temphalo['distance'] radius = self.temphalo['Radius'] self.temphalo['profile_Hdensity'] = np.zeros(len(radius)) self.temphalo['profile_DMdensity'] = np.zeros(len(radius)) self.temphalo['profile_density'] = np.zeros(len(radius)) self.temphalo['profile_volume'] = np.zeros(len(radius)) self.temphalo['profile_npart'] = np.zeros(len(radius)) self.temphalo['profile_Hnpart'] = np.zeros(len(radius)) self.temphalo['profile_DMnpart'] = np.zeros(len(radius)) self.temphalo['profile_vrad'] = np.zeros(len(radius)) self.temphalo['profile_Hvrad'] = np.zeros(len(radius)) self.temphalo['profile_DMvrad'] = np.zeros(len(radius)) #self.temphalo['profile_v'] = np.zeros(len(radius)) #self.temphalo['profile_Hv'] = np.zeros(len(radius)) #self.temphalo['profile_DMv'] = np.zeros(len(radius)) self.temphalo['profile_mass'] = np.zeros(len(radius)) self.temphalo['profile_Hmass'] = np.zeros(len(radius)) self.temphalo['profile_DMmass'] = np.zeros(len(radius)) self.temphalo['profile_temperature'] = np.zeros(len(radius)) ie = self.get_temperature()[indices] coords = (self.get_coordinates()[indices] - self.temphalo['Coord']) coords = np.where(np.abs(coords) > 0.5*self.boxsize, coords - np.sign(coords)*self.boxsize, coords)*Mpc_to_km velocity = self.get_velocities()[indices] if self.temphalo['virialradiusindex'] > 1000: self.temphalo['Vel'] = np.average(velocity[:int(self.temphalo['virialradiusindex']*0.10)], axis=0) else: self.temphalo['Vel'] = np.average(velocity[:self.temphalo['virialradiusindex']], axis=0) # self.temphalo['VelDM'] = np.average(velocity[:100][self.temphalo['DMparticles'][:100].astype(bool)], axis=0) # self.temphalo['VelH'] = np.average(velocity[:100][self.temphalo['Hparticles'][:100].astype(bool)], axis=0) velocity -= self.temphalo['Vel'] M_per_particle = self.get_masses()[indices]*1e10 vel = (velocity[:, 0]*(coords[:, 0]) + velocity[:, 1]*(coords[:, 1]) + velocity[:, 2]*(coords[:, 2])) r = radcoord*Mpc_to_km vr = np.zeros(len(velocity[:,0])) vr[np.where(r > 0)] = vel[r > 0]/r[r > 0] for i in range(self.temphalo['MaxRadIndex']+1): temp = self.temphalo['indicesdict'][i] tempCu = self.temphalo['indicesdictCu'][i] if i == 0: self.temphalo['profile_volume'][i] = 4./3*np.pi*(radius[i])**3 else: self.temphalo['profile_volume'][i] = 4./3*np.pi*((radius[i])**3 - (radius[i-1])**3) # Htemp = temp[np.where(self.temphalo['Hparticles'][temp] != 0)[0]] # DMtemp =temp[np.where(self.temphalo['DMparticles'][temp] != 0)[0]] # Htemp = temp[np.where(np.in1d(temp.ravel(), self.temphalo['Hindices']))[0]] # DMtemp = temp[np.where(np.in1d(temp.ravel(), self.temphalo['DMindices']))[0]] Htemp = temp[self.temphalo['Hindicesdict'][i]] DMtemp = temp[self.temphalo['DMindicesdict'][i]] HtempCu = tempCu[self.temphalo['HindicesdictCu'][i]] DMtempCu = tempCu[self.temphalo['DMindicesdictCu'][i]] if len(temp)>0: self.temphalo['profile_npart'][i] = len(temp) self.temphalo['profile_Hnpart'][i] = len(Htemp) self.temphalo['profile_DMnpart'][i] = len(DMtemp) self.temphalo['profile_vrad'][i] = np.sum(vr[temp])/len(temp) masstemp = np.sum(M_per_particle[temp]) self.temphalo['profile_density'][i] = masstemp/self.temphalo['profile_volume'][i] if len(tempCu) > 0: #self.temphalo['profile_v'][i] = np.sum(velocity[tempCu])/len(tempCu) self.temphalo['profile_mass'][i] = np.sum(M_per_particle[tempCu]) if len(DMtemp) > 0: self.temphalo['profile_DMvrad'][i] = np.sum(vr[DMtemp])/len(DMtemp) DMmasstemp = np.sum(M_per_particle[DMtemp]) self.temphalo['profile_DMdensity'][i] = DMmasstemp/self.temphalo['profile_volume'][i] if len(DMtempCu) > 0: #self.temphalo['profile_DMv'][i] = np.sum(velocity[DMtempCu])/len(DMtempCu) self.temphalo['profile_DMmass'][i] = np.sum(M_per_particle[DMtempCu]) if len(Htemp) > 0: self.temphalo['profile_Hvrad'][i] = np.sum(vr[Htemp])/len(Htemp) Hmastemp = np.sum(M_per_particle[Htemp]) self.temphalo['profile_temperature'][i] = np.sum(ie[Htemp])/len(Htemp) self.temphalo['profile_Hdensity'][i] = Hmastemp/self.temphalo['profile_volume'][i] if len(HtempCu) > 0: #self.temphalo['profile_Hv'][i] = np.sum(velocity[HtempCu])/len(HtempCu) self.temphalo['profile_Hmass'][i] = np.sum(M_per_particle[HtempCu]) def get_density_profile(self, coords=[], radius=[]): #Msun /Mpc^3 self.useIDs = False if not self.temphalo['exists']: indices = self.get_indices(coords, IDs = [], radius=radius[-1]) radcoord = self.get_radius(point=coords)[indices] else: indices = self.temphalo['indices'] radcoord = self.temphalo['distance'] radius = self.temphalo['Radius'] n = np.zeros(len(radius)-1) M_per_particle = self.get_masses()[indices]*1e10 for i in range(len(radius)-1): V = 4./3*np.pi*((radius[i+1])**3 - (radius[i])**3) temp = np.where((radcoord > radius[i]) & (radcoord <= radius[i+1]))[0] n[i] = np.sum(M_per_particle[temp])/V return n def get_radialvelocity_profile(self, coords=[], radius=[]): #Msun /Mpc^3 self.useIDs = False indices = self.get_indices(coords, IDs = [], radius=radius[-1]) radcoord = self.get_radius(point=coords)[indices] velocity = self.get_velocities()[indices] coord = (self.get_coordinates()[indices] - coords) coord = np.where(np.abs(coord) > 0.5*self.boxsize, coord - np.sign(coord)*self.boxsize, coord) vel = (velocity[:, 0]*(coord[:, 0]) + velocity[:, 1]*(coord[:, 1]) + velocity[:, 2]*(coord[:, 2])) vr = np.zeros(len(radcoord)) vr[np.where(radcoord > 0)] = vel[np.where(radcoord > 0)]/radcoord[np.where(radcoord > 0)]/Mpc_to_km vel_rad= np.zeros(len(radius)-1) for i in range(len(radius)-1): temp = np.where((radcoord > radius[i]) & (radcoord <= radius[i+1]))[0] vel_rad[i] = np.sum(vr[temp])/len(temp) return vel_rad def makeCoordTree(self): print('Constructing cKDTree...') self.tree = cKDTree(self.get_coordinates(), boxsize=self.boxsize) print('Finished constructing cKDTree.') def get_virial_radius(self, coords): if self.temphalo['exists']: return self.temphalo['R200'] c = constant(redshift = self.redshift) coords = coords%self.boxsize if not isinstance(self.tree, cKDTree): self.makeCoordTree() massa = self.get_masses() def give_density(rad): return np.sum(massa[self.tree.query_ball_point(coords, r=rad)])/(4./3.*np.pi*rad**3)*1e10 def give_density2(rad): return self.get_mass_within_radius(coords, rad)/(4./3.*np.pi*rad**3)*1e10 boundsnotfound = True radius = 0.1 density = give_density(radius) if density == 0: return 0 while boundsnotfound: times = density/(deltaVir*c.rhocrit_Ms_Mpci3) if np.abs(times - 1) < self.softeningLength: return radius if times > 1: radius *= ((times)**(1./2.)) else: boundsnotfound = False density = give_density(radius) boundsnotfound = True radleft = 0.8*radius denleft = give_density(radleft) while boundsnotfound: times = denleft/(deltaVir*c.rhocrit_Ms_Mpci3) if np.abs(times - 1) < self.softeningLength: return radleft if denleft == 0: radleft *= 1.1 elif times < 1: radleft *= ((times)**(1./2.)) else: boundsnotfound = False denleft = give_density(radleft) boundsnotfound = True radright = radius denright = density radleft = self.softeningLength*10. denleft = give_density(radleft) softeningDen = np.abs(density - give_density(radius + self.softeningLength)) while boundsnotfound: #print(radright, radleft, denright, denleft, softeningDen) if np.abs(denright - deltaVir*c.rhocrit_Ms_Mpci3) < softeningDen: return radright if np.abs(denleft - deltaVir*c.rhocrit_Ms_Mpci3) < softeningDen: return radleft radius = radleft + (radright-radleft)/2. density = give_density(radius) softeningDen = np.abs(density - give_density(radius + self.softeningLength)) if np.abs(density - deltaVir*c.rhocrit_Ms_Mpci3) < softeningDen: return radius if density < deltaVir*c.rhocrit_Ms_Mpci3: radright = radius denright = density else: radleft = radius denleft = density def get_angular_momentum_spherical(self, coords, IDs, radius = False, overmass = False): # ix = np.in1d(self.IDs.ravel(), IDs) # indices = np.where(ix)[0] # indices = indices.astype(int) indices = self.get_indices(coords, IDs, radius=radius) xr, xteta, xphi, vr, vteta, vphi = self.get_spherical_coord_velocity(coords, indices) if overmass: Jr = np.sum(xteta*vphi - xphi*vteta) Jteta = np.sum(xphi*vr - xr*vphi) Jphi = np.sum(xr*vteta - xteta*vr) return np.sqrt(Jx*Jx+Jy*Jy+Jz*Jz)/len(indices) else: massa = self.get_masses() Jr = np.sum((xteta*vphi - xphi*vteta)*massa[indices]) Jteta = np.sum((xphi*vr - xr*vphi)*massa[indices]) Jphi = np.sum((xr*vteta - xteta*vr)*massa[indices]) return np.pi*np.sqrt(Jr*Jr+Jteta*Jteta+Jphi*Jphi) def get_angular_momentum(self, coords, IDs, radius = False, overmass = False): # ix = np.in1d(self.IDs.ravel(), IDs) # indices = np.where(ix)[0] # indices = indices.astype(int) #indices = mss.match(IDs, self.IDs) if not self.temphalo['exists']: indices = self.get_indices(coords, IDs, radius=radius) vel0 = np.array([0, 0, 0]) else: indices = self.temphalo['indices'] #Only within R200 vel0 = self.temphalo['Vel'] coord = self.get_coordinates()[indices, :] - coords coord = np.where(np.abs(coord) > 0.5*self.boxsize, coord - np.sign(coord)*self.boxsize, coord) vel = self.get_velocities()[indices, :] - vel0 if overmass: Jx = np.sum(coord[:, 1]*vel[:, 2] - coord[:, 2]*vel[:, 1]) Jy = np.sum(coord[:, 2]*vel[:, 0] - coord[:, 0]*vel[:, 2]) Jz = np.sum(coord[:, 0]*vel[:, 1] - coord[:, 1]*vel[:, 0]) return np.sqrt(Jx*Jx+Jy*Jy+Jz*Jz)/len(indices) else: massa = self.get_masses() Jx = np.sum((coord[:, 1]*vel[:, 2] - coord[:, 2]*vel[:, 1])*massa[indices]) Jy = np.sum((coord[:, 2]*vel[:, 0] - coord[:, 0]*vel[:, 2])*massa[indices]) Jz = np.sum((coord[:, 0]*vel[:, 1] - coord[:, 1]*vel[:, 0])*massa[indices]) return np.sqrt(Jx*Jx+Jy*Jy+Jz*Jz) def get_angular_momentum_radius(self, coords, IDs, radius, overmass=False): if not self.temphalo['exists']: indices = self.get_indices(coords, IDs = IDs, radius=radius[-1]) rad = self.get_radius(point=coords)[indices] else: indices = self.temphalo['indices'] rad = self.temphalo['distance'] radius = self.temphalo['BinMiddleRadius'] coord1 = self.get_coordinates()[indices] - coords coord1 = np.where(np.abs(coord1) > 0.5*self.boxsize, coord1 - np.sign(coord1)*self.boxsize, coord1) vel1 = self.get_velocities()[indices] - self.temphalo['Vel'] self.temphalo['AngularMomentum'] = np.zeros_like(radius) if self.partType == 7: self.temphalo['AngularMomentumH'] = np.zeros_like(radius) self.temphalo['AngularMomentumDM'] = np.zeros_like(radius) JperRH = np.zeros(len(radius)) jperRDM = np.zeros(len(radius)) Jx = [] Jy = [] Jz = [] JperR = np.zeros(len(radius)) indicesold = [] if not overmass: massa = self.get_masses() for i in range(self.temphalo['MaxRadIndex']+1): if isinstance(self.tree, cKDTree) and self.temphalo['exists']==False: indicesnew = self.get_indices(coords, IDs, radius=radius[i]) coord = self.get_coordinates()[indicesnew, :] - coords vel = self.get_velocities()[indicesnew, :] else: temp = self.temphalo['indicesdictCu'][i] if len(temp) == 0: JperR[i] = 0. continue indicesnew = indices[temp] coord = coord1[temp] vel = vel1[temp] if len(indicesnew) == 0: JperR[i] = 0. continue #indicesnew = np.delete(indicesnew, np.where(np.in1d(indicesnew, indicesold))[0]) if overmass: # Jx = np.append(Jx, coord[:, 1]*vel[:, 2] - coord[:, 2]*vel[:, 1]) # Jy = np.append(Jy, coord[:, 2]*vel[:, 0] - coord[:, 0]*vel[:, 2]) # Jz = np.append(Jz, coord[:, 0]*vel[:, 1] - coord[:, 1]*vel[:, 0]) # JperR[i] = np.sqrt(np.sum(Jx)*np.sum(Jx)+np.sum(Jy)*np.sum(Jy)+np.sum(Jz)*np.sum(Jz))/len(Jx) Jx = np.sum(coord[:, 1]*vel[:, 2] - coord[:, 2]*vel[:, 1]) Jy = np.sum(coord[:, 2]*vel[:, 0] - coord[:, 0]*vel[:, 2]) Jz = np.sum(coord[:, 0]*vel[:, 1] - coord[:, 1]*vel[:, 0]) JperR[i] = np.sqrt(Jx*Jx+Jy*Jy+Jz*Jz)/len(indicesnew) if self.temphalo['exists']: self.temphalo['AngularMomentum'][i] = JperR[i] if self.partType==7: Htemp = self.temphalo['HindicesdictCu'][i] DMtemp = self.temphalo['DMindicesdictCu'][i] if len(Htemp) > 0: coordH = coord[Htemp] velH = vel[Htemp] Jx = np.sum(coordH[:, 1]*velH[:, 2] - coordH[:, 2]*velH[:, 1]) Jy = np.sum(coordH[:, 2]*velH[:, 0] - coordH[:, 0]*velH[:, 2]) Jz = np.sum(coordH[:, 0]*velH[:, 1] - coordH[:, 1]*velH[:, 0]) self.temphalo['AngularMomentumH'][i] = np.sqrt(Jx*Jx+Jy*Jy+Jz*Jz)/len(Htemp) if len(DMtemp) > 0: coordDM = coord[DMtemp] velDM = vel[DMtemp] Jx = np.sum(coordDM[:, 1]*velDM[:, 2] - coordDM[:, 2]*velDM[:, 1]) Jy = np.sum(coordDM[:, 2]*velDM[:, 0] - coordDM[:, 0]*velDM[:, 2]) Jz = np.sum(coordDM[:, 0]*velDM[:, 1] - coordDM[:, 1]*velDM[:, 0]) self.temphalo['AngularMomentumDM'][i] = np.sqrt(Jx*Jx+Jy*Jy+Jz*Jz)/len(DMtemp) else: Jx = np.append(Jx, (coord[:, 1]*vel[:, 2] - coord[:, 2]*vel[:, 1])*massa[indicesnew]) Jy = np.append(Jy, (coord[:, 2]*vel[:, 0] - coord[:, 0]*vel[:, 2])*massa[indicesnew]) Jz = np.append(Jz, (coord[:, 0]*vel[:, 1] - coord[:, 1]*vel[:, 0])*massa[indicesnew]) JperR[i] = np.sqrt(np.sum(Jx)*np.sum(Jx) + np.sum(Jy)*np.sum(Jy) + np.sum(Jz)*np.sum(Jz)) indicesold = indicesnew if self.temphalo['exists']: return return JperR def get_spin_parameter(self, coords, IDs, radius = False, M=False): if self.temphalo['exists']: indices =self.temphalo['indices'][:self.temphalo['virialradiusindex']] R = self.temphalo['R200'] M = self.temphalo['M200'] self.temphalo['lambda'] = np.zeros_like(R) vel0 = self.temphalo['Vel'] if self.partType==7: self.temphalo['lambdaH'] = np.zeros_like(R) self.temphalo['lambdaDM'] = np.zeros_like(R) Htemp = self.temphalo['HindicesM200'] DMtemp =self.temphalo['DMindicesM200'] elif radius: R = radius indices = self.get_indices(coords, IDs, radius=radius) vel0 = np.array([0, 0, 0]) if len(indices) == 0: #print("Error: no particles found") return 0.0 else: R = np.max(self.get_radius(point=coords)[indices]) indices = self.get_indices(coords, IDs, radius=radius) vel0 = np.array([0, 0, 0]) if len(indices) == 0: #print("Error: no particles found") return 0.0 coord = self.get_coordinates()[indices, :] - coords coord = np.where(
np.abs(coord)
numpy.abs
from uuid import uuid4 from operator import itemgetter from itertools import chain from copy import deepcopy import json from functools import reduce def gen_uuid(): return str(uuid4()) import numpy as np import pickle from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.linear_model import LogisticRegression, SGDClassifier from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.svm import LinearSVC, SVC from sklearn.multiclass import OneVsRestClassifier, OneVsOneClassifier from sklearn.feature_selection import SelectFromModel, VarianceThreshold from sklearn.pipeline import Pipeline from sklearn.preprocessing import MultiLabelBinarizer from sklearn.preprocessing import OneHotEncoder, LabelEncoder, LabelBinarizer from sklearn.metrics import precision_recall_fscore_support from skmultilearn.problem_transform import LabelPowerset, ClassifierChain from skmultilearn.problem_transform import BinaryRelevance from scipy.sparse import vstack, csr_matrix, hstack, issparse, coo_matrix from scipy.stats import norm from keras.layers import Input, Dense, Lambda, LSTM, RepeatVector from keras.models import Model from keras import backend as K from keras import metrics from keras.datasets import mnist from keras.layers import Input from keras.optimizers import RMSprop from keras import regularizers from keras.layers import Input, Dense, Lambda, LSTM, RepeatVector, Dropout from keras.layers.core import Dense, Activation from keras.metrics import categorical_accuracy from keras.models import Model from keras import backend as K from keras import metrics from keras.datasets import mnist from keras.layers import Input from keras.models import Sequential from time_series_to_ir import TimeSeriesToIR from base_scrabble import BaseScrabble from common import * from hcc import StructuredClassifierChain from brick_parser import pointTagsetList as point_tagsets,\ locationTagsetList as location_tagsets,\ equipTagsetList as equip_tagsets,\ pointSubclassDict as point_subclass_dict,\ equipSubclassDict as equip_subclass_dict,\ locationSubclassDict as location_subclass_dict,\ tagsetTree as tagset_tree tagset_list = point_tagsets + location_tagsets + equip_tagsets tagset_list.append('networkadapter') def tree_flatter(tree, init_flag=True): branches_list = list(tree.values()) d_list = list(tree.keys()) for branches in branches_list: for branch in branches: added_d_list = tree_flatter(branch) d_list = [d for d in d_list if d not in added_d_list]\ + added_d_list return d_list def extend_tree(tree, k, d): for curr_head, branches in tree.items(): if k==curr_head: branches.append(d) for branch in branches: extend_tree(branch, k, d) def calc_leaves_depth(tree, d=dict(), depth=0): curr_depth = depth + 1 for tagset, branches in tree.items(): if d.get(tagset): d[tagset] = max(d[tagset], curr_depth) else: d[tagset] = curr_depth for branch in branches: new_d = calc_leaves_depth(branch, d, curr_depth) for k, v in new_d.items(): if d.get(k): d[k] = max(d[k], v) else: d[k] = v return d def augment_tagset_tree(tagsets, subclass_dict): for tagset in set(tagsets): if '-' in tagset: classname = tagset.split('-')[0] #tagset_tree[classname].append({tagset:[]}) extend_tree(tagset_tree, classname, {tagset:[]}) subclass_dict[classname].append(tagset) subclass_dict[tagset] = [] else: if tagset not in subclass_dict.keys(): classname = tagset.split('_')[-1] subclass_dict[classname].append(tagset) subclass_dict[tagset] = [] extend_tree(tagset_tree, classname, {tagset:[]}) class SequenceAutoencoder(object): def __init__(self, latent_dim=20): self.latent_dim = latent_dim def fit_new(self, x, y=None): timesteps = x.shape[1] input_dim = x.shape[2] self.ae = Sequential() self.ae.add(Dense(self.latent_dim, input_shape=(timesteps,input_dim,), activation='relu', name='enc')) self.ae.add(Dropout(0.2)) self.ae.add(Dense(input_dim, activation='softmax', name='dec')) self.encoder = Model(inputs=self.ae.input, outputs=self.ae.get_layer('enc').output) #rmsprop = RMSprop(lr=0.05) self.ae.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['categorical_accuracy'],) self.ae.fit(x, x, epochs=1) def fit(self, x, y=None): timesteps = x.shape[1] input_dim = x.shape[2] self.ae = Sequential() #m.add(LSTM(latent_dim, input_dim=in_dim, return_sequen|ces=True, name='enc'), ) self.ae.add(LSTM(self.latent_dim, activation='softsign', input_shape=(timesteps,input_dim,), return_sequences=True, unroll=True, name='enc'), ) self.ae.add(LSTM(input_dim, activation='softsign', return_sequences=True, unroll=True, name='dec', )) self.ae.add(Activation('softmax')) self.encoder = Model(inputs=self.ae.input, outputs=self.ae.get_layer('enc').output) rmsprop = RMSprop(lr=0.005) self.ae.compile(loss='categorical_hinge', optimizer=rmsprop, metrics=['categorical_accuracy', 'binary_accuracy'],) self.ae.fit(x, x, epochs=1) def fit_dep(self, x, y=None): timesteps = x.shape[1] input_dim = x.shape[2] inputs = Input(shape=(timesteps, input_dim)) encoded = LSTM(self.latent_dim)(inputs) decoded = RepeatVector(timesteps)(encoded) decoded = LSTM(input_dim, return_sequences=True)(decoded) encoded_input = Input(shape=(self.latent_dim,)) self.sequence_autoencoder = Model(inputs, decoded) self.encoder = Model(inputs, encoded) self.sequence_autoencoder.compile( #loss='binary_crossentropy', loss='categorical_crossentropy', optimizer='RMSprop', metrics=['binary_accuracy'] ) self.sequence_autoencoder.fit(x, x) def transform(self, x): return self.encoder.predict(x) class SequenceVectorizer(object): def __init__(self, tokenizer, vocabulary, max_len): self.tokenizer = tokenizer self.vocabulary = vocabulary self.max_len = max_len def fit(self, x): #le = LabelBinarizer().fit(reduce(adder , x)) self.le = LabelBinarizer().fit(list(self.vocabulary.keys())) vocabs = list(self.vocabulary.keys()) binarized = self.le.transform(vocabs) (locs, indices) = np.where(binarized==1) for loc, index in zip(locs, indices): self.vocabulary[vocabs[loc]] = index def transform(self, x): x = map(self.tokenizer, x) stack = [] for sentence in x: encoded = self.le.transform(sentence) padder = np.zeros((self.max_len - encoded.shape[0], encoded.shape[1])) encoded = np.vstack([encoded, padder]) stack.append(encoded) encoded_labels = np.stack(stack) return encoded_labels class Ir2Tagsets(BaseScrabble): def __init__(self, target_building, target_srcids, building_label_dict, building_sentence_dict, building_tagsets_dict, source_buildings=[], source_sample_num_list=[], learning_srcids=[], conf={}): super(Ir2Tagsets, self).__init__( target_building, target_srcids, building_label_dict, building_sentence_dict, building_tagsets_dict, source_buildings, source_sample_num_list, learning_srcids, conf) self.ts2ir = None self.ts_feature_filename = 'temp/features.pkl' if 'use_cluster_flag' in conf: self.use_cluster_flag = conf['use_cluster_flag'] else: self.use_cluster_flag = True if 'eda_flag' in conf: self.eda_flag = conf['eda_flag'], else: self.eda_flag = False if 'use_brick_flag' in conf: self.use_brick_flag = conf['use_brick_flag'] else: self.use_brick_flag = True if 'n_jobs' in conf: self.n_jobs = conf['n_jobs'] else: #self.n_jobs = 1 self.n_jobs = 24 if 'ts_flag' in conf: self.ts_flag = conf['ts_flag'] else: self.ts_flag = False if 'negative_flag' in conf: self.negative_flag = conf['negative_flag'] else: self.negative_flag = False if 'tagset_classifier_type' in conf: self.tagset_classifier_type = conf['tagset_classifier_type'] else: #self.tagset_classifier_type = 'StructuredCC_autoencoder' self.tagset_classifier_type = 'StructuredCC' if 'n_estimators' in conf: self.n_estimators = conf['n_estimators'] else: self.n_estimators = 10 # TODO: Find the proper value if 'vectorizer_type' in conf: self.vectorizer_type = conf['vectorizer_type'] else: self.vectorizer_type = 'tfidf' #self.vectorizer_type = 'sequence' if 'query_strategy' in conf: self.query_strategy = conf['query_strategy'] else: self.query_strategy = 'phrase_util' if 'autoencode' in conf: self.autoencode = conf['autoencode'] else: #self.autoencode = True self.autoencode = False self._init_data() self._init_brick() def _init_brick(self): self.brick_srcids = [] self.tagset_list = point_tagsets + location_tagsets + equip_tagsets self.tagset_list.append('networkadapter') self.subclass_dict = dict() self.subclass_dict.update(point_subclass_dict) self.subclass_dict.update(equip_subclass_dict) self.subclass_dict.update(location_subclass_dict) self.subclass_dict['networkadapter'] = list() self.subclass_dict['unknown'] = list() self.subclass_dict['none'] = list() self.tagset_tree = deepcopy(tagset_tree) def _init_data(self): self.sentence_dict = {} self.label_dict = {} self.tagsets_dict = {} self.phrase_dict = {} self.point_dict = {} self.max_len = None for building, source_sample_num in zip(self.source_buildings, self.source_sample_num_list): self.sentence_dict.update(self.building_sentence_dict[building]) one_label_dict = self.building_label_dict[building] self.label_dict.update(one_label_dict) if not self.learning_srcids: sample_srcid_list = select_random_samples( building, one_label_dict.keys(), source_sample_num, self.use_cluster_flag) self.learning_srcids += sample_srcid_list one_tagsets_dict = self.building_tagsets_dict[building] self.tagsets_dict.update(one_tagsets_dict) for srcid, tagsets in one_tagsets_dict.items(): point_tagset = 'none' for tagset in tagsets: if tagset in point_tagsets: point_tagset = tagset break self.point_dict[srcid] = point_tagset self.phrase_dict = make_phrase_dict(self.sentence_dict, self.label_dict) self.max_len = max([len(phrases) for phrases in self.phrase_dict.values()]) # validation for srcid in self.target_srcids: assert srcid in self.tagsets_dict def _augment_brick_samples(self, doc, srcids): brick_truths_dict = dict() self.brick_srcids = [] brick_doc = [] logging.info('Start adding Brick samples') brick_copy_num = 6 self.brick_tagsets_dict = dict() self.brick_doc = list() for tagset in tagset_list: for j in range(0, brick_copy_num): #multiplier = random.randint(2, 6) srcid = 'brick;' + gen_uuid() self.brick_srcids.append(srcid) self.brick_tagsets_dict[srcid] = [tagset] tagset_doc = list() for tag in tagset.split('_'): tagset_doc += [tag] * random.randint(1,2) brick_doc.append(' '.join(tagset_doc)) doc += brick_doc self.tagsets_dict.update(self.brick_tagsets_dict) srcids += self.brick_srcids return doc, srcids def _extend_tagset_list(self, new_tagsets): self.tagset_list += new_tagsets self.tagset_list = list(set(self.tagset_list)) def update_model(self, srcids): self.learning_srcids += srcids self.target_srcids = [srcid for srcid in self.target_srcids if srcid not in self.learning_srcids] invalid_num = sum([srcid not in self.tagsets_dict for srcid in self.learning_srcids + self.target_srcids]) #debug self._extend_tagset_list(reduce(adder, [self.tagsets_dict[srcid] for srcid in self.learning_srcids + self.target_srcids])) augment_tagset_tree(self.tagset_list, self.subclass_dict) self._build_tagset_classifier(self.learning_srcids, self.target_srcids, validation_srcids=[]) def _make_doc_vectorizer(self, doc): doc = [sentence.split() for sentence in doc] le = LabelBinarizer().fit(reduce(adder , doc)) stack = [] for sentence in doc: encoded = le.transform(sentence) padder = np.zeros((self.max_len - encoded.shape[0], encoded.shape[1])) encoded = np.vstack([encoded, padder]) stack.append(encoded) encoded_labels = np.stack(stack) return encoded_labels def _augment_negative_examples(self, doc, srcids): negative_doc = [] negative_truths_dict = {} negative_srcids = [] for srcid in self.learning_srcids: true_tagsets = list(set(self.tagsets_dict[srcid])) sentence = self.phrase_dict[srcid] for tagset in true_tagsets: negative_srcid = srcid + ';' + gen_uuid() removing_tagsets = set() new_removing_tagsets = set([tagset]) removing_tags = [] negative_tagsets = list(filter(tagset.__ne__, true_tagsets)) i = 0 while len(new_removing_tagsets) != len(removing_tagsets): i += 1 if i>5: pdb.set_trace() removing_tagsets = deepcopy(new_removing_tagsets) for removing_tagset in removing_tagsets: removing_tags += removing_tagset.split('_') for negative_tagset in negative_tagsets: for tag in removing_tags: if tag in negative_tagset.split('_'): new_removing_tagsets.add(negative_tagset) negative_sentence = [tag for tag in sentence if\ tag not in removing_tags] for tagset in removing_tagsets: negative_tagsets = list(filter(tagset.__ne__, negative_tagsets)) # negative_sentence = [word for word in sentence \ # if word not in tagset.split('_')] negative_doc.append(' '.join(negative_sentence)) negative_truths_dict[negative_srcid] = negative_tagsets negative_srcids.append(negative_srcid) for i in range(0,50): # Add empty examples negative_srcid = gen_uuid() negative_doc.append('') negative_srcids.append(negative_srcid) negative_truths_dict[negative_srcid] = [] doc += negative_doc srcids += negative_srcids self.tagsets_dict.update(negative_truths_dict) return doc, srcids def _build_tagset_classifier(self, learning_srcids, target_srcids, validation_srcids): learning_srcids = deepcopy(learning_srcids) # Update TagSet pool to include TagSets not in Brick. orig_sample_num = len(learning_srcids) new_tagset_list = tree_flatter(self.tagset_tree, []) new_tagset_list = new_tagset_list + [ts for ts in self.tagset_list \ if ts not in new_tagset_list] self.tagset_list = new_tagset_list self.tagset_binarizer = MultiLabelBinarizer(self.tagset_list) self.tagset_binarizer.fit([self.tagset_list]) assert self.tagset_list == self.tagset_binarizer.classes_.tolist() #self.tagsets_dict = {srcid: self.tagsets_dict[srcid] # for srcid in learning_srcids} ## Init brick tag_list # TODO: Maybe this should be done in initialization stage. self.tag_list = list(set(reduce(adder, map(splitter, self.tagset_list)))) # All possible vocabularies. vocab_dict = dict([(tag, i) for i, tag in enumerate(self.tag_list)]) # Define Vectorizer tokenizer = lambda x: x.split() # TODO: We could use word embedding like word2vec here instead. if self.vectorizer_type == 'tfidf': self.tagset_vectorizer = TfidfVectorizer(tokenizer=tokenizer, vocabulary=vocab_dict) elif self.vectorizer_type == 'meanbembedding': self.tagset_vectorizer = MeanEmbeddingVectorizer(tokenizer=tokenizer, vocabulary=vocab_dict) elif self.vectorizer_type == 'count': self.tagset_vectorizer = CountVectorizer(tokenizer=tokenizer, vocabulary=vocab_dict) elif self.vectorizer_type == 'sequence': self.tagset_vectorizer = SequenceVectorizer(tokenizer=tokenizer, vocabulary=vocab_dict, max_len=self.max_len) else: raise Exception('Wrong vectorizer type: {0}' .format(self.vectorizer_type)) if self.ts_flag: pass #TODO: Run self._augment_with_ts() ## Transform learning samples learning_doc = [' '.join(self.phrase_dict[srcid]) for srcid in learning_srcids] test_doc = [' '.join(self.phrase_dict[srcid]) for srcid in target_srcids] ## Augment with negative examples. if self.negative_flag: learning_doc, learning_srcids = \ self._augment_negative_examples(learning_doc, learning_srcids) ## Init Brick samples. if self.use_brick_flag: learning_doc, learning_srcids = \ self._augment_brick_samples(learning_doc, learning_srcids) self.tagset_vectorizer.fit(learning_doc + test_doc)# + brick_doc) # Apply Easy-Domain-Adaptation mechanism. Not useful. if self.eda_flag: pass # TODO: self._augment_eda() else: # Make TagSet vectors. learning_vect_doc = self.tagset_vectorizer.transform(learning_doc) if not isinstance(learning_vect_doc, np.ndarray): learning_vect_doc = learning_vect_doc.todense() truth_mat = csr_matrix([self.tagset_binarizer.transform( [self.tagsets_dict[srcid]])[0] for srcid in learning_srcids]) if self.eda_flag: assert False, 'This should not be called for now' zero_vectors = self.tagset_binarizer.transform(\ [[] for i in range(0, unlabeled_vect_doc.shape[0])]) truth_mat = vstack([truth_mat, zero_vectors]) learning_vect_doc = np.vstack([learning_vect_doc, unlabeled_vect_doc]) if self.autoencode: self.encoder = SequenceAutoencoder() self.encoder .fit(learning_vect_doc) learning_vect_doc = self.encoder.transform(learning_vect_doc) if self.tagset_classifier_type == 'StructuredCC_autoencoder': def meta_scc(**kwargs): #feature_selector = SelectFromModel(LinearSVC(C=1)) #feature_selector = SequenceAutoencoder() base_base_classifier = GradientBoostingClassifier(**kwargs) base_classifier = Pipeline([#('feature_selection', # feature_selector), ('classification', base_base_classifier) ]) tagset_classifier = StructuredClassifierChain( base_classifier, self.tagset_binarizer, self.subclass_dict, self.tagset_vectorizer.vocabulary, self.n_jobs, self.use_brick_flag, self.tagset_vectorizer) return tagset_classifier meta_classifier = meta_scc """ rf_params_list_dict = { 'n_estimators': [10, 50, 100], 'criterion': ['gini', 'entropy'], 'max_features': [None, 'auto'], 'max_depth': [1, 5, 10, 50], 'min_samples_leaf': [2,4,8], 'min_samples_split': [2,4,8] } gb_params_list_dict = { 'loss': ['deviance', 'exponential'], 'learning_rate': [0.1, 0.01, 1, 2], 'criterion': ['friedman_mse', 'mse'], 'max_features': [None, 'sqrt'], 'max_depth': [1, 3, 5, 10], 'min_samples_leaf': [1,2,4,8], 'min_samples_split': [2,4,8] } params_list_dict = gb_params_list_dict """ elif self.tagset_classifier_type == 'StructuredCC': def meta_scc(**kwargs): feature_selector = SelectFromModel(LinearSVC(C=1)) #feature_selector = SelectFromModel(LinearSVC(C=0.01, penalty='l1', dual=False)) base_base_classifier = GradientBoostingClassifier(**kwargs) #base_base_classifier = SGDClassifier(loss='modified_huber', penalty='elasticnet') #base_base_classifier = PassiveAggressiveClassifier(loss='squared_hinge', C=0.1) #base_base_classifier = LogisticRegression() #base_base_classifier = RandomForestClassifier(**kwargs) base_classifier = Pipeline([('feature_selection', feature_selector), ('classification', base_base_classifier) ]) tagset_classifier = StructuredClassifierChain( base_classifier, self.tagset_binarizer, self.subclass_dict, self.tagset_vectorizer.vocabulary, self.n_jobs, self.use_brick_flag, self.tagset_vectorizer) return tagset_classifier meta_classifier = meta_scc """ rf_params_list_dict = { 'n_estimators': [10, 50, 100], 'criterion': ['gini', 'entropy'], 'max_features': [None, 'auto'], 'max_depth': [1, 5, 10, 50], 'min_samples_leaf': [2,4,8], 'min_samples_split': [2,4,8] } gb_params_list_dict = { 'loss': ['deviance', 'exponential'], 'learning_rate': [0.1, 0.01, 1, 2], 'criterion': ['friedman_mse', 'mse'], 'max_features': [None, 'sqrt'], 'max_depth': [1, 3, 5, 10], 'min_samples_leaf': [1,2,4,8], 'min_samples_split': [2,4,8] } params_list_dict = gb_params_list_dict """ else: assert False, 'Not existing classifier type: {0}'\ .format(self.tagset_classifier_type) best_params = {'learning_rate':0.1, 'subsample':0.25} self.tagset_classifier = meta_classifier(**best_params) # Actual fitting. if isinstance(self.tagset_classifier, StructuredClassifierChain): self.tagset_classifier.fit(learning_vect_doc, truth_mat.toarray(), \ orig_sample_num=len(learning_vect_doc) - len(self.brick_srcids)) else: assert False, 'This should not be reachable for now' self.tagset_classifier.fit(learning_vect_doc, truth_mat.toarray()) def ir2tagset_al_query_samples_phrase_util(self, test_srcids, building, pred_tagsets_dict, inc_num): phrase_usage_dict = {} for srcid in test_srcids: pred_tagsets = pred_tagsets_dict[srcid] phrase_usage_dict[srcid] = self._determine_used_phrases( self.phrase_dict[srcid], pred_tagsets) phrase_usages = list(phrase_usage_dict.values()) mean_usage_rate = np.mean(phrase_usages) std_usage_rate = np.std(phrase_usages) # Select underexploited sentences. threshold = mean_usage_rate - std_usage_rate todo_sentence_dict = dict((srcid, alpha_tokenizer(''.join( self.sentence_dict[srcid]))) for srcid, usage_rate in phrase_usage_dict.items() if usage_rate < threshold and srcid in test_srcids) cluster_dict = get_cluster_dict(building) todo_srcids = select_random_samples(building, \ list(todo_sentence_dict.keys()), min(inc_num, len(todo_sentence_dict)), \ True,\ reverse=True, cluster_dict=cluster_dict, shuffle_flag=False ) #if the numbers are not enough randomly select more: if len(todo_srcids) < inc_num: more_num = inc_num - len(todo_srcids) todo_sentence_dict = dict((srcid, alpha_tokenizer(''.join( self.sentence_dict[srcid]))) for srcid, usage_rate in phrase_usage_dict.items() if srcid in test_srcids) cluster_dict = get_cluster_dict(building) todo_srcids = select_random_samples(building, \ list(todo_sentence_dict.keys()), min(more_num, len(todo_sentence_dict)), \ True,\ cluster_dict=cluster_dict, shuffle_flag=True ) return todo_srcids def select_informative_samples(self, sample_num): pred = self.predict(self.target_srcids) if self.query_strategy == 'phrase_util': new_srcids = self.ir2tagset_al_query_samples_phrase_util( self.target_srcids, self.target_building, pred, sample_num) else: raise ValueError('Query Strategy Wrong: {0}'.format(query_strategy)) return new_srcids def _determine_used_phrases(self, phrases, tagsets): phrases_usages = list() pred_tags = reduce(adder, [tagset.split('_') for tagset in tagsets], []) used_cnt = 0.0 unused_cnt = 0.0 for phrase in phrases: phrase_tags = phrase.split('_') for tag in phrase_tags: if tag in ['leftidentifier', 'rightidentifier']: continue if tag in pred_tags: used_cnt += 1 / len(phrase_tags) else: unused_cnt += 1 / len(phrase_tags) if used_cnt == 0: score = 0 else: score = used_cnt / (used_cnt + unused_cnt) return score def _predict_and_proba(self, target_srcids): #return self.tagset_classifier, self.tagset_vectorizer, self.tagset_binarizer, self.ts2ir phrase_dict = {srcid: self.phrase_dict[srcid] for srcid in target_srcids} if self.ts_flag: phrase_dict = self._augment_phrases_with_ts(phrase_dict, target_srcids, self.ts2ir) doc = [' '.join(phrase_dict[srcid]) for srcid in target_srcids] vect_doc = self.tagset_vectorizer.transform(doc) # should this be fit_transform? if self.autoencode: vect_doc = self.encoder.transform(vect_doc) certainty_dict = dict() tagsets_dict = dict() pred_mat = self.tagset_classifier.predict(vect_doc) prob_mat = self.tagset_classifier.predict_proba(vect_doc) if not isinstance(pred_mat, np.ndarray): try: pred_mat = pred_mat.toarray() except: pred_mat = np.asarray(pred_mat) pred_tagsets_dict = dict() pred_certainty_dict = dict() pred_point_dict = dict() for i, (srcid, pred) in enumerate(zip(target_srcids, pred_mat)): #for i, (srcid, pred, point_pred) \ #in enumerate(zip(srcids, pred_mat, point_mat)): pred_tagsets_dict[srcid] = self.tagset_binarizer.inverse_transform(\
np.asarray([pred])
numpy.asarray
import faiss import pandas as pd import time import numpy as np import torch import os from scipy import stats as s class knn: def __init__(self, datafile, savefile=None, knn_size=10, save_to_file=True, resume=True): self.knn_size = knn_size self.x_data = None self.y_data = None self.save_file = datafile if not savefile else savefile self.classes = None self.save_to_file = save_to_file self.faiss_index = None # self.faiss_index = faiss.IndexFlatL2() if datafile and resume: print(f'loading data from file: {datafile}') if (os.path.exists(datafile)): print('File found') data = torch.load(datafile) self.x_data = data['x'].numpy() self.y_data = data['y'] print( f'Found {self.x_data.shape[0]} points with {len(set(self.y_data))} classes') print(pd.Series(self.y_data).value_counts()) self.classes = list(set(self.y_data)) self.faiss_index = faiss.IndexFlatL2(self.x_data.shape[-1]) self.faiss_index.add(self.x_data) else: print('File not found') def print_info(self): print(pd.Series(self.y_data).value_counts()) def add_points(self, x, y): if self.x_data is None: self.x_data = np.array(x) self.y_data = y self.faiss_index = faiss.IndexFlatL2(self.x_data.shape[-1]) else: self.x_data =
np.concatenate([self.x_data, x])
numpy.concatenate
import numpy as np from numpy.linalg import norm import time from sketching_matrices import gaussian_random_sketch, subsampled_randomized_hadamard_transforms, sparse_johnson_lindenstrauss_transform def calculate_hessian_using_sketch(A, m, sketch, sketch_fn, sketch_time, factor_time): """ Args: A: Data matrix m: sketch size sketch: Takes string input = {Gaussian, SRHT, Sparse JL}. Defaults to Gaussian sketch_fn: user-defined sketch function sketch_time: Total sketch time taken already factor_time: Total factor time taken already Returns: pseudo-inverse(A^TS^TSA), total sketch time, total factor time. """ # 1. Generate sketching matrix S_t sketch_start_time = time.time() if sketch_fn is not None: S_t = sketch_fn(A, m, 0) else: if sketch == 'SRHT': S_t = subsampled_randomized_hadamard_transforms(m, A.shape[0]) elif sketch == 'Uniform': S_t = (1 / (m ** 0.5)) * np.random.uniform(-1, 1, size=(m, A.shape[0])) elif sketch == 'Sparse JL': s = int(round(((m / A.shape[1]) ** 0.5) * (
np.log10(A.shape[1] ** 2)
numpy.log10
import pandas as pd import numpy as np np.random.seed(42) from sklearn import model_selection from sklearn.preprocessing import OneHotEncoder import tensorflow as tf tf.set_random_seed(42) from sklearn.metrics import roc_auc_score from sklearn.preprocessing import normalize from sklearn.preprocessing import StandardScaler from keras.datasets import boston_housing (x_train, y_train), (x_test, y_test) = boston_housing.load_data() noise_features = 1000 x_train = np.concatenate([x_train,
np.random.normal(size=(x_train.shape[0], noise_features))
numpy.random.normal
import numpy as np import scipy as sp import scipy.sparse as sps import scipy.sparse.linalg.eigen.arpack as arp import sys from parafermions.MPS import MPS import time class MPO(object): """ Base MPO class for a chain MPO. """ def __init__(self, N, L, dtype=np.dtype('complex128'), existing=None,): """ Constructor of which constructs trivial MPO with virtual bond dimension 1. Parameters ----------- N: int Physical bond dimension. L: int Length of chain. dtype: datatype The datatype to use for MPO elements (default=complex128). existing: MPO object If an existing MPO object is passed in then this is copied (default=None). """ if existing is None: self.L = L self.N = N self.chi = 1 self.I = np.eye(N) self.dtype = dtype self.dim = N**L Ws = dict() # create a dictionary to store tensors for i in range(L): W = np.zeros((self.chi,self.chi,N,N), dtype=self.dtype) W[0,0,:,:] = self.I Ws[i] = W self.shape = (N**L, N**L) # for mat vec routine self.Lp = np.zeros(self.chi, dtype=dtype); self.Lp[0] = 1.0 self.Rp = np.zeros(self.chi, dtype=dtype); self.Rp[-1] = 1.0 self.Ws = Ws else: E = existing self.L = E.L self.N = E.N self.chi = E.chi # this is more the maximum chi self.I = np.eye(E.N) self.dtype = E.dtype self.dim = E.N**E.L Ws = dict() # create a dictionary to store tensors for i in range(E.L): Ws[i] = np.copy(E.Ws[i]) self.shape = (E.N**E.L, E.N**E.L) # for mat vec routine self.Lp = np.copy(E.Lp) self.Rp = np.copy(E.Rp) self.Ws = Ws def getdim(self): """ Return full physical dimension of operator. """ return self.dim def fullmat(self): """ Get the full matrix. Only for testing with small systems. """ r = np.tensordot(self.Ws[self.L-1], self.Rp, axes=([1], [0])) for j in range(self.L-2, -1, -1): r = np.tensordot(self.Ws[j], r, axes=([1], [0])) y = np.tensordot(self.Lp, r, axes=([0],[0])) y = np.transpose(y, list(range(0, 2*self.L, 2)) + list(range(1, 2*self.L, 2))) return np.reshape(y, (self.N**self.L, self.N**self.L)) def fullmats(self): """ Get the full matrix in sparse format. """ nnz = (self.L * self.chi) * self.dim nzis = np.zeros(nnz, dtype=np.int) nzjs = np.zeros(nnz, dtype=np.int) nzs = np.zeros(nnz, dtype=self.dtype) fill = 0 i = 0 maxnzs = 0 while i < self.dim: phys_indices = self.decompose_index(i) phys_indices = phys_indices[::-1] # now finally calculate the element by multiplying matrices # simple way # r = np.tensordot(self.Rp, self.Ws[self.L-1][:, :,phys_indices[self.L-1],:], axes=([0], [1])) # for j in range(self.L-2, -1, -1): # r = np.tensordot(self.Ws[j][:,:,phys_indices[j],:], r, axes=([1], [0])) # rowvec = np.tensordot(r, self.Lp, axes=([0], [0])) # more optimal l = np.tensordot(self.Lp, self.Ws[0][:, :,phys_indices[0],:], axes=([0], [0])) for site in range(1, int(self.L/2)): l = np.tensordot(l, self.Ws[site][:,:,phys_indices[site],:], axes=([site-1], [0])) r = np.tensordot(self.Rp, self.Ws[self.L-1][:, :,phys_indices[self.L-1],:], axes=([0], [1])) for j in range(self.L-2, int(self.L/2)-1, -1): r = np.tensordot(self.Ws[j][:,:,phys_indices[j],:], r, axes=([1], [0])) rowvec = np.tensordot(l, r, axes=([int(self.L/2) - 1], [0])) # we can save more time by reusing p)revious partial contractions rowvec = np.reshape(rowvec, (self.dim)) row_nzjs = np.nonzero(rowvec)[0] nnzjs = len(row_nzjs) if nnzjs > maxnzs: maxnzs = nnzjs if nnzjs > 0: if (fill + nnzjs) >= nnz: print('Oh no, more non zeros than anticipated.') return None s = slice(fill, fill + nnzjs, 1) nzjs[s] = row_nzjs nzis[s] = i nzs[s] = rowvec[nzjs[s]] fill += nnzjs i += 1 return sps.coo_matrix((nzs[:fill], (nzis[:fill], nzjs[:fill])), shape=(self.dim, self.dim),dtype=self.dtype).tocsr() def mats_subspace(self, subspace): """ Get the matrix of a particular subspace in sparse format. subspace: 2d int array Array of basis states of subspace. """ subspace_dim = subspace.shape[0] subspace_indices = np.zeros(subspace_dim, dtype=np.int64) for i in range(subspace_dim): subspace_indices[i] = self.recompose_index(subspace[i,:]) # there is a potential issue when using multiple bands that the subspace indices are not sorted. # we sort here and keep track of mapping. subspace_indices_order = np.argsort(subspace_indices) subspace_indices = subspace_indices[subspace_indices_order] #print 'subspace indices : ' + str(subspace_indices) + ' at ' + str(subspace_indices_order) #nnz = (self.L * self.chi) * subspace_dim #nzis = np.zeros(nnz, dtype=np.int) #nzjs = np.zeros(nnz, dtype=np.int) #nzs = np.zeros(nnz, dtype=self.dtype) nzis = [] nzjs = [] nzs = [] fill = 0 i = 0 maxnzs = 0 while i < subspace_dim: phys_indices = subspace[i,::-1] # more optimal l = np.tensordot(self.Lp, self.Ws[0][:, :,phys_indices[0],:], axes=([0], [0])) for site in range(1, self.L//2): l =
np.tensordot(l, self.Ws[site][:,:,phys_indices[site],:], axes=([site-1], [0]))
numpy.tensordot
# This file is part of Frhodo. Copyright © 2020, UChicago Argonne, LLC # and licensed under BSD-3-Clause. See License.txt in the top-level # directory for license and copyright information. import re from tabulate import tabulate import matplotlib as mpl import numpy as np from scipy import stats from plot.base_plot import Base_Plot from plot.draggable import Draggable class Plot(Base_Plot): def __init__(self, parent, widget, mpl_layout): super().__init__(parent, widget, mpl_layout) self.start_ind = 300 self.end_ind = 800 def info_table_text(self, preshock, postshock, prec=2): def fix_g_format(value, prec): text = '{:.{dec}g}'.format(value, dec=prec) text = text.replace("e+", "e") return re.sub("e(-?)0*(\d+)", r"e\1\2", text) shock_zone = 2 # table = [['pre-shock', fix_g_format(preshock, prec)], # ['post-shock', fix_g_format(postshock, prec)], # ['difference', fix_g_format(postshock-preshock, prec)]] table = [['pre-shock', '{:.{dec}f}'.format(preshock, dec=prec)], ['post-shock', '{:.{dec}f}'.format(postshock, dec=prec)], ['difference', '{:.{dec}f}'.format(postshock-preshock, dec=prec)]] table = tabulate(table).split('\n')[1:-1] # removes header and footer table.insert(0, 'Baseline Averages') table_left_justified = [] max_len = len(max(table, key=len)) for line in table: table_left_justified.append('{:<{max_len}}'.format(line, max_len=max_len)) return '\n'.join(table_left_justified) def create_canvas(self): self.ax = [] self.ax.append(self.fig.add_subplot(1,1,1)) self.ax[0].item = {} self.ax[0].item['exp_data'] = self.ax[0].scatter([],[], color='#0C94FC', facecolors='#0C94FC', s=16, linewidth=0.5, alpha = 0.85) self.ax[0].item['start_divider'] = self.ax[0].add_line(mpl.lines.Line2D([],[], marker='$'+'\u2336'+'$', markersize=18, markerfacecolor='0', markeredgecolor='0', markeredgewidth=0.5, zorder=2)) self.ax[0].item['start_avg_l'] = self.ax[0].add_line(mpl.lines.Line2D([],[], ls='--', c= '0')) self.ax[0].item['end_divider'] = self.ax[0].add_line(mpl.lines.Line2D([],[], marker='$'+'\u2336'+'$', markersize=18, markerfacecolor='0', markeredgecolor='0', markeredgewidth=0.5, zorder=2)) self.ax[0].item['end_avg_l'] = self.ax[0].add_line(mpl.lines.Line2D([],[], ls='--', c= '0')) self.ax[0].item['textbox'] = self.ax[0].text(.98,.98, self.info_table_text(0, 0), fontsize=10, fontname='DejaVu Sans Mono', horizontalalignment='right', verticalalignment='top', transform=self.ax[0].transAxes) self.fig.subplots_adjust(left=0.06, bottom=0.065, right=0.98, top=0.97, hspace=0, wspace=0.12) # Create canvas from Base super().create_canvas() # Add draggable lines draggable_items = [[0, 'start_divider'], [0, 'end_divider']] for pair in draggable_items: n, name = pair # n is the axis number, name is the item key update_fcn = lambda x, y, name=name: self.draggable_update_fcn(name, x, y) self.ax[n].item[name].draggable = Draggable(self, self.ax[n].item[name], update_fcn) def draggable_update_fcn(self, name, x, y): if self.parent.display_shock['raw_data'].size == 0: return x0, xpress, xnew, xpressnew = x['0'], x['press'], x['new'], x['press_new'] y0, ypress, ynew, ypressnew = y['0'], y['press'], y['new'], y['press_new'] if name is 'start_divider': self.start_ind = np.argmin(np.abs(self.t - xnew)) if self.start_ind < 3: self.start_ind = 3 elif name is 'end_divider': self.end_ind = np.argmin(np.abs(self.t - xnew)) self.update(estimate_ind=False) def update(self, estimate_ind=True, update_lim=False): def shape_data(x,y): return np.transpose(np.vstack((x,y))) def set_xy(plot, x, y): plot.set_xdata(x) plot.set_ydata(y) def estimateInd(data, frac, alpha): def pred_int(i_old, i): SD = np.std(data[:i_old]) # Standard deviation of sample sigma = SD**2 # Variance of Sample return t*np.sqrt((sigma/i_old + sigma/(i-i_old))) # Prediction interval for 2 means def calc_mu_t(i): mu = np.mean(data[:i]) # Mean of sample df = i - 1 t = stats.t.ppf(1-alpha/2, df=df) return mu, t i_old = int(np.round(np.shape(data)[0]*frac)) i = i_old + 1 mu, t = calc_mu_t(i_old) i_max = np.shape(data)[0] - 1 j = 0 while i != i_old: # sorta bisection, boolean hybrid monstrosity if np.abs(mu - np.mean(data[i_old:i])) > pred_int(i_old, i): j = 0 i = int(np.floor((i+i_old)/2)) else: i_old = i mu, t = calc_mu_t(i_old) # calculate new mu, t j += 1 i += j**3 # this is to speed up the search if i > i_max: i = i_max break return i parent = self.parent if np.isnan(parent.display_shock['Sample_Rate']): self.clear_plot() return data = parent.display_shock['raw_data'].reshape(-1,) self.t = np.arange(np.shape(data)[0])/parent.display_shock['Sample_Rate'] t = self.t if estimate_ind: self.start_ind = estimateInd(data, frac=0.1, alpha=0.002) # 2-tail 99.9% self.end_ind = -estimateInd(data[::-1], frac=0.1, alpha=0.001) # 2-tail 99.95% start_ind = self.start_ind end_ind = self.end_ind self.ax[0].item['exp_data'].set_offsets(shape_data(t, data)) start_avg =
np.mean(data[:start_ind])
numpy.mean
# -*- coding: utf-8 -*- """ Created on Mon Sep 4 18:03:24 2017 @author: Kester """ import numpy as np from scipy import stats class Trepan(object): """ A class that represents the TREPAN tree model. Must be initialised with an oracle, and then fitted to a specific dataset to build the tree. Variables: maxsize: maximum number of internal nodes to grow the tree to (before pruning) minsamples: the minimum number of samples to use for determining each m-of-n test significance: the significance threshold to use when determining if a node has a different distribution of values for a particular feature from the previous node improvement: the percentage improvement on the previous test needed to accept an expanded m-of-n test oracle: a fitted model used as an oracle Public methods: fit(samples): Fits a TREPAN tree using the oracle and the samples provided. predict(samples): Uses an already fitted tree to predict a class for each of the samples provided. draw_tree(filename): Outputs an already fitted tree as a .dot graph to the provided filenname. oracle_predict(samples): Predict a class using the oracle for the samples provided. """ def __init__(self, oracle, maxsize=10, minsamples=1000, significance=0.05, improvement=1.05, verbose=False, logging=False): self.maxsize = maxsize self.minsamples = minsamples self.significance = significance self.improvement = improvement self.verbose = verbose self.logging = logging self.tree = {} self.fitted = False self.building = False self.oracle = oracle def fit(self, traindata, trainlabels=[], testdata=[], testlabels=[], featnames=[]): """ Takes a set of training data (as a numpy array), saves it as part of the class, and calls the build_tree method to make a TREPAN tree. """ if self.fitted: raise Exception('This TREPAN model has already been fitted.') self.traindata = traindata self.trainlabels = trainlabels self.testdata = testdata self.testlabels = testlabels self.numsamples = traindata.shape[0] self.numfeats = traindata.shape[1] # Check inputs match up if self.logging and len(self.trainlabels) != self.numsamples: raise Exception('Number of training examples and labels do not match') if self.logging and self.testdata.shape[1] != self.numfeats: raise Exception('Test data has incorrect number of features') if self.logging and len(self.testlabels) != self.testdata.shape[0]: raise Exception('Number of test examples and labels do not match') if len(featnames): self.featnames = featnames else: self.featnames = [str(i) for i in range(self.numfeats)] if len(self.featnames) != self.numfeats: raise Exception('Number of feature names does not match number of features') # Make sure tree is empty before we build self.tree = {} self.__build_tree() self.fitted = True def __build_tree(self): """ A high-level function to build a TREPAN tree, consisting of creating a tree and repeatedly expanding it until certain stopping conditions are reached, then pruning branches. The tree is stored as a dictionary of nodes, with the node name as the key. """ # Record that we're currently building the tree self.building = True # Initialise list of best node values self.fvalues = {} # Create initial node with name '1' self.tree['1'] = self.__create_initial_node('1') if self.verbose: print("Initialising tree...") # Initialise accuracy and fidelity logs if appropriate if self.logging: self.trainaccs = [] self.trainfids = [] self.testaccs = [] self.testfids = [] finished = False # Repeat node expansion until stopping conditions reached while not finished: # Find best node with the max f-value in the dictionary bestnode = max(self.fvalues, key=lambda x: self.fvalues[x]) # Expand it wasexpanded = self.__expand_node(bestnode) # Log if necessary if self.logging and wasexpanded: self.trainaccs.append(self.accuracy(self.traindata, self.trainlabels)) self.trainfids.append(self.fidelity(self.traindata)) if len(self.testdata) > 0: self.testaccs.append(self.accuracy(self.testdata, self.testlabels)) self.testfids.append(self.fidelity(self.testdata)) # Check there are still nodes to expand finished = self.__check_stopping() self.__prune_tree() self.building = False def __check_stopping(self): """ Checks whether tree building should be finished. This is either if there are no nodes in the queue to expand, or the number of internal nodes in the tree is equal to the maximum size specified. """ internalnodes = sum([not self.tree[node]['isleaf'] for node in self.tree]) if len(self.fvalues) == 0 or internalnodes >= self.maxsize: finished = True else: finished = False return finished def __create_initial_node(self, nodename): """ Creates the initial node for the tree; a simple wrapper for dict creation. Reach and fidelity are both set to 1. Many other variables are set to None and will be defined when this node is expanded as the first part of the tree-building process. See description of __create_node method for explanation of all the variables saved in a node. """ constraints = [] reach = 1 fidelity = 1 self.fvalues[nodename] = reach * (1 - fidelity) # All training data reaches this node reached = [True for i in range(self.numsamples)] isleaf = True # Predict (ONLY for this initial node) using raw predictions from oracle - # no drawn samples predictedclass = stats.mode(self.oracle_predict(self.traindata[reached])).mode[0] mntest = None daughter0 = None daughter1 = None parent = None sister = None node = { 'constraints': constraints, 'reach': reach, 'fidelity': fidelity, 'reached': reached, 'isleaf': isleaf, 'predictedclass': predictedclass, 'mntest': mntest, '0daughter': daughter0, '1daughter': daughter1, 'parent': parent, 'sister': sister } return node def __create_node(self, nodename, parent, prediction, sister, passed): """ Creates a new node using the passed variables. Includes calculation of samples that reach this node, plus predicting local labels for a predicted class and the fidelity. Values in node dictionary: constraints: A list of the m-of-n tests that must be passed/failed to reach this node. reach: The proportion of total training data that reaches this node. reached: A boolean array showing the exact training data examples that reach this node. predictedclass: The predicted class at this node (i.e. the modal value predicted by the oracle for samples at the node) fidelity: The proportion of samples at this node for which the node's predicted class matches their class as predicted by the oracle. mntest: The m-of-n test for this node. m-of-n tests are stored as a tuple with the format (m, [f1, f2...fn]). fn values are also tuples, with the format (feature, threshold, greater), where feature is the integer index of the feature being split on, threshold is the floating point value being checked against, and greater is a boolean which indicates whether a value must be equal or greater than (True) or less than (False) the threshold to count towards passing the test. Finally, when a test is added to a constraints list, it includes a third value, passed, a boolean that indicates whether the test must be passed or failed to reach the relevant node. isleaf: A boolean showing whether a node is a leaf node. parent: The name of the node's parent node 0daughter: The name of the node's daughter node when its m-of-n test is failed. 1daughter: The name of the node's daughter node when its m-of-n test is failed. sister: The name of the node's sister node (i.e. they have the same parent) """ # Create constraints from parent's constraints plus its m-of-n test newtest = (self.tree[parent]['mntest'][0], self.tree[parent]['mntest'][1], passed) constraints = self.tree[parent]['constraints'] + list([newtest]) # Find how many samples reach the node (as boolean array) reached = [ self.__passes_mn_tests(self.traindata[i, :], constraints) for i in range(self.numsamples) ] reach = sum(reached) / self.numsamples # Get labels for samples that reach the node localsamples = self.traindata[reached] labels = self.oracle_predict(localsamples) # Assign predicted classes based on the m-of-n test that created this node predictedclass = prediction # Use this to calculate fidelity if reach > 0: fidelity = sum(labels == predictedclass) / sum(reached) else: fidelity = 0 # Get all features already used in this branch constrainedfeats = [] for test in constraints: for subtest in test[1]: constrainedfeats.append(subtest[0]) # If labels are not all the same, and we haven't used all features, # add this to the list of nodes to expand if len(np.unique(labels)) > 1 and len(constrainedfeats) < self.numfeats: self.fvalues[nodename] = reach * (1 - fidelity) isleaf = True mntest = None daughter0 = None daughter1 = None node = { 'constraints': constraints, 'reach': reach, 'fidelity': fidelity, 'reached': reached, 'isleaf': isleaf, 'predictedclass': predictedclass, 'mntest': mntest, '0daughter': daughter0, '1daughter': daughter1, 'parent': parent, 'sister': sister } return node def __passes_mn_test(self, example, test): """ Takes a particular example of test data, and checks whether it passes a single m-of-n test that is also provided. """ testpassed = False counter = 0 featurespassed = 0 # Pull out m and n for clarity m = test[0] n = len(test[1]) # Loop until either the test is passed or we get to n features tested while (not testpassed) and counter < n: # Pull out details for particular subtest feature = test[1][counter][0] threshold = test[1][counter][1] greater = test[1][counter][2] # Check if subtest passed if (greater and example[feature] >= threshold) or \ ((not greater) and example[feature] < threshold): featurespassed += 1 # Check if overall test passed if featurespassed >= m: testpassed = True counter += 1 return testpassed def __passes_mn_tests(self, example, constraints): """ Takes an example and a list of m-of-n tests and checks if all tests are passed by that particular sample. """ allpassed = True counter = 0 # Loop over tests until one is failed or we have tested them all while allpassed and counter < len(constraints): passed = self.__passes_mn_test(example, (constraints[counter][0], constraints[counter][1])) if passed != constraints[counter][2]: allpassed = False counter += 1 return allpassed def __expand_node(self, nodename): """ Expands a provided node by constructing an m-of-n test and using it to create two daughter nodes depending on whether it was passed or failed. """ # Construct m-of-n test constructed = self.__construct_test(nodename) mntest = constructed[0] passclass = constructed[1] failclass = constructed[2] wasexpanded = False # Check we made a test before editing the node - otherwise, skip to the # end and just keep this node as an unexpanded leaf if mntest is not None: # Add test to the node self.tree[nodename]['mntest'] = mntest # Generate daughter nodes daughter0 = nodename + '0' daughter1 = nodename + '1' if self.verbose: print("Creating new nodes...") self.tree[daughter0] = self.__create_node(daughter0, nodename, failclass, daughter1, False) self.tree[daughter1] = self.__create_node(daughter1, nodename, passclass, daughter0, True) # Adjust the current node's values to register expansion self.tree[nodename]['0daughter'] = daughter0 self.tree[nodename]['1daughter'] = daughter1 self.tree[nodename]['isleaf'] = False wasexpanded = True del self.fvalues[nodename] # Return so we know if an expansion actually happened (i.e. an m-of-n # test was found) return wasexpanded def __draw_sample(self, nodename): """ A function that takes the name of a node in the tree, and draws extra samples if fewer than the allowed minimum size of samples reach that node. (e.g. ifwe want 10,000 examples, and have 9,100, we will draw 900). The distributions are calculated with Gaussian Kernel Density Estimators and must be drawn in accordance with the relevant constraints in order for examples to reach the node. The list distrnodes is used and created by this function. This is a list of length equal to the number of features, and each entry is a node name, showing which node's feature distribution is currently being used to calculate that feature for this branch. (e.g. if we are on node '100', and the value for feature 3 is '1', we would check the current distribution of feature 3 against that for node '1', and if it is not different, use the distribution from feature 1 for sample drawing). """ # Create a dictionary to hold the features for which only a single value # makes it through to this node. This feature will always take this value # as it's impossible to create a KDE for a single-valued distribution. singlevalsdict = {} # Find local samples and calculate how many are needed localsamples = self.traindata[self.tree[nodename]['reached']] samplesneeded = self.minsamples - localsamples.shape[0] # Find nodes used for kernel construction by parent node by feature # (used for checking if feature distributions have changed) parent = self.tree[nodename]['parent'] if nodename == '1': distrs = ['1' for i in range(self.numfeats)] else: distrs = self.tree[parent]['distrnodes'] # Pull out node constraints for use later constraints = self.tree[nodename]['constraints'] # Create a distribution list for this node distrnodes = [nodename for i in range(self.numfeats)] # Set the bandwidth for the KDEs bandwidth = 1 / np.sqrt(localsamples.shape[0]) # Only do any of this if we need samples if samplesneeded > 0: # Create list to store KDEs for each feature kernels = [None for i in range(self.numfeats)] for feat in range(self.numfeats): # Get the appropriate set of samples to check against distrindices = self.tree[distrs[feat]]['reached'] parentsamples = self.traindata[distrindices] # Check if distribution for feature is diff from parent node # using Kolgomorov-Smirnov test # Including Bonferroni correction if stats.ks_2samp(localsamples[:, feat], parentsamples[:, feat])[1] <= self.significance / self.numfeats: # Check for single values uniques = np.unique(localsamples[:, feat]) if len(uniques) == 1: singlevalsdict[feat] = uniques[0] # If not single-valued, create KDE else: kernels[feat] = stats.gaussian_kde(localsamples[:, feat], bw_method=bandwidth) else: # If distribution doesn't differ, do same as above, # but for parent node instead uniques =
np.unique(parentsamples[:, feat])
numpy.unique
#! /usr/bin/env python """ MIMAS - The Multi-resolution Image Mask for Depexo Software TODO: Write an in/out reader for MOC formats described by http://arxiv.org/abs/1505.02937 """ from __future__ import print_function import logging import numpy as np import os import re from astropy.coordinates import Angle, SkyCoord import astropy.units as u from astropy.io import fits as pyfits from astropy.wcs import wcs as pywcs import healpy as hp from .regions import Region from .catalogs import load_table, write_table __author__ = "<NAME>" __version__ = 'v1.3.1' __date__ = '2018-08-29' # globals filewcs = None class Dummy(): """ A state storage class for MIMAS to work with. Attributes ---------- add_region : list List of :class:`depexoTools.MIMAS.Region` to be added. rem_region : list List of :class:`depexoTools.MIMAS.Region` to be subtracted. include_circles : [[ra, dec, radius],...] List of circles to be added to the region, units are degrees. exclude_circles : [[ra, dec, radius], ...] List of circles to be subtracted from the region, units are degrees. include_polygons : [[ra,dec, ...], ...] List of polygons to be added to the region, units are degrees. exclude_polygons : [[ra,dec, ...], ...] List of polygons to be subtracted from the region, units are degrees. maxdepth : int Depth or resolution of the region for HEALPix. There are 4*2**maxdepth pixels at the deepest layer. Default = 8. galactic: bool If true then all ra/dec coordinates will be interpreted as if they were in galactic lat/lon (degrees) """ def __init__(self, maxdepth=8): self.add_region = [] self.rem_region = [] self.include_circles = [] self.exclude_circles = [] self.include_polygons = [] self.exclude_polygons = [] self.maxdepth = maxdepth self.galactic = False return def galactic2fk5(l, b): """ Convert galactic l/b to fk5 ra/dec Parameters ---------- l, b : float Galactic coordinates in radians. Returns ------- ra, dec : float FK5 ecliptic coordinates in radians. """ a = SkyCoord(l, b, unit=(u.radian, u.radian), frame='galactic') return a.fk5.ra.radian, a.fk5.dec.radian def mask_plane(data, wcs, region, negate=False): """ Mask a 2d image (data) such that pixels within 'region' are set to nan. Parameters ---------- data : 2d-array Image array. wcs : astropy.wcs.WCS WCS for the image in question. region : :class:`depexoTools.regions.Region` A region within which the image pixels will be masked. negate : bool If True then pixels *outside* the region are masked. Default = False. Returns ------- masked : 2d-array The original array, but masked as required. """ # create an array but don't set the values (they are random) indexes = np.empty((data.shape[0]*data.shape[1], 2), dtype=int) # since I know exactly what the index array needs to look like i can construct # it faster than list comprehension would allow # we do this only once and then recycle it idx = np.array([(j, 0) for j in range(data.shape[1])]) j = data.shape[1] for i in range(data.shape[0]): idx[:, 1] = i indexes[i*j:(i+1)*j] = idx # put ALL the pixles into our vectorized functions and minimise our overheads ra, dec = wcs.wcs_pix2world(indexes, 1).transpose() bigmask = region.sky_within(ra, dec, degin=True) if not negate: bigmask = np.bitwise_not(bigmask) # rework our 1d list into a 2d array bigmask = bigmask.reshape(data.shape) # and apply the mask data[bigmask] = np.nan return data def mask_file(regionfile, infile, outfile, negate=False): """ Created a masked version of file, using a region. Parameters ---------- regionfile : str A file which can be loaded as a :class:`depexoTools.regions.Region`. The image will be masked according to this region. infile : str Input FITS image. outfile : str Output FITS image. negate : bool If True then pixels *outside* the region are masked. Default = False. See Also -------- :func:`depexoTools.MIMAS.mask_plane` """ # Check that the input file is accessible and then open it if not os.path.exists(infile): raise AssertionError("Cannot locate fits file {0}".format(infile)) im = pyfits.open(infile) if not os.path.exists(regionfile): raise AssertionError("Cannot locate region file {0}".format(regionfile)) region = Region.load(regionfile) try: wcs = pywcs.WCS(im[0].header, naxis=2) except: # TODO: figure out what error is being thrown wcs = pywcs.WCS(str(im[0].header), naxis=2) if len(im[0].data.shape) > 2: data = np.squeeze(im[0].data) else: data = im[0].data print(data.shape) if len(data.shape) == 3: for plane in range(data.shape[0]): mask_plane(data[plane], wcs, region, negate) else: mask_plane(data, wcs, region, negate) im[0].data = data im.writeto(outfile, overwrite=True) logging.info("Wrote {0}".format(outfile)) return def mask_table(region, table, negate=False, racol='ra', deccol='dec'): """ Apply a given mask (region) to the table, removing all the rows with ra/dec inside the region If negate=False then remove the rows with ra/dec outside the region. Parameters ---------- region : :class:`depexoTools.regions.Region` Region to mask. table : Astropy.table.Table Table to be masked. negate : bool If True then pixels *outside* the region are masked. Default = False. racol, deccol : str The name of the columns in `table` that should be interpreted as ra and dec. Default = 'ra', 'dec' Returns ------- masked : Astropy.table.Table A view of the given table which has been masked. """ inside = region.sky_within(table[racol], table[deccol], degin=True) if not negate: mask = np.bitwise_not(inside) else: mask = inside return table[mask] def mask_catalog(regionfile, infile, outfile, negate=False, racol='ra', deccol='dec'): """ Apply a region file as a mask to a catalog, removing all the rows with ra/dec inside the region If negate=False then remove the rows with ra/dec outside the region. Parameters ---------- regionfile : str A file which can be loaded as a :class:`depexoTools.regions.Region`. The catalogue will be masked according to this region. infile : str Input catalogue. outfile : str Output catalogue. negate : bool If True then pixels *outside* the region are masked. Default = False. racol, deccol : str The name of the columns in `table` that should be interpreted as ra and dec. Default = 'ra', 'dec' See Also -------- :func:`depexoTools.MIMAS.mask_table` :func:`depexoTools.catalogs.load_table` """ logging.info("Loading region from {0}".format(regionfile)) region = Region.load(regionfile) logging.info("Loading catalog from {0}".format(infile)) table = load_table(infile) masked_table = mask_table(region, table, negate=negate, racol=racol, deccol=deccol) write_table(masked_table, outfile) return def mim2reg(mimfile, regfile): """ Convert a MIMAS region (.mim) file into a DS9 region (.reg) file. Parameters ---------- mimfile : str Input file in MIMAS format. regfile : str Output file. """ region = Region.load(mimfile) region.write_reg(regfile) logging.info("Converted {0} -> {1}".format(mimfile, regfile)) return def mim2fits(mimfile, fitsfile): """ Convert a MIMAS region (.mim) file into a MOC region (.fits) file. Parameters ---------- mimfile : str Input file in MIMAS format. fitsfile : str Output file. """ region = Region.load(mimfile) region.write_fits(fitsfile, moctool='MIMAS {0}-{1}'.format(__version__, __date__)) logging.info("Converted {0} -> {1}".format(mimfile, fitsfile)) return def mask2mim(maskfile, mimfile, threshold=1.0, maxdepth=8): """ Use a fits file as a mask to create a region file. Pixels in mask file that are equal or above the threshold will be included in the reigon, while those that are below the threshold will not. Parameters ---------- maskfile : str Input file in fits format. mimfile : str Output filename threshold : float threshold value for separating include/exclude values maxdepth : int Maximum depth (resolution) of the healpix pixels """ hdu = pyfits.open(maskfile) wcs = pywcs.WCS(hdu[0].header) x, y = np.where(hdu[0].data >= threshold) ra, dec = wcs.all_pix2world(y, x, 0) sky = np.radians(Region.radec2sky(ra, dec)) vec = Region.sky2vec(sky) x, y, z = np.transpose(vec) pix = hp.vec2pix(2**maxdepth, x, y, z, nest=True) region = Region(maxdepth=maxdepth) region.add_pixels(pix, depth=maxdepth) region._renorm() save_region(region, mimfile) logging.info("Converted {0} -> {1}".format(maskfile, mimfile)) return def box2poly(line): """ Convert a string that describes a box in ds9 format, into a polygon that is given by the corners of the box Parameters ---------- line : str A string containing a DS9 region command for a box. Returns ------- poly : [ra, dec, ...] The corners of the box in clockwise order from top left. """ words = re.split('[(\s,)]', line) ra = words[1] dec = words[2] width = words[3] height = words[4] if ":" in ra: ra = Angle(ra, unit=u.hour) else: ra = Angle(ra, unit=u.degree) dec = Angle(dec, unit=u.degree) width = Angle(float(width[:-1])/2, unit=u.arcsecond) # strip the " height = Angle(float(height[:-1])/2, unit=u.arcsecond) # strip the " center = SkyCoord(ra, dec) tl = center.ra.degree+width.degree, center.dec.degree+height.degree tr = center.ra.degree-width.degree, center.dec.degree+height.degree bl = center.ra.degree+width.degree, center.dec.degree-height.degree br = center.ra.degree-width.degree, center.dec.degree-height.degree return np.ravel([tl, tr, br, bl]).tolist() def circle2circle(line): """ Parse a string that describes a circle in ds9 format. Parameters ---------- line : str A string containing a DS9 region command for a circle. Returns ------- circle : [ra, dec, radius] The center and radius of the circle. """ words = re.split('[(,\s)]', line) ra = words[1] dec = words[2] radius = words[3][:-1] # strip the " if ":" in ra: ra = Angle(ra, unit=u.hour) else: ra = Angle(ra, unit=u.degree) dec = Angle(dec, unit=u.degree) radius = Angle(radius, unit=u.arcsecond) return [ra.degree, dec.degree, radius.degree] def poly2poly(line): """ Parse a string of text containing a DS9 description of a polygon. This function works but is not very robust due to the constraints of healpy. Parameters ---------- line : str A string containing a DS9 region command for a polygon. Returns ------- poly : [ra, dec, ...] The coordinates of the polygon. """ words = re.split('[(\s,)]', line) ras = np.array(words[1::2]) decs = np.array(words[2::2]) coords = [] for ra, dec in zip(ras, decs): if ra.strip() == '' or dec.strip() == '': continue if ":" in ra: pos = SkyCoord(Angle(ra, unit=u.hour), Angle(dec, unit=u.degree)) else: pos = SkyCoord(Angle(ra, unit=u.degree), Angle(dec, unit=u.degree)) # only add this point if it is some distance from the previous one coords.extend([pos.ra.degree, pos.dec.degree]) return coords def reg2mim(regfile, mimfile, maxdepth): """ Parse a DS9 region file and write a MIMAS region (.mim) file. Parameters ---------- regfile : str DS9 region (.reg) file. mimfile : str MIMAS region (.mim) file. maxdepth : str Depth/resolution of the region file. """ logging.info("Reading regions from {0}".format(regfile)) lines = (l for l in open(regfile, 'r') if not l.startswith('#')) poly = [] circles = [] for line in lines: if line.startswith('box'): poly.append(box2poly(line)) elif line.startswith('circle'): circles.append(circle2circle(line)) elif line.startswith('polygon'): logging.warning("Polygons break a lot, but I'll try this one anyway.") poly.append(poly2poly(line)) else: logging.warning("Not sure what to do with {0}".format(line[:-1])) container = Dummy(maxdepth=maxdepth) container.include_circles = circles container.include_polygons = poly region = combine_regions(container) save_region(region, mimfile) return def combine_regions(container): """ Return a region that is the combination of those specified in the container. The container is typically a results instance that comes from argparse. Order of construction is: add regions, subtract regions, add circles, subtract circles, add polygons, subtract polygons. Parameters ---------- container : :class:`depexoTools.MIMAS.Dummy` The regions to be combined. Returns ------- region : :class:`depexoTools.regions.Region` The constructed region. """ # create empty region region = Region(container.maxdepth) # add/rem all the regions from files for r in container.add_region: logging.info("adding region from {0}".format(r)) r2 = Region.load(r[0]) region.union(r2) for r in container.rem_region: logging.info("removing region from {0}".format(r)) r2 = Region.load(r[0]) region.without(r2) # add circles if len(container.include_circles) > 0: for c in container.include_circles: circles = np.radians(
np.array(c)
numpy.array
from __future__ import print_function import unittest import numpy as np import os import shutil import tempfile import coremltools.models.datatypes as datatypes from coremltools.models import neural_network as neural_network from coremltools.models.utils import macos_version import coremltools import itertools np.random.seed(10) class CorrectnessTest(unittest.TestCase): def _compare_shapes(self, np_preds, coreml_preds): if np.squeeze(np_preds).shape != np.squeeze(coreml_preds).shape: return False else: return True def _compare_predictions(self, np_preds, coreml_preds, delta = .01): np_preds = np_preds.flatten() coreml_preds = coreml_preds.flatten() for i in range(len(np_preds)): max_den = max(1.0, np_preds[i], coreml_preds[i]) if np.abs(np_preds[i] / max_den - coreml_preds[i] / max_den) > delta: return False return True def get_size_after_stride(X, params): start = params["start"] end = params["end"] stride = params["stride"] if params["axis"] == 'width': axis = 2 if params["axis"] == 'height': axis = 1 if params["axis"] == 'channel': axis = 0 N = X.shape[axis] if end < 0: end = end + N end = min(end, N) if start > N-1: L = 0 else: L = np.floor((end - 1 - start)/stride) + 1 if L<0 : L = 0 return L def get_numpy_predictions_slice(X, params): start = params["start"] end = params["end"] stride = params["stride"] if params["axis"] == 'width': return X[:,:,start:end:stride] if params["axis"] == 'height': return X[:,start:end:stride,:] if params["axis"] == 'channel': return X[start:end:stride,:,:] def get_coreml_predictions_slice(X, params): coreml_preds = [] eval = True try: input_dim = X.shape output_dim = (1, 1, 1) #some random dimensions here: we are going to remove this information later input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*output_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_slice('slice', 'data', 'output', start_index = params["start"], end_index = params["end"], stride = params["stride"], axis = params["axis"]) #Remove output shape by deleting and adding an output del builder.spec.description.output[-1] output = builder.spec.description.output.add() output.name = 'output' output.type.multiArrayType.dataType = coremltools.proto.FeatureTypes_pb2.ArrayFeatureType.ArrayDataType.Value('DOUBLE') #save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) #preprare input and get predictions coreml_model = coremltools.models.MLModel(model_path) coreml_input = {'data': X} if macos_version() >= (10, 13): coreml_preds = coreml_model.predict(coreml_input)['output'] else: coreml_preds = None if os.path.exists(model_dir): shutil.rmtree(model_dir) except RuntimeError as e: print(e) eval = False return coreml_preds, eval def get_numpy_predictions_reduce(X, params): if params["axis"] == 'CHW': axis = (0,1,2) if params["axis"] == 'HW' : axis = (1,2) if params["axis"] == 'C' : axis = 0 if params["axis"] == 'H' : axis = 1 if params["axis"] == 'W' : axis = 2 if params["mode"] == 'sum': return np.sum(X, axis) if params["mode"] == 'avg': return np.mean(X, axis) if params["mode"] == 'prod': return np.prod(X, axis) if params["mode"] == 'logsum': return np.sum(np.log(X+1e-6), axis) if params["mode"] == 'sumsquare': return np.sum(X ** 2, axis) if params["mode"] == 'L2': return np.sqrt(np.sum(X ** 2, axis)) if params["mode"] == 'L1': return np.sum(np.abs(X), axis) if params["mode"] == 'max': return np.amax(X, axis) if params["mode"] == 'min': return np.amin(X, axis) if params["mode"] == 'argmax': return np.argmax(X, axis) def get_coreml_predictions_reduce(X, params): coreml_preds = [] eval = True try: input_dim = X.shape output_dim = (1, 1, 1) #some random dimensions here: we are going to remove this information later input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*output_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_reduce('reduce', 'data', 'output', axis = params["axis"], mode = params["mode"]) #Remove output shape by deleting and adding an output del builder.spec.description.output[-1] output = builder.spec.description.output.add() output.name = 'output' output.type.multiArrayType.dataType = coremltools.proto.FeatureTypes_pb2.ArrayFeatureType.ArrayDataType.Value('DOUBLE') #save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) #preprare input and get predictions coreml_model = coremltools.models.MLModel(model_path) coreml_input = {'data': X} if macos_version() >= (10, 13): coreml_preds = coreml_model.predict(coreml_input)['output'] else: coreml_preds = None if os.path.exists(model_dir): shutil.rmtree(model_dir) except RuntimeError as e: print(e) eval = False return coreml_preds, eval def get_coreml_predictions_unary(x, mode, alpha = 1.0): #create a tiny mlmodel input_dim = x.shape input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_unary(name= 'unary', input_name = 'data', output_name = 'output', mode = mode, alpha = alpha) #save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) #preprare input and get predictions coreml_model = coremltools.models.MLModel(model_path) if macos_version() >= (10, 13): coreml_input = {'data': x} coreml_preds = coreml_model.predict(coreml_input)['output'] else: coreml_preds = None if os.path.exists(model_dir): shutil.rmtree(model_dir) return coreml_preds class SimpleTest(CorrectnessTest): def test_tiny_upsample_linear_mode(self): #create a tiny mlmodel input_dim = (1,1,3) #(C,H,W) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_upsample(name= 'upsample', scaling_factor_h = 2, scaling_factor_w = 3, input_name= 'data', output_name= 'output', mode = 'BILINEAR') #save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) #preprare input and get predictions coreml_model = coremltools.models.MLModel(model_path) if macos_version() >= (10, 13): coreml_input = {'data': np.reshape(np.array([1.0,2.0,3.0]), (1,1,3))} coreml_preds = coreml_model.predict(coreml_input)['output'] #harcoded for this simple test case numpy_preds = np.array([[1, 1.333, 1.666, 2, 2.333, 2.666, 3, 3, 3],\ [1, 1.333, 1.6666, 2, 2.33333, 2.6666, 3, 3, 3]]) #numpy_preds = np.array([[1, 1, 1, 2, 2, 2, 3, 3, 3],[1, 1, 1, 2, 2, 2, 3, 3, 3]]) #Test self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) if os.path.exists(model_dir): shutil.rmtree(model_dir) def test_LRN(self): #create a tiny mlmodel input_dim = (1,3,3) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_lrn(name= 'lrn', input_name = 'data', output_name = 'output', alpha = 2, beta = 3, local_size = 1, k = 8) #save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) #preprare input and get predictions coreml_model = coremltools.models.MLModel(model_path) if macos_version() >= (10, 13): coreml_input = {'data': np.ones((1,3,3))} coreml_preds = coreml_model.predict(coreml_input)['output'] #harcoded for this simple test case numpy_preds = 1e-3 * np.ones((1,3,3)) self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) if os.path.exists(model_dir): shutil.rmtree(model_dir) def test_MVN(self): #create a tiny mlmodel input_dim = (2,2,2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_mvn(name= 'mvn', input_name = 'data', output_name = 'output', across_channels = False, normalize_variance = False) #save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) #preprare input and get predictions coreml_model = coremltools.models.MLModel(model_path) if macos_version() >= (10, 13): coreml_input = {'data': np.reshape(np.arange(8, dtype=np.float32), (2,2,2))} coreml_preds = coreml_model.predict(coreml_input)['output'] #harcoded for this simple test case numpy_preds = np.reshape(np.arange(8) - np.array([1.5,1.5,1.5,1.5,5.5,5.5,5.5,5.5]),(2,2,2)) self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) if os.path.exists(model_dir): shutil.rmtree(model_dir) def test_L2_normalize(self): #create a tiny mlmodel input_dim = (1,2,2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_l2_normalize(name= 'mvn', input_name = 'data', output_name = 'output') #save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) #preprare input and get predictions coreml_model = coremltools.models.MLModel(model_path) if macos_version() >= (10, 13): coreml_input = {'data': np.reshape(np.arange(4, dtype=np.float32), (1,2,2))} coreml_preds = coreml_model.predict(coreml_input)['output'] #harcoded for this simple test case numpy_preds = np.reshape(np.arange(4, dtype=np.float32), (1,2,2))/np.sqrt(14) self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) if os.path.exists(model_dir): shutil.rmtree(model_dir) def test_unary(self): x = np.reshape(np.arange(1,5, dtype=np.float32), (1,2,2)) coreml_preds = get_coreml_predictions_unary(x, 'sqrt') if coreml_preds is not None: numpy_preds = np.sqrt(x) self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) coreml_preds = get_coreml_predictions_unary(x, 'rsqrt') if coreml_preds is not None: numpy_preds = 1/np.sqrt(x) self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) coreml_preds = get_coreml_predictions_unary(x, 'inverse') if coreml_preds is not None: numpy_preds = 1/x self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) coreml_preds = get_coreml_predictions_unary(x, 'power', 3) if coreml_preds is not None: numpy_preds = x ** 3 self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) coreml_preds = get_coreml_predictions_unary(x, 'exp') if coreml_preds is not None: numpy_preds = np.exp(x) self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) coreml_preds = get_coreml_predictions_unary(x, 'log') if coreml_preds is not None: numpy_preds = np.log(x) self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) coreml_preds = get_coreml_predictions_unary(x, 'abs') if coreml_preds is not None: numpy_preds = np.abs(x) self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) coreml_preds = get_coreml_predictions_unary(x, 'threshold', alpha = 2) if coreml_preds is not None: numpy_preds = np.maximum(x, 2) self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) def test_split(self): #create a tiny mlmodel input_dim = (9,2,2) x = np.random.rand(*input_dim) input_features = [('data', datatypes.Array(*input_dim))] output_names = [] output_features = [] for i in range(3): out = 'out_' + str(i) output_names.append(out) output_features.append((out, None)) builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_split(name= 'split', input_name = 'data', output_names = output_names) #save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) #preprare input and get predictions coreml_model = coremltools.models.MLModel(model_path) if macos_version() >= (10, 13): coreml_input = {'data': x} coreml_preds_dict = coreml_model.predict(coreml_input) for i in range(3): coreml_preds = coreml_preds_dict[output_names[i]] numpy_preds = x[i*3:i*3+3,:,:] self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) if os.path.exists(model_dir): shutil.rmtree(model_dir) def test_scale_constant(self): #create a tiny mlmodel input_dim = (1,2,2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_scale(name = 'scale', W = 5, b = 45, has_bias = True, input_name = 'data', output_name = 'output') #save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) #preprare input and get predictions coreml_model = coremltools.models.MLModel(model_path) if macos_version() >= (10, 13): x = np.reshape(np.arange(4, dtype=np.float32), (1,2,2)) coreml_input = {'data': x} coreml_preds = coreml_model.predict(coreml_input)['output'] #harcoded for this simple test case numpy_preds = 5 * x + 45 self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) if os.path.exists(model_dir): shutil.rmtree(model_dir) def test_scale_matrix(self): #create a tiny mlmodel input_dim = (1,2,2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.reshape(np.arange(5,9), (1,2,2)) builder.add_scale(name = 'scale', W = W, b = None, has_bias = False, input_name = 'data', output_name = 'output', shape_scale = [1,2,2]) #save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) #preprare input and get predictions coreml_model = coremltools.models.MLModel(model_path) if macos_version() >= (10, 13): x = np.reshape(np.arange(4, dtype=np.float32), (1,2,2)) coreml_input = {'data': x} coreml_preds = coreml_model.predict(coreml_input)['output'] #harcoded for this simple test case numpy_preds = W * x self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) if os.path.exists(model_dir): shutil.rmtree(model_dir) def test_bias_constant(self): #create a tiny mlmodel input_dim = (1,2,2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_bias(name = 'bias', b = 45, input_name = 'data', output_name = 'output') #save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) #preprare input and get predictions coreml_model = coremltools.models.MLModel(model_path) if macos_version() >= (10, 13): x = np.reshape(np.arange(4, dtype=np.float32), (1,2,2)) coreml_input = {'data': x} coreml_preds = coreml_model.predict(coreml_input)['output'] #harcoded for this simple test case numpy_preds = x + 45 self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) if os.path.exists(model_dir): shutil.rmtree(model_dir) def test_bias_matrix(self): #create a tiny mlmodel input_dim = (1,2,2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5,9), (1,2,2)) builder.add_bias(name = 'bias', b = b, input_name = 'data', output_name = 'output', shape_bias = [1,2,2]) #save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) #preprare input and get predictions coreml_model = coremltools.models.MLModel(model_path) if macos_version() >= (10, 13): x = np.reshape(np.arange(4, dtype=np.float32), (1,2,2)) coreml_input = {'data': x} coreml_preds = coreml_model.predict(coreml_input)['output'] #harcoded for this simple test case numpy_preds = x + b self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) if os.path.exists(model_dir): shutil.rmtree(model_dir) def test_load_constant(self): #create a tiny mlmodel input_dim = (1,2,2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5,9), (1,2,2)) builder.add_load_constant(name= 'load_constant', output_name = 'bias', constant_value = b, shape = [1,2,2]) builder.add_elementwise(name= 'add', input_names = ['data', 'bias'], output_name = 'output', mode = 'ADD') #save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) #preprare input and get predictions coreml_model = coremltools.models.MLModel(model_path) if macos_version() >= (10, 13): x = np.reshape(np.arange(4, dtype=np.float32), (1,2,2)) coreml_input = {'data': x} coreml_preds = coreml_model.predict(coreml_input)['output'] #harcoded for this simple test case numpy_preds = x + b self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) # Test half precision case coreml_fp16_model = coremltools.utils.convert_neural_network_weights_to_fp16(coreml_model) coreml_preds = coreml_fp16_model.predict(coreml_input)['output'] self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) if os.path.exists(model_dir): shutil.rmtree(model_dir) def test_min(self): #create a tiny mlmodel input_dim = (1,2,2) input_features = [('data_0', datatypes.Array(*input_dim)), ('data_1', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_elementwise(name = 'min', input_names= ['data_0', 'data_1'], output_name = 'output', mode = 'MIN') #save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) #preprare input and get predictions coreml_model = coremltools.models.MLModel(model_path) if macos_version() >= (10, 13): x1 = np.reshape(np.arange(4, dtype=np.float32), (1,2,2)) x2 = np.reshape(np.arange(2,6, dtype=np.float32), (1,2,2)) coreml_input = {'data_0': x1, 'data_1': x2} coreml_preds = coreml_model.predict(coreml_input)['output'] #harcoded for this simple test case numpy_preds = np.minimum(x1,x2) self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) if os.path.exists(model_dir): shutil.rmtree(model_dir) def test_conv_same_padding(self): #create a tiny mlmodel input_dim = (10,15,15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.random.rand(3,3,10,20) builder.add_convolution(name = 'conv', kernel_channels = 10, output_channels = 20, height = 3, width = 3, stride_height = 2, stride_width = 2, border_mode = 'same', groups = 1, W = W, b = None, has_bias = False, input_name = 'data', output_name = 'output', same_padding_asymmetry_mode = 'TOP_LEFT_HEAVY') #save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) #preprare input and get predictions coreml_model = coremltools.models.MLModel(model_path) if macos_version() >= (10, 13): x = np.random.rand(*input_dim) coreml_input = {'data': x} coreml_preds = coreml_model.predict(coreml_input)['output'] #harcoded for this simple test case numpy_preds = np.random.rand(20,8,8) self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) if os.path.exists(model_dir): shutil.rmtree(model_dir) def test_deconv_valid_padding(self): #create a tiny mlmodel input_dim = (10,15,15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.random.rand(3,3,20,10) builder.add_convolution(name = 'deconv', kernel_channels = 10, output_channels = 20, height = 3, width = 3, stride_height = 2, stride_width = 2, border_mode = 'valid', groups = 1, W = W, b = None, has_bias = False, is_deconv = True, input_name = 'data', output_name = 'output', padding_top = 2, padding_bottom = 3, padding_left = 2, padding_right = 3) #save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) #preprare input and get predictions coreml_model = coremltools.models.MLModel(model_path) if macos_version() >= (10, 13): x = np.random.rand(*input_dim) coreml_input = {'data': x} coreml_preds = coreml_model.predict(coreml_input)['output'] #harcoded for this simple test case numpy_preds = np.random.rand(20,26,26) self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) if os.path.exists(model_dir): shutil.rmtree(model_dir) def test_linear_activation(self): #create a tiny mlmodel input_dim = (10,15,15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_activation(name = 'activation', non_linearity = 'LINEAR', input_name = 'data', output_name = 'output', params= [34.0, 67.0]) #save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) #preprare input and get predictions coreml_model = coremltools.models.MLModel(model_path) if macos_version() >= (10, 13): x = np.random.rand(*input_dim) coreml_input = {'data': x} coreml_preds = coreml_model.predict(coreml_input)['output'] #harcoded for this simple test case numpy_preds = 34.0 * x + 67.0 self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) if os.path.exists(model_dir): shutil.rmtree(model_dir) def test_padding_constant(self): #create a tiny mlmodel input_dim = (1,2,3) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_padding(name = 'pad', left = 1, right = 0, top = 2, bottom = 0, value = -1, input_name = 'data', output_name = 'output') #save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) #preprare input and get predictions coreml_model = coremltools.models.MLModel(model_path) if macos_version() >= (10, 13): x = np.reshape(np.array([[1,2,3], [4,5,6]]), (1,2,3)).astype(np.float32) coreml_input = {'data': x} coreml_preds = coreml_model.predict(coreml_input)['output'] #harcoded for this simple test case numpy_preds = np.reshape(np.array([[-1,-1,-1,-1], [-1,-1,-1,-1], [-1,1,2,3], [-1,4,5,6]]), (1,4,4)).astype(np.float32) self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) if os.path.exists(model_dir): shutil.rmtree(model_dir) def test_padding_replication(self): #create a tiny mlmodel input_dim = (1,2,3) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_padding(name = 'pad', left = 1, top = 2, input_name = 'data', output_name = 'output', padding_type = 'replication') #save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) #preprare input and get predictions coreml_model = coremltools.models.MLModel(model_path) if macos_version() >= (10, 13): x = np.reshape(np.array([[1,2,3], [4,5,6]]), (1,2,3)).astype(np.float32) coreml_input = {'data': x} coreml_preds = coreml_model.predict(coreml_input)['output'] #harcoded for this simple test case numpy_preds = np.reshape(np.array([[1,1,2,3], [1,1,2,3], [1,1,2,3], [4,4,5,6]]), (1,4,4)).astype(np.float32) self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) if os.path.exists(model_dir): shutil.rmtree(model_dir) def test_reshape_target_shape_3(self): #create a tiny mlmodel input_dim = (1,2,5) #(C,H,W) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_reshape(name = 'reshape', input_name = 'data', output_name = 'output', target_shape = (10,1,1), mode = 0) #save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) #preprare input and get predictions coreml_model = coremltools.models.MLModel(model_path) if macos_version() >= (10, 13): x = np.random.rand(*input_dim) coreml_input = {'data': x} coreml_preds = coreml_model.predict(coreml_input)['output'] #harcoded for this simple test case numpy_preds = np.reshape(x, (10,1,1)) self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) if os.path.exists(model_dir): shutil.rmtree(model_dir) def test_reshape_target_shape_4(self): #create a tiny mlmodel input_dim = (1,2,5) #(C,H,W) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_reshape(name = 'reshape', input_name = 'data', output_name = 'output', target_shape = (1,10,1,1), mode = 0) #save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) #preprare input and get predictions coreml_model = coremltools.models.MLModel(model_path) if macos_version() >= (10, 13): x = np.random.rand(*input_dim) coreml_input = {'data': x} coreml_preds = coreml_model.predict(coreml_input)['output'] #harcoded for this simple test case numpy_preds = np.reshape(x, (1,10,1,1)) self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) if os.path.exists(model_dir): shutil.rmtree(model_dir) class SimpleTestCPUOnly(CorrectnessTest): def test_bias_matrix_CPU(self): #create a tiny mlmodel input_dim = (1,2,2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5,9), (1,2,2)) builder.add_bias(name = 'bias', b = b, input_name = 'data', output_name = 'output', shape_bias = [1,2,2]) #save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) #preprare input and get predictions coreml_model = coremltools.models.MLModel(model_path) if macos_version() >= (10, 13): x = np.reshape(np.arange(4, dtype=np.float32), (1,2,2)) coreml_input = {'data': x} coreml_preds = coreml_model.predict(coreml_input, useCPUOnly = True)['output'] #harcoded for this simple test case numpy_preds = x + b self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) if os.path.exists(model_dir): shutil.rmtree(model_dir) def test_linear_activation_CPU(self): #create a tiny mlmodel input_dim = (10,15,15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_activation(name = 'activation', non_linearity = 'LINEAR', input_name = 'data', output_name = 'output', params= [34.0, 67.0]) #save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) #preprare input and get predictions coreml_model = coremltools.models.MLModel(model_path) if macos_version() >= (10, 13): x = np.random.rand(*input_dim) coreml_input = {'data': x} coreml_preds = coreml_model.predict(coreml_input, useCPUOnly = True)['output'] #harcoded for this simple test case numpy_preds = 34.0 * x + 67.0 self.assertTrue(self._compare_shapes(numpy_preds, coreml_preds)) self.assertTrue(self._compare_predictions(numpy_preds, coreml_preds)) if os.path.exists(model_dir): shutil.rmtree(model_dir) class StressTest(CorrectnessTest): def test_slice_layer(self): ''' Define Params ''' params_dict = dict( input_shape = [[30,100,8], [80,50,5], [4,12,5], [56,8,14]], axis = ['channel', 'height', 'width'], start = [0,1,2,5], end = [5,100,56,-1,-2,-4], stride = [1,2,3] ) params = list(itertools.product(*params_dict.values())) all_candidates = [dict(zip(params_dict.keys(), x)) for x in params] valid_params = [] for pr in all_candidates: X = np.random.rand(*pr["input_shape"]) if get_size_after_stride(X, pr): valid_params.append(pr) print("Total params to be tested: ", len(valid_params), "out of canditates: ", len(all_candidates)) ''' Test ''' failed_tests_compile = [] failed_tests_shape = [] failed_tests_numerical = [] for i in range(len(valid_params)): params = valid_params[i] #print("=========: ", params) #if i % 10 == 0: print("======== Testing {}/{}".format(str(i), str(len(valid_params)))) X =
np.random.rand(*params["input_shape"])
numpy.random.rand
import streamlit as st import cv2 import numpy as np import config import time import pandas as pd from utils.enhance import cropped_image from config import NMS_THRESH, LABELS crop, image = None, None # Initialization # load the COCO class labels our YOLO model was trained on # derive the paths to the YOLO weights and model configuration weightsPath = config.MODEL_PATH configPath = config.CONFIG_PATH def yolo_detector(frame, net, ln, MIN_CONF, Idx=0): # grab the dimensions of the frame and initialize the list of # results (H, W) = frame.shape[:2] results = [] # construct a blob from the input frame and then perform a forward # pass of the YOLO object detector, giving us our bounding boxes # and associated probabilities blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416), swapRB=True, crop=False) net.setInput(blob) start = time.time() layerOutputs = net.forward(ln) st.sidebar.success("Processing time for YOLOV3: {} {:.4f} seconds.".format('\n',time.time() - start)) print("Processing time for YOLOV3: --- {:.4f} seconds ---".format(time.time() - start)) # initialize our lists of detected bounding boxes, centroids, and # confidences, respectively boxes = [] centroids = [] confidences = [] # loop over each of the layer outputs for output in layerOutputs: # loop over each of the detections for detection in output: # extract the class ID and confidence (i.e., probability) # of the current object detection scores = detection[5:] classID = np.argmax(scores) confidence = scores[classID] # filter detections by (1) ensuring that the object # detected was a person and (2) that the minimum # confidence is met if classID == Idx and confidence > MIN_CONF: # scale the bounding box coordinates back relative to # the size of the image, keeping in mind that YOLO # actually returns the center (x, y)-coordinates of # the bounding box followed by the boxes' width and # height box = detection[0:4] * np.array([W, H, W, H]) (centerX, centerY, width, height) = box.astype("int") # use the center (x, y)-coordinates to derive the top # and and left corner of the bounding box x = int(centerX - (width / 2)) y = int(centerY - (height / 2)) # update our list of bounding box coordinates, # centroids, and confidences boxes.append([x, y, int(width), int(height)]) centroids.append((centerX, centerY)) confidences.append(float(confidence)) # apply non-maxima suppression to suppress weak, overlapping # bounding boxes idxs = cv2.dnn.NMSBoxes(boxes, confidences, MIN_CONF, NMS_THRESH) # ensure at least one detection exists if len(idxs) > 0: # loop over the indexes we are keeping for i in idxs.flatten(): # extract the bounding box coordinates (x, y) = (boxes[i][0], boxes[i][1]) (w, h) = (boxes[i][2], boxes[i][3]) # update our results list to consist of the person # prediction probability, bounding box coordinates, # and the centroid r = (confidences[i], (x, y, x + w, y + h), centroids[i]) results.append(r) # return the list of results return results @st.cache(allow_output_mutation=True, show_spinner=False) def load_network(configpath, weightspath): with st.spinner("Loading Yolo weights!"): # load our YOLO object detector trained on our dataset (1 class) net = cv2.dnn.readNetFromDarknet(configPath, weightsPath) # determine only the *output* layer names that we need from YOLO output_layer_names = net.getLayerNames() output_layer_names = [output_layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] return net, output_layer_names def yolo_crop_correction(frame, bbox, w, h): # resizing cropped image (startX, startY, endX, endY) = bbox crop = cropped_image(frame, (startX, startY, endX, endY)) crop_w, crop_h = endX - startX, endY - startY # height & width of number plate of 416*416 image width_m, height_m = w/416, h/416 # width and height multiplier w2, h2 = round(crop_w*width_m), round(crop_h*height_m) crop = cv2.resize(np.asarray(crop), (w2, h2)) return crop def yolo_inference(image, confidence_cutoff): # YOLO Detection # Preprocess frame = cv2.resize(
np.asarray(image)
numpy.asarray
# https://takun-physics.net/12612/ #from numpy import sin, cos import math import numpy as np import matplotlib.pyplot as plt import scipy.integrate as integrate import matplotlib.animation as animation import pandas as pd import os # 微分方程式 def ini_cor_func(j, x_ini_cor, y_ini_cor, x, L): if j == 0: x_ini_cor[j] = L[j] * np.sin(x[j]) y_ini_cor[j] = -L[j] * np.cos(x[j]) else: x_ini_cor[j] = L[j] * np.sin(x[j]) + x_ini_cor[j - 1] y_ini_cor[j] = -L[j] * np.cos(x[j]) + y_ini_cor[j - 1] return x_ini_cor[j], y_ini_cor[j] def N_func(t, n, x, v, m, L, g, E): A = np.zeros((n, n), dtype=np.float64) B = np.zeros((n, n), dtype=np.float64) for i in range(n): for j in range(n): for k in range(max(i, j), n): A[i][j] += m[k] B[i][j] += m[k] if i == j: A[i][j] *= L[j] B[i][j] *= g * np.sin(x[i]) else: A[i][j] *= L[j] * np.cos(x[i] - x[j]) B[i][j] *= L[j] * v[j] ** 2 * np.sin(x[i] - x[j]) # 逆行列の計算 inv_A = np.linalg.inv(A) # inv_A*Bを計算 inv_A_B = np.dot(inv_A, B) F = np.dot(inv_A_B, E) return F def main(num, end): num = int(num) df_param = pd.read_csv('N_param0.csv') df_param = pd.DataFrame(df_param) # df_param = df_param[:, 1:].values df_param = np.array(df_param) df_param = df_param[:, 1:num+1] m = np.array(df_param[0, :]).astype(np.float64).round(2) L = np.array(df_param[1, :]).astype(np.float64).round(2) theta = np.array(df_param[2, :]).astype(np.float64).round(2) x = np.array([np.radians(i) for i in theta]).astype(np.float64) v = np.array(df_param[3, :]).astype(np.float64).round(2) # 初期条件のコピー x0 = x.copy() # 初期位置の確認 n = len(df_param[0, :]) x_ini_cor = np.zeros(n, dtype=np.float64) y_ini_cor = np.zeros(n, dtype=np.float64) for j in range(n): x_ini_cor[j], y_ini_cor[j] = ini_cor_func(j, x_ini_cor, y_ini_cor, x, L) size1 = 1 x_ini_cor = x_ini_cor * size1 y_ini_cor = y_ini_cor * size1 xplot_ = np.insert(x_ini_cor, 0, 0) yplot_ = np.insert(y_ini_cor, 0, 0) plt.grid() plt.plot(xplot_, yplot_, 'ko-', lw=2) # Calculate propertv init = 0 end = int(end) dt = 0.05 h = dt loop = int(end / h) n = len(df_param[0, :]) g = 9.8 # initial state t = init tpoints = np.arange(init, end, h) xpoints = [] vpoints = [] # A = np.zeros((n,n),dtype=np.float64) # B = np.zeros((n,n),dtype=np.float64) E = -np.ones_like(x) xpoints = [] vpoints = [] # 配列要素数の定義 j1 = np.zeros_like(v) k1 = np.zeros_like(x) j2 = np.zeros_like(v) k2 = np.zeros_like(x) j3 =
np.zeros_like(v)
numpy.zeros_like
import numpy as np import glob import os import os.path import matplotlib.pyplot as plt import matplotlib #matplotlib.use('Agg') import matplotlib.colors as colors import matplotlib.cm as cm from matplotlib.offsetbox import TextArea, VPacker, AnnotationBbox import errno import math from matplotlib.ticker import NullFormatter # useful for `logit` scale import itertools from matplotlib import rcParams import module def plotting(index_label,figure_storage, plot_array, mbh, mstar, mass_range_array,mbh_mstar_array,mean_bh, mean_star,plot_format,plot_quality): matplotlib.rcParams.update({'font.size': 20}) marker = itertools.cycle(('<', 'X', '^', 'o', '*','>','p','s')) colors=["blue", "red", "green", "magenta","orange","grey"] fig, ax = plt.subplots() fig.canvas.draw() index_label2="" for letter in index_label: if(letter=="/"): index_label2 = index_label2 + "_" else: index_label2 = index_label2 + letter filename = index_label2+plot_format filename1 = os.path.join(figure_storage, filename) XBH, YSTAR = np.meshgrid(mbh, mstar) for count in range(2): if(len(mbh_mstar_array[count][0])>0): ax.contourf(XBH,YSTAR,mass_range_array[count],colors = colors[count],alpha=0.3) ax.scatter(mean_bh, mean_star) plt.rcParams['hatch.color'] = "white" masked = np.ma.masked_where(plot_array!=2,plot_array) ax.contourf(XBH,YSTAR,masked,colors = "green",alpha=1.0,hatches=['x']) ax.set_xscale("log") ax.set_yscale("log") ax.set_ylim(mstar[0],mstar[-1]) ax.set_xlim(mbh[0],mbh[-1]) xtick_array= get_tick_array(mbh[0],mbh[-1],"x") ytick_array= get_tick_array(mstar[0],mstar[-1],"y") ax.set_xticks(xtick_array) ax.xaxis.set_major_formatter(plt.FuncFormatter(format_func)) ax.yaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_minor_formatter(NullFormatter()) ax.set_yticks(ytick_array) ax.yaxis.set_major_formatter(plt.FuncFormatter(format_func)) ax.yaxis.set_label_coords(-0.1,0.5) ax.set_ylabel(r"$M_{\star}\/[\mathrm{M}_{\odot}]$") ax.set_xlabel(r"$M_{\mathrm{BH}}\/[10^{6}\/\mathrm{M}_{\odot}]$") ax.set_title(index_label, fontsize = 25) ax = plt.gca() plt.tight_layout() plt.gcf().subplots_adjust(left=0.16) plt.gcf().subplots_adjust(bottom=0.16) plt.savefig(filename1,dpi=plot_quality) plt.close() return def plot_double_intersection(figure_storage,index_array,plot_array,mass_range_array,plot_format,plot_quality,c1,del_omega,samplesize,mbh_sol_array,mstar_sol_array,solution_exist): marker = itertools.cycle(('<', 'X', '^', 'o', '*','>','p','s')) colors=["blue", "red", "green", "magenta","orange","grey"] matplotlib.rcParams.update({'font.size': 20}) temp_array=[[[],[]],[[],[]]] for sample in range(samplesize): if(solution_exist[sample]==0): mbh_lo = mbh_sol_array[sample][0] - mbh_sol_array[sample][1] mbh_hi = mbh_sol_array[sample][2] + mbh_sol_array[sample][0] mstar_lo = mstar_sol_array[sample][0] - mstar_sol_array[sample][1] mstar_hi = mstar_sol_array[sample][2] + mstar_sol_array[sample][0] temp_array[0][0].append(mbh_lo) temp_array[0][1].append(mbh_hi) temp_array[1][0].append(mstar_lo) temp_array[1][1].append(mstar_hi) mbh = 10.0** np.linspace(np.log10(np.amin(temp_array[0][0]))*0.75,np.log10(np.amax(temp_array[0][1]))*1.25,100) mstar = 10.0** np.linspace(np.log10(np.amin(temp_array[1][0]))*0.75,np.log10(np.amax(temp_array[1][1]))*1.25,100) XBH, YSTAR = np.meshgrid(mbh, mstar) cmap = "jet" fig, ax = plt.subplots() int_count = 2 filename = "c1_"+str(c1)[0:5]+"_del_omega_"+str(del_omega/math.pi)[0:3]+"_inferred_mass"+plot_format filename1 = os.path.join(figure_storage, filename) good_sample_size = 0 offset=[] for sample in range(samplesize): maxval = np.amax(plot_array[sample].flatten()) if(maxval==int_count): good_sample_size = good_sample_size + 1 offset.append(good_sample_size) vmin = 0 vmax = max(good_sample_size,1) sample_count = 0 min_bh = 1e100 min_star = 1e100 max_bh = -1e100 max_star = -1e100 for sample in range(samplesize): if(solution_exist[sample]==0): mean_bh = 0.0 mean_star = 0.0 area_total = 0.0 bh_sol = mbh_sol_array[sample][0] error_bh_l = mbh_sol_array[sample][1] error_bh_h = mbh_sol_array[sample][2] star_sol = mstar_sol_array[sample][0] error_star_l = mstar_sol_array[sample][1] error_star_h = mstar_sol_array[sample][2] mean_bh = mbh_sol_array[sample][0] ccmap = matplotlib.cm.get_cmap(cmap) color = ccmap((offset[sample]-vmin)/(vmax-vmin)) if (mean_bh>0.0): markers = next(marker) pp = ax.errorbar(bh_sol,star_sol,yerr=np.array([(error_star_l, error_star_h)]).T,xerr =
np.array([(error_bh_l, error_bh_h)])
numpy.array
# Triangulate 3D joints # # <NAME> <<EMAIL>> import os import cv2 as cv import argparse import json import pickle import subprocess import numpy as np from glob import glob import itertools from multiprocessing import Pool import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from joint_ids import * from dataset_ids import * from pdb import set_trace as st np.seterr(all='raise') scenes = get_scenes() cams = get_cams() connectivity_ikea = get_ikea_connectivity() # == COCO format connectivity_body25 = get_body25_connectivity() def triangulate_joints(args): camera_parameters = get_camera_parameters(args) scan_folders = get_scan_dirs(args.dataset_dir) # Select save format: if args.save_format == 'ikea': joint_names = get_ikea_joint_names() connectivity = connectivity_ikea elif args.save_format == 'body25': joint_names = get_body25_joint_names()[:25] connectivity = connectivity_body25 if 'keypoint_rcnn' in args.input_predictions: input_joint_names = get_ikea_joint_names() elif 'openpose' in args.input_predictions: input_joint_names = get_body25_joint_names() input_joint_names_dict = {name: i for i, name in enumerate(input_joint_names)} num_joints = len(joint_names) with open(os.path.join(args.dataset_dir, 'test_cross_env.txt'), 'r') as f: test_paths = f.read().splitlines() with open(os.path.join(args.dataset_dir, 'train_cross_env.txt'), 'r') as f: train_paths = f.read().splitlines() reproj_gt_meter = AverageMeter('Reprojection error') reproj_gt_meter_train = AverageMeter('Reprojection error') reproj_gt_meter_test = AverageMeter('Reprojection error') pck_gt_meter = AverageMeter('PCK') pck_gt_meter_train = AverageMeter('PCK') pck_gt_meter_test = AverageMeter('PCK') for i, scan_folder in enumerate(scan_folders): print(f"\nProcessing {i} of {len(scan_folders)}: {' '.join(scan_folder.split('/')[-2:])}") # Determine scene ID: label = scan_folder.split('/')[-1] scene = label.split('_')[3] assert scene in scenes prediction_path = os.path.join('predictions', 'pose2d', args.input_predictions) use_all_frames = False if use_all_frames: # Use all frames: # Check all cams, since some have more frames than others... json_mask = os.path.join(scan_folder, 'dev1', prediction_path, 'scan_video_????????????_keypoints.json') json_files1 = glob(json_mask) json_mask = os.path.join(scan_folder, 'dev2', prediction_path, 'scan_video_????????????_keypoints.json') json_files2 = glob(json_mask) json_mask = os.path.join(scan_folder, 'dev3', prediction_path, 'scan_video_????????????_keypoints.json') json_files3 = glob(json_mask) json_index = np.argmin([len(json_files1), len(json_files2), len(json_files3)]) json_files = [json_files1, json_files2, json_files3][json_index] keypoint_filenames = sorted([os.path.basename(json_file) for json_file in json_files]) else: # Use frames with GT 2D annotations: json_mask = os.path.join(scan_folder, 'dev3', 'pose2d', '??????.json') # GT 2D annotations json_files = sorted(glob(json_mask)) # eg <root>/<scan_folder>/dev3/pose2d/000000.json frame_strs = [os.path.splitext(os.path.basename(json_file))[0] for json_file in json_files] # eg 000000 keypoint_filenames = sorted([f'scan_video_000000{frame_str}_keypoints.json' for frame_str in frame_strs]) # eg scan_video_000000000000_keypoints.json for file_index, keypoint_filename in enumerate(keypoint_filenames): joints2d = np.zeros((num_joints, 3, 3)) for cam in cams: json_file = os.path.join(scan_folder, cam, prediction_path, keypoint_filename) if not os.path.exists(json_file): continue # Predictions don't exist (missing video frame) with open(json_file) as f: pose2d = json.load(f) if len(pose2d["people"]) == 0: continue keypoints = None # max_length = 0.0 max_score = -np.Inf # Choose highest scoring person in frame: for person_id, person in enumerate(pose2d["people"]): kps = np.array(person["pose_keypoints_2d"]).reshape(-1, 3) # [x1, y1, c1], [x2, ... in COCO or body25 format average_score = np.mean(kps[:, 2]) if average_score > max_score: max_score = average_score keypoints = kps # Convert to ikea joints: for j, joint_name in enumerate(joint_names): joint_id = input_joint_names_dict[joint_name] joints2d[j, cams.index(cam), :] = keypoints[joint_id, :] # Undistort points: do_undistort = False if do_undistort: for cam_id, cam in enumerate(cams): joints2d_cam = joints2d[:, cam_id, :2] # 17x2 K = camera_parameters[scene][cam]["K"] dist_coefs = camera_parameters[scene][cam]["dist_coefs"] joints2d_cam_undistorted = cv.undistortPoints(joints2d_cam.T, K, dist_coefs, None, None, K).squeeze() # input 2xN/Nx2, output 1xN/Nx1 2-channel joints2d[:, cam_id, :2] = joints2d_cam_undistorted # Loop over joints: joints3d = np.zeros((num_joints, 4)) # 17x4 for j in range(num_joints): joint2d = joints2d[j, :, :] # 3x3 if np.count_nonzero(joint2d[:, 2] >= args.score_threshold) < 2: # Skip if insufficient good detections for triangulation continue Ps = [] xs = [] C = 1.0 for cam_id, cam in enumerate(cams): if joint2d[cam_id, 2] >= args.score_threshold: Ps.append(camera_parameters[scene][cam]["P"].astype(float)) xs.append(np.array([joint2d[cam_id, 0], joint2d[cam_id, 1], 1.0]).astype(float)) # homogeneous C *= joint2d[cam_id, 2] if len(Ps) == 2: # Triangulate points from 2 views: X = cv.triangulatePoints(Ps[0], Ps[1], xs[0][:2], xs[1][:2]) # dev1+dev3 (preferred pair) X /= X[3] X = X.squeeze() X[3] = C else: # Triangulate from all 2-view pairs and average (suboptimal): X1 = cv.triangulatePoints(Ps[0], Ps[1], xs[0][:2], xs[1][:2]) # dev1+dev2 X2 = cv.triangulatePoints(Ps[0], Ps[2], xs[0][:2], xs[2][:2]) # dev1+dev3 X3 = cv.triangulatePoints(Ps[1], Ps[2], xs[1][:2], xs[2][:2]) # dev2+dev3 X1 /= X1[3] X2 /= X2[3] X3 /= X3[3] X1 = X1.squeeze() X2 = X2.squeeze() X3 = X3.squeeze() X = np.mean((X1, X2, X3), axis=0) X[3] = C joints3d[j, :] = X # Filter any points that are far from the median of the others (dimension-wise): non_zero_indices = joints3d[:, 3] > 0.0 if non_zero_indices.any(): # At least one joint joints3d_median = np.median(joints3d[non_zero_indices, :], axis=0) # excluding zeros error = np.abs(joints3d[:, :3] - joints3d_median[:3]) for j in range(num_joints): if joints3d[j, 3] > 0.0 and any(error[j, :] > args.distance_to_median_threshold): # 200 cm joints3d[j, :] = np.zeros(4) # Filter any points that are far from any other point: for j in range(num_joints): if joints3d[j, 3] > 0.0: distances = [] for j2 in range(num_joints): if joints3d[j2, 3] > 0.0 and j != j2: distances.append(np.linalg.norm(joints3d[j, :3] - joints3d[j2, :3])) if distances and np.array(distances).min() > args.distance_to_closest_threshold: # 100 cm joints3d[j, :] = np.zeros(4) # Compute reprojection errors in each view: # Discard joints with large reprojection error in any view for cam_id, cam in enumerate(cams): P = camera_parameters[scene][cam]["P"] for j in range(num_joints): if joints3d[j, 3] > 0.0: # Skip joints that were not triangulated if joints2d[j, cam_id, 2] > args.score_threshold: # Skip 2D joints that were not well detected x2d = joints2d[j, cam_id, :2] x3dproj = P @ np.array([joints3d[j, 0], joints3d[j, 1], joints3d[j, 2], 1.0]) # Project to 2D x3dproj /= x3dproj[2] x3dproj = x3dproj[:2] reprojection_error = np.linalg.norm(x2d - x3dproj) # print(f"{cam} {joint_names[j]} \t\t {reprojection_error:3.1f}") if reprojection_error > args.reprojection_threshold: joints3d[j, :] =
np.zeros(4)
