prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
# -*- coding: utf-8 -*- """ Created on Tue Dec 7 16:36:44 2021 @author: <NAME> Distribution and use is not permitted with the knowledge of the author """ import tensorflow as tf import numpy as np from matplotlib import pyplot as plt import os from scipy.interpolate import make_interp_spline """ Control parameters and NN intitilaisaions """ Re_tau1 = [180, 550, 1000, 2000] loss_tol = 1e-20 dummy_idx = 60 layers = [1]+[30]*3 +[2] #DNN layers num_iter = 60000 #max DNN iteations print_skip = 1000 #printing NN outpluts after every "nth" iteration AdaAF = True AdaN = 5. Ini_a = 1./AdaN #----------------------------------------------------------------------------------------------------------------- """ Get DNS data and Spline fitting """ for Re_tau in Re_tau1: dummy_idx += 2 if Re_tau == 180: U_tau = 0.57231059E-01 nu = 1/0.32500000E+04 #rho = 0.834 #rho_150C data = np.loadtxt('DNS_data_channel/ReTau='+np.str(Re_tau)+'.txt') #half channel data y_plus, U_plus, uv_plus, uu_plus, vv_plus = data[:,1], data[:,2], data[:,10], data[:,3], data[:,4] elif Re_tau == 550: U_tau = 0.48904658E-01 nu = 1/0.11180000E+05 data = np.loadtxt('DNS_data_channel/ReTau='+np.str(Re_tau)+'.txt') #half channel data y_plus, U_plus, uv_plus, uu_plus, vv_plus = data[:,1], data[:,2], data[:,10], data[:,3], data[:,4] elif Re_tau == 950: Re_tau = 950 U_tau = 0.45390026E-01 nu = 1/0.20580000E+05 data = np.loadtxt('DNS_data_channel/ReTau='+np.str(Re_tau)+'.txt') #half channel data y_plus, U_plus, uv_plus, uu_plus, vv_plus = data[:,1], data[:,2], data[:,10], data[:,3], data[:,4] elif Re_tau == 1000: U_tau = 0.0499 nu = 5E-5 dPdx = 0.0025 #import data data = np.loadtxt('DNS_data_channel/ReTau='+np.str(Re_tau)+'.txt') #half channel data y_plus, U_plus, uv_plus, uu_plus, vv_plus = data[:,0], data[:,1], data[:,2], data[:,3], data[:,4] elif Re_tau == 2000: U_tau = 0.41302030E-01 nu = 1/0.48500000E+05 #rho = (1.026 + 0.994) / 2 #rho_160F + rho_180F / 2 data = np.loadtxt('DNS_data_channel/ReTau='+np.str(Re_tau)+'.txt') #half channel data y_plus, U_plus, uv_plus, uu_plus, vv_plus = data[:,1], data[:,2], data[:,10], data[:,3], data[:,4] elif Re_tau == 5200: U_tau = 4.14872e-02 nu = 8.00000e-06 #import data data = np.loadtxt('DNS_data_channel/ReTau='+np.str(Re_tau)+'.txt') #half channel data y_plus, U_plus = data[:,1], data[:,2] else: raise "Valid Re_tau = 180, 550, 950, 1000, 2000, 5200" new_Re_tau = y_plus[-1] dPdx_plus = -1/ new_Re_tau #Curve fitting shape = U_plus.shape shape = shape[0] U = np.zeros((shape), dtype = "float64") uv = np.zeros((shape), dtype = "float64") spl = make_interp_spline(y_plus, U_plus) spl2 = make_interp_spline(y_plus, uv_plus) dUdy_plus = (U_plus[1:] - U_plus[:-1]) / (y_plus[1:] - y_plus[:-1]) yp_train = np.linspace(0, new_Re_tau, num=new_Re_tau*3, endpoint = True) num_training_pts = yp_train.shape num_training_pts = num_training_pts[0] #----------------------------------------------------------------------------------------------------------------- """ Neural Network 1. Full connected architechure """ def xavier_init(size): # weight intitailing in_dim = size[0] out_dim = size[1] xavier_stddev = np.sqrt(2.0/(in_dim + out_dim)) #variable creatuion inn tensor flow - intilatisation return tf.Variable(tf.truncated_normal([in_dim, out_dim], stddev=xavier_stddev,dtype=tf.float64,seed=1704), dtype=tf.float64) """A fully-connected NN""" def DNN(X, layers,weights,biases): L = len(layers) H = X for l in range(0,L-2): # (X*w(X*w + b) + b)...b) Full conected neural network W = weights[l] b = biases[l] #H = tf.nn.tanh(tf.add(tf.matmul(H, W), b)) H = tf.tanh(AdaN*a*tf.add(tf.matmul(H, W), b) )# H - activation function? #H = tf.tanh(a*tf.add(tf.matmul(H, W), b)) #H = tf.nn.tan(tf.add(tf.matmul(H, W), b)) #the loops are not in the same hirecachy as the loss functions W = weights[-1] b = biases[-1] Y = tf.add(tf.matmul(H, W), b) # Y - output - final yayer return Y if AdaAF: a = tf.Variable(Ini_a, dtype=tf.float64) else: a = tf.constant(Ini_a, dtype=tf.float64) L = len(layers) weights = [xavier_init([layers[l], layers[l+1]]) for l in range(0, L-1)] biases = [tf.Variable( tf.zeros((1, layers[l+1]),dtype=tf.float64)) for l in range(0, L-1)] #----------------------------------------------------------------------------------------------------------------- dnn_out = DNN((yp_train.reshape(-1,1)), layers, weights, biases) #fractional order - aplha U_train = dnn_out[:,0] uv_train = -tf.abs(dnn_out[:,1]) rhs = dPdx_plus*yp_train + 1 #yp_train = tf.stack(yp_train) #U_x_train = tf.gradients(U_train, yp_train)[0] U_x_train = (U_train[1:] - U_train[:-1])/ (yp_train[1:] - yp_train[:-1]) eq1 = U_x_train - uv_train[1:] U_loss = tf.square(U_train[0] - U_plus[0]) + tf.square(U_train[-1] - U_plus[-1]) uv_loss = tf.square(uv_train[0] - uv_plus[0]) + tf.square(uv_train[-1] - uv_plus[-1]) loss = 100*tf.reduce_mean(tf.abs(eq1 - rhs[1:])) + U_loss + uv_loss optimizer = tf.train.AdamOptimizer(learning_rate=1.0E-4).minimize(loss) loss_max = 1.0e16 lss = [] os.mkdir('raw_results/Re_tau ='+np.str(Re_tau)+'_coeff-aux-pts_beta='+np.str(dummy_idx)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(num_iter+1): sess.run(optimizer) loss_val = sess.run(loss) lss.append([i, loss_val]) #if i % print_skip == 0: if loss_val > loss_tol: if i % print_skip == 0: U_val = np.array(sess.run(U_train)) uv_val = np.array(sess.run(uv_train)) loss_val = sess.run(loss) print("loss = "+np.str(loss_val)+"; iter ="+np.str(i)) fig= plt.figure() plt.semilogx (yp_train.reshape((-1,1)), U_val.reshape(-1)/np.max(U_plus), 'r', label = "U_val") plt.semilogx (y_plus.reshape((-1,1)), U_plus/np.max(U_plus) , 'k--', label = "U_dns") plt.semilogx (yp_train.reshape((-1,1)), uv_val.reshape(-1), 'g', label = "uv_val") plt.semilogx (y_plus.reshape((-1,1)), uv_plus , 'b--', label = "uv_dns") plt.legend() plt.xlabel("y+") plt.ylabel("U(y+)/uv(y+)") #plt.title('Couette Flow Re_tau ='+np.str(Re_tau)+'_coeff-aux-pts_beta='+np.str(dummy_idx)) plt.savefig('raw_results/Re_tau ='+np.str(Re_tau)+'_coeff-aux-pts_beta='+
np.str(dummy_idx)
numpy.str
from dataclasses import dataclass import xarray as xr import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap import numpy as np from typing import List from src.configure import params_from_file from src.analysis import load_data, relative_improvement from src.evaluation_geographic import GeographicValidation from src.evaluation_plots import plot_histogram from src.inference import Mask @dataclass class ScoreData(): percentile: xr.DataArray = None ifs: xr.DataArray = None dnn: xr.DataArray = None class PlotSpatialHSSScores(): def __init__(self, data: ScoreData, percentile: float, configs: dict, out_path: str, plot_percentiles=True): self.data = data self.configs = configs self.percentile = percentile self.mask_threshold = -1 self.fname = f'{out_path}geographic_{percentile}th_percentiles_and_hss.png' self.in_path = params_from_file('paths') self.plot_percentiles = plot_percentiles self.figsize = (19,10) def get_coordinates(self): ds = xr.open_dataset(f'{self.in_path.dataset_path}/{self.in_path.dataset_training}') self.lats = ds.latitude self.lons = ds.longitude def plot_geographic_percentiles(self): eval = GeographicValidation(self.lats, self.lons, orography_flag=False, mask_threshold=None, clean_threshold=None, show_coordinates=False) data = self.data.percentile eval.plot_single('Percentile', data, data, configs=self.configs, single_plot=False) def plot_ifs_geographic_hss_scores(self): eval = GeographicValidation(self.lats, self.lons, orography_flag=False, mask_threshold=self.mask_threshold, clean_threshold=None, show_coordinates=False ) metric_name = 'HSS' data = self.data.ifs self.configs['HSS']['title'] = None self.configs['HSS']['cbar_title'] = 'IFS HSS' eval.plot_single(metric_name, data, data, configs=self.configs, single_plot=False) def plot_hss_geographic_hss_scores(self): eval = GeographicValidation(self.lats, self.lons, orography_flag=False, mask_threshold=self.mask_threshold, clean_threshold=None, show_coordinates=False ) metric_name = 'HSS' self.configs['HSS']['title'] = None self.configs['HSS']['cbar_title'] = 'DNN (WMSE-MS-SSIM) HSS' data = self.data.dnn eval.plot_single(metric_name, data, data, configs=self.configs, single_plot=False) def plot(self): self.get_coordinates() plt.rcParams.update({'font.size': 11}) if self.plot_percentiles: plt.figure(figsize=self.figsize, dpi=300) ax1 = plt.subplot(311) ax1.annotate("a", ha="center", va="center", size=13, xy=(0.985, 0.945), xycoords=ax1, bbox=dict(boxstyle="square,pad=0.3", fc="white", ec="k", lw=1)) self.plot_geographic_percentiles() else: plt.figure(figsize=self.figsize, dpi=300) if self.plot_percentiles: ax2 = plt.subplot(312) annotate = "b" else: ax2 = plt.subplot(211) annotate = "a" ax2.annotate(annotate, ha="center", va="center", size=13, xy=(0.985, 0.945), xycoords=ax2, bbox=dict(boxstyle="square,pad=0.3", fc="white", ec="k", lw=1)) self.plot_ifs_geographic_hss_scores() if self.plot_percentiles: ax3 = plt.subplot(313) annotate = "c" else: ax3 = plt.subplot(212) annotate = "b" ax3.annotate(annotate, ha="center", va="center", size=13, xy=(0.985, 0.945), xycoords=ax3, bbox=dict(boxstyle="square,pad=0.3", fc="white", ec="k", lw=1)) self.plot_hss_geographic_hss_scores() plt.tight_layout() if self.fname is not None: print(self.fname) plt.savefig(self.fname, dpi=300, format='png', bbox_inches='tight') plt.show() class PlotSingleFrames(): def __init__(self, dnn_data, ifs_data, trmm_data, timestamps=['2012-07-16T00', '2013-07-16T00', '2014-07-16T00']): self.dnn_data = dnn_data self.ifs_data = ifs_data self.trmm_data = trmm_data self.min_precipitation_threshold_in_mm_per_3hours = 0.1 path = '/path/to/training_dataset' self.ds = xr.open_dataset(path, chunks={'time': 1}) self.lats = self.ds.latitude self.lons = self.ds.longitude self.color_map = 'YlGnBu' self.vmin = 0 self.vmax = 11.5 self.timestamps = timestamps self.fname = f'/path/to/figures/single_frames.png' def get_time_indeces(self): first_test_set_index = np.where(self.ds.time == np.datetime64(f'2012-06-01T00:00:00.000000000'))[0][0] index_2012 = np.where(self.ds.time == np.datetime64(f'{self.timestamps[0]}:00:00.000000000'))[0][0] - first_test_set_index index_2013 = np.where(self.ds.time == np.datetime64(f'{self.timestamps[1]}:00:00.000000000'))[0][0] - first_test_set_index index_2014 = np.where(self.ds.time == np.datetime64(f'{self.timestamps[2]}:00:00.000000000'))[0][0] - first_test_set_index self.time_idx = [index_2012, index_2013, index_2014] def get_data(self): self.get_time_indeces() self.dnn_frames = [] self.ifs_frames = [] self.trmm_frames = [] for t in self.time_idx: self.dnn_frames.append(np.where(self.dnn_data[t] < self.min_precipitation_threshold_in_mm_per_3hours, 0, self.dnn_data[t])) self.ifs_frames.append(np.where(self.ifs_data[t] < self.min_precipitation_threshold_in_mm_per_3hours, 0, self.ifs_data[t])) self.trmm_frames.append(np.where(self.trmm_data[t] < self.min_precipitation_threshold_in_mm_per_3hours, 0, self.trmm_data[t])) def single_plot(self, data, show_cbar=True, show_latitude_labels=True, show_longitude_labels=True, ): m = Basemap(llcrnrlon=self.lons[0], llcrnrlat=self.lats[0], urcrnrlon=self.lons[-1], urcrnrlat=self.lats[-1], projection='merc', lon_0=0, lat_0=20, resolution='c') m.drawparallels([-30, 0, 30], labels=[show_latitude_labels, 0, 0, 0], linewidth=.5) m.drawmeridians([-120, -60, 0, 60, 120], labels=[0, 0, 0, show_longitude_labels], linewidth=.5) m.drawcoastlines() Lon, Lat = np.meshgrid(self.lons, self.lats) x, y = m(Lon, Lat) m.pcolormesh(x, y, data, vmin=self.vmin, vmax=self.vmax, cmap=self.color_map) if show_cbar: plt.colorbar(fraction=0.016, pad=0.04, extend='both', label=r'Precipitation [mm/3hr]') def plot(self): self.get_data() plt.figure(figsize=(15, 6)) plt.rcParams.update({'font.size': 11}) for i in range(len(self.time_idx)): plt.subplot(3,3,1+3*i) plt.title(f'IFS, time: {self.timestamps[i]}') self.single_plot(self.ifs_frames[i], show_cbar=False, show_latitude_labels=True, show_longitude_labels=i==2) plt.subplot(3,3,2+3*i) plt.title(f'DNN (WMSE-MS-SSIM), time: {self.timestamps[i]}') self.single_plot(self.dnn_frames[i], show_cbar=False, show_latitude_labels=False, show_longitude_labels=i==2) plt.subplot(3,3,3+3*i) plt.title(f'TRMM, time: {self.timestamps[i]}') self.single_plot(self.trmm_frames[i], show_cbar=True, show_latitude_labels=False, show_longitude_labels=i==2) plt.tight_layout() if self.fname is not None: print(self.fname) plt.savefig(self.fname, dpi=300, format='png') plt.show() class ScoresPerPercentile(): def __init__(self): self.heidke_skill_score = {} self.f1 = {} self.critical_success_index = {} self.false_alarm_ratio = {} self.probability_of_detection = {} def set_data(self, data, percentile): self.heidke_skill_score[percentile] = data['heidke_skill_score'][0] self.f1[percentile] = data['f1'][0] self.critical_success_index[percentile] = data['critical_success_index'][0] self.false_alarm_ratio[percentile] = data['false_alarm_ratio'][0] self.probability_of_detection[percentile] = data['probability_of_detection'][0] @dataclass class ModelTestSetData(): dnn = None dnn_mssim = None dnn_weigthed = None linear = None qm = None raw_ifs = None class PlotHistograms(): def __init__(self, path='/path/to/models/'): self.path = path self.model_file_names = { 'dnn_weighted': 'dnn_weighted.npy', 'dnn_mssim': 'dnn_mssim.npy', 'dnn': 'dnn.npy', 'qm': 'qm.npy', 'linear': 'linear.npy'} def load_data(self): fname = f"{self.path}/{self.model_file_names['dnn_weighted']}" self.dnn_weighted = np.load(fname)[0] fname = f"{self.path}/{self.model_file_names['dnn']}" self.dnn_mse = np.load(fname)[0] fname = f"{self.path}/{self.model_file_names['dnn']}" self.trmm = np.load(fname)[1] fname = f"{self.path}/{self.model_file_names['dnn']}" self.ifs = np.load(fname)[2] fname = f"{self.path}/{self.model_file_names['dnn_mssim']}" self.dnn_mssim = np.load(fname)[0] fname = f"{self.path}/{self.model_file_names['qm']}" self.qm = np.load(fname)[0] fname = f"{self.path}/{self.model_file_names['linear']}" self.linear =
np.load(fname)
numpy.load
import traceback from collections import OrderedDict from enum import Enum from functools import reduce from math import pi from typing import Any, Callable, Dict, Iterator, List, MutableMapping, NamedTuple, Optional, Set, Tuple, Union import numpy as np import SimpleITK from scipy.spatial.distance import cdist from sympy import symbols from .. import autofit as af from ..algorithm_describe_base import AlgorithmProperty, Register from ..channel_class import Channel from ..class_generator import enum_register from ..mask_partition_utils import BorderRim, MaskDistanceSplit from ..universal_const import UNIT_SCALE, Units from ..utils import class_to_dict from .measurement_base import AreaType, Leaf, MeasurementEntry, MeasurementMethodBase, Node, PerComponent # TODO change image to channel in signature of measurement calculate_property class ProhibitedDivision(Exception): pass class SettingsValue(NamedTuple): function: Callable help_message: str arguments: Optional[dict] is_component: bool default_area: Optional[AreaType] = None class ComponentsInfo(NamedTuple): segmentation_components: np.ndarray mask_components: np.ndarray components_translation: Dict[int, List[int]] def empty_fun(_a0=None, _a1=None): """This function is be used as dummy reporting function.""" pass MeasurementValueType = Union[float, List[float], str] MeasurementResultType = Tuple[MeasurementValueType, str] MeasurementResultInputType = Tuple[MeasurementValueType, str, Tuple[PerComponent, AreaType]] FILE_NAME_STR = "File name" class MeasurementResult(MutableMapping[str, MeasurementResultType]): """ Class for storage measurements info. """ def __init__(self, components_info: ComponentsInfo): self.components_info = components_info self._data_dict = OrderedDict() self._units_dict: Dict[str, str] = dict() self._type_dict: Dict[str, Tuple[PerComponent, AreaType]] = dict() self._units_dict["Mask component"] = "" self._units_dict["Segmentation component"] = "" def __str__(self): text = "" for key, val in self._data_dict.items(): text += f"{key}: {val}; type {self._type_dict[key]}, units {self._units_dict[key]}\n" return text def __setitem__(self, k: str, v: MeasurementResultInputType) -> None: self._data_dict[k] = v[0] self._units_dict[k] = v[1] self._type_dict[k] = v[2] if k == FILE_NAME_STR: self._data_dict.move_to_end(FILE_NAME_STR, False) def __delitem__(self, v: str) -> None: del self._data_dict[v] del self._units_dict[v] del self._type_dict[v] def __getitem__(self, k: str) -> MeasurementResultType: return self._data_dict[k], self._units_dict[k] def __len__(self) -> int: return len(self._data_dict) def __iter__(self) -> Iterator[str]: return iter(self._data_dict) def set_filename(self, path_fo_file: str): """ Set name of file to be presented as first position. """ self._data_dict[FILE_NAME_STR] = path_fo_file self._type_dict[FILE_NAME_STR] = PerComponent.No, AreaType.ROI self._units_dict[FILE_NAME_STR] = "" self._data_dict.move_to_end(FILE_NAME_STR, False) def get_component_info(self) -> Tuple[bool, bool]: """ Get information which type of components are in storage. :return: has_mask_components, has_segmentation_components """ has_mask_components = any([x == PerComponent.Yes and y != AreaType.ROI for x, y in self._type_dict.values()]) has_segmentation_components = any( [x == PerComponent.Yes and y == AreaType.ROI for x, y in self._type_dict.values()] ) return has_mask_components, has_segmentation_components def get_labels(self) -> List[str]: """Get labels for measurement. Base are keys of this storage. If has mask components, or has segmentation_components then add this labels""" has_mask_components, has_segmentation_components = self.get_component_info() labels = list(self._data_dict.keys()) index = 1 if FILE_NAME_STR in self._data_dict else 0 if has_mask_components: labels.insert(index, "Mask component") if has_segmentation_components: labels.insert(index, "Segmentation component") return labels def get_units(self) -> List[str]: return [self._units_dict[x] for x in self.get_labels()] def get_global_names(self): """Get names for only parameters which are not 'PerComponent.Yes'""" labels = list(self._data_dict.keys()) return [x for x in labels if self._type_dict[x] != PerComponent.Yes] def get_global_parameters(self): """Get only parameters which are not 'PerComponent.Yes'""" if FILE_NAME_STR in self._data_dict: name = self._data_dict[FILE_NAME_STR] res = [name] iterator = iter(self._data_dict.keys()) next(iterator) else: res = [] iterator = iter(self._data_dict.keys()) for el in iterator: per_comp = self._type_dict[el][0] val = self._data_dict[el] if per_comp != PerComponent.Yes: res.append(val) return res def get_separated(self) -> List[List[MeasurementValueType]]: """Get measurements separated for each component""" has_mask_components, has_segmentation_components = self.get_component_info() if not (has_mask_components or has_segmentation_components): return [list(self._data_dict.values())] if has_mask_components and has_segmentation_components: translation = self.components_info.components_translation component_info = [(x, y) for x in translation.keys() for y in translation[x]] elif has_mask_components: component_info = [(0, x) for x in self.components_info.mask_components] else: component_info = [(x, 0) for x in self.components_info.segmentation_components] counts = len(component_info) mask_to_pos = {val: i for i, val in enumerate(self.components_info.mask_components)} segmentation_to_pos = {val: i for i, val in enumerate(self.components_info.segmentation_components)} if FILE_NAME_STR in self._data_dict: name = self._data_dict[FILE_NAME_STR] res = [[name] for _ in range(counts)] iterator = iter(self._data_dict.keys()) next(iterator) else: res = [[] for _ in range(counts)] iterator = iter(self._data_dict.keys()) if has_segmentation_components: for i, num in enumerate(component_info): res[i].append(num[0]) if has_mask_components: for i, num in enumerate(component_info): res[i].append(num[1]) for el in iterator: per_comp, area_type = self._type_dict[el] val = self._data_dict[el] if per_comp != PerComponent.Yes: for i in range(counts): res[i].append(val) else: if area_type == AreaType.ROI: for i, (seg, _mask) in enumerate(component_info): res[i].append(val[segmentation_to_pos[seg]]) else: for i, (_seg, mask) in enumerate(component_info): res[i].append(val[mask_to_pos[mask]]) return res class MeasurementProfile: PARAMETERS = ["name", "chosen_fields", "reversed_brightness", "use_gauss_image", "name_prefix"] def __init__(self, name, chosen_fields: List[MeasurementEntry], name_prefix=""): self.name = name self.chosen_fields: List[MeasurementEntry] = chosen_fields self._need_mask = False for cf_val in chosen_fields: self._need_mask = self._need_mask or self.need_mask(cf_val.calculation_tree) self.name_prefix = name_prefix def to_dict(self): return {"name": self.name, "chosen_fields": self.chosen_fields, "name_prefix": self.name_prefix} def need_mask(self, tree): if isinstance(tree, Leaf): return tree.area == AreaType.Mask or tree.area == AreaType.Mask_without_ROI else: return self.need_mask(tree.left) or self.need_mask(tree.right) def _need_mask_without_segmentation(self, tree): if isinstance(tree, Leaf): return tree.area == AreaType.Mask_without_ROI else: return self._need_mask_without_segmentation(tree.left) or self._need_mask_without_segmentation(tree.right) def _get_par_component_and_area_type(self, tree: Union[Node, Leaf]) -> Tuple[PerComponent, AreaType]: if isinstance(tree, Leaf): method = MEASUREMENT_DICT[tree.name] area_type = method.area_type(tree.area) if tree.per_component == PerComponent.Mean: return PerComponent.No, area_type return tree.per_component, area_type else: left_par, left_area = self._get_par_component_and_area_type(tree.left) right_par, right_area = self._get_par_component_and_area_type(tree.left) if PerComponent.Yes == left_par or PerComponent.Yes == right_par: res_par = PerComponent.Yes else: res_par = PerComponent.No area_set = {left_area, right_area} if len(area_set) == 1: res_area = area_set.pop() elif AreaType.ROI in area_set: res_area = AreaType.ROI else: res_area = AreaType.Mask_without_ROI return res_par, res_area def get_channels_num(self) -> Set[Channel]: resp = set() for el in self.chosen_fields: resp.update(el.get_channel_num(MEASUREMENT_DICT)) return resp def __str__(self): text = "Set name: {}\n".format(self.name) if self.name_prefix != "": text += "Name prefix: {}\n".format(self.name_prefix) text += "Measurements list:\n" for el in self.chosen_fields: text += "{}\n".format(el.name) return text def get_component_info(self, unit: Units): """ :return: list[((str, str), bool)] """ res = [] # Fixme remove binding to 3 dimensions for el in self.chosen_fields: res.append( ( (self.name_prefix + el.name, el.get_unit(unit, 3)), self._is_component_measurement(el.calculation_tree), ) ) return res def get_parameters(self): return class_to_dict(self, *self.PARAMETERS) def is_any_mask_measurement(self): for el in self.chosen_fields: if self.need_mask(el.calculation_tree): return True return False def _is_component_measurement(self, node): if isinstance(node, Leaf): return node.per_component == PerComponent.Yes else: return self._is_component_measurement(node.left) or self._is_component_measurement(node.right) def calculate_tree( self, node: Union[Node, Leaf], segmentation_mask_map: ComponentsInfo, help_dict: dict, kwargs: dict ) -> Tuple[Union[float, np.ndarray], symbols, AreaType]: """ Main function for calculation tree of measurements. It is executed recursively :param node: measurement to calculate :param segmentation_mask_map: map from mask segmentation components to mask components. Needed for division :param help_dict: dict to cache calculation result. It reduce recalculations of same measurements. :param kwargs: additional info needed by measurements :return: measurement value """ if isinstance(node, Leaf): method: MeasurementMethodBase = MEASUREMENT_DICT[node.name] kw = dict(kwargs) kw.update(node.dict) hash_str = hash_fun_call_name(method, node.dict, node.area, node.per_component, node.channel) area_type = method.area_type(node.area) if hash_str in help_dict: val = help_dict[hash_str] else: if node.channel is not None: kw["channel"] = kw[f"chanel_{node.channel}"] kw["channel_num"] = node.channel else: kw["channel_num"] = -1 kw["help_dict"] = help_dict kw["_area"] = node.area kw["_per_component"] = node.per_component kw["_cache"] = True if area_type == AreaType.Mask: kw["area_array"] = kw["mask"] elif area_type == AreaType.Mask_without_ROI: kw["area_array"] = kw["mask_without_segmentation"] elif area_type == AreaType.ROI: kw["area_array"] = kw["segmentation"] else: raise ValueError(f"Unknown area type {node.area}") if node.per_component != PerComponent.No: kw["_cache"] = False val = [] area_array = kw["area_array"] if area_type == AreaType.ROI: components = segmentation_mask_map.segmentation_components else: components = segmentation_mask_map.mask_components for i in components: kw["area_array"] = area_array == i val.append(method.calculate_property(**kw)) if node.per_component == PerComponent.Mean: val = np.mean(val) if len(val) else 0 else: val = np.array(val) else: val = method.calculate_property(**kw) help_dict[hash_str] = val unit: symbols = method.get_units(3) if kw["channel"].shape[0] > 1 else method.get_units(2) if node.power != 1: return pow(val, node.power), pow(unit, node.power), area_type return val, unit, area_type elif isinstance(node, Node): left_res, left_unit, left_area = self.calculate_tree(node.left, segmentation_mask_map, help_dict, kwargs) right_res, right_unit, right_area = self.calculate_tree( node.right, segmentation_mask_map, help_dict, kwargs ) if node.op == "/": if isinstance(left_res, np.ndarray) and isinstance(right_res, np.ndarray) and left_area != right_area: area_set = {left_area, right_area} if area_set == {AreaType.ROI, AreaType.Mask_without_ROI}: raise ProhibitedDivision("This division is prohibited") if area_set == {AreaType.ROI, AreaType.Mask}: res = [] # TODO Test this part of code for val, num in zip(left_res, segmentation_mask_map.segmentation_components): div_vals = segmentation_mask_map.components_translation[num] if len(div_vals) != 1: raise ProhibitedDivision("Cannot calculate when object do not belongs to one mask area") if left_area == AreaType.ROI: res.append(val / right_res[div_vals[0] - 1]) else: res.append(right_res[div_vals[0] - 1] / val) return np.array(res), left_unit / right_unit, AreaType.ROI left_area = AreaType.Mask_without_ROI return left_res / right_res, left_unit / right_unit, left_area raise ValueError("Wrong measurement: {}".format(node)) @staticmethod def get_segmentation_to_mask_component(segmentation: np.ndarray, mask: Optional[np.ndarray]) -> ComponentsInfo: """ Calculate map from segmentation component num to mask component num :param segmentation: numpy array with segmentation labeled as positive integers :param mask: numpy array with mask labeled as positive integer :return: map """ components = np.unique(segmentation) if components[0] == 0 or components[0] is None: components = components[1:] mask_components = np.unique(mask) if mask_components[0] == 0 or mask_components[0] is None: mask_components = mask_components[1:] res = OrderedDict() if mask is None: res = {i: [] for i in components} elif np.max(mask) == 1: res = {i: [1] for i in components} else: for num in components: res[num] = list(np.unique(mask[segmentation == num])) return ComponentsInfo(components, mask_components, res) def get_component_and_area_info(self) -> List[Tuple[PerComponent, AreaType]]: """For each measurement check if is per component and in which types """ res = [] for el in self.chosen_fields: tree = el.calculation_tree res.append(self._get_par_component_and_area_type(tree)) return res def calculate( self, channel: np.ndarray, segmentation: np.ndarray, mask: Optional[np.ndarray], voxel_size, result_units: Units, range_changed: Callable[[int, int], Any] = None, step_changed: Callable[[int], Any] = None, time: int = 0, time_pos: int = 0, **kwargs, ) -> MeasurementResult: """ Calculate measurements on given set of parameters :param channel: main channel on which measurements should be calculated :param segmentation: array with segmentation labeled as positive :param full_mask: :param mask: :param voxel_size: :param result_units: :param range_changed: callback function to set information about steps range :param step_changed: callback function fo set information about steps done :param time: which data point should be measured :param time_pos: axis of time :param kwargs: additional data required by measurements. Ex additional channels :return: measurements """ def get_time(array: np.ndarray): if array is not None and array.ndim == 4: return array.take(time, axis=time_pos) return array if range_changed is None: range_changed = empty_fun if step_changed is None: step_changed = empty_fun if self._need_mask and mask is None: raise ValueError("measurement need mask") channel = channel.astype(np.float) help_dict = dict() segmentation_mask_map = self.get_segmentation_to_mask_component(segmentation, mask) result = MeasurementResult(segmentation_mask_map) result_scalar = UNIT_SCALE[result_units.value] kw = { "channel": get_time(channel), "segmentation": get_time(segmentation), "mask": get_time(mask), "voxel_size": voxel_size, "result_scalar": result_scalar, } for el in kwargs.keys(): if not el.startswith("channel_"): raise ValueError(f"unknown parameter {el} of calculate function") for num in self.get_channels_num(): if f"channel_{num}" not in kwargs: raise ValueError(f"channel_{num} need to be passed as argument of calculate function") kw.update(kwargs) for el in self.chosen_fields: if self._need_mask_without_segmentation(el.calculation_tree): mm = mask.copy() mm[kw["segmentation"] > 0] = 0 kw["mask_without_segmentation"] = mm break range_changed(0, len(self.chosen_fields)) for i, el in enumerate(self.chosen_fields): step_changed(i) tree, user_name = el.calculation_tree, el.name component_and_area = self._get_par_component_and_area_type(tree) try: val, unit, _area = self.calculate_tree(tree, segmentation_mask_map, help_dict, kw) if isinstance(val, np.ndarray): val = list(val) result[self.name_prefix + user_name] = val, str(unit).format(str(result_units)), component_and_area except ZeroDivisionError: result[self.name_prefix + user_name] = "Div by zero", "", component_and_area except TypeError: traceback.print_exc() result[self.name_prefix + user_name] = "None div", "", component_and_area except AttributeError: result[self.name_prefix + user_name] = "No attribute", "", component_and_area except ProhibitedDivision as e: result[self.name_prefix + user_name] = e.args[0], "", component_and_area return result def calculate_main_axis(area_array: np.ndarray, channel: np.ndarray, voxel_size): # TODO check if it produces good values if len(channel.shape) == 4: if channel.shape[0] != 1: raise ValueError("This measurements do not support time data") channel = channel[0] cut_img = np.copy(channel) cut_img[area_array == 0] = 0 if np.all(cut_img == 0): return (0,) * len(voxel_size) orientation_matrix, _ = af.find_density_orientation(cut_img, voxel_size, 1) center_of_mass = af.density_mass_center(cut_img, voxel_size) positions = np.array(np.nonzero(cut_img), dtype=np.float64) for i, v in enumerate(reversed(voxel_size), start=1): positions[-i] *= v positions[-i] -= center_of_mass[i - 1] centered = np.dot(orientation_matrix.T, positions) size = np.max(centered, axis=1) - np.min(centered, axis=1) return size def get_main_axis_length( index: int, area_array: np.ndarray, channel: np.ndarray, voxel_size, result_scalar, _cache=False, **kwargs ): _cache = _cache and "_area" in kwargs and "_per_component" in kwargs if _cache: help_dict: Dict = kwargs["help_dict"] _area: AreaType = kwargs["_area"] _per_component: PerComponent = kwargs["_per_component"] hash_name = hash_fun_call_name(calculate_main_axis, {}, _area, _per_component, kwargs["channel_num"]) if hash_name not in help_dict: help_dict[hash_name] = calculate_main_axis(area_array, channel, [x * result_scalar for x in voxel_size]) return help_dict[hash_name][index] else: return calculate_main_axis(area_array, channel, [x * result_scalar for x in voxel_size])[index] def hash_fun_call_name( fun: Union[Callable, MeasurementMethodBase], arguments: Dict, area: AreaType, per_component: PerComponent, channel: Channel, ) -> str: """ Calculate string for properly cache measurements result. :param fun: method for which hash string should be calculated :param arguments: its additional arguments :param area: type of rea :param per_component: If it is per component :param channel: channel number on which calculation is performed :return: unique string for such set of arguments """ if hasattr(fun, "__module__"): fun_name = f"{fun.__module__}.{fun.__name__}" else: fun_name = fun.__name__ return "{}: {} # {} & {} * {}".format(fun_name, arguments, area, per_component, channel) class Volume(MeasurementMethodBase): text_info = "Volume", "Calculate volume of current segmentation" @classmethod def calculate_property(cls, area_array, voxel_size, result_scalar, **_): # pylint: disable=W0221 return np.count_nonzero(area_array) * pixel_volume(voxel_size, result_scalar) @classmethod def get_units(cls, ndim): return symbols("{}") ** ndim class Voxels(MeasurementMethodBase): text_info = "Voxels", "Calculate number of voxels of current segmentation" @classmethod def calculate_property(cls, area_array, **_): # pylint: disable=W0221 return np.count_nonzero(area_array) @classmethod def get_units(cls, ndim): return symbols("1") # From <NAME>., & <NAME>. (2002). Computing the diameter of a point set, # 12(6), 489–509. https://doi.org/10.1142/S0218195902001006 def double_normal(point_index: int, point_positions: np.ndarray, points_array: np.ndarray): """ :param point_index: index of starting points :param point_positions: points array of size (points_num, number of dimensions) :param points_array: bool matrix with information about which points are in set :return: """ delta = 0 dn = 0, 0 while True: new_delta = delta points_array[point_index] = 0 dist_array = np.sum(np.array((point_positions - point_positions[point_index]) ** 2), 1) dist_array[points_array == 0] = 0 point2_index = np.argmax(dist_array) if dist_array[point2_index] > new_delta: delta = dist_array[point2_index] dn = point_index, point2_index point_index = point2_index if new_delta == delta: return dn, delta def iterative_double_normal(points_positions: np.ndarray): """ :param points_positions: points array of size (points_num, number of dimensions) :return: square power of diameter, 2-tuple of points index gave information which points ar chosen """ delta = 0 dn = 0, 0 point_index = 0 points_array = np.ones(points_positions.shape[0], dtype=np.bool) while True: dn_r, delta_r = double_normal(point_index, points_positions, points_array) if delta_r > delta: delta = delta_r dn = dn_r mid_point = (points_positions[dn[0]] + points_positions[dn[1]]) / 2 dist_array = np.sum(np.array((points_positions - mid_point) ** 2), 1) dist_array[~points_array] = 0 if np.any(dist_array >= delta / 4): point_index = np.argmax(dist_array) else: break else: break return delta, dn class Diameter(MeasurementMethodBase): text_info = "Diameter", "Diameter of area" @staticmethod def calculate_property(area_array, voxel_size, result_scalar, **_): # pylint: disable=W0221 pos = np.transpose(np.nonzero(get_border(area_array))).astype(np.float) if pos.size == 0: return 0 for i, val in enumerate([x * result_scalar for x in reversed(voxel_size)], start=1): pos[:, -i] *= val diam_sq = iterative_double_normal(pos)[0] return np.sqrt(diam_sq) @classmethod def get_units(cls, ndim): return symbols("{}") class DiameterOld(MeasurementMethodBase): text_info = "Diameter old", "Diameter of area (Very slow)" @staticmethod def calculate_property(area_array, voxel_size, result_scalar, **_): # pylint: disable=W0221 return calc_diam(get_border(area_array), [x * result_scalar for x in voxel_size]) @classmethod def get_units(cls, ndim): return symbols("{}") class PixelBrightnessSum(MeasurementMethodBase): text_info = "Pixel brightness sum", "Sum of pixel brightness for current segmentation" @staticmethod def calculate_property(area_array: np.ndarray, channel: np.ndarray, **_): # pylint: disable=W0221 """ :param area_array: mask for area :param channel: data. same shape like area_type :return: Pixels brightness sum on given area """ if area_array.shape != channel.shape: if area_array.size == channel.size: channel = channel.reshape(area_array.shape) else: raise ValueError("channel and mask do not fit each other") if np.any(area_array): return np.sum(channel[area_array > 0]) return 0 @classmethod def get_units(cls, ndim): return symbols("Pixel_brightness") @classmethod def need_channel(cls): return True class ComponentsNumber(MeasurementMethodBase): text_info = "Components number", "Calculate number of connected components on segmentation" @staticmethod def calculate_property(area_array, **_): # pylint: disable=W0221 return np.unique(area_array).size - 1 @classmethod def get_starting_leaf(cls): return Leaf(cls.text_info[0], per_component=PerComponent.No) @classmethod def get_units(cls, ndim): return symbols("count") class MaximumPixelBrightness(MeasurementMethodBase): text_info = "Maximum pixel brightness", "Calculate maximum pixel brightness for current area" @staticmethod def calculate_property(area_array, channel, **_): if area_array.shape != channel.shape: if area_array.size == channel.size: channel = channel.reshape(area_array.shape) else: raise ValueError("channel and mask do not fit each other") if np.any(area_array): return np.max(channel[area_array > 0]) else: return 0 @classmethod def get_units(cls, ndim): return symbols("Pixel_brightness") @classmethod def need_channel(cls): return True class MinimumPixelBrightness(MeasurementMethodBase): text_info = "Minimum pixel brightness", "Calculate minimum pixel brightness for current area" @staticmethod def calculate_property(area_array, channel, **_): if area_array.shape != channel.shape: if area_array.size == channel.size: channel = channel.reshape(area_array.shape) else: raise ValueError("channel and mask do not fit each other") if np.any(area_array): return np.min(channel[area_array > 0]) else: return 0 @classmethod def get_units(cls, ndim): return symbols("Pixel_brightness") @classmethod def need_channel(cls): return True class MeanPixelBrightness(MeasurementMethodBase): text_info = "Mean pixel brightness", "Calculate mean pixel brightness for current area" @staticmethod def calculate_property(area_array, channel, **_): # pylint: disable=W0221 if area_array.shape != channel.shape: if area_array.size == channel.size: channel = channel.reshape(area_array.shape) else: raise ValueError("channel and mask do not fit each other") if np.any(area_array): return
np.mean(channel[area_array > 0])
numpy.mean
import os import tempfile os.environ["MPLCONFIGDIR"] = tempfile.gettempdir() import itertools as it import warnings from multiprocessing import Pool, cpu_count import numpy as np import iri2016 as ion import pymap3d as pm from tqdm import tqdm from datetime import datetime, timedelta from time import time class OrderError(Exception): """ Exception indicating incorrect order of simulation routines. """ pass def check_latlon(lat, lon): if not -90 <= lat <= 90: raise ValueError("Latitude of the instrument must be in range [-90, 90]") if not -180 <= lon < 180: raise ValueError("Longitude of the instrument must be in range [-180, 180]") def srange(theta, alt, RE=6378000.): """ Calculates the distance in meters from the telescope to the point (theta, alt). Parameters ---------- theta : float Zenith angle in radians alt : float Altitude in meters RE : float, optional Radius of the Earth in meters Returns ------- r : float Range in meters """ r = -RE * np.cos(theta) + np.sqrt((RE * np.cos(theta)) ** 2 + alt ** 2 + 2 * alt * RE) return r def col_nicolet(height): """ #TODO """ a = -0.16184565 b = 28.02068763 return np.exp(a * height + b) def col_setty(height): """ #TODO """ a = -0.16018896 b = 26.14939429 return np.exp(a * height + b) def nu_p(n_e): """ Plasma frequency from electron density Parameters ---------- n_e : float Electron density Returns ------- float Plasma frequency in Hz """ e = 1.60217662e-19 m_e = 9.10938356e-31 epsilon0 = 8.85418782e-12 if n_e < 0: raise ValueError('Number density cannot be < 0.') return 1 / (2 * np.pi) * np.sqrt((n_e * e ** 2) / (m_e * epsilon0)) def n_f(n_e, freq): """ Refractive index of F-layer from electron density Parameters ---------- n_e : float Electron density freq : float Signal frequency in Hz """ return (1 - (nu_p(n_e) / freq) ** 2) ** 0.5 def refr_angle(n1, n2, phi): """ Angle of refracted ray using Snell's law. Parameters ---------- n1 : float Refractive index in previous medium n2 : float Refractive index in current medium phi : float Angle of incident ray in rad Returns ------- float Angle in rad """ return np.arcsin(n1 / n2 * np.sin(phi)) def d_atten(nu, theta, h_d, delta_hd, nu_p, nu_c): """ #TODO """ R_E = 6371000 c = 2.99792458e8 delta_s = delta_hd * (1 + h_d / R_E) * (np.cos(theta) ** 2 + 2 * h_d / R_E) ** (-0.5) f =
np.exp(-(2 * np.pi * nu_p ** 2 * nu_c * delta_s) / (c * (nu_c ** 2 + nu ** 2)))
numpy.exp
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jul 16 15:01:41 2020 @author: jlee """ import time start_time = time.time() import numpy as np import glob, os from matplotlib import pyplot as plt from astropy.io import fits from linefit import linefit # from linefit import linear # ----- Basic parameters ----- # redshift = 0.3033 dir_vbin = 'vorbin/' dir_lines = 'lines2/' os.system('rm -rfv '+dir_lines+'*') os.system('mkdir '+dir_lines+'check/') # ----- Loading Voronoi binned data ----- # vb = np.load(dir_vbin+'vorbin_array.npz') # wav, sci, var, cont data_vbin = fits.getdata(dir_vbin+'vbin.fits').astype('int') nvbin =
np.unique(data_vbin)
numpy.unique
import os import pickle import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import offsetbox # from skimage.transform import resize def save_variable(variable, name_of_variable, path_to_save='./'): # https://stackoverflow.com/questions/6568007/how-do-i-save-and-restore-multiple-variables-in-python if not os.path.exists(path_to_save): # https://stackoverflow.com/questions/273192/how-can-i-create-a-directory-if-it-does-not-exist os.makedirs(path_to_save) file_address = path_to_save + name_of_variable + '.pckl' f = open(file_address, 'wb') pickle.dump(variable, f) f.close() def load_variable(name_of_variable, path='./'): # https://stackoverflow.com/questions/6568007/how-do-i-save-and-restore-multiple-variables-in-python file_address = path + name_of_variable + '.pckl' f = open(file_address, 'rb') variable = pickle.load(f) f.close() return variable def save_np_array_to_txt(variable, name_of_variable, path_to_save='./'): if type(variable) is list: variable = np.asarray(variable) # https://stackoverflow.com/questions/22821460/numpy-save-2d-array-to-text-file/22822701 if not os.path.exists(path_to_save): # https://stackoverflow.com/questions/273192/how-can-i-create-a-directory-if-it-does-not-exist os.makedirs(path_to_save) file_address = path_to_save + name_of_variable + '.txt' np.set_printoptions(threshold=np.inf, linewidth=np.inf) # turn off summarization, line-wrapping with open(file_address, 'w') as f: f.write(
np.array2string(variable, separator=', ')
numpy.array2string
from __future__ import print_function import numpy as np import unittest import discretize from pymatsolver import Solver MESHTYPES = ['uniformTensorMesh'] def getxBCyBC_CC(mesh, alpha, beta, gamma): """ This is a subfunction generating mixed-boundary condition: .. math:: \nabla \cdot \vec{j} = -\nabla \cdot \vec{j}_s = q \rho \vec{j} = -\nabla \phi \phi \alpha \phi + \beta \frac{\partial \phi}{\partial r} = \gamma \ at \ r = \partial \Omega xBC = f_1(\alpha, \beta, \gamma) yBC = f(\alpha, \beta, \gamma) Computes xBC and yBC for cell-centered discretizations """ if mesh.dim == 1: # 1D if (len(alpha) != 2 or len(beta) != 2 or len(gamma) != 2): raise Exception("Lenght of list, alpha should be 2") fCCxm, fCCxp = mesh.cellBoundaryInd nBC = fCCxm.sum()+fCCxp.sum() h_xm, h_xp = mesh.gridCC[fCCxm], mesh.gridCC[fCCxp] alpha_xm, beta_xm, gamma_xm = alpha[0], beta[0], gamma[0] alpha_xp, beta_xp, gamma_xp = alpha[1], beta[1], gamma[1] # h_xm, h_xp = mesh.gridCC[fCCxm], mesh.gridCC[fCCxp] h_xm, h_xp = mesh.hx[0], mesh.hx[-1] a_xm = gamma_xm/(0.5*alpha_xm-beta_xm/h_xm) b_xm = (0.5*alpha_xm+beta_xm/h_xm)/(0.5*alpha_xm-beta_xm/h_xm) a_xp = gamma_xp/(0.5*alpha_xp-beta_xp/h_xp) b_xp = (0.5*alpha_xp+beta_xp/h_xp)/(0.5*alpha_xp-beta_xp/h_xp) xBC_xm = 0.5*a_xm xBC_xp = 0.5*a_xp/b_xp yBC_xm = 0.5*(1.-b_xm) yBC_xp = 0.5*(1.-1./b_xp) xBC = np.r_[xBC_xm, xBC_xp] yBC = np.r_[yBC_xm, yBC_xp] elif mesh.dim == 2: # 2D if (len(alpha) != 4 or len(beta) != 4 or len(gamma) != 4): raise Exception("Lenght of list, alpha should be 4") fxm, fxp, fym, fyp = mesh.faceBoundaryInd nBC = fxm.sum()+fxp.sum()+fxm.sum()+fxp.sum() alpha_xm, beta_xm, gamma_xm = alpha[0], beta[0], gamma[0] alpha_xp, beta_xp, gamma_xp = alpha[1], beta[1], gamma[1] alpha_ym, beta_ym, gamma_ym = alpha[2], beta[2], gamma[2] alpha_yp, beta_yp, gamma_yp = alpha[3], beta[3], gamma[3] # h_xm, h_xp = mesh.gridCC[fCCxm,0], mesh.gridCC[fCCxp,0] # h_ym, h_yp = mesh.gridCC[fCCym,1], mesh.gridCC[fCCyp,1] h_xm = mesh.hx[0]*np.ones_like(alpha_xm) h_xp = mesh.hx[-1]*np.ones_like(alpha_xp) h_ym = mesh.hy[0]*np.ones_like(alpha_ym) h_yp = mesh.hy[-1]*np.ones_like(alpha_yp) a_xm = gamma_xm/(0.5*alpha_xm-beta_xm/h_xm) b_xm = (0.5*alpha_xm+beta_xm/h_xm)/(0.5*alpha_xm-beta_xm/h_xm) a_xp = gamma_xp/(0.5*alpha_xp-beta_xp/h_xp) b_xp = (0.5*alpha_xp+beta_xp/h_xp)/(0.5*alpha_xp-beta_xp/h_xp) a_ym = gamma_ym/(0.5*alpha_ym-beta_ym/h_ym) b_ym = (0.5*alpha_ym+beta_ym/h_ym)/(0.5*alpha_ym-beta_ym/h_ym) a_yp = gamma_yp/(0.5*alpha_yp-beta_yp/h_yp) b_yp = (0.5*alpha_yp+beta_yp/h_yp)/(0.5*alpha_yp-beta_yp/h_yp) xBC_xm = 0.5*a_xm xBC_xp = 0.5*a_xp/b_xp yBC_xm = 0.5*(1.-b_xm) yBC_xp = 0.5*(1.-1./b_xp) xBC_ym = 0.5*a_ym xBC_yp = 0.5*a_yp/b_yp yBC_ym = 0.5*(1.-b_ym) yBC_yp = 0.5*(1.-1./b_yp) sortindsfx = np.argsort(np.r_[np.arange(mesh.nFx)[fxm], np.arange(mesh.nFx)[fxp]]) sortindsfy = np.argsort(np.r_[np.arange(mesh.nFy)[fym], np.arange(mesh.nFy)[fyp]]) xBC_x = np.r_[xBC_xm, xBC_xp][sortindsfx] xBC_y = np.r_[xBC_ym, xBC_yp][sortindsfy] yBC_x = np.r_[yBC_xm, yBC_xp][sortindsfx] yBC_y = np.r_[yBC_ym, yBC_yp][sortindsfy] xBC = np.r_[xBC_x, xBC_y] yBC = np.r_[yBC_x, yBC_y] elif mesh.dim == 3: # 3D if (len(alpha) != 6 or len(beta) != 6 or len(gamma) != 6): raise Exception("Lenght of list, alpha should be 6") # fCCxm,fCCxp,fCCym,fCCyp,fCCzm,fCCzp = mesh.cellBoundaryInd fxm, fxp, fym, fyp, fzm, fzp = mesh.faceBoundaryInd nBC = fxm.sum()+fxp.sum()+fxm.sum()+fxp.sum() alpha_xm, beta_xm, gamma_xm = alpha[0], beta[0], gamma[0] alpha_xp, beta_xp, gamma_xp = alpha[1], beta[1], gamma[1] alpha_ym, beta_ym, gamma_ym = alpha[2], beta[2], gamma[2] alpha_yp, beta_yp, gamma_yp = alpha[3], beta[3], gamma[3] alpha_zm, beta_zm, gamma_zm = alpha[4], beta[4], gamma[4] alpha_zp, beta_zp, gamma_zp = alpha[5], beta[5], gamma[5] # h_xm, h_xp = mesh.gridCC[fCCxm,0], mesh.gridCC[fCCxp,0] # h_ym, h_yp = mesh.gridCC[fCCym,1], mesh.gridCC[fCCyp,1] # h_zm, h_zp = mesh.gridCC[fCCzm,2], mesh.gridCC[fCCzp,2] h_xm = mesh.hx[0]*np.ones_like(alpha_xm) h_xp = mesh.hx[-1]*np.ones_like(alpha_xp) h_ym = mesh.hy[0]*np.ones_like(alpha_ym) h_yp = mesh.hy[-1]*np.ones_like(alpha_yp) h_zm = mesh.hz[0]*np.ones_like(alpha_zm) h_zp = mesh.hz[-1]*np.ones_like(alpha_zp) a_xm = gamma_xm/(0.5*alpha_xm-beta_xm/h_xm) b_xm = (0.5*alpha_xm+beta_xm/h_xm)/(0.5*alpha_xm-beta_xm/h_xm) a_xp = gamma_xp/(0.5*alpha_xp-beta_xp/h_xp) b_xp = (0.5*alpha_xp+beta_xp/h_xp)/(0.5*alpha_xp-beta_xp/h_xp) a_ym = gamma_ym/(0.5*alpha_ym-beta_ym/h_ym) b_ym = (0.5*alpha_ym+beta_ym/h_ym)/(0.5*alpha_ym-beta_ym/h_ym) a_yp = gamma_yp/(0.5*alpha_yp-beta_yp/h_yp) b_yp = (0.5*alpha_yp+beta_yp/h_yp)/(0.5*alpha_yp-beta_yp/h_yp) a_zm = gamma_zm/(0.5*alpha_zm-beta_zm/h_zm) b_zm = (0.5*alpha_zm+beta_zm/h_zm)/(0.5*alpha_zm-beta_zm/h_zm) a_zp = gamma_zp/(0.5*alpha_zp-beta_zp/h_zp) b_zp = (0.5*alpha_zp+beta_zp/h_zp)/(0.5*alpha_zp-beta_zp/h_zp) xBC_xm = 0.5*a_xm xBC_xp = 0.5*a_xp/b_xp yBC_xm = 0.5*(1.-b_xm) yBC_xp = 0.5*(1.-1./b_xp) xBC_ym = 0.5*a_ym xBC_yp = 0.5*a_yp/b_yp yBC_ym = 0.5*(1.-b_ym) yBC_yp = 0.5*(1.-1./b_yp) xBC_zm = 0.5*a_zm xBC_zp = 0.5*a_zp/b_zp yBC_zm = 0.5*(1.-b_zm) yBC_zp = 0.5*(1.-1./b_zp) sortindsfx = np.argsort(np.r_[np.arange(mesh.nFx)[fxm], np.arange(mesh.nFx)[fxp]]) sortindsfy = np.argsort(np.r_[np.arange(mesh.nFy)[fym], np.arange(mesh.nFy)[fyp]]) sortindsfz = np.argsort(np.r_[np.arange(mesh.nFz)[fzm], np.arange(mesh.nFz)[fzp]]) xBC_x = np.r_[xBC_xm, xBC_xp][sortindsfx] xBC_y = np.r_[xBC_ym, xBC_yp][sortindsfy] xBC_z = np.r_[xBC_zm, xBC_zp][sortindsfz] yBC_x = np.r_[yBC_xm, yBC_xp][sortindsfx] yBC_y = np.r_[yBC_ym, yBC_yp][sortindsfy] yBC_z = np.r_[yBC_zm, yBC_zp][sortindsfz] xBC = np.r_[xBC_x, xBC_y, xBC_z] yBC = np.r_[yBC_x, yBC_y, yBC_z] return xBC, yBC class Test1D_InhomogeneousMixed(discretize.Tests.OrderTest): name = "1D - Mixed" meshTypes = MESHTYPES meshDimension = 1 expectedOrders = 2 meshSizes = [4, 8, 16, 32] def getError(self): # Test function def phi_fun(x): return np.cos(np.pi*x) def j_fun(x): return np.pi*np.sin(np.pi*x) def phi_deriv(x): return -j_fun(x) def q_fun(x): return (np.pi**2)*np.cos(np.pi*x) xc_ana = phi_fun(self.M.gridCC) q_ana = q_fun(self.M.gridCC) j_ana = j_fun(self.M.gridFx) # Get boundary locations vecN = self.M.vectorNx vecC = self.M.vectorCCx # Setup Mixed B.C (alpha, beta, gamma) alpha_xm, alpha_xp = 1., 1. beta_xm, beta_xp = 1., 1. alpha = np.r_[alpha_xm, alpha_xp] beta = np.r_[beta_xm, beta_xp] vecN = self.M.vectorNx vecC = self.M.vectorCCx phi_bc = phi_fun(vecN[[0, -1]]) phi_deriv_bc = phi_deriv(vecN[[0, -1]]) gamma = alpha*phi_bc + beta*phi_deriv_bc x_BC, y_BC = getxBCyBC_CC(self.M, alpha, beta, gamma) sigma = np.ones(self.M.nC) Mfrho = self.M.getFaceInnerProduct(1./sigma) MfrhoI = self.M.getFaceInnerProduct(1./sigma, invMat=True) V = discretize.utils.sdiag(self.M.vol) Div = V*self.M.faceDiv P_BC, B = self.M.getBCProjWF_simple() q = q_fun(self.M.gridCC) M = B*self.M.aveCC2F G = Div.T - P_BC*discretize.utils.sdiag(y_BC)*M # Mrhoj = D.T V phi + P_BC*discretize.utils.sdiag(y_BC)*M phi - P_BC*x_BC rhs = V*q + Div*MfrhoI*P_BC*x_BC A = Div*MfrhoI*G if self.myTest == 'xc': # TODO: fix the null space Ainv = Solver(A) xc = Ainv*rhs err = np.linalg.norm((xc-xc_ana), np.inf) else: NotImplementedError return err def test_order(self): print("==== Testing Mixed boudary conduction for CC-problem ====") self.name = "1D" self.myTest = 'xc' self.orderTest() class Test2D_InhomogeneousMixed(discretize.Tests.OrderTest): name = "2D - Mixed" meshTypes = MESHTYPES meshDimension = 2 expectedOrders = 2 meshSizes = [4, 8, 16, 32] def getError(self): # Test function def phi_fun(x): return np.cos(np.pi*x[:, 0])*np.cos(np.pi*x[:, 1]) def j_funX(x): return +np.pi*np.sin(np.pi*x[:, 0])*np.cos(np.pi*x[:, 1]) def j_funY(x): return +np.pi*np.cos(np.pi*x[:, 0])*np.sin(np.pi*x[:, 1]) def phideriv_funX(x): return -j_funX(x) def phideriv_funY(x): return -j_funY(x) def q_fun(x): return +2*(np.pi**2)*phi_fun(x) xc_ana = phi_fun(self.M.gridCC) q_ana = q_fun(self.M.gridCC) jX_ana = j_funX(self.M.gridFx) jY_ana = j_funY(self.M.gridFy) j_ana = np.r_[jX_ana, jY_ana] # Get boundary locations fxm, fxp, fym, fyp = self.M.faceBoundaryInd gBFxm = self.M.gridFx[fxm, :] gBFxp = self.M.gridFx[fxp, :] gBFym = self.M.gridFy[fym, :] gBFyp = self.M.gridFy[fyp, :] # Setup Mixed B.C (alpha, beta, gamma) alpha_xm = np.ones_like(gBFxm[:, 0]) alpha_xp = np.ones_like(gBFxp[:, 0]) beta_xm = np.ones_like(gBFxm[:, 0]) beta_xp = np.ones_like(gBFxp[:, 0]) alpha_ym = np.ones_like(gBFym[:, 1]) alpha_yp = np.ones_like(gBFyp[:, 1]) beta_ym = np.ones_like(gBFym[:, 1]) beta_yp = np.ones_like(gBFyp[:, 1]) phi_bc_xm, phi_bc_xp = phi_fun(gBFxm), phi_fun(gBFxp) phi_bc_ym, phi_bc_yp = phi_fun(gBFym), phi_fun(gBFyp) phiderivX_bc_xm = phideriv_funX(gBFxm) phiderivX_bc_xp = phideriv_funX(gBFxp) phiderivY_bc_ym = phideriv_funY(gBFym) phiderivY_bc_yp = phideriv_funY(gBFyp) def gamma_fun(alpha, beta, phi, phi_deriv): return alpha*phi + beta*phi_deriv gamma_xm = gamma_fun(alpha_xm, beta_xm, phi_bc_xm, phiderivX_bc_xm) gamma_xp = gamma_fun(alpha_xp, beta_xp, phi_bc_xp, phiderivX_bc_xp) gamma_ym = gamma_fun(alpha_ym, beta_ym, phi_bc_ym, phiderivY_bc_ym) gamma_yp = gamma_fun(alpha_yp, beta_yp, phi_bc_yp, phiderivY_bc_yp) alpha = [alpha_xm, alpha_xp, alpha_ym, alpha_yp] beta = [beta_xm, beta_xp, beta_ym, beta_yp] gamma = [gamma_xm, gamma_xp, gamma_ym, gamma_yp] x_BC, y_BC = getxBCyBC_CC(self.M, alpha, beta, gamma) sigma =
np.ones(self.M.nC)
numpy.ones
import time import sys import os import numpy as np from os.path import join from datetime import datetime from scipy import spatial import cv2 sys.path.append('../../') import gsom.applications.video_highlights.temporal_features.hoof_data_parser as Parser from gsom.util import utilities as Utils from gsom.util import display as Display_Utils from gsom.params import params as Params from gsom.core4 import core_controller as Core from gsom.util import kmeans_cluster_gsom as KMeans_Cluster def recluster_gsom(converted_feature_vector_dictionary, SF, learning_itr, smoothing_irt, temporal_contexts, forget_threshold, dataset): print('Re-clustering process started\n\n') count = 0 cluster_no_threshold = 2 no_subclusters = 10 recluster_arr = [] final_cluster_out = [] dynamic_highlights = [] dynamic_recluster_start = time.time() excluded_time = 0 for element in range(len(converted_feature_vector_dictionary)): # Init GSOM Parameters gsom_params = Params.GSOMParameters(SF, learning_itr, smoothing_irt, distance=Params.DistanceFunction.EUCLIDEAN, temporal_context_count=temporal_contexts, forget_itr_count=forget_threshold) generalise_params = Params.GeneraliseParameters(gsom_params) # convert input data to run gsom input_data = { 0: np.matrix(converted_feature_vector_dictionary[element]['feature_vec']) } # for i in range(len(converted_feature_vector_dictionary[element]['feature_vec'])): # input_data[i] = np.matrix(converted_feature_vector_dictionary[element]['feature_vec']) # Setup the age threshold based on the input vector length generalise_params.setup_age_threshold(input_data[0].shape[0]) recluster_excluded_start = time.time() # Mock output location output_loc = 'temporal/re-cluster/' + str(count) output_loc_images = join(output_loc, 'images/') if not os.path.exists(output_loc): os.makedirs(output_loc) if not os.path.exists(output_loc_images): os.makedirs(output_loc_images) recluster_excluded_end = time.time() excluded_time += (recluster_excluded_end - recluster_excluded_start) # Process the clustering algorithm controller = Core.Controller(generalise_params) controller_start = time.time() result_dict = controller.run(input_vector_db=input_data, # return the list/map from here plot_for_itr=0, output_loc=output_loc ) print('Algorithm for ' + str(count) + ' completed in ', round(time.time() - controller_start, 2), '(s)') # saved_name = Utils.Utilities.save_object(result_dict, join(output_loc, 'gsom_nodemap_SF-{}'.format(SF))) gsom_nodemap = result_dict[0]['gsom'] # # Display # display = Display_Utils.Display(result_dict[0]['gsom'], None) # # display.setup_labels_for_gsom_nodemap(labels, 2, 'Latent Space of {} : SF={}'.format(dataset, SF), # # join(output_loc, 'latent_space_' + str(SF) + '_hitvalues')) # display.setup_labels_for_gsom_nodemap(converted_feature_vector_dictionary[element]['frame_label'], 3, # 'Latent Space of {} : SF={}'.format(dataset, SF), # join(output_loc, 'latent_space_' + str(SF) + '_labels')) print('Completed.') count += 1 recluster_arr.append({ 'gsom': gsom_nodemap, 'frame_labels': converted_feature_vector_dictionary[element]['frame_label'], 'feature_vec': converted_feature_vector_dictionary[element]['feature_vec'] }) kmeans_som = KMeans_Cluster.KMeansSOM() gsom_array = kmeans_som._gsom_to_array(gsom_nodemap) gsom_array_length = len(gsom_array) if gsom_array_length < no_subclusters: no_subclusters = gsom_array_length gsom_list, centroids, labels = kmeans_som.cluster_GSOM(gsom_nodemap, no_subclusters) farthest_clusters = select_farthest_clusters( converted_feature_vector_dictionary[element]['cluster_centroid'], centroids, cluster_no_threshold ) final_cluster_out.append({ element: farthest_clusters }) frame_node_list = [] no_of_nodes = len(gsom_list) for x in range(no_of_nodes): gsom_node_weights = gsom_list[x] for key, node in gsom_nodemap.items(): if len(node.get_mapped_labels()) > 0: if gsom_node_weights.tolist() == node.recurrent_weights[0].tolist(): label_indices = node.get_mapped_labels() frame_labels = [] for index in label_indices: frame_labels.append(converted_feature_vector_dictionary[element]['frame_label'][index]) frame_node_list.append([key, node, labels[x], frame_labels]) break for each_item in frame_node_list: for frame in each_item[3]: if each_item[2] == farthest_clusters: highlight_output = join("temporal/re-cluster/highlights/" + str(element) + "/" + str(each_item[2]) + "/") file_path = join("temporal/re-cluster/highlights/" + str(element) + "/" + str(each_item[2]) + "/", str(frame) + ".jpg") # return the frames from the dynamic highlights dynamic_highlights.append(str(frame)) # if not os.path.exists(highlight_output): # os.makedirs(highlight_output) # cv2.imwrite(file_path, original_frame_list[int(frame)]) # print(recluster_arr) # print(final_cluster_out) dynamic_recluster_end = time.time() print("Dynamic Feature level 2 reclusterd: " + str(dynamic_recluster_end-dynamic_recluster_start-excluded_time)) return recluster_arr, dynamic_highlights def cosine_distance(vec1, vec2): mag1 = np.linalg.norm(vec1) mag2 =
np.linalg.norm(vec2)
numpy.linalg.norm
import timeit from datetime import datetime import socket import os import glob from tqdm import tqdm import numpy as np import matplotlib.pyplot as plt import torch from tensorboardX import SummaryWriter from torch import nn, optim from torch.utils.data import DataLoader from torch.autograd import Variable from dataloaders.dataset import VideoDataset from network import C3D_model device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print("Device being used:", device) nEpochs = 150 # Number of epochs for training useTest = True # See evolution of the test set when training nTestInterval = 1 # Run on test set every nTestInterval epochs snapshot = 40 # Store a model every snapshot epochs lr = 1e-4 # Learning rate dataset = 'CAER' num_classes = 7 save_dir_root = os.path.join(os.path.dirname(os.path.abspath(__file__))) exp_name = os.path.dirname(os.path.abspath(__file__)).split('/')[-1] runs = sorted(glob.glob(os.path.join(save_dir_root, 'run', 'run_*'))) run_id = int(runs[-1].split('_')[-1]) + 1 if runs else 0 save_dir = os.path.join(save_dir_root, 'run', 'run_' + str(run_id)) modelName = 'C3D' saveName = modelName + '-' + dataset def train_model(dataset=dataset, save_dir=save_dir, num_classes=num_classes, lr=lr, num_epochs=nEpochs, save_epoch=snapshot, useTest=useTest, test_interval=nTestInterval): if modelName == 'C3D': model = C3D_model.C3D(num_classes=num_classes, pretrained=True) train_params = [{'params': C3D_model.get_1x_lr_params(model), 'lr': lr}, {'params': C3D_model.get_10x_lr_params(model), 'lr': lr * 10}] else: print('We only implemented C3D models.') raise NotImplementedError criterion = nn.CrossEntropyLoss() # standard crossentropy loss for classification optimizer = optim.SGD(train_params, lr=lr, momentum=0.9, weight_decay=5e-4) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1) # the scheduler divides the lr by 10 every 10 epochs print("Training {} from scratch...".format(modelName)) print('Total params: %.2fM' % (sum(p.numel() for p in model.parameters()) / 1000000.0)) model.to(device) criterion.to(device) log_dir = os.path.join(save_dir, 'models', datetime.now().strftime('%b%d_%H-%M-%S') + '_' + socket.gethostname()) writer = SummaryWriter(log_dir=log_dir) print('Training model on {} dataset...'.format(dataset)) train_dataloader = DataLoader(VideoDataset(dataset=dataset, split='train',clip_len=16), batch_size=16, shuffle=True, num_workers=4) val_dataloader = DataLoader(VideoDataset(dataset=dataset, split='val', clip_len=16), batch_size=16, num_workers=4) test_dataloader = DataLoader(VideoDataset(dataset=dataset, split='test', clip_len=16), batch_size=16, num_workers=4) trainval_loaders = {'train': train_dataloader, 'val': val_dataloader} trainval_sizes = {x: len(trainval_loaders[x].dataset) for x in ['train', 'val']} test_size = len(test_dataloader.dataset) #store epoch loss and accuracy to plot a graph epoch_loss_gra =
np.zeros(num_epochs)
numpy.zeros