numpy.zeros
# %% [markdown] # # Fitting a normal distribution with tensorflow probability # Here we look at fitting a normal distribution to some data using Tensorflow Probability. # %% import numpy as np import pandas as pd import tensorflow as tf import tensorflow_probability as tfp import matplotlib.pyplot as plt plt.style.use("seaborn-whitegrid") # %% [markdown] # Generate some data from a normal distribution: # %% n = 1000 true_mu = 2.0 true_std = 3.4 x =
np.random.normal(loc=true_mu, scale=true_std, size=n)
numpy.random.normal
import os import torch from skimage import io, transform import numpy as np from torch.utils.data import Dataset, DataLoader import imgaug as ia from sklearn.model_selection import StratifiedKFold import cv2 root_dir = '/data1/trinh/data/patches_data/SBP/Prostate_Dataset/patches_750_r7b3/' train_dirs = ['11S-1_1(x400)', '11S-1_2(x400)', '11S-1_3(x400)','11S-1_6(x400)'] valid_dirs = ['11S-1_4(x400)', '11S-1_5(x400)'] class ToTensor(object): """ This is a transform(augmentation)class convert ndarrays in sample to Tensors """ # swap color axis because # input : numpy image: H x W x C # output: torch image: C X H X W def __call__(self, image): image = image.transpose((2, 0, 1)) return torch.from_numpy(image) def read_prostate_dataset(): # make whole dataset list # input : root that path # output : x_whole, y_whole that contains all file paths and classes each train_x, train_y = [], [] valid_x, valid_y = [], [] for train_dir in train_dirs: train_root = root_dir + train_dir for(path, dir, filenames) in os.walk(train_root): for filename in filenames: file_path = os.path.join(path, filename) if path[-6:] == 'benign': y_class = 0 elif path[-6:] == 'grade3': y_class = 1 elif path[-6:] == 'grade4': y_class = 2 train_x.append(file_path) train_y.append(y_class) for valid_dir in valid_dirs: valid_root = root_dir + valid_dir for(path, dir, filenames) in os.walk(valid_root): for filename in filenames: file_path = os.path.join(path, filename) if path[-6:] == 'benign': y_class = 0 elif path[-6:] == 'grade3': y_class = 1 elif path[-6:] == 'grade4': y_class = 2 valid_x.append(file_path) valid_y.append(y_class) print(len(valid_x)) print('LOADED DATA') print('---------# train_data : {}\n' 'benign class : {}\n' 'cancer1 : {}\n' 'cancer2 : {}\n' '---------# valid_data : {}\n' 'benign class : {}\n' 'cancer1 : {}\n' 'cancer2 : {}\n'.format( len(train_x), np.sum(np.asarray(train_y)==0), np.sum(np.asarray(train_y) == 1), np.sum(np.asarray(train_y) == 2), len(valid_x), np.sum(np.asarray(valid_y) == 0), np.sum(np.asarray(valid_y) == 1), np.sum(np.asarray(valid_y) == 2) ) ) train_x = np.array(train_x) train_y = np.array(train_y) valid_x = np.array(valid_x) valid_y = np.array(valid_y) for i in range(0,3): if i == 2: pass else: num_dup = int(round(np.sum(train_y == 1) / np.sum(train_y == i))) idx = np.where(train_y == i) data = train_x[idx] labels = train_y[idx] for num in range(num_dup-1): train_x = np.concatenate([train_x, data]) train_y = np.concatenate([train_y, labels]) print('DUPLICATED DATA') print('---------# train_data : {}\n' 'benign class : {}\n' 'cancer1 : {}\n' 'cancer2 : {}\n' '---------# valid_data : {}\n' 'benign class : {}\n' 'cancer1 : {}\n' 'cancer2 : {}\n'.format( len(train_x), np.sum(np.asarray(train_y)==0), np.sum(
np.asarray(train_y)
numpy.asarray
#!/usr/bin/env cdat """ # Cloud Property Histograms. Part I: Cloud Radiative Kernels. J. Climate, 25, 3715-3735. doi:10.1175/JCLI-D-11-00248.1. # v2: This script is written to demonstrate how to compute the cloud feedback using for a # short (2-year) period of MPI-ESM-LR using the difference between amipFuture and amip runs. # One should difference longer periods for more robust results -- these are just for demonstrative purposes # Data that are used in this script: # 1. model clisccp field # 2. model rsuscs field # 3. model rsdscs field # 4. model tas field # 5. cloud radiative kernels # This script written by <NAME> (<EMAIL>) on 14 July 2017 """ # IMPORT STUFF: # ===================== from mpl_toolkits.basemap import Basemap import cdms2 as cdms import cdutil import MV2 as MV import numpy as np import pylab as pl import matplotlib as mpl ########################################################################### # HELPFUL FUNCTIONS FOLLOW ########################################################################### ########################################################################### def add_cyclic(data): # Add Cyclic point around 360 degrees longitude: lons = data.getLongitude()[:] dx = np.gradient(lons)[-1] data2 = data(longitude=(0, dx + np.max(lons)), squeeze=True) return data2 ########################################################################### def nanarray(vector): # this generates a masked array with the size given by vector # example: vector = (90,144,28) # similar to this=NaN*ones(x,y,z) in matlab this = MV.zeros(vector) this = MV.masked_where(this == 0, this) return this ########################################################################### def map_SWkern_to_lon(Ksw, albcsmap): from scipy.interpolate import interp1d # Map each location's clear-sky surface albedo to the correct albedo bin # Ksw is size 12,7,7,lats,3 # albcsmap is size A,lats,lons albcs = np.arange(0.0, 1.5, 0.5) A = albcsmap.shape[0] TT = Ksw.shape[1] PP = Ksw.shape[2] lenlat = Ksw.shape[3] lenlon = albcsmap.shape[2] SWkernel_map = nanarray((A, TT, PP, lenlat, lenlon)) for M in range(A): MM = M while MM > 11: MM = MM - 12 for LA in range(lenlat): alon = albcsmap[M, LA, :] # interp1d can't handle mask but it can deal with NaN (?) try: alon2 = MV.where(alon.mask, np.nan, alon) except: alon2 = alon if
np.ma.count(alon2)
numpy.ma.count
# # The following code is taken from arviz library # (https://github.com/arviz-devs/arviz), version 0.6.1, # distributed under Apache License Version 2.0. # # Changes made to arviz code: # * Replaced _logsumexp with logsumexp from scipy.special # # Original code comes from <NAME>, <NAME>: # https://github.com/avehtari/PSIS # # Theory: https://arxiv.org/abs/1507.02646v5 # import numpy as np from scipy.special import logsumexp def _psislw(log_weights, cutoff_ind, cutoffmin, k_min=1.0 / 3): """ Pareto smoothed importance sampling (PSIS) for a 1D vector. Parameters ---------- log_weights : array Array of length n_observations cutoff_ind : int cutoffmin : float k_min : float Returns ------- lw_out : array Smoothed log weights kss : float Pareto tail index """ x = np.asarray(log_weights) # improve numerical accuracy x -= np.max(x) # sort the array x_sort_ind = np.argsort(x) # divide log weights into body and right tail xcutoff = max(x[x_sort_ind[cutoff_ind]], cutoffmin) expxcutoff = np.exp(xcutoff) (tailinds,) =
np.where(x > xcutoff)
numpy.where
import numpy as np import cv2 import copy from scipy.interpolate import RectBivariateSpline import glob def huber_loss(a, gamma=0.01): return np.sum(np.square(gamma)*(np.sqrt(1+np.square(a/gamma))-1)) def LucasKanade(in_temp, in_temp_a, rectangle, s=np.zeros(2)): x1, y1, x2, y2 = rectangle[0], rectangle[1], rectangle[2], rectangle[3] temp_y, temp_x = np.gradient(in_temp_a) ds = 1 thresh = 0.0001 #while np.square(ds).sum() > thresh: while huber_loss(ds,1) > thresh: s_x, s_y = s[0], s[1] w_x1, w_y1, w_x2, w_y2 = x1 + s_x, y1 + s_y, x2 + s_x, y2 + s_y u = np.linspace(x1, x2, 87) v = np.linspace(y1, y2, 36) u0, v0 = np.meshgrid(u, v) w_u = np.linspace(w_x1, w_x2, 87) w_v =
np.linspace(w_y1, w_y2, 36)
numpy.linspace
# coding: utf-8 # ### Load the required libraries # In[1]: import numpy as np import os import sys from keras.models import Model from keras import backend as K from keras.optimizers import Adam from keras.utils import plot_model import tensorflow as tf from numpy import inf import matplotlib matplotlib.use('agg') import cv2 import matplotlib.pyplot as plt import matplotlib.cm as cm import shutil import SimpleITK as sitk # Change to your own directory sys.path.append('../') import os.path from nets.unet_HW import build_net # from nets.custom_losses import (exp_dice_loss, exp_categorical_crossentropy, combine_loss, correlation_crossentropy_2D) from nets.custom_losses import * from utils.segmentation_training_mc import segmentation_training from utils.kerasutils import get_image, correct_data_format, save_model_summary, get_channel_axis from utils.imageutils import map_label from utils.input_data_mc import InputSegmentationArrays # from IPython import get_ipython import pandas as pd import cv2 import random from scipy import ndarray import skimage as sk from skimage import transform from keras.preprocessing.image import ImageDataGenerator # When displaying figures have them as inline with notebook and not as standalone popups # get_ipython().magic(u'matplotlib inline') # alpha=float(sys.argv[2]) # exp=float(sys.argv[3]) cc_weight=0 image_weight=float(sys.argv[2]) # interval=int(sys.argv[3]) N_epoch=int(sys.argv[3]) N_per_epoch=int(sys.argv[4]) output_folder=sys.argv[5] model_name=sys.argv[6] N_labeled=int(sys.argv[7]) output_model_path=output_folder+'/'+model_name print('model_name') print(model_name) # print('alpha:', alpha) # print('exp: ',exp) # print('cc_weight: ', cc_weight) print('image_weight: ', image_weight) print('N_epoch',N_epoch) print('N_per_epoch',N_per_epoch) print('N_labeled',N_labeled) if not os.path.exists(output_folder): os.makedirs(output_folder) # print('segmentation file',seg_name) # if K.backend() == 'tensorflow': # Use only gpu #X (with tf.device(/gpu:X) does not work) os.environ['CUDA_VISIBLE_DEVICES'] = sys.argv[1] # Automatically choose an existing and supported device if the specified one does not exist config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False) # To constrain the use of gpu memory, otherwise all memory is used config.gpu_options.allow_growth = True sess = tf.Session(config=config) K.set_session(sess) suffix = 'nlst' nlabel=5 ncluster=(np.zeros(nlabel,np.int) + 1) # ncluster[0]=5 class_weights=np.ones(nlabel,np.float32) data_table = pd.read_csv('./data/3D/train_list', delimiter=' ') train_img_files = pd.read_csv('./data/3D/train_list', delimiter=' ')['file'].values train_seg_files = pd.read_csv('./data/3D/train_label_list', delimiter=' ')['file'].values test_img_files = pd.read_csv('./data/3D/test_list', delimiter=' ')['file'].values test_seg_files = pd.read_csv('./data/3D/test_label_list', delimiter=' ')['file'].values valid_img_files = pd.read_csv('./data/3D/valid_list', delimiter=' ')['file'].values valid_seg_files = pd.read_csv('./data/3D/valid_label_list', delimiter=' ')['file'].values unlabeled_img_files = pd.read_csv('./data/3D/unlabeled_list_new.txt', delimiter=' ')['file'].values train_IDs = pd.read_csv('./data/3D/train_IDs', delimiter=' ')['ID'].values train_flags = pd.read_csv('./data/3D/train_IDs', delimiter=' ')['Label'].values valid_IDs = pd.read_csv('./data/3D/valid_IDs', delimiter=' ')['ID'].values test_IDs = pd.read_csv('./data/3D/test_IDs', delimiter=' ')['ID'].values print(train_img_files) print(valid_IDs) print(test_IDs) def random_rotation(image, seg): # pick a random degree of rotation between 25% on the left and 25% on the right random_degree = random.uniform(-50, 50) rotated_img=sk.transform.rotate(image, random_degree, order=1) rotated_seg=sk.transform.rotate(seg, random_degree, order=0) return [rotated_img. rotated_seg] def to_categorical(y, num_classes=None): """Converts a class vector (integers) to binary class matrix. E.g. for use with categorical_crossentropy. # Arguments y: class vector to be converted into a matrix (integers from 0 to num_classes). num_classes: total number of classes. # Returns A binary matrix representation of the input. """ y = np.array(y, dtype='int') input_shape = y.shape if input_shape and input_shape[-1] == 1 and len(input_shape) > 1: input_shape = tuple(input_shape[:-1]) y = y.ravel() if not num_classes: num_classes = np.max(y) + 1 n = y.shape[0] categorical = np.zeros((n, num_classes)) categorical[np.arange(n), y] = 1 output_shape = input_shape + (num_classes,) categorical = np.reshape(categorical, output_shape) return categorical def transfer_seg(seg): # seg[seg == 63] = 0 # seg[seg == 95] = 1 # Membrane # seg[seg == 80] = 2 # Nucleus # seg[seg == 127] = 3 # Granules # seg[seg == 47] = 4 # Mito # seg[seg == 112] = 1 # Lipid # # seg[seg == 3] = 1 # Granules # seg[seg == 4] = 1 # Mito return seg def transfer_image(img): # max_v=np.max(img) # min_v=np.min(img) # # new_img=(img-min_v)*255/(max_v-min_v+1E-10) # return new_img return img * 10000 ''' Generator for images and labels ''' def generator_train_from_filelist(img_list, seg_list, unlabeled_list, angle=0.0, scale=0): batch_size=slice_neighbor*2+1 # print(slice_neighbor, batch_size, interval) data_gen_args = dict(featurewise_center=True, featurewise_std_normalization=True, rotation_range=30, width_shift_range=0., height_shift_range=0., zoom_range=0.1) image_datagen = ImageDataGenerator(**data_gen_args) list_L=len(img_list)-1 if list_L>N_labeled: list_L=N_labeled while 1: # np.random # print(, len(seg_list)) # kk index = random.randint(0, list_L) flag=1 while flag>0: imfn = 'data/3D/Image_train_3D/' + img_list[index].rsplit('_', 1)[0] + "/z/" + img_list[index].rsplit('_', 1)[0] + "_2D_z_" + img_list[index].rsplit('_', 1)[1] segfn = 'data/3D/Label_train_3D/' + img_list[index].rsplit('_', 1)[0] + "/z/" + seg_list[index].rsplit('_', 1)[0] + "_2D_z_" + seg_list[index].rsplit('_', 1)[1] seg_supervised = sitk.GetArrayFromImage(sitk.ReadImage(segfn)) if np.max(seg_supervised)==0: index = random.randint(0, list_L) else: flag=0 # print(imfn) img_supervised = sitk.GetArrayFromImage(sitk.ReadImage(imfn)) img_supervised = np.squeeze(img_supervised) # print(np.unique(seg_supervised)) seg_supervised = transfer_seg(seg_supervised) seg_supervised = np.squeeze(seg_supervised) # print(np.unique(seg_supervised)) # kk #index = random.randint(0, len(unlabeled_list)-1) #imfn = 'data/3D/Unlabeled_3D/' + unlabeled_list[index].rsplit('_', 1)[0] + "/z/" + unlabeled_list[index].rsplit('_', 1)[0] + "_2D_z_" + unlabeled_list[index].rsplit('_', 1)[1] #img_unsupervised = sitk.GetArrayFromImage(sitk.ReadImage(imfn)) #img_unsupervised = np.squeeze(img_unsupervised) rangle=
np.random.random()
numpy.random.random
import os import matplotlib.pyplot as plt import numpy as np import torch from mpl_toolkits.mplot3d import Axes3D # coding: utf-8 __all__ = ['Ackley', 'Sphere', 'Rosenbrock', 'Beale', 'GoldsteinPrice', 'Booth', 'BukinN6', 'Matyas', 'LeviN13', 'ThreeHumpCamel', 'Easom', 'Eggholder', 'McCormick', 'SchafferN2', 'SchafferN4', 'StyblinskiTang', 'DeJongsF1', 'DeJongsF2', 'DeJongsF3', 'DeJongsF4', 'DeJongsF5', 'Ellipsoid', 'KTablet', 'FiveWellPotential', 'WeightedSphere', 'HyperEllipsodic', 'SumOfDifferentPower', 'Griewank', 'Michalewicz', 'Perm', 'Rastrigin', 'Schwefel', 'SixHumpCamel', 'Shuberts', 'XinSheYang', 'Zakharov'] __oneArgument__ = ['Beale', 'GoldsteinPrice', 'Booth', 'BukinN6', 'Matyas', 'LeviN13', 'ThreeHumpCamel', 'Easom', 'Eggholder', 'McCormick', 'SchafferN2', 'SchafferN4', 'DeJongsF3', 'DeJongsF4', 'DeJongsF5', 'FiveWellPotential', 'SixHumpCamel', 'Shuberts'] __twoArgument__ = ['Ackley', 'Sphere', 'Rosenbrock', 'StyblinskiTang', 'DeJongsF1', 'DeJongsF2', 'Ellipsoid', 'KTablet', 'WeightedSphere', 'HyperEllipsodic', 'SumOfDifferentPower', 'Griewank', 'Michalewicz', 'Rastrigin', 'Schwefel', 'XinSheYang', 'Zakharov'] __threeArgument__ = ['Perm'] ##### Basic function ##### class OptimalBasic: def __init__(self, variable_num): self.variable_num = variable_num self.max_search_range = np.array([0] * self.variable_num) self.min_search_range = np.array([0] * self.variable_num) self.optimal_solution = np.array([0] * self.variable_num) self.global_optimum_solution = 0 self.plot_place = 0.25 self.func_name = '' self.save_dir = os.path.dirname(os.path.abspath(__file__)) + '\\img\\' if (os.path.isdir(self.save_dir) == False): os.mkdir(self.save_dir) def get_global_optimum_solution(self): return self.global_optimum_solution def get_optimal_solution(self): return self.optimal_solution def get_search_range(self): return [self.max_search_range, self.min_search_range] def get_func_val(self, variables): return -1 def plot(self): x = np.arange(self.min_search_range[0], self.max_search_range[0], self.plot_place, dtype=np.float32) y = np.arange(self.min_search_range[1], self.max_search_range[1], self.plot_place, dtype=np.float32) X, Y = np.meshgrid(x, y) Z = [] for xy_list in zip(X, Y): z = [] for xy_input in zip(xy_list[0], xy_list[1]): tmp = list(xy_input) tmp.extend(list(self.optimal_solution[0:self.variable_num - 2])) z.append(self.get_func_val(np.array(tmp))) Z.append(z) Z = np.array(Z) fig = plt.figure() ax = Axes3D(fig) ax.plot_wireframe(X, Y, Z) plt.show() def save_fig(self): x = np.arange(self.min_search_range[0], self.max_search_range[0], self.plot_place, dtype=np.float32) y = np.arange(self.min_search_range[1], self.max_search_range[1], self.plot_place, dtype=np.float32) X, Y = np.meshgrid(x, y) Z = [] for xy_list in zip(X, Y): z = [] for xy_input in zip(xy_list[0], xy_list[1]): tmp = list(xy_input) tmp.extend(list(self.optimal_solution[0:self.variable_num - 2])) z.append(self.get_func_val(np.array(tmp))) Z.append(z) Z = np.array(Z) fig = plt.figure() ax = Axes3D(fig) ax.plot_wireframe(X, Y, Z) plt.savefig(self.save_dir + self.func_name + '.png') plt.close() ##### Optimization benchmark function group ##### ##### Class Ackley function ##### class Ackley(OptimalBasic): def __init__(self, variable_num=2): super().__init__(variable_num) self.max_search_range = torch.tensor([32.768] * self.variable_num) self.min_search_range = torch.tensor([-32.768] * self.variable_num) self.optimal_solution = torch.tensor([0] * self.variable_num) self.global_optimum_solution = 0 self.func_name = 'Ackley' def get_func_val(self, variables): tmp1 = torch.tensor(20. - 20. * torch.exp( -0.2 * torch.sqrt(1. / self.variable_num * torch.sum( torch.FloatTensor([v * v for v in variables]))))) pi = torch.acos(torch.zeros(1)) tmp2 = torch.tensor( torch.exp(torch.tensor(1.0)) - torch.exp(1. / self.variable_num * torch.sum( torch.FloatTensor( [torch.cos(torch.tensor(v * 2.0 * pi)) for v in variables])))) return tmp1 + tmp2 ##### Class Sphere function ##### class Sphere(OptimalBasic): def __init__(self, variable_num): super().__init__(variable_num) self.max_search_range = np.array([1000] * self.variable_num) # nearly inf self.min_search_range = np.array([-1000] * self.variable_num) # nearly inf self.optimal_solution = np.array([1] * self.variable_num) self.global_optimum_solution = 0 self.plot_place = 10 self.func_name = 'Sphere' def get_func_val(self, variables): return np.sum(np.square(variables)) ##### Class Rosenbrock function ##### class Rosenbrock(OptimalBasic): def __init__(self, variable_num=2): super().__init__(variable_num) self.max_search_range = torch.tensor([5] * self.variable_num) self.min_search_range = torch.tensor([-5] * self.variable_num) self.optimal_solution = torch.tensor([1] * self.variable_num) self.global_optimum_solution = 0 self.plot_place = 0.25 self.func_name = 'Rosenbrock' def get_func_val(self, variables): f = 0 for i in range(self.variable_num - 1): f += 100 * torch.pow(variables[i + 1] - torch.pow(variables[i], 2), 2) + torch.pow(variables[i] - 1, 2) return f ##### Class Beale function ##### class Beale(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = torch.tensor([4.5] * self.variable_num) self.min_search_range = torch.tensor([-4.5] * self.variable_num) self.optimal_solution = torch.tensor([3., 0.5]) self.global_optimum_solution = 0 self.plot_place = 0.25 self.func_name = 'Beale' def get_func_val(self, variables): tmp1 = torch.pow(1.5 - variables[0] + variables[0] * variables[1], 2) tmp2 = torch.pow( 2.25 - variables[0] + variables[0] * torch.pow(variables[1], 2), 2) tmp3 = torch.pow( 2.625 - variables[0] + variables[0] * torch.pow(variables[1], 3), 2) return tmp1 + tmp2 + tmp3 ##### Class Goldstein-Price function ##### class GoldsteinPrice(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([2.] * self.variable_num) self.min_search_range = np.array([-2.] * self.variable_num) self.optimal_solution = np.array([0., -1.]) self.global_optimum_solution = 3 self.plot_place = 0.25 self.func_name = 'GoldsteinPrice' def get_func_val(self, variables): tmp1 = (1 + torch.pow(variables[0] + variables[1] + 1, 2) * ( 19 - 14 * variables[0] + 3 * torch.pow(variables[0], 2) - 14 * variables[1] + 6 * variables[0] * variables[1] + 3 * torch.pow(variables[1], 2))) tmp2 = (30 + (torch.pow(2 * variables[0] - 3 * variables[1], 2) * ( 18 - 32 * variables[0] + 12 * torch.pow(variables[0], 2) + 48 * variables[1] - 36 * variables[0] * variables[1] + 27 * torch.pow(variables[1], 2)))) return tmp1 * tmp2 ##### Class Booth function ##### class Booth(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([10.] * self.variable_num) self.min_search_range = np.array([-10.] * self.variable_num) self.optimal_solution = np.array([1., -3.]) self.global_optimum_solution = 0 self.func_name = 'Booth' def get_func_val(self, variables): tmp1 = np.power(variables[0] + 2 * variables[1] - 7, 2) tmp2 = np.power(2 * variables[0] + variables[1] - 5, 2) return tmp1 + tmp2 ##### Class Bukin function N.6 ##### class BukinN6(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([-5., 3.]) self.min_search_range = np.array([-15., -3.]) self.optimal_solution = np.array([-10., 1.]) self.global_optimum_solution = 0 self.func_name = 'BukinN6' def get_func_val(self, variables): tmp1 = 100 * np.sqrt( np.absolute(variables[1] - 0.01 * np.power(variables[1], 2))) tmp2 = 0.01 * np.absolute(variables[0] + 10) return tmp1 + tmp2 ##### Class Matyas function ##### class Matyas(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([10.] * self.variable_num) self.min_search_range = np.array([-10.] * self.variable_num) self.optimal_solution = np.array([0., 0.]) self.global_optimum_solution = 0 self.func_name = 'Matyas' def get_func_val(self, variables): tmp1 = 0.26 * (np.power(variables[0], 2) + np.power(variables[1], 2)) tmp2 = 0.48 * variables[0] * variables[1] return tmp1 - tmp2 ##### Class Levi function N.13 ##### class LeviN13(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([10.] * self.variable_num) self.min_search_range = np.array([-10.] * self.variable_num) self.optimal_solution = np.array([1., 1.]) self.global_optimum_solution = 0 self.func_name = 'LeviN13' def get_func_val(self, variables): tmp1 = np.power(np.sin(3 * np.pi * variables[0]), 2) tmp2 = np.power(variables[0] - 1, 2) * ( 1 + np.power(np.sin(3 * np.pi * variables[1]), 2)) tmp3 = np.power(variables[1] - 1, 2) * ( 1 + np.power(np.sin(2 * np.pi * variables[1]), 2)) return tmp1 + tmp2 + tmp3 ##### Class Three-hump camel function ##### class ThreeHumpCamel(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([5.] * self.variable_num) self.min_search_range = np.array([-5.] * self.variable_num) self.optimal_solution = np.array([0., 0.]) self.global_optimum_solution = 0 self.func_name = 'ThreeHumpCamel' def get_func_val(self, variables): return 2 * np.power(variables[0], 2) - 1.05 * np.power(variables[0], 4) + np.power( variables[0], 6) / 6 + \ variables[0] * variables[1] + np.power(variables[1], 2) ##### Class Easom function ##### class Easom(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([100.] * self.variable_num) self.min_search_range = np.array([-100.] * self.variable_num) self.optimal_solution = np.array([np.pi, np.pi]) self.global_optimum_solution = -1 self.plot_place = 10 self.func_name = 'Easom' def get_func_val(self, variables): return -1.0 * np.cos(variables[0]) * np.cos(variables[1]) * np.exp( -(np.power(variables[0] - np.pi, 2) + np.power(variables[1] - np.pi, 2))) ##### Class Eggholder function ##### class Eggholder(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([512.] * self.variable_num) self.min_search_range = np.array([-512.] * self.variable_num) self.optimal_solution = np.array([512., 404.2319]) self.global_optimum_solution = -959.6407 self.plot_place = 5 self.func_name = 'Eggholder' def get_func_val(self, variables): tmp1 = -(variables[1] + 47) * np.sin( np.sqrt(np.absolute(variables[1] + variables[0] / 2 + 47))) tmp2 = -variables[0] * np.sin( np.sqrt(np.absolute(variables[0] - (variables[1] + 47)))) return tmp1 + tmp2 ##### Class McCormick function ##### class McCormick(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([4.] * self.variable_num) self.min_search_range = np.array([-1.5, -3.]) self.optimal_solution = np.array([-0.54719, -1.54719]) self.global_optimum_solution = -1.9133 self.func_name = 'McCormick' def get_func_val(self, variables): tmp1 = np.sin(variables[0] + variables[1]) + np.power( variables[0] - variables[1], 2) tmp2 = -1.5 * variables[0] + 2.5 * variables[1] + 1 return tmp1 + tmp2 ##### Class Schaffer function N.2 ##### class SchafferN2(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([100.] * self.variable_num) self.min_search_range = np.array([-100] * self.variable_num) self.optimal_solution = np.array([0., 0.]) self.global_optimum_solution = 0 self.plot_place = 10 self.func_name = 'SchafferN2' def get_func_val(self, variables): tmp1 = np.power(np.sin(np.power(variables[0], 2) - np.power(variables[1], 2)), 2) - 0.5 tmp2 = np.power( 1 + 0.001 * (np.power(variables[0], 2) + np.power(variables[1], 2)), 2) return 0.5 + tmp1 / tmp2 ##### Class Schaffer function N.4 ##### class SchafferN4(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([100.] * self.variable_num) self.min_search_range = np.array([-100] * self.variable_num) self.optimal_solution = np.array([0., 1.25313]) self.global_optimum_solution = 0 self.plot_place = 10 self.func_name = 'SchafferN4' def get_func_val(self, variables): tmp1 = np.power(np.cos( np.sin(np.absolute(np.power(variables[0], 2) - np.power(variables[1], 2)))), 2) - 0.5 tmp2 = np.power( 1 + 0.001 * (np.power(variables[0], 2) + np.power(variables[1], 2)), 2) return 0.5 + tmp1 / tmp2 ##### Class Styblinski-Tang function ##### class StyblinskiTang(OptimalBasic): def __init__(self, variable_num): super().__init__(variable_num) self.max_search_range = np.array([5.] * self.variable_num) self.min_search_range = np.array([-5.] * self.variable_num) self.optimal_solution = np.array([-2.903534] * self.variable_num) self.global_optimum_solution = -39.166165 * self.variable_num self.func_name = 'StyblinskiTang' def get_func_val(self, variables): tmp1 = 0 for i in range(self.variable_num): tmp1 += np.power(variables[i], 4) - 16 * np.power(variables[i], 2) + 5 * \ variables[i] return tmp1 / 2 ##### Class De Jong's function F1 ##### class DeJongsF1(Sphere): def __init__(self, variable_num): super().__init__(variable_num) self.func_name = 'DeJongsF1' ##### Class De Jong's function F2 ##### class DeJongsF2(Rosenbrock): def __init__(self, variable_num): super().__init__(variable_num) self.func_name = 'DeJongsF2' ##### Class De Jong's function F3 ##### class DeJongsF3(OptimalBasic): def __init__(self): super().__init__(5) self.max_search_range = np.array([5.12] * self.variable_num) self.min_search_range = np.array([-5.12] * self.variable_num) self.optimal_solution = np.array([-5.12] * self.variable_num) self.global_optimum_solution = 0 self.func_name = 'DeJongsF3' def get_func_val(self, variables): tmp1 = 0 for i in range(self.variable_num): tmp1 += np.floor(variables[i]) return tmp1 ##### Class De Jong's function F4 ##### class DeJongsF4(OptimalBasic): def __init__(self): super().__init__(30) self.max_search_range = np.array([1.28] * self.variable_num) self.min_search_range = np.array([-1.28] * self.variable_num) self.optimal_solution = np.array([0.] * self.variable_num) self.global_optimum_solution = np.random.normal(0, 1) self.func_name = 'DeJongsF4' def get_func_val(self, variables): tmp1 = 0 for i in range(self.variable_num): tmp1 += (i + 1) * np.power(variables[i], 4) return tmp1 + np.random.normal(0, 1) ##### Class De Jong's function F5 ##### class DeJongsF5(OptimalBasic): def __init__(self): super().__init__(25) self.max_search_range = np.array([65.536] * self.variable_num) self.min_search_range = np.array([-65.536] * self.variable_num) self.optimal_solution = np.array([-32.32] * self.variable_num) self.global_optimum_solution = 1. self.plot_place = 1.5 self.func_name = 'DeJongsF5' def get_func_val(self, variables): A = np.zeros([2, 25]) a = [-32, 16, 0, 16, 32] A[0, :] = np.tile(a, (1, 5)) tmp = [] for x in a: tmp_list = [x] * 5 tmp.extend(tmp_list) A[1, :] = tmp sum = 0 for i in range(self.variable_num): a1i = A[0, i] a2i = A[1, i] term1 = i term2 = np.power(variables[0] - a1i, 6) term3 = np.power(variables[1] - a2i, 6) new = 1 / (term1 + term2 + term3) sum += new return 1 / (0.002 + sum) ##### Class Ellipsoid function ##### class Ellipsoid(OptimalBasic): def __init__(self, variable_num=2): super().__init__(variable_num) self.max_search_range = np.array([5.12] * self.variable_num) self.min_search_range = np.array([-5.12] * self.variable_num) self.optimal_solution = np.array([0.] * self.variable_num) self.global_optimum_solution = 0. self.func_name = 'Ellipsoid' def get_func_val(self, variables): tmp = 0 for i in range(self.variable_num): tmp += torch.pow( torch.pow(torch.tensor(1000.0), i / (self.variable_num - 1)) * variables[i], 2) return tmp ##### Class k-tablet function ##### class KTablet(OptimalBasic): def __init__(self, variable_num): super().__init__(variable_num) self.max_search_range = np.array([5.12] * self.variable_num) self.min_search_range = np.array([-5.12] * self.variable_num) self.optimal_solution = np.array([0.] * self.variable_num) self.global_optimum_solution = 0. self.func_name = 'KTablet' def get_func_val(self, variables): tmp = 0 k = int(self.variable_num / 4) for i in range(k): tmp += variables[i] for i in range(k, self.variable_num): tmp += np.power(100 * variables[i], 2) return tmp ##### Class Five-well potential function ##### # Not yet checked to do working properly class FiveWellPotential(OptimalBasic): def __init__(self): super().__init__(2) self.max_search_range = np.array([20.] * self.variable_num) self.min_search_range = np.array([-20.] * self.variable_num) self.optimal_solution = np.array([4.92, -9.89]) self.global_optimum_solution = -1.4616 self.plot_place = 1 self.func_name = 'FiveWellPotential' def get_func_val(self, variables): tmp1 = [] tmp1.append(1 - 1 / ( 1 + 0.05 * np.power(np.power(variables[0], 2) + (variables[1] - 10), 2))) tmp1.append(-1 / (1 + 0.05 * ( np.power(variables[0] - 10, 2) + np.power(variables[1], 2)))) tmp1.append(-1 / (1 + 0.03 * ( np.power(variables[0] + 10, 2) + np.power(variables[1], 2)))) tmp1.append(-1 / (1 + 0.05 * ( np.power(variables[0] - 5, 2) + np.power(variables[1] + 10, 2)))) tmp1.append(-1 / (1 + 0.1 * ( np.power(variables[0] + 5, 2) + np.power(variables[1] + 10, 2)))) tmp1_sum = 0 for x in tmp1: tmp1_sum += x tmp2 = 1 + 0.0001 * np.power( (np.power(variables[0], 2) + np.power(variables[1], 2)), 1.2) return tmp1_sum * tmp2 ##### Class Weighted Sphere function or hyper ellipsodic function ##### class WeightedSphere(OptimalBasic): def __init__(self, variable_num): super().__init__(variable_num) self.max_search_range = np.array([5.12] * self.variable_num) self.min_search_range = np.array([-5.12] * self.variable_num) self.optimal_solution = np.array([0.] * self.variable_num) self.global_optimum_solution = 0. self.func_name = 'WeightedSphere' def get_func_val(self, variables): tmp = 0 for i in range(self.variable_num): tmp += (i + 1) * np.power(variables[i], 2) return tmp class HyperEllipsodic(WeightedSphere): def __init__(self, variable_num): super().__init__(variable_num) self.func_name = 'HyperEllipsodic' ##### Class Sum of different power function ##### class SumOfDifferentPower(OptimalBasic): def __init__(self, variable_num): super().__init__(variable_num) self.max_search_range = np.array([1.] * self.variable_num) self.min_search_range = np.array([-1.] * self.variable_num) self.optimal_solution = np.array([0.] * self.variable_num) self.global_optimum_solution = 0. self.func_name = 'SumOfDifferentPower' def get_func_val(self, variables): tmp = 0 for i in range(self.variable_num): tmp += np.power(np.absolute(variables[i]), i + 2) return tmp ##### Class Griewank function ##### class Griewank(OptimalBasic): def __init__(self, variable_num): super().__init__(variable_num) self.max_search_range = np.array([600.] * self.variable_num) self.min_search_range = np.array([-600.] * self.variable_num) self.optimal_solution = np.array([0.] * self.variable_num) self.global_optimum_solution = 0. self.plot_place = 10. self.func_name = 'Griewank' def get_func_val(self, variables): tmp1 = 0 tmp2 = 1 for i in range(self.variable_num): tmp1 += np.power(variables[i], 2) tmp2 = tmp2 * np.cos(variables[i] / np.sqrt(i + 1)) return tmp1 / 4000 - tmp2 ##### Class Michalewicz function ##### class Michalewicz(OptimalBasic): def __init__(self, variable_num): super().__init__(variable_num) self.max_search_range = np.array([np.pi] * self.variable_num) self.min_search_range = np.array([0.] * self.variable_num) self.optimal_solution = np.array([0.] * self.variable_num) self.global_optimum_solution = -1.8013 # In case of variable_num == 2 self.plot_place = 0.1 self.func_name = 'Michalewicz' def get_func_val(self, variables): m = 10 tmp1 = 0 for i in range(self.variable_num): tmp1 += np.sin(variables[i]) * np.power( np.sin((i + 1) * np.power(variables[i], 2) / np.pi), 2 * m) return -tmp1 ##### Class Perm function ##### class Perm(OptimalBasic): def __init__(self, variable_num, beta): super().__init__(variable_num) self.beta = beta self.max_search_range = np.array([1.] * self.variable_num) self.min_search_range = np.array([-1.] * self.variable_num) tmp = [] for i in range(self.variable_num): tmp.append(1 / (i + 1)) self.optimal_solution = np.array(tmp) self.global_optimum_solution = 0. self.plot_place = 0.1 self.func_name = 'Perm' def get_func_val(self, variables): tmp1 = 0 tmp2 = 0 for j in range(self.variable_num): for i in range(self.variable_num): tmp1 += (i + 1 + self.beta) * ( np.power(variables[i], j + 1) - np.power(1 / (i + 1), j + 1)) tmp2 += np.power(tmp1, 2) tmp1 = 0 return tmp2 ##### Class Rastrigin function ##### class Rastrigin(OptimalBasic): def __init__(self, variable_num): super().__init__(variable_num) self.max_search_range = np.array([5.12] * self.variable_num) self.min_search_range =
np.array([-5.12] * self.variable_num)
numpy.array
# -*- coding: utf-8 -*- """ Created on Sat Aug 3 14:10:12 2019 @author: Dominic """ from math import log, sqrt, exp from numba import njit, float64, int64 import numpy as np ########################################################################## # CIR Process # dr = a(b-r) + sigma sqrt(r) dW # Note that r can hit zero if 2.0 * a * b < sigma*sigma: ########################################################################## # TO DO - DECIDE WHETHER TO OO MODEL # CAN DO Z SCALING INSIDE NUMPY ? # ANTITHETICS from enum import Enum class FinCIRNumericalScheme(Enum): EULER = 1 LOGNORMAL = 2 MILSTEIN = 3 KAHLJACKEL = 4 EXACT = 5 # SAMPLES EXACT DISTRIBUTION ########################################################################## # THIS CLASS IS NOT USED BUT MAY BE USED IF WE CREATE AN OO FRAMEWORK class FinModelRatesCIR(): def __init__(self, a, b, sigma): self._a = a self._b = b self._sigma = sigma ########################################################################## @njit(fastmath=True, cache=True) def meanr(r0, a, b, t): ''' Mean value of a CIR process after time t ''' mr = r0 * exp(-a * t) + b * (1.0 - exp(-a * t)) return mr ########################################################################## @njit(fastmath=True, cache=True) def variancer(r0, a, b, sigma, t): ''' Variance of a CIR process after time t ''' vr = r0 * sigma * sigma * (exp(-a * t) - exp(-2.0 * a * t)) / a vr += b * sigma * sigma * ((1.0 - exp(-a * t))**2) / 2.0 / a return vr ########################################################################## @njit( float64( float64, float64, float64, float64, float64), fastmath=True, cache=True) def zeroPrice(r0, a, b, sigma, t): ''' Price of a zero coupon bond in CIR model. ''' h = sqrt(a * a + 2.0 * sigma * sigma) denom = 2.0 * h + (a + h) * (exp(h * t) - 1.0) A = (2.0 * h * exp((a + h) * t / 2.0) / denom)**(2.0 * a * b / sigma / sigma) B = 2.0 * (exp(h * t) - 1.0) / denom zcb = A * exp(-r0 * B) return zcb ########################################################################## @njit( float64( float64, float64, float64, float64, float64), fastmath=True, cache=True) def draw(rt, a, b, sigma, dt): ''' Draw a next rate from the CIR model in Monte Carlo. ''' sigma2 = sigma * sigma d = 4.0 * a * b / sigma2 l = 4.0 * a * exp(-a * dt) / sigma2 / (1.0 - exp(-a * dt)) * rt c = sigma2 * (1.0 - exp(-a * dt)) / 4.0 / a if d > 1: Z =
np.random.normal()
numpy.random.normal
# ======================================== # [] File Name : map.py # # [] Creation Date : February 2018 # # [] Created By : <NAME> (<EMAIL>) # ======================================== """ Implementation of a linear transformation on a multivariate Gaussian distribution. """ import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from scipy.stats import multivariate_normal color_map=[cm.winter,cm.autumn] MEAN_VECTOR =
np.array([0,0])
numpy.array
# -*- coding: utf-8 -*- import os import numpy as np import scipy.signal import scipy.io import time import struct from copy import deepcopy # constants NUM_HEADER_BYTES = 1024 SAMPLES_PER_RECORD = 1024 BYTES_PER_SAMPLE = 2 RECORD_SIZE = 4 + 8 + SAMPLES_PER_RECORD * BYTES_PER_SAMPLE + 10 # size of each continuous record in bytes RECORD_MARKER = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 255]) # constants for pre-allocating matrices: MAX_NUMBER_OF_SPIKES = int(1e6) MAX_NUMBER_OF_RECORDS = int(1e6) MAX_NUMBER_OF_EVENTS = int(1e6) def load(filepath, dtype = float): # redirects to code for individual file types if 'continuous' in filepath: data = loadContinuous(filepath, dtype) elif 'spikes' in filepath: data = loadSpikes(filepath) elif 'events' in filepath: data = loadEvents(filepath) else: raise Exception("Not a recognized file type. Please input a .continuous, .spikes, or .events file") return data def loadContinuous(filepath, dtype = float): assert dtype in (float, np.int16), \ 'Invalid data type specified for loadContinous, valid types are float and np.int16' print("Loading continuous data...") ch = { } #read in the data f = open(filepath,'rb') fileLength = os.fstat(f.fileno()).st_size # calculate number of samples recordBytes = fileLength - NUM_HEADER_BYTES if recordBytes % RECORD_SIZE != 0: raise Exception("File size is not consistent with a continuous file: may be corrupt") nrec = recordBytes // RECORD_SIZE nsamp = nrec * SAMPLES_PER_RECORD # pre-allocate samples samples = np.zeros(nsamp, dtype) timestamps = np.zeros(nrec) recordingNumbers = np.zeros(nrec) indices = np.arange(0, nsamp + 1, SAMPLES_PER_RECORD, np.dtype(np.int64)) header = readHeader(f) recIndices = np.arange(0, nrec) for recordNumber in recIndices: timestamps[recordNumber] = np.fromfile(f,np.dtype('<i8'),1) # little-endian 64-bit signed integer N = np.fromfile(f,np.dtype('<u2'),1)[0] # little-endian 16-bit unsigned integer #print index if N != SAMPLES_PER_RECORD: raise Exception('Found corrupted record in block ' + str(recordNumber)) recordingNumbers[recordNumber] = (np.fromfile(f,np.dtype('>u2'),1)) # big-endian 16-bit unsigned integer if dtype == float: # Convert data to float array and convert bits to voltage. data = np.fromfile(f,np.dtype('>i2'),N) * float(header['bitVolts']) # big-endian 16-bit signed integer, multiplied by bitVolts else: # Keep data in signed 16 bit integer format. data = np.fromfile(f,np.dtype('>i2'),N) # big-endian 16-bit signed integer samples[indices[recordNumber]:indices[recordNumber+1]] = data marker = f.read(10) # dump #print recordNumber #print index ch['header'] = header ch['timestamps'] = timestamps ch['data'] = samples # OR use downsample(samples,1), to save space ch['recordingNumber'] = recordingNumbers f.close() return ch def loadSpikes(filepath): ''' Loads spike waveforms and timestamps from filepath (should be .spikes file) ''' data = { } print('loading spikes...') f = open(filepath, 'rb') header = readHeader(f) if float(header[' version']) < 0.4: raise Exception('Loader is only compatible with .spikes files with version 0.4 or higher') data['header'] = header numChannels = int(header['num_channels']) numSamples = 40 # **NOT CURRENTLY WRITTEN TO HEADER** spikes = np.zeros((MAX_NUMBER_OF_SPIKES, numSamples, numChannels)) timestamps = np.zeros(MAX_NUMBER_OF_SPIKES) source = np.zeros(MAX_NUMBER_OF_SPIKES) gain = np.zeros((MAX_NUMBER_OF_SPIKES, numChannels)) thresh = np.zeros((MAX_NUMBER_OF_SPIKES, numChannels)) sortedId =
np.zeros((MAX_NUMBER_OF_SPIKES, numChannels))
numpy.zeros
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Test numpy functions and ufuncs on Masked arrays and quantities. The tests here are fairly detailed but do not aim for complete coverage. Complete coverage of all numpy functions is done with less detailed tests in test_function_helpers. """ import pytest import numpy as np from numpy.testing import assert_array_equal from astropy import units as u from astropy.units import Quantity from astropy.utils.masked.core import Masked from .test_masked import (MaskedArraySetup, QuantitySetup, LongitudeSetup, assert_masked_equal) class MaskedUfuncTests(MaskedArraySetup): @pytest.mark.parametrize('ufunc', (np.add, np.subtract, np.divide, np.arctan2, np.minimum)) def test_2op_ufunc(self, ufunc): ma_mb = ufunc(self.ma, self.mb) expected_data = ufunc(self.a, self.b) expected_mask = (self.ma.mask | self.mb.mask) # Note: assert_array_equal also checks type, i.e., that, e.g., # Longitude decays into an Angle. assert_array_equal(ma_mb.unmasked, expected_data) assert_array_equal(ma_mb.mask, expected_mask) @pytest.mark.parametrize('ufunc', (np.add, np.subtract, np.divide, np.arctan2, np.minimum)) def test_ufunc_inplace(self, ufunc): ma_mb = ufunc(self.ma, self.mb) out = Masked(np.zeros_like(ma_mb.unmasked)) result = ufunc(self.ma, self.mb, out=out) assert result is out assert_masked_equal(result, ma_mb) def test_ufunc_inplace_no_masked_input(self): a_b = np.add(self.a, self.b) out = Masked(np.zeros_like(a_b)) result = np.add(self.a, self.b, out=out) assert result is out assert_array_equal(result.unmasked, a_b) assert_array_equal(result.mask, np.zeros(a_b.shape, bool)) def test_ufunc_inplace_error(self): out = np.zeros(self.ma.shape) with pytest.raises(TypeError): np.add(self.ma, self.mb, out=out) @pytest.mark.parametrize('ufunc', (np.add.outer, np.minimum.outer)) def test_2op_ufunc_outer(self, ufunc): ma_mb = ufunc(self.ma, self.mb) expected_data = ufunc(self.a, self.b) expected_mask = np.logical_or.outer(self.mask_a, self.mask_b) # Note: assert_array_equal also checks type, i.e., that, e.g., # Longitude decays into an Angle. assert_array_equal(ma_mb.unmasked, expected_data) assert_array_equal(ma_mb.mask, expected_mask) def test_3op_ufunc(self): ma_mb = np.clip(self.ma, self.b, self.c) expected_data = np.clip(self.a, self.b, self.c) expected_mask = self.mask_a assert_array_equal(ma_mb.unmasked, expected_data) assert_array_equal(ma_mb.mask, expected_mask) @pytest.mark.parametrize('axis', (0, 1, None)) def test_add_reduce(self, axis): ma_reduce = np.add.reduce(self.ma, axis=axis) expected_data = np.add.reduce(self.a, axis=axis) expected_mask = np.logical_or.reduce(self.ma.mask, axis=axis) assert_array_equal(ma_reduce.unmasked, expected_data) assert_array_equal(ma_reduce.mask, expected_mask) out = Masked(np.zeros_like(ma_reduce.unmasked), np.ones_like(ma_reduce.mask)) ma_reduce2 = np.add.reduce(self.ma, axis=axis, out=out) assert ma_reduce2 is out assert_masked_equal(ma_reduce2, ma_reduce) def test_add_reduce_no_masked_input(self): a_reduce = np.add.reduce(self.a, axis=0) out = Masked(np.zeros_like(a_reduce), np.ones(a_reduce.shape, bool)) result = np.add.reduce(self.a, axis=0, out=out) assert result is out assert_array_equal(out.unmasked, a_reduce) assert_array_equal(out.mask, np.zeros(a_reduce.shape, bool)) @pytest.mark.parametrize('axis', (0, 1, None)) def test_minimum_reduce(self, axis): ma_reduce = np.minimum.reduce(self.ma, axis=axis) expected_data = np.minimum.reduce(self.a, axis=axis) expected_mask = np.logical_or.reduce(self.ma.mask, axis=axis) assert_array_equal(ma_reduce.unmasked, expected_data) assert_array_equal(ma_reduce.mask, expected_mask) @pytest.mark.parametrize('axis', (0, 1, None)) def test_maximum_reduce(self, axis): ma_reduce = np.maximum.reduce(self.ma, axis=axis) expected_data = np.maximum.reduce(self.a, axis=axis) expected_mask = np.logical_or.reduce(self.ma.mask, axis=axis) assert_array_equal(ma_reduce.unmasked, expected_data) assert_array_equal(ma_reduce.mask, expected_mask) class TestMaskedArrayUfuncs(MaskedUfuncTests): # multiply.reduce does not work with units, so test only for plain array. @pytest.mark.parametrize('axis', (0, 1, None)) def test_multiply_reduce(self, axis): ma_reduce = np.multiply.reduce(self.ma, axis=axis) expected_data = np.multiply.reduce(self.a, axis=axis) expected_mask = np.logical_or.reduce(self.ma.mask, axis=axis) assert_array_equal(ma_reduce.unmasked, expected_data) assert_array_equal(ma_reduce.mask, expected_mask) def test_ufunc_not_implemented_for_other(self): """ If the unmasked operation returns NotImplemented, this should lead to a TypeError also for the masked version. """ a = np.array([1, 2]) b = 3 * u.m with pytest.raises(TypeError): a & b ma = Masked(a) with pytest.raises(TypeError): ma & b class TestMaskedQuantityUfuncs(MaskedUfuncTests, QuantitySetup): def test_ufunc_inplace_error2(self): out = Masked(np.zeros(self.ma.shape)) with pytest.raises(TypeError): np.add(self.ma, self.mb, out=out) class TestMaskedLongitudeUfuncs(MaskedUfuncTests, LongitudeSetup): def test_ufunc_inplace_quantity_initial(self): out = Masked(np.zeros(self.ma.shape) << u.m) result =
np.add(self.ma, self.mb, out=out)
numpy.add
def makeuvdeprojplot(datavisloc, modelvisloc, paradoffsetloc, uvmax, uvbin_size, warr, ylimreal, ylimimag, outfile, sourcetag, phaseshift): import matplotlib.pyplot as pl import sys import numpy as np import os tag=sourcetag u=[[] for x in datavisloc] v=[[] for x in datavisloc] Re=[[] for x in datavisloc] Im=[[] for x in datavisloc] w=[[] for x in datavisloc] Re_mod=[[] for x in datavisloc] Im_mod=[[] for x in datavisloc] for i in np.arange(len(datavisloc)): u[i], v[i], Re[i], Im[i], w[i] = np.load(datavisloc[i]) u[i], v[i], Re_mod[i], Im_mod[i], w_mod = np.load(modelvisloc[i]) inc_mod, PA_mod, dRA_mod, dDec_mod = np.load(paradoffsetloc[i]) inc=inc_mod PA=PA_mod if phaseshift: ######### # Here shift both model and data using best-fit shifts. This ensures that visibilities are well-centered when making uvplots (and also, importantly, that no relative shifts are present among datasets for multiple datasets). ######### theta = np.asarray(u[i])*2.0*np.pi*dRA_mod + np.asarray(v[i])*2.0*np.pi*dDec_mod ## Minus sign below as we are shifting by the negative of the shift that is usually applied to the model vmodelsh=(np.asarray(Re_mod[i])+1j*np.asarray(Im_mod[i]))*(np.cos(-theta)+1j*np.sin(-theta)) vdatash=(np.asarray(Re[i])+1j*np.asarray(Im[i])) * (np.cos(-theta)+1j*np.sin(-theta)) Re_mod[i]=np.real(vmodelsh) Im_mod[i]=np.imag(vmodelsh) Re[i]=np.real(vdatash) Im[i]=np.imag(vdatash) else: print('Not shifting dataset '+str(i)) #Here fixing weights by factor derived from fitting w[i]*=warr[i] #Save SHIFTED visibilities np.save('./evaluation/'+tag+'_uvtable_modelsh'+str(i)+'.npy', [u[i], v[i], Re_mod[i], Im_mod[i], w[i]]) np.save('./evaluation/'+tag+'_uvtable_datash'+str(i)+'.npy', [u[i], v[i], Re[i], Im[i], w[i]]) #Concatenate all datasets for plotting u=np.asarray([y for x in u for y in x])#np.concatenate((u1,u2,u3,u4,u5,u6,u7)) v=np.asarray([y for x in v for y in x])#np.concatenate((v1,v2,v3,v4,v5,v6,v7)) Re=np.asarray([y for x in Re for y in x])#np.concatenate((Re1,Re2,Re3,Re4,Re5,Re6,Re7)) Re_mod=np.asarray([y for x in Re_mod for y in x])#np.concatenate((Re_mod1,Re_mod2,Re_mod3,Re_mod4,Re_mod5,Re_mod6,Re_mod7)) Im=np.asarray([y for x in Im for y in x])#np.concatenate((Im1,Im2,Im3,Im4,Im5,Im6,Im7)) Im_mod=np.asarray([y for x in Im_mod for y in x])#np.concatenate((Im_mod1,Im_mod2,Im_mod3,Im_mod4,Im_mod5,Im_mod6,Im_mod7)) w=np.asarray([y for x in w for y in x])#np.concatenate((w1,w2,w3,w4,w5,w6,w7)) #Now recalculate SHIFTED residuals for plotting. REMEMBER: printed residuals for residual imaging are NOT SHIFTED, i.e., the phase center is not at the best-fit stellar location. Re_resid=Re-Re_mod Im_resid=Im-Im_mod #Carry out deprojection cos_inc = np.cos(inc) if PA == 0: u_deproj=u v_deproj=v else: cospa=np.cos(PA) sinpa=np.sin(PA) #Rotation by PA here, not of the data, but of u and v!! u_deproj=u*cospa-v*sinpa v_deproj=u*sinpa+v*cospa #NB! Rotation by PA useless if we are not deprojecting by inclination below, as we are just measuring uvdist which doesn't change if we rotate the disk in uv plane. u_deproj*=cos_inc #print('Deprojection turned ON.') #Calculate deprojected u-v distance uvdist=np.sqrt(u_deproj**2.0+v_deproj**2.0) #Figure out min and max boundaries in uv distance for plotting uvdistmin=uvdist.min() uvdistmax=np.min([uvdist.max(),uvmax]) #Bin uvdistances nbins=np.ceil((uvdistmax-uvdistmin)/uvbin_size).astype('int') nbins_mod=50 bin_uvdist = np.zeros(nbins) bin_weights = np.zeros(nbins) bin_uvdist_mod = np.zeros(nbins_mod) bin_weights_mod = np.zeros(nbins_mod) bin_count = np.zeros(nbins, dtype='int') bin_count_mod = np.zeros(nbins_mod, dtype='int') uv_intervals=[] uv_intervals_mod=[] uv_bin_edges=np.arange(nbins+1, dtype='float64')*uvbin_size+uvdistmin uv_bin_edges_mod=np.arange(nbins_mod+1, dtype='float64')*((uvdistmax-uvdistmin)/np.float(nbins_mod))+uvdistmin #Calculate which data points go in which bin, and figure out average uv distance for that bin for more appropriate plotting for i in range(nbins): uv_interval = np.where((uvdist >= uv_bin_edges[i]) & (uvdist < uv_bin_edges[i+1])) bin_count[i] = len(uv_interval[0]) if bin_count[i] != 0: bin_uvdist[i] = uvdist[uv_interval].sum()/bin_count[i] bin_weights[i] = np.sum(w[uv_interval]) else: bin_uvdist[i] = uv_bin_edges[i]+0.5*uvbin_size uv_intervals.append(uv_interval) #Do it for model on a finer grid for i in range(nbins_mod): uv_interval_mod = np.where((uvdist >= uv_bin_edges_mod[i]) & (uvdist < uv_bin_edges_mod[i+1])) bin_count_mod[i] = len(uv_interval_mod[0]) if bin_count_mod[i] != 0: bin_uvdist_mod[i] = uvdist[uv_interval_mod].sum()/bin_count_mod[i] bin_weights_mod[i] = np.sum(w[uv_interval_mod]) else: bin_uvdist_mod[i] = uv_bin_edges_mod[i]+0.5*((uvdistmax-uvdistmin)/np.float(nbins_mod)) uv_intervals_mod.append(uv_interval_mod) #Calculate real and imaginary of data, model and errors for each bin bin_re, bin_re_err, bin_re_mod, bin_re_modfine, bin_re_resid = np.zeros(nbins), np.zeros(nbins), np.zeros(nbins), np.zeros(nbins_mod), np.zeros(nbins) bin_im, bin_im_err, bin_im_mod, bin_im_modfine, bin_im_resid = np.zeros(nbins), np.zeros(nbins), np.zeros(nbins), np.zeros(nbins_mod), np.zeros(nbins) for i in range(nbins): if bin_count[i] != 0: bin_re[i] = np.sum(Re[uv_intervals[i]]*w[uv_intervals[i]])/bin_weights[i] bin_re_err[i] = 1./
np.sqrt(bin_weights[i])
numpy.sqrt
# -*- coding: utf-8 -*- # BCDI: tools for pre(post)-processing Bragg coherent X-ray diffraction imaging data # (c) 07/2017-06/2019 : CNRS UMR 7344 IM2NP # (c) 07/2019-05/2021 : DESY PHOTON SCIENCE # (c) 06/2021-present : DESY CFEL # authors: # <NAME>, <EMAIL> # <NAME>, <EMAIL> # <NAME>, <EMAIL> """Postprocessing of the output from the facet analyzer plugin for Paraview.""" import h5py import ipywidgets as widgets from ipywidgets import Layout, interactive import matplotlib.pyplot as plt import numpy as np import pathlib import pandas as pd from pandas import DataFrame from typing import Any, Dict, List, Optional, Tuple, Union import vtk from bcdi.utils import validation as valid class Facets: """ Import and stores data output of facet analyzer plugin for further analysis. Extract the strain component and the displacement on the facets, and retrieves the correct facet normals based on a user input (geometric transformation into the crystal frame). It requries as input a VTK file extracted from the FacetAnalyser plugin from ParaView. See: https://doi.org/10.1016/j.ultramic.2012.07.024 Original tutorial on how to open vtk files: http://forrestbao.blogspot.com/2011/12/reading-vtk-files-in-python-via-python.html Expected directory structure: - vtk file should have been saved in in Sxxxx/postprocessing - the analysis output will be saved in Sxxxx/postprocessing/facet_analysis Several plotting options are attributes of this class, feel free to change them (cmap, strain_range, disp_range_avg, disp_range, strain_range_avg, comment, title_fontsize, axes_fontsize, legend_fontsize, ticks_fontsize) :param filename: str, name of the VTK file :param pathdir: str, path to the VTK file :param savedir: str, path where to save results. If None, they will be saved in pathdir/facets_analysis :param lattice: float, atomic spacing of the material in angstroms (only cubic lattices are supported). """ def __init__( self, filename: str, pathdir: str = "./", savedir: str = None, lattice: float = 3.912, ) -> None: # Create other required parameters with default None value self.nb_facets: Optional[int] = None self.vtk_data: Optional[Dict[str, List[Any]]] = None self.strain_mean_facets: List[np.ndarray] = [] self.disp_mean_facets: List[np.ndarray] = [] self.field_data: DataFrame = pd.DataFrame() self.u0: np.ndarray = np.empty(3, dtype=float) self.v0: np.ndarray = np.empty(3, dtype=float) self.w0: np.ndarray = np.empty(3, dtype=float) self.u: np.ndarray = np.empty(3, dtype=float) self.v: np.ndarray = np.empty(3, dtype=float) self.norm_u: np.ndarray = np.empty(3, dtype=float) self.norm_v: np.ndarray = np.empty(3, dtype=float) self.norm_w: np.ndarray = np.empty(3, dtype=float) self.rotation_matrix: Optional[np.ndarray] = None self.hkl_reference: Optional[Tuple[float, float, float]] = None self.hkls: str = "" self.planar_dist = None self.ref_normal = None self.theoretical_angles: Optional[Dict[str, float]] = None # Check input parameters valid.valid_container( filename, container_types=str, min_length=1, name="filename" ) valid.valid_container( pathdir, container_types=str, min_length=1, name="pathdir" ) if not pathdir.endswith("/"): pathdir += "/" valid.valid_container( savedir, container_types=str, min_length=1, allow_none=True, name="savedir" ) if savedir is not None and not savedir.endswith("/"): savedir += "/" valid.valid_item(lattice, allowed_types=float, min_excluded=0, name="lattice") self.pathsave = savedir or pathdir + "facets_analysis/" self.path_to_data = pathdir + filename self.filename = filename self.lattice = lattice # Plotting options self.strain_range = 0.001 self.disp_range_avg = 0.2 self.disp_range = 0.35 self.strain_range_avg = 0.0005 self.comment = "" self.title_fontsize = 24 self.axes_fontsize = 18 self.legend_fontsize = 11 self.ticks_fontsize = 14 self.cmap = "viridis" self.particle_cmap = "gist_ncar" # Load the data self.load_vtk() # Add edges and corners data if not there already self.save_edges_corners_data() # Create widget for particle viewing self.window = interactive( self.view_particle, elev=widgets.IntSlider( value=0, step=1, min=0, max=360, continuous_update=False, description="Elevation angle in the z plane:", layout=Layout(width="45%"), readout=True, style={"description_width": "initial"}, orientation="horizontal", ), azim=widgets.IntSlider( value=0, step=1, min=0, max=360, continuous_update=False, description="Azimuth angle in the (x, y) plane:", layout=Layout(width="45%"), readout=True, style={"description_width": "initial"}, orientation="horizontal", ), elev_axis=widgets.Dropdown( options=["x", "y", "z"], value="z", description="Elevated axis", continuous_update=False, style={"description_width": "initial"}, ), facet_id_range=widgets.IntRangeSlider( value=[1, self.nb_facets], step=1, min=1, max=self.nb_facets, continuous_update=False, description="Facets ids to show:", layout=Layout(width="45%"), readout=True, style={"description_width": "initial"}, orientation="horizontal", ), show_edges_corners=widgets.Checkbox( value=False, description="Show edges and corners", layout=Layout(width="40%"), style={"description_width": "initial"}, ), ) def load_vtk(self) -> None: """ Load the VTK file. In paraview, the facets have an index that starts at 1, the index 0 corresponds to the edges and corners of the facets. """ pathlib.Path(self.pathsave).mkdir(parents=True, exist_ok=True) reader = vtk.vtkGenericDataObjectReader() reader.SetFileName(self.path_to_data) reader.ReadAllScalarsOn() reader.ReadAllVectorsOn() reader.ReadAllTensorsOn() reader.Update() vtkdata = reader.GetOutput() # Get point data try: point_data = vtkdata.GetPointData() print("Loading data...") except AttributeError: raise NameError("This file does not exist or is not right.") print("Number of points = %s" % str(vtkdata.GetNumberOfPoints())) print("Number of cells = %s" % str(vtkdata.GetNumberOfCells())) self.vtk_data = { "x": [vtkdata.GetPoint(i)[0] for i in range(vtkdata.GetNumberOfPoints())], "y": [vtkdata.GetPoint(i)[1] for i in range(vtkdata.GetNumberOfPoints())], "z": [vtkdata.GetPoint(i)[2] for i in range(vtkdata.GetNumberOfPoints())], "strain": [ point_data.GetArray("strain").GetValue(i) for i in range(vtkdata.GetNumberOfPoints()) ], "disp": [ point_data.GetArray("disp").GetValue(i) for i in range(vtkdata.GetNumberOfPoints()) ], } # Get cell data cell_data = vtkdata.GetCellData() self.vtk_data["facet_probabilities"] = [ cell_data.GetArray("FacetProbabilities").GetValue(i) for i in range(vtkdata.GetNumberOfCells()) ] self.vtk_data["facet_id"] = [ cell_data.GetArray("FacetIds").GetValue(i) for i in range(vtkdata.GetNumberOfCells()) ] self.vtk_data["x0"] = [ vtkdata.GetCell(i).GetPointId(0) for i in range(vtkdata.GetNumberOfCells()) ] self.vtk_data["y0"] = [ vtkdata.GetCell(i).GetPointId(1) for i in range(vtkdata.GetNumberOfCells()) ] self.vtk_data["z0"] = [ vtkdata.GetCell(i).GetPointId(2) for i in range(vtkdata.GetNumberOfCells()) ] self.nb_facets = int(max(self.vtk_data["facet_id"])) print("Number of facets = %s" % str(self.nb_facets)) # Get means facet_indices = np.arange(1, int(self.nb_facets) + 1, 1) # indices from 1 to n_facets strain_mean = np.zeros(self.nb_facets) # stored later in field data strain_std = np.zeros(self.nb_facets) # stored later in field data disp_mean = np.zeros(self.nb_facets) # stored later in field data disp_std = np.zeros(self.nb_facets) # stored later in field data for ind in facet_indices: print("Facet = %d" % ind) results = self.extract_facet(int(ind), plot=False) if results is not None: strain_mean[ind - 1] = results["strain_mean"] strain_std[ind - 1] = results["strain_std"] disp_mean[ind - 1] = results["disp_mean"] disp_std[ind - 1] = results["disp_std"] # Get field data field_data = vtkdata.GetFieldData() self.field_data["facet_id"] = [ field_data.GetArray("FacetIds").GetValue(i) for i in range(self.nb_facets) ] self.field_data["strain_mean"] = strain_mean self.field_data["strain_std"] = strain_std self.field_data["disp_mean"] = disp_mean self.field_data["disp_std"] = disp_std self.field_data["n0"] = [ field_data.GetArray("facetNormals").GetValue(3 * i) for i in range(self.nb_facets) ] self.field_data["n1"] = [ field_data.GetArray("facetNormals").GetValue(3 * i + 1) for i in range(self.nb_facets) ] self.field_data["n2"] = [ field_data.GetArray("facetNormals").GetValue(3 * i + 2) for i in range(self.nb_facets) ] self.field_data["c0"] = [ field_data.GetArray("FacetCenters").GetValue(3 * i) for i in range(self.nb_facets) ] self.field_data["c1"] = [ field_data.GetArray("FacetCenters").GetValue(3 * i + 1) for i in range(self.nb_facets) ] self.field_data["c2"] = [ field_data.GetArray("FacetCenters").GetValue(3 * i + 2) for i in range(self.nb_facets) ] self.field_data["interplanar_angles"] = [ field_data.GetArray("interplanarAngles").GetValue(i) for i in range(self.nb_facets) ] self.field_data["abs_facet_size"] = [ field_data.GetArray("absFacetSize").GetValue(i) for i in range(self.nb_facets) ] self.field_data["rel_facet_size"] = [ field_data.GetArray("relFacetSize").GetValue(i) for i in range(self.nb_facets) ] self.field_data = self.field_data.astype({"facet_id": np.int8}) # Get normals # Don't use array index but facet number in case we sort the dataframe !! normals = { f"facet_{row.facet_id}": np.array([row["n0"], row["n1"], row["n2"]]) for j, row in self.field_data.iterrows() } # Update legend legend: List[str] = [] for e in normals.keys(): legend = legend + [" ".join(str("{:.2f}".format(e)) for e in normals[e])] self.field_data["legend"] = legend def set_rotation_matrix( self, u0: np.ndarray, v0: np.ndarray, w0: np.ndarray, u: np.ndarray, v: np.ndarray, ) -> None: """ Define the rotation matrix. u and v should be the vectors perpendicular to two facets. The rotation matrix is then used if the argument rotate_particle is set to True in the method load_vtk. :param u0: numpy.ndarray, shape (3,) :param v0: numpy.ndarray, shape (3,) :param w0: numpy.ndarray, shape (3,) :param u: numpy.ndarray, shape (3,) :param v: numpy.ndarray, shape (3,) """ # Check parameters valid.valid_ndarray(arrays=(u0, v0, w0, u, v), shape=(3,)) # Input theoretical values for three facets' normals self.u0 = u0 self.v0 = v0 self.w0 = w0 print("Cross product of u0 and v0:", np.cross(self.u0, self.v0)) # Current values for the first two facets' normals, # to compute the rotation matrix self.u = u self.v = v self.norm_u = self.u / np.linalg.norm(self.u) self.norm_v = self.v / np.linalg.norm(self.v) self.norm_w = np.cross(self.norm_u, self.norm_v) print("Normalized cross product of u and v:", self.norm_w) # Transformation matrix tensor0 = np.array([self.u0, self.v0, self.w0]) tensor1 = np.array([self.norm_u, self.norm_v, self.norm_w]) inv_tensor1 = np.linalg.inv(tensor1) self.rotation_matrix = np.dot(np.transpose(tensor0), np.transpose(inv_tensor1)) def rotate_particle(self) -> None: """ Rotate the nanocrystal. The rotation is so that the base of the normals to the facets is computed with the new rotation matrix. """ # Get normals, again to make sure that we have the good ones normals = { f"facet_{row.facet_id}": np.array([row["n0"], row["n1"], row["n2"]]) for j, row in self.field_data.iterrows() if row.facet_id != 0 } try: for e in normals.keys(): normals[e] = np.dot(self.rotation_matrix, normals[e]) except AttributeError: print( """You need to define the rotation matrix first if you want to rotate the particle. Please choose vectors from the normals in field data""" ) # Save the new normals for k, v in normals.items(): # we make sure that we use the same facets !! mask = self.field_data["facet_id"] == int(k.split("facet_")[-1]) self.field_data.loc[mask, "n0"] = v[0] self.field_data.loc[mask, "n1"] = v[1] self.field_data.loc[mask, "n2"] = v[2] # Update legend self.field_data.loc[mask, "legend"] = " ".join( ["{:.2f}".format(e) for e in v] ) def fixed_reference( self, hkl_reference: Tuple[float, float, float] = (1, 1, 1), plot: bool = True, ) -> None: """ Compute the interplanar angles between each normal and a fixed reference vector. :param hkl_reference: tuple of three real numbers, reference crystallographic direction :param plot: True to see plots """ # Check parameters valid.valid_container( hkl_reference, container_types=(tuple, list), item_types=(int, float), length=3, name="hkl_reference", ) valid.valid_item(plot, allowed_types=bool, name="plot") self.hkl_reference = hkl_reference self.hkls = " ".join(str(e) for e in self.hkl_reference) self.planar_dist = self.lattice / np.sqrt( self.hkl_reference[0] ** 2 + self.hkl_reference[1] ** 2 + self.hkl_reference[2] ** 2 ) self.ref_normal = self.hkl_reference / np.linalg.norm(self.hkl_reference) # Get normals, again to make sure that we have the good ones normals = { f"facet_{row.facet_id}": np.array([row["n0"], row["n1"], row["n2"]]) for j, row in self.field_data.iterrows() if row.facet_id != 0 } # Interplanar angle recomputed from a fixed reference plane, # between the experimental facets new_angles = [np.nan] for e in normals.keys(): value = np.rad2deg( np.arccos( np.dot(self.ref_normal, normals[e] / np.linalg.norm(normals[e])) ) ) new_angles.append(value) # Convert nan to zeros mask = np.isnan(new_angles) for j, m in enumerate(mask): if m: new_angles[j] = 0 self.field_data["interplanar_angles"] = new_angles # Save angles for indexation, using facets that we should see or # usually see on Pt nanoparticles (WK form) expected_normals = [ [1, 0, 0], [-1, 0, 0], [1, 1, 0], [-1, 1, 0], [-1, -1, 0], [1, -1, 1], [-1, 1, -1], [2, 1, 0], [1, 1, 3], [1, -1, 3], [1, -1, -3], [-1, -1, 3], [1, 1, -3], [-1, -1, -3], [1, 1, 5], [1, -1, 5], [1, -1, -5], [-1, -1, 5], [1, 1, -5], [-1, -1, -5], ] # Stores the theoretical angles between normals self.theoretical_angles = {} for n in expected_normals: self.theoretical_angles[str(n)] = np.rad2deg( np.arccos(np.dot(self.ref_normal, n / np.linalg.norm(n))) ) # Make a plot if plot is True: fig = plt.figure(figsize=(10, 6)) ax = fig.add_subplot(1, 1, 1) ax.set_title( "Interplanar angles between [111] and other possible facets", fontsize=self.title_fontsize, ) # Default value is red for norm, (norm_str, angle) in zip( expected_normals, self.theoretical_angles.items() ): # add colors ass a fct of multiplicity if [abs(x) for x in norm] == [1, 1, 1]: color = "#7fc97f" elif [abs(x) for x in norm] == [1, 1, 0]: color = "#beaed4" elif [abs(x) for x in norm] == [1, 0, 0]: color = "#fdc086" elif [abs(x) for x in norm] == [2, 1, 0]: color = "#f0027f" elif [abs(x) for x in norm] == [1, 1, 3]: color = "#386cb0" elif [abs(x) for x in norm] == [1, 1, 5]: color = "k" else: color = "r" ax.scatter(angle, norm_str, color=color) # Major ticks every 20, minor ticks every 5 major_ticks = np.arange(0, 180, 20) minor_ticks = np.arange(0, 180, 5) ax.set_xticks(major_ticks) ax.set_xticks(minor_ticks, minor=True) # ax.set_yticks(major_ticks) # ax.set_yticks(minor_ticks, minor=True) # Or if you want different settings for the grids: ax.grid(which="minor", alpha=0.2) ax.grid(which="major", alpha=0.5) plt.show() def test_vector(self, vec: np.ndarray) -> None: """ Computes value of a vector passed through the rotation matrix. :param vec: numpy ndarray of shape (3,). e.g. np.array([-0.833238, -0.418199, -0.300809]) """ # Check parameter valid.valid_ndarray(vec, shape=(3,), name="vec") try: print(np.dot(self.rotation_matrix, vec / np.linalg.norm(vec))) except AttributeError: print("You need to define the rotation matrix before") except TypeError: print("You need to define the rotation matrix before") def extract_facet( self, facet_id: int, plot: bool = False, elev: int = 0, azim: int = 0, output: bool = True, save: bool = True, ) -> Union[Dict, None]: """ Extract data from one facet. It extracts the facet direction [x, y, z], the strain component, the displacement and their means, and also plots it. :param facet_id: id of facet in paraview :param plot: True to see plots: :param elev: elevation angle in the z plane (in degrees). :param azim: azimuth angle in the (x, y) plane (in degrees). :param output: True to return facet data :param save: True to save plot """ # Check parameters valid.valid_item(facet_id, allowed_types=int, name="facet_id") valid.valid_item(elev, allowed_types=int, name="elev") valid.valid_item(azim, allowed_types=int, name="azim") valid.valid_item(plot, allowed_types=bool, name="plot") valid.valid_item(output, allowed_types=bool, name="output") valid.valid_item(save, allowed_types=bool, name="save") # Retrieve voxels that correspond to that facet index voxel_indices = [] if self.vtk_data is None: raise ValueError("vtk_data undefined, run load_vtk() first") for i, _ in enumerate(self.vtk_data["facet_id"]): if int(self.vtk_data["facet_id"][i]) == facet_id: voxel_indices.append(self.vtk_data["x0"][i]) voxel_indices.append(self.vtk_data["y0"][i]) voxel_indices.append(self.vtk_data["z0"][i]) # voxel_indices_new = list(set(voxel_indices)) results = { "x": np.zeros(len(voxel_indices_new)), "y": np.zeros(len(voxel_indices_new)), "z": np.zeros(len(voxel_indices_new)), "strain": np.zeros(len(voxel_indices_new)), "disp": np.zeros(len(voxel_indices_new)), } for j, _ in enumerate(voxel_indices_new): results["x"][j] = self.vtk_data["x"][int(voxel_indices_new[j])] results["y"][j] = self.vtk_data["y"][int(voxel_indices_new[j])] results["z"][j] = self.vtk_data["z"][int(voxel_indices_new[j])] results["strain"][j] = self.vtk_data["strain"][int(voxel_indices_new[j])] results["disp"][j] = self.vtk_data["disp"][int(voxel_indices_new[j])] results["strain_mean"] = np.mean(results["strain"]) results["strain_std"] = np.std(results["strain"]) results["disp_mean"] = np.mean(results["disp"]) results["disp_std"] = np.std(results["disp"]) # plot single result if plot: fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot(projection="3d") ax.view_init(elev=elev, azim=azim) ax.scatter( self.vtk_data["x"], self.vtk_data["y"], self.vtk_data["z"], s=0.2, antialiased=True, depthshade=True, ) ax.scatter( results["x"], results["y"], results["z"], s=50, c=results["strain"], cmap=self.cmap, vmin=-0.025, vmax=0.025, antialiased=True, depthshade=True, ) plt.tick_params(axis="both", which="major", labelsize=self.ticks_fontsize) plt.tick_params(axis="both", which="minor", labelsize=self.ticks_fontsize) plt.title(f"Strain for facet n°{facet_id}", fontsize=self.title_fontsize) plt.tight_layout() if save: plt.savefig( f"{self.pathsave}facet_n°{facet_id}.png", bbox_inches="tight" ) plt.show() plt.close() try: row = self.field_data.loc[self.field_data["facet_id"] == facet_id] n0 = row.n0.values[0] n1 = row.n1.values[0] n2 = row.n2.values[0] n = np.array([n0, n1, n2]) print(f"Facet normal: {np.round(n, 2)}") except IndexError: pass # we are on the corners and edges except Exception as e: raise e # pass if not output: return None return results def view_particle( self, facet_id_range: Tuple[int, int], elev_axis: str, show_edges_corners: bool, elev: int = 0, azim: int = 0, ) -> None: """ Visualization of the nanocrystal. x, y and z correspond to the frame used in paraview before saving the facet analyser plugin data. :param elev: elevation angle in the z plane (in degrees). :param azim: azimuth angle in the (x, y) plane (in degrees). :param facet_id_range: tuple of two facets numbers, facets with numbers between these two values will be plotted (higher boundary is excluded) :param elev_axis: "x", "y" or "z" :param show_edges_corners: set it to True to plot also edges and corners """ # Check some parameters valid.valid_container( facet_id_range, container_types=(tuple, list), item_types=int, length=2, min_included=0, name="facet_id_range", ) valid.valid_item(elev, allowed_types=int, name="elev") valid.valid_item(azim, allowed_types=int, name="azim") valid.valid_item( show_edges_corners, allowed_types=bool, name="show_edges_corners" ) if elev_axis not in {"x", "y", "z"}: raise ValueError(f"unsupported value for 'elev_axis': {elev_axis}") plt.close() fig = plt.figure(figsize=(15, 15)) ax = fig.add_subplot(projection="3d") ax.view_init(elev, azim) ax.set_xlabel("X axis", fontsize=self.axes_fontsize) ax.set_ylabel("Y axis", fontsize=self.axes_fontsize) ax.set_zlabel("Z axis", fontsize=self.axes_fontsize) def plot_facet_id(facet_id: int) -> None: """ Plot the voxels belonging to a specific facet. It plots together the normal to that facet and it's id. :param facet_id: number of the facet """ # Retrieve voxels for each facet voxel_indices = [] if self.vtk_data is None: raise ValueError("vtk_data undefined, run load_vtk() first") for idx, _ in enumerate(self.vtk_data["facet_id"]): if int(self.vtk_data["facet_id"][idx]) == facet_id: voxel_indices.append(self.vtk_data["x0"][idx]) voxel_indices.append(self.vtk_data["y0"][idx]) voxel_indices.append(self.vtk_data["z0"][idx]) # Delete doubles voxel_indices_new = list(set(voxel_indices)) results = { "x": np.zeros(len(voxel_indices_new)), "y": np.zeros(len(voxel_indices_new)), "z": np.zeros(len(voxel_indices_new)), "facet_id": np.zeros(len(voxel_indices_new)), } for idx, _ in enumerate(voxel_indices_new): results["x"][idx] = self.vtk_data["x"][int(voxel_indices_new[idx])] results["y"][idx] = self.vtk_data["y"][int(voxel_indices_new[idx])] results["z"][idx] = self.vtk_data["z"][int(voxel_indices_new[idx])] results["facet_id"][idx] = facet_id # Plot all the voxels with the color of their facet if elev_axis == "z": ax.scatter( results["x"], results["y"], results["z"], s=50, c=results["facet_id"], cmap=self.particle_cmap, vmin=facet_id_range[0], vmax=facet_id_range[1], antialiased=True, depthshade=True, ) if elev_axis == "x": ax.scatter( results["y"], results["z"], results["x"], s=50, c=results["facet_id"], cmap=self.particle_cmap, vmin=facet_id_range[0], vmax=facet_id_range[1], antialiased=True, depthshade=True, ) if elev_axis == "y": ax.scatter( results["z"], results["x"], results["y"], s=50, c=results["facet_id"], cmap=self.particle_cmap, vmin=facet_id_range[0], vmax=facet_id_range[1], antialiased=True, depthshade=True, ) # Plot the normal to each facet at their center, # do it after so that is it the top layer row = self.field_data.loc[self.field_data["facet_id"] == facet_id] if facet_id != 0: if elev_axis == "x": # Normal n = np.array([row.n1.values[0], row.n2.values[0], row.n0.values[0]]) # Center of mass com = np.array( [row.c1.values[0], row.c2.values[0], row.c0.values[0]] ) elif elev_axis == "y": # Normal n = np.array([row.n2.values[0], row.n0.values[0], row.n1.values[0]]) # Center of mass com = np.array( [row.c2.values[0], row.c0.values[0], row.c1.values[0]] ) else: # "z": # Normal n = np.array([row.n0.values[0], row.n1.values[0], row.n2.values[0]]) # Center of mass com = np.array( [row.c0.values[0], row.c1.values[0], row.c2.values[0]] ) n_str = str(facet_id) + str(n.round(2).tolist()) ax.text(com[0], com[1], com[2], n_str, color="red", fontsize=20) for i in range(facet_id_range[0], facet_id_range[1]): plot_facet_id(i) if show_edges_corners: plot_facet_id(0) plt.tick_params(axis="both", which="major", labelsize=self.ticks_fontsize) plt.tick_params(axis="both", which="minor", labelsize=self.ticks_fontsize) ax.set_title("Particle voxels", fontsize=self.title_fontsize) plt.tight_layout() plt.show() def plot_strain( self, figsize: Tuple[float, float] = (12, 10), elev: int = 0, azim: int = 0, save: bool = True, ) -> None: """ Plot two views of the surface strain of the nanocrystal. The first one with the surface coloured by the mean strain per facet. The second one with the surface coloured by the strain per voxel. :param figsize: figure size in inches (width, height) :param elev: elevation angle in the z plane (in degrees). :param azim: azimuth angle in the (x, y) plane (in degrees). :param save: True to save the figures """ # Check parameters valid.valid_container( figsize, container_types=(tuple, list), item_types=(int, float), length=2, min_included=0, name="figsize", ) valid.valid_item(elev, allowed_types=int, name="elev") valid.valid_item(azim, allowed_types=int, name="azim") valid.valid_item(save, allowed_types=bool, name="save") if self.nb_facets is None: raise ValueError("nb_facets is None, run load_vtk() first") # 3D strain p = None fig_name = ( "strain_3D_" + self.hkls + self.comment + "_" + str(self.strain_range) ) fig = plt.figure(figsize=figsize) ax = fig.add_subplot(projection="3d") for ind in range(1, self.nb_facets): results = self.extract_facet(ind, plot=False) if results is not None: p = ax.scatter( results["x"], results["y"], results["z"], s=50, c=results["strain"], cmap=self.cmap, vmin=-self.strain_range, vmax=self.strain_range, antialiased=True, depthshade=True, ) fig.colorbar(p) ax.view_init(elev=elev, azim=azim) plt.title("Strain for each voxel", fontsize=self.title_fontsize) ax.tick_params(axis="both", which="major", labelsize=self.ticks_fontsize) ax.tick_params(axis="both", which="minor", labelsize=self.ticks_fontsize) if save: plt.savefig(self.pathsave + fig_name + ".png", bbox_inches="tight") plt.show() # Average strain fig_name = ( "strain_3D_avg_" + self.hkls + self.comment + "_" + str(self.strain_range_avg) ) fig = plt.figure(figsize=figsize) ax = fig.add_subplot(projection="3d") for ind in range(1, self.nb_facets): results = self.extract_facet(ind, plot=False) if results is not None: strain_mean_facet =
np.zeros(results["strain"].shape)
numpy.zeros
#!/usr/bin/env python # stdlib imports import os.path import sys import time as time import copy import numpy as np import openquake.hazardlib.geo as geo from openquake.hazardlib.geo import point from impactutils.time.ancient_time import HistoricTime from impactutils.vectorutils.vector import Vector from impactutils.vectorutils.ecef import ecef2latlon from shakelib.rupture.origin import Origin from shakelib.rupture.quad_rupture import QuadRupture from shakelib.directivity.bayless2013 import Bayless2013 homedir = os.path.dirname(os.path.abspath(__file__)) # where is this script? shakedir = os.path.abspath(os.path.join(homedir, '..', '..', '..')) sys.path.insert(0, shakedir) def test_ss3(): magnitude = 7.2 dip = np.array([90]) rake = 180.0 width = np.array([15]) rupx = np.array([0, 0]) rupy = np.array([0, 80]) zp = np.array([0]) epix = np.array([0]) epiy = np.array([0.2 * rupy[1]]) # Convert to lat/lon proj = geo.utils.get_orthographic_projection(-122, -120, 39, 37) tlon, tlat = proj(rupx, rupy, reverse=True) epilon, epilat = proj(epix, epiy, reverse=True) # Origin: origin = Origin({'lat': epilat[0], 'lon': epilon[0], 'depth': 10, 'mag': magnitude, 'eventsourcecode': 'ss3', 'rake': rake}) rup = QuadRupture.fromTrace( np.array([tlon[0]]), np.array([tlat[0]]), np.array([tlon[1]]), np.array([tlat[1]]), zp, width, dip, origin, reference='ss3') x = np.linspace(-60, 60, 21) y = np.linspace(-60, 138, 34) site_x, site_y = np.meshgrid(x, y) slon, slat = proj(site_x, site_y, reverse=True) deps = np.zeros_like(slon) test1 = Bayless2013(origin, rup, slat, slon, deps, T=1.0) # Test fd fd = test1.getFd() fd_test = np.array( [[0.00000000e+00, 0.00000000e+00, 2.14620746e-03, 6.47899336e-03, 1.23119791e-02, 1.91676140e-02, 2.64009788e-02, 3.32427846e-02, 3.88863288e-02, 4.26104002e-02, 4.39120296e-02, 4.26104002e-02, 3.88863288e-02, 3.32427846e-02, 2.64009788e-02, 1.91676140e-02, 1.23119791e-02, 6.47899336e-03, 2.14620746e-03, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 8.57780996e-04, 3.99405791e-03, 9.31948105e-03, 1.65406113e-02, 2.51316805e-02, 3.43205435e-02, 4.31274592e-02, 5.04747209e-02, 5.53634169e-02, 5.70796092e-02, 5.53634169e-02, 5.04747209e-02, 4.31274592e-02, 3.43205435e-02, 2.51316805e-02, 1.65406113e-02, 9.31948105e-03, 3.99405791e-03, 8.57780996e-04, 0.00000000e+00], [-7.32594549e-04, 1.80425497e-04, 3.76908220e-03, 1.00175179e-02, 1.86854835e-02, 2.92291145e-02, 4.07487277e-02, 5.20057177e-02, 6.15509770e-02, 6.79776087e-02, 7.02477931e-02, 6.79776087e-02, 6.15509770e-02, 5.20057177e-02, 4.07487277e-02, 2.92291145e-02, 1.86854835e-02, 1.00175179e-02, 3.76908220e-03, 1.80425497e-04, -7.32594549e-04], [-3.29238561e-03, -2.60643191e-03, 1.16635260e-03, 8.15185259e-03, 1.82290773e-02, 3.08983182e-02, 4.51608038e-02, 5.94769126e-02, 7.18919113e-02, 8.03888307e-02, 8.34165399e-02, 8.03888307e-02, 7.18919113e-02, 5.94769126e-02, 4.51608038e-02, 3.08983182e-02, 1.82290773e-02, 8.15185259e-03, 1.16635260e-03, -2.60643191e-03, -3.29238561e-03], [-7.68543266e-03, -7.63179286e-03, -4.08866637e-03, 3.27605236e-03, 1.45558215e-02, 2.94068040e-02, 4.68176355e-02, 6.49397159e-02, 7.72066272e-02, 8.50445368e-02, 8.77974692e-02, 8.50445368e-02, 7.72066272e-02, 6.49397159e-02, 4.68176355e-02, 2.94068040e-02, 1.45558215e-02, 3.27605236e-03, -4.08866637e-03, -7.63179286e-03, -7.68543266e-03], [-1.38078234e-02, -1.49011067e-02, -1.21731364e-02, -5.02168047e-03, 6.98177526e-03, 2.38268531e-02, 4.30419205e-02, 6.00041964e-02, 7.44541603e-02, 8.42939552e-02, 8.77989590e-02, 8.42939552e-02, 7.44541603e-02, 6.00041964e-02, 4.30419205e-02, 2.38268531e-02, 6.98177526e-03, -5.02168047e-03, -1.21731364e-02, -1.49011067e-02, -1.38078234e-02], [-2.13780396e-02, -2.42165379e-02, -2.30613142e-02, -1.70011475e-02, -5.15036128e-03, 1.25885635e-02, 3.24536739e-02, 5.25619351e-02, 7.05100243e-02, 8.31900906e-02, 8.78003567e-02, 8.31900906e-02, 7.05100243e-02, 5.25619351e-02, 3.24536739e-02, 1.25885635e-02, -5.15036128e-03, -1.70011475e-02, -2.30613142e-02, -2.42165379e-02, -2.13780396e-02], [-2.98882710e-02, -3.50862342e-02, -3.63793490e-02, -3.25716319e-02, -2.22546618e-02, -3.59274163e-03, 1.83064517e-02, 4.20112440e-02, 6.46115966e-02, 8.14746164e-02, 8.78016623e-02, 8.14746164e-02, 6.46115966e-02, 4.20112440e-02, 1.83064517e-02, -3.59274163e-03, -2.22546618e-02, -3.25716319e-02, -3.63793490e-02, -3.50862342e-02, -2.98882710e-02], [-3.85810679e-02, -4.66488633e-02, -5.12430987e-02, -5.10089462e-02, -4.20856023e-02, -2.36905234e-02, -6.33876287e-04, 2.66765430e-02, 5.53289928e-02, 7.86066125e-02, 8.78028757e-02, 7.86066125e-02, 5.53289928e-02, 2.66765430e-02, -6.33876287e-04, -2.36905234e-02, -4.20856023e-02, -5.10089462e-02, -5.12430987e-02, -4.66488633e-02, -3.85810679e-02], [-4.64803335e-02, -5.76615888e-02, -6.61458422e-02, -7.06512643e-02, -6.38427394e-02, -4.77258398e-02, -2.55483969e-02, 4.05840724e-03, 3.98470070e-02, 7.33053399e-02, 8.78039969e-02, 7.33053399e-02, 3.98470070e-02, 4.05840724e-03, -2.55483969e-02, -4.77258398e-02, -6.38427394e-02, -7.06512643e-02, -6.61458422e-02, -5.76615888e-02, -4.64803335e-02], [-5.25038299e-02, -6.66129442e-02, -7.90147081e-02, -8.87629178e-02, -8.59653118e-02, -7.42828398e-02, -5.64316505e-02, -2.87083225e-02, 1.25945312e-02, 6.19971667e-02, 8.78050260e-02, 6.19971667e-02, 1.25945312e-02, -2.87083225e-02, -5.64316505e-02, -7.42828398e-02, -8.59653118e-02, -8.87629178e-02, -7.90147081e-02, -6.66129442e-02, -5.25038299e-02], [-5.69779111e-02, -7.36791817e-02, -8.97495345e-02, -1.04799583e-01, -1.07737239e-01, -1.02875880e-01, -9.46568471e-02, -7.95630162e-02, -4.96285112e-02, 6.59954795e-03, 5.25569882e-02, 6.59954795e-03, -4.96285112e-02, -7.95630162e-02, -9.46568471e-02, -1.02875880e-01, -1.07737239e-01, -1.04799583e-01, -8.97495345e-02, -7.36791817e-02, -5.69779111e-02], [-5.90357675e-02, -7.69727119e-02, -9.48442826e-02, -1.12607620e-01, -1.18744885e-01, -1.18201834e-01, -1.17217017e-01, -1.15152899e-01, -1.09694433e-01, -8.82341332e-02, -1.61624035e-02, -8.82341332e-02, -1.09694433e-01, -1.15152899e-01, -1.17217017e-01, -1.18201834e-01, -1.18744885e-01, -1.12607620e-01, -9.48442826e-02, -7.69727119e-02, -5.90357675e-02], [-5.92189452e-02, -7.72680305e-02, -9.53051857e-02, -1.13322519e-01, -1.19770917e-01, -1.19670660e-01, -1.19486798e-01, -1.19092639e-01, -1.17989113e-01, -1.12555820e-01, -4.50009776e-02, -1.12555820e-01, -1.17989113e-01, -1.19092639e-01, -1.19486798e-01, -1.19670660e-01, -1.19770917e-01, -1.13322519e-01, -9.53051857e-02, -7.72680305e-02, -5.92189452e-02], [-5.79249958e-02, -7.51927112e-02, -9.20842554e-02, -1.08361430e-01, -1.12722790e-01, -1.09732675e-01, -1.04531672e-01, -9.44729544e-02, -7.23277773e-02, -2.05699911e-02, 3.58249631e-02, -2.05699911e-02, -7.23277773e-02, -9.44729544e-02, -1.04531672e-01, -1.09732675e-01, -1.12722790e-01, -1.08361430e-01, -9.20842554e-02, -7.51927112e-02, -5.79249958e-02], [-5.42527703e-02, -6.93641123e-02, -8.31684773e-02, -9.49114165e-02, -9.41989454e-02, -8.48645354e-02, -7.00894708e-02, -4.58286259e-02, -6.37563061e-03, 4.68887998e-02, 7.77968419e-02, 4.68887998e-02, -6.37563061e-03, -4.58286259e-02, -7.00894708e-02, -8.48645354e-02, -9.41989454e-02, -9.49114165e-02, -8.31684773e-02, -6.93641123e-02, -5.42527703e-02], [-4.82490057e-02, -5.99997941e-02, -6.91786120e-02, -7.44891242e-02, -6.73705808e-02, -5.13001284e-02, -2.84188057e-02, 3.60143816e-03, 4.47470123e-02, 8.58663851e-02, 1.04548354e-01, 8.58663851e-02, 4.47470123e-02, 3.60143816e-03, -2.84188057e-02, -5.13001284e-02, -6.73705808e-02, -7.44891242e-02, -6.91786120e-02, -5.99997941e-02, -4.82490057e-02], [-4.03203010e-02, -4.79063206e-02, -5.16352259e-02, -4.98707253e-02, -3.67295509e-02, -1.57342058e-02, 1.13668830e-02, 4.46551184e-02, 8.10450840e-02, 1.11780747e-01, 1.24226598e-01, 1.11780747e-01, 8.10450840e-02, 4.46551184e-02, 1.13668830e-02, -1.57342058e-02, -3.67295509e-02, -4.98707253e-02, -5.16352259e-02, -4.79063206e-02, -4.03203010e-02], [-3.10250239e-02, -3.40796094e-02, -3.22089254e-02, -2.37094100e-02, -5.85463114e-03, 1.77402761e-02, 4.57786845e-02, 7.69637052e-02, 1.07537652e-01, 1.30906328e-01, 1.39800436e-01, 1.30906328e-01, 1.07537652e-01, 7.69637052e-02, 4.57786845e-02, 1.77402761e-02, -5.85463114e-03, -2.37094100e-02, -3.22089254e-02, -3.40796094e-02, -3.10250239e-02], [-2.09301700e-02, -1.94475962e-02, -1.22970199e-02, 2.07296407e-03, 2.31516868e-02, 4.74574033e-02, 7.44743481e-02, 1.02380049e-01, 1.27776301e-01, 1.46003379e-01, 1.52690015e-01, 1.46003379e-01, 1.27776301e-01, 1.02380049e-01, 7.44743481e-02, 4.74574033e-02, 2.31516868e-02, 2.07296407e-03, -1.22970199e-02, -1.94475962e-02, -2.09301700e-02], [-1.05257992e-02, -4.74329696e-03, 7.12107274e-03, 2.63431361e-02, 4.93709790e-02, 7.31527220e-02, 9.82233938e-02, 1.22728059e-01, 1.43894925e-01, 1.58465026e-01, 1.63685984e-01, 1.58465026e-01, 1.43894925e-01, 1.22728059e-01, 9.82233938e-02, 7.31527220e-02, 4.93709790e-02, 2.63431361e-02, 7.12107274e-03, -4.74329696e-03, -1.05257992e-02], [-1.89098657e-04, 9.52392382e-03, 2.54577716e-02, 4.85730869e-02, 7.26048516e-02, 9.51726659e-02, 1.17988523e-01, 1.39380421e-01, 1.57176612e-01, 1.69076915e-01, 1.73274075e-01, 1.69076915e-01, 1.57176612e-01, 1.39380421e-01, 1.17988523e-01, 9.51726659e-02, 7.26048516e-02, 4.85730869e-02, 2.54577716e-02, 9.52392382e-03, -1.89098657e-04], [9.81732797e-03, 2.30419581e-02, 4.24234701e-02, 6.86213308e-02, 9.30164618e-02, 1.14050063e-01, 1.34620894e-01, 1.53304069e-01, 1.68420867e-01, 1.78321253e-01, 1.81774183e-01, 1.78321253e-01, 1.68420867e-01, 1.53304069e-01, 1.34620894e-01, 1.14050063e-01, 9.30164618e-02, 6.86213308e-02, 4.24234701e-02, 2.30419581e-02, 9.81732797e-03], [1.93290725e-02, 3.56493099e-02, 5.79271157e-02, 8.65611122e-02, 1.10914315e-01, 1.30317702e-01, 1.48798006e-01, 1.65173224e-01, 1.78147031e-01, 1.86513895e-01, 1.89408199e-01, 1.86513895e-01, 1.78147031e-01, 1.65173224e-01, 1.48798006e-01, 1.30317702e-01, 1.10914315e-01, 8.65611122e-02, 5.79271157e-02, 3.56493099e-02, 1.93290725e-02], [2.68168937e-02, 4.52356810e-02, 6.92261217e-02, 9.89630241e-02, 1.23093435e-01, 1.40640067e-01, 1.56998943e-01, 1.71215219e-01, 1.82297185e-01, 1.89360704e-01, 1.91789146e-01, 1.89360704e-01, 1.82297185e-01, 1.71215219e-01, 1.56998943e-01, 1.40640067e-01, 1.23093435e-01, 9.89630241e-02, 6.92261217e-02, 4.52356810e-02, 2.68168937e-02], [3.19403269e-02, 5.15051953e-02, 7.61032066e-02, 1.05705197e-01, 1.31722206e-01, 1.47466588e-01, 1.61892450e-01, 1.74235616e-01, 1.83735386e-01, 1.89735533e-01, 1.91788616e-01, 1.89735533e-01, 1.83735386e-01, 1.74235616e-01, 1.61892450e-01, 1.47466588e-01, 1.31722206e-01, 1.05705197e-01, 7.61032066e-02, 5.15051953e-02, 3.19403269e-02], [3.48604070e-02, 5.49292382e-02, 7.94274234e-02, 1.08149011e-01, 1.38923419e-01, 1.53070440e-01, 1.65849067e-01, 1.76646162e-01, 1.84871647e-01, 1.90029617e-01, 1.91787948e-01, 1.90029617e-01, 1.84871647e-01, 1.76646162e-01, 1.65849067e-01, 1.53070440e-01, 1.38923419e-01, 1.08149011e-01, 7.94274234e-02, 5.49292382e-02, 3.48604070e-02], [3.53402022e-02, 5.53653759e-02, 7.91965502e-02, 1.06486934e-01, 1.36563003e-01, 1.57713955e-01, 1.69087164e-01, 1.78598269e-01, 1.85784340e-01, 1.90264452e-01, 1.91787141e-01, 1.90264452e-01, 1.85784340e-01, 1.78598269e-01, 1.69087164e-01, 1.57713955e-01, 1.36563003e-01, 1.06486934e-01, 7.91965502e-02, 5.53653759e-02, 3.53402022e-02], [3.32889822e-02, 5.28319225e-02, 7.55769079e-02, 1.01077605e-01, 1.28592068e-01, 1.57023616e-01, 1.71766715e-01, 1.80199729e-01, 1.86528091e-01, 1.90454829e-01, 1.91786196e-01, 1.90454829e-01, 1.86528091e-01, 1.80199729e-01, 1.71766715e-01, 1.57023616e-01, 1.28592068e-01, 1.01077605e-01, 7.55769079e-02, 5.28319225e-02, 3.32889822e-02], [2.87295370e-02, 4.74613283e-02, 6.88388861e-02, 9.23568989e-02, 1.17254645e-01, 1.42483223e-01, 1.66695764e-01, 1.81528776e-01, 1.87141877e-01, 1.90611190e-01, 1.91785112e-01, 1.90611190e-01, 1.87141877e-01, 1.81528776e-01, 1.66695764e-01, 1.42483223e-01, 1.17254645e-01, 9.23568989e-02, 6.88388861e-02, 4.74613283e-02, 2.87295370e-02], [2.17650266e-02, 3.94568191e-02, 5.93023344e-02, 8.07720575e-02, 1.03124482e-01, 1.25394282e-01, 1.46405870e-01, 1.64828303e-01, 1.79288925e-01, 1.88553222e-01, 1.91747252e-01, 1.88553222e-01, 1.79288925e-01, 1.64828303e-01, 1.46405870e-01, 1.25394282e-01, 1.03124482e-01, 8.07720575e-02, 5.93023344e-02, 3.94568191e-02, 2.17650266e-02], [1.25495284e-02, 2.90572166e-02, 4.72972116e-02, 6.67423656e-02, 8.66951873e-02, 1.06290296e-01, 1.24520131e-01, 1.40293247e-01, 1.52531693e-01, 1.60303860e-01, 1.62970689e-01, 1.60303860e-01, 1.52531693e-01, 1.40293247e-01, 1.24520131e-01, 1.06290296e-01, 8.66951873e-02, 6.67423656e-02, 4.72972116e-02, 2.90572166e-02, 1.25495284e-02], [1.26441934e-03, 1.65114811e-02, 3.31390978e-02, 5.06407706e-02, 6.83765492e-02, 8.55839448e-02, 1.01408074e-01, 1.14955639e-01, 1.25373662e-01, 1.31946425e-01, 1.34193829e-01, 1.31946425e-01, 1.25373662e-01, 1.14955639e-01, 1.01408074e-01, 8.55839448e-02, 6.83765492e-02, 5.06407706e-02, 3.31390978e-02, 1.65114811e-02, 1.26441934e-03], [0.00000000e+00, 2.06213867e-03, 1.71162845e-02, 3.27888240e-02, 4.85026462e-02, 6.35932476e-02, 7.73387997e-02, 8.90069217e-02, 9.79166934e-02, 1.03509489e-01, 1.05416736e-01, 1.03509489e-01, 9.79166934e-02, 8.90069217e-02, 7.73387997e-02, 6.35932476e-02, 4.85026462e-02, 3.27888240e-02, 1.71162845e-02, 2.06213867e-03, 0.00000000e+00]] ) np.testing.assert_allclose(fd, fd_test, rtol=1e-4) def test_ss3_m6(): magnitude = 6.0 dip = np.array([90]) rake = 180.0 width = np.array([15]) rupx = np.array([0, 0]) rupy = np.array([0, 80]) zp = np.array([0]) epix = np.array([0]) epiy = np.array([0.2 * rupy[1]]) # Convert to lat/lon proj = geo.utils.get_orthographic_projection(-122, -120, 39, 37) tlon, tlat = proj(rupx, rupy, reverse=True) epilon, epilat = proj(epix, epiy, reverse=True) # Origin: origin = Origin({'lat': epilat[0], 'lon': epilon[0], 'depth': 10, 'mag': magnitude, 'eventsourcecode': 'ss3', 'rake': rake}) rup = QuadRupture.fromTrace( np.array([tlon[0]]), np.array([tlat[0]]), np.array([tlon[1]]), np.array([tlat[1]]), zp, width, dip, origin, reference='ss3') x = np.linspace(0, 20, 6) y = np.linspace(0, 90, 11) site_x, site_y = np.meshgrid(x, y) slon, slat = proj(site_x, site_y, reverse=True) deps = np.zeros_like(slon) test1 = Bayless2013(origin, rup, slat, slon, deps, T=1.0) # Test fd fd = test1.getFd() fd_test = np.array( [[0.05853668, 0.05032323, 0.0306438, 0.00839635, -0.01102162, -0.02621319], [0.01720501, -0.00687296, -0.03804823, -0.05547473, -0.0644932, -0.06947135], [-0.03000065, -0.07006634, -0.07708165, -0.07865941, -0.0792369, -0.07950887], [0.0398062, 0.02571145, -0.0018651, -0.0255418, -0.04176278, -0.05235095], [0.0696989, 0.06389524, 0.04890304, 0.02983134, 0.01098535, -0.00545921], [0.088278, 0.08511069, 0.07628596, 0.06350294, 0.04875897, 0.03373495], [0.10179334, 0.09978475, 0.09401676, 0.0851842, 0.07422509, 0.06210369], [0.11242209, 0.11102701, 0.10696056, 0.10055471, 0.09229027, 0.08271454], [0.12118279, 0.12015315, 0.11712653, 0.11228058, 0.10588323, 0.09825795], [0.12785957, 0.12706892, 0.12473264, 0.12095384, 0.11589197, 0.10974684], [0.12785908, 0.12724852, 0.12543819, 0.12249026, 0.11850249, 0.11360047]]) np.testing.assert_allclose( fd, fd_test, rtol=1e-4) def test_ss3_move_hypo1(): magnitude = 7.2 dip = np.array([90]) rake = 180.0 width = np.array([15]) rupx = np.array([0, 0]) rupy = np.array([0, 80]) zp = np.array([0.0]) epix = np.array([1.0]) epiy = np.array([-1.0]) # Convert to lat/lon proj = geo.utils.get_orthographic_projection(-122, -120, 39, 37) tlon, tlat = proj(rupx, rupy, reverse=True) epilon, epilat = proj(epix, epiy, reverse=True) # Origin origin = Origin({'lat': epilat[0], 'lon': epilon[0], 'depth': -1, 'mag': magnitude, 'eventsourcecode': 'ss3', 'rake': rake}) rup = QuadRupture.fromTrace( np.array([tlon[0]]), np.array([tlat[0]]), np.array([tlon[1]]), np.array([tlat[1]]), zp, width, dip, origin, reference='ss3') x = np.linspace(0, 20, 6) y = np.linspace(0, 90, 11) site_x, site_y = np.meshgrid(x, y) slon, slat = proj(site_x, site_y, reverse=True) deps = np.zeros_like(slon) test1 = Bayless2013(origin, rup, slat, slon, deps, T=1.0) phyp = copy.deepcopy(test1.phyp[0]) plat, plon, pdep = ecef2latlon(phyp.x, phyp.y, phyp.z) px, py = proj(plon, plat, reverse=False) np.testing.assert_allclose(plat, 38.004233219183604, rtol=1e-4) np.testing.assert_allclose(plon, -120.98636122402166, rtol=1e-4) np.testing.assert_allclose(pdep, 7.4999999989205968, rtol=1e-4) # -------------------------------------------------------------------------- # Also for multiple segments # -------------------------------------------------------------------------- dip = np.array([90., 90., 90.]) rake = 180.0 width = np.array([15., 15., 10.]) rupx = np.array([0., 0., 10., 20.]) rupy = np.array([0., 20., 60., 80.]) zp = np.array([0., 0., 0.]) epix = np.array([0.]) epiy = np.array([0.]) # Convert to lat/lon proj = geo.utils.get_orthographic_projection(-122, -120, 39, 37) tlon, tlat = proj(rupx, rupy, reverse=True) epilon, epilat = proj(epix, epiy, reverse=True) rup = QuadRupture.fromTrace( np.array(tlon[0:3]), np.array(tlat[0:3]),
np.array(tlon[1:4])
numpy.array
import pyBigWig import os import sys import numpy as np import glob def anchor (ref, ori): # input 1d np array ref_new=ref.copy() ref_new.sort() ori_new=ori.copy() ori_new[np.argsort(ori)]=ref_new[:] return ori_new chr_all=['chr1','chr2','chr3','chr4','chr5','chr6','chr7','chr8','chr9','chr10','chr11','chr12','chr13','chr14','chr15','chr16','chr17','chr18','chr19','chr20','chr21','chr22','chrX'] num_bp=np.array([248956422,242193529,198295559,190214555,181538259,170805979,159345973,145138636,138394717,133797422,135086622,133275309,114364328,107043718,101991189,90338345,83257441,80373285,58617616,64444167,46709983,50818468,156040895]) num_bp25=[9958257, 9687742, 7931823, 7608583, 7261531, 6832240, 6373839, 5805546, 5535789, 5351897, 5403465, 5331013, 4574574, 4281749, 4079648, 3613534, 3330298, 3214932, 2344705, 2577767, 1868400, 2032739, 6241636] chr_len={} for i in np.arange(len(chr_all)): chr_len[chr_all[i]]=num_bp[i] chr_len25={} for i in np.arange(len(chr_all)): chr_len25[chr_all[i]]=num_bp25[i] # number of cells used to calculate avg assay_all=['M01','M02','M16','M17','M18','M20','M22','M29'] tmp=[4,37,25,19,25,21,33,20] dict_assay_count={} for i in np.arange(len(assay_all)): dict_assay_count[assay_all[i]]=tmp[i] # number of models model_all=['C_D','C_E','C_F','C_G','C_H','C_I', \ 'CH_D','CH_E','CH_F','CH_G','CH_I', \ 'CDEH_G','CDEH_I','DEFGHI_C', \ 'DGH_C','DGH_F','DGH_I', \ 'DGI_C','DGI_E','DGI_F','DGI_H', \ 'F_C','F_D','F_E','F_G','F_H','F_I', \ 'DGHKLMN_F','DGHKLMN_I','DGHK_F','DGHK_I','DGIK_E','DGIK_F','DGIK_H'] tmp=[15,11,15,11,22,12, \ 15,11,14,11,12, \ 9,9,9, \ 11,18,17, \ 11,15,16,17, \ 15,20,16,18,20,17, \ 7,6,11,11,11,10,11] dict_model_count={} for i in np.arange(len(model_all)): dict_model_count[model_all[i]]=tmp[i] path0='../data_challenge/baseline_avg_final/' os.system('mkdir -p npy') print(sys.argv) id_all=sys.argv[1:] for the_id in id_all: print(the_id) the_assay=the_id[3:] the_cell=the_id[:3] bw=pyBigWig.open(path0 + 'gold_anchored_' + the_assay + '.bigwig') w1 = 1.0; w2 = 2.0; w3 = 1.0 # HERE weights for avg, lgbm, nn for the_chr in chr_all: print(the_chr) ## 1. stack # 1.1 avg avg = np.array(bw.values(the_chr, 0, chr_len25[the_chr])) ## 3.1 save npy
np.save('./npy/pred25bp_' + the_id + '_' + the_chr, avg)
numpy.save
# # Author: <NAME>, 2002 # from __future__ import division, print_function, absolute_import import numpy as np from scipy.lib.six import xrange from numpy import pi, asarray, floor, isscalar, iscomplex, real, imag, sqrt, \ where, mgrid, cos, sin, exp, place, seterr, issubdtype, extract, \ less, vectorize, inexact, nan, zeros, sometrue, atleast_1d from ._ufuncs import ellipkm1, mathieu_a, mathieu_b, iv, jv, gamma, psi, zeta, \ hankel1, hankel2, yv, kv, gammaln, ndtri, errprint, poch, binom from . import _ufuncs import types from . import specfun from . import orthogonal import warnings __all__ = ['agm', 'ai_zeros', 'assoc_laguerre', 'bei_zeros', 'beip_zeros', 'ber_zeros', 'bernoulli', 'berp_zeros', 'bessel_diff_formula', 'bi_zeros', 'clpmn', 'comb', 'digamma', 'diric', 'ellipk', 'erf_zeros', 'erfcinv', 'erfinv', 'errprint', 'euler', 'fresnel_zeros', 'fresnelc_zeros', 'fresnels_zeros', 'gamma', 'gammaln', 'h1vp', 'h2vp', 'hankel1', 'hankel2', 'hyp0f1', 'iv', 'ivp', 'jn_zeros', 'jnjnp_zeros', 'jnp_zeros', 'jnyn_zeros', 'jv', 'jvp', 'kei_zeros', 'keip_zeros', 'kelvin_zeros', 'ker_zeros', 'kerp_zeros', 'kv', 'kvp', 'lmbda', 'lpmn', 'lpn', 'lqmn', 'lqn', 'mathieu_a', 'mathieu_b', 'mathieu_even_coef', 'mathieu_odd_coef', 'ndtri', 'obl_cv_seq', 'pbdn_seq', 'pbdv_seq', 'pbvv_seq', 'perm', 'polygamma', 'pro_cv_seq', 'psi', 'riccati_jn', 'riccati_yn', 'sinc', 'sph_harm', 'sph_in', 'sph_inkn', 'sph_jn', 'sph_jnyn', 'sph_kn', 'sph_yn', 'y0_zeros', 'y1_zeros', 'y1p_zeros', 'yn_zeros', 'ynp_zeros', 'yv', 'yvp', 'zeta', 'SpecialFunctionWarning'] class SpecialFunctionWarning(Warning): pass warnings.simplefilter("always", category=SpecialFunctionWarning) def sinc(x): """Returns sin(pi*x)/(pi*x) at all points of array x. """ x = asarray(x) w = pi * x # w might contain 0, and so temporarily turn off warnings # while calculating sin(w)/w. old_settings = seterr(all='ignore') s = sin(w) / w seterr(**old_settings) return where(x == 0, 1.0, s) def diric(x,n): """Returns the periodic sinc function, also called the Dirichlet function: diric(x) = sin(x *n / 2) / (n sin(x / 2)) where n is a positive integer. """ x,n = asarray(x), asarray(n) n = asarray(n + (x-x)) x = asarray(x + (n-n)) if issubdtype(x.dtype, inexact): ytype = x.dtype else: ytype = float y = zeros(x.shape,ytype) mask1 = (n <= 0) | (n != floor(n)) place(y,mask1,nan) z = asarray(x / 2.0 / pi) mask2 = (1-mask1) & (z == floor(z)) zsub = extract(mask2,z) nsub = extract(mask2,n) place(y,mask2,pow(-1,zsub*(nsub-1))) mask = (1-mask1) & (1-mask2) xsub = extract(mask,x) nsub = extract(mask,n) place(y,mask,sin(nsub*xsub/2.0)/(nsub*sin(xsub/2.0))) return y def jnjnp_zeros(nt): """Compute nt (<=1200) zeros of the Bessel functions Jn and Jn' and arange them in order of their magnitudes. Returns ------- zo[l-1] : ndarray Value of the lth zero of Jn(x) and Jn'(x). Of length `nt`. n[l-1] : ndarray Order of the Jn(x) or Jn'(x) associated with lth zero. Of length `nt`. m[l-1] : ndarray Serial number of the zeros of Jn(x) or Jn'(x) associated with lth zero. Of length `nt`. t[l-1] : ndarray 0 if lth zero in zo is zero of Jn(x), 1 if it is a zero of Jn'(x). Of length `nt`. See Also -------- jn_zeros, jnp_zeros : to get separated arrays of zeros. """ if not isscalar(nt) or (floor(nt) != nt) or (nt > 1200): raise ValueError("Number must be integer <= 1200.") nt = int(nt) n,m,t,zo = specfun.jdzo(nt) return zo[1:nt+1],n[:nt],m[:nt],t[:nt] def jnyn_zeros(n,nt): """Compute nt zeros of the Bessel functions Jn(x), Jn'(x), Yn(x), and Yn'(x), respectively. Returns 4 arrays of length nt. See jn_zeros, jnp_zeros, yn_zeros, ynp_zeros to get separate arrays. """ if not (isscalar(nt) and isscalar(n)): raise ValueError("Arguments must be scalars.") if (floor(n) != n) or (floor(nt) != nt): raise ValueError("Arguments must be integers.") if (nt <= 0): raise ValueError("nt > 0") return specfun.jyzo(abs(n),nt) def jn_zeros(n,nt): """Compute nt zeros of the Bessel function Jn(x). """ return jnyn_zeros(n,nt)[0] def jnp_zeros(n,nt): """Compute nt zeros of the Bessel function Jn'(x). """ return jnyn_zeros(n,nt)[1] def yn_zeros(n,nt): """Compute nt zeros of the Bessel function Yn(x). """ return jnyn_zeros(n,nt)[2] def ynp_zeros(n,nt): """Compute nt zeros of the Bessel function Yn'(x). """ return jnyn_zeros(n,nt)[3] def y0_zeros(nt,complex=0): """Returns nt (complex or real) zeros of Y0(z), z0, and the value of Y0'(z0) = -Y1(z0) at each zero. """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("Arguments must be scalar positive integer.") kf = 0 kc = (complex != 1) return specfun.cyzo(nt,kf,kc) def y1_zeros(nt,complex=0): """Returns nt (complex or real) zeros of Y1(z), z1, and the value of Y1'(z1) = Y0(z1) at each zero. """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("Arguments must be scalar positive integer.") kf = 1 kc = (complex != 1) return specfun.cyzo(nt,kf,kc) def y1p_zeros(nt,complex=0): """Returns nt (complex or real) zeros of Y1'(z), z1', and the value of Y1(z1') at each zero. """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("Arguments must be scalar positive integer.") kf = 2 kc = (complex != 1) return specfun.cyzo(nt,kf,kc) def bessel_diff_formula(v, z, n, L, phase): # from AMS55. # L(v,z) = J(v,z), Y(v,z), H1(v,z), H2(v,z), phase = -1 # L(v,z) = I(v,z) or exp(v*pi*i)K(v,z), phase = 1 # For K, you can pull out the exp((v-k)*pi*i) into the caller p = 1.0 s = L(v-n, z) for i in xrange(1, n+1): p = phase * (p * (n-i+1)) / i # = choose(k, i) s += p*L(v-n + i*2, z) return s / (2.**n) def jvp(v,z,n=1): """Return the nth derivative of Jv(z) with respect to z. """ if not isinstance(n,int) or (n < 0): raise ValueError("n must be a non-negative integer.") if n == 0: return jv(v,z) else: return bessel_diff_formula(v, z, n, jv, -1) # return (jvp(v-1,z,n-1) - jvp(v+1,z,n-1))/2.0 def yvp(v,z,n=1): """Return the nth derivative of Yv(z) with respect to z. """ if not isinstance(n,int) or (n < 0): raise ValueError("n must be a non-negative integer.") if n == 0: return yv(v,z) else: return bessel_diff_formula(v, z, n, yv, -1) # return (yvp(v-1,z,n-1) - yvp(v+1,z,n-1))/2.0 def kvp(v,z,n=1): """Return the nth derivative of Kv(z) with respect to z. """ if not isinstance(n,int) or (n < 0): raise ValueError("n must be a non-negative integer.") if n == 0: return kv(v,z) else: return (-1)**n * bessel_diff_formula(v, z, n, kv, 1) def ivp(v,z,n=1): """Return the nth derivative of Iv(z) with respect to z. """ if not isinstance(n,int) or (n < 0): raise ValueError("n must be a non-negative integer.") if n == 0: return iv(v,z) else: return bessel_diff_formula(v, z, n, iv, 1) def h1vp(v,z,n=1): """Return the nth derivative of H1v(z) with respect to z. """ if not isinstance(n,int) or (n < 0): raise ValueError("n must be a non-negative integer.") if n == 0: return hankel1(v,z) else: return bessel_diff_formula(v, z, n, hankel1, -1) # return (h1vp(v-1,z,n-1) - h1vp(v+1,z,n-1))/2.0 def h2vp(v,z,n=1): """Return the nth derivative of H2v(z) with respect to z. """ if not isinstance(n,int) or (n < 0): raise ValueError("n must be a non-negative integer.") if n == 0: return hankel2(v,z) else: return bessel_diff_formula(v, z, n, hankel2, -1) # return (h2vp(v-1,z,n-1) - h2vp(v+1,z,n-1))/2.0 def sph_jn(n,z): """Compute the spherical Bessel function jn(z) and its derivative for all orders up to and including n. """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z): nm,jn,jnp,yn,ynp = specfun.csphjy(n1,z) else: nm,jn,jnp = specfun.sphj(n1,z) return jn[:(n+1)], jnp[:(n+1)] def sph_yn(n,z): """Compute the spherical Bessel function yn(z) and its derivative for all orders up to and including n. """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z) or less(z,0): nm,jn,jnp,yn,ynp = specfun.csphjy(n1,z) else: nm,yn,ynp = specfun.sphy(n1,z) return yn[:(n+1)], ynp[:(n+1)] def sph_jnyn(n,z): """Compute the spherical Bessel functions, jn(z) and yn(z) and their derivatives for all orders up to and including n. """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if
iscomplex(z)
numpy.iscomplex
import logging import numpy as np import threading import queue import zmq __author__ = "<NAME>" __copyright__ = "Copyright (c) 2017, Technische Universität Berlin" __version__ = "0.1.0" __email__ = "<EMAIL>" class RegMonDataReceiver(threading.Thread): def __init__(self, publishData=False): threading.Thread.__init__(self) self.log = logging.getLogger("{module}.{name}".format( module=self.__class__.__module__, name=self.__class__.__name__)) self.signalQueue = queue.Queue() self.outQueues = [] self.publishData = publishData self.pubPort = 56789 self.context = zmq.Context() self.pubSocket = self.context.socket(zmq.PUB) self.pubSocket.bind("tcp://*:%s" % self.pubPort) def get_signal_queue(self): return self.signalQueue def add_signal_receiver_queue(self, queue): self.outQueues.append(queue) def prepare_signal(self, data): timestamp = np.copy(data[:, [0]].astype(np.uint64)) timestamp = np.squeeze(timestamp) channel = np.copy(data[:, [13]].astype(np.int)) channel = np.squeeze(channel) length = np.shape(data)[0] startTime = data[0][0] stopTime = data[-1][0] timeInterval = stopTime - startTime # filter overflow data macTimeRawData = data[:, [3]] index = np.argmin(macTimeRawData) # check if there is any overflow if (index > 0): # find all overflows in mactime overflows = map( lambda x : x[0] > x[1], zip(macTimeRawData, macTimeRawData[1:])) indexes = [i+1 for i,x in enumerate(overflows) if x == True] # TODO: look for overflows in the other registers as well splitData = np.split(data, indexes) splitData = list(map(lambda x: np.diff(x, axis=0), splitData)) diff = np.concatenate(splitData, axis=0) timestamp =
np.split(timestamp, indexes)
numpy.split
# -*- coding: utf-8 -*- from random import randint, random import numpy as np from npstreams import isum, iprod, last, isub, iany, iall, prod from npstreams import sum as nssum # avoiding name clashes import pytest def test_isum_trivial(): """Test a sum of zeros""" source = [np.zeros((16,), dtype=float) for _ in range(10)] summed = last(isum(source)) assert np.allclose(summed, np.zeros_like(summed)) def test_isum_ignore_nans(): """Test a sum of zeros with NaNs sprinkled""" source = [np.zeros((16,), dtype=float) for _ in range(10)] source.append(np.full((16,), fill_value=np.nan)) summed = last(isum(source, ignore_nan=True)) assert np.allclose(summed, np.zeros_like(summed)) def test_isum_length(): """Test that the number of yielded elements is the same as source""" source = [np.zeros((16,), dtype=float) for _ in range(10)] summed = list(isum(source, axis=0)) assert 10 == len(summed) def test_isum_dtype(): """Test a sum of floating zeros with an int accumulator""" source = [np.zeros((16,), dtype=float) for _ in range(10)] summed = last(isum(source, dtype=int)) assert np.allclose(summed, np.zeros_like(summed)) assert summed.dtype == int def test_isum_axis(): """Test that isum(axis = 0) yields 0d arrays""" source = [np.zeros((16,), dtype=float) for _ in range(10)] summed = last(isum(source, axis=0)) assert np.allclose(summed, np.zeros_like(summed)) summed = last(isum(source, axis=None)) assert np.allclose(summed, 0) def test_isum_return_shape(): """Test that the shape of output is as expected""" source = [np.zeros((16,), dtype=float) for _ in range(10)] summed = last(isum(source, axis=0)) assert summed.shape == (1, 10) @pytest.mark.parametrize("axis", (0, 1, 2, None)) def test_isum_against_numpy(axis): """Test that isum() returns the same as numpy.sum() for various axis inputs""" stream = [np.random.random((16, 16)) for _ in range(10)] stack = np.dstack(stream) from_numpy = np.sum(stack, axis=axis) from_isum = last(isum(stream, axis=axis)) assert np.allclose(from_isum, from_numpy) def test_sum_trivial(): """Test a sum of zeros""" source = [np.zeros((16,), dtype=float) for _ in range(10)] summed = nssum(source) assert np.allclose(summed, np.zeros_like(summed)) def test_sum_ignore_nans(): """Test a sum of zeros with NaNs sprinkled""" source = [np.zeros((16,), dtype=float) for _ in range(10)] source.append(np.full((16,), fill_value=np.nan)) summed = nssum(source, ignore_nan=True) assert np.allclose(summed, np.zeros_like(summed)) def test_sum_dtype(): """Test a sum of floating zeros with an int accumulator""" source = [np.zeros((16,), dtype=float) for _ in range(10)] summed = nssum(source, dtype=int) assert np.allclose(summed, np.zeros_like(summed)) assert summed.dtype == int def test_sum_axis(): """Test that isum(axis = 0) yields 0d arrays""" source = [np.zeros((16,), dtype=float) for _ in range(10)] summed = nssum(source, axis=0) assert np.allclose(summed, np.zeros_like(summed)) summed = nssum(source, axis=None) assert np.allclose(summed, 0) def test_sum_return_shape(): """Test that the shape of output is as expected""" source = [np.zeros((16,), dtype=float) for _ in range(10)] summed = nssum(source, axis=0) assert summed.shape == (1, 10) @pytest.mark.parametrize("axis", (0, 1, 2, None)) def test_sum_against_numpy(axis): """Test that isum() returns the same as numpy.sum() for various axis inputs""" stream = [np.random.random((16, 16)) for _ in range(10)] stack = np.dstack(stream) from_numpy = np.sum(stack, axis=axis) from_sum = nssum(stream, axis=axis) assert np.allclose(from_sum, from_numpy) def test_iprod_trivial(): """Test a product of ones""" source = [np.ones((16,), dtype=float) for _ in range(10)] product = last(iprod(source)) assert np.allclose(product, np.ones_like(product)) def test_iprod_ignore_nans(): """Test that NaNs are ignored.""" source = [np.ones((16,), dtype=float) for _ in range(10)] source.append(np.full_like(source[0], np.nan)) product = last(iprod(source, ignore_nan=True)) assert np.allclose(product, np.ones_like(product)) def test_iprod_dtype(): """Test that dtype argument is working""" source = [np.ones((16,), dtype=float) for _ in range(10)] product = last(iprod(source, dtype=int)) assert np.allclose(product, np.ones_like(product)) assert product.dtype == int def test_iprod_axis(): """Test that iprod(axis = 0) yields 0d arrays""" source = [np.ones((16,), dtype=float) for _ in range(10)] summed = last(iprod(source, axis=0)) assert np.all(summed == 1) summed = last(iprod(source, axis=None)) assert np.allclose(summed, np.ones_like(summed)) @pytest.mark.parametrize("axis", (0, 1, 2, None)) def test_iprod_against_numpy(axis): """Test that iprod() returns the same as numpy.prod() for various axis inputs""" stream = [np.random.random((16, 16)) for _ in range(10)] stack = np.dstack(stream) from_numpy = np.prod(stack, axis=axis) from_stream = last(iprod(stream, axis=axis)) assert np.allclose(from_stream, from_numpy) def test_prod_trivial(): """Test a product of ones""" source = [np.ones((16,), dtype=float) for _ in range(10)] product = prod(source) assert np.allclose(product, np.ones_like(product)) def test_prod_ignore_nans(): """Test that NaNs are ignored.""" source = [np.ones((16,), dtype=float) for _ in range(10)] source.append(np.full_like(source[0], np.nan)) product = prod(source, ignore_nan=True) assert np.allclose(product, np.ones_like(product)) def test_prod_dtype(): """Test that dtype argument is working""" source = [np.ones((16,), dtype=float) for _ in range(10)] product = prod(source, dtype=int) assert np.allclose(product,
np.ones_like(product)
numpy.ones_like
import networkx as nx import numpy as np import warnings import itertools from networkx.algorithms.dag import descendants from pyparsing import OneOrMore, Word, Optional, Suppress, alphanums, nums from pgmpy.base import DAG from pgmpy.global_vars import HAS_PANDAS if HAS_PANDAS: import pandas as pd class SEMGraph(DAG): """ Base class for graphical representation of Structural Equation Models(SEMs). All variables are by default assumed to have an associated error latent variable, therefore doesn't need to be specified. Attributes ---------- latents: list List of all the latent variables in the model except the error terms. observed: list List of all the observed variables in the model. graph: nx.DirectedGraph The graphical structure of the latent and observed variables except the error terms. The parameteers are stored in the `weight` attribute of each edge. err_graph: nx.Graph An undirected graph representing the relations between the error terms of the model. The node of the graph has the same name as the variable but represents the error terms. The variance is stored in the `weight` attribute of the node and the covariance is stored in the `weight` attribute of the edge. full_graph_struct: nx.DiGraph Represents the full graph structure. The names of error terms starts with `.` and new nodes are added for each correlation which starts with `..`. """ def __init__(self, ebunch=[], latents=[], err_corr=[], err_var={}): """ Initializes a `SEMGraph` object. Parameters ---------- ebunch: list/array-like List of edges in form of tuples. Each tuple can be of two possible shape: 1. (u, v): This would add an edge from u to v without setting any parameter for the edge. 2. (u, v, parameter): This would add an edge from u to v and set the edge's parameter to `parameter`. latents: list/array-like List of nodes which are latent. All other variables are considered observed. err_corr: list/array-like List of tuples representing edges between error terms. It can be of the following forms: 1. (u, v): Add correlation between error terms of `u` and `v`. Doesn't set any variance or covariance values. 2. (u, v, covar): Adds correlation between the error terms of `u` and `v` and sets the parameter to `covar`. err_var: dict (variable: variance) Sets variance for the error terms in the model. Examples -------- Defining a model (Union sentiment model[1]) without setting any paramaters. >>> from pgmpy.models import SEMGraph >>> sem = SEMGraph(ebunch=[('deferenc', 'unionsen'), ('laboract', 'unionsen'), ... ('yrsmill', 'unionsen'), ('age', 'deferenc'), ... ('age', 'laboract'), ('deferenc', 'laboract')], ... latents=[], ... err_corr=[('yrsmill', 'age')], ... err_var={}) Defining a model (Education [2]) with all the parameters set. For not setting any parameter `np.NaN` can be explicitly passed. >>> sem_edu = SEMGraph(ebunch=[('intelligence', 'academic', 0.8), ('intelligence', 'scale_1', 0.7), ... ('intelligence', 'scale_2', 0.64), ('intelligence', 'scale_3', 0.73), ... ('intelligence', 'scale_4', 0.82), ('academic', 'SAT_score', 0.98), ... ('academic', 'High_school_gpa', 0.75), ('academic', 'ACT_score', 0.87)], ... latents=['intelligence', 'academic'], ... err_corr=[], ... err_var={'intelligence': 1}) References ---------- [1] <NAME>., & <NAME>. (1984). Textile Workers and Union Sentiment. Social Forces, 63(2), 502–521 [2] https://en.wikipedia.org/wiki/Structural_equation_modeling#/ media/File:Example_Structural_equation_model.svg """ super(SEMGraph, self).__init__() # Construct the graph and set the parameters. self.graph = nx.DiGraph() for t in ebunch: if len(t) == 3: self.graph.add_edge(t[0], t[1], weight=t[2]) elif len(t) == 2: self.graph.add_edge(t[0], t[1], weight=np.NaN) else: raise ValueError( f"Expected tuple length: 2 or 3. Got {t} of len {len(t)}" ) self.latents = set(latents) self.observed = set(self.graph.nodes()) - self.latents # Construct the error graph and set the parameters. self.err_graph = nx.Graph() self.err_graph.add_nodes_from(self.graph.nodes()) for t in err_corr: if len(t) == 2: self.err_graph.add_edge(t[0], t[1], weight=np.NaN) elif len(t) == 3: self.err_graph.add_edge(t[0], t[1], weight=t[2]) else: raise ValueError( f"Expected tuple length: 2 or 3. Got {t} of len {len(t)}" ) # Set the error variances for var in self.err_graph.nodes(): self.err_graph.nodes[var]["weight"] = ( err_var[var] if var in err_var.keys() else np.NaN ) self.full_graph_struct = self._get_full_graph_struct() def _get_full_graph_struct(self): """ Creates a directed graph by joining `self.graph` and `self.err_graph`. Adds new nodes to replace undirected edges (u <--> v) with two directed edges (u <-- ..uv) and (..uv --> v). Returns ------- nx.DiGraph: A full directed graph strucuture with error nodes starting with `.` and bidirected edges replaced with common cause nodes starting with `..`. Examples -------- >>> from pgmpy.models import SEMGraph >>> sem = SEMGraph(ebunch=[('deferenc', 'unionsen'), ('laboract', 'unionsen'), ... ('yrsmill', 'unionsen'), ('age', 'deferenc'), ... ('age', 'laboract'), ('deferenc', 'laboract')], ... latents=[], ... err_corr=[('yrsmill', 'age')]) >>> sem._get_full_graph_struct() """ full_graph = self.graph.copy() mapping_dict = {"." + node: node for node in self.err_graph.nodes} full_graph.add_edges_from([(u, v) for u, v in mapping_dict.items()]) for u, v in self.err_graph.edges: cov_node = ".." + "".join(sorted([u, v])) full_graph.add_edges_from([(cov_node, "." + u), (cov_node, "." + v)]) return full_graph def get_scaling_indicators(self): """ Returns a scaling indicator for each of the latent variables in the model. The scaling indicator is chosen randomly among the observed measurement variables of the latent variable. Examples -------- >>> from pgmpy.models import SEMGraph >>> model = SEMGraph(ebunch=[('xi1', 'eta1'), ('xi1', 'x1'), ('xi1', 'x2'), ... ('eta1', 'y1'), ('eta1', 'y2')], ... latents=['xi1', 'eta1']) >>> model.get_scaling_indicators() {'xi1': 'x1', 'eta1': 'y1'} Returns ------- dict: Returns a dict with latent variables as the key and their value being the scaling indicator. """ scaling_indicators = {} for node in self.latents: for neighbor in self.graph.neighbors(node): if neighbor in self.observed: scaling_indicators[node] = neighbor break return scaling_indicators def active_trail_nodes(self, variables, observed=[], avoid_nodes=[], struct="full"): """ Finds all the observed variables which are d-connected to `variables` in the `graph_struct` when `observed` variables are observed. Parameters ---------- variables: str or array like Observed variables whose d-connected variables are to be found. observed : list/array-like If given the active trails would be computed assuming these nodes to be observed. avoid_nodes: list/array-like If specificed, the algorithm doesn't account for paths that have influence flowing through the avoid node. struct: str or nx.DiGraph instance If "full", considers correlation between error terms for computing d-connection. If "non_error", doesn't condised error correlations for computing d-connection. If instance of nx.DiGraph, finds d-connected variables on the given graph. Examples -------- >>> from pgmpy.models import SEM >>> model = SEMGraph(ebunch=[('yrsmill', 'unionsen'), ('age', 'laboract'), ... ('age', 'deferenc'), ('deferenc', 'laboract'), ... ('deferenc', 'unionsen'), ('laboract', 'unionsen')], ... latents=[], ... err_corr=[('yrsmill', 'age')]) >>> model.active_trail_nodes('age') Returns ------- dict: {str: list} Returns a dict with `variables` as the key and a list of d-connected variables as the value. References ---------- Details of the algorithm can be found in 'Probabilistic Graphical Model Principles and Techniques' - <NAME> Friedman Page 75 Algorithm 3.1 """ if struct == "full": graph_struct = self.full_graph_struct elif struct == "non_error": graph_struct = self.graph elif isinstance(struct, nx.DiGraph): graph_struct = struct else: raise ValueError( f"Expected struct to be str or nx.DiGraph. Got {type(struct)}" ) ancestors_list = set() for node in observed: ancestors_list = ancestors_list.union( nx.algorithms.dag.ancestors(graph_struct, node) ) # Direction of flow of information # up -> from parent to child # down -> from child to parent active_trails = {} for start in variables if isinstance(variables, (list, tuple)) else [variables]: visit_list = set() visit_list.add((start, "up")) traversed_list = set() active_nodes = set() while visit_list: node, direction = visit_list.pop() if node in avoid_nodes: continue if (node, direction) not in traversed_list: if ( (node not in observed) and (not node.startswith(".")) and (node not in self.latents) ): active_nodes.add(node) traversed_list.add((node, direction)) if direction == "up" and node not in observed: for parent in graph_struct.predecessors(node): visit_list.add((parent, "up")) for child in graph_struct.successors(node): visit_list.add((child, "down")) elif direction == "down": if node not in observed: for child in graph_struct.successors(node): visit_list.add((child, "down")) if node in ancestors_list: for parent in graph_struct.predecessors(node): visit_list.add((parent, "up")) active_trails[start] = active_nodes return active_trails def _iv_transformations(self, X, Y, scaling_indicators={}): """ Transforms the graph structure of SEM so that the d-separation criterion is applicable for finding IVs. The method transforms the graph for finding MIIV for the estimation of X \rightarrow Y given the scaling indicator for all the parent latent variables. Parameters ---------- X: node The explantory variable. Y: node The dependent variable. scaling_indicators: dict Scaling indicator for each latent variable in the model. Returns ------- nx.DiGraph: The transformed full graph structure. Examples -------- >>> from pgmpy.models import SEMGraph >>> model = SEMGraph(ebunch=[('xi1', 'eta1'), ('xi1', 'x1'), ('xi1', 'x2'), ... ('eta1', 'y1'), ('eta1', 'y2')], ... latents=['xi1', 'eta1']) >>> model._iv_transformations('xi1', 'eta1', ... scaling_indicators={'xi1': 'x1', 'eta1': 'y1'}) """ full_graph = self.full_graph_struct.copy() if not (X, Y) in full_graph.edges(): raise ValueError(f"The edge from {X} -> {Y} doesn't exist in the graph") if (X in self.observed) and (Y in self.observed): full_graph.remove_edge(X, Y) return full_graph, Y elif Y in self.latents: full_graph.add_edge("." + Y, scaling_indicators[Y]) dependent_var = scaling_indicators[Y] else: dependent_var = Y for parent_y in self.graph.predecessors(Y): # Remove edge even when the parent is observed ???? full_graph.remove_edge(parent_y, Y) if parent_y in self.latents: full_graph.add_edge("." + scaling_indicators[parent_y], dependent_var) return full_graph, dependent_var def get_ivs(self, X, Y, scaling_indicators={}): """ Returns the Instrumental variables(IVs) for the relation X -> Y Parameters ---------- X: node The variable name (observed or latent) Y: node The variable name (observed or latent) scaling_indicators: dict (optional) A dict representing which observed variable to use as scaling indicator for the latent variables. If not given the method automatically selects one of the measurement variables at random as the scaling indicator. Returns ------- set: {str} The set of Instrumental Variables for X -> Y. Examples -------- >>> from pgmpy.models import SEMGraph >>> model = SEMGraph(ebunch=[('I', 'X'), ('X', 'Y')], ... latents=[], ... err_corr=[('X', 'Y')]) >>> model.get_ivs('X', 'Y') {'I'} """ if not scaling_indicators: scaling_indicators = self.get_scaling_indicators() if (X in scaling_indicators.keys()) and (scaling_indicators[X] == Y): warnings.warn( f"{Y} is the scaling indicator of {X}. Please specify `scaling_indicators`" ) transformed_graph, dependent_var = self._iv_transformations( X, Y, scaling_indicators=scaling_indicators ) if X in self.latents: explanatory_var = scaling_indicators[X] else: explanatory_var = X d_connected_x = self.active_trail_nodes( [explanatory_var], struct=transformed_graph )[explanatory_var] # Condition on X to block any paths going through X. d_connected_y = self.active_trail_nodes( [dependent_var], avoid_nodes=[explanatory_var], struct=transformed_graph )[dependent_var] # Remove {X, Y} because they can't be IV for X -> Y return d_connected_x - d_connected_y - {dependent_var, explanatory_var} def moralize(self, graph="full"): """ TODO: This needs to go to a parent class. Removes all the immoralities in the DirectedGraph and creates a moral graph (UndirectedGraph). A v-structure X->Z<-Y is an immorality if there is no directed edge between X and Y. Parameters ---------- graph: Examples -------- """ if graph == "full": graph = self.full_graph_struct elif isinstance(graph, nx.DiGraph): graph = graph else: graph = self.graph moral_graph = graph.to_undirected() for node in graph.nodes(): moral_graph.add_edges_from( itertools.combinations(graph.predecessors(node), 2) ) return moral_graph def _nearest_separator(self, G, Y, Z): """ Finds the set of nearest separators for `Y` and `Z` in `G`. Parameters ---------- G: nx.DiGraph instance The graph in which to the find the nearest separation for `Y` and `Z`. Y: str The variable name for which the separators are needed. Z: str The other variable for which the separators are needed. Returns ------- set or None: If there is a nearest separator returns the set of separators else returns None. """ W = set() ancestral_G = G.subgraph( nx.ancestors(G, Y).union(nx.ancestors(G, Z)).union({Y, Z}) ).copy() # Optimization: Remove all error nodes which don't have any correlation as it doesn't add any new path. If not removed it can create a lot of # extra paths resulting in a much higher runtime. err_nodes_to_remove = set(self.err_graph.nodes()) - set( [node for edge in self.err_graph.edges() for node in edge] ) ancestral_G.remove_nodes_from(["." + node for node in err_nodes_to_remove]) M = self.moralize(graph=ancestral_G) visited = set([Y]) to_visit = list(M.neighbors(Y)) # Another optimization over the original algo. Rather than going through all the paths does # a DFS search to find a markov blanket of observed variables. This doesn't ensure minimal observed # set. while to_visit: node = to_visit.pop() if node == Z: return None visited.add(node) if node in self.observed: W.add(node) else: to_visit.extend( [node for node in M.neighbors(node) if node not in visited] ) # for path in nx.all_simple_paths(M, Y, Z): # path_set = set(path) # if (len(path) >= 3) and not (W & path_set): # for index in range(1, len(path)-1): # if path[index] in self.observed: # W.add(path[index]) # break if Y not in self.active_trail_nodes([Z], observed=W, struct=ancestral_G)[Z]: return W else: return None def get_conditional_ivs(self, X, Y, scaling_indicators={}): """ Returns the conditional IVs for the relation X -> Y Parameters ---------- X: node The observed variable's name Y: node The oberved variable's name scaling_indicators: dict (optional) A dict representing which observed variable to use as scaling indicator for the latent variables. If not provided, automatically finds scaling indicators by randomly selecting one of the measurement variables of each latent variable. Returns ------- set: Set of 2-tuples representing tuple[0] is an IV for X -> Y given tuple[1]. References ---------- .. [1] <NAME>., <NAME>., & <NAME>. (2015, June). Efficiently finding conditional instruments for causal inference. In Twenty-Fourth International Joint Conference on Artificial Intelligence. Examples -------- >>> from pgmpy.models import SEMGraph >>> model = SEMGraph(ebunch=[('I', 'X'), ('X', 'Y'), ('W', 'I')], ... latents=[], ... err_corr=[('W', 'Y')]) >>> model.get_ivs('X', 'Y') [('I', {'W'})] """ if not scaling_indicators: scaling_indicators = self.get_scaling_indicators() if (X in scaling_indicators.keys()) and (scaling_indicators[X] == Y): warnings.warn( f"{Y} is the scaling indicator of {X}. Please specify `scaling_indicators`" ) transformed_graph, dependent_var = self._iv_transformations( X, Y, scaling_indicators=scaling_indicators ) if (X, Y) in transformed_graph.edges: G_c = transformed_graph.remove_edge(X, Y) else: G_c = transformed_graph instruments = [] for Z in self.observed - {X, Y}: W = self._nearest_separator(G_c, Y, Z) # Condition to check if W d-separates Y from Z if (not W) or (W.intersection(descendants(G_c, Y))) or (X in W): continue # Condition to check if X d-connected to I after conditioning on W. elif X in self.active_trail_nodes([Z], observed=W, struct=G_c)[Z]: instruments.append((Z, W)) else: continue return instruments def to_lisrel(self): """ Converts the model from a graphical representation to an equivalent algebraic representation. This converts the model into a Reticular Action Model (RAM) model representation which is implemented by `pgmpy.models.SEMAlg` class. Returns ------- SEMAlg instance: Instance of `SEMAlg` representing the model. Examples -------- >>> from pgmpy.models import SEM >>> sem = SEM.from_graph(ebunch=[('deferenc', 'unionsen'), ('laboract', 'unionsen'), ... ('yrsmill', 'unionsen'), ('age', 'deferenc'), ... ('age', 'laboract'), ('deferenc', 'laboract')], ... latents=[], ... err_corr=[('yrsmill', 'age')], ... err_var={}) >>> sem.to_lisrel() # TODO: Complete this. See Also -------- to_standard_lisrel: Converts to the standard lisrel format and returns the parameters. """ nodelist = list(self.observed) + list(self.latents) graph_adj = nx.to_numpy_matrix(self.graph, nodelist=nodelist, weight=None) graph_fixed = nx.to_numpy_matrix(self.graph, nodelist=nodelist, weight="weight") err_adj = nx.to_numpy_matrix(self.err_graph, nodelist=nodelist, weight=None) np.fill_diagonal(err_adj, 1.0) # Variance exists for each error term. err_fixed = nx.to_numpy_matrix( self.err_graph, nodelist=nodelist, weight="weight" ) # Add the variance of the error terms. for index, node in enumerate(nodelist): try: err_fixed[index, index] = self.err_graph.nodes[node]["weight"] except KeyError: err_fixed[index, index] = 0.0 wedge_y = np.zeros((len(self.observed), len(nodelist)), dtype=int) for index, obs_var in enumerate(self.observed): wedge_y[index][nodelist.index(obs_var)] = 1.0 from pgmpy.models import SEMAlg return SEMAlg( eta=nodelist, B=graph_adj.T, zeta=err_adj.T, wedge_y=wedge_y, fixed_values={"B": graph_fixed.T, "zeta": err_fixed.T}, ) @staticmethod def __standard_lisrel_masks(graph, err_graph, weight, var): """ This method is called by `get_fixed_masks` and `get_masks` methods. Parameters ---------- weight: None | 'weight' If None: Returns a 1.0 for an edge in the graph else 0.0 If 'weight': Returns the weight if a weight is assigned to an edge else 0.0 var: dict Dict with keys eta, xi, y, and x representing the variables in them. Returns ------- np.ndarray: Adjecency matrix of model's graph structure. Notes ----- B: Effect matrix of eta on eta \gamma: Effect matrix of xi on eta \wedge_y: Effect matrix of eta on y \wedge_x: Effect matrix of xi on x \phi: Covariance matrix of xi \psi: Covariance matrix of eta errors \theta_e: Covariance matrix of y errors \theta_del: Covariance matrix of x errors Examples -------- """ # Arrage the adjacency matrix in order y, x, eta, xi and then slice masks from it. # y(p) x(q) eta(m) xi(n) # y # x # eta \wedge_y B # xi \wedge_x \Gamma # # But here we are slicing from the transpose of adjacency because we want incoming # edges instead of outgoing because parameters come before variables in equations. # # y(p) x(q) eta(m) xi(n) # y \wedge_y # x \wedge_x # eta B \Gamma # xi y_vars, x_vars, eta_vars, xi_vars = var["y"], var["x"], var["eta"], var["xi"] p, q, m, n = (len(y_vars), len(x_vars), len(eta_vars), len(xi_vars)) nodelist = y_vars + x_vars + eta_vars + xi_vars adj_matrix = nx.to_numpy_matrix(graph, nodelist=nodelist, weight=weight).T B_mask = adj_matrix[p + q : p + q + m, p + q : p + q + m] gamma_mask = adj_matrix[p + q : p + q + m, p + q + m :] wedge_y_mask = adj_matrix[0:p, p + q : p + q + m] wedge_x_mask = adj_matrix[p : p + q, p + q + m :] err_nodelist = y_vars + x_vars + eta_vars + xi_vars err_adj_matrix = nx.to_numpy_matrix( err_graph, nodelist=err_nodelist, weight=weight ) if not weight == "weight": np.fill_diagonal(err_adj_matrix, 1.0) theta_e_mask = err_adj_matrix[:p, :p] theta_del_mask = err_adj_matrix[p : p + q, p : p + q] psi_mask = err_adj_matrix[p + q : p + q + m, p + q : p + q + m] phi_mask = err_adj_matrix[p + q + m :, p + q + m :] return { "B": B_mask, "gamma": gamma_mask, "wedge_y": wedge_y_mask, "wedge_x": wedge_x_mask, "phi": phi_mask, "theta_e": theta_e_mask, "theta_del": theta_del_mask, "psi": psi_mask, } def to_standard_lisrel(self): r""" Transforms the model to the standard LISREL representation of latent and measurement equations. The standard LISREL representation is given as: ..math:: \mathbf{\eta} = \mathbf{B \eta} + \mathbf{\Gamma \xi} + \mathbf{\zeta} \\ \mathbf{y} = \mathbf{\wedge_y \eta} + \mathbf{\epsilon} \\ \mathbf{x} = \mathbf{\wedge_x \xi} + \mathbf{\delta} \\ \mathbf{\Theta_e} = COV(\mathbf{\epsilon}) \\ \mathbf{\Theta_\delta} = COV(\mathbf{\delta}) \\ \mathbf{\Psi} = COV(\mathbf{\eta}) \\ \mathbf{\Phi} = COV(\mathbf{\xi}) \\ Since the standard LISREL representation has restrictions on the types of model, this method adds extra latent variables with fixed loadings of `1` to make the model consistent with the restrictions. Returns ------- var_names: dict (keys: eta, xi, y, x) Returns the variable names in :math:`\mathbf{\eta}`, :math:`\mathbf{\xi}`, :math:`\mathbf{y}`, :math:`\mathbf{x}`. params: dict (keys: B, gamma, wedge_y, wedge_x, theta_e, theta_del, phi, psi) Returns a boolean matrix for each of the parameters. A 1 in the matrix represents that there is an edge in the model, 0 represents there is no edge. fixed_values: dict (keys: B, gamma, wedge_y, wedge_x, theta_e, theta_del, phi, psi) Returns a matrix for each of the parameters. A value in the matrix represents the set value for the parameter in the model else it is 0. See Also -------- to_lisrel: Converts the model to `pgmpy.models.SEMAlg` instance. Examples -------- TODO: Finish this. """ lisrel_err_graph = self.err_graph.copy() lisrel_latents = self.latents.copy() lisrel_observed = self.observed.copy() # Add new latent nodes to convert it to LISREL format. mapping = {} for u, v in self.graph.edges: if (u not in self.latents) and (v in self.latents): mapping[u] = "_l_" + u elif (u not in self.latents) and (v not in self.latents): mapping[u] = "_l_" + u lisrel_latents.update(mapping.values()) lisrel_graph = nx.relabel_nodes(self.graph, mapping, copy=True) for u, v in mapping.items(): lisrel_graph.add_edge(v, u, weight=1.0) # Get values of eta, xi, y, x latent_struct = lisrel_graph.subgraph(lisrel_latents) latent_indegree = lisrel_graph.in_degree() eta = [] xi = [] for node in latent_struct.nodes(): if latent_indegree[node]: eta.append(node) else: xi.append(node) x = set() y = set() for exo in xi: x.update( [x for x in lisrel_graph.neighbors(exo) if x not in lisrel_latents] ) for endo in eta: y.update( [y for y in lisrel_graph.neighbors(endo) if y not in lisrel_latents] ) # If some node has edges from both eta and xi, replace it with another latent variable # otherwise it won't get included in any of the matrices. # TODO: Patchy work. Find a better solution. common_elements = set(x).intersection(set(y)) if common_elements: mapping = {} for var in common_elements: mapping[var] = "_l_" + var lisrel_graph = nx.relabel_nodes(lisrel_graph, mapping, copy=True) for v, u in mapping.items(): lisrel_graph.add_edge(u, v, weight=1.0) eta.extend(mapping.values()) x = list(set(x) - common_elements) y.update(common_elements) var_names = {"eta": eta, "xi": xi, "y": list(y), "x": list(x)} edges_masks = self.__standard_lisrel_masks( graph=lisrel_graph, err_graph=lisrel_err_graph, weight=None, var=var_names ) fixed_masks = self.__standard_lisrel_masks( graph=lisrel_graph, err_graph=lisrel_err_graph, weight="weight", var=var_names, ) return (var_names, edges_masks, fixed_masks) class SEMAlg: """ Base class for algebraic representation of Structural Equation Models(SEMs). The model is represented using the Reticular Action Model (RAM). """ def __init__(self, eta=None, B=None, zeta=None, wedge_y=None, fixed_values=None): r""" Initializes SEMAlg model. The model is represented using the Reticular Action Model(RAM) which is given as: ..math:: \mathbf{\eta} = \mathbf{B \eta} + \mathbf{\zeta} \mathbf{y} = \mathbf{\wedge_y \eta} where :math:`\mathbf{\eta}` is the set of all the observed and latent variables in the model, :math:`\mathbf{y}` are the set of observed variables, :math:`\mathbf{\zeta}` is the error terms for :math:`\mathbf{\eta}`, and \mathbf{\wedge_y} is a boolean array to select the observed variables from :math:`\mathbf{\eta}`. Parameters ---------- The following set of parameters are used to set the learnable parameters in the model. To specify the values of the parameter use the `fixed_values` parameter. Either `eta`, `B`, `zeta`, and `wedge_y`, or `fixed_values` need to be specified. eta: list/array-like The name of the variables in the model. B: 2-D array (boolean) The learnable parameters in the `B` matrix. zeta: 2-D array (boolean) The learnable parameters in the covariance matrix of the error terms. wedge_y: 2-D array The `wedge_y` matrix. fixed_params: dict (default: None) A dict of fixed values for parameters. If None all the parameters specified by `B`, and `zeta` are learnable. Returns ------- pgmpy.models.SEMAlg instance: An instance of the object with initalized values. Examples -------- >>> from pgmpy.models import SEMAlg # TODO: Finish this example """ self.eta = eta self.B = np.array(B) self.zeta = np.array(zeta) self.wedge_y = wedge_y # Get the observed variables self.y = [] for row_i in range(self.wedge_y.shape[0]): for index, val in enumerate(self.wedge_y[row_i]): if val: self.y.append(self.eta[index]) if fixed_values: self.B_fixed_mask = fixed_values["B"] self.zeta_fixed_mask = fixed_values["zeta"] else: self.B_fixed_mask = np.zeros(self.B.shape) self.zeta_fixed_mask = np.zeros(self.zeta.shape) # Masks represent the parameters which need to be learnt while training. self.B_mask = np.multiply(np.where(self.B_fixed_mask != 0, 0.0, 1.0), self.B) self.zeta_mask = np.multiply( np.where(self.zeta_fixed_mask != 0, 0.0, 1.0), self.zeta ) def to_SEMGraph(self): """ Creates a graph structure from the LISREL representation. Returns ------- pgmpy.models.SEMGraph instance: A path model of the model. Examples -------- >>> from pgmpy.models import SEMAlg >>> model = SEMAlg() # TODO: Finish this example """ err_var = {var: np.diag(self.zeta)[i] for i, var in enumerate(self.eta)} graph = nx.relabel_nodes( nx.from_numpy_matrix(self.B.T, create_using=nx.DiGraph), mapping={i: self.eta[i] for i in range(self.B.shape[0])}, ) # Fill zeta diagonal with 0's as they represent variance and would add self loops in the graph. zeta = self.zeta.copy()
np.fill_diagonal(zeta, 0)
numpy.fill_diagonal
''' This script makes an animation that redshifts a spectrum and, upon reaching 6.5 < z < ~11 marks the Epoch of Reionization. The spectrum that gets shifted is a model of mine from a Cloudy simulation (v17, Ferland et al. 2017). ---> It takes a minute or two so be patient! (it's the animation package) Additionally, I have included a module that applies IGM attentuation to the spectrum as it shifts to larger redshifts. Using the animation package requires a learning curve, so be sure to google any time you encounter a problem or want to add something and you don't know the proper notation! Planned updates: Improving the colored backgrounds for UV and NIR. I would like to add a quiescent spectrum eventually. --> *may* make that spectrum disappear after it reaches a certain redshift (for example, past z>6?) Credit: <NAME> <EMAIL> Texas A&M University ''' _author_ = '<NAME>' import numpy as np import matplotlib.pyplot as plt from datetime import datetime as dt # timing how long it takes from matplotlib.patches import Circle from matplotlib import collections import matplotlib.animation as animation import matplotlib.cm as cm import matplotlib.gridspec as gridspec import igm_absorption as igm # another script written by <NAME> # which adds in IGM absorption for the higher redshifts # adding a timer to this to see how long it takes start_it = dt.now() print('\nStarting timer', start_it) fig = plt.figure(figsize=(10,6)) ax = plt.gca() ax = plt.axes(xlim=(0.1,2),ylim=(4e-16,1e-13)) # Cloudy model provided by Taylor Hutchison # binary stellar population from BPASS with age=10Myr & IMF that goes to 300 Msolar, # Z(stellar)=Z(nebular)=0.1 Zsolar, ionization parameter log_10(U)=-1.5, n_H=300 cm^(-3) # (note: this is a very low Z and high ionization model) con = np.loadtxt('age7z0.1zneb0.1u-1.5_300.con',usecols=[0,6]) wave,vfv = con[:,0],con[:,1] nu = 2.998e+14 / wave sed_0 = vfv / nu # this is my way of applying a rainbow for the visual band cmap = cm.get_cmap('rainbow') vcolors = [cmap(i) for i in
np.linspace(0,1,300)
numpy.linspace
# Copyright (c) 2020 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN # NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE # USE OR OTHER DEALINGS IN THE SOFTWARE. """ Quake 1 physics gym environment definitions. Importing this module will register the 'Q1PhysEnv-v0' environment. Alternatively, you can use the `PhysEnv` or `VectorPhysEnv` classes directly. """ import dataclasses import enum from typing import Optional, Tuple, Union import gym.spaces import numpy as np from . import phys __all__ = ( 'ActionDecoder', 'Config', 'get_obs_scale', 'INITIAL_YAW_ZERO', 'Key', 'Obs', 'PhysEnv', 'VectorPhysEnv', ) # These are chosen to match the initial state of the player on the 100m map. _INITIAL_STATE = {'z_pos': np.float32(32.843201), 'vel': np.array([0, 0, -12], dtype=np.float32), 'on_ground': np.bool(False), 'jump_released': np.bool(True)} INITIAL_YAW_ZERO =
np.float32(90)
numpy.float32
import numpy as np import tensorflow as tf from keras import backend as K from keras import objectives from keras.layers import Input, Lambda from keras.layers.convolutional import Convolution1D from keras.layers.core import Dense, Flatten, RepeatVector from keras.layers.recurrent import GRU from keras.layers.wrappers import TimeDistributed from keras.models import Model from keras.utils.training_utils import multi_gpu_model import molecules.transformer as tr from molecules.transformer import debugPrint from utils import DefaultDecoderParams class MoleculeVAE(): autoencoder = None def __init__(self, tokens, params): self.p = params # self.p["len_limit"] = p["len_limit"] self.charset_length = tokens.num() x = Input(shape=(self.p["len_limit"], self.charset_length)) _, z, mean, logvar = self._buildEncoder(x) self.encode_sample = Model(x, z) self.encode = Model(x, [mean, logvar]) encoded_input = Input(shape=(self.p["latent_dim"],)) self.decode = Model( encoded_input, self._buildDecoder(encoded_input) ) x1 = Input(shape=(self.p["len_limit"], self.charset_length)) vae_loss, z1, mean, logvar = self._buildEncoder(x1) p1 = self._buildPropertyPredictor(z1) self.autoencoder = Model( x1, [self._buildDecoder(z1), p1] ) self.autoencoder.compile(optimizer='Adam', loss=[vae_loss, 'mean_squared_error'], loss_weights=[1.0, self.p["pp_weight"] / self.p["num_props"] ** 2], metrics=['accuracy']) def _buildEncoder(self, x): h = Convolution1D(9, 9, activation='relu', name='conv_1')(x) h = Convolution1D(9, 9, activation='relu', name='conv_2')(h) h = Convolution1D(10, 11, activation='relu', name='conv_3')(h) h = Flatten(name='flatten_1')(h) h = Dense(435, activation='relu', name='dense_1')(h) def sampling(args): z_mean_, z_log_var_ = args batch_size = K.shape(z_mean_)[0] epsilon = K.random_normal(shape=(batch_size, self.p["latent_dim"]), mean=0., stddev=self.p["stddev"]) return z_mean_ + K.exp(z_log_var_ / 2) * epsilon z_mean = Dense(self.p["latent_dim"], name='z_mean', activation='linear')(h) z_log_var = Dense(self.p["latent_dim"], name='z_log_var', activation='linear')(h) def vae_loss(x, x_decoded_mean): x = K.flatten(x) x_decoded_mean = K.flatten(x_decoded_mean) xent_loss = self.p["len_limit"] * objectives.binary_crossentropy(x, x_decoded_mean) kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return xent_loss + kl_loss return vae_loss, Lambda(sampling, output_shape=(self.p["latent_dim"],), name='lambda')( [z_mean, z_log_var]), z_mean, z_log_var def _buildDecoder(self, z): h = Dense(self.p["latent_dim"], name='latent_input', activation='relu')(z) h = RepeatVector(self.p["len_limit"], name='repeat_vector')(h) h = GRU(501, return_sequences=True, name='gru_1')(h) h = GRU(501, return_sequences=True, name='gru_2')(h) h = GRU(501, return_sequences=True, name='gru_3')(h) return TimeDistributed(Dense(self.charset_length, activation='softmax'), name='decoder')(h) def _buildPropertyPredictor(self, x): h = Dense(self.p["latent_dim"], input_shape=(self.p["latent_dim"],), activation='linear')(x) for _ in range(self.p["pp_layers"] - 1): h = Dense(self.p["pp_layers"], activation='linear')(h) return Dense(self.p["num_props"], activation='linear', name='props')(h) # https://github.com/Lsdefine/attention-is-all-you-need-keras class TriTransformer: def __init__(self, i_tokens, params, o_tokens=None): self.i_tokens = i_tokens params["pp_weight"] = 0 if params["bottleneck"] == "none" else params["pp_weight"] self.p = params self.o_tokens = i_tokens # Autoencoder # Positional and word embeddings pos_emb = tr.Embedding(params["len_limit"], params["d_model"], trainable=False, weights=[tr.GetPosEncodingMatrix(params["len_limit"], params["d_model"])]) self.word_emb = tr.Embedding(self.o_tokens.num(), self.p["d_model"]) self.decode = None self.use_src_pos = False if "gru" in self.p["bottleneck"]: self.encoder = tr.GRUEncoder(layers=self.p["ID_layers"], d_gru=self.p["ID_d_model"], latent_dim=self.p["latent_dim"], attn=("attn" in self.p["bottleneck"]), word_emb=self.word_emb) elif self.p["bottleneck"] == "conv": self.encoder = tr.ConvEncoder(layers=self.p["ID_layers"], min_filt_size=self.p["ID_d_k"], min_filt_num=self.p["ID_d_k"], latent_dim=self.p["latent_dim"], dense_dim=self.p["ID_d_model"], word_emb=self.word_emb) else: self.use_src_pos = True self.encoder = TransformerEncoder(params=params, tokens=i_tokens, pos_emb=pos_emb, word_emb=self.word_emb) # KL Loss variable, weights the amount of variational loss, used by VAE annealing callback self.kl_loss_var = K.variable(0.0, dtype=np.float, name='kl_loss_weight') if self.p["stddev"] else None # Sample from latent space def sampling(args): z_mean_, z_logvar_ = args if not self.p["stddev"]: return z_mean_ else: if self.p["bottleneck"] == "none": latent_shape = (K.shape(z_mean_)[0], K.shape(z_mean_)[1], self.p["d_model"]) else: latent_shape = (K.shape(z_mean_)[0], self.p["latent_dim"]) epsilon = K.random_normal(shape=latent_shape, mean=0., stddev=self.p["stddev"] * self.kl_loss_var / self.p["kl_max_weight"]) return z_mean_ + K.exp(z_logvar_ / 2) * epsilon self.sampler = Lambda(sampling) # Use a default decoder configuration # To standardise across different tests # We are trying to assess the quality of the latent space # TODO(Basil): Make this a command line parameter use_default_decoder = False if use_default_decoder: self.p = DefaultDecoderParams() dec_pos_emb = tr.Embedding(self.p["len_limit"], self.p["d_model"], trainable=False, weights=[tr.GetPosEncodingMatrix(params["len_limit"], self.p["d_model"])]) dec_word_emb = tr.Embedding(self.o_tokens.num(), self.p["d_model"]) else: dec_word_emb = self.word_emb dec_pos_emb = pos_emb self.false_embedder = tr.FalseEmbeddings(d_emb=self.p["d_model"], d_latent=self.p["latent_dim"]) if self.p["decoder"] == "TRANSFORMER_FILM": self.decoder = tr.DecoderWithFILM(self.p["d_model"], self.p["d_inner_hid"], self.p["heads"], self.p["d_k"], self.p["d_v"], self.p["latent_dim"], self.p["layers"], self.p["dropout"], word_emb=dec_word_emb, pos_emb=dec_pos_emb) else: self.decoder = tr.TransformerDecoder(self.p["d_model"], self.p["d_inner_hid"], self.p["heads"], self.p["d_k"], self.p["d_v"], self.p["layers"], self.p["dropout"], word_emb=dec_word_emb, pos_emb=dec_pos_emb) self.p = params self.target_layer = TimeDistributed(Dense(self.o_tokens.num(), use_bias=False)) self.metrics = {} def get_pos_seq(self, x): mask = K.cast(K.not_equal(x, 0), 'int32') pos = K.cumsum(K.ones_like(x, 'int32'), 1) return pos * mask def build_models(self, active_layers=999): tgt_seq_in = Input(shape=(None,), dtype='int32', name='tgt_seq') tgt_seq = Lambda(lambda x: x[:, :-1])(tgt_seq_in) tgt_true = Lambda(lambda x: x[:, 1:])(tgt_seq_in) tgt_pos = Lambda(self.get_pos_seq)(tgt_seq) if self.p["bottleneck"] == "conv": # must fully specify shape for convolutional approach src_seq = Input(shape=(self.p["len_limit"],), name='src_seq') else: src_seq = Input(shape=(None,), dtype='int32', name='src_seq') if self.use_src_pos: src_pos = Lambda(self.get_pos_seq)(src_seq) z_mean, z_logvar, z_sampled, enc_attn = self.encoder(src_seq, src_pos) else: enc_attn = None z_mean, z_logvar, z_sampled = self.encoder(src_seq) # Sample # May not need to as some models (E.g. ar1) return a sampled vector if z_sampled is None: z_sampled = self.sampler([z_mean, z_logvar]) # generate an 'input' sampled value so we can create a separate # model to decode from latent space if self.p["bottleneck"] == "none": z_input = Input(shape=(None, self.p["d_model"]), dtype='float32', name='z_input') else: z_input = Input(shape=(self.p["latent_dim"],), dtype='float32', name='z_input') # must calculate for both a latent input and the full end-to-end system final_output = [] props = [] for l_vec in [z_input, z_sampled]: # 'false embed' for decoder dec_input = self.false_embedder(l_vec) if self.use_FILM: dec_output, dec_attn, encdec_attn = self.decoder(tgt_seq, tgt_pos, l_vec, dec_input, l_vec, active_layers=active_layers, return_att=True) else: dec_output, dec_attn, encdec_attn = self.decoder(tgt_seq, tgt_pos, l_vec, dec_input, active_layers=active_layers, return_att=True) dec_output = debugPrint(dec_output, "DEC_OUTPUT") # Do not perform softmax on output # As it is performed in the loss function final_output.append(self.target_layer(dec_output)) # Property prediction if self.p["pp_weight"] is not None: props.append(self._buildPropertyPredictor(l_vec)) # KL DIVERGENCE LOSS def kl_loss(args): z_mean_, z_log_var_ = args return - 0.5 * self.kl_loss_var * tf.reduce_mean( 1 + z_log_var_ - K.square(z_mean_) - K.exp(z_log_var_), name='KL_loss_sum') losses = [] # RECONSTRUCTION LOSS def get_loss(args): y_pred, y_true = args y_true = tf.cast(y_true, 'int32') loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y_true, logits=y_pred) mask = tf.cast(tf.not_equal(y_true, 0), 'float32') loss = tf.reduce_sum(loss * mask, -1) / tf.reduce_sum(mask, -1) loss = K.mean(loss) return loss def get_acc(args): y_pred, y_true = args mask = tf.cast(tf.not_equal(y_true, 0), 'float32') corr = K.cast(K.equal(K.cast(y_true, 'int32'), K.cast(K.argmax(y_pred, axis=-1), 'int32')), 'float32') corr = K.sum(corr * mask, -1) / K.sum(mask, -1) return K.mean(corr) losses.append(Lambda(get_loss, name='Loss')([final_output[1], tgt_true])) self.metrics["ppl"] = Lambda(K.exp)(losses[0]) # VARIATIONAL LOSS if self.kl_loss_var is not None: if self.p["WAE_s"] == 0 or self.p["WAE_kernel"] is None: print("Using variational autoencoder") kl = Lambda(kl_loss, name='VariationalLoss')([z_mean, z_logvar]) else: kl = Lambda(self.mmd_penalty, name='WAELoss')(z_sampled) self.metrics["wae"] = Lambda(self.wae_mmd_exact, name='VariationalLoss')( [z_mean, z_logvar]) kl = Lambda(lambda x: self.kl_loss_var * x)(kl) self.metrics["kl_loss"] = kl losses.append(kl) if self.p["pp_weight"]: prop_input = Input(shape=[self.p["num_props"]]) pp_loss = Lambda(lambda x: tf.losses.mean_squared_error(x, props[1], weights=self.p["pp_weight"] / ( self.p["num_props"] ** 2)))(prop_input) self.metrics["pp_loss"] = pp_loss losses.append(pp_loss) loss = Lambda(tf.reduce_sum)(losses) # Set up autoencoder model if self.p["pp_weight"] is None: self.autoencoder = Model([src_seq, tgt_seq_in], loss) else: self.autoencoder = Model([src_seq, tgt_seq_in, prop_input], loss) self.autoencoder.add_loss([loss]) ## METRICS self.metrics["acc"] = Lambda(get_acc)([final_output[1], tgt_true]) self.metrics["z_mean"] = Lambda(tf.reduce_mean)(z_mean) if self.kl_loss_var is not None: self.metrics["z_logvar"] = Lambda(tf.reduce_mean)(z_logvar) # For outputting next symbol self.output_model = Model([src_seq, tgt_seq_in], final_output[1]) # For getting attentions attn_list = dec_attn + encdec_attn if enc_attn is None else enc_attn + dec_attn + encdec_attn self.output_attns = Model([src_seq, tgt_seq_in], attn_list) # ENCODING/DECODING MODELS self.encode = Model(src_seq, [z_mean, z_logvar]) self.encode_sample = Model(src_seq, [z_sampled]) self.decode = Model([z_input, tgt_seq_in], final_output[0]) def _buildPropertyPredictor(self, x): h = Dense(100, input_shape=(self.p["latent_dim"],), activation='relu')(x) for _ in range(self.p["pp_layers"] - 1): h = Dense(100, activation='relu')(h) return Dense(self.p["num_props"], activation='linear', name='props')(h) def compile_vae(self, optimizer='adam', N_GPUS=1): self.encode_sample.compile('adam', 'mse') self.encode.compile('adam', 'mse') self.decode.compile('adam', 'mse') if N_GPUS != 1: self.autoencoder = multi_gpu_model(self.autoencoder, N_GPUS) self.autoencoder.compile(optimizer, None) # add metrics for key in self.metrics: self.autoencoder.metrics_names.append(key) self.autoencoder.metrics_tensors.append(self.metrics[key]) def wae_mmd(self, sample_qz): sample_pz = K.random_normal(shape=[self.p["batch_size"], self.p["latent_dim"]], mean=0.0, stddev=self.p["stddev"], dtype=tf.float32) s = 10 # batch size n = int(self.p["batch_size"]) ind = np.linspace(0, n - 1, n) ind = np.array([i + n * ind for i in ind]).flatten().astype(dtype=np.int) ind = np.expand_dims(ind, axis=1) def K_MAT(A, B): # A = K.reshape(A, [n, self.p["latent_dim"]]) # give tensorflow shape hints A = K.tile(A, [n, 1]) B = K.tile(B, [n, 1]) # indices to reshuffle A A = tf.gather_nd(A, indices=ind) # A = A[ind, :] # A should now be a matrix whose rows are [z1, ..., z1, z2, ..., z2...] etc distances = K.sqrt(K.sum(K.square(A - B), axis=1)) distances = debugPrint(distances, "DISTANCES: ") # Returns a vector of n^2 distances # mat = tf.matmul(A - B, K.transpose(A - B)) return K.exp((-0.5 / s ** 2) * distances) # Set diagonals to zero MMD = [] for samples in [sample_qz, sample_pz]: # there will be n diagonals in this matrix equal to 1 # these shouldn't be included in the sum anyway # so simply subtract n after reduce_sum K_sum = tf.reduce_sum(K_MAT(samples, samples)) - n MMD.append(K_sum / (n * n + n)) # Final term # -2/n * sum k(zp_l, zq_j) for all l, j MMD.append(-2 * tf.reduce_sum(K_MAT(sample_pz, sample_qz)) / n ** 2) return self.kl_loss_var * tf.reduce_sum(MMD) def mmd_penalty(self, sample_qz): ''' :param stddev: :param kernel: RBF or IMQ :param pz: for IMQ kernel: 'normal', 'sphere' or 'uniform' :param sample_qz: :param sample_pz: :return: ''' kernel = self.p["WAE_kernel"] sample_pz = K.random_normal(shape=[self.p["batch_size"], self.p["latent_dim"]], mean=0.0, stddev=self.p["stddev"], dtype=tf.float32) sigma2_p = self.p["WAE_s"] ** 2 n = self.p["batch_size"] # n = tf.cast(n, tf.int32) nf = float(n) # tf.cast(n, tf.float32) half_size = (n * n - n) / 2 norms_pz = tf.reduce_sum(tf.square(sample_pz), axis=1, keep_dims=True) dotprods_pz = tf.matmul(sample_pz, sample_pz, transpose_b=True) distances_pz = norms_pz + K.transpose(norms_pz) - 2. * dotprods_pz norms_qz = tf.reduce_sum(tf.square(sample_qz), axis=1, keep_dims=True) dotprods_qz = tf.matmul(sample_qz, sample_qz, transpose_b=True) distances_qz = norms_qz + K.transpose(norms_qz) - 2. * dotprods_qz dotprods = tf.matmul(sample_qz, sample_pz, transpose_b=True) distances = norms_qz + tf.transpose(norms_pz) - 2. * dotprods if kernel == 'RBF': print("Using RBF WAE loss (s = {})".format(self.p["WAE_s"])) # Median heuristic for the sigma^2 of Gaussian kernel hs = int(half_size) # tf.cast(half_size, tf.int32) sigma2_k = tf.nn.top_k(K.flatten(distances), hs).values[hs - 1] sigma2_k += tf.nn.top_k(K.flatten(distances_qz), hs).values[hs - 1] # Maximal heuristic for the sigma^2 of Gaussian kernel distances_qz /= sigma2_k distances_pz /= sigma2_k distances /= sigma2_k res1 = K.exp(- 0.5 * distances_qz) res1 += K.exp(- 0.5 * distances_pz) res1 = tf.multiply(res1, 1. - K.eye(n)) res1 = tf.reduce_sum(res1) / (nf * nf - nf) res2 = K.exp(-0.5 * distances) res2 = tf.reduce_sum(res2) * 2. / (nf * nf) stat = res1 - res2 elif "IMQ" in kernel: pz = kernel.split("_")[1] print("Using IMQ loss with {} Cbase(s = {})".format(pz, self.p["WAE_s"])) if pz == 'normal': Cbase = 2. * self.p["latent_dim"] * sigma2_p elif pz == 'sphere': Cbase = 2. elif pz == 'uniform': Cbase = self.p["latent_dim"] stat = 0. for scale in [.1, .2, .5, 1., 2., 5., 10.]: C = Cbase * scale res1 = C / (C + distances_qz) res1 += C / (C + distances_pz) res1 = tf.multiply(res1, 1. - tf.eye(n)) res1 = tf.reduce_sum(res1) / (nf * nf - nf) res2 = C / (C + distances) res2 = tf.reduce_sum(res2) * 2. / (nf * nf) stat += res1 - res2 return self.kl_loss_var * stat def wae_mmd_exact(self, args): mu, logvar = args var = K.exp(logvar) s = self.p["WAE_s"] s2 = s ** 2 s4 = s ** 4 prior_mu = K.zeros_like(mu) prior_var = K.ones_like(var) def expected_rbf(mx, vx, my=None, vy=None): if my == None: my = mx if vy == None: vy = vx vxt = 1 / (1 / s2 + 1 / vx) vyt = 1 / (1 / s2 + 1 / vy + vxt / s4) myt = (my / vy - (mx * vxt) / (vx * s2)) * vyt det = lambda x: K.prod(x, axis=1) coeff = K.sqrt((det(vyt) * det(vxt)) / (det(vy) * det(vx))) exponent = K.square(mx) * vxt / K.square(vx) exponent += K.square(myt) / vyt exponent -= K.square(my) / vy exponent -= K.square(mx) / vx return coeff * K.exp(0.5 * K.sum(exponent, axis=1)) return self.kl_loss_var * K.mean(expected_rbf(mu, var) + expected_rbf(prior_mu, prior_var) - 2 * expected_rbf(mu, var, prior_mu, prior_var)) def get_moments(self, input): if isinstance(input, str): # have been given a string input_seq = self.i_tokens.tokenize(input) else: input_seq = input if self.p["bottleneck"] == "conv": # Must pad with zeros s = np.zeros(self.p["len_limit"]) s[0:len(input_seq)] = input_seq input_seq = s # get mean & logvar input_seq =
np.expand_dims(input_seq, axis=0)
numpy.expand_dims
import numpy as np class TimeStepper: def __init__(self, manifold): self.exp = manifold.exp self.dexpinv = manifold.dexpinv self.action = manifold.action self.a = None self.b = None self.c = None self.order = None self.s = None def step(self, f, t, y, h): n = y.size k = np.zeros((n, self.s)) for i in range(self.s): u =
np.zeros(n)
numpy.zeros
import unittest from unittest.mock import patch, MagicMock, call from pprint import pprint, pformat import numpy as np from numpy import array import sympy from lib.nnbench import NNBench, NetMaker import lib.nn def arangep(n, starting_index=0): sympy.sieve.extend_to_no(starting_index + n) return np.array(sympy.sieve._list[starting_index:starting_index + n]) class NNBenchTest(unittest.TestCase): def create_patch(self, name): patcher = patch(name) thing = patcher.start() self.addCleanup(patcher.stop) return thing def setUp(self): self.create_patch('lib.nn.Network') def test_bench_checkpoint(self): net = lib.nn.Network() bench = NNBench(net) # Checkpointing a net saves the internal state vector sv = 'some state vector' net.state_vector.return_value = sv bench.checkpoint_net() net.state_vector.assert_called_once() # Rolling back a net sets the net's state vector from the saved value bench.rollback_net() net.set_state_from_vector.assert_called_once_with(sv) def test_bench_network_input_width_detection(self): # Mock up network with a determined input width net = lib.nn.Network() mock_layer = MagicMock() mock_layer.M = np.zeros(2*3).reshape(3,2) net.layers = [mock_layer] # A bench of a net discovers the input width of the net bench = NNBench(net) self.assertEqual(bench.net.layers[0].M.shape, (3,2)) # verify we mocked it as intended self.assertEqual(NNBench.net_input_width(bench.net), 2) def test_nn_network_learn_input_form(self): # Make a constant training batch for a two-in, three-out net, # containing two examples training_batch = (
np.arange(2*3)
numpy.arange
import numpy as np from math import comb import pickle as pkl from tqdm import tqdm def give_possible_options(combs, num_arrivals, num_services, arrivals, services, combnum, curr_comb, pkl_name_inter_depart): if services == 1: curr_comb = np.append(curr_comb, arrivals) with open(pkl_name_inter_depart, 'rb') as f: count, combp = pkl.load(f) combp[count, :] = curr_comb count += 1 with open(pkl_name_inter_depart, 'wb') as f: pkl.dump((count, combp), f) combs[combnum, num_services - services] = arrivals combnum += 1 else: for ind in range(arrivals, -1, -1): if services == num_services: curr_comb = np.array([]) give_possible_options(combs, num_arrivals, num_services, arrivals - ind, services-1, combnum, np.append(curr_comb, ind), pkl_name_inter_depart) return combs def possibilites_after_initial_arrivals(num_arrivals, arrivals, services, curr_comb, combnum, pkl_name_inter_depart): if services == 1: ## computing the values to add to cuu_comb with open(pkl_name_inter_depart, 'rb') as f: count, combp = pkl.load(f) if arrivals == 1: # if there is only one customer to arrive then it can either during or after service update_crr_comb = np.array([1, 0]) size_comb = np.append(curr_comb, update_crr_comb).shape[0] combp = np.append(combp, np.append(curr_comb, update_crr_comb).reshape(1, size_comb), axis=0) count += 1 # print(np.append(curr_comb, update_crr_comb)) update_crr_comb = np.array([0, 1]) combp = np.append(combp, np.append(curr_comb, update_crr_comb).reshape(1, size_comb), axis=0) count += 1 # print(np.append(curr_comb, update_crr_comb)) else: # all customers arrived already update_crr_comb =
np.array([0, 0])
numpy.array
#stdlib import os import requests import shutil import itertools import argparse import datetime as dt #scientific stack import numpy as np import scipy import scipy.interpolate import spacepy.datamodel as dm import spacepy.time as spt import spacepy.pybats as swmf from sklearn.neighbors import KernelDensity #local import perturbplot as pplot def get_SC_OMNI(year=2000, bird='ACE', datadir='Data', force=False, verbose=False, **kwargs): '''Download S/C specific OMNI file''' valid_birds = ['ACE', 'IMP', 'GEOTAIL', 'WIND'] if bird.upper() not in valid_birds: raise ValueError('Invalid satellite selected ({0})'.format(bird)) targ_fn = '{0}_min_b{1}.txt'.format(bird.lower(), year) #now check whether we have this file already if not force and os.path.isfile(os.path.join(datadir, targ_fn)): if verbose: print('Data already present for {0} in {1} - not downloading'.format(bird, year)) return os.path.join(datadir, targ_fn) #now download the file and save in datadir omni_https = 'spdf.gsfc.nasa.gov' sc_dir = 'pub/data/omni/high_res_omni/sc_specific/' url = 'https://' + omni_https + '/' + sc_dir + '/' + targ_fn r = requests.get(url, verify=False, stream=True) r.raw.decode_content = True with open(os.path.join(datadir, targ_fn), 'wb') as f: shutil.copyfileobj(r.raw, f) print('Retrieved {0}'.format(targ_fn)) return os.path.join(datadir, targ_fn) def load_SC_OMNI(bird, year, outdata=None, **kwargs): '''Load satellite specific OMNI data into dict''' fname = get_SC_OMNI(year=year, bird=bird, **kwargs) dum = np.genfromtxt(fname, usecols=(0,1,2,3,15,16,23,26,28,29,30), names=('year','day','hour','minute','By_GSM','Bz_GSM','Vx_GSE','Den_P','X_GSE','Y_GSE','Z_GSE'), converters={0: int, 1: int, 2: int, 3: int}) data = dm.fromRecArray(dum) dates = spt.doy2date(data['year'], data['day'], dtobj=True) times = [dt.timedelta(hours=x, minutes=y) for x,y in zip(data['hour'],data['minute'])] data['DateTime'] = dates + times for key in ['year', 'day', 'hour', 'minute']: del data[key] data['Bz_GSM'][np.abs(data['Bz_GSM'])>20] = np.nan data['By_GSM'][np.abs(data['By_GSM'])>20] = np.nan data['Vx_GSE'][np.abs(data['Vx_GSE'])>900] = np.nan data['X_GSE'][np.abs(data['X_GSE'])>9000] = np.nan data['Y_GSE'][np.abs(data['Y_GSE'])>9000] = np.nan data['Z_GSE'][np.abs(data['Z_GSE'])>9000] = np.nan if outdata: for key in ['By_GSM', 'Bz_GSM', 'Vx_GSE', 'DateTime', 'Den_P', 'X_GSE', 'Y_GSE', 'Z_GSE']: outdata[key] = np.concatenate([outdata[key], data[key]]) return outdata return data if __name__=='__main__': #python perturbSWMF.py -p Nov2003 -f IMF.dat -n 6 -s 1977 parser = argparse.ArgumentParser() parser.add_argument('-s', '--seed', dest='seed', type=int, default=1234, help='Specify random seed. Integer. Default=1234') parser.add_argument('-n', '--number', dest='Nensembles', type=int, default=8, help='Number of perturbed files to generate. Default=8') parser.add_argument('-f', '--file', dest='fname', default='IMF_ev5.dat', help='Input SWMF IMF filename. Default "IMF_ev5.dat"') parser.add_argument('-p', '--path', dest='path', default='SWMF_inputs', help='Path for input/output') options = parser.parse_args() np.random.seed(options.seed) #set seed for repeatability #read SWMF ImfInput file infilename = os.path.join(options.path, options.fname) if os.path.isfile(infilename): eventIMF = swmf.ImfInput(filename=infilename) else: raise IOError('Specified input file does not appear to exist or is not readable') Ntimes = len(eventIMF['ux']) #3*1440 #N days at 1-min resolution generateInputs = True saveErrors = False varlist = ['Vx_GSE', 'Bz_GSM', 'By_GSM'] Nvars = len(varlist) map_dict = {'Vx_GSE': 'ux', 'Bz_GSM': 'bz', 'By_GSM': 'by'} ylimdict = {'Vx_GSE': [-300, -800], 'Bz_GSM': [-20, 20], 'By_GSM': [-20, 20]} xlimdict = {'Vx_GSE': [-60, 60], 'Bz_GSM': [-15, 15], 'By_GSM': [-15, 15]} unitsdict = {'Vx_GSE': '[km/s]', 'Bz_GSM': '[nT]', 'By_GSM': '[nT]'} #load ACE data into dict (ups: upstream) upsdata = load_SC_OMNI('ace', 1999) upsdata = load_SC_OMNI('ace', 2000, outdata=upsdata) upsdata = load_SC_OMNI('ace', 2001, outdata=upsdata) upsdata = load_SC_OMNI('ace', 2002, outdata=upsdata) upsdata = load_SC_OMNI('ace', 2003, outdata=upsdata) upsdata = load_SC_OMNI('ace', 2004, outdata=upsdata) upsdata = load_SC_OMNI('ace', 2005, outdata=upsdata) #load GEOTAIL data into dict (nmp: near magnetopause) nmpdata = load_SC_OMNI('geotail', 1999) nmpdata = load_SC_OMNI('geotail', 2000, outdata=nmpdata) nmpdata = load_SC_OMNI('geotail', 2001, outdata=nmpdata) nmpdata = load_SC_OMNI('geotail', 2002, outdata=nmpdata) nmpdata = load_SC_OMNI('geotail', 2003, outdata=nmpdata) nmpdata = load_SC_OMNI('geotail', 2004, outdata=nmpdata) nmpdata = load_SC_OMNI('geotail', 2005, outdata=nmpdata) print(nmpdata['DateTime'][0], nmpdata['DateTime'][-1]) savedata = dm.SpaceData() for var in varlist[::-1]: print('Processing {}'.format(var)) err = 'epsilon' varlabel = var[0]+'$_'+var[1]+'$' errlabel = r'$\varepsilon$' plotinfo = {'var': var, 'err': err, 'varlabel': varlabel, 'errlabel': errlabel, 'xlimdict': xlimdict, 'ylimdict': ylimdict, 'units': unitsdict} #Get error distrib for var as fn of var and plot valid_inds = np.logical_and(np.isfinite(nmpdata[var]),
np.isfinite(upsdata[var])
numpy.isfinite
import os import cv2 import yaml import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt from buddha_loader import load_ds from TDDFA_ONNX import TDDFA_ONNX from tensorflow.keras import layers from mpl_toolkits.mplot3d import Axes3D def normalize(points): centred = points - np.mean(points, axis=0) return centred / centred.max() def apply_rand_T(vect): alpha, beta, gamma = .5 * np.pi * np.random.random(3) Rx = np.array([[np.cos(alpha), -np.sin(alpha), 0], [np.sin(alpha), np.cos(alpha), 0], [0, 0, 1]]) Ry = np.array([[np.cos(beta), 0, np.sin(beta)], [0, 1, 0], [-np.sin(beta), 0, np.cos(beta)]]) Rz = np.array([[1, 0, 0], [0, np.cos(gamma), -np.sin(gamma)], [0, np.sin(gamma), np.cos(gamma)]]) rot = [Rx, Ry, Rz] trans = rot[
np.random.choice(2, 1)
numpy.random.choice
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ######################################################################## # # implementation of AON algorithm for collisional growth of hydrometeors. # can be employed in a box model or column model # various variants of the algorithm are covered here (LinSamp, explicit overtakes) # ######################################################################## #Python modules import os, sys import numpy as np import math import warnings import random import time #Aggregation modules import SIPinit as SI import AON_Alg as AON import Misc as FK #GCCif (KERNEL == 1 || KERNEL == 2) import Kernel as K #GCCendif /* (KERNEL == 1 || KERNEL == 2) */ #Sedimentation module #GCCif (COLUMN == 1 && PROCESS != 2) import Sedimentation as SD #GCCendif /* (COLUMN == 1 && PROCESS != 2) */ #Plotting module import PlotSim as PS #GCCif (WELLMIXED > 0) #GCCif (PROCESS != 0) print('if 2D-WELLMIXED approach is chosen, Sedimentation and Aggregation must be both activated (PROCESS = 0)') sys.exit('STOPPED') #GCCendif /* (PROCESS != 0) */ #GCCif (KERNEL == !1 && KERNEL != 2) print('if 2D-WELLMIXED approach is chosen, hydrodynmic kernel must be chosen') sys.exit('STOPPED') #GCCendif /* (KERNEL == !1 && KERNEL != 2) */ #GCCif (LINEAR != 0) print('if 2D-WELLMIXED approach is chosen, linear sampling option is not possible') sys.exit('STOPPED') #GCCendif /* (LINEAR != 0) */ ####GCCif (AGG_MC != 0) ###print('if 2D-WELLMIXED approach is chosen, multiple collection option must be switched off') ###sys.exit('STOPPED') ####GCCendif /* (AGG_MC != 0) */ #GCCendif /* (WELLMIXED > 0) */ warnings.filterwarnings("ignore",category =RuntimeWarning) dV_skal = 1 nr_SIPs_skal = 1 #the following statement includes a parameter file via a preprocessor directive #GCCinclude "params.txt" #>>>>>>>>>> derived parameters >>>>>>>>>>>>>>>>>>>> #GCCif (INITV == 1) #initial size distribution #Mean mass in kg xf0=FK.r2m(r0,const_mass2rad) #initial concentration in m^-3 #N0=239e6 N0=LWC/xf0 #number of bins n=n10*r10 #GCCendif /* (INITV == 1) */ #GCCif (COLUMN == 1) #GCCif (PROCESS == 0) i_process = 0 #GCCendif /* (PROCESS == 0) */ #GCCif (PROCESS == 1) i_process = 1 #GCCendif /* (PROCESS == 1) */ #GCCif (PROCESS == 2) i_process = 2 #GCCendif /* (PROCESS == 2) */ #GCCendif /* (COLUMN == 1) */ #total number of time steps iend=int(Tsim/dt) + 1 #<<<<<<<<<<< derived parameters <<<<<<<<<<<<<<<<<<<<< #GCCif (KERNEL == 0 || KERNEL == 3) cck=0 m_low=0 eta_indize=0 m_kernel = 0 ikernel=0 #GCCendif /* (KERNEL == 0 || KERNEL == 3) */ #GCCif (KERNEL == 1) #Aufruf Long Kernel ikernel=1 [cck,m_kernel]=K.LongKernel(rho_w) eta_indize=m_kernel[1]/m_kernel[0] #m_low=m_kernel[0]/eta_indize m_low=m_kernel[0] #GCCendif /* (KERNEL == 1) */ #GCCif (KERNEL == 2) #Aufruf Hall-Kernel ikernel=2 [cck,m_kernel]=K.HallKernel(rho_w) eta_indize=m_kernel[1]/m_kernel[0] m_low=m_kernel[0] #GCCendif /* (KERNEL == 2) */ fLog_currColls= None fLog_accColls = None fLog_currColls_WM2D = None fLog_Combs = None fLog_p = None #GCCif (COUNT_COLLS == 1) fLog_currColls= open('log_currColls.dat','w') fLog_accColls = open('log_accColls.dat','w') fLog_Combs = open('log_Combs.dat','w') fLog_p = open('log_p.dat','w') ##GCCif (WELLMIXED > 0) fLog_currColls_WM2D= open('log_currColls_WM2D.dat','w') ##GCCendif /* (WELLMIXED > 0)*/ #GCCendif /* (COUNT_COLLS == 1) */ #GCCif (COLUMN == 0) #================================ BOX-MODEL =========================================== #>>>>>>>>>>>> start of box model section>>>>>>>>>>>>>>>>>>>> nz = 1 #GCCif (DISCRETE == 0) # definition of bin grid for size distribution plots mfix_plot=np.zeros(nplot) mdelta_plot=np.zeros(nplot) for i in range(0,nplot-1): mfix_plot[i+1]=10**(i/n10_plot+min10_plot) mdelta_plot[i]=mfix_plot[i+1]-mfix_plot[i] #GCCendif /* (DISCRETE == 0) */ imod_GVplot = int(t_intervall_GVplot/dt) nr_GVplot = int(1 + (Tsim-t_start_GVplot)/t_intervall_GVplot) t_end_GVplot = t_start_GVplot + (nr_GVplot-1)*t_intervall_GVplot t_vec_GVplot = np.arange(t_start_GVplot,t_end_GVplot+1,t_intervall_GVplot) #times at which SIP data is saved and size distributions can be plotted nEK_sip_plot=np.zeros([nr_inst,nr_GVplot,nr_sip_max]) #stores SIP data of all realisations at the times defined in t_vec_GVplot #GCCif (DISCRETE == 0) mEK_sip_plot=np.zeros([nr_inst,nr_GVplot,nr_sip_max]) #GCCendif /* (DISCRETE == 0) */ #GCCif (DISCRETE >= 1) mEK_sip_plot=np.zeros([nr_inst,nr_GVplot,nr_sip_max],dtype='int') #GCCendif /* (DISCRETE >= 1) */ nr_SIPs_plot=np.zeros([nr_inst,nr_GVplot],dtype='int') imod_MOMsave=int(t_intervall_MOMsave/dt) nr_MOMsave = int(1 + (Tsim-t_start_MOMsave)/t_intervall_MOMsave) t_end_MOMsave = t_start_MOMsave + (nr_MOMsave-1)*t_intervall_MOMsave t_vec_MOMsave=np.arange(t_start_MOMsave,t_end_MOMsave+1,t_intervall_MOMsave) #usually a finer time grid is used for saving the moment data print(t_vec_MOMsave) print(nr_MOMsave) nr_MOMs=4 # evaluate moments of order 0 to nr_MOMs-1 MOMsave=np.zeros([nr_inst,nr_MOMsave,nr_MOMs]) #GCCif (DISCRETE == 0) outp_format='%1.6e' outp_format_long='%1.6e' #GCCendif /* (DISCRETE == 0) */ #GCCif (DISCRETE >= 1) outp_format='%4i' outp_format_long='%6i' #GCCendif /* (DISCRETE >= 1) */ fMom = open('Moments.dat', 'wb') fGV = open('SIP.dat', 'wb') fLog= open('log.txt','a') starttime = time.time() localtime = time.asctime( time.localtime(starttime) ) print("Start time computation:", localtime) fLog.write(os.getcwd()+ '\n') fLog.write("Start time computation: "+ localtime+ '\n') fLog.close() # loop over all realisations for k in range(0,nr_inst): if (iPM >= 1): print(os.getcwd()) if (k%50 == 0): print('-------------------------------------- new instance ',k,'-------') fLog= open('log.txt','a') fLog.write('instance: ' + str(k)+ '\n') fLog.close() i_MOMsave=1 i_GVplot=1 random.seed(32+(k+nr_ins_start)*123433) count_colls=0 #GCCif (COUNT_COLLS == 1) count_colls=np.zeros(20,dtype=np.uint64) #GCCendif /* (COUNT_COLLS == 1) */ ########################################################################### # # Initialise SIP ensemble # ########################################################################### #GCCif (INITV == 1) [nr_SIPs,nEK_sip_ins,mEK_sip_ins,EK_krit,mdelta,mfix]=SI.InitSIP_ExpVert_singleSIP_WS(imlow,n10,r10,min10,eta_nu,xf0,N0,dV,nr_sip_max) #GCCendif /* if (INITV == 1) */ #GCCif (INITV == 2) nr_SIPs, nEK_sip_ins, mEK_sip_ins = SI.InitSIP_Alfonso(dV_skal=dV_skal) #20 droplets with 17um and 10 droplets with 21.4um or similar setups #GCCendif /* if (INITV == 2) */ MOMsave[k,0,:] = FK.Moments_k0_3(nEK_sip_ins,mEK_sip_ins) if (iPM >= 1): print('initial moments: ', MOMsave[k,0,:]) if (iPM >= 1): print('nr_SIPs: ', nr_SIPs) np.savetxt(fMom, MOMsave[k,0,:].reshape(1,4), fmt=outp_format_long) # reshape necessary to write all 4 values in one row nr_SIPs_plot[k,0 ]= nr_SIPs nEK_sip_plot[k,0,0:nr_SIPs]=nEK_sip_ins mEK_sip_plot[k,0,0:nr_SIPs]=mEK_sip_ins np.savetxt(fGV, [nr_SIPs], fmt='%5i') np.savetxt(fGV, nEK_sip_ins[0:nr_SIPs].reshape(1,nr_SIPs), fmt=outp_format) np.savetxt(fGV, mEK_sip_ins[0:nr_SIPs].reshape(1,nr_SIPs), fmt=outp_format) #np.savetxt(fGV, nEK_sip_ins[0:nr_SIPs].reshape(nr_SIPs,1), fmt=outp_format) #np.savetxt(fGV, mEK_sip_ins[0:nr_SIPs].reshape(nr_SIPs,1), fmt=outp_format) ibreak = 0 iibreak = 0 #>>>>>>>>>>>>> time iteration for it in range(0,iend): t=it*dt if (nr_SIPs > 1): #print('nr_SIPs',nr_SIPs,type(nr_SIPs)) ibreak = AON.Aggregation(nr_SIPs,nEK_sip_ins,mEK_sip_ins,count_colls,cck,m_low,eta_indize,m_kernel) if (it%imod_MOMsave ==0) & (it != 0): MOMsave[k,i_MOMsave,:]=FK.Moments_k0_3(nEK_sip_ins,mEK_sip_ins) if (iPM >= 2): print(it,i_MOMsave,MOMsave[k,i_MOMsave,:]) np.savetxt(fMom, MOMsave[k,i_MOMsave,:].reshape(1,4), fmt=outp_format_long) i_MOMsave = i_MOMsave+1 #>>>>>>>>>>>>>>>>>>remove zero weight SIPs, if present at all>>>>>>>>>>>>>>>>>>>>> if (min(nEK_sip_ins) == 0): index_list=nEK_sip_ins.nonzero() #print('nr_SIPs old: ',nr_SIPs) nEK_sip_ins=nEK_sip_ins[index_list] mEK_sip_ins=mEK_sip_ins[index_list] nr_SIPs = nEK_sip_ins.size #print('nr_SIPs new: ',nr_SIPs) if (nr_SIPs == 1): print('only one SIP remains, stop computation of current instance, proceed with next instance' ) print('nu: ', nEK_sip_ins, 'm: ', mEK_sip_ins, 'time:', t, 'it: ', it) ibreak = 1 #>>>>>>>>save SIP data at specified points in time>>>>>>>>>>>>> if (it%imod_GVplot == 0) & (it != 0): nr_SIPs_plot[k,i_GVplot ]= nr_SIPs nEK_sip_plot[k,i_GVplot,0:nr_SIPs]=nEK_sip_ins mEK_sip_plot[k,i_GVplot,0:nr_SIPs]=mEK_sip_ins if (iPM >= 2): print('SIP output, #, it, time:', i_GVplot, it, it*dt) np.savetxt(fGV, [nr_SIPs], fmt='%5i') np.savetxt(fGV, nEK_sip_plot[k,i_GVplot,0:nr_SIPs].reshape(1,nr_SIPs), fmt=outp_format) np.savetxt(fGV, mEK_sip_plot[k,i_GVplot,0:nr_SIPs].reshape(1,nr_SIPs), fmt=outp_format) #np.savetxt(fGV, nEK_sip_ins[0:nr_SIPs].reshape(nr_SIPs,1), fmt=outp_format) #np.savetxt(fGV, mEK_sip_ins[0:nr_SIPs].reshape(nr_SIPs,1), fmt=outp_format) i_GVplot = i_GVplot+1 #if (ibreak == 1): #print('break condition met at iteration it = ', it) #>>>>>>end of time iteration of a single instance>>>>>>>>> #>>>>>>>>>>analyse computing time>>>>>>>>>>>>>>>>>>>> currenttime = time.time() currenttime_str = time.asctime( time.localtime(currenttime)) endtime_expected=starttime+ (nr_inst/(k+1)) * (currenttime-starttime) endtime_expected_str = time.asctime( time.localtime(endtime_expected)) if (iPM >= 2): print("Instance {} of {} finished".format(k+1,nr_inst)) print("Start time/Current time/Expected end time: ") #print(localtime, ' --- ', currenttime_str, ' --- ', endtime_expected_str) fLog= open('log.txt','a') fLog.write('total computing time in sec: '+ str(int(currenttime-starttime)) + '\n') fLog.write(currenttime_str+ ' --- '+ endtime_expected_str+ '\n') #GCCif (COUNT_COLLS == 1) cc_sum=count_colls.sum() fLog.write('a '+"{}".format(cc_sum)+'\n') fLog.write('b '+" ".join("{}".format(x) for x in count_colls)+'\n') cc_frac=count_colls/cc_sum fLog.write('b '+" ".join("{:.4}".format(x) for x in cc_frac)+'\n') #GCCendif /* (COUNT_COLLS == 1) */ fLog.close() #<<<<<<<<<<<<<<<<<end of loop of all realisations<<<<<<<<<<<<<<<<< fMom.close() fGV.close() localtime = time.asctime( time.localtime(time.time()) ) print("End time computation:", localtime) #>>>>>>>>>>>>>>>>Generate meta data>>>>>>>>>>>>> fMom = open('Moments_meta.dat', 'wb') np.savetxt(fMom,np.array([dV,skal_m]),fmt = '%10e') np.savetxt(fMom,np.array([nr_inst,nr_MOMsave]),fmt = '%4d') np.savetxt(fMom, t_vec_MOMsave.reshape(1,nr_MOMsave),fmt = '%6d') fMom.close() fGV = open('SIP_meta.dat', 'wb') np.savetxt(fGV,np.array([nr_inst,nr_GVplot]),fmt = '%4d') np.savetxt(fGV, t_vec_GVplot.reshape(1,nr_GVplot),fmt = '%6d') fGV.close() #>>>>>>>Generate data file with mean moments>>>>>>>>>>>>>>> FK.CIO_MOMmean(data_in=MOMsave,fp_out='',skal_m=skal_m,dV=dV) fLog= open('log.txt','a') currenttime = time.time() fLog.write('total computing time in sec: '+ str(int(currenttime-starttime)) + '\n') fLog.write('finalised\n') fLog.close() #---------------------------------------------------------------------------------- #>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>generate plot for a first analysis>>>>>>>>>>>>>>>>>>>>>>> for i in range (4): MOMsave[:,:,i] = MOMsave[:,:,i]*skal_m**i/dV PS.PlotMoments(MOMsave,t_vec_MOMsave) PS.PlotGV(nEK_sip_plot,mEK_sip_plot,nr_SIPs_plot,t_vec_GVplot,skal_m=skal_m) #GCCif (IREF >= 2) PS.PlotRelStdDev(mEK_sip_plot, t_vec_GVplot) #GCCendif /* (IREF >= 2) */ #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<end of box model section<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< #=============================== BOX-MODEL ============================================= #GCCendif /* (COLUMN == 0) */ #GCCif (COLUMN == 1) # start of column model section #=============================== COLUMN-MODEL ============================================= imod_GVplot=int(t_intervall_GVplot/dt) nr_GVplot = int(1 + (Tsim-t_start_GVplot)/t_intervall_GVplot) t_end_GVplot = t_start_GVplot + (nr_GVplot-1)*t_intervall_GVplot t_vec_GVplot=np.arange(t_start_GVplot,t_end_GVplot+1,t_intervall_GVplot) #times at which SIP data is saved and size distributions can be plotted imod_MOMsave=int(t_intervall_MOMsave/dt) nr_MOMsave = int(1 + (Tsim-t_start_MOMsave)/t_intervall_MOMsave) t_end_MOMsave = t_start_MOMsave + (nr_MOMsave-1)*t_intervall_MOMsave t_vec_MOMsave=np.arange(t_start_MOMsave,t_end_MOMsave+1,t_intervall_MOMsave) #usually a finer time grid is used for saving the moment data print(t_vec_MOMsave) print(nr_MOMsave) nr_MOMs=4 # evaluate moments of order 0 to nr_MOMs-1 MOMsave=np.zeros([nr_inst,nr_MOMsave,nz,nr_MOMs]) # track fluxes of moments 0 to nr_MOMs-1 together with SIP number at the lower and upper boundary # "instantaneous" flux: actually the flux is an average over a time period of length t_intervall_GVplot # in the "SIP world" with discrete crossings of SIPs across the boundaries it is not reasonable/possible to determine instantaneous fluxes # at time t=0 all fluxes are set to zero and not output, hence array of length nr_GVplot-1 is used FluxIn =np.zeros([nr_inst,nr_GVplot-1,nr_MOMs+1]) FluxOut =np.zeros([nr_inst,nr_GVplot-1,nr_MOMs+1]) FluxInAcc =np.zeros([nr_inst,nr_GVplot-1,nr_MOMs+1]) FluxOutAcc=np.zeros([nr_inst,nr_GVplot-1,nr_MOMs+1]) #GCCif (TRACKCENTER == 1) # last index has 3 components: before aggregation, after aggregation, after sedimentation zCenterIC_full=np.zeros([nr_inst,nr_MOMsave,nz,nr_MOMs,3]) zCenterSIP_full=np.zeros([nr_inst,nr_MOMsave,nz,nr_MOMs,3]) zCenterIC_av=np.zeros([nr_MOMsave,nr_MOMs,3]) zCenterIC_av_denom=np.zeros([nr_MOMsave,nr_MOMs,3]) zCenterSIP_av=np.zeros([nr_MOMsave,nr_MOMs,3]) zCenterSIP_av_denom=np.zeros([nr_MOMsave,nr_MOMs,3]) nr_SIPs_GB_save=np.zeros([nr_inst,nr_MOMsave,nz]) #GCCendif /* (TRACKCENTER == 1) */ outp_format='%1.6e' outp_format_long='%1.6e' outp_format_flux=('%1.4e','%1.4e','%1.4e','%1.4e','%9d') #generate the general meta data file fMeta = open('Meta.dat','w') fMeta.write("{:5d} {:7.3f} {:7.1f} {:5d}\n".format(nz,dz,Tsim,nr_inst)) fMeta.write("{:7.3e} {:7.3e} {:7.3e} {:3d} {:3d} {:3d} \n".format(LWC,r0,xf0,ikernel,i_init_1D,i_process)) fMeta.close() #generate the meta data files for particular meta data files fMomMeta = open('Moments_meta.dat', 'wb') np.savetxt(fMomMeta,np.array([dV,skal_m]),fmt = '%10e') np.savetxt(fMomMeta,np.array([nr_inst,nr_MOMsave]),fmt = '%4d') np.savetxt(fMomMeta, t_vec_MOMsave.reshape(1,nr_MOMsave),fmt = '%6d') fMomMeta.close() fGVMeta = open('SIP_meta.dat', 'wb') np.savetxt(fGVMeta,np.array([nr_inst,nr_GVplot]),fmt = '%4d') np.savetxt(fGVMeta, t_vec_GVplot.reshape(1,nr_GVplot),fmt = '%6d') fGVMeta.close() #open output files fMom = open('Moments.dat', 'wb') fGV = open('SIP.dat', 'wb') fLog= open('log.txt','a') fFluxIn = open('Fluxes_in.dat' , 'wb') fFluxInAcc = open('Fluxes_in_acc.dat' , 'wb') fFluxOut = open('Fluxes_out.dat' , 'wb') fFluxOutAcc = open('Fluxes_out_acc.dat', 'wb') #GCCif (TRACKCENTER == 1) fCenterIC_full = open('centerIC_full.dat' , 'wb') fCenterSIP_full= open('centerSIP_full.dat', 'wb') fCenterIC_av = open('centerIC_av.dat' , 'wb') fCenterSIP_av = open('centerSIP_av.dat', 'wb') #GCCendif /* (TRACKCENTER == 1) */ #GCCif (TRACKOUT == 1) fGVout = open('SIPout.dat', 'wb') fGVoutMeta = open('SIPout_meta.dat', 'wb') fGVoutMeta.close() #GCCendif /* (TRACKOUT == 1) */ #GCCif (INFLUX_TOP == 1) fGVin = open('SIPin.dat', 'wb') fGVinMeta = open('SIPin_meta.dat', 'wb') fGVinMeta.close() #GCCendif /* (INFLUX_TOP == 1)*/ starttime = time.time() localtime = time.asctime( time.localtime(starttime) ) print("Start time computation:", localtime) fLog.write(os.getcwd()+ '\n') fLog.write("Start time computation: "+ localtime+ '\n') fLog.close() #Instanzschleife for k in range(0,nr_inst): if (iPM >= 1): print(os.getcwd()) print('-------------------------------------- new instance ',k,'-------') fLog= open('log.txt','a') fLog.write('instance: ' + str(k)+ '\n') fLog.close() #GCCif (TRACKOUT == 1) ntime_SIPout = 0 #GCCendif /* (TRACKOUT == 1) */ #GCCif (INFLUX_TOP == 1) ntime_SIPin = 0 #GCCendif /* (INFLUX_TOP == 1)*/ i_MOMsave=1 i_GVplot=1 #GCCif (SPEED_VECTOR == 0) random.seed(32+(k+nr_ins_start)*123433) #GCCendif /* (SPEED_VECTOR == 0) */ #GCCif (SPEED_VECTOR == 1) np.random.seed(32+(k+nr_ins_start)*123433) #GCCendif /* (SPEED_VECTOR == 1) */ count_colls=0 #GCCif (COUNT_COLLS == 1) count_colls=np.zeros(20,dtype=np.uint64) #GCCendif /* (COUNT_COLLS == 1) */ ########################################################################### # # Initialise SIP ensemble # ########################################################################### nEK_sip_ins = np.zeros(nr_sip_max) mEK_sip_ins = np.zeros(nr_sip_max) zEK_sip_ins = np.zeros(nr_sip_max)+zNan #GCCif (PROCESS != 2) wEK_sip_ins = np.zeros(nr_sip_max) #GCCendif /* (PROCESS != 2)*/ zGBsep = np.array(np.arange(nz+1))*dz #print('zGBsep',zGBsep) iSIP_GBsep = np.zeros(nz+1,dtype='int') nr_SIPs_GB = np.zeros(nz,dtype='int') count_save = 0 # ColumnModel-Initialization # ! i_init: # ! 1 = empty domain # ! 2 = top GB only # ! 3 = top half domain # ! 4 = linearly decaying over total column from 2*g_init to 0 # ! 5 = linearly decaying over top half from 2*g_init to 0 # ! 6 = total domain # ! 7 = linearly decaying over top quarter from 2*g_init to 0 # ! 8 = sin()-hill over top half with 2*g_init max peak # ! 9 = sin()-hill over top quarter with 2*g_init max peak if (i_init_1D == 1): i_start = nz + 1 if (i_init_1D == 2): i_start = nz if (i_init_1D == 3): i_start = nz / 2 if (i_init_1D == 4): i_start = 1 if (i_init_1D == 5): i_start = nz / 2 if (i_init_1D == 6): i_start = 1 if (i_init_1D == 7): i_start = 3 * nz / 4 if (i_init_1D == 8): i_start = nz / 2 if (i_init_1D == 9): i_start = 3 * nz / 4 i_start = i_start -1 # above block analagous to block in Botts F77 programm. Be aware that python indices start at 0, not at 1 like in Fortran for iz in range(0,nz): #print('init row ', iz,i_init_1D,i_start) if (i_init_1D <= 3) or (i_init_1D == 6): N0_pick = N0 if (i_init_1D == 4) or (i_init_1D == 5) or (i_init_1D == 7) or (i_init_1D == 8) or (i_init_1D == 9): izp=iz+1 if (i_init_1D == 4): gew = min(1.0,(1.0*izp/nz)) if (i_init_1D == 5): gew = max(0.0,min(1.0,(2.0*(1.0*izp/nz-0.5)))) if (i_init_1D == 7): gew = max(0.0,min(1.0,(4.0*(1.0*izp/nz-0.75)))) if (i_init_1D == 8): gew = math.sin(max(0.0,min(1.0,(2.0*(1.0*(izp - 0.5 )/nz-0.50))))*3.14) if (i_init_1D == 9): gew = math.sin(max(0.0,min(1.0,(4.0*(1.0*(izp - 0.5 )/nz-0.75))))*3.14) #print('init ', iz, gew) N0_pick = N0 * 2 * gew if (iz >= i_start): [nr_SIPs,nEK_sip_tmp,mEK_sip_tmp,EK_krit,mdelta,mfix]=SI.InitSIP_ExpVert_singleSIP_WS(imlow,n10,r10,min10,eta_nu,xf0,N0_pick,dV,nr_sip_max,dV_skal=dV_skal) print(iz,nz,'iz,nz') # print('gew: ', gew) #[nr_SIPs,nEK_sip_tmp,mEK_sip_tmp]=SI.InitSIP_uniform(n10,r10,min10,const_mass2rad, gew=gew) nr_SIPs_GB[iz] = nr_SIPs if (count_save+nr_SIPs > nr_sip_max): print(count_save+nr_SIPs,nr_sip_max,iz) sys.exit("aktuelle SIP-Anzahl groesser als nr_sip_max") nEK_sip_ins[count_save:count_save+nr_SIPs]=nEK_sip_tmp[0:nr_SIPs] mEK_sip_ins[count_save:count_save+nr_SIPs]=mEK_sip_tmp[0:nr_SIPs] #print('count_save,nr_SIPs',count_save,nr_SIPs) for j in range(0,nr_SIPs): zEK_sip_ins[count_save+j]=(iz+random.random())*dz #zEK_sip_ins[count_save+j]=(i+0.5)*dz else: nr_SIPs = 0 iSIP_GBsep[iz]=count_save count_save += nr_SIPs # total SIP number after end of column initialization nr_SIPs_tot=count_save #print('final nr_SIPs',count_save,nr_SIPs) iSIP_GBsep[nz]=count_save #iz=nz #print(iz,iSIP_GBsep[iz],zGBsep[iz]) nr_SIPs_GB_max=nr_SIPs_GB.max() rSIP_tmp=FK.m2r(mEK_sip_ins[:nr_SIPs_tot],const_mass2rad) #GCCif (PROCESS != 2) wEK_sip_ins[:nr_SIPs_tot]=SD.Fallg(rSIP_tmp) #GCCendif /*(PROCESS != 2)*/ #print('r',rSIP_tmp) #print('w',wEK_sip_ins[:nr_SIPs_tot]) #output at initialization for iz in range(0,nz): nr_SIPs = nr_SIPs_GB[iz] ia=iSIP_GBsep[iz] ie=iSIP_GBsep[iz+1] #Output if (nr_SIPs > 0): MOMsave[k,0,iz,:] = FK.Moments_k0_3(nEK_sip_ins[ia:ie],mEK_sip_ins[ia:ie]) if (iPM >= 1): print('initial moments: ', MOMsave[k,0,iz,:]) if (iPM >= 1): print('nr_SIPs: ', nr_SIPs) np.savetxt(fMom, MOMsave[k,0,iz,:].reshape(1,4), fmt=outp_format_long) # reshape necessary to write all 4 values in one row np.savetxt(fGV, np.array([nr_SIPs,iz]).reshape(1,2), fmt='%6i') if (nr_SIPs > 0): np.savetxt(fGV, nEK_sip_ins[ia:ie].reshape(1,nr_SIPs), fmt=outp_format) np.savetxt(fGV, mEK_sip_ins[ia:ie].reshape(1,nr_SIPs), fmt=outp_format) np.savetxt(fGV, zEK_sip_ins[ia:ie].reshape(1,nr_SIPs), fmt=outp_format) fGVMeta = open('SIP_meta.dat', 'a') fGVMeta.write("\n{:7d} {:5d}\n".format(nr_SIPs_GB.sum(),nr_SIPs_GB.max())) fGVMeta.close() #prepare SIP processing #sort SIPs by z-position and find index range of each grid box #GCCif (INFLUX_TOP != 1) perm_sort=
np.argsort(zEK_sip_ins[:nr_SIPs_tot+1])
numpy.argsort
# Quantify the dots to select the best quantifitcation # Will take mid pixel, mid 9 pixels and mic 25 pixels and divide them by the corners. # bsub -q short -W 4:00 -R "rusage[mem=50000]" -oo multiple_dot_lists_quantify_corners_HFF_mean_density.out -eo multiple_dot_lists_quantify_corners_HFF_mean_density.err 'python multiple_dot_lists_quantify_corners_HFF_mean_density.py' # %matplotlib inline from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import matplotlib as mpl import seaborn as sns mpl.style.use('seaborn-white') import multiprocess as mp import numpy as np import pandas as pd import bioframe import cooltools import cooler #import bbi from cooltools import snipping import sys import seaborn as sns import csv def pileup_multiple_dot_lists(cool_file,dot_file_list, exp_cool,resolution,flank,anchor_dist,anchor_flank,plot_name): i=0 filename1=cool_file[0].split("/")[-2].split("_hg38")[0] filename2=cool_file[1].split("/")[-2].split("_hg38")[0] filename3=cool_file[2].split("/")[-2].split("_hg38")[0] cool = [filename1,filename2,filename3] exp_cool = [exp_cool[0], exp_cool[1], exp_cool[2]] conditions = ['HiC-FA-DpnII', 'HiC-DSG-DpnII','MicroC-DSG-MNase'] print(filename1) print(filename2) print(filename3) resolution=resolution flank = flank #resolution=sys.argv[4] hg38 = bioframe.fetch_chromsizes('hg38') chromsizes = bioframe.fetch_chromsizes('hg38') chromosomes = list(chromsizes.index) binsize = resolution cooler_paths = { 'HiC-FA-DpnII' : cool_file[0], 'HiC-DSG-DpnII' : cool_file[1], 'MicroC-DSG-MNase' : cool_file[2], } exp_paths = { 'HiC-FA-DpnII' : exp_cool[0], 'HiC-DSG-DpnII' : exp_cool[1], 'MicroC-DSG-MNase' : exp_cool[2], } long_names = { 'HiC-FA-DpnII': 'HiC-FA-DpnII', 'HiC-DSG-DpnII': 'HiC-DSG-DpnII', 'MicroC-DSG-MNase': 'MicroC-DSG-MNase', } pal = sns.color_palette('colorblind') colors = { filename1: pal[0], filename2 : '#333333', filename3: pal[2], } clrs = { cond: cooler.Cooler(cooler_paths[cond]) for cond in conditions } anchor_dist = anchor_dist anchor_flank = flank # dot file list gs = plt.GridSpec(nrows=len(conditions), ncols=len(dot_file_list) + 1) plt.figure(figsize=(6 * len(conditions)+1, 7)) mean_list={} for dot_file in dot_file_list: print(dot_file) sites = pd.read_table(dot_file) mid1=(sites['start1']+sites['end1'])/2 mid2=(sites['start2']+sites['end2'])/2 new_file=pd.DataFrame() new_file = pd.concat([sites['chrom1'],mid1,sites['chrom2'],mid2],axis=1) # "convergent" orientation of paired CTCF motifs # sites = sites[(sites['strand1'] == '+') & (sites['strand2'] == '-')] ## not working new_file.columns=['chrom1','mid1','chrom2','mid2'] #print(len(new_file)) new_file.head() supports = [(chrom, 0, chromsizes[chrom]) for chrom in chromosomes] snippet_flank = flank windows1 = snipping.make_bin_aligned_windows( binsize, new_file['chrom1'], new_file['mid1'], flank_bp=snippet_flank) # windows1['strand'] = sites['strand1'] windows2 = snipping.make_bin_aligned_windows( binsize, new_file['chrom2'], new_file['mid2'], flank_bp=snippet_flank) windows = pd.merge(windows1, windows2, left_index=True, right_index=True, suffixes=('1', '2')) windows = snipping.assign_regions(windows, supports) windows = windows.dropna() windows.head() stacks = {} piles = {} # mid point distplot k=0 r_list=[] mean_1=[] for cond in conditions: expected = pd.read_table(exp_paths[cond]) snipper = snipping.ObsExpSnipper(clrs[cond], expected) #print(snipper) stack = snipping.pileup(windows, snipper.select, snipper.snip) stacks[cond] = stack piles[cond] = np.nanmean(stack, axis=2) mid_pixel_norm=[] sq_size=piles[cond].shape[0] midpoint=np.int(np.floor(sq_size/2)) background_size_start=np.int(np.ceil(sq_size*40/100)) background_size_end=np.int(np.floor(sq_size*60/100)) print(midpoint) print(background_size_start) print(background_size_end) slice_ = piles[cond] # mid point of each dot mid_pixel=slice_[midpoint,midpoint] #mid_list_9pixels=np.nanmean(slice_[midpoint-1:midpoint+2,midpoint-1:midpoint+2]) # upper left up_left=np.nanmean(slice_[:background_size_start,:background_size_start]) # upper right up_right=np.nanmean(slice_[:background_size_start,background_size_end:]) # upper left lower_left=np.nanmean(slice_[background_size_end:,:background_size_start]) # upper right lower_right=np.nanmean(slice_[background_size_end:,background_size_end:]) # mid point of each dot mid_pixel=slice_[midpoint,midpoint] # Stripe up stripe_up=np.nanmean(slice_[:background_size_start,background_size_start:background_size_end]) # stripe down stripe_down=np.nanmean(slice_[background_size_end:,background_size_start:background_size_end]) # stripe left stripe_left=np.nanmean(slice_[background_size_start:background_size_end,:background_size_start]) # stripe right stripe_right=np.nanmean(slice_[background_size_start:background_size_end,background_size_end:]) stripes_mean=(stripe_up+stripe_right)/2 corners_mean=(up_left+up_right+lower_right)/3 mid_pixel_norm.append(mid_pixel/((stripes_mean+corners_mean)/2)) #mid_pixel_norm.append(mid_list_9pixels/((stripes_mean+corners_mean)/2)) ax = plt.subplot(gs[k,i]) new_list=mid_pixel_norm m=
np.mean(new_list)
numpy.mean
''' TODO: * If uniform grid read grid cell size * If ''' import numpy as np import datetime from pyd3d.utils import formatSci, formatInt class Grid(object): """Create a Delft3D grid file Examples -------- Create an empty grid >>> grid = Grid() Load a grid from file >>> grid = Grid.read('filename.grd') Write grid to file >>> Grid.write(grid,'filename.grd') """ def __init__(self, **kwargs): self.properties = kwargs.get("properties", {}) self.shape = kwargs.get("shape", None) self.x = kwargs.get("x", None) self.y = kwargs.get("y", None) # following two for rectilinear grids! self.x_gridstep = kwargs.get("x_gridstep", None) self.y_gridstep = kwargs.get("y_gridstep", None) def newRectilinear(self): """Makes rectilinear grid with numpy meshgrid""" print("------ Making new Delft3D grid ------") print("x_gridstep", self.x_gridstep) print("y_gridstep", self.y_gridstep) print("width", self.width) print("length", self.length) if self.width % self.x_gridstep: raise Exception("Width is not a multiple of x_gridstep") if self.length % self.y_gridstep: raise Exception("Length is not a multiple of y_gridstep") x_gridstep = self.x_gridstep y_gridstep = self.y_gridstep xList = np.array([i for i in range(0, self.width + x_gridstep, x_gridstep)]) yList = np.array([i for i in range(0, self.length + y_gridstep, y_gridstep)]) + 100 # + 100 is default start y in REFGRID xDim, yDim = [len(xList), len(yList)] print(f"MNKmax = {xDim + 1} {yDim + 1} SIGMALAYERS") # to mdf file print("xDim", xDim) print("yDim", yDim) self.shape.append([xDim, yDim]) x_grid, y_grid =
np.meshgrid(xList, yList)
numpy.meshgrid
# Copyright (c) 2018, NVIDIA CORPORATION. import numpy as np import pandas as pd try: from distributed.protocol import serialize, deserialize _have_distributed = True except ImportError: _have_distributed = False import pytest import cudf from cudf.tests import utils require_distributed = pytest.mark.skipif(not _have_distributed, reason='no distributed') @require_distributed def test_serialize_dataframe(): df = cudf.DataFrame() df['a'] = np.arange(100) df['b'] = np.arange(100, dtype=np.float32) df['c'] = pd.Categorical(['a', 'b', 'c', '_', '_'] * 20, categories=['a', 'b', 'c']) outdf = deserialize(*serialize(df)) pd.util.testing.assert_frame_equal(df.to_pandas(), outdf.to_pandas()) @require_distributed def test_serialize_dataframe_with_index(): df = cudf.DataFrame() df['a'] = np.arange(100) df['b'] =
np.random.random(100)
numpy.random.random
import numpy as np from statsmodels.genmod.bayes_mixed_glm import (BinomialBayesMixedGLM, PoissonBayesMixedGLM) import pandas as pd from scipy import sparse from numpy.testing import assert_allclose, assert_equal from scipy.optimize import approx_fprime def gen_simple_logit(nc, cs, s): np.random.seed(3799) exog_vc = np.kron(np.eye(nc), np.ones((cs, 1))) exog_fe = np.random.normal(size=(nc * cs, 2)) vc = s * np.random.normal(size=nc) lp = np.dot(exog_fe, np.r_[1, -1]) + np.dot(exog_vc, vc) pr = 1 / (1 + np.exp(-lp)) y = 1 * (np.random.uniform(size=nc * cs) < pr) ident = np.zeros(nc, dtype=np.int) return y, exog_fe, exog_vc, ident def gen_simple_poisson(nc, cs, s): np.random.seed(3799) exog_vc = np.kron(np.eye(nc), np.ones((cs, 1))) exog_fe = np.random.normal(size=(nc * cs, 2)) vc = s * np.random.normal(size=nc) lp = np.dot(exog_fe, np.r_[0.1, -0.1]) + np.dot(exog_vc, vc) r = np.exp(lp) y = np.random.poisson(r) ident = np.zeros(nc, dtype=np.int) return y, exog_fe, exog_vc, ident def gen_crossed_logit(nc, cs, s1, s2): np.random.seed(3799) a = np.kron(np.eye(nc), np.ones((cs, 1))) b = np.kron(np.ones((cs, 1)), np.eye(nc)) exog_vc = np.concatenate((a, b), axis=1) exog_fe = np.random.normal(size=(nc * cs, 1)) vc = s1 * np.random.normal(size=2 * nc) vc[nc:] *= s2 / s1 lp = np.dot(exog_fe, np.r_[-0.5]) + np.dot(exog_vc, vc) pr = 1 / (1 + np.exp(-lp)) y = 1 * (np.random.uniform(size=nc * cs) < pr) ident = np.zeros(2 * nc, dtype=np.int) ident[nc:] = 1 return y, exog_fe, exog_vc, ident def gen_crossed_poisson(nc, cs, s1, s2): np.random.seed(3799) a = np.kron(np.eye(nc), np.ones((cs, 1))) b = np.kron(np.ones((cs, 1)), np.eye(nc)) exog_vc = np.concatenate((a, b), axis=1) exog_fe = np.random.normal(size=(nc * cs, 1)) vc = s1 * np.random.normal(size=2 * nc) vc[nc:] *= s2 / s1 lp = np.dot(exog_fe, np.r_[-0.5]) + np.dot(exog_vc, vc) r = np.exp(lp) y = np.random.poisson(r) ident = np.zeros(2 * nc, dtype=np.int) ident[nc:] = 1 return y, exog_fe, exog_vc, ident def gen_crossed_logit_pandas(nc, cs, s1, s2): np.random.seed(3799) a = np.kron(np.arange(nc), np.ones(cs)) b = np.kron(np.ones(cs), np.arange(nc)) fe = np.ones(nc * cs) vc = np.zeros(nc * cs) for i in np.unique(a): ii = np.flatnonzero(a == i) vc[ii] += s1 * np.random.normal() for i in np.unique(b): ii = np.flatnonzero(b == i) vc[ii] += s2 * np.random.normal() lp = -0.5 * fe + vc pr = 1 / (1 + np.exp(-lp)) y = 1 * (np.random.uniform(size=nc * cs) < pr) ident = np.zeros(2 * nc, dtype=np.int) ident[nc:] = 1 df = pd.DataFrame({"fe": fe, "a": a, "b": b, "y": y}) return df def test_simple_logit_map(): y, exog_fe, exog_vc, ident = gen_simple_logit(10, 10, 2) exog_vc = sparse.csr_matrix(exog_vc) glmm = BinomialBayesMixedGLM(y, exog_fe, exog_vc, ident, vcp_p=0.5) rslt = glmm.fit_map() assert_allclose( glmm.logposterior_grad(rslt.params), np.zeros_like(rslt.params), atol=1e-3) # Test the predict method for linear in False, True: for exog in None, exog_fe: pr1 = rslt.predict(linear=linear, exog=exog) pr2 = glmm.predict(rslt.params, linear=linear, exog=exog) assert_allclose(pr1, pr2) if not linear: assert_equal(pr1.min() >= 0, True) assert_equal(pr1.max() <= 1, True) def test_simple_poisson_map(): y, exog_fe, exog_vc, ident = gen_simple_poisson(10, 10, 0.2) exog_vc = sparse.csr_matrix(exog_vc) glmm1 = PoissonBayesMixedGLM(y, exog_fe, exog_vc, ident, vcp_p=0.5) rslt1 = glmm1.fit_map() assert_allclose( glmm1.logposterior_grad(rslt1.params), np.zeros_like(rslt1.params), atol=1e-3) # This should give the same answer as above glmm2 = PoissonBayesMixedGLM(y, exog_fe, exog_vc, ident, vcp_p=0.5) rslt2 = glmm2.fit_map() assert_allclose(rslt1.params, rslt2.params, atol=1e-4) # Test the predict method for linear in False, True: for exog in None, exog_fe: pr1 = rslt1.predict(linear=linear, exog=exog) pr2 = rslt2.predict(linear=linear, exog=exog) pr3 = glmm1.predict(rslt1.params, linear=linear, exog=exog) pr4 = glmm2.predict(rslt2.params, linear=linear, exog=exog) assert_allclose(pr1, pr2, rtol=1e-5) assert_allclose(pr2, pr3, rtol=1e-5) assert_allclose(pr3, pr4, rtol=1e-5) if not linear: assert_equal(pr1.min() >= 0, True) assert_equal(pr2.min() >= 0, True) assert_equal(pr3.min() >= 0, True) # Check dimensions and PSD status of cov_params for rslt in rslt1, rslt2: cp = rslt.cov_params() p = len(rslt.params) assert_equal(cp.shape, np.r_[p, p]) np.linalg.cholesky(cp) def test_crossed_logit_map(): y, exog_fe, exog_vc, ident = gen_crossed_logit(10, 10, 1, 2) exog_vc = sparse.csr_matrix(exog_vc) glmm = BinomialBayesMixedGLM(y, exog_fe, exog_vc, ident, vcp_p=0.5) rslt = glmm.fit_map() assert_allclose( glmm.logposterior_grad(rslt.params), np.zeros_like(rslt.params), atol=1e-4) # Check dimensions and PSD status of cov_params cp = rslt.cov_params() p = len(rslt.params) assert_equal(cp.shape, np.r_[p, p]) np.linalg.cholesky(cp) def test_crossed_poisson_map(): y, exog_fe, exog_vc, ident = gen_crossed_poisson(10, 10, 1, 1) exog_vc = sparse.csr_matrix(exog_vc) glmm = PoissonBayesMixedGLM(y, exog_fe, exog_vc, ident, vcp_p=0.5) rslt = glmm.fit_map() assert_allclose( glmm.logposterior_grad(rslt.params), np.zeros_like(rslt.params), atol=1e-4) # Check dimensions and PSD status of cov_params cp = rslt.cov_params() p = len(rslt.params) assert_equal(cp.shape, np.r_[p, p]) np.linalg.cholesky(cp) def test_logit_map_crossed_formula(): data = gen_crossed_logit_pandas(10, 10, 1, 0.5) fml = "y ~ fe" fml_vc = {"a": "0 + C(a)", "b": "0 + C(b)"} glmm = BinomialBayesMixedGLM.from_formula(fml, fml_vc, data, vcp_p=0.5) rslt = glmm.fit_map() assert_allclose( glmm.logposterior_grad(rslt.params), np.zeros_like(rslt.params), atol=1e-4) rslt.summary() r = rslt.random_effects("a") assert_allclose( r.iloc[0, :].values, np.r_[-0.02004904, 0.094014], atol=1e-4) # Check dimensions and PSD status of cov_params cm = rslt.cov_params() p = rslt.params.shape[0] assert_equal(list(cm.shape), [p, p]) np.linalg.cholesky(cm) def test_elbo_grad(): for f in range(2): for j in range(2): if f == 0: if j == 0: y, exog_fe, exog_vc, ident = gen_simple_logit(10, 10, 2) else: y, exog_fe, exog_vc, ident = gen_crossed_logit( 10, 10, 1, 2) elif f == 1: if j == 0: y, exog_fe, exog_vc, ident = gen_simple_poisson( 10, 10, 0.5) else: y, exog_fe, exog_vc, ident = gen_crossed_poisson( 10, 10, 1, 0.5) exog_vc = sparse.csr_matrix(exog_vc) if f == 0: glmm1 = BinomialBayesMixedGLM( y, exog_fe, exog_vc, ident, vcp_p=0.5) else: glmm1 = PoissonBayesMixedGLM( y, exog_fe, exog_vc, ident, vcp_p=0.5) rslt1 = glmm1.fit_map() for k in range(3): if k == 0: vb_mean = rslt1.params vb_sd = np.ones_like(vb_mean) elif k == 1: vb_mean = np.zeros(len(vb_mean)) vb_sd = np.ones_like(vb_mean) else: vb_mean = np.random.normal(size=len(vb_mean)) vb_sd = np.random.uniform(1, 2, size=len(vb_mean)) mean_grad, sd_grad = glmm1.vb_elbo_grad(vb_mean, vb_sd) def elbo(vec): n = len(vec) // 2 return glmm1.vb_elbo(vec[:n], vec[n:]) x = np.concatenate((vb_mean, vb_sd)) g1 = approx_fprime(x, elbo, 1e-5) n = len(x) // 2 mean_grad_n = g1[:n] sd_grad_n = g1[n:] assert_allclose(mean_grad, mean_grad_n, atol=1e-2, rtol=1e-2) assert_allclose(sd_grad, sd_grad_n, atol=1e-2, rtol=1e-2) def test_simple_logit_vb(): y, exog_fe, exog_vc, ident = gen_simple_logit(10, 10, 0) exog_vc = sparse.csr_matrix(exog_vc) glmm1 = BinomialBayesMixedGLM( y, exog_fe, exog_vc, ident, vcp_p=0.5, fe_p=0.5) rslt1 = glmm1.fit_map() glmm2 = BinomialBayesMixedGLM( y, exog_fe, exog_vc, ident, vcp_p=0.5, fe_p=0.5) rslt2 = glmm2.fit_vb(rslt1.params) rslt1.summary() rslt2.summary() assert_allclose( rslt1.params[0:5], np.r_[0.75330405, -0.71643228, -2.49091288, -0.00959806, 0.00450254], rtol=1e-4, atol=1e-4) assert_allclose( rslt2.params[0:5], np.r_[0.79338836, -0.7599833, -0.64149356, -0.24772884, 0.10775366], rtol=1e-4, atol=1e-4) for rslt in rslt1, rslt2: cp = rslt.cov_params() p = len(rslt.params) if rslt is rslt1: assert_equal(cp.shape, np.r_[p, p]) np.linalg.cholesky(cp) else: assert_equal(cp.shape, np.r_[p,]) assert_equal(cp > 0, True*np.ones(p)) def test_simple_poisson_vb(): y, exog_fe, exog_vc, ident = gen_simple_poisson(10, 10, 1) exog_vc = sparse.csr_matrix(exog_vc) glmm1 = PoissonBayesMixedGLM(y, exog_fe, exog_vc, ident, vcp_p=0.5) rslt1 = glmm1.fit_map() glmm2 = PoissonBayesMixedGLM(y, exog_fe, exog_vc, ident, vcp_p=0.5) rslt2 = glmm2.fit_vb(rslt1.params) rslt1.summary() rslt2.summary() assert_allclose( rslt1.params[0:5], np.r_[-0.07233493, -0.06706505, -0.47159649, 1.12575122, -1.02442201], rtol=1e-4, atol=1e-4) assert_allclose( rslt1.cov_params().flat[0:5], np.r_[0.00790914, 0.00080666, -0.00050719, 0.00022648, 0.00046235], rtol=1e-4, atol=1e-4) assert_allclose( rslt2.params[0:5], np.r_[-0.07088814, -0.06373107, -0.22770786, 1.12923746, -1.26161339], rtol=1e-4, atol=1e-4) assert_allclose( rslt2.cov_params()[0:5], np.r_[0.00747782, 0.0092554, 0.04508904, 0.02934488, 0.20312746], rtol=1e-4, atol=1e-4) for rslt in rslt1, rslt2: cp = rslt.cov_params() p = len(rslt.params) if rslt is rslt1:
assert_equal(cp.shape, np.r_[p, p])
numpy.testing.assert_equal
# !/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Sep 24 14:24:15 2018 @author: cham """ import bisect import collections from itertools import product import numpy as np from emcee import EnsembleSampler from laspec.qconv import conv_spec_Gaussian, conv_spec_Rotation from laspec.normalization import normalize_spectrum_spline from laspec.ccf import RVM from scipy.optimize import least_squares from .regress import costfun, default_lnlike, best_match # speed of light SOL = 299792.458 def rand_pos(p0, nwalkers, eps=.1): p0 = np.array(p0) # do a 0.1 mag rand return [p0 + (np.random.rand(*p0.shape)-0.5)*2*eps for i in range(nwalkers)] def grid_to_meshflat(*grids): """ convert a grid to meshflat arrays """ # get dimensions Ns = [len(_) for _ in grids] # make indices of grids grids_ind = [np.arange(_, dtype=np.int) for _ in Ns] # make mesh_grids meshs = np.meshgrid(*grids) # make mesh_ind meshs_ind = np.meshgrid(*grids_ind) # make flat_mesh_grids flats = np.array([_.flatten() for _ in meshs]).T # make flat_mesh_ind flats_ind = np.array([_.flatten() for _ in meshs_ind]).T # make a dict of flat_mesh_ind:i ind_dict = dict() for i in range(len(flats_ind)): ind_dict[tuple(flats_ind[i])] = i return grids, grids_ind, meshs, meshs_ind, flats, flats_ind, ind_dict def bisect_interval(edges=[1, 2, 3], x=.1): """ return the nearest edges using bisect """ if edges[0] < x <= edges[-1]: _ = bisect.bisect_left(edges, x) return _ - 1, _ elif edges[0] == x: return 0, 1 else: # null value, returned when x is not in bounds return -9, -9 class Regli: """ Regular Grid Linear Interpolator """ wave = None def __init__(self, *grids): self.ndim = len(grids) _ = grid_to_meshflat(*grids) self.grids = _[0] self.grids_ind = _[1] self.meshs = _[2] self.meshs_ind = _[3] self.flats = _[4] self.flats_ind = _[5] self.ind_dict = _[6] self.grid_shape = tuple([len(g) for g in grids]) # set values self.set_values(np.array([]), test=True) # self.value_shape = 1 # self.set_values(values) # define a subset for best match self.best_match_mask = None # mean error self.me = 0. # pre-proc parameters self.set_pre_proc_ind() def __repr__(self): s = "\n".join([ "==== regli.Regli instance ====", "".join(["grid shape: ", self.grid_shape.__repr__()]), "".join(["value shape: ", self.values.shape.__repr__()]), "==============================", ]) return s def set_pre_proc_ind(self, pre_proc_ind=None): if pre_proc_ind is None: self.pre_proc_ind = pre_proc_ind else: self.pre_proc_ind = list(pre_proc_ind) def pre_proc(self, pos): if self.pre_proc_ind is None: return np.array(pos) else: return np.array(pos)[list(self.pre_proc_ind)] @staticmethod def init_from_flats(input_flats, verbose=False): """ try to parse flats and return a Regli instance This is a slow process and takes 86 min to parse a 400,000 point grid. Parameters ---------- input_flats: flats verbose: if True, print verbose info Return ------ """ # determine n_dim ndim = input_flats.shape[1] # determine grid grids = [np.unique(input_flats[:, i]) for i in range(ndim)] # initiat Regli r = Regli(*grids) # determine eps eps_auto = np.min([np.min(np.diff(grid)) for grid in grids]) * 0.3 # determine n_flats [number of grid points] nrow = np.prod(r.grid_shape) # ind_values = np.zeros((nrow,), np.int) c_missing = 0 for i in range(len(r.flats)): # for each flat flat_ = r.flats[i] flat_ind_ = r.flats_ind[i] # evaluate norm, see if data exists norm_ = np.linalg.norm(input_flats - flat_, np.inf, axis=1) if np.min(norm_) < eps_auto: # data exists r.ind_dict[tuple(flat_ind_)] = np.argmin(norm_) else: # data missing r.ind_dict[tuple(flat_ind_)] = None c_missing += 1 if verbose: print("@Regli: grid value missing --> ", flat_) print("@Regli: {} values missing!".format(c_missing)) return r @property def rgi_shape(self): return (*self.grid_shape, self.value_shape) def set_values(self, values, test=False): values = np.array(values) assert values.ndim in (1, 2) if values.ndim == 2: self.values = np.array(values) self.value_shape = self.values.shape[1] self.set_wave(np.arange(self.values.shape[1])) # only available when 2D elif values.ndim == 1: if not test: assert len(values) == len(self.flats) self.values = np.array(values.reshape(-1, 1)) self.value_shape = 1 else: raise ValueError("Values shape not correct!") def interpns(self, poss): return np.array([self.interpn(pos) for pos in poss]) def interp2(self, pos, null_value=np.nan): e1 = bisect_interval(self.grids[0], pos[0]) e2 = bisect_interval(self.grids[1], pos[1]) if e1[0] < -1 or e2[0] < -1: # out of bounds return np.ones((self.values.shape[1],)) * null_value else: # calculate nodes p1_0 = self.grids[0][e1[0]] p1_1 = self.grids[0][e1[1]] p2_0 = self.grids[1][e2[0]] p2_1 = self.grids[1][e2[1]] v_tot = (p1_1 - p1_0) * (p2_1 - p2_0) v_00 = (p1_1 - pos[0]) * (p2_1 - pos[1]) v_01 = (p1_1 - pos[0]) * (pos[1] - p2_0) v_10 = (pos[0] - p1_0) * (p2_1 - pos[1]) v_11 = (pos[0] - p1_0) * (pos[1] - p2_0) # v_000+v_001+v_010+v_011+v_100+v_101+v_110+v_111 i_00 = self.ind_dict[e1[0], e2[0]] i_01 = self.ind_dict[e1[0], e2[1]] i_10 = self.ind_dict[e1[1], e2[0]] i_11 = self.ind_dict[e1[1], e2[1]] if None in (i_00, i_01, i_10, i_11): return np.ones((self.values.shape[1],)) * null_value w = np.array([v_00, v_01, v_10, v_11]).reshape(-1, 1) / v_tot value_interp = np.sum(self.values[np.array([i_00, i_01, i_10, i_11])] * w, axis=0) return value_interp def interp3(self, pos, null_value=np.nan): e1 = bisect_interval(self.grids[0], pos[0]) e2 = bisect_interval(self.grids[1], pos[1]) e3 = bisect_interval(self.grids[2], pos[2]) if e1[0] < -1 or e2[0] < -1 or e3[0] < -1: # out of bounds return np.ones((self.values.shape[1],)) * null_value else: # calculate nodes p1_0 = self.grids[0][e1[0]] p1_1 = self.grids[0][e1[1]] p2_0 = self.grids[1][e2[0]] p2_1 = self.grids[1][e2[1]] p3_0 = self.grids[2][e3[0]] p3_1 = self.grids[2][e3[1]] v_tot = (p1_1 - p1_0) * (p2_1 - p2_0) * (p3_1 - p3_0) v_000 = (p1_1 - pos[0]) * (p2_1 - pos[1]) * (p3_1 - pos[2]) v_100 = (pos[0] - p1_0) * (p2_1 - pos[1]) * (p3_1 - pos[2]) v_010 = (p1_1 - pos[0]) * (pos[1] - p2_0) * (p3_1 - pos[2]) v_110 = (pos[0] - p1_0) * (pos[1] - p2_0) * (p3_1 - pos[2]) v_001 = (p1_1 - pos[0]) * (p2_1 - pos[1]) * (pos[2] - p3_0) v_101 = (pos[0] - p1_0) * (p2_1 - pos[1]) * (pos[2] - p3_0) v_011 = (p1_1 - pos[0]) * (pos[1] - p2_0) * (pos[2] - p3_0) v_111 = (pos[0] - p1_0) * (pos[1] - p2_0) * (pos[2] - p3_0) # v_000+v_001+v_010+v_011+v_100+v_101+v_110+v_111 i_000 = self.ind_dict[e1[0], e2[0], e3[0]] i_001 = self.ind_dict[e1[0], e2[0], e3[1]] i_010 = self.ind_dict[e1[0], e2[1], e3[0]] i_011 = self.ind_dict[e1[0], e2[1], e3[1]] i_100 = self.ind_dict[e1[1], e2[0], e3[0]] i_101 = self.ind_dict[e1[1], e2[0], e3[1]] i_110 = self.ind_dict[e1[1], e2[1], e3[0]] i_111 = self.ind_dict[e1[1], e2[1], e3[1]] if None in (i_000, i_001, i_010, i_011, i_100, i_101, i_110, i_111): return np.ones((self.values.shape[1],)) * null_value w = np.array([v_000, v_001, v_010, v_011, v_100, v_101, v_110, v_111]).reshape(-1, 1) / v_tot # specs = spec[np.array([i_000, i_001, i_010, i_011, i_100, i_101, i_110, i_111])] # figure();plot(spec_wm);plot(specs.T) value_interp = np.sum(self.values[np.array([i_000, i_001, i_010, i_011, i_100, i_101, i_110, i_111])] * w, axis=0) return value_interp def interpn(self, pos, null_value=np.nan): pos = np.array(pos).flatten() # ndim x 2 edge array edges_ind = np.array([bisect_interval(self.grids[_], pos[_]) for _ in range(self.ndim)]) edges = np.array([(self.grids[i][edges_ind[i]]) for i in range(self.ndim)]) if np.any(edges_ind[:, 0] < -1): # out of bounds return np.ones((self.values.shape[1],))*null_value # make codes codes = np.array([_ for _ in product((0, 1), repeat=self.ndim)]) # weight in each dimension frac_dist = np.fliplr((edges - pos.reshape(-1, 1)) *
np.array([-1, 1])
numpy.array
#! /usr/bin/env python # GPTune Copyright (c) 2019, The Regents of the University of California, # through Lawrence Berkeley National Laboratory (subject to receipt of any # required approvals from the U.S.Dept. of Energy) and the University of # California, Berkeley. All rights reserved. # # If you have questions about your rights to use or distribute this software, # please contact Berkeley Lab's Intellectual Property Office at <EMAIL>. # # NOTICE. This Software was developed under funding from the U.S. Department # of Energy and the U.S. Government consequently retains certain rights. # As such, the U.S. Government has been granted for itself and others acting # on its behalf a paid-up, nonexclusive, irrevocable, worldwide license in # the Software to reproduce, distribute copies to the public, prepare # derivative works, and perform publicly and display publicly, and to permit # other to do so. # ################################################################################ from autotune.search import * from autotune.space import * from autotune.problem import * # from gptune import GPTune # from gptune import GPTune_MB # from data import Data # from data import Categoricalnorm # from options import Options # from computer import Computer from gptune import * # import all import sys import os import mpi4py from mpi4py import MPI import numpy as np import matplotlib.pyplot as plt import time import argparse from callopentuner import OpenTuner from callhpbandster import HpBandSter, HpBandSter_bandit import logging import scipy import openturns as ot sys.path.insert(0, os.path.abspath(__file__ + "/../../../GPTune/")) logging.getLogger('matplotlib.font_manager').disabled = True # from GPTune import * ################################################################################ # Define Problem # YL: for the spaces, the following datatypes are supported: # Real(lower, upper, transform="normalize", name="yourname") # Integer(lower, upper, transform="normalize", name="yourname") # Categoricalnorm(categories, transform="onehot", name="yourname") # Argmin{x} objectives(t,x), for x in [0., 1.] def objectives(point): """ f(t,x) = exp(- (x + 1) ^ (t + 1) * cos(2 * pi * x)) * (sin( (t + 2) * (2 * pi * x) ) + sin( (t + 2)^(2) * (2 * pi * x) + sin ( (t + 2)^(3) * (2 * pi *x)))) """ t = point['t'] x = point['x'] bmin = point['bmin'] bmax = point['bmax'] eta = point['eta'] if 'budget' in point: bgt = point['budget'] else: bgt = bmax a = 2 * np.pi b = a * t c = a * x d = np.exp(- (x + 1) ** (t + 1)) * np.cos(c) e = np.sin((t + 2) * c) + np.sin((t + 2)**2 * c) + np.sin((t + 2)**3 * c) f = d * e + 1 # print('test:',test) """ f(t,x) = x^2+t """ # t = point['t'] # x = point['x'] # f = 20*x**2+t # time.sleep(1.0) def perturb(bgt): perturb_magnitude = 0.1 k1 = -perturb_magnitude/bmax # return np.cos(c)*(-np.log10(bgt))*0.1 assert k1*bmax + perturb_magnitude == 0 return np.cos(c) * (k1*bgt + perturb_magnitude) out = [f*(1+perturb(bgt))] print(f"One demo run, x = {x:.4f}, t = {t:.4f}, budget = {bgt:.4f}, perturb = {perturb(bgt):.4f}, out = {out[0]:.4f}") return out """ Plot the objective function for t=1,2,3,4,5,6 """ def annot_min(x,y, ax=None): xmin = x[np.argmin(y)] ymin = y.min() text= "x={:.3f}, y={:.3f}".format(xmin, ymin) if not ax: ax=plt.gca() bbox_props = dict(boxstyle="square,pad=0.3", fc="w", ec="k", lw=0.72) arrowprops=dict(arrowstyle="-",connectionstyle="angle,angleA=0,angleB=60") kw = dict(xycoords='data',textcoords="offset points",arrowprops=arrowprops, bbox=bbox_props, ha="right", va="top") ax.annotate(text, xy=(xmin, ymin), xytext=(210,5), **kw) def main(): import matplotlib.pyplot as plt args = parse_args() ntask = args.ntask nruns = args.nruns npernode = args.npernode TUNER_NAME = args.optimization bmin = args.bmin bmax = args.bmax eta = args.eta Nloop = args.Nloop plot = args.plot expid = args.expid restart = args.restart print(args) (machine, processor, nodes, cores) = GetMachineConfiguration() ot.RandomGenerator.SetSeed(args.seed) print ("machine: " + machine + " processor: " + processor + " num_nodes: " + str(nodes) + " num_cores: " + str(cores)) os.environ['MACHINE_NAME'] = machine os.environ['TUNER_NAME'] = TUNER_NAME input_space = Space([Real(0., 10., transform="normalize", name="t")]) parameter_space = Space([Real(0., 1., transform="normalize", name="x")]) # input_space = Space([Real(0., 0.0001, "uniform", "normalize", name="t")]) # parameter_space = Space([Real(-1., 1., "uniform", "normalize", name="x")]) output_space = Space([Real(float('-Inf'), float('Inf'), name="y")]) constraints = {"cst1": "x >= 0. and x <= 1."} constants={"nodes":nodes,"cores":cores,"npernode":npernode,"bmin":bmin,"bmax":bmax,"eta":eta} # problem = TuningProblem(input_space, parameter_space,output_space, objectives, constraints, models) # with performance model problem = TuningProblem(input_space, parameter_space,output_space, objectives, constraints, constants=constants) # no performance model computer = Computer(nodes=nodes, cores=cores, hosts=None) options = Options() options['model_restarts'] = restart options['distributed_memory_parallelism'] = False options['shared_memory_parallelism'] = False options['objective_evaluation_parallelism'] = False options['objective_multisample_threads'] = 1 options['objective_multisample_processes'] = 1 options['objective_nprocmax'] = 1 options['model_processes'] = 1 # options['model_threads'] = 1 # options['model_restart_processes'] = 1 # options['search_multitask_processes'] = 1 # options['search_multitask_threads'] = 1 # options['search_threads'] = 16 # options['mpi_comm'] = None #options['mpi_comm'] = mpi4py.MPI.COMM_WORLD options['model_class'] = 'Model_LCM' #'Model_GPy_LCM' options['verbose'] = False # options['sample_algo'] = 'MCS' # options['sample_class'] = 'SampleLHSMDU' options['sample_class'] = 'SampleOpenTURNS' options.validate(computer=computer) options['budget_min'] = bmin options['budget_max'] = bmax options['budget_base'] = eta smax = int(np.floor(np.log(options['budget_max']/options['budget_min'])/np.log(options['budget_base']))) budgets = [options['budget_max'] /options['budget_base']**x for x in range(smax+1)] NSs = [int((smax+1)/(s+1))*options['budget_base']**s for s in range(smax+1)] NSs_all = NSs.copy() budget_all = budgets.copy() for s in range(smax+1): for n in range(s): NSs_all.append(int(NSs[s]/options['budget_base']**(n+1))) budget_all.append(int(budgets[s]*options['budget_base']**(n+1))) Ntotal = int(sum(NSs_all)*Nloop) Btotal = int(Nloop*np.dot(np.array(NSs_all), np.array(budget_all))/options['budget_max']) # total number of evaluations at highest budget -- used for single-fidelity tuners print("samples in one multi-armed bandit loop, NSs_all = ", NSs_all) print("total number of samples: ", Ntotal) print("total number of evaluations at highest budget: ", Btotal) print(f"Sampler: {options['sample_class']}, {options['sample_algo']}") print() data = Data(problem) # giventask = [[1.0], [5.0], [10.0]] # giventask = [[1.0]] # t_end = args.t_end # giventask = [[i] for i in np.arange(1, ntask/2+1, 0.5).tolist()] if ntask==1: giventask = [[args.t]] elif ntask==2: giventask = [[3.], [3.1]] elif ntask==3: giventask = [[3.], [3.1], [3.2]] elif ntask==10: giventask = [[i] for i in np.arange(1, 1.5, 0.05).tolist()] # giventask = [[1.0], [1.05], [1.1]] NI=len(giventask) assert NI == ntask # make sure number of tasks match np.set_printoptions(suppress=False, precision=3) if(TUNER_NAME=='GPTuneBand'): NS = Nloop data = Data(problem) gt = GPTune_MB(problem, computer=computer, NS=Nloop, options=options) (data, stats, data_hist)=gt.MB_LCM(NS = Nloop, Igiven = giventask) print("Sampler class: ", options['sample_class']) print("Model class: ", options['model_class']) print("Tuner: ", TUNER_NAME) print("stats: ", stats) results_file = open(f"demo_ntask{args.ntask}_bandit{args.bmin}-{args.bmax}-{args.eta}_Nloop{args.Nloop}_expid{args.expid}.txt", "a") results_file.write(f"Tuner: {TUNER_NAME}\n") results_file.write(f"stats: {stats}\n") """ Print all input and parameter samples """ for tid in range(NI): print("tid: %d" % (tid)) print(f" t: {data.I[tid][0]:.2f}") print(" Ps ", data.P[tid]) print(" Os ", data.O[tid].tolist()) nth = np.argmin(data.O[tid]) Popt = data.P[tid][nth] # find which arm and which sample the optimal param is from for arm in range(len(data_hist.P)): try: idx = (data_hist.P[arm]).index(Popt) arm_opt = arm except ValueError: pass print(' Popt ', Popt, 'Oopt ', min(data.O[tid])[0]) results_file.write(f"tid: {tid:d}\n") results_file.write(f" t: {data.I[tid][0]:.2f}\n") results_file.write(f" Os {data.O[tid].tolist()}\n") if(TUNER_NAME=='GPTune'): NS = Btotal if args.nruns > 0: NS = args.nruns print("In GPTune, using the given number of nruns ", NS) NS1 = max(NS//2, 1) gt = GPTune(problem, computer=computer, data=data, options=options, driverabspath=os.path.abspath(__file__)) """ Building MLA with the given list of tasks """ (data, modeler, stats) = gt.MLA(NS=NS, NI=NI, Igiven=giventask, NS1=NS1) print("model class: ", options['model_class']) print("Model restart: ", restart) print("Tuner: ", TUNER_NAME) print("stats: ", stats) results_file = open(f"demo_ntask{args.ntask}_bandit{args.bmin}-{args.bmax}-{args.eta}_Nloop{args.Nloop}_expid{args.expid}.txt", "a") results_file.write(f"Tuner: {TUNER_NAME}\n") results_file.write(f"stats: {stats}\n") """ Print all input and parameter samples """ sum_Oopt = 0. for tid in range(NI): print("tid: %d" % (tid)) print(f" t: {data.I[tid][0]:.2f} ") print(" Ps ", data.P[tid]) print(" Os ", data.O[tid]) print(' Popt ', data.P[tid][np.argmin(data.O[tid])], f'Oopt {min(data.O[tid])[0]:.3f}', 'nth ', np.argmin(data.O[tid])) sum_Oopt += min(data.O[tid])[0] results_file.write(f"tid: {tid:d}\n") results_file.write(f" t: {data.I[tid][0]:.2f}\n") results_file.write(f" Os {data.O[tid].tolist()}\n") # print("sum of all optimal objectives", sum_Oopt) if(TUNER_NAME=='opentuner'): NS = Btotal (data,stats) = OpenTuner(T=giventask, NS=NS, tp=problem, computer=computer, run_id="OpenTuner", niter=1, technique=None) print("Tuner: ", TUNER_NAME) print("stats: ", stats) results_file = open(f"demo_ntask{args.ntask}_bandit{args.bmin}-{args.bmax}-{args.eta}_Nloop{args.Nloop}_expid{args.expid}.txt", "a") results_file.write(f"Tuner: {TUNER_NAME}\n") results_file.write(f"stats: {stats}\n") """ Print all input and parameter samples """ for tid in range(NI): print("tid: %d" % (tid)) print(f" t: {data.I[tid][0]:.2f} ") print(" Ps ", data.P[tid][:NS]) print(" Os ", data.O[tid][:NS]) print(' Popt ', data.P[tid][np.argmin(data.O[tid][:NS])], 'Oopt ', min(data.O[tid][:NS])[0], 'nth ', np.argmin(data.O[tid][:NS])) results_file.write(f"tid: {tid:d}\n") results_file.write(f" t: {data.I[tid][0]:.2f}\n") results_file.write(f" Os {data.O[tid].tolist()}\n") # single fidelity version of hpbandster if(TUNER_NAME=='TPE'): NS = Btotal (data,stats)=HpBandSter(T=giventask, NS=NS, tp=problem, computer=computer, options=options, run_id="HpBandSter", niter=1) print("Tuner: ", TUNER_NAME) print("stats: ", stats) results_file = open(f"demo_ntask{args.ntask}_bandit{args.bmin}-{args.bmax}-{args.eta}_Nloop{args.Nloop}_expid{args.expid}.txt", "a") results_file.write(f"Tuner: {TUNER_NAME}\n") results_file.write(f"stats: {stats}\n") """ Print all input and parameter samples """ for tid in range(NI): print("tid: %d" % (tid)) print(f" t: {data.I[tid][0]:.2f} ") print(" Ps ", data.P[tid]) print(" Os ", data.O[tid]) print(' Popt ', data.P[tid][np.argmin(data.O[tid])], 'Oopt ', min(data.O[tid])[0], 'nth ', np.argmin(data.O[tid])) results_file.write(f"tid: {tid:d}\n") results_file.write(f" t: {data.I[tid][0]:.2f}\n") results_file.write(f" Os {data.O[tid].tolist()}\n") # multi-fidelity version if(TUNER_NAME=='hpbandster'): NS = Ntotal (data,stats)=HpBandSter_bandit(T=giventask, NS=NS, tp=problem, computer=computer, options=options, run_id="hpbandster_bandit", niter=1) print("Tuner: ", TUNER_NAME) print("stats: ", stats) results_file = open(f"demo_ntask{args.ntask}_bandit{args.bmin}-{args.bmax}-{args.eta}_Nloop{args.Nloop}_expid{args.expid}.txt", "a") results_file.write(f"Tuner: {TUNER_NAME}\n") results_file.write(f"stats: {stats}\n") """ Print all input and parameter samples """ for tid in range(NI): print("tid: %d" % (tid)) print(f" t: {data.I[tid][0]:.2f} ") print(" Ps ", data.P[tid]) print(" Os ", data.O[tid].tolist()) results_file.write(f"tid: {tid:d}\n") results_file.write(f" t: {data.I[tid][0]:.2f}\n") results_file.write(f" Os {data.O[tid].tolist()}\n") # print(' Popt ', data.P[tid][np.argmin(data.O[tid])], 'Oopt ', min(data.O[tid])[0], 'nth ', np.argmin(data.O[tid])) max_budget = 0. Oopt = 99999 Popt = None nth = None for idx, (config, out) in enumerate(zip(data.P[tid], data.O[tid].tolist())): for subout in out[0]: budget_cur = subout[0] if budget_cur > max_budget: max_budget = budget_cur Oopt = subout[1] Popt = config nth = idx elif budget_cur == max_budget: if subout[1] < Oopt: Oopt = subout[1] Popt = config nth = idx print(' Popt ', Popt, 'Oopt ', Oopt, 'nth ', nth) if plot==1: x = np.arange(0., 1., 0.0001) ymean_set = [] # stores predicted function values ytrue_set = [] for tid in range(len(data.I)): p = data.I[tid] t = p[0] fig = plt.figure(figsize=[12.8, 9.6]) I_orig=p kwargst = {input_space[k].name: I_orig[k] for k in range(len(input_space))} y=np.zeros([len(x),1]) y_mean=np.zeros([len(x)]) y_std=np.zeros([len(x)]) for i in range(len(x)): P_orig=[x[i]] kwargs = {parameter_space[k].name: P_orig[k] for k in range(len(parameter_space))} kwargs.update(kwargst) y[i]=objectives(kwargs) if(TUNER_NAME=='GPTune'): (y_mean[i],var) = predict_aug(modeler, gt, kwargs,tid) y_std[i]=np.sqrt(var) # print(y_mean[i],y_std[i],y[i]) fontsize=40 plt.rcParams.update({'font.size': 40}) plt.plot(x, y, 'b',lw=2,label='true') plt.plot(x, y_mean, 'k', lw=3, zorder=9, label='prediction') plt.fill_between(x, y_mean - y_std, y_mean + y_std,alpha=0.2, color='k') plt.ylim(0, 2) # print(data.P[tid]) plt.scatter(data.P[tid], data.O[tid], c='r', s=50, zorder=10, edgecolors=(0, 0, 0),label='sample') plt.xlabel('x',fontsize=fontsize+2) plt.ylabel('y(t,x)',fontsize=fontsize+2) plt.title('t=%f'%t,fontsize=fontsize+2) print('t:',t,'x:',x[np.argmin(y)],'ymin:',y.min()) # legend = plt.legend(loc='upper center', shadow=True, fontsize='x-large') legend = plt.legend(loc='upper right', shadow=False, fontsize=fontsize) annot_min(x,y) # plt.show() plt.show(block=False) plt.pause(0.5) # input("Press [enter] to continue.") # fig.savefig('obj_t_%f.eps'%t) fig.savefig(f'obj_ntask{NI}_{expid}_tid_{tid}_t_{t:.1f}.pdf') ymean_set.append(y_mean) ytrue_set.append(y) # show the distance among surrogate functions R = np.zeros((NI, NI)) # Pearson sample correlation matrix of learned surrogates R_true = np.zeros((NI, NI))# Pearson sample correlation of true functions for i in range(NI): for ip in range(i, NI): ymean_i = ymean_set[i] ymean_ip = ymean_set[ip] ytrue_i = np.array((ytrue_set[i]).reshape((1, -1)))[0] ytrue_ip = np.array((ytrue_set[ip]).reshape((1, -1)))[0] # find the Pearson sample correlation coefficient R[i, ip], _ = scipy.stats.pearsonr(ymean_i, ymean_ip) R_true[i, ip], _ = scipy.stats.pearsonr(ytrue_i, ytrue_ip) print("The correlation matrix among surrogate functions is: \n", R) print("The correlation matrix among true functions is: \n", R_true) new_Rtrue = R_true[