import tensorflow as tf import numpy from .GaussianBoundaryCondition import GaussianBoundaryCondition class HarmonicOscillatorWavefunction(tf.keras.layers.Layer): """Implememtation of the harmonic oscillator wave funtions Create a polynomial, up to `degree` in every dimension `n`, that is the exact solution to the harmonic oscillator wave function. Extends: tf.keras.layers.Layer """ def __init__(self, n : int, nparticles : int, degree : int, alpha : float, dtype=tf.float64): """Initializer Create a harmonic oscillator wave function Arguments: n {int} -- Dimension of the oscillator (1 <= n <= 3) nparticles {int} -- Number of particles degree {int} -- Degree of the solution (broadcastable to n) alpha {float} -- Alpha parameter (m * omega / hbar) Raises: Exception -- [description] """ tf.keras.layers.Layer.__init__(self, dtype=dtype) self.n = n if self.n < 1 or self.n > 3: raise Exception("Dimension must be 1, 2, or 3 for HarmonicOscillatorWavefunction") if nparticles > 1: raise Exception("HarmonicOscillatorWavefunction is only for 1 particle for testing.") # Use numpy to broadcast to the right dimension: degree = numpy.asarray(degree, dtype=numpy.int32) degree = numpy.broadcast_to(degree, (self.n,)) self.type = dtype # Degree of the polynomial: self.degree = degree if numpy.min(self.degree) < 0 or numpy.max(self.degree) > 4: raise Exception("Only the first 5 hermite polynomials are supported") alpha = numpy.asarray(alpha, dtype=numpy.int32) alpha = numpy.broadcast_to(alpha, (self.n,)) self.alpha = alpha # Normalization: self.norm = numpy.power(self.alpha / numpy.pi, 0.25) self.norm = numpy.prod(self.norm) # Craft the polynomial coefficients: # Add one to the degree since they start at "0" # Polynomial is of shape [degree, largest_dimension] self.polynomial = numpy.zeros(shape=(max(self.degree) + 1, self.n), dtype=numpy.float64) # Loop over the coefficents and set them: # Loop over dimension: self.polynomial_norm = numpy.zeros(shape=(self.n,), dtype=numpy.float64) for _n in range(self.n): # Loop over degree: _d = self.degree[_n] if _d == 0: self.polynomial[0][_n] = 1.0 elif _d == 1: self.polynomial[1][_n] = 2.0 elif _d == 2: self.polynomial[0][_n] = -2.0 self.polynomial[2][_n] = 4.0 elif _d == 3: self.polynomial[1][_n] = -12.0 self.polynomial[3][_n] = 8.0 elif _d == 4: self.polynomial[0][_n] = 12.0 self.polynomial[2][_n] = -48.0 self.polynomial[4][_n] = 16.0 # Set the polynomial normalization as a function of the degree # For each dimension: self.polynomial_norm[_n] = 1.0 / numpy.sqrt(2**_d *
numpy.math.factorial(_d)
numpy.math.factorial
import numpy as np import numpy.matlib as mat from scipy.linalg import solve from scipy.ndimage import gaussian_filter from scipy.optimize import basinhopping, minimize_scalar from kineticmodel import KineticModel from kineticmodel import integrate as km_integrate class SRTM_Zhou2003(KineticModel): ''' Compute distribution volume ratio (DVR) and relative delivery (R1) kinetic parameters from dynamic PET data based on a simplified reference tissue model (SRTM). The nonlinear SRTM equations are linearized using integrals of time activity curves (TACs) of the reference and target tissues. Kinetic parameters are then estimated by weighted linear regression (WLR). If provided, the spatially smoothed TAC of the target region is used in the computation of DVR as part of the linear regression with spatial constraint (LRSC) approach. To obtain the R1 estimate that incorporates spatial smoothness based on LRSC, run refine_R1() after running fit(). Reference: <NAME>, <NAME>, <NAME>, <NAME>, <NAME>. Linear regression with spatial constraint to generate parametric images of ligand-receptor dynamic PET studies with a simplified reference tissue model. Neuroimage. 2003;18:975–989. ''' # This class will compute the following results: result_names = [ # estimated parameters 'BP', 'DVR', 'R1','k2','k2a', 'R1_lrsc','k2_lrsc','k2a_lrsc', # model fit indicators 'noiseVar_eqDVR','noiseVar_eqR1'] def fit(self, smoothTAC=None): ''' Estimate parameters of the SRTM Zhou 2003 model. Args: smoothTAC (numpy.ndarray): optional. 1- or 2-D array, where each row corresponds to a (spatially) smoothed time activity curve ''' if smoothTAC is not None: if smoothTAC.ndim==1: if not len(smoothTAC)==len(self.t): raise ValueError('smoothTAC and t must have same length') # make smoothTAC into a row vector smoothTAC = smoothTAC[np.newaxis,:] elif smoothTAC.ndim==2: if not smoothTAC.shape==self.TAC.shape: raise ValueError('smoothTAC and TAC must have same shape') else: raise ValueError('smoothTAC must be 1- or 2-dimensional') n = len(self.t) m = 3 # Numerical integration of reference TAC intrefTAC = km_integrate(self.refTAC,self.t,self.startActivity) # Compute BP/DVR, R1, k2, k2a for k, TAC in enumerate(self.TAC): W = mat.diag(self.weights[k,:]) # Numerical integration of target TAC intTAC = km_integrate(TAC,self.t,self.startActivity) # ----- Get DVR ----- # Set up the weighted linear regression model # based on Eq. 9 in Zhou et al. # Per the recommendation in first paragraph on p. 979 of Zhou et al., # smoothed TAC is used in the design matrix, if provided. if smoothTAC is None: X = np.column_stack((intrefTAC, self.refTAC, -TAC)) else: X = np.column_stack((intrefTAC, self.refTAC, -smoothTAC[k,:].flatten())) y = intTAC try: b = solve(X.T @ W @ X, X.T @ W @ y) residual = y - X @ b # unbiased estimator of noise variance noiseVar_eqDVR = residual.T @ W @ residual / (n-m) DVR = b[0] #R1 = b[1] / b[2] #k2 = b[0] / b[2] BP = DVR - 1 except: DVR = BP = noiseVar_eqDVR = 0 # ----- Get R1 ----- # Set up the weighted linear regression model # based on Eq. 8 in Zhou et al. #X = np.mat(np.column_stack((self.refTAC,intrefTAC,-intTAC))) X = np.column_stack((self.refTAC,intrefTAC,-intTAC)) #y = np.mat(TAC).T y = TAC try: b = solve(X.T @ W @ X, X.T @ W @ y) residual = y - X @ b # unbiased estimator of noise variance noiseVar_eqR1 = residual.T @ W @ residual / (n-m) R1 = b[0] k2 = b[1] k2a = b[2] except: R1 = k2 = k2a = noiseVar_eqR1 = 0 self.results['BP'][k] = BP self.results['DVR'][k] = DVR self.results['R1'][k] = R1 self.results['k2'][k] = k2 self.results['k2a'][k] = k2a self.results['noiseVar_eqDVR'][k] = noiseVar_eqDVR self.results['noiseVar_eqR1'][k] = noiseVar_eqR1 return self def refine_R1(self, smoothR1, smoothk2, smoothk2a, h): ''' Ridge regression to get better R1, k2, k2a estimates Args: smoothR1 (float): R1 value to drive the estimate toward smoothk2 (float): k2 value to drive the estimate toward smoothk2a (float): k2a value to drive the estimate toward h (numpy.ndarray): 1-D array consisting of the diagonal elements of the matrix used to compute the weighted norm ''' if not smoothR1.ndim==smoothk2.ndim==smoothk2a.ndim==1: raise ValueError('smoothR1, smoothk2, smoothk2a must be 1-D') if not len(smoothR1)==len(smoothk2)==len(smoothk2a)==self.TAC.shape[0]: raise ValueError('Length of smoothR1, smoothk2, smoothk2a must be \ equal to the number of rows of TAC') if not h.ndim==2: raise ValueError('h must be 2-D') if not h.shape==(self.TAC.shape[0], 3): raise ValueError('Number of rows of h must equal the number of rows of TAC, \ and the number of columns of h must be 3') # Numerical integration of reference TAC intrefTAC = km_integrate(self.refTAC,self.t,self.startActivity) for k, TAC in enumerate(self.TAC): W = mat.diag(self.weights[k,:]) # Numerical integration of target TAC intTAC = km_integrate(TAC,self.t,self.startActivity) # ----- Get R1 incorporating spatial constraint ----- # Set up the ridge regression model # based on Eq. 11 in Zhou et al. #X = np.mat(np.column_stack((self.refTAC,intrefTAC,-intTAC))) X = np.column_stack((self.refTAC,intrefTAC,-intTAC)) #y = np.mat(TAC).T y = TAC H = mat.diag(h[k,:]) b_sc = np.array((smoothR1[k],smoothk2[k],smoothk2a[k])) #.reshape(-1,1) try: b = solve(X.T @ W @ X + H, X.T @ W @ y + H @ b_sc) R1_lrsc = b[0] k2_lrsc = b[1] k2a_lrsc = b[2] except: R1_lrsc = k2_lrsc = k2a_lrsc = 0 self.results['R1_lrsc'][k] = R1_lrsc self.results['k2_lrsc'][k] = k2_lrsc self.results['k2a_lrsc'][k] = k2a_lrsc return self class SRTM_Lammertsma1996(KineticModel): ''' Compute binding potential (BP) and relative delivery (R1) kinetic parameters from dynamic PET data based on a simplified reference tissue model (SRTM). Reference: Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. NeuroImage. 1996 Dec;4(3 Pt 1):153-8. ''' # This class will compute the following results: result_names = [ # estimated parameters 'BP','R1','k2']#, # model fit indicators #'akaike'] def fit(self): n = len(self.t) m = 4 # 3 model parameters + noise variance def make_srtm_est(startActivity): ''' Wrapper to construct the SRTM TAC estimation function with a given startActivity. Args: startActivity (str): determines initial condition for integration. See integrate in kineticmodel.py Returns: srtm_est (function): function to compute fitted TAC given t, refTAC, BP, R1, k2 ''' def srtm_est(X, BPnd, R1, k2): ''' Compute fitted TAC given t, refTAC, BP, R1, k2. Args: X (tuple): first element is t, second element is intrefTAC BPnd (float): binding potential R1 (float): R1 k2 (float): k2 Returns: TAC_est (numpy.ndarray): 1-D array estimated time activity curve ''' t, refTAC = X k2a = k2/(BPnd+1) # Convolution of reference TAC and exp(-k2a*t) = exp(-k2a*t) * Numerical integration of # refTAC(t)*exp(k2a*t). exp_k2a_t =
np.exp(k2a*t)
numpy.exp
import numpy as np from gym_fishing.envs.base_fishing_env import BaseFishingEnv class Allen(BaseFishingEnv): def __init__( self, r=0.3, K=1, C=0.5, sigma=0.0, init_state=0.75, Tmax=100, file=None, ): super().__init__( params={"r": r, "K": K, "sigma": sigma, "C": C, "x0": init_state}, Tmax=Tmax, file=file, ) def population_draw(self): self.fish_population = allen(self.fish_population, self.params) return self.fish_population class BevertonHolt(BaseFishingEnv): def __init__( self, r=0.3, K=1, sigma=0.0, init_state=0.75, Tmax=100, file=None ): super().__init__( params={"r": r, "K": K, "sigma": sigma, "x0": init_state}, Tmax=Tmax, file=file, ) def population_draw(self): self.fish_population = beverton_holt(self.fish_population, self.params) return self.fish_population class Myers(BaseFishingEnv): def __init__( self, r=1.0, K=1.0, M=1.0, theta=3.0, sigma=0.0, init_state=1.5, Tmax=100, file=None, ): super().__init__( params={ "r": r, "K": K, "sigma": sigma, "theta": theta, "M": M, "x0": init_state, }, Tmax=Tmax, file=file, ) def population_draw(self): self.fish_population = myers(self.fish_population, self.params) return self.fish_population # (r =.7, beta = 1.2, q = 3, b = 0.15, a = 0.2) # lower-state peak is optimal # (r =.7, beta = 1.5, q = 3, b = 0.15, a = 0.2) # higher-state peak is optimal class May(BaseFishingEnv): def __init__( self, r=0.7, K=1.5, M=1.5, q=3, b=0.15, sigma=0.0, a=0.2, init_state=0.75, Tmax=100, file=None, ): super().__init__( params={ "r": r, "K": K, "sigma": sigma, "q": q, "b": b, "a": a, "M": M, "x0": init_state, }, Tmax=Tmax, file=file, ) def population_draw(self): self.fish_population = may(self.fish_population, self.params) return self.fish_population class Ricker(BaseFishingEnv): def __init__( self, r=0.3, K=1, sigma=0.0, init_state=0.75, Tmax=100, file=None ): super().__init__( params={"r": r, "K": K, "sigma": sigma, "x0": init_state}, Tmax=Tmax, file=file, ) def population_draw(self): self.fish_population = ricker(self.fish_population, self.params) return self.fish_population class NonStationary(BaseFishingEnv): def __init__( self, r=0.8, K=1, sigma=0.0, alpha=-0.007, init_state=0.75, Tmax=100, file=None, ): super().__init__( params={ "r": r, "K": K, "sigma": sigma, "alpha": alpha, "x0": init_state, }, Tmax=Tmax, file=file, ) def population_draw(self): self.params["r"] = self.params["r"] + self.params["alpha"] self.fish_population = beverton_holt(self.fish_population, self.params) return self.fish_population class ModelUncertainty(BaseFishingEnv): def __init__( self, models=["allen", "beverton_holt", "myers", "may", "ricker"], params={ "allen": {"r": 0.3, "K": 1.0, "sigma": 0.0, "C": 0.5, "x0": 0.75}, "beverton_holt": {"r": 0.3, "K": 1, "sigma": 0.0, "x0": 0.75}, "myers": { "r": 1.0, "K": 1.0, "M": 1.0, "theta": 3.0, "sigma": 0.0, "x0": 1.5, }, "may": { "r": 0.7, "K": 1.5, "M": 1.5, "q": 3, "b": 0.15, "sigma": 0.0, "a": 0.2, "x0": 0.75, }, "ricker": {"r": 0.3, "K": 1, "sigma": 0.0, "x0": 0.75}, }, Tmax=100, file=None, ): super().__init__( Tmax=Tmax, file=file, ) self.model = np.random.choice(models) self.models = models self.params = params def population_draw(self): f = population_model[self.model] p = self.params[self.model] self.fish_population = f(self.fish_population, p) return self.fish_population def reset(self): self.state = np.array([self.init_state / self.K - 1]) self.fish_population = self.init_state self.model = np.random.choice(self.models) self.years_passed = 0 self.reward = 0 self.harvest = 0 return self.state # Growth Functions # def allen(x, params): with np.errstate(divide="ignore"): mu = ( np.log(x) + params["r"] * (1 - x / params["K"]) * (1 - params["C"]) / params["K"] ) return np.maximum(0,
np.random.lognormal(mu, params["sigma"])
numpy.random.lognormal
import apricot import numpy as np import torch import torch.nn.functional as F from scipy.sparse import csr_matrix from .dataselectionstrategy import DataSelectionStrategy from torch.utils.data.sampler import SubsetRandomSampler class SubmodularSelectionStrategy(DataSelectionStrategy): """ This class extends :class:`selectionstrategies.supervisedlearning.dataselectionstrategy.DataSelectionStrategy` to include submodular optmization functions using apricot for data selection. Parameters ---------- trainloader: class Loading the training data using pytorch DataLoader valloader: class Loading the validation data using pytorch DataLoader model: class Model architecture used for training loss_type: class The type of loss criterion device: str The device being utilized - cpu | cuda num_classes: int The number of target classes in the dataset linear_layer: bool Apply linear transformation to the data if_convex: bool If convex or not selection_type: str PerClass or Supervised submod_func_type: str The type of submodular optimization function. Must be one of 'facility-location', 'graph-cut', 'sum-redundancy', 'saturated-coverage' """ def __init__(self, trainloader, valloader, model, loss, device, num_classes, linear_layer, if_convex, selection_type, submod_func_type, optimizer): """ Constructer method """ super().__init__(trainloader, valloader, model, num_classes, linear_layer, loss, device) self.if_convex = if_convex self.selection_type = selection_type self.submod_func_type = submod_func_type self.optimizer = optimizer def distance(self, x, y, exp=2): """ Compute the distance. Parameters ---------- x: Tensor First input tensor y: Tensor Second input tensor exp: float, optional The exponent value (default: 2) Returns ---------- dist: Tensor Output tensor """ n = x.size(0) m = y.size(0) d = x.size(1) x = x.unsqueeze(1).expand(n, m, d) y = y.unsqueeze(0).expand(n, m, d) dist = torch.pow(x - y, exp).sum(2) # dist = torch.exp(-1 * torch.pow(x - y, 2).sum(2)) return dist def compute_score(self, model_params, idxs): """ Compute the score of the indices. Parameters ---------- model_params: OrderedDict Python dictionary object containing models parameters idxs: list The indices """ trainset = self.trainloader.sampler.data_source subset_loader = torch.utils.data.DataLoader(trainset, batch_size=self.trainloader.batch_size, shuffle=False, sampler=SubsetRandomSampler(idxs), pin_memory=True) self.model.load_state_dict(model_params) self.N = 0 g_is = [] if self.if_convex: for batch_idx, (inputs, targets) in enumerate(subset_loader): inputs, targets = inputs, targets if self.selection_type == 'PerBatch': self.N += 1 g_is.append(inputs.view(inputs.size()[0], -1).mean(dim=0).view(1, -1)) else: self.N += inputs.size()[0] g_is.append(inputs.view(inputs.size()[0], -1)) else: embDim = self.model.get_embedding_dim() for batch_idx, (inputs, targets) in enumerate(subset_loader): inputs, targets = inputs.to(self.device), targets.to(self.device, non_blocking=True) if self.selection_type == 'PerBatch': self.N += 1 else: self.N += inputs.size()[0] out, l1 = self.model(inputs, freeze=True, last=True) loss = self.loss(out, targets).sum() l0_grads = torch.autograd.grad(loss, out)[0] if self.linear_layer: l0_expand = torch.repeat_interleave(l0_grads, embDim, dim=1) l1_grads = l0_expand * l1.repeat(1, self.num_classes) if self.selection_type == 'PerBatch': g_is.append(torch.cat((l0_grads, l1_grads), dim=1).mean(dim=0).view(1, -1)) else: g_is.append(torch.cat((l0_grads, l1_grads), dim=1)) else: if self.selection_type == 'PerBatch': g_is.append(l0_grads.mean(dim=0).view(1, -1)) else: g_is.append(l0_grads) self.dist_mat = torch.zeros([self.N, self.N], dtype=torch.float32) first_i = True if self.selection_type == 'PerBatch': g_is = torch.cat(g_is, dim=0) self.dist_mat = self.distance(g_is, g_is).cpu() else: for i, g_i in enumerate(g_is, 0): if first_i: size_b = g_i.size(0) first_i = False for j, g_j in enumerate(g_is, 0): self.dist_mat[i * size_b: i * size_b + g_i.size(0), j * size_b: j * size_b + g_j.size(0)] = self.distance(g_i, g_j).cpu() self.const = torch.max(self.dist_mat).item() self.dist_mat = (self.const - self.dist_mat).numpy() def compute_gamma(self, idxs): """ Compute the gamma values for the indices. Parameters ---------- idxs: list The indices Returns ---------- gamma: list Gradient values of the input indices """ if self.selection_type == 'PerClass': gamma = [0 for i in range(len(idxs))] best = self.dist_mat[idxs] # .to(self.device) rep = np.argmax(best, axis=0) for i in rep: gamma[i] += 1 elif self.selection_type == 'Supervised': gamma = [0 for i in range(len(idxs))] best = self.dist_mat[idxs] # .to(self.device) rep = np.argmax(best, axis=0) for i in range(rep.shape[1]): gamma[rep[0, i]] += 1 return gamma def get_similarity_kernel(self): """ Obtain the similarity kernel. Returns ---------- kernel: ndarray Array of kernel values """ for batch_idx, (inputs, targets) in enumerate(self.trainloader): if batch_idx == 0: labels = targets else: tmp_target_i = targets labels = torch.cat((labels, tmp_target_i), dim=0) kernel = np.zeros((labels.shape[0], labels.shape[0])) for target in np.unique(labels): x = np.where(labels == target)[0] # prod = np.transpose([np.tile(x, len(x)), np.repeat(x, len(x))]) for i in x: kernel[i, x] = 1 return kernel def select(self, budget, model_params): """ Data selection method using different submodular optimization functions. Parameters ---------- budget: int The number of data points to be selected model_params: OrderedDict Python dictionary object containing models parameters optimizer: str The optimization approach for data selection. Must be one of 'random', 'modular', 'naive', 'lazy', 'approximate-lazy', 'two-stage', 'stochastic', 'sample', 'greedi', 'bidirectional' Returns ---------- total_greedy_list: list List containing indices of the best datapoints gammas: list List containing gradients of datapoints present in greedySet """ for batch_idx, (inputs, targets) in enumerate(self.trainloader): if batch_idx == 0: x_trn, labels = inputs, targets else: tmp_inputs, tmp_target_i = inputs, targets labels = torch.cat((labels, tmp_target_i), dim=0) per_class_bud = int(budget / self.num_classes) total_greedy_list = [] gammas = [] if self.selection_type == 'PerClass': for i in range(self.num_classes): idxs = torch.where(labels == i)[0] self.compute_score(model_params, idxs) if self.submod_func_type == 'facility-location': fl = apricot.functions.facilityLocation.FacilityLocationSelection(random_state=0, metric='precomputed', n_samples=per_class_bud, optimizer=self.optimizer) elif self.submod_func_type == 'graph-cut': fl = apricot.functions.graphCut.GraphCutSelection(random_state=0, metric='precomputed', n_samples=per_class_bud, optimizer=self.optimizer) elif self.submod_func_type == 'sum-redundancy': fl = apricot.functions.sumRedundancy.SumRedundancySelection(random_state=0, metric='precomputed', n_samples=per_class_bud, optimizer=self.optimizer) elif self.submod_func_type == 'saturated-coverage': fl = apricot.functions.saturatedCoverage.SaturatedCoverageSelection(random_state=0, metric='precomputed', n_samples=per_class_bud, optimizer=self.optimizer) sim_sub = fl.fit_transform(self.dist_mat) greedyList = list(
np.argmax(sim_sub, axis=1)
numpy.argmax
#!/usr/bin/env python # Copyright 2019 <NAME> & <NAME> # # This file is part of OBStools. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Import modules and functions import os import sys import numpy as np import pickle import stdb from obstools.atacr.classes import StaNoise, Power, Cross, Rotation from obstools.atacr import utils, options, plot def main(): # Run Input Parser (opts, indb) = options.get_cleanspec_options() # Load Database db = stdb.io.load_db(fname=indb) # Construct station key loop allkeys = db.keys() sorted(allkeys) # Extract key subset if len(opts.stkeys) > 0: stkeys = [] for skey in opts.stkeys: stkeys.extend([s for s in allkeys if skey in s]) else: stkeys = db.keys() sorted(stkeys) # Loop over station keys for stkey in list(stkeys): # Extract station information from dictionary sta = db[stkey] # Path where spectra are located specpath = 'SPECTRA/' + stkey + '/' if not os.path.isdir(specpath): print("Path to "+specpath+" doesn`t exist - aborting") sys.exit() # Path where average spectra will be saved avstpath = 'AVG_STA/' + stkey + '/' if not os.path.isdir(avstpath): print("Path to "+avstpath+" doesn`t exist - creating it") os.makedirs(avstpath) # Path where plots will be saved if opts.saveplot: plotpath = avstpath + 'PLOTS/' if not os.path.isdir(plotpath): os.makedirs(plotpath) else: plotpath = False # Get catalogue search start time if opts.startT is None: tstart = sta.startdate else: tstart = opts.startT # Get catalogue search end time if opts.endT is None: tend = sta.enddate else: tend = opts.endT if tstart > sta.enddate or tend < sta.startdate: continue # Temporary print locations tlocs = sta.location if len(tlocs) == 0: tlocs = [''] for il in range(0, len(tlocs)): if len(tlocs[il]) == 0: tlocs[il] = "--" sta.location = tlocs # Update Display print() print("|===============================================|") print("|===============================================|") print("| {0:>8s} |".format( sta.station)) print("|===============================================|") print("|===============================================|") print("| Station: {0:>2s}.{1:5s} |".format( sta.network, sta.station)) print("| Channel: {0:2s}; Locations: {1:15s} |".format( sta.channel, ",".join(tlocs))) print("| Lon: {0:7.2f}; Lat: {1:6.2f} |".format( sta.longitude, sta.latitude)) print("| Start time: {0:19s} |".format( sta.startdate.strftime("%Y-%m-%d %H:%M:%S"))) print("| End time: {0:19s} |".format( sta.enddate.strftime("%Y-%m-%d %H:%M:%S"))) print("|-----------------------------------------------|") # Filename for output average spectra dstart = str(tstart.year).zfill(4)+'.'+str(tstart.julday).zfill(3)+'-' dend = str(tend.year).zfill(4)+'.'+str(tend.julday).zfill(3)+'.' fileavst = avstpath + dstart + dend + 'avg_sta.pkl' if os.path.exists(fileavst): if not opts.ovr: print("* -> file "+fileavst+" exists - continuing") continue # Containers for power and cross spectra coh_all = [] ph_all = [] coh_12_all = [] coh_1Z_all = [] coh_1P_all = [] coh_2Z_all = [] coh_2P_all = [] coh_ZP_all = [] ph_12_all = [] ph_1Z_all = [] ph_1P_all = [] ph_2Z_all = [] ph_2P_all = [] ph_ZP_all = [] ad_12_all = [] ad_1Z_all = [] ad_1P_all = [] ad_2Z_all = [] ad_2P_all = [] ad_ZP_all = [] nwins = [] t1 = tstart # Initialize StaNoise object stanoise = StaNoise() # Loop through each day withing time range while t1 < tend: year = str(t1.year).zfill(4) jday = str(t1.julday).zfill(3) tstamp = year+'.'+jday+'.' filespec = specpath + tstamp + 'spectra.pkl' # Load file if it exists if os.path.exists(filespec): print() print( "*******************************************" + "*****************") print('* Calculating noise spectra for key ' + stkey+' and day '+year+'.'+jday) print("* -> file "+filespec+" found - loading") file = open(filespec, 'rb') daynoise = pickle.load(file) file.close() stanoise += daynoise else: t1 += 3600.*24. continue coh_all.append(daynoise.rotation.coh) ph_all.append(daynoise.rotation.ph) # Coherence coh_12_all.append( utils.smooth( utils.coherence( daynoise.cross.c12, daynoise.power.c11, daynoise.power.c22), 50)) coh_1Z_all.append( utils.smooth( utils.coherence( daynoise.cross.c1Z, daynoise.power.c11, daynoise.power.cZZ), 50)) coh_1P_all.append( utils.smooth( utils.coherence( daynoise.cross.c1P, daynoise.power.c11, daynoise.power.cPP), 50)) coh_2Z_all.append( utils.smooth( utils.coherence( daynoise.cross.c2Z, daynoise.power.c22, daynoise.power.cZZ), 50)) coh_2P_all.append( utils.smooth( utils.coherence( daynoise.cross.c2P, daynoise.power.c22, daynoise.power.cPP), 50)) coh_ZP_all.append( utils.smooth( utils.coherence( daynoise.cross.cZP, daynoise.power.cZZ, daynoise.power.cPP), 50)) # Phase try: ph_12_all.append( 180./np.pi*utils.phase(daynoise.cross.c12)) except: ph_12_all.append(None) try: ph_1Z_all.append( 180./np.pi*utils.phase(daynoise.cross.c1Z)) except: ph_1Z_all.append(None) try: ph_1P_all.append( 180./np.pi*utils.phase(daynoise.cross.c1P)) except: ph_1P_all.append(None) try: ph_2Z_all.append( 180./np.pi*utils.phase(daynoise.cross.c2Z)) except: ph_2Z_all.append(None) try: ph_2P_all.append( 180./np.pi*utils.phase(daynoise.cross.c2P)) except: ph_2P_all.append(None) try: ph_ZP_all.append( 180./np.pi*utils.phase(daynoise.cross.cZP)) except: ph_ZP_all.append(None) # Admittance ad_12_all.append(utils.smooth(utils.admittance( daynoise.cross.c12, daynoise.power.c11), 50)) ad_1Z_all.append(utils.smooth(utils.admittance( daynoise.cross.c1Z, daynoise.power.c11), 50)) ad_1P_all.append(utils.smooth(utils.admittance( daynoise.cross.c1P, daynoise.power.c11), 50)) ad_2Z_all.append(utils.smooth(utils.admittance( daynoise.cross.c2Z, daynoise.power.c22), 50)) ad_2P_all.append(utils.smooth(utils.admittance( daynoise.cross.c2P, daynoise.power.c22), 50)) ad_ZP_all.append(utils.smooth(utils.admittance( daynoise.cross.cZP, daynoise.power.cZZ), 50)) t1 += 3600.*24. # Convert to numpy arrays coh_all = np.array(coh_all) ph_all = np.array(ph_all) coh_12_all =
np.array(coh_12_all)
numpy.array
from __future__ import print_function, division import os import numpy as np import torch from PIL import Image from torch.utils.data import Dataset eps = np.finfo(float).eps #small number to avoid zeros class Foundation_Type_Testset(Dataset): def __init__(self, image_folder, transform=None,mask_buildings=False, load_masks=False): self.transform = transform self.img_paths = [] self.mask_paths = [] self.filenames = [] self.mask_buildings = mask_buildings self.load_masks = load_masks if not os.path.isdir(image_folder): if os.path.isfile(image_folder): # The following format is to be consistent with os.walk output file_list = [[os.path.split(image_folder)[0],'None',[os.path.split(image_folder)[1]]]] else: print('Error: Image folder or file {} not found.'.format(image_folder)) exit() else: file_list = os.walk(image_folder, followlinks=True) for root, _, fnames in sorted(file_list): for fname in sorted(fnames): if 'jpg' in fname or 'png' in fname: if 'mask' in fname: continue img_path = os.path.join(root, fname) if self.load_masks: _, file_extension = os.path.splitext(img_path) mask_filename = fname.replace(file_extension, '-mask.png') mask_path = os.path.join(root, mask_filename) if not os.path.isfile(mask_path): print('No mask for {}. Skipping'.format(fname)) continue self.mask_paths.append(mask_path) self.filenames.append(fname) self.img_paths.append(img_path) def __len__(self): return len(self.img_paths) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() img_name = self.img_paths[idx] image = Image.open(img_name) if self.mask_buildings and self.load_masks: image = np.array(image) mask_filename = self.mask_paths[idx] mask = Image.open(mask_filename) mask = np.array(mask) # Filter building labels mask[np.where((mask != 25) & (mask != 1))] = 0 image[mask == 0, :] = 0 image = Image.fromarray(np.uint8(image)) if (self.transform): image = self.transform(image) fname = self.filenames[idx] return (image, fname) class Foundation_Type_Binary(Dataset): def __init__(self, image_folder, transform=None,mask_buildings=False, load_masks=False): self.transform = transform self.classes = ['Raised','Not Raised'] self.img_paths = [] self.mask_paths = [] labels = [] self.mask_buildings = mask_buildings self.load_masks = load_masks assert os.path.isdir(image_folder),'Image folder {} not found or not a path'.format(image_folder) for root, _, fnames in sorted(os.walk(image_folder, followlinks=True)): for fname in sorted(fnames): if 'jpg' in fname or 'png' in fname: if 'mask' in fname: continue img_path = os.path.join(root, fname) _, file_extension = os.path.splitext(img_path) mask_filename = fname.replace(file_extension, '-mask.png') mask_path = os.path.join(root, mask_filename) if not os.path.isfile(mask_path): print('No mask for {}. Skipping'.format(fname)) continue labels.append(os.path.dirname(img_path).split(os.path.sep)[-1]) self.img_paths.append(img_path) self.mask_paths.append(mask_path) self.train_labels = np.zeros(len(labels)) for class_id in ['5001', '5005', '5002', '5003']: idx = np.where(np.array(labels) == class_id)[0] self.train_labels[idx] = 0 for class_id in ['5004', '5006']: # Piles Piers and Posts idx = np.where(np.array(labels) == class_id)[0] self.train_labels[idx] = 1 # Train weights for optional weighted sampling self.train_weights = np.ones(len(self.train_labels)) self.train_weights[self.train_labels == 0] = np.sum(self.train_labels == 0) / len(self.train_labels) self.train_weights[self.train_labels == 1] = np.sum(self.train_labels == 1) / len(self.train_labels) self.train_weights = 1-self.train_weights def __len__(self): return len(self.img_paths) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() img_name = self.img_paths[idx] image = Image.open(img_name) if self.mask_buildings and self.load_masks: image = np.array(image) mask_filename = self.mask_paths[idx] mask = Image.open(mask_filename) mask = np.array(mask) # Filter building labels mask[np.where((mask != 25) & (mask != 1))] = 0 image[mask == 0, :] = 0 image = Image.fromarray(
np.uint8(image)
numpy.uint8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import random from random import shuffle, randint, choice from collections import defaultdict from paddle.io import IterableDataset class Rating(object): def __init__(self, trainingSet, testSet): self.evalSettings = {"cv": 5, "b": 1} # "-cv 5 -b 1" self.user = {} # map user names to id self.item = {} # map item names to id self.id2user = {} self.id2item = {} self.userMeans = {} # mean values of users's ratings self.itemMeans = {} # mean values of items's ratings self.globalMean = 0 self.trainSet_u = defaultdict(dict) self.trainSet_i = defaultdict(dict) self.testSet_u = defaultdict( dict) # test set in the form of [user][item]=rating self.testSet_i = defaultdict( dict) # test set in the form of [item][user]=rating self.rScale = [] # rating scale self.trainingData = trainingSet[:] self.testData = testSet[:] self.__generateSet() self.__computeItemMean() self.__computeUserMean() self.__globalAverage() def __generateSet(self): scale = set() for i, entry in enumerate(self.trainingData): userName, itemName, rating = entry # makes the rating within the range [0, 1]. # rating = normalize(float(rating), self.rScale[-1], self.rScale[0]) # self.trainingData[i][2] = rating # order the user if userName not in self.user: self.user[userName] = len(self.user) self.id2user[self.user[userName]] = userName # order the item if itemName not in self.item: self.item[itemName] = len(self.item) self.id2item[self.item[itemName]] = itemName # userList.append self.trainSet_u[userName][itemName] = rating self.trainSet_i[itemName][userName] = rating scale.add(float(rating)) self.rScale = list(scale) self.rScale.sort() for entry in self.testData: userName, itemName, rating = entry self.testSet_u[userName][itemName] = rating self.testSet_i[itemName][userName] = rating def __globalAverage(self): total = sum(self.userMeans.values()) if total == 0: self.globalMean = 0 else: self.globalMean = total / len(self.userMeans) def __computeUserMean(self): for u in self.user: self.userMeans[u] = sum(self.trainSet_u[u].values()) / len( self.trainSet_u[u]) def __computeItemMean(self): for c in self.item: self.itemMeans[c] = sum(self.trainSet_i[c].values()) / len( self.trainSet_i[c]) def getUserId(self, u): if u in self.user: return self.user[u] def getItemId(self, i): if i in self.item: return self.item[i] def trainingSize(self): return len(self.user), len(self.item), len(self.trainingData) def testSize(self): return len(self.testSet_u), len(self.testSet_i), len(self.testData) def contains(self, u, i): if u in self.user and i in self.trainSet_u[u]: return True else: return False def containsUser(self, u): if u in self.user: return True else: return False def containsItem(self, i): if i in self.item: return True else: return False def userRated(self, u): return list(self.trainSet_u[u].keys()), list(self.trainSet_u[u].values( )) def itemRated(self, i): return list(self.trainSet_i[i].keys()), list(self.trainSet_i[i].values( )) def row(self, u): k, v = self.userRated(u) vec = np.zeros(len(self.item)) # print vec for pair in zip(k, v): iid = self.item[pair[0]] vec[iid] = pair[1] return vec def col(self, i): k, v = self.itemRated(i) vec = np.zeros(len(self.user)) # print vec for pair in zip(k, v): uid = self.user[pair[0]] vec[uid] = pair[1] return vec def matrix(self): m = np.zeros((len(self.user), len(self.item))) for u in self.user: k, v = self.userRated(u) vec = np.zeros(len(self.item)) # print vec for pair in zip(k, v): iid = self.item[pair[0]] vec[iid] = pair[1] m[self.user[u]] = vec return m def sRow(self, u): return self.trainSet_u[u] def sCol(self, c): return self.trainSet_i[c] def rating(self, u, c): if self.contains(u, c): return self.trainSet_u[u][c] return -1 def ratingScale(self): return self.rScale[0], self.rScale[1] def elemCount(self): return len(self.trainingData) class SparseMatrix(): 'matrix used to store raw data' def __init__(self, triple): self.matrix_User = {} self.matrix_Item = {} for item in triple: if item[0] not in self.matrix_User: self.matrix_User[item[0]] = {} if item[1] not in self.matrix_Item: self.matrix_Item[item[1]] = {} self.matrix_User[item[0]][item[1]] = item[2] self.matrix_Item[item[1]][item[0]] = item[2] self.elemNum = len(triple) self.size = (len(self.matrix_User), len(self.matrix_Item)) def sRow(self, r): if r not in self.matrix_User: return {} else: return self.matrix_User[r] def sCol(self, c): if c not in self.matrix_Item: return {} else: return self.matrix_Item[c] def row(self, r): if r not in self.matrix_User: return np.zeros((1, self.size[1])) else: array = np.zeros((1, self.size[1])) ind = list(self.matrix_User[r].keys()) val = list(self.matrix_User[r].values()) array[0][ind] = val return array def col(self, c): if c not in self.matrix_Item: return np.zeros((1, self.size[0])) else: array = np.zeros((1, self.size[0])) ind = list(self.matrix_Item[c].keys()) val = list(self.matrix_Item[c].values()) array[0][ind] = val return array def elem(self, r, c): if not self.contains(r, c): return 0 return self.matrix_User[r][c] def contains(self, r, c): if r in self.matrix_User and c in self.matrix_User[r]: return True return False def elemCount(self): return self.elemNum def size(self): return self.size class Social(object): def __init__(self, relation=None): self.user = {} # used to store the order of users self.relation = relation self.followees = defaultdict(dict) self.followers = defaultdict(dict) self.trustMatrix = self.__generateSet() def __generateSet(self): triple = [] for line in self.relation: userId1, userId2, weight = line # add relations to dict self.followees[userId1][userId2] = weight self.followers[userId2][userId1] = weight # order the user if userId1 not in self.user: self.user[userId1] = len(self.user) if userId2 not in self.user: self.user[userId2] = len(self.user) triple.append([self.user[userId1], self.user[userId2], weight]) return SparseMatrix(triple) def row(self, u): # return user u's followees return self.trustMatrix.row(self.user[u]) def col(self, u): # return user u's followers return self.trustMatrix.col(self.user[u]) def elem(self, u1, u2): return self.trustMatrix.elem(u1, u2) def weight(self, u1, u2): if u1 in self.followees and u2 in self.followees[u1]: return self.followees[u1][u2] else: return 0 def trustSize(self): return self.trustMatrix.size def getFollowers(self, u): if u in self.followers: return self.followers[u] else: return {} def getFollowees(self, u): if u in self.followees: return self.followees[u] else: return {} def hasFollowee(self, u1, u2): if u1 in self.followees: if u2 in self.followees[u1]: return True else: return False return False def hasFollower(self, u1, u2): if u1 in self.followers: if u2 in self.followers[u1]: return True else: return False return False def loadDataSet(file, bTest=False, binarized=False, threshold=3.0): trainingData, testData = [], [] with open(file) as f: ratings = f.readlines() order = ["0", "1", "2"] for lineNo, line in enumerate(ratings): items = line.strip().split("\t") try: userId = items[int(order[0])] itemId = items[int(order[1])] rating = items[int(order[2])] if binarized: if float(items[int(order[2])]) < threshold: continue else: rating = 1 except ValueError: print("Error! Dataset") if bTest: testData.append([userId, itemId, float(rating)]) else: trainingData.append([userId, itemId, float(rating)]) if bTest: return testData else: return trainingData def loadRelationship(file): relation = [] with open(file) as f: relations = f.readlines() order = ["0", "1"] for lineNo, line in enumerate(relations): items = line.strip().split("\t") userId1 = items[int(order[0])] userId2 = items[int(order[1])] weight = 1 relation.append([userId1, userId2, weight]) return relation def crossValidation(data, k, binarized=False): if k <= 1 or k > 10: k = 3 for i in range(k): trainingSet = [] testSet = [] for ind, line in enumerate(data): if ind % k == i: if binarized: if line[2]: testSet.append(line[:]) else: testSet.append(line[:]) else: trainingSet.append(line[:]) yield trainingSet, testSet class RecDataset(IterableDataset): def __init__(self, file_list, config): super(RecDataset, self).__init__() self.is_train = config.get("runner.is_train", True) self.trainingSet = loadDataSet( config.get("runner.rating_file", None), bTest=False, binarized=True, threshold=1.0) self.relation = loadRelationship( config.get("runner.relation_file", None)) self.social = Social(relation=self.relation) self.batch_size = config.get("runner.train_batch_size", 2000) for trainingSet, testSet in crossValidation(self.trainingSet, k=5): self.data = Rating(trainingSet, testSet) self.trainingSet = trainingSet self.testSet = testSet break _, _, self.train_size = self.data.trainingSize() _, _, self.test_size = self.data.testSize() random.seed(2) def get_dataset(self): # data clean cleanList = [] cleanPair = [] for user in self.social.followees: if user not in self.data.user: cleanList.append(user) for u2 in self.social.followees[user]: if u2 not in self.data.user: cleanPair.append((user, u2)) for u in cleanList: del self.social.followees[u] for pair in cleanPair: if pair[0] in self.social.followees: del self.social.followees[pair[0]][pair[1]] cleanList = [] cleanPair = [] for user in self.social.followers: if user not in self.data.user: cleanList.append(user) for u2 in self.social.followers[user]: if u2 not in self.data.user: cleanPair.append((user, u2)) for u in cleanList: del self.social.followers[u] for pair in cleanPair: if pair[0] in self.social.followers: del self.social.followers[pair[0]][pair[1]] idx = [] for n, pair in enumerate(self.social.relation): if pair[0] not in self.data.user or pair[1] not in self.data.user: idx.append(n) for item in reversed(idx): del self.social.relation[item] return self.data, self.social def __iter__(self): count = 0 item_list = list(self.data.item.keys()) if self.is_train: shuffle(self.data.trainingData) while count < self.train_size: output_list = [] user, item = self.data.trainingData[count][ 0], self.data.trainingData[count][1] neg_item = choice(item_list) while neg_item in self.data.trainSet_u[user]: neg_item = choice(item_list) output_list.append( np.array(self.data.user[user]).astype("int64")) output_list.append( np.array(self.data.item[item]).astype("int64")) output_list.append( np.array(self.data.item[neg_item]).astype("int64")) count += 1 yield output_list else: while count < self.test_size: output_list = [] user, item = self.data.testData[count][0], self.data.testData[ count][1] neg_item = choice(item_list) output_list.append( np.array(self.data.user[user]).astype("int64")) output_list.append( np.array(self.data.item[item]).astype("int64")) output_list.append(
np.array(self.data.item[neg_item])
numpy.array
from __future__ import division import numpy as np from numpy import einsum from Florence.Tensor import trace, Voigt from .MaterialBase import Material class SteinmannModel(Material): """Steinmann's electromechanical model in terms of enthalpy W(C,E) = W_n(C) + c1*I:(E0 0 E0) + c2*C:(E0 0 E0) - eps_1/2*J*C**(-1):(E0 0 E0) W_n(C) = mu/2*(C:I-3) - mu*lnJ + lamb/2*(lnJ)**2 Reference: <NAME>, <NAME>, and <NAME>, "Numerical modelling of non-linear electroelasticity", International Journal for Numerical Methods in Engineering, 70:685-704, (2007) """ def __init__(self, ndim, **kwargs): mtype = type(self).__name__ super(SteinmannModel, self).__init__(mtype, ndim, **kwargs) # REQUIRES SEPARATELY self.nvar = self.ndim+1 self.energy_type = "enthalpy" self.nature = "nonlinear" self.fields = "electro_mechanics" if self.ndim == 2: self.H_VoigtSize = 5 elif self.ndim == 3: self.H_VoigtSize = 9 # LOW LEVEL DISPATCHER self.has_low_level_dispatcher = True # self.has_low_level_dispatcher = False def KineticMeasures(self,F,ElectricFieldx, elem=0): from Florence.MaterialLibrary.LLDispatch._SteinmannModel_ import KineticMeasures return KineticMeasures(self, np.ascontiguousarray(F), ElectricFieldx) def Hessian(self,StrainTensors,ElectricFieldx=0,elem=0,gcounter=0): mu = self.mu lamb = self.lamb c1 = self.c1 c2 = self.c2 eps_1 = self.eps_1 I = StrainTensors['I'] J = StrainTensors['J'][gcounter] b = StrainTensors['b'][gcounter] E = 1.0*ElectricFieldx.reshape(self.ndim,1) Ex = E.reshape(E.shape[0]) EE = np.dot(E,E.T) be = np.dot(b,ElectricFieldx).reshape(self.ndim) C_Voigt = lamb/J*einsum('ij,kl',I,I) - (lamb*np.log(J) - mu)/J*( einsum('ik,jl',I,I) + einsum('il,jk',I,I) ) + \ eps_1*( einsum('ij,kl',I,EE) + einsum('ij,kl',EE,I) - einsum('ik,jl',EE,I) - einsum('il,jk',EE,I) - \
einsum('ik,jl',I,EE)
numpy.einsum
# Copyright 2020 Lawrence Livermore National Security, LLC and other authors: <NAME>, <NAME>, <NAME> # SPDX-License-Identifier: MIT # coding=utf-8 import numpy as np import tensorflow as tf from model import generator_c from skimage.measure import compare_psnr from PIL import Image import pybm3d import os from skimage.transform import rescale, resize from skimage import color from skimage import io import scipy ''' *** WARNING: This code is experimental *** ''' def projector_tf(imgs,phi=None): csproj = tf.matmul(imgs,tf.squeeze(phi)) return csproj def merge(images, size): h, w = images.shape[1], images.shape[2] if (images.shape[3] in (3,4)): c = images.shape[3] img = np.zeros((h * size[0], w * size[1], c)) for idx, image in enumerate(images): i = idx % size[1] j = idx // size[1] img[j * h:j * h + h, i * w:i * w + w, :] = image return img elif images.shape[3]==1: img = np.zeros((h * size[0], w * size[1])) for idx, image in enumerate(images): i = idx % size[1] j = idx // size[1] img[j * h:j * h + h, i * w:i * w + w] = image[:,:,0] return img else: raise ValueError('in merge(images,size) images parameter ' 'must have dimensions: HxW or HxWx3 or HxWx4') def imsave(images, size, path): image = np.squeeze(merge(images, size)) return scipy.misc.imsave(path, image) def sample_Z(m, n): return np.random.uniform(-1,1,size=[m, n]) def GPP_color(test_image): # I_x = I_y = 1024 I_y = 1024 # I_x = 1536 I_x = 768 d_x = d_y = 32 dim_x = d_x*d_y batch_size = (I_x*I_y)//(dim_x) n_measure = 0.01 lr_factor = 1.0#*batch_size//64 dim_z = 100 dim_phi = int(n_measure*dim_x) nIter = 201 n_img_plot_x = I_x//d_x n_img_plot_y = I_y//d_y iters = np.array(np.geomspace(10,10,nIter),dtype=int) modelsave = './gan_models/gen_models_corrupt-colorcifar32' fname = './test_images/{}.jpg'.format(test_image) image = io.imread(fname) x_test = resize(image, (I_x, I_y),anti_aliasing=True,preserve_range=True,mode='reflect') x_test_ = np.array(x_test)/np.max(x_test) x_test = [] for i in range(n_img_plot_x): for j in range(n_img_plot_y): _x = x_test_[i*d_x:d_x*(i+1),j*d_y:d_y*(j+1)] x_test.append(_x) x_test = np.array(x_test) test_images = x_test[:batch_size,:,:,:] imsave(test_images,[n_img_plot_x,n_img_plot_y],'cs_outs/gt_sample.png') tf.reset_default_graph() tf.set_random_seed(0) np.random.seed(4321) Y_obs_ph = tf.placeholder(tf.float32,[batch_size,dim_phi,3]) phi_ph = tf.placeholder(tf.float32,[dim_x,dim_phi]) lr = tf.placeholder(tf.float32) tmp = 0.*tf.random_uniform([batch_size,dim_z],minval=-1.0,maxval=1.0) z_prior_ = tf.Variable(tmp,name="z_prior") G_sample_ = 0.5*generator_c(z_prior_,False,dim_z=dim_z)+0.5 G_sample = tf.image.resize_images(G_sample_,[d_x,d_y]) G_sample_re_r = tf.reshape(G_sample[:,:,:,0],[-1,dim_x]) G_sample_re_g = tf.reshape(G_sample[:,:,:,1],[-1,dim_x]) G_sample_re_b = tf.reshape(G_sample[:,:,:,2],[-1,dim_x]) phi_est = phi_ph proj_corrected_r = projector_tf(G_sample_re_r,phi_est) proj_corrected_g = projector_tf(G_sample_re_g,phi_est) proj_corrected_b = projector_tf(G_sample_re_b,phi_est) G_loss = 0 G_loss += tf.reduce_mean(tf.square(proj_corrected_r-Y_obs_ph[:,:,0])) G_loss += tf.reduce_mean(tf.square(proj_corrected_g-Y_obs_ph[:,:,1])) G_loss += tf.reduce_mean(tf.square(proj_corrected_b-Y_obs_ph[:,:,2])) opt_loss = G_loss t_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) g_vars = [var for var in t_vars if 'Generator' in var.name] solution_opt = tf.train.RMSPropOptimizer(lr).minimize(opt_loss, var_list=[z_prior_]) saver = tf.train.Saver(g_vars) merged_imgs = [] with tf.Session() as sess: sess.run(tf.global_variables_initializer()) ckpt = tf.train.get_checkpoint_state(modelsave) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) print("************ Generator weights restored! **************") nb = batch_size z_test = sample_Z(100,dim_z) phi_np = np.random.randn(dim_x,dim_phi) phi_test_np = phi_np print(np.mean(x_test),
np.min(x_test)
numpy.min
#!/usr/bin/env python3 from flask import Blueprint, Response, render_template, request, session from ezprobs.geometry import area_circle from ezprobs.hydraulics import pipe_loss, local_loss from ezprobs.problems import Parameter, Plot from ezprobs.units import M, CM, MM, M3PS, KINEMATIC_VISCOSITY, GRAVITY from ezprobs.dict import DICT_GER, DICT_ENG from io import BytesIO from math import sqrt from scipy.optimize import fsolve import numpy as np import matplotlib as mpl mpl.use("Agg") import matplotlib.pyplot as plt __author__ = "<NAME>" __copyright__ = "Copyright (c) 2021 <NAME>" __license__ = "MIT" __email__ = "<EMAIL>" bp = Blueprint("pressure_pipe_02", __name__) def compute_solution(): d = 5 * CM ha = 150 * CM hb = 20 * CM hout = 30 * CM l = 2 * M k = 0.3 * MM nu_entry = 0.5 scale = 1 # over scaling velocity head for better display q_initial = 3 * 10 ** -3 * M3PS if request.method == "POST": d = float(request.form["d"]) * MM hb = float(request.form["hb"]) * CM a = area_circle(d / 2) if hb == ha: q = 0 elif hb < hout: q = fsolve( lambda q: hout + (q / a) ** 2 / (2 * GRAVITY) + local_loss(nu_entry, a, q) + pipe_loss(l, a, k, d, q) - ha, 1, )[0] else: q = fsolve( lambda q: hb + (q / a) ** 2 / (2 * GRAVITY) + local_loss(nu_entry, a, q) + pipe_loss(l, a, k, d, q) - ha, 1, )[0] v = q / a distances = np.array([0, l]) x = np.cumsum(distances) pipe = np.array([ha-0.85, hout]) energy_horizon = np.full((len(x)), ha) if hb == ha: losses = np.array([0, 0]) else: losses = np.array( [ local_loss(nu_entry, a, q), pipe_loss(l, a, k, d, q), ] ) cum_losses = np.cumsum(losses) energy_line = energy_horizon - cum_losses energy_line[0] = energy_horizon[0]-scale*cum_losses[0] # for display kinetic_energy =
np.array([v, v])
numpy.array
import io import os import json import base64 import numpy as np import matplotlib.pyplot as plt import math from PIL import Image coco_dataset = {"person": 1, "bicycle": 2, "car": 3, "motorcycle": 4, "airplane": 5, "bus": 6, "train": 7, "truck": 8, "boat": 9, "traffic light": 10, "fire hydrant": 11, "street sign": 12, "stop sign": 13, "parking meter": 14, "bench": 15, "bird": 16, "cat": 17, "dog": 18, "horse": 19, "sheep": 20, "cow": 21, "elephant": 22, "bear": 23, "zebra": 24, "giraffe": 25, "hat": 26, "backpack": 27, "umbrella": 28, "shoe": 29, "eye glasses": 30, "handbag": 31, "tie": 32, "suitcase": 33, "frisbee": 34, "skis": 35, "snowboard": 36, "sports ball": 37, "kite": 38, "baseball bat": 39, "baseball glove": 40, "skateboard": 41, "surfboard": 42, "tennis racket": 43, "bottle": 44, "plate": 45, "wine glass": 46, "cup": 47, "fork": 48, "knife": 49, "spoon": 50, "bowl": 51, "banana": 52, "apple": 53, "sandwich": 54, "orange": 55, "broccoli": 56, "carrot": 57, "hot dog": 58, "pizza": 59, "donut": 60, "cake": 61, "chair": 62, "couch": 63, "potted plant": 64, "bed": 65, "mirror": 66, "dining table": 67, "window": 68, "desk": 69, "toilet": 70, "door": 71, "tv": 72, "laptop": 73, "mouse": 74, "remote": 75, "keyboard": 76, "cell phone": 77, "microwave": 78, "oven": 79, "toaster": 80, "sink": 81, "refrigerator": 82, "blender": 83, "book": 84, "clock": 85, "vase": 86, "scissors": 87, "teddy bear": 88, "hair drier": 89, "toothbrush": 90, "hair brush": 91} category_index = {1: "person", 2: "bicycle", 3: "car", 4: "motorcycle", 5: "airplane", 6: "bus", 7: "train", 8: "truck", 9: "boat", 10: "traffic light", 11: "fire hydrant", 12: "street sign", 13: "stop sign", 14: "parking meter", 15: "bench", 16: "bird", 17: "cat", 18: "dog", 19: "horse", 20: "sheep", 21: "cow", 22: "elephant", 23: "bear", 24: "zebra", 25: "giraffe", 26: "hat", 27: "backpack", 28: "umbrella", 29: "shoe", 30: "eye glasses", 31: "handbag", 32: "tie", 33: "suitcase", 34: "frisbee", 35: "skis", 36: "snowboard", 37: "sports ball", 38: "kite", 39: "baseball bat", 40: "baseball glove", 41: "skateboard", 42: "surfboard", 43: "tennis racket", 44: "bottle", 45: "plate", 46: "wine glass", 47: "cup", 48: "fork", 49: "knife", 50: "spoon", 51: "bowl", 52: "banana", 53: "apple", 54: "sandwich", 55: "orange", 56: "broccoli", 57: "carrot", 58: "hot dog", 59: "pizza", 60: "donut", 61: "cake", 62: "cake", 63: "couch", 64: "potted plant", 65: "bed", 66: "mirror", 67: "dining table", 68: "window", 69: "desk", 70: "toilet", 71: "door", 72: "tv", 73: "laptop", 74: "mouse", 75: "remote", 76: "keyboard", 77: "cell phone", 78: "microwave", 79: "oven", 80: "toaster", 81: "sink", 82: "refrigerator", 83: "blender", 84: "book", 85: "clock", 86: "vase", 87: "scissors", 88: "teddy bear", 89: "hair drier", 90: "toothbrush", 91: "hair brush"} # Returns the object's position on the 2D image in pixel space. (0,0) is the center of the image def get_image_xy(camera_params, params, obj): if on_right_side(camera_params, obj) > 0: x, y = locate(camera_params, params, obj) else: # on wrong side of camera x = math.inf y = math.inf return x, y # Check if on the right side of camera. compare to plane going through camera's # location with a normal vector going from camera to focus # calculating a(x-x_0)+b(y-y_0)+c(z-z_0). # if it turns out positive, it's on the focus' side of the camera def on_right_side(camera_params, obj): c = camera_params["camera"] f = camera_params["lookat"] focus = (f[0] - c[0])*(obj[0] - c[0]) + (f[1] - c[1])*(obj[1] - c[1]) + (f[2] - c[2])*(obj[2] - c[2]) return focus >= 0 # Given camera info and object's location, find object's location on 2-D image def locate(camera_params, params, obj): a_vertical, b_vertical, c_vertical = get_vertical_plane(camera_params) a_horizontal, b_horizontal, c_horizontal = get_horizontal_plane(camera_params, a_vertical, b_vertical, c_vertical) s_x = obj[0] - camera_params["camera"][0] s_y = obj[1] - camera_params["camera"][1] s_z = obj[2] - camera_params["camera"][2] s_x_v, s_y_v, s_z_v = proj_vec_to_plane(a_vertical, b_vertical, c_vertical, s_x, s_y, s_z) s_x_h, s_y_h, s_z_h = proj_vec_to_plane(a_horizontal, b_horizontal, c_horizontal, s_x, s_y, s_z) angle_from_vertical = get_angle(a_vertical, b_vertical, c_vertical, s_x_h, s_y_h, s_z_h) angle_from_horizontal = get_angle(a_horizontal, b_horizontal, c_horizontal, s_x_v, s_y_v, s_z_v) x = params["image_dim_x"] / 2 * (angle_from_vertical / math.radians(params["horizontal_FoV"] / 2)) y = params["image_dim_y"] / 2 * (-angle_from_horizontal / math.radians(params["vertical_FoV"] / 2)) x = x + params["image_dim_x"] / 2 y = y + params["image_dim_y"] / 2 return x, y # Returns the angle between the vector and the plane # a,b,c is coefficients of plane. x, y, z is the vector. def get_angle(a, b, c, x, y, z): numerator = a*x + b*y + c*z # took out abs denominator = math.sqrt(math.pow(a, 2) + math.pow(b, 2) + math.pow(c, 2)) * math.sqrt(math.pow(x, 2) + math.pow(y, 2) + math.pow(z, 2)) return math.asin(numerator / denominator) #angle in radians # Returns a,b,c for the vertical plane. only need the camera parameters def get_vertical_plane(camera_params): p1 = camera_params["camera"] p2 = camera_params["lookat"] p3 = [p1[0], p1[1] + 1, p1[2]] a, b, c = get_abc_plane(p1, p2, p3) #want normal to be be on the "righthand" side of camera #x and z component of vec for the direction camera is pointing camera_pointing_x = camera_params["lookat"][0] - camera_params["camera"][0] camera_pointing_y = camera_params["lookat"][1] - camera_params["camera"][1] camera_pointing_z = camera_params["lookat"][2] - camera_params["camera"][2] result = np.cross(np.array([a, b, c]), np.array([camera_pointing_x, camera_pointing_y, camera_pointing_z])) #if y-component < 0, multiply by -1 to_return = [-a, -b, -c] if result[2] < 0 else [a, b, c] return to_return # Need camera parameters and vertical plane (so horizontal will be perpendicular to it) def get_horizontal_plane(camera_params, a_vertical, b_vertical, c_vertical): p1 = camera_params["camera"] p2 = camera_params["lookat"] p3 = [p1[0] + a_vertical, p1[1] + b_vertical, p1[2] + c_vertical] #adding normal vector (a, b, c) to the point to make a third point on the horizontal plane a, b, c = get_abc_plane(p1, p2, p3) #make sure that this normal is upright, so b > 0 if b < 0: return -a, -b, -c elif b > 0: return a, b, c print("uh oh. camera looking straight up or straight down") return a, b, c # Given 3 points on a plane (p1, p2, p3), get a, b, and c coefficients in the general form. # abc also gives a normal vector def get_abc_plane(p1, p2, p3): # using Method 2 from wikipedia: https://en.wikipedia.org/wiki/Plane_(geometry)#:~:text=In%20mathematics%2C%20a%20plane%20is,)%20and%20three%2Ddimensional%20space. D = np.linalg.det(np.array([[p1[0], p2[0], p3[0]], [p1[1], p2[1], p3[1]], [p1[2], p2[2], p3[2]]])) if D == 0: print("crap! determinant D=0") print(p1) print(p2) print(p3) return # implicitly going to say d=-1 to obtain solution set a = np.linalg.det(np.array([[1, 1, 1], [p1[1], p2[1], p3[1]], [p1[2], p2[2], p3[2]]])) / D b = np.linalg.det(
np.array([[p1[0], p2[0], p3[0]], [1, 1, 1], [p1[2], p2[2], p3[2]]])
numpy.array
""" Routines for displaying images and video """ # std libs import time import logging import warnings import itertools as itt # third-party libs import numpy as np from matplotlib import ticker import matplotlib.pylab as plt from matplotlib.figure import Figure from matplotlib.widgets import Slider from matplotlib.gridspec import GridSpec from astropy.visualization.stretch import BaseStretch from astropy.visualization.interval import BaseInterval from astropy.visualization.mpl_normalize import ImageNormalize from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.axes_grid1 import AxesGrid, make_axes_locatable # local libs from recipes.misc import duplicate_if_scalar from recipes.array.neighbours import neighbours from recipes.logging import LoggingMixin, get_module_logger # relative libs from .sliders import TripleSliders from .utils import get_percentile_limits # from obstools.aps import ApertureCollection # from .zscale import zrange # from astropy.visualization import mpl_normalize # import ImageNormalize as _ # module level logger logger = get_module_logger() logging.basicConfig() logger.setLevel(logging.INFO) # TODO: docstrings (when stable) # TODO: unit tests # TODO: maybe display things like contrast ratio ?? # TODO: middle mouse resets axes limits def _sanitize_data(data): """ Removes nans and masked elements Returns flattened array """ if np.ma.is_masked(data): data = data[~data.mask] return np.asarray(data[~np.isnan(data)]) def move_axes(ax, x, y): """Move the axis in the figure by x, y""" l, b, w, h = ax.get_position(True).bounds ax.set_position((l + x, b + y, w, h)) def get_norm(image, interval, stretch): """ Parameters ---------- image interval stretch Returns ------- """ # choose colour interval algorithm based on data type if image.dtype.kind == 'i': # integer array if image.ptp() < 1000: interval = 'minmax' # determine colour transform from `interval` and `stretch` if isinstance(interval, str): interval = interval, interval = Interval.from_name(*interval) # if isinstance(stretch, str): stretch = stretch, stretch = Stretch.from_name(*stretch) # Create an ImageNormalize object return ImageNormalize(image, interval, stretch=stretch) def get_screen_size_inches(): """ Use QT to get the size of the primary screen in inches Returns ------- size_inches: list """ import sys from PyQt5.QtWidgets import QApplication, QDesktopWidget # Note the check on QApplication already running and not executing the exit # statement at the end. app = QApplication.instance() if app is None: app = QApplication(sys.argv) else: logger.debug(f'QApplication instance already exists: {app}') # TODO: find out on which screen the focus is w = QDesktopWidget() s = w.screen() size_inches = [s.width() / s.physicalDpiX(), s.height() / s.physicalDpiY()] # app.exec_() w.close() return size_inches # screens = app.screens() # size_inches = np.empty((len(screens), 2)) # for i, s in enumerate(screens): # g = s.geometry() # size_inches[i] = np.divide( # [g.height(), g.width()], s.physicalDotsPerInch() # ) # app.exec_() # return size_inches def guess_figsize(image, fill_factor=0.75, max_pixel_size=0.2): """ Make an educated guess of the size of the figure needed to display the image data. Parameters ---------- image: np.ndarray Sample image fill_factor: float Maximal fraction of screen size allowed in any direction min_size: 2-tuple Minimum allowed size (width, height) in inches max_pixel_size: float Maximum allowed pixel size Returns ------- size: tuple Size (width, height) of the figure in inches """ # Sizes reported by mpl figures seem about half the actual size on screen shape = np.array(np.shape(image)[::-1]) return _guess_figsize(shape, fill_factor, max_pixel_size) def _guess_figsize(image_shape, fill_factor=0.75, max_pixel_size=0.2, min_size=(2, 2)): # screen dimensions screen_size = np.array(get_screen_size_inches()) # change order of image dimensions since opposite order of screen max_size = np.multiply(image_shape, max_pixel_size) # get upper limit for fig size based on screen and data and fill factor max_size = np.min([max_size, screen_size * fill_factor], 0) # get size from data aspect = image_shape / image_shape.max() size = max_size[aspect == 1] * aspect # enlarge = size *= max(np.max(min_size / size), 1) logger.debug('Guessed figure size: (%.1f, %.1f)', *size) return size def auto_grid(n): x = int(np.floor(np.sqrt(n))) y = int(np.ceil(n / x)) return x, y def set_clim_connected(x, y, artist, sliders): artist.set_clim(*sliders.positions) return artist def plot_image_grid(images, layout=(), titles=(), title_kws=None, figsize=None, plims=None, clim_all=False, **kws): """ Parameters ---------- images layout titles clim_all: Compute colour limits from the full set of pixel values for all images. Choose this if your images are all normalised to roughly the same scale. If False clims will be computed individually and the colourbar sliders will be disabled. Returns ------- """ # TODO: plot individual histograms - clim_each # todo: guess fig size n = len(images) assert n, 'No images to plot!' # assert clim_mode in ('all', 'row') import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec # get grid layout if not layout: layout = auto_grid(n) n_rows, n_cols = layout if n_rows == -1: n_rows = int(np.ceil(n / n_cols)) if n_cols == -1: n_cols = int(np.ceil(n / n_rows)) # create figure fig = plt.figure(figsize=figsize) # ticks tick_par = dict(color='w', direction='in', bottom=1, top=1, left=1, right=1) # Use gridspec rather than ImageGrid since the latter tends to resize # the axes if clim_all: cbar_size, hist_size = 3, 5 else: cbar_size = hist_size = 0 gs = GridSpec(n_rows, n_cols * (100 + cbar_size + hist_size), hspace=0.005, wspace=0.005, left=0.03, # fixme: need more for ticks right=0.97, bottom=0.03, top=0.98 ) # todo: maybe better with tight layout. # create colourbar and pixel histogram axes # kws = {**dict(origin='lower', cbar=False, sliders=False, hist=False, clim=not clim_all, plims=plims), **kws} title_kws = {**dict(color='w', va='top', fontweight='bold'), **(title_kws or {})} art = [] w = len(str(int(n))) axes = np.empty((n_rows, n_cols), 'O') indices = enumerate(np.ndindex(n_rows, n_cols)) for (i, (j, k)), title in itt.zip_longest(indices, titles, fillvalue=''): if i == n: break # last if (i == n - 1) and clim_all: # do colourbar + pixel histogram if clim all kws.update(cbar=True, sliders=True, hist=True, cax=fig.add_subplot( gs[:, -(cbar_size + hist_size) * n_cols:]), hax=fig.add_subplot(gs[:, -hist_size * n_cols:])) # create axes! axes[j, k] = ax = fig.add_subplot( gs[j:j + 1, (100 * k):(100 * (k + 1))]) # plot image imd = ImageDisplay(images[i], ax=ax, **kws) art.append(imd.imagePlot) # do ticks top = (j == 0) bot = (j == n_rows - 1) left = (k == 0) # leftmost # right = (j == n_cols - 1) # set the ticks to white and visible on all spines for aesthetic ax.tick_params('both', **{**dict(labelbottom=bot, labeltop=top, labelleft=left, labelright=0), **tick_par}) for lbl, spine in ax.spines.items(): spine.set_color('w') # add title text title = title.replace("\n", "\n ") ax.text(0.025, 0.95, f'{i: <{w}}: {title}', transform=ax.transAxes, **title_kws) # Do colorbar # noinspection PyUnboundLocalVariable # fig.colorbar(imd.imagePlot, cax) img = ImageGrid(fig, axes, imd) if clim_all: img._clim_all(images, plims) return img class ImageGrid: def __init__(self, fig, axes, imd): self.fig = fig self.axes = axes self.imd = imd def __iter__(self): yield from (self.fig, self.axes, self.imd) def save(self, filenames): from matplotlib.transforms import Bbox fig = self.fig assert len(filenames) == self.axes.size ax_per_image = (len(fig.axes) // self.axes.size) # axit = mit.chunked(self.fig.axes, ax_per_image) for ax, name in zip(self.axes.ravel(), filenames): mn, mx = (np.inf, np.inf), (0, 0) # for ax in axes[::-1]: # # Save just the portion _inside_ the second axis's boundaries # mn1, mx1 = ax.get_window_extent().transformed( # fig.dpi_scale_trans.inverted()).get_points() # mn = np.min((mn, mn1), 0) # mx = np.max((mx, mx1), 0) # ticklabels = ax.xaxis.get_ticklabels() + ax.yaxis.get_ticklabels() # for txt in ticklabels: # mn1, mx1 = txt.get_window_extent().transformed( # fig.dpi_scale_trans.inverted()).get_points() # mn = np.min((mn, mn1), 0) # mx = np.max((mx, mx1), 0) # remove ticks # ax.set_axis_off() if len(ax.texts): ax.texts[0].set_visible(False) # Pad the saved area by 10% in the x-direction and 20% in the y-direction fig.savefig(name, bbox_inches=ax.get_window_extent().transformed( fig.dpi_scale_trans.inverted()).expanded(1.2, 1)) @property def images(self): return [ax.images[0].get_array() for ax in self.fig.axes] def _clim_all(art, imd, images, plims): # connect all image clims to the sliders. for image in art: # noinspection PyUnboundLocalVariable imd.sliders.lower.on_move.add(set_clim_connected, image, imd.sliders) imd.sliders.upper.on_move.add(set_clim_connected, image, imd.sliders) # The same as above can be accomplished in pure matplolib as follows: # https://matplotlib.org/3.1.1/gallery/images_contours_and_fields/multi_image.html # Make images respond to changes in the norm of other images (e.g. via # the "edit axis, curves and images parameters" GUI on Qt), but be # careful not to recurse infinitely! # def update(changed_image): # for im in art: # if (changed_image.get_cmap() != im.get_cmap() # or changed_image.get_clim() != im.get_clim()): # im.set_cmap(changed_image.get_cmap()) # im.set_clim(changed_image.get_clim()) # # for im in art: # im.callbacksSM.connect('changed', update) # update clim for all plots # for the general case where images are non-uniform shape, we have to # flatten them all to get the colour percentile values. # TODO: will be more efficient for large number of images to sample # evenly from each image pixels = [] for im in images: # getattr(im, ('ravel', 'compressed')[np.ma.isMA(im)])() pixels.extend(im.compressed() if np.ma.isMA(im) else im.ravel()) pixels =