np.triu_indices(R_true.shape[0], 1)
numpy.triu_indices
import numpy import pandas import pytest from scipy.sparse.csgraph import connected_components from partitions import Graph, Partition from partitions.tree import ( ReCom, bipartition_tree, contract_leaves_until_balanced_or_None, map_with_boolean_array, random_cut_edge, random_spanning_tree, recursive_partition, ) class TestRandomSpanningTree: def test_on_four_cycle(self, four_cycle): tree = random_spanning_tree(four_cycle) assert len(tree.nodes) == 4 assert len(tree.edges) == 3 def test_on_nonregular(self, nonregular): tree = random_spanning_tree(nonregular) assert len(tree.nodes) == 6 assert len(tree.edges) == 5 # This edge has to be in it, because 0 is a leaf assert (0, 1) in tree.edges assert (1, 0) in tree.edges # One of these must be in it assert (1, 3) in tree.edges or (3, 5) in tree.edges # One of these must be in it assert any(edge in tree.edges for edge in [(2, 4), (2, 5), (2, 1)]) for node in nonregular: assert any( (node, neighbor) in tree.edges for neighbor in nonregular.neighbors[node] ) class TestContractEdgesUntilBalanced: def test_on_10x10(self, grid10x10): graph = grid10x10 population = numpy.ones_like(graph.nodes) bounds = (10, 90) assignment = contract_leaves_until_balanced_or_None(graph, population, bounds) assert len(assignment) == len(graph.nodes) assert len(numpy.unique(assignment)) == 2 subgraph = graph.subgraph(graph.nodes[assignment]) assert connected_components(subgraph.neighbors.matrix, return_labels=False) == 1 def test_on_small(self): graph = Graph.from_edges([(0, 1), (1, 2)]) population = numpy.ones_like(graph.nodes) bounds = (0, 3) assignment = contract_leaves_until_balanced_or_None( graph, population, bounds, choice=lambda x: 1 ) assert assignment[0] == assignment[1] or assignment[1] == assignment[2] assert len(numpy.unique(assignment)) == 2 def test_on_medium(self): graph = Graph.from_edges( [(0, 1), (1, 2), (2, 3), (3, 4), (0, 5), (5, 6), (5, 7), (5, 8)] ) population =
numpy.ones_like(graph.nodes)
numpy.ones_like
import yaml import argparse import numpy as NP from astropy.io import fits from astropy.coordinates import Galactic, FK5, SkyCoord from astropy import units import progressbar as PGB import healpy as HP import geometry as GEOM import primary_beams as PB import ipdb as PDB ## Parse input arguments parser = argparse.ArgumentParser(description='Program to estimate antenna power pattern analytically') input_group = parser.add_argument_group('Input parameters', 'Input specifications') input_group.add_argument('-i', '--infile', dest='infile', default='/home/t_nithyanandan/codes/mine/python/interferometry/main/pbparameters.yaml', type=file, required=False, help='File specifying input parameters') args = vars(parser.parse_args()) with args['infile'] as parms_file: parms = yaml.safe_load(parms_file) rootdir = parms['directory']['rootdir'] pbdir = parms['directory']['pbdir'] outfile = parms['directory']['outfile'] project = parms['project'] telescope_id = parms['telescope']['id'] element_shape = parms['antenna']['shape'] element_size = parms['antenna']['size'] element_ocoords = parms['antenna']['ocoords'] element_orientation = parms['antenna']['orientation'] ground_plane = parms['antenna']['ground_plane'] phased_array = parms['antenna']['phased_array'] short_dipole_approx = parms['antenna']['short_dipole'] half_wave_dipole_approx = parms['antenna']['halfwave_dipole'] phased_elements_file = parms['phasedarray']['file'] delayerr = parms['phasedarray']['delayerr'] gainerr = parms['phasedarray']['gainerr'] nrand = parms['phasedarray']['nrand'] A_eff = parms['telescope']['A_eff'] latitude = parms['telescope']['latitude'] longitude = parms['telescope']['longitude'] beam_info = parms['beam'] beam_id = beam_info['identifier'] beam_pol = beam_info['pol'] freq = parms['obsparm']['freq'] freq_resolution = parms['obsparm']['freq_resolution'] nchan = parms['obsparm']['nchan'] nside = parms['obsparm']['nside'] scheme = parms['obsparm']['ordering'] pnt_alt = parms['pointing']['alt'] pnt_az = parms['pointing']['az'] pnt_ha = parms['pointing']['ha'] pnt_dec = parms['pointing']['dec'] frequency_chunk_size = parms['processing']['freq_chunk_size'] n_freq_chunks = parms['processing']['n_freq_chunks'] nproc = parms['pp']['nproc'] pp_method = parms['pp']['method'] pp_key = parms['pp']['key'] if longitude is None: longitude = 0.0 if project not in ['project_MWA', 'project_global_EoR', 'project_HERA', 'project_drift_scan', 'project_beams', 'project_LSTbin']: raise ValueError('Invalid project specified') else: project_dir = project + '/' pbeamdir = rootdir + project_dir + pbdir + '/' if telescope_id not in ['mwa', 'vla', 'gmrt', 'hera', 'mwa_dipole', 'custom', 'paper_dipole', 'mwa_tools']: raise ValueError('Invalid telescope specified') if element_shape is None: element_shape = 'delta' elif element_shape not in ['dish', 'delta', 'dipole']: raise ValueError('Invalid antenna element shape specified') if element_shape != 'delta': if element_size is None: raise ValueError('No antenna element size specified') elif element_size <= 0.0: raise ValueError('Antenna element size must be positive') if not isinstance(phased_array, bool): raise TypeError('phased_array specification must be boolean') if delayerr is None: delayerr_str = '' delayerr = 0.0 elif delayerr < 0.0: raise ValueError('delayerr must be non-negative.') else: delayerr_str = 'derr_{0:.3f}ns'.format(delayerr) delayerr *= 1e-9 if gainerr is None: gainerr_str = '' gainerr = 0.0 elif gainerr < 0.0: raise ValueError('gainerr must be non-negative.') else: gainerr_str = '_gerr_{0:.2f}dB'.format(gainerr) if nrand is None: nrandom_str = '' nrand = 1 elif nrand < 1: raise ValueError('nrandom must be positive') else: nrandom_str = '_nrand_{0:0d}_'.format(nrand) if (delayerr_str == '') and (gainerr_str == ''): nrand = 1 nrandom_str = '' delaygain_err_str = delayerr_str + gainerr_str + nrandom_str if (telescope_id == 'mwa') or (telescope_id == 'mwa_dipole'): element_size = 0.74 element_shape = 'dipole' if telescope_id == 'mwa': phased_array = True elif telescope_id == 'vla': element_size = 25.0 element_shape = 'dish' elif telescope_id == 'gmrt': element_size = 45.0 element_shape = 'dish' elif telescope_id == 'hera': element_size = 14.0 element_shape = 'dish' elif telescope_id == 'custom': if element_shape != 'delta': if (element_shape is None) or (element_size is None): raise ValueError('Both antenna element shape and size must be specified for the custom telescope type.') elif element_size <= 0.0: raise ValueError('Antenna element size must be positive.') elif telescope_id == 'mwa_tools': pass else: raise ValueError('telescope ID must be specified.') if telescope_id == 'custom': if element_shape == 'delta': telescope_id = 'delta' else: telescope_id = '{0:.1f}m_{1:}'.format(element_size, element_shape) if phased_array: telescope_id = telescope_id + '_array' telescope_str = telescope_id+'_' if element_ocoords not in ['altaz', 'dircos']: if element_ocoords is not None: raise ValueError('Antenna element orientation must be "altaz" or "dircos"') if element_orientation is None: if element_ocoords is not None: if element_ocoords == 'altaz': if (telescope_id == 'mwa') or (telescope_id == 'mwa_dipole') or (element_shape == 'dipole'): element_orientation = NP.asarray([0.0, 90.0]).reshape(1,-1) else: element_orientation = NP.asarray([90.0, 270.0]).reshape(1,-1) elif element_ocoords == 'dircos': if (telescope_id == 'mwa') or (telescope_id == 'mwa_dipole') or (element_shape == 'dipole'): element_orientation = NP.asarray([1.0, 0.0, 0.0]).reshape(1,-1) else: element_orientation = NP.asarray([0.0, 0.0, 1.0]).reshape(1,-1) else: raise ValueError('Invalid value specified antenna element orientation coordinate system.') else: if (telescope_id == 'mwa') or (telescope_id == 'mwa_dipole') or (element_shape == 'dipole'): element_orientation = NP.asarray([0.0, 90.0]).reshape(1,-1) else: element_orientation = NP.asarray([90.0, 270.0]).reshape(1,-1) element_ocoords = 'altaz' else: if element_ocoords is None: raise ValueError('Antenna element orientation coordinate system must be specified to describe the specified antenna orientation.') element_orientation = NP.asarray(element_orientation).reshape(1,-1) if (element_orientation.size < 2) or (element_orientation.size > 3): raise ValueError('Antenna element orientation must be a two- or three-element vector.') elif (element_ocoords == 'altaz') and (element_orientation.size != 2): raise ValueError('Antenna element orientation must be a two-element vector if using Alt-Az coordinates.') if ground_plane is None: ground_plane_str = 'no_ground_' else: if ground_plane > 0.0: ground_plane_str = '{0:.1f}m_ground_'.format(ground_plane) else: raise ValueError('Height of antenna element above ground plane must be positive.') telescope = {} if telescope_id in ['mwa', 'vla', 'gmrt', 'hera', 'mwa_dipole', 'mwa_tools']: telescope['id'] = telescope_id telescope['shape'] = element_shape telescope['size'] = element_size telescope['orientation'] = element_orientation telescope['ocoords'] = element_ocoords telescope['groundplane'] = ground_plane telescope['latitude'] = latitude telescope['longitude'] = longitude if (pnt_alt is not None) and (pnt_az is not None): pointing_altaz = NP.asarray([pnt_alt, pnt_az]) elif (pnt_ha is not None) and (pnt_dec is not None): pointing_hadec = NP.asarray([pnt_ha, pnt_dec]).reshape(1,-1) pointing_altaz = GEOM.hadec2altaz(pointing_hadec, latitude, units='degrees') pointing_altaz = pointing_altaz.reshape(-1) else: raise ValueError('pointing direction not properly specified') freq =
NP.float(freq)
numpy.float
import os import glob import shutil import logging import matplotlib.pyplot as plt import numpy as np from scipy import ndimage, misc, signal, spatial from skimage.filters import gaussian import cv2 import math def mkdir(path): if not os.path.exists(path): os.makedirs(path) def re_mkdir(path): if os.path.exists(path): shutil.rmtree(path) os.makedirs(path) def init_log(output_dir): re_mkdir(output_dir) logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(message)s', datefmt='%Y%m%d-%H:%M:%S', filename=os.path.join(output_dir, 'log.log'), filemode='w') console = logging.StreamHandler() console.setLevel(logging.INFO) logging.getLogger('').addHandler(console) return logging def copy_file(path_s, path_t): shutil.copy(path_s, path_t) def get_files_in_folder(folder, file_ext=None): files = glob.glob(os.path.join(folder, "*" + file_ext)) files_name = [] for i in files: _, name = os.path.split(i) name, ext = os.path.splitext(name) files_name.append(name) return
np.asarray(files)
numpy.asarray
import sys # sys.path.append(".") # Adds the module to path import unittest from .. import augmentations, optics, scatterers from ..features import Feature import numpy as np class TestAugmentations(unittest.TestCase): class DummyFeature(Feature): __distributed__ = False def get(self, image, **kwargs): output = np.array([[[1], [2]], [[0], [0]]]) return output def test_FlipLR(self): feature = self.DummyFeature() augmented_feature = augmentations.FlipLR(feature) augmented_feature.update() output_1 = augmented_feature.resolve() augmented_feature.update() output_2 = augmented_feature.resolve() self.assertTrue(np.all(output_1 == np.array([[[1], [2]], [[0], [0]]]))) self.assertTrue(np.all(output_2 == np.array([[[2], [1]], [[0], [0]]]))) def test_FlipUD(self): feature = self.DummyFeature() augmented_feature = augmentations.FlipUD(feature) augmented_feature.update() output_1 = augmented_feature.resolve() augmented_feature.update() output_2 = augmented_feature.resolve() self.assertTrue(np.all(output_1 == np.array([[[1], [2]], [[0], [0]]]))) self.assertTrue(np.all(output_2 == np.array([[[0], [0]], [[1], [2]]]))) def test_FlipDiagonal(self): feature = self.DummyFeature() augmented_feature = augmentations.FlipDiagonal(feature) augmented_feature.update() output_1 = augmented_feature.resolve() augmented_feature.update() output_2 = augmented_feature.resolve() self.assertTrue(np.all(output_1 ==
np.array([[[1], [2]], [[0], [0]]])
numpy.array
import numpy as np import simpl import simplpy import simpl_helpers as sh import simpl_test_dirs as sd import orientationanalysispy as orient def Test1(): ''' This will test manually creating an numpy array, wrapping the numpy array with a simpl.DataArray, running a filter to adjust those values, and then showing that the original numpy array has in fact been changed. ''' print('===================== Test 1 =====================') shape = [4, 3, 2] cDims = [3] # Create a numpy array of ones to hold our data ashape = np.append([np.prod(shape)], cDims) # Create a numpy array to hold our data num_array = np.ndarray(ashape, dtype=np.float32, order='C') # Get the numpy array as contiguous z = np.asarray(num_array) if not z.flags.contiguous: z =
np.ascontiguousarray(z)
numpy.ascontiguousarray
import numpy as np class Polygon: """docstring for Polygon""" def __init__(self, v): self.v = v if self.v.shape[0] > 1 and len(self.v.shape) > 1: if self.v.shape[0] > 2: self.v = self.graham_scan(self.v) self.e = [[self.v[i, :], self.v[i+1, :]] for i in range(self.v.shape[0]-1)] + [[self.v[-1, :], self.v[0, :]]] def __str__(self): return str(self.v) + '\n\n' + str(self.e) def get_bounds(self): x1, y1 = np.min(self.v, axis=0) x2, y2 = np.max(self.v, axis=0) return x1, y1, x2, y2 def point_intersection(self, point): # http://geomalgorithms.com/a03-_inclusion.html wn = 0 for edge in self.e: if edge[0][1] <= point[1]: if edge[1][1] > point[1]: if self.is_left(edge[0], edge[1], point) > 0: wn += 1 else: if edge[1][1] <= point[1]: if self.is_left(edge[0], edge[1], point) < 0: wn -= 1 return wn != 0 def is_left(self, v_start, v_end, point): # http://geomalgorithms.com/a01-_area.html return (v_end[0] - v_start[0]) * (point[1] - v_start[1]) - (point[0] - v_start[0]) * (v_end[1] - v_start[1]) def less(self, p, p0): pp = p-p0 return np.arctan2(pp[1], pp[0]), np.linalg.norm(pp) def graham_scan(self, pts): N, _ = pts.shape if N < 3: raise ValueError('At least 3 points are required to define a polygon') # get p0 p0 = None x_low = np.inf y_low = np.inf for p in pts: if p[1] < y_low: y_low = p[1] x_low = p[0] p0 = p elif p[1] == y_low: if p[0] < x_low: x_low = p[0] p0 = p # sort pts_sorted = sorted(pts, key=lambda p: self.less(p, p0)) if N == 3: # return Polygon(pts_sorted) return np.array(pts_sorted) # scan progress = np.zeros((N,)) p0 = N-1 p1 = 0 p2 = 1 p3 = 2 p4 = 3 convex_hull = [i for i in range(N)] while not
np.all(progress)
numpy.all
import numpy as np import matplotlib.pyplot as plt from systemrl.environments.advgridworld import AdvGridworld from systemrl.agents.sarsa import SARSA from systemrl.agents.sarsa_lambda import SARSALambda from systemrl.agents.q_learning import QLearning from systemrl.agents.q_lambda import QLambda from tqdm import tqdm from collections import defaultdict #decaying epsilon method for epsilon-greedy poilcy def decaying_epsilon(current_episode, total_episodes): power = 9*(current_episode/total_episodes)-5 epsilon = 1/(1+np.exp(power)) return epsilon def human_policy(human_actions, action_index): possible_actions = [action_index[i] for i in human_actions] human = defaultdict(lambda: -1) best_action = [2,1,1,2,3,3,3,\ 2,4,4,2,7,7,7,\ 2,4,4,2,7,7,7,\ 2,1,1,2,3,3,2,\ 5,5,2,2,5,5,2,\ 5,5,5,2,5,5,2,\ 1,1,1,1,1,1,1] for idx, action in enumerate(best_action): if action in possible_actions: human[idx] = action return human def get_state(state): return state[0]+state[1]*7 human_actions = ["right","left","upri","dori"] agent_actions = ["up", "down","uple","dole"] action_index = {"up":0,"right":1,"down":2,"left":3,"upri":4,"dori":5,"dole":6,"uple":7} env = AdvGridworld() human = human_policy(human_actions, action_index) num_actions = len(agent_actions) + 1 # +1 for letting human take action gamma = 0.9 learning_rate = 0.01 lmbda = 0.3 #agent: Note that lambda is not required for SARSA and QLearning agent = QLearning(num_actions, gamma, learning_rate) episode_returns = [] episode_lengths = [] #total number of episodes num_episodes = 1000 #maximum number of steps per episode. if agent exceeds this.. #..we terminate and give a large negative reward max_count = 200 for episodes in tqdm(range(num_episodes)): env.reset() state = env.state _state = get_state(state) is_end = False returns = 0 count = 0 epsilon = decaying_epsilon(episodes, num_episodes) #iterate until episode ends while not is_end and count<max_count: count += 1 #selection of agent action if np.random.random() < epsilon: agent_action = np.random.randint(num_actions) else: agent_action = agent.get_action(_state) #human is taking action if agent_action == num_actions-1: action = human[_state] #we do not have option for no movement here.. #..if the human has no good action here, she.. #will take any random action if action == -1: action = action_index[
np.random.choice(human_actions)
numpy.random.choice
import cv2 import numpy as np import math from datetime import datetime from matplotlib import pyplot as plt from collections import deque from scipy.stats import mode from scipy.optimize import curve_fit from yolo_model import BoundBox temp_dir = "images/detection/detect.jpg" WHITE = (255, 255, 255) YELLOW = (66, 244, 238) GREEN = (80, 220, 60) LIGHT_CYAN = (255, 255, 224) DARK_BLUE = (139, 0, 0) GRAY = (128, 128, 128) BLUE = (255,0,0) RED = (0,0,255) ORANGE =(0,165,255) BLACK =(0,0,0) vehicles = [1,2,3,5,6,7,8] animals =[15,16,17,18,19,21,22,23,] humans =[0] obstructions = humans + animals + vehicles classes = [# 'Ped','bicycle','car','motorbike','aeroplane','bus',\ 'train','truck','boat','traffic light','fire hydrant','stop sign',\ 'parking meter','bench','bird','cat','dog','horse',\ 'sheep','cow','elephant', 'bear','zebra','giraffe',\ 'backpack','umbrella','handbag','tie','suitcase','frisbee',\ 'skis','snowboard','sports ball','kite','baseball bat',\ 'baseball glove','skateboard','surfboard','tennis racket','bottle','wine glass',\ 'cup','fork','knife','spoon','bowl','banana',\ 'apple','sandwich','orange','broccoli','carrot','hot dog',\ 'pizza','donut','cake','chair','sofa','pottedplant',\ 'bed','diningtable','toilet','tvmonitor','laptop','mouse',\ 'remote','keyboard','cell phone','microwave','oven','toaster',\ 'sink','refrigerator','book','clock','vase','scissors',\ 'teddy bear','hair drier','toothbrush' ] def create_queue(length = 10): return deque(maxlen=length) def polyfunc(x, a2, a1, a0): return a2*x*x + a1*x + a0 class OBSTACLE(BoundBox): xmax :int xmin :int ymin :int ymax :int xmid :int ymid :int lane : str x : int y : int tracker = None position : [int,int] PERIOD = 4 __count = 0 def __init__(self,box: BoundBox, _id, v_updt =5) : self.col_time:float =999.0 self._id = _id self.position_hist = create_queue(v_updt) # self.position_hist.append(dst) self.update_coord(box) self.update_score(box) self.velocity = np.zeros((2)) self.score=box.score self.label = box.label def update_obstacle(self, dst, fps, n=5) : self.position = dst if self.lane == "my" : self.col_time = min(int(dst[1]/(self.velocity[1]+0.001)*18/5),99) else : self.col_time = None if (self.__count > self.position_hist.maxlen): self.velocity = ((self.position-self.position_hist[0] ) * fps / self.position_hist.maxlen *5/18 ).astype(int) self.__count += 1 self.position_hist.append(dst) def update_coord(self,box): self.xmax = box.xmax self.xmin = box.xmin self.ymin = box.ymin self.ymax = box.ymax self.xmid = int((box.xmax+box.xmin)/2) self.ymid = int((box.ymax+box.ymin)/2) self.position = np.mean(self.position_hist, axis = 0) def update_score(self,box): self.score=box.score self.label = box.label def update_box(self,box): self.update_coord(box) self.update_score(box) class LANE_HISTORY: def __init__(self,fps, queue_depth=12,poly_col=np.array([1,1,1]), test_points=[300, 500, 700], poly_max_deviation_distance=50, smoothing = 10, ploty =np.array([])): self.fps =fps self.test_points = np.asarray(test_points) self.poly_max_deviation_distance = poly_max_deviation_distance self.lost = False self.max_lost_count = queue_depth self.lost_count = self.max_lost_count + 10 self.smoothing = smoothing self.ploty =ploty self.leftFit = None # LEFT FIT POINTS self.rightFit = None # RIGHT FIT POINTS self.leftx = create_queue(self.fps//4) self.rightx = create_queue(self.fps//4) self.width = None self.previous_centers = None self.current_coef = None self.smoothed_poly = poly_col self.poly_history = create_queue(queue_depth) self.y = None self.x = None self.appended = 0 self.breached = 0 self.reset = 0 self.curvature = 0 self.centerx = 0 self.lane_offset = 0 self.left_windows = [] self.right_windows=[] def compute_lane_points(self) : self.leftFit = self.previous_centers - self.width//2 self.rightFit = self.previous_centers + self.width//2 def compute_curvature(self, alpha, beta): y_eval = -np.max(self.ploty) lp = self.smoothed_poly self.curvature = int(((beta**2 + (2 * lp[0] * y_eval * alpha**2 + \ lp[1]*alpha)**2)**1.5)/(np.absolute(2 * lp[0]*(alpha*beta)**2))) return def compute_offset(self): y_eval = -np.max(self.ploty) lp = self.smoothed_poly self.lane_offset = lp[0] * y_eval**2 + lp[1] * y_eval + lp[2] - self.centerx if abs(self.lane_offset) > self.width //2 : if self.lane_offset < 0 : print("\n\rLANE CHANGE TO RIGHT\033[F") self.poly_history = create_queue(self.poly_history.maxlen) self.leftx = self.rightx self.rightx = create_queue(length = self.rightx.maxlen) self.rightx.append(int(np.mean(self.leftx) + self.width )) self.previous_centers = self.previous_centers+self.width else : print("\n\rLANE CHANGE TO LEFT\033[F") self.poly_history = create_queue(self.poly_history.maxlen) self.rightx = self.leftx self.leftx = create_queue(length = self.leftx.maxlen) self.leftx.append(int(np.mean(self.rightx) - self.width )) self.previous_centers = self.previous_centers-self.width else: self.leftx.append(self.previous_centers[0] - self.width//2) self.rightx.append(self.previous_centers[0] + self.width//2) return def addlane(self, y,x): status = "APPENDED | " self.y = y self.x = x self.current_coef,_ = curve_fit(polyfunc,self.y, self.x, p0=self.smoothed_poly) if (self.lost_count > self.max_lost_count ) : status ="RESET | " self.get_smoothed_polynomial() self.lost = False self.lost_count = 0 self.reset +=1 return True, status test_y_smooth = np.asarray(list(map(lambda x: np.polyval(self.smoothed_poly,x), -self.test_points))) test_y_new = np.asarray(list(map(lambda x: np.polyval(self.current_coef,x), -self.test_points))) dist = np.absolute(test_y_smooth - test_y_new) max_dist = dist[np.argmax(dist)] if max_dist > self.poly_max_deviation_distance: status = "BREACHED | " self.lost = True self.lost_count += 1 self.breached +=1 return False , status self.get_smoothed_polynomial() self.lost = False self.lost_count = 0 self.appended +=1 return True, status def get_smoothed_polynomial(self): self.poly_history.append(self.current_coef) all_coeffs = np.asarray(list(self.poly_history)) self.smoothed_poly = np.mean(all_coeffs[-self.smoothing:,:], axis=0) self.previous_centers = np.asarray([np.polyval(self.smoothed_poly,-x) for x in self.ploty], dtype=int) self.compute_lane_points() self.compute_offset() return self.smoothed_poly def calculate_position(self,x,y): position = np.polyval(self.smoothed_poly ,y) - x status = "right" if position < - self.width//2 : status = "left" elif position < self.width//2: status = "my" return status class LANE_DETECTION: """ The AdvancedLaneDetectorWithMemory is a class that can detect lines on the road """ UNWARPED_SIZE :(int,int) WRAPPED_WIDTH : int _pip_size=(int,int) _pip__x_offset=20 _pip__y_offset=10 img_dimensions=(int,int) temp_dir = "./images/detection/" windows_per_line = 30 vanishing_point:(int,int) real_world_lane_size_meters=(32, 3.7) font = cv2.FONT_HERSHEY_SIMPLEX bottom = 0 def __init__(self, img,fps, yellow_lower = np.uint8([ 20, 50, 50]), yellow_upper =
np.uint8([35, 255, 255])
numpy.uint8
# *************************************************************** # Copyright (c) 2021 Jittor. # All Rights Reserved. # Maintainers: # <NAME> <<EMAIL>>. # # Contributors: # <NAME> <<EMAIL>> # # This file is subject to the terms and conditions defined in # file 'LICENSE.txt', which is part of this source code package. # *************************************************************** import unittest import random from PIL import Image import numpy as np from numpy.testing import assert_array_almost_equal import jittor as jt import jittor.transform as transform try: from scipy import stats except ImportError: stats = None class Tester(unittest.TestCase): def test_crop(self): height = random.randint(10, 32) * 2 width = random.randint(10, 32) * 2 oheight = random.randint(5, (height - 2) / 2) * 2 owidth = random.randint(5, (width - 2) / 2) * 2 img = np.ones([height, width, 3]) oh1 = (height - oheight) // 2 ow1 = (width - owidth) // 2 # imgnarrow = img[oh1:oh1 + oheight, ow1:ow1 + owidth, :] # imgnarrow.fill(0) img[oh1:oh1 + oheight, ow1:ow1 + owidth, :] = 0 # img = jt.array(img) result = transform.Compose([ transform.ToPILImage(), transform.CenterCrop((oheight, owidth)), transform.ToTensor(), ])(img) self.assertEqual(result.sum(), 0, f"height: {height} width: {width} oheight: {oheight} owdith: {owidth}") oheight += 1 owidth += 1 result = transform.Compose([ transform.ToPILImage(), transform.CenterCrop((oheight, owidth)), transform.ToTensor(), ])(img) sum1 = result.sum() # TODO: not pass # self.assertGreater(sum1, 1, # f"height: {height} width: {width} oheight: {oheight} owdith: {owidth}") oheight += 1 owidth += 1 result = transform.Compose([ transform.ToPILImage(), transform.CenterCrop((oheight, owidth)), transform.ToTensor(), ])(img) sum2 = result.sum() self.assertGreater(sum2, 0, f"height: {height} width: {width} oheight: {oheight} owdith: {owidth}") self.assertGreaterEqual(sum2, sum1, f"height: {height} width: {width} oheight: {oheight} owdith: {owidth}") def test_resize(self): height = random.randint(24, 32) * 2 width = random.randint(24, 32) * 2 osize = random.randint(5, 12) * 2 img = jt.ones([height, width, 3]) result = transform.Compose([ transform.ToPILImage(), transform.Resize(osize), transform.ToTensor(), ])(img) self.assertIn(osize, result.shape) if height < width: self.assertLessEqual(result.shape[1], result.shape[2]) elif width < height: self.assertGreaterEqual(result.shape[1], result.shape[2]) result = transform.Compose([ transform.ToPILImage(), transform.Resize([osize, osize]), transform.ToTensor(), ])(img) self.assertIn(osize, result.shape) self.assertEqual(result.shape[1], osize) self.assertEqual(result.shape[2], osize) oheight = random.randint(5, 12) * 2 owidth = random.randint(5, 12) * 2 result = transform.Compose([ transform.ToPILImage(), transform.Resize((oheight, owidth)), transform.ToTensor(), ])(img) self.assertEqual(result.shape[1], oheight) self.assertEqual(result.shape[2], owidth) result = transform.Compose([ transform.ToPILImage(), transform.Resize([oheight, owidth]), transform.ToTensor(), ])(img) self.assertEqual(result.shape[1], oheight) self.assertEqual(result.shape[2], owidth) def test_random_crop(self): height = random.randint(10, 32) * 2 width = random.randint(10, 32) * 2 oheight = random.randint(5, (height - 2) / 2) * 2 owidth = random.randint(5, (width - 2) / 2) * 2 img = np.ones((height, width, 3)) result = transform.Compose([ transform.ToPILImage(), transform.RandomCrop((oheight, owidth)), transform.ToTensor(), ])(img) self.assertEqual(result.shape[1], oheight) self.assertEqual(result.shape[2], owidth) result = transform.Compose([ transform.ToPILImage(), transform.RandomCrop((oheight, owidth)), transform.ToTensor(), ])(img) self.assertEqual(result.shape[1], oheight) self.assertEqual(result.shape[2], owidth) result = transform.Compose([ transform.ToPILImage(), transform.RandomCrop((height, width)), transform.ToTensor() ])(img) self.assertEqual(result.shape[1], height) self.assertEqual(result.shape[2], width) self.assertTrue(np.allclose(img, result.transpose(1,2,0))) with self.assertRaises(AssertionError): result = transform.Compose([ transform.ToPILImage(), transform.RandomCrop((height + 1, width + 1)), transform.ToTensor(), ])(img) def test_lambda(self): trans = transform.Lambda(lambda x: x.add(10)) x = jt.random([10]) y = trans(x) self.assertTrue(np.allclose(y.data, jt.add(x, 10).data)) @unittest.skipIf(stats is None, 'scipy.stats not available') def test_random_apply(self): random_state = random.getstate() random.seed(42) random_apply_transform = transform.RandomApply( [ transform.RandomHorizontalFlip(), transform.RandomVerticalFlip(), ], p=0.4 ) img = transform.ToPILImage()(jt.random((3, 10, 10))) num_samples = 250 num_applies = 0 for _ in range(num_samples): out = random_apply_transform(img) if out != img: num_applies += 1 p_value = stats.binom_test(num_applies, num_samples, p=0.3) random.setstate(random_state) self.assertGreater(p_value, 0.0001) @unittest.skipIf(stats is None, 'scipy.stats not available') def test_random_choice(self): random_state = random.getstate() random.seed(42) random_choice_transform = transform.RandomChoice( [ transform.Resize(15), transform.Resize(20), transform.CenterCrop(10) ] ) img = transform.ToPILImage()(jt.random((25, 25, 3))) num_samples = 250 num_resize_15 = 0 num_resize_20 = 0 num_crop_10 = 0 for _ in range(num_samples): out = random_choice_transform(img) if out.size == (15, 15): num_resize_15 += 1 elif out.size == (20, 20): num_resize_20 += 1 elif out.size == (10, 10): num_crop_10 += 1 p_value = stats.binom_test(num_resize_15, num_samples, p=0.33333) self.assertGreater(p_value, 0.0001) p_value = stats.binom_test(num_resize_20, num_samples, p=0.33333) self.assertGreater(p_value, 0.0001) p_value = stats.binom_test(num_crop_10, num_samples, p=0.33333) self.assertGreater(p_value, 0.0001) random.setstate(random_state) @unittest.skipIf(stats is None, 'scipy.stats not available') def test_random_order(self): random_state = random.getstate() random.seed(42) random_order_transform = transform.RandomOrder( [ transform.Resize(20), transform.CenterCrop(10) ] ) img = transform.ToPILImage()(jt.random((3, 25, 25))) num_samples = 250 num_normal_order = 0 resize_crop_out = transform.CenterCrop(10)(transform.Resize(20)(img)) for _ in range(num_samples): out = random_order_transform(img) if out == resize_crop_out: num_normal_order += 1 p_value = stats.binom_test(num_normal_order, num_samples, p=0.5) random.setstate(random_state) self.assertGreater(p_value, 0.0001) def test_to_tensor(self): test_channels = [1, 3, 4] height, width = 4, 4 trans = transform.ToTensor() with self.assertRaises(TypeError): trans(np.random.rand(1, height, width).tolist()) with self.assertRaises(ValueError): trans(np.random.rand(height)) trans(np.random.rand(1, 1, height, width)) for channels in test_channels: input_data = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.float32) / np.float32(255.0) img = transform.ToPILImage()(input_data) output = trans(img) expect = input_data.transpose(2,0,1) self.assertTrue(np.allclose(expect, output), f"{expect.shape}\n{output.shape}") ndarray = np.random.randint(low=0, high=255, size=(channels, height, width)).astype(np.uint8) output = trans(ndarray) expected_output = ndarray / 255.0 np.testing.assert_allclose(output, expected_output) ndarray = np.random.rand(channels, height, width).astype(np.float32) output = trans(ndarray) expected_output = ndarray self.assertTrue(np.allclose(output, expected_output)) # separate test for mode '1' PIL images input_data = np.random.binomial(1, 0.5, size=(height, width, 1)).astype(np.uint8) img = transform.ToPILImage()(input_data * 255).convert('1') output = trans(img) self.assertTrue(np.allclose(input_data[:,:,0], output[0]), f"{input_data.shape}\n{output.shape}") def test_1_channel_tensor_to_pil_image(self): to_tensor = transform.ToTensor() shape = (4, 4, 1) img_data_float = jt.array(np.random.rand(*shape), dtype='float32') img_data_byte = jt.array(np.random.randint(0, 255, shape), dtype='uint8') img_data_short = jt.array(np.random.randint(0, 32767, shape), dtype='int16') img_data_int = jt.array(np.random.randint(0, 2147483647, shape), dtype='int32') inputs = [img_data_float, img_data_byte, img_data_short, img_data_int] expected_outputs = [img_data_float.multiply(255).int().float().divide(255).numpy(), img_data_byte.float().divide(255.0).numpy(), img_data_short.numpy(), img_data_int.numpy()] expected_modes = ['F', 'L', 'I;16', 'I'] for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes): for t in [transform.ToPILImage(), transform.ToPILImage(mode=mode)]: img = t(img_data) self.assertEqual(img.mode, mode) np.testing.assert_allclose(expected_output[:,:,0], to_tensor(img)[0], atol=0.01) # 'F' mode for torch.FloatTensor img_F_mode = transform.ToPILImage(mode='F')(img_data_float) self.assertEqual(img_F_mode.mode, 'F') def test_1_channel_ndarray_to_pil_image(self): img_data_float = np.random.rand(4, 4, 1).astype(np.float32) img_data_byte = np.random.randint(0, 255, (4, 4, 1)).astype(np.uint8) img_data_short = np.random.randint(0, 32767, (4, 4, 1)).astype(np.int16) img_data_int = np.random.randint(0, 2147483647, (4, 4, 1)).astype(np.int32) inputs = [img_data_float, img_data_byte, img_data_short, img_data_int] expected_modes = ['F', 'L', 'I;16', 'I'] for img_data, mode in zip(inputs, expected_modes): for t in [transform.ToPILImage(), transform.ToPILImage(mode=mode)]: img = t(img_data) self.assertEqual(img.mode, mode) self.assertTrue(np.allclose(img_data[:, :, 0], img)) def test_2_channel_ndarray_to_pil_image(self): def verify_img_data(img_data, mode): if mode is None: img = transform.ToPILImage()(img_data) self.assertEqual(img.mode, 'LA') # default should assume LA else: img = transform.ToPILImage(mode=mode)(img_data) self.assertEqual(img.mode, mode) split = img.split() for i in range(2): self.assertTrue(np.allclose(img_data[:, :, i], split[i])) img_data = np.random.randint(0, 255, (4, 4, 2)).astype(np.uint8) for mode in [None, 'LA']: verify_img_data(img_data, mode) with self.assertRaises(ValueError): # should raise if we try a mode for 4 or 1 or 3 channel images transform.ToPILImage(mode='RGBA')(img_data) transform.ToPILImage(mode='P')(img_data) transform.ToPILImage(mode='RGB')(img_data) def test_2_channel_tensor_to_pil_image(self): def verify_img_data(img_data, expected_output, mode): if mode is None: img = transform.ToPILImage()(img_data) self.assertEqual(img.mode, 'LA') # default should assume LA else: img = transform.ToPILImage(mode=mode)(img_data) self.assertEqual(img.mode, mode) split = img.split() for i in range(2): self.assertTrue(np.allclose(expected_output[:,:,i], transform.to_tensor(split[i]))) img_data = jt.random((4, 4, 2)) expected_output = img_data.multiply(255).int().float().divide(255) for mode in [None, 'LA']: verify_img_data(img_data, expected_output, mode=mode) with self.assertRaises(ValueError): # should raise if we try a mode for 4 or 1 or 3 channel images transform.ToPILImage(mode='RGBA')(img_data) transform.ToPILImage(mode='P')(img_data) transform.ToPILImage(mode='RGB')(img_data) def test_3_channel_tensor_to_pil_image(self): def verify_img_data(img_data, expected_output, mode): if mode is None: img = transform.ToPILImage()(img_data) self.assertEqual(img.mode, 'RGB') # default should assume RGB else: img = transform.ToPILImage(mode=mode)(img_data) self.assertEqual(img.mode, mode) split = img.split() for i in range(3): self.assertTrue(np.allclose(expected_output[:,:,i], transform.to_tensor(split[i]))) img_data = jt.random((4, 4, 3)) expected_output = img_data.multiply(255).int().float().divide(255) for mode in [None, 'RGB', 'HSV', 'YCbCr']: verify_img_data(img_data, expected_output, mode=mode) with self.assertRaises(ValueError): # should raise if we try a mode for 4 or 1 or 2 channel images transform.ToPILImage(mode='RGBA')(img_data) transform.ToPILImage(mode='P')(img_data) transform.ToPILImage(mode='LA')(img_data) with self.assertRaises(ValueError): transform.ToPILImage()(jt.random((1, 3, 4, 4))) def test_3_channel_ndarray_to_pil_image(self): def verify_img_data(img_data, mode): if mode is None: img = transform.ToPILImage()(img_data) self.assertEqual(img.mode, 'RGB') # default should assume RGB else: img = transform.ToPILImage(mode=mode)(img_data) self.assertEqual(img.mode, mode) split = img.split() for i in range(3): self.assertTrue(np.allclose(img_data[:, :, i], split[i])) img_data =
np.random.randint(0, 255, (4, 4, 3))
numpy.random.randint
""" Pre-binning class. """ # <NAME> <<EMAIL>> # Copyright (C) 2019 import numpy as np from sklearn.preprocessing import KBinsDiscretizer from sklearn.tree import _tree from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeRegressor from .mdlp import MDLP class PreBinning: """Prebinning algorithms. Parameters ---------- problem_type: The problem type depending on the target type. method : str Available methods are 'uniform', 'quantile' and 'cart'. n_bins : int The number of bins to produce. min_bin_size : int, float The minimum bin size. **kwargs : keyword arguments Keyword arguments for prebinning method. See notes. Notes ----- Keyword arguments are those available in the following classes: * ``method="uniform"``: `sklearn.preprocessing.KBinsDiscretizer. * ``method="quantile"``: `sklearn.preprocessing.KBinsDiscretizer. * ``method="cart"``: sklearn.tree.DecistionTreeClassifier. * ``method="mdlp"``: optbinning.binning.mdlp.MDLP. """ def __init__(self, problem_type, method, n_bins, min_bin_size, class_weight=None, **kwargs): self.problem_type = problem_type self.method = method self.n_bins = n_bins self.min_bin_size = min_bin_size self.class_weight = class_weight self.kwargs = kwargs self._splits = None def fit(self, x, y, sample_weight=None): """Fit PreBinning algorithm. Parameters ---------- x : array-like, shape = (n_samples) Data samples, where n_samples is the number of samples. y : array-like, shape = (n_samples) Target vector relative to x. sample_weight : array-like of shape (n_samples,) (default=None) Array of weights that are assigned to individual samples. Returns ------- self : object """ if self.method not in ("uniform", "quantile", "cart", "mdlp"): raise ValueError('Invalid value for prebinning method. Allowed ' 'string values are "cart", "mdlp", "quantile" ' 'and "uniform".') if self.problem_type not in ("classification", "regression"): raise ValueError('Invalid value for problem_type. Allowed ' 'string values are "classification" and ' '"regression".') if self.problem_type == "regression" and self.method == "mdlp": raise ValueError("mdlp method can only handle binary " "classification problems.") if self.method in ("uniform", "quantile"): unsup_kwargs = {"n_bins": self.n_bins, "strategy": self.method} unsup_kwargs.update(**self.kwargs) est = KBinsDiscretizer(**unsup_kwargs) est.fit(x.reshape(-1, 1), y) self._splits = est.bin_edges_[0][1:-1] elif self.method == "cart": cart_kwargs = { "min_samples_leaf": self.min_bin_size, "max_leaf_nodes": self.n_bins} if self.problem_type == "classification": cart_kwargs["class_weight"] = self.class_weight cart_kwargs.update(**self.kwargs) est = DecisionTreeClassifier(**cart_kwargs) else: cart_kwargs.update(**self.kwargs) est = DecisionTreeRegressor(**cart_kwargs) est.fit(x.reshape(-1, 1), y, sample_weight=sample_weight) splits =
np.unique(est.tree_.threshold)
numpy.unique
from typing import Optional, List, Dict import gym import numpy as np from flatland.core.env import Environment from flatland.core.env_observation_builder import ObservationBuilder from flatland.envs.agent_utils import RailAgentStatus from flatland.envs.rail_env import RailEnv from flatlander.envs.observations import Observation, register_obs from flatlander.envs.observations.common.shortest_path_conflict_detector import ShortestPathConflictDetector @register_obs("simple_meta") class SimpleMetaObservation(Observation): def __init__(self, config) -> None: super().__init__(config) self._builder = SimpleMetaObservationBuilder() def builder(self) -> ObservationBuilder: return self._builder def observation_space(self) -> gym.Space: return gym.spaces.Box(low=0, high=1, shape=(5,), dtype=np.float32) # own distance to target & nr agents at start class SimpleMetaObservationBuilder(ObservationBuilder): def get_many(self, handles: Optional[List[int]] = None): if self.env._elapsed_steps == 0: self.conflict_detector = ShortestPathConflictDetector() self.conflict_detector.set_env(self.env) positions = {h: self.get_position(h) for h in handles} directions = {h: self.env.agents[h].direction for h in handles} agent_conflicts, _ = self.conflict_detector.detect_conflicts(handles=handles, positions=positions, directions=directions) if handles is None: handles = [] obs = {h: self.get(h) for h in handles} max_start_and_dir = max(obs.values(), key=lambda v: v[2])[2] max_start = max(obs.values(), key=lambda v: v[1])[1] if len(agent_conflicts) < 1: max_conflicts = 1e-7 else: max_conflicts = len(max(agent_conflicts.values(), key=lambda v: len(v))) + 1e-7 for h, o in obs.items(): o[-4] = o[-4] / max_start o[-3] = o[-3] / max_start_and_dir o[-2] = len(set(agent_conflicts[h])) / max_conflicts o[-1] = len(agent_conflicts[h]) / max_conflicts return obs else: return {h: [] for h in handles} def get(self, handle: int = 0): """ compute density map for agent: a value is asigned to every cell along the shortest path between the agent and its target based on the distance to the agent, i.e. the number of time steps the agent needs to reach the cell, encoding the time information. """ num_agents = self.env.get_num_agents() distance_map = self.env.distance_map.get() nan_inf_mask = ((distance_map != np.inf) * (np.abs(np.isnan(distance_map) - 1))).astype(np.bool) max_distance = np.max(distance_map[nan_inf_mask]) agent = self.env.agents[handle] init_pos = agent.initial_position init_dir = agent.initial_direction agents_same_start = [a for a in self.env.agents if a.initial_position == init_pos] nr_agents_same_start = len(agents_same_start) nr_agents_same_start_and_dir = len([a.handle for a in agents_same_start if a.initial_direction == init_dir]) distance = distance_map[handle][init_pos + (init_dir,)] distance = max_distance if ( distance == np.inf or
np.isnan(distance)
numpy.isnan
import os from classification import FastLogisticRegression from chart import ClassificationChart as cChart from utility import FeatureAugmentation as FA import numpy as np path = os.path.dirname(os.path.abspath(__file__)) def create_test(clf, degree, _min, step, _max): # create test data x1 = np.linspace(_min, step, _max) x2 = np.linspace(_min, step, _max) X = np.zeros((len(x1), 3)) X[:, 0] = x1 X[:, 1] = x2 len1 = len(x1) z = np.zeros(shape=(len(x1), len(x2))) for i in range(len(x1)): for j in range(len(x2)): x = np.array([[X[i, 0], X[j, 1]]]) t = FA.map(x, degree) o = np.ones(t.shape[1]+1) o[1:] = t.flatten() z[i, j] = np.dot(o, clf.model) return X, z data =
np.loadtxt(path+'/data/data1.txt', delimiter=',')
numpy.loadtxt
# -*- coding: utf-8 -*- """ Created on Wed Jan 20 15:59:25 2015 @author: jordan """ # Should I find a way to use Python "StatsModels" to do linear fitting with # uncertainties in X and Y? import os import sys import numpy as np from astropy.wcs import WCS from astropy.table import Table, Column, hstack, join import astropy.units as u from astropy.coordinates import SkyCoord from astropy.stats import sigma_clipped_stats from photutils import centroid_com, aperture_photometry, CircularAperture, CircularAnnulus from scipy.odr import * from matplotlib import pyplot as plt import pdb # Add the AstroImage class from astroimage.astroimage import AstroImage # This script will compute the photometry of polarization standard stars # and output a file containing the polarization position angle # additive correction and the polarization efficiency of the PRISM instrument. #============================================================================== # *********************** CUSTOM USER CODE ************************************ # this is where the user specifies where the raw data is stored # and some of the subdirectory structure to find the actual .FITS images #============================================================================== # Define how the font will appear in the plots font = {'family': 'sans-serif', 'color': 'black', 'weight': 'normal', 'size': 14 } # This is the location where all pyPol data will be saved pyPol_data = 'C:\\Users\\Jordan\\FITS_data\\PRISM_data\\pyPol_data\\201501' # This is the name of the file in which the calibration constants will be stored calDataFile = os.path.join(pyPol_data, 'calData.csv') # The user needs to specify the "Target" values associated with # calibration data in the fileIndex. targets = ['Taurus_Cal', 'Orion_Cal'] # Define the saturation limit to use for whether or not to trust photometry satLimit = 1.6e4 # Define some useful conversion factors rad2deg = (180.0/np.pi) deg2rad = (np.pi/180.0) # This is the location of the previously generated masks (step 4) maskDir = os.path.join(pyPol_data, 'Masks') # Setup new directory for polarimetry data polarimetryDir = os.path.join(pyPol_data, 'Polarimetry') if (not os.path.isdir(polarimetryDir)): os.mkdir(polarimetryDir, 0o755) polAngDir = os.path.join(polarimetryDir, 'polAngImgs') if (not os.path.isdir(polAngDir)): os.mkdir(polAngDir, 0o755) ################################################################################ # STEP 1 -- MEASURE THE PHOTOMETRY OF THE CALIBRATION STARS ################################################################################ if (not os.path.isfile(RtableFile)) or (not os.path.isfile(VtableFile)): # Read in the indexFile data and select the filenames print('\nReading file index from disk') indexFile = os.path.join(pyPol_data, 'reducedFileIndex.csv') fileIndex = Table.read(indexFile, format='ascii.csv') # Read in the polarization standards file print('Reading polarization data from disk') polStandardFile = os.path.join('polStandards.csv') polStandards = Table.read(polStandardFile, format='ascii.csv') # Construct SkyCoord object containing the coordinates of the standards ra1 = polStandards['RA'].data dec1 = polStandards['Dec'].data polStanCoords = SkyCoord(ra = ra1, dec = dec1, unit = (u.hour, u.deg), frame = 'fk5') # Determine which parts of the fileIndex are usable useFiles = fileIndex['Use'] == 1 # Further restrict the selection to only include the pre-selected targets targetFiles = np.array([False]*len(fileIndex), dtype=bool) for target in targets: targetFiles = np.logical_or(targetFiles, fileIndex['Target'] == target) # Cull the fileIndex to ONLY include the specified calibration targets calFiles = np.logical_and(useFiles, targetFiles) if np.sum(calFiles) > 0: fileInds = np.where(calFiles) fileIndex = fileIndex[fileInds] # Group the fileIndex by... # 1. Target # 2. Waveband # 3. Dither (pattern) fileIndexByWaveband = fileIndex.group_by(['Waveband']) # Loop through each target for iGroup, group in enumerate(fileIndexByWaveband.groups): # Grab the current group information thisWaveband = str(np.unique(group['Waveband'].data)[0]) # Update the user on processing status print('\nProcessing targets for') print('Waveband : {0}'.format(thisWaveband)) # Define the polarization standard files thisFilename = 'polStandardTable_{0}.csv'.format(thiswaveBand) outTableFile = os.path.join(pyPol_data, thisFilename) # # Setup a table for storing the final polStandard information # # Begin by copying the original polStandards table to get the proper formating # polStandardTable = polStandards.copy() # polStandardTable_V.remove_rows(slice(0, len(polStandardTable_V), 1)) # polStandardTable_R = polStandardTable_V.copy() # # # Remove the R-band columns from the V table and vice versa # polStandardTable_V.remove_columns(['P_R', 'sP_R', 'PA_R', 'sPA_R']) # polStandardTable_R.remove_columns(['P_V', 'sP_V', 'PA_V', 'sPA_V']) # Loop through each subgroup and compute the photometry of the stars # in those images. indexBySubGroup = group.group_by(['Name']) subGroupKeys = indexBySubGroup.groups.keys for iSubGroup, subGroup in enumerate(indexBySubGroup.groups): # Update the user on processing status thisSubGroup = str(np.unique(subGroup['Name'].data)[0]) print('\tSubgroup : {0}'.format(thisSubGroup)) # Start by breaking the subGroup up into its constituent polAngs indexByPolAng = subGroup.group_by(['Pol Ang']) # Initalize a dictionary for storing the respective images subGroupImgDict = {} # We are assuming that each subgroup is uniqouely named. In this # case, it represents an independent measure of the polarization # of a standard star. Thus, let's loop through the expected polAng # files, read them in, and store them in a dictionary for later use. # Initalize a boolean list to track which standards appear within # the images of this subgroup polStandardBool = np.ones((len(polStandards),), dtype=bool) # Loop through each polAng subset of the subGroup and read in images polAngGroupKeys = indexByPolAng.groups.keys for polAngGroup in indexByPolAng.groups: # Generate the expected file name and attempt to read it in thisPolAng = str(np.unique(polAngGroup['Pol Ang'])[0]) inputFile = '_'.join([thisTarget, thisSubGroup, thisPolAng]) + '.fits' inputPath = os.path.join(polAngDir, inputFile) if os.path.isfile(inputPath): polAngImg = AstroImage(inputPath) # Determine which standards appear in this image polStandardBool = np.logical_and(polStandardBool, polAngImg.in_image(polStanCoords, edge=50)) else: print('Could not find expected polAng image') pdb.set_trace() # Store this image in the dictionary subGroupImgDict[int(thisPolAng)] = polAngImg # Now that all the polAng images are stored in a dictionary, let's # double check that AT LEAST ONE of the standards appear in all four # polAng images. if np.sum(polStandardBool) < 1: errStr = '''It would seem that none of the entries in the standard catalog appear in these images. Either... 1) You need to add entries into your polarization standard catalog OR 2) These images don't actually contain any polarization standard star If it is option (2), then make sure to eliminate this target from the "targets" variable near the top of this script.''' print(errStr) pdb.set_trace() else: # At least one polarization standard was found in all four # images, so we can proceed to do polarimetry on that source. # Start by grabbing the standard(s) which appear in these imgs subGroupStandards = polStandards[np.where(polStandardBool)] for standard in subGroupStandards: # Grab the name of this standard thisStandard = standard['Name'] print('\t\tStandard : {0}'.format(thisStandard)) # Loop through each polAng image, test for saturation, # measure star width, and perform aperture photometry. photDict = {} for polAng, polAngImg in subGroupImgDict.items(): # Update the user on processing status print('\t\t\tPolaroid Angle : {0}'.format(str(polAng))) # Find the expectedstar coordinates in this image using # the WCS in the header thisWCS = WCS(polAngImg.header) skyCoord1 = SkyCoord(ra=standard['RA'], dec=standard['Dec'], unit=(u.hour, u.deg), frame='icrs') x1, y1 = thisWCS.all_world2pix(skyCoord1.ra, skyCoord1.dec, 0) # Cut out a small subarray around the predicted position lf, rt = np.int(np.round(x1 - 20)), np.int(np.round(x1 + 20)) bt, tp = np.int(np.round(y1 - 20)), np.int(np.round(y1 + 20)) tmpArr = polAngImg.arr[bt:tp, lf:rt] # Test if this star appears to be saturated if tmpArr.max() > satLimit: # If it is saturated, then make the "saturatedStar" # variable "True" so that we will know NOT to use # this standard star later and break out of the loop. print('\t\t\tStar is saturated!') saturatedStar = True break # Use a centroid function to get a more precise position x1, y1 = (centroid_com(tmpArr) + np.array([lf, bt])) from photutils import data_properties, properties_table # Measure star width properties columns = ['id', 'xcentroid', 'ycentroid', 'semimajor_axis_sigma', 'semiminor_axis_sigma', 'orientation'] props = data_properties(tmpArr) tbl = properties_table(props, columns=columns) # Compute the axis ratio and test if it's any good semimajor = tbl['semimajor_axis_sigma'].data[0] semiminor = tbl['semiminor_axis_sigma'].data[0] axisRatio = semimajor/semiminor if axisRatio > 1.3: print('\t\t\tStar is too oblate!') print('\t\t\ta/b = {0}'.format(axisRatio)) oblateStar = True break # If it is not too oblate, then compute an approximate # width using a geometric mean starWidth = np.sqrt(semimajor*semiminor) # Build a circular aperture and a sky annulus to # measure the star photometry starAperture = CircularAperture((x1, y1), r=2*starWidth) skyAperture = CircularAnnulus((x1, y1), r_in=3.0*starWidth, r_out=3.0*starWidth + 4) # Measure the photometry (flux not magnitudes) using the # polAngImg.sigma array as the source of uncertainties phot_table = aperture_photometry(polAngImg.arr, [starAperture, skyAperture], error=polAngImg.sigma) # Compute a mean background count rate within annulus skyArea = skyAperture.area() bkg_mean = phot_table['aperture_sum_1'].data[0] / skyArea sig_bkg_mean = phot_table['aperture_sum_err_1'].data[0] / skyArea # Compute the background contribution to the stellar flux starArea = starAperture.area() bkg_sum = bkg_mean * starArea sig_bkg_sum = sig_bkg_mean * starArea # Compute a final stellar flux final_flux = phot_table['aperture_sum_0'].data[0] - bkg_sum sig_final_flux = np.sqrt(phot_table['aperture_sum_err_0'].data[0]**2 + sig_bkg_sum) # Store the star photometry (and uncertainty) in the # photDict under its polAng photDict[polAng] = { 'flux': final_flux, 's_flux': sig_final_flux} else: # If the whole loop executed without any problems, then # it is safe to assume that photometry can be trusted. # Indicate this with the "starSaturated" boolean flag. saturatedStar = False oblateStar = False # Now that the photometry for this star has been # successfully measured, let's double check that the star # was not saturated or oblate. if saturatedStar: print('\t\tAt least one photometry measurement was saturated!') print('\t\tDo not compute the observed polarization.') continue if oblateStar: print('\t\tAt least one star was too oblate.') print('\t\tDo not compute the observed polarization.') continue # If the all of the photometry measurements can be trusted, # then continue to estimate the polarization of this source. # ********** STOKES U ********** A = (photDict[0]['flux'] - photDict[400]['flux']) B = (photDict[0]['flux'] + photDict[400]['flux']) U = A/B # Compute the uncertainty in that Stokes U quantity s_AB = np.sqrt(photDict[0]['s_flux']**2 + photDict[400]['s_flux']**2) s_U = np.abs(s_AB/B)*np.sqrt(1.0 + U**2) # ********** STOKES Q ********** A = (photDict[200]['flux'] - photDict[600]['flux']) B = (photDict[200]['flux'] + photDict[600]['flux']) Q = A/B # Compute the uncertainty in that Stokes U quantity s_AB = np.sqrt(photDict[200]['s_flux']**2 + photDict[600]['s_flux']**2) s_Q = np.abs(s_AB/B)*np.sqrt(1.0 + Q**2) # ********** POLARIZATION PERCENTAGE ********** P = np.sqrt(U**2 + Q**2) s_P = np.sqrt((U*s_U)**2 + (Q*s_Q)**2)/P # ...and de-bias the polarization measurements if P/s_P <= 1: P = 0 else: P = np.sqrt(P**2 - s_P**2) # ********** POLARIZATION POSITION ANGLE ********** PA = np.rad2deg(0.5*np.arctan2(U, Q)) # lazy way (assumes sigQ ~= sigU) # sigPA = 0.5*rad2deg*(sigP/P) # Real way (uses actual sigQ and sigU) s_PA = 0.5*rad2deg*np.sqrt((U*s_Q)**2 + (Q*s_U)**2)/P**2 # TODO Double check that this matches the formula in PEGS_pol # I think that PEGS pol is actually MISSING a factor of P # in the denominator. # Scale up polarization values to percentages P *= 100.0 s_P *= 100.0 # Check that the polarization is reasonable # (e.g. R-band, 20150119, HD38563A is problematic) if P > 10: print('\tThe polarization of star {0} seems to high'.format(star)) print('\tskipping to next star') continue pdb.set_trace() # Now add an entry to the temporary polarization table # # Generate the poper keys for storing this data in table columns # subGroupStr = str(iGroup+1) + str(iSubGroup+1) # P_key = '_'.join(['P', thisWaveband, subGroupStr]) # sP_key = '_'.join(['sP', thisWaveband, subGroupStr]) # PA_key = '_'.join(['PA', thisWaveband, subGroupStr]) # sPA_key = '_'.join(['sPA', thisWaveband, subGroupStr]) # # # Add the columns required for the polStandardTables # if thisWaveband == 'V': # polStandardTable_V.add_columns([ # Column(name = P_key, data = np.zeros(len(polStandardTable_V))), # Column(name = sP_key, data = np.zeros(len(polStandardTable_V))), # Column(name = PA_key, data = np.zeros(len(polStandardTable_V))), # Column(name = sPA_key, data = np.zeros(len(polStandardTable_V))) # ]) # elif thisWaveband == 'R': # polStandardTable_R.add_columns([ # Column(name = P_key, data = np.zeros(len(polStandardTable_R))), # Column(name = sP_key, data = np.zeros(len(polStandardTable_R))), # Column(name = PA_key, data = np.zeros(len(polStandardTable_R))), # Column(name = sPA_key, data = np.zeros(len(polStandardTable_R))) # ]) # # # pdb.set_trace() # # # # Initalize a boolean list for testing which stars lie within the image # footprint. polStandardBool = [True]*len(polStandards) pdb.set_trace() # Initalize an empty dictionary for storing polAng AstroImage objects polAngImgs = {} indexTargetWavePolAng = indexTargetWave.group_by(['Pol Ang']) for polAng in indexTargetWavePolAng.groups: # Loop through each of the polAng images, # and check which polarization standards are common to them all thisPolAng = str(np.unique(polAng['Pol Ang'].data)[0]) # Read in the current polAng image inFile = os.path.join(polAngDir, '_'.join([thisTarget, thisWaveband, thisPolAng]) + '.fits') # Read the file and store it in the dictionary thisImg = AstroImage(inFile) polAngImgs[int(thisPolAng)] = thisImg # Determine which standards appear in this image polStandardBool = np.logical_and(polStandardBool, thisImg.in_image(polStanCoords, edge=50)) # A bit of cleanup to prevent confusion down the road del thisPolAng del thisImg # Select the standards for this targetWave group, and grob their # coordinates thisStandard = polStandards[np.where(polStandardBool)] thisCoords = polStanCoords[
np.where(polStandardBool)
numpy.where
from __future__ import absolute_import from __future__ import division from __future__ import print_function from multiprocessing import Process, Manager import numpy as np import unittest import tempfile import shutil import logging from hypothesis import given import hypothesis.strategies as st log = logging.getLogger("parallelize_bmuf_distributed_test") log.setLevel(logging.INFO) def bmuf_process(filestore_dir, process_id, shared_results, cpu_device=False, nesterov=False): # We need to import caffe2 in every process to initialize CUDA independently. from caffe2.python import core, cnn, data_parallel_model, dyndep, workspace from caffe2.proto import caffe2_pb2 dyndep.InitOpsLibrary("@/caffe2/caffe2/distributed:file_store_handler_ops") if not cpu_device: if not workspace.has_gpu_support and not workspace.has_hip_support: log.info('No GPU support test is Ignored.') return if workspace.NumGpuDevices() < 4: log.info('Not enough GPU support, test IGNORED') return model = cnn.CNNModelHelper( order="NHWC", name="test" ) if not cpu_device: device_type = workspace.GpuDeviceType device_prefix = "gpu" else: device_type = caffe2_pb2.CPU device_prefix = "cpu" devices = [0, 1] if process_id == 0 else [2, 3] def _model_build_fun(model, loss_scale): fc = model.FC( "data", "fc", 16, 1, ("ConstantFill", {}), ("ConstantFill", {}) ) fc_fl = model.FlattenToVec(fc, "fc_fl") sigm = model.Sigmoid(fc_fl, "sigm") sq = model.SquaredL2Distance([sigm, "label"], "sq") loss = model.AveragedLoss(sq, "loss") loss = model.Scale(loss, scale=loss_scale) # For testing explicit sync model.param_init_net.UniformFill([], ["sync_num"], shape=[1]) return [loss] def _input_builder_fun(model): return None def _param_update_fun(model): ITER = model.Iter("ITER") LR = model.net.LearningRate( [ITER], "LR", base_lr=(-0.1), policy="fixed", ) ONE = model.param_init_net.ConstantFill( [], "ONE", shape=[1], value=1.0, ) for param in model.GetParams(): grad = model.param_to_grad[param] model.WeightedSum([param, ONE, grad, LR], param) def _generate_data(devices, process_id, device_type, device_prefix): np.random.seed(26 + process_id * 10) # Each run has same input, independent of number of gpus batch_size = 64 for _ in range(0, 10): full_data =
np.random.rand(batch_size, 16)
numpy.random.rand
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Utility functions required for the download helpers. :copyright: <NAME> (<EMAIL>), 2014 :license: GNU Lesser General Public License, Version 3 (http://www.gnu.org/copyleft/lesser.html) """ from urllib2 import HTTPError, URLError import collections import copy import fnmatch import itertools import os from lxml import etree import numpy as np from scipy.spatial import cKDTree from socket import timeout as SocketTimeout import time import obspy import warnings from obspy.core.util.base import NamedTemporaryFile from obspy.fdsn.client import FDSNException from obspy.mseed.util import getRecordInformation # Different types of errors that can happen when downloading data via the # FDSN clients. ERRORS = (FDSNException, HTTPError, URLError, SocketTimeout) # Some application.wadls are wrong... OVERWRITE_CAPABILITIES = { "resif": None } # mean earth radius in meter as defined by the International Union of # Geodesy and Geophysics. EARTH_RADIUS = 6371009 ChannelAvailability = collections.namedtuple( "ChannelAvailability", ["network", "station", "location", "channel", "starttime", "endtime", "filename"]) class Station(object): __slots__ = ["network", "station", "latitude", "longitude", "elevation_in_m", "channels", "stationxml_filename"] def __init__(self, network, station, latitude, longitude, elevation_in_m, channels=None, stationxml_filename=None): self.network = network self.station = station self.latitude = latitude self.longitude = longitude self.elevation_in_m = elevation_in_m self.channels = channels if channels else [] self.stationxml_filename = stationxml_filename def __repr__(self): return "Station(%s, %s, %s, %s, %s, %s, %s)" % ( self.network.__repr__(), self.station.__repr__(), self.latitude.__repr__(), self.longitude.__repr__(), self.elevation_in_m.__repr__(), self.channels.__repr__(), self.stationxml_filename.__repr__()) def __eq__(self, other): try: for key in self.__slots__: if getattr(self, key) != getattr(other, key): return False except AttributeError as e: return False return True def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return hash(tuple(str(getattr(self, i)) for i in self.__slots__)) class Channel(object): __slots__ = ["location", "channel", "mseed_filename"] def __init__(self, location, channel, mseed_filename=None): self.location = location self.channel = channel self.mseed_filename = mseed_filename def __repr__(self): return "Channel(%s, %s, %s)" % ( self.location.__repr__(), self.channel.__repr__(), self.mseed_filename.__repr__()) def __eq__(self, other): try: for key in self.__slots__: if getattr(self, key) != getattr(other, key): return False except AttributeError: return False return True def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return hash(tuple(getattr(self, i) for i in self.__slots__)) def format_report(report): """ Pretty print the report returned from the download() function of the download helper. """ print("\nAttempted to acquire data from %i clients." % len(report)) for info in report: stationxmls = [] mseeds = [] for station in info["data"]: stationxmls.append(station.stationxml_filename) mseeds.extend([i.mseed_filename for i in station.channels]) filesize = sum(os.path.getsize(i) for i in (mseeds + stationxmls)) filesize /= (1024.0 * 1024.0) print("\tClient %10s - %4i StationXML files | %5i MiniSEED files " "| Total Size: %.2f MB" % ('%s' % info["client"], len(stationxmls), len(mseeds), filesize)) def is_in_list_of_channel_availability(network, station, location, channel, starttime, endtime, availabilities): """ Helper function checking if a given channel is in a list of ChannelAvailability tuples. :param network: The network code. :param station: The station code. :param location: The location code. :param channel: The channel code. :param starttime: The starttime of the data. :param endtime: The endtime of the data :param availabilities: List of ChannelAvailability objects. """ for avail in availabilities: if (avail.network == network) and \ (avail.station == station) and \ (avail.location == location) and \ (avail.channel == channel) and \ (avail.starttime <= starttime) and \ (avail.endtime >= endtime): return True return False def attach_stationxml_filenames(stations, restrictions, stationxml_path, logger): # Attach filenames to the StationXML files and get a list of # already existing StationXML files. stations_to_download = [] existing_stationxml_channels = [] for stat in copy.deepcopy(stations): filename = get_stationxml_filename( stationxml_path, stat.network, stat.station, stat.channels) if not filename: continue # If the StationXML file already exists, make sure it # contains all the necessary information. Otherwise # delete it and it will be downloaded again in the # following. if os.path.exists(filename): contents = get_stationxml_contents(filename) all_channels_good = True for chan in stat.channels: if is_in_list_of_channel_availability( stat.network, stat.station, chan.location, chan.channel, restrictions.starttime, restrictions.endtime, contents): continue all_channels_good = False break if all_channels_good is False: logger.warning( "StationXML file '%s' already exists but it " "does not contain matching data for all " "MiniSEED data available for this stations. " "It will be deleted and redownloaded." % filename) safe_delete(filename) else: existing_stationxml_channels.extend(contents) continue dirname = os.path.dirname(filename) if not os.path.exists(dirname): os.makedirs(dirname) stat.stationxml_filename = filename stations_to_download.append(stat) return { "stations_to_download": stations_to_download, "existing_stationxml_contents": existing_stationxml_channels } def attach_miniseed_filenames(stations, mseed_path): """ Attach filenames to the channels in the stations list splitting the dataset into already existing channels and new channels. """ stations_to_download = [] existing_miniseed_filenames = [] stations = copy.deepcopy(stations) for station in stations: channels = [] for channel in station.channels: filename = get_mseed_filename( mseed_path, station.network, station.station, channel.location, channel.channel) if not filename: continue if os.path.exists(filename): existing_miniseed_filenames.append(filename) continue dirname = os.path.dirname(filename) if not os.path.exists(dirname): os.makedirs(dirname) channel.mseed_filename = filename channels.append(channel) if not channels: continue station.channels = channels stations_to_download.append(station) return { "stations_to_download": stations_to_download, "existing_miniseed_filenames": existing_miniseed_filenames } def filter_stations_based_on_duplicate_id(existing_stations, discarded_station_ids, new_stations): """ :param existing_stations: A set of :class:`~.Station` object. detailing already existing stations. :param discarded_station_ids: A set of tuples denoting discarded station ids, e.g. station ids that have been discarded due to some reason. :param new_stations: A set or list of new :class:`~.Station` objects that will be filtered. :return: A set of filtered :class:`~.Station` objects. """ existing_stations = [(_i.network, _i.station) for _i in existing_stations] invalid_station_ids = set(existing_stations).union(discarded_station_ids) return list(itertools.ifilterfalse( lambda x: (x.network, x.station) in invalid_station_ids, new_stations)) def filter_stations_with_channel_list(stations, channels): station_channels = {} get_station = lambda x: "%s.%s" % (x.network, x.station) for s, c in itertools.groupby(sorted(channels, key=get_station), get_station): station_channels[s] = [(_i.location, _i.channel) for _i in c] final_stations = [] for station in stations: station_id = "%s.%s" % (station.network, station.station) if station_id not in station_channels: continue station_chan = station_channels[station_id] good_channels = [] for channel in station.channels: if (channel.location, channel.channel) not in station_chan: continue good_channels.append(channel) if good_channels: station = copy.deepcopy(station) station.channels = good_channels final_stations.append(station) return final_stations def download_stationxml(client, client_name, starttime, endtime, station, logger): bulk = [(station.network, station.station, _i.location, _i.channel, starttime, endtime) for _i in station.channels] try: client.get_stations(starttime = starttime, endtime=endtime, network=station.network, station=station.station, location=station.channels[0].location, channel=station.channels[0].channel[:2] + "?", level="response", filename=station.stationxml_filename) except Exception as e: logger.info("Failed to downloaded StationXML from %s for station " "%s.%s." % (client_name, station.network, station.station)) return None logger.info("Client '%s' - Successfully downloaded '%s'." % (client_name, station.stationxml_filename)) return station.stationxml_filename def download_and_split_mseed_bulk(client, client_name, starttime, endtime, stations, logger): """ Downloads the channels of a list of stations in bulk, saves it in the temp folder and splits it at the record level to obtain the final miniseed files. :param client: :param client_name: :param starttime: :param endtime: :param stations: :param temp_folder: :return: """ bulk = [] filenames = {} for station in stations: for channel in station.channels: net, sta, loc, chan = station.network, station.station, \ channel.location, channel.channel filenames["%s.%s.%s.%s" % (net, sta, loc, chan)] = \ channel.mseed_filename bulk.append((net, sta, loc, chan, starttime, endtime)) temp_filename = NamedTemporaryFile().name try: client.get_waveforms_bulk(bulk, filename=temp_filename) open_files = {} # If that succeeds, split the old file into multiple new ones. file_size = os.path.getsize(temp_filename) with open(temp_filename, "rb") as fh: try: while True: if fh.tell() >= (file_size - 256): break info = getRecordInformation(fh) position = fh.tell() fh.seek(position + 8, 0) data = fh.read(12) info["station"] = data[:5].strip().decode() info["location"] = data[5:7].strip().decode() info["channel"] = data[7:10].strip().decode() info["network"] = data[10:12].strip().decode() fh.seek(position, 0) channel_id = "%s.%s.%s.%s" % ( info["network"], info["station"], info["location"], info["channel"]) # Sometimes the services return something noone wants. if channel_id not in filenames: fh.read(info["record_length"]) continue filename = filenames[channel_id] if filename not in open_files: open_files[filename] = open(filename, "wb") open_files[filename].write(fh.read(info["record_length"])) finally: for f in open_files: try: f.close() except: pass finally: try: os.remove(temp_filename) except: pass logger.info("Client '%s' - Successfully downloaded %i channels (of %i)" % ( client_name, len(open_files), len(bulk))) return open_files.keys() def get_availability_from_client(client, client_name, restrictions, domain, logger): """ Returns availability information from an initialized FDSN client. :type client: :class:`obspy.fdsn.client.Client` :param client: An initialized FDSN client. :type client_name: str :param client_name: The name of the client. Only used for logging. :type restrictions: :class:`obspy.fdsn.download_helpers.Restrictions` :param restrictions: The non-domain related restrictions for the query. :type domain: :class:`obspy.fdsn.download_helpers.Domain` subclass :param domain: The domain definition. :rtype: dict Return a dictionary akin to the following containing information about all available channels according to the webservice. .. code-block:: python {("NET", "STA1"): Station(network="NET", station="STA1", latitude=1.0, longitude=2.0, elevation_in_m=3.0, channels=(Channel(location="", channel="EHE"), Channel(...), ...), client="IRIS"), ("NET", "STA2"): Station(network="NET", station="STA2", latitude=1.0, longitude=2.0, elevation_in_m=3.0, channels=(Channel(location="", channel="EHE"), Channel(...), ...), client="IRIS"), ... } """ # Check if stations needs to be filtered after downloading or if the # restrictions one can impose with the FDSN webservices queries are enough. # This depends on the domain definition. try: domain.is_in_domain(0, 0) needs_filtering = True except NotImplementedError: needs_filtering = False arguments = { "network": restrictions.network, "station": restrictions.station, "location": restrictions.location, "channel": restrictions.channel, "starttime": restrictions.starttime, "endtime": restrictions.endtime, # Request at the channel level. "level": "channel" } # Add the domain specific query parameters. arguments.update(domain.get_query_parameters()) # Check the capabilities of the service and see what is the most # appropriate way of acquiring availability information. if client_name.lower() in OVERWRITE_CAPABILITIES: cap = OVERWRITE_CAPABILITIES[client_name.lower()] if cap is None: reliable = False elif cap == "matchtimeseries": reliable = True arguments["matchtimeseries"] = True elif cap == "includeavailability": reliable = True arguments["includeavailability"] = True else: raise NotImplementedError elif "matchtimeseries" in client.services["station"]: arguments["matchtimeseries"] = True reliable = True elif "includeavailability" in client.services["station"]: reliable = True arguments["includeavailability"] = True else: reliable = False if reliable: logger.info("Client '%s' - Requesting reliable availability." % client_name) else: logger.info("Client '%s' - Requesting unreliable availability." % client_name) try: start = time.time() inv = client.get_stations(**arguments) end = time.time() except ERRORS as e: if "no data available" in str(e).lower(): logger.info("Client '%s' - No data available for request." % client_name) return {"reliable": reliable, "availability": None} logger.error( "Client '{0}' - Failed getting availability: %s".format( client_name), str(e)) return {"reliable": reliable, "availability": None} logger.info("Client '%s' - Successfully requested availability " "(%.2f seconds)" % (client_name, end - start)) availability = {} for network in inv: for station in network: # Skip the station if it is not in the desired domain. if needs_filtering is True and \ not domain.is_in_domain(station.latitude, station.longitude): continue channels = [] for channel in station.channels: # Remove channels that somehow slipped past the temporal # constraints due to weird behaviour from the data center. if (channel.start_date > restrictions.starttime) or \ (channel.end_date < restrictions.endtime): continue # Use availability information if possible. In the other # cases it should already work. if "includeavailability" in arguments and \ arguments["includeavailability"]: da = channel.data_availability if da is None: logger.warning( "Client '%s' supports the 'includeavailability'" "parameter but returns channels without " "availability information. The final " "availability might not be complete" % client_name) continue if (da.start > restrictions.starttime) or \ (da.end < restrictions.endtime): continue channels.append(Channel(location=channel.location_code, channel=channel.code)) # Group by locations and apply the channel priority filter to # each. filtered_channels = [] get_loc = lambda x: x.location for location, _channels in itertools.groupby( sorted(channels, key=get_loc), get_loc): filtered_channels.extend(filter_channel_priority( list(_channels), key="channel", priorities=restrictions.channel_priorities)) channels = filtered_channels # Filter to remove unwanted locations according to the priority # list. channels = filter_channel_priority( channels, key="location", priorities=restrictions.location_priorities) if not channels: continue availability[(network.code, station.code)] = Station( network=network.code, station=station.code, latitude=station.latitude, longitude=station.longitude, elevation_in_m=station.elevation, channels=channels) logger.info("Client '%s' - Found %i station (%i channels)." % ( client_name, len(availability), sum([len(_i.channels) for _i in availability.values()]))) return {"reliable": reliable, "availability": availability} class SphericalNearestNeighbour(object): """ Spherical nearest neighbour queries using scipy's fast kd-tree implementation. """ def __init__(self, data): cart_data = self.spherical2cartesian(data) self.data = data self.kd_tree = cKDTree(data=cart_data, leafsize=10) def query(self, points, k=10): points = self.spherical2cartesian(points) d, i = self.kd_tree.query(points, k=k) return d, i def query_pairs(self, maximum_distance): return self.kd_tree.query_pairs(maximum_distance) @staticmethod def spherical2cartesian(data): """ Converts a list of :class:`~obspy.fdsn.download_helpers.Station` objects to an array of shape(len(list), 3) containing x/y/z in meters. """ # Create three arrays containing lat/lng/elevation. shape = len(data) lat = np.array([_i.latitude for _i in data], dtype=np.float64) lon = np.array([_i.longitude for _i in data], dtype=np.float64) r = np.array([EARTH_RADIUS + _i.elevation_in_m for _i in data], dtype=np.float64) # Convert data from lat/lng to x/y/z. colat = 90.0 - lat cart_data = np.empty((shape, 3), dtype=np.float64) cart_data[:, 0] = r * np.sin(np.deg2rad(colat)) * \ np.cos(np.deg2rad(lon)) cart_data[:, 1] = r * np.sin(np.deg2rad(colat)) * \ np.sin(
np.deg2rad(lon)
numpy.deg2rad
"""Description of Crystal class.""" __author__ = 'ikibalin' __version__ = "2020_08_19" import math from matplotlib.pyplot import flag import numpy from typing import NoReturn from cryspy.A_functions_base.charge_form_factor import calc_jl_for_ion, calc_scattering_amplitude_tabulated, get_atom_name_ion_charge_shell, D_DISPERSION from cryspy.A_functions_base.debye_waller_factor import calc_param_iso_aniso_by_b_iso_beta, calc_u_ij_by_beta from cryspy.A_functions_base.matrix_operations import calc_m1_m2_inv_m1, calc_m_v from cryspy.A_functions_base.magnetic_form_factor import get_j0_j2_parameters from cryspy.A_functions_base.unit_cell import calc_eq_ccs_by_unit_cell_parameters, calc_m_m_by_unit_cell_parameters, calc_reciprocal_by_unit_cell_parameters from cryspy.A_functions_base.structure_factor import calc_f_nucl_by_dictionary, calc_sft_ccs_by_dictionary, calc_f_m_perp_by_sft from cryspy.A_functions_base.symmetry_elements import calc_full_mag_elems, calc_symm_flags, define_bravais_type_by_symm_elems from cryspy.A_functions_base.symmetry_constraints import calc_sc_beta, calc_sc_fract_sc_b, calc_sc_chi from cryspy.B_parent_classes.cl_3_data import DataN from cryspy.B_parent_classes.preocedures import take_items_by_class from cryspy.C_item_loop_classes.cl_1_atom_site import AtomSite, AtomSiteL from cryspy.C_item_loop_classes.cl_1_atom_type import AtomTypeL from cryspy.C_item_loop_classes.cl_1_atom_site_aniso import \ AtomSiteAnisoL from cryspy.C_item_loop_classes.cl_1_atom_site_susceptibility import \ AtomSiteSusceptibilityL from cryspy.C_item_loop_classes.cl_1_atom_type_scat import \ AtomTypeScatL from cryspy.C_item_loop_classes.cl_2_atom_site_scat import \ AtomSiteScatL from cryspy.C_item_loop_classes.cl_1_atom_site_moment import AtomSiteMoment, AtomSiteMomentL from cryspy.C_item_loop_classes.cl_1_refln_susceptibility import \ ReflnSusceptibilityL from cryspy.C_item_loop_classes.cl_1_atom_local_axes import \ AtomLocalAxesL from cryspy.C_item_loop_classes.cl_1_atom_electron_configuration \ import AtomElectronConfigurationL from cryspy.C_item_loop_classes.cl_1_cell import Cell from cryspy.C_item_loop_classes.cl_1_refln import ReflnL from cryspy.C_item_loop_classes.cl_1_space_group_symop_magn_centering import \ SpaceGroupSymopMagnCenteringL from cryspy.C_item_loop_classes.cl_2_atom_rho_orbital_radial_slater \ import AtomRhoOrbitalRadialSlaterL from cryspy.C_item_loop_classes.cl_2_space_group_symop_magn_operation import \ SpaceGroupSymopMagnOperationL from cryspy.C_item_loop_classes.cl_2_space_group import SpaceGroup from cryspy.D_functions_item_loop.function_1_report_magnetization_ellipsoid \ import magnetization_ellipsoid_by_u_ij, report_main_axes_of_magnetization_ellipsoids na = numpy.newaxis class Crystal(DataN): """ Crystal structure description. Data items in the CRYSTAL category record details about crystal structure. Methods ------- - calc_b_iso_beta - calc_f_nucl - calc_susceptibility_moment_tensor - calc_magnetic_moments_with_field_loc - report_main_axes_of_magnetization_ellipsoids - calc_main_axes_of_magnetization_ellipsoids - calc_magnetization_ellipsoid - calc_hkl_in_range - calc_hkl - calc_refln_susceptibility - calc_refln Attributes ---------- - space_group, cell, atom_site (mandatory) - atom_type, atom_site_aniso, atom_site_susceptibility, atom_site_scat, atom_type_scat, atom_local_axes, atom_electron_confiduration (optional) """ CLASSES_MANDATORY = (Cell, AtomSiteL,) CLASSES_OPTIONAL = (SpaceGroup, AtomTypeL, AtomSiteAnisoL, AtomSiteSusceptibilityL, AtomSiteScatL, AtomTypeScatL, AtomLocalAxesL, AtomElectronConfigurationL, AtomSiteMomentL, SpaceGroupSymopMagnOperationL, SpaceGroupSymopMagnCenteringL) # CLASSES_INTERNAL = () CLASSES = CLASSES_MANDATORY + CLASSES_OPTIONAL PREFIX = "crystal" # default values for the parameters D_DEFAULT = {} def __init__(self, data_name=None, **kwargs) -> NoReturn: super(Crystal, self).__init__() self.__dict__["items"] = [] self.__dict__["data_name"] = data_name for key, attr in self.D_DEFAULT.items(): setattr(self, key, attr) for key, attr in kwargs.items(): setattr(self, key, attr) def form_object(self) -> NoReturn: """Redefined method of DataN.""" self.apply_constraints() def apply_constraints(self) -> NoReturn: """ Symmetry constraints on parameters. Returns ------- NoReturn DESCRIPTION. """ if self.is_attribute("space_group"): space_group = self.space_group space_group_wyckoff = space_group.space_group_wyckoff cell = self.cell cell.type_cell = space_group.bravais_type cell.it_coordinate_system_code = space_group.it_coordinate_system_code cell.apply_constraints() atom_site = self.atom_site atom_site.apply_constraints(space_group_wyckoff) if self.is_attribute("atom_site_aniso"): atom_site_aniso = self.atom_site_aniso atom_site_aniso.apply_space_group_constraint( atom_site, space_group) if self.is_attribute("atom_site_susceptibility"): atom_site_susceptibility = self.atom_site_susceptibility atom_site_susceptibility.apply_chi_iso_constraint(cell) atom_site_susceptibility.apply_space_group_constraint( atom_site, space_group, cell) def calc_b_iso_beta(self): """ Calculate b_iso and beta_ij based on atom_site and atom_sites. For each atom defined in atom_site. """ a_s = self.atom_site try: a_s_a = self.atom_site_aniso except AttributeError: a_s_a = None l_b_iso, l_beta = [], [] coeff = float(8.*numpy.pi**2) cell = self.cell for item_a_s in a_s.items: label_atom = item_a_s.label try: adp_type = item_a_s.adp_type except AttributeError: adp_type = None b_iso = 0. beta = (0., 0., 0., 0., 0., 0.) if adp_type == "Uiso": u_iso = float(item_a_s.u_iso_or_equiv) b_iso = float(8.*numpy.pi**2*u_iso) elif adp_type == "Biso": b_iso = float(item_a_s.b_iso_or_equiv) elif adp_type == "Uovl": # FIXME: correct it u_iso = float(item_a_s.u_iso_or_equiv) b_iso = coeff*u_iso elif adp_type == "Umpe": # FIXME: correct it u_iso = float(item_a_s.u_iso_or_equiv) b_iso = float(8.*numpy.pi**2*u_iso) elif adp_type == "Uani": item_a_s_a = a_s_a[label_atom] beta = item_a_s_a.calc_beta(cell) elif adp_type == "Bovl": # FIXME: correct it b_iso = float(item_a_s.b_iso_or_equiv) elif adp_type == "Bani": item_a_s_a = a_s_a[label_atom] beta = (float(item_a_s_a.b_11), float(item_a_s_a.b_22), float(item_a_s_a.b_33), float(item_a_s_a.b_12), float(item_a_s_a.b_13), float(item_a_s_a.b_23)) l_b_iso.append(b_iso) l_beta.append(beta) np_b_iso = numpy.array(l_b_iso, dtype=float) np_beta = numpy.array(l_beta, dtype=float) return np_b_iso, np_beta def calc_f_nucl(self, index_hkl): dict_crystal = self.get_dictionary() dict_in_out = {"index_hkl": index_hkl} f_nucl, dder = calc_f_nucl_by_dictionary(dict_crystal, dict_in_out, flag_use_precalculated_data=False) return f_nucl def calc_refln(self, index_hkl, flag_internal: bool = True): """ Calculate Refln cryspy object where nuclear structure factor is stored. Keyword Arguments: ----------------- h, k, l: 1D numpy array of Miller indexes flag_internal: a flag to calculate or to use internal objects. It should be True if user call the function. It's True by default. Output: ------- refln: object cryspy.Refln Example: ------- >>> import numpy as np >>> h, k, l = np.array([1,2],dtype=int), np.array([1,0],dtype=int), np.array([1,0],dtype=int) >>> refln = crystal.calc_refln(h, k, l) >>> print(refln.to_cif()) """ # if isinstance(index_h, (float, int)): # index_h = numpy.array([index_h], dtype=float) # index_k = numpy.array([index_k], dtype=float) # index_l = numpy.array([index_l], dtype=float) # elif isinstance(index_h, list): # index_h = numpy.array(index_h, dtype=float) # index_k = numpy.array(index_k, dtype=float) # index_l = numpy.array(index_l, dtype=float) # index_hkl = numpy.stack([index_h, index_k, index_l], axis=0) f_nucl = self.calc_f_nucl(index_hkl) res = ReflnL(loop_name=self.data_name) res.numpy_index_h = index_hkl[0] res.numpy_index_k = index_hkl[1] res.numpy_index_l = index_hkl[2] res.numpy_f_calc = f_nucl if flag_internal: res.numpy_to_items() return res def calc_structure_factor_tensor_ccs( self, index_hkl, flag_only_orbital: bool = False, dict_in_out: dict = None): """Calculate structure factor tensor in CCS coordinate (X||a*, Z||c).""" dict_crystal = self.get_dictionary() if dict_in_out is None: dict_in_out = {"index_hkl": index_hkl, "flag_only_orbital": flag_only_orbital} else: dict_in_out["index_hkl"] = index_hkl dict_in_out["flag_only_orbital"] = flag_only_orbital sft_ccs, dder = calc_sft_ccs_by_dictionary(dict_crystal, dict_in_out, flag_use_precalculated_data=False) return sft_ccs, dder def calc_refln_susceptibility( self, index_hkl, flag_internal: bool = True, flag_only_orbital: bool = False): """ Calculate susceptibility tensor and moment tensor. They are given in Cartesian orthogonal system (x||a*, z||c). Keyword Arguments: ----------------- h, k, l: 1D numpy array of Miller indexes Output: ------- ReflnSusceptibilityL object of cryspy Example: ------- >>> import numpy as np >>> h, k, l = np.array([1,2],dtype=int), np.array([1,0],dtype=int), np.array([1,0],dtype=int) >>> refln_suscept = crystal.calc_refln_susceptibility(h, k, l) """ sft_ccs, dder = self.calc_structure_factor_tensor_ccs( index_hkl, flag_only_orbital=flag_only_orbital) res = ReflnSusceptibilityL(loop_name=self.data_name) res.numpy_index_h = index_hkl[0,:] res.numpy_index_k = index_hkl[1,:] res.numpy_index_l = index_hkl[2,:] res.numpy_chi_11_calc = sft_ccs[0, :] res.numpy_chi_12_calc = sft_ccs[1, :] res.numpy_chi_13_calc = sft_ccs[2, :] res.numpy_chi_21_calc = sft_ccs[3, :] res.numpy_chi_22_calc = sft_ccs[4, :] res.numpy_chi_23_calc = sft_ccs[5, :] res.numpy_chi_31_calc = sft_ccs[6, :] res.numpy_chi_32_calc = sft_ccs[7, :] res.numpy_chi_33_calc = sft_ccs[8, :] if flag_internal: res.numpy_to_items() return res def calc_f_m_perp(self, index_hkl, magnetic_field, dict_in_out: dict = None): """Calculate F_M_perpendicular """ sft_ccs, dder_sft_ccs = self.calc_structure_factor_tensor_ccs(index_hkl, dict_in_out=dict_in_out) unit_cell_parameters = self.cell.get_unit_cell_parameters() eq_ccs, dder_eq_ccs = calc_eq_ccs_by_unit_cell_parameters(index_hkl, unit_cell_parameters) f_m_perp, dder_f_m_perp = calc_f_m_perp_by_sft( sft_ccs, magnetic_field, eq_ccs, flag_sft_ccs=False, flag_magnetic_field=False, flag_eq_ccs=False) return f_m_perp def calc_hkl(self, sthol_min: float = 0., sthovl_max: float = 1.): """ Calculate hkl and multiplicity taking into account the symmetry constraints. Parameters ---------- sthol_min : float minimal sin(theta)/wavelength in inversed angstrems. sthovl_max : float maximal sin(theta)/wavelength in inversed angstrems. Returns ------- h, k, l, mult : numpy.array[float] The Miller indeces: h, k, l, and its multiplicity: mult. """ cell = self.cell space_group = self.space_group res = cell.calc_hkl(space_group, sthol_min, sthovl_max) return res def calc_hkl_in_range(self, sthol_min: float = 0., sthovl_max: float = 1.): """ Give hkl without taking symmetry into account. Parameters ---------- sthol_min : float DESCRIPTION. sthovl_max : float DESCRIPTION. Returns ------- res : TYPE DESCRIPTION. """ cell = self.cell res = cell.calc_hkl_in_range(sthol_min, sthovl_max) return res def calc_magnetization_ellipsoid(self): """ Magnetization ellipsoids. The same coordinate system as U_ij (anisotropic Debye-Waller factor) Negtive eigenvalues of ellipsoid are replaced by positive. """ try: cell = self.cell a_s_m_a = self.atom_site_susceptibility except AttributeError: return l_res l_res = [] for item in a_s_m_a.items: chi_as_u_loc = magnetization_ellipsoid_by_u_ij(cell, item) l_res.append(chi_as_u_loc) return l_res def calc_main_axes_of_magnetization_ellipsoids(self): """Susceptibility along the main axes of magnetization ellipsoid. Output ------ - l_moments is main axes of ellipsoid in mu_B/T for each atom - l_moments_sigma is sigmas for main axes of ellipsoid for each atom - l_rot_matrix is directions for moments for moments[0] direction is rot_matrix[:, 0] for moments[1] direction is rot_matrix[:, 1] for moments[2] direction is rot_matrix[:, 2] The main axes are given in Cartezian coordinate system (x||a*, z||c). """ ll_moments = [] ll_directions = [] try: cell = self.cell a_s_s = self.atom_site_susceptibility except AttributeError: return ll_moments, ll_directions l_moments, l_moments_sigma, l_rot_matrix = \ a_s_s.calc_main_axes_of_magnetization_ellipsoid(cell) return l_moments, l_moments_sigma, l_rot_matrix def report_main_axes_of_magnetization_ellipsoids(self): """ Report about main axes of magnetization ellipsoids. Make a report about magnetization ellipsoids in string format. Calculations are performed by get_main_axes_of_magnetization_ellipsoids method and calc_magnetization_ellipsoid method of the crystal object. """ # crystal is defined object of cryspy library; # type(crystal) is Crystal if self.is_attribute("atom_site_susceptibility"): a_s_m_a = self.atom_site_susceptibility else: return "" cell = self.cell s_out = report_main_axes_of_magnetization_ellipsoids( cell, a_s_m_a) return s_out def calc_magnetic_moments_with_field_loc(self, field_abc): """Orientation of magetic moment for atoms at applied magnetic field. The input magnetic field should be given in normalized unit cell (a/|a|, b/|b|, c/|c|) The output magnetic moment are given in normalized unit cell (a/|a|, b/|b|, c/|c|) Output ------ l_lab_out - label of atoms l_xyz_out - position of atoms l_moment_out - moment of atoms """ np_field = numpy.array(field_abc, dtype=float) norm_field = numpy.sqrt(numpy.square(np_field).sum()) if norm_field == 0.: norm_field = 1. np_field = np_field/norm_field l_lab_out, l_xyz_out, l_moment_out = [], [], [] try: spgr = self.space_group cell = self.cell a_s = self.atom_site a_s_m_a = self.atom_site_susceptibility except AttributeError: return None m_m_norm = cell.m_m_norm m_mt_norm_m_norm_field = numpy.matmul( numpy.matmul(m_m_norm.transpose(), m_m_norm), np_field) as_p1 = [] asm_p1 = [] for _l, _11, _22, _33, _12, _13, _23 in zip( a_s_m_a.label, a_s_m_a.chi_11, a_s_m_a.chi_22, a_s_m_a.chi_33, a_s_m_a.chi_12, a_s_m_a.chi_13, a_s_m_a.chi_23): m_chi = numpy.array([[_11, _12, _13], [_12, _22, _23], [_13, _23, _33]], dtype=float) x, y, z = a_s[_l].fract_x, a_s[_l].fract_y, a_s[_l].fract_z l_out = spgr.calc_rotated_matrix_for_position(m_chi, x, y, z) for _i_out, _out in enumerate(l_out): _xyz = _out[0] _chi = _out[1] _moment = numpy.matmul(_chi, m_mt_norm_m_norm_field) label_p1 = f"{_l:}_{_i_out+1:}" l_lab_out.append(label_p1) l_xyz_out.append(_xyz) l_moment_out.append(_moment) as_p1.append(AtomSite(label=label_p1, fract_x=_xyz[0], fract_y=_xyz[1], fract_z=_xyz[2])) asm_p1.append(AtomSiteMoment( label=label_p1, crystalaxis_x=numpy.round(_moment[0], 5), crystalaxis_y=numpy.round(_moment[1], 5), crystalaxis_z=numpy.round(_moment[2], 5))) spgr_p1 = SpaceGroup(it_number=1) spgr_p1.form_object() atom_site_p1 = AtomSiteL() atom_site_p1.items = as_p1 atom_site_moment_p1 = AtomSiteMomentL() atom_site_moment_p1.items = asm_p1 cryspy_p1 = Crystal(space_group = spgr_p1, cell=cell, atom_site=atom_site_p1, atom_site_moment=atom_site_moment_p1) return cryspy_p1 def report(self): return self.report_main_axes_of_magnetization_ellipsoids() def plots(self): return [] def get_flags_atom_beta(self): atom_site = self.atom_site if self.is_attribute("atom_site_aniso"): atom_site_aniso = self.atom_site_aniso l_f = [] for item_as in atom_site.items: if item_as.adp_type == "Bani": item_asa = atom_site_aniso[item_as.label] l_f.append( numpy.array([ item_asa.b_11_refinement, item_asa.b_22_refinement, item_asa.b_33_refinement, item_asa.b_12_refinement, item_asa.b_13_refinement, item_asa.b_23_refinement], dtype=bool)) elif item_as.adp_type == "Uani": item_asa = atom_site_aniso[item_as.label] l_f.append( numpy.array([ item_asa.u_11_refinement, item_asa.u_22_refinement, item_asa.u_33_refinement, item_asa.u_12_refinement, item_asa.u_13_refinement, item_asa.u_23_refinement], dtype=bool)) else: l_f.append(numpy.zeros((6,), dtype=bool)) res = numpy.stack(l_f, axis=0).transpose() else: res = numpy.zeros((6, len(atom_site.items)), dtype=bool) return res def get_dictionary(self): """Form dictionary. See documentation moduel CrysPy using Jupyter notebook. """ self.form_object() ddict = {} space_group, cell, atom_site = None, None, None atom_site_susceptibility, atom_electron_configuration = None, None atom_type_scat = None atom_type = None atom_site_aniso = None atom_site_scat = None atom_site_moment = None space_group_symop_magn_centering = None space_group_symop_magn_operation = None l_obj = take_items_by_class(self, (SpaceGroup,)) if len(l_obj) > 0: space_group = l_obj[0] l_obj = take_items_by_class(self, (Cell,)) if len(l_obj) > 0: cell = l_obj[0] l_obj = take_items_by_class(self, (AtomSiteL,)) if len(l_obj) > 0: atom_site = l_obj[0] l_obj = take_items_by_class(self, (AtomSiteAnisoL,)) if len(l_obj) > 0: atom_site_aniso = l_obj[0] l_obj = take_items_by_class(self, (AtomSiteScatL,)) if len(l_obj) > 0: atom_site_scat = l_obj[0] l_obj = take_items_by_class(self, (AtomTypeL,)) if len(l_obj) > 0: atom_type = l_obj[0] l_obj = take_items_by_class(self, (AtomTypeScatL,)) if len(l_obj) > 0: atom_type_scat = l_obj[0] l_obj = take_items_by_class(self, (AtomSiteSusceptibilityL,)) if len(l_obj) > 0: atom_site_susceptibility = l_obj[0] l_obj = take_items_by_class(self, (AtomElectronConfigurationL,)) if len(l_obj) > 0: atom_electron_configuration = l_obj[0] l_obj = take_items_by_class(self, (AtomSiteMomentL,)) if len(l_obj) > 0: atom_site_moment = l_obj[0] l_obj = take_items_by_class(self, (SpaceGroupSymopMagnCenteringL,)) if len(l_obj) > 0: space_group_symop_magn_centering = l_obj[0] l_obj = take_items_by_class(self, (SpaceGroupSymopMagnOperationL,)) if len(l_obj) > 0: space_group_symop_magn_operation = l_obj[0] ddict["name"] = self.data_name ddict["type_name"] = self.get_name() ind_mag = None rad = numpy.pi/180. if space_group is not None: full_symm_elems = space_group.full_space_group_symop.get_symm_elems() ddict["full_symm_elems"] = full_symm_elems reduced_symm_elems = space_group.reduced_space_group_symop.get_symm_elems() ddict["reduced_symm_elems"] = reduced_symm_elems ddict["centrosymmetry"] = space_group.centrosymmetry if ddict["centrosymmetry"]: p_centr = space_group.pcentr lcm = numpy.lcm.reduce([fr.denominator for fr in p_centr]) vals = [int(fr.numerator * lcm / fr.denominator) for fr in p_centr] vals.append(lcm) ddict["centrosymmetry_position"] = numpy.array(vals, dtype=int) shift = space_group.shift l_vals = [] for ind in range(len(shift)): lcm = numpy.lcm.reduce([fr.denominator for fr in shift[ind]]) vals = [int(fr.numerator * lcm / fr.denominator) for fr in shift[ind]] vals.append(lcm) l_vals.append(vals) ddict["translation_elems"] = numpy.array(l_vals, dtype=int).transpose() if space_group_symop_magn_operation is not None: if space_group_symop_magn_centering is not None: se_sgsmo = self.space_group_symop_magn_operation.get_sym_elems() se_sgsmc = self.space_group_symop_magn_centering.get_sym_elems() full_mcif_elems = calc_full_mag_elems(se_sgsmo, se_sgsmc) ddict["full_mcif_elems"] = full_mcif_elems if cell is not None: if cell.is_attribute("type_cell"): type_cell, it_coordinate_system_code = cell.type_cell, cell.it_coordinate_system_code elif "full_mcif_elems" in ddict.keys(): type_cell, it_coordinate_system_code = define_bravais_type_by_symm_elems(full_mcif_elems) cell.type_cell = type_cell cell.it_coordinate_system_code = it_coordinate_system_code cell.apply_constraints() unit_cell_parameters = cell.get_unit_cell_parameters() sc_uc, v_uc = calc_sc_v_unit_cell_parameters(type_cell, it_coordinate_system_code) ddict["sc_uc"] = sc_uc ddict["v_uc"] = v_uc ddict["unit_cell_parameters"] = numpy.dot(sc_uc, unit_cell_parameters)+v_uc ddict["flags_unit_cell_parameters"] = cell.get_flags_unit_cell_parameters() if atom_site is not None: atom_label = numpy.array(atom_site.label, dtype=str) atom_occupancy = numpy.array(atom_site.occupancy, dtype=float) if atom_site.is_attribute("multiplicity"): atom_multiplicity = numpy.array(atom_site.multiplicity, dtype=int) ddict["atom_multiplicity"] = atom_multiplicity atom_fract_xyz = numpy.array([atom_site.fract_x, atom_site.fract_y, atom_site.fract_z], dtype=float) atom_fract_xyz = numpy.mod(atom_fract_xyz, 1.) atom_type_symbol = numpy.array(atom_site.type_symbol, dtype=str) table_sthovl = numpy.linspace(0, 2, 501) # fro0 to 2 Å**-1 table_wavelength = D_DISPERSION["table_wavelength"] l_table_atom_scattering_amplitude = [] l_table_atom_dispersion = [] flag_atom_scattering_amplitude = True for type_symbol in atom_type_symbol: try: jl = calc_jl_for_ion(table_sthovl, type_symbol) scattering_amplitude = jl[:,0] except UserWarning: try: scattering_amplitude = calc_scattering_amplitude_tabulated(type_symbol, table_sthovl)[0] except KeyError: flag_atom_scattering_amplitude = False break l_table_atom_scattering_amplitude.append(scattering_amplitude) type_atom = get_atom_name_ion_charge_shell(type_symbol)[0] if type_atom in D_DISPERSION.keys(): l_table_atom_dispersion.append(D_DISPERSION[type_atom]) else: l_table_atom_dispersion.append(numpy.zeros_like(table_wavelength)) if flag_atom_scattering_amplitude: ddict["table_sthovl"] = table_sthovl ddict["table_atom_scattering_amplitude"] = numpy.stack(l_table_atom_scattering_amplitude, axis=0) ddict["table_wavelength"] = table_wavelength ddict["table_atom_dispersion"] = numpy.stack(l_table_atom_dispersion, axis=0) atom_b_scat = numpy.array(atom_site.scat_length_neutron, dtype=complex) b_d = 3*10**6*
numpy.ones(atom_fract_xyz.shape[1:], dtype=int)
numpy.ones
from shared.finesse.helper import * import numpy as np import math, time __author__ = '<NAME>' __copyright__ = 'Copyright (c) 2015-2016 Eclipse Technologies' _AXES = { 'x': np.array([1, 0, 0]), 'y': np.array([0, 1, 0]), 'z': np.array([0, 0, 1]) } def ik2d(l1, l2, x, y): # Compute theta2. There are two solutions. t2 = math.acos((x**2 + y**2 - l1**2 - l2**2) / (2 * l1 * l2)) theta2 = np.array((t2, -t2)) # Compute theta1. xdot = x * (l1 + l2 * np.cos(theta2)) + y * (l2 * np.sin(theta2)) ydot = y * (l1 + l2 * np.cos(theta2)) - x * (l2 * np.sin(theta2)) theta1 = np.arctan2(ydot, xdot) return theta1, theta2 def fullik(angles, lengths, target, constraints=None, predilection=None): target = np.asarray(target, dtype=np.float64) dist = np.linalg.norm(target) if dist > sum(lengths): # Target is unreachable. return # Rotate target to the xz plane. roll = -math.atan2(target[2], target[1]) - math.pi/2 q2 = quaternion(_AXES['x'], -roll) target = np.dot(target, q2) theta1, theta2 = ik2d(lengths[0], lengths[1], target[0], target[2]) theta1 += np.pi/2 # Apply constraints. if constraints is not None: c1, c2 = constraints c1_index = np.where((theta1 >= c1[0]) & (theta1 <= c1[1])) c2_index = np.where((theta2 >= c2[0]) & (theta2 <= c2[1])) if len(c1_index) == 1 and len(c2_index) == 1: theta1 = theta1[c1_index] theta2 = theta2[c2_index] # Apply predilection. if predilection is not None and len(theta1) > 1 and len(theta2) > 1: if predilection == 1: c2_index = np.where(theta2 > 0) theta1 = theta1[c2_index] theta2 = theta2[c2_index] else: c2_index = np.where(theta2 < 0) theta1 = theta1[c2_index] theta2 = theta2[c2_index] return theta1[0], roll, theta2[0] def forward(lengths, angles): l1 = lengths[0] l2 = lengths[1] theta1 = angles[0] theta2 = angles[1] x1 = l1 * math.cos(theta1) y1 = l1 * math.sin(theta1) x2 = x1 + l2 * math.cos(theta1 + theta2) y2 = y1 + l2 * math.sin(theta1 + theta2) return np.array((x1, y1)), np.array((x2, y2)) def forward_kinematics(lengths, angles): # Set initial points. points = [ np.array([0, 0, 0]),
np.array([0, 0, -lengths[0]])
numpy.array
''' Wigner symbols. <NAME> 2016 Algorithm based on the sympy implimentation of sympy.physics.wigner, which was based off of: [Rasch03] <NAME> and <NAME>, 'Efficient Storage Scheme for Pre-calculated Wigner 3j, 6j and Gaunt Coefficients', SIAM J. Sci. Comput. Volume 25, Issue 4, pp. 1416-1428 (2003) Additional routines have been added for special configurations of Wigner 3 j symbols The code has not be written in a way to handle large input values; beware of precission issues associated with large values aquired from factorials. ''' import numpy as np try: from scipy.special import factorial except ImportError: print('You are using an older version of scipy. Importing factorial from old location') from scipy.misc import factorial import sys # store factorials in an array def factorial_list(N): x=np.arange(N+1) return factorial(x) # old way for the factorials, no longer used. # def factorial_list(N): # # FL=[1] # # N = highest factorial needed for computation # # note_to_self : maybe it is faster to use the scipy factorial # # function and then append to Factorial_list # # #if N > len(FL): # if N > 1: # for i in range(len(FL), int(N+1)): # FL.append(FL[i-1]*i) # return FL[:int(N) + 1] # else: # return FL def three_j(j,m): j_1,j_2,j_3=j m_1,m_2,m_3=m # symmetry conditions if int(j_1 * 2) != j_1 * 2 or int(j_2 * 2) != j_2 * 2 or \ int(j_3 * 2) != j_3 * 2: raise ValueError("j values must be integer or half integer, error in three_j)") if int(m_1 * 2) != m_1 * 2 or int(m_2 * 2) != m_2 * 2 or \ int(m_3 * 2) != m_3 * 2: raise ValueError("m values must be integer or half integer, error in three_m") if m_1 + m_2 + m_3 != 0: return 0 PF= np.int((-1) ** int(j_1 - j_2 - m_3)) M=-m_3; a1 = j_1 + j_2 - j_3 if a1 < 0: return 0 a2 = j_1 - j_2 + j_3 if a2 < 0: return 0 a3 = -j_1 + j_2 + j_3 if a3 < 0: return 0 if (abs(m_1) > j_1) or (abs(m_2) > j_2) or (abs(m_3) > j_3): return 0 # special case identities, taken from the Mathematica website for 3-j symbols if ( (j_1==j_2) & (j_3==0) & (m_1==-m_2) & (m_3==0) ): return (-1)**(j_1-m_1)/np.sqrt(2*j_1+1) #if ( (m_1==0) & (m_2==0) & (m_3==0) max_factor=max(j_1 + j_2 + j_3 + 1, j_1 + abs(m_1), j_2 + abs(m_2), j_3 + abs(m_3)) FL=factorial_list(max_factor) Sqrt_Arg=(FL[int(j_1+j_2-j_3)] \ *FL[int(j_1-j_2+j_3)] \ *FL[int(-j_1+j_2+j_3)] \ *FL[int(j_1-m_1)] \ *FL[int(j_1+m_1)] \ *FL[int(j_2-m_2)] \ *FL[int(j_2+m_2)] \ *FL[int(j_3-m_3)] \ *FL[int(j_3+m_3)] )/FL[int(j_1+j_2+j_3+1)] Sqrt_part=np.sqrt(Sqrt_Arg) # need to fix this #if Sqrt_part.is_complex: # Sqrt_part=Sqrt_part.as_real_imag()[0] i_min = max(-j_3 + j_1 + m_2, -j_3 + j_2 - m_1, 0) i_max = min(j_2 + m_2, j_1 - m_1, j_1 + j_2 - j_3) Sum=0 for i in range(int(i_min),int(i_max) + 1): denom=FL[i] \ *FL[int(i+j_3-j_1-m_2)] \ *FL[int(j_2 + m_2- i)] \ *FL[int(j_1-i-m_1)] \ *FL[int(i + j_3-j_2 + m_1)] \ *FL[int(j_1 +j_2 -j_3 -i)] Sum=Sum+np.int((-1)**i)/float(denom) # might have to reset FL return Sum*Sqrt_part*PF def Delta_coef(a,b,c,prec=None): if int(a + b- c) != (a + b - c): raise ValueError("j values must be integer or half integer and fulfill the triangle relation") if int(a + c - b) != (a + c - b): raise ValueError("j values must be integer or half integer and fulfill the triangle relation") if int(b + c - a) != (b + c - a): raise ValueError("j values must be integer or half integer and fulfill the triangle relation") if (a+ b - c) < 0: return 0 if (a + c - b) < 0: return 0 if (b + c - a) < 0: return 0 max_factor=max(a + b -c, a+c-b, b+c -a, a+b +c + 1) FL=factorial_list(max_factor) Sqrt_Arg=float(FL[int(a + b -c)] \ *FL[int(a + c - b)] \ *FL[int(b + c - a)])/float(FL[int(a + b + c + 1)]) Sqrt_part=np.sqrt(Sqrt_Arg) #if prec: # Sqrt_part=Sqrt_part.evalf( return Sqrt_part def Racah(a,b,c,d,e,f, prec=None): # the Racah symbol PF=Delta_coef(a,b,e,prec) \ *Delta_coef(c,d,e,prec) \ *Delta_coef(a,c,f,prec) \ *Delta_coef(b,d,f, prec) if PF==0: return 0 i_min = max(a + b + e, c + d + e, a + c + f, b + d + f) i_max = min(a + b+ c + d, a + d + e + f, b + c + e + f) max_factor=max(i_max + 1, a + b + c + d, a + d + e + f,b + c + e + f) FL=factorial_list(max_factor) Sum=0 for i in range(int(i_min), int(i_max)+ 1): denom=FL[int(i-a-b-e)]\ *FL[int(i-c-d-e)]\ *FL[int(i-a-c-f)]\ *FL[int(i-b-d-f)]\ *FL[int(a + b + c + d - i)]\ *FL[int(a + d + e + f - i)]\ *FL[int(b + c + e + f - i)] Sum=Sum+((-1)**i*FL[i+1])/float(denom) return PF*Sum*(-1)**int(a+b+c+d) def six_j(j): j_1,j_2,j_3,j_4,j_5,j_6=j return (-1)**int(j_1+j_2+j_4 +j_5)*Racah(j_1, j_2, j_5, j_4, j_3, j_6,) if __name__=="__main__": # j=np.array([2,6,4]) # m=np.array([0,0,0]) # j_1,j_2,j_3=j # m_1,m_2,m_3=m # W=wigner.wigner_3j(j_1,j_2,j_3, m_1,m_2,m_3) # # print(W # # print(three_j(j,m) # j=np.array([3,3,3,3,3,3]) # print('my six j',six_j(j) # W=wigner.wigner_6j(3,3,3,3,3,3) # print('6 j',W, -1/14. # # print(six_j(np.array([5,5,5,5,5,5])), 1/52. print('some test cases for the 3-j symbols') print('test 1') print('----------------------------------------') print('j=1,2,3 & m=0,0,0 => ', -np.sqrt(3/35.)) j=np.array([1,2,3]); m=
np.array([0,0,0])
numpy.array
# -------------------------------------------------------- # Fast/er R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by <NAME> # -------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import pickle import numpy as np from math import radians def parse_rec(df, filename): """ Parse PASCAL 3D annotation file """ objects = [] objs = df[df.im_path == filename] for ix in range(len(objs)): obj_struct = {} obj_struct['class'] = objs.iloc[ix]['cat'] x1 = max(int(objs.iloc[ix]['left']), 0) y1 = max(int(objs.iloc[ix]['upper']), 0) x2 = min(int(objs.iloc[ix]['right']), int(objs.iloc[ix]['height'] - 1)) y2 = min(int(objs.iloc[ix]['lower']), int(objs.iloc[ix]['width'] - 1)) obj_struct['bbox'] = [x1, y1, x2, y2] obj_struct['difficult'] = objs.iloc[ix]['difficult'] obj_struct['truncated'] = objs.iloc[ix]['truncated'] obj_struct['occluded'] = objs.iloc[ix]['occluded'] objects.append(obj_struct) return objects def voc_ap(rec, prec): """ Compute VOC AP given precision and recall. """ # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.], rec, [1.])) mpre = np.concatenate(([0.], prec, [0.])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] =
np.maximum(mpre[i - 1], mpre[i])
numpy.maximum
# ---------------------------------------------------------- # # ------------------ OzDES_Calculation.py ------------------ # # --------- https://github.com/jhoormann/RMCodeDump -------- # # ---------------------------------------------------------- # # This is a dump of all the functions I have collated for # # the OzDES RM program. This includes funtions defined in # # OzDES_calibSpec/getPhoto/makeLC plus some others. # # Unless otherwise noted this code was written by # # <NAME>. # # ---------------------------------------------------------- # from astropy.io import fits import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.interpolate import interp1d from scipy.integrate import fixed_quad import OzDES_Plotting as ozplot from scipy.interpolate import InterpolatedUnivariateSpline from sklearn.gaussian_process import GaussianProcessRegressor, kernels import sys # -------------------------------------------------- # # Modified from a function originally provided by # # <NAME> # # -------------------------------------------------- # # ----------------- SpectrumCoadd ------------------ # # -------------------------------------------------- # # Read in calibrated spectral data assuming data is # # in the format provided by OzDES_calibSpec after # # coadding. # # -------------------------------------------------- # class SpectrumCoadd(object): # Spectrum class for latest version of the OzDES pipeline def __init__(self, filepath=None): assert filepath != None, "No file name is specified." self.filepath = filepath try: self.data = fits.open(filepath) except IOError: print("Error: file {0} could not be found".format(filepath)) exit() data = fits.open(filepath) self.combined = data[0] self.combinedVariance = data[1] self._wavelength = None self._flux = None self._variance = None self._fluxCoadd = None self._varianceCoadd = None self._dates = None self._runs = None self.numEpochs = int((np.size(data) - 3) / 3) self.redshift = self.combined.header['z'] self.RA = self.combined.header['RA'] self.DEC = self.combined.header['DEC'] self.field = self.combined.header['FIELD'] @property def wavelength(self): """Define wavelength solution.""" if getattr(self, '_wavelength', None) is None: crpix = self.combined.header[ 'crpix1'] - 1.0 # Central pixel value. The -1.0 is needed as Python is ZERO indexed crval = self.combined.header['crval1'] # central wavelength value self.cdelt = self.combined.header['cdelt1'] # Wavelength interval between subsequent pixels n_pix = self.combined.header["NAXIS1"] wave = ((np.arange(n_pix) - crpix) * self.cdelt) + crval self._wavelength = wave return self._wavelength @property def flux(self): if getattr(self, '_flux', None) is None: self._flux = np.zeros((5000, self.numEpochs), dtype=float) for i in range(self.numEpochs): self._flux[:, i] = self.data[i * 3 + 3].data return self._flux @property def variance(self): if getattr(self, '_variance', None) is None: self._variance = np.zeros((5000, self.numEpochs), dtype=float) for i in range(self.numEpochs): self._variance[:, i] = self.data[i * 3 + 4].data return self._variance @property def fluxCoadd(self): if getattr(self, '_fluxCoadd', None) is None: self._fluxCoadd = np.zeros(5000, dtype=float) self._fluxCoadd[:] = self.data[0].data return self._fluxCoadd @property def varianceCoadd(self): if getattr(self, '_varianceCoadd', None) is None: self._varianceCoadd = np.zeros(5000, dtype=float) self._varianceCoadd[:] = self.data[1].data return self._varianceCoadd @property def dates(self): if getattr(self, '_dates', None) is None: self._dates = np.zeros(self.numEpochs, dtype=float) for i in range(self.numEpochs): self._dates[i] = self.data[i * 3 + 3].header[ 'AVGDATE'] # this give the average Modified Julian Date (UTC) that observation was taken return self._dates @property def runs(self): if getattr(self, '_runs', None) is None: self._runs = np.zeros(self.numEpochs, dtype=float) for i in range(self.numEpochs): self._runs[i] = self.data[i * 3 + 3].header['RUN'] # this give the run number of the observation return self._runs # -------------------------------------------------- # # ------------------- magToFlux -------------------- # # -------------------------------------------------- # # Reads in magnitude, error, and pivot wavelength # # and converts to f_lambda in units of ergs/s/cm^2/A # # -------------------------------------------------- # def magToFlux(mag, err, pivot): flux = (3*pow(10,18)/pow(pivot,2))*pow(10, -(2./5.)*(mag + 48.6)) flux_err = abs(flux*(-2./5.)*2.30259*err) return flux, flux_err # -------------------------------------------------- # # ------------------- outputLC --------------------- # # -------------------------------------------------- # # Creates an output file with date, flux, error # # columns as is expected by lag recovery tools # # Javelin and PyCCF. # # -------------------------------------------------- # def outputLC(date, flux, error, name, loc, obj_name): length = len(date) outname = loc + obj_name + "_" + name + ".txt" output = open(outname, 'w') for i in range(length): if np.isnan(flux[i]) == False: output.write("%s %s %s \n" % (date[i], flux[i], error[i])) else: # Sometimes the flux ends up as nan, this is generally because the SNR is so bad/the emission line so # small that the continuum subtraction makes the line negative. These are not saved in the data file # but a warning is outputted so you can have a look at what the problem is. print("-------\n Houston, we have a problem! " + obj_name + " Night " + str(i) + "\n-------\n ") output.close() return # -------------------------------------------------- # # ---------------- convertPhotoLC -------------------# # -------------------------------------------------- # # Converts photometric light curves from magnitudes # # to flux and saves the light curves separately for # # each band. # # -------------------------------------------------- # def convertPhotoLC(photoName, source, bandName, bandPivot, scale, makeFig, outLoc): # Read in the photometric data photo = pd.read_table(photoName, delim_whitespace=True) if makeFig == True: # Define figure and axis for light curves of all bands fig_photo, ax_photo = ozplot.plot_share_x(len(bandName), source, "Date (MJD)", bandName) # Make a light curve for each band for b in range(len(bandName)): # Create an array for observations of a specified band and sort observations by date band_data = photo[photo['BAND'] == bandName[b]].sort_values('MJD') # Find date, mag, and magerr array for the specified band ph_date = np.array(band_data['MJD']) ph_mag = np.array(band_data['MAG']) ph_magerr = np.array(band_data['MAGERR']) # Loop over each epoch and convert magnitude to flux ph_flux = np.zeros(len(ph_date)) ph_fluxerr = np.zeros(len(ph_date)) for e in range(len(ph_date)): ph_flux[e], ph_fluxerr[e] = magToFlux(ph_mag[e], ph_magerr[e], bandPivot[b]) # Scale the fluxes before they are saved, if you are concerned about remembering the scale factor perhaps # included it in the outputted file name. ph_flux = ph_flux / scale ph_fluxerr = ph_fluxerr / scale # Save the data as a light curve with filename outLoc + source + _ + bandName[b] + .txt outputLC(ph_date, ph_flux, ph_fluxerr, bandName[b], outLoc, source) if makeFig == True: # plot the light curve on the subplot defined above. ax_photo[b].errorbar(ph_date, ph_flux, yerr=ph_fluxerr, fmt='o', color='black') # Once all the light curves are plotted save the figure as outLoc + source + "_photo.png" if makeFig == True: fig_photo.savefig(outLoc + source + "_photo.png") return # -------------------------------------------------- # # ------------------ findLines ----------------------# # -------------------------------------------------- # # Determines which emission lines are present in the # # spectrum. Returns an array of booleans where True # # means the emission line is present. # # -------------------------------------------------- # def findLines(wavelength, z, lineName, contWinBSMin, contWinBSMax): # decide which emission lines are available in the spectrum availLines = np.zeros(len(lineName)).astype(bool) for l in range(len(lineName)): # for a line to be in the spectrum you need to include the continuum subtraction windows as well. This can # be limiting but as we need continuum subtracted spectra it is necessary. minWave = min(contWinBSMin[lineName[l]]) maxWave = max(contWinBSMax[lineName[l]]) if minWave * (1 + z) > wavelength[0] and maxWave * (1 + z) < wavelength[-1]: availLines[l] = True return availLines # -------------------------------------------------- # # -------------------- findBin ----------------------# # -------------------------------------------------- # # Finds the bin of the given vector (wavelength) # # where the specified quantity (line) is located. # # -------------------------------------------------- # def findBin(line, wavelength): bin = 0 for i in range(len(wavelength)-1): if line >= wavelength[i] and line <= wavelength[i+1]: bin = i i = len(wavelength) if line > wavelength[-1]: bin = len(wavelength)-1 i = len(wavelength) return bin # -------------------------------------------------- # # ---------------- interpolateVals ------------------# # -------------------------------------------------- # # Interpolates a linear line between two points and # # propagates the uncertainty. # # -------------------------------------------------- # def interpolateVals(x, y, s, val): # uncertainty is variance interp = y[0] + (val - x[0]) * (y[1] - y[0]) / (x[1] - x[0]) interp_var = s[0] + (s[0] + s[1]) * ((val - x[0]) / (x[1] - x[0])) ** 2. return interp, interp_var # -------------------------------------------------- # # ------------------ meanUncert ---------------------# # -------------------------------------------------- # # Finds the uncertainty corresponding to the mean # # of a set of numbers. # # -------------------------------------------------- # def meanUncert(variance): length = len(variance) var = 0 num = 0 for i in range(length): if np.isnan(variance[i]) == False: var = var + variance[i] num += 1 sigma2 = (var / (num ** 2)) return sigma2 # -------------------------------------------------- # # ---------------- cont_fit_reject ------------------# # -------------------------------------------------- # # Interpolate a linear line through the mean of the # # continuum subtraction windows to represent the # # continuum and subtract this line. Modifies the # # given flux/variance vectors. # # -------------------------------------------------- # def cont_fit_reject(wavelength, fluxes, variances, minWin, maxWin): # Define the wavelength range for the continuum model, between the mean of both windows wave = np.array([np.nanmean(minWin), np.nanmean(maxWin)]) nBins = len(wavelength) # Determine how many epochs there are to continuum subtract number = int(fluxes.size / nBins) for epoch in range(number): if number == 1: flux = fluxes variance = variances else: flux = fluxes[:, epoch] variance = variances[:, epoch] # Calculate the average flux at each extreme of the wave vector (ie mean of the continuum subtraction window) fvals = np.array([np.nanmean(flux[findBin(minWin[0], wavelength):findBin(minWin[1], wavelength)]), np.nanmean(flux[findBin(maxWin[0], wavelength):findBin(maxWin[1], wavelength)])]) # Calculate the average uncertainty at each extreme of the wave vector svals = np.array([meanUncert(variance[findBin(minWin[0], wavelength):findBin(minWin[1], wavelength)]), meanUncert(variance[findBin(maxWin[0], wavelength):findBin(maxWin[1], wavelength)])]) cont = np.zeros(nBins) contVar = np.zeros(nBins) # Find the interpolated linear continuum model for i in range(nBins): cont[i], contVar[i] = interpolateVals(wave, fvals, svals, wavelength[i]) # Subtract the continuum from the flux and add the error of the model in quadrature with the spectral error flux -= cont variance += contVar return # -------------------------------------------------- # # The next three functions are modified from code # # provided by <NAME> # # -------------------------------------------------- # # ------------------ filterCurve ------------------- # # -------------------------------------------------- # # creates a class to hold the transmission function # # for each band. # # -------------------------------------------------- # class filterCurve: """A filter""" def __init__(self): self.wave = np.array([], 'float') self.trans = np.array([], 'float') return def read(self, file): # DES filter curves express the wavelengths in nms if 'DES' in file: factor = 10. else: factor = 1. file = open(file, 'r') for line in file.readlines(): if line[0] != '#': entries = line.split() self.wave = np.append(self.wave, float(entries[0])) self.trans = np.append(self.trans, float(entries[1])) file.close() # We use Angstroms for the wavelength in the filter transmission file self.wave = self.wave * factor return # -------------------------------------------------- # # ---------------- readFilterCurve ----------------- # # -------------------------------------------------- # # Reads in the filter curves and stores it as the # # filter curve class. # # -------------------------------------------------- # def readFilterCurves(bands, filters): filterCurves = {} for f in bands: filterCurves[f] = filterCurve() filterCurves[f].read(filters[f]) return filterCurves # -------------------------------------------------- # # ----------------- computeABmag ------------------- # # -------------------------------------------------- # # computes the AB magnitude for given transmission # # functions and spectrum (f_lambda). Returns the # # magnitude and variance. # # -------------------------------------------------- # def computeABmag(trans_flux, trans_wave, tmp_wave, tmp_flux, tmp_var): # Takes and returns variance # trans_ : transmission function data # tmp_ : spectral data # trans/tmp not necessarily defined over the same wavelength range # first determine the wavelength range over which both are defined minV = min(trans_wave) if minV < min(tmp_wave): minV = min(tmp_wave) maxV = max(trans_wave) if maxV > max(trans_wave): maxV = max(trans_wave) interp_wave = [] tmp_flux2 = [] tmp_var2 = [] # Make new vectors for the flux just using that range (assuming spectral binning) for i in range(len(tmp_wave)): if minV < tmp_wave[i] < maxV: interp_wave.append(tmp_wave[i]) tmp_flux2.append(tmp_flux[i]) tmp_var2.append(tmp_var[i]) # interpolate the transmission function onto this range # the transmission function is interpolated as it is generally much smoother than the spectral data trans_flux2 = interp1d(trans_wave, trans_flux)(interp_wave) # And now calculate the magnitude and uncertainty c = 2.992792e18 # Angstrom/s Num = np.nansum(tmp_flux2 * trans_flux2 * interp_wave) Num_var = np.nansum(tmp_var2 * (trans_flux2 * interp_wave) ** 2) Den = np.nansum(trans_flux2 / interp_wave) with np.errstate(divide='raise'): try: magAB = -2.5 * np.log10(Num / Den / c) - 48.60 magABvar = 1.17882 * Num_var / (Num ** 2) except FloatingPointError: magAB = 99. magABvar = 99. return magAB, magABvar # --------------------------------------------------- # # --------------- uncertainty_cont ------------------ # # --------------------------------------------------- # # This function finds the uncertainty in line flux # # and width measurements. For line flux you can # # input a range of potential continuum windows and # # it will randomly pick regions to use for continuum # # subtraction. You can also input a region over which # # to randomly choose the integration window. These # # all also include flux randomization in order to # # consider the effect of the variance spectrum. # # You can also look at the effect flux randomization # # has on the line width measurements FWHM and # # velocity dispersion. You can also specify to look # # at the RMS spectrum (flag='rms') for the line width # # measurements, the default is to look at the provided# # spectrum as is. The error is calculated through # # bootstrap resampling using strapNum iterations. # # The standard deviation of the calculated quantity # # is then the associated error. # # --------------------------------------------------- # def uncertainty_cont(wavelength, flux, variance, strapNum, z, line, pivotLC, winLimMin, winLimMax, winsize, scale, calc='cont', flag='mean', res=0): # calc = cont -> continuum subtraction # calc = win -> integration window # calc = fwhm -> FWHM line width: can specify flag=rms # calc = sigma -> line velocity dispersion: can specify flag=rms # Performs bootstrap resampling in the range of potentially clean continuum to determine # uncertainties on the flux measurement # Continuum window in Angstroms - will be scaled according to redshift # Winsize means the continuum subtraction windows are all the same size, just the locations shift winsize = winsize/(1+z) lineMin = line[0] lineMax = line[1] # Option for potentially clean continuum region pass in bootstrap # Calculate the width of the bootstrapping region on each side of the line lowW = (winLimMin[1]-winLimMin[0])/(1+z) highW = (winLimMax[1]-winLimMax[0])/(1+z) # Check edge conditions: if the bootstraping region goes outside the region of the spectrograph use the spectrograph # bounds as the edges if winLimMin[0] < wavelength[0]: winLimMin[0] = wavelength[0] winLimMin[1] = (winLimMin[0] / (1 + z) + lowW) * (1 + z) if winLimMin[1] > wavelength[line[0]]: winLimMin[1] = wavelength[line[0]] if winLimMax[1] > wavelength[-1]: winLimMax[1] = wavelength[-1] winLimMax[0] = (winLimMax[1] / (1 + z) - highW) * (1 + z) if winLimMax[0] < wavelength[line[1]]: winLimMax[0] = wavelength[line[1]] # Wavelengths to choose in each window in steps of 0.5A winMinVect = np.arange(winLimMin[0], winLimMin[1] - (winsize - 0.5) * (1 + z), 0.5 * (1 + z)) winMaxVect = np.arange(winLimMax[0], winLimMax[1] - (winsize - 0.5) * (1 + z), 0.5 * (1 + z)) # Array of random continuum window starting points randVectMin = len(winMinVect) * np.random.rand(strapNum) randVectMin = randVectMin.astype(int) randVectMax = len(winMaxVect) * np.random.rand(strapNum) randVectMax = randVectMax.astype(int) # An array of values obtained through bootstrapping to determine uncertainties vals = np.zeros(strapNum) for i in range(strapNum): if calc == 'win': # subtracts from standard continuum but changes integration window, in this case feed in potential # integration windows instead of bootstrapping regions lineMinNew = findBin(winMinVect[randVectMin[i]], wavelength) lineMaxNew = findBin(winMaxVect[randVectMax[i]], wavelength) # Performs flux resampling to account for variance spectrum. Flux values shifted by Gaussian scaled by # variance varC = np.copy(variance) fluxC = flux + np.random.normal(size=flux.shape) * (variance ** 0.5) # Continuum Subtract this new vector cont_fit_reject(wavelength, fluxC, varC, winLimMin, winLimMax) # Calculate the flux lc_mag, lc_mag_err = computeABmag(np.ones(len(wavelength[lineMinNew:lineMaxNew])), wavelength[lineMinNew:lineMaxNew], wavelength[lineMinNew:lineMaxNew], fluxC[lineMinNew:lineMaxNew]*scale, varC[lineMinNew:lineMaxNew]* pow(scale,2)) vals[i], lc_mag_err = magToFlux(lc_mag, lc_mag_err**0.5, pivotLC) if calc == "cont": # changes cont region minWin = [winMinVect[randVectMin[i]], winMinVect[randVectMin[i]] + winsize * (1 + z)] maxWin = [winMaxVect[randVectMax[i]], winMaxVect[randVectMax[i]] + winsize * (1 + z)] # Performs flux resampling to account for variance spectrum. Flux values shifted by Gaussian scaled by # variance varC = np.copy(variance) fluxC = flux + np.random.normal(size=flux.shape) * (variance ** 0.5) # Continuum Subtract this new vector cont_fit_reject(wavelength, fluxC, varC, minWin, maxWin) # Calculate the flux lc_mag, lc_mag_err = computeABmag(np.ones(len(wavelength[lineMin:lineMax])),wavelength[lineMin:lineMax], wavelength[lineMin:lineMax], fluxC[lineMin:lineMax]*scale, varC[lineMin:lineMax]*pow(scale, 2)) vals[i], lc_mag_err = magToFlux(lc_mag, lc_mag_err**0.5, pivotLC) if calc == "fwhm": # Determine uncertainty in FWHM line measurement # do flux randomization and continuum subtraction varC = np.copy(variance) fluxC = flux + np.random.normal(size=flux.shape) * (variance ** 0.5) cont_fit_reject(wavelength, fluxC, varC, winLimMin, winLimMax) if flag == 'rms': # first calculate the RMS spectrum if requested fluxC, varC = rmsSpec(fluxC, varC) vals[i] = fwhm(wavelength[lineMin:lineMax], fluxC[lineMin:lineMax], res) if calc == "sigma": # Determine uncertainty in velocity dispersion measurement # do flux randomization and continuum subtraction varC = np.copy(variance) fluxC = flux + np.random.normal(size=flux.shape) * (variance ** 0.5) cont_fit_reject(wavelength, fluxC, varC, winLimMin, winLimMax) if flag == 'rms': # first calculate the RMS spectrum if requested fluxC, varC = rmsSpec(fluxC, varC) vals[i] = lineVar(wavelength[lineMin:lineMax], fluxC[lineMin:lineMax], res) stddev_bs = np.nanstd(vals) return stddev_bs # --------------------------------------------------- # # ----------------------- fwhm ---------------------- # # --------------------------------------------------- # # Takes an input spectrum and calculate the FWHM of # # the provided emission line. It will search over # # the entire provided wavelength window so just # # include the relevant region of the spectrum. # # --------------------------------------------------- # def fwhm(wave, flux, res): # First I am smoothing the spectrum exponential_smooth(flux) # Find the half maximum peak = max(flux) valley = min(flux) peakLoc = wave[np.where(flux == peak)[0][0]] peakLocB = findBin(peakLoc, wave) hm = (peak-valley) / 2 + valley leftUp = wave[0] leftDown = wave[peakLocB] rightUp = wave[-1] rightDown = wave[peakLocB] # First search for the half max to the left of the line for i in range(peakLocB): # First search going up the line if flux[i] < hm < flux[i+1]: leftUp = (wave[i] + wave[i+1])/2 # Then going down the line if flux[peakLocB-i-1] < hm < flux[peakLocB-i]: leftDown = (wave[peakLocB-i-1] + wave[peakLocB-i])/2 # Then take the average which will account for any double peaks/noise in the spectrum left = (leftUp + leftDown)/2 # And now to the right maxSize = len(wave) - 1 for i in range(maxSize - peakLocB): # Go up if flux[peakLocB + i + 1] < hm < flux[peakLocB + i]: rightDown = (wave[peakLocB + i] + wave[peakLocB + i + 1])/2 # Go down if flux[maxSize-i] < hm < flux[maxSize-i-1]: rightUp = (wave[maxSize-i] + wave[maxSize-i-1])/2 right = (rightUp + rightDown)/2 # Now calculate the velocity # km/s c = 299792.458 widthObs = (right-left) widthT = pow(widthObs**2 - res**2,0.5)/2 zLeft = -widthT/peakLoc zRight = widthT/peakLoc zComb = (1+zRight)/(1+zLeft)-1 vel = c*((1+zComb)**2-1)/((1+zComb)**2+1) return vel # --------------------------------------------------- # # ---------------------- lineVar -------------------- # # --------------------------------------------------- # # Takes an input spectrum and calculate the velocity # # dispersion of the emission line. It will search # # over the entire provided wavelength window so just # # include the relevant region of the spectrum. # # --------------------------------------------------- # def lineVar(wave, flux, res): length = len(wave) peak = max(flux) peakLoc = wave[np.where(flux == peak)[0][0]] # Calculate velocity dispersion following equation written in Peterson 2004, the three following constants # correspond to the main terms in that equation. Pdl = 0 lPdl = 0 l2Pdl = 0 for i in range(length): Pdl += flux[i] lPdl += flux[i] * wave[i] l2Pdl += flux[i] * pow(wave[i], 2) lambda0 = lPdl / Pdl lambda2 = l2Pdl / Pdl lambda02 = pow(lambda0, 2) linevar = lambda2 - lambda02 sigma = linevar ** 0.5 c = 299792.458 sigmaT = pow(sigma**2 - res**2, 0.5) left = peakLoc - sigmaT / 2 right = peakLoc + sigmaT / 2 zLeft = (left - peakLoc) / peakLoc zRight = (right - peakLoc) / peakLoc #redshift from lambda_l to lambda_r zComb = (1 + zRight) / (1 + zLeft) - 1 vel = c * ((1 + zComb) ** 2 - 1) / ((1 + zComb) ** 2 + 1) return vel # --------------------------------------------------- # # --------------- exponential_smooth ---------------- # # --------------------------------------------------- # # Function to apply an exponential smoothing kernel # # to the data. Written by <NAME>. # # --------------------------------------------------- # def exponential_smooth(fluxes): number = int(fluxes.size/fluxes.shape[0]) search_pixels = 5 decay = 0.9 window = np.arange(-search_pixels, search_pixels + 1) weights = decay ** np.abs(window) weights /= np.sum(weights) if (number == 1): flux = fluxes[:] flux[:] = np.convolve(flux, weights, mode='same') else: for epoch in range(fluxes.shape[1]): flux = fluxes[:, epoch] flux[:] = np.convolve(flux, weights, mode='same') # --------------------------------------------------- # # -------------------- meanSpec --------------------- # # --------------------------------------------------- # # Calculates the mean of multiple spectra as well as # # the corresponding variance spectrum. # # --------------------------------------------------- # def meanSpec(flux, variance): length = len(flux[:,0]) meanFlux = np.zeros(length) meanVar = np.zeros(length) for i in range(length): meanFlux[i] = np.nanmean(flux[i,:]) meanVar[i] = np.nanmean(variance[i,:]) return meanFlux, meanVar # --------------------------------------------------- # # -------------------- rmsSpec ---------------------- # # --------------------------------------------------- # # Calculates the RMS of the inputted spectra. Will # # expect fluxes in [wavelength, epoch] format. An # # exponential smoothing function is applied to the # # data as a first and last step to mitigate some of # # the noise. # # --------------------------------------------------- # def rmsSpec(flux, variance): # smooth the input spectra exponential_smooth(flux) length = len(flux[:, 0]) epochs = len(flux[0, :]) # Calculate the RMS spectrum, variance propagated through but not used later mean, meanVar = meanSpec(flux, variance) rms = np.zeros(length) rmsVar = np.zeros(length) rmsVar2 = np.zeros(length) for b in range(length): for e in range(epochs): rms[b] += (flux[b, e] - mean[b]) ** 2 rmsVar2[b] += 4 * rms[b] * (variance[b, e] + meanVar[b]) rms[b] = (rms[b] / (epochs - 1)) ** 0.5 rmsVar2[b] = rmsVar2[b] / ((epochs - 1) ** 2) rmsVar[b] = rmsVar2[b] * (0.5 / rms[b]) ** 2 # smooth the final RMS spectrum exponential_smooth(rms) return rms, rmsVar # -------------------------------------------------- # # -------------------- lineLC ---------------------- # # -------------------------------------------------- # # Create emission line light curves by integrating # # the emission lines after local continuum # # subtraction. The uncertainties due to the variance# # of the spectrum and the continuum subtraction is # # performed through bootstrap resampling. This is # # done for every emission line from the provided list# # that is present in the spectrum. # # -------------------------------------------------- # def lineLC(dates, lineName, availLines, lineInt, contWinMin, contWinMax, contWinBSMin, contWinBSMax, wavelength, origFluxes, origVariances, fluxCoadd, numEpochs, scale, z, strapNum, outLoc, source, makeFig, makeFigEpoch): if makeFig == True: # Define figure and axis for light curves of all available emission lines lineAxis = [lineName[i] for i in range(len(lineName)) if availLines[i] == True] fig_spec, ax_spec = ozplot.plot_share_x(len(lineAxis), source, "Date (MJD)", lineAxis) for l in range(len(lineName)): if availLines[l] == True: line = lineName[l] # Copy the flux/variance vectors so you have an uncontinuum subtracted version to use for other lines fluxes = np.copy(origFluxes) variances = np.copy(origVariances) # define some variables for line/continuum windows in observed frame contMin = np.array(contWinMin[line]) * (1 + z) contMax = np.array(contWinMax[line]) * (1 + z) contMinBS = np.array(contWinBSMin[line]) * (1 + z) contMaxBS = np.array(contWinBSMax[line]) * (1 + z) # similar for the line integration window but I want the wavelength bin number, not just the wavelength lineMin = findBin(lineInt[line][0] * (1 + z), wavelength) lineMax = findBin(lineInt[line][1] * (1 + z), wavelength) # Perform the continuum subtraction cont_fit_reject(wavelength, fluxes, variances, contMin, contMax) lc_mag = np.zeros(numEpochs) lc_mag_sigma = np.zeros(numEpochs) lc_flux = np.zeros(numEpochs) lc_flux_sigma = np.zeros(numEpochs) total_error = np.zeros(numEpochs) # Calculate the pivot wavelength associated with each line window pivotLC = pow(np.nansum(wavelength[lineMin:lineMax]) / np.nansum(1 / wavelength[lineMin:lineMax]), 0.5) # Calculate magnitudes and fluxes for each line for epoch in range(numEpochs): # first calculate magnitudes, save these if you want to compare this instead of fluxes # Here the transmission function is 1 for all wavelengths within the integration window. lc_mag[epoch], lc_mag_sigma[epoch] = computeABmag(np.ones(len(wavelength[lineMin:lineMax])), wavelength[lineMin:lineMax], wavelength[lineMin:lineMax], fluxes[lineMin:lineMax, epoch] * scale, variances[lineMin:lineMax, epoch] * pow(scale, 2)) # Now convert to flux, this is what is saved. Note: all fluxes here are actually flux densities # This uncertainty just considers the variance spectrum, we will take everything in the next step lc_flux[epoch], lc_flux_sigma[epoch] = magToFlux(lc_mag[epoch], lc_mag_sigma[epoch] ** 0.5, pivotLC) total_error[epoch] = uncertainty_cont(wavelength, origFluxes[:, epoch], origVariances[:, epoch], strapNum, z, [lineMin, lineMax], pivotLC, contMinBS, contMaxBS, contMin[1] - contMin[0], scale) if makeFigEpoch == True: # Save figures showing spectrum before/after continuum subtraction for each epoch and line fig_epoch, ax_epoch = ozplot.plot_share_x(2, source + " epoch " + str(epoch), "Wavelength ($\AA$)", ["Before", " After"], [wavelength[0], wavelength[-1]]) for p in range(2): ax_epoch[p].axvspan(contMinBS[0], contMinBS[1], color='mediumblue', alpha=0.3) ax_epoch[p].axvspan(contMaxBS[0], contMaxBS[1], color='mediumblue', alpha=0.3) ax_epoch[p].axvspan(contMin[0], contMin[1], color='mediumblue', alpha=0.5) ax_epoch[p].axvspan(contMax[0], contMax[1], color='mediumblue', alpha=0.5) ax_epoch[p].axvspan(wavelength[lineMin], wavelength[lineMax], color='forestgreen', alpha=0.3) ax_epoch[0].plot(wavelength, origFluxes[:, epoch], color='black') ax_epoch[1].plot(wavelength, fluxes[:, epoch], color='black') fig_epoch.savefig(outLoc + source + "_" + lineName[l] + "_epoch_" + str(epoch) + ".png") plt.close(fig_epoch) # Scale the line fluxes as with the photometry lc_flux = lc_flux / scale total_error = total_error / scale # Save the data as a light curve with filename outLoc + source + _ + line + .txt outputLC(dates, lc_flux, total_error, line, outLoc, source) if makeFig == True: # plot the light curve on the subplot defined above. First get the index for the axis associated with # the line being analyzed. lbin = lineAxis.index(line) ax_spec[lbin].errorbar(dates, lc_flux, yerr=total_error, fmt='o', color='black') # make a plot to show the continuum subtraction regions on the coadded spectrum fig_coadd, ax_coadd = ozplot.plot_share_x(1, source, "Wavelength ($\AA$)", ["Total Coadded Flux (" + str(scale) + " erg/s/cm$^2$/$\AA$)"], [wavelength[0], wavelength[-1]]) ax_coadd[0].axvspan(contMinBS[0], contMinBS[1], color='mediumblue', alpha=0.3) ax_coadd[0].axvspan(contMaxBS[0], contMaxBS[1], color='mediumblue', alpha=0.3) ax_coadd[0].axvspan(contMin[0], contMin[1], color='mediumblue', alpha=0.5) ax_coadd[0].axvspan(contMax[0], contMax[1], color='mediumblue', alpha=0.5) ax_coadd[0].axvspan(wavelength[lineMin], wavelength[lineMax], color='forestgreen', alpha=0.3) ax_coadd[0].plot(wavelength, fluxCoadd, color='black') fig_coadd.savefig(outLoc + source + "_" + lineName[l] + "_coadd.png") plt.close(fig_coadd) # Once all the light curves are plotted save the figure as outLoc + source + "_spec.png" if makeFig == True: fig_spec.savefig(outLoc + source + "_spec.png") return # -------------------------------------------------- # # ------------------ makePhotoLC --------------------# # -------------------------------------------------- # # Makes light curves by applying photometric filters # # to a series of spectral data. The data is saved # # as fluxes. # # -------------------------------------------------- # def makePhotoLC(dates, bandName, bandPivot, filters, wavelength, origFluxes, origVariances, numEpochs, scale, outLoc, source, makeFig): filterCurves = readFilterCurves(bandName, filters) if makeFig == True: # Define figure and axis for light curves of all available emission lines fig_phot, ax_phot = ozplot.plot_share_x(len(bandName), source, "Date (MJD)", bandName) for b in range(len(bandName)): mags = np.zeros(numEpochs) mags_var = np.zeros(numEpochs) flux = np.zeros(numEpochs) flux_err = np.zeros(numEpochs) for e in range(numEpochs): # Calculate the magntiude given the transmission function provided mags[e], mags_var[e] = computeABmag(filterCurves[bandName[b]].trans, filterCurves[bandName[b]].wave, wavelength, origFluxes[:, e] * scale, origVariances[:, e] * pow(scale, 2)) # Then convert to fluxes flux[e], flux_err[e] = magToFlux(mags[e], mags_var[e] ** 0.5, bandPivot[b]) # Scale the fluxes flux = flux / scale flux_err = flux_err / scale # Save the data as a light curve with filename outLoc + source + _ + calc_bandName + .txt outputLC(dates, flux, flux_err, 'calc_' + bandName[b], outLoc, source) if makeFig == True: # plot the light curve on the subplot defined above. ax_phot[b].errorbar(dates, flux, yerr=flux_err, fmt='o', color='black') # Once all the light curves are plotted save the figure as outLoc + source + "_makePhot.png" if makeFig == True: fig_phot.savefig(outLoc + source + "_makePhot.png") return # -------------------------------------------------- # # ------------------- calcWidth ---------------------# # -------------------------------------------------- # # Calculates emission line width (FWHM and velocity # # dispersion) using the mean and RMS spectra. If # # possible calculates the BH mass using the R-L # # relationship. The data is saved to a text file. # # -------------------------------------------------- # def calcWidth(wavelength, lineName, lineLoc, availLines, lineInt, lumLoc, contWinMin, contWinMax, contWinBSMin, contWinBSMax, origFluxes, origVariances, origFluxCoadd, origVarCoadd, z, strapNum, scale, outLoc, source, makeFig, calcBH): # open a file to save the data to - outLoc + source + _vel.txt out = open(outLoc + source + "_vel_and_mass.txt", 'w') # Type (Mean/RMS), Measure (FWHM, Vel Disp) out.write("Line Type Measure Vel Vel_Err Mass Lag Lag_Err_Min Lag_Err_Max Mass_Err_Min, Mass_Err_Max\n") # Convert wavelength vector to rest frame wave = wavelength/(1+z) for l in range(len(lineName)): if availLines[l] == True: line = lineName[l] # If calcBH == True estimate BH mass from the R-L relationship. Here I will calculate the lag. If you want # to use the measured lag feed that in here. If the luminosity needed isn't in the spectroscopic window # I will just give nan for the black hole mass. The luminosity is determined from the coadded flux if calcBH == True: lum, lumerr = luminosity(wavelength, origFluxCoadd, origVarCoadd, z, lumLoc[l]*(1+z), strapNum, scale) if np.isnan(lum) == True: lag = np.nan lag_err_min = np.nan lag_err_max = np.nan elif line == 'CIV': lag, lag_err_max, lag_err_min = RL_CIV(lum, lumerr) elif line == 'MgII': lag, lag_err_max, lag_err_min = RL_MgII(lum, lumerr) elif line == 'Hbeta': lag, lag_err_max, lag_err_min = RL_Hbeta(lum, lumerr) else: lag = np.nan lag_err_min = np.nan lag_err_max = np.nan # Calculate the resolution of the spectrograph at the specified wavelength res = findRes(lineLoc[l], z) # define some variables for line/continuum windows in rest frame contMin = np.array(contWinMin[line]) contMax = np.array(contWinMax[line]) contMinBS = np.array(contWinBSMin[line]) contMaxBS = np.array(contWinBSMax[line]) # similar for the line integration window but I want the wavelength bin number, not just the wavelength lineMin = findBin(lineInt[line][0], wave) lineMax = findBin(lineInt[line][1], wave) fluxes = np.copy(origFluxes) variances = np.copy(origVariances) fluxCoadd = np.copy(origFluxCoadd) varCoadd = np.copy(origVarCoadd) # Perform the continuum subtraction on epochs and coadd cont_fit_reject(wave, fluxes, variances, contMin, contMax) cont_fit_reject(wave, fluxCoadd, varCoadd, contMin, contMax) # First look at the mean spectrum, let's smooth it # FWHM vel_mean_fwhm = fwhm(wave[lineMin:lineMax], fluxCoadd[lineMin:lineMax], res) err_mean_fwhm = uncertainty_cont(wave, origFluxCoadd, origVarCoadd, strapNum, 0, [lineMin, lineMax], 0, contMinBS, contMaxBS, contMin[1] - contMin[0], scale, calc='fwhm', flag='mean', res=res) # Sigma vel_mean_sigma = lineVar(wave[lineMin:lineMax], fluxCoadd[lineMin:lineMax], res) err_mean_sigma = uncertainty_cont(wave, origFluxCoadd, origVarCoadd, strapNum, 0, [lineMin, lineMax], 0, contMinBS, contMaxBS, contMin[1] - contMin[0], scale, calc='sigma', flag='mean', res=res) # Now look at the RMS spectrum rms, rms_var = rmsSpec(fluxes, variances) vel_rms_fwhm = fwhm(wave[lineMin:lineMax], rms[lineMin:lineMax], res) err_rms_fwhm = uncertainty_cont(wave, origFluxes, origVariances, strapNum, 0, [lineMin, lineMax], 0, contMinBS, contMaxBS, contMin[1] - contMin[0], scale, calc='fwhm', flag='rms', res=res) # Sigma vel_rms_sigma = fwhm(wave[lineMin:lineMax], rms[lineMin:lineMax], res) err_rms_sigma = uncertainty_cont(wave, origFluxes, origVariances, strapNum, 0, [lineMin, lineMax], 0, contMinBS, contMaxBS, contMin[1] - contMin[0], scale, calc='sigma', flag='rms', res=res) if calcBH == True and np.isnan(lag) == False: # Calculate BH mass for all 4 line measurements mass_mean_fwhm, mass_min_mean_fwhm, mass_max_mean_fwhm = \ blackHoleMass(lag, lag_err_min, lag_err_max, vel_mean_fwhm, err_mean_fwhm) mass_mean_sigma, mass_min_mean_sigma, mass_max_mean_sigma = \ blackHoleMass(lag, lag_err_min, lag_err_max, vel_mean_sigma, err_mean_sigma) mass_rms_fwhm, mass_min_rms_fwhm, mass_max_rms_fwhm = \ blackHoleMass(lag, lag_err_min, lag_err_max, vel_rms_fwhm, err_rms_fwhm) mass_rms_sigma, mass_min_rms_sigma, mass_max_rms_sigma = \ blackHoleMass(lag, lag_err_min, lag_err_max, vel_rms_sigma, err_rms_sigma) else: mass_mean_fwhm, mass_min_mean_fwhm, mass_max_mean_fwhm = np.nan, np.nan, np.nan mass_mean_sigma, mass_min_mean_sigma, mass_max_mean_sigma = np.nan, np.nan, np.nan mass_rms_fwhm, mass_min_rms_fwhm, mass_max_rms_fwhm = np.nan, np.nan, np.nan mass_rms_sigma, mass_min_rms_sigma, mass_max_rms_sigma = np.nan, np.nan, np.nan out.write(line + " MEAN FWHM %d %d %d %d %d %2.2f %2.2f %2.2f \n" %(vel_mean_fwhm, err_mean_fwhm, lag, lag_err_min, lag_err_max, mass_mean_fwhm, mass_min_mean_fwhm, mass_max_mean_fwhm)) out.write(line + " MEAN Sigma %d %d %d %d %d %2.2f %2.2f %2.2f \n" %(vel_mean_sigma, err_mean_sigma, lag, lag_err_min, lag_err_max, mass_mean_sigma, mass_min_mean_sigma, mass_max_mean_sigma)) out.write(line + " RMS FWHM %d %d %d %d %d %2.2f %2.2f %2.2f \n" %(vel_rms_fwhm, err_rms_fwhm, lag, lag_err_min, lag_err_max, mass_rms_fwhm, mass_min_rms_fwhm, mass_max_rms_fwhm)) out.write(line + " RMS Sigma %d %d %d %d %d %2.2f %2.2f %2.2f \n" %(vel_rms_sigma, err_rms_sigma, lag,lag_err_min, lag_err_max, mass_rms_sigma, mass_min_rms_sigma, mass_max_rms_sigma)) if makeFig == True: # Define figure and axis for mean and rms spectrum fig_width, ax_width = ozplot.plot_share_x(2, source, "Wavelength ($\AA$)", ["Mean Flux", "RMS Flux"], [contMin[1], contMax[0]]) ax_width[0].plot(wave, fluxCoadd, color='black') ax_width[0].axvline(wave[lineMin], color='forestgreen') ax_width[0].axvline(wave[lineMax], color='forestgreen') ax_width[1].plot(wave, rms, color='black') ax_width[1].axvline(wave[lineMin], color='forestgreen') ax_width[1].axvline(wave[lineMax], color='forestgreen') fig_width.savefig(outLoc + source + "_" + line + "_width.png") plt.close(fig_width) out.close() return # -------------------------------------------------- # # -------------------- findRes ----------------------# # -------------------------------------------------- # # The line width measurements are dependent on the # # resolution of the spectrograph. The OzDES spectra # # are made up of two arms of AAOmega with different # # resolutions. This function will find the # # resolution at the emission line in question. You # # will need to modify this if you are using a # # different spectrograph. Input rest frame emission # # line wavelength and convert. # # -------------------------------------------------- # def findRes(line, z): #Use OzDES data - splice 5700 and resolution for red/blue arms splice = 5700 resO = [1600, 1490] #blue/red arm of spectrograph resolution obsLine = line*(1+z) if obsLine < splice: dL = obsLine/resO[0] else: dL = obsLine/resO[1] return dL # --------------------------------------------------- # # ---------------- comoving_distance ---------------- # # --------------------------------------------------- # # Function to calculate the comoving distance at a # # given redshift. Written by <NAME>. # # --------------------------------------------------- # def comoving_distance(z): # returns the comoving distance in Mpc # c in km/s c = 299792.458 # H0 in km/s/Mpc H0 = 70.0 f_E = lambda x: 1.0 / np.sqrt(0.3 * (1 + x) ** 3 + 0.7) d_C = c / H0 * fixed_quad(f_E, 0.0, z, n=500)[0] return d_C # --------------------------------------------------- # # ------------------- luminosity -------------------- # # --------------------------------------------------- # # Calculates the lambda L_lambda luminosity for the # # specified wavelength and gives uncertainty via # # bootstrapping. If the luminosity is not present in # # the spectrum return nan. # # --------------------------------------------------- # def luminosity(wavelength, flux, variance, z, lum, strapNum, scale): # Check if the luminosity windows used (lum +/- 10 A in observed frame) are present in the spectrum. If not return # nan for the luminosity if wavelength[0] < lum - 10 and lum + 10 < wavelength[-1]: lumBin = findBin(lum, wavelength) # calculate the mean flux around the specified luminosity fluxV = np.nanmean(flux[lumBin-2:lumBin+2]) * scale # calculate the range of fluxes based on bootstrapping flux_std = Lum_uncertainty(wavelength, flux, variance, lum, strapNum, scale) # scale by luminosity - we want lambda L_lambda fluxV = fluxV*lum flux_std = flux_std*lum # flux should be in erg/s/cm^2 the above statement gets rid of the angstroms d_C = comoving_distance(z) d_L = (1.0 + z) * d_C # convert d_L from Mpc to cm d_L *= 3.0857E24 # scale factor used for uncertainty propogation scalefact = 4. * np.pi * d_L ** 2 L = fluxV * scalefact L_std = flux_std * scalefact # calculate log Luminosity and error lgL = np.log10(L) err = lgL- np.log10(L-L_std) else: lgL = np.nan err = np.nan return lgL, err # --------------------------------------------------- # # ---------------- Lum_uncertainty ------------------ # # --------------------------------------------------- # # Calculates the uncertainty due to flux resampling # # and shifting luminosity window. # # --------------------------------------------------- # def Lum_uncertainty(wavelength, flux, variance, lum, strapNum, scale): # Performs bootstrap resampling in the range of potentially clean continuum to determine # 10 Angstroms on either size of luminosity nBins = len(wavelength) winLim = [findBin(lum-10, wavelength), findBin(lum+10, wavelength)] # vector of wavelengths within winLim spaced by 1 Angstrom winVect = np.arange(winLim[0], winLim[1]+1, 1) # Array of random continuum window starting points randVect = len(winVect)*np.random.rand(strapNum) randVect = randVect.astype(int) fluxes = np.zeros(strapNum) # For each iteration do flux resampling and calculate the line flux and shift window slightly for i in range(strapNum): varC = np.copy(variance) fluxC = np.zeros(nBins) for w in range(nBins): err = varC[w] ** 0.5 fluxC[w] = np.random.normal(flux[w], err) fluxes[i] = np.nanmean(fluxC[winVect[randVect[i]] - 2:winVect[randVect[i]] + 2]) * scale return np.nanstd(fluxes) # --------------------------------------------------- # # -------------------- RL_CIV ----------------------- # # --------------------------------------------------- # # Radius Luminosity using CIV line and L1350 from # # Hoormann et al 2019. L and L_std are log_10. # # --------------------------------------------------- # def RL_CIV(L, L_std): # From Hoormann et al 2019 using L1350 lag = pow(10, 0.81 + 0.47 * (L - 44)) lag_err_p = abs(pow(10, (0.81 + 0.09) + (0.47 + 0.03) * ((L + L_std) - 44)) - lag) lag_err_m = abs(pow(10, (0.81 - 0.09) + (0.47 - 0.03) * ((L - L_std) - 44)) - lag) return lag, lag_err_p, lag_err_m # --------------------------------------------------- # # -------------------- RL_MgII ---------------------- # # --------------------------------------------------- # # Radius Luminosity using MgII line and L3000 from # # Trakhenbrot & Netzer 2012 best fit BCES method. # # L and L_std are log_10. # # --------------------------------------------------- # def RL_MgII(L, L_std): lag = pow(10, 1.34 + 0.615 * (L - 44)) lag_err_p = abs(pow(10, (1.34 + 0.019) + (0.615 + 0.014) * ((L + L_std) - 44)) - lag) lag_err_m = abs(pow(10, (1.34 - 0.019) + (0.615 - 0.014) * ((L - L_std) - 44)) - lag) return lag, lag_err_p, lag_err_m # --------------------------------------------------- # # -------------------- RL_Hbeta --------------------- # # --------------------------------------------------- # # Radius Luminosity using Hbeta line and L5100 from # # Bentz et al 2013. L and L_std are log_10. # # --------------------------------------------------- # def RL_Hbeta(L, L_std): lag = pow(10, 1.527 + 0.533 * (L - 44)) lag_err_p = abs(pow(10, (1.527 + 0.031) + (0.533 + 0.035) * ((L + L_std) - 44)) - lag) lag_err_m = abs(pow(10, (1.527 - 0.031) + (0.533 - 0.033) * ((L - L_std) - 44)) - lag) return lag, lag_err_p, lag_err_m # --------------------------------------------------- # # ------------------ blackHoleMass ------------------ # # --------------------------------------------------- # # Given a lag and velocity calculate the black hole # # mass. Given in units of 10^9 Solar Masses. # # --------------------------------------------------- # def blackHoleMass(lag, lErrMin, lErrMax, velocity, vErr): # convert everything to cgs G = 6.67*10**-11 c = 2.998*10**8 Msun = 1.989*10**30 lag = lag*86400 lErrMin = lErrMin*86400 lErrMax = lErrMax*86400 velocity = velocity*1000 vErr = vErr*1000 # Define f factor f = 4.47 ferr = 1.25 #Woo et al 2014 # Calculate Mass mass = f*(pow(velocity, 2)*c*lag/G)/Msun/10**9 sigmaMin = mass*pow((ferr/f)**2 + (2*vErr/velocity)**2 + (lErrMin/lag)**2 ,0.5) sigmaMax = mass*pow((ferr/f)**2 + (2*vErr/velocity)**2 + (lErrMax/lag)**2 ,0.5) return mass, sigmaMin, sigmaMax # -------------------------------------------------- # # Modified from a function originally provided by # # <NAME> # # -------------------------------------------------- # # ------------------ Spectrumv18 ------------------- # # -------------------------------------------------- # # Read in spectral data assuming the format from v18 # # of the OzDES reduction pipeline. Modify if your # # input data is stored differently # # -------------------------------------------------- # class Spectrumv18(object): def __init__(self, filepath=None): assert filepath is not None self.filepath = filepath try: self.data = fits.open(filepath) except IOError: print("Error: file {0} could not be found".format(filepath)) exit() data = fits.open(filepath) self.combinedFlux = data[0] self.combinedVariance = data[1] self.combinedPixels = data[2] self.numEpochs = int((np.size(data) - 3) / 3) self.field = self.data[3].header['SOURCEF'][19:21] self.cdelt1 = self.combinedFlux.header['cdelt1'] # Wavelength interval between subsequent pixels self.crpix1 = self.combinedFlux.header['crpix1'] self.crval1 = self.combinedFlux.header['crval1'] self.n_pix = self.combinedFlux.header['NAXIS1'] self.RA = self.combinedFlux.header['RA'] self.DEC = self.combinedFlux.header['DEC'] self.fluxCoadd = self.combinedFlux.data self.varianceCoadd = self.combinedVariance.data self.badpixCoadd = self.combinedPixels.data self._wavelength = None self._flux = None self._variance = None self._badpix = None self._dates = None self._run = None self._ext = None self._qc = None self._exposed = None @property def wavelength(self): """Define wavelength solution.""" if getattr(self, '_wavelength', None) is None: wave = ((np.arange(self.n_pix) - self.crpix1) * self.cdelt1) + self.crval1 self._wavelength = wave return self._wavelength @property def flux(self): if getattr(self, '_flux', None) is None: self._flux = np.zeros((5000, self.numEpochs), dtype=float) for i in range(self.numEpochs): self._flux[:, i] = self.data[i * 3 + 3].data return self._flux @property def variance(self): if getattr(self, '_variance', None) is None: self._variance = np.zeros((5000, self.numEpochs), dtype=float) for i in range(self.numEpochs): self._variance[:, i] = self.data[i * 3 + 4].data return self._variance @property def badpix(self): if getattr(self, '_badpix', None) is None: self._badpix = np.zeros((5000, self.numEpochs), dtype=float) for i in range(self.numEpochs): self._badpix[:, i] = self.data[i * 3 + 5].data return self._badpix @property def dates(self): if getattr(self, '_dates', None) is None: self._dates = np.zeros(self.numEpochs, dtype=float) for i in range(self.numEpochs): self._dates[i] = round(self.data[i * 3 + 3].header['UTMJD'],3) # this give Modified Julian Date (UTC) that observation was taken return self._dates @property def ext(self): if getattr(self, '_ext', None) is None: self._ext = [] for i in range(self.numEpochs): self._ext.append(i * 3 + 3) # gives the extension in original fits file return self._ext @property def run(self): if getattr(self, '_run', None) is None: self._run = [] for i in range(self.numEpochs): source = self.data[i * 3 + 3].header['SOURCEF'] self._run.append(int(source[3:6])) # this gives the run number of the observation return self._run @property def qc(self): if getattr(self, '_qc', None) is None: self._qc = [] for i in range(self.numEpochs): self._qc.append(self.data[i * 3 + 3].header['QC']) # this tell you if there were any problems with the spectra that need to be masked out return self._qc @property def exposed(self): if getattr(self, '_exposed', None) is None: self._exposed = [] for i in range(self.numEpochs): self._exposed.append(self.data[i * 3 + 3].header['EXPOSED']) # this will give you the exposure time of each observation return self._exposed # -------------------------------------------------- # # ------------------- calibSpec -------------------- # # -------------------------------------------------- # # This function does the bulk of the work. It will # # 1) determine extensions which can be calibrated # # 2) calculate the scale factors # # 3) calculate the warping function # # 4) output new fits file with scaled spectra # # -------------------------------------------------- # def calibSpec(obj_name, spectra, photo, spectraName, photoName, outBase, bands, filters, centers, plotFlag, coaddFlag, redshift): # Assumes scaling given is of the form # gScale = scaling[0,:] gError = scaling[3,:] # rScale = scaling[1,:] rError = scaling[4,:] # iScale = scaling[2,:] iError = scaling[5,:] # inCoaddWeather = scaling[6,:] # inCoaddPhoto = scaling[7,:] # gMag = scaling[8,:] gMagErr = scaling[9,:] # rMag = scaling[10,:] rMagErr = scaling[11,:] # iMag = scaling[12,:] iMagErr = scaling[13,:] # First we decide which extensions are worth scaling extensions, noPhotometry, badQC = prevent_Excess(spectra, photo, bands) # Then we calculate the scale factors nevermind, scaling = scaling_Matrix(spectra, extensions, badQC, noPhotometry, photo, bands, filters) # Remove last minute trouble makers extensions = [e for e in extensions if e not in nevermind] badQC = badQC + nevermind # And finally warp the data for s in extensions: # scale the spectra if plotFlag != False: plotName = plotFlag + obj_name + "_" + str(s) else: plotName = False spectra.flux[:, s], spectra.variance[:, s] = warp_spectra(scaling[0:3, s], scaling[3:6, s], spectra.flux[:, s], spectra.variance[:, s], spectra.wavelength, centers, plotName) if coaddFlag == False: create_output_single(obj_name, extensions, scaling, spectra, noPhotometry, badQC, spectraName, photoName, outBase, redshift) elif coaddFlag in ['Run', 'Date']: coadd_output(obj_name, extensions, scaling, spectra, noPhotometry, badQC, spectraName, photoName, outBase, plotFlag, coaddFlag, redshift) else: print("What do you want me to do with this data? Please specify output type.") return # -------------------------------------------------- # # ---------------- prevent_Excess ------------------ # # -------------------------------------------------- # # This function removes extensions from the list to # # calibrate because of insufficient photometric data # # or bad quality flags # # -------------------------------------------------- # def prevent_Excess(spectra, photo, bands): # First, find the min/max date for which we have photometry taken on each side of the spectroscopic observation # This will be done by finding the highest date for which we have photometry in each band # and taking the max/min of those values # This is done because we perform a linear interpolation between photometric data points to estimate the magnitudes # observed at the specific time of the spectroscopic observation maxPhot = np.zeros(3) for e in range(len(photo['Date'][:])): if photo['Band'][e] == bands[0]: if photo['Date'][e] > maxPhot[0]: maxPhot[0] = photo['Date'][e] if photo['Band'][e] == bands[1]: if photo['Date'][e] > maxPhot[1]: maxPhot[1] = photo['Date'][e] if photo['Band'][e] == bands[2]: if photo['Date'][e] > maxPhot[2]: maxPhot[2] = photo['Date'][e] photLim = min(maxPhot) minPhot = np.array([100000, 100000, 100000]) for e in range(len(photo['Date'][:])): if photo['Band'][e] == bands[0]: if photo['Date'][e] < minPhot[0]: minPhot[0] = photo['Date'][e] if photo['Band'][e] == bands[1]: if photo['Date'][e] < minPhot[1]: minPhot[1] = photo['Date'][e] if photo['Band'][e] == bands[2]: if photo['Date'][e] < minPhot[2]: minPhot[2] = photo['Date'][e] photLimMin = max(minPhot) noPhotometry = [] badQC = [] allowedQC = ['ok', 'backup'] for s in range(spectra.numEpochs): # Remove data with insufficient photometry if spectra.dates[s] > photLim: noPhotometry.append(s) if spectra.dates[s] < photLimMin: noPhotometry.append(s) # Only allow spectra with quality flags 'ok' and 'backup' if spectra.qc[s] not in allowedQC: badQC.append(s) extensions = [] # Make a list of extensions which need to be analyzed for s in range(spectra.numEpochs): if s not in noPhotometry and s not in badQC: extensions.append(s) return extensions, noPhotometry, badQC # -------------------------------------------------- # # ---------------- scaling_Matrix ------------------ # # -------------------------------------------------- # # finds the nearest photometry and interpolates mags # # to find values at the time of the spectroscopic # # observations. Calculates the mag that would be # # observed from the spectra and calculates the scale # # factor to bring them into agreement. Saves the # # data in the scaling matrix. # # -------------------------------------------------- # def scaling_Matrix(spectra, extensions, badQC, noPhotometry, photo, bands, filters): # scale factors for each extension saved in the following form # gScale = scaling[0,:] gError = scaling[3,:] # rScale = scaling[1,:] rError = scaling[4,:] # iScale = scaling[2,:] iError = scaling[5,:] # inCoaddWeather = scaling[6,:] # inCoaddPhoto = scaling[7,:] # gMag = scaling[8,:] gMagError = scaling[9,:] (interpolated from neighbouring observations) # rMag = scaling[10,:] rMagError = scaling[11,:] # iMag = scaling[12,:] iMagError = scaling[13,:] scaling = np.zeros((14, spectra.numEpochs)) # Judge goodness of spectra for e in range(spectra.numEpochs): if e in badQC: scaling[6, e] = False else: scaling[6, e] = True if e in noPhotometry: scaling[7, e] = False else: scaling[7, e] = True ozdesPhoto = np.zeros((3, spectra.numEpochs)) desPhoto = np.zeros((3, spectra.numEpochs)) ozdesPhotoU = np.zeros((3, spectra.numEpochs)) desPhotoU = np.zeros((3, spectra.numEpochs)) filterCurves = readFilterCurves(bands, filters) nevermind = [] for e in extensions: # Find OzDES photometry ozdesPhoto[0, e], ozdesPhotoU[0, e] = computeABmag(filterCurves[bands[0]].trans, filterCurves[bands[0]].wave, spectra.wavelength, spectra.flux[:, e], spectra.variance[:, e]) ozdesPhoto[1, e], ozdesPhotoU[1, e] = computeABmag(filterCurves[bands[1]].trans, filterCurves[bands[1]].wave, spectra.wavelength, spectra.flux[:, e], spectra.variance[:, e]) ozdesPhoto[2, e], ozdesPhotoU[2, e] = computeABmag(filterCurves[bands[2]].trans, filterCurves[bands[2]].wave, spectra.wavelength, spectra.flux[:, e], spectra.variance[:, e]) # Sometimes the total flux in the band goes zero and this obviously creates issues further down the line and # is most noticeable when the calculated magnitude is nan. Sometimes it is because the data is very noisy # or the occasional negative spectrum is a known artifact of the data, more common in early OzDES runs. In the # case where the observation doesn't get cut based on quality flag it will start getting ignored here. The runs # ignored will eventually be saved with the badQC extensions. if np.isnan(ozdesPhoto[:, e]).any() == True: nevermind.append(e) # Find DES photometry desPhoto[:, e], desPhotoU[:, e] = des_photo(photo, spectra.dates[e], bands) scaling[8, e] = desPhoto[0, e] scaling[10, e] = desPhoto[1, e] scaling[12, e] = desPhoto[2, e] scaling[9, e] = desPhotoU[0, e] scaling[11, e] = desPhotoU[1, e] scaling[13, e] = desPhotoU[2, e] # Find Scale Factor scaling[0, e], scaling[3, e] = scale_factors(desPhoto[0, e] - ozdesPhoto[0, e], desPhotoU[0, e] + ozdesPhotoU[0, e]) scaling[1, e], scaling[4, e] = scale_factors(desPhoto[1, e] - ozdesPhoto[1, e], desPhotoU[1, e] + ozdesPhotoU[1, e]) scaling[2, e], scaling[5, e] = scale_factors(desPhoto[2, e] - ozdesPhoto[2, e], desPhotoU[2, e] + ozdesPhotoU[2, e]) return nevermind, scaling # -------------------------------------------------- # # --------------- interpolatePhot ----------------- # # -------------------------------------------------- # # Performs linear interpolation and propagates the # # uncertainty to return you a variance. # # -------------------------------------------------- # def interpolatePhot(x, y, s, val): # takes sigma returns variance # x - x data points (list) # y - y data points (list) # s - sigma on y data points (list) # val - x value to interpolate to (number) mag = y[0] + (val - x[0]) * (y[1] - y[0]) / (x[1] - x[0]) err = s[0] ** 2 + (s[0] ** 2 + s[1] ** 2) * ((val - x[0]) / (x[1] - x[0])) ** 2 return mag, err # -------------------------------------------------- # # ------------------ des_photo -------------------- # # -------------------------------------------------- # # Finds nearest photometry on both sides of spectral # # observations and interpolates to find value at the # # time of the spectral observation # # -------------------------------------------------- # def des_photo(photo, spectral_mjd, bands): """Takes in an mjd from the spectra, looks through a light curve file to find the nearest photometric epochs and performs linear interpolation to get estimate at date, return the photo mags.""" # Assumes dates are in chronological order!!! for l in range(len(photo['Date']) - 1): if photo['Band'][l] == bands[0] and photo['Date'][l] < spectral_mjd < photo['Date'][l + 1]: g_date_v = np.array([photo['Date'][l], photo['Date'][l + 1]]) g_mag_v = np.array([photo['Mag'][l], photo['Mag'][l + 1]]) g_err_v = np.array([photo['Mag_err'][l], photo['Mag_err'][l + 1]]) if photo['Band'][l] == bands[1] and photo['Date'][l] < spectral_mjd < photo['Date'][l + 1]: r_date_v = np.array([photo['Date'][l], photo['Date'][l + 1]]) r_mag_v = np.array([photo['Mag'][l], photo['Mag'][l + 1]]) r_err_v = np.array([photo['Mag_err'][l], photo['Mag_err'][l + 1]]) if photo['Band'][l] == bands[2] and photo['Date'][l] < spectral_mjd < photo['Date'][l + 1]: i_date_v = np.array([photo['Date'][l], photo['Date'][l + 1]]) i_mag_v = np.array([photo['Mag'][l], photo['Mag'][l + 1]]) i_err_v = np.array([photo['Mag_err'][l], photo['Mag_err'][l + 1]]) g_mag, g_mag_err = interpolatePhot(g_date_v, g_mag_v, g_err_v, spectral_mjd) r_mag, r_mag_err = interpolatePhot(r_date_v, r_mag_v, r_err_v, spectral_mjd) i_mag, i_mag_err = interpolatePhot(i_date_v, i_mag_v, i_err_v, spectral_mjd) return [g_mag, r_mag, i_mag], [g_mag_err, r_mag_err, i_mag_err] # -------------------------------------------------- # # ---------------- scale_factors ------------------ # # -------------------------------------------------- # # Calculates the scale factor and variance needed to # # change spectroscopically derived magnitude to the # # observed photometry. # # -------------------------------------------------- # def scale_factors(mag_diff, mag_diff_var): # takes and returns variance flux_ratio = np.power(10., 0.4 * mag_diff) # f_synthetic/f_photometry scale_factor = (1. / flux_ratio) scale_factor_sigma = mag_diff_var * (scale_factor * 0.4 * 2.3) ** 2 # ln(10) ~ 2.3 return scale_factor, scale_factor_sigma # -------------------------------------------------- # # ----------------- warp_spectra ------------------ # # -------------------------------------------------- # # Fits polynomial to scale factors and estimates # # associated uncertainties with gaussian processes. # # If the plotFlag variable is not False it will save # # some diagnostic plots. # # -------------------------------------------------- # def warp_spectra(scaling, scaleErr, flux, variance, wavelength, centers, plotFlag): # associate scale factors with centers of bands and fit 2D polynomial to form scale function. scale = InterpolatedUnivariateSpline(centers, scaling, k=2) fluxScale = flux * scale(wavelength) # add in Gaussian process to estimate uncertainties, /10**-17 because it gets a bit panicky if you use small numbers stddev = (scaleErr ** 0.5) / 10 ** -17 scale_v = scaling / 10 ** -17 kernel = kernels.RBF(length_scale=300, length_scale_bounds=(.01, 2000.0)) gp = GaussianProcessRegressor(kernel=kernel, alpha=stddev**2) xprime = np.atleast_2d(centers).T yprime = np.atleast_2d(scale_v).T gp.fit(xprime, yprime) xplot_prime = np.atleast_2d(wavelength).T y_pred, sigma = gp.predict(xplot_prime, return_std=True) y_pred = y_pred[:,0] sigModel = (sigma/y_pred)*scale(wavelength) # now scale the original variance and combine with scale factor uncertainty varScale = variance * pow(scale(wavelength), 2) + sigModel ** 2 if plotFlag != False: figa, ax1a, ax2a = ozplot.makeFigDouble(plotFlag, "Wavelength ($\AA$)", "f$_\lambda$ (arbitrary units)", "f$_\lambda$ (10$^{-17}$ erg/s/cm$^2$/$\AA$)", [wavelength[0], wavelength[-1]]) ax1a.plot(wavelength, flux, color='black', label="Before Calibration") ax1a.legend(loc=1, frameon=False, prop={'size': 20}) ax2a.plot(wavelength, fluxScale / 10 ** -17, color='black', label="After Calibration") ax2a.legend(loc=1, frameon=False, prop={'size': 20}) plt.savefig(plotFlag + "_beforeAfter.png") plt.close(figa) figb, ax1b, ax2b = ozplot.makeFigDouble(plotFlag, "Wavelength ($\AA$)", "f$_\lambda$ (10$^{-17}$ erg/s/cm$^2$/$\AA$)", "% Uncertainty", [wavelength[0], wavelength[-1]]) ax1b.plot(wavelength, fluxScale / 10 ** -17, color='black') ax2b.plot(wavelength, 100*abs(pow(varScale, 0.5)/fluxScale), color='black', linestyle='-', label='Total') ax2b.plot(wavelength, 100*abs(sigModel/fluxScale), color='blue', linestyle='-.', label='Warping') ax2b.legend(loc=1, frameon=False, prop={'size': 20}) ax2b.set_ylim([0, 50]) plt.savefig(plotFlag + "_uncertainty.png") plt.close(figb) figc, axc = ozplot.makeFigSingle(plotFlag, "Wavelength ($\AA$)", "Scale Factor (10$^{-17}$ erg/s/cm$^2$/$\AA$/counts)") axc.plot(wavelength, scale(wavelength)/10**-17, color='black') axc.errorbar(centers, scaling/10**-17, yerr=stddev, fmt='s', color='mediumblue') plt.savefig(plotFlag + "_scalefactors.png") plt.close(figc) return fluxScale, varScale # -------------------------------------------------- # # ------------ create_output_single --------------- # # -------------------------------------------------- # # Outputs the warped spectra to a new fits file. # # -------------------------------------------------- # def create_output_single(obj_name, extensions, scaling, spectra, noPhotometry, badQC, spectraName, photoName, outBase, redshift): outName = outBase + obj_name + "_scaled.fits" print("Saving Data to " + outName) hdulist = fits.HDUList(fits.PrimaryHDU()) noPhotometryExt = [] if len(noPhotometry) > 0: for i in range(len(noPhotometry)): noPhotometryExt.append(spectra.ext[noPhotometry[i]]) badQCExt = [] if len(badQC) > 0: for i in range(len(badQC)): badQCExt.append(spectra.ext[badQC[i]]) index = 0 # Create an HDU for each night for i in extensions: header = fits.Header() header['SOURCE'] = obj_name header['RA'] = spectra.RA header['DEC'] = spectra.DEC header['FIELD'] = spectra.field header['CRPIX1'] = spectra.crpix1 header['CRVAL1'] = spectra.crval1 header['CDELT1'] = spectra.cdelt1 header['CTYPE1'] = 'wavelength' header['CUNIT1'] = 'angstrom' header['EPOCHS'] = len(extensions) header['z'] = redshift[0] # save the names of the input data and the extensions ignored header['SFILE'] = spectraName header['PFILE'] = photoName header['NOPHOTO'] = ','.join(map(str, noPhotometryExt)) header['BADQC'] = ','.join(map(str, badQCExt)) # save the original spectrum's extension number and some other details header["EXT"] = spectra.ext[i] header["UTMJD"] = spectra.dates[i] header["EXPOSE"] = spectra.exposed[i] header["QC"] = spectra.qc[i] # save scale factors/uncertainties header["SCALEG"] = scaling[0, i] header["ERRORG"] = scaling[3, i] header["SCALER"] = scaling[1, i] header["ERRORR"] = scaling[4, i] header["SCALEI"] = scaling[2, i] header["ERRORI"] = scaling[5, i] # save photometry/uncertainties used to calculate scale factors header["MAGG"] = scaling[8, i] header["MAGUG"] = scaling[9, i] header["MAGR"] = scaling[10, i] header["MAGUR"] = scaling[11, i] header["MAGI"] = scaling[12, i] header["MAGUI"] = scaling[13, i] if index == 0: hdulist[0].header['SOURCE'] = obj_name hdulist[0].header['RA'] = spectra.RA hdulist[0].header['DEC'] = spectra.DEC hdulist[0].header['CRPIX1'] = spectra.crpix1 hdulist[0].header['CRVAL1'] = spectra.crval1 hdulist[0].header['CDELT1'] = spectra.cdelt1 hdulist[0].header['CTYPE1'] = 'wavelength' hdulist[0].header['CUNIT1'] = 'angstrom' hdulist[0].header['EPOCHS'] = len(extensions) # save the names of the input data and the extensions ignored hdulist[0].header['SFILE'] = spectraName hdulist[0].header['PFILE'] = photoName hdulist[0].header['NOPHOTO'] = ','.join(map(str, noPhotometryExt)) hdulist[0].header['BADQC'] = ','.join(map(str, badQCExt)) # save the original spectrum's extension number and some other details hdulist[0].header["EXT"] = spectra.ext[i] hdulist[0].header["UTMJD"] = spectra.dates[i] hdulist[0].header["EXPOSE"] = spectra.exposed[i] hdulist[0].header["QC"] = spectra.qc[i] # save scale factors/uncertainties hdulist[0].header["SCALEG"] = scaling[0, i] hdulist[0].header["ERRORG"] = scaling[3, i] hdulist[0].header["SCALER"] = scaling[1, i] hdulist[0].header["ERRORR"] = scaling[4, i] hdulist[0].header["SCALEI"] = scaling[2, i] hdulist[0].header["ERRORI"] = scaling[5, i] # save photometry/uncertainties used to calculate scale factors hdulist[0].header["MAGG"] = scaling[8, i] hdulist[0].header["MAGUG"] = scaling[9, i] hdulist[0].header["MAGR"] = scaling[10, i] hdulist[0].header["MAGUR"] = scaling[11, i] hdulist[0].header["MAGI"] = scaling[12, i] hdulist[0].header["MAGUI"] = scaling[13, i] hdulist[0].data = spectra.flux[:, i] hdulist.append(fits.ImageHDU(data=spectra.variance[:, i], header=header)) hdulist.append(fits.ImageHDU(data=spectra.badpix[:, i], header=header)) index = 2 else: hdulist.append(fits.ImageHDU(data=spectra.flux[:, i], header=header)) hdulist.append(fits.ImageHDU(data=spectra.variance[:, i], header=header)) hdulist.append(fits.ImageHDU(data=spectra.badpix[:, i], header=header)) hdulist.writeto(outName, overwrite=True) hdulist.close() return # -------------------------------------------------- # # ------------- create_output_coadd --------------- # # -------------------------------------------------- # # Outputs the warped and coadded spectra to a new # # fits file. # # -------------------------------------------------- # def create_output_coadd(obj_name, runList, fluxArray, varianceArray, badpixArray, extensions, scaling, spectra, redshift ,badQC, noPhotometry, spectraName, photoName, outBase, coaddFlag): outName = outBase + obj_name + "_scaled_" + coaddFlag + ".fits" hdulist = fits.HDUList(fits.PrimaryHDU()) noPhotometryExt = [] if len(noPhotometry) > 0: for i in range(len(noPhotometry)): noPhotometryExt.append(spectra.ext[noPhotometry[i]]) badQCExt = [] if len(badQC) > 0: for i in range(len(badQC)): badQCExt.append(spectra.ext[badQC[i]]) #print("Output Filename: %s \n" % (outName)) # First save the total coadded spectrum for the source to the primary extension hdulist[0].data = fluxArray[:, 0] hdulist[0].header['CRPIX1'] = spectra.crpix1 hdulist[0].header['CRVAL1'] = spectra.crval1 hdulist[0].header['CDELT1'] = spectra.cdelt1 hdulist[0].header['CTYPE1'] = 'wavelength' hdulist[0].header['CUNIT1'] = 'angstrom' hdulist[0].header['SOURCE'] = obj_name hdulist[0].header['RA'] = spectra.RA hdulist[0].header['DEC'] = spectra.DEC hdulist[0].header['FIELD'] = spectra.field hdulist[0].header['OBSNUM'] = len(runList) hdulist[0].header['z'] = redshift[0] hdulist[0].header['SFILE'] = spectraName hdulist[0].header['PFILE'] = photoName hdulist[0].header['METHOD'] = coaddFlag hdulist[0].header['NOPHOTO'] = ','.join(map(str, noPhotometryExt)) hdulist[0].header['BADQC'] = ','.join(map(str, badQCExt)) # First extension is the total coadded variance header = fits.Header() header['EXTNAME'] = 'VARIANCE' header['CRPIX1'] = spectra.crpix1 header['CRVAL1'] = spectra.crval1 header['CDELT1'] = spectra.cdelt1 header['CTYPE1'] = 'wavelength' header['CUNIT1'] = 'angstrom' hdulist.append(fits.ImageHDU(data=varianceArray[:, 0], header=header)) # Second Extension is the total bad pixel map header = fits.Header() header['EXTNAME'] = 'BadPix' header['CRPIX1'] = spectra.crpix1 header['CRVAL1'] = spectra.crval1 header['CDELT1'] = spectra.cdelt1 header['CTYPE1'] = 'wavelength' header['CUNIT1'] = 'angstrom' hdulist.append(fits.ImageHDU(data=badpixArray[:, 0], header=header)) # Create an HDU for each night index1 = 1 for k in runList: index = 0 date = 0 header = fits.Header() header['CRPIX1'] = spectra.crpix1 header['CRVAL1'] = spectra.crval1 header['CDELT1'] = spectra.cdelt1 header['CTYPE1'] = 'wavelength' header['CUNIT1'] = 'angstrom' header['RUN'] = k for i in extensions: here = False if coaddFlag == 'Run': if spectra.run[i] == k: here = True if coaddFlag == 'Date': if int(spectra.dates[i]) == k: here = True if here == True: head0 = "EXT" + str(index) header[head0] = spectra.ext[i] head1 = "UTMJD" + str(index) header[head1] = spectra.dates[i] date += spectra.dates[i] head2 = "EXPOSE" + str(index) header[head2] = spectra.exposed[i] head3 = "QC" + str(index) header[head3] = spectra.qc[i] head4 = "SCALEG" + str(index) header[head4] = scaling[0, i] head5 = "ERRORG" + str(index) header[head5] = scaling[3, i] head6 = "SCALER" + str(index) header[head6] = scaling[1, i] head7 = "ERRORR" + str(index) header[head7] = scaling[4, i] head8 = "SCALEI" + str(index) header[head8] = scaling[2, i] head9 = "ERRORI" + str(index) header[head9] = scaling[5, i] head10 = "MAGG" + str(index) header[head10] = scaling[8, i] head11 = "MAGUG" + str(index) header[head11] = scaling[9, i] head12 = "MAGR" + str(index) header[head12] = scaling[10, i] head13 = "MAGUR" + str(index) header[head13] = scaling[11, i] head14 = "MAGI" + str(index) header[head14] = scaling[12, i] head15 = "MAGUI" + str(index) header[head15] = scaling[13, i] index += 1 if date > 0: header['OBSNUM'] = index header['AVGDATE'] = date / index hdu_flux = fits.ImageHDU(data=fluxArray[:, index1], header=header) hdu_fluxvar = fits.ImageHDU(data=varianceArray[:, index1], header=header) hdu_badpix = fits.ImageHDU(data=badpixArray[:, index1], header=header) hdulist.append(hdu_flux) hdulist.append(hdu_fluxvar) hdulist.append(hdu_badpix) index1 += 1 hdulist.writeto(outName, overwrite=True) hdulist.close() return # -------------------------------------------------- # # ----------------- coadd_output ------------------ # # -------------------------------------------------- # # Coadds the observations based on run or night. # # -------------------------------------------------- # def coadd_output(obj_name, extensions, scaling, spectra, noPhotometry, badQC, spectraName, photoName, outBase, plotFlag, coaddFlag, redshift): # Get a list of items (dates/runs) over which all observations will be coadded coaddOver = [] for e in extensions: # OzDES runs 7,8 were close together in time and run 8 had bad weather so there was only observations of 1 # field - coadd with run 7 to get better signal to noise if spectra.run[e] == 8: spectra.run[e] = 7 if coaddFlag == 'Run': if spectra.run[e] not in coaddOver: coaddOver.append(spectra.run[e]) if coaddFlag == 'Date': if int(spectra.dates[e]) not in coaddOver: coaddOver.append(int(spectra.dates[e])) coaddFlux = np.zeros((5000, len(coaddOver) + 1)) coaddVar = np.zeros((5000, len(coaddOver) + 1)) coaddBadPix = np.zeros((5000, len(coaddOver) + 1)) speclistC = [] # For total coadd of observation index = 1 for c in coaddOver: speclist = [] for e in extensions: opt = '' if coaddFlag == 'Run': opt = spectra.run[e] if coaddFlag == 'Date': opt = int(spectra.dates[e]) if opt == c: speclist.append(SingleSpec(obj_name, spectra.wavelength, spectra.flux[:,e], spectra.variance[:,e], spectra.badpix[:,e])) speclistC.append(SingleSpec(obj_name, spectra.wavelength, spectra.flux[:,e], spectra.variance[:,e], spectra.badpix[:,e])) if len(speclist) > 1: runCoadd = outlier_reject_and_coadd(obj_name, speclist) coaddFlux[:, index] = runCoadd.flux coaddVar[:, index] = runCoadd.fluxvar coaddVar[:, index] = runCoadd.fluxvar coaddBadPix[:,index] = runCoadd.isbad.astype('uint8') if len(speclist) == 1: coaddFlux[:, index] = speclist[0].flux coaddVar[:, index] = speclist[0].fluxvar coaddBadPix[:, index] = speclist[0].isbad.astype('uint8') index += 1 if len(speclistC) > 1: allCoadd = outlier_reject_and_coadd(obj_name, speclistC) coaddFlux[:, 0] = allCoadd.flux coaddVar[:, 0] = allCoadd.fluxvar coaddBadPix[:, 0] = allCoadd.isbad.astype('uint8') if len(speclistC) == 1: coaddFlux[:, 0] = speclistC[0].flux coaddVar[:, 0] = speclistC[0].fluxvar coaddBadPix[:, 0] = speclistC[0].isbad.astype('uint8') mark_as_bad(coaddFlux, coaddVar) create_output_coadd(obj_name, coaddOver, coaddFlux, coaddVar, coaddBadPix, extensions, scaling, spectra, redshift, badQC, noPhotometry, spectraName, photoName, outBase, coaddFlag) return # -------------------------------------------------- # # Modified from code originally provided by # # <NAME> # # -------------------------------------------------- # # ------------------ mark_as_bad ------------------- # # -------------------------------------------------- # # Occasionally you get some big spikes in the data # # that you do not want messing with your magnitude # # calculations. Remove these by looking at single # # bins that have a significantly 4.5 larger than # # average fluxes or variances and change those to # # nans. Nans will be interpolated over. The # # threshold should be chosen to weigh removing # # extreme outliers and removing noise. # # -------------------------------------------------- # def mark_as_bad(fluxes, variances): number = int(fluxes.size/fluxes.shape[0]) for epoch in range(number): if number == 1: flux = fluxes[:] variance = variances[:] else: flux = fluxes[:, epoch] variance = variances[:, epoch] nBins = len(flux) # define the local average in flux and variance to compare outliers to for i in range(nBins): if i < 50: avg = np.nanmean(variance[0:99]) avgf = np.nanmean(flux[0:99]) elif i > nBins - 50: avg = np.nanmean(variance[i-50:nBins-1]) avgf = np.nanmean(flux[i-50:nBins-1]) else: avg = np.nanmean(variance[i-50:i+50]) avgf = np.nanmean(flux[i-50:i+50]) # find outliers and set that bin and the neighbouring ones to nan. if np.isnan(variance[i]) == False and variance[i] > 4.5*avg: flux[i] = np.nan if i > 2 and i < 4996: flux[i - 1] = np.nan flux[i - 2] = np.nan flux[i - 3] = np.nan flux[i + 1] = np.nan flux[i + 2] = np.nan flux[i + 3] = np.nan if np.isnan(flux[i]) == False and flux[i] > 4.5 * avgf: flux[i] = np.nan if i > 2 and i < 4996: flux[i-1] = np.nan flux[i-2] = np.nan flux[i-3] = np.nan flux[i+1] = np.nan flux[i+2] = np.nan flux[i+3] = np.nan if np.isnan(flux[i]) == False and flux[i] < -4.5 * avgf: flux[i] = np.nan if i > 2 and i < 4996: flux[i-1] = np.nan flux[i-2] = np.nan flux[i-3] = np.nan flux[i+1] = np.nan flux[i+2] = np.nan flux[i+3] = np.nan # interpolates nans (added here and bad pixels in the data) filter_bad_pixels(flux, variance) return # -------------------------------------------------- # # Modified from code originally provided by # # <NAME> # # -------------------------------------------------- # # --------------- filter_bad_pixels ---------------- # # -------------------------------------------------- # # Interpolates over nans in the spectrum. # # -------------------------------------------------- # def filter_bad_pixels(fluxes, variances): number = int(fluxes.size/fluxes.shape[0]) for epoch in range(number): if (number == 1): flux = fluxes[:] variance = variances[:] else: flux = fluxes[:, epoch] variance = variances[:, epoch] nBins = len(flux) flux[0] = 0.0 flux[-1] = 0.0 variance[0] = 100*np.nanmean(variance) variance[-1] = 100*np.nanmean(variance) bad_pixels = np.logical_or.reduce((np.isnan(flux), np.isnan(variance), variance < 0)) bin = 0 binEnd = 0 while (bin < nBins): if (bad_pixels[bin] == True): binStart = bin binNext = bin + 1 while (binNext < nBins): if bad_pixels[binNext] == False: binEnd = binNext - 1 binNext = nBins binNext = binNext + 1 ya = float(flux[binStart - 1]) xa = float(binStart - 1) sa = variance[binStart - 1] yb = flux[binEnd + 1] xb = binEnd + 1 sb = variance[binEnd + 1] step = binStart while (step < binEnd + 1): flux[step] = ya + (yb - ya) * (step - xa) / (xb - xa) variance[step] = sa + (sb + sa) * ((step - xa) / (xb - xa)) ** 2 step = step + 1 bin = binEnd bin = bin + 1 return # -------------------------------------------------- # # The following 4 functions were written by Chris # # Lidman, <NAME>, and maybe others for the # # initial processing of the OzDES spectra. They # # were taken from the DES_coaddSpectra.py functions. # # -------------------------------------------------- # # -------------------- OzExcept -------------------- # # -------------------------------------------------- # # -------------------------------------------------- # # A simple exception class # # -------------------------------------------------- # class OzExcept(Exception): """ Simple exception class """ def __init__(self, msg): self.msg = msg def __str__(self): return "{0}: {1}".format(self.__class__.__name__, msg) # -------------------------------------------------- # # ----------------- VerboseMessager ---------------- # # -------------------------------------------------- # # -------------------------------------------------- # # Verbose messaging for routines below. # # -------------------------------------------------- # class VerboseMessager(object): """ Verbose messaging for routines below """ def __init__(self, verbose=False): self.verbose = verbose def __call__(self, *args): if self.verbose: print("Something strange is happening") sys.stdout.flush() # -------------------------------------------------- # # ------------------- SingleSpec ------------------- # # -------------------------------------------------- # # -------------------------------------------------- # # Class representing a single spectrum for analysis. # # -------------------------------------------------- # class SingleSpec(object): """ Class representing a single spectrum for analysis """ ## Added filename to SingleSpec def __init__(self, obj_name, wl, flux, fluxvar, badpix): self.name = obj_name # --------------------------- # self.pivot = int(fibrow[9]) # self.xplate = int(fibrow[3]) # self.yplate = int(fibrow[4]) # self.ra = np.degrees(fibrow[1]) # self.dec = np.degrees(fibrow[2]) # self.mag=float(fibrow[10]) # self.header=header self.wl = np.array(wl) self.flux = np.array(flux) self.fluxvar = np.array(fluxvar) # If there is a nan in either the flux, or the variance, mark it as bad # JKH: this was what was here originally, my version complains about it # self.fluxvar[fluxvar < 0] = np.nan for i in range(5000): if (self.fluxvar[i] < 0): self.fluxvar[i] = np.nan # The following doesn't take into account #self.isbad = np.any([np.isnan(self.flux), np.isnan(self.fluxvar)], axis=0) self.isbad = badpix.astype(bool) # -------------------------------------------------- # # ------------ outlier_reject_and_coadd ------------ # # -------------------------------------------------- # # -------------------------------------------------- # # OzDES coadding function to reject outliers and # # coadd all of the spectra in the inputted list. # # -------------------------------------------------- # def outlier_reject_and_coadd(obj_name, speclist): """ Reject outliers on single-object spectra to be coadded. Assumes input spectra have been resampled to a common wavelength grid, so this step needs to be done after joining and resampling. Inputs speclist: list of SingleSpec instances on a common wavelength grid show: boolean; show diagnostic plot? (debug only; default=False) savefig: boolean; save diagnostic plot? (debug only; default=False) Output result: SingleSpec instance of coadded spectrum, with bad pixels set to np.nan (runz requires this) """ # Edge cases if len(speclist) == 0: print("outlier_reject: empty spectrum list") return None elif len(speclist) == 1: tgname = speclist[0].name vmsg("Only one spectrum, no coadd needed for {0}".format(tgname)) return speclist[0] # Have at least two spectra, so let's try to reject outliers # At this stage, all spectra have been mapped to a common wavelength scale wl = speclist[0].wl tgname = speclist[0].name # Retrieve single-object spectra and variance spectra. flux_2d = np.array([s.flux for s in speclist]) fluxvar_2d = np.array([s.fluxvar for s in speclist]) badpix_2d = np.array([s.isbad for s in speclist]) # Baseline parameters: # outsig Significance threshold for outliers (in sigma) # nbin Bin width for median rebinning # ncoinc Maximum number of spectra in which an artifact can appear outsig, nbin, ncoinc = 5, 25, 1 nspec, nwl = flux_2d.shape # Run a median filter of the spectra to look for n-sigma outliers. # These incantations are kind of complicated but they seem to work # i) Compute the median of a wavelength section (nbin) along the observation direction # 0,1 : observation,wavelength, row index, column index # In moving to numpy v1.10.2, we replaced median with nanmedian fmed = np.reshape([np.nanmedian(flux_2d[:, j:j + nbin], axis=1) for j in np.arange(0, nwl, nbin)], (-1, nspec)).T # Now expand fmed and flag pixels that are more than outsig off fmed_2d = np.reshape([fmed[:, int(j / nbin)] for j in
np.arange(nwl)
numpy.arange
import os.path as osp import mmcv import numpy as np import pycocotools.mask as maskUtils import random import cv2 import copy import math from skimage import img_as_ubyte from mmdet.core import BitmapMasks, PolygonMasks from ..builder import PIPELINES random.seed(42) @PIPELINES.register_module() class LoadImageFromFile(object): """Load an image from file. Required keys are "img_prefix" and "img_info" (a dict that must contain the key "filename"). Added or updated keys are "filename", "img", "img_shape", "ori_shape" (same as `img_shape`), "pad_shape" (same as `img_shape`), "scale_factor" (1.0) and "img_norm_cfg" (means=0 and stds=1). Args: to_float32 (bool): Whether to convert the loaded image to a float32 numpy array. If set to False, the loaded image is an uint8 array. Defaults to False. color_type (str): The flag argument for :func:`mmcv.imfrombytes`. Defaults to 'color'. file_client_args (dict): Arguments to instantiate a FileClient. See :class:`mmcv.fileio.FileClient` for details. Defaults to ``dict(backend='disk')``. """ def __init__(self, to_float32=False, color_type='color', file_client_args=dict(backend='disk')): self.to_float32 = to_float32 self.color_type = color_type self.file_client_args = file_client_args.copy() self.file_client = None def __call__(self, results): """Call functions to load image and get image meta information. Args: results (dict): Result dict from :obj:`mmdet.CustomDataset`. Returns: dict: The dict contains loaded image and meta information. """ if self.file_client is None: self.file_client = mmcv.FileClient(**self.file_client_args) if results['img_prefix'] is not None: filename = osp.join(results['img_prefix'], results['img_info']['filename']) else: filename = results['img_info']['filename'] img_bytes = self.file_client.get(filename) img = mmcv.imfrombytes(img_bytes, flag=self.color_type) if self.to_float32: img = img.astype(np.float32) results['filename'] = filename results['ori_filename'] = results['img_info']['filename'] results['img'] = img results['img_shape'] = img.shape results['ori_shape'] = img.shape results['img_fields'] = ['img'] return results def __repr__(self): repr_str = (f'{self.__class__.__name__}(' f'to_float32={self.to_float32}, ' f"color_type='{self.color_type}', " f'file_client_args={self.file_client_args})') return repr_str @PIPELINES.register_module() class LoadMultiChannelImageFromFiles(object): """Load multi-channel images from a list of separate channel files. Required keys are "img_prefix" and "img_info" (a dict that must contain the key "filename", which is expected to be a list of filenames). Added or updated keys are "filename", "img", "img_shape", "ori_shape" (same as `img_shape`), "pad_shape" (same as `img_shape`), "scale_factor" (1.0) and "img_norm_cfg" (means=0 and stds=1). Args: to_float32 (bool): Whether to convert the loaded image to a float32 numpy array. If set to False, the loaded image is an uint8 array. Defaults to False. color_type (str): The flag argument for :func:`mmcv.imfrombytes`. Defaults to 'color'. file_client_args (dict): Arguments to instantiate a FileClient. See :class:`mmcv.fileio.FileClient` for details. Defaults to ``dict(backend='disk')``. """ def __init__(self, to_float32=False, color_type='unchanged', file_client_args=dict(backend='disk')): self.to_float32 = to_float32 self.color_type = color_type self.file_client_args = file_client_args.copy() self.file_client = None def __call__(self, results): """Call functions to load multiple images and get images meta information. Args: results (dict): Result dict from :obj:`mmdet.CustomDataset`. Returns: dict: The dict contains loaded images and meta information. """ if self.file_client is None: self.file_client = mmcv.FileClient(**self.file_client_args) if results['img_prefix'] is not None: filename = [ osp.join(results['img_prefix'], fname) for fname in results['img_info']['filename'] ] else: filename = results['img_info']['filename'] img = [] for name in filename: img_bytes = self.file_client.get(name) img.append(mmcv.imfrombytes(img_bytes, flag=self.color_type)) img = np.stack(img, axis=-1) if self.to_float32: img = img.astype(np.float32) results['filename'] = filename results['ori_filename'] = results['img_info']['filename'] results['img'] = img results['img_shape'] = img.shape results['ori_shape'] = img.shape # Set initial values for default meta_keys results['pad_shape'] = img.shape results['scale_factor'] = 1.0 num_channels = 1 if len(img.shape) < 3 else img.shape[2] results['img_norm_cfg'] = dict( mean=np.zeros(num_channels, dtype=np.float32), std=np.ones(num_channels, dtype=np.float32), to_rgb=False) return results def __repr__(self): repr_str = (f'{self.__class__.__name__}(' f'to_float32={self.to_float32}, ' f"color_type='{self.color_type}', " f'file_client_args={self.file_client_args})') return repr_str @PIPELINES.register_module() class LoadAnnotations(object): """Load mutiple types of annotations. Args: with_bbox (bool): Whether to parse and load the bbox annotation. Default: True. with_label (bool): Whether to parse and load the label annotation. Default: True. with_mask (bool): Whether to parse and load the mask annotation. Default: False. with_seg (bool): Whether to parse and load the semantic segmentation annotation. Default: False. poly2mask (bool): Whether to convert the instance masks from polygons to bitmaps. Default: True. file_client_args (dict): Arguments to instantiate a FileClient. See :class:`mmcv.fileio.FileClient` for details. Defaults to ``dict(backend='disk')``. """ def __init__(self, with_bbox=True, with_label=True, with_mask=False, with_seg=False, poly2mask=True, file_client_args=dict(backend='disk')): self.with_bbox = with_bbox self.with_label = with_label self.with_mask = with_mask self.with_seg = with_seg self.poly2mask = poly2mask self.file_client_args = file_client_args.copy() self.file_client = None def _load_bboxes(self, results): """Private function to load bounding box annotations. Args: results (dict): Result dict from :obj:`mmdet.CustomDataset`. Returns: dict: The dict contains loaded bounding box annotations. """ ann_info = results['ann_info'] results['gt_bboxes'] = ann_info['bboxes'].copy() gt_bboxes_ignore = ann_info.get('bboxes_ignore', None) if gt_bboxes_ignore is not None: results['gt_bboxes_ignore'] = gt_bboxes_ignore.copy() results['bbox_fields'].append('gt_bboxes_ignore') results['bbox_fields'].append('gt_bboxes') return results def _load_labels(self, results): """Private function to load label annotations. Args: results (dict): Result dict from :obj:`mmdet.CustomDataset`. Returns: dict: The dict contains loaded label annotations. """ results['gt_labels'] = results['ann_info']['labels'].copy() return results def _poly2mask(self, mask_ann, img_h, img_w): """Private function to convert masks represented with polygon to bitmaps. Args: mask_ann (list | dict): Polygon mask annotation input. img_h (int): The height of output mask. img_w (int): The width of output mask. Returns: numpy.ndarray: The decode bitmap mask of shape (img_h, img_w). """ if isinstance(mask_ann, list): # polygon -- a single object might consist of multiple parts # we merge all parts into one mask rle code rles = maskUtils.frPyObjects(mask_ann, img_h, img_w) rle = maskUtils.merge(rles) elif isinstance(mask_ann['counts'], list): # uncompressed RLE rle = maskUtils.frPyObjects(mask_ann, img_h, img_w) else: # rle rle = mask_ann mask = maskUtils.decode(rle) return mask def process_polygons(self, polygons): """Convert polygons to list of ndarray and filter invalid polygons. Args: polygons (list[list]): Polygons of one instance. Returns: list[numpy.ndarray]: Processed polygons. """ polygons = [
np.array(p)
numpy.array
from flask import Flask, request, send_file from flask_cors import CORS, cross_origin import cv2 import json from PIL import Image import numpy as np from functions.AddLines import getedges from functions.BriCon import Brightness_contrast from functions.EyePatch import AddEyePatch from functions.monocle import AddMonocle from functions.moustache import AddMoustache from functions.outline import edge from functions.cartoon import cartoon from functions.brightness import adjust_brightness app=Flask("predict_car") CORS(app, support_credentials=True) @app.route('/',methods=["POST"]) @cross_origin(supports_credentials=True) def CartoonifyImage(): file=request.files['image'] rec_img=Image.open(file.stream) img = cv2.cvtColor(
np.array(rec_img)
numpy.array
""" SO map class for handling healpix and CAR maps. This is a wrapper around healpix and enlib (pixell). """ import os from copy import deepcopy import astropy.io.fits as pyfits import healpy as hp import matplotlib.pyplot as plt import numpy as np from pixell import colorize, curvedsky, enmap, enplot, powspec, reproject from pspy.pspy_utils import ps_lensed_theory_to_dict class so_map: """Class defining a ``so_map`` object.""" def __init__(self): self.pixel = None self.nside = None self.ncomp = None self.data = None self.geometry = None self.coordinate = None def copy(self): """Create a copy of the ``so_map`` object.""" return deepcopy(self) def info(self): """Print information about the ``so_map`` object.""" print("pixellisation:", self.pixel) print("number of components:", self.ncomp) print("number of pixels:", self.data.shape[:] if self.ncomp == 1 else self.data.shape[1:]) print("nside:", self.nside) print("geometry:", self.geometry) print("coordinates:", self.coordinate) def write_map(self, file_name): """Write the ``so_map`` to disk. Parameters ---------- filename : string the name of the fits file """ if self.pixel == "HEALPIX": hp.fitsfunc.write_map(file_name, self.data, overwrite=True) if self.pixel == "CAR": enmap.write_map(file_name, self.data) def upgrade(self, factor): """Upgrade the ``so_map``. Parameters ---------- factor : integer factor of increased pixel resolution (should be a factor of 2) """ assert factor % 2 == 0, "factor should be a factor of 2" upgrade = self.copy() if self.pixel == "HEALPIX": nside_out = int(self.nside * factor) upgrade.data = hp.pixelfunc.ud_grade(self.data, nside_out=nside_out) upgrade.nside = nside_out if self.pixel == "CAR": upgrade.data = enmap.upgrade(self.data, factor) upgrade.geometry = upgrade.data.geometry[1:] return upgrade def downgrade(self, factor): """Downgrade the ``so_map``. Parameters ---------- factor : integer factor of decreased pixel resolution (should be a factor of 2) """ assert factor % 2 == 0, "factor should be a factor of 2" downgrade = self.copy() if self.pixel == "HEALPIX": nside_out = int(self.nside / factor) downgrade.data = hp.pixelfunc.ud_grade(self.data, nside_out=nside_out) downgrade.nside = nside_out if self.pixel == "CAR": downgrade.data = enmap.downgrade(self.data, factor) downgrade.geometry = downgrade.data.geometry[1:] return downgrade def synfast(self, clfile): """Fill a ``so_map`` with a cmb gaussian simulation. Parameters ---------- clfile : CAMB data file lensed power spectra file from CAMB """ synfast = self.copy() if self.pixel == "HEALPIX": l, ps = ps_lensed_theory_to_dict(clfile, output_type="Cl", start_at_zero=True) if self.ncomp == 1: synfast.data = hp.sphtfunc.synfast(ps["TT"], self.nside, new=True, verbose=False) else: synfast.data = hp.sphtfunc.synfast( (ps["TT"], ps["EE"], ps["BB"], ps["TE"]), self.nside, new=True, verbose=False ) if self.pixel == "CAR": ps = powspec.read_spectrum(clfile)[: self.ncomp, : self.ncomp] synfast.data = curvedsky.rand_map(self.data.shape, self.data.wcs, ps) return synfast def get_lmax_limit(self): """Return the maximum lmax corresponding to the ``so_map`` pixellisation""" if self.pixel == "HEALPIX": l_max_limit = 3 * self.nside - 1 elif self.pixel == "CAR": cdelt = self.data.wcs.wcs.cdelt[1] l_max_limit = 360 / cdelt / 4 return l_max_limit def plot( self, color="planck", color_range=None, file_name=None, ticks_spacing_car=1, title="", cbar=True, hp_gnomv=None, ): """Plot a ``so_map``. Parameters ---------- color: cmap a matplotlib colormap (or 'planck') color_range: scalar for single component or len(3) list for T,Q,U. the range of the colorscale file_name: string file_name is the name of the png file that will be created, if None the plot will be displayed. title: string the title of the plot. cbar: boolean set to True to display the colorbar. ticks_spacing_CAR: float for CAR plot, choose the spacing of the ticks. hp_gnomv: tuple gnomview projection for HEALPIX plotting, expected (lon_c,lat_c,xsize,reso). """ try: colorize.mpl_setdefault(color) except KeyError: if self.pixel == "CAR": raise KeyError( "Color name must be a pixell color map name {}!".format( list(colorize.schemes.keys()) ) ) if self.pixel == "HEALPIX": cmap = plt.get_cmap(color) cmap.set_bad("white") cmap.set_under("white") if self.ncomp == 1: min_range = -color_range if color_range is not None else None max_range = +color_range if color_range is not None else None if hp_gnomv is not None: lon, lat, xsize, reso = hp_gnomv hp.gnomview( self.data, min=min_range, max=max_range, cmap=cmap, notext=True, title=title, cbar=cbar, rot=(lon, lat, 0), xsize=xsize, reso=reso, ) else: hp.mollview( self.data, min=min_range, max=max_range, cmap=cmap, notext=True, title=title, cbar=cbar, ) if file_name is not None: plt.savefig(file_name + ".png", bbox_inches="tight") plt.clf() plt.close() else: plt.show() else: fields = ["T", "Q", "U"] min_ranges = {field: None for field in fields} max_ranges = {field: None for field in fields} if color_range is not None: for i, field in enumerate(fields): min_ranges[field] = -color_range[i] max_ranges[field] = +color_range[i] for data, field in zip(self.data, fields): if hp_gnomv is not None: lon, lat, xsize, reso = hp_gnomv hp.gnomview( data, min=min_ranges[field], max=max_ranges[field], cmap=cmap, notext=True, title=field + "" + title, cbar=cbar, rot=(lon, lat, 0), xsize=xsize, reso=reso, ) else: hp.mollview( data, min=min_ranges[field], max=max_ranges[field], cmap=cmap, notext=True, title=field + "" + title, cbar=cbar, ) if file_name is not None: plt.savefig(file_name + "_%s" % field + ".png", bbox_inches="tight") plt.clf() plt.close() else: plt.show() if self.pixel == "CAR": if self.ncomp == 1: if color_range is not None: max_range = "%s" % (color_range) else: max_range = "%s" % (np.max(self.data)) plots = enplot.get_plots( self.data, color=color, range=max_range, colorbar=1, ticks=ticks_spacing_car ) for plot in plots: if file_name is not None: enplot.write(file_name + ".png", plot) else: plot.img.show() if self.ncomp == 3: fields = ["T", "Q", "U"] if color_range is not None: max_range = "%s:%s:%s" % (color_range[0], color_range[1], color_range[2]) else: max_range = "%s:%s:%s" % ( np.max(self.data[0]),
np.max(self.data[1])
numpy.max
from numpy import array, shape, zeros, argmax from numpy.linalg import norm import matplotlib.pyplot as plt from lib import parse_CHGCAR, parse_LOCPOT def find_vacuum_potential(ifile,**args): if 'dim' in args: dim=args['dim'] else: dim=2 x,y,e,lv,coord=calc_plane_averaged_density(ifile,dim=dim) maxdiff=zeros(shape(e)[dim]) for i in range(shape(e)[dim]): for j in coord[:,dim]: for k in range(-1,2): if maxdiff[i]<abs(x[i]-j+norm(lv[dim])*k): maxdiff[i]=abs(x[i]-j+norm(lv[dim])*k) max_index=argmax(maxdiff) return y[max_index] def calc_plane_averaged_density(ifile,**args): if 'dim' in args: dim=args['dim'] else: dim=2 if 'filetype' in args: filetype=args['filetype'] else: filetype='LOCPOT' if filetype=='LOCPOT': e,lv,coord,atomtypes,atomnums=parse_LOCPOT(ifile) else: e,lv,coord,atomtypes,atomnums=parse_CHGCAR(ifile) x=array([i*norm(lv[dim])/(shape(e)[dim]-1) for i in range(shape(e)[dim])]) y=zeros(shape(e)[dim]) for i in range(
shape(e)
numpy.shape
#! /usr/bin/env python import pandas as pd import numpy as np from scipy.stats import linregress import matplotlib.pyplot as plt from scipy.signal import savgol_filter from scipy.fftpack import rfft, irfft, fftfreq def normalize(df): result = df.copy() eps = 0.0000001 for feature_name in df.columns: max_value = df[feature_name].max() min_value = df[feature_name].min() result[feature_name] = (df[feature_name] - min_value) / (max_value - min_value + eps) + eps return result def extent_trans_X(x, n, k): return 1 - np.exp(-1 * np.exp(k) * pow(x, n)) def running_mean(x, n=5): return np.convolve(x, np.ones((n,))/n)[(n-1):] # This part reads in the excel file, and parses it into dataframse # path_in = 'C:/Users/isle132/Documents/NGDE/Data/From Forrest Test Data' # exp_data_file = 'FTIR Plate Run.xlsx' # exp_data_file = 'Copy of FTIR Nucleation Run.xlsx' path_in = 'C:/Users/isle132/Documents/NGDE/Data/' exp_data_file = 'FTIR Nucleation Run v2.xlsx' xl_exp_data = pd.ExcelFile(path_in+'/'+exp_data_file) df_xl_in = xl_exp_data.parse("High Conc Run Py", index_col=0) # df_xl_in = xl_exp_data.parse("Medium Conc Run Py", index_col=0) # df_xl_in = xl_exp_data.parse("Low Conc Run Py", index_col=0) # df_xl_in = xl_exp_data.parse("Nucleation Data", index_col=0) # df_xl_in.columns = df_xl_in.columns.str.replace(' minutes', '') injection_time = 5.0 # high concentration growth, time after injection growth_onset = 4.0 # medium concentration growth, time after injection # growth_onset = 10 time = df_xl_in.columns all_t_signal = df_xl_in.copy() all_t_smooth_signal = df_xl_in.copy() # FFT FILTER sample_freq = all_t_signal.index[1] - all_t_signal.index[0] # units of frequency cm**-1 fft_freqs = fftfreq(len(all_t_signal), d=sample_freq) # bins into cycles / (cm**-1) for time_column in all_t_signal: ft_signal_data = rfft(all_t_signal[time_column]) ft_signal_data[fft_freqs < -0.10] = 0 # Cut out all freqs larger than 0.05 cycles / (cm**-1) ft_signal_smooth = irfft(ft_signal_data) all_t_smooth_signal[time_column] = ft_signal_smooth # Subset the frequencies near the peak freq_sel = (all_t_smooth_signal.index.get_level_values(0) <= 1600) & \ (all_t_smooth_signal.index.get_level_values(0) >= 1590) test_signal = all_t_smooth_signal.loc[freq_sel].T test_signal = test_signal[test_signal.index >= injection_time] # injection time at 5 minutes test_signal.index = test_signal.index - injection_time # injection time at 5 minutes normalized_data_unproc = normalize(test_signal) # SAVITZKY GOLAY FILTER # apply a Savitzky Golay filter to smooth the data, using a 9 point window with order 3 polynomial normalized_data = normalized_data_unproc.apply(savgol_filter, args=(9, 3,)) # take values for time greater than 1, to prevent singularity in log avrami_transform = normalized_data.ix[1:].apply(lambda x: np.log(np.log(1/(1-x)))) avrami_transform.index = list(map(lambda x: np.log(x), avrami_transform.index.astype(float))) impingement_factor = 1 austin_rickett_transform = normalized_data.ix[1:].apply(lambda x: np.log(pow(1-x, -1 * impingement_factor)-1) + np.log(impingement_factor)) austin_rickett_transform.index = list(map(lambda x: np.log(x), austin_rickett_transform.index.astype(float))) x_ln_time = avrami_transform.index.values avrami_slopes = pd.DataFrame(index=x_ln_time[1:]) # make the empty array # set up the time selectors nucl_ln_time_sel = (avrami_transform.index.get_level_values(0) <= np.log(growth_onset-0.8)) & \ (avrami_transform.index.get_level_values(0) >= 0.2) growth_ln_time_sel = (avrami_transform.index.get_level_values(0) >= np.log(growth_onset)) & \ (avrami_transform.index.get_level_values(0) <= np.log(40.0)) x_ln_time_nucl_sub = avrami_transform.loc[nucl_ln_time_sel].index.values x_ln_time_growth_sub = avrami_transform.loc[growth_ln_time_sel].index.values # Do Linear Regression Individually for each Frequency avrami_coef_w = [] avrami_inter_w = [] avrami_r_w = [] avrami_coef_n = [] avrami_inter_n = [] avrami_r_n = [] avrami_coef_n_s = [] avrami_inter_n_s = [] avrami_r_n_s = [] avrami_coef_g = [] avrami_inter_g = [] avrami_r_g = [] for column in avrami_transform: y_w = avrami_transform[column].values y_n = avrami_transform.loc[nucl_ln_time_sel, column].values y_g = avrami_transform.loc[growth_ln_time_sel, column].values slope_w, intercept_w, r_value_w, p_value_w, std_err_w = linregress(x_ln_time, y_w) avrami_coef_w.append(slope_w) avrami_inter_w.append(intercept_w) avrami_r_w.append(r_value_w) slope_n, intercept_n, r_value_n, p_value_n, std_err_n = linregress(x_ln_time_nucl_sub, y_n) avrami_coef_n.append(slope_n) avrami_inter_n.append(intercept_n) avrami_r_n.append(r_value_n) slope_g, intercept_g, r_value_g, p_value_g, std_err_g = linregress(x_ln_time_growth_sub, y_g) avrami_coef_g.append(slope_g) avrami_inter_g.append(intercept_g) avrami_r_g.append(r_value_g) avrami_slopes[column] = np.diff(y_w)/np.diff(x_ln_time) # Get the slopes from the avrami plots - time exponent avrami_slopes.fillna(method='backfill') # apply a Savitzky Golay filter to smooth the data, using a 7 point window with order 3 polynomial # avrami_slopes_smooth = avrami_slopes.apply(savgol_filter, args=(5, 2,), mode='mirror') avrami_slopes_smooth = avrami_slopes.copy() normalized_data['mean'] = normalized_data.mean(axis=1) avrami_slopes['mean'] = avrami_slopes.mean(axis=1) avrami_slopes_smooth['mean'] = avrami_slopes_smooth.mean(axis=1) # Get the n vs X data transformed_fraction = pd.DataFrame(index=normalized_data.ix[1:, 'mean'].values[1:]) transformed_fraction['mean'] = avrami_slopes_smooth['mean'].values transformed_fraction = transformed_fraction.sort_index() # print out the Regression Information print('For the entire Data set') print('average is ', np.average(avrami_coef_w), ' x + ', np.average(avrami_inter_w), '\nSTDev is ', np.std(avrami_coef_w), ' x + ', np.std(avrami_inter_w), '\nMax is ', np.max(avrami_coef_w), ' x + ', np.max(avrami_inter_w), '\nMin is ', np.min(avrami_coef_w), ' x + ', np.min(avrami_inter_w), '\nR**2 is ', np.average(avrami_r_w)) print('For the nucleation subset of the full Data set') print('average is ', np.average(avrami_coef_n), ' x + ', np.average(avrami_inter_n), '\nSTDev is ', np.std(avrami_coef_n), ' x + ', np.std(avrami_inter_n), '\nMax is ', np.max(avrami_coef_n), ' x + ', np.max(avrami_inter_n), '\nMin is ', np.min(avrami_coef_n), ' x + ', np.min(avrami_inter_n), '\nR**2 is ', np.average(avrami_r_n)) print('For the growth subset of the full Data set') print('average is ', np.average(avrami_coef_g), ' x + ', np.average(avrami_inter_g), '\nSTDev is ', np.std(avrami_coef_g), ' x + ', np.std(avrami_inter_g), '\nMax is ', np.max(avrami_coef_g), ' x + ', np.max(avrami_inter_g), '\nMin is ', np.min(avrami_coef_g), ' x + ', np.min(avrami_inter_g), '\nR**2 is ', np.average(avrami_r_g)) # Prepare data for plotting reg_plot_y_w = x_ln_time * np.average(avrami_coef_w) + np.average(avrami_inter_w) reg_plot_y_n = x_ln_time * np.average(avrami_coef_n) + np.average(avrami_inter_n) reg_plot_y_g = x_ln_time * np.average(avrami_coef_g) + np.average(avrami_inter_g) x_time_extent = normalized_data.index.values X_n = extent_trans_X(x_time_extent,
np.average(avrami_coef_n)
numpy.average
__author__ = 'joerg' import os import numpy as np def get_speaker_lists(rootDir): np.random.seed(100) dirlist = ['DR5', 'DR6', 'DR7', 'DR3', 'DR2', 'DR1', 'DR4', 'DR8'] train_speaker = [] valid_speaker = [] for i in dirlist: region_speakers = [] for dirName, subdirList, fileList in os.walk(rootDir + i + "/"): #print(dirName) path,folder_name = os.path.split(dirName) if folder_name.__len__() >= 1: region_speakers.append(folder_name) len = region_speakers.__len__() valid_len = int(round(len * 0.1)) random_valid =
np.random.randint(0,len-1,valid_len)
numpy.random.randint