np.array(pixels)
numpy.array
''' --------------------------- Licensing and Distribution --------------------------- Program name: Pilgrim Version : 2021.5 License : MIT/x11 Copyright (c) 2021, <NAME> (<EMAIL>) and <NAME> (<EMAIL>) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. --------------------------- *----------------------------------* | Module : common | | Sub-module : Molecule | | Last Update: 2020/02/03 (Y/M/D) | | Main Author: <NAME> | *----------------------------------* This module contains the Molecule class ''' #=============================================# import os import numpy as np #---------------------------------------------# import common.fncs as fncs import common.partfns as pf import common.internal as intl import common.Exceptions as Exc from common.criteria import EPS_IC from common.dicts import dpt_im from common.files import read_gtsfile from common.files import write_gtsfile from common.files import write_xyz, write_molden from common.pgs import get_pgs from common.physcons import AMU from common.physcons import KCALMOL from common.physcons import EV from common.physcons import ANGSTROM from common.physcons import H2CM from common.gaussian import read_fchk from common.gaussian import read_gauout #=============================================# class Molecule(): # Initialization method def __init__(self,label=None): self._label = label # Unidimensional self._mform = "-" self._mu = None self._ch = None self._mtp = None self._V0 = None self._pgroup = None self._rotsigma = None self._natoms = None self._nel = None # number of electrons self._rtype = None self._linear = None # Multi-dimensional self._atnums = None self._symbols = None self._masses = None self._les = None # list of electronic states self._itensor = None self._imoms = None self._rotTs = None # Arrays of importance self._xcc = None self._gcc = None self._Fcc = None self._xms = None self._gms = None self._Fms = None # related to frequencies self._fscal = 1.0 self._nvdof = None self._cczpe = None self._ccfreqs = None self._ccFevals = None self._ccFevecs = None self._iczpe = None self._icfreqs = None self._icFevals = None self._icFevecs = None # other stuff for very particular occasion self._gts = None def __str__(self): return self._mform def setvar(self,xcc=None,gcc=None,Fcc=None,\ atonums=None,symbols=None,masses=None,\ ch=None,mtp=None, V0=None,\ pgroup=None,rotsigma=None,\ fscal=None,les=None): if xcc is not None: self._xcc = xcc if gcc is not None: self._gcc = gcc if Fcc is not None: self._Fcc = Fcc if atonums is not None: self._atnums = atonums if symbols is not None: self._symbols = symbols if masses is not None: self._masses = masses if ch is not None: self._ch = int(ch) if mtp is not None: self._mtp = int(mtp) if V0 is not None: self._V0 = V0 if pgroup is not None: self._pgroup = pgroup if rotsigma is not None: self._rotsigma = rotsigma if fscal is not None: self._fscal = fscal if les is not None: self._les = les def genderivates(self): self._mform = fncs.get_molformula(self._symbols) self._natoms = len(self._atnums) self._mass = sum(self._masses) self._nel = sum(self._atnums)-self._ch if self._les is None: self._les = [ (self._mtp,0.0) ] def prepare(self): # check atnums if self._atnums is not None and type(self._atnums[0]) == str: self._symbols = list(self._atnums) # check symbols if self._symbols is not None and type(self._symbols[0]) == int: self._atnums = list(self._symbols) # Get both atnums and symbols if None if self._atnums is None: self._atnums = fncs.symbols2atonums(self._symbols) if self._symbols is None: self._symbols = fncs.atonums2symbols(self._atnums) # check masses if self._masses is None: self._masses = fncs.atonums2masses(self._atnums) # derivated magnitudes self.genderivates() # check Fcc if self._Fcc not in (None,[]) and len(self._Fcc) != 3*self._natoms: self._Fcc = fncs.lowt2matrix(self._Fcc) def calc_pgroup(self,force=False): calculate = False if force : calculate = True if self._pgroup is None: calculate = True if self._rotsigma is None: calculate = True if calculate: self._pgroup,self._rotsigma = get_pgs(self._atnums,self._masses,self._xcc) def remove_frozen(self): if self._natoms == 1: return [],[] frozen = fncs.detect_frozen(self._Fcc,self._natoms) if len(frozen) == 0: return [],[] # coordinates and symbols of frozen moiety bN = [at in frozen for at in range(self._natoms)] b3N = [at in frozen for at in range(self._natoms) for ii in range(3)] frozen_xcc = np.array(self._xcc)[b3N] frozen_symbols = np.array(self._symbols)[bN] # now system is just the flexible moiety bN = [at not in frozen for at in range(self._natoms)] b3N = [at not in frozen for at in range(self._natoms) for ii in range(3)] self._xcc = np.array(self._xcc)[b3N].tolist() self._symbols = np.array(self._symbols)[bN].tolist() self._atnums = np.array(self._atnums)[bN].tolist() self._masses = np.array(self._masses)[bN].tolist() self._pgroup = None self._rotsigma = None # Gradient and hessian if self._gcc is not None and len(self._gcc) != 0: self._gcc = np.array(self._gcc)[b3N].tolist() if self._Fcc is not None and len(self._Fcc) != 0: n3 = self._natoms*3 self._Fcc = [[self._Fcc[idx1][idx2] for idx1 in range(n3) if b3N[idx1]]\ for idx2 in range(n3) if b3N[idx2]] # set origin for frozen moiety com = fncs.get_com(self._xcc,self._masses) frozen_xcc = fncs.set_origin(frozen_xcc,com) # prepare system self.prepare() return frozen_xcc, frozen_symbols def mod_masses(self,masses): self._masses = list(masses) self._mass = sum(self._masses) # re-calculate point group self.calc_pgroup(force=True) def apply_imods(self,imods,imasses): ''' example: imods = ["H2(4,5)","C13(all_C)"] imasses = {"H2":2.0141/AMU, "C13":13.0034/AMU} ''' if imods is None: return for imod in imods: isymbol = imod.split("(")[0] if isymbol in imasses.keys(): imass = imasses[isymbol] elif isymbol in dpt_im.keys(): imass = dpt_im[isymbol] else: exception = Exc.WrongInIsomass exception._var = isymbol raise exception atoms = imod.split("(")[1].split(")")[0] if "all_" in atoms: atype = atoms.split("all_")[1].strip() for idx,symbol in enumerate(self._symbols): if symbol == atype: self._masses[idx] = imass else: list_of_atoms = [] for atom in atoms.split(","): if "-" in atom: at1,atn = atom.split("-") list_of_atoms += range(int(at1),int(atn)+1) else: list_of_atoms.append(int(atom)) list_of_atoms = sorted(list(set(list_of_atoms))) for idx in list_of_atoms: self._masses[idx-1] = imass # re-calculate total mass and point group self.mod_masses(self._masses) def setup(self,mu=1.0/AMU,projgrad=False): self._mu = mu # derivated magnitudes (again, in case sth was modified) # for example, when set from gts and masses are added latter self.genderivates() # shift to center of mass and reorientate molecule idata = (self._xcc,self._gcc,self._Fcc,self._masses) self._xcc, self._gcc, self._Fcc = fncs.center_and_orient(*idata) # symmetry self.calc_pgroup(force=False) # Generate mass-scaled arrays self._xms = fncs.cc2ms_x(self._xcc,self._masses,self._mu) self._gms = fncs.cc2ms_g(self._gcc,self._masses,self._mu) self._Fms = fncs.cc2ms_F(self._Fcc,self._masses,self._mu) #-------------# # Atomic case # #-------------# if self._natoms == 1: self._nvdof = 0 self._linear = False #self._xms = list(self._xcc) #self._gms = list(self._gcc) #self._Fms = list(self._Fcc) self._ccfreqs = [] self._ccFevals = [] self._ccFevecs = [] #----------------# # Molecular case # #----------------# else: # Calculate inertia self._itensor = fncs.get_itensor_matrix(self._xcc,self._masses) self._imoms, self._rotTs, self._rtype, self._linear = \ fncs.get_itensor_evals(self._itensor) # Vibrational degrees of freedom if self._linear: self._nvdof = 3*self._natoms - 5 else : self._nvdof = 3*self._natoms - 6 # calculate frequencies if self._Fcc is None : return if len(self._Fcc) == 0 : return if self._ccfreqs is not None: return v0 = self._gms if projgrad else None data = fncs.calc_ccfreqs(self._Fcc,self._masses,self._xcc,self._mu,v0=v0) self._ccfreqs, self._ccFevals, self._ccFevecs = data # Scale frequencies self._ccfreqs = fncs.scale_freqs(self._ccfreqs,self._fscal) def get_imag_main_dir(self): ic, fwsign = intl.ics_idir(self._xcc,self._symbols,\ self._masses,self._ccfreqs,self._ccFevecs) return ic, fwsign def icfreqs(self,ics,bool_pg=False): #----------------# # Molecular case # #----------------# if self._natoms != 1: ituple = (self._Fcc,self._masses,self._xcc,self._gcc,ics,bool_pg) self._icfreqs, self._icFevals, self._icFevecs = intl.calc_icfreqs(*ituple) #-------------# # Atomic case # #-------------# else: self._icfreqs = [] self._icFevals = [] self._icFevecs = [] # scale frequencies self._icfreqs = [freq*self._fscal for freq in self._icfreqs] def ana_freqs(self,case="cc"): if case == "cc": # Keep record of imaginary frequencies if self._ccFevecs is not None: self._ccimag = [ (frq,self._ccFevecs[idx]) for idx,frq in enumerate(self._ccfreqs)\ if frq < 0.0] else: self._ccimag = [ (frq,None) for idx,frq in enumerate(self._ccfreqs)\ if frq < 0.0] # Calculate zpe self._cczpes = [fncs.afreq2zpe(frq) for frq in self._ccfreqs] self._cczpe = sum(self._cczpes) self._ccV1 = self._V0 + self._cczpe if case == "ic": # Keep record of imaginary frequencies if self._icFevecs is not None: self._icimag = [ (frq,self._icFevecs[idx]) for idx,frq in enumerate(self._icfreqs)\ if frq < 0.0] else: self._icimag = [ (frq,None) for idx,frq in enumerate(self._icfreqs)\ if frq < 0.0] # Calculate zpe self._iczpes = [fncs.afreq2zpe(frq) for frq in self._icfreqs] self._iczpe = sum(self._iczpes) self._icV1 = self._V0 + self._iczpe def clean_freqs(self,case="cc"): # select case if case == "cc": freqs = self._ccfreqs else : freqs = self._icfreqs # keep track of those to save keep = [] for idx,freq in enumerate(freqs): if abs(fncs.afreq2cm(freq)) < EPS_IC: continue keep.append(idx) # keep only those > EPS_IC if case == "cc": self._ccfreqs = [self._ccfreqs[idx] for idx in keep] if self._ccFevals is not None: self._ccFevals = [self._ccFevals[idx] for idx in keep] if self._ccFevecs is not None: self._ccFevecs = [self._ccFevecs[idx] for idx in keep] if case == "ic": self._icfreqs = [self._icfreqs[idx] for idx in keep] if self._icFevals is not None: self._icFevals = [self._icFevals[idx] for idx in keep] if self._icFevecs is not None: self._icFevecs = [self._icFevecs[idx] for idx in keep] def deal_lowfq(self,lowfq={},case="cc"): # for Cartesian Coordinates if case == "cc": # frequencies were not projected along MEP if self._nvdof - len(self._ccfreqs) == 0: for idx,newfreq in lowfq.items(): self._ccfreqs[idx] = max(self._ccfreqs[idx],newfreq) # frequencies were projected along MEP elif self._nvdof - len(self._ccfreqs) == 1: for idx,newfreq in lowfq.items(): self._ccfreqs[idx-1] = max(self._ccfreqs[idx-1],newfreq) # for Internal Coordinates elif case == "ic": # frequencies were not projected along MEP if self._nvdof - len(self._icfreqs) == 0: for idx,newfreq in lowfq.items(): self._icfreqs[idx] = max(self._icfreqs[idx],newfreq) # frequencies were projected along MEP elif self._nvdof - len(self._icfreqs) == 1: for idx,newfreq in lowfq.items(): self._icfreqs[idx-1] = max(self._icfreqs[idx-1],newfreq) def calc_pfns(self,temps,case="cc",fmode=0,imag=1E10): ''' fmode = -1 or 0 (0 is default) ''' # Calculate translational partition function (per unit volume) ph_tra = np.array([pf.pf_partinbox(self._mass,T) for T in temps]) # Calculate rotational partition function (Rigid-Rotor) if self._natoms > 1: pf_rot = np.array([pf.pf_rigidrotor(self._imoms,T,self._rotsigma) for T in temps]) else: pf_rot =
np.array([1.0 for T in temps])
numpy.array
from __future__ import division, absolute_import, print_function from builtins import range import numpy as np import os import sys import esutil import matplotlib.pyplot as plt from .fgcmUtilities import expFlagDict from .fgcmUtilities import retrievalFlagDict from .sharedNumpyMemManager import SharedNumpyMemManager as snmm class FgcmParameters(object): """ Class to contain FGCM parameters. Initialization should be done via: newParsWithFits() newParsWithArrays() loadParsWithFits() loadParsWithArrays() parameters ---------- fgcmConfig: FgcmConfig Config object expInfo: numpy recarray, required if New parameters Exposure info table fgcmLUT: FgcmLUT, required if New parameters inParInfo: numpy recarray, required if loading parameters inParams: numpy recarray, required if loading parameters inSuperStar: numpy array, required if loading parameters Config variables ---------------- minExpPerNight: int Minumum number of exposures in a night for plotting freezeStdAtmosphere: bool Fit atmosphere parameters or freeze at standard values? (good for 0th cycle) epochMJDs: double array MJDs which divide observing epochs washMJDs: double array MJDs which denote mirror washing dates useRetrievedPwv: bool Use Pwv retrieved from colors from previous cycle? useNightlyRetrievedPwv: bool Re-fit offsets for each night Pwv variation (if useRetrievedPwv==True)? useRetrievedTauInit: bool Use nightly retrieved tau from previous cycle as initial guess? (experimental) """ def __init__(self, fgcmConfig, expInfo=None, fgcmLUT=None, inParInfo=None, inParams=None, inSuperStar=None): initNew = False loadOld = False if (expInfo is not None and fgcmLUT is not None): initNew = True if (inParInfo is not None and inParams is not None and inSuperStar is not None): loadOld = True if (initNew and loadOld): raise ValueError("Too many parameters specified: either expInfo/fgcmLUT or inParInof/inParams/inSuperStar") if (not initNew and not loadOld): raise ValueError("Too few parameters specificed: either expInfo/fgcmLUT or inParInof/inParams/inSuperStar") self.hasExternalPwv = False self.hasExternalTau = False self.outfileBaseWithCycle = fgcmConfig.outfileBaseWithCycle self.plotPath = fgcmConfig.plotPath self.fgcmLog = fgcmConfig.fgcmLog self.fgcmLog.debug('Initializing FgcmParameters...') # for plotting self.minExpPerNight = fgcmConfig.minExpPerNight # get stuff from config file self.nCCD = fgcmConfig.nCCD self.bands = fgcmConfig.bands self.nBands = len(self.bands) self.fitBands = fgcmConfig.fitBands self.nFitBands = len(self.fitBands) self.notFitBands = fgcmConfig.notFitBands self.nNotFitBands = len(self.notFitBands) self.bandFitIndex = fgcmConfig.bandFitIndex self.bandNotFitIndex = fgcmConfig.bandNotFitIndex self.bandRequiredIndex = fgcmConfig.bandRequiredIndex self.bandNotRequiredIndex = fgcmConfig.bandRequiredIndex self.lutFilterNames = fgcmConfig.lutFilterNames self.lutStdFilterNames = fgcmConfig.lutStdFilterNames self.nLUTFilter = len(self.lutFilterNames) self.filterToBand = fgcmConfig.filterToBand self.lambdaStdFilter = fgcmConfig.lambdaStdFilter self.lambdaStdBand = fgcmConfig.lambdaStdBand self.freezeStdAtmosphere = fgcmConfig.freezeStdAtmosphere self.alphaStd = fgcmConfig.alphaStd self.o3Std = fgcmConfig.o3Std self.tauStd = fgcmConfig.tauStd self.lnTauStd = fgcmConfig.lnTauStd self.pwvStd = fgcmConfig.pwvStd self.lnPwvStd = fgcmConfig.lnPwvStd self.pmbStd = fgcmConfig.pmbStd self.zenithStd = fgcmConfig.zenithStd self.secZenithStd = 1./np.cos(self.zenithStd*np.pi/180.) self.pmbRange = fgcmConfig.pmbRange self.pwvRange = fgcmConfig.pwvRange self.lnPwvRange = np.log(self.pwvRange) self.O3Range = fgcmConfig.O3Range self.tauRange = fgcmConfig.tauRange self.lnTauRange = np.log(self.tauRange) self.alphaRange = fgcmConfig.alphaRange self.zenithRange = fgcmConfig.zenithRange self.nExp = fgcmConfig.nExp self.seeingField = fgcmConfig.seeingField self.seeingSubExposure = fgcmConfig.seeingSubExposure self.deepFlag = fgcmConfig.deepFlag self.fwhmField = fgcmConfig.fwhmField self.skyBrightnessField = fgcmConfig.skyBrightnessField self.expField = fgcmConfig.expField self.UTBoundary = fgcmConfig.UTBoundary self.latitude = fgcmConfig.latitude self.sinLatitude = np.sin(np.radians(self.latitude)) self.cosLatitude = np.cos(np.radians(self.latitude)) self.epochMJDs = fgcmConfig.epochMJDs self.washMJDs = fgcmConfig.washMJDs self.coatingMJDs = fgcmConfig.coatingMJDs self.stepUnitReference = fgcmConfig.stepUnitReference self.pwvFile = fgcmConfig.pwvFile self.tauFile = fgcmConfig.tauFile self.externalPwvDeltaT = fgcmConfig.externalPwvDeltaT self.externalTauDeltaT = fgcmConfig.externalTauDeltaT self.useRetrievedPwv = fgcmConfig.useRetrievedPwv self.useNightlyRetrievedPwv = fgcmConfig.useNightlyRetrievedPwv self.useQuadraticPwv = fgcmConfig.useQuadraticPwv self.useRetrievedTauInit = fgcmConfig.useRetrievedTauInit self.modelMagErrors = fgcmConfig.modelMagErrors self.instrumentParsPerBand = fgcmConfig.instrumentParsPerBand self.approxThroughput = fgcmConfig.approxThroughput self.superStarNPar = ((fgcmConfig.superStarSubCCDChebyshevOrder + 1) * (fgcmConfig.superStarSubCCDChebyshevOrder + 1)) self.ccdOffsets = fgcmConfig.ccdOffsets self.superStarSubCCD = fgcmConfig.superStarSubCCD self.superStarSubCCDTriangular = fgcmConfig.superStarSubCCDTriangular self.illegalValue = fgcmConfig.illegalValue self.quietMode = fgcmConfig.quietMode if fgcmConfig.aperCorrFitNBins == 0 and len(fgcmConfig.aperCorrInputSlopes) > 0: self.aperCorrInputSlopes = fgcmConfig.aperCorrInputSlopes else: self.aperCorrInputSlopes = None if (initNew): self._initializeNewParameters(expInfo, fgcmLUT) else: self._loadOldParameters(expInfo, inParInfo, inParams, inSuperStar) @classmethod def newParsWithFits(cls, fgcmConfig, fgcmLUT): """ Make a new FgcmParameters object, loading from fits. parameters ---------- fgcmConfig: FgcmConfig fgcmLUT: fgcmLUT Config variables ---------------- exposureFile: string File with exposure information """ import fitsio expInfoFile = fgcmConfig.exposureFile expInfo = fitsio.read(expInfoFile, ext=1) return cls(fgcmConfig, expInfo=expInfo, fgcmLUT=fgcmLUT) @classmethod def newParsWithArrays(cls, fgcmConfig, fgcmLUT, expInfo): """ Make a new FgcmParameters object, with input arrays parameters ---------- fgcmConfig: FgcmConfig fgcmLUT: FgcmLUT expInfo: numpy recarray Exposure info """ return cls(fgcmConfig, expInfo=expInfo, fgcmLUT=fgcmLUT) @classmethod def loadParsWithFits(cls, fgcmConfig): """ Make an FgcmParameters object, loading from old parameters in fits parameters ---------- fgcmConfig: FgcmConfig Config variables ---------------- exposureFile: string File with exposure information inParameterFile: string File with input parameters (from previous cycle) """ import fitsio expInfoFile = fgcmConfig.exposureFile inParFile = fgcmConfig.inParameterFile expInfo = fitsio.read(expInfoFile, ext=1) inParInfo = fitsio.read(inParFile, ext='PARINFO') inParams = fitsio.read(inParFile, ext='PARAMS') inSuperStar = fitsio.read(inParFile, ext='SUPER') return cls(fgcmConfig, expInfo=expInfo, inParInfo=inParInfo, inParams=inParams, inSuperStar=inSuperStar) @classmethod def loadParsWithArrays(cls, fgcmConfig, expInfo, inParInfo, inParams, inSuperStar): """ Make an FgcmParameters object, loading from old parameters in arrays. parameters ---------- fgcmConfig: FgcmConfig expInfo: numpy recarray Exposure info inParInfo: numpy recarray Input parameter information array inParams: numpy recarray Input parameters inSuperStar: numpy array Input superstar """ return cls(fgcmConfig, expInfo=expInfo, inParInfo=inParInfo, inParams=inParams, inSuperStar=inSuperStar) def _initializeNewParameters(self, expInfo, fgcmLUT): """ Internal method to initialize new parameters parameters ---------- expInfo: numpy recarrat fgcmLUT: FgcmLUT """ # link band indices # self._makeBandIndices() # load the exposure information self._loadExposureInfo(expInfo) # load observing epochs and link indices self._loadEpochAndWashInfo() # and make the new parameter arrays self.parAlpha = np.zeros(self.campaignNights.size,dtype=np.float32) + fgcmLUT.alphaStd self.parO3 = np.zeros(self.campaignNights.size,dtype=np.float32) + fgcmLUT.o3Std self.parLnTauIntercept = np.zeros(self.campaignNights.size,dtype=np.float32) + fgcmLUT.lnTauStd self.parLnTauSlope = np.zeros(self.campaignNights.size,dtype=np.float32) # these we will always have, won't always fit self.parLnPwvIntercept = np.zeros(self.campaignNights.size, dtype=np.float32) + fgcmLUT.lnPwvStd self.parLnPwvSlope = np.zeros(self.campaignNights.size, dtype=np.float32) self.parLnPwvQuadratic = np.zeros(self.campaignNights.size, dtype=np.float32) # parameters with per-epoch values self.parSuperStarFlat = np.zeros((self.nEpochs,self.nLUTFilter,self.nCCD,self.superStarNPar),dtype=np.float64) # The first term should be 1.0 with new flux units self.parSuperStarFlat[:, :, :, 0] = 1.0 # parameters with per-wash values # We always have these parameters, even if we don't fit them self.parQESysIntercept = np.zeros((self.nBands, self.nWashIntervals), dtype=np.float32) self.compQESysSlope = np.zeros((self.nBands, self.nWashIntervals), dtype=np.float32) self.compQESysSlopeApplied = np.zeros_like(self.compQESysSlope) # parameters for "absolute" offsets (and relative between filters) # Currently, this only will turn on for when there are multiple filters # for the same band. In the future we can add "primary absolute calibrators" # to the fit, and turn these on. self.parFilterOffset = np.zeros(self.nLUTFilter, dtype=np.float64) self.parFilterOffsetFitFlag = np.zeros(self.nLUTFilter, dtype=np.bool) for i, f in enumerate(self.lutFilterNames): band = self.filterToBand[f] nBand = 0 for ff in self.filterToBand: if self.filterToBand[ff] == band: nBand += 1 # And when there is a duplicate band and it's not the "Standard", fit the offset if nBand > 1 and f not in self.lutStdFilterNames: self.parFilterOffsetFitFlag[i] = True # And absolute offset parameters (used if reference mags are supplied) self.compAbsThroughput = np.zeros(self.nBands, dtype=np.float64) if len(self.approxThroughput) == 1: self.compAbsThroughput[:] = self.approxThroughput[0] else: self.compAbsThroughput[:] = np.array(self.approxThroughput) self.compRefOffset = np.zeros(self.nBands, dtype=np.float64) self.compRefSigma = np.zeros_like(self.compRefOffset) # Add in the mirror coating... self.compMirrorChromaticity = np.zeros((self.nLUTFilter, self.nCoatingIntervals + 1)) ## FIXME: need to completely refactor self.externalPwvFlag = np.zeros(self.nExp,dtype=np.bool) if (self.pwvFile is not None): self.fgcmLog.info('Found external PWV file.') self.pwvFile = self.pwvFile self.hasExternalPwv = True self.loadExternalPwv(self.externalPwvDeltaT) self.externalTauFlag = np.zeros(self.nExp,dtype=np.bool) if (self.tauFile is not None): self.fgcmLog.info('Found external tau file.') self.tauFile = self.tauFile self.hasExternalTau = True self.loadExternalTau() # and the aperture corrections # These are per-band self.compAperCorrPivot = np.zeros(self.nBands,dtype='f8') self.compAperCorrSlope = np.zeros(self.nBands,dtype='f8') self.compAperCorrSlopeErr = np.zeros(self.nBands,dtype='f8') self.compAperCorrRange = np.zeros((2,self.nBands),dtype='f8') if self.aperCorrInputSlopes is not None: # Set the aperture correction parameters to those that were input self.compAperCorrSlope[:] = self.aperCorrInputSlopes[:] self.compAperCorrRange[0, :] = 0.0 self.compAperCorrRange[1, :] = np.inf for bandIndex in range(len(self.bands)): use, = np.where((self.expBandIndex == bandIndex) & (self.expSeeingVariable > 0.0)) # The pivot is somewhat arbitrary and will come out in the wash # through the fit cycles, but it's good to have it as something # sensible if use.size >= 3: self.compAperCorrPivot[bandIndex] = np.median(self.expSeeingVariable[use]) # The magnitude model parameters self.compModelErrExptimePivot = np.zeros(self.nBands, dtype='f8') self.compModelErrFwhmPivot = np.zeros(self.nBands, dtype='f8') self.compModelErrSkyPivot = np.zeros(self.nBands, dtype='f8') self.compModelErrPars = np.zeros((7, self.nBands), dtype='f8') # one of the "parameters" is expGray self.compExpGray = np.zeros(self.nExp,dtype='f8') self.compVarGray = np.zeros(self.nExp,dtype='f8') self.compNGoodStarPerExp = np.zeros(self.nExp,dtype='i4') # and sigFgcm self.compSigFgcm = np.zeros(self.nBands,dtype='f8') self.compSigmaCal = np.zeros(self.nBands, dtype='f8') self.compReservedRawRepeatability = np.zeros(self.nBands, dtype='f8') self.compReservedRawCrunchedRepeatability = np.zeros(self.nBands, dtype='f8') # and the computed retrieved Pwv # these are set to the standard values to start self.compRetrievedLnPwv = np.zeros(self.nExp,dtype='f8') + self.lnPwvStd self.compRetrievedLnPwvInput = self.compRetrievedLnPwv.copy() self.compRetrievedLnPwvRaw = np.zeros(self.nExp,dtype='f8') self.compRetrievedLnPwvFlag = np.zeros(self.nExp,dtype='i2') + retrievalFlagDict['EXPOSURE_STANDARD'] self.parRetrievedLnPwvScale = 1.0 self.parRetrievedLnPwvOffset = 0.0 self.parRetrievedLnPwvNightlyOffset = np.zeros(self.nCampaignNights,dtype='f8') # and retrieved tau nightly start values self.compRetrievedTauNight = np.zeros(self.campaignNights.size,dtype='f8') + self.tauStd self.compRetrievedTauNightInput = self.compRetrievedTauNight.copy() # do lookups on parameter array self._arrangeParArray() # and we're done def _loadOldParameters(self, expInfo, inParInfo, inParams, inSuperStar): """ Internal method to load old parameters parameters ---------- expInfo: numpy recarray inParInfo: numpy recarray inParams: numpy recarray inSuperStar: numpy recarray """ # link band indices # self._makeBandIndices() self._loadExposureInfo(expInfo) self._loadEpochAndWashInfo() # look at external... self.hasExternalPwv = inParInfo['HASEXTERNALPWV'][0].astype(np.bool) self.hasExternalTau = inParInfo['HASEXTERNALTAU'][0].astype(np.bool) ## and copy the parameters self.parAlpha = np.atleast_1d(inParams['PARALPHA'][0]) self.parO3 = np.atleast_1d(inParams['PARO3'][0]) self.parLnTauIntercept = np.atleast_1d(inParams['PARLNTAUINTERCEPT'][0]) self.parLnTauSlope = np.atleast_1d(inParams['PARLNTAUSLOPE'][0]) self.parLnPwvIntercept = np.atleast_1d(inParams['PARLNPWVINTERCEPT'][0]) self.parLnPwvSlope = np.atleast_1d(inParams['PARLNPWVSLOPE'][0]) self.parLnPwvQuadratic = np.atleast_1d(inParams['PARLNPWVQUADRATIC'][0]) self.parQESysIntercept = inParams['PARQESYSINTERCEPT'][0].reshape((self.nBands, self.nWashIntervals)) self.compQESysSlope = inParams['COMPQESYSSLOPE'][0].reshape((self.nBands, self.nWashIntervals)) self.compQESysSlopeApplied = self.compQESysSlope.copy() self.parFilterOffset = np.atleast_1d(inParams['PARFILTEROFFSET'][0]) self.parFilterOffsetFitFlag = np.atleast_1d(inParams['PARFILTEROFFSETFITFLAG'][0]).astype(np.bool) self.compAbsThroughput = np.atleast_1d(inParams['COMPABSTHROUGHPUT'][0]) self.compRefOffset = np.atleast_1d(inParams['COMPREFOFFSET'][0]) self.compRefSigma = np.atleast_1d(inParams['COMPREFSIGMA'][0]) self.compMirrorChromaticity = inParams['COMPMIRRORCHROMATICITY'][0].reshape((self.nLUTFilter, self.nCoatingIntervals + 1)) self.mirrorChromaticityPivot = np.atleast_1d(inParams['MIRRORCHROMATICITYPIVOT'][0]) self.externalPwvFlag = np.zeros(self.nExp,dtype=np.bool) if self.hasExternalPwv: self.pwvFile = str(inParInfo['PWVFILE'][0]).rstrip() self.hasExternalPwv = True self.loadExternalPwv(self.externalPwvDeltaT) self.parExternalLnPwvScale = inParams['PAREXTERNALLNPWVSCALE'][0] self.parExternalLnPwvOffset[:] = np.atleast_1d(inParams['PAREXTERNALLNPWVOFFSET'][0]) self.externalTauFlag = np.zeros(self.nExp,dtype=np.bool) if self.hasExternalTau: self.tauFile = str(inParInfo['TAUFILE'][0]).rstrip() self.hasExternalTau = True self.loadExternalTau() self.parExternalLnTauScale = inParams['PAREXTERNALLNTAUSCALE'][0] self.parExternalLnTauOffset[:] = np.atleast_1d(inParams['PAREXTERNALLNTAUOFFSET'][0]) self.compAperCorrPivot = np.atleast_1d(inParams['COMPAPERCORRPIVOT'][0]) self.compAperCorrSlope = np.atleast_1d(inParams['COMPAPERCORRSLOPE'][0]) self.compAperCorrSlopeErr =
np.atleast_1d(inParams['COMPAPERCORRSLOPEERR'][0])
numpy.atleast_1d
import numpy as np from brl_gym.estimators.bayes_doors_estimator import BayesDoorsEstimator #, LearnableDoorsBF from brl_gym.envs.mujoco.doors import DoorsEnv from brl_gym.envs.mujoco.doors_slow import DoorsSlowEnv from brl_gym.wrapper_envs.explicit_bayes_env import ExplicitBayesEnv from brl_gym.wrapper_envs.env_sampler import DiscreteEnvSampler from gym.spaces import Box, Dict from gym import utils # Divide regions into 4 regions, L0, L1, L2, L3 from left to right REGIONS = [0, 1, 2, 3] CLOSEST_DOORS = {0:dict(), 1:dict(), 2:dict(), 3:dict()} def map_to_region(xs): regions = np.zeros(xs.shape[0]) regions[xs <= -0.7] = 0 regions[np.logical_and(xs <=0, xs > -0.7)] = 1 regions[np.logical_and(xs > 0, xs <= 0.7)] = 2 regions[xs >= 0.7] = 3 return regions.astype(np.int) CASES = ['{{:0{}b}}'.format(4).format(x) \ for x in range(1, 16)] for binary in CASES: # L0 if binary[0] == '1': CLOSEST_DOORS[0][binary] = 0 elif binary[:2] == '01': CLOSEST_DOORS[0][binary] = 1 elif binary[:3] == '001': CLOSEST_DOORS[0][binary] = 2 elif binary == '0001': CLOSEST_DOORS[0][binary] = 3 # L3 flip = binary[::-1] if binary[0] == '1': CLOSEST_DOORS[3][binary] = 0 elif binary[:2] == '01': CLOSEST_DOORS[3][binary] = 1 elif binary[:3] == '001': CLOSEST_DOORS[3][binary] = 2 elif binary == '0001': CLOSEST_DOORS[3][binary] = 3 # L1 if binary[1] == '1': CLOSEST_DOORS[1][binary] = 1 elif binary[:2] == '10': CLOSEST_DOORS[1][binary] = 0 elif binary[:3] == '001': CLOSEST_DOORS[1][binary] = 2 else: CLOSEST_DOORS[1][binary] = 3 # L2 if binary[2] == '1': CLOSEST_DOORS[2][binary] = 2 elif binary[1:3] == '10': CLOSEST_DOORS[2][binary] = 1 elif binary[1:] == '001': CLOSEST_DOORS[2][binary] = 3 else: CLOSEST_DOORS[2][binary] = 0 def get_closest_door(open_doors, states): region = map_to_region(states[:, 0]) closest_doors = np.zeros(states.shape[0], dtype=np.int) for i, binary in enumerate(open_doors): closest_doors[i] = CLOSEST_DOORS[region[i]][binary] return closest_doors class SimpleExpert: def __init__(self): env = DoorsEnv() self.target_pos = np.array([0.0, 1.2]) self.door_pos = env.door_pos[:, :2] self.door_pos[:, 1] = 0.25 def action(self, open_doors, states): binary = [] if len(open_doors.shape) == 2: for x in open_doors: binary += [''.join(str(int(y)) for y in x)] else: binary = [CASES[x] for x in open_doors] open_doors = binary actions =
np.zeros((states.shape[0], 2))
numpy.zeros
import numpy as np from ..base import Classifier, Regressor from ..exceptions import MethodNotSupportedError from ..metrics.classification import accuracy_score class NaiveBayes(Classifier, Regressor): """Naive Bayes Classifier P(A|B) = P(B|A) * P(A) / P(B) Parameters: ----------- eps : float, laplacian smoothing coefficient, optional """ def __init__(self, eps=1e-18): self.eps = eps self._X = [] self._y = [] self._labels = [] def fit(self, X, y): self._X, self._y = super().fit(X, y) self._labels = np.unique(self._y) return self def predict(self, X): return np.array([ self._labels[
np.argmax(proba)
numpy.argmax
import numbers import time import numpy as np import scipy from sklearn.utils.extmath import safe_sparse_dot from sklearn.decomposition.nmf import _beta_divergence, _beta_loss_to_float from scipy.special import expit from scipy.sparse import issparse USE_CYTHON = False # currently, cython is disabled due to unsolved numerical bugs EPSILON = np.finfo(np.float32).eps INTEGER_TYPES = (numbers.Integral, np.integer) # utility functions def sigmoid(M): return expit(M) def d_sigmoid(M): sgm = sigmoid(M) return sgm * (1 - sgm) def inverse(x, link): if link == "linear": return x elif link == "logit": return sigmoid(x) else: raise ValueError("Invalid link function {}".format(link)) def compute_factorization_error(target, left_factor, right_factor, link, beta_loss): if target is None: return 0 elif link == "linear": return _beta_divergence(target, left_factor, right_factor, beta_loss, square_root=True) elif link == "logit": return np.linalg.norm(target - sigmoid(np.dot(left_factor, right_factor))) class _IterativeCMFSolver: """Boilerplate for iterative solvers (mu and newton) Implement the update_step method in concrete subclasses to use. Parameters ---------- tol : float, default: 1e-4 Tolerance of the stopping condition. max_iter : integer, default: 200 Maximum number of iterations before timing out. l1_reg : double, default: 0. L1 regularization parameter. Currently same for all matrices. l2_reg : double, default: 0. L2 regularization parameter alpha: double, default: 0.5 Determines trade-off between optimizing for X and Y. The larger the value, the more X is prioritized in optimization. beta_loss : float or string, default 'frobenius' Currently disabled. Used only in 'mu' solver. String must be in {'frobenius', 'kullback-leibler', 'itakura-saito'}. Beta divergence to be minimized, measuring the distance between X and the dot product WH. Note that values different from 'frobenius' (or 2) and 'kullback-leibler' (or 1) lead to significantly slower fits. update_H : boolean, default: True Currently disabled. Need to enable in future to implement transform method in CNMF. verbose : integer, default: 0 The verbosity level. U_non_negative: bool, default: True Whether to enforce non-negativity for U. Only applicable for the newton solver. V_non_negative: bool, default: True Whether to enforce non-negativity for V. Only applicable for the newton solver. Z_non_negative: bool, default: True Whether to enforce non-negativity for Z. Only applicable for the newton solver. x_link: str, default: "linear" One of either "logit" of "linear". The link function for transforming UV^T to approximate X y_link: str, default: "linear" One of either "logit" of "linear". The link function for transforming VZ^T to approximate Y hessian_pertubation: double, default: 0.2 The pertubation to the Hessian in the newton solver to maintain positive definiteness """ def __init__(self, max_iter=200, tol=1e-4, beta_loss="frobenius", l1_reg=0, l2_reg=0, alpha=0.5, verbose=0, U_non_negative=True, V_non_negative=True, Z_non_negative=True, update_U=True, update_V=True, update_Z=True, x_link="linear", y_link="linear", hessian_pertubation=0.2, sg_sample_ratio=1., random_state=None): self.max_iter = max_iter self.tol = tol self.beta_loss = _beta_loss_to_float(beta_loss) self.l1_reg = l1_reg self.l2_reg = l2_reg self.alpha = alpha self.verbose = verbose self.U_non_negative = U_non_negative self.V_non_negative = V_non_negative self.Z_non_negative = Z_non_negative self.update_U = update_U self.update_V = update_V self.update_Z = update_Z self.x_link = x_link self.y_link = y_link self.hessian_pertubation = hessian_pertubation self.sg_sample_ratio = sg_sample_ratio if random_state is not None: np.random.seed(random_state) def update_step(self, X, Y, U, V, Z, l1_reg, l2_reg, alpha): """A single update step for all the matrices in the factorization.""" raise NotImplementedError("Implement in concrete subclass to use") def compute_error(self, X, Y, U, V, Z): return self.alpha * compute_factorization_error(X, U, V.T, self.x_link, self.beta_loss) + \ (1 - self.alpha) * compute_factorization_error(Y, V, Z.T, self.y_link, self.beta_loss) def fit_iterative_update(self, X, Y, U, V, Z): """Compute CMF with iterative methods. The objective function is minimized with an alternating minimization of U, V and Z. Regularly prints error and stops update when improvement stops. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) First data matrix to be decomposed Y : {array-like, sparse matrix}, shape (n_features, n_labels) Second data matrix to be decomposed U : array-like, shape (n_samples, n_components) V : array-like, shape (n_features, n_components) Z : array-like, shape (n_labels, n_components) Returns ------- U : array, shape (n_samples, n_components) Transformed data. V : array, shape (n_features, n_components) Transformed data. Z : array, shape (n_labels, n_components) Transformed data. n_iter : int The number of iterations done by the algorithm. """ start_time = time.time() # TODO: handle beta loss other than fnorm previous_error = error_at_init = self.compute_error(X, Y, U, V, Z) for n_iter in range(1, self.max_iter + 1): self.update_step(X, Y, U, V, Z, self.l1_reg, self.l2_reg, self.alpha) # test convergence criterion every 10 iterations if self.tol > 0 and n_iter % 10 == 0: error = self.compute_error(X, Y, U, V, Z) if self.verbose: iter_time = time.time() print("Epoch %02d reached after %.3f seconds, error: %f" % (n_iter, iter_time - start_time, error)) improvement_stopped = (previous_error - error) / error_at_init < self.tol if improvement_stopped: break previous_error = error # do not print if we have already printed in the convergence test if self.verbose and (self.tol == 0 or n_iter % 10 != 0): end_time = time.time() print("Epoch %02d reached after %.3f seconds." % (n_iter, end_time - start_time)) return U, V, Z, n_iter class MUSolver(_IterativeCMFSolver): """Internal solver that solves by iteratively multiplying the matrices element wise. The multiplying factors are always positive, meaning this solver can only return positive matrices. References ---------- <NAME>., <NAME>., & <NAME>. (n.d.). Semi-supervised collective matrix factorization for topic detection and document clustering. <NAME>., & <NAME>. (2001). Algorithms for non-negative matrix factorization. Advances in Neural Information Processing Systems, (1), 556–562. https://doi.org/10.1109/IJCNN.2008.4634046 """ @classmethod def _regularized_delta(cls, numerator, denominator, l1_reg, l2_reg, gamma, H): # Add L1 and L2 regularization if l1_reg > 0: denominator += l1_reg if l2_reg > 0: denominator = denominator + l2_reg * H denominator[denominator == 0] = EPSILON numerator /= denominator delta = numerator # gamma is in ]0, 1] if gamma != 1: delta **= gamma return delta @classmethod def _multiplicative_update_u(cls, X, U, V, beta_loss, l1_reg, l2_reg, gamma): numerator = safe_sparse_dot(X, V) denominator = np.dot(np.dot(U, V.T), V) return cls._regularized_delta(numerator, denominator, l1_reg, l2_reg, gamma, U) @classmethod def _multiplicative_update_z(cls, Y, V, Z, beta_loss, l1_reg, l2_reg, gamma): numerator = safe_sparse_dot(Y.T, V) denominator = np.dot(np.dot(Z, V.T), V) return cls._regularized_delta(numerator, denominator, l1_reg, l2_reg, gamma, Z) @classmethod def _multiplicative_update_v(cls, X, Y, U, V, Z, beta_loss, l1_reg, l2_reg, gamma): numerator = safe_sparse_dot(X.T, U) + safe_sparse_dot(Y, Z) denominator = np.dot(V, (np.dot(U.T, U) + np.dot(Z.T, Z))) return cls._regularized_delta(numerator, denominator, l1_reg, l2_reg, gamma, V) def update_step(self, X, Y, U, V, Z, l1_reg, l2_reg, alpha): # TODO: Enable specification of gamma gamma = 1. if self.update_V: delta_V = self._multiplicative_update_v(X, Y, U, V, Z, self.beta_loss, l1_reg, l2_reg, gamma) V *= delta_V if self.update_U: delta_U = self._multiplicative_update_u(X, U, V, self.beta_loss, l1_reg, l2_reg, gamma) U *= delta_U if self.update_Z: delta_Z = self._multiplicative_update_z(Y, V, Z, self.beta_loss, l1_reg, l2_reg, gamma) Z *= delta_Z if USE_CYTHON: class NewtonSolver(_IterativeCMFSolver): """Internal solver that solves using the Newton-Raphson method. Updates each row independently using a Newton-Raphson step. Can handle various link functions and settings. The gradient and Hessian are computed based on the residual between the target and the estimate. Computing the entire target/estimate can be memory intensive, so the option to compute the residual based on a stochastic sample can be enabled by setting sg_sample_ratio < 1.0. References ---------- <NAME>., & <NAME>. (2008). Relational learning via collective matrix factorization. Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD 08, 650. https://doi.org/10.1145/1401890.1401969 """ def fit_iterative_update(self, X, Y, U, V, Z): # handle memory ordering and format issues for speed up X_ = X.tocsr() if issparse(X) else np.ascontiguousarray(X) if X is not None else X # instead of solving for Y = VZ^T, in order to make access to V continuous # for approximating both X and Y, we will solve Y^T = ZV^T Y_ = Y.T.tocsr() if issparse(Y) else np.ascontiguousarray(Y.T) if Y is not None else Y # U, V, Z must be C-ordered for cython dot product to work U = np.ascontiguousarray(U) V = np.ascontiguousarray(V) Z = np.ascontiguousarray(Z) return super().fit_iterative_update(X_, Y_, U, V, Z) def update_step(self, X, Y, U, V, Z, l1_reg, l2_reg, alpha): if self.update_U: _newton_update_left(U, V, X, alpha, l1_reg, l2_reg, self.x_link, self.U_non_negative, self.sg_sample_ratio, self.hessian_pertubation) if self.update_Z: _newton_update_left(Z, V, Y, 1 - alpha, l1_reg, l2_reg, self.y_link, self.Z_non_negative, self.sg_sample_ratio, self.hessian_pertubation) if self.update_V: _newton_update_V(V, U, Z, X, Y, alpha, l1_reg, l2_reg, self.x_link, self.y_link, self.V_non_negative, self.sg_sample_ratio, self.hessian_pertubation) def compute_error(self, X, Y, U, V, Z): # override because we are solving for Y^T = ZV^T return self.alpha * compute_factorization_error(X, U, V.T, self.x_link, self.beta_loss) + \ (1 - self.alpha) * compute_factorization_error(Y, Z, V.T, self.y_link, self.beta_loss) else: class NewtonSolver(_IterativeCMFSolver): """Default implementation when Cython cannot be used.""" @classmethod def _row_newton_update(cls, M, idx, dM, ddM_inv, eta=1., non_negative=True): M[idx, :] = M[idx, :] - eta * np.dot(dM, ddM_inv) if non_negative: M[idx, :][M[idx, :] < 0] = 0. def _stochastic_sample(self, features, target, axis=0): assert(features.shape[axis] == target.shape[axis]) if self.sg_sample_ratio < 1.: sample_size = int(features.shape[axis] * self.sg_sample_ratio) sample_mask = np.random.permutation(np.arange(features.shape[axis]))[:sample_size] if axis == 0: features_sampled = features[sample_mask, :] target_sampled = target[sample_mask, :] elif axis == 1: features_sampled = features[:, sample_mask] target_sampled = target[:, sample_mask] else: raise ValueError("Axis {} out of bounds".format(axis)) else: features_sampled = features target_sampled = target return features_sampled, target_sampled def _safe_invert(self, M): """Computed according to reccomendations of http://web.stanford.edu/class/cme304/docs/newton-type-methods.pdf""" if scipy.sparse.issparse(M): eigs, V = scipy.sparse.linalg.eigsh(M) else: eigs, V = scipy.linalg.eigh(M) # perturb hessian to be positive definite eigs = np.abs(eigs) eigs[eigs < self.hessian_pertubation] = self.hessian_pertubation return np.dot(np.dot(V, np.diag(1 / eigs)), V.T) def _force_flatten(self, v): """Forcibly flattens an indexed row or column of a matrix or sparse matrix""" if np.ndim(v) > 1: if issparse(v): v_ = v.toarray() elif isinstance(v, np.matrix): v_ = np.asarray(v) else: raise ValueError("Indexing array returns {} dimensions " + "but is not sparse or a matrix".format(np.ndim(v))) return v_.flatten() else: return v.flatten() def _residual(self, left, right, target, link): """Computes residual: inverse(left @ right, link) - target The number of dimensions of the residual and estimate will be the same. This is necessary because the indexing behavior of np.ndarrays and scipy sparse matrices are different. Specifically, slicing scipy sparse matrices does not return a 1 dimensional vector. e.g. >>> import numpy as np; from scipy.sparse import csc_matrix >>> A = np.array([[1, 2, 3], [4, 5, 6]]) >>> B = csc_matrix(A) >>> A[:, 0].shape (2,) >>> B[:, 0].shape (2, 1) """ estimate = inverse(np.dot(left, right), link) ground_truth = target if issparse(target) and np.ndim(estimate) == 1: return estimate - ground_truth.toarray().flatten() else: return estimate - ground_truth def _newton_update_U(self, U, V, X, alpha, l1_reg, l2_reg, link="linear", non_negative=True): precompute_dU = self.sg_sample_ratio == 1. if precompute_dU: # dU is constant across samples res_X = inverse(np.dot(U, V.T), link) - X dU_full = alpha * np.dot(res_X, V) + l1_reg * np.sign(U) + l2_reg * U if issparse(dU_full): dU_full = dU_full.toarray() elif isinstance(dU_full, np.matrix): dU_full = np.asarray(dU_full) # iterate over rows precompute_ddU_inv = (link == "linear" and self.sg_sample_ratio == 1.) if precompute_ddU_inv: # ddU_inv is constant across samples ddU_inv = self._safe_invert(alpha * np.dot(V.T, V) + l2_reg * np.eye(U.shape[1])) for i in range(U.shape[0]): u_i = U[i, :] V_T_sampled, X_sampled = self._stochastic_sample(V.T, X, axis=1) if precompute_dU: dU = dU_full[i, :] assert(np.ndim(dU) == 1) else: res_X = self._residual(u_i, V_T_sampled, X_sampled[i, :], link) dU = alpha * np.dot(res_X, V_T_sampled.T) + l1_reg * np.sign(u_i) + l2_reg * u_i if not precompute_ddU_inv: if link == "linear": ddU_inv = self._safe_invert(alpha * np.dot(V_T_sampled, V_T_sampled.T) + l2_reg * np.eye(U.shape[1])) elif link == "logit": D = np.diag(d_sigmoid(np.dot(u_i, V_T_sampled))) ddU_inv = self._safe_invert(alpha * np.dot(np.dot(V_T_sampled, D), V_T_sampled.T)) self._row_newton_update(U, i, dU, ddU_inv, non_negative=non_negative) def _newton_update_V(self, V, U, Z, X, Y, alpha, l1_reg, l2_reg, x_link="linear", y_link="linear", non_negative=True): precompute_dV = (self.sg_sample_ratio == 1.) if precompute_dV: res_X_T = inverse(np.dot(U, V.T), x_link) - X res_Y_T = inverse(np.dot(Z, V.T), y_link) - Y.T dV_full = alpha * np.dot(res_X_T.T, U) + \ (1 - alpha) * np.dot(res_Y_T.T, Z) + \ l1_reg * np.sign(V) + l2_reg * V if isinstance(dV_full, np.matrix): dV_full = np.asarray(dV_full) precompute_ddV_inv = (x_link == "linear" and y_link == "linear" and self.sg_sample_ratio == 1.) if precompute_ddV_inv: # ddV_inv is constant w.r.t. the samples of V, so we precompute it to save computation ddV_inv = self._safe_invert(alpha * np.dot(U.T, U) + (1 - alpha) * np.dot(Z.T, Z) + l2_reg * np.eye(V.shape[1])) for i in range(V.shape[0]): v_i = V[i, :] U_sampled, X_sampled = self._stochastic_sample(U, X) Z_T_sampled, Y_sampled = self._stochastic_sample(Z.T, Y, axis=1) if not precompute_dV: res_X = self._residual(U_sampled, v_i.T, X_sampled[:, i], x_link) res_Y = self._residual(v_i, Z_T_sampled, Y_sampled[i, :], y_link) dV = alpha * np.dot(res_X.T, U_sampled) + \ (1 - alpha) * np.dot(res_Y, Z_T_sampled.T) + \ l1_reg * np.sign(v_i) + l2_reg * v_i else: dV = dV_full[i, :] if not precompute_ddV_inv: if x_link == "logit": D_u = np.diag(d_sigmoid(np.dot(U_sampled, v_i.T))) ddV_wrt_U = np.dot(np.dot(U_sampled.T, D_u), U_sampled) elif x_link == "linear": ddV_wrt_U = np.dot(U_sampled.T, U_sampled) if y_link == "logit": # in the original paper, the equation was v_i.T @ Z, # which clearly does not work due to the dimensionality D_z = np.diag(d_sigmoid(np.dot(v_i, Z_T_sampled))) ddV_wrt_Z = np.dot(
np.dot(Z_T_sampled, D_z)
numpy.dot
#Exercícios Massimo - Tabata import mayavi.mlab as mlab import numpy as np import matplotlib.pyplot as plt from mpl_toolkits import mplot3d from matplotlib import cm L = 5e9/3e8 #segundos psi = 0 f = .001 #Hz w = 2*np.pi*f A = 1 def F_mais_oneway(phi, theta): return ((1 + np.cos(theta))/2)*(A*np.cos(2*phi)*(np.cos(w*L) - np.cos(w*np.cos(theta)*L)) + A*np.sin(2*phi)*(np.sin(w*np.cos(theta)*L) - np.sin(w*L))) def F_cruzado_oneway(phi, theta): return ((1 + np.cos(theta))/2)*(A*np.cos(2*phi)*(np.sin(w*L) - np.sin(w*np.cos(theta)*L)) + A*np.sin(2*phi)*(np.cos(w*L)- np.cos(w*np.cos(theta)*L))) def F_mais_LIGO(phi, theta, psi): return 0.5*(1+ np.cos(theta)*np.cos(theta))*
np.cos(2*phi)
numpy.cos
from scipy.spatial import Voronoi, voronoi_plot_2d import numpy as np import pandas as pd import matplotlib from biopandas.mol2 import PandasMol2 import matplotlib.pyplot as plt from matplotlib import colors as mcolors from sklearn.cluster import KMeans from math import sqrt, asin, atan2, log, pi, tan from alignment import align import argparse import os import skimage from skimage.io import imshow import cv2 from skimage.transform import rotate as skrotate from skimage import img_as_ubyte import statistics def k_different_colors(k: int): colors = dict(**mcolors.CSS4_COLORS) def rgb(color): return mcolors.to_rgba(color)[:3] def hsv(color): return mcolors.rgb_to_hsv(color) col_dict = [(k, rgb(k)) for c, k in colors.items()] X = np.array([j for i, j in col_dict]) # Perform kmeans on rqb vectors kmeans = KMeans(n_clusters=k) kmeans = kmeans.fit(X) # Getting the cluster labels labels = kmeans.predict(X) # Centroid values C = kmeans.cluster_centers_ # Find one color near each of the k cluster centers closest_colors = np.array([np.sum((X - C[i]) ** 2, axis=1) for i in range(C.shape[0])]) keys = sorted(closest_colors.argmin(axis=1)) return [col_dict[i][0] for i in keys] def voronoi_finite_polygons_2d(vor, radius=None): """ Reconstruct infinite voronoi regions in a 2D diagram to finite regions. Parameters ---------- vor : Voronoi Input diagram radius : float, optional Distance to 'points at infinity'. Returns ------- regions : list of tuples Indices of vertices in each revised Voronoi regions. vertices : list of tuples Coordinates for revised Voronoi vertices. Same as coordinates of input vertices, with 'points at infinity' appended to the end. Source ------- Copied from https://gist.github.com/pv/8036995 """ if vor.points.shape[1] != 2: raise ValueError("Requires 2D input") new_regions = [] new_vertices = vor.vertices.tolist() center = vor.points.mean(axis=0) if radius is None: radius = vor.points.ptp().max() * 2 # Construct a map containing all ridges for a given point all_ridges = {} for (p1, p2), (v1, v2) in zip(vor.ridge_points, vor.ridge_vertices): all_ridges.setdefault(p1, []).append((p2, v1, v2)) all_ridges.setdefault(p2, []).append((p1, v1, v2)) # Reconstruct infinite regions for p1, region in enumerate(vor.point_region): vertices = vor.regions[region] if all(v >= 0 for v in vertices): # finite region new_regions.append(vertices) continue # reconstruct a non-finite region ridges = all_ridges[p1] new_region = [v for v in vertices if v >= 0] for p2, v1, v2 in ridges: if v2 < 0: v1, v2 = v2, v1 if v1 >= 0: # finite ridge: already in the region continue # Compute the missing endpoint of an infinite ridge t = vor.points[p2] - vor.points[p1] # tangent t /= np.linalg.norm(t) n =
np.array([-t[1], t[0]])
numpy.array
from __future__ import absolute_import, division, print_function import os import cv2 import numpy as np import torch from torch.utils.data import DataLoader from layers import disp_to_depth from utils import readlines from options import MonodepthOptions import datasets import networks cv2.setNumThreads(0) # This speeds up evaluation 5x on our unix systems (OpenCV 3.3.1) splits_dir = os.path.join(os.path.dirname(__file__), "splits") def compute_errors(gt, pred): """Computation of error metrics between predicted and ground truth depths """ thresh = np.maximum((gt / pred), (pred / gt)) a1 = (thresh < 1.25 ).mean() a2 = (thresh < 1.25 ** 2).mean() a3 = (thresh < 1.25 ** 3).mean() log10 = np.mean(np.abs(np.log10(pred / gt))) rmse = (gt - pred) ** 2 rmse = np.sqrt(rmse.mean()) rmse_log = (np.log(gt) - np.log(pred)) ** 2 rmse_log = np.sqrt(rmse_log.mean()) abs_rel = np.mean(np.abs(gt - pred) / gt) sq_rel = np.mean(((gt - pred) ** 2) / gt) return abs_rel, sq_rel, rmse, rmse_log, log10, a1, a2, a3 def batch_post_process_disparity(l_disp, r_disp): """Apply the disparity post-processing method as introduced in Monodepthv1 """ _, h, w = l_disp.shape m_disp = 0.5 * (l_disp + r_disp) l, _ = np.meshgrid(np.linspace(0, 1, w), np.linspace(0, 1, h)) l_mask = (1.0 - np.clip(20 * (l - 0.05), 0, 1))[None, ...] r_mask = l_mask[:, :, ::-1] return r_mask * l_disp + l_mask * r_disp + (1.0 - l_mask - r_mask) * m_disp def evaluate(opt): """Evaluates a pretrained model using a specified test set """ MIN_DEPTH = 1e-2 MAX_DEPTH = 10 if opt.ext_disp_to_eval is None: opt.load_weights_folder = os.path.expanduser(opt.load_weights_folder) assert os.path.isdir(opt.load_weights_folder), \ "Cannot find a folder at {}".format(opt.load_weights_folder) print("-> Loading weights from {}".format(opt.load_weights_folder)) filenames = readlines(os.path.join(splits_dir, opt.eval_split, "test_files.txt")) encoder_path = os.path.join(opt.load_weights_folder, "encoder.pth") decoder_path = os.path.join(opt.load_weights_folder, "depth.pth") encoder_dict = torch.load(encoder_path) dataset = datasets.NYUDataset(opt.data_path, filenames, encoder_dict['height'], encoder_dict['width'], [0], 1, is_test=True, return_plane=True, num_plane_keysets=0, return_line=True, num_line_keysets=0) dataloader = DataLoader(dataset, opt.batch_size, shuffle=False, num_workers=opt.num_workers, pin_memory=True, drop_last=False) encoder = networks.ResnetEncoder(opt.num_layers, False) depth_decoder = networks.DepthDecoder(encoder.num_ch_enc, [0]) model_dict = encoder.state_dict() encoder.load_state_dict({k: v for k, v in encoder_dict.items() if k in model_dict}) model_dict = depth_decoder.state_dict() decoder_dict = torch.load(decoder_path) depth_decoder.load_state_dict({k: v for k, v in decoder_dict.items() if k in model_dict}) encoder.cuda() encoder.eval() depth_decoder.cuda() depth_decoder.eval() gt_depths = [] planes = [] lines = [] pred_disps = [] print("-> Computing predictions with size {}x{}".format( encoder_dict['width'], encoder_dict['height'])) with torch.no_grad(): for data in dataloader: input_color = data[("color", 0, 0)].cuda() norm_pix_coords = [data[("norm_pix_coords", s)].cuda() for s in opt.scales] gt_depth = data["depth_gt"][:, 0].numpy() gt_depths.append(gt_depth) plane = data[("plane", 0, -1)][:, 0].numpy() planes.append(plane) line = data[("line", 0, -1)][:, 0].numpy() lines.append(line) if opt.post_process: # Post-processed results require each image to have two forward passes input_color = torch.cat((input_color, torch.flip(input_color, [3])), 0) norm_pix_coords = [torch.cat((pc, torch.flip(pc, [3])), 0) for pc in norm_pix_coords] norm_pix_coords[0][norm_pix_coords[0].shape[0] // 2:, 0] *= -1 output = depth_decoder(encoder(input_color), norm_pix_coords) pred_disp, _ = disp_to_depth(output[("disp", 0)], opt.min_depth, opt.max_depth) pred_disp = pred_disp.cpu()[:, 0].numpy() if opt.post_process: N = pred_disp.shape[0] // 2 pred_disp = batch_post_process_disparity(pred_disp[:N], pred_disp[N:, :, ::-1]) pred_disps.append(pred_disp) gt_depths = np.concatenate(gt_depths) planes = np.concatenate(planes) lines = np.concatenate(lines) pred_disps = np.concatenate(pred_disps) else: filenames = readlines(os.path.join(splits_dir, opt.eval_split, "test_files.txt")) dataset = datasets.NYUDataset(opt.data_path, filenames, self.opt.height, self.opt.width, [0], 1, is_test=True, return_plane=True, num_plane_keysets=0, return_line=True, num_line_keysets=0) dataloader = DataLoader(dataset, opt.batch_size, shuffle=False, num_workers=opt.num_workers, pin_memory=True, drop_last=False) gt_depths = [] planes = [] lines = [] for data in dataloader: gt_depth = data["depth_gt"][:, 0].numpy() gt_depths.append(gt_depth) plane = data[("plane", 0, -1)][:, 0].numpy() planes.append(plane) line = data[("line", 0, -1)][:, 0].numpy() lines.append(line) gt_depths = np.concatenate(gt_depths) planes = np.concatenate(planes) lines = np.concatenate(lines) # Load predictions from file print("-> Loading predictions from {}".format(opt.ext_disp_to_eval)) pred_disps = np.load(opt.ext_disp_to_eval) if opt.save_pred_disps: output_path = os.path.join( opt.load_weights_folder, "disps_{}_split.npy".format(opt.eval_split)) print("-> Saving predicted disparities to ", output_path) np.save(output_path, pred_disps) if opt.no_eval: print("-> Evaluation disabled. Done.") quit() print("-> Evaluating") print(" Mono evaluation - using median scaling") errors = [] ratios = [] gt_plane_pixel_deviations = [] gt_plane_instance_max_deviations = [] gt_flatness_ratios = [] gt_line_pixel_deviations = [] gt_line_instance_max_deviations = [] gt_straightness_ratios = [] pred_plane_pixel_deviations = [] pred_plane_instance_max_deviations = [] pred_flatness_ratios = [] pred_line_pixel_deviations = [] pred_line_instance_max_deviations = [] pred_straightness_ratios = [] norm_pix_coords = dataset.get_norm_pix_coords() for i in range(pred_disps.shape[0]): gt_depth = gt_depths[i] gt_height, gt_width = gt_depth.shape[:2] pred_disp = pred_disps[i] pred_disp = cv2.resize(pred_disp, (gt_width, gt_height)) pred_depth = 1 / pred_disp mask = np.logical_and(gt_depth > MIN_DEPTH, gt_depth < MAX_DEPTH) crop_mask = np.zeros(mask.shape) crop_mask[dataset.default_crop[2]:dataset.default_crop[3], \ dataset.default_crop[0]:dataset.default_crop[1]] = 1 mask = np.logical_and(mask, crop_mask) mask_pred_depth = pred_depth[mask] mask_gt_depth = gt_depth[mask] mask_pred_depth *= opt.pred_depth_scale_factor if not opt.disable_median_scaling: ratio = np.median(mask_gt_depth) / np.median(mask_pred_depth) ratios.append(ratio) mask_pred_depth *= ratio else: ratio = 1 ratios.append(ratio) mask_pred_depth[mask_pred_depth < MIN_DEPTH] = MIN_DEPTH mask_pred_depth[mask_pred_depth > MAX_DEPTH] = MAX_DEPTH errors.append(compute_errors(mask_gt_depth, mask_pred_depth)) # compute the flatness and straightness plane_seg = planes[i] line_seg = lines[i] X = norm_pix_coords[0] * gt_depth Y = norm_pix_coords[1] * gt_depth Z = gt_depth for j in range(plane_seg.max()): seg_x = X[plane_seg == (j + 1)] seg_y = Y[plane_seg == (j + 1)] seg_z = Z[plane_seg == (j + 1)] P = np.stack((seg_x, seg_y, seg_z), axis=1) mean_P = P.mean(axis=0) cent_P = P - mean_P conv_P = cent_P.T.dot(cent_P) / seg_x.shape[0] e_vals, e_vecs = np.linalg.eig(conv_P) idx = e_vals.argsort()[::-1] e_vals = e_vals[idx] e_vecs = e_vecs[:, idx] deviations = np.abs(cent_P.dot(e_vecs[:, 2])) variance_ratios = e_vals / e_vals.sum() gt_plane_instance_max_deviations.append(np.max(deviations)) gt_plane_pixel_deviations.append(deviations) gt_flatness_ratios.append(variance_ratios[2]) for j in range(line_seg.max()): seg_x = X[line_seg == (j + 1)] seg_y = Y[line_seg == (j + 1)] seg_z = Z[line_seg == (j + 1)] P = np.stack((seg_x, seg_y, seg_z), axis=1) mean_P = P.mean(axis=0) cent_P = P - mean_P conv_P = cent_P.T.dot(cent_P) / seg_x.shape[0] e_vals, e_vecs = np.linalg.eig(conv_P) idx = e_vals.argsort()[::-1] e_vals = e_vals[idx] e_vecs = e_vecs[:, idx] dev2 = np.sum(cent_P ** 2, 1) - (cent_P.dot(e_vecs[:, 0])) ** 2 dev2[dev2 < 0] = 0 deviations = np.sqrt(dev2) gt_line_instance_max_deviations.append(np.max(deviations)) gt_line_pixel_deviations.append(deviations) variance_ratios = e_vals / e_vals.sum() gt_straightness_ratios.append(variance_ratios[1] + variance_ratios[2]) pred_depth *= ratio X = norm_pix_coords[0] * pred_depth Y = norm_pix_coords[1] * pred_depth Z = pred_depth for j in range(plane_seg.max()): seg_x = X[plane_seg == (j + 1)] seg_y = Y[plane_seg == (j + 1)] seg_z = Z[plane_seg == (j + 1)] P = np.stack((seg_x, seg_y, seg_z), axis=1) mean_P = P.mean(axis=0) cent_P = P - mean_P conv_P = cent_P.T.dot(cent_P) / seg_x.shape[0] e_vals, e_vecs = np.linalg.eig(conv_P) idx = e_vals.argsort()[::-1] e_vals = e_vals[idx] e_vecs = e_vecs[:, idx] deviations = np.abs(cent_P.dot(e_vecs[:, 2])) variance_ratios = e_vals / e_vals.sum() pred_plane_instance_max_deviations.append(np.max(deviations)) pred_plane_pixel_deviations.append(deviations) pred_flatness_ratios.append(variance_ratios[2]) for j in range(line_seg.max()): seg_x = X[line_seg == (j + 1)] seg_y = Y[line_seg == (j + 1)] seg_z = Z[line_seg == (j + 1)] P = np.stack((seg_x, seg_y, seg_z), axis=1) mean_P = P.mean(axis=0) cent_P = P - mean_P conv_P = cent_P.T.dot(cent_P) / seg_x.shape[0] e_vals, e_vecs =