import numpy as np import cv2 as cv from skimage.transform import hough_circle, hough_circle_peaks from skimage.feature import canny from scipy.optimize import linear_sum_assignment from scipy.spatial import distance as scipy_distance from scipy.spatial import Voronoi as ScipyVoronoi from sklearn.metrics import mutual_info_score # for singular spectrum analysis import scipy.linalg as linalg def find_circles_thres(current_frame_gray, num_of_rafts, radii_hough=[17, 19], thres_value=70, sigma_canny=1.0, low_threshold_canny=25, high_threshold_canny=127, min_sep_dist=20, raft_center_threshold=60, top_left_x=390, top_left_y=450, width_x=850, height_y=850): """ find the centers of each raft :param current_frame_gray: image in grayscale :param num_of_rafts: :param radii_hough: the range of Hough radii :param thres_value: threshold value :param sigma_canny: :param low_threshold_canny: :param high_threshold_canny: :param min_sep_dist: :param raft_center_threshold: :param top_left_x: :param top_left_y: :param width_x: :param height_y: :return: raft_centers, raft_radii, raft_count """ # key data set initialization raft_centers = np.zeros((num_of_rafts, 2), dtype=int) raft_radii = np.zeros(num_of_rafts, dtype=int) # crop the image image_cropped = current_frame_gray[top_left_y: top_left_y + height_y, top_left_x: top_left_x + width_x] # threshold the image retval, image_thres = cv.threshold(image_cropped, thres_value, 255, 0) # find edges image_edges = canny(image_thres, sigma=sigma_canny, low_threshold=low_threshold_canny, high_threshold=high_threshold_canny) # use Hough transform to find circles hough_results = hough_circle(image_edges, np.arange(*radii_hough)) accums, cx, cy, radii = hough_circle_peaks(hough_results, np.arange(*radii_hough)) # assuming that the first raft (highest accumulator score) is a good one # raft_centers[0,0] = cx[0] # raft_centers[0,1] = cy[0] # raft_radii[0] = radii[0] raft_count = 0 # starting from 1! # remove circles that belong to the same raft and circles that happened to be in between rafts for accum_score, detected_cx, detected_cy, detected_radius in zip(accums, cx, cy, radii): new_raft = 1 if image_cropped[detected_cy, detected_cx] < raft_center_threshold: new_raft = 0 elif image_cropped[detected_cy - detected_radius // 2: detected_cy + detected_radius // 2, detected_cx - detected_radius // 2:detected_cx + detected_radius // 2].mean() \ < raft_center_threshold: new_raft = 0 # elif (detected_cx - width_x/2)**2 + (detected_cy - height_y/2)**2 > lookup_radius**2: # new_raft = 0 else: cost_matrix = scipy_distance.cdist(np.array([detected_cx, detected_cy], ndmin=2), raft_centers[:raft_count, :], 'euclidean') if np.any(cost_matrix < min_sep_dist): # raft still exist new_raft = 0 if new_raft == 1: raft_centers[raft_count, 0] = detected_cx # note that raft_count starts with 1, also note that cx corresponds to columns number raft_centers[raft_count, 1] = detected_cy # cy is row number raft_radii[raft_count] = detected_radius raft_count = raft_count + 1 if raft_count == num_of_rafts: # error_message = 'all rafts found' break # convert the xy coordinates of the cropped image into the coordinates of the original image raft_centers[:, 0] = raft_centers[:, 0] + top_left_x raft_centers[:, 1] = raft_centers[:, 1] + top_left_y return raft_centers, raft_radii, raft_count def find_circles_adaptive(current_frame_gray, num_of_rafts, radii_hough, adaptive_thres_blocksize=9, adaptive_thres_const=-20, min_sep_dist=20, raft_center_threshold=60, top_left_x=390, top_left_y=450, width_x=850, height_y=850): """ find the centers of each raft :param current_frame_gray: :param num_of_rafts: :param radii_hough: :param adaptive_thres_blocksize: :param adaptive_thres_const: :param min_sep_dist: :param raft_center_threshold: :param top_left_x: :param top_left_y: :param width_x: :param height_y: :return: raft_centers, raft_radii, raft_count """ # key data set initialization raft_centers = np.zeros((num_of_rafts, 2), dtype=int) raft_radii = np.zeros(num_of_rafts, dtype=int) # crop the image image_cropped = current_frame_gray[top_left_y: top_left_y + height_y, top_left_x: top_left_x + width_x] # threshold the image image_thres = cv.adaptiveThreshold(image_cropped, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, adaptive_thres_blocksize, adaptive_thres_const) # use Hough transform to find circles hough_results = hough_circle(image_thres, np.arange(*radii_hough)) accums, cx, cy, radii = hough_circle_peaks(hough_results, np.arange(*radii_hough)) # assuming that the first raft (highest accumulator score) is a good one # raft_centers[0,0] = cx[0] # raft_centers[0,1] = cy[0] # raft_radii[0] = radii[0] raft_count = 0 # starting from 1! # remove circles that belong to the same raft and circles that happened to be in between rafts for accumScore, detected_cx, detected_cy, detected_radius in zip(accums, cx, cy, radii): new_raft = 1 if image_cropped[detected_cy, detected_cx] < raft_center_threshold: new_raft = 0 elif image_cropped[detected_cy - detected_radius // 2: detected_cy + detected_radius // 2, detected_cx - detected_radius // 2:detected_cx + detected_radius // 2].mean() \ < raft_center_threshold: new_raft = 0 # elif (detected_cx - width_x/2)**2 + (detected_cy - height_y/2)**2 > lookup_radius**2: # new_raft = 0 else: cost_matrix = scipy_distance.cdist(np.array([detected_cx, detected_cy], ndmin=2), raft_centers[:raft_count, :], 'euclidean') if np.any(cost_matrix < min_sep_dist): # raft still exist new_raft = 0 if new_raft == 1: raft_centers[raft_count, 0] = detected_cx # note that raft_count starts with 1, also note that cx corresonds to columns number raft_centers[raft_count, 1] = detected_cy # cy is row number raft_radii[raft_count] = detected_radius raft_count = raft_count + 1 if raft_count == num_of_rafts: # error_message = 'all rafts found' break # convert the xy coordinates of the cropped image into the coordinates of the original image raft_centers[:, 0] = raft_centers[:, 0] + top_left_x raft_centers[:, 1] = raft_centers[:, 1] + top_left_y return raft_centers, raft_radii, raft_count def find_and_sort_circles(image_gray, num_of_rafts, prev_pos, radii_hough, thres_value=30, sigma_Canny=1.0, low_threshold_canny=25, high_threshold_canny=127, max_displ=50): """ For each raft detected in the prev_pos, go through the newly found circles in descending order of scores, and the first one within max_displ is the stored as the new position of the raft. :param image_gray: gray scale image :param num_of_rafts: number of rafts to be located :param prev_pos: previous positions of rafts :param radii_hough: [starting radius, ending radius], to be unpacked as an argument for hough_circle :param thres_value: :param sigma_Canny: the width of the Gaussian filter for Canny edge detection :param low_threshold_canny: low threshold for Canny :param high_threshold_canny: high threshold for Canny :param max_displ: maximum displacement :return: """ # key data set initialization raft_centers = np.zeros((num_of_rafts, 2), dtype=int) raft_radii = np.zeros(num_of_rafts, dtype=int) # threshold the image first retval, image_thres = cv.threshold(image_gray, thres_value, 255, 0) # kernel = np.ones((3,3),np.uint8) # image_thres = cv.morphologyEx(image_thres, cv.MORPH_OPEN, kernel) # use canny and then Hough transform to find circles image_edges = canny(image_thres, sigma=sigma_Canny, low_threshold=low_threshold_canny, high_threshold=high_threshold_canny) hough_results = hough_circle(image_edges, np.arange(*radii_hough)) accums, cx, cy, radii = hough_circle_peaks(hough_results, np.arange(*radii_hough)) raft_count = 0 for raftID in np.arange(num_of_rafts): for accumScore, detected_cx, detected_cy, detected_radius in zip(accums, cx, cy, radii): distance = np.sqrt((detected_cx - prev_pos[raftID, 0]) ** 2 + (detected_cy - prev_pos[raftID, 1]) ** 2) if distance < max_displ: raft_centers[raftID, 0] = detected_cx # note that raft_count starts with 1, also note that cx corresonds to columns number raft_centers[raftID, 1] = detected_cy # cy is row number raft_radii[raftID] = detected_radius raft_count += 1 break return raft_centers, raft_radii, raft_count def detect_by_contours(image_gray): original = image_gray.copy() lowcut = original.mean() + 1.0 * original.std() retval, image_thres = cv.threshold(original, lowcut, 255, cv.THRESH_BINARY) kernel = np.ones((3, 3), np.uint8) image = cv.morphologyEx(image_thres, cv.MORPH_OPEN, kernel) _, contours, hierarchy = cv.findContours(image, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE) # drawing = test_image.copy() centers = [] radii = [] for contour in contours: area = cv.contourArea(contour) # there is one contour that contains all others, filter it out, Area can be moved to function definition also. if area < 2000: continue center, br2 = cv.minEnclosingCircle(contour) # I tried to match the raft boundary using this 0.9 radii.append(br2) centers.append(center) raft_centers = np.array(centers, dtype=int) raft_radii = np.array(radii, dtype=int) return raft_centers, raft_radii def parse_main_folder_name(main_folder_name): """ parse the name of the main folder here, and return the follwing parts date, string raft_geometry, string thin_film_prop, string magnet_field_prop, string comments, string """ parts = main_folder_name.split('_') date = parts[0] raft_geometry = parts[1] thin_film_prop = parts[2] magnet_field_prop = parts[3] if len(parts) > 4: comments = parts[4] else: comments = 'none' return date, raft_geometry, thin_film_prop, magnet_field_prop, comments def parse_subfolder_name(subfolder_name): """ parse the subfolder name here, and return the following variables num_of_rafts, int batch_number, int spin_speed, int magnification, int comments, string """ name_lowercase = subfolder_name.lower() parts = name_lowercase.split('_') num_of_rafts = int(parts[0].partition('raft')[0]) batch_number = int(parts[1]) spin_speed = float(parts[2].partition('rp')[0]) spin_unit = ''.join(parts[2].partition('rp')[1:]) # if parts[2].partition('rp')[0].isdigit(): # spin_speed = int(parts[2].partition('rp')[0]) # spin_unit = ''.join(parts[2].partition('rp')[1:]) # elif parts[2].partition('hz')[0].isdigit(): # spin_speed = int(parts[2].partition('hz')[0]) # spin_unit = ''.join(parts[2].partition('hz')[1:]) magnification = float(parts[3].partition('x')[0]) if len(parts) > 4: comments = ''.join(parts[4:]) else: comments = 'none' return num_of_rafts, batch_number, spin_speed, spin_unit, magnification, comments def calculate_distance(p1, p2): """ calculate the distance between p1 and p2 """ dist = np.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2) return dist def calculate_orbiting_angle(orbiting_center, raft): """ calculate the orbiting angle of a raft with respect to a center """ # note the negative sign before the first component, the y component # it is to make the orbiting angle in a right-handed coordiante. angle = np.arctan2(-(raft[1] - orbiting_center[1]), (raft[0] - orbiting_center[0])) * 180 / np.pi return angle def numbering_rafts(rafts_loc, rafts_radii, num_of_rafts): """ sort the rafts into layers and number them sequentially from inner most layer to the outmost layer return sorted rafts_loc and rafts_radii, and layer index """ orbiting_center = np.mean(rafts_loc, axis=0) orbiting_dist = np.sqrt((rafts_loc[:, 0] - orbiting_center[0]) ** 2 + (rafts_loc[:, 1] - orbiting_center[1]) ** 2) sorted_index = orbiting_dist.argsort() dist_sorted = orbiting_dist[sorted_index] rafts_loc_sorted = rafts_loc[sorted_index, :] rafts_radii_sorted = rafts_radii[sorted_index] # assign layer layer_index = np.ones(num_of_rafts, dtype=int) layer_num = 1 for raft_id in np.arange(1, num_of_rafts): if dist_sorted[raft_id] - dist_sorted[raft_id - 1] > rafts_radii_sorted[raft_id]: layer_num = layer_num + 1 layer_index[raft_id] = layer_num # calculate orbiting angle, note the two negative signs in front of both y- and x- components. # For y-component, it is for flipping image axis. # For x-component, it is make the counting start at x-axis and go clockwise. # Note the value of arctan2 is [-pi, pi] orbiting_angles = np.arctan2(-(rafts_loc_sorted[:, 1] - orbiting_center[1]), -(rafts_loc_sorted[:, 0] - orbiting_center[0])) * 180 / np.pi # concatenate and sort rafts_loc_radii_dist_angle_layer = \ np.column_stack((rafts_loc_sorted[:, 0], rafts_loc_sorted[:, 1], rafts_radii_sorted, dist_sorted, orbiting_angles, layer_index)) sorted_index2 = np.lexsort((orbiting_angles, layer_index)) rafts_loc_radii_dist_angle_layer_sorted = rafts_loc_radii_dist_angle_layer[sorted_index2] rafts_loc_sorted2 = rafts_loc_radii_dist_angle_layer_sorted[:, 0:2].astype(int) rafts_radii_sorted2 = rafts_loc_radii_dist_angle_layer_sorted[:, 2].astype(int) dist_sorted2 = rafts_loc_radii_dist_angle_layer_sorted[:, 3] angles_sorted2 = rafts_loc_radii_dist_angle_layer_sorted[:, 4] layer_index_sorted2 = rafts_loc_radii_dist_angle_layer_sorted[:, 5] return rafts_loc_sorted2, rafts_radii_sorted2, dist_sorted2, angles_sorted2, layer_index_sorted2 def crop_image(grayscale_image, raft_center, width): """ crop the area of the raft """ top_row = int(raft_center[1] - width / 2) # note that y corresponds to rows, and is directed from top to bottom in scikit-image bottom_row = int(raft_center[1] + width / 2) left_column = int(raft_center[0] - width / 2) right_column = int(raft_center[0] + width / 2) raft_image = grayscale_image[top_row:bottom_row, left_column:right_column] return raft_image def tracking_rafts(prev_rafts_locations, detected_centers): """ sort the detected_centers according to the locations of rafts in the previous frame the row number of col_ind is raft number in prev_rafts_locations, the value in col_ind is the corresponding raft number in the detected_centers """ cost_matrix = scipy_distance.cdist(prev_rafts_locations, detected_centers, 'euclidean') row_ind, col_ind = linear_sum_assignment(cost_matrix) return col_ind def counting_effused_rafts(prev_centers, prev_count, curr_centers, curr_count, boundary_x, max_displacement): """ test if the raft crosses the boundary of container """ effused_raft_to_left = 0 effused_raft_to_right = 0 cost_matrix = scipy_distance.cdist(prev_centers[:prev_count], curr_centers[:curr_count], 'euclidean') # note that row index refers to previous raft number, column index refers to current raft number # select the boundary crossing to be in the middle of the cropped image, so only deals with existing rafts for raftID in np.arange(prev_count): if np.any(cost_matrix[raftID, :] < max_displacement): # raft still exist curr_raft_id = np.nonzero(cost_matrix[raftID, :] < max_displacement)[0][ 0] # [0][0] is to convert array into scalar if (prev_centers[raftID, 0] >= boundary_x) and (curr_centers[curr_raft_id, 0] < boundary_x): effused_raft_to_left = effused_raft_to_left + 1 elif (prev_centers[raftID, 0] < boundary_x) and (curr_centers[curr_raft_id, 0] >= boundary_x): effused_raft_to_right = effused_raft_to_right + 1 return effused_raft_to_left, effused_raft_to_right def get_rotation_angle(prev_image, curr_image, size_of_cropped_image): """ extract the angle of rotation theta between two frames :param curr_image: :param prev_image: :param size_of_cropped_image: """ max_value = np.amax(prev_image) if prev_image.dtype == 'float' and max_value <= 1: prev_image = np.uint8(prev_image * 255) curr_image = np.uint8(curr_image * 255) if prev_image.dtype == 'float' and max_value > 1: prev_image = np.uint8(prev_image) curr_image = np.uint8(curr_image) prev_image = cv.equalizeHist(prev_image) curr_image = cv.equalizeHist(curr_image) # Initiate ORB detector orb = cv.ORB_create(nfeatures=200) # find the keypoints and descriptors with ORB kp1, des1 = orb.detectAndCompute(prev_image, None) kp2, des2 = orb.detectAndCompute(curr_image, None) # do feature matching bf = cv.BFMatcher(cv.NORM_HAMMING, crossCheck=True) matches = bf.match(des1, des2) matches = sorted(matches, key=lambda x: x.distance) # calculate perspective transform matrix src_pts = np.float32([kp1[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2) dst_pts = np.float32([kp2[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2) transform_matrix, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC, 5.0) if transform_matrix is None: transform_matrix, mask = cv.findHomography(src_pts, dst_pts, 0) if transform_matrix is None: transform_matrix, mask = cv.findHomography(src_pts, dst_pts, 0) vector_along_x_axis_from_center = \ np.float32([[size_of_cropped_image / 2, size_of_cropped_image / 2], [size_of_cropped_image, size_of_cropped_image / 2]]).reshape(-1, 1, 2) vector_transformed = cv.perspectiveTransform(vector_along_x_axis_from_center, transform_matrix) theta = - np.arctan2(vector_transformed[1, 0, 1] - vector_transformed[0, 0, 1], vector_transformed[1, 0, 0] - vector_transformed[0, 0, 0]) * 180 / np.pi # negative sign is to make the sign of the angle to correspond to one in a right-handed coordinate system return theta def draw_rafts(img_bgr, rafts_loc, rafts_radii, num_of_rafts): """ draw circles around rafts """ circle_thickness = int(2) circle_color = (0, 0, 255) # openCV: BGR output_img = img_bgr for raft_id in np.arange(num_of_rafts): output_img = cv.circle(output_img, (rafts_loc[raft_id, 0], rafts_loc[raft_id, 1]), rafts_radii[raft_id], circle_color, circle_thickness) return output_img def draw_raft_orientations(img_bgr, rafts_loc, rafts_ori, rafts_radii, num_of_rafts): """ draw lines to indicate the orientation of each raft """ line_thickness = int(2) line_color = (255, 0, 0) output_img = img_bgr for raft_id in np.arange(num_of_rafts): line_start = (rafts_loc[raft_id, 0], rafts_loc[raft_id, 1]) line_end = (int(rafts_loc[raft_id, 0] + np.cos(rafts_ori[raft_id] * np.pi / 180) * rafts_radii[raft_id]), int(rafts_loc[raft_id, 1] - np.sin(rafts_ori[raft_id] * np.pi / 180) * rafts_radii[raft_id])) output_img = cv.line(output_img, line_start, line_end, line_color, line_thickness) return output_img def draw_raft_number(img_bgr, rafts_loc, num_of_rafts): """ draw the raft number at the center of the rafts """ font_face = cv.FONT_HERSHEY_SIMPLEX font_scale = 0.5 font_color = (0, 255, 255) # BGR font_thickness = 1 output_img = img_bgr for raft_id in np.arange(num_of_rafts): text_size, _ = cv.getTextSize(str(raft_id + 1), font_face, font_scale, font_thickness) output_img = cv.putText(output_img, str(raft_id + 1), (rafts_loc[raft_id, 0] - text_size[0] // 2, rafts_loc[raft_id, 1] + text_size[1] // 2), font_face, font_scale, font_color, font_thickness, cv.LINE_AA) return output_img def draw_effused_raft_count(img_bgr, raft_effused, raft_to_left, raft_to_right, topleft_x, topleft_y, width_x, height_y): """ draw effused rafts """ font_face = cv.FONT_HERSHEY_SIMPLEX font_scale = 1 font_color = (0, 0, 255) # BGR font_thickness = 2 line_color = (0, 0, 255) # BGR line_thickness = 1 output_img = img_bgr output_img = cv.line(output_img, (topleft_x + width_x // 2, topleft_y), (topleft_x + width_x // 2, topleft_y + height_y), line_color, line_thickness) output_img = cv.putText(output_img, 'Effused: ' + str(raft_effused), (topleft_x, topleft_y - 30), font_face, font_scale, font_color, font_thickness, cv.LINE_AA) output_img = cv.putText(output_img, 'To left: ' + str(raft_to_left), (topleft_x, topleft_y - 60), font_face, font_scale, font_color, font_thickness, cv.LINE_AA) output_img = cv.putText(output_img, 'To right: ' + str(raft_to_right), (topleft_x, topleft_y - 90), font_face, font_scale, font_color, font_thickness, cv.LINE_AA) return output_img # functions used in the post-processing file def calculate_centers_of_mass(x_all, y_all): """ calculate the centers of all rafts for each frame xAll - x position, (# of frames, # of rafts), unit: pixel yAll - y position (# of frames, # of rafts) """ num_of_frames, num_of_rafts = x_all.shape x_centers = x_all[:, 0:num_of_rafts].mean(axis=1) y_centers = y_all[:, 0:num_of_rafts].mean(axis=1) x_relative_to_centers = x_all - x_centers[:, np.newaxis] y_relative_to_centers = y_all - y_centers[:, np.newaxis] distances_to_centers = np.sqrt(x_relative_to_centers ** 2 + y_relative_to_centers ** 2) orbiting_angles = np.arctan2(y_relative_to_centers, x_relative_to_centers) * 180 / np.pi return distances_to_centers, orbiting_angles, x_centers, y_centers def calculate_polar_angle(p1, p2): """ calculate the polar angle of the vector from p1 to p2. """ # note the negative sign before the first component, which is y component # the y in scikit-image is flipped. # it is to convert the angle into right-handed coordinate # the range is from -pi to pi angle = np.arctan2(-(p2[1] - p1[1]), (p2[0] - p1[0])) * 180 / np.pi return angle def adjust_orbiting_angles(orbiting_angles_series, orbiting_angles_diff_threshold=200): """ adjust the orbiting angles to get rid of the jump of 360 when it crosses from -180 to 180, or the reverse adjust single point anormaly. """ orbiting_angles_diff = np.diff(orbiting_angles_series) index_neg = orbiting_angles_diff < -orbiting_angles_diff_threshold index_pos = orbiting_angles_diff > orbiting_angles_diff_threshold insertion_indices_neg = np.nonzero(index_neg) insertion_indices_pos = np.nonzero(index_pos) orbiting_angles_diff_corrected = orbiting_angles_diff.copy() orbiting_angles_diff_corrected[insertion_indices_neg[0]] += 360 orbiting_angles_diff_corrected[insertion_indices_pos[0]] -= 360 orbiting_angles_corrected = orbiting_angles_series.copy() orbiting_angles_corrected[1:] = orbiting_angles_diff_corrected[:] orbiting_angles_adjusted = np.cumsum(orbiting_angles_corrected) return orbiting_angles_adjusted def adjust_orbiting_angles2(orbiting_angles_series, orbiting_angles_diff_threshold=200): """ 2nd version of ajust_orbiting_angles adjust the orbiting angles to get rid of the jump of 360 when it crosses from -180 to 180, or the reverse orbiting_angle_series has the shape (raft num, frame num) """ orbiting_angles_diff = np.diff(orbiting_angles_series, axis=1) index_neg = orbiting_angles_diff < -orbiting_angles_diff_threshold index_pos = orbiting_angles_diff > orbiting_angles_diff_threshold insertion_indices_neg = np.nonzero(index_neg) insertion_indices_pos = np.nonzero(index_pos) orbiting_angles_diff_corrected = orbiting_angles_diff.copy() orbiting_angles_diff_corrected[insertion_indices_neg[0], insertion_indices_neg[1]] += 360 orbiting_angles_diff_corrected[insertion_indices_pos[0], insertion_indices_pos[1]] -= 360 orbiting_angles_corrected = orbiting_angles_series.copy() orbiting_angles_corrected[:, 1:] = orbiting_angles_diff_corrected[:] orbiting_angles_adjusted = np.cumsum(orbiting_angles_corrected, axis=1) return orbiting_angles_adjusted def mutual_info_matrix(time_series, num_of_bins): """ Calculate mutual information for each pair of rafts time_series - rows are raft numbers, and columns are times numOfBins- numOfBins for calculating histogram the result is in unit of bits. """ num_of_rafts, interval_width = time_series.shape mi_matrix = np.zeros((num_of_rafts, num_of_rafts)) for i in range(num_of_rafts): for j in range(i + 1): i0 = time_series[i, :].copy() j0 = time_series[j, :].copy() c_xy = np.histogram2d(i0, j0, num_of_bins)[0] mi = mutual_info_score(None, None, contingency=c_xy) * np.log2(np.e) # in unit of bits, * np.log2(np.e) to convert nats to bits mi_matrix[i, j] = mi mi_matrix[j, i] = mi return mi_matrix def shannon_entropy(c): """calculate the Shannon entropy of 1 d data. The unit is bits """ c_normalized = c / float(np.sum(c)) c_normalized_nonzero = c_normalized[np.nonzero(c_normalized)] # gives 1D array entropy = -sum(c_normalized_nonzero * np.log2(c_normalized_nonzero)) # unit in bits return entropy def fft_distances(sampling_rate, distances): """ given sampling rate and distances, and output frequency vector and one-sided power spectrum sampling_rate: unit Hz distances: numpy array, unit micron """ # sampling_interval = 1/sampling_rate # unit s # times = np.linspace(0,sampling_length*sampling_interval, sampling_length) sampling_length = len(distances) # total number of frames fft_dist = np.fft.fft(distances) p2 = np.abs(fft_dist / sampling_length) p1 = p2[0:int(sampling_length / 2) + 1] p1[1:-1] = 2 * p1[1:-1] # one-sided power spectrum frequencies = sampling_rate / sampling_length * np.arange(0, int(sampling_length / 2) + 1) return frequencies, p1 def draw_clusters(img_bgr, connectivity_matrix, rafts_loc): """ draw lines between centers of connected rafts """ line_thickness = 2 line_color = (0, 255, 0) output_img = img_bgr raft1s, raft2s = np.nonzero(connectivity_matrix) for raftA, raftB in zip(raft1s, raft2s): output_img = cv.line(output_img, (rafts_loc[raftA, 0], rafts_loc[raftA, 1]), (rafts_loc[raftB, 0], rafts_loc[raftB, 1]), line_color, line_thickness) return output_img def draw_voronoi(img_bgr, rafts_loc): """ draw Voronoi patterns """ points = rafts_loc vor = ScipyVoronoi(points) output_img = img_bgr # drawing Voronoi vertices vertex_size = int(3) vertex_color = (255, 0, 0) for x, y in zip(vor.vertices[:, 0], vor.vertices[:, 1]): output_img = cv.circle(output_img, (int(x), int(y)), vertex_size, vertex_color) # drawing Voronoi edges edge_color = (0, 255, 0) edge_thickness = int(2) for simplex in vor.ridge_vertices: simplex = np.asarray(simplex) if np.all(simplex >= 0): output_img = cv.line(output_img, (int(vor.vertices[simplex[0], 0]), int(vor.vertices[simplex[0], 1])), (int(vor.vertices[simplex[1], 0]), int(vor.vertices[simplex[1], 1])), edge_color, edge_thickness) center = points.mean(axis=0) for pointidx, simplex in zip(vor.ridge_points, vor.ridge_vertices): simplex = np.asarray(simplex) if np.any(simplex < 0): i = simplex[simplex >= 0][0] # finite end Voronoi vertex t = points[pointidx[1]] - points[pointidx[0]] # tangent t = t / np.linalg.norm(t) n = np.array([-t[1], t[0]]) # normal midpoint = points[pointidx].mean(axis=0) far_point = vor.vertices[i] + np.sign(np.dot(midpoint - center, n)) * n * 100 output_img = cv.line(output_img, (int(vor.vertices[i, 0]), int(vor.vertices[i, 1])), (int(far_point[0]), int(far_point[1])), edge_color, edge_thickness) return output_img def draw_at_bottom_left_of_raft_number_float(img_bgr, rafts_loc, neighbor_count_wt, num_of_rafts): """ write a subscript to indicate nearest neighbor count or weighted nearest neighbor count """ font_face = cv.FONT_ITALIC font_scale = 0.5 font_color = (0, 165, 255) # BGR font_thickness = 1 output_img = img_bgr for raft_id in np.arange(num_of_rafts): text_size, _ = cv.getTextSize(str(raft_id + 1), font_face, font_scale, font_thickness) output_img = cv.putText(output_img, '{:.2}'.format(neighbor_count_wt[raft_id]), (rafts_loc[raft_id, 0] + text_size[0] // 2, rafts_loc[raft_id, 1] + text_size[1]), font_face, font_scale, font_color, font_thickness, cv.LINE_AA) return output_img def draw_at_bottom_left_of_raft_number_integer(img_bgr, rafts_loc, neighbor_count_wt, num_of_rafts): """ write a subscript to indicate nearest neighbor count or weighted nearest neighbor count """ font_face = cv.FONT_ITALIC font_scale = 0.5 font_color = (0, 165, 255) # BGR font_thickness = 1 output_img = img_bgr for raft_id in np.arange(num_of_rafts): text_size, _ = cv.getTextSize(str(raft_id + 1), font_face, font_scale, font_thickness) output_img = cv.putText(output_img, '{:}'.format(neighbor_count_wt[raft_id]), (rafts_loc[raft_id, 0] + text_size[0] // 2, rafts_loc[raft_id, 1] + text_size[1]), font_face, font_scale, font_color, font_thickness, cv.LINE_AA) return output_img def draw_neighbor_counts(img_bgr, rafts_loc, num_of_rafts): """ draw the raft number at the center of the rafts """ points = rafts_loc vor = ScipyVoronoi(points) neighbor_counts = np.zeros(num_of_rafts, dtype=int) for raft_id in range(num_of_rafts): neighbor_counts[raft_id] = np.count_nonzero(vor.ridge_points.ravel() == raft_id) font_face = cv.FONT_ITALIC font_scale = 0.5 font_color = (0, 165, 255) # BGR font_thickness = 1 output_img = img_bgr for raft_id in np.arange(num_of_rafts): text_size, _ = cv.getTextSize(str(raft_id + 1), font_face, font_scale, font_thickness) output_img = cv.putText(output_img, str(neighbor_counts[raft_id]), (rafts_loc[raft_id, 0] + text_size[0] // 2, rafts_loc[raft_id, 1] + text_size[1]), font_face, font_scale, font_color, font_thickness, cv.LINE_AA) return output_img def polygon_area(x, y): """ calculate the area of a polygon given the x and y coordinates of vertices ref: https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates """ return 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))) def ssa_decompose(y, dim): """ from Vimal Singular Spectrum Analysis decomposition for a time series :param y: time series (array) :param dim: the embedding dimension :return: (pc, s, v) where pc is the matrix with the principal components of y s is the vector of the singular values of y given dim v is the matrix of the singular vectors of y given dim """ n = len(y) t = n - (dim - 1) yy = linalg.hankel(y, np.zeros(dim)) yy = yy[:-dim + 1, :] / np.sqrt(t) # here we use gesvd driver (as in Matlab) _, s, v = linalg.svd(yy, full_matrices=False, lapack_driver='gesvd') # find principal components vt = np.matrix(v).T pc = np.matrix(yy) * vt return np.asarray(pc), s, np.asarray(vt) def ssa_reconstruct(pc, v, k): """ from Vimal Series reconstruction for given SSA decomposition using vector of components :param pc: matrix with the principal components from SSA :param v: matrix of the singular vectors from SSA :param k: vector with the indices of the components to be reconstructed :return: the reconstructed time series """ if np.isscalar(k): k = [k] if pc.ndim != 2: raise ValueError('pc must be a 2-dimensional matrix') if v.ndim != 2: raise ValueError('v must be a 2-dimensional matrix') t, dim = pc.shape n_points = t + (dim - 1) if any(filter(lambda x: dim < x or x < 0, k)): raise ValueError('k must be vector of indexes from range 0..%d' % dim) pc_comp = np.asarray(np.matrix(pc[:, k]) * np.matrix(v[:, k]).T) xr = np.zeros(n_points) times = np.zeros(n_points) # reconstruction loop for i in range(dim): xr[i: t + i] = xr[i: t + i] + pc_comp[:, i] times[i: t + i] = times[i: t + i] + 1 xr = (xr / times) *
np.sqrt(t)
numpy.sqrt
import os import argparse import numpy as np import pandas as pd from time import time from scipy.stats import norm from scipy.spatial.distance import euclidean from editing_dist_n_lcs_dp import edit_distance from editing_dist_n_lcs_dp import lcs #global variables # BREAK_POINTS = [] # LOOKUP_TABLE = [] # TODO BUILD CLASS # TODO find optimal VOCAB_SIZE & PAA_SIZE OR WINDOW_SIZE # TODO compare multiple series # TODO find motifs (cycles) def matrix_to_df(cols, matrix): """ Convert matrix of time series to pd.DataFrame """ df = pd.DataFrame() for i in range(len(cols)): df[cols[i]] = matrix[i] return df def znorm(ts): """ Standardize data """ return (ts - np.mean(ts)) /
np.std(ts)
numpy.std
from unittest import TestCase import os import tempfile import pickle import itertools import numpy as np from scipy import sparse import neoml import threading class MultithreadedTestCase(TestCase): def _thread_function(self, target, kwargs): print(f"python thread {threading.get_ident()} started") target(**kwargs) print(f"python thread {threading.get_ident()} finished") def _test_mt(self, target, result, enable_assert=False): import time threads = [] system_time, user_time = time.perf_counter(), time.process_time() for _ in range(4): t = threading.Thread(target=self._thread_function, args=(target, {'result': result})) threads.append(t) t.start() for t in threads: t.join() system_time, user_time = time.perf_counter() - system_time, time.process_time() - user_time print() print('System time {0:.6f} sec.'.format(system_time)) print('User time {0:.6f} sec.'.format(user_time)) if enable_assert: self.assertTrue(system_time < user_time) def run(self, result=None): self._test_mt(super().run, result=result) class MathEngineTestCase(MultithreadedTestCase): def test_gpu_math_engine(self): check = False try: print(neoml.MathEngine.GpuMathEngine(666).info) except ValueError as err: check = True self.assertEqual(check, True) check = False try: print(neoml.MathEngine.GpuMathEngine(-666).info) except ValueError as err: check = True self.assertEqual(check, True) gpu = neoml.MathEngine.enum_gpu() index = 0 for x in gpu: math_engine = neoml.MathEngine.GpuMathEngine(index) self.assertTrue(isinstance(math_engine, neoml.MathEngine.GpuMathEngine)) index += 1 def test_cpu_math_engine(self): math_engine = neoml.MathEngine.CpuMathEngine() self.assertTrue(isinstance(math_engine, neoml.MathEngine.CpuMathEngine)) blob = neoml.Blob.vector(math_engine, 10, "int32") self.assertEqual(math_engine.peak_memory_usage, 40) class BlobTestCase(MultithreadedTestCase): def test_pickle(self): math_engine = neoml.MathEngine.CpuMathEngine(1) a = np.ones((2, 3, 4, 5), dtype=np.int32) shape = (2, 3, 1, 4, 1, 1, 5) blob = neoml.Blob.asblob(math_engine, a, shape, False) dir = tempfile.mkdtemp() path = os.path.join(dir, 'blob.pickle') binary_file = open(path, mode='wb') pickle.dump(blob, binary_file) binary_file.close() binary_file = open(path, mode='rb') loaded_blob = pickle.load(binary_file) binary_file.close() os.remove(path) os.rmdir(dir) self.assertEqual(blob.shape, loaded_blob.shape) def test_load_store(self): math_engine = neoml.MathEngine.CpuMathEngine(1) a = np.ones((2, 3, 4, 5), dtype=np.int32) shape = (2, 3, 1, 4, 1, 1, 5) blob = neoml.Blob.asblob(math_engine, a, shape, False) dir = tempfile.mkdtemp() path = os.path.join(dir, 'blob.pickle') neoml.Blob.store(blob, path) loaded_blob = neoml.Blob.load(math_engine, path) os.remove(path) os.rmdir(dir) self.assertEqual(blob.shape, loaded_blob.shape) def test_copy(self): math_engine = neoml.MathEngine.CpuMathEngine(1) a = np.ones((4, 4, 4, 4), dtype=np.int32) shape = (4, 4, 1, 4, 4, 1, 1) blob = neoml.Blob.asblob(math_engine, a, shape, False) blob2 = blob.copy(math_engine) self.assertEqual(blob2.shape, blob.shape) a2 = blob2.asarray() self.assertEqual(a2.shape, a.shape) def test_asblob(self): math_engine = neoml.MathEngine.CpuMathEngine(1) float_array = np.ones((2, 5, 7, 16), dtype=np.float32) shape = (1, 2, 1, 5, 7, 1, 16) float_blob = neoml.Blob.asblob(math_engine, float_array, shape, False) self.assertEqual(float_blob.shape, shape) self.assertEqual(float_blob.batch_len, 1) self.assertEqual(float_blob.batch_width, 2) self.assertEqual(float_blob.list_size, 1) self.assertEqual(float_blob.height, 5) self.assertEqual(float_blob.width, 7) self.assertEqual(float_blob.depth, 1) self.assertEqual(float_blob.channels, 16) self.assertEqual(float_blob.size, 2 * 5 * 7 * 16) self.assertEqual(float_blob.object_count, 2) self.assertEqual(float_blob.object_size, 5 * 7 * 16) blob_float_array = float_blob.asarray() blob_float_array2 = float_blob.asarray(True) self.assertEqual(blob_float_array.shape, blob_float_array2.shape) float_array[0][1][1][1] = 2.0 self.assertEqual(float_array[0][1][1][1], blob_float_array[0][1][1][1]) self.assertEqual(1.0, blob_float_array2[0][1][1][1]) def test_vector(self): math_engine = neoml.MathEngine.CpuMathEngine(1) float_blob = neoml.Blob.vector(math_engine, 16, "float32") self.assertEqual(float_blob.batch_len, 16) self.assertEqual(float_blob.batch_width, 1) self.assertEqual(float_blob.list_size, 1) self.assertEqual(float_blob.height, 1) self.assertEqual(float_blob.width, 1) self.assertEqual(float_blob.depth, 1) self.assertEqual(float_blob.channels, 1) self.assertEqual(float_blob.size, 16) self.assertEqual(float_blob.object_count, 16) self.assertEqual(float_blob.object_size, 1) def test_matrix(self): math_engine = neoml.MathEngine.CpuMathEngine(1) float_blob = neoml.Blob.matrix(math_engine, 16, 32, "int32") self.assertEqual(float_blob.batch_len, 16) self.assertEqual(float_blob.batch_width, 32) self.assertEqual(float_blob.list_size, 1) self.assertEqual(float_blob.height, 1) self.assertEqual(float_blob.width, 1) self.assertEqual(float_blob.depth, 1) self.assertEqual(float_blob.channels, 1) self.assertEqual(float_blob.size, 16 * 32) self.assertEqual(float_blob.object_count, 16 * 32) self.assertEqual(float_blob.object_size, 1) def test_tensor(self): math_engine = neoml.MathEngine.CpuMathEngine(1) shape = (1, 2, 3, 4, 5, 6, 7) float_blob = neoml.Blob.tensor(math_engine, shape, "int32") self.assertEqual(float_blob.batch_len, 1) self.assertEqual(float_blob.batch_width, 2) self.assertEqual(float_blob.list_size, 3) self.assertEqual(float_blob.height, 4) self.assertEqual(float_blob.width, 5) self.assertEqual(float_blob.depth, 6) self.assertEqual(float_blob.channels, 7) self.assertEqual(float_blob.size, 1 * 2 * 3 * 4 * 5 * 6 * 7) self.assertEqual(float_blob.object_count, 2 * 3) self.assertEqual(float_blob.object_size, 4 * 5 * 6 * 7) def test_list_blob(self): math_engine = neoml.MathEngine.CpuMathEngine(1) float_blob = neoml.Blob.list_blob(math_engine, 2, 3, 4, 5, "int32") self.assertEqual(float_blob.batch_len, 2) self.assertEqual(float_blob.batch_width, 3) self.assertEqual(float_blob.list_size, 4) self.assertEqual(float_blob.height, 1) self.assertEqual(float_blob.width, 1) self.assertEqual(float_blob.depth, 1) self.assertEqual(float_blob.channels, 5) self.assertEqual(float_blob.size, 2 * 3 * 4 * 5) self.assertEqual(float_blob.object_count, 2 * 3 * 4) self.assertEqual(float_blob.object_size, 5) def test_image2d(self): math_engine = neoml.MathEngine.CpuMathEngine(1) float_blob = neoml.Blob.image2d(math_engine, 2, 3, 4, 5, 6, "float32") self.assertEqual(float_blob.batch_len, 2) self.assertEqual(float_blob.batch_width, 3) self.assertEqual(float_blob.list_size, 1) self.assertEqual(float_blob.height, 4) self.assertEqual(float_blob.width, 5) self.assertEqual(float_blob.depth, 1) self.assertEqual(float_blob.channels, 6) self.assertEqual(float_blob.size, 2 * 3 * 4 * 5 * 6) self.assertEqual(float_blob.object_count, 2 * 3) self.assertEqual(float_blob.object_size, 4 * 5 * 6) def test_image3d(self): math_engine = neoml.MathEngine.CpuMathEngine(1) float_blob = neoml.Blob.image3d(math_engine, 2, 3, 4, 5, 6, 7, "float32") self.assertEqual(float_blob.batch_len, 2) self.assertEqual(float_blob.batch_width, 3) self.assertEqual(float_blob.list_size, 1) self.assertEqual(float_blob.height, 4) self.assertEqual(float_blob.width, 5) self.assertEqual(float_blob.depth, 6) self.assertEqual(float_blob.channels, 7) self.assertEqual(float_blob.size, 2 * 3 * 4 * 5 * 6 * 7) self.assertEqual(float_blob.object_count, 2 * 3) self.assertEqual(float_blob.object_size, 4 * 5 * 6 * 7) class SolverTestCase(MultithreadedTestCase): def test_nesterov_gradient(self): math_engine = neoml.MathEngine.CpuMathEngine(1) solver = neoml.Dnn.NesterovGradient(math_engine, learning_rate=0.6, l1=0.6, l2=0.6, moment_decay_rate=0.6, max_gradient_norm=0.6, second_moment_decay_rate=0.6, epsilon=0.6, ams_grad=True) self.assertAlmostEqual(solver.l1, 0.6, delta=1e-3) self.assertAlmostEqual(solver.l2, 0.6, delta=1e-3) self.assertAlmostEqual(solver.learning_rate, 0.6, delta=1e-3) self.assertAlmostEqual(solver.max_gradient_norm, 0.6, delta=1e-3) self.assertAlmostEqual(solver.moment_decay_rate, 0.6, delta=1e-3) self.assertAlmostEqual(solver.second_moment_decay_rate, 0.6, delta=1e-3) self.assertAlmostEqual(solver.epsilon, 0.6, delta=1e-3) self.assertEqual(solver.ams_grad, True) def test_adaptive_gradient(self): math_engine = neoml.MathEngine.CpuMathEngine(1) solver = neoml.Dnn.AdaptiveGradient(math_engine, learning_rate=0.6, l1=0.6, l2=0.6, moment_decay_rate=0.6, max_gradient_norm=0.6, second_moment_decay_rate=0.6, epsilon=0.6, ams_grad=True) self.assertAlmostEqual(solver.l1, 0.6, delta=1e-3) self.assertAlmostEqual(solver.l2, 0.6, delta=1e-3) self.assertAlmostEqual(solver.learning_rate, 0.6, delta=1e-3) self.assertAlmostEqual(solver.max_gradient_norm, 0.6, delta=1e-3) self.assertAlmostEqual(solver.moment_decay_rate, 0.6, delta=1e-3) self.assertAlmostEqual(solver.second_moment_decay_rate, 0.6, delta=1e-3) self.assertAlmostEqual(solver.epsilon, 0.6, delta=1e-3) self.assertEqual(solver.ams_grad, True) def test_simple_gradient(self): math_engine = neoml.MathEngine.CpuMathEngine(1) solver = neoml.Dnn.SimpleGradient(math_engine, learning_rate=0.6, l1=0.6, l2=0.6, moment_decay_rate=0.6, max_gradient_norm=0.6) self.assertAlmostEqual(solver.l1, 0.6, delta=1e-3) self.assertAlmostEqual(solver.l2, 0.6, delta=1e-3) self.assertAlmostEqual(solver.learning_rate, 0.6, delta=1e-3) self.assertAlmostEqual(solver.max_gradient_norm, 0.6, delta=1e-3) self.assertAlmostEqual(solver.moment_decay_rate, 0.6, delta=1e-3) class LayersTestCase(MultithreadedTestCase): def test_lstm(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") lstm = neoml.Dnn.Lstm(source1, 7, 0.6, name="lstm") sink1 = neoml.Dnn.Sink((lstm, 0), "sink1") sink2 = neoml.Dnn.Sink((lstm, 1), "sink2") layer = dnn.layers['lstm'] self.assertEqual(layer.name, 'lstm') input1 = neoml.Blob.asblob(math_engine, np.ones((5, 3, 16), dtype=np.float32), (5, 3, 1, 1, 1, 1, 16)) inputs = {"source1": input1} outputs = dnn.run(inputs) out1 = outputs["sink1"].asarray() out2 = outputs["sink2"].asarray() self.assertEqual(lstm.hidden_size, 7) self.assertEqual(layer.hidden_size, 7) self.assertEqual(lstm.reverse_sequence, False) lstm.reverse_sequence = True self.assertEqual(lstm.reverse_sequence, True) self.assertEqual(layer.reverse_sequence, True) self.assertAlmostEqual(lstm.dropout, 0.6, delta=1e-3) lstm.dropout = 0.9 self.assertAlmostEqual(lstm.dropout, 0.9, delta=1e-3) self.assertAlmostEqual(layer.dropout, 0.9, delta=1e-3) self.assertEqual(lstm.activation, "sigmoid") lstm.activation = "abs" self.assertEqual(lstm.activation, "abs") self.assertEqual(out1.shape, (5, 3, 7)) self.assertEqual(out2.shape, (5, 3, 7)) w_blob = lstm.input_weights weights = w_blob.asarray() lstm.input_weights = w_blob f_blob = lstm.input_free_term free_term = f_blob.asarray() lstm.input_free_term = f_blob w_blob = lstm.recurrent_weights weights = w_blob.asarray() lstm.recurrent_weights = w_blob f_blob = lstm.recurrent_free_term free_term = f_blob.asarray() lstm.recurrent_free_term = f_blob self.assertEqual(weights.shape, (28, 7)) self.assertEqual(free_term.shape, (28,)) def test_fully_connected(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") source2 = neoml.Dnn.Source(dnn, "source2") fully = neoml.Dnn.FullyConnected((source1, source2), 5, False, "fully") sink1 = neoml.Dnn.Sink((fully, 0), "sink1") sink2 = neoml.Dnn.Sink((fully, 1), "sink2") layer = dnn.layers['fully'] self.assertEqual(layer.name, 'fully') input1 = neoml.Blob.asblob(math_engine, np.ones((12, 16), dtype=np.float32), (12, 1, 1, 1, 1, 1, 16)) input2 = neoml.Blob.asblob(math_engine, np.ones((10, 16), dtype=np.float32), (10, 1, 1, 1, 1, 1, 16)) inputs = {"source1": input1, "source2": input2} outputs = dnn.run(inputs) out1 = outputs["sink1"].asarray() out2 = outputs["sink2"].asarray() self.assertEqual(fully.element_count, 5) self.assertEqual(layer.element_count, 5) self.assertEqual(fully.zero_free_term, False) fully.zero_free_term = True self.assertEqual(fully.zero_free_term, True) self.assertEqual(layer.zero_free_term, True) self.assertEqual(out1.shape, (12, 5)) self.assertEqual(out2.shape, (10, 5)) w_blob = fully.weights weights = w_blob.asarray() fully.weights = w_blob f_blob = fully.free_term free_term = f_blob.asarray() fully.free_term = f_blob self.assertEqual(weights.shape, (5, 16)) self.assertEqual(free_term.shape, (5,)) def test_concat_channels(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") source2 = neoml.Dnn.Source(dnn, "source2") concat = neoml.Dnn.ConcatChannels((source1, source2), "concat") sink = neoml.Dnn.Sink(concat, "sink") layer = dnn.layers['concat'] self.assertEqual(layer.name, 'concat') input1 = neoml.Blob.asblob(math_engine, np.ones((16), dtype=np.float32), (1, 1, 1, 1, 1, 1, 16)) input2 = neoml.Blob.asblob(math_engine, np.ones((16), dtype=np.float32), (1, 1, 1, 1, 1, 1, 16)) inputs = {"source1": input1, "source2": input2} outputs = dnn.run(inputs) a = outputs["sink"].asarray() self.assertEqual(outputs["sink"].channels, 32) self.assertEqual(a.size, 32) def test_concat_depth(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") source2 = neoml.Dnn.Source(dnn, "source2") concat = neoml.Dnn.ConcatDepth((source1, source2), "concat") sink = neoml.Dnn.Sink(concat, "sink") layer = dnn.layers['concat'] self.assertEqual(layer.name, 'concat') input1 = neoml.Blob.asblob(math_engine, np.ones((16), dtype=np.float32), (1, 1, 1, 1, 1, 16, 1)) input2 = neoml.Blob.asblob(math_engine, np.ones((16), dtype=np.float32), (1, 1, 1, 1, 1, 16, 1)) inputs = {"source1": input1, "source2": input2} outputs = dnn.run(inputs) a = outputs["sink"].asarray() self.assertEqual(outputs["sink"].depth, 32) self.assertEqual(a.size, 32) def test_concat_width(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") source2 = neoml.Dnn.Source(dnn, "source2") concat = neoml.Dnn.ConcatWidth((source1, source2), "concat") sink = neoml.Dnn.Sink(concat, "sink") layer = dnn.layers['concat'] self.assertEqual(layer.name, 'concat') input1 = neoml.Blob.asblob(math_engine, np.ones((16), dtype=np.float32), (1, 1, 1, 1, 16, 1, 1)) input2 = neoml.Blob.asblob(math_engine, np.ones((16), dtype=np.float32), (1, 1, 1, 1, 16, 1, 1)) inputs = {"source1": input1, "source2": input2} outputs = dnn.run(inputs) a = outputs["sink"].asarray() self.assertEqual(outputs["sink"].width, 32) self.assertEqual(a.size, 32) def test_concat_height(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") source2 = neoml.Dnn.Source(dnn, "source2") concat = neoml.Dnn.ConcatHeight((source1, source2), "concat") sink = neoml.Dnn.Sink(concat, "sink") layer = dnn.layers['concat'] self.assertEqual(layer.name, 'concat') input1 = neoml.Blob.asblob(math_engine, np.ones((16), dtype=np.float32), (1, 1, 1, 16, 1, 1, 1)) input2 = neoml.Blob.asblob(math_engine, np.ones((16), dtype=np.float32), (1, 1, 1, 16, 1, 1, 1)) inputs = {"source1": input1, "source2": input2} outputs = dnn.run(inputs) a = outputs["sink"].asarray() self.assertEqual(outputs["sink"].height, 32) self.assertEqual(a.size, 32) def test_concat_batch_width(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") source2 = neoml.Dnn.Source(dnn, "source2") concat = neoml.Dnn.ConcatBatchWidth((source1, source2), "concat") sink = neoml.Dnn.Sink(concat, "sink") layer = dnn.layers['concat'] self.assertEqual(layer.name, 'concat') input1 = neoml.Blob.asblob(math_engine, np.ones((16), dtype=np.float32), (1, 16, 1, 1, 1, 1, 1)) input2 = neoml.Blob.asblob(math_engine, np.ones((16), dtype=np.float32), (1, 16, 1, 1, 1, 1, 1)) inputs = {"source1": input1, "source2": input2} outputs = dnn.run(inputs) a = outputs["sink"].asarray() self.assertEqual(outputs["sink"].batch_width, 32) self.assertEqual(a.size, 32) def test_concat_batch_length(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") source2 = neoml.Dnn.Source(dnn, "source2") concat = neoml.Dnn.ConcatBatchLength((source1, source2), "concat") sink = neoml.Dnn.Sink(concat, "sink") layer = dnn.layers['concat'] self.assertEqual(layer.name, 'concat') input1 = neoml.Blob.asblob(math_engine, np.ones((16), dtype=np.float32), (16, 1, 1, 1, 1, 1, 1)) input2 = neoml.Blob.asblob(math_engine, np.ones((15), dtype=np.float32), (15, 1, 1, 1, 1, 1, 1)) inputs = {"source1": input1, "source2": input2} outputs = dnn.run(inputs) a = outputs["sink"].asarray() self.assertEqual(outputs["sink"].batch_len, 31) self.assertEqual(a.size, 31) def test_concat_list_size(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") source2 = neoml.Dnn.Source(dnn, "source2") concat = neoml.Dnn.ConcatListSize((source1, source2), "concat") sink = neoml.Dnn.Sink(concat, "sink") layer = dnn.layers['concat'] self.assertEqual(layer.name, 'concat') input1 = neoml.Blob.asblob(math_engine, np.ones((15), dtype=np.float32), (1, 1, 15, 1, 1, 1, 1)) input2 = neoml.Blob.asblob(math_engine, np.ones((16), dtype=np.float32), (1, 1, 16, 1, 1, 1, 1)) inputs = {"source1": input1, "source2": input2} outputs = dnn.run(inputs) a = outputs["sink"].asarray() self.assertEqual(outputs["sink"].list_size, 31) self.assertEqual(a.size, 31) def test_concat_object(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") source2 = neoml.Dnn.Source(dnn, "source2") concat = neoml.Dnn.ConcatObject((source1, source2), "concat") sink = neoml.Dnn.Sink(concat, "sink") layer = dnn.layers['concat'] self.assertEqual(layer.name, 'concat') input1 = neoml.Blob.asblob(math_engine, np.ones((2, 3, 4, 5), dtype=np.float32), (1, 1, 1, 2, 3, 4, 5)) input2 = neoml.Blob.asblob(math_engine, np.ones((16), dtype=np.float32), (1, 1, 1, 16, 1, 1, 1)) inputs = {"source1": input1, "source2": input2} outputs = dnn.run(inputs) a = outputs["sink"].asarray() self.assertEqual(outputs["sink"].channels, 136) self.assertEqual(a.size, 136) def test_enum_binarization(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") bin = neoml.Dnn.EnumBinarization(source1, 5, "bin") sink = neoml.Dnn.Sink(bin, "sink") layer = dnn.layers['bin'] self.assertEqual(layer.name, 'bin') self.assertEqual(bin.enum_size, 5) bin.enum_size = 4 self.assertEqual(bin.enum_size, 4) self.assertEqual(layer.enum_size, 4) input1 = neoml.Blob.asblob(math_engine, np.ones((4, 3, 3, 3), dtype=np.float32), (4, 1, 1, 3, 3, 3, 1)) inputs = {"source1": input1} outputs = dnn.run(inputs) a = outputs["sink"] self.assertEqual(a.shape, (4, 1, 1, 3, 3, 3, 4)) def test_bitset_vectorization(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") bin = neoml.Dnn.BitSetVectorization(source1, 5, "bin") sink = neoml.Dnn.Sink(bin, "sink") layer = dnn.layers['bin'] self.assertEqual(layer.name, 'bin') self.assertEqual(bin.bit_set_size, 5) bin.bit_set_size = 4 self.assertEqual(bin.bit_set_size, 4) self.assertEqual(layer.bit_set_size, 4) input1 = neoml.Blob.asblob(math_engine, np.ones((4, 3, 3, 3), dtype=np.int32), (4, 1, 1, 3, 3, 3, 1)) inputs = {"source1": input1} outputs = dnn.run(inputs) a = outputs["sink"] self.assertEqual(a.shape, (4, 1, 1, 3, 3, 3, 4)) def test_dotproduct(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") source2 = neoml.Dnn.Source(dnn, "source2") dotProduct = neoml.Dnn.DotProduct((source1, source2), "dotProduct") sink = neoml.Dnn.Sink(dotProduct, "sink") layer = dnn.layers['dotProduct'] self.assertEqual(layer.name, 'dotProduct') input1 = neoml.Blob.asblob(math_engine, np.ones((16), dtype=np.float32), (1, 1, 1, 1, 1, 1, 16)) input2 = neoml.Blob.asblob(math_engine, np.ones((16), dtype=np.float32), (1, 1, 1, 1, 1, 1, 16)) inputs = {"source1": input1, "source2": input2} outputs = dnn.run(inputs) a = outputs["sink"].asarray() self.assertEqual(a.size, 1) self.assertEqual(a[0], 16) def test_dropout(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source = neoml.Dnn.Source(dnn, "source") dropout = neoml.Dnn.Dropout(source, 0.5, True, True, "dropout") sink = neoml.Dnn.Sink(dropout, "sink") layer = dnn.layers['dropout'] self.assertEqual(layer.name, 'dropout') input = neoml.Blob.asblob(math_engine, np.ones((2, 3, 5, 4), dtype=np.float32), (2, 3, 1, 5, 1, 1, 4)) inputs = {"source": input} outputs = dnn.run(inputs) a = outputs["sink"].asarray() self.assertEqual(a.shape, input.asarray().shape) self.assertEqual(dropout.rate, 0.5) self.assertEqual(dropout.spatial, True) self.assertEqual(dropout.batchwise, True) self.assertEqual(layer.rate, 0.5) def test_accumulative_lookup(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source = neoml.Dnn.Source(dnn, "source") lookup = neoml.Dnn.AccumulativeLookup(source, 5, 6, "lookup") sink = neoml.Dnn.Sink(lookup, "sink") layer = dnn.layers['lookup'] self.assertEqual(layer.name, 'lookup') self.assertEqual(lookup.size, 6) self.assertEqual(lookup.count, 5) input = neoml.Blob.asblob(math_engine, np.ones((2, 5, 3), dtype=np.int32), (2, 1, 1, 5, 1, 1, 3)) inputs = {"source": input} outputs = dnn.run(inputs) out = outputs["sink"].asarray() self.assertEqual(out.shape, (2, 6)) def test_multichannel_lookup(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source = neoml.Dnn.Source(dnn, "source") lookup = neoml.Dnn.MultichannelLookup((source,), [(1, 4)], "lookup") sink = neoml.Dnn.Sink(lookup, "sink") layer = dnn.layers['lookup'] self.assertEqual(layer.name, 'lookup') self.assertEqual(lookup.dimensions, [(1, 4)]) lookup.dimensions = [(3, 5)] self.assertEqual(layer.dimensions, [(3, 5)]) input = neoml.Blob.asblob(math_engine, np.ones((2, 5, 3), dtype=np.float32), (2, 1, 1, 5, 1, 1, 3)) inputs = {"source": input} outputs = dnn.run(inputs) out = outputs["sink"].asarray() self.assertEqual(out.shape, (2, 5, 7)) blob = lookup.get_embeddings(0) lookup.set_embeddings(0, blob) uniform = neoml.Dnn.Uniform() lookup.initialize(uniform) def test_tied_embeddings(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source = neoml.Dnn.Source(dnn, "source") tied = neoml.Dnn.TiedEmbeddings((source,), "embeddings", 0, "tied") sink = neoml.Dnn.Sink(tied, "sink") layer = dnn.layers['tied'] self.assertEqual(layer.name, 'tied') self.assertEqual(tied.channel, 0) tied.channel = 1 self.assertEqual(tied.channel, 1) self.assertEqual(layer.channel, 1) self.assertEqual(tied.embeddings_layer_name, "embeddings") tied.embeddings_layer_name = "embeddings2" self.assertEqual(tied.embeddings_layer_name, "embeddings2") def test_accuracy(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") source2 = neoml.Dnn.Source(dnn, "source2") accuracy = neoml.Dnn.Accuracy((source1, source2), True, "accuracy") sink = neoml.Dnn.Sink(accuracy, "sink") layer = dnn.layers['accuracy'] self.assertEqual(layer.name, 'accuracy') self.assertEqual(accuracy.reset, True) self.assertEqual(layer.reset, True) input1 = neoml.Blob.asblob(math_engine, np.ones((1, 16), dtype=np.float32), (1, 16, 1, 1, 1, 1, 1)) input2 = neoml.Blob.asblob(math_engine, np.ones((1, 16), dtype=np.float32), (1, 16, 1, 1, 1, 1, 1)) inputs = {"source1": input1, "source2": input2} outputs = dnn.run(inputs) a = outputs["sink"].asarray() self.assertEqual(a.size, 1) self.assertAlmostEqual(a[0], 1.0, delta=1e-3) def test_confusion_matrix(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") source2 = neoml.Dnn.Source(dnn, "source2") accuracy = neoml.Dnn.ConfusionMatrix((source1, source2), True, "accuracy") sink = neoml.Dnn.Sink(accuracy, "sink") layer = dnn.layers['accuracy'] self.assertEqual(layer.name, 'accuracy') self.assertEqual(accuracy.reset, True) self.assertEqual(layer.reset, True) input1 = neoml.Blob.asblob(math_engine, np.ones((16, 2), dtype=np.float32), (1, 16, 1, 1, 1, 1, 2)) input2 = neoml.Blob.asblob(math_engine, np.ones((16, 2), dtype=np.float32), (1, 16, 1, 1, 1, 1, 2)) inputs = {"source1": input1, "source2": input2} outputs = dnn.run(inputs) a = outputs["sink"].asarray() self.assertEqual( accuracy.matrix.shape, (2, 2) ) self.assertEqual(a.size, 4) self.assertAlmostEqual(a[0][0], 16.0, delta=1e-3) def _test_activation(self, layer, kwargs={}): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source = neoml.Dnn.Source(dnn, "source") activation = getattr(neoml.Dnn, layer)(source, name="activation", **kwargs) sink = neoml.Dnn.Sink(activation, "sink") layer = dnn.layers['activation'] self.assertEqual(layer.name, 'activation') input = neoml.Blob.asblob(math_engine, np.ones((1, 16), dtype=np.float32), (1, 16, 1, 1, 1, 1, 1)) inputs = {"source": input} outputs = dnn.run(inputs) out = outputs["sink"].asarray() for k,v in kwargs.items(): self.assertAlmostEqual(getattr(activation, k), v, delta=1e-3, msg='Field {} of {} activation differs'.format(k, layer)) self.assertEqual(getattr(activation, k), getattr(layer, k)) return out def test_activation_linear(self): out = self._test_activation('Linear', dict(multiplier=3.3, free_term=4.4)) self.assertTrue(np.isclose(out, 7.7).all()) def test_activation_elu(self): out = self._test_activation('ELU', dict(alpha=3.3)) self.assertTrue(np.isclose(out, 1).all()) def test_activation_relu(self): out = self._test_activation('ReLU', dict(threshold=3.3)) self.assertTrue(np.isclose(out, 1).all()) def test_activation_leaky_relu(self): out = self._test_activation('LeakyReLU', dict(alpha=3.3)) self.assertTrue(np.isclose(out, 1).all()) def test_activation_hswish(self): out = self._test_activation('HSwish') self.assertTrue(np.isclose(out, 2./3).all()) def test_activation_gelu(self): out = self._test_activation('GELU') self.assertTrue(np.isclose(out, 0.84579575).all()) def test_activation_abs(self): out = self._test_activation('Abs') self.assertTrue(np.isclose(out, 1).all()) def test_activation_sigmoid(self): out = self._test_activation('Sigmoid') self.assertTrue(np.isclose(out, 0.7310586).all()) def test_activation_tanh(self): out = self._test_activation('Tanh') self.assertTrue(np.isclose(out, 0.7615942).all()) def test_activation_hardtanh(self): out = self._test_activation('HardTanh') self.assertTrue(np.isclose(out, 1).all()) def test_activation_hardsigmoid(self): out = self._test_activation('HardSigmoid', dict(slope=5.5, bias=6.6)) self.assertTrue(np.isclose(out, 1).all()) def test_activation_power(self): out = self._test_activation('Power', dict(exponent=5.5)) self.assertTrue(np.isclose(out, 1).all()) def test_add_object(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") source2 = neoml.Dnn.Source(dnn, "source2") add_to_object = neoml.Dnn.AddToObject((source1, source2), "add_to_object") sink = neoml.Dnn.Sink(add_to_object, "sink") layer = dnn.layers['add_to_object'] self.assertEqual(layer.name, 'add_to_object') input1 = neoml.Blob.asblob(math_engine, np.ones((8, 4, 4), dtype=np.float32), (1, 8, 1, 4, 4, 1, 1)) input2 = neoml.Blob.asblob(math_engine, np.ones((4, 4), dtype=np.float32), (1, 1, 1, 4, 4, 1, 1)) inputs = {"source1": input1, "source2": input2} outputs = dnn.run(inputs) a = outputs["sink"].asarray() self.assertEqual(a.size, 128) self.assertAlmostEqual(a[1][1][1], 2.0, delta=1e-3) def test_argmax(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source = neoml.Dnn.Source(dnn, "source") argmax = neoml.Dnn.Argmax(source, dimension="channels", name="argmax") sink = neoml.Dnn.Sink(argmax, "sink") layer = dnn.layers['argmax'] self.assertEqual(layer.name, 'argmax') self.assertEqual(argmax.dimension, "channels") argmax.dimension = "batch_length" self.assertEqual(argmax.dimension, "batch_length") input = neoml.Blob.asblob(math_engine, np.array([1, 2, 3, 1], dtype=np.float32), (4, 1, 1, 1, 1, 1, 1)) inputs = {"source": input} outputs = dnn.run(inputs) out = outputs["sink"].asarray() self.assertEqual(out, 2) def test_attention_decoder(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") source2 = neoml.Dnn.Source(dnn, "source2") decoder = neoml.Dnn.AttentionDecoder((source1, source2), "additive", 16, 32, 64, "decoder") sink = neoml.Dnn.Sink(decoder, "sink") layer = dnn.layers['decoder'] self.assertEqual(layer.name, 'decoder') self.assertEqual(decoder.hidden_layer_size, 16) self.assertEqual(decoder.output_object_size, 32) self.assertEqual(decoder.output_seq_len, 64) self.assertEqual(decoder.score, "additive") decoder.score = "dot_product" self.assertEqual(decoder.score, "dot_product") decoder.score = "additive" decoder.hidden_layer_size = 1 self.assertEqual(decoder.hidden_layer_size, 1) self.assertEqual(layer.hidden_layer_size, 1) decoder.output_object_size = 1 self.assertEqual(decoder.output_object_size, 1) self.assertEqual(layer.output_object_size, 1) decoder.output_seq_len = 1 self.assertEqual(decoder.output_seq_len, 1) self.assertEqual(layer.output_seq_len, 1) input1 = neoml.Blob.asblob(math_engine, np.ones(1, dtype=np.float32), (1, 1, 1, 1, 1, 1, 1)) input2 = neoml.Blob.asblob(math_engine, np.ones(1, dtype=np.float32), (1, 1, 1, 1, 1, 1, 1)) inputs = {"source1": input1, "source2": input2} outputs = dnn.run(inputs) out = outputs["sink"].asarray() self.assertSequenceEqual(out, [1]) def test_batch_norm(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source = neoml.Dnn.Source(dnn, "source") batch_norm = neoml.Dnn.BatchNormalization(source, True, True, 0.3, "batch_norm") sink = neoml.Dnn.Sink(batch_norm, "sink") layer = dnn.layers['batch_norm'] self.assertEqual(layer.name, 'batch_norm') arr = np.ones((5, 3, 2), dtype=np.float32) input = neoml.Blob.asblob(math_engine, arr, (5, 1, 3, 2, 1, 1, 1)) inputs = {"source": input} outputs = dnn.run(inputs) out = outputs["sink"].asarray() self.assertTrue(np.array_equal(arr, out)) self.assertEqual(batch_norm.channel_based, True) self.assertEqual(batch_norm.zero_free_term, True) self.assertAlmostEqual(batch_norm.slow_convergence_rate, 0.3, delta=1e-3) self.assertEqual(layer.channel_based, True) self.assertEqual(layer.zero_free_term, True) self.assertAlmostEqual(layer.slow_convergence_rate, 0.3, delta=1e-3) def test_matrix_multiplication(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") source2 = neoml.Dnn.Source(dnn, "source2") mult = neoml.Dnn.MatrixMultiplication((source1, source2), "mm") sink = neoml.Dnn.Sink(mult, "sink") layer = dnn.layers['mm'] self.assertEqual(layer.name, 'mm') mult1 = np.array([[1, 2], [3, 4]], dtype=np.float32) mult2 = np.array([[1, 2], [3, 4]], dtype=np.float32) input1 = neoml.Blob.asblob(math_engine, mult1, (2, 1, 2, 1, 1, 1, 1)) input2 = neoml.Blob.asblob(math_engine, mult2, (2, 1, 2, 1, 1, 1, 1)) inputs = {"source1": input1, "source2": input2} outputs = dnn.run(inputs) out = outputs["sink"].asarray() self.assertTrue(np.array_equal(out, mult1 * mult2)) def test_multihead_attention(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") source2 = neoml.Dnn.Source(dnn, "source2") source3 = neoml.Dnn.Source(dnn, "source3") att = neoml.Dnn.MultiheadAttention((source1, source2, source3), 5, 9, 3, 0.3, "att") sink = neoml.Dnn.Sink(att, "sink") layer = dnn.layers['att'] self.assertEqual(layer.name, 'att') self.assertEqual(att.head_count, 5) att.head_count = 4 self.assertEqual(att.head_count, 4) self.assertEqual(att.hidden_size, 9) att.hidden_size = 8 self.assertEqual(att.hidden_size, 8) self.assertEqual(att.output_size, 3) att.output_size = 8 self.assertEqual(att.output_size, 8) self.assertEqual(att.use_mask, False) att.use_mask = True self.assertEqual(att.use_mask, True) att.use_mask = False self.assertAlmostEqual(att.dropout_rate, 0.3, delta=1e-3) att.dropout_rate = 0.4 self.assertAlmostEqual(att.dropout_rate, 0.4, delta=1e-3) self.assertEqual(layer.hidden_size, 8) self.assertEqual(layer.output_size, 8) self.assertEqual(layer.use_mask, False) self.assertAlmostEqual(layer.dropout_rate, 0.4, delta=1e-3) input1 = neoml.Blob.asblob(math_engine, np.ones((4, 3, 3), dtype=np.float32), (1, 4, 3, 1, 1, 1, 3)) input2 = neoml.Blob.asblob(math_engine, np.ones((4, 2, 3), dtype=np.float32), (1, 4, 2, 1, 1, 1, 3)) input3 = neoml.Blob.asblob(math_engine, np.ones((4, 2, 2), dtype=np.float32), (1, 4, 2, 1, 1, 1, 4)) inputs = {"source1": input1, "source2": input2, "source3": input3} outputs = dnn.run(inputs) out = outputs["sink"].asarray() self.assertEqual(out.shape, (4, 3, 8)) def test_image_to_pixel(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") source2 = neoml.Dnn.Source(dnn, "source2") conv = neoml.Dnn.ImageToPixel((source1, source2), "conv") sink = neoml.Dnn.Sink(conv, "sink") layer = dnn.layers['conv'] self.assertEqual(layer.name, 'conv') input1 = neoml.Blob.asblob(math_engine, np.ones((4, 3, 2), dtype=np.float32), (1, 4, 3, 1, 1, 1, 2)) input2 = neoml.Blob.asblob(math_engine, np.zeros((4, 3), dtype=np.int32), (1, 4, 1, 1, 1, 1, 3)) inputs = {"source1": input1, "source2": input2} outputs = dnn.run(inputs) out = outputs["sink"].asarray() self.assertEqual(out.shape, (4, 3, 2)) def test_pixel_to_image(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") source2 = neoml.Dnn.Source(dnn, "source2") conv = neoml.Dnn.PixelToImage((source1, source2), 4, 8, "conv") sink = neoml.Dnn.Sink(conv, "sink") layer = dnn.layers['conv'] self.assertEqual(layer.name, 'conv') self.assertEqual(conv.height, 4) conv.height = 5 self.assertEqual(conv.height, 5) self.assertEqual(conv.width, 8) conv.width = 9 self.assertEqual(conv.width, 9) self.assertEqual(layer.height, 5) self.assertEqual(layer.width, 9) input1 = neoml.Blob.asblob(math_engine, np.ones((4, 3, 2), dtype=np.float32), (1, 4, 3, 1, 1, 1, 2)) input2 = neoml.Blob.asblob(math_engine, np.zeros((4, 3), dtype=np.int32), (1, 4, 1, 1, 1, 1, 3)) inputs = {"source1": input1, "source2": input2} outputs = dnn.run(inputs) out = outputs["sink"].asarray() self.assertEqual(out.shape, (4, 5, 9, 2)) def test_image_resize(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") conv = neoml.Dnn.ImageResize(source1, [5, 6, 7, 8], 0.1, "conv") sink = neoml.Dnn.Sink(conv, "sink") layer = dnn.layers['conv'] self.assertEqual(layer.name, 'conv') self.assertEqual(conv.deltas, [5, 6, 7, 8] ) conv.deltas = [1, 2, 3, 4] self.assertEqual(conv.deltas, [1, 2, 3, 4]) self.assertAlmostEqual(conv.default_value, 0.1) conv.default_value = 0.2 self.assertAlmostEqual(conv.default_value, 0.2) self.assertEqual(layer.deltas, [1, 2, 3, 4]) self.assertAlmostEqual(layer.default_value, 0.2) input1 = neoml.Blob.asblob(math_engine, np.ones((2, 10, 11, 2), dtype=np.float32), (1, 1, 2, 10, 11, 1, 2)) inputs = {"source1": input1} outputs = dnn.run(inputs) out = outputs["sink"].asarray() self.assertEqual(out.shape, (2, 17, 14, 2)) def test_crf(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") source2 = neoml.Dnn.Source(dnn, "source2") crf = neoml.Dnn.Crf((source1, source2), 5, 3, 0.3, "crf") sink1 = neoml.Dnn.Sink((crf, 0), "sink1") sink2 = neoml.Dnn.Sink((crf, 1), "sink2") sink3 = neoml.Dnn.Sink((crf, 2), "sink3") layer = dnn.layers['crf'] self.assertEqual(layer.name, 'crf') self.assertEqual(crf.class_count, 5) crf.class_count = 7 self.assertEqual(crf.class_count, 7) self.assertEqual(crf.padding, 3) crf.padding = 1 self.assertEqual(crf.padding, 1) self.assertAlmostEqual(crf.dropout_rate, 0.3) crf.dropout_rate = 0.2 self.assertAlmostEqual(crf.dropout_rate, 0.2) self.assertEqual(crf.calc_best_prev_class, False) crf.calc_best_prev_class = True self.assertEqual(crf.calc_best_prev_class, True) self.assertEqual(layer.class_count, 7) self.assertEqual(layer.padding, 1) self.assertAlmostEqual(layer.dropout_rate, 0.2) self.assertEqual(layer.calc_best_prev_class, True) hidden_weights = crf.hidden_weights crf.hidden_weights = hidden_weights free_terms = crf.free_terms crf.free_terms = free_terms transitions = crf.transitions crf.transitions = transitions input1 = neoml.Blob.asblob(math_engine, np.ones((5, 7), dtype=np.float32), (1, 1, 5, 1, 1, 1, 7)) input2 = neoml.Blob.asblob(math_engine, np.ones((5, ), dtype=np.int32), (1, 1, 5, 1, 1, 1, 1)) inputs = {"source1": input1, "source2": input2} outputs = dnn.run(inputs) out1 = outputs["sink1"].asarray() out2 = outputs["sink2"].asarray() out3 = outputs["sink3"].asarray() self.assertEqual(out1.shape, (7,)) self.assertEqual(out2.shape, (7,)) self.assertEqual(out3.shape, (1,)) def test_crf_loss(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") source2 = neoml.Dnn.Source(dnn, "source2") source3 = neoml.Dnn.Source(dnn, "source3") crfLoss = neoml.Dnn.CrfLoss((source1, source2, source3), 0.4, "loss") layer = dnn.layers['loss'] self.assertEqual(layer.name, 'loss') self.assertAlmostEqual(crfLoss.loss_weight, 0.4, delta=1e-3) crfLoss.loss_weight = 0.6 self.assertAlmostEqual(crfLoss.loss_weight, 0.6, delta=1e-3) self.assertAlmostEqual(layer.loss_weight, 0.6, delta=1e-3) crfLoss.max_gradient = 0.6 self.assertAlmostEqual(crfLoss.max_gradient, 0.6, delta=1e-3) self.assertAlmostEqual(layer.max_gradient, 0.6, delta=1e-3) self.assertAlmostEqual(crfLoss.last_loss, 0, delta=1e-3) input1 = neoml.Blob.asblob(math_engine, np.ones((3, 5), dtype=np.int32), (3, 1, 5, 1, 1, 1, 1)) input2 = neoml.Blob.asblob(math_engine, np.ones((3, 5), dtype=np.float32), (3, 1, 5, 1, 1, 1, 1)) input3 = neoml.Blob.asblob(math_engine, np.ones((3, 5), dtype=np.float32), (3, 1, 5, 1, 1, 1, 1)) inputs = {"source1": input1, "source2": input2, "source3": input3} dnn.run(inputs) self.assertAlmostEqual(crfLoss.last_loss, -2, delta=1e-3) def test_crf_best_sequence(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") source2 = neoml.Dnn.Source(dnn, "source2") best = neoml.Dnn.BestSequence((source1, source2), "best") sink = neoml.Dnn.Sink(best, "sink") layer = dnn.layers['best'] self.assertEqual(layer.name, 'best') input1 = neoml.Blob.asblob(math_engine, np.zeros((3, 5), dtype=np.int32), (3, 1, 5, 1, 1, 1, 1)) input2 = neoml.Blob.asblob(math_engine, np.ones((3, 5), dtype=np.float32), (3, 1, 5, 1, 1, 1, 1)) inputs = {"source1": input1, "source2": input2} outputs = dnn.run(inputs) out = outputs["sink"].asarray() self.assertTrue(np.equal(out, [0., 0., 0.]).all()) def test_ctc_loss(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") source2 = neoml.Dnn.Source(dnn, "source2") ctcLoss = neoml.Dnn.CtcLoss((source1, source2), 6, False, 0.4, "loss") layer = dnn.layers['loss'] self.assertEqual(layer.name, 'loss') self.assertEqual(ctcLoss.blank, 6) ctcLoss.blank = 5 self.assertEqual(ctcLoss.blank, 5) self.assertEqual(layer.blank, 5) self.assertAlmostEqual(ctcLoss.loss_weight, 0.4, delta=1e-3) ctcLoss.loss_weight = 0.6 self.assertAlmostEqual(ctcLoss.loss_weight, 0.6, delta=1e-3) self.assertAlmostEqual(layer.loss_weight, 0.6, delta=1e-3) ctcLoss.max_gradient = 0.6 self.assertAlmostEqual(ctcLoss.max_gradient, 0.6, delta=1e-3) self.assertAlmostEqual(ctcLoss.last_loss, 0, delta=1e-3) self.assertEqual(ctcLoss.skip, False) ctcLoss.skip = True self.assertEqual(ctcLoss.skip, True) input1 = neoml.Blob.asblob(math_engine, np.ones((64, 4, 5), dtype=np.float32), (3, 4, 1, 1, 1, 1, 5)) input2 = neoml.Blob.asblob(math_engine, np.ones((2, 4), dtype=np.int32), (2, 4, 1, 1, 1, 1, 1)) inputs = {"source1": input1, "source2": input2} dnn.run(inputs) self.assertAlmostEqual(ctcLoss.last_loss, 4.8283, delta=1e-4) self.assertAlmostEqual(layer.last_loss, 4.8283, delta=1e-4) def test_ctc_decoding(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") source2 = neoml.Dnn.Source(dnn, "source2") ctc = neoml.Dnn.CtcDecoding((source1, source2), 5, 0.4, 0.5, "ctc") layer = dnn.layers['ctc'] self.assertEqual(layer.name, 'ctc') self.assertEqual(ctc.blank, 5) ctc.blank = 6 self.assertEqual(ctc.blank, 6) self.assertAlmostEqual(ctc.blank_threshold, 0.4, delta=1e-3) ctc.blank_threshold = 0.6 self.assertAlmostEqual(ctc.blank_threshold, 0.6, delta=1e-3) self.assertAlmostEqual(ctc.arc_threshold, 0.5, delta=1e-3) ctc.arc_threshold = 0.7 self.assertAlmostEqual(ctc.arc_threshold, 0.7, delta=1e-3) self.assertEqual(ctc.sequence_length, 0) self.assertEqual(ctc.batch_width, 0) self.assertEqual(ctc.label_count, 0) self.assertAlmostEqual(layer.blank_threshold, 0.6, delta=1e-3) self.assertAlmostEqual(layer.arc_threshold, 0.7, delta=1e-3) ctc.get_best_sequence(0) input1 = neoml.Blob.asblob(math_engine, np.ones((3, 4, 5), dtype=np.float32), (3, 4, 1, 1, 1, 1, 5)) input2 = neoml.Blob.asblob(math_engine, np.ones((4, ), dtype=np.int32), (1, 4, 1, 1, 1, 1, 1)) inputs = {"source1": input1, "source2": input2} dnn.run(inputs) def test_gru(self): math_engine = neoml.MathEngine.CpuMathEngine(1) dnn = neoml.Dnn.Dnn(math_engine) source1 = neoml.Dnn.Source(dnn, "source1") gru = neoml.Dnn.Gru((source1,), 5, "gru") sink = neoml.Dnn.Sink(gru, "sink") layer = dnn.layers['gru'] self.assertEqual(layer.name, 'gru') self.assertEqual(gru.hidden_size, 5) gru.hidden_size = 6 self.assertEqual(gru.hidden_size, 6) self.assertEqual(layer.hidden_size, 6) main_weights = gru.main_weights gru.main_weights = main_weights main_free_term = gru.main_free_term gru.main_free_term = main_free_term gate_weights = gru.gate_weights gru.gate_weights = gate_weights gate_free_term = gru.gate_free_term gru.gate_free_term = gate_free_term input1 = neoml.Blob.asblob(math_engine,
np.ones((3, 2, 3), dtype=np.float32)
numpy.ones
from __future__ import print_function import time import numpy as np import scipy as sc import scipy.sparse as sp import torch import os import re import networkx as nx import torch.utils.data as Data import torch.optim.lr_scheduler from torch.utils.data.dataset import Dataset from torch.autograd import Variable import sys import csv import gzip import logging import json from sklearn.model_selection import KFold, StratifiedKFold, train_test_split from sklearn.utils import shuffle SEQ_MAX_LEN = 210 # the length of protein sequence def str2bool(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') ##### JSON modules ##### def save_json(data,filename): with open(filename, 'w') as fp: json.dump(data, fp, sort_keys=True, indent=4) def load_json(filename): with open(filename, 'r') as fp: data = json.load(fp) return data ##### JSON modules ##### def load_ikey2smiles(): file_path='data/Integrated/chemicals' os.path.exists(file_path) ikey2smiles={} with open(os.path.join(file_path,'integrated_chemicals.tsv'),'r') as fin: for line in fin: line=line.strip().split('\t') ikey=line[1] smi=line[2] ikey2smiles[ikey]=smi return ikey2smiles def padding(batch, max_len, pad): padded = [] lengths = [] for seq in batch: seq = seq[:min(len(seq), max_len)] lengths.append(len(seq)) seq = seq + [pad] * (max_len - len(seq)) padded.append(seq) return padded, lengths def get_lstm_embedding(batch_repr,max_len=SEQ_MAX_LEN,pad=0): batch_repr, lengths = padding(batch_repr, max_len, pad) with torch.no_grad(): batch_repr = Variable(torch.LongTensor(batch_repr)) logging.debug("utils.get_lstm_embedding: batch_repr {}".format(batch_repr.size())) return batch_repr def load_mtl_edges_from_file(edgefile,allowed_uniprots=None,sep=',',header=True): #default data format: #InChIKey,UniProt,Binary,pKi,pKd,pIC50 #MAEHEIXUINDDHE-UHFFFAOYSA-N,P48736,1,6.130182,6.130182,6.130182 #missing entries (presented as 'nan') are converted to -1 edges={};ikeys=[];uniprots=[] count_skipped=0 count_loaded=0 with open(edgefile,'r') as f: if header: next(f) for line in f: line=line.strip().split(sep) ikey=line[0] uni=line[1] if allowed_uniprots and (uni not in allowed_uniprots): count_skipped+=1 continue ikeys.append(ikey) uniprots.append(uni) try: b=np.float(line[2]) except: b=-1 try: ki=np.float(line[3]) except: ki=-1 try: kd=np.float(line[4]) except: kd=-1 try: ic=np.float(line[5]) except: ic=-1 b=-1 if np.isnan(b) else b ki=-1 if np.isnan(ki) else ki kd=-1 if np.isnan(kd) else kd ic=-1 if np.isnan(ic) else ic val=(b,ki,kd,ic) edge=ikey+'\t'+uni edges[edge]=val count_loaded+=1 logging.info("{} edges loaded. {} edges (not-allowed-uniprots) skipped from {}".format(count_loaded, count_skipped, edgefile)) ikeys=list(set(ikeys));uniprots=list(set(uniprots)) return edges,ikeys,uniprots def load_edges_from_file(edgefile,sep=',',header=True): #default data format: #InChIKey,UniProt,activity (sep=',') #MAEHEIXUINDDHE-UHFFFAOYSA-N,P48736,6.130 edges={};ikeys=[];uniprots=[] count_skipped=0 count_loaded=0 with open(edgefile,'r') as f: if header: next(f) for line in f: line=line.strip().split(sep) ikey=line[0] uni=line[1] # if allowed_uniprots and (uni not in allowed_uniprots): # count_skipped+=1 # continue ikeys.append(ikey) uniprots.append(uni) val=float(line[2]) edge=ikey+'\t'+uni edges[edge]=val count_loaded+=1 logging.info("{} edges loaded. {} edges (not-allowed-uniprots) skipped from {}".format(count_loaded, count_skipped, edgefile)) ikeys=list(set(ikeys));uniprots=list(set(uniprots)) return edges,ikeys,uniprots def load_dict(path): """ Load a dictionary and a corresponding reverse dictionary from the given file where line number (0-indexed) is key and line string is value. """ retdict = list() rev_retdict = dict() with open(path) as fin: for idx, line in enumerate(fin): text = line.strip() retdict.append(text) rev_retdict[text] = idx return retdict, rev_retdict def load_repr(path, config, node_list): """ Load the representations of each node in the `node_list` given the representation type and configurations. Args: path: Path of the graph data directory config: Node configuration JSON object node_list: The list of nodes for which to load representations Returns: repr_info: A dictionary that contains representation information node_list: List of nodes with loaded representations, the change is in-place though. """ repr_type = config['representation'] if repr_type == TYPE_MOLECULE: return load_molecule_repr(path, config, node_list) elif repr_type == TYPE_SEQUENCE_PSSM: return load_pssm_repr(path, config, node_list) else: raise ValueError("{0} Node type not supported!".format(repr_type)) def load_molecule_repr(path, config, node_list): import deepnet.fingerprint.features as fp_feature graph_vocab_path = os.path.join(path, config['graph_path']) graph_list, _ = load_dict(graph_vocab_path) for node, graph in zip(node_list, graph_list): node.set_data(graph) info = dict(embedding_type=TYPE_MOLECULE, atom_size=fp_feature.num_atom_features(), bond_size=fp_feature.num_bond_features()) return info, node_list def load_uniprot2pssm(max_len=512,padding=0): #maximum sequence length: max_len #pssm padded with zeros if len<max_len base_path='data/protein/' pssm_dir=base_path+'kinase_domain_pssm_uniref50/' #protfile=base_path+'prot_bsite_sample' #padding test protfile=base_path+'prot_bsite' uniprot2pssm={} pssm_files=os.listdir(pssm_dir) manual_dict={'P52333_JH1domain-catalytic':'P52333_Kin.Dom.2-C-terminal.dat', 'Q9P2K8_Kin.Dom.2,S808G':'Q9P2K8_S808G_Kin.Dom.2-C-terminal.dat', 'P23458' :'P23458_JH2domain-pseudokinase.dat', 'P29597' :'P29597_JH2domain-pseudokinase.dat', 'O75582' :'O75582_Kin.Dom.1-N-terminal.dat', 'Q15418' :'Q15418_Kin.Dom.1-N-terminal.dat', 'Q9P2K8' :'Q9P2K8_Kin.Dom.1-N-terminal.dat', 'Q9UK32' :'Q9UK32_Kin.Dom.2-C-terminal.dat'} with open(protfile,'r') as f: for line in f: uniprot=line.strip() line=line.strip() line=line.replace('(','_').replace(')','') line=line.replace('-nonphosphorylated','').replace('-phosphorylated','').replace('-autoinhibited','') matchkd=re.search(r'Kin\.Dom',line,re.I) matchjh=re.search(r'JH\ddomain',line,re.I) if line in list(manual_dict.keys()): fname=manual_dict[line] elif matchkd: matchkd=re.search(r'Kin\.Dom\.(\d)',line,re.I) if matchkd is None: fname=line+'.dat' elif matchkd.group(1)==str(1): fname=line+'-N-terminal.dat' elif matchkd.group(1)==str(2): fname=line+'-C-terminal.dat' elif matchjh: fname=line+'.dat' else: fname=line+'.dat' if fname not in pssm_files: fname=line.replace('\.dat','')+'_Kin.Dom.dat' #print("PSSM file {} not found for protein {}".format(fname,line)) pssm=[] with open(pssm_dir+fname,'r') as f: for line in f: line=line.strip().lstrip().split() if len(line)==0: #empty line continue else: try: resnum=int(line[0]) except: #non-pssm field continue res_vector=np.array(line[2:22],dtype=np.float32) pssm.append(res_vector) pssm=
np.array(pssm,dtype=np.float32)
numpy.array
"""Black-box system identification.""" import importlib import os import numpy as np import scipy.io import sympy import sym2num.model import fem import symfem # Reload modules for testing for m in (fem, symfem): importlib.reload(m) def save_generated_model(symmodel): clsname = type(symmodel).__name__ nx = symmodel.nx nu = symmodel.nu ny = symmodel.ny with open(f'{clsname}_nx{nx}_nu{nu}_ny{ny}.py', mode='w') as f: code = symmodel.print_code() print(code, file=f) def get_model(nx, nu, ny): clsname = 'InnovationBalDTModel' modname = f'{clsname}_nx{nx}_nu{nu}_ny{ny}' mod = importlib.import_module(modname) genclsname = f'Generated{clsname}' cls = getattr(mod, genclsname) return cls() def load_data(): # Retrieve data u = np.loadtxt('/tmp/u.txt') y = np.loadtxt('/tmp/y.txt') return u, y if __name__ == '__main__': nx = 5 nu = 3 ny = 3 # Load experiment data u, y = load_data() #symmodel = symfem.InnovationBalDTModel(nx=nx, nu=nu, ny=ny) #model = symmodel.compile_class()() #save_generated_model(symmodel) model = get_model(nx, nu, ny) problem = fem.InnovationBalDTProblem(model, y, u) N = len(y) # Define initial guess for decision variables dec0 = np.zeros(problem.ndec) var0 = problem.variables(dec0) var0['A'][:] = np.loadtxt('/tmp/a.txt') var0['B'][:] = np.loadtxt('/tmp/b.txt') var0['C'][:] = np.loadtxt('/tmp/c.txt') var0['D'][:] = np.loadtxt('/tmp/d.txt') var0['L'][:] = np.loadtxt('/tmp/k.txt') var0['x'][:] =
np.loadtxt('/tmp/xpred.txt')
numpy.loadtxt
"""Genetic evaluation of individuals.""" import os import sys # import time from collections import Counter from itertools import compress from numba import njit import pkg_resources import numpy as np import pandas as pd import scipy.linalg import scipy.stats def example_data(): """Provide data to the package.""" cwd = os.getcwd() stream = pkg_resources.resource_stream(__name__, 'data/chr.txt') chrmosomedata = pd.read_table(stream, sep=" ") stream = pkg_resources.resource_stream(__name__, 'data/group.txt') groupdata = pd.read_table(stream, sep=" ") stream = pkg_resources.resource_stream(__name__, 'data/effects.txt') markereffdata = pd.read_table(stream, sep=" ") stream = pkg_resources.resource_stream(__name__, 'data/phase.txt') genodata = pd.read_table(stream, header=None, sep=" ") stream = pkg_resources.resource_stream(__name__, 'data/ped.txt') ped = pd.read_table(stream, header=None, sep=" ") os.chdir(cwd) return chrmosomedata, markereffdata, genodata, groupdata, ped if __name__ == "__main__": example_data() @njit def fnrep2(gen, aaxx, aaxx1): """Code phased genotypes into 1, 2, 3 and 4.""" qqq = np.empty((int(gen.shape[0]/2), gen.shape[1]), np.int_) for i in range(qqq.shape[0]): for j in range(qqq.shape[1]): if gen[2*i, j] == aaxx and gen[2*i+1, j] == aaxx: qqq[i, j] = 1 elif gen[2*i, j] == aaxx1 and gen[2*i+1, j] == aaxx1: qqq[i, j] = 2 elif gen[2*i, j] == aaxx and gen[2*i+1, j] == aaxx1: qqq[i, j] = 3 else: qqq[i, j] = 4 return qqq def haptogen(gen, progress=False): """Convert haplotypes to coded genotypes.""" if progress: print("Converting phased haplotypes to genotypes") if gen.shape[1] == 2: gen = np.array(gen.iloc[:, 1]) # del col containing ID # convert string to 2D array of integers gen = [list(gen[i].rstrip()) for i in range(gen.shape[0])] gen = np.array(gen, int) # derives the frequency of alleles to determine the major allele allele = np.asarray(np.unique(gen, return_counts=True)).T.astype(int) if len(allele[:, 0]) != 2: sys.exit("method only supports biallelic markers") aaxx = allele[:, 0][np.argmax(allele[:, 1])] # major allele aaasns = np.isin(allele[:, 0], aaxx, invert=True) aaxx1 = int(allele[:, 0][aaasns]) # minor allele gen = np.array(gen, int) gen = fnrep2(gen, aaxx, aaxx1) elif gen.shape[1] > 2: gen = gen.iloc[:, 1:gen.shape[1]] # del col containing ID # derives the frequency of alleles to determine the major allele allele = np.asarray(np.unique(gen, return_counts=True)).T.astype(int) if len(allele[:, 0]) != 2: sys.exit("method only supports biallelic markers") aaxx = allele[:, 0][np.argmax(allele[:, 1])] # major allele aaasns = np.isin(allele[:, 0], aaxx, invert=True) aaxx1 = int(allele[:, 0][aaasns]) # minor allele gen = np.array(gen, int) gen = fnrep2(gen, aaxx, aaxx1) return gen class Datacheck: """Check the input data for errors and store relevant info as an object.""" def __init__(self, gmap, meff, gmat, group, indwt, progress=False): """ Check input data for errors and store relevant info as class object. Parameters ---------- gmap : pandas.DataFrame Index: RangeIndex Columns: Name: CHR, dtype: int64; chromosome number Name: SNPName, dtype: object; marker name Name: Position: dtype: int64; marker position in bp Name: group: dtype: float64; marker distance (cM) or reco rates meff : pandas.DataFrame Index: RangeIndex Columns: Name: trait names: float64; no. of columns = no of traits gmat : pandas.DataFrame Index: RangeIndex Columns: Name: ID, dtype: int64 or str; identification of individuals Name: haplotypes, dtype: object; must be biallelic group : pandas.DataFrame Index: RangeIndex Columns: Name: group, dtype: object; group code of individuals, e.g., M, F Name: ID, dtype: int64 or str; identification of individuals indwt : list of index weights for each trait progress : bool, optional; print progress of the function if True Returns stored input files ------- """ # check: ensures number of traits match size of index weights indwt = np.array(indwt) if (meff.shape[1]-1) != indwt.size: sys.exit('no. of index weights do not match marker effects cols') # check: ensure individuals' genotypes match group and ID info id_indgrp = pd.Series(group.iloc[:, 1]).astype(str) # no of inds if not pd.Series( pd.unique(gmat.iloc[:, 0])).astype(str).equals(id_indgrp): sys.exit("ID of individuals in group & genotypic data don't match") # check: ensure marker names in marker map and effects match if not (gmap.iloc[:, 1].astype(str)).equals(meff.iloc[:, 0].astype(str)): print("Discrepancies between marker names") sys.exit("Check genetic map and marker effects") # check: ensure marker or allele sub effect are all numeric meff = meff.iloc[:, 1:meff.shape[1]] test = meff.apply( lambda s: pd.to_numeric(s, errors='coerce').notnull().all()) if not test.all(): sys.exit("Marker or allele sub effects contain non-numeric values") # check: ensure unique maps match no of groups if map more than 1 grpg = pd.unique(group.iloc[:, 0]) # groups of individuals grp_chrom = gmap.shape[1]-3 # no of unique maps gmat = haptogen(gmat, progress) if grp_chrom > 1 and grp_chrom != grpg.size: sys.exit("no. of unique maps does not match no. of groups") # check no of markers in genotype and map and marker effects match no_markers = gmap.shape[0] # no of markers if no_markers != gmat.shape[1] or no_markers != meff.shape[0]: sys.exit("markers nos in gen, chrm or marker effects don't match") # check: ordered marker distance or recombination rates for grn in range(grp_chrom): for chrm in pd.unique(gmap.iloc[:, 0]): mpx = np.array(gmap.iloc[:, 3+grn][gmap.iloc[:, 0] == chrm]) if not (mpx == np.sort(sorted(mpx))).any(): sys.exit( f"Faulty marker map on chr {chrm} for grp {grpg[grn]}") if progress: print('Data passed the test!') print("Number of individuals: ", len(id_indgrp)) print("Number of groups: ", len(grpg), ": ", grpg) print("Number of specific maps:", grp_chrom) print("Number of chromosomes: ", len(pd.unique(gmap.iloc[:, 0]))) print("Total no. markers: ", no_markers) print("Number of trait(s): ", meff.columns.size) print("Trait name(s) and Index weight(s)") if meff.columns.size == 1: print(meff.columns[0], ": ", indwt[0]) elif meff.columns.size > 1: for i in range(meff.columns.size): print(meff.columns[i], ": ", indwt[i]) self.gmap = gmap self.meff = meff self.gmat = gmat self.group = group self.indwt = indwt def elem_cor(mylist, mprc, ngp, mposunit, method, chrm): """Derive pop cov matrix.""" if method == 1: # Bonk et al's approach if mposunit in ("cM", "cm", "CM", "Cm"): tmp = np.exp(-2*(np.abs(mprc - mprc[:, None])/100))/4 elif mposunit in ("reco", "RECO"): if mprc[0] != 0: sys.exit(f"First value for reco rate on chr {chrm} isn't zero") aaa = (1-(2*mprc))/4 ida = np.arange(aaa.size) tmp = aaa[np.abs(ida - ida[:, None])] elif method == 2: # Santos et al's approach if mposunit in ("cM", "cm", "CM", "Cm"): tmp = (-1*(np.abs(mprc - mprc[:, None])/200))+0.25 cutoff = (-1*(50/200))+0.25 tmp = np.where(tmp < cutoff, 0, tmp) elif mposunit in ("reco", "RECO"): if mprc[0] != 0: sys.exit(f"First value for reco rate on chr {chrm} isn't zero") aaa = (-1*(mprc/2))+0.25 ida = np.arange(aaa.size) tmp = aaa[np.abs(ida - ida[:, None])] cutoff = (-1*(0.5/2))+0.25 tmp = np.where(tmp < cutoff, 0, tmp) # append chromosome-specific covariance matrix to list mylist[int(ngp)].append(tmp) return mylist def popcovmat(info, mposunit, method): """ Derive population-specific covariance matrices. Parameters ---------- info : class object A class object created using the function "datacheck" mposunit : string A sting with containing "cM" or "reco". method : int An integer with a value of 1 for Bonk et al.'s approach or 2 for Santos et al's approach' Returns ------- mylist : list A list containing group-specific pop covariance matrices for each chr. """ if mposunit not in ("cM", "cm", "CM", "Cm", "reco", "RECO"): sys.exit("marker unit should be either cM or reco") # unique group name for naming the list if map is more than 1 probn = pd.unique(info.group.iloc[:, 0].astype(str)).tolist() chromos = pd.unique(info.gmap.iloc[:, 0]) # chromosomes no_grp = info.gmap.shape[1]-3 # no of maps mylist = [] # list stores chromosome-wise covariance matrix for ngp in range(no_grp): mylist.append([]) # marker position in cM or recombination rates grouprecodist = info.gmap.iloc[:, 3+ngp] for chrm in chromos: mpo = np.array(grouprecodist[info.gmap.iloc[:, 0] == (chrm)]) elem_cor(mylist, mpo, ngp, mposunit, method, chrm) if no_grp > 1: # if map is more than one, name list using group names mylist = dict(zip(probn, mylist)) return mylist @njit def makemems(gmat, meff): """Set up family-specific marker effects (Mendelian sampling).""" qqq = np.zeros((gmat.shape)) for i in range(gmat.shape[0]): for j in range(gmat.shape[1]): if gmat[i, j] == 4: qqq[i, j] = meff[j]*-1 elif gmat[i, j] == 3: qqq[i, j] = meff[j] else: qqq[i, j] = 0 return qqq @njit def makemebv(gmat, meff): """Set up family-specific marker effects (GEBV).""" qqq = np.zeros((gmat.shape)) for i in range(gmat.shape[0]): for j in range(gmat.shape[1]): if gmat[i, j] == 2: qqq[i, j] = meff[j]*-1 elif gmat[i, j] == 1: qqq[i, j] = meff[j] else: qqq[i, j] = 0 return qqq def traitspecmatrices(gmat, meff): """Store trait-specific matrices in a list.""" notr = meff.shape[1] # number of traits slist = [] # list stores trait-specific matrices slist.append([]) for i in range(notr): # specify data type for numba mefff = np.array(meff.iloc[:, i], float) matrix_ms = makemems(gmat, mefff) slist[0].append(matrix_ms) return slist def namesdf(notr, trait_names): """Create names of dataframe columns for Mendelian co(var).""" tnn = np.zeros((notr, notr), 'U20') tnn = np.chararray(tnn.shape, itemsize=30) for i in range(notr): for trt in range(notr): if i == trt: tnn[i, trt] = str(trait_names[i]) elif i != trt: tnn[i, trt] = "{}_{}".format(trait_names[i], trait_names[trt]) colnam = tnn[np.tril_indices(notr)] return colnam def mrmmult(temp, covmat): """Matrix multiplication (MRM' or m'Rm).""" return temp @ covmat @ temp.T def dgmrm(temp, covmat): """Matrix multiplication (MRM') for bigger matrices.""" temp1111 = scipy.linalg.blas.dgemm(alpha=1.0, a=temp, b=covmat) return scipy.linalg.blas.dgemm(alpha=1.0, a=temp1111, b=temp.T) def progr(itern, total): """Print progress of a task.""" fill, printend, prefix, suffix = '█', "\r", 'Progress:', 'Complete' deci, length = 0, 50 percent = ("{0:." + str(deci) + "f}").format(100 * (itern / float(total))) filledlen = int(length * itern // total) bars = fill * filledlen + '-' * (length - filledlen) print(f'\r{prefix} |{bars}| {percent}% {suffix}', end=printend) if itern == total: print() def subindcheck(info, sub_id): """Check if inds provided in pd.DataFrame (sub_id) are in group data.""" sub_id = pd.DataFrame(sub_id).reset_index(drop=True) if sub_id.shape[1] != 1: sys.exit("Individuals' IDs (sub_id) should be provided in one column") numbers = info.group.iloc[:, 1].astype(str).tolist() sub_id = sub_id.squeeze().astype(str).tolist() aaa = [numbers.index(x) if x in numbers else None for x in sub_id] aaa = np.array(aaa) if len(aaa) != len(sub_id): sys.exit("Some individual ID could not be found in group data") return aaa def msvarcov_g_st(info, covmat, sub_id, progress=False): """Derive Mendelian sampling co(variance) for single trait.""" if sub_id is not None: aaa = subindcheck(info, sub_id) idn = info.group.iloc[aaa, 1].reset_index(drop=True).astype(str) # ID groupsex = info.group.iloc[aaa, 0].reset_index(drop=True).astype(str) matsub = info.gmat[aaa, :] else: idn = info.group.iloc[:, 1].reset_index(drop=True).astype(str) # ID groupsex = info.group.iloc[:, 0].reset_index(drop=True).astype(str) matsub = info.gmat if (info.gmap.shape[1]-3 == 1 and len(pd.unique(groupsex)) > 1): print("The same map will be used for all groups") if progress: progr(0, matsub.shape[0]) # print progress bar snpindexxx = np.arange(start=0, stop=info.gmap.shape[0], step=1) notr = info.meff.columns.size slist = traitspecmatrices(matsub, info.meff) # dataframe to save Mendelian sampling (co)variance and aggregate breeding msvmsc = np.empty((matsub.shape[0], 1)) for i in range(matsub.shape[0]): # loop over no of individuals mscov = np.zeros((notr, notr)) # Mendelian co(var) mat for ind i for chrm in pd.unique(info.gmap.iloc[:, 0]): # snp index for chromosome chrm s_ind = np.array(snpindexxx[info.gmap.iloc[:, 0] == (chrm)]) # family-specific marker effects for ind i temp = np.zeros((notr, len(s_ind))) for trt in range(notr): temp[trt, :] = slist[0][trt][i, s_ind] if info.gmap.shape[1]-3 == 1: mscov = mscov + mrmmult(temp, covmat[0][chrm-1]) else: mscov = mscov + mrmmult(temp, covmat[groupsex[i]][chrm-1]) msvmsc[i, 0] = mscov if progress: progr(i + 1, matsub.shape[0]) # print progress bar msvmsc = pd.DataFrame(msvmsc) msvmsc.columns = info.meff.columns msvmsc.insert(0, "ID", idn, True) msvmsc.insert(1, "Group", groupsex, True) # insert group return msvmsc def msvarcov_g_mt(info, covmat, sub_id, progress=False): """Derive Mendelian sampling co(variance) for multiple traits.""" if sub_id is not None: aaa = subindcheck(info, sub_id) idn = info.group.iloc[aaa, 1].reset_index(drop=True).astype(str) # ID groupsex = info.group.iloc[aaa, 0].reset_index(drop=True).astype(str) matsub = info.gmat[aaa, :] else: idn = info.group.iloc[:, 1].reset_index(drop=True).astype(str) # ID groupsex = info.group.iloc[:, 0].reset_index(drop=True).astype(str) matsub = info.gmat if (info.gmap.shape[1]-3 == 1 and len(pd.unique(groupsex)) > 1): print("The same map will be used for all groups") if progress: progr(0, matsub.shape[0]) # print progress bar snpindexxx = np.arange(start=0, stop=info.gmap.shape[0], step=1) notr = info.meff.columns.size slist = traitspecmatrices(matsub, info.meff) # dataframe to save Mendelian sampling (co)variance and aggregate breeding mad = len(np.zeros((notr+1, notr+1))[np.tril_indices(notr+1)]) msvmsc = np.empty((matsub.shape[0], mad)) for i in range(matsub.shape[0]): # loop over no of individuals mscov = np.zeros((notr+1, notr+1)) # Mendelian co(var) mat for ind i for chrm in pd.unique(info.gmap.iloc[:, 0]): # snp index for chromosome chrm s_ind = np.array(snpindexxx[info.gmap.iloc[:, 0] == (chrm)]) # family-specific marker effects for ind i temp = np.zeros((notr+1, len(s_ind))) for trt in range(notr): temp[trt, :] = slist[0][trt][i, s_ind] temp[notr, :] = np.matmul(info.indwt.T, temp[0:notr, :]) if info.gmap.shape[1]-3 == 1: mscov = mscov + mrmmult(temp, covmat[0][chrm-1]) else: mscov = mscov + mrmmult(temp, covmat[groupsex[i]][chrm-1]) msvmsc[i, :] = mscov[np.tril_indices(notr+1)] if progress: progr(i + 1, matsub.shape[0]) # print progress bar msvmsc = pd.DataFrame(msvmsc) tnames = np.concatenate((info.meff.columns, "AG"), axis=None) colnam = namesdf(notr+1, tnames).decode('utf-8') msvmsc.columns = colnam msvmsc.insert(0, "ID", idn, True) msvmsc.insert(1, "Group", groupsex, True) # insert group return msvmsc def msvarcov_g(info, covmat, sub_id, progress=False): """ Derive Mendelian sampling co(variance) and aggregate genotype. Parameters ---------- info : class object A class object created using the function "datacheck" covmat : A list of pop cov matrices created using "popcovmat" function sub_id : pandas.DataFrame with one column Index: RangeIndex (minimum of 2 rows) Containing ID numbers of specific individuals to be evaluated progress : bool, optional; print progress of the function if True Returns ------- msvmsc : pandas.DataFrame containing the Mendelian sampling (co)variance and aggregate genotype Note: If sub_id is None, Mendelian (co-)variance will be estimated for all individuals. Otherwise, Mendelian (co-)variance will be estimated for the individuals in sub_id """ notr = info.meff.columns.size if notr == 1: msvmsc = msvarcov_g_st(info, covmat, sub_id, progress) elif notr > 1: msvmsc = msvarcov_g_mt(info, covmat, sub_id, progress) return msvmsc def array2sym(array): """Convert array to stdized symm mat, and back to array without diags.""" dfmsize = array.size for notr in range(1, 10000): if dfmsize == len(np.zeros((notr, notr))[np.tril_indices(notr)]): break iii, jjj = np.tril_indices(notr) mat = np.empty((notr, notr), float) mat[iii, jjj], mat[jjj, iii] = array, array mat = np.array(mat) mat1 = cov2corr(mat) return np.array(mat1[np.tril_indices(notr, k=-1)]) def msvarcov_gcorr(msvmsc): """ Standardize Mendelian sampling co(variance) and aggregate genotype. Parameters ---------- msvmsc : pandas.DataFrame containing the Mendelian sampling (co)variance and aggregate genotype created using msvarcov_g function Returns ------- dfcor : pandas.DataFrame containing standardized Mendelian sampling (co)variance """ if msvmsc.columns.size == 3: sys.exit("Correlation cannot be derived for a single trait") dfm = msvmsc.iloc[:, 2:msvmsc.shape[1]] # exclude ID and group dfmsize = dfm.shape[1] # derive number of traits for notr in range(1, 10000): if dfmsize == len(np.zeros((notr, notr))[np.tril_indices(notr)]): break # standardize covariance between traits dfcor = dfm.apply(array2sym, axis=1) # extract column names listnames = dfm.columns.tolist() cnames = [x for x in listnames if "_" in x] # convert pd.series of list to data frame dfcor = pd.DataFrame.from_dict(dict(zip(dfcor.index, dfcor.values))).T dfcor.columns = cnames # insert ID and group info dfcor = [pd.DataFrame(msvmsc.iloc[:, 0:2]), dfcor] # add ID and GRP dfcor = pd.concat(dfcor, axis=1) return dfcor def calcgbv(info, sub_id): """Calculate breeding values for each trait.""" if sub_id is not None: aaa = subindcheck(info, sub_id) idn = info.group.iloc[aaa, 1].reset_index(drop=True).astype(str) # ID groupsex = info.group.iloc[aaa, 0].reset_index(drop=True).astype(str) matsub = info.gmat[aaa, :] else: idn = info.group.iloc[:, 1].reset_index(drop=True).astype(str) # ID groupsex = info.group.iloc[:, 0].reset_index(drop=True).astype(str) matsub = info.gmat no_individuals = matsub.shape[0] # Number of individuals trait_names = info.meff.columns # traits names notr = trait_names.size # number of traits if notr == 1: gbv = np.zeros((no_individuals, notr)) mefff = np.array(info.meff.iloc[:, 0], float) # type spec for numba matrix_me = makemebv(matsub, mefff) # fam-spec marker effects BV gbv[:, 0] = matrix_me.sum(axis=1) # sum all effects gbv = pd.DataFrame(gbv) gbv.columns = trait_names elif notr > 1: gbv = np.zeros((no_individuals, notr+1)) for i in range(notr): mefff = np.array(info.meff.iloc[:, i], float) # type spec 4 numba matrix_me = makemebv(matsub, mefff) # fam-spec marker effects BV gbv[:, i] = matrix_me.sum(axis=1) # sum all effects for each trait gbv[:, notr] = gbv[:, notr] + info.indwt[i]*gbv[:, i] # Agg gen gbv = pd.DataFrame(gbv) colnames = np.concatenate((trait_names, "ABV"), axis=None) gbv.columns = colnames gbv.insert(0, "ID", idn, True) # insert ID gbv.insert(1, "Group", groupsex, True) # insert group return gbv def calcprob(info, msvmsc, thresh): """Calculate the probability of breeding top individuals.""" aaa = subindcheck(info, pd.DataFrame(msvmsc.iloc[:, 0])) gbvall = calcgbv(info, None) # calc GEBV for all inds used by thresh gbv = gbvall.iloc[aaa, :].reset_index(drop=True) # GEBV matching msvmsc no_individuals = gbv.shape[0] # Number of individuals trait_names = info.meff.columns # traits names notr = trait_names.size # number of traits if notr == 1: probdf = np.zeros((no_individuals, notr)) ttt = np.quantile(gbvall.iloc[:, (0+2)], q=1-thresh) # threshold probdf[:, 0] = 1 - scipy.stats.norm.cdf( ttt, loc=gbv.iloc[:, (0+2)], scale=np.sqrt(msvmsc.iloc[:, 0+2])) probdf = pd.DataFrame(probdf) probdf.columns = trait_names elif notr > 1: colnam = np.concatenate((info.meff.columns, "AG"), axis=None) colnam = namesdf(notr+1, colnam).decode('utf-8') ttt = np.quantile(gbvall.iloc[:, (notr+2)], q=1-thresh) # threshold probdf = np.zeros((no_individuals, notr+1)) t_ind = np.arange(colnam.shape[0])[np.in1d(colnam, trait_names)] for i in range(notr): ttt = np.quantile(gbvall.iloc[:, (i+2)], q=1-thresh) # threshold probdf[:, i] = scipy.stats.norm.cdf( ttt, loc=gbv.iloc[:, (i+2)], scale=np.sqrt( msvmsc.iloc[:, (t_ind[i])+2])) probdf[:, i] = np.nan_to_num(probdf[:, i]) # convert Inf to zero probdf[:, i] = 1 - probdf[:, i] ttt = np.quantile(gbvall.iloc[:, (notr+2)], q=1-thresh) probdf[:, notr] = scipy.stats.norm.cdf( ttt, loc=gbv.iloc[:, (notr+2)], scale=np.sqrt( msvmsc["AG"])) probdf[:, notr] = np.nan_to_num(probdf[:, notr]) # Agg probdf[:, notr] = 1 - probdf[:, notr] probdf = pd.DataFrame(probdf) # convert matrix to dataframe colnames = np.concatenate((trait_names, "ABV"), axis=None) probdf.columns = colnames probdf = [pd.DataFrame(gbv.iloc[:, 0:2]), probdf] # add ID and GRP probdf = pd.concat(probdf, axis=1) return probdf def calcindex(info, msvmsc, const): """Calculate the index if constant is known.""" sub_id = pd.DataFrame(msvmsc.iloc[:, 0]) gbv = calcgbv(info, sub_id) # calc GEBV no_individuals = gbv.shape[0] # Number of individuals trait_names = info.meff.columns # traits names notr = trait_names.size if notr == 1: indexdf = np.zeros((no_individuals, notr)) indexdf[:, 0] = (gbv.iloc[:, (0+2)]/2) + np.sqrt( msvmsc.iloc[:, 0+2])*const indexdf = pd.DataFrame(indexdf) indexdf.columns = trait_names elif notr > 1: colnam = np.concatenate((info.meff.columns, "AG"), axis=None) colnam = namesdf(notr+1, colnam).decode('utf-8') indexdf = np.zeros((no_individuals, notr+1)) t_ind = np.arange(colnam.shape[0])[np.in1d(colnam, trait_names)] for i in range(notr): indexdf[:, i] = (gbv.iloc[:, (i+2)]/2) + np.sqrt( msvmsc.iloc[:, (t_ind[i]+2)])*const indexdf[:, notr] = (gbv.iloc[:, (notr+2)]/2) + np.sqrt( msvmsc["AG"])*const indexdf = pd.DataFrame(indexdf) colnames = np.concatenate((trait_names, "ABV"), axis=None) indexdf.columns = colnames indexdf = [pd.DataFrame(gbv.iloc[:, 0:2]), indexdf] # add ID and GRP indexdf = pd.concat(indexdf, axis=1) return indexdf def selstrat_g(selstrat, info, sub_id, msvmsc, throrconst): """ Calc selection criteria (GEBV, PBTI, or index using gametic approach. Parameters ---------- selstrat : str A str containing any of GEBV, PBTI or index info : class object A class object created using the function "datacheck" sub_id : pandas.DataFrame with one column Index: RangeIndex (minimum of 2 rows) Containing ID numbers of specific individuals to be evaluated msvmsc : pandas.DataFrame DF created using the function "msvarcov_g" throrconst : float If selstrat is PBTI, a throrconst of value 0.05 sets threshold at top 5% of GEBV. If selstrat is index, throrconst is a constant. If selstrat is GEBV, throrconst can be any random value. Returns ------- data : pandas.DataFrame Index: RangeIndex Columns: ID, Group, trait names and Aggregate Breeding Value (ABV) Note: If selstrat is GEBV, None may be used for throrconst and msvmsc. If sub_id is None and selstrat is GEBV, GEBVs will be estimated for all individuals. However, if selstrat is not GEBV, the chosen selection criterion will be estimated for all individuals in msvmsc data frame. """ if selstrat in ("PBTI", "pbti", "index", "INDEX") and msvmsc is None: sys.exit("Provide Mendelian (co-)variance dataframe: 'msvmsc'") if selstrat in ("PBTI", "pbti", "index", "INDEX") and throrconst is None: sys.exit("Provide value for throrconst parameter") if selstrat not in ('GEBV', 'gebv', 'PBTI', 'pbti', 'index', 'INDEX'): sys.exit("selection strategy should be one of GEBV, PBTI or INDEX") if selstrat in ('GEBV', 'gebv'): data = calcgbv(info, sub_id) elif selstrat in ('PBTI', 'pbti'): if throrconst > 1 or throrconst < 0: sys.exit("value must be in the range of 0 and 1") data = calcprob(info, msvmsc, throrconst) elif selstrat in ('index', 'INDEX'): data = calcindex(info, msvmsc, throrconst) return data def cov2corr(cov): """Convert covariance to correlation matrix.""" cov = np.asanyarray(cov) std_ = np.sqrt(np.diag(cov)) with np.errstate(invalid='ignore'): corr = cov / np.outer(std_, std_) return corr def aggen(us_ind, no_markers, slst, indwt): """Set up additive effects matrix of aggregate genotype.""" mmfinal = np.empty((len(us_ind), no_markers)) xxx = 0 for iii in us_ind: tmpmt1 = np.array([slst[0][trt][iii, :] for trt in range(indwt.size)]) mmfinal[xxx, :] = np.matmul(indwt.transpose(), tmpmt1) xxx = xxx + 1 return mmfinal def chr_int(xxxxx): """Format chromomosome of interest parameter.""" if 'all' in xxxxx: xxxxx = 'all' elif 'none' in xxxxx: xxxxx = 'none' else: xxxxx = np.array([int(i) for i in xxxxx]) return xxxxx def writechr(covtmpx, chrinterest, chrm, trtnam, probx, stdsim): """Write matrices to file.""" if isinstance(chrinterest, str): if chrinterest == 'all': chrfile1 = "{}/Sim mat for {} chrm {} grp {}.npy".format( os.getcwd(), trtnam, chrm, probx) np.save(chrfile1, covtmpx) elif chrm in chrinterest: chrfile1 = "{}/Sim mat for {} chrm {} grp {}.npy".format( os.getcwd(), trtnam, chrm, probx) # output file np.save(chrfile1, covtmpx) if stdsim: if isinstance(chrinterest, str): if chrinterest == 'all': chrfilec = "{}/Stdsim mat for {} chrm {} grp {}.npy".format( os.getcwd(), trtnam, chrm, probx) # output file np.save(chrfilec, cov2corr(covtmpx)) elif chrm in chrinterest: chrfilec = "{}/Stdsim mat for {} chrm {} grp {}.npy".format( os.getcwd(), trtnam, chrm, probx) # output file np.save(chrfilec, cov2corr(covtmpx)) def writechrunspec(covtmpx, chrinterest, chrm, trtnam, stdsim): """Write matrices to file.""" if isinstance(chrinterest, str): if chrinterest == 'all': chrfile1 = "{}/Sim mat for {} chrm {}.npy".format( os.getcwd(), trtnam, chrm) np.save(chrfile1, covtmpx) elif chrm in chrinterest: chrfile1 = "{}/Sim mat for {} chrm {}.npy".format( os.getcwd(), trtnam, chrm) # output file np.save(chrfile1, covtmpx) if stdsim: if isinstance(chrinterest, str): if chrinterest == 'all': chrfilec = "{}/Stdsim mat for {} chrm {}.npy".format( os.getcwd(), trtnam, chrm) # output file np.save(chrfilec, cov2corr(covtmpx)) elif chrm in chrinterest: chrfilec = "{}/Stdsim mat for {} chrm {}.npy".format( os.getcwd(), trtnam, chrm) # output file np.save(chrfilec, cov2corr(covtmpx)) def grtonum(numnx): """Map chracters to numeric (0-no of groups).""" numnx = numnx.reset_index(drop=True) probn = pd.unique(numnx).tolist() alt_no = np.arange(0, len(probn), 1) noli = numnx.tolist() numnx = np.array(list(map(dict(zip(probn, alt_no)).get, noli, noli))) return numnx, probn def datret(info, rw_nms, pfnp, us_ind, slist, covmat, cov_indxx, stdsim, progress): """Return sim mat based on aggregate genotypes.""" snpindexxxx = np.arange(start=0, stop=info.gmap.shape[0], step=1) if info.meff.shape[1] == 1 and not stdsim: mat = cov_indxx elif info.meff.shape[1] == 1 and stdsim: mat = cov2corr(cov_indxx) elif info.meff.shape[1] > 1: if info.gmap.shape[1]-3 > 1: rw_nms = pd.DataFrame(rw_nms) rw_nms.to_csv(f"order of inds in mat grp {pfnp}.csv", index=False) if progress: print('Creating similarity matrix based on aggregate genotype') progr(0, max(pd.unique(info.gmap.iloc[:, 0]))) tmpmt1 = aggen(us_ind, info.gmap.shape[0], slist, info.indwt) # stores ABV covariance btw inds mat = np.zeros((len(us_ind), len(us_ind))) # loop over chromososomes for chrm in pd.unique(info.gmap.iloc[:, 0]): s_ind = np.array(snpindexxxx[info.gmap.iloc[:, 0] == (chrm)]) if info.gmap.shape[1]-3 == 1: covtmpx = abs(dgmrm(tmpmt1[:, s_ind], covmat[0][chrm-1])) else: covtmpx = abs(dgmrm(tmpmt1[:, s_ind], covmat[pfnp][chrm-1])) mat = mat + covtmpx if progress: progr(chrm, max(pd.unique(info.gmap.iloc[:, 0]))) if stdsim: mat = cov2corr(mat) return mat def mrmcals(info, us_ind, stdsim, slist, covmat, probn, chrinterest, save, progress): """Compute similarity matrix for each chromosome.""" if progress: progr(0, info.meff.columns.size) for i in range(info.meff.columns.size): cov_indxx = np.zeros((len(us_ind), len(us_ind))) for chrm in pd.unique(info.gmap.iloc[:, 0]): s_ind = np.array(np.arange(0, info.gmap.shape[0], 1 )[info.gmap.iloc[:, 0] == (chrm)]) if info.gmap.shape[1]-3 == 1: # map is 1 covtmpx = abs(dgmrm(slist[0][i][:, s_ind], covmat[0][chrm-1])) else: # if map is more than 1 covtmpx = abs(dgmrm(slist[0][i][us_ind[:, None], s_ind], covmat[probn][chrm-1])) cov_indxx = cov_indxx + covtmpx # sums up chrm-specific sims if len(pd.unique(info.group.iloc[:, 0].astype(str))) == 1: writechrunspec(covtmpx, chrinterest, chrm, info.meff.columns[i], stdsim) else: writechr(covtmpx, chrinterest, chrm, info.meff.columns[i], probn, stdsim) # write sim to file if stdsim: if save is True: if info.gmap.shape[1]-3 == 1: covxfile = "{}/Stdsim mat for {}.npy".format( os.getcwd(), info.meff.columns[i]) else: covxfile = "{}/Stdsim mat for {} grp {}.npy".format( os.getcwd(), info.meff.columns[i], probn) np.save(covxfile, cov2corr(cov_indxx)) # write std sim mats else: if save is True: if info.gmap.shape[1]-3 == 1: covxfile = "{}/Sim mat for {}.npy".format( os.getcwd(), info.meff.columns[i]) else: covxfile = "{}/Sim mat for {} grp {}.npy".format( os.getcwd(), info.meff.columns[i], probn) np.save(covxfile, cov_indxx) # write sim matrices if progress: progr(i + 1, info.meff.columns.size) return cov_indxx def simmat_g(info, covmat, sub_id, chrinterest, save=False, stdsim=False, progress=False): """ Compute similarity matrices using gametic approach. Parameters ---------- info : class object A class object created using the function "datacheck" covmat : A list of pop cov matrices created using "popcovmat" function sub_id : pandas.DataFrame with one column Index: RangeIndex (minimum of 2 rows) Containing ID numbers of specific individuals to be evaluated chrinterest : str or list of int list of chromosome numbers of interest or str with "all" or "none" save : bool, optional; write trait-specific sim mats to file if true stdsim : bool, optional; print write std sim mats to file if true progress : bool, optional; print progress of the task if true Returns ------- multgrpcov : list containing simimlarity matrices for each group """ if sub_id is None: inda = np.arange(0, info.gmat.shape[0], 1) sub_id = pd.DataFrame(info.group.iloc[inda, 1]) aaa = subindcheck(info, sub_id) else: aaa = subindcheck(info, sub_id) chrinterest = chr_int(chrinterest) slist = traitspecmatrices(info.gmat[aaa, :], info.meff) # trt-spec mat grp = info.gmap.shape[1]-3 if (grp == 1 and len(pd.unique(info.group.iloc[:, 0].astype(str))) > 1): print("The same map will be used for all groups") numbers, probn = grtonum(info.group.iloc[aaa, 0].astype(str)) multgrpcov = [] for gnp in range(grp): multgrpcov.append([]) if grp == 1: us_ind = np.arange(start=0, stop=info.gmat[aaa, :].shape[0], step=1) else: tng = numbers == gnp us_ind = np.array(list(compress(np.arange(0, len(tng), 1), tng))).T print("Processing group ", probn[gnp]) rw_nms = info.group.iloc[aaa, 1].reset_index(drop=True).astype( str)[us_ind] cov_indxx = mrmcals(info, us_ind, stdsim, slist, covmat, probn[gnp], chrinterest, save, progress) multgrpcov[int(gnp)].append( datret(info, rw_nms, probn[gnp], us_ind, slist, covmat, cov_indxx, stdsim, progress)) if len(probn) == 1: break if grp > 1 and len(probn): multgrpcov = dict(zip(probn, multgrpcov)) return multgrpcov def submsvmsc(msvmsc, sub_idz): """Extract index in msvmsc data frame.""" sub_idz = pd.DataFrame(sub_idz) numbs = msvmsc.iloc[:, 0].astype(str).tolist() sub_idz = sub_idz.reset_index(drop=True).squeeze() mal = sub_idz.iloc[:, 0].astype(str).tolist() fem = sub_idz.iloc[:, 1].astype(str).tolist() if sub_idz is not None: for i in mal: if i not in numbs: sys.exit("Individuals are not in msvmsc parameter") for i in fem: if i not in numbs: sys.exit("Individuals are not in msvmsc parameter") mal1 = [numbs.index(x) if x in numbs else None for x in mal] fem1 = [numbs.index(x) if x in numbs else None for x in fem] return mal1, fem1 def pot_parents(info, data, selmale, selfm): """Subset individuals of interest.""" trait_names = info.meff.columns if trait_names.size == 1: datamale = data[data.iloc[:, 1] == selmale[0]] pos = subindcheck(info, pd.DataFrame(datamale.iloc[:, 0])) datamale.insert(0, "pos", pos, True) no_sire = int(datamale.shape[0] * selmale[1]) datamale = datamale.sort_values( by=[trait_names[0]], ascending=False).iloc[0:no_sire, :] datafemale = data[data.iloc[:, 1] == selfm[0]] pos = subindcheck(info, pd.DataFrame(datafemale.iloc[:, 0])) datafemale.insert(0, "pos", pos, True) no_dam = int(datafemale.shape[0] * selfm[1]) datafemale = datafemale.sort_values( by=[trait_names[0]], ascending=False).iloc[0:no_dam, :] elif trait_names.size > 1: datamale = data[data.iloc[:, 1] == selmale[0]] pos = subindcheck(info, pd.DataFrame(datamale.iloc[:, 0])) datamale.insert(0, "pos", pos, True) no_sire = int(datamale.shape[0] * selmale[1]) datamale = datamale.sort_values( by=['ABV'], ascending=False).iloc[0:no_sire, :] datafemale = data[data.iloc[:, 1] == selfm[0]] pos = subindcheck(info, pd.DataFrame(datafemale.iloc[:, 0])) datafemale.insert(0, "pos", pos, True) no_dam = int(datafemale.shape[0] * selfm[1]) datafemale = datafemale.sort_values( by=['ABV'], ascending=False).iloc[0:no_dam, :] matlist = np.array(np.meshgrid( datamale.iloc[:, 0], datafemale.iloc[:, 0])).T.reshape(-1, 2) ids = np.array(np.meshgrid( datamale.iloc[:, 1], datafemale.iloc[:, 1])).T.reshape(-1, 2) if trait_names.size == 1: matndat = pd.DataFrame(index=range(matlist.shape[0]), columns=range( 4+trait_names.size)) else: matndat = pd.DataFrame( index=range(matlist.shape[0]), columns=range(5+trait_names.size)) matndat.iloc[:, [0, 1]] = ids matndat.iloc[:, [2, 3]] = matlist return matndat def selsgebv(notr, matndat, gbv, maxmale): """Calculate breeding values for each trait (zygote).""" mal = matndat.iloc[:, 2].tolist() fem = matndat.iloc[:, 3].tolist() if notr == 1: matndat.iloc[:, 4] = (np.array(gbv.iloc[mal, (0+2)]) + np.array( gbv.iloc[fem, (0+2)]))/2 elif notr > 1: matndat.iloc[:, 4:(5+notr)] = (np.array( gbv.iloc[mal, 2:(notr+3)]) + np.array(gbv.iloc[fem, 2:(notr+3)]))/2 idfxxx = np.unique(matndat.iloc[:, 3]) mmat = pd.DataFrame(index=range(len(idfxxx)), columns=range(matndat.shape[1])) for mmm in np.arange(0, len(idfxxx), 1): axx = matndat.loc[matndat.iloc[:, 3] == idfxxx[mmm]] tsire = np.array(axx.iloc[:, 2]) mmat.iloc[mmm, :] = axx.iloc[np.argmax( axx.iloc[:, axx.columns.size-1]), :] norepssire = Counter(mmat.iloc[:, 2]) lents = len(tsire) for nrs in range(lents): if norepssire[tsire[nrs]] <= maxmale-1: mmat.iloc[mmm, :] = np.array(axx[axx.iloc[:, 2] == tsire[nrs]]) break matndat = mmat if notr == 1: matndat.columns = np.concatenate(( ['MaleID', 'FemaleID', 'MaleIndex', 'FemaleIndex'], gbv.columns[gbv.columns.size-1]), axis=None) else: matndat.columns = np.concatenate(( ['MaleID', 'FemaleID', 'MaleIndex', 'FemaleIndex'], gbv.columns[2:gbv.columns.size].tolist()), axis=None) return matndat def selspbtizyg(notr, gbv, matndat, msvmsc, throrconst, maxmale): """Calculate prob of breeding top inds (zygote).""" mal1, fem1 = submsvmsc(msvmsc, pd.DataFrame(matndat.iloc[:, 0:2])) mal = matndat.iloc[:, 2].tolist() fem = matndat.iloc[:, 3].tolist() if notr == 1: matndat.iloc[:, 4] = (np.array(gbv.iloc[mal, (0+2)]) + np.array( gbv.iloc[fem, (0+2)]))/2 ttt = np.quantile(gbv.iloc[:, 0+2], q=1-throrconst) msvtemp = np.array(msvmsc.iloc[mal1, 0+2]) + np.array( msvmsc.iloc[fem1, 0+2]) matndat.iloc[:, 4] = 1 - scipy.stats.norm.cdf( ttt, loc=matndat.iloc[:, 4], scale=np.sqrt( msvtemp)) elif notr > 1: trait_names = gbv.columns[2:2+notr] colnam = np.concatenate((trait_names, "AG"), axis=None) colnam = namesdf(notr+1, colnam).decode('utf-8') t_ind = np.arange(colnam.shape[0])[np.in1d(colnam, trait_names)] for i in range(notr): matndat.iloc[:, 4+i] = ( np.array(gbv.iloc[mal, (i+2)]) + np.array( gbv.iloc[fem, (i+2)]))/2 ttt = np.quantile(gbv.iloc[:, 2+i], q=1-throrconst) msvtemp = np.array(msvmsc.iloc[mal1, t_ind[i]+2]) + np.array( msvmsc.iloc[fem1, t_ind[i]+2]) matndat.iloc[:, 4+i] = 1 - scipy.stats.norm.cdf( ttt, loc=matndat.iloc[:, 4+i], scale=np.sqrt(msvtemp)) matndat.iloc[:, 4+notr] = ( np.array(gbv.iloc[mal, (notr+2)]) + np.array( gbv.iloc[fem, (notr+2)]))/2 ttt = np.quantile(gbv.iloc[:, 2+notr], q=1-throrconst) msvtemp = np.array(msvmsc.loc[mal1, ["AG"]]) + np.array( msvmsc.loc[fem1, ["AG"]]) matndat.iloc[:, 4+notr] = 1 - scipy.stats.norm.cdf( ttt, loc=matndat.iloc[:, 4+notr], scale=np.sqrt(msvtemp.ravel())) idfxxx = np.unique(matndat.iloc[:, 3]) mmat = pd.DataFrame(index=range(len(idfxxx)), columns=range(matndat.shape[1])) for mmm in np.arange(0, len(idfxxx), 1): axx = matndat.loc[matndat.iloc[:, 3] == idfxxx[mmm]] tsire = np.array(axx.iloc[:, 2]) mmat.iloc[mmm, :] = axx.iloc[np.argmax( axx.iloc[:, axx.columns.size-1]), :] norepssire = Counter(mmat.iloc[:, 2]) lents = len(tsire) for nrs in range(lents): if norepssire[tsire[nrs]] <= maxmale-1: mmat.iloc[mmm, :] = np.array(axx[axx.iloc[:, 2] == tsire[nrs]]) break matndat = mmat if notr == 1: matndat.columns = np.concatenate(( ['MaleID', 'FemaleID', 'MaleIndex', 'FemaleIndex'], gbv.columns[gbv.columns.size-1]), axis=None) else: matndat.columns = np.concatenate(( ['MaleID', 'FemaleID', 'MaleIndex', 'FemaleIndex'], gbv.columns[2:gbv.columns.size].tolist()), axis=None) return matndat def selsindex(notr, gbv, matndat, msvmsc, throrconst, maxmale): """Calculate the index if constant is known (zygote).""" mal1, fem1 = submsvmsc(msvmsc, pd.DataFrame(matndat.iloc[:, 0:2])) mal = matndat.iloc[:, 2].tolist() fem = matndat.iloc[:, 3].tolist() if notr == 1: matndat.iloc[:, 4] = (np.array(gbv.iloc[mal, (0+2)]) + np.array( gbv.iloc[fem, (0+2)]))/2 msvtemp = np.array(msvmsc.iloc[mal1, 0+2]) + np.array( msvmsc.iloc[fem1, 0+2]) matndat.iloc[:, 4] = matndat.iloc[:, 4] + np.sqrt(msvtemp)*throrconst elif notr > 1: trait_names = gbv.columns[2:2+notr] colnam = np.concatenate((trait_names, "AG"), axis=None) colnam = namesdf(notr+1, colnam).decode('utf-8') t_ind = np.arange(colnam.shape[0])[np.in1d(colnam, trait_names)] for i in range(notr): matndat.iloc[:, 4+i] = ( np.array(gbv.iloc[mal, (i+2)]) + np.array( gbv.iloc[fem, (i+2)]))/2 msvtemp = np.array(msvmsc.iloc[mal1, t_ind[i]+2]) + np.array( msvmsc.iloc[fem1, t_ind[i]+2]) matndat.iloc[:, 4+i] = matndat.iloc[:, 4+i] + np.sqrt( msvtemp)*throrconst matndat.iloc[:, 4+notr] = ( np.array(gbv.iloc[mal, (notr+2)]) + np.array( gbv.iloc[fem, (notr+2)]))/2 msvtemp = np.array(msvmsc.loc[mal1, ["AG"]]) + np.array( msvmsc.loc[fem1, ["AG"]]) matndat.iloc[:, 4+notr] = matndat.iloc[:, 4+notr] + ( np.sqrt(msvtemp)*throrconst).ravel() idfxxx = np.unique(matndat.iloc[:, 3]) mmat = pd.DataFrame(index=range(len(idfxxx)), columns=range(matndat.shape[1])) for mmm in np.arange(0, len(idfxxx), 1): axx = matndat.loc[matndat.iloc[:, 3] == idfxxx[mmm]] tsire = np.array(axx.iloc[:, 2]) mmat.iloc[mmm, :] = axx.iloc[np.argmax( axx.iloc[:, axx.columns.size-1]), :] norepssire = Counter(mmat.iloc[:, 2]) lents = len(tsire) for nrs in range(lents): if norepssire[tsire[nrs]] <= maxmale-1: mmat.iloc[mmm, :] = np.array(axx[axx.iloc[:, 2] == tsire[nrs]]) break matndat = pd.DataFrame(mmat) if notr == 1: matndat.columns = np.concatenate(( ['MaleID', 'FemaleID', 'MaleIndex', 'FemaleIndex'], gbv.columns[gbv.columns.size-1]), axis=None) else: matndat.columns = np.concatenate(( ['MaleID', 'FemaleID', 'MaleIndex', 'FemaleIndex'], gbv.columns[2:gbv.columns.size].tolist()), axis=None) return matndat def subindcheckzyg(info, sub_idz): """Check sex and if matepairs provided in sub_idz are in group data.""" numbs = info.group.iloc[:, 1].astype(str).tolist() sub_idz = pd.DataFrame(sub_idz).reset_index(drop=True).squeeze() mal = sub_idz.iloc[:, 0].astype(str).tolist() fem = sub_idz.iloc[:, 1].astype(str).tolist() mal1 = [numbs.index(x) if x in numbs else None for x in mal] fem1 = [numbs.index(x) if x in numbs else None for x in fem] if len(pd.unique(info.group.iloc[mal1, 0])) != 1: sys.exit("Group class in sub_idz is not unique to ID of males") if len(pd.unique(info.group.iloc[fem1, 0])) != 1: sys.exit("Group class in sub_idz is not unique to ID of females") idn = sub_idz.reset_index(drop=True) mgp = list(set(info.group.iloc[mal1, 0])) fgp = list(set(info.group.iloc[fem1, 0])) if len(mgp) > 1 or len(fgp) > 1: sys.exit("multiple sexes detected in data") probn = [mgp[0], fgp[0]] return mal1, fem1, idn, probn def calcgbvzygsub(info, sub_idz): """Calc breeding values for matepairs.""" mal1, fem1, idn, _ = subindcheckzyg(info, sub_idz) no_individuals, trait_names = idn.shape[0], info.meff.columns notr = trait_names.size if notr == 1: gbv = np.zeros((no_individuals, notr)) mefff = np.array(info.meff.iloc[:, 0], float) matrix_me1 = makemebv(info.gmat[mal1, :], mefff) matrix_me2 = makemebv(info.gmat[fem1, :], mefff) gbv[:, 0] = (matrix_me1.sum(axis=1) + matrix_me2.sum(axis=1))/2 gbv = pd.DataFrame(gbv) gbv.columns = trait_names elif notr > 1: gbv = np.zeros((no_individuals, notr+1)) for i in range(notr): mefff = np.array(info.meff.iloc[:, i], float) matrix_me1 = makemebv(info.gmat[mal1, :], mefff) matrix_me2 = makemebv(info.gmat[fem1, :], mefff) gbv[:, i] = (matrix_me1.sum(axis=1) + matrix_me2.sum(axis=1))/2 gbv[:, notr] = gbv[:, notr] + info.indwt[i]*gbv[:, i] gbv = pd.DataFrame(gbv) colnames = np.concatenate((trait_names, "ABV"), axis=None) gbv.columns = colnames gbv.insert(0, "FemaleIndex", fem1, True) # insert ID gbv.insert(0, "MaleIndex", mal1, True) # insert ID gbv.insert(0, "FemaleID", idn.iloc[:, 1], True) # insert ID gbv.insert(0, "MaleID", idn.iloc[:, 0], True) # insert ID return gbv def calcprobzygsub(info, msvmsc, thresh, sub_idz): """Calculate the probability of breeding top individuals.""" subindcheckzyg(info, sub_idz) mal1, fem1 = submsvmsc(msvmsc, sub_idz) gbv = calcgbvzygsub(info, sub_idz) trait_names = info.meff.columns # traits names notr = trait_names.size gbvall = calcgbv(info, None) if notr == 1: probdf = np.zeros((gbv.shape[0], notr)) ttt = np.quantile(gbvall.iloc[:, (0+2)], q=1-thresh) msvmsc111 = np.array(msvmsc.iloc[mal1, (0+2)]) + np.array( msvmsc.iloc[fem1, (0+2)]) probdf[:, 0] = 1 - scipy.stats.norm.cdf( ttt, loc=gbv.iloc[:, (0+4)], scale=np.sqrt(msvmsc111)) probdf = pd.DataFrame(probdf) probdf.columns = trait_names elif notr > 1: colnam = np.concatenate((trait_names, "AG"), axis=None) colnam = namesdf(notr+1, colnam).decode('utf-8') probdf = np.zeros((gbv.shape[0], notr+1)) t_ind = np.arange(colnam.shape[0])[np.in1d(colnam, trait_names)] for i in range(notr): ttt = np.quantile(gbvall.iloc[:, (i+2)], q=1-thresh) msvmsc111 = np.array(msvmsc.iloc[mal1, (t_ind[i])+2]) + np.array( msvmsc.iloc[fem1, (t_ind[i])+2]) probdf[:, i] = scipy.stats.norm.cdf( ttt, loc=gbv.iloc[:, (i+4)], scale=np.sqrt(msvmsc111)) probdf[:, i] = np.nan_to_num(probdf[:, i]) probdf[:, i] = 1 - probdf[:, i] ttt = np.quantile(gbvall.iloc[:, (notr+2)], q=1-thresh) msvmsc111 = np.array(msvmsc.loc[mal1, ["AG"]]) + np.array( msvmsc.loc[fem1, ["AG"]]) probdf[:, notr] = scipy.stats.norm.cdf( ttt, loc=gbv.iloc[:, (notr+4)], scale=np.sqrt(msvmsc111.ravel())) probdf[:, notr] = np.nan_to_num(probdf[:, notr]) probdf[:, notr] = 1 - probdf[:, notr] probdf = pd.DataFrame(probdf) # convert matrix to dataframe colnames = np.concatenate((trait_names, "ABV"), axis=None) probdf.columns = colnames probdf = pd.concat([gbv.iloc[:, 0:4], probdf], axis=1) return probdf def calcindexzygsub(info, msvmsc, const, sub_idz): """Calc index matepairs if constant is known.""" subindcheckzyg(info, sub_idz) mal1, fem1 = submsvmsc(msvmsc, sub_idz) gbv = calcgbvzygsub(info, sub_idz) trait_names = info.meff.columns # traits names notr = trait_names.size if notr == 1: indexdf = np.zeros((gbv.shape[0], notr)) msvmsc111 = np.array(msvmsc.iloc[mal1, (0+2)]) + np.array( msvmsc.iloc[fem1, (0+2)]) indexdf[:, 0] = gbv.iloc[:, (0+4)] + np.sqrt(msvmsc111)*const indexdf = pd.DataFrame(indexdf) indexdf.columns = trait_names elif notr > 1: colnam = np.concatenate((trait_names, "AG"), axis=None) colnam = namesdf(notr+1, colnam).decode('utf-8') indexdf = np.zeros((gbv.shape[0], notr+1)) t_ind = np.arange(colnam.shape[0])[np.in1d(colnam, trait_names)] for i in range(notr): msvmsc111 = np.array(msvmsc.iloc[mal1, (t_ind[i])+2]) + np.array( msvmsc.iloc[fem1, (t_ind[i])+2]) indexdf[:, i] = gbv.iloc[:, (i+4)] + np.sqrt(msvmsc111)*const msvmsc111 = np.array(msvmsc.loc[mal1, ["AG"]]) + np.array( msvmsc.loc[fem1, ["AG"]]) indexdf[:, notr] = gbv.iloc[:, (notr+4)] + ( np.sqrt(msvmsc111)*const).ravel() indexdf = pd.DataFrame(indexdf) colnames = np.concatenate((trait_names, "ABV"), axis=None) indexdf.columns = colnames indexdf = pd.concat([gbv.iloc[:, 0:4], indexdf], axis=1) # grp return indexdf def selstrat_z(selstrat, info, sub_idz, msvmsc, throrconst, selmale, selfm, maxmale): """ Calculate selection criteria (GEBV, PBTI, or index) for zygotes. Parameters ---------- selstrat : str A str containing any of GEBV, PBTI or index info : class object A class object created using the function "datacheck" sub_idz : pandas.DataFrame Index: RangeIndex (minimum of 2 rows) Containing ID numbers of specific individuals to be evaluated. The 1st and 2nd columns must be IDS of males and females, respectively. msvmsc : pandas.DataFrame DF created using the function "msvarcov_g" throrconst : float If selstrat is PBTI, a throrconst of value 0.05 sets threshold at top 5% of GEBV of the population. If selstrat is index, throrconst a constant. selmale : list list of two items. 1st item is the str coding for males as in group dataframe. The 2nd item is a float representing x% of males to be used selfm : list list of two items. 1st item is the str coding for females as in group dataframe.The 2nd item is a float representing x% of females to be used maxmale : integer maximum number of allocations for males Returns ------- matndat : pandas.DataFrame Index: RangeIndex Columns: MaleID, FemaleID, MaleIndex, FemaleIndex, trait names and ABV Note: If selstrat is GEBV, None may be used for throrconst and msvmsc. If sub_idz is None and selstrat is GEBV, GEBVs will be estimated for all individuals. However, if selstrat is not GEBV, the chosen selection criterion will be estimated for all individuals in msvmsc data frame. """ if len(pd.unique(info.group.iloc[:, 0])) == 1: sys.exit("Inds are the same group. Use 'selstrat_g' function") if selstrat not in ('gebv', 'GEBV', 'pbti', 'PBTI', 'index', 'INDEX'): sys.exit("Options must be one of 'GEBV', PBTI', or 'INDEX'") if selstrat in ("PBTI", "pbti", "index", "INDEX") and msvmsc is None: sys.exit("Provide Mendelian (co-)variance dataframe: 'msvmsc'") if selstrat in ("PBTI", "pbti", "index", "INDEX") and throrconst is None: sys.exit("Provide value for throrconst parameter") if sub_idz is None: if maxmale is None: sys.exit("Provide maximum allocation for males 'maxmale'") elif selmale is None: sys.exit("Provide value for propoertio of males to be selected") elif selfm is None: sys.exit("Provide value for propoertio of females to be selected") if sub_idz is not None: if selstrat in ('gebv', 'GEBV'): matndat = calcgbvzygsub(info, sub_idz) elif selstrat in ('pbti', 'PBTI'): matndat = calcprobzygsub(info, msvmsc, throrconst, sub_idz) elif selstrat in ('index', 'INDEX'): matndat = calcindexzygsub(info, msvmsc, throrconst, sub_idz) else: for item in [selmale[0], selfm[0]]: if item not in pd.unique(info.group.iloc[:, 0]).tolist(): sys.exit("Sex name does not match group names") if selstrat in ('gebv', 'GEBV'): matndat = pot_parents(info, calcgbv(info, None), selmale, selfm) matndat = selsgebv(info.meff.columns.size, matndat, calcgbv(info, None), maxmale) elif selstrat in ('pbti', 'PBTI'): probdf = calcprob(info, msvmsc, throrconst) matndat = pot_parents(info, probdf, selmale, selfm) matndat = selspbtizyg(info.meff.columns.size, calcgbv(info, None), matndat, msvmsc, throrconst, maxmale) elif selstrat in ('index', 'INDEX'): indexdf = calcindex(info, msvmsc, throrconst) matndat = pot_parents(info, indexdf, selmale, selfm) matndat = selsindex(info.meff.columns.size, calcgbv(info, None), matndat, msvmsc, throrconst, maxmale) return matndat def agggenmsezygsub(no_markers, no_individuals, slist, slist1, indwt): """Set up add effects mat of agg gen (zygote) subset.""" mmfinal = np.empty((no_individuals, no_markers)) mmfinal1 = np.empty((no_individuals, no_markers)) for i in range(no_individuals): tmpmt1 = np.zeros((indwt.size, no_markers)) tmpmt2 = np.zeros((indwt.size, no_markers)) for trt in range(indwt.size): tmpmt1[trt, :] = slist[0][trt][i, :] tmpmt2[trt, :] = slist1[0][trt][i, :] mmfinal[i, :] = np.matmul(indwt.transpose(), tmpmt1) mmfinal1[i, :] = np.matmul(indwt.transpose(), tmpmt2) return mmfinal, mmfinal1 def writechrzyg(covtmpx, chrinterest, chrm, trtnam, stdsim): """Write matrices to file (zygote).""" if isinstance(chrinterest, str): if chrinterest == 'all': chrfile1 = "{}/Sim mat zygotes {} chrm {}.npy".format( os.getcwd(), trtnam, chrm) # output