np.linalg.eig(conv_P)
numpy.linalg.eig
from __future__ import print_function, division, absolute_import import functools import sys import warnings # unittest only added in 3.4 self.subTest() if sys.version_info[0] < 3 or sys.version_info[1] < 4: import unittest2 as unittest else: import unittest # unittest.mock is not available in 2.7 (though unittest2 might contain it?) try: import unittest.mock as mock except ImportError: import mock import matplotlib matplotlib.use('Agg') # fix execution of tests involving matplotlib on travis import numpy as np import six.moves as sm import imgaug as ia from imgaug import augmenters as iaa from imgaug import parameters as iap from imgaug import dtypes as iadt from imgaug import random as iarandom from imgaug.testutils import (array_equal_lists, keypoints_equal, reseed, runtest_pickleable_uint8_img) import imgaug.augmenters.arithmetic as arithmetic_lib import imgaug.augmenters.contrast as contrast_lib class Test_cutout(unittest.TestCase): @mock.patch("imgaug.augmenters.arithmetic.cutout_") def test_mocked(self, mock_inplace): image = np.mod(np.arange(100*100*3), 255).astype(np.uint8).reshape( (100, 100, 3)) mock_inplace.return_value = "foo" rng = iarandom.RNG(0) image_aug = iaa.cutout(image, x1=10, y1=20, x2=30, y2=40, fill_mode="gaussian", cval=1, fill_per_channel=0.5, seed=rng) assert mock_inplace.call_count == 1 assert image_aug == "foo" args = mock_inplace.call_args_list[0][0] assert args[0] is not image assert np.array_equal(args[0], image) assert np.isclose(args[1], 10) assert np.isclose(args[2], 20) assert np.isclose(args[3], 30) assert np.isclose(args[4], 40) assert args[5] == "gaussian" assert args[6] == 1 assert np.isclose(args[7], 0.5) assert args[8] is rng class Test_cutout_(unittest.TestCase): def test_with_simple_image(self): image = np.mod(np.arange(100*100*3), 255).astype(np.uint8).reshape( (100, 100, 3)) image = 1 + image image_aug = iaa.cutout_(image, x1=10, y1=20, x2=30, y2=40, fill_mode="constant", cval=0, fill_per_channel=False, seed=None) mask = np.zeros(image.shape, dtype=bool) mask[20:40, 10:30, :] = True overlap_inside = np.sum(image_aug[mask] == 0) / np.sum(mask) overlap_outside = np.sum(image_aug[~mask] > 0) / np.sum(~mask) assert image_aug is image assert overlap_inside >= 1.0 - 1e-4 assert overlap_outside >= 1.0 - 1e-4 @mock.patch("imgaug.augmenters.arithmetic._fill_rectangle_constant_") def test_fill_mode_constant_mocked(self, mock_fill): self._test_with_fill_mode_mocked("constant", mock_fill) @mock.patch("imgaug.augmenters.arithmetic._fill_rectangle_gaussian_") def test_fill_mode_gaussian_mocked(self, mock_fill): self._test_with_fill_mode_mocked("gaussian", mock_fill) @classmethod def _test_with_fill_mode_mocked(cls, fill_mode, mock_fill): image = np.mod(np.arange(100*100*3), 256).astype(np.uint8).reshape( (100, 100, 3)) mock_fill.return_value = image seed = iarandom.RNG(0) image_aug = iaa.cutout_(image, x1=10, y1=20, x2=30, y2=40, fill_mode=fill_mode, cval=0, fill_per_channel=False, seed=seed) assert mock_fill.call_count == 1 args = mock_fill.call_args_list[0][0] kwargs = mock_fill.call_args_list[0][1] assert image_aug is image assert args[0] is image assert kwargs["x1"] == 10 assert kwargs["y1"] == 20 assert kwargs["x2"] == 30 assert kwargs["y2"] == 40 assert kwargs["cval"] == 0 assert kwargs["per_channel"] is False assert kwargs["random_state"] is seed def test_zero_height(self): image = np.mod(np.arange(100*100*3), 255).astype(np.uint8).reshape( (100, 100, 3)) image = 1 + image image_cp = np.copy(image) image_aug = iaa.cutout_(image, x1=10, y1=20, x2=30, y2=20, fill_mode="constant", cval=0, fill_per_channel=False, seed=None) assert np.array_equal(image_aug, image_cp) def test_zero_height_width(self): image = np.mod(np.arange(100*100*3), 255).astype(np.uint8).reshape( (100, 100, 3)) image = 1 + image image_cp = np.copy(image) image_aug = iaa.cutout_(image, x1=10, y1=20, x2=10, y2=40, fill_mode="constant", cval=0, fill_per_channel=False, seed=None) assert np.array_equal(image_aug, image_cp) def test_position_outside_of_image_rect_fully_outside(self): image = np.mod(np.arange(100*100*3), 255).astype(np.uint8).reshape( (100, 100, 3)) image = 1 + image image_cp = np.copy(image) image_aug = iaa.cutout_(image, x1=-50, y1=150, x2=-1, y2=200, fill_mode="constant", cval=0, fill_per_channel=False, seed=None) assert np.array_equal(image_aug, image_cp) def test_position_outside_of_image_rect_partially_inside(self): image = np.mod(np.arange(100*100*3), 255).astype(np.uint8).reshape( (100, 100, 3)) image = 1 + image image_aug = iaa.cutout_(image, x1=-25, y1=-25, x2=25, y2=25, fill_mode="constant", cval=0, fill_per_channel=False, seed=None) assert np.all(image_aug[0:25, 0:25] == 0) assert np.all(image_aug[0:25, 25:] > 0) assert np.all(image_aug[25:, :] > 0) def test_zero_sized_axes(self): shapes = [(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 0, 1), (1, 0), (0, 1), (0, 0)] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) image_cp = np.copy(image) image_aug = iaa.cutout_(image, x1=-5, y1=-5, x2=5, y2=5, fill_mode="constant", cval=0) assert np.array_equal(image_aug, image_cp) class Test_fill_rectangle_gaussian_(unittest.TestCase): def test_simple_image(self): image = np.mod(np.arange(100*100*3), 256).astype(np.uint8).reshape( (100, 100, 3)) image_cp = np.copy(image) rng = iarandom.RNG(0) image_aug = arithmetic_lib._fill_rectangle_gaussian_( image, x1=10, y1=20, x2=60, y2=70, cval=0, per_channel=False, random_state=rng) assert np.array_equal(image_aug[:20, :], image_cp[:20, :]) assert not np.array_equal(image_aug[20:70, 10:60], image_cp[20:70, 10:60]) assert np.isclose(np.average(image_aug[20:70, 10:60]), 127.5, rtol=0, atol=5.0) assert np.isclose(np.std(image_aug[20:70, 10:60]), 255.0/2.0/3.0, rtol=0, atol=2.5) def test_per_channel(self): image = np.uint8([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) image = np.tile(image.reshape((1, 10, 1)), (1, 1, 3)) image_aug = arithmetic_lib._fill_rectangle_gaussian_( np.copy(image), x1=0, y1=0, x2=10, y2=1, cval=0, per_channel=False, random_state=iarandom.RNG(0)) image_aug_pc = arithmetic_lib._fill_rectangle_gaussian_( np.copy(image), x1=0, y1=0, x2=10, y2=1, cval=0, per_channel=True, random_state=iarandom.RNG(0)) diff11 = (image_aug[..., 0] != image_aug[..., 1]) diff12 = (image_aug[..., 0] != image_aug[..., 2]) diff21 = (image_aug_pc[..., 0] != image_aug_pc[..., 1]) diff22 = (image_aug_pc[..., 0] != image_aug_pc[..., 2]) assert not np.any(diff11) assert not np.any(diff12) assert np.any(diff21) assert np.any(diff22) def test_deterministic_with_same_seed(self): image = np.uint8([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) image = np.tile(image.reshape((1, 10, 1)), (1, 1, 3)) image_aug_pc1 = arithmetic_lib._fill_rectangle_gaussian_( np.copy(image), x1=0, y1=0, x2=10, y2=1, cval=0, per_channel=True, random_state=iarandom.RNG(0)) image_aug_pc2 = arithmetic_lib._fill_rectangle_gaussian_( np.copy(image), x1=0, y1=0, x2=10, y2=1, cval=0, per_channel=True, random_state=iarandom.RNG(0)) image_aug_pc3 = arithmetic_lib._fill_rectangle_gaussian_( np.copy(image), x1=0, y1=0, x2=10, y2=1, cval=0, per_channel=True, random_state=iarandom.RNG(1)) assert np.array_equal(image_aug_pc1, image_aug_pc2) assert not np.array_equal(image_aug_pc2, image_aug_pc3) def test_no_channels(self): for per_channel in [False, True]: with self.subTest(per_channel=per_channel): image = np.uint8([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) image = image.reshape((1, 10)) image_aug = arithmetic_lib._fill_rectangle_gaussian_( np.copy(image), x1=0, y1=0, x2=10, y2=1, cval=0, per_channel=per_channel, random_state=iarandom.RNG(0)) assert not np.array_equal(image_aug, image) def test_unusual_channel_numbers(self): for nb_channels in [1, 2, 3, 4, 5, 511, 512, 513]: for per_channel in [False, True]: with self.subTest(nb_channels=nb_channels, per_channel=per_channel): image = np.uint8([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) image = np.tile(image.reshape((1, 10, 1)), (1, 1, nb_channels)) image_aug = arithmetic_lib._fill_rectangle_gaussian_( np.copy(image), x1=0, y1=0, x2=10, y2=1, cval=0, per_channel=True, random_state=iarandom.RNG(0)) assert not np.array_equal(image_aug, image) def test_other_dtypes_bool(self): for per_channel in [False, True]: with self.subTest(per_channel=per_channel): image = np.array([0, 1], dtype=bool) image = np.tile(image, (int(3*300*300/2),)) image = image.reshape((300, 300, 3)) image_cp = np.copy(image) rng = iarandom.RNG(0) image_aug = arithmetic_lib._fill_rectangle_gaussian_( image, x1=10, y1=10, x2=300-10, y2=300-10, cval=0, per_channel=per_channel, random_state=rng) rect = image_aug[10:-10, 10:-10] p_true = np.sum(rect) / rect.size assert np.array_equal(image_aug[:10, :], image_cp[:10, :]) assert not np.array_equal(rect, image_cp[10:-10, 10:-10]) assert np.isclose(p_true, 0.5, rtol=0, atol=0.1) if per_channel: for c in np.arange(1, image.shape[2]): assert not np.array_equal(image_aug[..., 0], image_aug[..., c]) def test_other_dtypes_int_uint(self): dtypes = ["uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64"] for dtype in dtypes: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dtype) dynamic_range = int(max_value) - int(min_value) gaussian_min = iarandom.RNG(0).normal(min_value, 0.0001, size=(1,)) gaussian_max = iarandom.RNG(0).normal(max_value, 0.0001, size=(1,)) assert min_value - 1.0 <= gaussian_min <= min_value + 1.0 assert max_value - 1.0 <= gaussian_max <= max_value + 1.0 for per_channel in [False, True]: with self.subTest(dtype=dtype, per_channel=per_channel): # dont generate image from choice() here, that seems # to not support uint64 (max value not in result) image = np.array([min_value, min_value+1, int(center_value), max_value-1, max_value], dtype=dtype) image = np.tile(image, (int(3*300*300/5),)) image = image.reshape((300, 300, 3)) assert min_value in image assert max_value in image image_cp = np.copy(image) rng = iarandom.RNG(0) image_aug = arithmetic_lib._fill_rectangle_gaussian_( image, x1=10, y1=10, x2=300-10, y2=300-10, cval=0, per_channel=per_channel, random_state=rng) rect = image_aug[10:-10, 10:-10] mean = np.average(np.float128(rect)) std = np.std(np.float128(rect) - center_value) assert np.array_equal(image_aug[:10, :], image_cp[:10, :]) assert not np.array_equal(rect, image_cp[10:-10, 10:-10]) assert np.isclose(mean, center_value, rtol=0, atol=0.05*dynamic_range) assert np.isclose(std, dynamic_range/2.0/3.0, rtol=0, atol=0.05*dynamic_range/2.0/3.0) assert np.min(rect) < min_value + 0.2 * dynamic_range assert np.max(rect) > max_value - 0.2 * dynamic_range if per_channel: for c in np.arange(1, image.shape[2]): assert not np.array_equal(image_aug[..., 0], image_aug[..., c]) def test_other_dtypes_float(self): dtypes = ["float16", "float32", "float64", "float128"] for dtype in dtypes: min_value = 0.0 center_value = 0.5 max_value = 1.0 dynamic_range = np.float128(max_value) - np.float128(min_value) gaussian_min = iarandom.RNG(0).normal(min_value, 0.0001, size=(1,)) gaussian_max = iarandom.RNG(0).normal(max_value, 0.0001, size=(1,)) assert min_value - 1.0 <= gaussian_min <= min_value + 1.0 assert max_value - 1.0 <= gaussian_max <= max_value + 1.0 for per_channel in [False, True]: with self.subTest(dtype=dtype, per_channel=per_channel): # dont generate image from choice() here, that seems # to not support uint64 (max value not in result) image = np.array([min_value, min_value+1, int(center_value), max_value-1, max_value], dtype=dtype) image = np.tile(image, (int(3*300*300/5),)) image = image.reshape((300, 300, 3)) assert np.any(np.isclose(image, min_value, rtol=0, atol=1e-4)) assert np.any(np.isclose(image, max_value, rtol=0, atol=1e-4)) image_cp = np.copy(image) rng = iarandom.RNG(0) image_aug = arithmetic_lib._fill_rectangle_gaussian_( image, x1=10, y1=10, x2=300-10, y2=300-10, cval=0, per_channel=per_channel, random_state=rng) rect = image_aug[10:-10, 10:-10] mean = np.average(np.float128(rect)) std = np.std(np.float128(rect) - center_value) assert np.allclose(image_aug[:10, :], image_cp[:10, :], rtol=0, atol=1e-4) assert not np.allclose(rect, image_cp[10:-10, 10:-10], rtol=0, atol=1e-4) assert np.isclose(mean, center_value, rtol=0, atol=0.05*dynamic_range) assert np.isclose(std, dynamic_range/2.0/3.0, rtol=0, atol=0.05*dynamic_range/2.0/3.0) assert np.min(rect) < min_value + 0.2 * dynamic_range assert np.max(rect) > max_value - 0.2 * dynamic_range if per_channel: for c in np.arange(1, image.shape[2]): assert not np.allclose(image_aug[..., 0], image_aug[..., c], rtol=0, atol=1e-4) class Test_fill_rectangle_constant_(unittest.TestCase): def test_simple_image(self): image = np.mod(np.arange(100*100*3), 256).astype(np.uint8).reshape( (100, 100, 3)) image_cp = np.copy(image) image_aug = arithmetic_lib._fill_rectangle_constant_( image, x1=10, y1=20, x2=60, y2=70, cval=17, per_channel=False, random_state=None) assert np.array_equal(image_aug[:20, :], image_cp[:20, :]) assert np.all(image_aug[20:70, 10:60] == 17) def test_iterable_cval_but_per_channel_is_false(self): image = np.mod(np.arange(100*100*3), 256).astype(np.uint8).reshape( (100, 100, 3)) image_cp = np.copy(image) image_aug = arithmetic_lib._fill_rectangle_constant_( image, x1=10, y1=20, x2=60, y2=70, cval=[17, 21, 25], per_channel=False, random_state=None) assert np.array_equal(image_aug[:20, :], image_cp[:20, :]) assert np.all(image_aug[20:70, 10:60] == 17) def test_iterable_cval_with_per_channel_is_true(self): image = np.mod(np.arange(100*100*3), 256).astype(np.uint8).reshape( (100, 100, 3)) image_cp = np.copy(image) image_aug = arithmetic_lib._fill_rectangle_constant_( image, x1=10, y1=20, x2=60, y2=70, cval=[17, 21, 25], per_channel=True, random_state=None) assert np.array_equal(image_aug[:20, :], image_cp[:20, :]) assert np.all(image_aug[20:70, 10:60, 0] == 17) assert np.all(image_aug[20:70, 10:60, 1] == 21) assert np.all(image_aug[20:70, 10:60, 2] == 25) def test_iterable_cval_with_per_channel_is_true_channel_mismatch(self): image = np.mod(np.arange(100*100*5), 256).astype(np.uint8).reshape( (100, 100, 5)) image_cp = np.copy(image) image_aug = arithmetic_lib._fill_rectangle_constant_( image, x1=10, y1=20, x2=60, y2=70, cval=[17, 21], per_channel=True, random_state=None) assert np.array_equal(image_aug[:20, :], image_cp[:20, :]) assert np.all(image_aug[20:70, 10:60, 0] == 17) assert np.all(image_aug[20:70, 10:60, 1] == 21) assert np.all(image_aug[20:70, 10:60, 2] == 17) assert np.all(image_aug[20:70, 10:60, 3] == 21) assert np.all(image_aug[20:70, 10:60, 4] == 17) def test_single_cval_with_per_channel_is_true(self): image = np.mod(np.arange(100*100*3), 256).astype(np.uint8).reshape( (100, 100, 3)) image_cp = np.copy(image) image_aug = arithmetic_lib._fill_rectangle_constant_( image, x1=10, y1=20, x2=60, y2=70, cval=17, per_channel=True, random_state=None) assert np.array_equal(image_aug[:20, :], image_cp[:20, :]) assert np.all(image_aug[20:70, 10:60, 0] == 17) assert np.all(image_aug[20:70, 10:60, 1] == 17) assert np.all(image_aug[20:70, 10:60, 2] == 17) def test_no_channels_single_cval(self): for per_channel in [False, True]: with self.subTest(per_channel=per_channel): image = np.mod( np.arange(100*100), 256 ).astype(np.uint8).reshape((100, 100)) image_cp = np.copy(image) image_aug = arithmetic_lib._fill_rectangle_constant_( image, x1=10, y1=20, x2=60, y2=70, cval=17, per_channel=per_channel, random_state=None) assert np.array_equal(image_aug[:20, :], image_cp[:20, :]) assert np.all(image_aug[20:70, 10:60] == 17) def test_no_channels_iterable_cval(self): for per_channel in [False, True]: with self.subTest(per_channel=per_channel): image = np.mod( np.arange(100*100), 256 ).astype(np.uint8).reshape((100, 100)) image_cp = np.copy(image) image_aug = arithmetic_lib._fill_rectangle_constant_( image, x1=10, y1=20, x2=60, y2=70, cval=[17, 21, 25], per_channel=per_channel, random_state=None) assert np.array_equal(image_aug[:20, :], image_cp[:20, :]) assert np.all(image_aug[20:70, 10:60] == 17) def test_unusual_channel_numbers(self): for nb_channels in [1, 2, 4, 5, 511, 512, 513]: for per_channel in [False, True]: with self.subTest(per_channel=per_channel): image = np.mod( np.arange(100*100*nb_channels), 256 ).astype(np.uint8).reshape((100, 100, nb_channels)) image_cp = np.copy(image) image_aug = arithmetic_lib._fill_rectangle_constant_( image, x1=10, y1=20, x2=60, y2=70, cval=[17, 21], per_channel=per_channel, random_state=None) assert np.array_equal(image_aug[:20, :], image_cp[:20, :]) if per_channel: for c in np.arange(nb_channels): val = 17 if c % 2 == 0 else 21 assert np.all(image_aug[20:70, 10:60, c] == val) else: assert np.all(image_aug[20:70, 10:60, :] == 17) def test_other_dtypes_bool(self): for per_channel in [False, True]: with self.subTest(per_channel=per_channel): image = np.array([0, 1], dtype=bool) image = np.tile(image, (int(3*300*300/2),)) image = image.reshape((300, 300, 3)) image_cp = np.copy(image) image_aug = arithmetic_lib._fill_rectangle_constant_( image, x1=10, y1=10, x2=300-10, y2=300-10, cval=[0, 1], per_channel=per_channel, random_state=None) rect = image_aug[10:-10, 10:-10] assert np.array_equal(image_aug[:10, :], image_cp[:10, :]) if per_channel: assert np.all(image_aug[10:-10, 10:-10, 0] == 0) assert np.all(image_aug[10:-10, 10:-10, 1] == 1) assert np.all(image_aug[10:-10, 10:-10, 2] == 0) else: assert np.all(image_aug[20:70, 10:60] == 0) def test_other_dtypes_uint_int(self): dtypes = ["uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64"] for dtype in dtypes: for per_channel in [False, True]: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dtype) with self.subTest(dtype=dtype, per_channel=per_channel): image = np.array([min_value, min_value+1, int(center_value), max_value-1, max_value], dtype=dtype) image = np.tile(image, (int(3*300*300/5),)) image = image.reshape((300, 300, 3)) assert min_value in image assert max_value in image image_cp = np.copy(image) image_aug = arithmetic_lib._fill_rectangle_constant_( image, x1=10, y1=10, x2=300-10, y2=300-10, cval=[min_value, 10, max_value], per_channel=per_channel, random_state=None) assert np.array_equal(image_aug[:10, :], image_cp[:10, :]) if per_channel: assert np.all(image_aug[10:-10, 10:-10, 0] == min_value) assert np.all(image_aug[10:-10, 10:-10, 1] == 10) assert np.all(image_aug[10:-10, 10:-10, 2] == max_value) else: assert np.all(image_aug[-10:-10, 10:-10] == min_value) def test_other_dtypes_float(self): dtypes = ["float16", "float32", "float64", "float128"] for dtype in dtypes: for per_channel in [False, True]: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dtype) with self.subTest(dtype=dtype, per_channel=per_channel): image = np.array([min_value, min_value+1, int(center_value), max_value-1, max_value], dtype=dtype) image = np.tile(image, (int(3*300*300/5),)) image = image.reshape((300, 300, 3)) # Use this here instead of any(isclose(...)) because # the latter one leads to overflow warnings. assert image.flat[0] <= np.float128(min_value) + 1.0 assert image.flat[4] >= np.float128(max_value) - 1.0 image_cp = np.copy(image) image_aug = arithmetic_lib._fill_rectangle_constant_( image, x1=10, y1=10, x2=300-10, y2=300-10, cval=[min_value, 10, max_value], per_channel=per_channel, random_state=None) assert image_aug.dtype.name == dtype assert np.allclose(image_aug[:10, :], image_cp[:10, :], rtol=0, atol=1e-4) if per_channel: assert np.allclose(image_aug[10:-10, 10:-10, 0], np.float128(min_value), rtol=0, atol=1e-4) assert np.allclose(image_aug[10:-10, 10:-10, 1], np.float128(10), rtol=0, atol=1e-4) assert np.allclose(image_aug[10:-10, 10:-10, 2], np.float128(max_value), rtol=0, atol=1e-4) else: assert np.allclose(image_aug[-10:-10, 10:-10], np.float128(min_value), rtol=0, atol=1e-4) class TestAdd(unittest.TestCase): def setUp(self): reseed() def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.Add(value="test") except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.Add(value=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_add_zero(self): # no add, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_add_one(self): # add > 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) def test_minus_one(self): # add < 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=-1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) def test_uint8_every_possible_value(self): # uint8, every possible addition for base value 127 for value_type in [float, int]: for per_channel in [False, True]: for value in np.arange(-255, 255+1): aug = iaa.Add(value=value_type(value), per_channel=per_channel) expected = np.clip(127 + value_type(value), 0, 255) img = np.full((1, 1), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == expected img = np.full((1, 1, 3), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert np.all(img_aug == expected) def test_add_floats(self): # specific tests with floats aug = iaa.Add(value=0.75) img = np.full((1, 1), 1, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == 2 img = np.full((1, 1), 1, dtype=np.uint16) img_aug = aug.augment_image(img) assert img_aug.item(0) == 2 aug = iaa.Add(value=0.45) img = np.full((1, 1), 1, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == 1 img = np.full((1, 1), 1, dtype=np.uint16) img_aug = aug.augment_image(img) assert img_aug.item(0) == 1 def test_stochastic_parameters_as_value(self): # test other parameters base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.Add(value=iap.DiscreteUniform(1, 10)) observed = aug.augment_images(images) assert 100 + 1 <= np.average(observed) <= 100 + 10 aug = iaa.Add(value=iap.Uniform(1, 10)) observed = aug.augment_images(images) assert 100 + 1 <= np.average(observed) <= 100 + 10 aug = iaa.Add(value=iap.Clip(iap.Normal(1, 1), -3, 3)) observed = aug.augment_images(images) assert 100 - 3 <= np.average(observed) <= 100 + 3 aug = iaa.Add(value=iap.Discretize(iap.Clip(iap.Normal(1, 1), -3, 3))) observed = aug.augment_images(images) assert 100 - 3 <= np.average(observed) <= 100 + 3 def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.Add(value=1) aug_det = iaa.Add(value=1).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_value(self): # varying values base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.Add(value=(0, 10)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.7) assert nb_changed_aug_det == 0 def test_per_channel(self): # test channelwise aug = iaa.Add(value=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.zeros((1, 1, 100), dtype=np.uint8)) uq = np.unique(observed) assert observed.shape == (1, 1, 100) assert 0 in uq assert 1 in uq assert len(uq) == 2 def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.Add(value=iap.Choice([0, 1]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.zeros((1, 1, 20), dtype=np.uint8)) assert observed.shape == (1, 1, 20) uq = np.unique(observed) per_channel = (len(uq) == 2) if per_channel: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.Add(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.Add(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.Add(value=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps(self): # test heatmaps (not affected by augmenter) base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 aug = iaa.Add(value=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): image = np.zeros((3, 3), dtype=bool) aug = iaa.Add(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=-2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): for dtype in [np.uint8, np.uint16, np.int8, np.int16]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) for _ in sm.xrange(10): image = np.full((1, 1, 3), 20, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 image = np.full((1, 1, 3), 20, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) for _ in sm.xrange(10): image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) def test_pickleable(self): aug = iaa.Add((0, 50), per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=10) class TestAddElementwise(unittest.TestCase): def setUp(self): reseed() def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _aug = iaa.AddElementwise(value="test") except Exception: got_exception = True assert got_exception got_exception = False try: _aug = iaa.AddElementwise(value=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_add_zero(self): # no add, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_add_one(self): # add > 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) def test_add_minus_one(self): # add < 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=-1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) def test_uint8_every_possible_value(self): # uint8, every possible addition for base value 127 for value_type in [int]: for per_channel in [False, True]: for value in np.arange(-255, 255+1): aug = iaa.AddElementwise(value=value_type(value), per_channel=per_channel) expected = np.clip(127 + value_type(value), 0, 255) img = np.full((1, 1), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == expected img = np.full((1, 1, 3), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert np.all(img_aug == expected) def test_stochastic_parameters_as_value(self): # test other parameters base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=iap.DiscreteUniform(1, 10)) observed = aug.augment_images(images) assert np.min(observed) >= 100 + 1 assert np.max(observed) <= 100 + 10 aug = iaa.AddElementwise(value=iap.Uniform(1, 10)) observed = aug.augment_images(images) assert np.min(observed) >= 100 + 1 assert np.max(observed) <= 100 + 10 aug = iaa.AddElementwise(value=iap.Clip(iap.Normal(1, 1), -3, 3)) observed = aug.augment_images(images) assert np.min(observed) >= 100 - 3 assert np.max(observed) <= 100 + 3 aug = iaa.AddElementwise(value=iap.Discretize(iap.Clip(iap.Normal(1, 1), -3, 3))) observed = aug.augment_images(images) assert np.min(observed) >= 100 - 3 assert np.max(observed) <= 100 + 3 def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.AddElementwise(value=1) aug_det = iaa.AddElementwise(value=1).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_value(self): # varying values base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=(0, 10)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.7) assert nb_changed_aug_det == 0 def test_samples_change_by_spatial_location(self): # values should change between pixels base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=(-50, 50)) nb_same = 0 nb_different = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_flat = observed_aug.flatten() last = None for j in sm.xrange(observed_aug_flat.size): if last is not None: v = observed_aug_flat[j] if v - 0.0001 <= last <= v + 0.0001: nb_same += 1 else: nb_different += 1 last = observed_aug_flat[j] assert nb_different > 0.9 * (nb_different + nb_same) def test_per_channel(self): # test channelwise aug = iaa.AddElementwise(value=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.zeros((100, 100, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) assert all([(value in values) for value in [0, 1, 2, 3]]) def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.AddElementwise(value=iap.Choice([0, 1]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.zeros((20, 20, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) all_values_found = all([(value in values) for value in [0, 1, 2, 3]]) if all_values_found: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.AddElementwise(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.AddElementwise(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.AddElementwise(value=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.AddElementwise(value=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): # bool image = np.zeros((3, 3), dtype=bool) aug = iaa.AddElementwise(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=-2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): # uint, int for dtype in [np.uint8, np.uint16, np.int8, np.int16]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) for _ in sm.xrange(10): image = np.full((5, 5, 3), 20, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 image = np.full((5, 5, 3), 20, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) for _ in sm.xrange(10): image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) def test_pickleable(self): aug = iaa.AddElementwise((0, 50), per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=2) class AdditiveGaussianNoise(unittest.TestCase): def setUp(self): reseed() def test_loc_zero_scale_zero(self): # no noise, shouldnt change anything base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 images = np.array([base_img]) aug = iaa.AdditiveGaussianNoise(loc=0, scale=0) observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) def test_loc_zero_scale_nonzero(self): # zero-centered noise base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 images = np.array([base_img]) images_list = [base_img] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.AdditiveGaussianNoise(loc=0, scale=0.2 * 255) aug_det = aug.to_deterministic() observed = aug.augment_images(images) assert not np.array_equal(observed, images) observed = aug_det.augment_images(images) assert not np.array_equal(observed, images) observed = aug.augment_images(images_list) assert not array_equal_lists(observed, images_list) observed = aug_det.augment_images(images_list) assert not array_equal_lists(observed, images_list) observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) def test_std_dev_of_added_noise_matches_scale(self): # std correct? base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0, scale=0.2 * 255) images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 nb_iterations = 1000 values = [] for i in sm.xrange(nb_iterations): images_aug = aug.augment_images(images) values.append(images_aug[0, 0, 0, 0]) values = np.array(values) assert np.min(values) == 0 assert 0.1 < np.std(values) / 255.0 < 0.4 def test_nonzero_loc(self): # non-zero loc base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0.25 * 255, scale=0.01 * 255) images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 nb_iterations = 1000 values = [] for i in sm.xrange(nb_iterations): images_aug = aug.augment_images(images) values.append(images_aug[0, 0, 0, 0] - 128) values = np.array(values) assert 54 < np.average(values) < 74 # loc=0.25 should be around 255*0.25=64 average def test_tuple_as_loc(self): # varying locs base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=(0, 0.5 * 255), scale=0.0001 * 255) aug_det = aug.to_deterministic() images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_stochastic_parameter_as_loc(self): # varying locs by stochastic param base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=iap.Choice([-20, 20]), scale=0.0001 * 255) images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 seen = [0, 0] for i in sm.xrange(200): observed = aug.augment_images(images) mean = np.mean(observed) diff_m20 = abs(mean - (128-20)) diff_p20 = abs(mean - (128+20)) if diff_m20 <= 1: seen[0] += 1 elif diff_p20 <= 1: seen[1] += 1 else: assert False assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test_tuple_as_scale(self): # varying stds base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0, scale=(0.01 * 255, 0.2 * 255)) aug_det = aug.to_deterministic() images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_stochastic_parameter_as_scale(self): # varying stds by stochastic param base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0, scale=iap.Choice([1, 20])) images = np.ones((1, 20, 20, 1), dtype=np.uint8) * 128 seen = [0, 0, 0] for i in sm.xrange(200): observed = aug.augment_images(images) std = np.std(observed.astype(np.int32) - 128) diff_1 = abs(std - 1) diff_20 = abs(std - 20) if diff_1 <= 2: seen[0] += 1 elif diff_20 <= 5: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 5 assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.AdditiveGaussianNoise(loc="test") except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.AdditiveGaussianNoise(scale="test") except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0.5, scale=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.AdditiveGaussianNoise(scale=(0.1, 10), per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=2) class TestCutout(unittest.TestCase): def setUp(self): reseed() def test___init___defaults(self): aug = iaa.Cutout() assert aug.nb_iterations.value == 1 assert isinstance(aug.position[0], iap.Uniform) assert isinstance(aug.position[1], iap.Uniform) assert np.isclose(aug.size.value, 0.2) assert aug.squared.value == 1 assert aug.fill_mode.value == "constant" assert aug.cval.value == 128 assert aug.fill_per_channel.value == 0 def test___init___custom(self): aug = iaa.Cutout( nb_iterations=1, position=(0.5, 0.5), size=0.1, squared=0.6, fill_mode=["gaussian", "constant"], cval=(0, 255), fill_per_channel=0.5 ) assert aug.nb_iterations.value == 1 assert np.isclose(aug.position[0].value, 0.5) assert np.isclose(aug.position[1].value, 0.5) assert np.isclose(aug.size.value, 0.1) assert np.isclose(aug.squared.p.value, 0.6) assert aug.fill_mode.a == ["gaussian", "constant"] assert np.isclose(aug.cval.a.value, 0) assert np.isclose(aug.cval.b.value, 255) assert np.isclose(aug.fill_per_channel.p.value, 0.5) def test___init___fill_mode_is_stochastic_param(self): param = iap.Deterministic("constant") aug = iaa.Cutout(fill_mode=param) assert aug.fill_mode is param @mock.patch("imgaug.augmenters.arithmetic.cutout_") def test_mocked__squared_false(self, mock_apply): aug = iaa.Cutout(nb_iterations=2, position=(0.5, 0.6), size=iap.DeterministicList([0.1, 0.2]), squared=False, fill_mode="gaussian", cval=1, fill_per_channel=True) image = np.zeros((10, 30, 3), dtype=np.uint8) # dont return image itself, otherwise the loop below will fail # at its second iteration as the method is expected to handle # internally a copy of the image and not the image itself mock_apply.return_value = np.copy(image) _ = aug(image=image) assert mock_apply.call_count == 2 for call_idx in np.arange(2): args = mock_apply.call_args_list[call_idx][0] kwargs = mock_apply.call_args_list[call_idx][1] assert args[0] is not image assert np.array_equal(args[0], image) assert np.isclose(kwargs["x1"], 0.5*30 - 0.5 * (0.2*30)) assert np.isclose(kwargs["y1"], 0.6*10 - 0.5 * (0.1*10)) assert np.isclose(kwargs["x2"], 0.5*30 + 0.5 * (0.2*30)) assert np.isclose(kwargs["y2"], 0.6*10 + 0.5 * (0.1*10)) assert kwargs["fill_mode"] == "gaussian" assert np.array_equal(kwargs["cval"], [1, 1, 1]) assert np.isclose(kwargs["fill_per_channel"], 1.0) assert isinstance(kwargs["seed"], iarandom.RNG) @mock.patch("imgaug.augmenters.arithmetic.cutout_") def test_mocked__squared_true(self, mock_apply): aug = iaa.Cutout(nb_iterations=2, position=(0.5, 0.6), size=iap.DeterministicList([0.1, 0.2]), squared=True, fill_mode="gaussian", cval=1, fill_per_channel=True) image = np.zeros((10, 30, 3), dtype=np.uint8) # dont return image itself, otherwise the loop below will fail # at its second iteration as the method is expected to handle # internally a copy of the image and not the image itself mock_apply.return_value = np.copy(image) _ = aug(image=image) assert mock_apply.call_count == 2 for call_idx in np.arange(2): args = mock_apply.call_args_list[call_idx][0] kwargs = mock_apply.call_args_list[call_idx][1] assert args[0] is not image assert np.array_equal(args[0], image) assert np.isclose(kwargs["x1"], 0.5*30 - 0.5 * (0.1*10)) assert np.isclose(kwargs["y1"], 0.6*10 - 0.5 * (0.1*10)) assert np.isclose(kwargs["x2"], 0.5*30 + 0.5 * (0.1*10)) assert np.isclose(kwargs["y2"], 0.6*10 + 0.5 * (0.1*10)) assert kwargs["fill_mode"] == "gaussian" assert np.array_equal(kwargs["cval"], [1, 1, 1]) assert np.isclose(kwargs["fill_per_channel"], 1.0) assert isinstance(kwargs["seed"], iarandom.RNG) def test_simple_image(self): aug = iaa.Cutout(nb_iterations=2, position=( iap.DeterministicList([0.2, 0.8]), iap.DeterministicList([0.2, 0.8]) ), size=0.2, fill_mode="constant", cval=iap.DeterministicList([0, 0, 0, 1, 1, 1])) image = np.full((100, 100, 3), 255, dtype=np.uint8) for _ in np.arange(3): images_aug = aug(images=[image, image]) for image_aug in images_aug: values = np.unique(image_aug) assert len(values) == 3 assert 0 in values assert 1 in values assert 255 in values def test_batch_contains_only_non_image_data(self): aug = iaa.Cutout() segmap_arr = np.ones((3, 3, 1), dtype=np.int32) segmap = ia.SegmentationMapsOnImage(segmap_arr, shape=(3, 3, 3)) segmap_aug = aug.augment_segmentation_maps(segmap) assert np.array_equal(segmap.get_arr(), segmap_aug.get_arr()) def test_sampling_when_position_is_stochastic_parameter(self): # sampling of position works slightly differently when it is a single # parameter instead of tuple (paramX, paramY), so we have an extra # test for that situation here param = iap.DeterministicList([0.5, 0.6]) aug = iaa.Cutout(position=param) samples = aug._draw_samples([ np.zeros((3, 3, 3), dtype=np.uint8), np.zeros((3, 3, 3), dtype=np.uint8) ], iarandom.RNG(0)) assert np.allclose(samples.pos_x, [0.5, 0.5]) assert np.allclose(samples.pos_y, [0.6, 0.6]) def test_by_comparison_to_official_implementation(self): image = np.ones((10, 8, 2), dtype=np.uint8) aug = iaa.Cutout(1, position="uniform", size=0.2, squared=True, cval=0) aug_official = _CutoutOfficial(n_holes=1, length=int(10*0.2)) dropped = np.zeros((10, 8, 2), dtype=np.int32) dropped_official = np.copy(dropped) height = np.zeros((10, 8, 2), dtype=np.int32) width = np.copy(height) height_official = np.copy(height) width_official = np.copy(width) nb_iterations = 3 * 1000 images_aug = aug(images=[image] * nb_iterations) for image_aug in images_aug: image_aug_off = aug_official(image) mask = (image_aug == 0) mask_off = (image_aug_off == 0) dropped += mask dropped_official += mask_off ydrop = np.max(mask, axis=(2, 1)) xdrop = np.max(mask, axis=(2, 0)) wx = np.where(xdrop) wy = np.where(ydrop) x1 = wx[0][0] x2 = wx[0][-1] y1 = wy[0][0] y2 = wy[0][-1] ydrop_off = np.max(mask_off, axis=(2, 1)) xdrop_off = np.max(mask_off, axis=(2, 0)) wx_off = np.where(xdrop_off) wy_off = np.where(ydrop_off) x1_off = wx_off[0][0] x2_off = wx_off[0][-1] y1_off = wy_off[0][0] y2_off = wy_off[0][-1] height += ( np.full(height.shape, 1 + (y2 - y1), dtype=np.int32) * mask) width += ( np.full(width.shape, 1 + (x2 - x1), dtype=np.int32) * mask) height_official += ( np.full(height_official.shape, 1 + (y2_off - y1_off), dtype=np.int32) * mask_off) width_official += ( np.full(width_official.shape, 1 + (x2_off - x1_off), dtype=np.int32) * mask_off) dropped_prob = dropped / nb_iterations dropped_prob_off = dropped_official / nb_iterations height_avg = height / (dropped + 1e-4) height_avg_off = height_official / (dropped_official + 1e-4) width_avg = width / (dropped + 1e-4) width_avg_off = width_official / (dropped_official + 1e-4) prob_max_diff = np.max(np.abs(dropped_prob - dropped_prob_off)) height_avg_max_diff = np.max(np.abs(height_avg - height_avg_off)) width_avg_max_diff = np.max(np.abs(width_avg - width_avg_off)) assert prob_max_diff < 0.04 assert height_avg_max_diff < 0.3 assert width_avg_max_diff < 0.3 def test_determinism(self): aug = iaa.Cutout(nb_iterations=(1, 3), size=(0.1, 0.2), fill_mode=["gaussian", "constant"], cval=(0, 255)) image = np.mod( np.arange(100*100*3), 256 ).reshape((100, 100, 3)).astype(np.uint8) sums = [] for _ in np.arange(10): aug_det = aug.to_deterministic() image_aug1 = aug_det(image=image) image_aug2 = aug_det(image=image) assert np.array_equal(image_aug1, image_aug2) sums.append(np.sum(image_aug1)) assert len(np.unique(sums)) > 1 def test_get_parameters(self): aug = iaa.Cutout( nb_iterations=1, position=(0.5, 0.5), size=0.1, squared=0.6, fill_mode=["gaussian", "constant"], cval=(0, 255), fill_per_channel=0.5 ) params = aug.get_parameters() assert params[0] is aug.nb_iterations assert params[1] is aug.position assert params[2] is aug.size assert params[3] is aug.squared assert params[4] is aug.fill_mode assert params[5] is aug.cval assert params[6] is aug.fill_per_channel def test_pickleable(self): aug = iaa.Cutout( nb_iterations=1, position=(0.5, 0.5), size=0.1, squared=0.6, fill_mode=["gaussian", "constant"], cval=(0, 255), fill_per_channel=0.5 ) runtest_pickleable_uint8_img(aug) # this is mostly copy-pasted cutout code from # https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py # we use this to compare our implementation against # we changed some pytorch to numpy stuff class _CutoutOfficial(object): """Randomly mask out one or more patches from an image. Args: n_holes (int): Number of patches to cut out of each image. length (int): The length (in pixels) of each square patch. """ def __init__(self, n_holes, length): self.n_holes = n_holes self.length = length def __call__(self, img): """ Args: img (Tensor): Tensor image of size (C, H, W). Returns: Tensor: Image with n_holes of dimension length x length cut out of it. """ # h = img.size(1) # w = img.size(2) h = img.shape[0] w = img.shape[1] mask = np.ones((h, w), np.float32) for n in range(self.n_holes): y = np.random.randint(h) x = np.random.randint(w) y1 = np.clip(y - self.length // 2, 0, h) y2 = np.clip(y + self.length // 2, 0, h) x1 = np.clip(x - self.length // 2, 0, w) x2 = np.clip(x + self.length // 2, 0, w) # note that in the paper they normalize to 0-mean, # i.e. 0 here is actually not black but grayish pixels mask[y1: y2, x1: x2] = 0 # mask = torch.from_numpy(mask) # mask = mask.expand_as(img) if img.ndim != 2: mask = np.tile(mask[:, :, np.newaxis], (1, 1, img.shape[-1])) img = img * mask return img class TestDropout(unittest.TestCase): def setUp(self): reseed() def test_p_is_zero(self): # no dropout, shouldnt change anything base_img = np.ones((512, 512, 1), dtype=np.uint8) * 255 images = np.array([base_img]) images_list = [base_img] aug = iaa.Dropout(p=0) observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) # 100% dropout, should drop everything aug = iaa.Dropout(p=1.0) observed = aug.augment_images(images) expected = np.zeros((1, 512, 512, 1), dtype=np.uint8) assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [np.zeros((512, 512, 1), dtype=np.uint8)] assert array_equal_lists(observed, expected) def test_p_is_50_percent(self): # 50% dropout base_img = np.ones((512, 512, 1), dtype=np.uint8) * 255 images = np.array([base_img]) images_list = [base_img] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.Dropout(p=0.5) aug_det = aug.to_deterministic() observed = aug.augment_images(images) assert not np.array_equal(observed, images) percent_nonzero = len(observed.flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug_det.augment_images(images) assert not np.array_equal(observed, images) percent_nonzero = len(observed.flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug.augment_images(images_list) assert not array_equal_lists(observed, images_list) percent_nonzero = len(observed[0].flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug_det.augment_images(images_list) assert not array_equal_lists(observed, images_list) percent_nonzero = len(observed[0].flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) def test_tuple_as_p(self): # varying p aug = iaa.Dropout(p=(0.0, 1.0)) aug_det = aug.to_deterministic() images = np.ones((1, 8, 8, 1), dtype=np.uint8) * 255 last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_list_as_p(self): aug = iaa.Dropout(p=[0.0, 0.5, 1.0]) images = np.ones((1, 20, 20, 1), dtype=np.uint8) * 255 nb_seen = [0, 0, 0, 0] nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) n_dropped = np.sum(observed_aug == 0) p_observed = n_dropped / observed_aug.size if 0 <= p_observed <= 0.01: nb_seen[0] += 1 elif 0.5 - 0.05 <= p_observed <= 0.5 + 0.05: nb_seen[1] += 1 elif 1.0-0.01 <= p_observed <= 1.0: nb_seen[2] += 1 else: nb_seen[3] += 1 assert np.allclose(nb_seen[0:3], nb_iterations*0.33, rtol=0, atol=75) assert nb_seen[3] < 30 def test_stochastic_parameter_as_p(self): # varying p by stochastic parameter aug = iaa.Dropout(p=iap.Binomial(1-iap.Choice([0.0, 0.5]))) images = np.ones((1, 20, 20, 1), dtype=np.uint8) * 255 seen = [0, 0, 0] for i in sm.xrange(400): observed = aug.augment_images(images) p = np.mean(observed == 0) if 0.4 < p < 0.6: seen[0] += 1 elif p < 0.1: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 10 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exception for wrong parameter datatype got_exception = False try: _aug = iaa.Dropout(p="test") except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.Dropout(p=1.0) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.Dropout(p=0.5, per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=3) class TestCoarseDropout(unittest.TestCase): def setUp(self): reseed() def test_p_is_zero(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=0, size_px=4, size_percent=None, per_channel=False, min_size=4) observed = aug.augment_image(base_img) expected = base_img assert np.array_equal(observed, expected) def test_p_is_one(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=1.0, size_px=4, size_percent=None, per_channel=False, min_size=4) observed = aug.augment_image(base_img) expected = np.zeros_like(base_img) assert np.array_equal(observed, expected) def test_p_is_50_percent(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=0.5, size_px=1, size_percent=None, per_channel=False, min_size=1) averages = [] for _ in sm.xrange(50): observed = aug.augment_image(base_img) averages.append(np.average(observed)) assert all([v in [0, 100] for v in averages]) assert 50 - 20 < np.average(averages) < 50 + 20 def test_size_percent(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=0.5, size_px=None, size_percent=0.001, per_channel=False, min_size=1) averages = [] for _ in sm.xrange(50): observed = aug.augment_image(base_img) averages.append(np.average(observed)) assert all([v in [0, 100] for v in averages]) assert 50 - 20 < np.average(averages) < 50 + 20 def test_per_channel(self): aug = iaa.CoarseDropout(p=0.5, size_px=1, size_percent=None, per_channel=True, min_size=1) base_img = np.ones((4, 4, 3), dtype=np.uint8) * 100 found = False for _ in sm.xrange(100): observed = aug.augment_image(base_img) avgs = np.average(observed, axis=(0, 1)) if len(set(avgs)) >= 2: found = True break assert found def test_stochastic_parameter_as_p(self): # varying p by stochastic parameter aug = iaa.CoarseDropout(p=iap.Binomial(1-iap.Choice([0.0, 0.5])), size_px=50) images = np.ones((1, 100, 100, 1), dtype=np.uint8) * 255 seen = [0, 0, 0] for i in sm.xrange(400): observed = aug.augment_images(images) p = np.mean(observed == 0) if 0.4 < p < 0.6: seen[0] += 1 elif p < 0.1: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 10 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exception for bad parameters got_exception = False try: _ = iaa.CoarseDropout(p="test") except Exception: got_exception = True assert got_exception def test___init___size_px_and_size_percent_both_none(self): got_exception = False try: _ = iaa.CoarseDropout(p=0.5, size_px=None, size_percent=None) except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.CoarseDropout(p=1.0, size_px=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.CoarseDropout(p=0.5, size_px=10, per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=10, shape=(40, 40, 3)) class TestDropout2d(unittest.TestCase): def setUp(self): reseed() def test___init___defaults(self): aug = iaa.Dropout2d(p=0) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 1.0) assert aug.nb_keep_channels == 1 def test___init___p_is_float(self): aug = iaa.Dropout2d(p=0.7) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 0.3) assert aug.nb_keep_channels == 1 def test___init___nb_keep_channels_is_int(self): aug = iaa.Dropout2d(p=0, nb_keep_channels=2) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 1.0) assert aug.nb_keep_channels == 2 def test_no_images_in_batch(self): aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) heatmaps = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) heatmaps = ia.HeatmapsOnImage(heatmaps, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=heatmaps) assert np.allclose(heatmaps_aug.arr_0to1, heatmaps.arr_0to1) def test_p_is_1(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.sum(image_aug) == 0 def test_p_is_1_heatmaps(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, 0.0) def test_p_is_1_segmentation_maps(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, 0.0) def test_p_is_1_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert cbaoi_aug.items == [] def test_p_is_1_heatmaps__keep_one_channel(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, hm.arr_0to1) def test_p_is_1_segmentation_maps__keep_one_channel(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, segmaps.arr) def test_p_is_1_cbaois__keep_one_channel(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert np.allclose( cbaoi_aug.items[0].coords, cbaoi.items[0].coords ) def test_p_is_0(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.array_equal(image_aug, image) def test_p_is_0_heatmaps(self): aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, hm.arr_0to1) def test_p_is_0_segmentation_maps(self): aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, segmaps.arr) def test_p_is_0_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert np.allclose( cbaoi_aug.items[0].coords, cbaoi.items[0].coords ) def test_p_is_075(self): image = np.full((1, 1, 3000), 255, dtype=np.uint8) aug = iaa.Dropout2d(p=0.75, nb_keep_channels=0) image_aug = aug(image=image) nb_kept = np.sum(image_aug == 255) nb_dropped = image.shape[2] - nb_kept assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.isclose(nb_dropped, image.shape[2]*0.75, atol=75) def test_force_nb_keep_channels(self): image = np.full((1, 1, 3), 255, dtype=np.uint8) images = np.array([image] * 1000) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) images_aug = aug(images=images) ids_kept = [np.nonzero(image[0, 0, :]) for image in images_aug] ids_kept_uq = np.unique(ids_kept) nb_kept = np.sum(images_aug == 255) nb_dropped = (len(images) * images.shape[3]) - nb_kept assert images_aug.shape == images.shape assert images_aug.dtype.name == images.dtype.name # on average, keep 1 of 3 channels # due to p=1.0 we expect to get exactly 2/3 dropped assert np.isclose(nb_dropped, (len(images)*images.shape[3])*(2/3), atol=1) # every channel dropped at least once, i.e. which one is kept is random assert sorted(ids_kept_uq.tolist()) == [0, 1, 2] def test_some_images_below_nb_keep_channels(self): image_2c = np.full((1, 1, 2), 255, dtype=np.uint8) image_3c = np.full((1, 1, 3), 255, dtype=np.uint8) images = [image_2c if i % 2 == 0 else image_3c for i in sm.xrange(100)] aug = iaa.Dropout2d(p=1.0, nb_keep_channels=2) images_aug = aug(images=images) for i, image_aug in enumerate(images_aug): assert np.sum(image_aug == 255) == 2 if i % 2 == 0: assert np.sum(image_aug == 0) == 0 else: assert np.sum(image_aug == 0) == 1 def test_all_images_below_nb_keep_channels(self): image = np.full((1, 1, 2), 255, dtype=np.uint8) images = np.array([image] * 100) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=3) images_aug = aug(images=images) nb_kept = np.sum(images_aug == 255) nb_dropped = (len(images) * images.shape[3]) - nb_kept assert nb_dropped == 0 def test_get_parameters(self): aug = iaa.Dropout2d(p=0.7, nb_keep_channels=2) params = aug.get_parameters() assert isinstance(params[0], iap.Binomial) assert np.isclose(params[0].p.value, 0.3) assert params[1] == 2 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.full(shape, 255, dtype=np.uint8) aug = iaa.Dropout2d(1.0, nb_keep_channels=0) image_aug = aug(image=image) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_other_dtypes_bool(self): image = np.full((1, 1, 10), 1, dtype=bool) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=3) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == "bool" assert np.sum(image_aug == 1) == 3 assert np.sum(image_aug == 0) == 7 def test_other_dtypes_uint_int(self): dts = ["uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64"] for dt in dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) values = [min_value, int(center_value), max_value] for value in values: with self.subTest(dtype=dt, value=value): image = np.full((1, 1, 10), value, dtype=dt) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=3) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == dt if value == 0: assert np.sum(image_aug == value) == 10 else: assert np.sum(image_aug == value) == 3 assert np.sum(image_aug == 0) == 7 def test_other_dtypes_float(self): dts = ["float16", "float32", "float64", "float128"] for dt in dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) values = [min_value, -10.0, center_value, 10.0, max_value] atol = 1e-3*max_value if dt == "float16" else 1e-9 * max_value _isclose = functools.partial(np.isclose, atol=atol, rtol=0) for value in values: with self.subTest(dtype=dt, value=value): image = np.full((1, 1, 10), value, dtype=dt) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=3) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == dt if _isclose(value, 0.0): assert np.sum(_isclose(image_aug, value)) == 10 else: assert ( np.sum(_isclose(image_aug, np.float128(value))) == 3) assert np.sum(image_aug == 0) == 7 def test_pickleable(self): aug = iaa.Dropout2d(p=0.5, seed=1) runtest_pickleable_uint8_img(aug, iterations=3, shape=(1, 1, 50)) class TestTotalDropout(unittest.TestCase): def setUp(self): reseed() def test___init___p(self): aug = iaa.TotalDropout(p=0) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 1.0) def test_p_is_1(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.TotalDropout(p=1.0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.sum(image_aug) == 0 def test_p_is_1_multiple_images_list(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) images = [image, image, image] aug = iaa.TotalDropout(p=1.0) images_aug = aug(images=images) for image_aug, image_ in zip(images_aug, images): assert image_aug.shape == image_.shape assert image_aug.dtype.name == image_.dtype.name assert np.sum(image_aug) == 0 def test_p_is_1_multiple_images_array(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) images = np.array([image, image, image], dtype=np.uint8) aug = iaa.TotalDropout(p=1.0) images_aug = aug(images=images) assert images_aug.shape == images.shape assert images_aug.dtype.name == images.dtype.name assert np.sum(images_aug) == 0 def test_p_is_1_heatmaps(self): aug = iaa.TotalDropout(p=1.0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, 0.0) def test_p_is_1_segmentation_maps(self): aug = iaa.TotalDropout(p=1.0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, 0.0) def test_p_is_1_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.TotalDropout(p=1.0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert cbaoi_aug.items == [] def test_p_is_0(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.TotalDropout(p=0.0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.array_equal(image_aug, image) def test_p_is_0_multiple_images_list(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) images = [image, image, image] aug = iaa.TotalDropout(p=0.0) images_aug = aug(images=images) for image_aug, image_ in zip(images_aug, images): assert image_aug.shape == image_.shape assert image_aug.dtype.name == image_.dtype.name assert np.array_equal(image_aug, image_) def test_p_is_0_multiple_images_array(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) images = np.array([image, image, image], dtype=np.uint8) aug = iaa.TotalDropout(p=0.0) images_aug = aug(images=images) for image_aug, image_ in zip(images_aug, images): assert image_aug.shape == image_.shape assert image_aug.dtype.name == image_.dtype.name assert np.array_equal(image_aug, image_) def test_p_is_0_heatmaps(self): aug = iaa.TotalDropout(p=0.0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, hm.arr_0to1) def test_p_is_0_segmentation_maps(self): aug = iaa.TotalDropout(p=0.0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, segmaps.arr) def test_p_is_0_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.TotalDropout(p=0.0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert np.allclose( cbaoi_aug.items[0].coords, cbaoi.items[0].coords ) def test_p_is_075_multiple_images_list(self): images = [np.full((1, 1, 1), 255, dtype=np.uint8)] * 3000 aug = iaa.TotalDropout(p=0.75) images_aug = aug(images=images) nb_kept = np.sum([np.sum(image_aug == 255) for image_aug in images_aug]) nb_dropped = len(images) - nb_kept for image_aug in images_aug: assert image_aug.shape == images[0].shape assert image_aug.dtype.name == images[0].dtype.name assert np.isclose(nb_dropped, len(images)*0.75, atol=75) def test_p_is_075_multiple_images_array(self): images = np.full((3000, 1, 1, 1), 255, dtype=np.uint8) aug = iaa.TotalDropout(p=0.75) images_aug = aug(images=images) nb_kept = np.sum(images_aug == 255) nb_dropped = len(images) - nb_kept assert images_aug.shape == images.shape assert images_aug.dtype.name == images.dtype.name assert np.isclose(nb_dropped, len(images)*0.75, atol=75) def test_get_parameters(self): aug = iaa.TotalDropout(p=0.0) params = aug.get_parameters() assert params[0] is aug.p def test_unusual_channel_numbers(self): shapes = [ (5, 1, 1, 4), (5, 1, 1, 5), (5, 1, 1, 512), (5, 1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): images = np.zeros(shape, dtype=np.uint8) aug = iaa.TotalDropout(1.0) images_aug = aug(images=images) assert np.all(images_aug == 0) assert images_aug.dtype.name == "uint8" assert images_aug.shape == shape def test_zero_sized_axes(self): shapes = [ (5, 0, 0), (5, 0, 1), (5, 1, 0), (5, 0, 1, 0), (5, 1, 0, 0), (5, 0, 1, 1), (5, 1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): images = np.full(shape, 255, dtype=np.uint8) aug = iaa.TotalDropout(1.0) images_aug = aug(images=images) assert images_aug.dtype.name == "uint8" assert images_aug.shape == images.shape def test_other_dtypes_bool(self): image = np.full((1, 1, 10), 1, dtype=bool) aug = iaa.TotalDropout(p=1.0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == "bool" assert np.sum(image_aug == 1) == 0 def test_other_dtypes_uint_int(self): dts = ["uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64"] for dt in dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) values = [min_value, int(center_value), max_value] for value in values: for p in [1.0, 0.0]: with self.subTest(dtype=dt, value=value, p=p): images = np.full((5, 1, 1, 3), value, dtype=dt) aug = iaa.TotalDropout(p=p) images_aug = aug(images=images) assert images_aug.shape == images.shape assert images_aug.dtype.name == dt if np.isclose(p, 1.0) or value == 0: assert np.sum(images_aug == 0) == 5*3 else: assert np.sum(images_aug == value) == 5*3 def test_other_dtypes_float(self): dts = ["float16", "float32", "float64", "float128"] for dt in dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) values = [min_value, -10.0, center_value, 10.0, max_value] atol = 1e-3*max_value if dt == "float16" else 1e-9 * max_value _isclose = functools.partial(np.isclose, atol=atol, rtol=0) for value in values: for p in [1.0, 0.0]: with self.subTest(dtype=dt, value=value, p=p): images = np.full((5, 1, 1, 3), value, dtype=dt) aug = iaa.TotalDropout(p=p) images_aug = aug(images=images) assert images_aug.shape == images.shape assert images_aug.dtype.name == dt if np.isclose(p, 1.0): assert np.sum(_isclose(images_aug, 0.0)) == 5*3 else: assert ( np.sum(_isclose(images_aug, np.float128(value))) == 5*3) def test_pickleable(self): aug = iaa.TotalDropout(p=0.5, seed=1) runtest_pickleable_uint8_img(aug, iterations=30, shape=(4, 4, 2)) class TestMultiply(unittest.TestCase): def setUp(self): reseed() def test_mul_is_one(self): # no multiply, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Multiply(mul=1.0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_mul_is_above_one(self): # multiply >1.0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Multiply(mul=1.2) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 120 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 120] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 120 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 120] assert array_equal_lists(observed, expected) def test_mul_is_below_one(self): # multiply <1.0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Multiply(mul=0.8) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 80 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 80] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 80 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 80] assert array_equal_lists(observed, expected) def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.Multiply(mul=1.2) aug_det = iaa.Multiply(mul=1.2).