np.save(chrfile1, covtmpx)
numpy.save
# List of function for the on-going p-value simulation # import pandas as pd import random from matplotlib import pyplot as plt import seaborn as sn import numpy as np import scipy.stats as stats from scipy.stats import norm from numpy import std, mean, sqrt from scipy.stats import t def cohen_d(x,y): nx = len(x) ny = len(y) dof = nx + ny - 2 return (mean(x) - mean(y)) / sqrt(((nx-1)*std(x, ddof=1) ** 2 + (ny-1)*
std(y, ddof=1)
numpy.std
""" Natively reading ODIM H5 radar files in Python. @title: pyodim @author: <NAME> <<EMAIL>> @institutions: Bureau of Meteorology and Monash University. @creation: 21/01/2020 @date: 19/02/2021 .. autosummary:: :toctree: generated/ _to_str buffer cartesian_to_geographic check_nyquist coord_from_metadata field_metadata generate_timestamp get_dataset_metadata get_root_metadata radar_coordinates_to_xyz read_odim_slice read_odim """ import datetime import traceback from typing import Dict, List, Tuple import dask import h5py import pyproj import pandas as pd import numpy as np import xarray as xr def _to_str(t: bytes) -> str: """ Transform binary into string. """ return t.decode("utf-8") def buffer(func): """ Decorator to catch and kill error message. Almost want to name the function dont_fail. """ def wrapper(*args, **kwargs): try: rslt = func(*args, **kwargs) except Exception: traceback.print_exc() rslt = None return rslt return wrapper def cartesian_to_geographic(x: np.ndarray, y: np.ndarray, lon0: float, lat0: float) -> Tuple[np.ndarray, np.ndarray]: """ Transform cartesian coordinates to lat/lon using the Azimuth Equidistant projection. Parameters: =========== x: ndarray x-axis cartesian coordinates. y: ndarray y-axis cartesian coordinates. Same dimension as x lon0: float Radar site longitude. lat0: float Radar site latitude. Returns: lon: ndarray Longitude of each gate. lat: ndarray Latitude of each gate. """ georef = pyproj.Proj(f"+proj=aeqd +lon_0={lon0} +lat_0={lat0} +ellps=WGS84") lon, lat = georef(x, y, inverse=True) lon = lon.astype(np.float32) lat = lat.astype(np.float32) return lon, lat @buffer def check_nyquist(dset: xr.Dataset) -> None: """ Check if the dataset Nyquist velocity corresponds to the PRF information. """ wavelength = dset.attrs["wavelength"] prf = dset.attrs["highprf"] nyquist = dset.attrs["NI"] ny_int = 1e-2 * prf * wavelength / 4 assert
np.abs(nyquist - ny_int)
numpy.abs
# -*- coding: utf-8 -*- # BCDI: tools for pre(post)-processing Bragg coherent X-ray diffraction imaging data # (c) 07/2017-06/2019 : CNRS UMR 7344 IM2NP # (c) 07/2019-05/2021 : DESY PHOTON SCIENCE # (c) 06/2021-present : DESY CFEL # authors: # <NAME>, <EMAIL> """Functions related to data postprocessing after phase retrieval.""" from numbers import Number, Real from math import pi import numpy as np from numpy.fft import fftn, fftshift, ifftn, ifftshift import scipy import matplotlib.pyplot as plt from scipy.ndimage.measurements import center_of_mass from scipy.interpolate import RegularGridInterpolator from scipy.stats import multivariate_normal from scipy.stats import pearsonr import gc from ..graph import graph_utils as gu from ..utils import image_registration as reg from ..utils import utilities as util from ..utils import validation as valid def align_obj( reference_obj, obj, method="modulus", support_threshold=None, precision=1000, debugging=False, ): """ Align two arrays using dft registration and subpixel shift. :param reference_obj: 3D array, reference complex object :param obj: 3D array, complex density to average with :param method: 'modulus', 'support' or 'skip'. Object to use for the determination of the shift. If 'support', the parameter 'support_threshold' must also be provided since the binary support is defined by thresholding the normalized modulus. :param support_threshold: all points where the normalized modulus is larger than this value will be set to 1 in the support. :param precision: precision for the DFT registration in 1/pixel :param debugging: set to True to see plots :type debugging: bool :return: the aligned array """ if obj.ndim != 3 or reference_obj.ndim != 3: raise ValueError("reference_obj and obj should be 3D arrays") if obj.shape != reference_obj.shape: print( "reference_obj and obj do not have the same shape\n" " - reference_obj is ", reference_obj.shape, " - obj is ", obj.shape, ) print("crop/pad obj") obj = util.crop_pad(array=obj, output_shape=reference_obj.shape) # calculate the shift between the two arrays if method == "modulus": shiftz, shifty, shiftx = reg.getimageregistration( abs(reference_obj), abs(obj), precision=precision ) elif method == "support": ref_support = np.zeros(reference_obj.shape) ref_support[ abs(reference_obj) > support_threshold * abs(reference_obj).max() ] = 1 support = np.zeros(reference_obj.shape) support[abs(obj) > support_threshold * abs(obj).max()] = 1 shiftz, shifty, shiftx = reg.getimageregistration( ref_support, support, precision=precision ) if debugging: gu.multislices_plot( abs(ref_support), sum_frames=False, title="Reference support" ) gu.multislices_plot( abs(support), sum_frames=False, title="Support before alignement" ) del ref_support, support else: # 'skip' print("\nSkipping alignment") print( "\tPearson correlation coefficient = {0:.3f}".format( pearsonr( np.ndarray.flatten(abs(reference_obj)), np.ndarray.flatten(abs(obj)) )[0] ) ) return obj # align obj using subpixel shift new_obj = reg.subpixel_shift(obj, shiftz, shifty, shiftx) # keep the complex output print( "\tShift calculated from dft registration: (", str("{:.2f}".format(shiftz)), ",", str("{:.2f}".format(shifty)), ",", str("{:.2f}".format(shiftx)), ") pixels", ) print( "\tPearson correlation coefficient = {0:.3f}".format( pearsonr( np.ndarray.flatten(abs(reference_obj)), np.ndarray.flatten(abs(new_obj)) )[0] ) ) if debugging: gu.multislices_plot( abs(reference_obj), sum_frames=True, title="Reference object" ) gu.multislices_plot(abs(new_obj), sum_frames=True, title="Aligned object") return new_obj def apodize(amp, phase, initial_shape, window_type, debugging=False, **kwargs): """ Apodize the complex array based on the window of the same shape. :param amp: 3D array, amplitude before apodization :param phase: 3D array, phase before apodization :param initial_shape: shape of the FFT used for phasing :param window_type: window filtering function, 'normal' or 'tukey' or 'blackman' :param debugging: set to True to see plots :type debugging: bool :param kwargs: - for the normal distribution: 'sigma' and 'mu' of the 3d multivariate normal distribution, tuples of 3 floats - for the Tuckey window: 'alpha' (shape parameter) of the 3d Tukey window, tuple of 3 floats - 'is_orthogonal': True if the data is in an orthonormal frame. Used for defining default plot labels. :return: filtered amplitude, phase of the same shape as myamp """ # check and load kwargs valid.valid_kwargs( kwargs=kwargs, allowed_kwargs={"sigma", "mu", "alpha", "is_orthogonal"}, name="postprocessing_utils.apodize", ) sigma = kwargs.get("sigma") mu = kwargs.get("mu") alpha = kwargs.get("alpha") is_orthogonal = kwargs.get("is_orthogonal", False) if amp.ndim != 3 or phase.ndim != 3: raise ValueError("amp and phase should be 3D arrays") if amp.shape != phase.shape: raise ValueError( "amp and phase must have the same shape\n" "amp is ", amp.shape, " while phase is ", phase.shape, ) # calculate the diffraction pattern of the reconstructed object nb_z, nb_y, nb_x = amp.shape nbz, nby, nbx = initial_shape myobj = util.crop_pad(amp * np.exp(1j * phase), (nbz, nby, nbx)) del amp, phase gc.collect() if debugging: gu.multislices_plot( array=abs(myobj), sum_frames=False, plot_colorbar=True, title="modulus before apodization", reciprocal_space=False, is_orthogonal=is_orthogonal, scale="linear", ) my_fft = fftshift(fftn(myobj)) del myobj gc.collect() fftmax = abs(my_fft).max() print("Max FFT=", fftmax) if debugging: gu.multislices_plot( array=abs(my_fft), sum_frames=False, plot_colorbar=True, title="diffraction amplitude before apodization", reciprocal_space=True, is_orthogonal=is_orthogonal, scale="log", ) if window_type == "normal": print("Apodization using a 3d multivariate normal window") sigma = sigma or np.array([0.3, 0.3, 0.3]) mu = mu or np.array([0.0, 0.0, 0.0]) grid_z, grid_y, grid_x = np.meshgrid( np.linspace(-1, 1, nbz), np.linspace(-1, 1, nby), np.linspace(-1, 1, nbx), indexing="ij", ) covariance = np.diag(sigma ** 2) window = multivariate_normal.pdf( np.column_stack([grid_z.flat, grid_y.flat, grid_x.flat]), mean=mu, cov=covariance, ) del grid_z, grid_y, grid_x gc.collect() window = window.reshape((nbz, nby, nbx)) elif window_type == "tukey": print("Apodization using a 3d Tukey window") alpha = alpha or np.array([0.5, 0.5, 0.5]) window = tukey_window(initial_shape, alpha=alpha) elif window_type == "blackman": print("Apodization using a 3d Blackman window") window = blackman_window(initial_shape) else: raise ValueError("Invalid window type") my_fft = np.multiply(my_fft, window) del window gc.collect() my_fft = my_fft * fftmax / abs(my_fft).max() print("Max apodized FFT after normalization =", abs(my_fft).max()) if debugging: gu.multislices_plot( array=abs(my_fft), sum_frames=False, plot_colorbar=True, title="diffraction amplitude after apodization", reciprocal_space=True, is_orthogonal=is_orthogonal, scale="log", ) myobj = ifftn(ifftshift(my_fft)) del my_fft gc.collect() if debugging: gu.multislices_plot( array=abs(myobj), sum_frames=False, plot_colorbar=True, title="modulus after apodization", reciprocal_space=False, is_orthogonal=is_orthogonal, scale="linear", ) myobj = util.crop_pad( myobj, (nb_z, nb_y, nb_x) ) # return to the initial shape of myamp return abs(myobj), np.angle(myobj) def average_obj( avg_obj, ref_obj, obj, support_threshold=0.25, correlation_threshold=0.90, aligning_option="dft", width_z=None, width_y=None, width_x=None, method="reciprocal_space", debugging=False, **kwargs, ): """ Average two reconstructions after aligning it. Alignment is processed only if their cross-correlation is larger than the parameter correlation_threshold. :param avg_obj: 3D array, average complex density :param ref_obj: 3D array, reference complex object :param obj: 3D array, complex density to average with :param support_threshold: for support definition :param correlation_threshold: minimum correlation between two dataset to average them :param aligning_option: 'com' for center of mass, 'dft' for dft registration and subpixel shift :param width_z: size of the area to plot in z (axis 0), centered on the middle of the initial array :param width_y: size of the area to plot in y (axis 1), centered on the middle of the initial array :param width_x: size of the area to plot in x (axis 2), centered on the middle of the initial array :param method: 'real_space' or 'reciprocal_space', in which space the average will be performed :param debugging: set to True to see plots :type debugging: bool :param kwargs: - 'reciprocal_space': True if the object is in reciprocal space - 'is_orthogonal': True if the data is in an orthonormal frame. Used for defining default plot labels. :return: the average complex density """ # check and load kwargs valid.valid_kwargs( kwargs=kwargs, allowed_kwargs={"reciprocal_space", "is_orthogonal"}, name="postprocessing_utils.average_obj", ) reciprocal_space = kwargs.get("reciprocal_space", False) is_orthogonal = kwargs.get("is_orthogonal", False) if obj.ndim != 3 or avg_obj.ndim != 3 or ref_obj.ndim != 3: raise ValueError("avg_obj, ref_obj and obj should be 3D arrays") if obj.shape != avg_obj.shape or obj.shape != ref_obj.shape: raise ValueError( "avg_obj, ref_obj and obj must have the same shape\n" "avg_obj is ", avg_obj.shape, " - ref_obj is ", ref_obj.shape, " - obj is ", obj.shape, ) nbz, nby, nbx = obj.shape avg_flag = 0 if avg_obj.sum() == 0: avg_obj = ref_obj if debugging: gu.multislices_plot( abs(avg_obj), width_z=width_z, width_y=width_y, width_x=width_x, plot_colorbar=True, sum_frames=True, title="Reference object", reciprocal_space=reciprocal_space, is_orthogonal=is_orthogonal, ) else: myref_support = np.zeros((nbz, nby, nbx)) myref_support[abs(ref_obj) > support_threshold * abs(ref_obj).max()] = 1 my_support = np.zeros((nbz, nby, nbx)) my_support[abs(obj) > support_threshold * abs(obj).max()] = 1 avg_piz, avg_piy, avg_pix = center_of_mass(abs(myref_support)) piz, piy, pix = center_of_mass(abs(my_support)) offset_z = avg_piz - piz offset_y = avg_piy - piy offset_x = avg_pix - pix print( "center of mass offset with reference object: (", str("{:.2f}".format(offset_z)), ",", str("{:.2f}".format(offset_y)), ",", str("{:.2f}".format(offset_x)), ") pixels", ) if aligning_option == "com": # re-sample data on a new grid based on COM shift of support old_z = np.arange(-nbz // 2, nbz // 2) old_y = np.arange(-nby // 2, nby // 2) old_x = np.arange(-nbx // 2, nbx // 2) myz, myy, myx = np.meshgrid(old_z, old_y, old_x, indexing="ij") new_z = myz + offset_z new_y = myy + offset_y new_x = myx + offset_x del myx, myy, myz rgi = RegularGridInterpolator( (old_z, old_y, old_x), obj, method="linear", bounds_error=False, fill_value=0, ) new_obj = rgi( np.concatenate( ( new_z.reshape((1, new_z.size)), new_y.reshape((1, new_z.size)), new_x.reshape((1, new_z.size)), ) ).transpose() ) new_obj = new_obj.reshape((nbz, nby, nbx)).astype(obj.dtype) else: # dft registration and subpixel shift (see Matlab code) shiftz, shifty, shiftx = reg.getimageregistration( abs(ref_obj), abs(obj), precision=1000 ) new_obj = reg.subpixel_shift( obj, shiftz, shifty, shiftx ) # keep the complex output here print( "Shift calculated from dft registration: (", str("{:.2f}".format(shiftz)), ",", str("{:.2f}".format(shifty)), ",", str("{:.2f}".format(shiftx)), ") pixels", ) new_obj = new_obj / abs(new_obj).max() # renormalize correlation = pearsonr( np.ndarray.flatten(abs(ref_obj[np.nonzero(myref_support)])), np.ndarray.flatten(abs(new_obj[np.nonzero(myref_support)])), )[0] if correlation < correlation_threshold: print( "pearson cross-correlation=", correlation, "too low, skip this reconstruction", ) else: print( "pearson-correlation=", correlation, ", average with this reconstruction", ) if debugging: myfig, _, _ = gu.multislices_plot( abs(new_obj), width_z=width_z, width_y=width_y, width_x=width_x, sum_frames=True, plot_colorbar=True, title="Aligned object", reciprocal_space=reciprocal_space, is_orthogonal=is_orthogonal, ) myfig.text( 0.60, 0.30, "pearson-correlation = " + str("{:.4f}".format(correlation)), size=20, ) if method == "real_space": avg_obj = avg_obj + new_obj elif method == "reciprocal_space": avg_obj = ifftn(fftn(avg_obj) + fftn(obj)) else: raise ValueError('method should be "real_space" or "reciprocal_space"') avg_flag = 1 if debugging: gu.multislices_plot( abs(avg_obj), plot_colorbar=True, width_z=width_z, width_y=width_y, width_x=width_x, sum_frames=True, title="New averaged object", reciprocal_space=reciprocal_space, is_orthogonal=is_orthogonal, ) return avg_obj, avg_flag def blackman_window(shape, normalization=1): """ Create a 3d Blackman window based on shape. :param shape: tuple, shape of the 3d window :param normalization: value of the integral of the backman window :return: the 3d Blackman window """ nbz, nby, nbx = shape array_z = np.blackman(nbz) array_y = np.blackman(nby) array_x = np.blackman(nbx) blackman2 = np.ones((nbz, nby)) blackman3 = np.ones((nbz, nby, nbx)) for idz in range(nbz): blackman2[idz, :] = array_z[idz] * array_y for idy in range(nby): blackman3[idz, idy] = blackman2[idz, idy] * array_x blackman3 = blackman3 / blackman3.sum() * normalization return blackman3 def bragg_temperature( spacing, reflection, spacing_ref=None, temperature_ref=None, use_q=False, material=None, ): """ Calculate the temperature from Bragg peak position. :param spacing: q or planar distance, in inverse angstroms or angstroms :param reflection: measured reflection, e.g. np.array([1, 1, 1]) :param spacing_ref: reference spacing at known temperature (include substrate-induced strain) :param temperature_ref: in K, known temperature for the reference spacing :param use_q: set to True to use q, False to use planar distance :type use_q: bool :param material: at the moment only 'Pt' :return: calculated temperature """ print("\n") if material == "Pt": # reference values for Pt: temperature in K, thermal expansion x 10^6 in 1/K, # lattice parameter in angstroms expansion_data = np.array( [ [100, 6.77, 3.9173], [110, 7.10, 3.9176], [120, 7.37, 3.9179], [130, 7.59, 3.9182], [140, 7.78, 3.9185], [150, 7.93, 3.9188], [160, 8.07, 3.9191], [180, 8.29, 3.9198], [200, 8.46, 3.9204], [220, 8.59, 3.9211], [240, 8.70, 3.9218], [260, 8.80, 3.9224], [280, 8.89, 3.9231], [293.15, 8.93, 3.9236], [300, 8.95, 3.9238], [400, 9.25, 3.9274], [500, 9.48, 3.9311], [600, 9.71, 3.9349], [700, 9.94, 3.9387], [800, 10.19, 3.9427], [900, 10.47, 3.9468], [1000, 10.77, 3.9510], [1100, 11.10, 3.9553], [1200, 11.43, 3.9597], ] ) if spacing_ref is None: print("Using the reference spacing of Platinum") spacing_ref = 3.9236 / np.linalg.norm(reflection) # angstroms if temperature_ref is None: temperature_ref = 293.15 # K else: raise ValueError('Only "Pt" available for temperature estimation') if use_q: spacing = 2 * np.pi / spacing # go back to distance spacing_ref = 2 * np.pi / spacing_ref # go back to distance spacing = spacing * np.linalg.norm(reflection) # go back to lattice constant spacing_ref = spacing_ref * np.linalg.norm( reflection ) # go back to lattice constant print( "Reference spacing at", temperature_ref, "K =", str("{:.4f}".format(spacing_ref)), "angstroms", ) print( "Spacing =", str("{:.4f}".format(spacing)), "angstroms using reflection", reflection, ) # fit the experimental spacing with non corrected platinum curve myfit = np.poly1d(np.polyfit(expansion_data[:, 2], expansion_data[:, 0], 3)) print("Temperature without offset correction=", int(myfit(spacing) - 273.15), "C") # find offset for platinum reference curve myfit = np.poly1d(np.polyfit(expansion_data[:, 0], expansion_data[:, 2], 3)) spacing_offset = ( myfit(temperature_ref) - spacing_ref ) # T in K, spacing in angstroms print("Spacing offset =", str("{:.4f}".format(spacing_offset)), "angstroms") # correct the platinum reference curve for the offset platinum_offset = np.copy(expansion_data) platinum_offset[:, 2] = platinum_offset[:, 2] - spacing_offset myfit = np.poly1d(np.polyfit(platinum_offset[:, 2], platinum_offset[:, 0], 3)) mytemp = int(myfit(spacing) - 273.15) print("Temperature with offset correction=", mytemp, "C") return mytemp def calc_coordination( support, kernel=np.ones((3, 3, 3)), width_z=None, width_y=None, width_x=None, debugging=False, ): """ Calculate the coordination number of voxels in a support (numbe of neighbours). :param support: 3D support array :param kernel: kernel used for convolution with the support :param width_z: size of the area to plot in z (axis 0), centered on the middle of the initial array :param width_y: size of the area to plot in y (axis 1), centered on the middle of the initial array :param width_x: size of the area to plot in x (axis 2), centered on the middle of the initial array :param debugging: set to True to see plots :type debugging: bool :return: the coordination matrix """ from scipy.signal import convolve if support.ndim != 3: raise ValueError("Support should be a 3D array") mycoord = np.rint(convolve(support, kernel, mode="same")) mycoord = mycoord.astype(int) if debugging: gu.multislices_plot( support, width_z=width_z, width_y=width_y, width_x=width_x, vmin=0, is_orthogonal=True, reciprocal_space=False, title="Input support", ) gu.multislices_plot( mycoord, plot_colorbar=True, width_z=width_z, width_y=width_y, width_x=width_x, vmin=0, is_orthogonal=True, reciprocal_space=False, title="Coordination matrix", ) return mycoord def center_com(array, debugging=False, **kwargs): """ Center array based on center_of_mass(abs(array)) using pixel shift. :param array: 3D array to be centered based on the center of mass of abs(array) :param debugging: boolean, True to see plots :param kwargs: - width_z: size of the area to plot in z (axis 0), centered on the middle of the initial array - width_y: size of the area to plot in y (axis 1), centered on the middle of the initial array - width_x: size of the area to plot in x (axis 2), centered on the middle of the initial array :return: array centered by pixel shift """ ######################### # check and load kwargs # ######################### valid.valid_kwargs( kwargs=kwargs, allowed_kwargs={"width_z", "width_y", "width_x"}, name="kwargs" ) width_z = kwargs.get("width_z") valid.valid_item( value=width_z, allowed_types=int, min_excluded=0, allow_none=True, name="width_z", ) width_y = kwargs.get("width_y") valid.valid_item( value=width_y, allowed_types=int, min_excluded=0, allow_none=True, name="width_y", ) width_x = kwargs.get("width_x") valid.valid_item( value=width_x, allowed_types=int, min_excluded=0, allow_none=True, name="width_x", ) ######################### # check some parameters # ######################### if array.ndim != 3: raise ValueError("array should be a 3D array") ######################################### # find the offset of the center of mass # ######################################### nbz, nby, nbx = array.shape piz, piy, pix = center_of_mass(abs(array)) offset_z = int(np.rint(nbz / 2.0 - piz)) offset_y = int(np.rint(nby / 2.0 - piy)) offset_x = int(np.rint(nbx / 2.0 - pix)) if debugging: gu.multislices_plot( abs(array), width_z=width_z, width_y=width_y, width_x=width_x, title="Before COM centering", ) print( "center of mass at (z, y, x): (", str("{:.2f}".format(piz)), ",", str("{:.2f}".format(piy)), ",", str("{:.2f}".format(pix)), ")", ) print( "center of mass offset: (", offset_z, ",", offset_y, ",", offset_x, ") pixels", ) ##################### # center the object # ##################### array = np.roll(array, (offset_z, offset_y, offset_x), axis=(0, 1, 2)) if debugging: gu.multislices_plot( abs(array), width_z=width_z, width_y=width_y, width_x=width_x, title="After COM centering", ) return array def center_max(array, debugging=False, **kwargs): """ Center array based on max(abs(array)) using pixel shift. :param array: 3D array to be centered based on max(abs(array)) :param debugging: boolean, True to see plots :param kwargs: - width_z: size of the area to plot in z (axis 0), centered on the middle of the initial array - width_y: size of the area to plot in y (axis 1), centered on the middle of the initial array - width_x: size of the area to plot in x (axis 2), centered on the middle of the initial array :return: array centered by pixel shift """ ######################### # check and load kwargs # ######################### valid.valid_kwargs( kwargs=kwargs, allowed_kwargs={"width_z", "width_y", "width_x"}, name="kwargs" ) width_z = kwargs.get("width_z") valid.valid_item( value=width_z, allowed_types=int, min_excluded=0, allow_none=True, name="width_z", ) width_y = kwargs.get("width_y") valid.valid_item( value=width_y, allowed_types=int, min_excluded=0, allow_none=True, name="width_y", ) width_x = kwargs.get("width_x") valid.valid_item( value=width_x, allowed_types=int, min_excluded=0, allow_none=True, name="width_x", ) ######################### # check some parameters # ######################### if array.ndim != 3: raise ValueError("array should be a 3D array") ################################################################## # find the offset of the max relative to the center of the array # ################################################################## nbz, nby, nbx = array.shape piz, piy, pix = np.unravel_index(abs(array).argmax(), array.shape) offset_z = int(np.rint(nbz / 2.0 - piz)) offset_y = int(np.rint(nby / 2.0 - piy)) offset_x = int(np.rint(nbx / 2.0 - pix)) if debugging: gu.multislices_plot( abs(array), width_z=width_z, width_y=width_y, width_x=width_x, title="Before max centering", ) print("Max at (z, y, x): (", piz, ",", piy, ",", pix, ")") print("Max offset: (", offset_z, ",", offset_y, ",", offset_x, ") pixels") ##################### # center the object # ##################### array = np.roll(array, (offset_z, offset_y, offset_x), axis=(0, 1, 2)) if debugging: gu.multislices_plot( abs(array), width_z=width_z, width_y=width_y, width_x=width_x, title="After max centering", ) return array def filter_3d( array, filter_name="gaussian_highpass", kernel_length=21, debugging=False, **kwargs ): """ Apply a filter to the array by convoluting with a filtering kernel. :param array: 2D or 3D array to be filtered :param filter_name: name of the filter, 'gaussian', 'gaussian_highpass' :param kernel_length: length in pixels of the filtering kernel :param debugging: True to see a plot of the kernel :param kwargs: - 'sigma': sigma of the gaussian kernel """ from scipy.signal import convolve # check and load kwargs valid.valid_kwargs( kwargs=kwargs, allowed_kwargs={"sigma"}, name="postprocessing_utils.filter_3d" ) sigma = kwargs.get("sigma") ndim = array.ndim if ndim not in {2, 3}: raise ValueError("data should be a 2D or a 3D array") if filter_name == "gaussian_highpass": sigma = sigma or 3 kernel = gaussian_kernel( ndim=ndim, kernel_length=kernel_length, sigma=sigma, debugging=debugging ) return array - convolve(array, kernel, mode="same") if filter_name == "gaussian": sigma = sigma or 0.5 kernel = gaussian_kernel( ndim=ndim, kernel_length=kernel_length, sigma=sigma, debugging=debugging ) return convolve(array, kernel, mode="same") raise ValueError("Only the gaussian_kernel is implemented up to now.") def find_bulk( amp, support_threshold, method="threshold", width_z=None, width_y=None, width_x=None, debugging=False, ): """ Isolate the inner part of the crystal from the non-physical surface. :param amp: 3D array, reconstructed object amplitude :param support_threshold: threshold for isosurface determination :param method: 'threshold' or 'defect'. If 'defect', removes layer by layer using the coordination number. :param width_z: size of the area to plot in z (axis 0), centered on the middle of the initial array :param width_y: size of the area to plot in y (axis 1), centered on the middle of the initial array :param width_x: size of the area to plot in x (axis 2), centered on the middle of the initial array :param debugging: set to True to see plots :type debugging: bool :return: the support corresponding to the bulk """ if amp.ndim != 3: raise ValueError("amp should be a 3D array") nbz, nby, nbx = amp.shape max_amp = abs(amp).max() support = np.ones((nbz, nby, nbx)) if method == "threshold": support[abs(amp) < support_threshold * max_amp] = 0 else: support[abs(amp) < 0.05 * max_amp] = 0 # predefine a larger support mykernel = np.ones((9, 9, 9)) mycoordination_matrix = calc_coordination( support, kernel=mykernel, debugging=debugging ) outer = np.copy(mycoordination_matrix) outer[np.nonzero(outer)] = 1 if mykernel.shape == np.ones((9, 9, 9)).shape: outer[ mycoordination_matrix > 300 ] = 0 # start with a larger object, the mean surface amplitude is ~ 5% else: raise ValueError("Kernel not yet implemented") outer[mycoordination_matrix == 0] = 1 # corresponds to outside of the crystal if debugging: gu.multislices_plot( outer, width_z=width_z, width_y=width_y, width_x=width_x, vmin=0, vmax=1, title="Outer matrix", ) ############################################################################ # remove layer by layer until the correct isosurface is reached on average # ############################################################################ nb_voxels = 1 # initialize this counter which corresponds to # the number of voxels not included in outer idx = 0 # is larger than mythreshold while nb_voxels > 0: # nb of voxels not included in outer # first step: find the first underlayer mycoordination_matrix = calc_coordination( outer, kernel=mykernel, debugging=debugging ) surface = np.copy(mycoordination_matrix) surface[np.nonzero(surface)] = 1 surface[mycoordination_matrix > 389] = 0 # remove part from outer 389 outer[ mycoordination_matrix > 389 ] = 1 # include points left over by the coordination number selection surface[mycoordination_matrix < 362] = 0 # remove part from bulk 311 # below is to exclude from surface the frame outer part surface[0:5, :, :] = 0 surface[:, 0:5, :] = 0 surface[:, :, 0:5] = 0 surface[nbz - 6 : nbz, :, :] = 0 surface[:, nby - 6 : nby, :] = 0 surface[:, :, nbx - 6 : nbx] = 0 if debugging: gu.multislices_plot( surface, width_z=width_z, width_y=width_y, width_x=width_x, vmin=0, vmax=1, title="Surface matrix", ) # second step: calculate the % of voxels from that layer whose amplitude # is lower than support_threshold nb_voxels = surface[np.nonzero(surface)].sum() keep_voxels = surface[abs(amp) >= support_threshold * max_amp].sum() voxels_counter = ( keep_voxels / nb_voxels ) # % of voxels whose amplitude is larger than support_threshold mean_amp = np.mean(amp[np.nonzero(surface)].flatten()) / max_amp print( "number of surface voxels =", nb_voxels, " , % of surface voxels above threshold =", str("{:.2f}".format(100 * voxels_counter)), "% , mean surface amplitude =", mean_amp, ) if mean_amp < support_threshold: outer[np.nonzero(surface)] = 1 idx = idx + 1 else: print("Surface of object reached after", idx, "iterations") break support_defect = np.ones((nbz, nby, nbx)) - outer support = np.ones((nbz, nby, nbx)) support[abs(amp) < support_threshold * max_amp] = 0 # add voxels detected by support_defect support[np.nonzero(support_defect)] = 1 return support def find_crop_center(array_shape, crop_shape, pivot): """ Find the position of the center of the cropping window. It finds the closest voxel to pivot which allows to crop an array of array_shape to crop_shape. :param array_shape: initial shape of the array :type array_shape: tuple :param crop_shape: final shape of the array :type crop_shape: tuple :param pivot: position on which the final region of interest dhould be centered (center of mass of the Bragg peak) :type pivot: tuple :return: the voxel position closest to pivot which allows cropping to the defined shape. """ valid.valid_container( array_shape, container_types=(tuple, list, np.ndarray), min_length=1, item_types=int, name="array_shape", ) ndim = len(array_shape) valid.valid_container( crop_shape, container_types=(tuple, list, np.ndarray), length=ndim, item_types=int, name="crop_shape", ) valid.valid_container( pivot, container_types=(tuple, list, np.ndarray), length=ndim, item_types=int, name="pivot", ) crop_center = np.empty(ndim) for idx, dim in enumerate(range(ndim)): if max(0, pivot[idx] - crop_shape[idx] // 2) == 0: # not enough range on this side of the com crop_center[idx] = crop_shape[idx] // 2 else: if ( min(array_shape[idx], pivot[idx] + crop_shape[idx] // 2) == array_shape[idx] ): # not enough range on this side of the com crop_center[idx] = array_shape[idx] - crop_shape[idx] // 2 else: crop_center[idx] = pivot[idx] crop_center = list(map(lambda x: int(x), crop_center)) return crop_center def find_datarange(array, plot_margin=10, amplitude_threshold=0.1, keep_size=False): """ Find the range where data is larger than a threshold. It finds the meaningful range of the array where it is larger than the threshold, in order to reduce the memory consumption in latter processing. The range can be larger than the initial data size, which then will need to be padded. :param array: the complex 3D reconstruction :param plot_margin: user-defined margin to add to the minimum range of the data :param amplitude_threshold: threshold used to define a support from the amplitude :param keep_size: set to True in order to keep the dataset full size :return: - zrange: half size of the data range to use in the first axis (Z) - yrange: half size of the data range to use in the second axis (Y) - xrange: half size of the data range to use in the third axis (X) """ nbz, nby, nbx = array.shape ######################### # check some parameters # ######################### if not isinstance(array, np.ndarray): raise TypeError("array should be a numpy ndarray") if array.ndim != 3: raise ValueError("array should be 3D") if isinstance(plot_margin, Number): plot_margin = (plot_margin,) * 3 valid.valid_container( plot_margin, container_types=(tuple, list, np.ndarray), length=3, item_types=int, name="plot_margin", ) valid.valid_item( amplitude_threshold, allowed_types=Real, min_included=0, name="amplitude_threshold", ) ######################################################### # find the relevant range where the support is non-zero # ######################################################### if keep_size: return nbz // 2, nby // 2, nbx // 2 support = np.zeros((nbz, nby, nbx)) support[abs(array) > amplitude_threshold * abs(array).max()] = 1 z, y, x = np.meshgrid( np.arange(0, nbz, 1), np.arange(0, nby, 1), np.arange(0, nbx, 1), indexing="ij" ) z = z * support min_z = min(int(np.min(z[np.nonzero(z)])), nbz - int(np.max(z[np.nonzero(z)]))) y = y * support min_y = min(int(np.min(y[np.nonzero(y)])), nby - int(np.max(y[np.nonzero(y)]))) x = x * support min_x = min(int(np.min(x[np.nonzero(x)])), nbx - int(np.max(x[np.nonzero(x)]))) zrange = nbz // 2 - min_z yrange = nby // 2 - min_y xrange = nbx // 2 - min_x if plot_margin is not None: zrange += plot_margin[0] yrange += plot_margin[1] xrange += plot_margin[2] return zrange, yrange, xrange def flip_reconstruction(obj, debugging=False): """ Calculate the conjugate object giving the same diffracted intensity as 'obj'. :param obj: 3D reconstructed complex object :param debugging: set to True to see plots :type debugging: bool :return: the flipped complex object """ if obj.ndim != 3: raise ValueError("obj should be a 3D array") flipped_obj = ifftn(ifftshift(np.conj(fftshift(fftn(obj))))) if debugging: gu.multislices_plot( abs(obj), vmin=0, sum_frames=False, plot_colorbar=True, title="Initial object", ) gu.multislices_plot( abs(flipped_obj), vmin=0, sum_frames=False, plot_colorbar=True, title="Flipped object", ) return flipped_obj def gap_detector(data, mask, start_pixel, width_gap): """ Reproduce a detector gap in reciprocal space data and mask. :param data: the 3D reciprocal space data :param mask: the corresponding 3D mask :param start_pixel: pixel number where the gap starts :param width_gap: width of the gap in pixels :return: data and mask array with a gap """ if data.ndim != 3 or mask.ndim != 3: raise ValueError("data and mask should be 3d arrays") if data.shape != mask.shape: raise ValueError("data and mask should have the same shape") data[:, :, start_pixel : start_pixel + width_gap] = 0 data[:, start_pixel : start_pixel + width_gap, :] = 0 mask[:, :, start_pixel : start_pixel + width_gap] = 1 mask[:, start_pixel : start_pixel + width_gap, :] = 1 return data, mask def gaussian_kernel(ndim, kernel_length=21, sigma=3, debugging=False): """ Generate 2D or 3D Gaussian kernels. :param ndim: number of dimensions of the kernel, 2 or 3 :param kernel_length: length in pixels of the filtering kernel :param sigma: sigma of the gaussian pdf :param debugging: True to see plots :return: a 2D or 3D Gaussian kernel """ from scipy.stats import norm if kernel_length % 2 == 0: raise ValueError("kernel_length should be an even number") half_range = kernel_length // 2 kernel_1d = norm.pdf(np.arange(-half_range, half_range + 1, 1), 0, sigma) if ndim == 2: kernel = np.ones((kernel_length, kernel_length)) for idy in range(kernel_length): kernel[idy, :] = kernel_1d[idy] * kernel_1d if debugging: plt.figure() plt.imshow(kernel) plt.colorbar() plt.title("Gaussian kernel") plt.pause(0.1) elif ndim == 3: kernel_2d = np.ones((kernel_length, kernel_length)) kernel = np.ones((kernel_length, kernel_length, kernel_length)) for idz in range(kernel_length): kernel_2d[idz, :] = kernel_1d[idz] * kernel_1d for idy in range(kernel_length): kernel[idz, idy] = kernel_2d[idz, idy] * kernel_1d if debugging: plt.figure() plt.imshow(kernel[half_range, :, :]) plt.colorbar() plt.title("Central slice of the Gaussian kernel") plt.pause(0.1) else: raise ValueError("This function generates only 2D or 3D kernels") return kernel def get_opticalpath(support, direction, k, voxel_size=None, debugging=False, **kwargs): """ Calculate the optical path for refraction/absorption corrections in the crystal. 'k' should be in the same basis (crystal or laboratory frame) as the data. For xrayutilities, the data is orthogonalized in crystal frame. :param support: 3D array, support used for defining the object :param direction: "in" or "out" , incident or diffracted wave :param k: vector for the incident or diffracted wave depending on direction, expressed in an orthonormal frame (without taking in to account the different voxel size in each dimension) :param voxel_size: tuple, actual voxel size in z, y, and x (CXI convention) :param debugging: boolena, True to see plots :param kwargs: - width_z: size of the area to plot in z (axis 0), centered on the middle of the initial array - width_y: size of the area to plot in y (axis 1), centered on the middle of the initial array - width_x: size of the area to plot in x (axis 2), centered on the middle of the initial array :return: the optical path in nm, of the same shape as mysupport """ ######################### # check and load kwargs # ######################### valid.valid_kwargs( kwargs=kwargs, allowed_kwargs={"width_z", "width_y", "width_x"}, name="kwargs" ) width_z = kwargs.get("width_z") valid.valid_item( value=width_z, allowed_types=int, min_excluded=0, allow_none=True, name="width_z", ) width_y = kwargs.get("width_y") valid.valid_item( value=width_y, allowed_types=int, min_excluded=0, allow_none=True, name="width_y", ) width_x = kwargs.get("width_x") valid.valid_item( value=width_x, allowed_types=int, min_excluded=0, allow_none=True, name="width_x", ) ######################### # check some parameters # ######################### if support.ndim != 3: raise ValueError("support should be a 3D array") voxel_size = voxel_size or (1, 1, 1) if isinstance(voxel_size, Number): voxel_size = (voxel_size,) * 3 valid.valid_container( voxel_size, container_types=(tuple, list), length=3, item_types=Real, min_excluded=0, name="voxel_size", ) ############################################################ # correct k for the different voxel size in each dimension # # (k is expressed in an orthonormal basis) # ############################################################ k = [k[i] * voxel_size[i] for i in range(3)] ################################################################### # find the extent of the object, to optimize the calculation time # ################################################################### nbz, nby, nbx = support.shape path = np.zeros((nbz, nby, nbx)) indices_support = np.nonzero(support) min_z = indices_support[0].min() max_z = indices_support[0].max() + 1 # last point not included in range() min_y = indices_support[1].min() max_y = indices_support[1].max() + 1 # last point not included in range() min_x = indices_support[2].min() max_x = indices_support[2].max() + 1 # last point not included in range() ############################################# # normalize k, now it is in units of voxels # ############################################# if direction == "in": k_norm = -1 / np.linalg.norm(k) * np.asarray(k) # we will work with -k_in else: # "out" k_norm = 1 / np.linalg.norm(k) * np.asarray(k) ############################################# # calculate the optical path for each voxel # ############################################# for idz in range(min_z, max_z, 1): for idy in range(min_y, max_y, 1): for idx in range(min_x, max_x, 1): stop_flag = False counter = support[ idz, idy, idx ] # include also the pixel if it belongs to the support pixel = np.array( [idz, idy, idx] ) # pixel for which the optical path is calculated # beware, the support could be 0 at some voxel inside the object also, # but the loop should continue until it reaches the end of the box # (min_z, max_z, min_y, max_y, min_x, max_x) while not stop_flag: pixel = pixel + k_norm # add unitary translation in -k_in direction coords = np.rint(pixel) stop_flag = True if ( (min_z <= coords[0] <= max_z) and (min_y <= coords[1] <= max_y) and (min_x <= coords[2] <= max_x) ): counter = ( counter + support[int(coords[0]), int(coords[1]), int(coords[2])] ) stop_flag = False # For each voxel, counter is the number of steps along the unitary # k vector where the support is non zero. Now we need to convert this # into nm using the voxel size, different in each dimension endpoint = ( np.array([idz, idy, idx]) + counter * k_norm ) # indices of the final voxel path[idz, idy, idx] = np.sqrt( ((np.rint(endpoint[0]) - idz) * voxel_size[0]) ** 2 + ((np.rint(endpoint[1]) - idy) * voxel_size[1]) ** 2 + ((np.rint(endpoint[2]) - idx) * voxel_size[2]) ** 2 ) ################## # debugging plot # ################## if debugging: print( "Optical path calculation, support limits " "(start_z, stop_z, start_y, stop_y, start_x, stop_x):" f"{min_z}, {max_z}, {min_y}, {max_y}, {min_x}, {max_x}" ) gu.multislices_plot( support, width_z=width_z, width_y=width_y, width_x=width_x, vmin=0, vmax=1, sum_frames=False, title="Support for optical path", is_orthogonal=True, reciprocal_space=False, ) ########################################### # apply a mean filter to reduce artefacts # ########################################### # the path should be averaged only in the support defined by the isosurface path = mean_filter( array=path, support=support, half_width=1, title="Optical path", debugging=debugging, ) return path def get_strain( phase, planar_distance, voxel_size, reference_axis="y", extent_phase=2 * pi, method="default", debugging=False, ): """ Calculate the 3D strain array. :param phase: 3D phase array (do not forget the -1 sign if the phasing algorithm is python or matlab-based) :param planar_distance: the planar distance of the material corresponding to the measured Bragg peak :param voxel_size: float or tuple of three floats, the voxel size of the phase array in nm :param reference_axis: the axis of the array along which q is aligned: 'x', 'y' or 'z' (CXI convention) :param extent_phase: range for phase wrapping, specify it when the phase spans over more than 2*pi :param method: 'default' or 'defect'. If 'defect', will offset the phase in a loop and keep the smallest value for the strain (Felix Hofmann's method 2019). :param debugging: True to see plots :return: the strain 3D array """ from bcdi.preprocessing.preprocessing_utils import wrap if phase.ndim != 3: raise ValueError("phase should be a 3D array") if reference_axis not in {"x", "y", "z"}: raise ValueError("The reference axis should be 'x', 'y' or 'z'") if isinstance(voxel_size, Number): voxel_size = (voxel_size,) * 3 valid.valid_container( voxel_size, container_types=(tuple, list), length=3, item_types=Real, name="postprocessing_utils.get_strain", min_excluded=0, ) strain = np.inf * np.ones(phase.shape) if method == "defect": offsets = 2 * np.pi / 10 * np.linspace(-10, 10, num=11) print( "Strain method = defect, the following phase offsets will be processed:", offsets, ) else: # 'default' offsets = (0,) for offset in offsets: # offset the phase if method == "defect": temp_phase = np.copy(phase) temp_phase = temp_phase + offset # wrap again the offseted phase temp_phase = wrap( obj=temp_phase, start_angle=-extent_phase / 2, range_angle=extent_phase ) else: # no need to copy the phase, offset = 0 temp_phase = phase # calculate the strain for this offset if reference_axis == "x": _, _, temp_strain = np.gradient( planar_distance / (2 * np.pi) * temp_phase, voxel_size[2] ) # q is along x after rotating the crystal elif reference_axis == "y": _, temp_strain, _ = np.gradient( planar_distance / (2 * np.pi) * temp_phase, voxel_size[1] ) # q is along y after rotating the crystal else: # "z" temp_strain, _, _ = np.gradient( planar_distance / (2 * np.pi) * temp_phase, voxel_size[0] ) # q is along z after rotating the crystal # update the strain values strain = np.where(abs(strain) < abs(temp_strain), strain, temp_strain) if debugging: gu.multislices_plot( temp_phase, sum_frames=False, title="Offseted phase", vmin=-np.pi, vmax=np.pi, plot_colorbar=True, is_orthogonal=True, reciprocal_space=False, ) gu.multislices_plot( strain, sum_frames=False, title="strain", vmin=-0.002, vmax=0.002, plot_colorbar=True, is_orthogonal=True, reciprocal_space=False, ) return strain def mean_filter( array, support, half_width=0, width_z=None, width_y=None, width_x=None, vmin=np.nan, vmax=np.nan, title="Object", debugging=False, ): """ Apply a mean filter to an object defined by a support. Only voxels belonging to the object are taken into account, taking care of the object's surface. :param array: 3D array to be averaged :param support: support used for averaging :param half_width: half_width of the 2D square averaging window, 0 means no averaging, 1 is one pixel away... :param width_z: size of the area to plot in z (axis 0), centered on the middle of the initial array :param width_y: size of the area to plot in y (axis 1), centered on the middle of the initial array :param width_x: size of the area to plot in x (axis 2), centered on the middle of the initial array :param vmin: real number, lower boundary for the colorbar of the plots :param vmax: real number, higher boundary for the colorbar of the plots :param title: str, title for the plots :param debugging: bool, True to see plots :return: averaged array of the same shape as the input array """ ######################### # check some parameters # ######################### if not isinstance(array, np.ndarray): raise TypeError("array should be a numpy array") if array.ndim != 3: raise ValueError("array should be 3D") if not isinstance(support, np.ndarray): raise TypeError("support should be a numpy array") if support.shape != array.shape: raise ValueError("the support should have the same shape as the array") valid.valid_item(half_width, allowed_types=int, min_included=0, name="half_width") valid.valid_container(title, container_types=str, name="title") valid.valid_item(vmin, allowed_types=Real, name="vmin") valid.valid_item(vmax, allowed_types=Real, name="vmax") valid.valid_item(debugging, allowed_types=bool, name="debugging") valid.valid_item( value=width_z, allowed_types=int, min_excluded=0, allow_none=True, name="width_z", ) valid.valid_item( value=width_y, allowed_types=int, min_excluded=0, allow_none=True, name="width_y", ) valid.valid_item( value=width_x, allowed_types=int, min_excluded=0, allow_none=True, name="width_x", ) ######################### # apply the mean filter # ######################### if half_width != 0: if debugging: gu.multislices_plot( array, width_z=width_z, width_y=width_y, width_x=width_x, vmin=vmin, vmax=vmax, title=title + " before averaging", plot_colorbar=True, ) gu.multislices_plot( support, width_z=width_z, width_y=width_y, width_x=width_x, vmin=0, vmax=1, title="Support for averaging", ) nonzero_pixels = np.argwhere(support != 0) new_values = np.zeros((nonzero_pixels.shape[0], 1), dtype=array.dtype) counter = 0 for indx in range(nonzero_pixels.shape[0]): piz = nonzero_pixels[indx, 0] piy = nonzero_pixels[indx, 1] pix = nonzero_pixels[indx, 2] tempo_support = support[ piz - half_width : piz + half_width + 1, piy - half_width : piy + half_width + 1, pix - half_width : pix + half_width + 1, ] nb_points = tempo_support.sum() temp_phase = array[ piz - half_width : piz + half_width + 1, piy - half_width : piy + half_width + 1, pix - half_width : pix + half_width + 1, ] if temp_phase.size != 0: value = temp_phase[np.nonzero(tempo_support)].sum() / nb_points new_values[indx] = value else: counter = counter + 1 for indx in range(nonzero_pixels.shape[0]): array[ nonzero_pixels[indx, 0], nonzero_pixels[indx, 1], nonzero_pixels[indx, 2], ] = new_values[indx] if debugging: gu.multislices_plot( array, width_z=width_z, width_y=width_y, width_x=width_x, vmin=vmin, vmax=vmax, title=title + " after averaging", plot_colorbar=True, ) if counter != 0: print("There were", counter, "voxels for which phase could not be averaged") return array def ortho_modes(array_stack, nb_mode=None, method="eig", verbose=False): """ Decompose an object into a set of orthogonal modes. It finds modes from a N+1 dimensional array or a list/tuple of N-dimensional arrays. The decomposition is such that the total intensity (i.e. (abs(m)**2).sum( )) is conserved. Adapted from PyNX. :param array_stack: the stack of modes to orthogonalize along the first dimension. :param nb_mode: the maximum number of modes to be returned. If None, all are returned. This is useful if nb_mode is used, and only a partial list of modes is returned. :param method: either 'eig' to use eigenvalue decomposition or 'svd' to use singular value decomposition. :param verbose: set it to True to have more printed comments :return: an array (modes) with the same shape as given in input, but with orthogonal modes, i.e. (mo[i]*mo[j].conj()).sum()=0 for i!=j. The modes are sorted by decreasing norm. If nb_mode is not None, only modes up to nb_mode will be returned. """ if array_stack[0].ndim != 3: raise ValueError("A stack of 3D arrays is expected") # array stack has the shape: (nb_arrays, L, M, N) nb_arrays = array_stack.shape[0] array_size = array_stack[0].size # the size of individual arrays is L x M x N if method == "eig": my_matrix = np.array( [ [np.vdot(array2, array1) for array1 in array_stack] for array2 in array_stack ] ) # array of shape (nb_arrays,nb_arrays) eigenvalues, eigenvectors = np.linalg.eig( my_matrix ) # the number of eigenvalues is nb_arrays elif method == "svd": # Singular value decomposition my_matrix = np.reshape(array_stack, (nb_arrays, array_size)) eigenvectors, eigenvalues, vh = scipy.linalg.svd( my_matrix, full_matrices=False, compute_uv=True ) # my_matrix = eigenvectors x S x Vh, # where S is a suitably shaped matrix of zeros with main diagonal s # The shapes are (M, K) for the eigenvectors and (K, N) # for the unitary matrix Vh where K = min(M, N) # Here, M is the number of reconstructions nb_arrays, # N is the size of a reconstruction array_size else: raise ValueError('Incorrect value for parameter "method"') sort_indices = ( -eigenvalues ).argsort() # returns the indices that would sort eigenvalues in descending order print("\neigenvalues", eigenvalues) eigenvectors = eigenvectors[ :, sort_indices ] # sort eigenvectors using sort_indices, same shape as my_matrix for idx in range(len(sort_indices)): if eigenvectors[abs(eigenvectors[:, idx]).argmax(), idx].real < 0: eigenvectors[:, idx] *= -1 modes = np.array( [ sum(array_stack[i] * eigenvectors[i, j] for i in range(nb_arrays)) for j in range(nb_arrays) ] ) # # the double nested comprehension list above is equivalent to the following code: # modes = np.zeros(array_stack.shape, dtype=complex) # for j in range(nb_arrays): # temp = np.zeros(array_stack[0].shape, dtype=complex) # for i in range(nb_arrays): # temp += array_stack[i] * eigenvectors[i, j] # modes[j] = temp if verbose: print("Orthonormal decomposition coefficients (rows)") print( np.array2string( (eigenvectors.transpose()), threshold=10, precision=3, floatmode="fixed", suppress_small=True, ) ) if nb_mode is not None: nb_mode = min(nb_arrays, nb_mode) else: nb_mode = nb_arrays weights = ( np.array([(abs(modes[i]) ** 2).sum() for i in range(nb_arrays)]) / (abs(modes) ** 2).sum() ) return modes[:nb_mode], eigenvectors, weights def regrid(array, old_voxelsize, new_voxelsize): """ Interpolate real space data on a grid with a different voxel size. :param array: 3D array, the object to be interpolated :param old_voxelsize: tuple, actual voxel size in z, y, and x (CXI convention) :param new_voxelsize: tuple, desired voxel size for the interpolation in z, y, and x (CXI convention) :return: obj interpolated using the new voxel sizes """ if array.ndim != 3: raise ValueError("array should be a 3D array") if isinstance(old_voxelsize, Number): old_voxelsize = (old_voxelsize,) * 3 valid.valid_container( old_voxelsize, container_types=(tuple, list), length=3, item_types=Real, name="postprocessing_utils.regrid", min_excluded=0, ) if isinstance(new_voxelsize, Number): new_voxelsize = (new_voxelsize,) * 3 valid.valid_container( new_voxelsize, container_types=(tuple, list), length=3, item_types=Real, name="postprocessing_utils.regrid", min_excluded=0, ) nbz, nby, nbx = array.shape old_z =
np.arange(-nbz // 2, nbz // 2, 1)
numpy.arange
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import glob import pickle import time import warnings from sklearn.utils import shuffle # SEED = 88 warnings.filterwarnings("ignore", category=RuntimeWarning) from matplotlib.legend_handler import HandlerLine2D import utils from classifier import CNNClassifier, one_hot_encoder, CONFIDENCE_THRESHOLD from ops import * from utils import * import tensorflow as tf def gradient_penalty(real, fake, f): def interpolate(a, b): shape = tf.concat((tf.shape(a)[0:1], tf.tile([1], [a.shape.ndims - 1])), axis=0) alpha = tf.random_uniform(shape=shape, minval=0., maxval=1.) inter = a + alpha * (b - a) inter.set_shape(a.get_shape().as_list()) return inter x = interpolate(real, fake) _, pred, _ = f(x) gradients = tf.gradients(pred, x)[0] # slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=range(1, x.shape.ndims))) # gp = tf.reduce_mean((slopes - 1.)**2) slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), axis=1)) gp = tf.reduce_mean(tf.square(slopes - 1.)) return gp class MultiModalInfoGAN(object): model_name = "MultiModalInfoGAN" # name for checkpoint def __init__(self, sess, epoch, batch_size, z_dim, dataset_name, checkpoint_dir, result_dir, log_dir, sampler, seed, len_continuous_code=2, is_wgan_gp=False, dataset_creation_order=["czcc", "czrc", "rzcc", "rzrc"], SUPERVISED=True): print("saving to esults dir={}".format(result_dir)) np.random.seed(seed) self.test_size = 5000 self.wgan_gp = is_wgan_gp self.loss_list = [] self.confidence_list = [] self.sess = sess self.dataset_name = dataset_name self.checkpoint_dir = checkpoint_dir self.result_dir = result_dir self.log_dir = log_dir self.epoch = epoch self.batch_size = batch_size self.sampler = sampler self.pretrained_classifier = CNNClassifier(self.dataset_name, seed=seed) self.dataset_creation_order = dataset_creation_order self.SUPERVISED = SUPERVISED # if it is true, label info is directly used for code self.dir_results = "classifier_results_seed_{}".format(seed) # train self.learning_rate = 0.0002 self.beta1 = 0.5 # test self.sample_num = 64 # number of generated images to be saved # code self.len_discrete_code = 10 # categorical distribution (i.e. label) self.len_continuous_code = len_continuous_code # gaussian distribution (e.g. rotation, thickness) if dataset_name == 'mnist' or dataset_name == 'fashion-mnist': # parameters self.input_height = 28 self.input_width = 28 self.output_height = 28 self.output_width = 28 self.z_dim = z_dim # dimension of noise-vector self.y_dim = self.len_discrete_code + self.len_continuous_code # dimension of code-vector (label+two features) self.c_dim = 1 # load mnist self.data_X, self.data_y = load_mnist(self.dataset_name) # get number of batches for a single epoch self.num_batches = len(self.data_X) // self.batch_size # elif dataset_name == 'cifar10': # print("IN CIFAR") # # parameters # self.input_height = 32 # self.input_width = 32 # self.output_height = 32 # self.output_width = 32 # # self.z_dim = z_dim # dimension of noise-vector # self.y_dim = self.len_discrete_code + self.len_continuous_code # dimension of code-vector (label+two features) # self.c_dim = 3 # # self.data_X, self.data_y, self.test_x, self.test_labels = get_train_test_data() # # get number of batches for a single epoch # self.num_batches = len(self.data_X) // self.batch_size # elif dataset_name == 'celebA': # from data_load import preprocess_fn # print("in celeba") # img_paths = glob.glob('/Users/idan.a/data/celeba/*.jpg') # self.data_pool = utils.DiskImageData(img_paths, batch_size, shape=[218, 178, 3], preprocess_fn=preprocess_fn) # self.num_batches = len(self.data_pool) // (batch_size) # # # real_ipt = data_pool.batch() # # parameters # self.input_height = 64 # self.input_width = 64 # self.output_height = 32 # self.output_width = 32 # # self.z_dim = 128 # dimension of noise-vector # self.c_dim = 3 # self.len_discrete_code = 100 # categorical distribution (i.e. label) # self.len_continuous_code = 0 # gaussian distribution (e.g. rotation, thickness) # self.y_dim = self.len_discrete_code + self.len_continuous_code # dimension of code-vector (label+two features) # sess = utils.session() # # # iteration counter # it_cnt, update_cnt = utils.counter() # # sess.run(tf.global_variables_initializer()) # sess.run(it_cnt) # sess.run(update_cnt) # get number of batches for a single epoch self.model_dir = self.get_model_dir() def classifier(self, x, is_training=True, reuse=False): # Network Architecture is exactly same as in infoGAN (https://arxiv.org/abs/1606.03657) # Architecture : (64)5c2s-(128)5c2s_BL-FC1024_BL-FC128_BL-FC12S’ # All layers except the last two layers are shared by discriminator # Number of nodes in the last layer is reduced by half. It gives better results. with tf.variable_scope("classifier", reuse=reuse): net = lrelu(bn(linear(x, 64, scope='c_fc1'), is_training=is_training, scope='c_bn1')) out_logit = linear(net, self.y_dim, scope='c_fc2') out = tf.nn.softmax(out_logit) return out, out_logit def discriminator(self, x, is_training=True, reuse=True): # Network Architecture is exactly same as in infoGAN (https://arxiv.org/abs/1606.03657) # Architecture : (64)4c2s-(128)4c2s_BL-FC1024_BL-FC1_S if self.wgan_gp: with tf.variable_scope("wgan_discriminator", reuse=reuse): net = lrelu(conv2d(x, 64, 4, 4, 2, 2, name='d_conv1')) net = lrelu(bn(conv2d(net, 128, 4, 4, 2, 2, name='d_conv2'), is_training=is_training, scope='d_bn2')) net = tf.reshape(net, [self.batch_size, -1]) net = lrelu(bn(linear(net, 1024, scope='d_fc3'), is_training=is_training, scope='d_bn3')) out_logit = linear(net, 1, scope='d_fc4') out = tf.nn.sigmoid(out_logit) else: with tf.variable_scope("discriminator", reuse=reuse): net = lrelu(conv2d(x, 64, 4, 4, 2, 2, name='d_conv1')) net = lrelu(bn(conv2d(net, 128, 4, 4, 2, 2, name='d_conv2'), is_training=is_training, scope='d_bn2')) net = tf.reshape(net, [self.batch_size, -1]) net = lrelu(bn(linear(net, 1024, scope='d_fc3'), is_training=is_training, scope='d_bn3')) out_logit = linear(net, 1, scope='d_fc4') out = tf.nn.sigmoid(out_logit) return out, out_logit, net def generator(self, z, y, is_training=True, reuse=False): # Network Architecture is exactly same as in infoGAN (https://arxiv.org/abs/1606.03657) # Architecture : FC1024_BR-FC7x7x128_BR-(64)4dc2s_BR-(1)4dc2s_S with tf.variable_scope("generator", reuse=reuse): # merge noise and code z = concat([z, y], 1) net = lrelu(bn(linear(z, 1024, scope='g_fc1'), is_training=is_training, scope='g_bn1')) net = lrelu(bn(linear(net, 128 * self.input_height // 4 * self.input_width // 4, scope='g_fc2'), is_training=is_training, scope='g_bn2')) net = tf.reshape(net, [self.batch_size, int(self.input_height // 4), int(self.input_width // 4), 128]) net = lrelu( bn(deconv2d(net, [self.batch_size, int(self.input_height // 2), int(self.input_width // 2), 64], 4, 4, 2, 2, name='g_dc3'), is_training=is_training, scope='g_bn3')) out = tf.nn.sigmoid(deconv2d(net, [self.batch_size, self.input_height, self.input_width, self.c_dim], 4, 4, 2, 2, name='g_dc4')) # out = tf.reshape(out, ztf.stack([self.batch_size, 784])) return out def build_model(self): # some parameters image_dims = [self.input_height, self.input_width, self.c_dim] bs = self.batch_size """ Graph Input """ # images self.x = tf.placeholder(tf.float32, [bs] + image_dims, name='real_images') # labels self.y = tf.placeholder(tf.float32, [bs, self.y_dim], name='y') # noises self.z = tf.placeholder(tf.float32, [bs, self.z_dim], name='z') """ Loss Function """ ## 1. GAN Loss # output of D for real images D_real, D_real_logits, _ = self.discriminator(self.x, is_training=True, reuse=False) # output of D for fake images self.x_ = self.generator(self.z, self.y, is_training=True, reuse=False) D_fake, D_fake_logits, input4classifier_fake = self.discriminator(self.x_, is_training=True, reuse=True) # get loss for discriminator d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_real_logits, labels=tf.ones_like(D_real))) d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_fake_logits, labels=tf.zeros_like(D_fake))) self.d_loss = d_loss_real + d_loss_fake # get loss for generator self.g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_fake_logits, labels=tf.ones_like(D_fake))) if self.wgan_gp: d_loss_real = - tf.reduce_mean(D_real_logits) d_loss_fake = tf.reduce_mean(D_fake_logits) self.d_loss = d_loss_real + d_loss_fake # get loss for generator self.g_loss = - d_loss_fake wd = tf.reduce_mean(D_real_logits) - tf.reduce_mean(D_fake_logits) gp = gradient_penalty(self.x, self.x_, self.discriminator) self.d_loss = -wd + gp * 10.0 self.g_loss = -tf.reduce_mean(D_fake_logits) ## 2. Information Loss code_fake, code_logit_fake = self.classifier(input4classifier_fake, is_training=True, reuse=False) # discrete code : categorical disc_code_est = code_logit_fake[:, :self.len_discrete_code] disc_code_tg = self.y[:, :self.len_discrete_code] q_disc_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=disc_code_est, labels=disc_code_tg)) # continuous code : gaussian cont_code_est = code_logit_fake[:, self.len_discrete_code:] cont_code_tg = self.y[:, self.len_discrete_code:] q_cont_loss = tf.reduce_mean(tf.reduce_sum(tf.square(cont_code_tg - cont_code_est), axis=1)) # get information loss = P(x|c) self.q_loss = q_disc_loss + q_cont_loss """ Training """ # divide trainable variables into a group for D and a group for G t_vars = tf.trainable_variables() d_vars = [var for var in t_vars if 'd_' in var.name] g_vars = [var for var in t_vars if 'g_' in var.name] q_vars = [var for var in t_vars if ('d_' in var.name) or ('c_' in var.name) or ('g_' in var.name)] # optimizers with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)): self.d_optim = tf.train.AdamOptimizer(self.learning_rate, beta1=self.beta1).minimize(self.d_loss, var_list=d_vars) self.g_optim = tf.train.AdamOptimizer(self.learning_rate * 5, beta1=self.beta1).minimize(self.g_loss, var_list=g_vars) self.q_optim = tf.train.AdamOptimizer(self.learning_rate * 5, beta1=self.beta1).minimize(self.q_loss, var_list=q_vars) """" Testing """ # for test self.fake_images = self.generator(self.z, self.y, is_training=False, reuse=True) """ Summary """ d_loss_real_sum = tf.summary.scalar("d_loss_real", d_loss_real) d_loss_fake_sum = tf.summary.scalar("d_loss_fake", d_loss_fake) d_loss_sum = tf.summary.scalar("d_loss", self.d_loss) g_loss_sum = tf.summary.scalar("g_loss", self.g_loss) q_loss_sum = tf.summary.scalar("g_loss", self.q_loss) q_disc_sum = tf.summary.scalar("q_disc_loss", q_disc_loss) q_cont_sum = tf.summary.scalar("q_cont_loss", q_cont_loss) # final summary operations self.g_sum = tf.summary.merge([d_loss_fake_sum, g_loss_sum]) self.d_sum = tf.summary.merge([d_loss_real_sum, d_loss_sum]) self.q_sum = tf.summary.merge([q_loss_sum, q_disc_sum, q_cont_sum]) def train(self): # initialize all variables tf.global_variables_initializer().run() # graph inputs for visualize training results self.sample_z = self.sampler.get_sample(self.batch_size, self.z_dim, 10) # np.random.uniform(-1, 1, # size=(self.batch_size, self.z_dim)) self.test_labels = np.ones([self.batch_size, self.y_dim]) if self.dataset_name != "celebA": self.test_labels = self.data_y[0:self.batch_size] self.test_codes = np.concatenate((self.test_labels, np.zeros([self.batch_size, self.len_continuous_code])), axis=1) # saver to save model self.saver = tf.train.Saver() # summary writer self.writer = tf.summary.FileWriter(self.log_dir + '/' + self.model_name, self.sess.graph) # restore check-point if it exits could_load, checkpoint_counter = self.load(self.checkpoint_dir) if could_load: start_epoch = (int)(checkpoint_counter / self.num_batches) start_batch_id = checkpoint_counter - start_epoch * self.num_batches counter = checkpoint_counter print(" [*] Load SUCCESS") else: start_epoch = 0 start_batch_id = 0 counter = 1 print(" [!] Load failed...") # loop for epoch start_time = time.time() for epoch in range(start_epoch, self.epoch): # get batch data for idx in range(start_batch_id, self.num_batches): batch_images = self.data_X[idx * self.batch_size:(idx + 1) * self.batch_size] batch_labels = np.random.multinomial(1, self.len_discrete_code * [float(1.0 / self.len_discrete_code)], size=[self.batch_size]) batch_codes = np.concatenate((batch_labels, np.random.uniform(-1, 1, size=(self.batch_size, self.len_continuous_code))), axis=1) batch_z = self.sampler.get_sample(self.batch_size, self.z_dim, 10) # update D network _, summary_str, d_loss = self.sess.run([self.d_optim, self.d_sum, self.d_loss], feed_dict={self.x: batch_images, self.y: batch_codes, self.z: batch_z}) self.writer.add_summary(summary_str, counter) # update G and Q network _, summary_str_g, g_loss, _, summary_str_q, q_loss = self.sess.run([self.g_optim, self.g_sum, self.g_loss, self.q_optim, self.q_sum, self.q_loss], feed_dict={self.x: batch_images, self.z: batch_z, self.y: batch_codes}) self.writer.add_summary(summary_str_g, counter) self.writer.add_summary(summary_str_q, counter) # display training status counter += 1 print("Epoch: [%2d] [%4d/%4d] time: %4.4f, d_loss: %.8f, g_loss: %.8f" % (epoch, idx, self.num_batches, time.time() - start_time, d_loss, g_loss,)) # After an epoch, start_batch_id is set to zero # non-zero value is only for the first epoch after loading pre-trained model start_batch_id = 0 # save model self.save(self.checkpoint_dir, counter) # show temporal results self.visualize_results(epoch) # plotting self.create_dataset_from_GAN() self.save(self.checkpoint_dir, counter) # if self.dataset_name != "celebA": # self.plot_train_test_loss("confidence", self.confidence_list) # Evaluation with classifier # save model for final step def visualize_results(self, epoch): tot_num_samples = min(self.sample_num, self.batch_size) image_frame_dim = int(np.floor(np.sqrt(tot_num_samples))) """ random noise, random discrete code, fixed continuous code """ y = np.random.choice(self.len_discrete_code, self.batch_size) y_one_hot = np.zeros((self.batch_size, self.y_dim)) y_one_hot[np.arange(self.batch_size), y] = 1 z_sample = self.sampler.get_sample(self.batch_size, self.z_dim, 10) samples = self.sess.run(self.fake_images, feed_dict={self.z: z_sample, self.y: y_one_hot}) # samples_for_test.append(samples) save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim], check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch + '_test_all_classes.png') """ specified condition, random noise """ n_styles = 10 # must be less than or equal to self.batch_size si = np.random.choice(self.batch_size, n_styles) for l in range(self.len_discrete_code): y = np.zeros(self.batch_size, dtype=np.int64) + l y_one_hot = np.zeros((self.batch_size, self.y_dim)) y_one_hot[np.arange(self.batch_size), y] = 1 samples = self.sess.run(self.fake_images, feed_dict={self.z: z_sample, self.y: y_one_hot}) # save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim], # check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch + '_test_class_%d.png' % l) samples = samples[si, :, :, :] if l == 0: all_samples = samples else: all_samples = np.concatenate((all_samples, samples), axis=0) """ save merged images to check style-consistency """ canvas = np.zeros_like(all_samples) for s in range(n_styles): for c in range(self.len_discrete_code): canvas[s * self.len_discrete_code + c, :, :, :] = all_samples[c * n_styles + s, :, :, :] save_images(canvas, [n_styles, self.len_discrete_code], check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch + '_test_all_classes_style_by_style.png') """ fixed noise """ assert self.len_continuous_code == 2 c1 = np.linspace(-1, 1, image_frame_dim) c2 = np.linspace(-1, 1, image_frame_dim) xv, yv = np.meshgrid(c1, c2) xv = xv[:image_frame_dim, :image_frame_dim] yv = yv[:image_frame_dim, :image_frame_dim] c1 = xv.flatten() c2 = yv.flatten() z_fixed = np.zeros([self.batch_size, self.z_dim]) for l in range(self.len_discrete_code): y = np.zeros(self.batch_size, dtype=np.int64) + l # ones in the discrete_code idx * batch_size y_one_hot = np.zeros((self.batch_size, self.y_dim)) y_one_hot[np.arange(self.batch_size), y] = 1 # cartesian multiplication of the two latent codes y_one_hot[np.arange(image_frame_dim * image_frame_dim), self.len_discrete_code] = c1 y_one_hot[np.arange(image_frame_dim * image_frame_dim), self.len_discrete_code + 1] = c2 samples = self.sess.run(self.fake_images, feed_dict={self.z: z_fixed, self.y: y_one_hot}) save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim], check_folder(self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_epoch%03d' % epoch + '_test_class_c1c2_%d.png' % l) def create_dataset_from_GAN(self, is_confidence=False): generated_dataset = [] generated_labels = [] tot_num_samples = min(self.sample_num, self.batch_size) image_frame_dim = int(np.floor(np.sqrt(tot_num_samples))) c1 = np.linspace(-1, 1, image_frame_dim) c2 =
np.linspace(-1, 1, image_frame_dim)
numpy.linspace
# Copyright (c) 2020-2021 impersonator.org authors (<NAME> and <NAME>). All rights reserved. import cv2 import numpy as np import torchvision from typing import Union, List import torch from scipy.spatial.transform import Rotation as R def compute_scaled_size(origin_size, control_size): """ Args: origin_size (tuple or List): (h, w) or [h, w] control_size (int or float): the final size of the min(h, w) Returns: scaled_size (tuple or List): (h', w') """ scale_rate = np.sqrt(control_size * control_size / (origin_size[0] * origin_size[1])) scaled_size = (int(origin_size[0] * scale_rate), int(origin_size[1] * scale_rate)) return scaled_size def read_cv2_img(path): """ Read color images Args: path (str): Path to image Returns: img (np.ndarray): color images with RGB channel, and its shape is (H, W, 3). """ img = cv2.imread(path, -1) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) return img def load_images(images_paths: Union[str, List[str]], image_size): """ Args: images_paths (Union[str, List[str]]): Returns: images (np.ndarray): shape is (ns, 3, H, W), channel is RGB, and color space is [-1, 1]. """ if isinstance(images_paths, str): images_paths = [images_paths] images = [] for image_path in images_paths: image = read_cv2_img(image_path) image = normalize_img(image, image_size=image_size, transpose=True) images.append(image) images = np.stack(images, axis=0) # (ns, 3, H, W) return images def read_mask(path, image_size): """ Read mask Args: path (str): Path to mask Returns: mask (np.ndarray): mask image with grayscale, and its shape is (1, H, W) in the range of [0, 1] """ mask = cv2.imread(path, cv2.IMREAD_GRAYSCALE) mask = cv2.resize(mask, (image_size, image_size)) mask = mask.astype(np.float32) / 255 mask = np.expand_dims(mask, 0) return mask def load_parse(parse_path, image_size): mask = cv2.imread(parse_path, cv2.IMREAD_GRAYSCALE) mask = cv2.resize(mask, (image_size, image_size)) mask = mask.astype(np.float32) / 255 mask = np.expand_dims(mask, 0) return mask def load_img_parse(img_path, parse_path, image_size): image = transform_img(read_cv2_img(img_path), transpose=True) mask = load_parse(parse_path, image_size) return image, mask def save_cv2_img(img, path, image_size=None, normalize=False, transpose=True): if transpose: img = np.transpose(img, (1, 2, 0)) if normalize: img = (img + 1) / 2.0 * 255 img = img.astype(np.uint8) if len(img.shape) == 3: img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) if image_size is not None: img = cv2.resize(img, (image_size, image_size)) cv2.imwrite(path, img) return img def transform_img(image, image_size=None, transpose=False): if image_size is not None and image_size != image.shape[0]: image = cv2.resize(image, (image_size, image_size)) image = image.astype(np.float32) image /= 255.0 if transpose: image = image.transpose((2, 0, 1)) return image def normalize_img(image, image_size=None, transpose=False): image = transform_img(image, image_size, transpose) image *= 2 image -= 1 return image def resize_img(img, scale_factor): new_size = (np.floor(np.array(img.shape[0:2]) * scale_factor)).astype(int) new_img = cv2.resize(img, (new_size[1], new_size[0])) # This is scale factor of [height, width] i.e. [y, x] actual_factor = [ new_size[0] / float(img.shape[0]), new_size[1] / float(img.shape[1]) ] return new_img, actual_factor def tensor2im(img, imtype=np.uint8, unnormalize=True, idx=0, nrows=None): # select a sample or create grid if img is a batch if len(img.shape) == 4: nrows = nrows if nrows is not None else int(np.sqrt(img.size(0))) img = img[idx] if idx >= 0 else torchvision.utils.make_grid(img, nrows) img = img.cpu().float() if unnormalize: img += 1.0 img /= 2.0 image_numpy = img.numpy() # image_numpy = np.transpose(image_numpy, (1, 2, 0)) image_numpy *= 255.0 return image_numpy.astype(imtype) def kp_to_bbox_param(kp, vis_thresh=0, diag_len=150.0): """ Finds the bounding box parameters from the 2D keypoints. Args: kp (Kx3): 2D Keypoints. vis_thresh (float): Threshold for visibility. diag_len(float): diagonal length of bbox of each person Returns: [center_x, center_y, scale] """ if kp is None: return if kp.shape[1] == 3: vis = kp[:, 2] > vis_thresh if not np.any(vis): return min_pt = np.min(kp[vis, :2], axis=0) max_pt = np.max(kp[vis, :2], axis=0) else: min_pt = np.min(kp, axis=0) max_pt = np.max(kp, axis=0) person_height = np.linalg.norm(max_pt - min_pt) if person_height < 0.5: return center = (min_pt + max_pt) / 2. scale = diag_len / person_height return np.append(center, scale) def process_hmr_img(im_path, bbox_param, rescale=None, image=None, image_size=256, proc=False): """ Args: im_path (str): the path of image. image (np.ndarray or None): if it is None, then loading the im_path, else use image. bbox_param (3,) : [cx, cy, scale]. rescale (float, np.ndarray or None): rescale factor. proc (bool): the flag to return processed image or not. image_size (int): Returns: proc_img (np.ndarray): if proc is True, return the process image, else return the original image. """ if image is None: image = cv2.imread(im_path) orig_h, orig_w = image.shape[0:2] center = bbox_param[:2] scale = bbox_param[2] if rescale is not None: scale = rescale if proc: image_scaled, scale_factors = resize_img(image, scale) resized_h, resized_w = image_scaled.shape[:2] else: scale_factors = [scale, scale] resized_h = orig_h * scale resized_w = orig_w * scale center_scaled = np.round(center * scale_factors).astype(np.int) if proc: # Make sure there is enough space to crop image_size x image_size. image_padded = np.pad( array=image_scaled, pad_width=((image_size,), (image_size,), (0,)), mode='edge' ) padded_h, padded_w = image_padded.shape[0:2] else: padded_h = resized_h + image_size * 2 padded_w = resized_w + image_size * 2 center_scaled += image_size # Crop image_size x image_size around the center. margin = image_size // 2 start_pt = (center_scaled - margin).astype(int) end_pt = (center_scaled + margin).astype(int) end_pt[0] = min(end_pt[0], padded_w) end_pt[1] = min(end_pt[1], padded_h) if proc: proc_img = image_padded[start_pt[1]:end_pt[1], start_pt[0]:end_pt[0], :] # height, width = image_scaled.shape[:2] else: # height, width = end_pt[1] - start_pt[1], end_pt[0] - start_pt[0] proc_img = cv2.resize(image, (image_size, image_size)) # proc_img = None center_scaled -= start_pt return { # return original too with info. 'image': proc_img, 'im_path': im_path, 'im_shape': (orig_h, orig_w), 'center': center_scaled, 'scale': scale, 'start_pt': start_pt, } def cam_denormalize(cam, N): # This is camera in crop image coord. new_cam = np.hstack([N * cam[0] * 0.5, cam[1:] + (2. / cam[0]) * 0.5]) return new_cam def cam_init2orig(cam, scale, start_pt, N=224): """ Args: cam (3,): (s, tx, ty) scale (float): scale = resize_h / orig_h start_pt (2,): (lt_x, lt_y) N (int): hmr_image_size (224) or IMG_SIZE Returns: cam_orig (3,): (s, tx, ty), camera in original image coordinates. """ # This is camera in crop image coord. cam_crop = np.hstack([N * cam[0] * 0.5, cam[1:] + (2. / cam[0]) * 0.5]) # This is camera in orig image coord cam_orig = np.hstack([ cam_crop[0] / scale, cam_crop[1:] + (start_pt - N) / cam_crop[0] ]) # print('cam crop', cam_crop) # print('cam orig', cam_orig) return cam_orig def cam_orig2crop_center(cam, scale, start_pt, N=256, normalize=True): """ Args: cam (3,): (s, tx, ty), camera in orginal image coordinates. scale (float): scale = resize_h / orig_h or (resize_w / orig_w) start_pt (2,): (lt_x, lt_y) N (int): hmr_image_size (224) or IMG_SIZE normalize (bool) Returns: """ cam_recrop = np.hstack([ cam[0] * scale, cam[1:] + (N - start_pt) / (scale * cam[0]) ]) # print('cam re-crop', cam_recrop) if normalize: cam_norm = np.hstack([ cam_recrop[0] * (2. / N), cam_recrop[1:] - N / (2 * cam_recrop[0]) ]) # print('cam norm', cam_norml) else: cam_norm = cam_recrop return cam_norm def cam_orig2boxcrop(cam, scale, start_pt, N=256, normalize=True): """ Args: cam (3,): (s, tx, ty), camera in orginal image coordinates. scale (float): scale = resize_h / orig_h or (resize_w / orig_w) start_pt (2,): (lt_x, lt_y) N (int): hmr_image_size (224) or IMG_SIZE normalize (bool) Returns: """ cam_recrop = np.hstack([ cam[0] * scale, cam[1:] - start_pt / cam[0] ]) # print('cam re-crop', cam_recrop) if normalize: cam_norm = np.hstack([ cam_recrop[0] * 2. / N, cam_recrop[1:] - N / (2 * cam_recrop[0]) ]) # print('cam norm', cam_norm) else: cam_norm = cam_recrop return cam_norm def cam_process(cam_init, scale_150, start_pt_150, scale_proc, start_pt_proc, HMR_IMG_SIZE=224, IMG_SIZE=256): """ Args: cam_init: scale_150: start_pt_150: scale_proc: start_pt_proc: HMR_IMG_SIZE: IMG_SIZE: Returns: """ # print(HMR_IMG_SIZE, IMG_SIZE) cam_orig = cam_init2orig(cam_init, scale=scale_150, start_pt=start_pt_150, N=HMR_IMG_SIZE) cam_crop = cam_orig2crop_center(cam_orig, scale=scale_proc, start_pt=start_pt_proc, N=IMG_SIZE, normalize=True) return cam_orig, cam_crop def intrinsic_mtx(f, c): """ Obtain intrisic camera matrix. Args: f: np.array, 1 x 2, the focus lenth of camera, (fx, fy) c: np.array, 1 x 2, the center of camera, (px, py) Returns: - cam_mat: np.array, 3 x 3, the intrisic camera matrix. """ return np.array([[f[1], 0, c[1]], [0, f[0], c[0]], [0, 0, 1]], dtype=np.float32) def extrinsic_mtx(rt, t): """ Obtain extrinsic matrix of camera. Args: rt: np.array, 1 x 3, the angle of rotations. t: np.array, 1 x 3, the translation of camera center. Returns: - ext_mat: np.array, 3 x 4, the extrinsic matrix of camera. """ # R is (3, 3) R = cv2.Rodrigues(rt)[0] t = np.reshape(t, newshape=(3, 1)) Rc = np.dot(R, t) ext_mat = np.hstack((R, -Rc)) ext_mat = np.vstack((ext_mat, [0, 0, 0, 1])) ext_mat = ext_mat.astype(np.float32) return ext_mat def extrinsic(rt, t): """ Obtain extrinsic matrix of camera. Args: rt: np.array, 1 x 3, the angle of rotations. t: np.array, 1 x 3, or (3,) the translation of camera center. Returns: - R: np.ndarray, 3 x 3 - t: np.ndarray, 1 x 3 """ R = cv2.Rodrigues(rt)[0] t = np.reshape(t, newshape=(1, 3)) return R, t def euler2matrix(rt): """ Obtain rotation matrix from euler angles Args: rt: np.array, (3,) Returns: R: np.array, (3,3) """ Rx = np.array([[1, 0, 0], [0,
np.cos(rt[0])
numpy.cos
""" Methods for geometric projection. .. include:: ../include/links.rst """ from IPython import embed import numpy as np from scipy.spatial import KDTree #import warnings #warnings.simplefilter('error', RuntimeWarning) def rotate(x, y, rot, clockwise=False): r""" Rotate a set of coordinates about :math:`(x,y) = (0,0)`. .. warning:: The ``rot`` argument should be a float. If it is an array, the code will either fault if ``rot`` cannot be broadcast to match ``x`` and ``y`` or the rotation will be different for each ``x`` and ``y`` element. Args: x (array-like): Cartesian x coordinates. y (array-like): Cartesian y coordinates. Shape must match ``x``, but this is not checked. rot (:obj:`float`): Rotation angle in radians. clockwise (:obj:`bool`, optional): Perform a clockwise rotation. Rotation is counter-clockwise by default. By definition and implementation, setting this to True is identical to calling the function with a negative counter-clockwise rotation. I.e.:: xr, yr = rotate(x, y, rot, clockwise=True) _xr, _yr = rotate(x, y, -rot) assert numpy.array_equal(xr, _xr) and numpy.array_equal(yr, _yr) Returns: :obj:`tuple`: Two `numpy.ndarray`_ objects with the rotated x and y coordinates. """ if clockwise: return rotate(x, y, -rot) cosr = np.cos(rot) sinr = np.sin(rot) _x = np.atleast_1d(x) _y = np.atleast_1d(y) return _x*cosr - _y*sinr, _y*cosr + _x*sinr def deriv_rotate(x, y, rot, dxdp=None, dydp=None, drotdp=None, clockwise=False): r""" Rotate the provided coordinates about :math:`(x,y) = (0,0)`, and calculate the derivatives of the returned coordinates with respect to a set of input parameters. The set of input parameters can be unknown, i.e., defined in the calling method, or the single parameter of this function (``rot``). That is, if the arguments of this function depend on upstream set of parameters, their derivatives with respect to these parameters should be passed to the relevant keyword arguments. Importantly, if you supply one of either ``dxdp``, ``dydp``, or ``drotdp``, you must supply them all. See additional documentation of the :func:`rotate` method. Args: x (array-like): Cartesian x coordinates. y (array-like): Cartesian y coordinates. Shape must match ``x``, but this is not checked. rot (:obj:`float`): Rotation angle in radians. dxdp (array-like, optional): Derivative of the Cartesian x coordinates w.r.t. a set of unknown parameters. Shape has one more dimension than ``x``, where the size of that dimension, :math:`m`, is is the number of parameters. If None, the provided x coordinates are assumed to be independent of any model parameters. dydp (array-like, optional): Derivative of the Cartesian y coordinates w.r.t. a set of unknown parameters. Shape has one more dimension than ``x``, where the size of that dimension, :math:`m`, is is the number of parameters. If None, the provided y coordinates are assumed to be independent of any model parameters. drotdp (array-like, optional): Derivative of the rotation angle w.r.t. a set of unknown parameters. Shape is :math:`(m,)`, where :math:`m` is the number of parameters. If None, the rotation is considered to be the only model parameter. clockwise (:obj:`bool`, optional): Perform a clockwise rotation. Rotation is counter-clockwise by default. By definition and implementation, setting this to True is identical to calling the function with a negative counter-clockwise rotation. Returns: :obj:`tuple`: Four `numpy.ndarray`_ objects: the rotated x coordinates, the rotated y coordinates, the derivate of the rotated x coordinates w.r.t. a set of parameters, and the derivative of the rotated y coordinates w.r.t. a set of parameters. """ # Check derivative input isNone = [i is None for i in [dxdp, dydp, drotdp]] if np.any(isNone) and not np.all(isNone): raise ValueError('Must provide all of dxdp, dydp, and drotdp, or none of them.') # Convert to numpy arrays _x = np.atleast_1d(x) _y = np.atleast_1d(y) # If dxdp is None, they all should be. if dxdp is None: # Set the input derivatives to be with respect to rot dxdp = np.zeros(_x.shape+(1,), dtype=float) dydp = np.zeros(_y.shape+(1,), dtype=float) drotdp = np.ones((1,), dtype=float) if clockwise: return deriv_rotate(x, y, -rot, dxdp=dxdp, dydp=dydp, drotdp=-drotdp) _dxdp = np.atleast_1d(dxdp) _dydp = np.atleast_1d(dydp) _drotdp = np.atleast_1d(drotdp) cosr = np.cos(rot) sinr = np.sin(rot) xr = _x*cosr - _y*sinr yr = _y*cosr + _x*sinr dxrdp = _dxdp*cosr - _x[...,None]*sinr*_drotdp[None,:] - _dydp*sinr \ - _y[...,None]*cosr*_drotdp[None,:] dyrdp = _dydp*cosr - _y[...,None]*sinr*_drotdp[None,:] + _dxdp*sinr \ + _x[...,None]*cosr*_drotdp[None,:] return xr, yr, dxrdp, dyrdp def projected_polar(x, y, pa, inc): r""" Calculate the in-plane polar coordinates of an inclined plane. The position angle, :math:`\phi_0`, is the rotation from the :math:`y=0` axis through the :math:`x=0` axis. I.e., :math:`\phi_0 = \pi/2` is along the :math:`+x` axis and :math:`\phi_0 = \pi` is along the :math:`-y` axis. The inclination, :math:`i`, is the angle of the plane normal with respect to the line-of-sight. I.e., :math:`i=0` is a face-on (top-down) view of the plane and :math:`i=\pi/2` is an edge-on view. The returned coordinates are the projected distance from the :math:`(x,y) = (0,0)` and the project azimuth. The projected azimuth, :math:`\theta`, is defined to increase in the same direction as :math:`\phi_0`, with :math:`\theta = 0` at :math:`\phi_0`. .. warning:: Calculation of the disk-plane y coordinate is undefined at :math:`i = \pi/2`. Only use this function with :math:`i < \pi/2`! Args: x (array-like): Cartesian x coordinates. y (array-like): Cartesian y coordinates. Shape must match ``x``, but this is not checked. pa (:obj:`float`) Position angle, as defined above, in radians. inc (:obj:`float`) Inclination, as defined above, in radians. Returns: :obj:`tuple`: Returns two arrays with the projected radius and in-plane azimuth. The radius units are identical to the provided cartesian coordinates. The azimuth is in radians over the range :math:`[0,2\pi)`. """ xd, yd = rotate(x, y, np.pi/2-pa, clockwise=True) yd /= np.cos(inc) return np.sqrt(xd**2 + yd**2), np.arctan2(-yd,xd) % (2*np.pi) def deriv_projected_polar(x, y, pa, inc, dxdp=None, dydp=None, dpadp=None, dincdp=None): r""" Calculate the in-plane polar coordinates of an inclined plane and their derivatives with respect to a set of input parameters. The set of input parameters can be unknown, i.e. defined in the calling method, or the two parameters of this function (``pa``, ``inc``). That is, if the arguments of this function depend on upstream set of parameters, their derivatives with respect to these parameters should be passed to the relevant keyword arguments. Importantly, if you supply one of either ``dxdp``, ``dydp``, ``dpadp``, ``dincdp``, you must supply them all. See additional documentation of the :func:`projected_polar` method. The same warning there about the calculation when :math:`i = \pi/2` holds for the derivatives, as well. Args: x (array-like): Cartesian x coordinates. y (array-like): Cartesian y coordinates. Shape must match ``x``, but this is not checked. pa (:obj:`float`) Position angle in radians; see :func:`projected_polar`. inc (:obj:`float`) Inclination in radians; see :func:`projected_polar`. dxdp (array-like, optional): Derivative of the Cartesian x coordinates w.r.t. a set of unknown parameters. Shape has one more dimension than ``x``, where the size of that dimension, :math:`m`, is is the number of parameters. If None, the provided x coordinates are assumed to be independent of any model parameters. dydp (array-like, optional): Derivative of the Cartesian y coordinates w.r.t. a set of unknown parameters. Shape has one more dimension than ``x``, where the size of that dimension, :math:`m`, is is the number of parameters. If None, the provided y coordinates are assumed to be independent of any model parameters. dpadp (array-like, optional): Derivative of the position angle w.r.t. a set of unknown parameters. Shape is :math:`(m,)`, where :math:`m` is the number of parameters. If None, the position angle is considered to be the one of the model parameters. dincdp (array-like, optional): Derivative of the inclination w.r.t. a set of unknown parameters. Shape is :math:`(m,)`, where :math:`m` is the number of parameters. If None, the inclination is considered to be the one of the model parameters. Returns: :obj:`tuple`: Returns four arrays with the projected radius and in-plane azimuth and their derivatives (order is radius, aziumth, radius derivative, azimuth derivative). The radius units are identical to the provided cartesian coordinates. The azimuth is in radians over the range :math:`[0,2\pi)`. """ # Check derivative input isNone = [i is None for i in [dxdp, dydp, dpadp, dincdp]] if np.any(isNone) and not np.all(isNone): raise ValueError('Must provide all of dxdp, dydp, dpadp, and dincdp, or none of them.') # Convert to numpy arrays _x = np.atleast_1d(x) _y = np.atleast_1d(y) # If dxdp is None, they all should be. if dxdp is None: # Set the input derivatives to be with respect to pa and inc dxdp = np.zeros(_x.shape+(2,), dtype=float) dydp = np.zeros(_y.shape+(2,), dtype=float) dpadp = np.array([1., 0.], dtype=float) dincdp = np.array([0., 1.], dtype=float) _dxdp = np.atleast_1d(dxdp) _dydp = np.atleast_1d(dydp) _dpadp = np.atleast_1d(dpadp) _dincdp = np.atleast_1d(dincdp) # Calculate the rotated coordinates (note the propagation of the derivative # given the calculation of the applied rotation based on the position angle) xd, yr, dxd, dyr = deriv_rotate(_x, _y, np.pi/2-pa, dxdp=_dxdp, dydp=_dydp, drotdp=-_dpadp, clockwise=True) # Project the y axis cosi = np.cos(inc) yd = yr / cosi dyd = dyr / cosi + yr[...,None] * _dincdp[None,:] * np.sin(inc) / cosi**2 # Calculate the polar coordinates r =
np.sqrt(xd**2 + yd**2)
numpy.sqrt
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Tests of BasePhotometry. .. codeauthor:: <NAME> <<EMAIL>> """ import pytest import numpy as np from tempfile import TemporaryDirectory from astropy.io import fits from astropy.wcs import WCS import conftest # noqa: F401 from photometry import BasePhotometry, PixelQualityFlags, CorrectorQualityFlags #import photometry.BasePhotometry.hdf5_cache as bf DUMMY_TARGET = 260795451 DUMMY_KWARG = {'sector': 1, 'camera': 3, 'ccd': 2} #-------------------------------------------------------------------------------------------------- def test_basephotometry_invalid_input(SHARED_INPUT_DIR): with TemporaryDirectory() as OUTPUT_DIR: # Test invalid datatype: with pytest.raises(ValueError) as e: with BasePhotometry(DUMMY_TARGET, SHARED_INPUT_DIR, OUTPUT_DIR, datasource='invalid', **DUMMY_KWARG): pass assert str(e.value) == "Invalid datasource: 'invalid'" # Test invalid cache option: with pytest.raises(ValueError) as e: with BasePhotometry(DUMMY_TARGET, SHARED_INPUT_DIR, OUTPUT_DIR, datasource='ffi', cache='invalid', **DUMMY_KWARG): pass assert str(e.value) == "Invalid cache: 'invalid'" # Test an input directory that does not exist: with pytest.raises(FileNotFoundError) as e: with BasePhotometry(DUMMY_TARGET, 'does/not/exist', OUTPUT_DIR, datasource='ffi', **DUMMY_KWARG): pass assert str(e.value).startswith('Not a valid input directory: ') # Test asking for FFI target without providing SECTOR, CAMERA and CCD: with pytest.raises(ValueError) as e: with BasePhotometry(DUMMY_TARGET, SHARED_INPUT_DIR, OUTPUT_DIR, datasource='ffi'): pass assert str(e.value) == "SECTOR, CAMERA and CCD keywords must be provided for FFI targets." # Test target not in the catalog: with pytest.raises(Exception) as e: with BasePhotometry(0, SHARED_INPUT_DIR, OUTPUT_DIR, datasource='ffi', **DUMMY_KWARG): pass assert str(e.value) == "Star could not be found in catalog: 0" #-------------------------------------------------------------------------------------------------- def test_stamp(SHARED_INPUT_DIR): with TemporaryDirectory() as OUTPUT_DIR: with BasePhotometry(DUMMY_TARGET, SHARED_INPUT_DIR, OUTPUT_DIR, datasource='ffi', **DUMMY_KWARG) as pho: pho._stamp = (50, 60, 50, 70) pho._set_stamp() cols, rows = pho.get_pixel_grid() print('Rows:') print(rows) print(rows.shape) print('Cols:') print(cols) print(cols.shape) assert(rows.shape == (10, 20)) assert(cols.shape == (10, 20)) assert(rows[0,0] == 51) assert(cols[0,0] == 51) assert(rows[-1,0] == 60) assert(cols[-1,0] == 51) assert(rows[-1,-1] == 60) assert(cols[-1,-1] == 70) pho.resize_stamp(up=12) cols, rows = pho.get_pixel_grid() print('Rows:') print(rows) print(rows.shape) print('Cols:') print(cols) print(cols.shape) assert(rows.shape == (22, 20)) assert(cols.shape == (22, 20)) pho.resize_stamp(down=2) cols, rows = pho.get_pixel_grid() print('Rows:') print(rows) print(rows.shape) print('Cols:') print(cols) print(cols.shape) assert(rows.shape == (24, 20)) assert(cols.shape == (24, 20)) pho.resize_stamp(right=3) cols, rows = pho.get_pixel_grid() print('Rows:') print(rows) print(rows.shape) print('Cols:') print(cols) print(cols.shape) assert(rows.shape == (24, 23)) assert(cols.shape == (24, 23)) pho.resize_stamp(left=3) cols, rows = pho.get_pixel_grid() print('Rows:') print(rows) print(rows.shape) print('Cols:') print(cols) print(cols.shape) assert(rows.shape == (24, 26)) assert(cols.shape == (24, 26)) # Set a stamp that is not going to work: with pytest.raises(ValueError) as e: pho.resize_stamp(left=-100, right=-100) assert str(e.value) == "Invalid stamp selected" #-------------------------------------------------------------------------------------------------- def test_stamp_width_height(SHARED_INPUT_DIR): with TemporaryDirectory() as OUTPUT_DIR: with BasePhotometry(DUMMY_TARGET, SHARED_INPUT_DIR, OUTPUT_DIR, datasource='ffi', **DUMMY_KWARG) as pho: print("Original") orig_stamp = pho._stamp orig_sumimage = pho.sumimage print(orig_stamp) # Change the size of the stamp: print("New") pho.resize_stamp(width=25, height=11) large_stamp = pho._stamp large_sumimage = pho.sumimage print(large_stamp) cols, rows = pho.get_pixel_grid() print(cols.shape, rows.shape) assert cols.shape == (11, 25) assert rows.shape == (11, 25) assert large_sumimage.shape == (11, 25) # Make the stamp the same size as the original again: pho.resize_stamp(width=17, height=17) print(pho._stamp) assert pho._stamp == orig_stamp np.testing.assert_allclose(pho.sumimage, orig_sumimage) # Make the stamp the same size large one, but only changing width: pho.resize_stamp(width=25) print(pho._stamp) cols, rows = pho.get_pixel_grid() assert cols.shape == (17, 25) assert rows.shape == (17, 25) # Make really large stamp now: pho.resize_stamp(height=25) print(pho._stamp) cols, rows = pho.get_pixel_grid() assert cols.shape == (25, 25) assert rows.shape == (25, 25) #-------------------------------------------------------------------------------------------------- def test_images(SHARED_INPUT_DIR): with TemporaryDirectory() as OUTPUT_DIR: with BasePhotometry(DUMMY_TARGET, SHARED_INPUT_DIR, OUTPUT_DIR, datasource='ffi', **DUMMY_KWARG) as pho: pho._stamp = (50, 60, 50, 70) pho._set_stamp() for img in pho.images: assert(img.shape == (10, 20)) #-------------------------------------------------------------------------------------------------- def test_backgrounds(SHARED_INPUT_DIR): with TemporaryDirectory() as OUTPUT_DIR: with BasePhotometry(DUMMY_TARGET, SHARED_INPUT_DIR, OUTPUT_DIR, datasource='ffi', **DUMMY_KWARG) as pho: pho._stamp = (50, 60, 50, 70) pho._set_stamp() for img in pho.backgrounds: assert(img.shape == (10, 20)) #-------------------------------------------------------------------------------------------------- @pytest.mark.parametrize('datasource', ['tpf', 'ffi']) def test_catalog(SHARED_INPUT_DIR, datasource): with TemporaryDirectory() as OUTPUT_DIR: with BasePhotometry(DUMMY_TARGET, SHARED_INPUT_DIR, OUTPUT_DIR, datasource=datasource, **DUMMY_KWARG) as pho: print(pho.catalog) assert(DUMMY_TARGET in pho.catalog['starid']) assert(pho.target_pos_ra >= np.min(pho.catalog['ra'])) assert(pho.target_pos_ra <= np.max(pho.catalog['ra'])) assert(pho.target_pos_dec >= np.min(pho.catalog['dec'])) assert(pho.target_pos_dec <= np.max(pho.catalog['dec'])) indx_main = (pho.catalog['starid'] == DUMMY_TARGET) # Test the real position - TODO: How do we find this? #np.testing.assert_allclose(pho.target_pos_column, 1978.082) #np.testing.assert_allclose(pho.target_pos_row, 652.5701) np.testing.assert_allclose(pho.catalog[indx_main]['column'], pho.target_pos_column) np.testing.assert_allclose(pho.catalog[indx_main]['row'], pho.target_pos_row) #-------------------------------------------------------------------------------------------------- @pytest.mark.parametrize('datasource', ['tpf', 'ffi']) def test_catalog_attime(SHARED_INPUT_DIR, datasource): with TemporaryDirectory() as OUTPUT_DIR: with BasePhotometry(DUMMY_TARGET, SHARED_INPUT_DIR, OUTPUT_DIR, datasource=datasource, **DUMMY_KWARG) as pho: time = pho.lightcurve['time'] cat = pho.catalog_attime(time[0]) assert(cat.colnames == pho.catalog.colnames) # TODO: Add more tests here, once we change the test input data #-------------------------------------------------------------------------------------------------- @pytest.mark.parametrize('datasource', ['tpf', 'ffi']) def test_aperture(SHARED_INPUT_DIR, datasource): with TemporaryDirectory() as OUTPUT_DIR: with BasePhotometry(DUMMY_TARGET, SHARED_INPUT_DIR, OUTPUT_DIR, datasource=datasource, **DUMMY_KWARG) as pho: print("------------------------------------") print(pho.aperture) print(pho.sumimage.shape) print(pho.aperture.shape) assert(pho.sumimage.shape == pho.aperture.shape) # For this target, all the pixels should be available: assert np.all(pho.aperture & 1 != 0) # This target should fall on CCD output B: assert np.all(pho.aperture & 64 != 0) if datasource == 'ffi': # For the FFI's all pixels for this target was used for the backgrounds # (the target is not bright enough to be masked out) assert np.all(pho.aperture & 4 != 0) # Make the stamp one pixel smaller: # The sumimage and aperture should still match in size! pho.resize_stamp(right=-1) print(pho.sumimage.shape) print(pho.aperture.shape) assert pho.sumimage.shape == pho.aperture.shape # Try this very bright star, where the centre is saturated. # The aperture for this star should have pixels near the centre that # were not used in the background calculation for FFIs: with BasePhotometry(267211065, SHARED_INPUT_DIR, OUTPUT_DIR, datasource='ffi', plot=True, **DUMMY_KWARG) as pho: central_pixel = pho.aperture[int(
np.round(pho.target_pos_row_stamp)
numpy.round
''' This is a set of functions for dealing with PIV data Most functions are for 2D data. ''' #Import matlab PIV data def loadDataset(path,mats,structs,matlabData = None): ''' Import a matlab data file Inputs: path - Path to the matlab file mats - names of the matlab matrices to be imported. structs - names of the structures to be imported as dictionaries matlabData - flag to transpose matrices if data comes from matlab Output: Each of the matrices and structures in the order you specified in the input ''' import numpy as np import h5py if matlabData is None: matlabData = False f = h5py.File(path) print(list(f.keys())) Temp = np.asarray(['Swirl']) ret = [] for i in mats: #print(i) Temp = np.asarray(f[i]) if matlabData: if Temp.ndim == 2: Temp = np.transpose(Temp,(1,0)) elif Temp.ndim == 3: Temp = np.transpose(Temp,(2,1,0)) ret.append(Temp) del Temp for i in structs: #print(i) TempS = {k : f[i][k].value #Generate a dictionary linking all values in cond with their names for k in f[i].keys()} ret.append(TempS) del TempS f.close() return ret #Save data to an HDF5 file def saveDataset(path,names,data,DictNames,DictData): ''' Save dataset to an HDF5 file Inputs: path - Path to the save file names - names for each set of data in list data - list of data to be saved. DictNames - Names of a list of dicts to save as subgroups DictData - Data in the dicts Output: An HDF5 file at the path specified ''' import h5py import os if os.path.exists(path): question = 'Delete original file (default: no)' choice = query_yes_no(question, default="no") if choice: os.remove(path) print("Original file deleted") f = h5py.File(path) for i in range(len(names)): #print(names[i]) f.create_dataset(names[i], data=data[i]) for j in range(len(DictNames)): Set = f.create_group(DictNames[j]) #,(len(list(Cond.items())),) for i in list(DictData[j].items()): Set.create_dataset(i[0], data=i[1]) print("File saved") f.close() #Plot 2D scalar field def plotScalarField(S,X=None,Y=None,bound=None,saveFolder=None): ''' Plot 2D scalar fields Inputs: X - 2D array with columns constant Y - 2D array with rows constant S - the 2D field to be plotted. Must be the same size and shape as X,Y bound = the symetric bound of the colorbar (-bound, bound), detault is max of abs(S)/5 Output: Displays a plot of the scalar field ''' import numpy as np import matplotlib.pyplot as plt if bound is None: bound = np.round(np.max(np.absolute(S))/5) f = plt.figure(figsize = [8,3]) if X is None: plt.pcolor(S, cmap='RdBu_r'); plt.axis('scaled') plt.xlim([0, S.shape[1]]) plt.ylim([0, S.shape[0]]) else: plt.pcolor(X,Y,S, cmap='RdBu_r'); plt.axis('scaled') plt.xlim([X.min(), X.max()]) plt.ylim([Y.min(), Y.max()]) plt.clim([-1*bound, bound]) plt.colorbar() if saveFolder is not None: f.savefig(saveFolder, transparent=True, bbox_inches='tight', pad_inches=0) return [f, plt.gca()] #Gets locations of distinct scalar blobs in each frame that are bigger than a certain threshold (in number of vectors) def findBlobsSlow(S,Thresh=None): ''' Note!!!! This code does not work with 3D data yet. Finds distinct blobs of a scalar that are bigger than a certain size (Thresh) Inputs: S - sets of 2D scalar fields that have already been thresholded (0s or 1s) Thresh - Number of vectors that must be contained in a blob. If not defined, then no threshold filter will be used Outputs: cent labelled_array num_features features_per_frame ''' import numpy as np from scipy.ndimage.measurements import label,find_objects,center_of_mass import copy uSize = S.shape labeled_array, num_features = label(S) print('There are ', num_features, ' features initially identified') if Thresh is not None: loc = find_objects(labeled_array) labeled_array_init = copy.copy(labeled_array) labeled_array[:] = 0; num_features_init = copy.copy(num_features) num_features = 0; for i in range(num_features_init): #print(np.max(labeled_array_init[loc[i]]),labeled_array_init[loc[i]],np.count_nonzero(labeled_array_init[loc[i]])) #print(labeled_array_init[loc[i]]) #print(np.max(labeled_array_init[loc[i]]),np.count_nonzero(labeled_array_init[loc[i]])) if np.count_nonzero(labeled_array_init[loc[i]])>Thresh: #print('yes') num_features += 1; labeled_array[labeled_array_init==i+1] = num_features print('A total of ', num_features, ' are larger than the threshold size') features_per_frame = np.zeros(uSize[2],dtype=int); cent = []; for i in range(uSize[2]): features_per_frame[i] = len(np.unique(labeled_array[:,:,i])[1:]) cent.append(center_of_mass(S[:,:,i],labeled_array[:,:,i],np.unique(labeled_array[:,:,i])[1:])) return [num_features, features_per_frame, labeled_array, cent] #Gets locations of distinct scalar blobs in each frame that are bigger than a certain threshold (in number of vectors) def findBlobs(S,Thresh=None,EdgeBound=None): ''' Finds distinct blobs of a scalar that are bigger than a certain size (Thresh) Now new and improved! and much faster! Inputs: S - sets of 2D scalar fields that have already been thresholded (0s or 1s). The third dimension denotes the frame Thresh - Number of vectors that must be contained in a blob. If not defined, then no threshold filter will be used EdgeBound - Crops all blobs that are too close to the edge of the domain. No crop if left as none. Outputs: cent - labelled_array - The labeled array of blobs (in format of ndimage.measurements.label function). This is all the labels including the ones that might be too close to edge of domain num_features - Total number of features accross datasets features_per frame - Number of features identified in each frame ''' import numpy as np from scipy.ndimage.measurements import label,find_objects,center_of_mass uSize = S.shape if S.ndim == 3: str_3D=np.array([[[0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 1, 0], [1, 1, 1], [0, 1, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0]]], dtype='uint8') #str_3D = str_3D.transpose(2,1,0) labeled_array, num_features = label(S.transpose(2,1,0),str_3D) labeled_array = labeled_array.transpose(2,1,0) else: labeled_array, num_features = label(S) #print(np.unique(labeled_array)) #print(np.unique(labeled_array[:,:,0])) #print(labeled_array.shape) print('There are ', num_features, ' features identified') if Thresh is not None: loc = find_objects(labeled_array) labeled_array_out = labeled_array.copy() counts = np.bincount(labeled_array.ravel()) ind = np.where(counts>Thresh)[0][1:] mask = np.in1d(labeled_array.ravel(), ind).reshape(labeled_array.shape) labeled_array_out[~mask] = 0 [_, labeled_array_out] = np.unique(labeled_array_out,return_inverse=True) labeled_array_out = labeled_array_out.reshape(labeled_array.shape) num_features_out = len(ind) print('A total of ', num_features_out, ' are larger than the threshold size') else: labeled_array_out = labeled_array num_features_out = num_features #a = labeled_array_out[:,:,535] #b = a.copy() #c = list(range(uSize[1])) #b[:,:] = list(range(uSize[1]))) #for i in np.unique(a): #print(np.unique(a)[15]) #print(a[a==i]) features_per_frame = np.zeros(uSize[2],dtype=int); cent = []; for i in range(uSize[2]): features_per_frame[i] = len(np.unique(labeled_array_out[:,:,i])[1:]) cent.append(center_of_mass(S[:,:,i],labeled_array_out[:,:,i],np.unique(labeled_array_out[:,:,i])[1:])) #Round center locations to nearest index for i in range(len(cent)): for j in range(len(cent[i])): cent[i][j] = (int(round(cent[i][j][0])), int(round(cent[i][j][1]))) #Remove all centers too close to edge of domain if EdgeBound is not None: newCent = [] for i in range(len(cent)): newCent.append([]) features_per_frame[i] = 0 for j in range(len(cent[i])): if (cent[i][j][0]>EdgeBound-1 and cent[i][j][0]<uSize[0]-EdgeBound) and (cent[i][j][1]>EdgeBound-1 and cent[i][j][1] <uSize[1]-EdgeBound): newCent[i].append(cent[i][j]) features_per_frame[i]+=1 num_features_out = sum(features_per_frame) cent = newCent print('Of these', num_features_out, ' are far enough away from edge of domain') return [num_features_out, features_per_frame, labeled_array_out, cent] # given the centers of a blobs, this function disects the vector field into a number of thumbnails of size frame x frame def getThumbnails2D(mats,cent,BoxSize): ''' Given the centers of a blobs, this function disects the vector field into a number of thumbnails of size frame x frame. All vectors inside frame but outside domain are padded with nans Inputs: mats - A list of matrices from which to find thumbnails cent - centers of each each vortex as output by FindBlobs BoxSize - final thumbnail size is BoxSize*2+1 squared Outputs: Thumbnail versions of each of the matrices in mats ''' import numpy as np uSize = mats[0].shape out = [] #find out how many features there are #Round all centroids to integers num_features = 0 for i in range(len(cent)): for j in range(len(cent[i])): #print(i, j) cent[i][j] = (int(round(cent[i][j][0])), int(round(cent[i][j][1]))) num_features += 1 for k in range(len(mats)): #initialize thumbnail matrices U = np.zeros([2*BoxSize+1,2*BoxSize+1,num_features]) U[:] = np.NAN #pad out velocity fields so that there are NaNs around in all directions U2 = np.zeros([uSize[0]+2*BoxSize,uSize[1]+2*BoxSize,uSize[2]]) U2[:] = np.NAN U2[BoxSize:-1*BoxSize,BoxSize:-1*BoxSize,:] = mats[k].copy() #Now get the thumbnails thumb = 0 for i in range(len(cent)): for j in range(len(cent[i])): U[:,:,thumb] = U2[cent[i][j][0]:cent[i][j][0]+2*BoxSize+1,cent[i][j][1]:cent[i][j][1]+2*BoxSize+1,i] thumb+=1 out.append(U) del U return out def getRandomThumbnails2D(Uf,Vf,Sf,numSamp,BoxSize): import numpy as np uSize = Uf.shape Pos = np.random.rand(3,numSamp) Pos[0] = Pos[0]*(uSize[0]-2*BoxSize-1)+BoxSize Pos[1] = Pos[1]*(uSize[1]-2*BoxSize-1)+BoxSize Pos[2] = Pos[2]* (uSize[2]-1) Pos = Pos.round().astype(int) #print(Pos[:,0]) #print(np.ndarray.min(Pos[0])) #print(np.ndarray.max(Pos[0])) #print(np.ndarray.min(Pos[1])) #print(np.ndarray.max(Pos[1])) #print(np.ndarray.min(Pos[2])) #print(np.ndarray.max(Pos[2])) #print(max(Pos)) #initialize thumbnail matrices Ut = np.zeros([2*BoxSize+1,2*BoxSize+1,numSamp]) Ut[:] = np.NAN Vt = Ut.copy() St = Ut.copy() #print(Ut.shape) #pad out velocity fields so that there are NaNs around in all directions Uf2 = np.zeros([uSize[0]+2*BoxSize,uSize[1]+2*BoxSize,uSize[2]]) Uf2[:] = np.NAN Vf2 = Uf2.copy() Sf2 = Uf2.copy() Uf2[BoxSize:-1*BoxSize,BoxSize:-1*BoxSize,:] = Uf.copy() Vf2[BoxSize:-1*BoxSize,BoxSize:-1*BoxSize,:] = Vf.copy() Sf2[BoxSize:-1*BoxSize,BoxSize:-1*BoxSize,:] = Sf.copy() #Now get the thumbnails thumb = 0 for i in range(numSamp): #print(i) Ut[:,:,thumb] = Uf2[Pos[0,i]:Pos[0,i]+2*BoxSize+1,Pos[1,i]:Pos[1,i]+2*BoxSize+1,Pos[2,i]] Vt[:,:,thumb] = Vf2[Pos[0,i]:Pos[0,i]+2*BoxSize+1,Pos[1,i]:Pos[1,i]+2*BoxSize+1,Pos[2,i]] St[:,:,thumb] = Sf2[Pos[0,i]:Pos[0,i]+2*BoxSize+1,Pos[1,i]:Pos[1,i]+2*BoxSize+1,Pos[2,i]] thumb+=1 return [Ut, Vt, St, Pos] def genHairpinField(BoxSize,Circ,r,rs,Ts,Rot,StagStren,Gvort,Gstag,Conv,x=None,y=None): ''' Generates a theoretical hairpin vortex velocity field given a number of parameters. Returns U and V velocity fields Inputs: BoxSize - 2*Boxsize+1 is the number of vectors per side of box. Circ - Circulation strength of vortex r - diameter of vortex solid body rotation (constant vector magnitude outside core) rs, Ts - polar coordinate location of stagnation point Rot - Rotation of stagnation point shear layer StagStren - Vector magnitude of stagnation point velocity field (constant magnitude) Gvort - Width of blending gaussian for vortex Gstag - Width of blending gaussian for stagnation point Conv - Convective velocity of this vortex relative to the local mean Outputs: U - Streamwise velocity field V - Wall-normal velocity field ''' import numpy as np import math #print((x.shape[0]-1)/2) if x is None: X, Y = np.meshgrid(np.arange(-1*BoxSize, BoxSize+1), np.arange(-1*BoxSize, BoxSize+1)) else: assert BoxSize==(x.shape[0]-1)/2, 'The BoxSize does not match the length of the x vector. Thats not right...' assert BoxSize==(y.shape[0]-1)/2, 'The BoxSize does not match the length of the y vector. Thats not right...' X, Y = np.meshgrid(x, y) U = np.zeros([2*BoxSize+1,2*BoxSize+1]) V = U.copy() R = np.hypot(X, Y) T = np.arctan2(Y,X) #Vortex Ut = Circ*R/(2*np.pi*r**2) #Ut[R>=r] = Circ/(2*np.pi*R[R>=r]) Ut[R>=r] = Circ/(2*np.pi*r) #make velocities constant outside core #Now convert back to cartesian velocities Uvort = Ut*np.sin(T) Vvort = -1*Ut*np.cos(T) #Create stagnation point flow Rot = Rot*np.pi/180*2 Ts = Ts*np.pi/180 xs = rs*np.cos(Ts) #shift in stagnation point in x ys = rs*np.sin(Ts) #shift in stagnation point in y #StagStren = 2; Xs = X-xs Ys = Y-ys; Ts = np.arctan2(Ys,Xs) M = np.hypot(Xs, Ys) U = M*np.cos(Ts-Rot) V = -1*M*np.sin(Ts-Rot) M =
np.hypot(U, V)
numpy.hypot