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_mul(self): # varying multiply factors base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.Multiply(mul=(0, 2.0)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_per_channel(self): aug = iaa.Multiply(mul=iap.Choice([0, 2]), per_channel=True) observed = aug.augment_image(np.ones((1, 1, 100), dtype=np.uint8)) uq = np.unique(observed) assert observed.shape == (1, 1, 100) assert 0 in uq assert 2 in uq assert len(uq) == 2 def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.Multiply(mul=iap.Choice([0, 2]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.ones((1, 1, 20), dtype=np.uint8)) assert observed.shape == (1, 1, 20) uq = np.unique(observed) per_channel = (len(uq) == 2) if per_channel: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.Multiply(mul="test") except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.Multiply(mul=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.ones(shape, dtype=np.uint8) aug = iaa.Multiply(1) image_aug = aug(image=image) assert np.all(image_aug == 2) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.ones(shape, dtype=np.uint8) aug = iaa.Multiply(2) image_aug = aug(image=image) assert np.all(image_aug == 2) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.Multiply(mul=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.Multiply(mul=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): # bool image = np.zeros((3, 3), dtype=bool) aug = iaa.Multiply(1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.Multiply(1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Multiply(2.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Multiply(0.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.Multiply(-1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): # uint, int for dtype in [np.uint8, np.uint16, np.int8, np.int16]: dtype = np.dtype(dtype) min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), 10, dtype=dtype) aug = iaa.Multiply(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 10) image = np.full((3, 3), 10, dtype=dtype) aug = iaa.Multiply(10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 100) image = np.full((3, 3), 10, dtype=dtype) aug = iaa.Multiply(0.5) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 5) image = np.full((3, 3), 0, dtype=dtype) aug = iaa.Multiply(0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 0) if np.dtype(dtype).kind == "u": image = np.full((3, 3), 10, dtype=dtype) aug = iaa.Multiply(-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 0) else: image = np.full((3, 3), 10, dtype=dtype) aug = iaa.Multiply(-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == -10) image = np.full((3, 3), int(center_value), dtype=dtype) aug = iaa.Multiply(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == int(center_value)) image = np.full((3, 3), int(center_value), dtype=dtype) aug = iaa.Multiply(1.2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == int(1.2 * int(center_value))) if np.dtype(dtype).kind == "u": image = np.full((3, 3), int(center_value), dtype=dtype) aug = iaa.Multiply(100) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.Multiply(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) # non-uint8 currently don't increase the itemsize if dtype.name == "uint8": image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.Multiply(10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.Multiply(0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 0) # non-uint8 currently don't increase the itemsize if dtype.name == "uint8": image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.Multiply(-2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) # non-uint8 currently don't increase the itemsize if dtype.name == "uint8": for _ in sm.xrange(10): image = np.full((1, 1, 3), 10, dtype=dtype) aug = iaa.Multiply(iap.Uniform(0.5, 1.5)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(5 <= image_aug, image_aug <= 15)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 10, dtype=dtype) aug = iaa.Multiply(iap.Uniform(0.5, 1.5), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(5 <= image_aug, image_aug <= 15)) assert len(np.unique(image_aug)) > 1 image = np.full((1, 1, 3), 10, dtype=dtype) aug = iaa.Multiply(iap.DiscreteUniform(1, 3)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 10, dtype=dtype) aug = iaa.Multiply(iap.DiscreteUniform(1, 3), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), 10.0, dtype=dtype) aug = iaa.Multiply(1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 10.0) image = np.full((3, 3), 10.0, dtype=dtype) aug = iaa.Multiply(2.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 20.0) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), max_value, dtype=dtype) # aug = iaa.Multiply(-10) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert _allclose(image_aug, min_value) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.Multiply(0.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 0.0) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.Multiply(0.5) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 0.5*max_value) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), min_value, dtype=dtype) # aug = iaa.Multiply(-2.0) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.Multiply(0.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 0.0) # using tolerances of -100 - 1e-2 and 100 + 1e-2 is not enough for float16, had to be increased to -/+ 1e-1 # deactivated, because itemsize increase was deactivated """ for _ in sm.xrange(10): image = np.full((1, 1, 3), 10.0, dtype=dtype) aug = iaa.Multiply(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 10.0, dtype=dtype) aug = iaa.Multiply(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((1, 1, 3), 10.0, dtype=dtype) aug = iaa.Multiply(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 10.0, dtype=dtype) aug = iaa.Multiply(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) """ def test_pickleable(self): aug = iaa.Multiply((0.5, 1.5), per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=20) class TestMultiplyElementwise(unittest.TestCase): def setUp(self): reseed() def test_mul_is_one(self): # no multiply, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.MultiplyElementwise(mul=1.0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_mul_is_above_one(self): # multiply >1.0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.MultiplyElementwise(mul=1.2) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 120 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 120] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 120 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 120] assert array_equal_lists(observed, expected) def test_mul_is_below_one(self): # multiply <1.0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.MultiplyElementwise(mul=0.8) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 80 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 80] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 80 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 80] assert array_equal_lists(observed, expected) def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.MultiplyElementwise(mul=1.2) aug_det = iaa.Multiply(mul=1.2).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_mul(self): # varying multiply factors base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.MultiplyElementwise(mul=(0, 2.0)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_samples_change_by_spatial_location(self): # values should change between pixels base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.MultiplyElementwise(mul=(0.5, 1.5)) nb_same = 0 nb_different = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_flat = observed_aug.flatten() last = None for j in sm.xrange(observed_aug_flat.size): if last is not None: v = observed_aug_flat[j] if v - 0.0001 <= last <= v + 0.0001: nb_same += 1 else: nb_different += 1 last = observed_aug_flat[j] assert nb_different > 0.95 * (nb_different + nb_same) def test_per_channel(self): # test channelwise aug = iaa.MultiplyElementwise(mul=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.ones((100, 100, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) assert all([(value in values) for value in [0, 1, 2, 3]]) assert observed.shape == (100, 100, 3) def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.MultiplyElementwise(mul=iap.Choice([0, 1]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.ones((20, 20, 3), dtype=np.uint8)) assert observed.shape == (20, 20, 3) sums = np.sum(observed, axis=2) values = np.unique(sums) all_values_found = all([(value in values) for value in [0, 1, 2, 3]]) if all_values_found: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _aug = iaa.MultiplyElementwise(mul="test") except Exception: got_exception = True assert got_exception got_exception = False try: _aug = iaa.MultiplyElementwise(mul=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.ones(shape, dtype=np.uint8) aug = iaa.MultiplyElementwise(2) image_aug = aug(image=image) assert np.all(image_aug == 2) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.ones(shape, dtype=np.uint8) aug = iaa.MultiplyElementwise(2) image_aug = aug(image=image) assert np.all(image_aug == 2) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.MultiplyElementwise(mul=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.MultiplyElementwise(mul=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): # bool image = np.zeros((3, 3), dtype=bool) aug = iaa.MultiplyElementwise(1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.MultiplyElementwise(1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.MultiplyElementwise(2.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.MultiplyElementwise(0.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.MultiplyElementwise(-1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): # uint, int for dtype in [np.uint8, np.uint16, np.int8, np.int16]: dtype = np.dtype(dtype) min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), 10, dtype=dtype) aug = iaa.MultiplyElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 10) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), 10, dtype=dtype) # aug = iaa.MultiplyElementwise(10) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert np.all(image_aug == 100) image = np.full((3, 3), 10, dtype=dtype) aug = iaa.MultiplyElementwise(0.5) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 5) image = np.full((3, 3), 0, dtype=dtype) aug = iaa.MultiplyElementwise(0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 0) # partially deactivated, because itemsize increase was deactivated if dtype.name == "uint8": if dtype.kind == "u": image = np.full((3, 3), 10, dtype=dtype) aug = iaa.MultiplyElementwise(-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 0) else: image = np.full((3, 3), 10, dtype=dtype) aug = iaa.MultiplyElementwise(-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == -10) image = np.full((3, 3), int(center_value), dtype=dtype) aug = iaa.MultiplyElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == int(center_value)) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), int(center_value), dtype=dtype) # aug = iaa.MultiplyElementwise(1.2) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert np.all(image_aug == int(1.2 * int(center_value))) # deactivated, because itemsize increase was deactivated if dtype.name == "uint8": if dtype.kind == "u": image = np.full((3, 3), int(center_value), dtype=dtype) aug = iaa.MultiplyElementwise(100) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.MultiplyElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), max_value, dtype=dtype) # aug = iaa.MultiplyElementwise(10) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert np.all(image_aug == max_value) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.MultiplyElementwise(0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 0) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), max_value, dtype=dtype) # aug = iaa.MultiplyElementwise(-2) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert np.all(image_aug == min_value) # partially deactivated, because itemsize increase was deactivated if dtype.name == "uint8": for _ in sm.xrange(10): image = np.full((5, 5, 3), 10, dtype=dtype) aug = iaa.MultiplyElementwise(iap.Uniform(0.5, 1.5)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(5 <= image_aug, image_aug <= 15)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 10, dtype=dtype) aug = iaa.MultiplyElementwise(iap.Uniform(0.5, 1.5), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(5 <= image_aug, image_aug <= 15)) assert len(np.unique(image_aug)) > 1 image = np.full((5, 5, 3), 10, dtype=dtype) aug = iaa.MultiplyElementwise(iap.DiscreteUniform(1, 3)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 10, dtype=dtype) aug = iaa.MultiplyElementwise(iap.DiscreteUniform(1, 3), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: dtype = np.dtype(dtype) min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), 10.0, dtype=dtype) aug = iaa.MultiplyElementwise(1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 10.0) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), 10.0, dtype=dtype) # aug = iaa.MultiplyElementwise(2.0) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert _allclose(image_aug, 20.0) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), max_value, dtype=dtype) # aug = iaa.MultiplyElementwise(-10) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert _allclose(image_aug, min_value) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.MultiplyElementwise(0.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 0.0) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.MultiplyElementwise(0.5) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 0.5*max_value) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), min_value, dtype=dtype) # aug = iaa.MultiplyElementwise(-2.0) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.MultiplyElementwise(0.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 0.0) # using tolerances of -100 - 1e-2 and 100 + 1e-2 is not enough for float16, had to be increased to -/+ 1e-1 # deactivated, because itemsize increase was deactivated """ for _ in sm.xrange(10): image = np.full((50, 1, 3), 10.0, dtype=dtype) aug = iaa.MultiplyElementwise(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 10.0, dtype=dtype) aug = iaa.MultiplyElementwise(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((50, 1, 3), 10.0, dtype=dtype) aug = iaa.MultiplyElementwise(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 10, dtype=dtype) aug = iaa.MultiplyElementwise(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) """ def test_pickleable(self): aug = iaa.MultiplyElementwise((0.5, 1.5), per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=3) class TestReplaceElementwise(unittest.TestCase): def setUp(self): reseed() def test_mask_is_always_zero(self): # no replace, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) + 99 images = np.array([base_img]) images_list = [base_img] aug = iaa.ReplaceElementwise(mask=0, replacement=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_mask_is_always_one(self): # replace at 100 percent prob., should change everything base_img = np.ones((3, 3, 1), dtype=np.uint8) + 99 images = np.array([base_img]) images_list = [base_img] aug = iaa.ReplaceElementwise(mask=1, replacement=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = np.zeros((1, 3, 3, 1), dtype=np.uint8) assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [np.zeros((3, 3, 1), dtype=np.uint8)] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = np.zeros((1, 3, 3, 1), dtype=np.uint8) assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [np.zeros((3, 3, 1), dtype=np.uint8)] assert array_equal_lists(observed, expected) def test_mask_is_stochastic_parameter(self): # replace half aug = iaa.ReplaceElementwise(mask=iap.Binomial(p=0.5), replacement=0) img = np.ones((100, 100, 1), dtype=np.uint8) nb_iterations = 100 nb_diff_all = 0 for i in sm.xrange(nb_iterations): observed = aug.augment_image(img) nb_diff = np.sum(img != observed) nb_diff_all += nb_diff p = nb_diff_all / (nb_iterations * 100 * 100) assert 0.45 <= p <= 0.55 def test_mask_is_list(self): # mask is list aug = iaa.ReplaceElementwise(mask=[0.2, 0.7], replacement=1) img = np.zeros((20, 20, 1), dtype=np.uint8) seen = [0, 0, 0] for i in sm.xrange(400): observed = aug.augment_image(img) p = np.mean(observed) if 0.1 < p < 0.3: seen[0] += 1 elif 0.6 < p < 0.8: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 10 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) + 99 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.ReplaceElementwise(mask=iap.Binomial(p=0.5), replacement=0) aug_det = iaa.ReplaceElementwise(mask=iap.Binomial(p=0.5), replacement=0).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_replacement_is_stochastic_parameter(self): # different replacements aug = iaa.ReplaceElementwise(mask=1, replacement=iap.Choice([100, 200])) img = np.zeros((1000, 1000, 1), dtype=np.uint8) img100 = img + 100 img200 = img + 200 observed = aug.augment_image(img) nb_diff_100 = np.sum(img100 != observed) nb_diff_200 = np.sum(img200 != observed) p100 = nb_diff_100 / (1000 * 1000) p200 = nb_diff_200 / (1000 * 1000) assert 0.45 <= p100 <= 0.55 assert 0.45 <= p200 <= 0.55 # test channelwise aug = iaa.MultiplyElementwise(mul=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.ones((100, 100, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) assert all([(value in values) for value in [0, 1, 2, 3]]) def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.ReplaceElementwise(mask=iap.Choice([0, 1]), replacement=1, per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.zeros((20, 20, 3), dtype=np.uint8)) assert observed.shape == (20, 20, 3) sums = np.sum(observed, axis=2) values = np.unique(sums) all_values_found = all([(value in values) for value in [0, 1, 2, 3]]) if all_values_found: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _aug = iaa.ReplaceElementwise(mask="test", replacement=1) except Exception: got_exception = True assert got_exception got_exception = False try: _aug = iaa.ReplaceElementwise(mask=1, replacement=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.ReplaceElementwise(1.0, 1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.ReplaceElementwise(1.0, 1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.ReplaceElementwise(mask=0.5, replacement=2, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Binomial) assert isinstance(params[0].p, iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert isinstance(params[2], iap.Deterministic) assert 0.5 - 1e-6 < params[0].p.value < 0.5 + 1e-6 assert params[1].value == 2 assert params[2].value == 0 def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.ReplaceElementwise(mask=1, replacement=0.5) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): # bool aug = iaa.ReplaceElementwise(mask=1, replacement=0) image = np.full((3, 3), False, dtype=bool) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) aug = iaa.ReplaceElementwise(mask=1, replacement=1) image = np.full((3, 3), False, dtype=bool) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) aug = iaa.ReplaceElementwise(mask=1, replacement=0) image = np.full((3, 3), True, dtype=bool) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) aug = iaa.ReplaceElementwise(mask=1, replacement=1) image = np.full((3, 3), True, dtype=bool) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) aug = iaa.ReplaceElementwise(mask=1, replacement=0.7) image = np.full((3, 3), False, dtype=bool) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) aug = iaa.ReplaceElementwise(mask=1, replacement=0.2) image = np.full((3, 3), False, dtype=bool) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): # uint, int for dtype in [np.uint8, np.uint16, np.uint32, np.int8, np.int16, np.int32]: dtype = np.dtype(dtype) min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) aug = iaa.ReplaceElementwise(mask=1, replacement=1) image = np.full((3, 3), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 1) aug = iaa.ReplaceElementwise(mask=1, replacement=2) image = np.full((3, 3), 1, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 2) # deterministic stochastic parameters are by default int32 for # any integer value and hence cannot cover the full uint32 value # range if dtype.name != "uint32": aug = iaa.ReplaceElementwise(mask=1, replacement=max_value) image = np.full((3, 3), min_value, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) aug = iaa.ReplaceElementwise(mask=1, replacement=min_value) image = np.full((3, 3), max_value, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) aug = iaa.ReplaceElementwise(mask=1, replacement=iap.Uniform(1.0, 10.0)) image = np.full((100, 1), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(1 <= image_aug, image_aug <= 10)) assert len(np.unique(image_aug)) > 1 aug = iaa.ReplaceElementwise(mask=1, replacement=iap.DiscreteUniform(1, 10)) image = np.full((100, 1), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(1 <= image_aug, image_aug <= 10)) assert len(np.unique(image_aug)) > 1 aug = iaa.ReplaceElementwise(mask=0.5, replacement=iap.DiscreteUniform(1, 10), per_channel=True) image = np.full((1, 1, 100), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(0 <= image_aug, image_aug <= 10)) assert len(np.unique(image_aug)) > 2 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32, np.float64]: dtype = np.dtype(dtype) min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) atol = 1e-3*max_value if dtype == np.float16 else 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) aug = iaa.ReplaceElementwise(mask=1, replacement=1.0) image = np.full((3, 3), 0.0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.allclose(image_aug, 1.0) aug = iaa.ReplaceElementwise(mask=1, replacement=2.0) image = np.full((3, 3), 1.0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.allclose(image_aug, 2.0) # deterministic stochastic parameters are by default float32 for # any float value and hence cannot cover the full float64 value # range if dtype.name != "float64": aug = iaa.ReplaceElementwise(mask=1, replacement=max_value) image = np.full((3, 3), min_value, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) aug = iaa.ReplaceElementwise(mask=1, replacement=min_value) image = np.full((3, 3), max_value, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) aug = iaa.ReplaceElementwise(mask=1, replacement=iap.Uniform(1.0, 10.0)) image = np.full((100, 1), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(1 <= image_aug, image_aug <= 10)) assert not np.allclose(image_aug[1:, :], image_aug[:-1, :], atol=0.01) aug = iaa.ReplaceElementwise(mask=1, replacement=iap.DiscreteUniform(1, 10)) image = np.full((100, 1), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(1 <= image_aug, image_aug <= 10)) assert not np.allclose(image_aug[1:, :], image_aug[:-1, :], atol=0.01) aug = iaa.ReplaceElementwise(mask=0.5, replacement=iap.DiscreteUniform(1, 10), per_channel=True) image = np.full((1, 1, 100), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(0 <= image_aug, image_aug <= 10)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1], atol=0.01) def test_pickleable(self): aug = iaa.ReplaceElementwise(mask=0.5, replacement=(0, 255), per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=3) # not more tests necessary here as SaltAndPepper is just a tiny wrapper around # ReplaceElementwise class TestSaltAndPepper(unittest.TestCase): def setUp(self): reseed() def test_p_is_fifty_percent(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.SaltAndPepper(p=0.5) observed = aug.augment_image(base_img) p = np.mean(observed != 128) assert 0.4 < p < 0.6 def test_p_is_one(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.SaltAndPepper(p=1.0) observed = aug.augment_image(base_img) nb_pepper = np.sum(observed < 40) nb_salt = np.sum(observed > 255 - 40) assert nb_pepper > 200 assert nb_salt > 200 def test_pickleable(self): aug = iaa.SaltAndPepper(p=0.5, per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=3) class TestCoarseSaltAndPepper(unittest.TestCase): def setUp(self): reseed() def test_p_is_fifty_percent(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.CoarseSaltAndPepper(p=0.5, size_px=100) observed = aug.augment_image(base_img) p = np.mean(observed != 128) assert 0.4 < p < 0.6 def test_size_px(self): aug1 = iaa.CoarseSaltAndPepper(p=0.5, size_px=100) aug2 = iaa.CoarseSaltAndPepper(p=0.5, size_px=10) base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 ps1 = [] ps2 = [] for _ in sm.xrange(100): observed1 = aug1.augment_image(base_img) observed2 = aug2.augment_image(base_img) p1 = np.mean(observed1 != 128) p2 = np.mean(observed2 != 128) ps1.append(p1) ps2.append(p2) assert 0.4 < np.mean(ps2) < 0.6 assert np.std(ps1)*1.5 < np.std(ps2) def test_p_is_list(self): aug = iaa.CoarseSaltAndPepper(p=[0.2, 0.5], size_px=100) base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 seen = [0, 0, 0] for _ in sm.xrange(200): observed = aug.augment_image(base_img) p = np.mean(observed != 128) diff_020 = abs(0.2 - p) diff_050 = abs(0.5 - p) if diff_020 < 0.025: seen[0] += 1 elif diff_050 < 0.025: seen[1] += 1 else: seen[2] += 1 assert seen[2] < 10 assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test_p_is_tuple(self): aug = iaa.CoarseSaltAndPepper(p=(0.0, 1.0), size_px=50) base_img = np.zeros((50, 50, 1), dtype=np.uint8) + 128 ps = [] for _ in sm.xrange(200): observed = aug.augment_image(base_img) p = np.mean(observed != 128) ps.append(p) nb_bins = 5 hist, _ = np.histogram(ps, bins=nb_bins, range=(0.0, 1.0), density=False) tolerance = 0.05 for nb_seen in hist: density = nb_seen / len(ps) assert density - tolerance < density < density + tolerance def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.CoarseSaltAndPepper(p="test", size_px=100) except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.CoarseSaltAndPepper(p=0.5, size_px=None, size_percent=None) except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.CoarseSaltAndPepper(p=1.0, size_px=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.CoarseSaltAndPepper(p=0.5, size_px=(4, 15), per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=20) # not more tests necessary here as Salt is just a tiny wrapper around # ReplaceElementwise class TestSalt(unittest.TestCase): def setUp(self): reseed() def test_p_is_fifty_percent(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.Salt(p=0.5) observed = aug.augment_image(base_img) p = np.mean(observed != 128) assert 0.4 < p < 0.6 # Salt() occasionally replaces with 127, which probably should be the center-point here anyways assert np.all(observed >= 127) def test_p_is_one(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.Salt(p=1.0) observed = aug.augment_image(base_img) nb_pepper = np.sum(observed < 40) nb_salt = np.sum(observed > 255 - 40) assert nb_pepper == 0 assert nb_salt > 200 def test_pickleable(self): aug = iaa.Salt(p=0.5, per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=3) class TestCoarseSalt(unittest.TestCase): def setUp(self): reseed() def test_p_is_fifty_percent(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.CoarseSalt(p=0.5, size_px=100) observed = aug.augment_image(base_img) p = np.mean(observed != 128) assert 0.4 < p < 0.6 def test_size_px(self): aug1 = iaa.CoarseSalt(p=0.5, size_px=100) aug2 = iaa.CoarseSalt(p=0.5, size_px=10) base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 ps1 = [] ps2 = [] for _ in sm.xrange(100): observed1 = aug1.augment_image(base_img) observed2 = aug2.augment_image(base_img) p1 = np.mean(observed1 != 128) p2 = np.mean(observed2 != 128) ps1.append(p1) ps2.append(p2) assert 0.4 < np.mean(ps2) < 0.6 assert np.std(ps1)*1.5 < np.std(ps2) def test_p_is_list(self): aug = iaa.CoarseSalt(p=[0.2, 0.5], size_px=100) base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 seen = [0, 0, 0] for _ in sm.xrange(200): observed = aug.augment_image(base_img) p = np.mean(observed != 128) diff_020 = abs(0.2 - p) diff_050 = abs(0.5 - p) if diff_020 < 0.025: seen[0] += 1 elif diff_050 < 0.025: seen[1] += 1 else: seen[2] += 1 assert seen[2] < 10 assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test_p_is_tuple(self): aug = iaa.CoarseSalt(p=(0.0, 1.0), size_px=50) base_img = np.zeros((50, 50, 1), dtype=np.uint8) + 128 ps = [] for _ in sm.xrange(200): observed = aug.augment_image(base_img) p = np.mean(observed != 128) ps.append(p) nb_bins = 5 hist, _ = np.histogram(ps, bins=nb_bins, range=(0.0, 1.0), density=False) tolerance = 0.05 for nb_seen in hist: density = nb_seen / len(ps) assert density - tolerance < density < density + tolerance def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.CoarseSalt(p="test", size_px=100) except Exception: got_exception = True assert got_exception def test_size_px_or_size_percent_not_none(self): got_exception = False try: _ = iaa.CoarseSalt(p=0.5, size_px=None, size_percent=None) except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.CoarseSalt(p=1.0, size_px=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.CoarseSalt(p=0.5, size_px=(4, 15), per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=20) # not more tests necessary here as Salt is just a tiny wrapper around # ReplaceElementwise class TestPepper(unittest.TestCase): def setUp(self): reseed() def test_probability_is_fifty_percent(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.Pepper(p=0.5) observed = aug.augment_image(base_img) p = np.mean(observed != 128) assert 0.4 < p < 0.6 assert np.all(observed <= 128) def test_probability_is_one(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.Pepper(p=1.0) observed = aug.augment_image(base_img) nb_pepper = np.sum(observed < 40) nb_salt = np.sum(observed > 255 - 40) assert nb_pepper > 200 assert nb_salt == 0 def test_pickleable(self): aug = iaa.Pepper(p=0.5, per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=3) class TestCoarsePepper(unittest.TestCase): def setUp(self): reseed() def test_p_is_fifty_percent(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.CoarsePepper(p=0.5, size_px=100) observed = aug.augment_image(base_img) p = np.mean(observed != 128) assert 0.4 < p < 0.6 def test_size_px(self): aug1 = iaa.CoarsePepper(p=0.5, size_px=100) aug2 = iaa.CoarsePepper(p=0.5, size_px=10) base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 ps1 = [] ps2 = [] for _ in sm.xrange(100): observed1 = aug1.augment_image(base_img) observed2 = aug2.augment_image(base_img) p1 = np.mean(observed1 != 128) p2 = np.mean(observed2 != 128) ps1.append(p1) ps2.append(p2) assert 0.4 < np.mean(ps2) < 0.6 assert np.std(ps1)*1.5 < np.std(ps2) def test_p_is_list(self): aug = iaa.CoarsePepper(p=[0.2, 0.5], size_px=100) base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 seen = [0, 0, 0] for _ in sm.xrange(200): observed = aug.augment_image(base_img) p = np.mean(observed != 128) diff_020 = abs(0.2 - p) diff_050 = abs(0.5 - p) if diff_020 < 0.025: seen[0] += 1 elif diff_050 < 0.025: seen[1] += 1 else: seen[2] += 1 assert seen[2] < 10 assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test_p_is_tuple(self): aug = iaa.CoarsePepper(p=(0.0, 1.0), size_px=50) base_img = np.zeros((50, 50, 1), dtype=np.uint8) + 128 ps = [] for _ in sm.xrange(200): observed = aug.augment_image(base_img) p = np.mean(observed != 128) ps.append(p) nb_bins = 5 hist, _ = np.histogram(ps, bins=nb_bins, range=(0.0, 1.0), density=False) tolerance = 0.05 for nb_seen in hist: density = nb_seen / len(ps) assert density - tolerance < density < density + tolerance def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.CoarsePepper(p="test", size_px=100) except Exception: got_exception = True assert got_exception def test_size_px_or_size_percent_not_none(self): got_exception = False try: _ = iaa.CoarsePepper(p=0.5, size_px=None, size_percent=None) except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.CoarsePepper(p=1.0, size_px=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.CoarsePepper(p=0.5, size_px=(4, 15), per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=20) class Test_invert(unittest.TestCase): @mock.patch("imgaug.augmenters.arithmetic.invert_") def test_mocked_defaults(self, mock_invert): mock_invert.return_value = "foo" arr = np.zeros((1,), dtype=np.uint8) observed = iaa.invert(arr) assert observed == "foo" args = mock_invert.call_args_list[0] assert np.array_equal(mock_invert.call_args_list[0][0][0], arr) assert args[1]["min_value"] is None assert args[1]["max_value"] is None assert args[1]["threshold"] is None assert args[1]["invert_above_threshold"] is True @mock.patch("imgaug.augmenters.arithmetic.invert_") def test_mocked(self, mock_invert): mock_invert.return_value = "foo" arr = np.zeros((1,), dtype=np.uint8) observed = iaa.invert(arr, min_value=1, max_value=10, threshold=5, invert_above_threshold=False) assert observed == "foo" args = mock_invert.call_args_list[0] assert np.array_equal(mock_invert.call_args_list[0][0][0], arr) assert args[1]["min_value"] == 1 assert args[1]["max_value"] == 10 assert args[1]["threshold"] == 5 assert args[1]["invert_above_threshold"] is False def test_uint8(self): values = np.array([0, 20, 45, 60, 128, 255], dtype=np.uint8) expected = np.array([ 255, 255-20, 255-45, 255-60, 255-128, 255-255 ], dtype=np.uint8) observed = iaa.invert(values) assert np.array_equal(observed, expected) assert observed is not values # most parts of this function are tested via Invert class Test_invert_(unittest.TestCase): def test_arr_is_noncontiguous_uint8(self): zeros = np.zeros((4, 4, 3), dtype=np.uint8) max_vr_flipped = np.fliplr(np.copy(zeros + 255)) observed = iaa.invert_(max_vr_flipped) expected = zeros assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_arr_is_view_uint8(self): zeros = np.zeros((4, 4, 3), dtype=np.uint8) max_vr_view = np.copy(zeros + 255)[:, :, [0, 2]] observed = iaa.invert_(max_vr_view) expected = zeros[:, :, [0, 2]] assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_uint(self): dtypes = ["uint8", "uint16", "uint32", "uint64"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([0, 20, 45, 60, center_value, max_value], dtype=dt) expected = np.array([ max_value - 0, max_value - 20, max_value - 45, max_value - 60, max_value - center_value, min_value ], dtype=dt) observed = iaa.invert_(np.copy(values)) assert np.array_equal(observed, expected) def test_uint_with_threshold_50_inv_above(self): threshold = 50 dtypes = ["uint8", "uint16", "uint32", "uint64"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([0, 20, 45, 60, center_value, max_value], dtype=dt) expected = np.array([ 0, 20, 45, max_value - 60, max_value - center_value, min_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=True) assert np.array_equal(observed, expected) def test_uint_with_threshold_0_inv_above(self): threshold = 0 dtypes = ["uint8", "uint16", "uint32", "uint64"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([0, 20, 45, 60, center_value, max_value], dtype=dt) expected = np.array([ max_value - 0, max_value - 20, max_value - 45, max_value - 60, max_value - center_value, min_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=True) assert np.array_equal(observed, expected) def test_uint8_with_threshold_255_inv_above(self): threshold = 255 dtypes = ["uint8"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([0, 20, 45, 60, center_value, max_value], dtype=dt) expected = np.array([ 0, 20, 45, 60, center_value, min_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=True) assert np.array_equal(observed, expected) def test_uint8_with_threshold_256_inv_above(self): threshold = 256 dtypes = ["uint8"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([0, 20, 45, 60, center_value, max_value], dtype=dt) expected = np.array([ 0, 20, 45, 60, center_value, max_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=True) assert np.array_equal(observed, expected) def test_uint_with_threshold_50_inv_below(self): threshold = 50 dtypes = ["uint8", "uint16", "uint32", "uint64"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([0, 20, 45, 60, center_value, max_value], dtype=dt) expected = np.array([ max_value - 0, max_value - 20, max_value - 45, 60, center_value, max_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=False) assert np.array_equal(observed, expected) def test_uint_with_threshold_50_inv_above_with_min_max(self): threshold = 50 # uint64 does not support custom min/max, hence removed it here dtypes = ["uint8", "uint16", "uint32"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([0, 20, 45, 60, center_value, max_value], dtype=dt) expected = np.array([ 0, # not clipped to 10 as only >thresh affected 20, 45, 100 - 50, 100 - 90, 100 - 90 ], dtype=dt) observed = iaa.invert_(np.copy(values), min_value=10, max_value=100, threshold=threshold, invert_above_threshold=True) assert np.array_equal(observed, expected) def test_int_with_threshold_50_inv_above(self): threshold = 50 dtypes = ["int8", "int16", "int32", "int64"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([-45, -20, center_value, 20, 45, max_value], dtype=dt) expected = np.array([ -45, -20, center_value, 20, 45, min_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=True) assert np.array_equal(observed, expected) def test_int_with_threshold_50_inv_below(self): threshold = 50 dtypes = ["int8", "int16", "int32", "int64"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([-45, -20, center_value, 20, 45, max_value], dtype=dt) expected = np.array([ (-1) * (-45) - 1, (-1) * (-20) - 1, (-1) * center_value - 1, (-1) * 20 - 1, (-1) * 45 - 1, max_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=False) assert np.array_equal(observed, expected) def test_float_with_threshold_50_inv_above(self): threshold = 50 dtypes = ["float16", "float32", "float64", "float128"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = center_value values = np.array([-45.5, -20.5, center_value, 20.5, 45.5, max_value], dtype=dt) expected = np.array([ -45.5, -20.5, center_value, 20.5, 45.5, min_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=True) assert np.allclose(observed, expected, rtol=0, atol=1e-4) def test_float_with_threshold_50_inv_below(self): threshold = 50 dtypes = ["float16", "float32", "float64", "float128"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = center_value values = np.array([-45.5, -20.5, center_value, 20.5, 45.5, max_value], dtype=dt) expected = np.array([ (-1) * (-45.5), (-1) * (-20.5), (-1) * center_value, (-1) * 20.5, (-1) * 45.5, max_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=False) assert np.allclose(observed, expected, rtol=0, atol=1e-4) class Test_solarize(unittest.TestCase): @mock.patch("imgaug.augmenters.arithmetic.solarize_") def test_mocked_defaults(self, mock_sol): arr = np.zeros((1,), dtype=np.uint8) mock_sol.return_value = "foo" observed = iaa.solarize(arr) args = mock_sol.call_args_list[0][0] kwargs = mock_sol.call_args_list[0][1] assert args[0] is not arr assert np.array_equal(args[0], arr) assert kwargs["threshold"] == 128 assert observed == "foo" @mock.patch("imgaug.augmenters.arithmetic.solarize_") def test_mocked(self, mock_sol): arr = np.zeros((1,), dtype=np.uint8) mock_sol.return_value = "foo" observed = iaa.solarize(arr, threshold=5) args = mock_sol.call_args_list[0][0] kwargs = mock_sol.call_args_list[0][1] assert args[0] is not arr assert np.array_equal(args[0], arr) assert kwargs["threshold"] == 5 assert observed == "foo" def test_uint8(self): arr = np.array([0, 10, 50, 150, 200, 255], dtype=np.uint8) arr = arr.reshape((2, 3, 1)) observed = iaa.solarize(arr) expected = np.array([0, 10, 50, 255-150, 255-200, 255-255], dtype=np.uint8).reshape((2, 3, 1)) assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) class Test_solarize_(unittest.TestCase): @mock.patch("imgaug.augmenters.arithmetic.invert_") def test_mocked_defaults(self, mock_sol): arr = np.zeros((1,), dtype=np.uint8) mock_sol.return_value = "foo" observed = iaa.solarize_(arr) args = mock_sol.call_args_list[0][0] kwargs = mock_sol.call_args_list[0][1] assert args[0] is arr assert kwargs["threshold"] == 128 assert observed == "foo" @mock.patch("imgaug.augmenters.arithmetic.invert_") def test_mocked(self, mock_sol): arr = np.zeros((1,), dtype=np.uint8) mock_sol.return_value = "foo" observed = iaa.solarize_(arr, threshold=5) args = mock_sol.call_args_list[0][0] kwargs = mock_sol.call_args_list[0][1] assert args[0] is arr assert kwargs["threshold"] == 5 assert observed == "foo" class TestInvert(unittest.TestCase): def setUp(self): reseed() def test_p_is_one(self): zeros = np.zeros((4, 4, 3), dtype=np.uint8) observed = iaa.Invert(p=1.0).augment_image(zeros + 255) expected = zeros assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_p_is_zero(self): zeros = np.zeros((4, 4, 3), dtype=np.uint8) observed = iaa.Invert(p=0.0).augment_image(zeros + 255) expected = zeros + 255 assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_max_value_set(self): zeros = np.zeros((4, 4, 3), dtype=np.uint8) observed = iaa.Invert(p=1.0, max_value=200).augment_image(zeros + 200) expected = zeros assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_min_value_and_max_value_set(self): zeros = np.zeros((4, 4, 3), dtype=np.uint8) observed = iaa.Invert(p=1.0, max_value=200, min_value=100).augment_image(zeros + 200) expected = zeros + 100 assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) observed = iaa.Invert(p=1.0, max_value=200, min_value=100).augment_image(zeros + 100) expected = zeros + 200 assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_min_value_and_max_value_set_with_float_image(self): # with min/max and float inputs zeros = np.zeros((4, 4, 3), dtype=np.uint8) zeros_f32 = zeros.astype(np.float32) observed = iaa.Invert(p=1.0, max_value=200, min_value=100).augment_image(zeros_f32 + 200) expected = zeros_f32 + 100 assert observed.dtype.name == "float32" assert np.array_equal(observed, expected) observed = iaa.Invert(p=1.0, max_value=200, min_value=100).augment_image(zeros_f32 + 100) expected = zeros_f32 + 200 assert observed.dtype.name == "float32" assert np.array_equal(observed, expected) def test_p_is_80_percent(self): nb_iterations = 1000 nb_inverted = 0 aug = iaa.Invert(p=0.8) img = np.zeros((1, 1, 1), dtype=np.uint8) + 255 expected = np.zeros((1, 1, 1), dtype=np.uint8) for i in sm.xrange(nb_iterations): observed = aug.augment_image(img) if np.array_equal(observed, expected): nb_inverted += 1 pinv = nb_inverted / nb_iterations assert 0.75 <= pinv <= 0.85 nb_iterations = 1000 nb_inverted = 0 aug = iaa.Invert(p=iap.Binomial(0.8)) img = np.zeros((1, 1, 1), dtype=np.uint8) + 255 expected = np.zeros((1, 1, 1), dtype=np.uint8) for i in sm.xrange(nb_iterations): observed = aug.augment_image(img) if np.array_equal(observed, expected): nb_inverted += 1 pinv = nb_inverted / nb_iterations assert 0.75 <= pinv <= 0.85 def test_per_channel(self): aug = iaa.Invert(p=0.5, per_channel=True) img = np.zeros((1, 1, 100), dtype=np.uint8) + 255 observed = aug.augment_image(img) assert len(np.unique(observed)) == 2 # TODO split into two tests def test_p_is_stochastic_parameter_per_channel_is_probability(self): nb_iterations = 1000 aug = iaa.Invert(p=iap.Binomial(0.8), per_channel=0.7) img = np.zeros((1, 1, 20), dtype=np.uint8) + 255 seen = [0, 0] for i in sm.xrange(nb_iterations): observed = aug.augment_image(img) uq = np.unique(observed) if len(uq) == 1: seen[0] += 1 elif len(uq) == 2: seen[1] += 1 else: assert False assert 300 - 75 < seen[0] < 300 + 75 assert 700 - 75 < seen[1] < 700 + 75 def test_threshold(self): arr = np.array([0, 10, 50, 150, 200, 255], dtype=np.uint8) arr = arr.reshape((2, 3, 1)) aug = iaa.Invert(p=1.0, threshold=128, invert_above_threshold=True) observed = aug.augment_image(arr) expected = np.array([0, 10, 50, 255-150, 255-200, 255-255], dtype=np.uint8).reshape((2, 3, 1)) assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_threshold_inv_below(self): arr = np.array([0, 10, 50, 150, 200, 255], dtype=np.uint8) arr = arr.reshape((2, 3, 1)) aug = iaa.Invert(p=1.0, threshold=128, invert_above_threshold=False) observed = aug.augment_image(arr) expected = np.array([255-0, 255-10, 255-50, 150, 200, 255], dtype=np.uint8).reshape((2, 3, 1)) assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_keypoints_dont_change(self): # keypoints shouldnt be changed zeros = np.zeros((4, 4, 3), dtype=np.uint8) keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=zeros.shape)] aug = iaa.Invert(p=1.0) aug_det = iaa.Invert(p=1.0).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.Invert(p="test") except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.Invert(p=0.5, per_channel="test") except Exception: got_exception = True assert got_exception def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.Invert(1.0) image_aug = aug(image=image) assert np.all(image_aug == 255) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.Invert(1.0) image_aug = aug(image=image) assert np.all(image_aug == 255) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.Invert(p=0.5, per_channel=False, min_value=10, max_value=20) params = aug.get_parameters() assert params[0] is aug.p assert params[1] is aug.per_channel assert params[2] == 10 assert params[3] == 20 assert params[4] is aug.threshold assert params[5] is aug.invert_above_threshold def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.Invert(p=1.0) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_p_is_zero(self): # with p=0.0 aug = iaa.Invert(p=0.0) dtypes = [bool, np.uint8, np.uint16, np.uint32, np.uint64, np.int8, np.int16, np.int32, np.int64, np.float16, np.float32, np.float64, np.float128] for dtype in dtypes: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) kind = np.dtype(dtype).kind image_min = np.full((3, 3), min_value, dtype=dtype) if dtype is not bool: image_center = np.full((3, 3), center_value if kind == "f" else int(center_value), dtype=dtype) image_max = np.full((3, 3), max_value, dtype=dtype) image_min_aug = aug.augment_image(image_min) image_center_aug = None if dtype is not bool: image_center_aug = aug.augment_image(image_center) image_max_aug = aug.augment_image(image_max) assert image_min_aug.dtype ==
np.dtype(dtype)
numpy.dtype
# -*- coding: utf-8 -*- """ Function to save the results of multi-panel optimisations - save_result_BELLAs saves the results for the design of a multipanel structure - save_result_BELLA_one_pdl saves the results at one iteration of the design of a multipanel structure """ import sys import numpy as np import pandas as pd sys.path.append(r'C:\BELLA') from src.divers.excel import append_df_to_excel from src.buckling.buckling import buckling_factor from src.guidelines.ipo_oopo import calc_penalty_ipo_oopo_mp from src.guidelines.contiguity import calc_penalty_contig_mp from src.guidelines.disorientation import calc_number_violations_diso_mp from src.guidelines.ten_percent_rule import calc_penalty_10_ss from src.CLA.lampam_functions import calc_lampam from src.CLA.ABD import D_from_lampam def save_result_BELLAs(filename, multipanel, constraints, parameters, obj_func_param, pdl, output, mat=None, only_best=False): """ saves the results for the design of a multipanel structure """ if only_best: table_res = pd.DataFrame() if hasattr(output, 'time'): table_res.loc[0, 'time (s)'] = output.time table_res = save_result_BELLA_one_pdl( table_res, multipanel, constraints, parameters, obj_func_param, output, None, 0, mat) append_df_to_excel( filename, table_res, 'Best Result', index=False, header=True) return 0 for ind in range(parameters.n_ini_ply_drops): table_res = pd.DataFrame() table_res = save_result_BELLA_one_pdl( table_res, multipanel, constraints, parameters, obj_func_param, output, pdl[ind], ind, mat) append_df_to_excel( filename, table_res, 'Results', index=False, header=True) # to save best result table_res = pd.DataFrame() table_res.loc[0, 'time (s)'] = output.time table_res = save_result_BELLA_one_pdl( table_res, multipanel, constraints, parameters, obj_func_param, output, pdl[output.ind_mini], 0, mat) append_df_to_excel( filename, table_res, 'Best Result', index=False, header=True) return 0 def save_result_BELLA_one_pdl( table_res, multipanel, constraints, parameters, obj_func_param, output, pdl=None, ind=0, mat=None): """ saves the results at one iteration of the design of a multipanel structure """ if parameters is None: if multipanel.panels[0].N_x == 0 and multipanel.panels[0].N_y == 0: save_buckling = False else: save_buckling = True else: save_buckling = parameters.save_buckling if hasattr(output, 'obj_constraints'): table_res.loc[ind, 'obj_constraints'] \ = output.obj_constraints_tab[ind] if hasattr(output, 'n_obj_func_calls_tab'): table_res.loc[ind, 'n_obj_func_calls'] \ = output.n_obj_func_calls_tab[ind] # table_res.loc[ind, 'n_designs_last_level'] \ # = output.n_designs_last_level_tab[ind] # table_res.loc[ind, 'n_designs_after_ss_ref_repair'] \ # = output.n_designs_after_ss_ref_repair_tab[ind] # table_res.loc[ind, 'n_designs_after_thick_to_thin'] \ # = output.n_designs_after_thick_to_thin_tab[ind] # table_res.loc[ind, 'n_designs_after_thin_to_thick'] \ # = output.n_designs_after_thin_to_thick_tab[ind] # table_res.loc[ind, 'n_designs_repaired_unique'] \ # = output.n_designs_repaired_unique_tab[ind] table_res.loc[ind, 'penalty_spacing'] = output.penalty_spacing_tab[ind] ss = output.ss norm_diso_contig = np.array( [panel.n_plies for panel in multipanel.panels]) n_diso = calc_number_violations_diso_mp(ss, constraints) penalty_diso = np.zeros((multipanel.n_panels,)) if constraints.diso and n_diso.any(): penalty_diso = n_diso / norm_diso_contig else: penalty_diso = np.zeros((multipanel.n_panels,)) n_contig = calc_penalty_contig_mp(ss, constraints) penalty_contig = np.zeros((multipanel.n_panels,)) if constraints.contig and n_contig.any(): penalty_contig = n_contig / norm_diso_contig else: penalty_contig =
np.zeros((multipanel.n_panels,))
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Feb 6 11:06:33 2018 @author: jeremiasknoblauch Description: Get plots for EU1880 data """ import pickle import numpy as np from Evaluation_tool import EvaluationTool from matplotlib import pyplot as plt import matplotlib.dates as mdates import csv import datetime import matplotlib import math #ensure that we have type 1 fonts (for ICML publishing guiedlines) matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 """STEP 1: Get file names""" data_file = ("///Users//jeremiasknoblauch//Documents////OxWaSP//BOCPDMS//Code//" + "SpatialBOCD//Data//EuropeanTemperatureData//1880//1880_temperatures.csv") nbhs_file = ("//Users//jeremiasknoblauch//Documents////OxWaSP//BOCPDMS//Code//" + "SpatialBOCD//Data//EuropeanTemperatureData//1880//1880_pw_distances.csv") results_file = ("///Users//jeremiasknoblauch//Documents////OxWaSP//BOCPDMS//Code//" + "SpatialBOCD//Paper//EUTemperature1880//" + "results_EUTemp1880_medium_range_models.txt") storage_folder = ("//Users//jeremiasknoblauch//Documents////OxWaSP//BOCPDMS//Code//" + "SpatialBOCD//Paper//EUTemperature1880//") """STEP 2: Read in the data""" """Get p.w. distances""" """ Read in (as strings)""" pw_distances = [] station_IDs = [] count = 0 with open(nbhs_file) as csvfile: reader = csv.reader(csvfile) for row in reader: if count > 0: pw_distances += row else: station_IDs += row count += 1 num_stations = int(np.sqrt(len(pw_distances))) """Convert into floats""" pwd = [] stat_IDs = [] for entry in pw_distances: pwd += [float(entry)] count2 = 0 for entry in station_IDs: stat_IDs += [float(entry)] pw_distances =
np.array(pwd, dtype=float)
numpy.array
import numpy as np from numba import jit import cv2 from stytra.tracking import ParametrizedImageproc class TailTrackingMethod(ParametrizedImageproc): """General tail tracking method.""" def __init__(self, **kwargs): super().__init__(**kwargs) # TODO maybe getting default values here: self.add_params( n_segments=dict(value=10, type="int", limits=(2, 50)), tail_start=dict(value=(440, 225), visible=False), tail_length=dict(value=(-250, 30), visible=False), ) self.accumulator_headers = ["tail_sum"] + [ "theta_{:02}".format(i) for i in range(self.params["n_segments"]) ] self.monitored_headers = ["tail_sum"] self.data_log_name = "behaviour_tail_log" class CentroidTrackingMethod(TailTrackingMethod): """Center-of-mass method to find consecutive segments.""" name = "tracking_tail_params" def __init__(self): super().__init__() self.add_params( window_size=dict(value=30, suffix=" pxs", type="float", limits=(2, 100)) ) @classmethod def detect( cls, im, tail_start=(0, 0), tail_length=(1, 1), n_segments=12, window_size=7, image_scale=1, **extraparams ): """Finds the tail for an embedded fish, given the starting point and the direction of the tail. Alternative to the sequential circular arches. Parameters ---------- im : image to process tail_start : starting point (x, y) (Default value = (0) tail_length : tail length (x, y) (Default value = (1) n_segments : number of desired segments (Default value = 12) window_size : window size in pixel for center-of-mass calculation (Default value = 7) color_invert : True for inverting luminosity of the image (Default value = False) filter_size : Size of the box filter to low-pass filter the image (Default value = 0) image_scale : the amount of downscaling of the image (Default value = 0.5) 0) : 1) : Returns ------- type list of cumulative sum + list of angles """ start_y, start_x = tail_start tail_length_y, tail_length_x = tail_length n_segments += 1 # Calculate tail length: length_tail = np.sqrt(tail_length_x ** 2 + tail_length_y ** 2) * image_scale # Segment length from tail length and n of segments: seg_length = length_tail / n_segments # Initial displacements in x and y: disp_x = tail_length_x * image_scale / n_segments disp_y = tail_length_y * image_scale / n_segments angles = [] start_x *= image_scale start_y *= image_scale halfwin = window_size / 2 for i in range(1, n_segments): # Use next segment function for find next point # with center-of-mass displacement: start_x, start_y, disp_x, disp_y, acc = _next_segment( im, start_x, start_y, disp_x, disp_y, halfwin, seg_length ) abs_angle = np.arctan2(disp_x, disp_y) angles.append(abs_angle) return [reduce_to_pi(angles[-1] + angles[-2] - angles[0] - angles[1])] + angles[ : ] class AnglesTrackingMethod(TailTrackingMethod): """Angular sweep method to find consecutive segments.""" name = "tracking_tail_params" def __init__(self): super().__init__() self.add_params(dark_tail=False) @classmethod def detect( cls, im, tail_start=(0, 0), n_segments=7, tail_length=(1, 1), dark_tail=False, image_scale=1, **extraparams ): """Tail tracing based on min (or max) detection on arches. Wraps _tail_trace_core_ls. Speed testing: 20 us for a 514x640 image without smoothing, 300 us with smoothing. Parameters ---------- img : input image tail_start : tail starting point (x, y) (Default value = (0) tail_length : tail length (Default value = (1) n_segments : number of segments (Default value = 7) filter_size : Box for smoothing the image (Default value = 0) dark_tail : True for inverting image colors (Default value = False) im : 0) : 1) : image_scale : (Default value = 1) Returns ------- """ start_y, start_x = tail_start tail_length_y, tail_length_x = tail_length # Calculate tail length: length_tail = np.sqrt(tail_length_x ** 2 + tail_length_y ** 2) * image_scale # Initial displacements in x and y: disp_x = tail_length_x * image_scale / n_segments disp_y = tail_length_y * image_scale / n_segments start_x *= image_scale start_y *= image_scale # Use jitted function for the actual calculation: angle_list = _tail_trace_core_ls( im, start_x, start_y, disp_x, disp_y, n_segments, length_tail, dark_tail ) return angle_list @jit(nopython=True) def reduce_to_pi(angle): """ Parameters ---------- angle : Returns ------- """ return np.mod(angle + np.pi, 2 * np.pi) - np.pi @jit(nopython=True) def find_direction(start, image, seglen): """ Parameters ---------- start : image : seglen : Returns ------- """ n_angles = 20 angles = np.arange(n_angles) * np.pi * 2 / n_angles detect_angles = angles weighted_vector = np.zeros(2) for i in range(detect_angles.shape[0]): coord = ( int(start[0] + seglen * np.cos(detect_angles[i])), int(start[1] + seglen * np.sin(detect_angles[i])), ) if ( (coord[0] > 0) & (coord[0] < image.shape[1]) & (coord[1] > 0) & (coord[1] < image.shape[0]) ): brg = image[coord[1], coord[0]] weighted_vector += brg * np.array( [np.cos(detect_angles[i]), np.sin(detect_angles[i])] ) return np.arctan2(weighted_vector[1], weighted_vector[0]) @jit(nopython=True, cache=True) def angle(dx1, dy1, dx2, dy2): """Calculate angle between two segments d1 and d2 Parameters ---------- dx1 : x length for first segment dy1 : y length for first segment dx2 : param dy2: - dy2 : Returns ------- type angle between -pi and +pi """ alph1 = np.arctan2(dy1, dx1) alph2 = np.arctan2(dy2, dx2) diff = alph2 - alph1 if diff >= np.pi: diff -= 2 * np.pi if diff <= -np.pi: diff += 2 * np.pi return diff def bp_filter_img(img, small_square=3, large_square=50): """Bandpass filter for images. Parameters ---------- img : input image small_square : small square for low-pass smoothing (Default value = 3) large_square : big square for high pass smoothing (subtraction of background shades) (Default value = 50) Returns ------- type filtered image """ img_filt_lower = cv2.boxFilter(img, -1, (large_square, large_square)) img_filt_low = cv2.boxFilter(img, -1, (small_square, small_square)) return cv2.absdiff(img_filt_low, img_filt_lower) @jit(nopython=True) def _next_segment(fc, xm, ym, dx, dy, halfwin, next_point_dist): """Find the endpoint of the next tail segment by calculating the moments in a look-ahead area Parameters ---------- fc : image to find tail xm : starting point x ym : starting point y dx : initial displacement x dy : initial displacement y wind_size : size of the window to estimate next tail point next_point_dist : distance to the next tail point halfwin : Returns ------- """ # Generate square window for center of mass halfwin2 = halfwin ** 2 y_max, x_max = fc.shape xs = min(max(int(round(xm + dx - halfwin)), 0), x_max) xe = min(max(int(round(xm + dx + halfwin)), 0), x_max) ys = min(max(int(round(ym + dy - halfwin)), 0), y_max) ye = min(max(int(round(ym + dy + halfwin)), 0), y_max) # at the edge returns invalid data if xs == xe and ys == ye: return -1, -1, 0, 0, 0 # accumulators acc = 0.0 acc_x = 0.0 acc_y = 0.0 for x in range(xs, xe): for y in range(ys, ye): lx = (xs + halfwin - x) ** 2 ly = (ys + halfwin - y) ** 2 if lx + ly <= halfwin2: acc_x += x * fc[y, x] acc_y += y * fc[y, x] acc += fc[y, x] if acc == 0: return -1, -1, 0, 0, 0 # center of mass relative to the starting points mn_y = acc_y / acc - ym mn_x = acc_x / acc - xm # normalise to segment length a = np.sqrt(mn_y ** 2 + mn_x ** 2) / next_point_dist # check center of mass validity if a == 0: return -1, -1, 0, 0, 0 # Use normalization factor dx = mn_x / a dy = mn_y / a return xm + dx, ym + dy, dx, dy, acc @jit(nopython=True) def _tail_trace_core_ls( img, start_x, start_y, disp_x, disp_y, num_points, tail_length, color_invert ): """Tail tracing based on min (or max) detection on arches. Wrapped by trace_tail_angular_sweep. Parameters ---------- img : start_x : start_y : disp_x : disp_y : num_points : tail_length : color_invert : Returns ------- """ # Define starting angle based on tail dimensions: start_angle = np.arctan2(disp_x, disp_y) # Initialise first angle arch, tail sum and angle list: pi2 = np.pi / 2 lin = np.linspace(-pi2 + start_angle, pi2 + start_angle, 25) tail_sum = 0. angles =
np.zeros(num_points + 1)
numpy.zeros
"""!@package func_utils Multiple nonconvex loss functions. """ import numpy as np import scipy import random import math import time ## constant indicating total available memory when calculating full gradient total_mem_full = 3.0e10 ## constant indicating total available memory when calculating batch gradient total_mem_batch = 2.0e10 def prox_l1_norm( w, lamb=1 ): """! Compute the proximal operator of the \f$\ell_1\f$ - norm \f$ prox_{\lambda \|.\|_1} = {arg\min_x}\left\{\|.\|_1^2 + \frac{1}{2\lambda}\|x - w\|^2\right\} \f$ Parameters ---------- @param w : input vector @param lamb : penalty paramemeter Returns ---------- @retval : output vector """ return np.sign( w ) * np.maximum( np.abs( w ) - lamb, 0 ) def prox_l2_norm( w, lamb=1 ): """! Compute the proximal operator of the \f$\ell_2\f$ - norm Parameters ---------- @param w : input vector @param lamb : penalty paramemeter Returns ---------- @retval : output vector """ norm_w = np.linalg.norm(w, ord=2) return np.maximum(1 - lamb/norm_w, 0) * w def prox_linf_norm( w, lamb=1 ): """! Compute the proximal operator of the \f$\ell_2\f$ - norm \f$ prox_{\lambda \|.\|_2} = {arg\min_x}\left\{\|.\|_1^2 + \frac{1}{2\lambda}\|x - w\|^2\right\} \f$ Parameters ---------- @param w : input vector @param lamb : penalty paramemeter Returns ---------- @retval : output vector """ return w - lamb * proj_l1_ball(w / lamb) def proj_l2_ball( w, lamb=1 ): """! Compute the projection onto \f$\ell_2\f$-ball Parameters ---------- @param w : input vector @param lamb : penalty paramemeter Returns ---------- @retval : output vector """ norm_w = np.linalg.norm(w, ord=2) if norm_w > lamb: return lamb * w / norm_w else: return w def proj_l1_ball( w, lamb=1 ): """! Compute the projection onto \f$\ell_1\f$-ball Parameters ---------- @param w : input vector @param lamb : penalty paramemeter Returns ---------- @retval : output vector """ norm_w = np.linalg.norm(w, ord=1) if norm_w <= 1: return w else: # find lamb by bisection sort_w = np.sort(w)[::-1] tmp_sum = 0 index = -1 for i in range(len(sort_w)): tmp_sum += sort_w[i] if sort_w[i] <= (1.0/(i+1)) * (tmp_sum - 1): break else: index += 1 index = np.max(index,0) lamb = np.max((1.0/(index+1))*(tmp_sum - 1),0) return prox_l1_norm(w,lamb) def proj_linf_ball( w, lamb=1 ): """! Compute the projection onto \f$\ell_{\infty}\f$-ball Parameters ---------- @param w : input vector @param lamb : penalty paramemeter Returns ---------- @retval : perform projection onto $\ell_{\infty}$-ball """ norm_w = np.linalg.norm(w, ord=np.inf) if norm_w > lamb: return lamb * w / norm_w else: return w def ind_l2_ball( w, lamb=1 ): """! Compute the indication function of the \f$\ell_{2}\f$-ball Parameters ---------- @param w : input vector @param lamb : penalty paramemeter Returns ---------- @retval : whether the input is in $\ell_{2}$-ball """ # norm_w = np.linalg.norm(w, ord=2) # if norm_w > lamb: # return np.inf # else: # return 0.0 return 0.0 def ind_l1_ball( w, lamb=1 ): """! Compute the indication function of the \f$\ell_1\f$-ball Parameters ---------- @param w : input vector @param lamb : penalty paramemeter Returns ---------- @retval : whether the input is in $\ell_1$-ball """ # norm_w = np.linalg.norm(w, ord=1) # if norm_w > lamb: # return np.inf # else: # return 0.0 return 0.0 def ind_linf_ball( w, lamb=1 ): """! Compute the indication function of the \f$\ell_{\infty}\f$-ball Parameters ---------- @param w : input vector @param lamb : penalty paramemeter Returns ---------- @retval : whether the input is in $\ell_{\infty}$-ball """ # norm_w = np.linalg.norm(w, ord=np.inf) # if norm_w > lamb: # return np.inf # else: # return 0.0 return 0.0 def func_val_l1_norm( w, lamb=1 ): """! Compute \f$\ell_1\f$ - norm of a vector Parameters ---------- @param w : input vector Returns ---------- @retval : \f$ \|w\|_1 \f$ """ return lamb * np.linalg.norm( w,ord = 1 ) def func_val_l2_norm( w, lamb=1 ): """! Compute \f$\ell_1\f$ - norm of a vector Parameters ---------- @param w : input vector Returns ---------- @retval : \f$ \|w\|_1 \f$ """ return lamb * np.linalg.norm( w,ord = 2 ) def func_val_linf_norm( w, lamb=1 ): """! Compute \f$\ell_1\f$ - norm of a vector Parameters ---------- @param w : input vector Returns ---------- @retval : \f$ \|w\|_1 \f$ """ return lamb * np.linalg.norm( w, ord=np.inf ) def func_val_huber( w, lamb=1.0, dt=1.0 ): """! Compute huber loss of a vector Parameters ---------- @param w : input vector Returns ---------- @retval : huber loss """ abs_w = np.abs(w) return np.sum((abs_w <= dt)*0.5*w*w + (abs_w > dt) * dt*(abs_w - 0.5*dt)) def grad_eval_huber( w, lamb=1.0, dt=1.0 ): """! Compute gradient of huber loss of a vector Parameters ---------- @param w : input vector Returns ---------- @retval : grad huber loss """ abs_w = np.abs(w) return (abs_w <= dt)*w + (abs_w > dt) * dt*np.sign(w) def prox_huber(w, lamb=1.0, dt=1.0): """! Compute proximal operator of huber loss Parameters ---------- @param w : input vector @param lamd : penalty param Returns ---------- @retval : proximal operator of huber loss """ abs_w = np.abs(w) return (abs_w <= dt)*(1.0/(1.0 + lamb))*w + (abs_w > dt) * prox_l1_norm(w,dt*lamb) def func_val_huber_conj( w, lamb=1.0, dt=1.0 ): """! Compute conjugate of huber loss Parameters ---------- @param w : input vector @param lamd : penalty param @param dt : delta Returns ---------- @retval : conjugate of huber function """ abs_w = np.abs(w) return np.sum((abs_w <= dt)*0.5*w*w + (abs_w > dt)*0.5*dt*dt ) ################################################################### def func_val_bin_class_loss_1( n, d, b, X, Y, bias, w, lamb = None, XYw_bias = None, nnzX = None, index=None): """! Compute the objective value of loss function 1 \f$\ell_1( Y( Xw + b )) := 1 - \tanh( \omega Y( Xw + b )) \f$ for a given \f$ \omega > 0\f$. Here \f$ \omega = 1\f$. Parameters ---------- @param n : sample size @param d : number of features @param b : mini - batch size b = 1: single stochastic gradient 1 < b < n: mini - batch stochastic gradient b = n: full gradient @param X : input data @param Y : input label @param bias : input bias @param w : input vector @param lamb: penalty parameters @param XYw_bias : precomputed Y(Xw + b) if available @param nnzX : average number of non - zero elements for each sample @param index : index set for mini-batch calculation Returns ---------- @retval : \f$\ell_1( Y( Xw + b ))\f$ """ omega = 1.0 if b == 1: # get a random sample if index is None: index = np.random.randint( 0, n ) Xi = X[index,:] expt = np.exp( 2.0 * omega * Y[i] * ( Xi.dot( w ) + bias[i] )) return ( 1.0/float( b )) * np.sum( 2.0 / ( expt + 1.0 )) # mini-batch elif b < n: # get a random batch of size b if index is None: index = random.sample( range( n ), b ) # calculate number of batches if nnzX is None: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( b / batch_size ) batch_loss = 0.0 for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), b - 1 ) batch_X = X[index[startIdx:endIdx],:] batch_Y = Y[index[startIdx:endIdx]] batch_bias = bias[index[startIdx:endIdx]] expt = np.exp( 2.0 * omega * batch_Y * ( batch_X.dot( w ) + batch_bias )) batch_loss += np.sum( 2.0 / ( expt + 1.0 )) return batch_loss / float( b ) # full else: if XYw_bias is not None: expt = np.exp( 2.0 * omega * XYw_bias ) return ( 1.0/float( n )) * np.sum( 2.0 / ( expt + 1.0 )) else: # calculate number of batches if nnzX is None: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( n / batch_size ) full_loss = 0.0 for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), n - 1 ) batch_X = X[startIdx:endIdx,:] batch_Y = Y[startIdx:endIdx] batch_bias = bias[startIdx:endIdx] expt = np.exp( 2.0 * omega * batch_Y * ( batch_X.dot( w ) + batch_bias )) full_loss += np.sum( 2.0 / ( expt + 1.0 )) return full_loss / float( n ) def func_diff_eval_bin_class_loss_1( n, d, b, X, Y, bias, w1, w2, lamb = None, XYw_bias = None, nnzX = None, index=None ): """! Compute the objective value of loss function 1, \f$\ell_1( Y( Xw2 + b )) - \f$\ell_1( Y( Xw1 + b )) \f$ for a given \f$ \omega > 0\f$. Here \f$ \omega = 1\f$. Parameters ---------- @param n : sample size @param d : number of features @param b : mini - batch size b = 1: single stochastic gradient 1 < b < n: mini - batch stochastic gradient b = n: full gradient @param X : input data @param Y : input label @param bias : input bias @param w1 : 1st input vector @param w1 : 2nd input vector @param lamb : penalty parameters @param XYw_bias : precomputed Y(Xw + b) if available @param nnzX : average number of non - zero elements for each sample @param index : index set for mini-batch calculation Returns ---------- @retval : \f$\ell_1( Y( Xw + b ))\f$ """ omega = 1.0 if b == 1: # get a random sample i = np.random.randint( 0, n ) Xi = X[i,:] expt1 = np.exp( 2.0 * omega * Y[i] * ( Xi.dot( w1 ) + bias[i] )) expt2 = np.exp( 2.0 * omega * Y[i] * ( Xi.dot( w2 ) + bias[i] )) return ( 1.0/float( b )) * np.sum( 2.0 / ( expt2 + 1.0 ) - 2.0 / ( expt1 + 1.0 )) # mini-batch elif b < n: # get a random batch of size b index = random.sample( range( n ), b ) # calculate number of batches if nnzX is None: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( b / batch_size ) batch_loss_diff = 0.0 for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), b - 1 ) batch_X = X[index[startIdx:endIdx],:] batch_Y = Y[index[startIdx:endIdx]] batch_bias = bias[index[startIdx:endIdx]] expt1 = np.exp( 2.0 * omega * batch_Y * ( batch_X.dot( w1 ) + batch_bias )) expt2 = np.exp( 2.0 * omega * batch_Y * ( batch_X.dot( w2 ) + batch_bias )) batch_loss_diff += np.sum( 2.0 / ( expt2 + 1.0 ) - 2.0 / ( expt1 + 1.0 )) return batch_loss_diff / float( b ) # full else: if XYw_bias is not None: expt = np.exp( 2.0 * omega * XYw_bias ) return ( 1.0/float( b )) * np.sum( 2.0 / ( expt + 1.0 )) else: # calculate number of batches if nnzX is None: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( n / batch_size ) full_loss_diff = 0.0 for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), n - 1 ) batch_X = X[startIdx:endIdx,:] batch_Y = Y[startIdx:endIdx] batch_bias = bias[startIdx:endIdx] expt1 = np.exp( 2.0 * omega * batch_Y * ( batch_X.dot( w1 ) + batch_bias )) expt2 = np.exp( 2.0 * omega * batch_Y * ( batch_X.dot( w2 ) + batch_bias )) full_loss_diff += np.sum( 2.0 / ( expt2 + 1.0 )- 2.0 / ( expt1 + 1.0 ) ) return full_loss_diff / float( n ) def grad_eval_bin_class_loss_1( n, d, b, X, Y, bias, w, lamb = None, nnzX = None, index=None ): """! Compute the ( full/stochastic ) gradient of loss function 1. where \f$\ell_1( Y( Xw + b )) := 1 - \tanh( \omega Y( Xw + b )) \f$ for a given \f$ \omega > 0\f$. Here \f$ \omega = 0\f$. Parameters ---------- @param n : sample size @param d : number of features @param b : mini - batch size b = 1: single stochastic gradient 1 < b < n: mini - batch stochastic gradient b = n: full gradient @param X : input data @param Y : input label @param bias : input bias @param w : input vector @param lamb: penalty parameters @param nnzX : average number of non - zero elements for each sample @param index : index set for mini-batch calculation Returns ---------- @retval : computed full/stochastic gradient @retval XYw_bias: The precomputed \f$ Y( Xw + bias )\f$ """ if nnzX is None: nnzX = d omega = 1.0 # single sample if b == 1: # get a random sample i = np.random.randint( 0, n ) Xi = X[i,:] expt = np.exp( 2.0 * omega * Y[i] * ( Xi.dot( w ) + bias[i] )) return - 4.0 * omega * ( (expt/( expt + 1.0 ))/( expt + 1.0 )) * Y[i] * Xi # mini-batch elif b < n: # get a random batch of size b index = random.sample( range( n ), b ) # calculate number of batches if nnzX == 0: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( b / batch_size ) batch_grad = np.zeros( d ) for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), b - 1 ) batch_X = X[index[startIdx:endIdx],:] batch_Y = Y[index[startIdx:endIdx]] batch_bias = bias[index[startIdx:endIdx]] expt = np.exp( 2.0 * omega * batch_Y * ( batch_X.dot( w ) + batch_bias )) batch_grad -= 4.0 * omega * batch_X.transpose().dot( batch_Y * ( (expt/( expt + 1.0 ))/( expt + 1.0 )) ) return batch_grad / float( b ) # full else: # calculate number of batches if nnzX == 0: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( b / batch_size ) full_grad = np.zeros( d ) XYw_bias = np.zeros( n ) for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), n - 1 ) batch_X = X[startIdx:endIdx,:] batch_Y = Y[startIdx:endIdx] batch_bias = bias[startIdx:endIdx] batch_XYw_bias = batch_Y * ( batch_X.dot( w ) + batch_bias ) XYw_bias[startIdx:endIdx] = batch_XYw_bias expt = np.exp( 2.0 * omega * batch_XYw_bias ) full_grad -= 4.0 * omega * batch_X.transpose().dot( batch_Y * ( (expt/( expt + 1.0 ))/( expt + 1.0 )) ) return full_grad / float( n ), XYw_bias def grad_diff_eval_bin_class_loss_1( n, d, b, X, Y, bias, w1, w2, lamb = None, nnzX = None, index=None ): """! Compute the ( full/stochastic ) gradient difference of loss function 1 \f$\displaystyle\frac{1}{b}\left( \sum_{i \in \mathcal{B}_t}( \nabla f_i( w_2 ) - \nabla f_i( w_1 )) \right ) \f$ Parameters ---------- @param n : sample size @param d : number of features @param b : mini - batch size b = 1: single stochastic gradient 1 < b < n: mini - batch stochastic gradient b = n: full gradient @param X : input data @param Y : input label @param bias : input bias @param w1 : input vector @param w2 : input vector @param nnzX : average number of non - zero elements for each sample Returns ---------- @retval : computed full/stochastic gradient """ if nnzX is None: nnzX = d omega = 1.0 # single sample if b == 1: # get a random sample i = np.random.randint( 0,n ) Xi = X[i, :] expt1 = np.exp( 2.0 * omega * Y[i] * ( Xi.dot( w1 ) + bias[i] )) expt2 = np.exp( 2.0 * omega * Y[i] * ( Xi.dot( w2 ) + bias[i] )) diff_expt = (expt2 / ( expt2 + 1.0 )) / ( expt2 + 1.0 ) - expt1 / ( expt1 + 1.0 ) / ( expt1 + 1.0 ) return - ( 4.0 * omega * diff_expt * Y[i] ) * Xi # batch elif b < n: # get a random batch of size b index = random.sample( range( n ), b ) # calculate number of batches if nnzX == 0: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( b / batch_size ) batch_grad_diff = np.zeros( d ) for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), b - 1 ) batch_X = X[index[startIdx:endIdx],:] batch_Y = Y[index[startIdx:endIdx]] batch_bias = bias[index[startIdx:endIdx]] expt1 = np.exp( 2.0 * omega * batch_Y * ( batch_X.dot( w1 ) + batch_bias )) expt2 = np.exp( 2.0 * omega * batch_Y * ( batch_X.dot( w2 ) + batch_bias )) diff_expt = (expt2/( expt2 + 1.0 ))/( expt2 + 1.0 ) - (expt1/( expt1 + 1.0 ))/( expt1 + 1.0 ) batch_grad_diff -= 4.0 * omega * batch_X.transpose().dot( batch_Y * diff_expt ) return batch_grad_diff / float( b ) # full else: # calculate number of batches if nnzX == 0: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( b / batch_size ) full_grad_diff = np.zeros( d ) for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), n - 1 ) batch_X = X[startIdx:endIdx] batch_Y = Y[startIdx:endIdx] batch_bias = bias[startIdx:endIdx] expt1 = np.exp( 2.0 * omega * batch_Y * ( batch_X.dot( w1 ) + batch_bias )) expt2 = np.exp( 2.0 * omega * batch_Y * ( batch_X.dot( w2 ) + batch_bias )) diff_expt = (expt2/( expt2 + 1.0 ))/( expt2 + 1.0 ) - (expt1/( expt1 + 1.0 ))/( expt1 + 1.0 ) full_grad_diff -= 4.0 * omega * batch_X.transpose().dot( batch_Y * diff_expt ) return full_grad_diff / float( n ) ###################################################################### def func_val_bin_class_loss_2( n, d, b, X, Y, bias, w, lamb = None, XYw_bias = None, nnzX = None ): """! Compute the objective value of loss function 2 \f$\ell_2( Y( Xw + b )) := \left( 1 - \frac{1}{1 + \exp[ -Y( Xw + b )]}\right )^2 \f$ for a given \f$ \omega > 0\f$. Parameters ---------- @param n : sample size @param d : number of features @param b : mini - batch size b = 1: single stochastic gradient 1 < b < n: mini - batch stochastic gradient b = n: full gradient @param X : input data @param Y : input label @param bias : input bias @param w : input vector @param lamb: penalty parameters @param XYw_bias : precomputed Y(Xw + b) if available @param nnzX : average number of non - zero elements for each sample @param index : index set for mini-batch calculation Returns ---------- @retval : \f$\ell_2( Y( Xw + b ))\f$ """ if b == 1: # get a random sample i = np.random.randint( 0, n ) Xi = X[i,:] expt = np.exp( Y[i] * ( Xi.dot( w ) + bias[i] )) return np.sum ( (1.0 / ( expt + 1.0 )) / ( expt + 1.0 ) ) # batch elif b < n: # get a random batch of size b index = random.sample( range( n ), b ) # calculate number of batches if nnzX is None: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( b / batch_size ) batch_loss = 0.0 for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), b - 1 ) batch_X = X[index[startIdx:endIdx],:] batch_Y = Y[index[startIdx:endIdx]] batch_bias = bias[index[startIdx:endIdx]] expt = np.exp( batch_Y * ( batch_X.dot( w ) + batch_bias )) batch_loss += np.sum ( (1.0 / ( expt + 1.0 )) / ( expt + 1.0 ) ) return batch_loss / float( b ) # batch_X = X[index,:] # batch_Y = Y[index] # batch_bias = bias[index] # expt = np.exp( batch_Y * ( batch_X.dot( w ) + batch_bias )) # return ( 1.0/float( b )) * np.sum ( 1.0 / ( expt + 1.0 ) / ( expt + 1.0 ) ) else: if XYw_bias is not None: expt = np.exp( XYw_bias ) return ( 1.0/float( n )) * np.sum ( (1.0 / ( expt + 1.0 )) / ( expt + 1.0 ) ) else: # calculate number of batches if nnzX is None: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( n / batch_size ) full_loss = 0.0 for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), n - 1 ) batch_X = X[startIdx:endIdx,:] batch_Y = Y[startIdx:endIdx] batch_bias = bias[startIdx:endIdx] expt = np.exp( batch_Y * ( batch_X.dot( w ) + batch_bias )) full_loss += np.sum ( (1.0 / ( expt + 1.0 )) / ( expt + 1.0 ) ) return full_loss / float( n ) def func_diff_eval_bin_class_loss_2( n, d, b, X, Y, bias, w1, w2, lamb = None, XYw_bias = None, nnzX = None ): """! Compute the objective value of loss function 2 \f$\ell_2( Y( Xw + b )) := \left( 1 - \frac{1}{1 + \exp[ -Y( Xw + b )]}\right )^2 \f$ for a given \f$ \omega > 0\f$. Parameters ---------- @param n : sample size @param d : number of features @param b : mini - batch size b = 1: single stochastic gradient 1 < b < n: mini - batch stochastic gradient b = n: full gradient @param X : input data @param Y : input label @param bias : input bias @param w1 : 1st input vector @param w2 : 2nd input vector @param lamb: penalty parameters @param XYw_bias : precomputed Y(Xw + b) if available @param nnzX : average number of non - zero elements for each sample @param index : index set for mini-batch calculation Returns ---------- @retval : \f$\ell_2( Y( Xw + b ))\f$ """ if b == 1: # get a random sample i = np.random.randint( 0, n ) Xi = X[i,:] expt1 = np.exp( Y[i] * ( Xi.dot( w1 ) + bias[i] )) expt2 = np.exp( Y[i] * ( Xi.dot( w2 ) + bias[i] )) return np.sum ( (1.0 / ( expt2 + 1.0 )) / ( expt2 + 1.0 ) - (1.0 / ( expt1 + 1.0 )) / ( expt1 + 1.0 ) ) # batch elif b < n: # get a random batch of size b index = random.sample( range( n ), b ) # calculate number of batches if nnzX is None: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( b / batch_size ) batch_loss = 0.0 for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), b - 1 ) batch_X = X[index[startIdx:endIdx],:] batch_Y = Y[index[startIdx:endIdx]] batch_bias = bias[index[startIdx:endIdx]] expt1 = np.exp( batch_Y * ( batch_X.dot( w1 ) + batch_bias )) expt2 = np.exp( batch_Y * ( batch_X.dot( w2 ) + batch_bias )) batch_loss += np.sum ( (1.0 / ( expt2 + 1.0 )) / ( expt2 + 1.0 ) - (1.0 / ( expt1 + 1.0 )) / ( expt1 + 1.0 ) ) return batch_loss / float( b ) # batch_X = X[index,:] # batch_Y = Y[index] # batch_bias = bias[index] # expt = np.exp( batch_Y * ( batch_X.dot( w ) + batch_bias )) # return ( 1.0/float( b )) * np.sum ( 1.0 / ( expt + 1.0 ) / ( expt + 1.0 ) ) else: if XYw_bias is not None: expt = np.exp( XYw_bias ) return ( 1.0/float( n )) * np.sum ( (1.0 / ( expt + 1.0 )) / ( expt + 1.0 ) ) else: # calculate number of batches if nnzX is None: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( n / batch_size ) full_loss = 0.0 for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), n - 1 ) batch_X = X[startIdx:endIdx,:] batch_Y = Y[startIdx:endIdx] batch_bias = bias[startIdx:endIdx] expt1 = np.exp( batch_Y * ( batch_X.dot( w1 ) + batch_bias )) expt2 = np.exp( batch_Y * ( batch_X.dot( w2 ) + batch_bias )) full_loss += np.sum ( (1.0 / ( expt2 + 1.0 )) / ( expt2 + 1.0 ) - (1.0 / ( expt1 + 1.0 )) / ( expt1 + 1.0 ) ) return full_loss / float( n ) def grad_eval_bin_class_loss_2( n, d, b, X, Y, bias, w, lamb = None, nnzX = None ): """! Compute the ( full/stochastic ) gradient of loss function 2. \f$\ell_2( Y( Xw + b )) := \left( 1 - \frac{1}{1 + \exp[ -Y( Xw + b )]}\right )^2 \f$ Parameters ---------- @param n : sample size @param d : number of features @param b : mini - batch size b = 1: single stochastic gradient 1 < b < n: mini - batch stochastic gradient b = n: full gradient @param X : input data @param Y : input label @param bias : input bias @param w : input vector @param lamb: penalty parameters @param nnzX : average number of non - zero elements for each sample @param index : index set for mini-batch calculation Returns ---------- @retval : computed full/stochastic gradient @retval XYw_bias: The precomputed \f$ Y( Xw + bias )\f$ """ # single sample if nnzX is None: nnzX = d if b == 1: # get a random sample i = np.random.randint( 0, n ) Xi = X[i, :] expt = np.exp( Y[i] * ( Xi.dot( w ) + bias[i] )) return ( - 2.0 * ( ((expt/( 1.0 + expt ))/( 1.0 + expt ))/( 1.0 + expt )) * Y[i] ) * Xi # batch elif b < n: # get a random batch of size b index = random.sample( range( n ), b ) # calculate number of batches if nnzX == 0: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( b / batch_size ) batch_grad = np.zeros( d ) for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), b - 1 ) batch_X = X[index[startIdx:endIdx],:] batch_Y = Y[index[startIdx:endIdx]] batch_bias = bias[index[startIdx:endIdx]] expt = np.exp( batch_Y * ( batch_X.dot( w ) + batch_bias )) batch_grad -= 2.0 * batch_X.transpose().dot( batch_Y \ * ( ((expt/( 1.0 + expt ))/( 1.0 + expt ))/( 1.0 + expt )) ) return batch_grad / float( b ) # full else: # calculate number of batches if nnzX == 0: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( b / batch_size ) full_grad = np.zeros( d ) XYw_bias = np.zeros( n ) for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), n - 1 ) batch_X = X[startIdx:endIdx] batch_Y = Y[startIdx:endIdx] batch_bias = bias[startIdx:endIdx] batch_XYw_bias = batch_Y * ( batch_X.dot( w ) + batch_bias ) XYw_bias[startIdx:endIdx] = batch_XYw_bias expt = np.exp( batch_XYw_bias ) full_grad -= 2.0 * batch_X.transpose().dot( batch_Y * ( ((expt/( expt + 1 ))/( expt + 1 ))/( expt + 1 )) ) return full_grad / float( n ), XYw_bias def grad_diff_eval_bin_class_loss_2( n, d, b, X, Y, bias, w1, w2, lamb = None, nnzX = None ): """! Compute the ( full/stochastic ) gradient difference of loss function 2 \f$\displaystyle\frac{1}{b}\left( \sum_{i \in \mathcal{B}_t}( \nabla f_i( w_2 ) - \nabla f_i( w_1 )) \right ) \f$ Parameters ---------- @param n : sample size @param d : number of features @param b : mini - batch size b = 1: single stochastic gradient 1 < b < n: mini - batch stochastic gradient b = n: full gradient @param X : input data @param Y : input label @param bias : input bias @param w1 : 1st input vector @param w2 : 2nd input vector @param lamb: penalty parameters @param nnzX : average number of non - zero elements for each sample @param index : index set for mini-batch calculation Returns ---------- @retval : computed full/stochastic gradient """ # single sample if nnzX is None: nnzX = d if b == 1: # get a random sample i = np.random.randint( 0, n ) Xi = X[i,:] expt1 = np.exp( Y[i] * ( Xi.dot( w1 ) + bias[i] )) expt2 = np.exp( Y[i] * ( Xi.dot( w2 ) + bias[i] )) diff_expt = ( ((expt2/( 1.0 + expt2 ))/( 1.0 + expt2 ))/( 1.0 + expt2 )) - ( ((expt1/( 1.0 + expt1 ))/( 1.0 + expt1 ))/( 1.0 + expt1 )) return - 2.0 * diff_expt * Y[i] * Xi # batch elif b < n: # get a random batch of size b index = random.sample( range( n ), b ) # calculate number of batches if nnzX == 0: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( b / batch_size ) batch_grad_diff = np.zeros( d ) for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), b - 1 ) batch_X = X[index[startIdx:endIdx],:] batch_Y = Y[index[startIdx:endIdx]] batch_bias = bias[index[startIdx:endIdx]] expt1 = np.exp( batch_Y * ( batch_X.dot( w1 ) + batch_bias )) expt2 = np.exp( batch_Y * ( batch_X.dot( w2 ) + batch_bias )) diff_expt = ((expt2/( 1.0 + expt2 ))/( 1.0 + expt2 ))/( 1.0 + expt2 ) - ((expt1/( 1.0 + expt1 ))/( 1.0 + expt1 ))/( 1.0 + expt1 ) batch_grad_diff -= 2.0 * batch_X.transpose().dot( batch_Y * diff_expt ) return batch_grad_diff / float( b ) # full else: # calculate number of batches if nnzX == 0: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( b / batch_size ) full_grad_diff = np.zeros( d ) for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), n - 1 ) batch_X = X[startIdx:endIdx] batch_Y = Y[startIdx:endIdx] batch_bias = bias[startIdx:endIdx] expt1 = np.exp( batch_Y * ( batch_X.dot( w1 ) + batch_bias )) expt2 = np.exp( batch_Y * ( batch_X.dot( w2 ) + batch_bias )) diff_expt = ((expt2/( 1.0 + expt2 ))/( 1.0 + expt2 ))/( 1.0 + expt2 ) - ((expt1/( 1.0 + expt1 ))/( 1.0 + expt1 ))/( 1.0 + expt1 ) full_grad_diff -= 2.0 * batch_X.transpose().dot( batch_Y * diff_expt ) return full_grad_diff / float( n ) ################################################################## def func_val_bin_class_loss_3( n, d, b, X, Y, bias, w, lamb = None, XYw_bias = None, nnzX = None ): """! Compute the objective value of loss function 3 \f$ \ell_3( Y( Xw + b )) := \ln( 1 + \exp( -Y( Xw + b )) ) - \ln( 1 + \exp( -Y( Xw + b ) - \alpha ))\f$ for a given \f$ \alpha > 0\f$. Parameters ---------- @param n : sample size @param d : number of features @param b : mini - batch size b = 1: single stochastic gradient 1 < b < n: mini - batch stochastic gradient b = n: full gradient @param X : input data @param Y : input label @param bias : input bias @param w : input vector @param lamb: penalty parameters @param XYw_bias : precomputed Y(Xw + b) if available @param nnzX : average number of non - zero elements for each sample @param index : index set for mini-batch calculation Returns ---------- @retval : \f$\ell_3( Y( Xw + b ))\f$ """ alpha = 1.0 exp_a = np.exp( - alpha ) if b == 1: # get a random sample i = np.random.randint( 0, n ) Xi = X[i,:] expt = np.exp( -Y[i] * ( Xi.dot( w ) + bias[i] )) return np.sum( np.log( 1.0 + expt ) - np.log( 1.0 + exp_a * expt ) ) # batch elif b < n: # get a random batch of size b index = random.sample( range( n ), b ) # calculate number of batches if nnzX is None: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( b / batch_size ) batch_loss = 0.0 for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), b - 1 ) batch_X = X[index[startIdx:endIdx],:] batch_Y = Y[index[startIdx:endIdx]] batch_bias = bias[index[startIdx:endIdx]] expt = np.exp( -batch_Y * ( batch_X.dot( w ) + batch_bias )) batch_loss += np.sum( np.log( 1.0 + expt ) - np.log( 1.0 + exp_a * expt ) ) return batch_loss / float( b ) else: if XYw_bias is not None: expt = np.exp( - XYw_bias ) return ( 1.0 / float( n )) * np.sum(( np.log( 1.0 + expt ) - np.log( 1.0 + exp_a * expt )) ) else: # calculate number of batches if nnzX is None: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( n / batch_size ) full_loss = 0.0 for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), n - 1 ) batch_X = X[startIdx:endIdx,:] batch_Y = Y[startIdx:endIdx] batch_bias = bias[startIdx:endIdx] expt = np.exp( -batch_Y * ( batch_X.dot( w ) + batch_bias )) full_loss += np.sum( np.log( 1.0 + expt ) - np.log( 1.0 + exp_a * expt ) ) return full_loss / float( n ) def func_diff_eval_bin_class_loss_3( n, d, b, X, Y, bias, w1, w2, lamb = None, XYw_bias = None, nnzX = None ): """! Compute the objective value of loss function 3 \f$ \ell_3( Y( Xw2 + b )) - \ell_3( Y( Xw1 + b )) \f$ Parameters ---------- @param n : sample size @param d : number of features @param b : mini - batch size b = 1: single stochastic gradient 1 < b < n: mini - batch stochastic gradient b = n: full gradient @param X : input data @param Y : input label @param bias : input bias @param w1 : 1st input vector @param w2 : 2nd input vector @param lamb: penalty parameters @param XYw_bias : precomputed Y(Xw + b) if available @param nnzX : average number of non - zero elements for each sample @param index : index set for mini-batch calculation Returns ---------- """ alpha = 1.0 exp_a = np.exp( - alpha ) if b == 1: # get a random sample i = np.random.randint( 0, n ) Xi = X[i,:] expt1 = np.exp( -Y[i] * ( Xi.dot( w1 ) + bias[i] )) expt2 = np.exp( -Y[i] * ( Xi.dot( w2 ) + bias[i] )) return np.sum( (np.log( 1.0 + expt2 ) - np.log( 1.0 + exp_a * expt2 )) - (np.log( 1.0 + expt1 ) - np.log( 1.0 + exp_a * expt1 ) ) ) # batch elif b < n: # get a random batch of size b index = random.sample( range( n ), b ) # calculate number of batches if nnzX is None: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( b / batch_size ) batch_loss_diff = 0.0 for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), b - 1 ) batch_X = X[index[startIdx:endIdx],:] batch_Y = Y[index[startIdx:endIdx]] batch_bias = bias[index[startIdx:endIdx]] expt1 = np.exp( -batch_Y * ( batch_X.dot( w1 ) + batch_bias )) expt2 = np.exp( -batch_Y * ( batch_X.dot( w2 ) + batch_bias )) batch_loss_diff += np.sum( (np.log( 1.0 + expt2 ) - np.log( 1.0 + exp_a * expt2 )) - (np.log( 1.0 + expt1 ) - np.log( 1.0 + exp_a * expt1 )) ) return batch_loss_diff / float( b ) else: if XYw_bias is not None: expt = np.exp( - XYw_bias ) return ( 1.0 / float( n )) * np.sum(( np.log( 1.0 + expt ) - np.log( 1.0 + exp_a * expt )) ) else: # calculate number of batches if nnzX is None: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( n / batch_size ) full_loss_diff = 0.0 for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), n - 1 ) batch_X = X[startIdx:endIdx,:] batch_Y = Y[startIdx:endIdx] batch_bias = bias[startIdx:endIdx] expt1 = np.exp( -batch_Y * ( batch_X.dot( w1 ) + batch_bias )) expt2 = np.exp( -batch_Y * ( batch_X.dot( w2 ) + batch_bias )) full_loss_diff += np.sum( (np.log( 1.0 + expt2 ) - np.log( 1.0 + exp_a * expt2 )) - (np.log( 1.0 + expt1 ) - np.log( 1.0 + exp_a * expt1 )) ) return full_loss_diff / float( n ) def grad_eval_bin_class_loss_3( n, d, b, X, Y, bias, w, lamb = None, nnzX = None ): """! Compute the ( full/stochastic ) gradient of loss function 3. where \f$ \ell_3( Y( Xw + b )) := \ln( 1 + \exp( -Y( Xw + b )) ) - \ln( 1 + \exp( -Y( Xw + b ) - \omega ))\f$ for a given \f$ \omega > 0\f$. Parameters ---------- @param n : sample size @param d : number of features @param b : mini - batch size b = 1: single stochastic gradient 1 < b < n: mini - batch stochastic gradient b = n: full gradient @param X : input data @param Y : input label @param bias : input bias @param w : input vector @param lamb: penalty parameters @param nnzX : average number of non - zero elements for each sample @param index : index set for mini-batch calculation Returns ---------- @retval : computed full/stochastic gradient @retval XYw_bias: The precomputed \f$ Y( Xw + bias )\f$ """ if nnzX is None: nnzX = d alpha = 1 exp_a = np.exp( alpha ) # single sample if b == 1: # get a random sample i = np.random.randint( 0, n ) Xi = X[i, :] expt = np.exp( Y[i] * ( Xi.dot( w ) + bias[i] )) return (( 1 / ( expt * exp_a + 1.0 ) - 1 / ( expt + 1.0 )) * Y[i] ) * Xi # batch elif b < n: # get a random batch of size b index = random.sample( range( n ), b ) # calculate number of batches if nnzX == 0: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( b / batch_size ) batch_grad = np.zeros( d ) for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), b - 1 ) batch_X = X[index[startIdx:endIdx],:] batch_Y = Y[index[startIdx:endIdx]] batch_bias = bias[index[startIdx:endIdx]] expt = np.exp( batch_Y * ( batch_X.dot( w ) + batch_bias )) batch_grad += batch_X.transpose().dot( batch_Y * ( 1 / ( expt * exp_a + 1.0 ) - 1 / ( expt + 1.0 )) ) return batch_grad / float( b ) # full else: # calculate number of batches if nnzX == 0: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( b / batch_size ) full_grad = np.zeros( d ) XYw_bias = np.zeros( n ) for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), n - 1 ) batch_X = X[startIdx:endIdx,:] batch_Y = Y[startIdx:endIdx] batch_bias = bias[startIdx:endIdx] batch_XYw_bias = batch_Y * ( batch_X.dot( w ) + batch_bias ) XYw_bias[startIdx:endIdx] = batch_XYw_bias expt = np.exp( batch_XYw_bias ) full_grad += batch_X.transpose().dot( batch_Y * ( 1.0/ ( expt * exp_a + 1.0 ) - 1.0/ ( expt + 1.0 )) ) return full_grad / float( n ), XYw_bias def grad_diff_eval_bin_class_loss_3( n, d, b, X, Y, bias, w1, w2, lamb = None, nnzX = None ): """! Compute the ( full/stochastic ) gradient difference of loss function 3 \f$\displaystyle\frac{1}{b}\left( \sum_{i \in \mathcal{B}_t}( \nabla f_i( w_2 ) - \nabla f_i( w_1 )) \right ) \f$ Parameters ---------- @param n : sample size @param d : number of features @param b : mini - batch size b = 1: single stochastic gradient 1 < b < n: mini - batch stochastic gradient b = n: full gradient @param X : input data @param Y : input label @param bias : input bias @param w1 : 1st input vector @param w2 : 2nd input vector @param lamb: penalty parameters @param nnzX : average number of non - zero elements for each sample @param index : index set for mini-batch calculation Returns ---------- @retval : computed full/stochastic gradient """ if nnzX is None: nnzX = d alpha = 1 exp_a = np.exp( alpha ) # single sample if b == 1: # get a random sample i = np.random.randint( 0, n ) Xi = X[i,:] expt1 = np.exp( Y[i] * ( Xi.dot( w1 ) + bias[i] )) expt2 = np.exp( Y[i] * ( Xi.dot( w2 ) + bias[i] )) diff_expt = ( 1.0/( expt2 * exp_a + 1.0 ) - 1.0/( expt2 + 1.0 )) - ( 1.0/( expt1 * exp_a + 1.0 ) - 1.0/( expt1 + 1.0 )) return diff_expt * Y[i] * Xi # batch elif b < n: # get a random batch of size b index = random.sample( range( n ), b ) # calculate number of batches if nnzX == 0: nnzX = d batch_size = int( total_mem_batch // nnzX ) num_batches = math.ceil( b / batch_size ) batch_grad_diff = np.zeros( d ) for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), b - 1 ) batch_X = X[index[startIdx:endIdx],:] batch_Y = Y[index[startIdx:endIdx]] batch_bias = bias[index[startIdx:endIdx]] expt1 = np.exp( batch_Y * ( batch_X.dot( w1 ) + batch_bias )) expt2 = np.exp( batch_Y * ( batch_X.dot( w2 ) + batch_bias )) diff_expt = ( 1/( expt2 * exp_a + 1.0 ) - 1/( expt2 + 1.0 )) - ( 1/( expt1 * exp_a + 1.0 ) - 1/( expt1 + 1.0 )) batch_grad_diff += batch_X.transpose().dot( batch_Y * diff_expt ) return batch_grad_diff / float( b ) # full else: # calculate number of batches if nnzX == 0: nnzX = d batch_size = int( total_mem_full // nnzX ) num_batches = math.ceil( b / batch_size ) full_grad_diff = np.zeros( d ) for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), n - 1 ) batch_X = X[startIdx:endIdx] batch_Y = Y[startIdx:endIdx] batch_bias = bias[startIdx:endIdx] expt1 = np.exp( batch_Y * ( batch_X.dot( w1 ) + batch_bias )) expt2 = np.exp( batch_Y * ( batch_X.dot( w2 ) + batch_bias )) diff_expt = ( 1/( expt2 * exp_a + 1.0 ) - 1/( expt2 + 1.0 )) - ( 1/( expt1 * exp_a + 1.0 ) - 1/( expt1 + 1.0 )) full_grad_diff += batch_X.transpose().dot( batch_Y * diff_expt ) return full_grad_diff / float( n ) ################################################################## def func_val_bin_class_loss_4( n, d, b, X, Y, bias, w, lamb = None, XYw_bias = None, nnzX = None ): """! Compute the objective value of loss function 4 \f$ \ell_4^{(i)}( Y_i( X_i^Tw + b )) := \begin{cases} 0,~&\text{if }Y_i( X_i^Tw + b ) > 1\\ \ln(1 + (Y_i( X_i^Tw + b ) - 1)^2),&\text{otherwise} \end{cases}\f$ for a given \f$ \omega > 0\f$. Parameters ---------- @param n : sample size @param d : number of features @param b : mini - batch size b = 1: single stochastic gradient 1 < b < n: mini - batch stochastic gradient b = n: full gradient @param X : input data @param Y : input label @param bias : input bias @param w : input vector @param lamb: penalty parameters @param XYw_bias : precomputed Y(Xw + b) if available @param nnzX : average number of non - zero elements for each sample @param index : index set for mini-batch calculation Returns ---------- @retval : \f$\ell_4( Y( Xw + b )) = [\ell_4^{(0)},\ell_4^{(1)},\dots,\ell_4^{(n-1)}]^T\f$ """ if b == 1: # get a random sample i = np.random.randint( 0, n ) Xi = X[i,:] XYw_bias = Y[i] * ( Xi.dot( w ) + bias[i] ) return (XYw_bias <= 1) * ( np.log( 1 + np.square( XYw_bias - 1 ) )) # batch elif b < n: # get a random batch of size b index = random.sample( range( n ), b ) # calculate number of batches if nnzX is None: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( b / batch_size ) batch_loss = 0.0 for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), b - 1 ) batch_X = X[index[startIdx:endIdx],:] batch_Y = Y[index[startIdx:endIdx]] batch_bias = bias[index[startIdx:endIdx]] batch_XYw_bias = batch_Y * ( batch_X.dot( w ) + batch_bias ) batch_loss += np.sum((batch_XYw_bias <= 1) * ( np.log( 1 + np.square( batch_XYw_bias - 1 ) ))) return batch_loss / float( b ) else: if XYw_bias is not None: return ( 1.0 / float( n )) * ( np.sum((XYw_bias <= 1) * ( np.log( 1 + np.square( XYw_bias - 1 ) )))) else: # calculate number of batches if nnzX is None: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( n / batch_size ) full_loss = 0.0 for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), n - 1 ) batch_X = X[startIdx:endIdx,:] batch_Y = Y[startIdx:endIdx] batch_bias = bias[startIdx:endIdx] batch_XYw_bias = batch_Y * ( batch_X.dot( w ) + batch_bias ) full_loss += np.sum((batch_XYw_bias <= 1) * ( np.log( 1 + np.square( batch_XYw_bias - 1 ) ))) return full_loss / float( n ) def func_diff_eval_bin_class_loss_4( n, d, b, X, Y, bias, w1, w2, lamb = None, XYw_bias = None, nnzX = None ): """! Compute the objective value of loss function 3 \f$ \ell_4( Y( Xw2 + b )) - \ell_4( Y( Xw1 + b )) \f$ Parameters ---------- @param n : sample size @param d : number of features @param b : mini - batch size b = 1: single stochastic gradient 1 < b < n: mini - batch stochastic gradient b = n: full gradient @param X : input data @param Y : input label @param bias : input bias @param w1 : 1st input vector @param w2 : 2nd input vector @param lamb: penalty parameters @param XYw_bias : precomputed Y(Xw + b) if available @param nnzX : average number of non - zero elements for each sample @param index : index set for mini-batch calculation Returns ---------- """ if b == 1: # get a random sample i = np.random.randint( 0, n ) Xi = X[i,:] XYw_bias1 = Y[i] * ( Xi.dot( w1 ) + bias[i] ) XYw_bias2 = Y[i] * ( Xi.dot( w2 ) + bias[i] ) return (XYw_bias2 <= 1) * ( np.log( 1 + np.square( XYw_bias2 - 1 ) )) \ - (XYw_bias1 <= 1) * ( np.log( 1 + np.square( XYw_bias1 - 1 ) )) # batch elif b < n: # get a random batch of size b index = random.sample( range( n ), b ) # calculate number of batches if nnzX is None: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( b / batch_size ) batch_loss_diff = 0.0 for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), b - 1 ) batch_X = X[index[startIdx:endIdx],:] batch_Y = Y[index[startIdx:endIdx]] batch_bias = bias[index[startIdx:endIdx]] batch_XYw_bias1 = batch_Y * ( batch_X.dot( w1 ) + batch_bias ) batch_XYw_bias2 = batch_Y * ( batch_X.dot( w2 ) + batch_bias ) batch_loss_diff += np.sum((batch_XYw_bias2 <= 1) * ( np.log( 1 + np.square( batch_XYw_bias2 - 1 ) )))\ - np.sum((batch_XYw_bias1 <= 1) * ( np.log( 1 + np.square( batch_XYw_bias1 - 1 ) ))) return batch_loss_diff / float( b ) else: # calculate number of batches if nnzX is None: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( n / batch_size ) full_loss_diff = 0.0 for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), n - 1 ) batch_X = X[startIdx:endIdx,:] batch_Y = Y[startIdx:endIdx] batch_bias = bias[startIdx:endIdx] batch_XYw_bias1 = batch_Y * ( batch_X.dot( w1 ) + batch_bias ) batch_XYw_bias2 = batch_Y * ( batch_X.dot( w2 ) + batch_bias ) full_loss_diff += np.sum((batch_XYw_bias2 <= 1) * ( np.log( 1 + np.square( batch_XYw_bias2 - 1 ) )))\ - np.sum((batch_XYw_bias1 <= 1) * ( np.log( 1 + np.square( batch_XYw_bias1 - 1 ) ))) return full_loss_diff / float( n ) def grad_eval_bin_class_loss_4( n, d, b, X, Y, bias, w, lamb = None, nnzX = None ): """! Compute the ( full/stochastic ) gradient of loss function 4. where \f$ \ell_4^{(i)}( Y_i( X_i^Tw + b )) := \begin{cases} 0,~&\text{if }Y_i( X_i^Tw + b ) > 1\\ \ln(1 + (Y_i( X_i^Tw + b ) - 1)^2),&\text{otherwise} \end{cases}\f$ Parameters ---------- @param n : sample size @param d : number of features @param b : mini - batch size b = 1: single stochastic gradient 1 < b < n: mini - batch stochastic gradient b = n: full gradient @param X : input data @param Y : input label @param bias : input bias @param w : input vector @param lamb: penalty parameters @param nnzX : average number of non - zero elements for each sample @param index : index set for mini-batch calculation Returns ---------- @retval : computed full/stochastic gradient @retval XYw_bias: The precomputed \f$ Y( Xw + bias )\f$ """ if nnzX is None: nnzX = d # single sample if b == 1: # get a random sample i = np.random.randint( 0, n ) Xi = X[i, :] tempV = Y[i] * ( Xi.dot( w ) + bias[i] ) - 1 return ( 2 * tempV * Y[i] / ( 1 + np.square( tempV ) )) * Xi # batch elif b < n: # get a random batch of size b index = random.sample( range( n ), b ) # calculate number of batches if nnzX == 0: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( b / batch_size ) batch_grad = np.zeros( d ) for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), b - 1 ) batch_X = X[index[startIdx:endIdx],:] batch_Y = Y[index[startIdx:endIdx]] batch_bias = bias[index[startIdx:endIdx]] tempVect = batch_Y * ( batch_X.dot( w ) + batch_bias ) - 1 batch_grad += batch_X.transpose().dot( batch_Y * 2 * tempVect / ( 1.0 + np.square( tempVect ) )) return batch_grad / float( b ) # full else: # calculate number of batches if nnzX == 0: nnzX = d batch_size = np.maximum( int( total_mem_full // nnzX ), 1 ) num_batches = math.ceil( b / batch_size ) full_grad = np.zeros( d ) XYw_bias = np.zeros( n ) for j in range( num_batches ): # calculate start/end indices for each batch startIdx = batch_size * j endIdx = np.minimum( batch_size * ( j + 1 ), n - 1 ) batch_X = X[startIdx:endIdx,:] batch_Y = Y[startIdx:endIdx] batch_bias = bias[startIdx:endIdx] batch_XYw_bias = batch_Y * ( batch_X.dot( w ) + batch_bias ) tempVect = batch_XYw_bias - 1 XYw_bias[startIdx:endIdx] = batch_XYw_bias full_grad += batch_X.transpose().dot( batch_Y * 2 * tempVect / ( 1.0 + np.square( tempVect ) )) return full_grad / float( n ), XYw_bias def grad_diff_eval_bin_class_loss_4( n, d, b, X, Y, bias, w1, w2, lamb = None, nnzX = None ): """! Compute the ( full/stochastic ) gradient difference of loss function 3 \f$\displaystyle\frac{1}{b}\left( \sum_{i \in \mathcal{B}_t}( \nabla f_i( w_2 ) - \nabla f_i( w_1 )) \right ) \f$ Parameters ---------- @param n : sample size @param d : number of features @param b : mini - batch size b = 1: single stochastic gradient 1 < b < n: mini - batch stochastic gradient b = n: full gradient @param X : input data @param Y : input label @param bias : input bias @param w1 : 1st input vector @param w2 : 2nd input vector @param lamb: penalty parameters @param nnzX : average number of non - zero elements for each sample @param index : index set for mini-batch calculation Returns ---------- @retval : computed full/stochastic gradient """ if nnzX is None: nnzX = d alpha = 1 exp_a = np.exp( alpha ) # single sample if b == 1: # get a random sample i = np.random.randint( 0, n ) Xi = X[i,:] tempV1 = Y[i] * ( Xi.dot( w1 ) + bias[i] ) - 1 tempV2 = Y[i] * ( Xi.dot( w2 ) + bias[i] ) - 1 diff = 2 * ( tempV2 / ( 1.0 + np.square(tempV2) ) - tempV1 / ( 1.0 +
np.square(tempV1)
numpy.square
import numpy as np import bayesiancoresets as bc import os, sys from scipy.stats import multivariate_normal #make it so we can import models/etc from parent folder sys.path.insert(1, os.path.join(sys.path[0], '../common')) import gaussian M = 300 # log: 200 N = 600 # log: 1000 d = 200 # log: 200 opt_itrs = 500 # for SparseVI proj_dim = 100 pihat_noise =0.75 mu0 = np.zeros(d) Sig0 = np.eye(d) Sig = np.eye(d) SigL = np.linalg.cholesky(Sig) th = np.ones(d) Sig0inv = np.linalg.inv(Sig0) Siginv =
np.linalg.inv(Sig)
numpy.linalg.inv
import os import datetime import numpy as np import matplotlib.pyplot as plt from matplotlib import colors as c import matplotlib.ticker as ticker from decimal import Decimal from risk import get_heatmap ''' Hello heatmap.py plots the output of risk.py as a heatmap graph with the given parameters. The risk is a function of 3 variables: C, theta and r_loc. We follow this order in this script. - i) fix one variable: param = (YOUR SELECTED VARIABLE) ex. param = 0, that is "C" (as Python idexes from 0) or param = 1, that is "theta" or param = 2, that is "r_loc" - ii) say, you selected param = 2 (r_loc) to be fixed, now you can plot as many heatmaps as many r_loc values you provide to the program in r_loc = [(YOUR LIST OF FIXED PARAMETERS)] ex. r_loc = np.array([1.3,1.8,2.2,2.6]) - iii) specify the range of the other two variables you want to examine ex. c = np.arange(100000, 1100000, 10000) and theta = np.arange(0, 0.000255, 0.000001) - iv) The program saves the heatmaps in a folder named after your selected variable in the "Heatmaps" folder ''' #---------------------------------------------------- # Give the values here: param = 2 #param = 0 ( = C); param = 1 ( = theta); param = 2 ( = r_loc) c = np.arange(100000, 1100000, 10000) theta = np.arange(0, 0.000255, 0.000001) r_loc =
np.array([1.05, 1.3, 1.8, 2.2, 2.6])
numpy.array
#!/usr/bin/env python3 import sys import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d, Axes3D import numpy as np ### # Enable latex for labels plt.rcParams['text.usetex'] = True ### # Parse the input file f = open( sys.argv[1], 'r' ) x_lst = [] y_lst = [] z_lst = [] for line in f: line = line.strip() a = line.split() x_lst.append( float( a[ 0 ] ) ) y_lst.append( float( a[ 1 ] ) ) z_lst.append( float( a[ 2 ] ) ) ### # Convert the data to NumPy array x =
np.array(x_lst)
numpy.array
''' Classes ------- LearnAlg Defines some generic routines for * saving global parameters * assessing convergence * printing progress updates to stdout * recording run-time ''' import numpy as np import time import logging import os import sys import scipy.io import learnalg.ElapsedTimeLogger as ElapsedTimeLogger from sklearn.externals import joblib from bnpy.ioutil import ModelWriter from bnpy.util import ( isEvenlyDivisibleFloat, getMemUsageOfCurProcess_MiB, ) Log = logging.getLogger('bnpy') Log.setLevel(logging.DEBUG) class LearnAlg(object): """ Abstract base class for learning algorithms that train HModels. Attributes ------ task_output_path : str file system path to directory where files are saved seed : int seed used for random initialization PRNG : np.random.RandomState random number generator algParams : dict keyword parameters controlling algorithm behavior default values for each algorithm live in config/ Can be overrided by keyword arguments specified by user outputParams : dict keyword parameters controlling saving to file / logs """ def __init__(self, task_output_path=None, seed=0, algParams=dict(), outputParams=dict(), BNPYRunKwArgs=dict()): ''' Constructs and returns a LearnAlg object ''' if isinstance(task_output_path, str): self.task_output_path = os.path.splitext(task_output_path)[0] else: self.task_output_path = None self.seed = int(seed) self.PRNG = np.random.RandomState(self.seed) self.algParams = algParams self.outputParams = outputParams self.BNPYRunKwArgs = BNPYRunKwArgs self.lap_list = list() self.loss_list = list() self.K_list = list() self.elapsed_time_sec_list = list() self.SavedIters = set() self.PrintIters = set() self.totalDataUnitsProcessed = 0 self.status = 'active. not converged.' self.algParamsLP = dict() for k, v in algParams.items(): if k.count('LP') > 0: self.algParamsLP[k] = v def fit(self, hmodel, Data): ''' Execute learning algorithm to train hmodel on Data. This method is extended by any subclass of LearnAlg Returns ------- Info : dict of diagnostics about this run ''' pass def set_random_seed_at_lap(self, lap): ''' Set internal random generator based on current lap. Reset the seed deterministically for each lap. using combination of seed attribute (unique to this run), and the provided lap argument. This allows reproducing exact values from this run later without starting over. Post Condition ------ self.PRNG rest to new random seed. ''' if isEvenlyDivisibleFloat(lap, 1.0): self.PRNG = np.random.RandomState(self.seed + int(lap)) def set_start_time_now(self): ''' Record start time (in seconds since 1970) ''' self.start_time = time.time() def updateNumDataProcessed(self, N): ''' Update internal count of number of data observations processed. Each lap thru dataset of size N, this should be updated by N ''' self.totalDataUnitsProcessed += N def get_elapsed_time(self): ''' Returns float of elapsed time (in seconds) since this object's set_start_time_now() method was called ''' return time.time() - self.start_time def buildRunInfo(self, Data, **kwargs): ''' Create dict of information about the current run. Returns ------ Info : dict contains information about completed run. ''' # Convert TraceLaps from set to 1D array, sorted in ascending order lap_history = np.asarray(self.lap_list) loss_history = np.asarray(self.loss_list) K_history = np.asarray(self.K_list) elapsed_time_sec_history = np.asarray(self.elapsed_time_sec_list) return dict(status=self.status, task_output_path=self.task_output_path, loss_history=loss_history, lap_history=lap_history, K_history=K_history, elapsed_time_sec_history=elapsed_time_sec_history, Data=Data, elapsedTimeInSec=time.time() - self.start_time, **kwargs) def hasMove(self, moveName): if moveName in self.algParams: return True return False def verify_monotonic_decrease( self, cur_loss=0.00001, prev_loss=0, lapFrac=None): ''' Verify current loss does not increase from previous loss Returns ------- boolean : True if monotonic decrease, False otherwise ''' if np.isnan(cur_loss): raise ValueError("Evidence should never be NaN") if np.isinf(prev_loss): return False isDecreasing = cur_loss <= prev_loss thr = self.algParams['convergeThrELBO'] isWithinTHR = np.abs(cur_loss - prev_loss) < thr mLPkey = 'doMemoizeLocalParams' if not isDecreasing and not isWithinTHR: serious = True if mLPkey in self.algParams and not self.algParams[mLPkey]: warnMsg = 'loss increased when doMemoizeLocalParams=0' warnMsg += '(monotonic decrease not guaranteed)\n' serious = False else: warnMsg = 'loss increased!\n' warnMsg += ' prev = % .15e\n' % (prev_loss) warnMsg += ' cur = % .15e\n' % (cur_loss) if lapFrac is None: prefix = "WARNING: " else: prefix = "WARNING @ %.3f: " % (lapFrac) if serious or not self.algParams['doShowSeriousWarningsOnly']: Log.error(prefix + warnMsg) def isSaveDiagnosticsCheckpoint(self, lap, nMstepUpdates): ''' Answer True/False whether to save trace stats now ''' traceEvery = self.outputParams['traceEvery'] if traceEvery <= 0: return False return isEvenlyDivisibleFloat(lap, traceEvery) \ or nMstepUpdates < 3 \ or lap in self.lap_list \ or isEvenlyDivisibleFloat(lap, 1.0) def saveDiagnostics(self, lap, SS, loss, ActiveIDVec=None): ''' Save trace stats to disk ''' if lap in self.lap_list: return elapsed_time_sec = self.get_elapsed_time() self.lap_list.append(lap) self.loss_list.append(loss) self.K_list.append(SS.K) self.elapsed_time_sec_list.append(elapsed_time_sec) # Exit here if we're not saving to disk if self.task_output_path is None: return # Record current state to plain-text files with open(self.mkfile('trace_lap.txt'), 'a') as f: f.write('%.4f\n' % (lap)) with open(self.mkfile('trace_loss.txt'), 'a') as f: f.write('%.9e\n' % (loss)) with open(self.mkfile('trace_elapsed_time_sec.txt'), 'a') as f: f.write('%.3f\n' % (elapsed_time_sec)) with open(self.mkfile('trace_K.txt'), 'a') as f: f.write('%d\n' % (SS.K)) with open(self.mkfile('trace_n_examples_total.txt'), 'a') as f: f.write('%d\n' % (self.totalDataUnitsProcessed)) # Record active counts in plain-text files counts = SS.getCountVec() assert counts.ndim == 1 counts = np.asarray(counts, dtype=np.float32) np.maximum(counts, 0, out=counts) with open(self.mkfile('active_counts.txt'), 'a') as f: flatstr = ' '.join(['%.3f' % x for x in counts]) f.write(flatstr + '\n') with open(self.mkfile('active_uids.txt'), 'a') as f: if ActiveIDVec is None: if SS is None: ActiveIDVec = np.arange(SS.K) else: ActiveIDVec = SS.uids flatstr = ' '.join(['%d' % x for x in ActiveIDVec]) f.write(flatstr + '\n') if SS.hasSelectionTerm('DocUsageCount'): ucount = SS.getSelectionTerm('DocUsageCount') flatstr = ' '.join(['%d' % x for x in ucount]) with open(self.mkfile('active_doc_counts.txt'), 'a') as f: f.write(flatstr + '\n') def isCountVecConverged(self, Nvec, prevNvec, batchID=None): if Nvec.size != prevNvec.size: # Warning: the old value of maxDiff is still used for printing return False maxDiff = np.max(np.abs(Nvec - prevNvec)) isConverged = maxDiff < self.algParams['convergeThr'] if batchID is not None: if not hasattr(self, 'ConvergeInfoByBatch'): self.ConvergeInfoByBatch = dict() self.ConvergeInfoByBatch[batchID] = dict( isConverged=isConverged, maxDiff=maxDiff) isConverged = np.min([ self.ConvergeInfoByBatch[b]['isConverged'] for b in self.ConvergeInfoByBatch]) maxDiff = np.max([ self.ConvergeInfoByBatch[b]['maxDiff'] for b in self.ConvergeInfoByBatch]) self.ConvergeInfo = dict(isConverged=isConverged, maxDiff=maxDiff) return isConverged def isSaveParamsCheckpoint(self, lap, nMstepUpdates): ''' Answer True/False whether to save full model now ''' s = self.outputParams['saveEveryLogScaleFactor'] sE = self.outputParams['saveEvery'] if s > 0: new_sE = np.maximum(np.maximum(sE, sE ** s), sE * s) if (lap >= new_sE): self.outputParams['saveEvery'] = new_sE if lap > 1.0: self.outputParams['saveEvery'] = \ np.ceil(self.outputParams['saveEvery']) saveEvery = self.outputParams['saveEvery'] if saveEvery <= 0 or self.task_output_path is None: return False return isEvenlyDivisibleFloat(lap, saveEvery) \ or (isEvenlyDivisibleFloat(lap, 1.0) and lap <= self.outputParams['saveEarly']) \ or nMstepUpdates < 3 \ or np.allclose(lap, 1.0) \ or np.allclose(lap, 2.0) \ or
np.allclose(lap, 4.0)
numpy.allclose
import torch import torch.nn.functional as F import argparse import cv2 import numpy as np from glob import glob num_classes = 2 img_height, img_width = 224, 224 channel = 3 GPU = False torch.manual_seed(0) class InceptionModule(torch.nn.Module): def __init__(self, in_f, f_1, f_2_1, f_2_2, f_3_1, f_3_2, f_4_2): super(InceptionModule, self).__init__() self.conv1 = torch.nn.Conv2d(in_f, f_1, kernel_size=1, padding=0, stride=1) self.conv2_1 = torch.nn.Conv2d(in_f, f_2_1, kernel_size=1, padding=0, stride=1) self.conv2_2 = torch.nn.Conv2d(f_2_1, f_2_2, kernel_size=3, padding=1, stride=1) self.conv3_1 = torch.nn.Conv2d(in_f, f_3_1, kernel_size=1, padding=0, stride=1) self.conv3_2 = torch.nn.Conv2d(f_3_1, f_3_2, kernel_size=5, padding=2, stride=1) self.conv4_2 = torch.nn.Conv2d(in_f, f_4_2, kernel_size=1, padding=0, stride=1) def forward(self, x): x1 = torch.nn.ReLU()(self.conv1(x)) x2 = torch.nn.ReLU()(self.conv2_1(x)) x2 = torch.nn.ReLU()(self.conv2_2(x2)) x3 = torch.nn.ReLU()(self.conv3_1(x)) x3 = torch.nn.ReLU()(self.conv3_2(x3)) x4 = F.max_pool2d(x, 3, padding=1, stride=1) x4 = torch.nn.ReLU()(self.conv4_2(x4)) x = torch.cat([x1, x2, x3, x4], dim=1) return x class GoogLeNetv1(torch.nn.Module): def __init__(self): super(GoogLeNetv1, self).__init__() self.conv1 = torch.nn.Conv2d(3, 64, kernel_size=7, padding=0, stride=2) self.conv2_1 = torch.nn.Conv2d(64, 64, kernel_size=1, padding=0, stride=1) self.conv2_2 = torch.nn.Conv2d(64, 192, kernel_size=3, padding=1, stride=1) self.inception3a = InceptionModule(192, 64, 96, 128, 16, 32, 32) self.inception3b = InceptionModule(256, 128, 128, 192, 32, 96, 64) self.inception4a = InceptionModule(480, 192, 96, 208, 16, 48, 64) self.inception4b = InceptionModule(512, 160, 112, 224, 24, 64, 64) self.inception4c = InceptionModule(512, 128, 128, 256, 24, 64, 64) self.inception4d = InceptionModule(512, 112, 144, 288, 32, 64, 64) self.inception4e = InceptionModule(528, 256, 160, 320, 32, 128, 128) self.inception5a = InceptionModule(832, 256, 160, 320, 32, 128, 128) self.inception5b = InceptionModule(832, 384, 192, 384, 48, 128, 128) self.linear = torch.nn.Linear(1024, num_classes) self.aux1_conv1 = torch.nn.Conv2d(512, 128, kernel_size=1, padding=0, stride=1) self.aux1_linear1 = torch.nn.Linear(25088, 1024) self.aux1_linear2 = torch.nn.Linear(1024, num_classes) self.aux2_conv1 = torch.nn.Conv2d(528, 128, kernel_size=1, padding=0, stride=1) self.aux2_linear1 = torch.nn.Linear(25088, 1024) self.aux2_linear2 = torch.nn.Linear(1024, num_classes) def forward(self, x): x = torch.nn.ReLU()(self.conv1(x)) x = F.max_pool2d(x, 3, padding=1, stride=2) x = torch.nn.modules.normalization.LocalResponseNorm(size=1)(x) x = torch.nn.ReLU()(self.conv2_1(x)) x = torch.nn.ReLU()(self.conv2_2(x)) x = torch.nn.modules.normalization.LocalResponseNorm(size=1)(x) x = F.max_pool2d(x, 3, padding=1, stride=2) x = self.inception3a(x) x = self.inception3b(x) x = F.max_pool2d(x, 3, padding=1, stride=2) x = self.inception4a(x) x_aux1 = F.avg_pool2d(x, 5, padding=2, stride=1) x_aux1 = torch.nn.ReLU()(self.aux1_conv1(x_aux1)) x_aux1 = x_aux1.view(list(x_aux1.size())[0], -1) x_aux1 = torch.nn.ReLU()(self.aux1_linear1(x_aux1)) x_aux1 = torch.nn.Dropout(p=0.7)(x_aux1) x_aux1 = self.aux1_linear2(x_aux1) x_aux1 = F.softmax(x_aux1, dim=1) x = self.inception4b(x) x = self.inception4c(x) x = self.inception4d(x) x_aux2 = F.avg_pool2d(x, 5, padding=2, stride=1) x_aux2 = torch.nn.ReLU()(self.aux2_conv1(x_aux2)) x_aux2 = x_aux2.view(list(x_aux2.size())[0], -1) x_aux2 = torch.nn.ReLU()(self.aux2_linear1(x_aux2)) x_aux2 = torch.nn.Dropout(p=0.7)(x_aux2) x_aux2 = self.aux2_linear2(x_aux2) x_aux2 = F.softmax(x_aux2, dim=1) x = self.inception4e(x) x = F.max_pool2d(x, 3, padding=1, stride=2) x = self.inception5a(x) x = self.inception5b(x) x = F.avg_pool2d(x, 7, padding=0, stride=1) x = x.view(list(x.size())[0], -1) x = self.linear(x) x = F.softmax(x, dim=1) return x, x_aux1, x_aux2 CLS = ['akahara', 'madara'] # get train data def data_load(path, hf=False, vf=False, rot=False): xs = [] ts = [] paths = [] for dir_path in glob(path + '/*'): for path in glob(dir_path + '/*'): x = cv2.imread(path) x = cv2.resize(x, (img_width, img_height)).astype(np.float32) x /= 255. x = x[..., ::-1] xs.append(x) for i, cls in enumerate(CLS): if cls in path: t = i ts.append(t) paths.append(path) if hf: xs.append(x[:, ::-1]) ts.append(t) paths.append(path) if vf: xs.append(x[::-1]) ts.append(t) paths.append(path) if hf and vf: xs.append(x[::-1, ::-1]) ts.append(t) paths.append(path) if rot != False: angle = rot scale = 1 # show a_num = 360 // rot w_num = np.ceil(np.sqrt(a_num)) h_num = np.ceil(a_num / w_num) count = 1 #plt.subplot(h_num, w_num, count) #plt.axis('off') #plt.imshow(x) #plt.title("angle=0") while angle < 360: _h, _w, _c = x.shape max_side = max(_h, _w) tmp = np.zeros((max_side, max_side, _c)) tx = int((max_side - _w) / 2) ty = int((max_side - _h) / 2) tmp[ty: ty+_h, tx: tx+_w] = x.copy() M = cv2.getRotationMatrix2D((max_side/2, max_side/2), angle, scale) _x = cv2.warpAffine(tmp, M, (max_side, max_side)) _x = _x[tx:tx+_w, ty:ty+_h] xs.append(_x) ts.append(t) paths.append(path) # show #count += 1 #plt.subplot(h_num, w_num, count) #plt.imshow(_x) #plt.axis('off') #plt.title("angle={}".format(angle)) angle += rot #plt.show() xs = np.array(xs, dtype=np.float32) ts = np.array(ts, dtype=np.int) xs = xs.transpose(0,3,1,2) return xs, ts, paths # train def train(): # GPU device = torch.device("cuda" if GPU else "cpu") # model model = GoogLeNetv1().to(device) opt = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9) model.train() xs, ts, paths = data_load('../Dataset/train/images/', hf=True, vf=True, rot=10) # training mb = 32 mbi = 0 train_ind = np.arange(len(xs)) np.random.seed(0)
np.random.shuffle(train_ind)
numpy.random.shuffle