import unittest import numpy import six import chainer from chainer.backends import cuda from chainer import functions from chainer import gradient_check from chainer import testing from chainer.testing import attr class SoftmaxCrossEntropyTestBase(object): def setUp(self): self.shape, self.ignore_index = self.shape_ignore if self.shape is None: if self.dtype == numpy.float16: self.x = numpy.array([[-5, 1]], dtype=self.dtype) else: self.x = numpy.array([[-1000, 1]], dtype=self.dtype) self.t = numpy.array([0], dtype=self.label_dtype) else: self.x = numpy.random.uniform(-1, 1, self.shape).astype(self.dtype) out_shape = (self.shape[0],) + self.shape[2:] self.t = numpy.random.randint( 0, self.shape[1], out_shape).astype(self.label_dtype) if (self.ignore_index is not None and len(self.ignore_index) <= self.t.ndim): self.t[self.ignore_index] = -1 if self.reduce == 'mean': self.gy = numpy.random.uniform(-1, 1, ()).astype(self.x.dtype) else: self.gy = numpy.random.uniform( -1, 1, self.t.shape).astype(self.dtype) self.ggx = numpy.random.uniform( -1, 1, self.x.shape).astype(self.x.dtype) if self.weight_apply: self.class_weight = numpy.random.uniform( 0, 10, (self.x.shape[1],)).astype(self.dtype) else: self.class_weight = None if self.dtype == numpy.float16: self.check_forward_options = {'atol': 5e-4, 'rtol': 5e-3} self.check_backward_options = {'atol': 5e-3, 'rtol': 5e-2} self.check_double_backward_options = {'atol': 5e-3, 'rtol': 5e-2} else: self.check_forward_options = {} self.check_backward_options = {} self.check_double_backward_options = {} def check_forward(self, x_data, t_data, class_weight, use_cudnn='always'): x = chainer.Variable(x_data) t = chainer.Variable(t_data) with chainer.using_config('use_cudnn', use_cudnn): loss = functions.softmax_cross_entropy( x, t, normalize=self.normalize, reduce=self.reduce, cache_score=self.cache_score, class_weight=class_weight, enable_double_backprop=self.enable_double_backprop) self.assertEqual(loss.data.shape, self.gy.shape) self.assertEqual(loss.data.dtype, self.dtype) if not self.enable_double_backprop: assert (loss.creator.y is not None) == self.cache_score loss_value = cuda.to_cpu(loss.data) if self.reduce == 'mean': self.check_forward_with_reduce( float(loss_value), t_data, class_weight) else: self.check_forward_without_reduce(loss_value, t_data, class_weight) def check_forward_with_reduce(self, loss_value, t_data, class_weight): # Compute expected value loss_expect = 0.0 count = 0 x = numpy.rollaxis(self.x, 1, self.x.ndim).reshape( (self.t.size, self.x.shape[1])) t = self.t.ravel() for xi, ti in six.moves.zip(x, t): if ti == -1: continue log_z = numpy.ufunc.reduce(numpy.logaddexp, xi) if class_weight is None: loss_expect -= (xi - log_z)[ti] else: loss_expect -= (xi - log_z)[ti] * class_weight[ti] count += 1 if self.normalize: if count == 0: loss_expect = 0.0 else: loss_expect /= count else: if len(t_data) == 0: loss_expect = 0.0 else: loss_expect /= len(t_data) testing.assert_allclose( loss_expect, loss_value, **self.check_forward_options) def check_forward_without_reduce(self, loss_value, t_data, class_weight): x = numpy.rollaxis(self.x, 1, self.x.ndim).reshape( (self.t.size, self.x.shape[1])) t = self.t.ravel() l = loss_value.ravel() for xi, ti, li in six.moves.zip(x, t, l): if ti == -1: continue log_z = numpy.ufunc.reduce(numpy.logaddexp, xi) if class_weight is None: loss_expect = -(xi - log_z)[ti] else: loss_expect = -(xi - log_z)[ti] * class_weight[ti] testing.assert_allclose( loss_expect, li, **self.check_forward_options) def test_forward_cpu(self): self.check_forward(self.x, self.t, self.class_weight) @attr.gpu def test_forward_gpu(self): self.check_forward( cuda.to_gpu(self.x), cuda.to_gpu(self.t), None if not self.weight_apply else cuda.to_gpu(self.class_weight)) @attr.gpu def test_forward_gpu_no_cudnn(self): self.check_forward( cuda.to_gpu(self.x), cuda.to_gpu(self.t), None if not self.weight_apply else cuda.to_gpu(self.class_weight), 'never') def check_backward(self, x_data, t_data, g_data, class_weight, use_cudnn='always'): with chainer.using_config('use_cudnn', use_cudnn): def f(x, t): return functions.softmax_cross_entropy( x, t, cache_score=self.cache_score, class_weight=class_weight, reduce=self.reduce) gradient_check.check_backward( f, (x_data, t_data), g_data, dtype=numpy.float64, **self.check_backward_options) def test_backward_cpu(self): g_data = None if self.reduce == 'no': g_data = self.gy self.check_backward(self.x, self.t, g_data, self.class_weight) @attr.gpu def test_backward_gpu(self): g_data = None if self.reduce == 'no': g_data = cuda.to_gpu(self.gy) weight = None if not self.weight_apply: weight = cuda.to_gpu(self.class_weight) self.check_backward( cuda.to_gpu(self.x), cuda.to_gpu(self.t), g_data, weight) @attr.gpu def test_backward_gpu_no_cudnn(self): g_data = None if self.reduce == 'no': g_data = cuda.to_gpu(self.gy) weight = None if not self.weight_apply: weight = cuda.to_gpu(self.class_weight) self.check_backward( cuda.to_gpu(self.x), cuda.to_gpu(self.t), g_data, weight, 'never') test_cases = testing.product({ # test each option flags 'reduce': ['mean', 'no'], 'cache_score': [True, False], 'normalize': [True, False], 'weight_apply': [True, False], 'shape_ignore': [(None, None), ((2, 3, 2, 2), (0, 1, 0))], 'dtype': [numpy.float32], 'label_dtype': [numpy.int32], }) + testing.product({ # test floating dtypes 'reduce': ['mean', 'no'], 'cache_score': [False], 'normalize': [True], 'weight_apply': [True], 'shape_ignore': [(None, None), ((2, 3), (slice(None),)), ((2, 3, 2), (0,)), ((2, 3, 2, 2), (0, 1, 0))], 'dtype': [numpy.float16, numpy.float64], 'label_dtype': [numpy.int32], }) + testing.product({ # test label dtypes 'reduce': ['mean', 'no'], 'cache_score': [False], 'normalize': [True], 'weight_apply': [True], 'shape_ignore': [(None, None), ((2, 3), (slice(None),)), ((2, 3, 2), (0,)), ((2, 3, 2, 2), (0, 1, 0))], 'dtype': [numpy.float32], 'label_dtype': [numpy.int8, numpy.int16, numpy.int64], }) @testing.parameterize(*test_cases) @testing.fix_random() class TestSoftmaxCrossEntropyDisableDoubleBackprop( SoftmaxCrossEntropyTestBase, unittest.TestCase): enable_double_backprop = False @testing.parameterize(*test_cases) @testing.fix_random() class TestSoftmaxCrossEntropyEnableDoubleBackprop( SoftmaxCrossEntropyTestBase, unittest.TestCase): enable_double_backprop = True def check_double_backward(self, x_data, t_data, gy_data, ggx_data, class_weight, use_cudnn='always'): def f(x): return functions.softmax_cross_entropy( x, t_data, self.normalize, self.cache_score, class_weight, reduce=self.reduce, enable_double_backprop=True) with chainer.using_config('use_cudnn', use_cudnn): gradient_check.check_double_backward( f, x_data, gy_data, ggx_data, dtype=numpy.float64, **self.check_double_backward_options) def test_double_backward_cpu(self): self.check_double_backward( self.x, self.t, self.gy, self.ggx, self.class_weight) @attr.gpu def test_double_backward_gpu(self): self.check_double_backward( cuda.to_gpu(self.x), cuda.to_gpu(self.t), cuda.to_gpu(self.gy), cuda.to_gpu(self.ggx), None if not self.weight_apply else cuda.to_gpu(self.class_weight)) @attr.gpu def test_double_backward_gpu_no_cudnn(self): self.check_double_backward( cuda.to_gpu(self.x), cuda.to_gpu(self.t), cuda.to_gpu(self.gy), cuda.to_gpu(self.ggx), None if not self.weight_apply else cuda.to_gpu(self.class_weight), 'never') @testing.parameterize(*testing.product_dict( [ {'t_value': -2, 'valid': False}, {'t_value': 3, 'valid': False}, {'t_value': -1, 'valid': True} # -1 is ignore_label ], [ {'enable_double_backprop': True}, {'enable_double_backprop': False} ] )) class TestSoftmaxCrossEntropyValueCheck(unittest.TestCase): def setUp(self): self.x = numpy.random.uniform(-1, 1, (2, 2)).astype(numpy.float32) # `0` is required to avoid NaN self.t = numpy.array([self.t_value, 0], dtype=numpy.int32) self.original_debug = chainer.is_debug() chainer.set_debug(True) def tearDown(self): chainer.set_debug(self.original_debug) def check_value_check(self, x_data, t_data, use_cudnn): x = chainer.Variable(x_data) t = chainer.Variable(t_data) with chainer.using_config('use_cudnn', use_cudnn): if self.valid: # Check if it throws nothing functions.softmax_cross_entropy( x, t, enable_double_backprop=self.enable_double_backprop) else: with self.assertRaises(ValueError): functions.softmax_cross_entropy( x, t, enable_double_backprop=self.enable_double_backprop) def test_value_check_cpu(self): self.check_value_check(self.x, self.t, 'never') @attr.gpu def test_value_check_gpu(self): self.check_value_check(self.x, self.t, 'never') @attr.gpu def test_value_check_gpu_cudnn(self): self.check_value_check(cuda.to_gpu(self.x), cuda.to_gpu(self.t), 'always') @testing.parameterize(*testing.product({ 'use_cudnn': ['always', 'auto', 'never'], 'dtype': [numpy.float16, numpy.float32, numpy.float64], })) @attr.cudnn class TestSoftmaxCrossEntropyCudnnCall(unittest.TestCase): def setUp(self): self.x = cuda.cupy.random.uniform(-1, 1, (4, 3)).astype(self.dtype) self.t = cuda.cupy.random.randint(0, 3, (4,)).astype(numpy.int32) def forward(self): x = chainer.Variable(self.x) t = chainer.Variable(self.t) return functions.softmax_cross_entropy( x, t, enable_double_backprop=False) def test_call_cudnn_forward(self): with chainer.using_config('use_cudnn', self.use_cudnn): with testing.patch('cupy.cudnn.softmax_forward') as func: self.forward() self.assertEqual(func.called, chainer.should_use_cudnn('>=auto')) # Note that SoftmaxCrossEntropy does not use cudnn on backward @testing.parameterize( {'enable_double_backprop': True}, {'enable_double_backprop': False}, ) class TestClassWeightAssertion(unittest.TestCase): def setUp(self): self.x = numpy.array([[0, 1], [2, 3]]) self.t = numpy.array([0, 1]) def test_ndim_assertion(self): wrong_ndim_class_weight = numpy.array([[0, 0]], dtype='f') with self.assertRaises(ValueError): functions.softmax_cross_entropy( self.x, self.t, class_weight=wrong_ndim_class_weight, enable_double_backprop=self.enable_double_backprop) def test_dtype_assertion(self): wrong_dtype_class_weight = numpy.array([0, 0], dtype=numpy.int32) with self.assertRaises(ValueError): functions.softmax_cross_entropy( self.x, self.t, class_weight=wrong_dtype_class_weight, enable_double_backprop=self.enable_double_backprop) def test_variable_assertion(self): wrong_inst_class_weight = chainer.Variable( numpy.array([0, 0], dtype='f')) with self.assertRaises(ValueError): functions.softmax_cross_entropy( self.x, self.t, class_weight=wrong_inst_class_weight, enable_double_backprop=self.enable_double_backprop) @testing.parameterize(*testing.product({ 'enable_double_backprop': [True, False], })) class TestSoftmaxCrossEntropyInvalidReduce(unittest.TestCase): def setUp(self): self.x = numpy.random.uniform(-1, 1, (2, 3)).astype('f') self.t = numpy.zeros((2,), 'i') def check_invalid_reduce(self, x, t): with self.assertRaises(ValueError): functions.softmax_cross_entropy( x, t, reduce='unknown_reduce_type', enable_double_backprop=self.enable_double_backprop) def test_invalid_reduce_cpu(self): self.check_invalid_reduce(self.x, self.t) @attr.gpu def test_invalid_reduce_gpu(self): self.check_invalid_reduce(cuda.to_gpu(self.x), cuda.to_gpu(self.t)) @testing.parameterize(*testing.product({ 'ignore_label': [-2, 9], 'reduce': ['mean', 'no'], 'enable_double_backprop': [False, True], 'class_weight': [None, numpy.ones((3,), dtype=numpy.float32)]}) ) class TestNonDefaultIgnoreLabel(unittest.TestCase): def setUp(self): self.x = numpy.random.uniform(-1, 1, (2, 3)).astype(numpy.float32) self.t = numpy.full((2,), self.ignore_label, dtype=numpy.int32) if self.reduce == 'mean': gy_shape = () else: gy_shape = (2,) self.gy =
numpy.random.uniform(-1, 1, gy_shape)
numpy.random.uniform
import numpy as np import random import sys import time import math #Calculates cosine similarity between two vectors def calculateCosSim(vec1,vec2): return
np.dot(vec1,vec2)
numpy.dot
import numpy as np import cv2 # 定义一块宽600,高400的画布,初始化为白色 canvas = np.zeros((400, 600, 3), dtype=np.uint8) + 255 # 画一条纵向的正中央的黑色分界线 cv2.line(canvas, (300, 0), (300, 399), (0, 0, 0), 2) # 画一条右半部份画面以150为界的横向分界线 cv2.line(canvas, (300, 149), (599, 149), (0, 0, 0), 2) # 左半部分的右下角画个红色的圆 cv2.circle(canvas, (200, 300), 75, (0, 0, 255), 5) # 左半部分的左下角画个蓝色的矩形 cv2.rectangle(canvas, (20, 240), (100, 360), (255, 0, 0), thickness=3) # 定义两个三角形,并执行内部绿色填充 triangles = np.array([ [(200, 240), (145, 333), (255, 333)], [(60, 180), (20, 237), (100, 237)]]) cv2.fillPoly(canvas, triangles, (0, 255, 0)) # 画一个黄色五角星 # 第一步通过旋转角度的办法求出五个顶点 phi = 4 * np.pi / 5 rotations = [[[np.cos(i * phi), -np.sin(i * phi)], [i * np.sin(phi),
np.cos(i * phi)
numpy.cos
#!/usr/bin/env python # coding: utf-8 # # Wasserstein Pareto Frontier Experiment on COMPAS Data Set # ## Import Data # The experiment used the COMPAS data set as in "Optimized Pre-Processing for Discrimination Prevention" by Calmon and etc. for comparison purpose: https://github.com/fair-preprocessing/nips2017/tree/master/compas/experiment_data2 # In[1]: import numpy as np import pandas as pd import scipy from scipy import stats import matplotlib.pyplot as plt import seaborn as sns from scipy.interpolate import interp1d from tqdm import tqdm from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC, LinearSVC from sklearn.naive_bayes import MultinomialNB from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import confusion_matrix, roc_auc_score, auc, classification_report, roc_curve from sklearn.preprocessing import OrdinalEncoder from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from matplotlib import pyplot from scipy.linalg import sqrtm from matplotlib import gridspec from matplotlib.patches import Rectangle # import data path =r'/Users/shizhouxu/Documents/LIBRARY/Python/Fair_L2_Supervised_Learning/experiment_data_compass/' # use your path train_0 = pd.read_csv(path + "train_0.csv",index_col=None, header=0, usecols=range(1,6)) train_1 = pd.read_csv(path + "train_1.csv",index_col=None, header=0, usecols=range(1,6)) train_2 = pd.read_csv(path + "train_2.csv",index_col=None, header=0, usecols=range(1,6)) train_3 = pd.read_csv(path + "train_3.csv",index_col=None, header=0, usecols=range(1,6)) train_4 = pd.read_csv(path + "train_4.csv",index_col=None, header=0, usecols=range(1,6)) test_0 = pd.read_csv(path + "test_0.csv",index_col=None, header=0, usecols=range(1,6)) test_1 = pd.read_csv(path + "test_1.csv",index_col=None, header=0, usecols=range(1,6)) test_2 = pd.read_csv(path + "test_2.csv",index_col=None, header=0, usecols=range(1,6)) test_3 = pd.read_csv(path + "test_3.csv",index_col=None, header=0, usecols=range(1,6)) test_4 = pd.read_csv(path + "test_4.csv",index_col=None, header=0, usecols=range(1,6)) train_new_0 = pd.read_csv(path + "train_new_0.csv",index_col=None, header=0, usecols=range(1,6)) train_new_1 = pd.read_csv(path + "train_new_1.csv",index_col=None, header=0, usecols=range(1,6)) train_new_2 = pd.read_csv(path + "train_new_2.csv",index_col=None, header=0, usecols=range(1,6)) train_new_3 = pd.read_csv(path + "train_new_3.csv",index_col=None, header=0, usecols=range(1,6)) train_new_4 = pd.read_csv(path + "train_new_4.csv",index_col=None, header=0, usecols=range(1,6)) test_new_0 = pd.read_csv(path + "test_new_0.csv",index_col=None, header=0, usecols=range(1,6)) test_new_1 = pd.read_csv(path + "test_new_1.csv",index_col=None, header=0, usecols=range(1,6)) test_new_2 = pd.read_csv(path + "test_new_2.csv",index_col=None, header=0, usecols=range(1,6)) test_new_3 = pd.read_csv(path + "test_new_3.csv",index_col=None, header=0, usecols=range(1,6)) test_new_4 = pd.read_csv(path + "test_new_4.csv",index_col=None, header=0, usecols=range(1,6)) # all available data variables: features = ['race','age_cat','c_charge_degree','priors_count','is_recid'] features = ['race','age_cat','c_charge_degree','priors_count','is_recid'] # sensitive variable: Z_features = ['race'] Z_features = ['race'] # dependnet variable: Y_features = ['is_recid'] Y_features = ['is_recid'] # independnet variable: X_features = ['age_cat', 'c_charge_degree','priors_count'] X_features = ['age_cat', 'c_charge_degree','priors_count'] # combine the data by train/test category TrainList=[train_0,train_1,train_2,train_3,train_4] TestList=[test_0,test_1,test_2,test_3,test_4] TrainNewList=[train_new_0,train_new_1,train_new_2,train_new_3,train_new_4] TestNewList=[test_new_0,test_new_1,test_new_2,test_new_3,test_new_4] # data set combined: df ord_enc = OrdinalEncoder() df = pd.concat([train_0,train_1,train_2,train_3,train_4,test_0,test_1,test_2,test_3,test_4]) # data set further excluding the sensitive variable: df_delete df_delete = df.drop('race',axis = 1) # sensitive variable Z: gender race = df['race'] # ## Compute the Wasserstein Pseudo-barycenter for X # In[2]: # independent variable: X X = np.delete(np.array(pd.get_dummies(df[X_features])),[4],axis = 1) # dependent variable: Y Y = np.array(pd.get_dummies(df[Y_features])) # mean of X and Y: X_mean, Y_mean X_mean = np.mean(X,axis = 0) Y_mean = np.mean(Y) # covariance (matrix) of X and Y: X_cov, Y_cov X_cov = np.cov(X.T) Y_cov = np.cov(Y.T) # marginal (conditional) dependent variables: X_male, Y_male X_A = X[race == 'African-American',:] Y_A = Y[race == 'African-American'] X_C = X[race == 'Caucasian',:] Y_C = Y[race == 'Caucasian'] # marginal mean: X_(fe)male_mean, Y_(fe)male_mean X_A_mean = np.average(X_A, axis = 0) Y_A_mean = np.average(Y_A) X_C_mean = np.average(X_C, axis = 0) Y_C_mean = np.average(Y_C) # marginal covariance: X_(fe)male_cov, Y_(fe)male_cov, X_A_cov = np.cov(X_A.T) Y_A_cov = np.cov(Y_A.T) X_C_cov = np.cov(X_C.T) Y_C_cov = np.cov(Y_C.T) # cross-covariance (matrix) between Y and X: yX_(fe)male_cov yX_A_cov = np.cov(Y_A.T, X_A.T)[range(len(Y[0,:]),len(Y[0,:]) + len(X[0,:])),0] yX_C_cov = np.cov(Y_C.T, X_C.T)[range(len(Y[0,:]),len(Y[0,:]) + len(X[0,:])),0] # algorithm 1, step 1: iterative process to the independent barycenter covariance matrix with stop cirterion error equals 0.00000001 sample_size = len(X[:,0]) X_bar = np.random.rand(len(X[0,:]),len(X[0,:])) # random initialization for the covariance eps = 10 # initialization for the stop variable while eps > 0.00000001: X_new = ((len(X_A[:,0])/sample_size) * sqrtm(sqrtm(X_bar)@X_A_cov@sqrtm(X_bar))) + ((len(X_C[:,0])/sample_size) * sqrtm(sqrtm(X_bar)@X_C_cov@sqrtm(X_bar))) eps = np.linalg.norm(X_bar - X_new) X_bar = X_new # algorithm 1, step 2: the corresponding Brenier's map for marginals of X: T_X_(fe)male T_X_A = np.linalg.inv(sqrtm(X_A_cov)) @ sqrtm( sqrtm(X_A_cov) @ X_bar @ sqrtm(X_A_cov) ) @ np.linalg.inv(sqrtm(X_A_cov)) T_X_C = np.linalg.inv(sqrtm(X_C_cov)) @ sqrtm( sqrtm(X_C_cov) @ X_bar @ sqrtm(X_C_cov) ) @ np.linalg.inv(sqrtm(X_C_cov)) # wasserstein pseudo-barycenter for X separated in train/test categories: X_TrainFairList, X_TestFairList X_TrainFairList = [] X_TestFairList = [] for i in range(0,len(TrainList)): train = np.delete(np.array(pd.get_dummies(TrainList[i][X_features])),[4],axis = 1) test = np.delete(np.array(pd.get_dummies(TestList[i][X_features])),[4],axis = 1) gender_train_i = np.array(TrainList[i][Z_features]).T[0,:] gender_test_i = np.array(TestList[i][Z_features]).T[0,:] train_new = np.random.rand(train.shape[0],train.shape[1]) test_new = np.random.rand(test.shape[0],test.shape[1]) train_new[gender_train_i == 'African-American',:] = (train[gender_train_i == 'African-American',:] - X_A_mean) @ T_X_A.T + X_mean train_new[gender_train_i == 'Caucasian',:] = (train[gender_train_i == 'Caucasian',:] - X_C_mean) @ T_X_C.T + X_mean test_new[gender_test_i == 'African-American',:] = (test[gender_test_i == 'African-American',:] - X_A_mean) @ T_X_A.T + X_mean test_new[gender_test_i == 'Caucasian',:] = (test[gender_test_i == 'Caucasian',:] - X_C_mean) @ T_X_C.T + X_mean X_TrainFairList.append(train_new) X_TestFairList.append(test_new) # ## Compute the Wasserstein Pseudo-barycenter for E(Y|X) # In[3]: # wasserstein pseudo-barycenter for X: X_fair X_fair = np.concatenate([X_TrainFairList[0],X_TrainFairList[1],X_TrainFairList[2],X_TrainFairList[3],X_TrainFairList[4],X_TestFairList[0],X_TestFairList[1],X_TestFairList[2],X_TestFairList[3],X_TestFairList[4]]) # marginal (conditional) X_fair: X_fair_(fe)male X_fair_A = X_fair[race == 'African-American',:] X_fair_C = X_fair[race == 'Caucasian',:] # marginal means for X_fair: X_fair_(fe)male_mean X_fair_A_mean = np.average(X_fair_A, axis = 0) X_fair_C_mean = np.average(X_fair_C, axis = 0) # marginal covariance for X_fair: X_fair_(fe)male_cov X_fair_A_cov = np.cov(X_fair_A.T) X_fair_C_cov = np.cov(X_fair_C.T) # cross-covariance between Y and X_fair: yX_fair_(fe)male_cov yX_fair_A_cov = np.cov(Y_A.T, X_fair_A.T)[range(1,8),0] yX_fair_C_cov = np.cov(Y_C.T, X_fair_C.T)[range(1,8),0] # covariance of marginal E(Y|X) in Gaussian case: yoX_(fe)male_cov # which is also the optimal linear estimation of covariance of E(Y|X) in general distribution case yoX_A_cov = [email protected](X_fair_A_cov)@yX_fair_A_cov.T yoX_C_cov = [email protected](X_fair_C_cov)@yX_fair_C_cov.T # algorithm 2, step 1: iterative process to the dependent barycenter covariance matrix with stop cirterion error equals 0.00000000000000000001 Y_bar = np.random.rand() eps = 10 while eps > 0.00000000000000000001: Y_new = ((len(X_A[:,0])/sample_size) * np.sqrt(np.sqrt(Y_bar)*yoX_A_cov*np.sqrt(Y_bar))) + ((len(X_C[:,0])/sample_size) * np.sqrt(np.sqrt(Y_bar)*yoX_C_cov*np.sqrt(Y_bar))) eps = Y_bar - Y_new Y_bar = Y_new # algorithm 2, step 2: the corresponding Brenier's map for marginals of E(y|X) T_Y_A = (1/np.sqrt(yoX_A_cov)) * np.sqrt( np.sqrt(yoX_A_cov) * Y_bar * np.sqrt(yoX_A_cov) ) * (1/np.sqrt(yoX_A_cov)) T_Y_C = (1/np.sqrt(yoX_C_cov)) * np.sqrt( np.sqrt(yoX_C_cov) * Y_bar * np.sqrt(yoX_C_cov) ) * (1/np.sqrt(yoX_C_cov)) # wasserstein pseudo-barycenter for Y separated in train/test categories: Y_TrainFairList, Y_TestFairList Y_TrainFairList = [] Y_TestFairList = [] for i in range(0,len(TrainList)): train = np.array(pd.get_dummies(TrainList[i][Y_features])) test = np.array(pd.get_dummies(TestList[i][Y_features])) train_new = np.random.rand(len(train.T[0,:])) test_new = np.random.rand(len(test.T[0,:])) gender_train_i = np.array(TrainList[i][Z_features]).T[0,:] gender_test_i = np.array(TestList[i][Z_features]).T[0,:] train_new[gender_train_i == 'African-American'] = ((train[gender_train_i == 'African-American'] - Y_A_mean) * T_Y_A.T + Y_mean).T[0,:] train_new[gender_train_i == 'Caucasian'] = ((train[gender_train_i == 'Caucasian'] - Y_C_mean) * T_Y_C.T + Y_mean).T[0,:] test_new[gender_test_i == 'African-American'] = ((test[gender_test_i == 'African-American'] - Y_A_mean) * T_Y_A.T + Y_mean).T[0,:] test_new[gender_test_i == 'Caucasian'] = ((test[gender_test_i == 'Caucasian'] - Y_C_mean) * T_Y_C.T + Y_mean).T[0,:] Y_TrainFairList.append(train_new) Y_TestFairList.append(test_new) # Algorithm 2, step 4: reshape the dependent pseudo-barycenter to binary variable for logit regression fair_value = np.unique(Y_TrainFairList[0]) Y_prob = (fair_value - np.min(fair_value))/(np.max(fair_value) - np.min(fair_value)) for j in range(0,len(Y_TrainFairList)): for i in range(0,len(fair_value)): Y_TrainFairList[j][Y_TrainFairList[j] == fair_value[i]] = np.random.binomial(size = len(np.where(Y_TrainFairList[j] == fair_value[i])[0]),n = 1,p = Y_prob[i]) Y_TestFairList[j][Y_TestFairList[j] == fair_value[i]] = np.random.binomial(size = len(np.where(Y_TestFairList[j] == fair_value[i])[0]),n = 1,p = Y_prob[i]) # In[4]: # random forest test for the fair representation of data (barycenter pair) RFModelsAUC=[] RFTestPreds=[] test_disc=[] for i in range(0,len(TrainList)): rf=RandomForestClassifier() rf.fit(X_TrainFairList[i],Y_TrainFairList[i]) proba=rf.predict_proba(X_TestFairList[i]) ytrue=TestList[i][Y_features] testauc=roc_auc_score(ytrue, proba[:, 1]) RFModelsAUC.append(testauc) temp=TestList[i][Z_features+X_features+Y_features] temp['pred']=proba[:,1] mean = temp.groupby(Z_features)['pred'].mean() v = mean.values v = v.reshape(len(v),1) ratio_df = pd.DataFrame(v/v.transpose(),index=mean.index,columns=mean.index ) ratio_df_arr=np.asarray(np.abs(1-ratio_df)) maxdisc=np.amax(ratio_df_arr) test_disc.append(maxdisc) RFres_Pseudobary = (RFModelsAUC, RFTestPreds) RFDisc_Pseudobary = test_disc RFModelsAUC, RFDisc_Pseudobary # In[5]: # logistic regression test for the fair representation of data (barycenter pair) LRModelsAUC=[] LRTestPreds=[] test_disc = [] for i in range(0,len(TrainList)): lr=LogisticRegression() lr.fit(X_TrainFairList[i],Y_TrainFairList[i]) proba=lr.predict_proba(X_TestFairList[i]) ytrue=TestList[i][Y_features] testauc=roc_auc_score(ytrue, proba[:, 1]) LRModelsAUC.append(testauc) temp=TestList[i][Z_features+X_features+Y_features] temp['pred']=proba[:,1] mean = temp.groupby(Z_features)['pred'].mean() v = mean.values v = v.reshape(len(v),1) ratio_df = pd.DataFrame(v/v.transpose(),index=mean.index,columns=mean.index ) ratio_df_arr=np.asarray(np.abs(1-ratio_df)) maxdisc=np.amax(ratio_df_arr) test_disc.append(maxdisc) LRres_Pseudobary = (LRModelsAUC, LRTestPreds) LRDisc_Pseudobary = test_disc LRModelsAUC, LRDisc_Pseudobary # ## Estimate the geodesic path from the E(Y|X_z) to the barycenter of the marginal conditional expectations # 1. Compute both geodesic path path from X to X^dash and from Y to Y^dash # 2. Use diagonal argument to estimate the geodesic path from the original E(Y|X) to E(Y^dash|X^dash) on both train and test data sets: X_train/test_path_list, Y_train\test_path_list # In[6]: # Algorithm 1, step 3: estimate of the independent variable (X) geodesic path using McCann interpolation X_train_path_list = [] X_test_path_list = [] T = np.linspace(0,1,50) # discretize time variable T Id = np.identity(7) for i in range(0,len(TrainList)): X_train_path = [] X_test_path = [] train = np.delete(np.array(pd.get_dummies(TrainList[i][X_features])),[4],axis = 1) test = np.delete(np.array(pd.get_dummies(TestList[i][X_features])),[4],axis = 1) gender_train_i = np.delete(np.array(pd.get_dummies(TrainList[i][Z_features])),[1],axis = 1).T[0,:] gender_test_i = np.delete(np.array(pd.get_dummies(TestList[i][Z_features])),[1],axis = 1).T[0,:] for t in range(0,len(T)): train_new = np.random.rand(train.shape[0],train.shape[1]) test_new = np.random.rand(test.shape[0],test.shape[1]) tempt_train = train_new tempt_test = test_new tempt_train[gender_train_i == 1,:] = (1-T[t])*train[gender_train_i == 1,:] + T[t]*((train[gender_train_i == 1,:] - X_A_mean) @ T_X_A.T + X_mean) tempt_train[gender_train_i == 0,:] = (1-T[t])*train[gender_train_i == 0,:] + T[t]*((train[gender_train_i == 0,:] - X_C_mean) @ T_X_C.T + X_mean) tempt_test[gender_test_i == 1,:] = (1-T[t])*test[gender_test_i == 1,:] + T[t]*((test[gender_test_i == 1,:] - X_A_mean) @ T_X_A.T + X_mean) tempt_test[gender_test_i == 0,:] = (1-T[t])*test[gender_test_i == 0,:] + T[t]*((test[gender_test_i == 0,:] - X_C_mean) @ T_X_C.T + X_mean) # Algorithm 1, step 4: merge the corresponding (wrt t) linear interpolation of sensitive variable back to the MacCann interpolation of dependnet variable X_train_path.append(np.concatenate((tempt_train, np.expand_dims(gender_train_i*(1-T[t]), axis=1)),axis = 1)) X_test_path.append(np.concatenate((tempt_test, np.expand_dims(gender_test_i*(1-T[t]), axis=1)),axis = 1)) X_train_path_list.append(X_train_path) X_test_path_list.append(X_test_path) # Algorithm 2, step 3: estimate of the dependnet (Y) geodesic path using McCann interpolation Y_train_path_list = [] Y_test_path_list = [] T = np.linspace(0,1,50) for i in range(0,len(TrainList)): Y_train_path = [] Y_test_path = [] train = np.array(pd.get_dummies(TrainList[i][Y_features])) test = np.array(pd.get_dummies(TestList[i][Y_features])) gender_train_i = np.array(TrainList[i][Z_features]).T[0,:] gender_test_i = np.array(TestList[i][Z_features]).T[0,:] for t in range(0,len(T)): train_new = np.random.rand(len(train.T[0,:])) test_new = np.random.rand(len(test.T[0,:])) tempt_train = train_new tempt_test = test_new tempt_train[gender_train_i == 'African-American'] = ((1 - T[t] + T[t]*T_Y_A)*train[gender_train_i == 'African-American'] + T[t]*(Y_mean - T_Y_A*Y_A_mean)).T[0,:] tempt_train[gender_train_i == 'Caucasian'] = ((1 - T[t] + T[t]*T_Y_C)*train[gender_train_i == 'Caucasian'] + T[t]*(Y_mean - T_Y_C*Y_C_mean)).T[0,:] tempt_test[gender_test_i == 'African-American'] = ((1 - T[t] + T[t]*T_Y_A)*test[gender_test_i == 'African-American'] + T[t]*(Y_mean - T_Y_A*Y_A_mean)).T[0,:] tempt_test[gender_test_i == 'Caucasian'] = ((1 - T[t] + T[t]*T_Y_C)*test[gender_test_i == 'Caucasian'] + T[t]*(Y_mean - T_Y_C*Y_C_mean)).T[0,:] Y_train_path.append(tempt_train) Y_test_path.append(tempt_test) Y_train_path_list.append(Y_train_path) Y_test_path_list.append(Y_test_path) # Algorithm 2, step 4: reshape the dependent pseudo-barycenter to binary variable for logit regression for t in range(0,len(T)): for i in range(0,len(TrainList)): fair_value = np.unique(Y_train_path_list[i][t]) Y_prob = (fair_value - np.min(fair_value))/(np.max(fair_value) -
np.min(fair_value)
numpy.min
from __future__ import print_function ################################################################################################### # Libraries ################################################################################################### import os import numpy as np from pysam import Samfile, Fastafile from Bio import motifs import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from scipy.signal import savgol_filter from scipy.stats import scoreatpercentile from argparse import SUPPRESS import pyx # Internal from rgt.Util import GenomeData, AuxiliaryFunctions from rgt.HINT.signalProcessing import GenomicSignal from rgt.GenomicRegionSet import GenomicRegionSet from rgt.HINT.biasTable import BiasTable def plotting_args(parser): # Parameters Options parser.add_argument("--organism", type=str, metavar="STRING", default="hg19", help=("Organism considered on the analysis. Check our full documentation for all available " "options. All default files such as genomes will be based on the chosen organism " "and the data.config file.")) parser.add_argument("--reads-file", type=str, metavar="FILE", default=None) parser.add_argument("--region-file", type=str, metavar="FILE", default=None) parser.add_argument("--reads-file1", type=str, metavar="FILE", default=None) parser.add_argument("--reads-file2", type=str, metavar="FILE", default=None) parser.add_argument("--motif-file", type=str, metavar="FILE", default=None) parser.add_argument("--bias-table", type=str, metavar="FILE1_F,FILE1_R", default=None) parser.add_argument("--bias-table1", type=str, metavar="FILE1_F,FILE1_R", default=None) parser.add_argument("--bias-table2", type=str, metavar="FILE1_F,FILE1_R", default=None) parser.add_argument("--window-size", type=int, metavar="INT", default=400) # Hidden Options parser.add_argument("--initial-clip", type=int, metavar="INT", default=50, help=SUPPRESS) parser.add_argument("--downstream-ext", type=int, metavar="INT", default=1, help=SUPPRESS) parser.add_argument("--upstream-ext", type=int, metavar="INT", default=0, help=SUPPRESS) parser.add_argument("--forward-shift", type=int, metavar="INT", default=5, help=SUPPRESS) parser.add_argument("--reverse-shift", type=int, metavar="INT", default=-5, help=SUPPRESS) parser.add_argument("--k-nb", type=int, metavar="INT", default=6, help=SUPPRESS) parser.add_argument("--y-lim", type=float, metavar="FLOAT", default=0.3, help=SUPPRESS) # Output Options parser.add_argument("--output-location", type=str, metavar="PATH", default=os.getcwd(), help="Path where the output bias table files will be written.") parser.add_argument("--output-prefix", type=str, metavar="STRING", default=None, help="The prefix for results files.") # plot type parser.add_argument("--seq-logo", default=False, action='store_true') parser.add_argument("--bias-raw-bc-line", default=False, action='store_true') parser.add_argument("--raw-bc-line", default=False, action='store_true') parser.add_argument("--strand-line", default=False, action='store_true') parser.add_argument("--unstrand-line", default=False, action='store_true') parser.add_argument("--bias-line", default=False, action='store_true') parser.add_argument("--atac-dnase-line", default=False, action='store_true') parser.add_argument("--bias-raw-bc-strand-line2", default=False, action='store_true') parser.add_argument("--fragment-raw-size-line", default=False, action='store_true') parser.add_argument("--fragment-bc-size-line", default=False, action='store_true') def plotting_run(args): if args.seq_logo: seq_logo(args) if args.bias_raw_bc_line: bias_raw_bc_strand_line(args) if args.strand_line: strand_line(args) if args.unstrand_line: unstrand_line(args) if args.raw_bc_line: raw_bc_line(args) if args.bias_raw_bc_strand_line2: bias_raw_bc_strand_line2(args) if args.fragment_raw_size_line: fragment_size_raw_line(args) if args.fragment_bc_size_line: fragment_size_bc_line(args) def seq_logo(args): logo_fname = os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix)) pwm_file = os.path.join(args.output_location, "{}.pwm".format(args.output_prefix)) pwm_dict = dict( [("A", [0.0] * args.window_size), ("C", [0.0] * args.window_size), ("G", [0.0] * args.window_size), ("T", [0.0] * args.window_size), ("N", [0.0] * args.window_size)]) genome_data = GenomeData(args.organism) fasta_file = Fastafile(genome_data.get_genome()) bam = Samfile(args.reads_file, "rb") regions = GenomicRegionSet("Peaks") regions.read(args.region_file) for region in regions: for r in bam.fetch(region.chrom, region.initial, region.final): if not r.is_reverse: cut_site = r.pos - 1 p1 = cut_site - int(args.window_size / 2) else: cut_site = r.aend + 1 p1 = cut_site - int(args.window_size / 2) p2 = p1 + args.window_size # Fetching k-mer currStr = str(fasta_file.fetch(region.chrom, p1, p2)).upper() if r.is_reverse: continue for i in range(0, len(currStr)): pwm_dict[currStr[i]][i] += 1 with open(pwm_file, "w") as f: for e in ["A", "C", "G", "T"]: f.write(" ".join([str(int(c)) for c in pwm_dict[e]]) + "\n") pwm = motifs.read(open(pwm_file), "pfm") pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(args.window_size), color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="", show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="", show_fineprint=False, show_ends=False, yaxis_scale=args.y_lim) start = -(args.window_size / 2) end = (args.window_size / 2) - 1 x = np.linspace(start, end, num=args.window_size).tolist() fig = plt.figure(figsize=(8, 2)) ax = fig.add_subplot(111) ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_position(('outward', 15)) ax.tick_params(direction='out') ax.xaxis.set_ticks(map(int, x)) x1 = map(int, x) ax.set_xticklabels(map(str, x1), rotation=90) ax.set_xlabel("Coordinates from Read Start", fontweight='bold') ax.set_ylim([0, args.y_lim]) ax.yaxis.set_ticks([0, args.y_lim]) ax.set_yticklabels([str(0), str(args.y_lim)], rotation=90) ax.set_ylabel("bits", rotation=90) figure_name = os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix)) fig.tight_layout() fig.savefig(figure_name, format="eps", dpi=300) # Creating canvas and printing eps / pdf with merged results output_fname = os.path.join(args.output_location, "{}.eps".format(args.output_prefix)) c = pyx.canvas.canvas() c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0)) c.insert(pyx.epsfile.epsfile(1.5, 1.5, logo_fname, width=18.8, height=3.5)) c.writeEPSfile(output_fname) os.system("epstopdf " + output_fname) os.remove(os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.eps".format(args.output_prefix))) def bias_raw_bc_line(args): signal = GenomicSignal(args.reads_file) signal.load_sg_coefs(slope_window_size=9) bias_table = BiasTable() bias_table_list = args.bias_table.split(",") table = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) genome_data = GenomeData(args.organism) fasta = Fastafile(genome_data.get_genome()) pwm_dict = dict([("A", [0.0] * args.window_size), ("C", [0.0] * args.window_size), ("G", [0.0] * args.window_size), ("T", [0.0] * args.window_size), ("N", [0.0] * args.window_size)]) num_sites = 0 mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(args.motif_file) bam = Samfile(args.reads_file, "rb") mean_signal_bias_f = np.zeros(args.window_size) mean_signal_bias_r = np.zeros(args.window_size) mean_signal_raw = np.zeros(args.window_size) mean_signal_raw_f = np.zeros(args.window_size) mean_signal_raw_r = np.zeros(args.window_size) mean_signal_bc = np.zeros(args.window_size) mean_signal_bc_f = np.zeros(args.window_size) mean_signal_bc_r = np.zeros(args.window_size) motif_len = 0 for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": # Extend by window_size mid = (region.initial + region.final) / 2 p1 = mid - (args.window_size / 2) p2 = mid + (args.window_size / 2) motif_len = region.final - region.initial signal_bias_f, signal_bias_r, raw, raw_f, raw_r, bc, bc_f, bc_r = \ signal.get_bias_raw_bc_signal(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=args.forward_shift, reverse_shift=args.reverse_shift, strand=True) num_sites += 1 mean_signal_bias_f = np.add(mean_signal_bias_f, np.array(signal_bias_f)) mean_signal_bias_r = np.add(mean_signal_bias_r, np.array(signal_bias_r)) mean_signal_raw = np.add(mean_signal_raw, np.array(raw)) mean_signal_raw_f = np.add(mean_signal_raw_f, np.array(raw_f)) mean_signal_raw_r = np.add(mean_signal_raw_r, np.array(raw_r)) mean_signal_bc = np.add(mean_signal_bc, np.array(bc)) mean_signal_bc_f = np.add(mean_signal_bc_f, np.array(bc_f)) mean_signal_bc_r = np.add(mean_signal_bc_r, np.array(bc_r)) # Update pwm aux_plus = 1 dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper() if (region.final - region.initial) % 2 == 0: aux_plus = 0 if region.orientation == "+": for i in range(len(dna_seq)): pwm_dict[dna_seq[i]][i] += 1 mean_signal_bias_f = mean_signal_bias_f / num_sites mean_signal_bias_r = mean_signal_bias_r / num_sites mean_signal_raw = mean_signal_raw / num_sites mean_signal_bc = mean_signal_bc / num_sites mean_signal_bc_f = mean_signal_bc_f / num_sites mean_signal_bc_r = mean_signal_bc_r / num_sites # Output the norm and slope signal output_fname = os.path.join(args.output_location, "{}.txt".format(args.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, mean_signal_bias_f))) + "\n") f.write("\t".join((map(str, mean_signal_bias_r))) + "\n") f.write("\t".join((map(str, mean_signal_raw))) + "\n") f.write("\t".join((map(str, mean_signal_bc))) + "\n") f.close() # Output PWM and create logo pwm_fname = os.path.join(args.output_location, "{}.pwm".format(args.output_prefix)) pwm_file = open(pwm_fname, "w") for e in ["A", "C", "G", "T"]: pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n") pwm_file.close() logo_fname = os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix)) pwm = motifs.read(open(pwm_fname), "pfm") pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(args.window_size), color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="", show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="", show_fineprint=False, show_ends=False) fig, (ax1, ax2, ax3) = plt.subplots(3, figsize=(8, 6)) start = -(args.window_size / 2) end = (args.window_size / 2) - 1 x = np.linspace(start, end, num=args.window_size) if motif_len % 2 == 0: x1 = int(- (motif_len / 2)) x2 = int(motif_len / 2) else: x1 = int(-(motif_len / 2) - 1) x2 = int((motif_len / 2) + 1) ############################################################ # bias signal per strand fp_score = sum(mean_signal_raw[args.window_size / 2 + x1: args.window_size / 2 + x2]) shoulder_l = sum(mean_signal_raw[args.window_size / 2 + x1 - motif_len:args.window_size / 2 + x1]) shoulder_r = sum(mean_signal_raw[args.window_size / 2 + x2:args.window_size / 2 + x2 + motif_len]) sfr = (shoulder_l + shoulder_r) / (2 * fp_score) min_ax1 = min(mean_signal_raw) max_ax1 = max(mean_signal_raw) ax1.plot(x, mean_signal_raw, color='blue', label='Uncorrected') ax1.text(0.15, 0.9, 'n = {}'.format(num_sites), verticalalignment='bottom', horizontalalignment='right', transform=ax1.transAxes, fontweight='bold') ax1.text(0.35, 0.15, 'SFR = {}'.format(round(sfr, 2)), verticalalignment='bottom', horizontalalignment='right', transform=ax1.transAxes, fontweight='bold') ax1.xaxis.set_ticks_position('bottom') ax1.yaxis.set_ticks_position('left') ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) ax1.spines['left'].set_position(('outward', 15)) ax1.spines['bottom'].set_position(('outward', 5)) ax1.tick_params(direction='out') ax1.set_xticks([start, 0, end]) ax1.set_xticklabels([str(start), 0, str(end)]) ax1.set_yticks([min_ax1, max_ax1]) ax1.set_yticklabels([str(round(min_ax1, 2)), str(round(max_ax1, 2))], rotation=90) ax1.set_title(args.output_prefix, fontweight='bold') ax1.set_xlim(start, end) ax1.set_ylim([min_ax1, max_ax1]) ax1.legend(loc="lower right", frameon=False) #################################################################### ##################################################################### # Bias corrected, non-bias corrected (not strand specific) fp_score = sum(mean_signal_bc[args.window_size / 2 + x1: args.window_size / 2 + x2]) shoulder_l = sum(mean_signal_bc[args.window_size / 2 + x1 - motif_len:args.window_size / 2 + x1]) shoulder_r = sum(mean_signal_bc[args.window_size / 2 + x2:args.window_size / 2 + x2 + motif_len]) sfr = (shoulder_l + shoulder_r) / (2 * fp_score) min_ax2 = min(mean_signal_bc) max_ax2 = max(mean_signal_bc) ax2.plot(x, mean_signal_bc, color='red', label='Corrected') ax2.text(0.35, 0.15, 'SFR = {}'.format(round(sfr, 2)), verticalalignment='bottom', horizontalalignment='right', transform=ax2.transAxes, fontweight='bold') ax2.xaxis.set_ticks_position('bottom') ax2.yaxis.set_ticks_position('left') ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.spines['left'].set_position(('outward', 15)) ax2.tick_params(direction='out') ax2.set_xticks([start, 0, end]) ax2.set_xticklabels([str(start), 0, str(end)]) ax2.set_yticks([min_ax2, max_ax2]) ax2.set_yticklabels([str(round(min_ax2, 2)), str(round(max_ax2, 2))], rotation=90) ax2.set_xlim(start, end) ax2.set_ylim([min_ax2, max_ax2]) ax2.legend(loc="lower right", frameon=False) fp_score_f = sum(mean_signal_bc_f[args.window_size / 2 + x1: args.window_size / 2 + x2]) shoulder_l_f = sum(mean_signal_bc_f[args.window_size / 2 + x1 - motif_len:args.window_size / 2 + x1]) shoulder_r_f = sum(mean_signal_bc_f[args.window_size / 2 + x2:args.window_size / 2 + x2 + motif_len]) sfr_f = (shoulder_l_f + shoulder_r_f) / (2 * fp_score_f) fp_score_r = sum(mean_signal_bc_r[args.window_size / 2 + x1: args.window_size / 2 + x2]) shoulder_l_r = sum(mean_signal_bc_r[args.window_size / 2 + x1 - motif_len:args.window_size / 2 + x1]) shoulder_r_r = sum(mean_signal_bc_r[args.window_size / 2 + x2:args.window_size / 2 + x2 + motif_len]) sfr_r = (shoulder_l_r + shoulder_r_r) / (2 * fp_score_r) min_ax3 = min(min(mean_signal_bc_f), min(mean_signal_bc_r)) max_ax3 = max(max(mean_signal_bc_f), max(mean_signal_bc_r)) ax3.plot(x, mean_signal_bc_f, color='purple', label='Forward') ax3.plot(x, mean_signal_bc_r, color='green', label='Reverse') ax3.text(0.35, 0.15, 'SFR_f = {}'.format(round(sfr_f, 2)), verticalalignment='bottom', horizontalalignment='right', transform=ax3.transAxes, fontweight='bold') ax3.text(0.35, 0.05, 'SFR_r = {}'.format(round(sfr_r, 2)), verticalalignment='bottom', horizontalalignment='right', transform=ax3.transAxes, fontweight='bold') ax3.xaxis.set_ticks_position('bottom') ax3.yaxis.set_ticks_position('left') ax3.spines['top'].set_visible(False) ax3.spines['right'].set_visible(False) ax3.spines['left'].set_position(('outward', 15)) ax3.tick_params(direction='out') ax3.set_xticks([start, 0, end]) ax3.set_xticklabels([str(start), 0, str(end)]) ax3.set_yticks([min_ax3, max_ax3]) ax3.set_yticklabels([str(round(min_ax3, 2)), str(round(max_ax3, 2))], rotation=90) ax3.set_xlim(start, end) ax3.set_ylim([min_ax3, max_ax3]) ax3.legend(loc="lower right", frameon=False) ax3.spines['bottom'].set_position(('outward', 40)) ax1.axvline(x=x1, ymin=-0.3, ymax=1, c="black", lw=0.5, ls='dashed', zorder=0, clip_on=False) ax1.axvline(x=x2, ymin=-0.3, ymax=1, c="black", lw=0.5, ls='dashed', zorder=0, clip_on=False) ax2.axvline(x=x1, ymin=-0.5, ymax=1.2, c="black", lw=0.5, ls='dashed', zorder=0, clip_on=False) ax2.axvline(x=x2, ymin=-0.5, ymax=1.2, c="black", lw=0.5, ls='dashed', zorder=0, clip_on=False) ############################################################################### # merge the above figures figure_name = os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="eps", dpi=300) # Creating canvas and printing eps / pdf with merged results output_fname = os.path.join(args.output_location, "{}.eps".format(args.output_prefix)) c = pyx.canvas.canvas() c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0)) c.insert(pyx.epsfile.epsfile(1.45, 0.89, logo_fname, width=18.3, height=1.75)) c.writeEPSfile(output_fname) os.system("epstopdf " + figure_name) os.system("epstopdf " + logo_fname) os.system("epstopdf " + output_fname) os.remove(pwm_fname) os.remove(os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.line.pdf".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.logo.pdf".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.eps".format(args.output_prefix))) def raw_bc_line(args): signal = GenomicSignal(args.reads_file) signal.load_sg_coefs(slope_window_size=9) bias_table = BiasTable() bias_table_list = args.bias_table.split(",") table = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) genome_data = GenomeData(args.organism) fasta = Fastafile(genome_data.get_genome()) pwm_dict = dict([("A", [0.0] * args.window_size), ("C", [0.0] * args.window_size), ("G", [0.0] * args.window_size), ("T", [0.0] * args.window_size), ("N", [0.0] * args.window_size)]) num_sites = 0 mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(args.motif_file) bam = Samfile(args.reads_file, "rb") mean_signal_raw = np.zeros(args.window_size) mean_signal_bc = np.zeros(args.window_size) for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": # Extend by window_size mid = (region.initial + region.final) / 2 p1 = mid - (args.window_size / 2) p2 = mid + (args.window_size / 2) signal_bias_f, signal_bias_r, raw, raw_f, raw_r, bc, bc_f, bc_r = \ signal.get_bias_raw_bc_signal(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=args.forward_shift, reverse_shift=args.reverse_shift, strand=True) num_sites += 1 mean_signal_raw = np.add(mean_signal_raw, np.array(raw)) mean_signal_bc = np.add(mean_signal_bc, np.array(bc)) # Update pwm aux_plus = 1 dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper() if (region.final - region.initial) % 2 == 0: aux_plus = 0 if region.orientation == "+": for i in range(len(dna_seq)): pwm_dict[dna_seq[i]][i] += 1 mean_signal_raw = mean_signal_raw / num_sites mean_signal_bc = mean_signal_bc / num_sites # Output the norm and slope signal output_fname = os.path.join(args.output_location, "{}.txt".format(args.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, mean_signal_raw))) + "\n") f.write("\t".join((map(str, mean_signal_bc))) + "\n") f.close() # Output PWM and create logo pwm_fname = os.path.join(args.output_location, "{}.pwm".format(args.output_prefix)) pwm_file = open(pwm_fname, "w") for e in ["A", "C", "G", "T"]: pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n") pwm_file.close() logo_fname = os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix)) pwm = motifs.read(open(pwm_fname), "pfm") pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(args.window_size), color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="", show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="", show_fineprint=False, show_ends=False) fig = plt.figure(figsize=(8, 4)) ax = fig.add_subplot(111) start = -(args.window_size / 2) end = (args.window_size / 2) - 1 x = np.linspace(start, end, num=args.window_size) ############################################################ min_ = min(min(mean_signal_raw), min(mean_signal_bc)) max_ = max(max(mean_signal_raw), max(mean_signal_bc)) ax.plot(x, mean_signal_raw, color='red', label='Uncorrected') ax.plot(x, mean_signal_bc, color='blue', label='Corrected') ax.text(0.15, 0.9, 'n = {}'.format(num_sites), verticalalignment='bottom', horizontalalignment='right', transform=ax.transAxes, fontweight='bold') ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_position(('outward', 15)) ax.spines['bottom'].set_position(('outward', 5)) ax.tick_params(direction='out') ax.set_xticks([start, 0, end]) ax.set_xticklabels([str(start), 0, str(end)]) ax.set_yticks([min_, max_]) ax.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90) ax.set_title(args.output_prefix, fontweight='bold') ax.set_xlim(start, end) ax.set_ylim(min_, max_) ax.legend(loc="lower right", frameon=False) ax.spines['bottom'].set_position(('outward', 40)) ############################################################################### # merge the above figures figure_name = os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="eps", dpi=300) # Creating canvas and printing eps / pdf with merged results output_fname = os.path.join(args.output_location, "{}.eps".format(args.output_prefix)) c = pyx.canvas.canvas() c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0)) c.insert(pyx.epsfile.epsfile(1.45, 0.89, logo_fname, width=18.3, height=1.75)) c.writeEPSfile(output_fname) os.system("epstopdf " + figure_name) os.system("epstopdf " + logo_fname) os.system("epstopdf " + output_fname) os.remove(pwm_fname) os.remove(os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.line.pdf".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.logo.pdf".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.eps".format(args.output_prefix))) def bias_raw_bc_strand_line(args): signal = GenomicSignal(args.reads_file) signal.load_sg_coefs(slope_window_size=9) bias_table = BiasTable() bias_table_list = args.bias_table.split(",") table = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) genome_data = GenomeData(args.organism) fasta = Fastafile(genome_data.get_genome()) pwm_dict = dict([("A", [0.0] * args.window_size), ("C", [0.0] * args.window_size), ("G", [0.0] * args.window_size), ("T", [0.0] * args.window_size), ("N", [0.0] * args.window_size)]) num_sites = 0 mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(args.motif_file) bam = Samfile(args.reads_file, "rb") mean_signal_bias_f = np.zeros(args.window_size) mean_signal_bias_r = np.zeros(args.window_size) mean_signal_raw = np.zeros(args.window_size) mean_signal_bc = np.zeros(args.window_size) for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": mid = (region.initial + region.final) / 2 p1 = mid - (args.window_size / 2) p2 = mid + (args.window_size / 2) signal_bias_f, signal_bias_r, signal_raw, signal_bc = \ signal.get_bias_raw_bc_signal(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=args.forward_shift, reverse_shift=args.reverse_shift) num_sites += 1 mean_signal_bias_f = np.add(mean_signal_bias_f, np.array(signal_bias_f)) mean_signal_bias_r = np.add(mean_signal_bias_r, np.array(signal_bias_r)) mean_signal_raw = np.add(mean_signal_raw, np.array(signal_raw)) mean_signal_bc = np.add(mean_signal_bc, np.array(signal_bc)) # Update pwm aux_plus = 1 dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper() if (region.final - region.initial) % 2 == 0: aux_plus = 0 dna_seq_rev = AuxiliaryFunctions.revcomp(str(fasta.fetch(region.chrom, p1 + aux_plus, p2 + aux_plus)).upper()) if region.orientation == "+": for i in range(0, len(dna_seq)): pwm_dict[dna_seq[i]][i] += 1 mean_signal_bias_f = mean_signal_bias_f / num_sites mean_signal_bias_r = mean_signal_bias_r / num_sites mean_signal_raw = mean_signal_raw / num_sites mean_signal_bc = mean_signal_bc / num_sites # Output the norm and slope signal output_fname = os.path.join(args.output_location, "{}.txt".format(args.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, mean_signal_bias_f))) + "\n") f.write("\t".join((map(str, mean_signal_bias_r))) + "\n") f.write("\t".join((map(str, mean_signal_raw))) + "\n") f.write("\t".join((map(str, mean_signal_bc))) + "\n") f.close() # Output PWM and create logo pwm_fname = os.path.join(args.output_location, "{}.pwm".format(args.output_prefix)) pwm_file = open(pwm_fname, "w") for e in ["A", "C", "G", "T"]: pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n") pwm_file.close() logo_fname = os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix)) pwm = motifs.read(open(pwm_fname), "pfm") pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(args.window_size), color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="", show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="", show_fineprint=False, show_ends=False) fig, (ax1, ax2) = plt.subplots(2, figsize=(8, 4)) start = -(args.window_size / 2) end = (args.window_size / 2) - 1 x = np.linspace(start, end, num=args.window_size) ############################################################ # bias signal per strand min_ = min(min(mean_signal_bias_f), min(mean_signal_bias_r)) max_ = max(max(mean_signal_bias_f), max(mean_signal_bias_r)) ax1.plot(x, mean_signal_bias_f, color='purple', label='Forward') ax1.plot(x, mean_signal_bias_r, color='green', label='Reverse') ax1.text(0.15, 0.9, 'n = {}'.format(num_sites), verticalalignment='bottom', horizontalalignment='right', transform=ax1.transAxes, fontweight='bold') ax1.xaxis.set_ticks_position('bottom') ax1.yaxis.set_ticks_position('left') ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) ax1.spines['left'].set_position(('outward', 15)) ax1.spines['bottom'].set_position(('outward', 5)) ax1.tick_params(direction='out') ax1.set_xticks([start, 0, end]) ax1.set_xticklabels([str(start), 0, str(end)]) ax1.set_yticks([min_, max_]) ax1.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90) ax1.set_title(args.output_prefix, fontweight='bold') ax1.set_xlim(start, end) ax1.set_ylim([min_, max_]) ax1.legend(loc="upper right", frameon=False) #################################################################### ##################################################################### # Bias corrected, non-bias corrected (not strand specific) min_ = min(min(mean_signal_raw), min(mean_signal_bc)) max_ = max(max(mean_signal_raw), max(mean_signal_bc)) ax2.plot(x, mean_signal_raw, color='blue', label='Uncorrected') ax2.plot(x, mean_signal_bc, color='red', label='Corrected') ax2.xaxis.set_ticks_position('bottom') ax2.yaxis.set_ticks_position('left') ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.spines['left'].set_position(('outward', 15)) ax2.tick_params(direction='out') ax2.set_xticks([start, 0, end]) ax2.set_xticklabels([str(start), 0, str(end)]) ax2.set_yticks([min_, max_]) ax2.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90) ax2.set_xlim(start, end) ax2.set_ylim([min_, max_]) ax2.legend(loc="upper right", frameon=False) ax2.spines['bottom'].set_position(('outward', 40)) ############################################################################### # merge the above figures figure_name = os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="eps", dpi=300) # Creating canvas and printing eps / pdf with merged results output_fname = os.path.join(args.output_location, "{}.eps".format(args.output_prefix)) c = pyx.canvas.canvas() c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0)) c.insert(pyx.epsfile.epsfile(1.51, 0.89, logo_fname, width=18.3, height=1.75)) c.writeEPSfile(output_fname) os.system("epstopdf " + figure_name) os.system("epstopdf " + logo_fname) os.system("epstopdf " + output_fname) os.remove(pwm_fname) os.remove(os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.line.pdf".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.logo.pdf".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.eps".format(args.output_prefix))) def bias_raw_bc_strand_line2(args): signal = GenomicSignal(args.reads_file) signal.load_sg_coefs(slope_window_size=9) bias_table = BiasTable() bias_table_list = args.bias_table.split(",") table = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) genome_data = GenomeData(args.organism) fasta = Fastafile(genome_data.get_genome()) pwm_dict = dict([("A", [0.0] * args.window_size), ("C", [0.0] * args.window_size), ("G", [0.0] * args.window_size), ("T", [0.0] * args.window_size), ("N", [0.0] * args.window_size)]) num_sites = 0 mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(args.motif_file) bam = Samfile(args.reads_file, "rb") mean_signal_bias_f = np.zeros(args.window_size) mean_signal_bias_r = np.zeros(args.window_size) mean_signal_raw = np.zeros(args.window_size) mean_signal_raw_f = np.zeros(args.window_size) mean_signal_raw_r = np.zeros(args.window_size) mean_signal_bc = np.zeros(args.window_size) mean_signal_bc_f = np.zeros(args.window_size) mean_signal_bc_r = np.zeros(args.window_size) for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": mid = (region.initial + region.final) / 2 p1 = mid - (args.window_size / 2) p2 = mid + (args.window_size / 2) signal_bias_f, signal_bias_r, signal_raw, signal_raw_f, signal_raw_r, signal_bc, signal_bc_f, signal_bc_r = \ signal.get_bias_raw_bc_signal(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=args.forward_shift, reverse_shift=args.reverse_shift, strand=True) num_sites += 1 mean_signal_bias_f = np.add(mean_signal_bias_f, np.array(signal_bias_f)) mean_signal_bias_r = np.add(mean_signal_bias_r, np.array(signal_bias_r)) mean_signal_raw = np.add(mean_signal_raw, np.array(signal_raw)) mean_signal_raw_f = np.add(mean_signal_raw_f, np.array(signal_raw_f)) mean_signal_raw_r = np.add(mean_signal_raw_r, np.array(signal_raw_r)) mean_signal_bc = np.add(mean_signal_bc, np.array(signal_bc)) mean_signal_bc_f = np.add(mean_signal_bc_f, np.array(signal_bc_f)) mean_signal_bc_r = np.add(mean_signal_bc_r, np.array(signal_bc_r)) # Update pwm aux_plus = 1 dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper() if (region.final - region.initial) % 2 == 0: aux_plus = 0 dna_seq_rev = AuxiliaryFunctions.revcomp(str(fasta.fetch(region.chrom, p1 + aux_plus, p2 + aux_plus)).upper()) if region.orientation == "+": for i in range(0, len(dna_seq)): pwm_dict[dna_seq[i]][i] += 1 mean_signal_bias_f = mean_signal_bias_f / num_sites mean_signal_bias_r = mean_signal_bias_r / num_sites mean_signal_raw = mean_signal_raw / num_sites mean_signal_raw_f = mean_signal_raw_f / num_sites mean_signal_raw_r = mean_signal_raw_r / num_sites mean_signal_bc = mean_signal_bc / num_sites mean_signal_bc_f = mean_signal_bc_f / num_sites mean_signal_bc_r = mean_signal_bc_r / num_sites # mean_signal_raw = rescaling(mean_signal_raw) # mean_signal_bc = rescaling(mean_signal_bc) # Output the norm and slope signal output_fname = os.path.join(args.output_location, "{}.txt".format(args.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, mean_signal_bias_f))) + "\n") f.write("\t".join((map(str, mean_signal_bias_r))) + "\n") f.write("\t".join((map(str, mean_signal_raw))) + "\n") f.write("\t".join((map(str, mean_signal_raw_f))) + "\n") f.write("\t".join((map(str, mean_signal_raw_r))) + "\n") f.write("\t".join((map(str, mean_signal_bc))) + "\n") f.write("\t".join((map(str, mean_signal_bc_f))) + "\n") f.write("\t".join((map(str, mean_signal_bc_r))) + "\n") f.close() # Output PWM and create logo pwm_fname = os.path.join(args.output_location, "{}.pwm".format(args.output_prefix)) pwm_file = open(pwm_fname, "w") for e in ["A", "C", "G", "T"]: pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n") pwm_file.close() logo_fname = os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix)) pwm = motifs.read(open(pwm_fname), "pfm") pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(args.window_size), color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="", show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="", show_fineprint=False, show_ends=False) # fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, figsize=(8, 8)) fig, (ax1, ax4) = plt.subplots(2, figsize=(8, 4)) start = -(args.window_size / 2) end = (args.window_size / 2) - 1 x = np.linspace(start, end, num=args.window_size) ############################################################ # bias signal per strand min_ = min(min(mean_signal_bias_f), min(mean_signal_bias_r)) max_ = max(max(mean_signal_bias_f), max(mean_signal_bias_r)) ax1.plot(x, mean_signal_bias_f, color='purple', label='Forward') ax1.plot(x, mean_signal_bias_r, color='green', label='Reverse') ax1.text(0.15, 0.9, 'n = {}'.format(num_sites), verticalalignment='bottom', horizontalalignment='right', transform=ax1.transAxes, fontweight='bold') ax1.xaxis.set_ticks_position('bottom') ax1.yaxis.set_ticks_position('left') ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) ax1.spines['left'].set_position(('outward', 15)) ax1.spines['bottom'].set_position(('outward', 5)) ax1.tick_params(direction='out') ax1.set_xticks([start, 0, end]) ax1.set_xticklabels([str(start), 0, str(end)]) ax1.set_yticks([min_, max_]) ax1.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90) ax1.set_title(args.output_prefix, fontweight='bold') ax1.set_xlim(start, end) ax1.set_ylim([min_, max_]) ax1.legend(loc="upper right", frameon=False) #################################################################### ##################################################################### # Bias corrected, non-bias corrected (not strand specific) # min_ = min(min(mean_signal_raw_f), min(mean_signal_raw_r)) # max_ = max(max(mean_signal_raw_f), max(mean_signal_raw_r)) # ax2.plot(x, mean_signal_raw_f, color='red', label='Forward') # ax2.plot(x, mean_signal_raw_r, color='green', label='Reverse') # ax2.xaxis.set_ticks_position('bottom') # ax2.yaxis.set_ticks_position('left') # ax2.spines['top'].set_visible(False) # ax2.spines['right'].set_visible(False) # ax2.spines['left'].set_position(('outward', 15)) # ax2.tick_params(direction='out') # ax2.set_xticks([start, -1, 0, 1, end]) # ax2.set_xticklabels([str(start), -1, 0,1, str(end)]) # ax2.set_yticks([min_, max_]) # ax2.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90) # ax2.set_xlim(start, end) # ax2.set_ylim([min_, max_]) # ax2.legend(loc="upper right", frameon=False) ##################################################################### # Bias corrected and strand specific # min_ = min(min(mean_signal_bc_f), min(mean_signal_bc_r)) # max_ = max(max(mean_signal_bc_f), max(mean_signal_bc_r)) # ax3.plot(x, mean_signal_bc_f, color='red', label='Forward') # ax3.plot(x, mean_signal_bc_r, color='green', label='Reverse') # ax3.xaxis.set_ticks_position('bottom') # ax3.yaxis.set_ticks_position('left') # ax3.spines['top'].set_visible(False) # ax3.spines['right'].set_visible(False) # ax3.spines['left'].set_position(('outward', 15)) # ax3.tick_params(direction='out') # ax3.set_xticks([start, 0, end]) # ax3.set_xticklabels([str(start), 0, str(end)]) # ax3.set_yticks([min_, max_]) # ax3.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90) # ax3.set_xlim(start, end) # ax3.set_ylim([min_, max_]) # ax3.legend(loc="upper right", frameon=False) ##################################################################### # Bias corrected, non-bias corrected (not strand specific) min_ = min(min(mean_signal_raw), min(mean_signal_bc)) max_ = max(max(mean_signal_raw), max(mean_signal_bc)) ax4.plot(x, mean_signal_raw, color='blue', label='Uncorrected') ax4.plot(x, mean_signal_bc, color='red', label='Corrected') ax4.xaxis.set_ticks_position('bottom') ax4.yaxis.set_ticks_position('left') ax4.spines['top'].set_visible(False) ax4.spines['right'].set_visible(False) ax4.spines['left'].set_position(('outward', 15)) ax4.tick_params(direction='out') ax4.set_xticks([start, 0, end]) ax4.set_xticklabels([str(start), 0, str(end)]) ax4.set_yticks([min_, max_]) ax4.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90) ax4.set_xlim(start, end) ax4.set_ylim([min_, max_]) ax4.legend(loc="upper right", frameon=False) ax4.spines['bottom'].set_position(('outward', 40)) ############################################################################### # merge the above figures figure_name = os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="eps", dpi=300) # Creating canvas and printing eps / pdf with merged results output_fname = os.path.join(args.output_location, "{}.eps".format(args.output_prefix)) c = pyx.canvas.canvas() c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0)) c.insert(pyx.epsfile.epsfile(1.45, 0.89, logo_fname, width=18.3, height=1.75)) c.writeEPSfile(output_fname) os.system("epstopdf " + figure_name) os.system("epstopdf " + logo_fname) os.system("epstopdf " + output_fname) os.remove(pwm_fname) os.remove(os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.line.pdf".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.logo.pdf".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.eps".format(args.output_prefix))) def strand_line(args): genomic_signal = GenomicSignal(args.reads_file) genomic_signal.load_sg_coefs(slope_window_size=9) table = None if args.bias_table is not None: bias_table = BiasTable() bias_table_list = args.bias_table.split(",") table = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) genome_data = GenomeData(args.organism) fasta = Fastafile(genome_data.get_genome()) num_sites = 0 mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(args.motif_file) bam = Samfile(args.reads_file, "rb") mean_signal_f = np.zeros(args.window_size) mean_signal_r = np.zeros(args.window_size) pwm_dict = None for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": # Extend by 50 bp mid = (region.initial + region.final) / 2 p1 = mid - (args.window_size / 2) p2 = mid + (args.window_size / 2) if args.bias_table is not None: signal_f, signal_r = genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=args.forward_shift, reverse_shift=args.reverse_shift) else: signal_f, signal_r = genomic_signal.get_raw_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, forward_shift=args.forward_shift, reverse_shift=args.reverse_shift) num_sites += 1 mean_signal_f = np.add(mean_signal_f, signal_f) mean_signal_r = np.add(mean_signal_r, signal_r) # Update pwm if pwm_dict is None: pwm_dict = dict([("A", [0.0] * (p2 - p1)), ("C", [0.0] * (p2 - p1)), ("G", [0.0] * (p2 - p1)), ("T", [0.0] * (p2 - p1)), ("N", [0.0] * (p2 - p1))]) aux_plus = 1 dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper() if (region.final - region.initial) % 2 == 0: aux_plus = 0 dna_seq_rev = AuxiliaryFunctions.revcomp(str(fasta.fetch(region.chrom, p1 + aux_plus, p2 + aux_plus)).upper()) if region.orientation == "+": for i in range(0, len(dna_seq)): pwm_dict[dna_seq[i]][i] += 1 elif region.orientation == "-": for i in range(0, len(dna_seq_rev)): pwm_dict[dna_seq_rev[i]][i] += 1 mean_norm_signal_f = genomic_signal.boyle_norm(mean_signal_f) perc = scoreatpercentile(mean_norm_signal_f, 98) std = np.std(mean_norm_signal_f) mean_norm_signal_f = genomic_signal.hon_norm_atac(mean_norm_signal_f, perc, std) mean_norm_signal_r = genomic_signal.boyle_norm(mean_signal_r) perc = scoreatpercentile(mean_norm_signal_r, 98) std = np.std(mean_norm_signal_r) mean_norm_signal_r = genomic_signal.hon_norm_atac(mean_norm_signal_r, perc, std) mean_slope_signal_f = genomic_signal.slope(mean_norm_signal_f, genomic_signal.sg_coefs) mean_slope_signal_r = genomic_signal.slope(mean_norm_signal_r, genomic_signal.sg_coefs) # Output the norm and slope signal output_fname = os.path.join(args.output_location, "{}.txt".format(args.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, mean_norm_signal_f))) + "\n") f.write("\t".join((map(str, mean_slope_signal_f))) + "\n") f.write("\t".join((map(str, mean_norm_signal_r))) + "\n") f.write("\t".join((map(str, mean_slope_signal_r))) + "\n") f.close() # Output PWM and create logo pwm_fname = os.path.join(args.output_location, "{}.pwm".format(args.output_prefix)) pwm_file = open(pwm_fname, "w") for e in ["A", "C", "G", "T"]: pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n") pwm_file.close() logo_fname = os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix)) pwm = motifs.read(open(pwm_fname), "pfm") pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(args.window_size), color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="", show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="", show_fineprint=False, show_ends=False) start = -(args.window_size / 2) end = (args.window_size / 2) - 1 x = np.linspace(start, end, num=args.window_size) fig = plt.figure(figsize=(8, 4)) ax = fig.add_subplot(111) min_signal = min(min(mean_signal_f), min(mean_signal_r)) max_signal = max(max(mean_signal_f), max(mean_signal_r)) ax.plot(x, mean_signal_f, color='red', label='Forward') ax.plot(x, mean_signal_r, color='green', label='Reverse') ax.set_title(args.output_prefix, fontweight='bold') ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_position(('outward', 15)) ax.tick_params(direction='out') ax.set_xticks([start, 0, end]) ax.set_xticklabels([str(start), 0, str(end)]) ax.set_yticks([min_signal, max_signal]) ax.set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax.set_xlim(start, end) ax.set_ylim([min_signal, max_signal]) ax.legend(loc="upper right", frameon=False) ax.spines['bottom'].set_position(('outward', 40)) figure_name = os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="eps", dpi=300) # Creating canvas and printing eps / pdf with merged results output_fname = os.path.join(args.output_location, "{}.eps".format(args.output_prefix)) c = pyx.canvas.canvas() c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0)) c.insert(pyx.epsfile.epsfile(1.37, 0.89, logo_fname, width=18.5, height=1.75)) c.writeEPSfile(output_fname) os.system("epstopdf " + figure_name) os.system("epstopdf " + logo_fname) os.system("epstopdf " + output_fname) # os.remove(pwm_fname) os.remove(os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.line.pdf".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.logo.pdf".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.eps".format(args.output_prefix))) def unstrand_line(args): genomic_signal = GenomicSignal(args.reads_file) genomic_signal.load_sg_coefs(slope_window_size=9) table = None if args.bias_table is not None: bias_table = BiasTable() bias_table_list = args.bias_table.split(",") table = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) genome_data = GenomeData(args.organism) fasta = Fastafile(genome_data.get_genome()) num_sites = 0 mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(args.motif_file) bam = Samfile(args.reads_file, "rb") mean_signal = np.zeros(args.window_size) pwm_dict = None output_fname = os.path.join(args.output_location, "{}.txt".format(args.output_prefix)) with open(output_fname, "w") as output_f: for region in mpbs_regions: mid = (region.initial + region.final) / 2 p1 = mid - (args.window_size / 2) p2 = mid + (args.window_size / 2) if args.bias_table is not None: signal = genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=args.forward_shift, reverse_shift=args.reverse_shift, strand=False) else: signal = genomic_signal.get_raw_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, forward_shift=args.forward_shift, reverse_shift=args.reverse_shift, strand=False) if region.orientation == "-": signal = np.flip(signal) name = "{}_{}_{}".format(region.chrom, str(region.initial), str(region.final)) output_f.write(name + "\t" + "\t".join(map(str, map(int, signal))) + "\n") num_sites += 1 mean_signal = np.add(mean_signal, signal) # Update pwm if pwm_dict is None: pwm_dict = dict([("A", [0.0] * (p2 - p1)), ("C", [0.0] * (p2 - p1)), ("G", [0.0] * (p2 - p1)), ("T", [0.0] * (p2 - p1)), ("N", [0.0] * (p2 - p1))]) aux_plus = 1 dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper() if (region.final - region.initial) % 2 == 0: aux_plus = 0 dna_seq_rev = AuxiliaryFunctions.revcomp( str(fasta.fetch(region.chrom, p1 + aux_plus, p2 + aux_plus)).upper()) if region.orientation == "+": for i in range(0, len(dna_seq)): pwm_dict[dna_seq[i]][i] += 1 elif region.orientation == "-": for i in range(0, len(dna_seq_rev)): pwm_dict[dna_seq_rev[i]][i] += 1 mean_signal = mean_signal / num_sites # Output PWM and create logo pwm_fname = os.path.join(args.output_location, "{}.pwm".format(args.output_prefix)) pwm_file = open(pwm_fname, "w") for e in ["A", "C", "G", "T"]: pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n") pwm_file.close() logo_fname = os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix)) pwm = motifs.read(open(pwm_fname), "pfm") pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(args.window_size), color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="", show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="", show_fineprint=False, show_ends=False) start = -(args.window_size / 2) end = (args.window_size / 2) - 1 x = np.linspace(start, end, num=args.window_size) fig = plt.figure(figsize=(8, 4)) ax = fig.add_subplot(111) min_signal = min(mean_signal) max_signal = max(mean_signal) ax.plot(x, mean_signal, color='red') ax.set_title(args.output_prefix, fontweight='bold') ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_position(('outward', 15)) ax.tick_params(direction='out') ax.set_xticks([start, 0, end]) ax.set_xticklabels([str(start), 0, str(end)]) ax.set_yticks([min_signal, max_signal]) ax.set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax.set_xlim(start, end) ax.set_ylim([min_signal, max_signal]) ax.legend(loc="upper right", frameon=False) ax.spines['bottom'].set_position(('outward', 40)) figure_name = os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="eps", dpi=300) # Creating canvas and printing eps / pdf with merged results output_fname = os.path.join(args.output_location, "{}.eps".format(args.output_prefix)) c = pyx.canvas.canvas() c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0)) c.insert(pyx.epsfile.epsfile(1.31, 0.89, logo_fname, width=18.5, height=1.75)) c.writeEPSfile(output_fname) os.system("epstopdf " + figure_name) os.system("epstopdf " + logo_fname) os.system("epstopdf " + output_fname) os.remove(pwm_fname) os.remove(os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.line.pdf".format(args.output_prefix))) # os.remove(os.path.join(args.output_location, "{}.logo.pdf".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.eps".format(args.output_prefix))) def fragment_size_raw_line(args): mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(args.motif_file) bam = Samfile(args.reads_file, "rb") signal_f_max_145 = np.zeros(args.window_size) signal_r_max_145 = np.zeros(args.window_size) signal_f_146_307 = np.zeros(args.window_size) signal_r_146_307 = np.zeros(args.window_size) signal_f_min_307 = np.zeros(args.window_size) signal_r_min_307 = np.zeros(args.window_size) signal_f = np.zeros(args.window_size) signal_r = np.zeros(args.window_size) for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": # Extend by 50 bp mid = (region.initial + region.final) / 2 p1 = mid - (args.window_size / 2) p2 = mid + (args.window_size / 2) # Fetch raw signal for read in bam.fetch(region.chrom, p1, p2): # All reads if not read.is_reverse: cut_site = read.pos + args.forward_shift if p1 <= cut_site < p2: signal_f[cut_site - p1] += 1.0 else: cut_site = read.aend + args.reverse_shift - 1 if p1 <= cut_site < p2: signal_r[cut_site - p1] += 1.0 # length <= 145 if abs(read.template_length) <= 145: if not read.is_reverse: cut_site = read.pos + args.forward_shift if p1 <= cut_site < p2: signal_f_max_145[cut_site - p1] += 1.0 else: cut_site = read.aend + args.reverse_shift - 1 if p1 <= cut_site < p2: signal_r_max_145[cut_site - p1] += 1.0 # length > 145 and <= 307 if 145 < abs(read.template_length) <= 307: if not read.is_reverse: cut_site = read.pos + args.forward_shift if p1 <= cut_site < p2: signal_f_146_307[cut_site - p1] += 1.0 else: cut_site = read.aend + args.reverse_shift - 1 if p1 <= cut_site < p2: signal_r_146_307[cut_site - p1] += 1.0 # length > 307 if abs(read.template_length) > 307: if not read.is_reverse: cut_site = read.pos + args.forward_shift if p1 <= cut_site < p2: signal_f_min_307[cut_site - p1] += 1.0 else: cut_site = read.aend + args.reverse_shift - 1 if p1 <= cut_site < p2: signal_r_min_307[cut_site - p1] += 1.0 # Output the norm and slope signal output_fname = os.path.join(args.output_location, "{}.txt".format(args.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, signal_f))) + "\n") f.write("\t".join((map(str, signal_r))) + "\n") f.write("\t".join((map(str, signal_f_max_145))) + "\n") f.write("\t".join((map(str, signal_r_max_145))) + "\n") f.write("\t".join((map(str, signal_f_146_307))) + "\n") f.write("\t".join((map(str, signal_r_146_307))) + "\n") f.write("\t".join((map(str, signal_f_min_307))) + "\n") f.write("\t".join((map(str, signal_r_min_307))) + "\n") f.close() # find out the linker position pos_f_1, pos_r_1, pos_f_2, pos_r_2 = get_linkers_position(signal_f_146_307, signal_r_146_307, signal_f_min_307, signal_r_min_307) p1 = (pos_f_1 - pos_f_2) / 2 + pos_f_2 p2 = p1 + 180 p3 = args.window_size - p2 p4 = args.window_size - p1 fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(8, 8)) start = -(args.window_size / 2) end = (args.window_size / 2) - 1 x = np.linspace(start, end, num=args.window_size) x_ticks = [start, p1 - 500, p2 - 500, 0, p3 - 500, p4 - 500, end] update_axes_for_fragment_size_line(ax1, x, x_ticks, start, end, signal_f, signal_r, p1, p2, p3, p4) update_axes_for_fragment_size_line(ax2, x, x_ticks, start, end, signal_f_max_145, signal_r_max_145, p1, p2, p3, p4) update_axes_for_fragment_size_line(ax3, x, x_ticks, start, end, signal_f_146_307, signal_r_146_307, p1, p2, p3, p4) update_axes_for_fragment_size_line(ax4, x, x_ticks, start, end, signal_f_min_307, signal_r_min_307, p1, p2, p3, p4) figure_name = os.path.join(args.output_location, "{}.pdf".format(args.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="pdf", dpi=300) def fragment_size_bc_line(args): mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(args.motif_file) genomic_signal = GenomicSignal(args.reads_file) genomic_signal.load_sg_coefs(11) bam = Samfile(args.reads_file, "rb") genome_data = GenomeData(args.organism) fasta = Fastafile(genome_data.get_genome()) bias_table = BiasTable() bias_table_list = args.bias_table.split(",") table = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) signal_f_max_145 = np.zeros(args.window_size) signal_r_max_145 = np.zeros(args.window_size) signal_f_146_307 = np.zeros(args.window_size) signal_r_146_307 = np.zeros(args.window_size) signal_f_min_307 = np.zeros(args.window_size) signal_r_min_307 = np.zeros(args.window_size) signal_f = np.zeros(args.window_size) signal_r = np.zeros(args.window_size) for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": mid = (region.initial + region.final) / 2 p1 = mid - (args.window_size / 2) p2 = mid + (args.window_size / 2) # All reads signal_bc_f, signal_bc_r = \ genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=args.forward_shift, reverse_shift=args.reverse_shift, min_length=None, max_length=None, strand=True) # length <= 145 signal_bc_max_145_f, signal_bc_max_145_r = \ genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=args.forward_shift, reverse_shift=args.reverse_shift, min_length=None, max_length=145, strand=True) # length > 145 and <= 307 signal_bc_146_307_f, signal_bc_146_307_r = \ genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=args.forward_shift, reverse_shift=args.reverse_shift, min_length=145, max_length=307, strand=True) # length > 307 signal_bc_min_307_f, signal_bc_min_307_r = \ genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=args.forward_shift, reverse_shift=args.reverse_shift, min_length=307, max_length=None, strand=True) signal_f = np.add(signal_f, np.array(signal_bc_f)) signal_r = np.add(signal_r, np.array(signal_bc_r)) signal_f_max_145 = np.add(signal_f_max_145, np.array(signal_bc_max_145_f)) signal_r_max_145 = np.add(signal_r_max_145, np.array(signal_bc_max_145_r)) signal_f_146_307 = np.add(signal_f_146_307, np.array(signal_bc_146_307_f)) signal_r_146_307 = np.add(signal_r_146_307, np.array(signal_bc_146_307_r)) signal_f_min_307 = np.add(signal_f_min_307, np.array(signal_bc_min_307_f)) signal_r_min_307 = np.add(signal_r_min_307, np.array(signal_bc_min_307_r)) # Output the norm and slope signal output_fname = os.path.join(args.output_location, "{}.txt".format(args.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, signal_f))) + "\n") f.write("\t".join((map(str, signal_r))) + "\n") f.write("\t".join((map(str, signal_f_max_145))) + "\n") f.write("\t".join((map(str, signal_r_max_145))) + "\n") f.write("\t".join((map(str, signal_f_146_307))) + "\n") f.write("\t".join((map(str, signal_r_146_307))) + "\n") f.write("\t".join((map(str, signal_f_min_307))) + "\n") f.write("\t".join((map(str, signal_r_min_307))) + "\n") f.close() # find out the linker position pos_f_1, pos_r_1, pos_f_2, pos_r_2 = get_linkers_position(signal_f_146_307, signal_r_146_307, signal_f_min_307, signal_r_min_307) p1 = (pos_f_1 - pos_f_2) / 2 + pos_f_2 p2 = p1 + 180 p3 = args.window_size - p2 p4 = args.window_size - p1 fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(8, 8)) start = -(args.window_size / 2) end = (args.window_size / 2) - 1 x = np.linspace(start, end, num=args.window_size) x_ticks = [start, p1 - 500, p2 - 500, 0, p3 - 500, p4 - 500, end] update_axes_for_fragment_size_line(ax1, x, x_ticks, start, end, signal_f, signal_r, p1, p2, p3, p4) update_axes_for_fragment_size_line(ax2, x, x_ticks, start, end, signal_f_max_145, signal_r_max_145, p1, p2, p3, p4) update_axes_for_fragment_size_line(ax3, x, x_ticks, start, end, signal_f_146_307, signal_r_146_307, p1, p2, p3, p4) update_axes_for_fragment_size_line(ax4, x, x_ticks, start, end, signal_f_min_307, signal_r_min_307, p1, p2, p3, p4) figure_name = os.path.join(args.output_location, "{}.pdf".format(args.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="pdf", dpi=300) def update_axes_for_fragment_size_line(ax, x, x_ticks, start, end, signal_f, signal_r, p1, p2, p3, p4): max_signal = max(max(signal_f), max(signal_r)) min_signal = min(min(signal_f), min(signal_r)) ax.plot(x, signal_f, color='red', label='Forward') ax.plot(x, signal_r, color='green', label='Reverse') ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_position(('outward', 15)) ax.tick_params(direction='out') ax.set_xticks(x_ticks) ax.set_xticklabels(map(str, x_ticks)) ax.set_xlim(start, end) ax.set_yticks([min_signal, max_signal]) ax.set_yticklabels([str(int(min_signal)), str(int(max_signal))], rotation=90) ax.set_ylim([min_signal, max_signal]) ax.legend().set_visible(False) f_1, r_1 = sum(signal_f[:p1]) / sum(signal_r), sum(signal_r[:p1]) / sum(signal_r) f_2, r_2 = sum(signal_f[p1:p2]) / sum(signal_r), sum(signal_r[p1:p2]) / sum(signal_r) f_3, r_3 = sum(signal_f[p2:500]) / sum(signal_r), sum(signal_r[p2:500]) / sum(signal_r) f_4, r_4 = sum(signal_f[500:p3]) / sum(signal_r), sum(signal_r[500:p3]) / sum(signal_r) f_5, r_5 = sum(signal_f[p3:p4]) / sum(signal_r), sum(signal_r[p3:p4]) / sum(signal_r) f_6, r_6 = sum(signal_f[p4:]) / sum(signal_r), sum(signal_r[p4:]) / sum(signal_r) text_x_1 = ((p1 - 0) / 2.0 + 0) / 1000 text_x_2 = ((p2 - p1) / 2.0 + p1) / 1000 text_x_3 = ((500 - p2) / 2.0 + p2) / 1000 text_x_4 = ((p3 - 500) / 2.0 + 500) / 1000 text_x_5 = ((p4 - p3) / 2.0 + p3) / 1000 text_x_6 = ((1000 - p4) / 2.0 + p4) / 1000 ax.text(text_x_1, 1.0, str(round(f_1, 2)), verticalalignment='center', color='red', horizontalalignment='center', transform=ax.transAxes, fontsize=12) ax.text(text_x_1, 0.9, str(round(r_1, 2)), verticalalignment='center', color='green', horizontalalignment='center', transform=ax.transAxes, fontsize=12) ax.text(text_x_2, 1.0, str(round(f_2, 2)), verticalalignment='center', color='red', horizontalalignment='center', transform=ax.transAxes, fontsize=12) ax.text(text_x_2, 0.9, str(round(r_2, 2)), verticalalignment='center', color='green', horizontalalignment='center', transform=ax.transAxes, fontsize=12) ax.text(text_x_3, 1.0, str(round(f_3, 2)), verticalalignment='center', color='red', horizontalalignment='center', transform=ax.transAxes, fontsize=12) ax.text(text_x_3, 0.9, str(round(r_3, 2)), verticalalignment='center', color='green', horizontalalignment='center', transform=ax.transAxes, fontsize=12) ax.text(text_x_4, 1.0, str(round(f_4, 2)), verticalalignment='center', color='red', horizontalalignment='center', transform=ax.transAxes, fontsize=12) ax.text(text_x_4, 0.9, str(round(r_4, 2)), verticalalignment='center', color='green', horizontalalignment='center', transform=ax.transAxes, fontsize=12) ax.text(text_x_5, 1.0, str(round(f_5, 2)), verticalalignment='center', color='red', horizontalalignment='center', transform=ax.transAxes, fontsize=12) ax.text(text_x_5, 0.9, str(round(r_5, 2)), verticalalignment='center', color='green', horizontalalignment='center', transform=ax.transAxes, fontsize=12) ax.text(text_x_6, 1.0, str(round(f_6, 2)), verticalalignment='center', color='red', horizontalalignment='center', transform=ax.transAxes, fontsize=12) ax.text(text_x_6, 0.9, str(round(r_6, 2)), verticalalignment='center', color='green', horizontalalignment='center', transform=ax.transAxes, fontsize=12) def get_linkers_position(signal_f_146_307, signal_r_146_307, signal_f_min_307, signal_r_min_307): smooth_signal_f_146_307 = savgol_filter(signal_f_146_307, window_length=51, polyorder=2) smooth_signal_r_146_307 = savgol_filter(signal_r_146_307, window_length=51, polyorder=2) smooth_signal_f_min_307 = savgol_filter(signal_f_min_307, window_length=51, polyorder=2) smooth_signal_r_min_307 = savgol_filter(signal_r_min_307, window_length=51, polyorder=2) position_f_1 = np.argmax(smooth_signal_f_146_307[:400]) position_f_2 = np.argmax(smooth_signal_f_min_307[:position_f_1]) position_r_1 = np.argmax(smooth_signal_r_146_307[600:]) + 600 position_r_2 = np.argmax(smooth_signal_r_min_307[position_r_1:]) + position_r_1 return position_f_1, position_r_1, position_f_2, position_r_2 def rescaling(vector): maxN = max(vector) minN = min(vector) return [(e - minN) / (maxN - minN) for e in vector] class Plot: def __init__(self, organism, reads_file, motif_file, window_size, downstream_ext, upstream_ext, forward_shift, reverse_shift, initial_clip, bias_table, k_nb, output_loc, output_prefix): self.organism = organism self.reads_file = reads_file self.motif_file = motif_file self.window_size = window_size self.downstream_ext = downstream_ext self.upstream_ext = upstream_ext self.forward_shift = forward_shift self.reverse_shift = reverse_shift self.initial_clip = initial_clip self.bias_table = bias_table self.k_nb = k_nb self.output_loc = output_loc self.output_prefix = output_prefix def line3(self, bias_table1, bias_table2): signal = GenomicSignal(self.reads_file) signal.load_sg_coefs(slope_window_size=9) bias_table = BiasTable() bias_table_list = bias_table1.split(",") table1 = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) bias_table = BiasTable() bias_table_list = bias_table2.split(",") table2 = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) genome_data = GenomeData(self.organism) fasta = Fastafile(genome_data.get_genome()) pwm_dict = dict([("A", [0.0] * self.window_size), ("C", [0.0] * self.window_size), ("G", [0.0] * self.window_size), ("T", [0.0] * self.window_size), ("N", [0.0] * self.window_size)]) num_sites = 0 mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(self.motif_file) bam = Samfile(self.reads_file, "rb") mean_signal_raw = np.zeros(self.window_size) mean_signal_bc1 = np.zeros(self.window_size) mean_signal_bc2 = np.zeros(self.window_size) for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": # Extend by window_size mid = (region.initial + region.final) / 2 p1 = mid - (self.window_size / 2) p2 = mid + (self.window_size / 2) signal_raw, signal_bc1 = \ self.get_signal3(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table1) signal_raw, signal_bc2 = \ self.get_signal3(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table2) num_sites += 1 mean_signal_raw = np.add(mean_signal_raw, np.array(signal_raw)) mean_signal_bc1 = np.add(mean_signal_bc1, np.array(signal_bc1)) mean_signal_bc2 = np.add(mean_signal_bc2, np.array(signal_bc2)) # Update pwm aux_plus = 1 dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper() if (region.final - region.initial) % 2 == 0: aux_plus = 0 dna_seq_rev = AuxiliaryFunctions.revcomp( str(fasta.fetch(region.chrom, p1 + aux_plus, p2 + aux_plus)).upper()) if region.orientation == "+": for i in range(0, len(dna_seq)): pwm_dict[dna_seq[i]][i] += 1 elif region.orientation == "-": for i in range(0, len(dna_seq_rev)): pwm_dict[dna_seq_rev[i]][i] += 1 mean_signal_raw = mean_signal_raw / num_sites mean_signal_bc1 = mean_signal_bc1 / num_sites mean_signal_bc2 = mean_signal_bc2 / num_sites mean_signal_raw = self.rescaling(mean_signal_raw) mean_signal_bc1 = self.rescaling(mean_signal_bc1) mean_signal_bc2 = self.rescaling(mean_signal_bc2) # Output the norm and slope signal output_fname = os.path.join(self.output_loc, "{}.txt".format(self.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, mean_signal_raw))) + "\n") f.write("\t".join((map(str, mean_signal_bc1))) + "\n") f.write("\t".join((map(str, mean_signal_bc2))) + "\n") f.close() # Output PWM and create logo pwm_fname = os.path.join(self.output_loc, "{}.pwm".format(self.output_prefix)) pwm_file = open(pwm_fname, "w") for e in ["A", "C", "G", "T"]: pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n") pwm_file.close() logo_fname = os.path.join(self.output_loc, "{}.logo.eps".format(self.output_prefix)) pwm = motifs.read(open(pwm_fname), "pfm") pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(self.window_size), color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="", show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="", show_fineprint=False, show_ends=False) fig, (ax1, ax2) = plt.subplots(2) start = -(self.window_size / 2) end = (self.window_size / 2) - 1 x = np.linspace(start, end, num=self.window_size) ############################################################ # bias signal per strand min_ = min(mean_signal_raw) max_ = max(mean_signal_raw) ax1.plot(x, mean_signal_raw, color='red') ax1.xaxis.set_ticks_position('bottom') ax1.yaxis.set_ticks_position('left') ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) ax1.spines['left'].set_position(('outward', 15)) ax1.spines['bottom'].set_position(('outward', 5)) ax1.tick_params(direction='out') ax1.set_xticks([start, 0, end]) ax1.set_xticklabels([str(start), 0, str(end)]) ax1.set_yticks([min_, max_]) ax1.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90) ax1.set_title(self.output_prefix, fontweight='bold') ax1.set_xlim(start, end) ax1.set_ylim([min_, max_]) ax1.legend(loc="upper right", frameon=False) ax1.set_ylabel("Raw Signal", rotation=90, fontweight='bold') #################################################################### ##################################################################### # Bias corrected, non-bias corrected (not strand specific) min_ = min(min(mean_signal_bc1), min(mean_signal_bc2)) max_ = max(max(mean_signal_bc1), max(mean_signal_bc2)) ax2.plot(x, mean_signal_bc1, color='red', label='VOM_8_NonNaked') ax2.plot(x, mean_signal_bc2, color='green', label='KMER_6_NonNaked') ax2.xaxis.set_ticks_position('bottom') ax2.yaxis.set_ticks_position('left') ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.spines['left'].set_position(('outward', 15)) ax2.tick_params(direction='out') ax2.set_xticks([start, 0, end]) ax2.set_xticklabels([str(start), 0, str(end)]) ax2.set_yticks([min_, max_]) ax2.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90) ax2.set_xlim(start, end) ax2.set_ylim([min_, max_]) ax2.legend(loc="lower right", frameon=False) ax2.spines['bottom'].set_position(('outward', 40)) ax2.set_xlabel("Coordinates from Motif Center", fontweight='bold') ax2.set_ylabel("Bias Corrected Signal", rotation=90, fontweight='bold') ################################################################################### ############################################################################### # merge the above figures figure_name = os.path.join(self.output_loc, "{}.line.eps".format(self.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="eps", dpi=300) # Creating canvas and printing eps / pdf with merged results output_fname = os.path.join(self.output_loc, "{}.eps".format(self.output_prefix)) c = pyx.canvas.canvas() c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0)) c.insert(pyx.epsfile.epsfile(2.0, 1.39, logo_fname, width=13.8, height=1.75)) c.writeEPSfile(output_fname) os.system("epstopdf " + figure_name) os.system("epstopdf " + logo_fname) os.system("epstopdf " + output_fname) os.remove(pwm_fname) os.remove(os.path.join(self.output_loc, "{}.line.eps".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.logo.eps".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.line.pdf".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.logo.pdf".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.eps".format(self.output_prefix))) def line4(self): genome_data = GenomeData(self.organism) fasta = Fastafile(genome_data.get_genome()) mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(self.motif_file) bam = Samfile(self.reads_file, "rb") pwm_dict = None signal_raw_f = None signal_raw_r = None num_sites = 0 for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": # Extend by 50 bp mid = (region.initial + region.final) / 2 p1 = mid - (self.window_size / 2) p2 = mid + (self.window_size / 2) # p1 = region.initial - (self.window_size / 2) # p2 = region.final + (self.window_size / 2) size = p2 - p1 if pwm_dict is None: pwm_dict = dict([("A", [0.0] * size), ("C", [0.0] * size), ("G", [0.0] * size), ("T", [0.0] * size), ("N", [0.0] * size)]) if signal_raw_f is None: signal_raw_f = np.zeros(size) if signal_raw_r is None: signal_raw_r = np.zeros(size) # Fetch raw signal for read in bam.fetch(region.chrom, p1, p2): if not read.is_reverse: cut_site = read.pos + self.forward_shift if p1 <= cut_site < p2: signal_raw_f[cut_site - p1] += 1.0 else: cut_site = read.aend + self.reverse_shift - 1 if p1 <= cut_site < p2: signal_raw_r[cut_site - p1] += 1.0 num_sites += 1 # Update pwm aux_plus = 1 dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper() if (region.final - region.initial) % 2 == 0: aux_plus = 0 dna_seq_rev = AuxiliaryFunctions.revcomp(str(fasta.fetch(region.chrom, p1 + aux_plus, p2 + aux_plus)).upper()) if region.orientation == "+": for i in range(0, len(dna_seq)): pwm_dict[dna_seq[i]][i] += 1 elif region.orientation == "-": for i in range(0, len(dna_seq_rev)): pwm_dict[dna_seq_rev[i]][i] += 1 # mean_signal_raw_f = self.rescaling(signal_raw_f) # mean_signal_raw_r = self.rescaling(signal_raw_r) mean_signal_raw_f = signal_raw_f mean_signal_raw_r = signal_raw_r # Output the norm and slope signal output_fname = os.path.join(self.output_loc, "{}.txt".format(self.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, mean_signal_raw_f))) + "\n") f.write("\t".join((map(str, mean_signal_raw_r))) + "\n") f.close() # Output PWM and create logo pwm_fname = os.path.join(self.output_loc, "{}.pwm".format(self.output_prefix)) pwm_file = open(pwm_fname, "w") for e in ["A", "C", "G", "T"]: pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n") pwm_file.close() logo_fname = os.path.join(self.output_loc, "{}.logo.eps".format(self.output_prefix)) pwm = motifs.read(open(pwm_fname), "pfm") pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(size), color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="", show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="", show_fineprint=False, show_ends=False) start = -(size / 2) end = (size / 2) - 1 x = np.linspace(start, end, num=size) fig = plt.figure(figsize=(8, 4)) ax2 = fig.add_subplot(111) min_signal = min(min(mean_signal_raw_f), min(mean_signal_raw_r)) max_signal = max(max(mean_signal_raw_f), max(mean_signal_raw_r)) ax2.plot(x, mean_signal_raw_f, color='red', label='Forward') ax2.plot(x, mean_signal_raw_r, color='green', label='Reverse') ax2.xaxis.set_ticks_position('bottom') ax2.yaxis.set_ticks_position('left') ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.spines['left'].set_position(('outward', 15)) ax2.tick_params(direction='out') ax2.set_title(self.output_prefix, fontweight='bold') ax2.set_xticks([start, 0, end]) ax2.set_xticklabels([str(start), 0, str(end)]) ax2.set_yticks([min_signal, max_signal]) ax2.set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax2.set_xlim(start, end) ax2.set_ylim([min_signal, max_signal]) ax2.legend(loc="upper right", frameon=False) ax2.spines['bottom'].set_position(('outward', 40)) # ax2.set_xlabel("Coordinates from Motif Center", fontweight='bold') # ax2.set_ylabel("Average Signal", rotation=90, fontweight='bold') figure_name = os.path.join(self.output_loc, "{}.line.eps".format(self.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="eps", dpi=300) # Creating canvas and printing eps / pdf with merged results output_fname = os.path.join(self.output_loc, "{}.eps".format(self.output_prefix)) c = pyx.canvas.canvas() c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0)) c.insert(pyx.epsfile.epsfile(1.48, 0.92, logo_fname, width=18.5, height=1.75)) c.writeEPSfile(output_fname) os.system("epstopdf " + figure_name) os.system("epstopdf " + logo_fname) os.system("epstopdf " + output_fname) os.remove(pwm_fname) os.remove(os.path.join(self.output_loc, "{}.line.eps".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.logo.eps".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.line.pdf".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.logo.pdf".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.eps".format(self.output_prefix))) def atac_dnase_bc_line(self, reads_file1, reads_file2, bias_table1, bias_table2): genome_data = GenomeData(self.organism) fasta = Fastafile(genome_data.get_genome()) pwm_dict = dict([("A", [0.0] * self.window_size), ("C", [0.0] * self.window_size), ("G", [0.0] * self.window_size), ("T", [0.0] * self.window_size), ("N", [0.0] * self.window_size)]) bias_table = BiasTable() bias_table_list = bias_table1.split(",") table1 = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) bias_table_list = bias_table2.split(",") table2 = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(self.motif_file) bam_atac = Samfile(reads_file1, "rb") bam_dnase = Samfile(reads_file2, "rb") mean_signal_atac = np.zeros(self.window_size) mean_signal_dnase = np.zeros(self.window_size) num_sites = 0 for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": # Extend by 50 bp mid = (region.initial + region.final) / 2 p1 = mid - (self.window_size / 2) p2 = mid + (self.window_size / 2) # Fetch raw signal signal_atac = self.get_bc_signal(ref=region.chrom, start=p1, end=p2, bam=bam_atac, fasta=fasta, bias_table=table1, forward_shift=5, reverse_shift=-4) signal_dnase = self.get_bc_signal(ref=region.chrom, start=p1, end=p2, bam=bam_dnase, fasta=fasta, bias_table=table2, forward_shift=0, reverse_shift=0) num_sites += 1 mean_signal_atac = np.add(mean_signal_atac, np.array(signal_atac)) mean_signal_dnase = np.add(mean_signal_dnase, np.array(signal_dnase)) # Update pwm aux_plus = 1 dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper() if (region.final - region.initial) % 2 == 0: aux_plus = 0 dna_seq_rev = AuxiliaryFunctions.revcomp(str(fasta.fetch(region.chrom, p1 + aux_plus, p2 + aux_plus)).upper()) if region.orientation == "+": for i in range(0, len(dna_seq)): pwm_dict[dna_seq[i]][i] += 1 elif region.orientation == "-": for i in range(0, len(dna_seq_rev)): pwm_dict[dna_seq_rev[i]][i] += 1 mean_signal_atac = self.rescaling(mean_signal_atac) mean_signal_dnase = self.rescaling(mean_signal_dnase) # Output the norm and slope signal output_fname = os.path.join(self.output_loc, "{}.txt".format(self.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, mean_signal_atac))) + "\n") f.write("\t".join((map(str, mean_signal_dnase))) + "\n") f.close() # Output PWM and create logo pwm_fname = os.path.join(self.output_loc, "{}.pwm".format(self.output_prefix)) pwm_file = open(pwm_fname, "w") for e in ["A", "C", "G", "T"]: pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n") pwm_file.close() logo_fname = os.path.join(self.output_loc, "{}.logo.eps".format(self.output_prefix)) pwm = motifs.read(open(pwm_fname), "pfm") pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(self.window_size), color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="", show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="", show_fineprint=False, show_ends=False) start = -(self.window_size / 2) end = (self.window_size / 2) - 1 x = np.linspace(start, end, num=self.window_size) fig = plt.figure(figsize=(8, 4)) ax2 = fig.add_subplot(111) min_signal = min(min(mean_signal_atac), min(mean_signal_dnase)) max_signal = max(max(mean_signal_atac), max(mean_signal_dnase)) ax2.plot(x, mean_signal_atac, color='red', label='ATAC-seq') ax2.plot(x, mean_signal_dnase, color='green', label='DNase-seq') ax2.xaxis.set_ticks_position('bottom') ax2.yaxis.set_ticks_position('left') ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.spines['left'].set_position(('outward', 15)) ax2.tick_params(direction='out') ax2.set_title(self.output_prefix, fontweight='bold') ax2.set_xticks([start, 0, end]) ax2.set_xticklabels([str(start), 0, str(end)]) ax2.set_yticks([min_signal, max_signal]) ax2.set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax2.set_xlim(start, end) ax2.set_ylim([min_signal, max_signal]) ax2.legend(loc="upper right", frameon=False) # ax2.legend(loc="lower right", frameon=False) ax2.spines['bottom'].set_position(('outward', 40)) figure_name = os.path.join(self.output_loc, "{}.line.eps".format(self.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="eps", dpi=300) # Creating canvas and printing eps / pdf with merged results output_fname = os.path.join(self.output_loc, "{}.eps".format(self.output_prefix)) c = pyx.canvas.canvas() c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0)) c.insert(pyx.epsfile.epsfile(1.51, 0.89, logo_fname, width=18.3, height=1.75)) c.writeEPSfile(output_fname) os.system("epstopdf " + figure_name) os.system("epstopdf " + logo_fname) os.system("epstopdf " + output_fname) os.remove(pwm_fname) os.remove(os.path.join(self.output_loc, "{}.line.eps".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.logo.eps".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.line.pdf".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.logo.pdf".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.eps".format(self.output_prefix))) def get_bc_signal(self, ref, start, end, bam, fasta, bias_table, forward_shift, reverse_shift): # Parameters window = 50 defaultKmerValue = 1.0 # Initialization fBiasDict = bias_table[0] rBiasDict = bias_table[1] k_nb = len(fBiasDict.keys()[0]) p1 = start p2 = end p1_w = p1 - (window / 2) p2_w = p2 + (window / 2) p1_wk = p1_w - int(k_nb / 2.) p2_wk = p2_w + int(k_nb / 2.) currStr = str(fasta.fetch(ref, p1_wk, p2_wk - 1)).upper() currRevComp = AuxiliaryFunctions.revcomp(str(fasta.fetch(ref, p1_wk + 1, p2_wk)).upper()) # Iterating on sequence to create the bias signal signal_bias_f = [] signal_bias_r = [] for i in range(int(k_nb / 2.), len(currStr) - int(k_nb / 2) + 1): fseq = currStr[i - int(k_nb / 2.):i + int(k_nb / 2.)] rseq = currRevComp[len(currStr) - int(k_nb / 2.) - i:len(currStr) + int(k_nb / 2.) - i] try: signal_bias_f.append(fBiasDict[fseq]) except Exception: signal_bias_f.append(defaultKmerValue) try: signal_bias_r.append(rBiasDict[rseq]) except Exception: signal_bias_r.append(defaultKmerValue) # Raw counts signal_raw_f = [0.0] * (p2_w - p1_w) signal_raw_r = [0.0] * (p2_w - p1_w) for read in bam.fetch(ref, p1_w, p2_w): if not read.is_reverse: cut_site = read.pos + self.forward_shift if p1_w <= cut_site < p2_w: signal_raw_f[cut_site - p1_w] += 1.0 else: cut_site = read.aend + self.reverse_shift - 1 if p1_w <= cut_site < p2_w: signal_raw_r[cut_site - p1_w] += 1.0 # Smoothed counts Nf = [] Nr = [] fSum = sum(signal_raw_f[:window]) rSum = sum(signal_raw_r[:window]) fLast = signal_raw_f[0] rLast = signal_raw_r[0] for i in range((window / 2), len(signal_raw_f) - (window / 2)): Nf.append(fSum) Nr.append(rSum) fSum -= fLast fSum += signal_raw_f[i + (window / 2)] fLast = signal_raw_f[i - (window / 2) + 1] rSum -= rLast rSum += signal_raw_r[i + (window / 2)] rLast = signal_raw_r[i - (window / 2) + 1] # Calculating bias and writing to wig file fSum = sum(signal_bias_f[:window]) rSum = sum(signal_bias_r[:window]) fLast = signal_bias_f[0] rLast = signal_bias_r[0] signal_bc = [] for i in range((window / 2), len(signal_bias_f) - (window / 2)): nhatf = Nf[i - (window / 2)] * (signal_bias_f[i] / fSum) nhatr = Nr[i - (window / 2)] * (signal_bias_r[i] / rSum) signal_bc.append(nhatf + nhatr) fSum -= fLast fSum += signal_bias_f[i + (window / 2)] fLast = signal_bias_f[i - (window / 2) + 1] rSum -= rLast rSum += signal_bias_r[i + (window / 2)] rLast = signal_bias_r[i - (window / 2) + 1] return signal_bc def atac_dnase_raw_line(self, reads_file1, reads_file2): genome_data = GenomeData(self.organism) fasta = Fastafile(genome_data.get_genome()) pwm_dict = dict([("A", [0.0] * self.window_size), ("C", [0.0] * self.window_size), ("G", [0.0] * self.window_size), ("T", [0.0] * self.window_size), ("N", [0.0] * self.window_size)]) mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(self.motif_file) bam_atac = Samfile(reads_file1, "rb") bam_dnase = Samfile(reads_file2, "rb") mean_signal_atac = np.zeros(self.window_size) mean_signal_dnase = np.zeros(self.window_size) num_sites = 0 for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": # Extend by 50 bp mid = (region.initial + region.final) / 2 p1 = mid - (self.window_size / 2) p2 = mid + (self.window_size / 2) # Fetch raw signal for read in bam_atac.fetch(region.chrom, p1, p2): if not read.is_reverse: cut_site = read.pos + self.forward_shift if p1 <= cut_site < p2: mean_signal_atac[cut_site - p1] += 1.0 else: cut_site = read.aend + self.reverse_shift - 1 if p1 <= cut_site < p2: mean_signal_atac[cut_site - p1] += 1.0 # Fetch raw signal for read in bam_dnase.fetch(region.chrom, p1, p2): if not read.is_reverse: cut_site = read.pos if p1 <= cut_site < p2: mean_signal_dnase[cut_site - p1] += 1.0 else: cut_site = read.aend - 1 if p1 <= cut_site < p2: mean_signal_dnase[cut_site - p1] += 1.0 num_sites += 1 # Update pwm aux_plus = 1 dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper() if (region.final - region.initial) % 2 == 0: aux_plus = 0 dna_seq_rev = AuxiliaryFunctions.revcomp(str(fasta.fetch(region.chrom, p1 + aux_plus, p2 + aux_plus)).upper()) if region.orientation == "+": for i in range(0, len(dna_seq)): pwm_dict[dna_seq[i]][i] += 1 elif region.orientation == "-": for i in range(0, len(dna_seq_rev)): pwm_dict[dna_seq_rev[i]][i] += 1 mean_signal_atac = self.rescaling(mean_signal_atac) mean_signal_dnase = self.rescaling(mean_signal_dnase) # Output the norm and slope signal output_fname = os.path.join(self.output_loc, "{}.txt".format(self.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, mean_signal_atac))) + "\n") f.write("\t".join((map(str, mean_signal_dnase))) + "\n") f.close() # Output PWM and create logo pwm_fname = os.path.join(self.output_loc, "{}.pwm".format(self.output_prefix)) pwm_file = open(pwm_fname, "w") for e in ["A", "C", "G", "T"]: pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n") pwm_file.close() logo_fname = os.path.join(self.output_loc, "{}.logo.eps".format(self.output_prefix)) pwm = motifs.read(open(pwm_fname), "pfm") pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(self.window_size), color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="", show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="", show_fineprint=False, show_ends=False) start = -(self.window_size / 2) end = (self.window_size / 2) - 1 x = np.linspace(start, end, num=self.window_size) fig = plt.figure(figsize=(8, 4)) ax2 = fig.add_subplot(111) min_signal = min(min(mean_signal_atac), min(mean_signal_dnase)) max_signal = max(max(mean_signal_atac), max(mean_signal_dnase)) ax2.plot(x, mean_signal_atac, color='red', label='ATAC-seq') ax2.plot(x, mean_signal_dnase, color='green', label='DNase-seq') ax2.xaxis.set_ticks_position('bottom') ax2.yaxis.set_ticks_position('left') ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.spines['left'].set_position(('outward', 15)) ax2.tick_params(direction='out') ax2.set_title(self.output_prefix, fontweight='bold') ax2.set_xticks([start, 0, end]) ax2.set_xticklabels([str(start), 0, str(end)]) ax2.set_yticks([min_signal, max_signal]) ax2.set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax2.set_xlim(start, end) ax2.set_ylim([min_signal, max_signal]) ax2.legend(loc="upper right", frameon=False) ax2.spines['bottom'].set_position(('outward', 40)) figure_name = os.path.join(self.output_loc, "{}.line.eps".format(self.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="eps", dpi=300) # Creating canvas and printing eps / pdf with merged results output_fname = os.path.join(self.output_loc, "{}.eps".format(self.output_prefix)) c = pyx.canvas.canvas() c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0)) c.insert(pyx.epsfile.epsfile(1.51, 0.89, logo_fname, width=18.3, height=1.75)) c.writeEPSfile(output_fname) os.system("epstopdf " + figure_name) os.system("epstopdf " + logo_fname) os.system("epstopdf " + output_fname) os.remove(pwm_fname) os.remove(os.path.join(self.output_loc, "{}.line.eps".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.logo.eps".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.line.pdf".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.logo.pdf".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.eps".format(self.output_prefix))) def fragment_size_raw_line(self): mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(self.motif_file) bam = Samfile(self.reads_file, "rb") signal_f_max_145 = np.zeros(self.window_size) signal_r_max_145 = np.zeros(self.window_size) signal_f_146_307 = np.zeros(self.window_size) signal_r_146_307 = np.zeros(self.window_size) signal_f_min_307 = np.zeros(self.window_size) signal_r_min_307 = np.zeros(self.window_size) signal_f = np.zeros(self.window_size) signal_r = np.zeros(self.window_size) for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": # Extend by 50 bp mid = (region.initial + region.final) / 2 p1 = mid - (self.window_size / 2) p2 = mid + (self.window_size / 2) # Fetch raw signal for read in bam.fetch(region.chrom, p1, p2): # All reads if not read.is_reverse: cut_site = read.pos + self.forward_shift if p1 <= cut_site < p2: signal_f[cut_site - p1] += 1.0 else: cut_site = read.aend + self.reverse_shift - 1 if p1 <= cut_site < p2: signal_r[cut_site - p1] += 1.0 # length <= 145 if abs(read.template_length) <= 145: if not read.is_reverse: cut_site = read.pos + self.forward_shift if p1 <= cut_site < p2: signal_f_max_145[cut_site - p1] += 1.0 else: cut_site = read.aend + self.reverse_shift - 1 if p1 <= cut_site < p2: signal_r_max_145[cut_site - p1] += 1.0 # length > 145 and <= 307 if 145 < abs(read.template_length) <= 307: if not read.is_reverse: cut_site = read.pos + self.forward_shift if p1 <= cut_site < p2: signal_f_146_307[cut_site - p1] += 1.0 else: cut_site = read.aend + self.reverse_shift - 1 if p1 <= cut_site < p2: signal_r_146_307[cut_site - p1] += 1.0 # length > 307 if abs(read.template_length) > 307: if not read.is_reverse: cut_site = read.pos + self.forward_shift if p1 <= cut_site < p2: signal_f_min_307[cut_site - p1] += 1.0 else: cut_site = read.aend + self.reverse_shift - 1 if p1 <= cut_site < p2: signal_r_min_307[cut_site - p1] += 1.0 # Output the norm and slope signal output_fname = os.path.join(self.output_loc, "{}.txt".format(self.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, signal_f))) + "\n") f.write("\t".join((map(str, signal_r))) + "\n") f.write("\t".join((map(str, signal_f_max_145))) + "\n") f.write("\t".join((map(str, signal_r_max_145))) + "\n") f.write("\t".join((map(str, signal_f_146_307))) + "\n") f.write("\t".join((map(str, signal_r_146_307))) + "\n") f.write("\t".join((map(str, signal_f_min_307))) + "\n") f.write("\t".join((map(str, signal_r_min_307))) + "\n") f.close() # find out the linker position pos_f_1, pos_r_1, pos_f_2, pos_r_2 = self.get_linkers_position(signal_f_146_307, signal_r_146_307, signal_f_min_307, signal_r_min_307) p1 = (pos_f_1 - pos_f_2) / 2 + pos_f_2 p2 = p1 + 180 p3 = self.window_size - p2 p4 = self.window_size - p1 fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(8, 8)) start = -(self.window_size / 2) end = (self.window_size / 2) - 1 x = np.linspace(start, end, num=self.window_size) x_ticks = [start, p1 - 500, p2 - 500, 0, p3 - 500, p4 - 500, end] self.update_axes_for_fragment_size_line(ax1, x, x_ticks, start, end, signal_f, signal_r, p1, p2, p3, p4) self.update_axes_for_fragment_size_line(ax2, x, x_ticks, start, end, signal_f_max_145, signal_r_max_145, p1, p2, p3, p4) self.update_axes_for_fragment_size_line(ax3, x, x_ticks, start, end, signal_f_146_307, signal_r_146_307, p1, p2, p3, p4) self.update_axes_for_fragment_size_line(ax4, x, x_ticks, start, end, signal_f_min_307, signal_r_min_307, p1, p2, p3, p4) figure_name = os.path.join(self.output_loc, "{}.pdf".format(self.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="pdf", dpi=300) def fragment_size_bc_line(self, bias_table_files): mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(self.motif_file) genomic_signal = GenomicSignal(self.reads_file) genomic_signal.load_sg_coefs(11) bam = Samfile(self.reads_file, "rb") genome_data = GenomeData(self.organism) fasta = Fastafile(genome_data.get_genome()) bias_table = BiasTable() bias_table_list = bias_table_files.split(",") table = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) signal_f_max_145 = np.zeros(self.window_size) signal_r_max_145 = np.zeros(self.window_size) signal_f_146_307 = np.zeros(self.window_size) signal_r_146_307 = np.zeros(self.window_size) signal_f_min_307 = np.zeros(self.window_size) signal_r_min_307 = np.zeros(self.window_size) signal_f = np.zeros(self.window_size) signal_r = np.zeros(self.window_size) for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": mid = (region.initial + region.final) / 2 p1 = mid - (self.window_size / 2) p2 = mid + (self.window_size / 2) # All reads signal_bc_f, signal_bc_r = \ genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=self.forward_shift, reverse_shift=self.reverse_shift, min_length=None, max_length=None, strand=True) # length <= 145 signal_bc_max_145_f, signal_bc_max_145_r = \ genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=self.forward_shift, reverse_shift=self.reverse_shift, min_length=None, max_length=145, strand=True) # length > 145 and <= 307 signal_bc_146_307_f, signal_bc_146_307_r = \ genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=self.forward_shift, reverse_shift=self.reverse_shift, min_length=145, max_length=307, strand=True) # length > 307 signal_bc_min_307_f, signal_bc_min_307_r = \ genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=self.forward_shift, reverse_shift=self.reverse_shift, min_length=307, max_length=None, strand=True) signal_f = np.add(signal_f,
np.array(signal_bc_f)
numpy.array
# -*- coding: utf-8 -*- """ weighted2D.py Contains functions to perform weighted least squares linear fit when there is error in both the x and y directions Reference: B. Reed "Linear least-squares fits with errors in both coordinates. II: Comments on parameter variances", Am. J. Phys, 60, 1992 """ def mfunc(m, x_in, y_in): # MFUNC - function to be minimized in order to find best slope import numpy as np # Separate x and y from their weights x = x_in[:,0] y = y_in[:,0] Wxi = x_in[:,1] Wyi = y_in[:,1] # Calculate weight for each data point Wi = Wxi*Wyi/(m**2*Wyi+Wxi) # Eq 8 # Weighted means and deviations from weighted means xbar = np.sum(Wi*x)/np.sum(Wi) # Eq 11 ybar = np.sum(Wi*y)/np.sum(Wi) # Eq 12 U = x-xbar # Eq 9 V = y-ybar # Eq 10 # Minimization function (eq 19 from paper) g = (m**2*np.sum((Wi**2)*U*V/Wxi) + m*np.sum((Wi**2)*((U**2)/Wyi - (V**2)/Wxi)) - np.sum((Wi**2)*U*V/Wyi)) g = g**2 return g def wls2d(x, y, delx, dely): """ WLS2D Calculates the weighted least squares fit to a straight line when there are errors in both the x and y directions. Reference: B. Reed "Linear least-squares fits with errors in both coordinates. II: Comments on parameter variances", Am. J. Phys, 60, 1992 fitparams = wls2d(x, y, delx, dely, flag); INPUTS x vector of independent data points y vector of dependent data points delx vector of uncertainties/errors in x points dely vector of uncertainties/errors in y points OUTPUT fitparams vector of fit parameters fitparams[0] best fit slope fitparams[1] best fit y intercept fitparams[2] uncertainty in slope fitparams[3] uncertainty in y-intercept Note: equation numbers from <NAME>'s paper """ import numpy as np from numpy.matlib import repmat from scipy.optimize import fmin N = len(x) # Calculate weights and weighted means Wxi = 1/(delx**2) Wyi = 1/(dely**2) # Force vectors to be column vectors x.shape = (N,1) y.shape = (N,1) Wxi.shape = (N,1) Wyi.shape = (N,1) # Add weights as second columns to x and y xWxi =
np.append(x, Wxi, axis=1)
numpy.append