from scipy import interpolate as interp import numpy as np import sys, os from saveNet import saveTensorToMat, saveArrayToMat import matplotlib.pyplot as plt #from pynufft import NUFFT_cpu from utils.data_vis import tensorshow, ntensorshow import multiprocessing import ctypes from functools import partial NUFFTobj = NUFFT_cpu() sys.path.append('/home/helrewaidy/bart/python/') from bart import bart, bart_nested os.environ["TOOLBOX_PATH"] = '/home/helrewaidy/bart/' import time ''' [IMPORTANT] --> Bart docs (https://github.com/mikgroup/bart-workshop) if error "Exception: Environment variable TOOLBOX_PATH is not set." appeared in terminal: export TOOLBOX_PATH=/home/helrewaidy/bart export PATH=${TOOLBOX_PATH}:${PATH} ''' from parameters import Parameters params = Parameters() def shared_array(shape): """ Form a shared memory numpy array. http://stackoverflow.com/questions/5549190/is-shared-readonly-data-copied-to-different-processes-for-python-multiprocessing """ l = 1 for i in shape: l *= i # print(np.prod(shape)) shared_array_base = multiprocessing.Array(ctypes.c_float, l) shared_array = np.ctypeslib.as_array(shared_array_base.get_obj()) shared_array = shared_array.reshape(*shape) return np.asarray(shared_array) def sort_files(flist): return sorted(flist, key=lambda x: 1000 * parse_dat_filename(x)['slc'] + parse_dat_filename(x)['phs']) def create_radial_trajectory(n_cols, n_views, s_angle=0): angles = np.linspace(0, np.pi-np.pi/n_views, n_views) + s_angle line = np.zeros([2, n_cols]); line[0, :] = np.linspace(-n_cols//2, n_cols//2, n_cols) traj = [np.matmul([[np.cos(ang), np.sin(ang)], [-np.sin(ang), np.cos(ang)]], line) for ang in angles] return np.flip(np.moveaxis(traj, [2, 0], [0, 1]), 0) # [n_cols, n_views, 2] def create_radial_trajectory2(n_cols, n_views, s_angle=0): angles = np.linspace(0, np.pi-np.pi/n_views, n_views) + s_angle line = np.zeros([2, n_cols]); line[0, :] = np.linspace(-n_cols//2, n_cols//2, n_cols) traj = [np.matmul([[np.cos(ang), np.sin(ang)], [-np.sin(ang), np.cos(ang)]], line) for ang in angles] return np.flip(np.moveaxis(traj, [2, 0], [0, 1]), 0), angles # [n_cols, n_views, 2] def get_radial_trajectory(kspace_lines, gradient_delays_method=None): n_cols = kspace_lines.shape[0] n_views = kspace_lines.shape[1] # if 'NONE' == gradient_delays_method: # use python not Not BART # trajectory = create_radial_trajectory(n_cols, n_views) # else: trajectory = bart(1, 'traj -r -x{0} -y{1} -c'.format(n_cols, n_views)) ckl = np.expand_dims(kspace_lines[:,:,:,0], 0) + 1j* np.expand_dims(kspace_lines[:,:,:,1],0); ckl = ckl.astype(np.complex64) if 'RING' == gradient_delays_method: trajectory = bart_nested(1, 2, 'estdelay -R -r1.5', 'traj -x{0} -y{1} -r -c -q'.format(n_cols, n_views), trajectory ,ckl) elif 'AC-addaptive' == gradient_delays_method: trajectory = bart_nested(1, 2, 'estdelay', 'traj -x{0} -y{1} -r -c -q'.format(n_cols, n_views), trajectory ,ckl) debug = False if debug: img_nufft = bart(1, 'nufft -d{0}:{1}:1 -i'.format(n_cols, n_cols), trajectory, ckl) gd_img_nufft = bart(1, 'nufft -d{0}:{1}:1 -i'.format(n_cols, n_cols), trajectory, ckl) rss_img = np.sqrt(np.sum(img_nufft.real**2 + img_nufft.imag**2, 3)) gd_rss_img = np.sqrt(np.sum(gd_img_nufft.real**2 + gd_img_nufft.imag**2, 3)) show_complex_image(rss_img, rng=(0, 0.005)) show_complex_image(gd_rss_img, rng=(0, 0.005)) trajectory = np.flip(np.moveaxis(trajectory[0:2,:,:].real, [0], [2]), 2)# [n_cols, n_views, 2] return trajectory def show_complex_image(img, ch = 0,rng=(0, 0.1)): plt.figure() plt.imshow(np.abs(img[:,:,ch]), cmap='gray', vmin=rng[0], vmax=rng[1]) plt.show() def get_grid_neighbors(kspace_lines, grid_size=(416, 416), k_neighbors=50, trajectory=None, gradient_delays_method='RING', neighbor_mat=True): n_cols = kspace_lines.shape[0] n_views = kspace_lines.shape[1] n_cha = kspace_lines.shape[2] if trajectory is None: trajectory = get_radial_trajectory(kspace_lines, gradient_delays_method=gradient_delays_method) if neighbor_mat: ngrid = np.zeros((grid_size[0], grid_size[0], k_neighbors, n_cha, 2)) traj = np.reshape(trajectory, [n_cols * n_views, 2], order='F') traj = traj.real ksl = np.reshape(kspace_lines, [n_cols * n_views, n_cha, 2], order='F') Ksp_ri = np.zeros((grid_size[0], grid_size[1], k_neighbors, n_cha, 2)) Loc_xy = 1e10 * np.ones((grid_size[0], grid_size[1], k_neighbors, 2)) k = 0 # st = time.time() for ic in range(-grid_size[0]//2, grid_size[0]-grid_size[0]//2): for jc in range(-grid_size[1]//2, grid_size[1]-grid_size[1]//2): i = ic + grid_size[0] // 2 j = jc + grid_size[1] // 2 gi = ic * n_cols / grid_size[0] gj = jc * n_cols / grid_size[1] # rd = 5 # rd = 0.05 * (abs(ic) + abs(jc)) + 1 # rd = (10/208) * (ic**2 + jc**2)**0.5 + 2 rd = 10 dist = ((traj[:, 0] - gi) ** 2 + (traj[:, 1] - gj) ** 2) ** 0.5 idxs = np.argwhere(dist <= rd)[:, 0].tolist() idxs = np.array([x for _,x in sorted(zip(dist[idxs], idxs))]) # tmp_n[i, j] = len(idxs) # idxs = sorted(dist) # tmp_n[i, j] = idxs[9] if neighbor_mat: if len(idxs) == 0: continue rdist = np.round(dist[idxs] * (k_neighbors / rd), 0) # for n in range(0, k_neighbors - 1): if any(rdist == n): kidx = idxs[np.argwhere(rdist == n)[:, 0].tolist()] ngrid[i, j, n, :, :] = np.mean(ksl[kidx, :, :], axis=0) else: s = len(idxs) if len(idxs)<=k_neighbors else k_neighbors Ksp_ri[i, j, 0:s, ] = ksl[idxs[:s].tolist()] Loc_xy[i, j, 0:s, 0], Loc_xy[i, j, 0:s, 1] = traj[idxs[:s].tolist(), 0] - gi, traj[idxs[:s].tolist(), 1] - gj k += 1 # Idx_list.append(idxs.tolist()) # Dist.append(dist[idxs.tolist()].tolist()) return ngrid if neighbor_mat else Ksp_ri, Loc_xy def fill_row(rn, ksl, traj, grid_size, k_neighbors, n_batch, n_cols, n_cha): # print('start filling row') l_Ksp_ri = np.zeros((n_batch, rn[1], grid_size[1], k_neighbors, n_cha, 2)) l_Loc_xy = 1e3 * np.ones((rn[1], grid_size[1], k_neighbors, 2)) i = 0 for ic in range(rn[0], rn[0]+rn[1]): # i = ic + grid_size[0] // 2 gi = ic * n_cols / grid_size[0] for jc in range(-grid_size[1]//2, grid_size[1]-grid_size[1]//2): j = jc + grid_size[1] // 2 gj = jc * n_cols / grid_size[1] rd = 10 dist = ((traj[:, 0] - gi) ** 2 + (traj[:, 1] - gj) ** 2) ** 0.5 idxs = np.argwhere(dist <= rd)[:, 0].tolist() idxs = np.array([x for _,x in sorted(zip(dist[idxs], idxs))]) s = len(idxs) if len(idxs)<=k_neighbors else k_neighbors l_Ksp_ri[:, i, j, 0:s, ] = ksl[:, idxs[:s].tolist()] l_Loc_xy[i, j, 0:s, 0], l_Loc_xy[i, j, 0:s, 1] = traj[idxs[:s].tolist(), 0] - gi, traj[idxs[:s].tolist(), 1] - gj i += 1 # lock.acquire() s = rn[0] + grid_size[0] // 2 t = rn[0] + rn[1] + grid_size[0] // 2 # print(s, ' ', t) # saveArrayToMat(l_Ksp_ri, 'ksp_{0}_{1}'.format(s, t)) # saveArrayToMat(l_Loc_xy, 'loc_{0}_{1}'.format(s, t)) Ksp_ri[:, :, :, s:t, :, :] = np.float32(np.flip(np.moveaxis(l_Ksp_ri, [3, 4], [2, 1]), axis=4)) # print(l_Ksp_ri.shape) Loc_xy[:, s:t, :, :] = np.float32(np.flip(np.moveaxis(l_Loc_xy, [2], [0]), axis=2)) # print(l_Loc_xy.shape) # lock.release() # i = ic + grid_size[0] // 2 # time.sleep(10) # gi = ic * n_cols / grid_size[0] # for jc in range(-grid_size[1] // 2, grid_size[1] - grid_size[1] // 2): # j = jc + grid_size[1] // 2 # gj = jc * n_cols / grid_size[1] # # rd = 10 # dist = ((traj[:, 0] - gi) ** 2 + (traj[:, 1] - gj) ** 2) ** 0.5 # idxs = np.argwhere(dist <= rd)[:, 0].tolist() # idxs = np.array([x for _, x in sorted(zip(dist[idxs], idxs))]) # # s = len(idxs) if len(idxs) <= k_neighbors else k_neighbors # Ksp_ri[:, j, 0:s, ] = ksl[:, idxs[:s].tolist()] # Loc_xy[j, 0:s, 0], Loc_xy[j, 0:s, 1] = traj[idxs[:s].tolist(), 0] - gi, traj[idxs[:s].tolist(), 1] - gj # print('Finish filling row') # return Ksp_ri, Loc_xy n_process = 16 ## could be only in {2, 4, 8, 13, 16, 26, ...etc} ## for input of size 416; the 16 cores will make everything easier, since is is dividable to 16 Ksp_ri = shared_array([params.batch_size, params.n_channels, params.k_neighbors, params.img_size[0], params.img_size[1], 2]) Loc_xy = shared_array([params.k_neighbors, params.img_size[0], params.img_size[0], 2]) pool = multiprocessing.Pool(processes=n_process) # lock = multiprocessing.Lock() def get_grid_neighbors_mp(kspace_lines, grid_size=(416, 416), k_neighbors=50, trajectory=None, gradient_delays_method='RING', neighbor_mat=True): ''' Multi-processing version with a batch dimension ''' n_batch = kspace_lines.shape[0] n_cols = kspace_lines.shape[1] n_views = kspace_lines.shape[2] n_cha = kspace_lines.shape[3] if trajectory is None: trajectory = get_radial_trajectory(kspace_lines, gradient_delays_method=gradient_delays_method) # if neighbor_mat: # ngrid = np.zeros((grid_size[0], grid_size[0], k_neighbors, n_cha, 2)) traj = np.reshape(trajectory[0,], [n_cols * n_views, 2], order='F') # traj = traj.real ksl = np.reshape(kspace_lines, [n_batch, n_cols * n_views, n_cha, 2], order='F') # # Ksp_ri = np.zeros((grid_size[0], grid_size[1], k_neighbors, n_cha, 2)) # # Loc_xy = 1e3 * np.ones((grid_size[0], grid_size[1], k_neighbors, 2)) # print('In Grid Function') # st = time.time() rn = [(r, grid_size[0]//n_process) for r in range(-grid_size[0]//2, grid_size[0]-grid_size[0]//2, grid_size[0]//n_process)] fill_row_p = partial(fill_row, ksl=ksl, traj=traj, grid_size=grid_size, k_neighbors=k_neighbors, n_batch=n_batch, n_cols=n_cols, n_cha=n_cha) pool.map(fill_row_p, rn) # # st = time.time() # # ss = pool.map(fill_row_p, rn) # # print(time.time()-st) # # st = time.time() # Ksp_ri, Loc_xy = zip(*pool.map(fill_row_p, rn)) # # print(time.time() - st) # Ksp_ri = np.moveaxis(np.asarray(Ksp_ri), [1, 5, 4, 0], [0, 1, 2, 4]) # Ksp_ri = np.reshape(Ksp_ri, [n_batch, n_cha, k_neighbors, grid_size[0], grid_size[1], 2]) # Ksp_ri = np.flip(Ksp_ri, axis=4) # # Loc_xy = np.flip(np.moveaxis( # np.asarray(Loc_xy), [3], [0]).reshape([k_neighbors, grid_size[0], grid_size[1], 2]), # axis=3) # # for ic in range(-grid_size[0]//2, grid_size[0]-grid_size[0]//2): # print('Finished Grid Function') return ngrid if neighbor_mat else Ksp_ri, Loc_xy def get_radial_undersampled_image(img, n_views, rot_angle=0, grid_method='BART'): traj, angles = create_radial_trajectory2(2*img.shape[0], n_views, rot_angle) im = np.zeros((2*img.shape[0], 2*img.shape[1])) im[img.shape[0]//2:-img.shape[0]//2, img.shape[0]//2:-img.shape[0]//2] = img img = im.astype(np.float32).astype(np.complex64) DC = True if grid_method == 'BART': trajectory = np.moveaxis(traj, 2, 0) trajectory = np.concatenate((trajectory, np.zeros((1, img.shape[0], n_views))), 0) ksl = bart(1, 'nufft -d{0}:{1}:1 -t'.format(img.shape[0], img.shape[1]), trajectory, img) if DC: d = np.abs(np.linspace(-1, 1, img.shape[0]) + 1/img.shape[0]) d = np.repeat(np.expand_dims(np.expand_dims(d, 0), 2), ksl.shape[2], 2) # for ii in range(0, ksl.shape[2]): # d[:, :, ii] = d[:, :, ii] * np.exp(1j*angles[ii]) # w = abs(d.real + 1j * d.imag) / max(abs(d.real + 1j * d.imag)) ksl = ksl * d # * w output = bart(1, 'nufft -d{0}:{1}:1 -i -t'.format(img.shape[0], img.shape[1]), trajectory, ksl) output = output[img.shape[0]//4:-img.shape[0]//4, img.shape[0]//4:-img.shape[0]//4] elif grid_method == 'pyNUFFT': traj = np.reshape(traj, [img.shape[0] * n_views, 2], order='F') NUFFTobj.plan(om=traj, Nd=(img.shape[0], img.shape[1]), Kd=(2*img.shape[0], 2*img.shape[1]), Jd=(6, 6)) ksll = NUFFTobj.forward(img) output = NUFFTobj.solve(ksll, 'dc', maxiter=30) return output def grid_kspace(kspace_lines, trajectory=None, gridding_method='grid_kernels', gradient_delays_method='RING', k_neighbors=10): n_cols = kspace_lines.shape[0] n_views = kspace_lines.shape[1] n_cha = kspace_lines.shape[2] if trajectory is None: trajectory = get_radial_trajectory(kspace_lines, gradient_delays_method=gradient_delays_method) if gridding_method == 'grid_kernels': # return get_grid_neighbors(kspace_lines, grid_size=(416, 416), k_neighbors=k_neighbors, trajectory=trajectory, neighbor_mat=False) return kspace_lines, trajectory if gridding_method == 'neighbours_matrix': ngrid = get_grid_neighbors(kspace_lines, grid_size=(416, 416), k_neighbors=k_neighbors, trajectory=trajectory, neighbor_mat=True) output = np.flip(ngrid, 1) return output, [], [] if 'pyNUFFT' == gridding_method: trajectory = np.reshape(trajectory, [n_cols * n_views, 2], order='F') kspace_lines = np.reshape(kspace_lines, [n_cols * n_views, n_cha, 2], order='F') trajectory = trajectory.real * np.pi / (n_cols // 2) NUFFTobj.plan(om=trajectory, Nd=(n_cols//2, n_cols//2), Kd=(n_cols, n_cols), Jd=(6, 6), batch=n_cha) kspace_lines = kspace_lines[:, :, 0] + 1j*kspace_lines[:, :, 1] # st = time.time() output = NUFFTobj.solve(kspace_lines, solver='cg', maxiter=10) # print(time.time()-st) output = np.fft.fftn(output, axes=(0, 1)) ## output = NUFFTobj.y2k(kspace_lines) elif 'BART' == gridding_method: ckl = np.expand_dims(kspace_lines[:, :, :, 0], 0) + 1j * np.expand_dims(kspace_lines[:, :, :, 1], 0) ckl = ckl.astype(np.complex64) trajectory = np.moveaxis(trajectory, [2], [0]) trajectory = np.concatenate((trajectory, np.zeros((1, n_cols, n_views))), 0) # st = time.time() output = bart(1, 'nufft -d{0}:{1}:1 -i'.format(n_cols, n_cols), trajectory, ckl) # print(time.time()-st) output = np.fft.fftn(np.squeeze(output,2)[n_cols//4:-n_cols//4, n_cols//4:-n_cols//4, :], axes=(0, 1)) else: trajectory = np.reshape(trajectory, [n_cols * n_views, 2], order='F') kspace_lines =
np.reshape(kspace_lines, [n_cols * n_views, n_cha, 2], order='F')
numpy.reshape
# pylint: disable=R0902,R0904,R0914 from math import sin, cos, radians, atan2, sqrt, degrees from itertools import count from typing import Tuple # , TYPE_CHECKING import numpy as np from numpy import array, zeros from scipy.sparse import coo_matrix # type: ignore from pyNastran.utils.numpy_utils import integer_types from pyNastran.bdf.cards.base_card import BaseCard from pyNastran.bdf.field_writer_8 import print_card_8 from pyNastran.bdf.field_writer_16 import print_card_16 from pyNastran.bdf.field_writer_double import print_card_double from pyNastran.bdf.bdf_interface.assign_type import ( integer, integer_or_blank, double, string, string_or_blank, parse_components, interpret_value, integer_double_string_or_blank) class DTI(BaseCard): """ +-----+-------+-----+------+-------+--------+------+-------------+ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | +=====+=======+=====+======+=======+========+======+=============+ | DTI | UNITS | "1" | MASS | FORCE | LENGTH | TIME | STRESS | +-----+-------+-----+------+-------+--------+------+-------------+ MSC +-----+-------+-----+------+-------+--------+------+-------------+ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | +=====+=======+=====+======+=======+========+======+=============+ | DTI | UNITS | "1" | MASS | FORCE | LENGTH | TIME | TEMPERATURE | +-----+-------+-----+------+-------+--------+------+-------------+ NX """ type = 'DTI' #_properties = ['shape', 'ifo', 'is_real', 'is_complex', 'is_polar', 'matrix_type', 'tin_dtype', 'tout_dtype'] @classmethod def _init_from_empty(cls): name = 'name' fields = [] return DTI(name, fields, comment='') def _finalize_hdf5(self, encoding): """hdf5 helper function""" keys, values = self.fields # nan != nan values = [value if value == value else None for value in values] values_str = [value.decode(encoding) if isinstance(value, bytes) else value for value in values] #values = [valuei.decode(encoding) if isinstance(valuei, bytes) else ( # None if np.isnan(valuei) else valuei) # for valuei in values] self.fields = {key : value for key, value in zip(keys, values_str)} @classmethod def export_to_hdf5(cls, h5_file, model, encoding): """exports the elements in a vectorized way""" from pyNastran.bdf.bdf_interface.hdf5_exporter import _export_list for name, dti in sorted(model.dti.items()): if name == 'UNITS': i = 0 for key, value in sorted(dti.fields.items()): #print(key, value) h5_group = h5_file.create_group(str(key)) if value is None: h5_group.create_dataset(str(i), data=np.nan) else: h5_group.create_dataset(str(i), data=value) i += 1 #fields = { #'mass' : mass, #'force' : force, #'length' : length, #'time' : time, #'temp_stress' : temp_stress #} else: for irecord, fields in sorted(dti.fields.items()): #h5_group = h5_file.create_group(str(irecord)) attr = 'irecord=%s' % irecord namei = str(irecord) values = fields _export_list(h5_file, attr, namei, values, encoding) #print(h5_group) #print(irecord, fields) def __init__(self, name, fields, comment=''): """ Creates a DTI card Parameters ---------- name : str UNITS fields : List[varies] the fields comment : str; default='' a comment for the card """ if comment: self.comment = comment self.name = name self.fields = fields assert len(fields) > 0, fields @classmethod def add_card(cls, card, comment): """ Adds a DTI card from ``BDF.add_card(...)`` Parameters ---------- card : BDFCard() a BDFCard object comment : str; default='' a comment for the card """ name = string(card, 1, 'name') if name == 'UNITS': integer(card, 2, '1') mass = string(card, 3, 'mass') force = string(card, 4, 'force') length = string(card, 5, 'length') time = string(card, 6, 'time') temp_stress = string_or_blank(card, 7, 'stress/temperature') fields = { 'mass' : mass, 'force' : force, 'length' : length, 'time' : time, 'temp_stress' : temp_stress } else: fields = [] #field2 = card[2] list_fields = [] irecord = integer(card, 2, 'record') if irecord == 0: for i in range(3, len(card)): val = integer_double_string_or_blank( card, i, 'T%i' % (i-1), default=32767) list_fields.append(val) else: for i in range(3, len(card)): val = integer_double_string_or_blank( card, i, 'T%i' % (i-1), default=None) list_fields.append(val) fields = {irecord: list_fields,} return DTI(name, fields, comment=comment) def raw_fields(self): if self.name == 'UNITS': mass = self.fields['mass'] force = self.fields['force'] length = self.fields['length'] time = self.fields['time'] temp_stress = self.fields['temp_stress'] list_fields = ['DTI', self.name, '1', mass, force, length, time, temp_stress] else: list_fields = [] for irecord, fields in sorted(self.fields.items()): nfields = len(fields) list_fields += ['DTI', self.name] + fields nleftover = nfields % 8 if nleftover: list_fields += [None] * nleftover return list_fields def write_card(self, size: int=8, is_double: bool=False) -> str: if self.name == 'UNITS': card = self.repr_fields() return self.comment + print_card_8(card) msg = self.comment for irecord, fields in sorted(self.fields.items()): list_fields = ['DTI', self.name, irecord, ] + fields msg += print_card_8(list_fields) return msg class NastranMatrix(BaseCard): """ Base class for the DMIG, DMIJ, DMIJI, DMIK matrices """ def _finalize_hdf5(self, encoding): """hdf5 helper function""" self.finalize() def __init__(self, name, matrix_form, tin, tout, polar, ncols, GCj, GCi, Real, Complex=None, comment='', finalize=True): """ Creates a NastranMatrix Parameters ---------- name : str the name of the matrix matrix_form : int matrix shape 4=Lower Triangular 5=Upper Triangular 6=Symmetric 8=Identity (m=nRows, n=m) tin : int matrix input precision 1=Real, Single Precision 2=Real, Double Precision 3=Complex, Single Precision 4=Complex, Double Precision tout : int matrix output precision 0=same as tin 1=Real, Single Precision 2=Real, Double Precision 3=Complex, Single Precision 4=Complex, Double Precision polar : int; default=0 Input format of Ai, Bi Integer=blank or 0 indicates real, imaginary format Integer > 0 indicates amplitude, phase format ncols : int ??? GCj : List[(node, dof)] the jnode, jDOFs GCi : List[(node, dof)] the inode, iDOFs Real : List[float] The real values Complex : List[float]; default=None The complex values (if the matrix is complex) comment : str; default='' a comment for the card """ if comment: self.comment = comment if Complex is None: Complex = [] if tout is None: tout = 0 polar = _set_polar(polar) if matrix_form not in [1, 2, 4, 5, 6, 8, 9]: msg = ( 'matrix_form=%r must be [1, 2, 4, 5, 6, 8, 9]\n' ' 1: Square\n' ' 2: Rectangular\n' #' 4: Lower Triangular\n' #' 5: Upper Triangular\n' ' 6: Symmetric\n' #' 8: Identity (m=nRows, n=m)\n' ' 9: Rectangular\n' % matrix_form) raise ValueError(msg) self.name = name #: 4-Lower Triangular; 5=Upper Triangular; 6=Symmetric; 8=Identity (m=nRows, n=m) self.matrix_form = matrix_form #: 1-Real, Single Precision; 2=Real,Double Precision; # 3=Complex, Single; 4=Complex, Double self.tin = tin #: 0-Set by cell precision self.tout = tout #: Input format of Ai, Bi. (Integer=blank or 0 indicates real, imaginary format; #: Integer > 0 indicates amplitude, phase format.) self.polar = polar self.ncols = ncols self.GCj = GCj self.GCi = GCi self.Real = Real if len(Complex) or self.is_complex: self.Complex = Complex assert self.tin in [3, 4], 'tin=%r and must 3 or 4 to be complex' % self.tin assert self.tout in [0, 3, 4], 'tin=%r and must 0, 3 or 4 to be complex' % self.tout assert isinstance(matrix_form, integer_types), 'matrix_form=%r type=%s' % (matrix_form, type(matrix_form)) assert not isinstance(matrix_form, bool), 'matrix_form=%r type=%s' % (matrix_form, type(matrix_form)) if finalize: self.finalize() @classmethod def add_card(cls, card, comment=''): """ Adds a NastranMatrix (DMIG, DMIJ, DMIK, DMIJI) card from ``BDF.add_card(...)`` Parameters ---------- card : BDFCard() a BDFCard object comment : str; default='' a comment for the card """ name = string(card, 1, 'name') #zero matrix_form = integer(card, 3, 'ifo') tin = integer(card, 4, 'tin') tout = integer_or_blank(card, 5, 'tout', 0) polar = integer_or_blank(card, 6, 'polar', 0) if matrix_form == 1: # square ncols = integer_or_blank(card, 8, 'matrix_form=%s; ncol' % matrix_form) elif matrix_form == 6: # symmetric ncols = integer_or_blank(card, 8, 'matrix_form=%s; ncol' % matrix_form) elif matrix_form in [2, 9]: # rectangular ncols = integer(card, 8, 'matrix_form=%s; ncol' % (matrix_form)) else: # technically right, but nulling this will fix bad decks #self.ncols = blank(card, 8, 'matrix_form=%s; ncol' % self.matrix_form) msg = ( '%s name=%r matrix_form=%r is not supported. Valid forms:\n' ' 4=Lower Triangular\n' ' 5=Upper Triangular\n' ' 6=Symmetric\n' ' 8=Identity (m=nRows, n=m)\n' % (cls.type, name, matrix_form) ) raise NotImplementedError(msg) GCj = [] GCi = [] Real = [] Complex = [] return cls(name, matrix_form, tin, tout, polar, ncols, GCj, GCi, Real, Complex, comment=comment, finalize=False) @property def matrix_type(self): """gets the matrix type""" if not isinstance(self.matrix_form, integer_types): msg = 'ifo must be an integer; matrix_form=%r type=%s name=%s' % ( self.matrix_form, type(self.matrix_form), self.name) raise TypeError(msg) if isinstance(self.matrix_form, bool): msg = 'matrix_form must not be a boolean; matrix_form=%r type=%s name=%s' % ( self.matrix_form, type(self.matrix_form), self.name) raise TypeError(msg) if self.matrix_form == 1: matrix_type = 'square' elif self.matrix_form == 6: matrix_type = 'symmetric' elif self.matrix_form in [2, 9]: matrix_type = 'rectangular' else: # technically right, but nulling this will fix bad decks #self.ncols = blank(card, 8, 'matrix_form=%s; ncol' % self.matrix_form) raise NotImplementedError('%s matrix_form=%r is not supported' % ( self.type, self.matrix_form)) return matrix_type def finalize(self): """converts the lists into numpy arrays""" self.GCi =
np.asarray(self.GCi)
numpy.asarray
__all__ = ['temporaldev_itemvalues_freq','read_config_temporaldev','write_config_temporaldev','temporaldev_result_toxlsx'] from .BiblioSpecificGlobals import DIC_OUTDIR_DESCRIPTION def temporaldev_itemvalues_freq(keyword_filters ,items, years, corpuses_folder): ''' Make a list of named tuple [('item','keyword','data_frame','freq','year','mode'),...] with: 'item' in the list "items". Ex: items=['IK','AK',TK] 'keyword' in the list keyword_filters.values where: keyword_filters is a dict {mode:[keyword1,keyword2,...],...} with mode='is_in'or 'is_equal' 'data_frame' the dataframe of the frequency occurrences of keywords containing (or equal) to 'keyword') ''' # Standard library imports import re from collections import namedtuple from pathlib import Path # 3rd party imports import pandas as pd # Local imports import BiblioAnalysis_Utils as bau DIC_OUTDIR_DESCRIPTION = bau.DIC_OUTDIR_DESCRIPTION def _filter(df,keyword_filter,mode): '''Builds the dataframe dg out of the dataframe df by selecting the df rows such that the "item" column : - contains the keyword "keyword_filter" if mode="is_in" - is equal to "keyword_filter" elsewhere ''' if mode == 'is_in': dg = df[df['item'].str.contains(keyword_filter)] else: dg = df.loc[df['item']==keyword_filter] return dg keyword_filter_tuple = namedtuple('keyword_filter_list',['item','keyword','data_frame','freq','year','mode'] ) keyword_filter_list = [] for file_year in years: year = int(re.findall('\d{4}', file_year )[0]) for item in items: file_kw = DIC_OUTDIR_DESCRIPTION[item] file = corpuses_folder / Path(file_year) / Path('freq') / Path(file_kw) try: df = pd.read_csv(file) except: print(f"Warning no such file {file}") pass for mode,keyword_filter_all in keyword_filters.items(): for keyword_filter in keyword_filter_all: df_filter = _filter(df,keyword_filter,mode) keyword_filter_list.append(keyword_filter_tuple(item=item, keyword=keyword_filter, data_frame=df_filter, freq=sum(df_filter['f']), year=year, mode=mode)) return keyword_filter_list def read_config_temporaldev(file_config): """ Parse json file to build the keywords configuration for temporal analysis of corpuses Args: file_config (Path): absolute path of the configuration file Returns: items (list of strings): selected items for the analysis among ['IK', 'AK', 'TK', 'S', 'S2'] keywords (dict): {"is_in": list of selected strings, "is_equal": list of keywords} """ # Standard library imports import json from collections import defaultdict keywords = defaultdict(list) with open(file_config, "r") as read_file: config_temporal = json.load(read_file) items = config_temporal ["items"] for key, value in config_temporal.items(): keywords[key] = value return items,keywords def write_config_temporaldev(file_config,items,keywords): """ Store the keywords configuration for temporal analysis of corpuses in ajson file Args: file_config (path): absolute path of the configuration file keyword_filters (dict): { "is_in": list of selected strings, "is_equal": list of keywords} items (list of strings): selected items for the analysis among ['IK', 'AK', 'TK', 'S', 'S2'] """ # Standard library imports import json config_temporal = {} config_temporal ["items"] = items for key, value in keywords.items(): config_temporal [key] = value with open(file_config,'w') as write_file: config_temporal = json.dump(config_temporal,write_file,indent = 4) def temporaldev_result_toxlsx(keyword_filter_list,store_file): # Standard library imports import numpy as np # 3rd party imports import pandas as pd # Building a dict from each tupple of the keyword_filter_list list # to append the dataframe dg with the dict res={} flag = True for i in range(0,len(keyword_filter_list)): res['Corpus year']=keyword_filter_list[i].year res['Item'] = keyword_filter_list[i].item res['Search word'] = keyword_filter_list[i].keyword res['Weight'] = (round(keyword_filter_list[i].freq,3)) res['Search mode'] = keyword_filter_list[i].mode df = keyword_filter_list[i].data_frame res['Item-values list'] = [
np.array(df['item'])
numpy.array
# -*- coding: utf-8 -*- # import numpy class Midpoint(object): def __init__(self): self.weights = numpy.array([2.0]) self.points =
numpy.array([0.0])
numpy.array
import pandas as pd import numpy as np from gym import spaces, Env from typing import List, Optional, Tuple, Dict from ReservoirClass import * # TODO: make the bid-asks more modular # TODO: make the scale coherent and modular # TODO: implement cost function # TODO: calculate some statistics along # TODO: scale the observations pd.options.mode.chained_assignment = None # default='warn' ### GLOBAL VARIABLES ### MAX_ACCOUNT_BALANCE = 100000 MAX_VOLUME = 500 MAX_PRICE = 80000 VOL_SCALE = 50 BID_ASK_SPREAD_RANGE = (0.0065, 0.012) INITIAL_FORTUNE = 10000 MAX_STEPS = 1000 MAX_NET_WORTH = 30000 MAX_HOLDING = 50 # fix the seed. np.random.seed(0) class MultiAssetTradingEnv(Env): """Custom Environment that follows gym interface""" metadata = {'render.modes': ['human']} _scaling_functions = { 'tanh': np.tanh, 'sigmoid': lambda x: 1/(1+np.exp(-x)), 'softsign': lambda x: x/(1 + np.abs(x)), 'arctan': np.arctan, 'identity': lambda x: x, } _reservoir_types = ['rnn','lstm','gru','esn_infos','esn_states'] def __init__(self, assets: List[pd.DataFrame], delta = np.float64, window_size: int = 25, max_steps: int = 1000, initial_fortune: float = 10000, bid_ask_spread_range: Tuple[float, float] = BID_ASK_SPREAD_RANGE, transaction_cost = 0.001, ): super(MultiAssetTradingEnv, self).__init__() assert (delta >= 0 and delta <= 1), 'Impossible to construct utility' self.number_of_assets = len(assets) self.delta = delta self.initial_fortune = initial_fortune self.window_size = window_size self.max_steps = max_steps self.data = assets self._active_data = list() self.bid_ask_spread_min = bid_ask_spread_range[0] self.bid_ask_spread_max = bid_ask_spread_range[1] self.transaction_cost = transaction_cost self.action_space = spaces.Box(low= -np.inf*np.ones(self.number_of_assets), high=np.inf*np.ones(self.number_of_assets)) self.obs_size = 4*self.number_of_assets + 3 + (self.window_size-1)*6*self.number_of_assets self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=(self.obs_size,), dtype=np.float64) self.scale_price,self.scale_volume = self.get_scale_values() def get_scale_values(self): scale_price = 0 scale_volume = 0 for asset in self.data: max_price = np.max(asset['High']) max_volume = np.max(asset['Volume']) scale_price = max(scale_price,max_price) scale_volume = max(scale_volume,max_volume) return scale_price,scale_volume def scale_reward(self,x): return np.tanh(x) def utility(self,x): if (self.delta ==0): if x < 0: return -self.initial_fortune else: return np.log(x) else: if x < 0: return -self.initial_fortune else: return (np.power(x,self.delta) - 1)/self.delta def _make_trading_period(self) -> None: """ Sets the currently active trading episode of the environment """ start_episode = np.random.randint(1 + self.window_size, len(self.data[0]) - self._steps_left) self._active_data = list() for asset in self.data: #data = asset[start_episode - self.window_size:start_episode + self._steps_left].reset_index(drop=True) #data = data.reset_index(drop=True) dr = asset.loc[start_episode - self.window_size:start_episode + self._steps_left -1].reset_index(drop=True) self._active_data.append(dr) def reset(self): """ Reset the environment, and return the next observation. :return: next_observation """ self._current_step = self.window_size self._steps_left = self.max_steps self._make_trading_period() self.balance = self.initial_fortune self.portfolio = np.zeros(self.number_of_assets) self.net_worth = self.initial_fortune self.max_net_worth = self.initial_fortune self.fees = 0 self.std_portfolio = [] return self.next_observation() def next_observation(self): """ Use the active dataset active_df to compile the state space fed to the agent. Scale the data to fit into the range of observation_space. Differentiation of data has to be implemented. :return: obs: observation given to the agent. Modify observation_space accordingly. """ #Calculate open prices. open_prices_t = [] for asset in self._active_data: open_prices_t.append(asset['Open'][self._current_step]) open_prices_t = np.array(open_prices_t)/self.scale_price # TODO: create window_data with a reservoir_data function return_scaled = [] mean_price = [] mean_volume = [] window_data = list() for asset_data in self._active_data: window_asset_data = asset_data[self._current_step - self.window_size:self._current_step-1] window_asset_data.Open /= self.scale_price window_asset_data.Close /= self.scale_price window_asset_data.High /= self.scale_price window_asset_data.Low /= self.scale_price window_asset_data.Volume /= self.scale_volume return_window = asset_data['Close'][self._current_step - self.window_size:self._current_step - 1]\ - asset_data['Open'][self._current_step - self.window_size:self._current_step - 1] difference_window = asset_data['High'][self._current_step - self.window_size:self._current_step - 1]\ - asset_data['Low'][self._current_step - self.window_size:self._current_step - 1] dt = return_window / (difference_window + 1) window_asset_data['Return'] = dt mean_price.append(np.array(asset_data['Close'][self._current_step - self.window_size:self._current_step-1].values).mean()) mean_volume.append(
np.array(asset_data['Volume'][self._current_step - self.window_size:self._current_step-1].values).mean()
numpy.array
import logging import numpy as np #from ..utilities.function_tools import func_call_exception_trap from . import factor from .material import characteristic_material_strength, characteristic_wall_thickness logger = logging.getLogger(__name__) def incidental_reference_pressure(p_d, γ_inc): """Calculate DNVGL-ST-F101 «incidental reference pressure». :param p_d: design pressure :math:`(p_d)` :type p_d: float :param γ_inc: incidental to design pressure ratio :math:`(\gamma_{inc})` :type γ_inc: float :returns: p_inc incidental reference pressure :math:`(p_{inc})` :rtype: float Reference: DNVGL-ST-F101 (2017-12) eq:4.3 sec:4.2.2.2 p:67 :math:`(p_{inc})` .. doctest:: >>> incid_ref_press(100e5, 1.1) 11000000.0 """ p_inc = p_d * γ_inc return p_inc def system_test_pressure(p_d, γ_inc, α_spt): """Calculate DNVGL-ST-F101 «system test pressure». (system_test_press) :param p_d: design pressure :math:`(p_d)` :type p_d: float :param γ_inc: incidental to design pressure ratio :math:`(\gamma_{inc})` :type γ_inc: float :param α_spt: system pressure test factor :math:`(\alpha_{spt})` :type α_spt: float :returns: p_t system test pressure :math:`(p_t)` :rtype: float Reference: DNVGL-ST-F101 (2017-12) | eq:4.3 sec:4.2.2.2 p:67 :math:`p_{inc}` | table:5.8 sec:5.4.2.1 p:94 :math:`\alpha_{spt}` | sec:5.2.2.1 p:84 .. doctest:: >>> incid_ref_press(100e5, 1.1) 11000000.0 """ p_t = p_d * γ_inc * α_spt return p_t def local_incidental_pressure(p_d, ρ_cont, h_l, h_ref, γ_inc, g=9.80665): '''Calculate local incidental pressure. :param p_d: design pressure at ref elevation :math:`(p_d)` :type p_d: float :param ρ_cont: density of pipeline contents :math:`(\rho_{cont})` :type ρ_cont: float :param h_l: elevation of the local pressure point :math:`(h_l)` :type h_l: float :param h_ref: elevation of the reference point :math:`(h_{ref})` :type h_ref: float :param γ_inc: incidental to design pressure ratio :math:`(\gamma_{inc})` :type γ_inc: float :param g: gravitational acceleration :math:`(g)` :type g: float :returns: p_li local incidental pressure :math:`(p_{li})` :rtype: float Notes: γ_inc=1.0 for local system test pressure :math:`(p_{lt})`. .. math:: p_{li} = p_{inc} - \rho_{cont} \cdot g \cdot \left( h_l - h_{ref} \right) Reference: DNVGL-ST-F101 (2017-12) | sec:4.2.2.2 eq:4.1 p:67 :math:`(p_{li})` | sec:4.2.2.2 eq:4.3 p:67 :math:`(p_{inc})` .. doctest:: >>> local_incid_press(100.e-5, 1025, -125, 30) 1558563.751 ''' p_inc = p_d * γ_inc p_li = p_inc - ρ_cont * g * (h_l - h_ref) return p_li def local_test_pressure(p_t, ρ_t, h_l, h_ref, g=9.80665): """Calculate local test pressure. Reference: DNVGL-ST-F101 (2017-12) sec:4.2.2.2 eq:4.2 p:67 $p_{lt}$ """ _γ_inc = 1.0 p_lt = local_incidental_pressure(p_t, ρ_t, h_l, h_ref, _γ_inc, g) return p_lt def local_test_pressure_unity(α_spt, p_lt=None, p_li=None, p_e=None, **kwargs): """Local test pressure unity check. Reference: DNVGL-ST-F101 (2017-12) sec:5.4.2.1 eq:5.6 p:93 (local_test_press_unity) """ if p_e is None: p_e = external_pressure(h_l, ρ_seawater, g) if p_lt is None: p_lt = local_test_pressure(p_t, ρ_t, h_l, h_ref, p_e, α_spt, g) if p_li is None: p_li = local_incidental_pressure(p_d, ρ_cont, h_l, h_ref, γ_inc, g) p_lt_uty = (p_li - p_e) * α_spt / p_lt return p_lt_uty def external_pressure(h_l, ρ_seawater, g=9.80665): """Water pressure, external to pipe. """ p_e = np.abs(h_l) * ρ_seawater * g return p_e def mill_test_pressure(D, SMYS, SMTS, α_U=None, α_mpt=None, t_min=None, t=None, t_fab=None): """Mill test pressure Reference: DNVGL-ST-F101 (2017-12) sec:7.5.1.2 eq:7.3 p:175 $p_{mpt}$ (mill_test_press) see also p93. """ k=1.15 # assuming end-cap effect applies if t_min is None: t_min = characteristic_wall_thickness(t, t_fab, t_corr=0.0) p_mpt = k * (2*t_min)/(D-t_min) *
np.minimum(SMYS*0.96, SMTS*0.84)
numpy.minimum
# -*- coding: utf-8 -*- import numpy as np from .base import Layer from ztlearn.utils import get_pad from ztlearn.utils import unroll_inputs from ztlearn.utils import im2col_indices from ztlearn.utils import col2im_indices from ztlearn.utils import get_output_dims from ztlearn.initializers import InitializeWeights as init from ztlearn.optimizers import OptimizationFunction as optimizer class Conv(Layer): def __init__(self, filters = 32, kernel_size = (3, 3), activation = None, input_shape = (1, 8, 8), strides = (1, 1), padding = 'valid'): self.filters = filters self.strides = strides self.padding = padding self.activation = activation self.kernel_size = kernel_size self.input_shape = input_shape self.init_method = None self.optimizer_kwargs = None self.is_trainable = True @property def trainable(self): return self.is_trainable @trainable.setter def trainable(self, is_trainable): self.is_trainable = is_trainable @property def weight_initializer(self): return self.init_method @weight_initializer.setter def weight_initializer(self, init_method): self.init_method = init_method @property def weight_optimizer(self): return self.optimizer_kwargs @weight_optimizer.setter def weight_optimizer(self, optimizer_kwargs = {}): self.optimizer_kwargs = optimizer_kwargs @property def layer_activation(self): return self.activation @layer_activation.setter def layer_activation(self, activation): self.activation = activation @property def layer_parameters(self): return sum([np.prod(param.shape) for param in [self.weights, self.bias]]) @property def output_shape(self): pad_height, pad_width = get_pad(self.padding, self.input_shape[1], self.input_shape[2], self.strides[0], self.strides[1], self.kernel_size[0], self.kernel_size[1]) output_height, output_width = get_output_dims(self.input_shape[1], self.input_shape[2], self.kernel_size, self.strides, self.padding) return self.filters, int(output_height), int(output_width) def prep_layer(self): self.kernel_shape = (self.filters, self.input_shape[0], self.kernel_size[0], self.kernel_size[1]) self.weights = init(self.weight_initializer).initialize_weights(self.kernel_shape) self.bias = np.zeros((self.kernel_shape[0], 1)) class Conv2D(Conv): def __init__(self, filters = 32, kernel_size = (3, 3), activation = None, input_shape = (1, 8, 8), strides = (1, 1), padding = 'valid'): super(Conv2D, self).__init__(filters, kernel_size, activation, input_shape, strides, padding) def pass_forward(self, inputs, train_mode = True, **kwargs): self.filter_num, _, _, _ = self.weights.shape self.input_shape = inputs.shape self.inputs = inputs input_num, input_depth, input_height, input_width = inputs.shape pad_height, pad_width = get_pad(self.padding, input_height, input_width, self.strides[0], self.strides[1], self.kernel_size[0], self.kernel_size[1]) # confirm dimensions assert (input_height +
np.sum(pad_height)
numpy.sum
#!/usr/bin/env python3 # Standard lib import unittest # 3rd party import numpy as np # Our own imports from deep_hipsc_tracking.tracking import tracking_pipeline, Link from deep_hipsc_tracking.utils import save_point_csvfile from ..helpers import FileSystemTestCase # Tests class TestLinkNearbyTracks(unittest.TestCase): def test_links_closer_of_two_tracks_in_time(self): tt1 = np.array([1, 3, 5, 7, 9]) xx1 = np.array([0, 1, 2, 3, 4]) yy1 = np.array([1.1, 2.1, 3.1, 4.1, 5.1]) track1 = Link.from_arrays(tt1, xx1, yy1) tt2 = np.array([1, 3, 5, 7, 9]) xx2 = np.array([0, 1, 2, 3, 4]) yy2 = np.array([1, 2, 3, 4, 5]) track2 = Link.from_arrays(tt2, xx2, yy2) tt3 = np.array([11, 13, 15, 17, 19]) xx3 = np.array([5, 6, 7, 8, 9]) yy3 = np.array([6, 7, 8, 9, 10]) track3 = Link.from_arrays(tt3, xx3, yy3) res = tracking_pipeline.link_nearby_tracks( [track1, track2, track3], max_track_lag=2.1, max_link_dist=2, min_track_len=5, max_relink_attempts=10, ) exp = [track2, Link.join(track1, track3)] self.assertEqual(res, exp) def test_links_closer_of_two_tracks_in_space(self): tt1 = np.array([1, 3, 5, 7, 9]) xx1 = np.array([0, 1, 2, 3, 4]) yy1 = np.array([1, 2, 3, 4, 5]) track1 = Link.from_arrays(tt1, xx1, yy1) tt2 = np.array([1.5, 3.5, 5.5, 7.5, 9.5]) xx2 = np.array([0.5, 1.5, 2.5, 3.5, 4.5]) yy2 = np.array([1, 2, 3, 4, 5]) track2 = Link.from_arrays(tt2, xx2, yy2) tt3 = np.array([11, 13, 15, 17, 19]) xx3 = np.array([5, 6, 7, 8, 9]) yy3 = np.array([6, 7, 8, 9, 10]) track3 = Link.from_arrays(tt3, xx3, yy3) res = tracking_pipeline.link_nearby_tracks( [track1, track2, track3], max_track_lag=2.1, max_link_dist=2, min_track_len=5, ) exp = [track1, Link.join(track2, track3)] self.assertEqual(res, exp) def test_links_two_close_tracks(self): tt1 = np.array([1, 3, 5, 7, 9]) xx1 = np.array([0, 1, 2, 3, 4]) yy1 = np.array([1, 2, 3, 4, 5]) track1 = Link.from_arrays(tt1, xx1, yy1) tt2 = np.array([11, 13, 15, 17, 19]) xx2 = np.array([5, 6, 7, 8, 9]) yy2 = np.array([6, 7, 8, 9, 10]) track2 = Link.from_arrays(tt2, xx2, yy2) res = tracking_pipeline.link_nearby_tracks( [track1, track2], max_track_lag=2.1, max_link_dist=2, min_track_len=5, ) exp = [Link.join(track1, track2)] self.assertEqual(res, exp) def test_doesnt_link_far_tracks_in_space(self): tt1 = np.array([1, 3, 5, 7, 9]) xx1 = np.array([0, 1, 2, 3, 4]) yy1 = np.array([1, 2, 3, 4, 5]) track1 = Link.from_arrays(tt1, xx1, yy1) tt2 = np.array([11, 13, 15, 17, 19]) xx2 = np.array([5, 6, 7, 8, 9]) yy2 = np.array([6, 7, 8, 9, 10]) track2 = Link.from_arrays(tt2, xx2, yy2) res = tracking_pipeline.link_nearby_tracks( [track1, track2], max_track_lag=2.1, max_link_dist=1, min_track_len=5, ) exp = [track1, track2] self.assertEqual(res, exp) def test_doesnt_link_far_tracks_in_time(self): tt1 = np.array([1, 3, 5, 7, 9]) xx1 = np.array([0, 1, 2, 3, 4]) yy1 = np.array([1, 2, 3, 4, 5]) track1 = Link.from_arrays(tt1, xx1, yy1) tt2 = np.array([11, 13, 15, 17, 19]) xx2 = np.array([5, 6, 7, 8, 9]) yy2 = np.array([6, 7, 8, 9, 10]) track2 = Link.from_arrays(tt2, xx2, yy2) res = tracking_pipeline.link_nearby_tracks( [track1, track2], max_track_lag=1, max_link_dist=2, min_track_len=5, ) exp = [track1, track2] self.assertEqual(res, exp) def test_doesnt_link_temporally_overlaping_tracks(self): tt1 = np.array([1, 3, 5, 7, 9]) xx1 = np.array([0, 1, 2, 3, 4]) yy1 = np.array([1, 2, 3, 4, 5]) track1 = Link.from_arrays(tt1, xx1, yy1) tt2 = np.array([9, 11, 13, 15, 17]) xx2 = np.array([5, 6, 7, 8, 9]) yy2 = np.array([6, 7, 8, 9, 10]) track2 = Link.from_arrays(tt2, xx2, yy2) res = tracking_pipeline.link_nearby_tracks( [track1, track2], max_track_lag=1, max_link_dist=2, min_track_len=5, ) exp = [track1, track2] self.assertEqual(res, exp) class TestFilterByLinkDist(unittest.TestCase): def test_filters_simple_tracks_no_motion(self): tracks = [ (None, None, np.array([[1, 2], [2, 3], [3, 4]])), (None, None, np.array([[1, 2], [2, 3], [3, 4]])), (None, None, np.array([[1, 2], [2, 3], [3, 4]])), ] res = tracking_pipeline.filter_by_link_dist(tracks, max_link_dist=1) exp = [ (None, None, np.array([[1, 2], [2, 3], [3, 4]])), (None, None, np.array([[1, 2], [2, 3], [3, 4]])), (None, None, np.array([[1, 2], [2, 3], [3, 4]])), ] self.assertEqual(len(res), len(exp)) for r, e in zip(res, exp): np.testing.assert_almost_equal(r[2], e[2]) def test_filters_simple_tracks_some_motion(self): tracks = [ (None, None, np.array([[1, 2], [2, 3], [3, 4]])), (None, None, np.array([[1.1, 2], [2.1, 3], [3.1, 4]])), (None, None, np.array([[1.2, 2], [2.2, 3], [3.2, 4]])), ] res = tracking_pipeline.filter_by_link_dist(tracks, max_link_dist=1) exp = [ (None, None, np.array([[1, 2], [2, 3], [3, 4]])), (None, None, np.array([[1.1, 2], [2.1, 3], [3.1, 4]])), (None, None, np.array([[1.2, 2], [2.2, 3], [3.2, 4]])), ] self.assertEqual(len(res), len(exp)) for r, e in zip(res, exp): np.testing.assert_almost_equal(r[2], e[2]) def test_filters_simple_tracks_too_much_motion(self): tracks = [ (None, None, np.array([[1, 2], [2, 3], [3, 4]])), (None, None, np.array([[2.1, 2], [3.1, 3], [3.1, 4]])), (None, None, np.array([[3.2, 2], [4.2, 3], [3.2, 4]])), ] res = tracking_pipeline.filter_by_link_dist(tracks, max_link_dist=1) exp = [ (None, None, np.array([[3, 4]])), (None, None, np.array([[3.1, 4]])), (None, None, np.array([[3.2, 4]])), ] self.assertEqual(len(res), len(exp)) for r, e in zip(res, exp): np.testing.assert_almost_equal(r[2], e[2]) def test_filters_with_empty_detections_in_middle(self): tracks = [ (None, None, np.array([[1, 2], [2, 3], [3, 4]])), (None, None, np.zeros((0, 2))), (None, None, np.array([[1, 2], [2, 3], [3, 4]])), ] res = tracking_pipeline.filter_by_link_dist(tracks, max_link_dist=1) exp = [ (None, None, np.array([[1, 2], [2, 3], [3, 4]])), (None, None, np.zeros((0, 2))), (None, None, np.array([[1, 2], [2, 3], [3, 4]])), ] self.assertEqual(len(res), len(exp)) for r, e in zip(res, exp): np.testing.assert_almost_equal(r[2], e[2]) def test_filters_with_empty_detections_at_start(self): tracks = [ (None, None, np.zeros((0, 2))), (None, None, np.array([[1, 2], [2, 3], [3, 4]])), (None, None, np.array([[1, 2], [2, 3], [3, 4]])), ] res = tracking_pipeline.filter_by_link_dist(tracks, max_link_dist=1) exp = [ (None, None, np.zeros((0, 2))), (None, None, np.array([[1, 2], [2, 3], [3, 4]])), (None, None, np.array([[1, 2], [2, 3], [3, 4]])), ] self.assertEqual(len(res), len(exp)) for r, e in zip(res, exp): np.testing.assert_almost_equal(r[2], e[2]) def test_filters_with_empty_detections_at_end(self): tracks = [ (None, None, np.array([[1, 2], [2, 3], [3, 4]])), (None, None, np.array([[1, 2], [2, 3], [3, 4]])), (None, None, np.zeros((0, 2))), ] res = tracking_pipeline.filter_by_link_dist(tracks, max_link_dist=1) exp = [ (None, None, np.array([[1, 2], [2, 3], [3, 4]])), (None, None, np.array([[1, 2], [2, 3], [3, 4]])), (None, None, np.zeros((0, 2))), ] self.assertEqual(len(res), len(exp)) for r, e in zip(res, exp): np.testing.assert_almost_equal(r[2], e[2]) class TestLoadTrack(FileSystemTestCase): def test_loads_csv_file_no_image_no_mask(self): csvfile = self.tempdir / 'test.csv' cx = np.array([0.0, 0.0, 0.5, 1.0]) cy = np.array([0.0, 0.1, 0.4, 0.9]) cv = np.array([0.09, 0.1, 0.3, 0.8]) save_point_csvfile(csvfile, cx, cy, cv) exp_img = np.zeros((1000, 1000)) exp_x =
np.array([0, 500, 1000])
numpy.array
from lorenz import * import numpy as np from pytest import approx from scipy.integrate import odeint def test_lorenz96_constant(): """ For the case of a horizontal distribution, so that the slope should be a zero over time. """ obs_i = np.array([8., 8., 8., 8., 8.]) exp_i = lorenz96(np.array([0, 0, 0, 0, 0]), np.arange(0, 4, 1)) assert (obs_i == exp_i).all() return def test_lorenz96_linear_distribution(): """ For the case of a linear input. """ obs_i = np.array([0., 7., 9., 11., -2.]) exp_i = lorenz96(np.array([0, 1, 2, 3, 4]), np.arange(0, 4, 0.1)) assert (obs_i == exp_i).all() return def test_generate_L96_zero(): """ For a time that contains one unit and describes a data set of zero, perturbation of zero, four variables, and a forcing constant of zero """ obs_i = np.array([ [0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.] ]) exp_i = generate_L96(np.zeros(4), 0, 4, 0) assert (obs_i == exp_i).all() return def test_generate_L96_constant(): """ For a time that contains multiple units and describes a data set of constants with a perturbation of 0, five variables and a forcing constant of 8 """ obs_i =
np.array([ [8., 8., 8., 8., 8.], [8., 8., 8., 8., 8.], [8., 8., 8., 8., 8.], [8., 8., 8., 8., 8.], [8., 8., 8., 8., 8.] ])
numpy.array
import math import numpy as np import pytest import torch from deepocr.transforms import (ChannelShuffle, ColorInversion, GaussianNoise, RandomCrop, RandomHorizontalFlip, RandomRotate, Resize) from deepocr.transforms.functional import crop_detection, rotate_sample def test_resize(): output_size = (32, 32) transfo = Resize(output_size) input_t = torch.ones((3, 64, 64), dtype=torch.float32) out = transfo(input_t) assert torch.all(out == 1) assert out.shape[-2:] == output_size assert repr(transfo) == f"Resize(output_size={output_size}, interpolation='bilinear')" transfo = Resize(output_size, preserve_aspect_ratio=True) input_t = torch.ones((3, 32, 64), dtype=torch.float32) out = transfo(input_t) assert out.shape[-2:] == output_size assert not torch.all(out == 1) # Asymetric padding assert torch.all(out[:, -1] == 0) and torch.all(out[:, 0] == 1) # Symetric padding transfo = Resize(output_size, preserve_aspect_ratio=True, symmetric_pad=True) assert repr(transfo) == (f"Resize(output_size={output_size}, interpolation='bilinear', " f"preserve_aspect_ratio=True, symmetric_pad=True)") out = transfo(input_t) assert out.shape[-2:] == output_size # symetric padding assert torch.all(out[:, -1] == 0) and torch.all(out[:, 0] == 0) # Inverse aspect ratio input_t = torch.ones((3, 64, 32), dtype=torch.float32) out = transfo(input_t) assert not torch.all(out == 1) assert out.shape[-2:] == output_size # Same aspect ratio output_size = (32, 128) transfo = Resize(output_size, preserve_aspect_ratio=True) out = transfo(torch.ones((3, 16, 64), dtype=torch.float32)) assert out.shape[-2:] == output_size # FP16 input_t = torch.ones((3, 64, 64), dtype=torch.float16) out = transfo(input_t) assert out.dtype == torch.float16 @pytest.mark.parametrize( "rgb_min", [ 0.2, 0.4, 0.6, ], ) def test_invert_colorize(rgb_min): transfo = ColorInversion(min_val=rgb_min) input_t = torch.ones((8, 3, 32, 32), dtype=torch.float32) out = transfo(input_t) assert torch.all(out <= 1 - rgb_min + 1e-4) assert torch.all(out >= 0) input_t = torch.full((8, 3, 32, 32), 255, dtype=torch.uint8) out = transfo(input_t) assert torch.all(out <= int(math.ceil(255 * (1 - rgb_min + 1e-4)))) assert torch.all(out >= 0) # FP16 input_t = torch.ones((8, 3, 32, 32), dtype=torch.float16) out = transfo(input_t) assert out.dtype == torch.float16 def test_rotate_sample(): img = torch.ones((3, 200, 100), dtype=torch.float32) boxes = np.array([0, 0, 100, 200])[None, ...] polys = np.stack((boxes[..., [0, 1]], boxes[..., [2, 1]], boxes[..., [2, 3]], boxes[..., [0, 3]]), axis=1) rel_boxes = np.array([0, 0, 1, 1], dtype=np.float32)[None, ...] rel_polys = np.stack( (rel_boxes[..., [0, 1]], rel_boxes[..., [2, 1]], rel_boxes[..., [2, 3]], rel_boxes[..., [0, 3]]), axis=1 ) # No angle rotated_img, rotated_geoms = rotate_sample(img, boxes, 0, False) assert torch.all(rotated_img == img) and np.all(rotated_geoms == rel_polys) rotated_img, rotated_geoms = rotate_sample(img, boxes, 0, True) assert torch.all(rotated_img == img) and
np.all(rotated_geoms == rel_polys)
numpy.all
# # This file is part of the chi repository # (https://github.com/DavAug/chi/) which is released under the # BSD 3-clause license. See accompanying LICENSE.md for copyright notice and # full license details. # import unittest import numpy as np import chi class TestCovariateModel(unittest.TestCase): """ Tests the chi.CovariateModel class. """ @classmethod def setUpClass(cls): cls.cov_model = chi.CovariateModel() def test_check_compatibility(self): pop_model = 'some model' with self.assertRaisesRegex(NotImplementedError, ''): self.cov_model.check_compatibility(pop_model) def test_compute_individual_parameters(self): parameters = 'some parameters' eta = 'some fluctuations' covariates = 'some covariates' with self.assertRaisesRegex(NotImplementedError, ''): self.cov_model.compute_individual_parameters( parameters, eta, covariates ) def test_compute_individual_sensitivities(self): parameters = 'some parameters' eta = 'some fluctuations' covariates = 'some covariates' with self.assertRaisesRegex(NotImplementedError, ''): self.cov_model.compute_individual_sensitivities( parameters, eta, covariates ) def test_compute_population_parameters(self): parameters = 'some parameters' with self.assertRaisesRegex(NotImplementedError, ''): self.cov_model.compute_population_parameters( parameters) def test_compute_population_sensitivities(self): parameters = 'some parameters' with self.assertRaisesRegex(NotImplementedError, ''): self.cov_model.compute_population_sensitivities( parameters) def test_get_covariate_names(self): names = self.cov_model.get_covariate_names() self.assertIsNone(names) def test_get_parameter_names(self): names = self.cov_model.get_parameter_names() self.assertIsNone(names) def test_n_covariates(self): n = self.cov_model.n_covariates() self.assertIsNone(n) def test_n_parameters(self): n = self.cov_model.n_parameters() self.assertIsNone(n) def test_set_covariate_names(self): names = 'some names' with self.assertRaisesRegex(NotImplementedError, ''): self.cov_model.set_covariate_names(names) def test_set_parameter_names(self): names = 'some names' with self.assertRaisesRegex(NotImplementedError, ''): self.cov_model.set_parameter_names(names) class TestLogNormalLinearCovariateModel(unittest.TestCase): """ Tests the chi.LogNormalLinearCovariateModel class. """ @classmethod def setUpClass(cls): cls.cov_model = chi.LogNormalLinearCovariateModel(n_covariates=0) cls.cov_model2 = chi.LogNormalLinearCovariateModel(n_covariates=2) def test_check_compatibility_fail(self): # Check that warning is raised with a population model # that is not a GaussianModel pop_model = chi.LogNormalModel() with self.assertWarns(UserWarning): self.cov_model.check_compatibility(pop_model) @unittest.expectedFailure def test_check_compatibility_pass(self): # Check that warning is not raised with a GaussianModel pop_model = chi.GaussianModel() with self.assertWarns(UserWarning): self.cov_model.check_compatibility(pop_model) def test_compute_individual_parameters(self): n_ids = 5 # Test case I: sigma almost 0 # Then psi = np.exp(mu) # Test case I.1 parameters = [1, 1E-10] eta = np.linspace(0.5, 1.5, n_ids) covariates = 'some covariates' # Compute psis psis = self.cov_model.compute_individual_parameters( parameters, eta, covariates) ref_psis = np.exp([parameters[0]] * n_ids) self.assertEqual(len(psis), n_ids) self.assertAlmostEqual(psis[0], ref_psis[0]) self.assertAlmostEqual(psis[1], ref_psis[1]) self.assertAlmostEqual(psis[2], ref_psis[2]) self.assertAlmostEqual(psis[3], ref_psis[3]) self.assertAlmostEqual(psis[4], ref_psis[4]) # Test case I.2 shifts = [-1] parameters = [1, 1E-10] + shifts eta = np.linspace(0.5, 1.5, n_ids) covariates = np.ones(shape=(n_ids, 1)) # Compute psis psis = self.cov_model2.compute_individual_parameters( parameters, eta, covariates) ref_psis = np.exp( np.array([parameters[0]] * n_ids) + covariates @ np.array(shifts)) self.assertEqual(len(psis), n_ids) self.assertAlmostEqual(psis[0], ref_psis[0]) self.assertAlmostEqual(psis[1], ref_psis[1]) self.assertAlmostEqual(psis[2], ref_psis[2]) self.assertAlmostEqual(psis[3], ref_psis[3]) self.assertAlmostEqual(psis[4], ref_psis[4]) # Test case I.3 parameters = [1, 1E-10] eta = np.linspace(0.5, 10, n_ids) covariates = 'some covariates' # Compute psis psis = self.cov_model.compute_individual_parameters( parameters, eta, covariates) ref_psis = np.exp([parameters[0]] * n_ids) self.assertEqual(len(psis), n_ids) self.assertAlmostEqual(psis[0], ref_psis[0]) self.assertAlmostEqual(psis[1], ref_psis[1]) self.assertAlmostEqual(psis[2], ref_psis[2]) self.assertAlmostEqual(psis[3], ref_psis[3]) self.assertAlmostEqual(psis[4], ref_psis[4]) # Test case I.4 shifts = [5] parameters = [1, 1E-15] + shifts eta = np.linspace(0.5, 10, n_ids) covariates = np.ones(shape=(n_ids, 1)) * 2 # Compute psis psis = self.cov_model2.compute_individual_parameters( parameters, eta, covariates) ref_psis = np.exp( np.array([parameters[0]] * n_ids) + covariates @ np.array(shifts)) self.assertEqual(len(psis), n_ids) self.assertAlmostEqual(psis[0], ref_psis[0]) self.assertAlmostEqual(psis[1], ref_psis[1]) self.assertAlmostEqual(psis[2], ref_psis[2]) self.assertAlmostEqual(psis[3], ref_psis[3]) self.assertAlmostEqual(psis[4], ref_psis[4]) # Test case II: mu = 0, sigma != 0 # Then psi = np.exp(mu) # Test case II.1 parameters = [0, 1] eta = np.linspace(0.5, 1.5, n_ids) covariates = 'some covariates' # Compute psis psis = self.cov_model.compute_individual_parameters( parameters, eta, covariates) ref_psis = np.exp(parameters[1] * eta) self.assertEqual(len(psis), n_ids) self.assertEqual(psis[0], ref_psis[0]) self.assertEqual(psis[1], ref_psis[1]) self.assertEqual(psis[2], ref_psis[2]) self.assertEqual(psis[3], ref_psis[3]) self.assertEqual(psis[4], ref_psis[4]) # Test case II.2 shifts = [-1] parameters = [0, 1] + shifts eta = np.linspace(0.5, 1.5, n_ids) covariates = np.ones(shape=(n_ids, 1)) # Compute psis psis = self.cov_model2.compute_individual_parameters( parameters, eta, covariates) ref_psis = np.exp( parameters[1] * eta + covariates @ np.array(shifts)) self.assertEqual(len(psis), n_ids) self.assertAlmostEqual(psis[0], ref_psis[0]) self.assertAlmostEqual(psis[1], ref_psis[1]) self.assertAlmostEqual(psis[2], ref_psis[2]) self.assertAlmostEqual(psis[3], ref_psis[3]) self.assertAlmostEqual(psis[4], ref_psis[4]) # Test case II.3 parameters = [0, 0.1] eta = np.linspace(0.5, 1.5, n_ids) covariates = 'some covariates' # Compute psis psis = self.cov_model.compute_individual_parameters( parameters, eta, covariates) ref_psis = np.exp(parameters[1] * eta) self.assertEqual(len(psis), n_ids) self.assertEqual(psis[0], ref_psis[0]) self.assertEqual(psis[1], ref_psis[1]) self.assertEqual(psis[2], ref_psis[2]) self.assertEqual(psis[3], ref_psis[3]) self.assertEqual(psis[4], ref_psis[4]) # Test case II.4 shifts = [5] parameters = [0, 0.1] + shifts eta = np.linspace(0.5, 10, n_ids) covariates = np.ones(shape=(n_ids, 1)) * 2 # Compute psis psis = self.cov_model2.compute_individual_parameters( parameters, eta, covariates) ref_psis = np.exp( parameters[1] * eta + covariates @ np.array(shifts)) self.assertEqual(len(psis), n_ids) self.assertAlmostEqual(psis[0], ref_psis[0]) self.assertAlmostEqual(psis[1], ref_psis[1]) self.assertAlmostEqual(psis[2], ref_psis[2]) self.assertAlmostEqual(psis[3], ref_psis[3]) self.assertAlmostEqual(psis[4], ref_psis[4]) # Test case III: mu != 0, sigma != 0 # Then psi = np.exp(mu) # Test case III.1 parameters = [-1, 1] eta = np.linspace(0.5, 1.5, n_ids) covariates = 'some covariates' # Compute psis psis = self.cov_model.compute_individual_parameters( parameters, eta, covariates) ref_psis = np.exp(parameters[0] + parameters[1] * eta) self.assertEqual(len(psis), n_ids) self.assertEqual(psis[0], ref_psis[0]) self.assertEqual(psis[1], ref_psis[1]) self.assertEqual(psis[2], ref_psis[2]) self.assertEqual(psis[3], ref_psis[3]) self.assertEqual(psis[4], ref_psis[4]) # Test case III.2 shifts = [-1] parameters = [-1, 1] + shifts eta = np.linspace(0.5, 1.5, n_ids) covariates = np.ones(shape=(n_ids, 1)) # Compute psis psis = self.cov_model2.compute_individual_parameters( parameters, eta, covariates) ref_psis = np.exp( parameters[0] + parameters[1] * eta + covariates @ np.array(shifts) ) self.assertEqual(len(psis), n_ids) self.assertAlmostEqual(psis[0], ref_psis[0]) self.assertAlmostEqual(psis[1], ref_psis[1]) self.assertAlmostEqual(psis[2], ref_psis[2]) self.assertAlmostEqual(psis[3], ref_psis[3]) self.assertAlmostEqual(psis[4], ref_psis[4]) # Test case III.3 parameters = [2, 0.1] eta = np.linspace(0.5, 1.5, n_ids) covariates = 'some covariates' # Compute psis psis = self.cov_model.compute_individual_parameters( parameters, eta, covariates) ref_psis = np.exp(parameters[0] + parameters[1] * eta) self.assertEqual(len(psis), n_ids) self.assertEqual(psis[0], ref_psis[0]) self.assertEqual(psis[1], ref_psis[1]) self.assertEqual(psis[2], ref_psis[2]) self.assertEqual(psis[3], ref_psis[3]) self.assertEqual(psis[4], ref_psis[4]) # Test case III.4 shifts = [5] parameters = [2, 0.1] + shifts eta = np.linspace(0.5, 10, n_ids) covariates = np.ones(shape=(n_ids, 1)) * 2 # Compute psis psis = self.cov_model2.compute_individual_parameters( parameters, eta, covariates) ref_psis = np.exp( parameters[0] + parameters[1] * eta + covariates @ np.array(shifts) ) self.assertEqual(len(psis), n_ids) self.assertAlmostEqual(psis[0], ref_psis[0]) self.assertAlmostEqual(psis[1], ref_psis[1]) self.assertAlmostEqual(psis[2], ref_psis[2]) self.assertAlmostEqual(psis[3], ref_psis[3]) self.assertAlmostEqual(psis[4], ref_psis[4]) # Test case IV: sigma = 0 parameters = [2, 0] eta =
np.linspace(0.5, 1.5, n_ids)
numpy.linspace
import errno import multiprocessing import os import timeit from subprocess import CalledProcessError import numpy as np from numpy.testing import assert_equal import pytest import nengo from nengo.cache import (CacheIndex, DecoderCache, Fingerprint, get_fragment_size, WriteableCacheIndex) from nengo.exceptions import CacheIOWarning, FingerprintError from nengo.solvers import LstsqL2 from nengo.utils.compat import int_types class SolverMock(object): n_calls = {} def __init__(self): self.n_calls[self] = 0 def __call__(self, conn, gain, bias, x, targets, rng=np.random, E=None): self.n_calls[self] += 1 if E is None: return np.random.rand(x.shape[1], targets.shape[1]), {'info': 'v'} else: return np.random.rand(x.shape[1], E.shape[1]), {'info': 'v'} def get_solver_test_args(**kwargs): M = 100 N = 10 D = 2 conn = nengo.Connection( nengo.Ensemble(N, D, add_to_container=False), nengo.Node(size_in=D, add_to_container=False), add_to_container=False) conn.solver = kwargs.pop('solver', nengo.solvers.LstsqL2nz()) defaults = { 'conn': conn, 'gain': np.ones(N), 'bias': np.ones(N), 'x': np.ones((M, D)), 'targets': np.ones((M, N)), 'rng': np.random.RandomState(42), } defaults.update(kwargs) return defaults def get_weight_solver_test_args(): M = 100 N = 10 N2 = 5 D = 2 conn = nengo.Connection( nengo.Ensemble(N, D, add_to_container=False), nengo.Node(size_in=D, add_to_container=False), solver=nengo.solvers.LstsqL2nz(), add_to_container=False) return { 'conn': conn, 'gain': np.ones(N), 'bias': np.ones(N), 'x': np.ones((M, D)), 'targets': np.ones((M, N)), 'rng': np.random.RandomState(42), 'E': np.ones((D, N2)), } def test_decoder_cache(tmpdir): cache_dir = str(tmpdir) # Basic test, that results are cached. with DecoderCache(cache_dir=cache_dir) as cache: solver_mock = SolverMock() decoders1, solver_info1 = cache.wrap_solver(solver_mock)( **get_solver_test_args()) assert SolverMock.n_calls[solver_mock] == 1 decoders2, solver_info2 = cache.wrap_solver(solver_mock)( **get_solver_test_args()) assert SolverMock.n_calls[solver_mock] == 1 # result read from cache? assert_equal(decoders1, decoders2) assert solver_info1 == solver_info2 solver_args = get_solver_test_args() solver_args['gain'] *= 2 decoders3, solver_info3 = cache.wrap_solver(solver_mock)(**solver_args) assert SolverMock.n_calls[solver_mock] == 2 assert np.any(decoders1 != decoders3) # Test that the cache does not load results of another solver. another_solver = SolverMock() cache.wrap_solver(another_solver)(**get_solver_test_args( solver=nengo.solvers.LstsqNoise())) assert SolverMock.n_calls[another_solver] == 1 def test_corrupted_decoder_cache(tmpdir): cache_dir = str(tmpdir) with DecoderCache(cache_dir=cache_dir) as cache: solver_mock = SolverMock() cache.wrap_solver(solver_mock)(**get_solver_test_args()) assert SolverMock.n_calls[solver_mock] == 1 # corrupt the cache for path in cache.get_files(): with open(path, 'w') as f: f.write('corrupted') cache.wrap_solver(solver_mock)(**get_solver_test_args()) assert SolverMock.n_calls[solver_mock] == 2 def test_corrupted_decoder_cache_index(tmpdir): cache_dir = str(tmpdir) with DecoderCache(cache_dir=cache_dir): pass # Initialize cache with required files assert len(os.listdir(cache_dir)) == 2 # index, index.lock # Write corrupted index with open(os.path.join(cache_dir, CacheIndex._INDEX), 'w') as f: f.write('(d') # empty dict, but missing '.' at the end # Try to load index with DecoderCache(cache_dir=cache_dir): pass assert len(os.listdir(cache_dir)) == 2 # index, index.lock def test_decoder_cache_invalidation(tmpdir): cache_dir = str(tmpdir) solver_mock = SolverMock() # Basic test, that results are cached. with DecoderCache(cache_dir=cache_dir) as cache: cache.wrap_solver(solver_mock)(**get_solver_test_args()) assert SolverMock.n_calls[solver_mock] == 1 cache.invalidate() cache.wrap_solver(solver_mock)(**get_solver_test_args()) assert SolverMock.n_calls[solver_mock] == 2 def test_decoder_cache_size_includes_overhead(tmpdir): cache_dir = str(tmpdir) solver_mock = SolverMock() with DecoderCache(cache_dir=cache_dir) as cache: cache.wrap_solver(solver_mock)(**get_solver_test_args()) fragment_size = get_fragment_size(cache_dir) actual_size = sum(os.stat(p).st_size for p in cache.get_files()) assert actual_size % fragment_size != 0, ( 'Test succeeded by chance. Adjust get_solver_test_args() to ' 'produce date not aligned with the files system fragment size.') assert cache.get_size_in_bytes() % fragment_size == 0 def test_decoder_cache_shrinking(tmpdir): cache_dir = str(tmpdir) solver_mock = SolverMock() another_solver = SolverMock() with DecoderCache(cache_dir=cache_dir) as cache: cache.wrap_solver(solver_mock)(**get_solver_test_args()) # Ensure differing time stamps (depending on the file system the # timestamp resolution might be as bad as 1 day). for path in cache.get_files(): timestamp = os.stat(path).st_atime timestamp -= 60 * 60 * 24 * 2 # 2 days os.utime(path, (timestamp, timestamp)) with DecoderCache(cache_dir=cache_dir) as cache: cache.wrap_solver(another_solver)(**get_solver_test_args( solver=nengo.solvers.LstsqNoise())) cache_size = cache.get_size_in_bytes() assert cache_size > 0 cache.shrink(cache_size - 1) # check that older cached result was removed assert SolverMock.n_calls[solver_mock] == 1 cache.wrap_solver(another_solver)(**get_solver_test_args( solver=nengo.solvers.LstsqNoise())) cache.wrap_solver(solver_mock)(**get_solver_test_args()) assert SolverMock.n_calls[solver_mock] == 2 assert SolverMock.n_calls[another_solver] == 1 def test_decoder_cache_shrink_threadsafe(monkeypatch, tmpdir): """Tests that shrink handles files deleted by other processes.""" cache_dir = str(tmpdir) solver_mock = SolverMock() with DecoderCache(cache_dir=cache_dir) as cache: cache.wrap_solver(solver_mock)(**get_solver_test_args()) limit = cache.get_size() # Ensure differing time stamps (depending on the file system the # timestamp resolution might be as bad as 1 day). for filename in os.listdir(cache.cache_dir): path = os.path.join(cache.cache_dir, filename) timestamp = os.stat(path).st_atime timestamp -= 60 * 60 * 24 * 2 # 2 days os.utime(path, (timestamp, timestamp)) cache.wrap_solver(solver_mock)(**get_solver_test_args( solver=nengo.solvers.LstsqNoise())) cache_size = cache.get_size_in_bytes() assert cache_size > 0 def raise_file_not_found(orig_fn): def fn(filename, *args, **kwargs): if filename.endswith('.lock'): return orig_fn(filename, *args, **kwargs) raise OSError(errno.ENOENT, "File not found.") return fn monkeypatch.setattr(cache, 'get_size_in_bytes', lambda: cache_size) monkeypatch.setattr('os.stat', raise_file_not_found(os.stat)) monkeypatch.setattr('os.remove', raise_file_not_found(os.remove)) monkeypatch.setattr('os.unlink', raise_file_not_found(os.unlink)) cache.shrink(limit) def test_decoder_cache_with_E_argument_to_solver(tmpdir): cache_dir = str(tmpdir) solver_mock = SolverMock() with DecoderCache(cache_dir=cache_dir) as cache: decoders1, solver_info1 = cache.wrap_solver(solver_mock)( **get_weight_solver_test_args()) assert SolverMock.n_calls[solver_mock] == 1 decoders2, solver_info2 = cache.wrap_solver(solver_mock)( **get_weight_solver_test_args()) assert SolverMock.n_calls[solver_mock] == 1 # read from cache? assert_equal(decoders1, decoders2) assert solver_info1 == solver_info2 class DummyA(object): def __init__(self, attr=0): self.attr = attr nengo.cache.Fingerprint.whitelist(DummyA) class DummyB(object): def __init__(self, attr=0): self.attr = attr nengo.cache.Fingerprint.whitelist(DummyB) def dummy_fn(arg): pass @pytest.mark.parametrize('reference, equal, different', ( (True, True, False), # bool (False, False, True), # bool (1.0, 1.0, 2.0), # float (1.0 + 2.0j, 1 + 2j, 2.0 + 1j), # complex (b'a', b'a', b'b'), # bytes ((0, 1), (0, 1), (0, 2)), # tuple ([0, 1], [0, 1], [0, 2]), # list (u'a', u'a', u'b'), # unicode string (np.eye(2), np.eye(2), np.array([[0, 1], [1, 0]])), # array (DummyA(), DummyA(), DummyB()), # object instance (DummyA(1), DummyA(1), DummyA(2)), # object instance (LstsqL2(reg=.1), LstsqL2(reg=.1), LstsqL2(reg=.2)), # solver ) + tuple((typ(1), typ(1), typ(2)) for typ in int_types)) def test_fingerprinting(reference, equal, different): assert str(Fingerprint(reference)) == str(Fingerprint(equal)) assert str(Fingerprint(reference)) != str(Fingerprint(different)) @pytest.mark.parametrize('obj', ( np.array([object()]), # array np.array([(1.,)], dtype=[('field1', 'f8')]), # array {'a': 1, 'b': 2}, # dict object(), # object instance dummy_fn, # function )) def test_unsupported_fingerprinting(obj): with pytest.raises(FingerprintError): Fingerprint(obj) def test_fails_for_lambda_expression(): with pytest.raises(FingerprintError): Fingerprint(lambda x: x) def test_cache_works(tmpdir, RefSimulator, seed): cache_dir = str(tmpdir) model = nengo.Network(seed=seed) with model: nengo.Connection(nengo.Ensemble(10, 1), nengo.Ensemble(10, 1)) assert len(os.listdir(cache_dir)) == 0 with RefSimulator(model, model=nengo.builder.Model( dt=0.001, decoder_cache=DecoderCache(cache_dir=cache_dir))): assert len(os.listdir(cache_dir)) == 3 # index, index.lock, and *.nco def test_cache_not_used_without_seed(tmpdir, RefSimulator): cache_dir = str(tmpdir) model = nengo.Network() with model: nengo.Connection(nengo.Ensemble(10, 1), nengo.Ensemble(10, 1)) assert len(os.listdir(cache_dir)) == 0 with RefSimulator(model, model=nengo.builder.Model( dt=0.001, decoder_cache=DecoderCache(cache_dir=cache_dir))): assert len(os.listdir(cache_dir)) == 2 # index, index.lock def build_many_ensembles(cache_dir, RefSimulator): with nengo.Network(seed=1) as model: for _ in range(100): nengo.Connection(nengo.Ensemble(10, 1), nengo.Ensemble(10, 1)) with RefSimulator(model, model=nengo.builder.Model( dt=0.001, decoder_cache=DecoderCache(cache_dir=cache_dir))): pass @pytest.mark.slow def test_cache_concurrency(tmpdir, RefSimulator): cache_dir = str(tmpdir) n_processes = 100 processes = [ multiprocessing.Process( target=build_many_ensembles, args=(cache_dir, RefSimulator)) for _ in range(n_processes)] for p in processes: p.start() for p in processes: p.join(60) for p in processes: assert p.exitcode == 0 def reject_outliers(data): med = np.median(data) limits = 1.5 * (np.percentile(data, [25, 75]) - med) + med return np.asarray(data)[np.logical_and(data > limits[0], data < limits[1])] class TestCacheBenchmark(object): n_trials = 25 setup = ''' import numpy as np import nengo import nengo.cache from nengo.rc import rc rc.set("decoder_cache", "path", {tmpdir!r}) model = nengo.Network(seed=1) with model: a = nengo.Ensemble({N}, dimensions={D}, n_eval_points={M}) b = nengo.Ensemble({N}, dimensions={D}, n_eval_points={M}) conn = nengo.Connection(a, b) ''' without_cache = { 'rc': ''' rc.set("progress", "progress_bar", "none") rc.set("decoder_cache", "enabled", "False") ''', 'stmt': ''' with nengo.Simulator(model): pass ''' } with_cache_miss_ro = { 'rc': ''' rc.set("progress", "progress_bar", "none") with nengo.cache.DecoderCache() as cache: cache.invalidate() rc.set("decoder_cache", "enabled", "True") rc.set("decoder_cache", "readonly", "True") ''', 'stmt': ''' with nengo.Simulator(model): pass ''' } with_cache_miss = { 'rc': ''' rc.set("progress", "progress_bar", "none") with nengo.cache.DecoderCache() as cache: cache.invalidate() rc.set("decoder_cache", "enabled", "True") rc.set("decoder_cache", "readonly", "False") ''', 'stmt': ''' with nengo.Simulator(model): pass ''' } with_cache_hit = { 'rc': ''' rc.set("progress", "progress_bar", "none") rc.set("decoder_cache", "enabled", "True") rc.set("decoder_cache", "readonly", "False") with nengo.Simulator(model): pass ''', 'stmt': ''' with nengo.Simulator(model): pass ''' } labels = ["no cache", "cache miss", "cache miss ro", "cache hit"] keys = [l.replace(' ', '_') for l in labels] param_to_axis_label = { 'D': "dimensions", 'N': "neurons", 'M': "evaluation points" } defaults = {'D': 1, 'N': 50, 'M': 1000} def time_code(self, code, **kwargs): return timeit.repeat( stmt=code['stmt'], setup=self.setup.format(**kwargs) + code['rc'], number=1, repeat=self.n_trials) def time_all(self, **kwargs): return (self.time_code(self.without_cache, **kwargs), self.time_code(self.with_cache_miss, **kwargs), self.time_code(self.with_cache_miss_ro, **kwargs), self.time_code(self.with_cache_hit, **kwargs)) def get_args(self, varying_param, value): args = dict(self.defaults) # make a copy args[varying_param] = value return args @pytest.mark.slow @pytest.mark.noassertions @pytest.mark.parametrize('varying_param', ['D', 'N', 'M']) def test_cache_benchmark(self, tmpdir, varying_param, analytics, plt): varying = { 'D': np.asarray(np.linspace(1, 512, 10), dtype=int), 'N': np.asarray(np.linspace(10, 500, 8), dtype=int), 'M': np.asarray(np.linspace(750, 2500, 8), dtype=int) }[varying_param] axis_label = self.param_to_axis_label[varying_param] times = [ self.time_all( tmpdir=str(tmpdir), **self.get_args(varying_param, v)) for v in varying] for i, data in enumerate(zip(*times)): plt.plot(varying, np.median(data, axis=1), label=self.labels[i]) plt.xlim(right=varying[-1]) analytics.add_data(varying_param, varying, axis_label) analytics.add_data(self.keys[i], data) plt.xlabel("Number of %s" % axis_label) plt.ylabel("Build time (s)") plt.legend(loc='best') @pytest.mark.compare @pytest.mark.parametrize('varying_param', ['D', 'N', 'M']) def test_compare_cache_benchmark( self, varying_param, analytics_data, plt, logger): stats = pytest.importorskip('scipy.stats') d1, d2 = analytics_data assert np.all(d1[varying_param] == d2[varying_param]), ( 'Cannot compare different parametrizations') axis_label = self.param_to_axis_label[varying_param] logger.info("Cache, varying %s:", axis_label) for label, key in zip(self.labels, self.keys): clean_d1 = [reject_outliers(d) for d in d1[key]] clean_d2 = [reject_outliers(d) for d in d2[key]] diff = [np.median(b) - np.median(a) for a, b in zip(clean_d1, clean_d2)] p_values = np.array( [2. * stats.mannwhitneyu(a, b, alternative='two-sided')[1] for a, b in zip(clean_d1, clean_d2)]) overall_p = 1. - np.prod(1. - p_values) if overall_p < .05: logger.info(" %s: Significant change (p <= %.3f). See plots.", label, np.ceil(overall_p * 1000.) / 1000.) else: logger.info(" %s: No significant change.", label) plt.plot(d1[varying_param], diff, label=label) plt.xlabel("Number of %s" % axis_label) plt.ylabel("Difference in build time (s)") plt.legend(loc='best') class TestCacheShrinkBenchmark(object): n_trials = 50 setup = ''' import numpy as np import nengo import nengo.cache from nengo.rc import rc rc.set("progress", "progress_bar", "none") rc.set("decoder_cache", "path", {tmpdir!r}) for i in range(10): model = nengo.Network(seed=i) with model: a = nengo.networks.EnsembleArray(10, 128, 1) b = nengo.networks.EnsembleArray(10, 128, 1) conn = nengo.Connection(a.output, b.input) with nengo.Simulator(model): pass rc.set("decoder_cache", "size", "0KB") cache = nengo.cache.DecoderCache() ''' stmt = 'with cache: cache.shrink()' @pytest.mark.slow @pytest.mark.noassertions def test_cache_shrink_benchmark(self, tmpdir, analytics, logger): times = timeit.repeat( stmt=self.stmt, setup=self.setup.format(tmpdir=str(tmpdir)), number=1, repeat=self.n_trials) logger.info("Shrink took a minimum of %f seconds.",
np.min(times)
numpy.min
# -*- coding: utf-8 -*- """ Created on Thu Apr 23 16:45:59 2015 Script to create all the plots used in Varenna-Lausane paper. @author: lshi """ import numpy as np import matplotlib.pyplot as plt from scipy.signal import hilbert import sdp.scripts.nstx_reflectometry.load_nstx_exp_ref as nstx_exp import sdp.scripts.FWR_Postprocess.FWR2D_NSTX_139047_Postprocess as fwr_pp from sdp.diagnostic.fwr.analysis import phase, magnitude, Coherent_Signal, Cross_Correlation, Cross_Correlation_by_fft from sdp.diagnostic.fwr.nstx.nstx import band_pass_filter from sdp.math.funcs import band_pass_box, sweeping_correlation from sdp.diagnostic.fwr.fwr2d.postprocess import fitting_cross_correlation,gaussian_fit,exponential_fit,remove_average_phase, remove_average_field from sdp.math.spectra import spectrum import pickle with open('/p/gkp/lshi/XGC1_NSTX_Case/FullF_XGC_ti191_output/new_ref_pos.pck','r') as f: ref_pos,freqs = pickle.load(f) Z_mid = (ref_pos.shape[0]-1)/2 ref_pos_mid = ref_pos[Z_mid,:] class Picture: """base class for paper pictures, contains abstract methods and components' names """ def __init__(self,title,description): self.title = title self.description = description def prepare(self): """abstract method for preparing data before plotting """ pass def show(self): """abstract method for plotting """ pass #def close(self): # """abstract method for closing the window # """ # pass class Plot1(Picture): """Plot1: 55GHz phase/dphase plot showing chosen time period (0.632-0.633s), overall time is chosen to be 0.4-0.8s """ def __init__(self,channel = 11): Picture.__init__(self,'Fulltime Phase/dPhase Plot','Plot1: 55GHz phase/dphase plot showing chosen time period (0.632-0.633s), overall time is chosen to be 0.4-0.8s') self.channel = channel def prepare(self): """prepare the data for Plot1 """ self.tstart = 0.4 self.tend = 0.8 self.t_on = 0.632 self.t_off = 0.633 loader = nstx_exp.loaders[self.channel] sig,self.time = loader.signal(self.tstart,self.tend) self.ph,self.dph = phase(sig) def show(self): """Make the plot with specified formats. """ self.fig = plt.figure() self.subfig1 = self.fig.add_subplot(211) self.phase_plot = self.subfig1.plot(self.time,self.ph,'k-',linewidth=0.5) ylim1 = self.subfig1.get_ylim() self.vline1 = self.subfig1.plot([self.t_on,self.t_off],ylim1,'r-',linewidth=1) self.subfig1.set_xbound(self.tstart,self.tend) self.subfig1.set_title('(a)',y=-0.2) self.subfig1.set_ylabel('$\phi(rad)$') self.subfig2 = self.fig.add_subplot(212,sharex = self.subfig1) self.dph_plot = self.subfig2.plot(self.time[:-1],self.dph,'k-',linewidth = 0.05) ylim2 = self.subfig2.get_ylim() self.vline2 = self.subfig2.plot([self.t_on,self.t_off],ylim2,'r-',linewidth=1) self.subfig2.set_xbound(self.tstart,self.tend) self.subfig2.set_title('(b)',y=-0.3) self.subfig2.set_xlabel('time(s)') self.subfig2.set_ylabel('$\Delta\phi(rad)$') self.fig.canvas.draw() class Plot2(Plot1): """Plot2: zoomed in plot for chosen channel """ def __init__(self,channel = 11): Plot1.__init__(self,channel) Picture.__init__(self,'Zoomed Phase/dPhase Plot','Plot2:chosen channel zoomed in for t1 to t2') def show(self): """Make the plot with specified formats. """ self.fig = plt.figure() self.subfig1 = self.fig.add_subplot(211) self.phase_plot = self.subfig1.plot(self.time,self.ph,'k-',linewidth=0.5) self.subfig1.set_xbound(self.tstart,self.tend) self.subfig1.set_title('(c)',y=-0.2) self.subfig1.set_ylabel('$\phi(rad)$') self.subfig2 = self.fig.add_subplot(212,sharex = self.subfig1) self.dph_plot = self.subfig2.plot(self.time[:-1],self.dph,'k-',linewidth = 0.2) self.subfig2.set_xbound(self.tstart,self.tend) self.subfig2.set_title('(d)',y=-0.3) self.subfig2.set_xlabel('time(s)') self.subfig2.set_ylabel('$\Delta\phi(rad)$') self.fig.canvas.draw() def zoom(self,t1,t2): assert(t1<t2 and t1>self.time[0] and t2 < self.time[-1]) self.subfig1.set_xlim(t1,t2) arg1,arg2 = np.searchsorted(self.time,[t1,t2]) self.subfig1.set_ylim(np.min(self.ph[arg1:arg2])-1,np.max(self.ph[arg1:arg2])) self.fig.canvas.draw() class Plot3(Picture): """Plot3: 62.5GHz phase signal frequency domain compared with corresponding FWR result, non-relevant frequencies shaden. """ def __init__(self,channel = 11,channel_freq = 62.5): Picture.__init__(self,'Frequency domain comparison','Plot3: 62.5GHz phase signal frequency domain compared with corresponding FWR result, non-relevant frequencies shaden.') self.channel = channel self.channel_freq = channel_freq def prepare(self): self.tstart = 0.632 self.tend = 0.633 self.f_low_norm = 1e4 #lower frequency cutoff for normalization set to be 100 kHz self.f_high_norm = 5e5 #high frequency cutoff for normalization set to 500 kHz self.f_low_show = 4e4 # lower frequency shown for shading self.f_high_show = 5e5# higher frequency shown for shading loader = nstx_exp.loaders[self.channel] sig,time = loader.signal(self.tstart,self.tend) ph,dph = phase(sig) n = len(time) dt = time[1]-time[0] #get the fft frequency array ''' self.freqs_nstx = np.fft.rfftfreq(n,dt) idx_low,idx_high = np.searchsorted(self.freqs_nstx,[self.f_low_norm,self.f_high_norm]) #note that only first half of the frequency array is holding positive frequencies. The rest are negative ones. #get the spectra of the phase signal, since it's real, only positive frequencies are needed spectrum_nstx = np.fft.rfft(ph) self.power_density_nstx = np.real(spectrum_nstx*np.conj(spectrum_nstx)) pd_in_range = self.power_density_nstx[idx_low:idx_high] df = self.freqs_nstx[1]-self.freqs_nstx[0] total_power_in_range = 0.5*df*np.sum(pd_in_range[:-1]+pd_in_range[1:]) #trapezoidal formula of integration is used here. #normalize the spectrum to make the in-range total energy be 1 self.power_density_nstx /= total_power_in_range ''' self.spectrum_nstx,self.power_density_nstx,self.freqs_nstx = spectrum(ph,dt,True) print('Experimental data ready.') ref2d = fwr_pp.load_2d([self.channel_freq],np.arange(100,220,1)) sig_fwr = ref2d.E_out[0,:,0] #note that in reflectometer_output object, E_out is saved in shape (NF,NT,NC). Here we only need the time dimension for the chosen frequency and cross-section. ph_fwr,dph_fwr = phase(sig_fwr) dt_fwr = 1e-6 time_fwr = np.arange(100,220,1)*dt_fwr n_fwr = len(time_fwr) ''' #similar normalization method for FWR results, temporary variables are reused for fwr quantities self.freqs_fwr = np.fft.rfftfreq(n_fwr,dt_fwr) idx_low,idx_high = np.searchsorted(self.freqs_fwr,[self.f_low_norm,self.f_high_norm]) #note that only first half of the frequency array is holding positive frequencies. The rest are negative ones. spectrum_fwr = np.fft.rfft(ph_fwr) self.power_density_fwr = np.real(spectrum_fwr * np.conj(spectrum_fwr)) pd_in_range = self.power_density_fwr[idx_low:idx_high] df = self.freqs_fwr[1]-self.freqs_fwr[0] total_power_in_range = 0.5*df*np.sum(pd_in_range[:-1]+pd_in_range[1:]) #trapezoidal formula of integration is used here. self.power_density_fwr /= total_power_in_range ''' self.spectrum_fwr,self.power_density_fwr,self.freqs_fwr = spectrum(ph_fwr,dt_fwr,True) print('FWR data ready.') def show(self,black_white = False): if(black_white): ls_nstx = 'k.' ls_fwr = 'k-' else: ls_nstx = 'b-' ls_fwr = 'r-' self.fig = plt.figure() self.subfig = self.fig.add_subplot(111) self.line_nstx = self.subfig.loglog(self.freqs_nstx,self.power_density_nstx,ls_nstx,linewidth = 0.5, label = 'EXP') self.line_fwr = self.subfig.loglog(self.freqs_fwr,self.power_density_fwr,ls_fwr,label = 'FWR') self.subfig.legend(loc = 'lower left') self.subfig.set_xlabel('frequency (Hz)') self.subfig.set_ylabel('normalized power density (a.u.)') #Shade over not used frequency bands freq_lowerband = np.linspace(1e3,self.f_low_show,10) freq_higherband = np.linspace(self.f_high_show,5e6,10) power_min = np.min([np.min(self.power_density_fwr),np.min(self.power_density_nstx)]) power_max = np.max([np.max(self.power_density_fwr),np.max(self.power_density_nstx)]) self.shade_lower = self.subfig.fill_between(freq_lowerband,power_min,power_max,color = 'g',alpha = 0.3) self.shade_higher = self.subfig.fill_between(freq_higherband,power_min,power_max,color = 'g',alpha = 0.3) class Plot4(Picture): """Plot 4: Comparison between filtered and original signals. From experimental data, 55GHz channel. """ def __init__(self,channel=11,channel_freq = 62.5): Picture.__init__(self,'Comparison of filtered signals','Plot 4: Comparison between filtered and original signals. From both experimental and simulation') self.channel = channel self.channel_freq = channel_freq def prepare(self,t_exp = 0.001): self.tstart = 0.632 self.tend = self.tstart+t_exp self.f_low = 4e4 #lower frequency set to be 40 kHz self.f_high = 5e5 #high end set to 500 kHz loader = nstx_exp.loaders[self.channel] self.sig_nstx,self.time = loader.signal(self.tstart,self.tend) self.phase_nstx,self.dph_nstx = phase(self.sig_nstx) self.magnitude_nstx = magnitude(self.sig_nstx) self.mean_mag_nstx = np.mean(self.magnitude_nstx) n = len(self.time) dt = self.time[1]-self.time[0] #get the fft frequency array self.freqs_nstx = np.fft.fftfreq(n,dt) idx_low,idx_high = np.searchsorted(self.freqs_nstx[:n/2+1],[self.f_low,self.f_high]) #note that only first half of the frequency array is holding positive frequencies. The rest are negative ones. #get the fft result for experimental data self.phase_spectrum_nstx = np.fft.fft(self.phase_nstx) #Full fft is used here for filtering and inverse fft self.filtered_phase_spectrum_nstx = band_pass_box(self.phase_spectrum_nstx,idx_low,idx_high) self.mag_spectrum_nstx = np.fft.fft(self.magnitude_nstx) self.filtered_mag_spectrum_nstx= band_pass_box(self.mag_spectrum_nstx,idx_low,idx_high) self.filtered_phase_nstx = np.fft.ifft(self.filtered_phase_spectrum_nstx) self.filtered_mag_nstx = np.fft.ifft(self.filtered_mag_spectrum_nstx) + self.mean_mag_nstx # We want to stack the magnitude fluctuation on top of the averaged magnitude self.filtered_sig_nstx = self.filtered_mag_nstx * np.exp(1j * self.filtered_phase_nstx) def show(self,black_white = False): if(black_white): ls_orig = 'k.' ls_filt = 'k-' else: ls_orig = 'b-' ls_filt = 'r-' self.fig,(self.subfig1,self.subfig2,self.subfig3,self.subfig4) = plt.subplots(4,1,sharex=True) self.orig_pha_nstx_plot = self.subfig1.plot(self.time,self.phase_nstx,ls_orig,linewidth = 1, label = 'ORIGINAL_PHASE') self.filt_pha_nstx_plot= self.subfig2.plot(self.time,self.filtered_phase_nstx,ls_filt,linewidth = 1,label = 'FILTERED_PHASE') self.orig_mag_nstx_plot = self.subfig3.plot(self.time,self.magnitude_nstx,ls_orig,linewidth = 1,label = 'ORIGINAL_MAGNITUDE') self.filt_mag_nstx_plot= self.subfig4.plot(self.time,self.filtered_mag_nstx,ls_filt,linewidth = 1,label = 'FILTERED_MAGNITUDE') mag_low,mag_high = self.subfig3.get_ybound() self.subfig4.set_ybound(mag_low,mag_high) #self.line_fwr = self.subfig.loglog(self.freqs_fwr,self.power_density_fwr,ls_fwr,label = 'FWR') self.subfig1.legend(loc = 'best',prop = {'size':10}) self.subfig2.legend(loc = 'best',prop = {'size':10}) self.subfig3.legend(loc = 'best',prop = {'size':10}) self.subfig4.legend(loc = 'best',prop = {'size':10}) self.subfig4.set_xlabel('time (s)') self.subfig1.set_ylabel('$\phi$ (rad)') self.subfig2.set_ylabel('$\phi$ (rad)') self.subfig3.set_ylabel('magnitude (a.u.)') self.subfig4.set_ylabel('magnitude (a.u.)') self.subfig4.set_xbound(self.tstart,self.tend) class Plot5(Plot4): """Plot 5: Experimental g factor as a function of window width, show that filtered signal has indeed a stable g factor """ def __init__(self,channel=11,channel_freq=62.5): Plot4.__init__(self,channel,channel_freq) Picture.__init__(self,'Plot5:g factor VS window widths','Plot 5: Experimental g factor as a function of window width, show that filtered signal has indeed a stable g factor') def prepare(self): Plot4.prepare(self) t_total = self.tend - self.tstart self.avg_windows = np.logspace(-5,np.log10(t_total),50) t_lower = self.time[0]+1e-5 idx_lower = np.searchsorted(self.time,t_lower) t_upper = self.time[idx_lower]+self.avg_windows idx_upper = np.searchsorted(self.time,t_upper) self.g_orig = np.zeros_like(self.avg_windows) self.g_filt = np.zeros_like(self.avg_windows) for i in range(len(self.avg_windows)) : idx = idx_lower + idx_upper[i] sig = self.sig_nstx[idx_lower:idx] sig_filt = self.filtered_sig_nstx[idx_lower:idx] self.g_orig[i] = np.abs(Coherent_Signal(sig)) self.g_filt[i] = np.abs(Coherent_Signal(sig_filt)) def show(self,black_white = False): if(black_white): ls_orig = 'k--' ls_filt = 'k-' else: ls_orig = 'b-' ls_filt = 'r-' self.fig = plt.figure() self.subfig = self.fig.add_subplot(111) self.g_orig_line = self.subfig.semilogx(self.avg_windows,self.g_orig,ls_orig,linewidth = 1,label = 'ORIGINAL') self.g_filt_line = self.subfig.semilogx(self.avg_windows,self.g_filt,ls_filt,linewidth = 1,label = 'FILTERED') self.subfig.legend(loc = 'best', prop = {'size':14}) self.subfig.set_xlabel('average time window(s)') self.subfig.set_ylabel('$|g|$') self.fig.canvas.draw() class Plot6(Picture): """ Plot 6: Four channel g factor plot. 55GHz, 57.5GHz, 60GHz, 62.5 GHz and 67.5GHz. """ def __init__(self): Picture.__init__(self,'Plot6:g factors for 5 channels', 'Plot 6: Four channel g factor plot. 55GHz, 57.5GHz, 60GHz, 62.5 GHz. and 67.5GHz') def prepare(self,t_exp = 0.001): #prepare the cut-off locations on the mid-plane self.x55 = ref_pos_mid[8] self.x575 = ref_pos_mid[9] self.x60 = ref_pos_mid[10] self.x625 = ref_pos_mid[11] self.x675 = ref_pos_mid[14] self.x65 = ref_pos_mid[12] self.x665 = ref_pos_mid[13] self.x = [self.x55,self.x575,self.x60,self.x625,self.x675,self.x65,self.x665] #First, we get experimental g factors ready self.t_sections = [[0.632,0.633],[0.6334,0.6351],[0.636,0.6385]] self.n_sections = len(self.t_sections) self.g55 = [] self.g575 = [] self.g60 = [] self.g625 = [] self.g675 = [] self.f_low = 4e4 self.f_high = 5e5 #frequency filter range set to 40kHz-500kHz l55 = nstx_exp.loaders[8] l575 = nstx_exp.loaders[9] l60 = nstx_exp.loaders[10] l625 = nstx_exp.loaders[11] l675 = nstx_exp.loaders[12] for i in range(self.n_sections): tstart = self.t_sections[i][0] tend = self.t_sections[i][1] sig55 ,time = l55.signal(tstart,tend) sig575 ,time = l575.signal(tstart,tend) sig60 ,time = l60.signal(tstart,tend) sig625 ,time = l625.signal(tstart,tend) sig675, time = l675.signal(tstart,tend) dt = time[1]-time[0] # Use band passing filter to filter the signal, so only mid range frequnecy perturbations are kept sig55_filt = band_pass_filter(sig55,dt,self.f_low,self.f_high) sig575_filt = band_pass_filter(sig575,dt,self.f_low,self.f_high) sig60_filt = band_pass_filter(sig60,dt,self.f_low,self.f_high) sig625_filt = band_pass_filter(sig625,dt,self.f_low,self.f_high) sig675_filt = band_pass_filter(sig675,dt,self.f_low,self.f_high) theads = np.arange(tstart,tend-t_exp,t_exp/10) ttails = theads+t_exp/10 arg_heads = np.searchsorted(time,theads) arg_tails = np.searchsorted(time,ttails) #prepare the g-factors,keep them complex until we draw them for j in range(len(arg_heads)): self.g55.append(Coherent_Signal(sig55_filt[arg_heads[j]:arg_tails[j]])) self.g575.append(Coherent_Signal(sig575_filt[arg_heads[j]:arg_tails[j]])) self.g60.append(Coherent_Signal(sig60_filt[arg_heads[j]:arg_tails[j]])) self.g625.append(Coherent_Signal(sig625_filt[arg_heads[j]:arg_tails[j]])) self.g675.append(Coherent_Signal(sig675_filt[arg_heads[j]:arg_tails[j]])) self.g_exp = [[self.g55,self.g575,self.g60,self.g625,self.g675], [np.mean(np.abs(self.g55)),np.mean(np.abs(self.g575)),np.mean(np.abs(self.g60)),np.mean(np.abs(self.g625)),np.mean(np.abs(self.g675))], [np.std(np.abs(self.g55)),np.std(np.abs(self.g575)),np.std(np.abs(self.g60)),np.std(np.abs(self.g625)),np.std(np.abs(self.g675))]] # Now, we prepare the g factors from FWR2D E_file = '/p/gkp/lshi/XGC1_NSTX_Case/Correlation_Runs/RUNS/RUN_NSTX_139047_All_Channel_All_Time_MULTIPROC/E_out_55.sav.npy' E55_2d = np.load(E_file) E55_2d = remove_average_phase(E55_2d) E_file = '/p/gkp/lshi/XGC1_NSTX_Case/Correlation_Runs/RUNS/RUN_NSTX_139047_All_Channel_All_Time_MULTIPROC/E_out_57.5.sav.npy' E575_2d = np.load(E_file) E575_2d = remove_average_phase(E575_2d) E_file = '/p/gkp/lshi/XGC1_NSTX_Case/Correlation_Runs/RUNS/RUN_NSTX_139047_All_Channel_All_Time_MULTIPROC/E_out_60.sav.npy' E60_2d = np.load(E_file) E60_2d = remove_average_phase(E60_2d) E_file = '/p/gkp/lshi/XGC1_NSTX_Case/Correlation_Runs/RUNS/RUN_NSTX_139047_All_Channel_All_Time_MULTIPROC/E_out_62.5.sav.npy' E625_2d = np.load(E_file) E625_2d = remove_average_phase(E625_2d) E_file = '/p/gkp/lshi/XGC1_NSTX_Case/Correlation_Runs/RUNS/RUN_NSTX_139047_All_Channel_All_Time_MULTIPROC/E_out_67.5.sav.npy' E675_2d = np.load(E_file) E675_2d = remove_average_phase(E675_2d) E_file = '/p/gkp/lshi/XGC1_NSTX_Case/Correlation_Runs/RUNS/RUN_NSTX_139047_All_Channel_All_Time_MULTIPROC_add_two_channels/E_out_65.0.sav.npy' E65_2d = np.load(E_file) E65_2d = remove_average_phase(E65_2d) E_file = '/p/gkp/lshi/XGC1_NSTX_Case/Correlation_Runs/RUNS/RUN_NSTX_139047_All_Channel_All_Time_MULTIPROC_add_two_channels/E_out_66.5.sav.npy' E665_2d = np.load(E_file) E665_2d = remove_average_phase(E665_2d) self.g55_2d = Coherent_Signal(E55_2d.flatten()) self.g575_2d = Coherent_Signal(E575_2d.flatten()) self.g60_2d = Coherent_Signal(E60_2d.flatten()) self.g625_2d = Coherent_Signal(E625_2d.flatten()) self.g675_2d = Coherent_Signal(E675_2d.flatten()) self.g65_2d = Coherent_Signal(E65_2d.flatten()) self.g665_2d = Coherent_Signal(E665_2d.flatten()) self.g_2d = [self.g55_2d,self.g575_2d,self.g60_2d,self.g625_2d,self.g675_2d,self.g65_2d,self.g665_2d] # And g-factors from FWR3D E_file = '/p/gkp/lshi/XGC1_NSTX_Case/Correlation_Runs/3DRUNS/RUN_NEWAll_16_cross_16_time_55GHz/E_out.sav.npy' E55_3d = np.load(E_file) E55_3d = remove_average_phase(E55_3d) E_file = '/p/gkp/lshi/XGC1_NSTX_Case/Correlation_Runs/3DRUNS/RUN_NEWAll_16_cross_16_time_57.5GHz/E_out.sav.npy' E575_3d = np.load(E_file) E575_3d = remove_average_phase(E575_3d) E_file = '/p/gkp/lshi/XGC1_NSTX_Case/Correlation_Runs/3DRUNS/RUN_NEWAll_16_cross_16_time_60GHz/E_out.sav.npy' E60_3d = np.load(E_file) E60_3d = remove_average_phase(E60_3d) E_file = '/p/gkp/lshi/XGC1_NSTX_Case/Correlation_Runs/3DRUNS/RUN_NEWAll_16_cross_16_time_62.5GHz/E_out.sav.npy' E625_3d = np.load(E_file) E625_3d = remove_average_phase(E625_3d) E_file = '/p/gkp/lshi/XGC1_NSTX_Case/Correlation_Runs/3DRUNS/RUN_NEWAll_16_cross_16_time_67.5GHz/E_out.sav.npy' E675_3d = np.load(E_file) E675_3d = remove_average_phase(E675_3d) self.g55_3d = Coherent_Signal(E55_3d.flatten()) self.g575_3d = Coherent_Signal(E575_3d.flatten()) self.g60_3d = Coherent_Signal(E60_3d.flatten()) self.g625_3d = Coherent_Signal(E625_3d.flatten()) self.g675_3d = Coherent_Signal(E675_3d.flatten()) self.g_3d = [self.g55_3d,self.g575_3d,self.g60_3d,self.g625_3d,self.g675_3d] def show(self,black_white = False): if(black_white): color_exp = 'k' marker_exp = 's' ls_2d = 'k--' marker_2d = 'o' ls_3d = 'k-.' marker_3d = '^' else: color_exp = 'b' marker_exp = 's' ls_2d = 'g-' marker_2d = 'o' ls_3d = 'r-' marker_3d = '^' self.fig = plt.figure() self.subfig = self.fig.add_subplot(111) self.g_exp_line = self.subfig.errorbar(self.x[:5] ,self.g_exp[1],yerr=self.g_exp[2],ecolor = color_exp,linewidth = 1,marker = marker_exp,label = 'EXP') self.g_2d_line = self.subfig.errorbar(self.x[:7],np.abs(self.g_2d),yerr = 1./16, fmt = ls_2d,marker = marker_2d,linewidth = 1,label = 'FWR2D') self.g_3d_line = self.subfig.errorbar(self.x[:5],np.abs(self.g_3d),yerr = 1./16, fmt = ls_3d,marker = marker_3d,linewidth = 1,label = 'FWR3D') self.subfig.legend(loc = 'best', prop = {'size':14}) self.subfig.set_xlabel('R(m)') self.subfig.set_ylabel('$|g|$') self.subfig.set_ylim(0,1) xticks = self.subfig.get_xticks()[::2] xticklabels = [str(x) for x in xticks] self.subfig.set_xticks(xticks) self.subfig.set_xticklabels(xticklabels) self.fig.canvas.draw() class Plot7(Picture): """ Plot 7: Cross-Correlation between 55GHz,57.5GHz, 60GHz, 62.5GHz and 67.5GHz channels. Center channel chosen to be 62.5GHz """ def __init__(self): Picture.__init__(self,'Plot7:Multi channel cross-section plots','Plot 7: Cross-Correlation between 55GHz,57.5GHz, 60GHz, 62.5GHz and 67.5GHz channels.') def prepare(self,center = 62.5,t_exp = 0.001): #prepare the cut-off locations on the mid-plane if center == 67.5: channel_c = 14 elif center == 62.5: channel_c = 11 elif center == 60: channel_c = 10 elif center == 55: channel_c = 8 else: channel_c = 14 self.x55 = (ref_pos_mid[8]-ref_pos_mid[channel_c]) self.x575 = (ref_pos_mid[9]-ref_pos_mid[channel_c]) self.x60 = (ref_pos_mid[10]-ref_pos_mid[channel_c]) self.x625 = (ref_pos_mid[11]-ref_pos_mid[channel_c]) self.x675 = (ref_pos_mid[14]-ref_pos_mid[channel_c]) self.x65 = (ref_pos_mid[12]-ref_pos_mid[channel_c]) self.x665 = (ref_pos_mid[13]-ref_pos_mid[channel_c]) self.x = [self.x55,self.x575,self.x60,self.x625,self.x675,self.x65,self.x665] #First, we get experimental g factors ready self.tstart = 0.632 self.tend = self.tstart + t_exp self.f_low = 4e4 self.f_high = 5e5 #frequency filter range set to 40kHz-500kHz l55 = nstx_exp.loaders[8] l575 = nstx_exp.loaders[9] l60 = nstx_exp.loaders[10] l625 = nstx_exp.loaders[11] l675 = nstx_exp.loaders[12] sig55 ,time = l55.signal(self.tstart,self.tend) sig575 ,time = l575.signal(self.tstart,self.tend) sig60 ,time = l60.signal(self.tstart,self.tend) sig625 ,time = l625.signal(self.tstart,self.tend) sig675,time = l675.signal(self.tstart,self.tend) dt = time[1]-time[0] # Use band passing filter to filter the signal, so only mid range frequnecy perturbations are kept sig55_filt = band_pass_filter(sig55,dt,self.f_low,self.f_high) sig575_filt = band_pass_filter(sig575,dt,self.f_low,self.f_high) sig60_filt = band_pass_filter(sig60,dt,self.f_low,self.f_high) sig625_filt = band_pass_filter(sig625,dt,self.f_low,self.f_high) sig675_filt = band_pass_filter(sig675,dt,self.f_low,self.f_high) #prepare the gamma-factors,keep them complex until we draw them if center == 67.5: sig_c = sig675_filt elif center == 62.5: sig_c = sig625_filt elif center == 60: sig_c = sig60_filt elif center == 55: sig_c = sig55_filt else: sig_c = sig675_filt self.c55 = Cross_Correlation(sig_c,sig55_filt,'NORM') self.c575 = Cross_Correlation(sig_c,sig575_filt,'NORM') self.c60 = Cross_Correlation(sig_c,sig60_filt,'NORM') self.c625 = Cross_Correlation(sig_c,sig625_filt,'NORM') self.c675 = Cross_Correlation(sig_c,sig675_filt,'NORM') self.c_exp = [self.c55,self.c575,self.c60,self.c625,self.c675] # Now, we prepare the gamma factors from FWR2D E_file = '/p/gkp/lshi/XGC1_NSTX_Case/Correlation_Runs/RUNS/RUN_NSTX_139047_All_Channel_All_Time_MULTIPROC/E_out_55.sav.npy' E55_2d = remove_average_field(remove_average_phase((np.load(E_file))))[:,:120,:].flatten() E_file = '/p/gkp/lshi/XGC1_NSTX_Case/Correlation_Runs/RUNS/RUN_NSTX_139047_All_Channel_All_Time_MULTIPROC/E_out_57.5.sav.npy' E575_2d = remove_average_field(remove_average_phase((np.load(E_file))))[:,:120,:].flatten() E_file = '/p/gkp/lshi/XGC1_NSTX_Case/Correlation_Runs/RUNS/RUN_NSTX_139047_All_Channel_All_Time_MULTIPROC/E_out_60.sav.npy' E60_2d = remove_average_field(remove_average_phase((np.load(E_file))))[:,:120,:].flatten() E_file = '/p/gkp/lshi/XGC1_NSTX_Case/Correlation_Runs/RUNS/RUN_NSTX_139047_All_Channel_All_Time_MULTIPROC/E_out_62.5.sav.npy' E625_2d = remove_average_field(remove_average_phase((np.load(E_file))))[:,:120,:].flatten() E_file = '/p/gkp/lshi/XGC1_NSTX_Case/Correlation_Runs/RUNS/RUN_NSTX_139047_All_Channel_All_Time_MULTIPROC_add_two_channels/E_out_65.0.sav.npy' E650_2d = remove_average_field(remove_average_phase((np.load(E_file))))[:,:120,:].flatten() E_file = '/p/gkp/lshi/XGC1_NSTX_Case/Correlation_Runs/RUNS/RUN_NSTX_139047_All_Channel_All_Time_MULTIPROC_add_two_channels/E_out_66.5.sav.npy' E665_2d = remove_average_field(remove_average_phase((np.load(E_file))))[:,:120,:].flatten() E_file = '/p/gkp/lshi/XGC1_NSTX_Case/Correlation_Runs/RUNS/RUN_NSTX_139047_All_Channel_All_Time_MULTIPROC/E_out_67.5.sav.npy' E675_2d = remove_average_field(remove_average_phase((np.load(E_file))))[:,:120,:].flatten() E2d = [E55_2d,E575_2d,E60_2d,E625_2d,E675_2d,E650_2d,E665_2d] if center == 67.5: E2d_c = 4 elif center == 62.5: E2d_c = 3 elif center == 60: E2d_c = 2 elif center == 55: E2d_c = 0 else: E2d_c = 4 self.c_2d = [] self.c_2d.append(Cross_Correlation(E2d[E2d_c],E2d[0],'NORM')) self.c_2d.append(Cross_Correlation(E2d[E2d_c],E2d[1],'NORM')) self.c_2d.append(Cross_Correlation(E2d[E2d_c],E2d[2],'NORM')) self.c_2d.append(Cross_Correlation(E2d[E2d_c],E2d[3],'NORM')) self.c_2d.append(Cross_Correlation(E2d[E2d_c],E2d[4],'NORM')) self.c_2d.append(Cross_Correlation(E2d[E2d_c],E2d[5],'NORM')) self.c_2d.append(Cross_Correlation(E2d[E2d_c],E2d[6],'NORM')) # And gamma-factors from FWR3D E_file = '/p/gkp/lshi/XGC1_NSTX_Case/Correlation_Runs/3DRUNS/RUN_NEWAll_16_cross_16_time_55GHz/E_out.sav.npy' E55_3d = remove_average_field(remove_average_phase((np.load(E_file)))).flatten() E_file = '/p/gkp/lshi/XGC1_NSTX_Case/Correlation_Runs/3DRUNS/RUN_NEWAll_16_cross_16_time_57.5GHz/E_out.sav.npy' E575_3d = remove_average_field(remove_average_phase((np.load(E_file)))).flatten() E_file = '/p/gkp/lshi/XGC1_NSTX_Case/Correlation_Runs/3DRUNS/RUN_NEWAll_16_cross_16_time_60GHz/E_out.sav.npy' E60_3d = remove_average_field(remove_average_phase((np.load(E_file)))).flatten() E_file = '/p/gkp/lshi/XGC1_NSTX_Case/Correlation_Runs/3DRUNS/RUN_NEWAll_16_cross_16_time_62.5GHz/E_out.sav.npy' E625_3d = remove_average_field(remove_average_phase((np.load(E_file)))).flatten() E_file = '/p/gkp/lshi/XGC1_NSTX_Case/Correlation_Runs/3DRUNS/RUN_NEWAll_16_cross_16_time_67.5GHz/E_out.sav.npy' E675_3d = remove_average_field(remove_average_phase((np.load(E_file)))).flatten() E3d = [E55_3d,E575_3d,E60_3d,E625_3d,E675_3d] if center == 67.5: E3d_c = 4 elif center == 62.5: E3d_c = 3 elif center == 60: E3d_c = 2 elif center == 55: E3d_c = 0 else: E3d_c = 4 self.c_3d = [] self.c_3d.append(Cross_Correlation(E3d[E3d_c],E3d[0],'NORM')) self.c_3d.append(Cross_Correlation(E3d[E3d_c],E3d[1],'NORM')) self.c_3d.append(Cross_Correlation(E3d[E3d_c],E3d[2],'NORM')) self.c_3d.append(Cross_Correlation(E3d[E3d_c],E3d[3],'NORM')) self.c_3d.append(Cross_Correlation(E3d[E3d_c],E3d[4],'NORM')) # Gaussian fit of the cross-correlations self.a_exp,self.sa_exp = fitting_cross_correlation(np.abs(self.c_exp),self.x[:5],'gaussian') self.a_2d,self.sa_2d = fitting_cross_correlation(np.abs(self.c_2d),self.x[:7],'gaussian') self.a_3d,self.sa_3d = fitting_cross_correlation(np.abs(self.c_3d),self.x[:5],'gaussian') self.xmax = 2*np.sqrt(np.max((np.abs(self.a_exp),np.abs(self.a_2d),np.abs(self.a_3d)))) self.x_fit = np.linspace(-self.xmax,self.xmax,500) self.fit_exp = gaussian_fit(self.x_fit,self.a_exp) self.fit_2d = gaussian_fit(self.x_fit,self.a_2d) self.fit_3d = gaussian_fit(self.x_fit,self.a_3d) #Exponential fit of the cross-correlations self.e_exp,self.se_exp = fitting_cross_correlation(np.abs(self.c_exp),self.x[:5],'exponential') self.e_2d,self.se_2d = fitting_cross_correlation(
np.abs(self.c_2d)
numpy.abs
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sun Dec 16 17:58:52 2018 @author: Zhaoyi.Shen """ import sys # sys.path.append('/home/z1s/py/lib/') from signal_processing import lfca import numpy as np import scipy as sp from scipy import io from matplotlib import pyplot as plt from netCDF4 import Dataset,num2date from datetime import datetime, timedelta # with Dataset('/export/data1/rccheng/ERSSTv5/sst.mnmean.nc') as f: # lat_axis = f['lat'][:] # lon_axis = f['lon'][:] # er_time = f['time'][:] # er_sst = f['sst'][:] # er_sst[er_sst<-9e36] = np.nan # er_refstart = [(datetime(1800,1,1) + timedelta(days= i)-datetime(1900,1,1)).days for i in er_time] # er_refend = [(datetime(1800,1,1) + timedelta(days= i)-datetime(2017,1,1)).days for i in er_time] # sst = er_sst[er_refstart.index(0):er_refend.index(0),:,:].transpose([2,1,0]) # time = np.arange(1900,2016.99,1/12.) # nlon = sst.shape[0] # nlat = sst.shape[1] # ntime = sst.shape[2] filename = '/export/data1/rccheng/ERSSTv5/ERSST_1900_2016.mat' mat = io.loadmat(filename) lat_axis = mat['LAT_AXIS'] lon_axis = mat['LON_AXIS'] sst = mat['SST'] nlon = sst.shape[0] nlat = sst.shape[1] ntime = sst.shape[2] time = np.arange(1900,2016.99,1/12.) cutoff = 120 truncation = 30 #%% mean_seasonal_cycle = np.zeros((nlon,nlat,12)) sst_anomalies = np.zeros((nlon,nlat,ntime)) for i in range(12): mean_seasonal_cycle[...,i] = np.nanmean(sst[...,i:ntime:12],-1) sst_anomalies[...,i:ntime:12] = sst[...,i:ntime:12] - mean_seasonal_cycle[...,i][...,np.newaxis] #%% s = sst_anomalies.shape y, x = np.meshgrid(lat_axis,lon_axis) area = np.cos(y*np.pi/180.) area[np.where(np.isnan(np.mean(sst_anomalies,-1)))] = 0 #%% domain = np.ones(area.shape) domain[np.where(x<100)] = 0 domain[np.where((x<103) & (y<5))] = 0 domain[np.where((x<105) & (y<2))] = 0 domain[np.where((x<111) & (y<-6))] = 0 domain[np.where((x<114) & (y<-7))] = 0 domain[np.where((x<127) & (y<-8))] = 0 domain[np.where((x<147) & (y<-18))] = 0 domain[np.where(y>70)] = 0 domain[np.where((y>65) & ((x<175) | (x>200)))] = 0 domain[np.where(y<-45)] = 0 domain[np.where((x>260) & (y>17))] = 0 domain[np.where((x>270) & (y<=17) & (y>14))] = 0 domain[np.where((x>276) & (y<=14) & (y>9))] = 0 domain[
np.where((x>290) & (y<=9))
numpy.where
""" THIS VERSION IS DEPRECATED, THE PYQTGRAPH-BACKEND IS CONTINUED TO BE DEVELOPED IN MNE-PYTHON (currently https://github.com/mne-tools/mne-python/pull/9687) """ import datetime import math import platform from functools import partial import numpy as np from PyQt5.QtCore import (QEvent, QPointF, Qt, pyqtSignal, QRunnable, QObject, QThreadPool, QRectF) from PyQt5.QtGui import (QFont, QIcon, QPixmap, QTransform, QMouseEvent, QPainter, QImage, QPen) from PyQt5.QtTest import QTest from PyQt5.QtWidgets import (QAction, QColorDialog, QComboBox, QDialog, QDockWidget, QDoubleSpinBox, QFormLayout, QGridLayout, QHBoxLayout, QInputDialog, QLabel, QMainWindow, QMessageBox, QPushButton, QScrollBar, QSizePolicy, QWidget, QStyleOptionSlider, QStyle, QApplication, QGraphicsView, QProgressBar, QVBoxLayout, QLineEdit, QCheckBox, QScrollArea) from mne.annotations import _sync_onset from mne.io.pick import _DATA_CH_TYPES_ORDER_DEFAULT from mne.utils import logger from mne.viz._figure import BrowserBase from pyqtgraph import (AxisItem, GraphicsView, InfLineLabel, InfiniteLine, LinearRegionItem, PlotCurveItem, PlotItem, TextItem, ViewBox, functions, mkBrush, mkPen, setConfigOption, mkQApp, mkColor) from scipy.stats import zscore name = 'pyqtgraph' class RawTraceItem(PlotCurveItem): """Graphics-Object for single data trace.""" def __init__(self, mne, ch_idx): super().__init__(clickable=True) # ToDo: Does it affect performance, if the mne-object is referenced # to in every RawTraceItem? self.mne = mne self.check_nan = self.mne.check_nan self.set_ch_idx(ch_idx) self.update_bad_color() self.set_data() def update_bad_color(self): if self.isbad: self.setPen(self.mne.ch_color_bad) else: self.setPen(self.color) def set_ch_idx(self, ch_idx): self.ch_idx = ch_idx self.pick_idx =
np.argwhere(self.mne.picks == self.ch_idx)
numpy.argwhere
'''Test for bdpy.vstack''' from unittest import TestCase, TestLoader, TextTestRunner import numpy as np import bdpy from bdpy import vstack, metadata_equal class TestVstack(TestCase): def test_vstack(self): x0_data = np.random.rand(10, 20) x0_label = np.random.rand(10, 1) x1_data = np.random.rand(10, 20) x1_label = np.random.rand(10, 1) bdata0 = bdpy.BData() bdata0.add(x0_data, 'Data') bdata0.add(x0_label, 'Label') bdata1 = bdpy.BData() bdata1.add(x1_data, 'Data') bdata1.add(x1_label, 'Label') bdata_merged = vstack([bdata0, bdata1]) np.testing.assert_array_equal(bdata_merged.select('Data'), np.vstack([x0_data, x1_data])) np.testing.assert_array_equal(bdata_merged.select('Label'), np.vstack([x0_label, x1_label])) def test_vstack_successive(self): x0_data = np.random.rand(10, 20) x0_label = np.random.rand(10, 1) x0_run = np.arange(10).reshape(10, 1) + 1 x1_data = np.random.rand(10, 20) x1_label = np.random.rand(10, 1) x1_run = np.arange(10).reshape(10, 1) + 1 bdata0 = bdpy.BData() bdata0.add(x0_data, 'Data') bdata0.add(x0_label, 'Label') bdata0.add(x0_run, 'Run') bdata1 = bdpy.BData() bdata1.add(x1_data, 'Data') bdata1.add(x1_label, 'Label') bdata1.add(x0_run, 'Run') bdata_merged = vstack([bdata0, bdata1], successive=['Run']) np.testing.assert_array_equal(bdata_merged.select('Data'), np.vstack([x0_data, x1_data])) np.testing.assert_array_equal(bdata_merged.select('Label'), np.vstack([x0_label, x1_label])) np.testing.assert_array_equal(bdata_merged.select('Run'), np.vstack([x0_run, x1_run + len(x0_run)])) def test_vstack_minimal(self): x0_data = np.random.rand(5, 10) x0_label = np.random.rand(5, 1) x1_data = np.random.rand(5, 10) x1_label = np.random.rand(5, 1) bdata0 = bdpy.BData() bdata0.add(x0_data, 'Data') bdata0.add(x0_label, 'Label') bdata0.add_metadata('key shared', [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, np.nan], 'Shared meta-data') bdata0.add_metadata('key only in 0', np.random.rand(11), 'Meta-data only in bdata0') bdata1 = bdpy.BData() bdata1.add(x1_data, 'Data') bdata1.add(x1_label, 'Label') bdata1.add_metadata('key shared', [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, np.nan], 'Shared meta-data') bdata0.add_metadata('key only in 1', np.random.rand(11), 'Meta-data only in bdata1') bdata_merged = vstack([bdata0, bdata1], metadata_merge='minimal') np.testing.assert_array_equal(bdata_merged.select('Data'), np.vstack([x0_data, x1_data])) np.testing.assert_array_equal(bdata_merged.select('Label'), np.vstack([x0_label, x1_label])) np.testing.assert_array_equal(bdata_merged.get_metadata('key shared'), [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, np.nan]) self.assertFalse('key only in 0' in bdata_merged.metadata.key) self.assertFalse('key only in 1' in bdata_merged.metadata.key) def test_vstack_vmap(self): x0_data = np.random.rand(10, 20) x0_label = np.random.permutation(np.arange(10)).reshape(10, 1) + 1 x0_label_map = {k: 'label_%04d' % k for k in x0_label.flatten()} x1_data = np.random.rand(10, 20) x1_label = np.random.permutation(np.arange(10)).reshape(10, 1) + 1 x1_label_map = {k: 'label_%04d' % k for k in x1_label.flatten()} bdata0 = bdpy.BData() bdata0.add(x0_data, 'Data') bdata0.add(x0_label, 'Label') bdata0.add_vmap('Label', x0_label_map) bdata1 = bdpy.BData() bdata1.add(x1_data, 'Data') bdata1.add(x1_label, 'Label') bdata1.add_vmap('Label', x1_label_map) bdata_merged = vstack([bdata0, bdata1]) np.testing.assert_array_equal(bdata_merged.select('Data'), np.vstack([x0_data, x1_data])) np.testing.assert_array_equal(bdata_merged.select('Label'), np.vstack([x0_label, x1_label])) # Check vmap assert bdata0.get_vmap('Label') == bdata1.get_vmap('Label') assert bdata_merged.get_vmap('Label') == bdata0.get_vmap('Label') def test_vstack_vmap_merge_diff_vmap(self): x0_data = np.random.rand(10, 20) x0_label = np.random.permutation(np.arange(10)).reshape(10, 1) + 1 x0_label_map = {k: 'label_%04d' % k for k in x0_label.flatten()} x1_data = np.random.rand(10, 20) x1_label = np.random.permutation(np.arange(10)).reshape(10, 1) + 11 x1_label_map = {k: 'label_%04d' % k for k in x1_label.flatten()} bdata0 = bdpy.BData() bdata0.add(x0_data, 'Data') bdata0.add(x0_label, 'Label') bdata0.add_vmap('Label', x0_label_map) bdata1 = bdpy.BData() bdata1.add(x1_data, 'Data') bdata1.add(x1_label, 'Label') bdata1.add_vmap('Label', x1_label_map) bdata_merged = vstack([bdata0, bdata1]) np.testing.assert_array_equal(bdata_merged.select('Data'), np.vstack([x0_data, x1_data])) np.testing.assert_array_equal(bdata_merged.select('Label'),
np.vstack([x0_label, x1_label])
numpy.vstack
from typing import Tuple import numpy as np import pandas as pd from lightgbm import LGBMClassifier from shap import TreeExplainer def select_features( train: pd.DataFrame, label: pd.Series, test: pd.DataFrame ) -> Tuple[pd.DataFrame, pd.DataFrame]: model = LGBMClassifier(random_state=42) print(f"{model.__class__.__name__} Train Start!") model.fit(train, label) explainer = TreeExplainer(model) shap_values = explainer.shap_values(test) shap_sum =
np.abs(shap_values)
numpy.abs
""" this is used mainly to re-run experiments off-line from logged data, else see -> main""" import time import json import sys import math import os import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.decomposition import PCA from sklearn import svm import copy import numpy as np from data_operators import * from visualization import * # print ("Random number with seed 30") np.random.seed(123) acc_test_dict = [ ["15mil", "na"], ["8mil", "na"], ["15mil", "8mil", "na"], ["10mil", "na"], ["5mil", "na"], ["10mil", "5mil", "na"], ] def generate_action(current_state, idx, min_vec, max_vec, number_of_actions): if min_vec.shape[0] <= idx: return current_state else: if min_vec[idx] != 0 or max_vec[idx] != 0: if number_of_actions == 1: actions =
np.array((max_vec[idx]-min_vec[idx])/2)
numpy.array
# Copyright (c) 1996-2015 PSERC. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. """Tests if two matrices are identical to some tolerance. """ from numpy import array, max, abs, nonzero, argmax, zeros from pypower.t.t_ok import t_ok from pypower.t.t_globals import TestGlobals def t_is(got, expected, prec=5, msg=''): """Tests if two matrices are identical to some tolerance. Increments the global test count and if the maximum difference between corresponding elements of C{got} and C{expected} is less than 10**(-C{prec}) then it increments the passed tests count, otherwise increments the failed tests count. Prints 'ok' or 'not ok' followed by the MSG, unless the global variable t_quiet is true. Intended to be called between calls to C{t_begin} and C{t_end}. @author: <NAME> (PSERC Cornell) """ if isinstance(got, int) or isinstance(got, float): got = array([got], float) elif isinstance(got, list) or isinstance(got, tuple): got = array(got, float) if isinstance(expected, int) or isinstance(expected, float): expected = array([expected], float) elif isinstance(expected, list) or isinstance(expected, tuple): expected =
array(expected, float)
numpy.array
""" Tools for loading datasets. Author: <NAME> Contact: <EMAIL> Date: August 2018 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import mimetypes import zipfile from tqdm import tqdm import numpy as np import tensorflow as tf import imageio import requests from .. import _globals # URL to the Omniglot python raw archive files on GitHub OMNIGLOT_GITHUB_RAW_FILES = 'https://github.com/brendenlake/omniglot/raw/master/python/' def load_mnist(path='mnist.npz'): """Load MNIST dataset wrapper (see tf.keras.datasets.mnist for more info).""" return tf.keras.datasets.mnist.load_data(path=path) def load_omniglot(path='data/omniglot.npz'): """Load the Omniglot dataset from Brenden Lakes official repo. Data is returned as a tuple (background_set, evaluation_set), where each set consists of the tuple (x_data, y_labels, z_alphabet). Parameters ---------- path : str Path to store cached dataset numpy archive. Returns ------- omniglot : tuple of NumPy arrays Omniglot dataset returned as (background_set, evaluation_set). Notes ----- Omniglot [1]_ is known as the inverse of MNIST as it contains many classes with few examples per class. The images are 105x105 single channel arrays encoded with standard RGB color space. In other words, each pixel is an integer value in the range of 0-255, where 0 is black and 255 is white. The characters are represented by the dark portions (0) of the image, whle the background is white (255). In contrast, MNIST is encoded with an inverse grayscale color map, where light portions (255) of the image represent the digit, and the background is black (0). Thus if we want to pretrain a network on Omniglot in order to learn features relevant to MNIST, or vice versa, we would need to invert the values of MNIST. Invert operation for flattened 1D array shape (height*width): >>> x_data = list(map(lambda x: 255 - x, x_data)) Or, for 2D image array of shape (height, width): >>> x_data = [list(map(lambda x: 255 - x, x_row)) for x_row in x_data] The datasets (background_set, evaluation_set) are broken down as follow: - background_set: 30 alphabets, 964 character classes, 19280 exemplars (20 per class). - evaluation_set: 20 alphabets, 659 character classes, 13180 exemplars (20 per class). Where each dataset consists of: - x_data: set of 105x105 Omniglot handwritten character images. - y_labels: set of image string labels (format: "{character_id}_{alphabet_index}"). - z_alphabet: set of alphabets that characters are drawn from. References ---------- .. [1] <NAME>, <NAME>, <NAME> (2015): Human-level concept learning through probabilistic program induction. http://www.sciencemag.org/content/350/6266/1332.short https://github.com/brendenlake/omniglot """ omniglot = () if os.path.isfile(path): np_data = np.load(path) omniglot += ((np.ascontiguousarray(np_data['x_train']), np_data['y_train'], np_data['z_train']), ) omniglot += ((np.ascontiguousarray(np_data['x_test']), np_data['y_test'], np_data['z_test']), ) else: print("Downloading Omniglot datasets ...") files = ['images_background.zip', 'images_evaluation.zip'] for filename in files: # Download omniglot archives to temporary files file_url = OMNIGLOT_GITHUB_RAW_FILES + filename with open(filename, 'wb') as fp: response = requests.get(file_url, stream=True) total_length = response.headers.get('content-length') if total_length is None: # No content length header fp.write(response.content) else: chunk_size = 1024 # 1 kB iterations total_length = int(total_length) n_chunks = int(np.ceil(total_length/chunk_size)) for _, data in zip(tqdm(range(n_chunks), unit='KB'), response.iter_content(chunk_size=chunk_size)): fp.write(data) # Write data to temp file # Extract omniglot features from downloaded archives x_data = [] y_labels = [] z_alphabets = [] with zipfile.ZipFile(filename, 'r') as archive: arch_members = archive.namelist() for arch_member in arch_members: if mimetypes.guess_type(arch_member)[0] == 'image/png': # Split image path into parts to get label and alphabet path_head, image_filename = os.path.split(arch_member) path_head, character = os.path.split(path_head) _, alphabet = os.path.split(path_head) # Label is "{character_id}_{alphabet_index}" label = "{}_{}".format(image_filename.split('_')[0], character.replace('character', '')) # Extract and read image data array with archive.open(arch_member) as extract_image: image_data = imageio.imread(extract_image.read()) x_data.append(image_data) y_labels.append(label) z_alphabets.append(alphabet) os.remove(filename) # Delete temporary archive files ... omniglot += (( np.ascontiguousarray(x_data, dtype=_globals.NP_INT), np.asarray(y_labels), np.asarray(z_alphabets)), ) # Save downloaded and extracted data in numpy archive for later use dirname = os.path.dirname(path) if dirname != '' and not os.path.exists(dirname): os.makedirs(dirname) np.savez_compressed(path, x_train=omniglot[0][0], y_train=omniglot[0][1], z_train=omniglot[0][2], x_test=omniglot[1][0], y_test=omniglot[1][1], z_test=omniglot[1][2]) return omniglot def load_flickraudio( path='flickr_audio.npz', feats_type='mfcc', encoding='latin1', remove_labels=None): """TODO(rpeloff) load the Flickr-Audio extracted features.""" valid_feats = ['mfcc', 'fbank'] if feats_type not in valid_feats: raise ValueError("Invalid value specified for feats_type: {}. Expected " "one of: {}.".format(feats_type, valid_feats)) remove_labels = [] if remove_labels is None else remove_labels flickraudio = () if os.path.isfile(path): np_data = np.load(path, encoding=encoding)[feats_type] # select mfcc or fbanks # Add train words (and remove optional remove_labels words): train_labels = np.asarray(np_data[0][1], dtype=str) valid_ind = [i for i in range(len(train_labels)) if train_labels[i] not in remove_labels] flickraudio += ((np.ascontiguousarray(np_data[0][0])[valid_ind], # features train_labels[valid_ind], # labels np.asarray(np_data[0][2], dtype=str)[valid_ind], # speakers np.asarray(np_data[0][3], dtype=str)[valid_ind]), ) # segment_keys # Add dev words (and remove optional remove_labels words): dev_labels = np.asarray(np_data[1][1], dtype=str) valid_ind = [i for i in range(len(dev_labels)) if dev_labels[i] not in remove_labels] flickraudio += ((np.ascontiguousarray(np_data[1][0])[valid_ind], # features dev_labels[valid_ind], # labels np.asarray(np_data[1][2], dtype=str)[valid_ind], # speakers
np.asarray(np_data[1][3], dtype=str)
numpy.asarray
import os import tempfile import unittest import mock import numpy import pytest import six import chainer from chainer import backend from chainer.backends import cuda from chainer.backends import intel64 from chainer import link from chainer import links from chainer import optimizers from chainer.serializers import npz from chainer import testing from chainer.testing import attr import chainerx class TestDictionarySerializer(unittest.TestCase): def setUp(self): self.serializer = npz.DictionarySerializer({}) self.data = numpy.random.uniform(-1, 1, (2, 3)).astype(numpy.float32) def test_get_item(self): child = self.serializer['x'] self.assertIsInstance(child, npz.DictionarySerializer) self.assertEqual(child.path, 'x/') def test_get_item_strip_slashes(self): child = self.serializer['/x/'] self.assertEqual(child.path, 'x/') def check_serialize(self, data, query): ret = self.serializer(query, data) dset = self.serializer.target['w'] self.assertIsInstance(dset, numpy.ndarray) self.assertEqual(dset.shape, data.shape) self.assertEqual(dset.size, data.size) self.assertEqual(dset.dtype, data.dtype) numpy.testing.assert_array_equal(dset, backend.CpuDevice().send(data)) self.assertIs(ret, data) @attr.chainerx def test_serialize_chainerx(self): self.check_serialize(chainerx.asarray(self.data), 'w') def test_serialize_cpu(self): self.check_serialize(self.data, 'w') @attr.gpu def test_serialize_gpu(self): self.check_serialize(cuda.to_gpu(self.data), 'w') def test_serialize_cpu_strip_slashes(self): self.check_serialize(self.data, '/w') @attr.gpu def test_serialize_gpu_strip_slashes(self): self.check_serialize(cuda.to_gpu(self.data), '/w') def test_serialize_scalar(self): ret = self.serializer('x', 10) dset = self.serializer.target['x'] self.assertIsInstance(dset, numpy.ndarray) self.assertEqual(dset.shape, ()) self.assertEqual(dset.size, 1) self.assertEqual(dset.dtype, int) self.assertEqual(dset[()], 10) self.assertIs(ret, 10) def test_serialize_none(self): ret = self.serializer('x', None) dset = self.serializer.target['x'] self.assertIsInstance(dset, numpy.ndarray) self.assertEqual(dset.shape, ()) self.assertEqual(dset.dtype, numpy.object) self.assertIs(dset[()], None) self.assertIs(ret, None) @testing.parameterize(*testing.product({'compress': [False, True]})) class TestNpzDeserializer(unittest.TestCase): def setUp(self): self.data = numpy.random.uniform(-1, 1, (2, 3)).astype(numpy.float32) fd, path = tempfile.mkstemp() os.close(fd) self.temp_file_path = path with open(path, 'wb') as f: savez = numpy.savez_compressed if self.compress else numpy.savez savez( f, **{'x/': None, 'y': self.data, 'z': numpy.asarray(10), 'zf32': numpy.array(-2**60, dtype=numpy.float32), 'zi64': numpy.array(-2**60, dtype=numpy.int64), 'w': None}) try: self.npzfile = numpy.load(path, allow_pickle=True) except TypeError: self.npzfile = numpy.load(path) self.deserializer = npz.NpzDeserializer(self.npzfile) def tearDown(self): if hasattr(self, 'npzfile'): self.npzfile.close() if hasattr(self, 'temp_file_path'): os.remove(self.temp_file_path) def test_get_item(self): child = self.deserializer['x'] self.assertIsInstance(child, npz.NpzDeserializer) self.assertEqual(child.path[-2:], 'x/') def test_get_item_strip_slashes(self): child = self.deserializer['/x/'] self.assertEqual(child.path, 'x/') def check_deserialize(self, y, query): ret = self.deserializer(query, y) numpy.testing.assert_array_equal( backend.CpuDevice().send(y), self.data) self.assertIs(ret, y) def check_deserialize_by_passing_none(self, y, query): ret = self.deserializer(query, None) numpy.testing.assert_array_equal( backend.CpuDevice().send(ret), self.data) @attr.chainerx def test_deserialize_chainerx(self): y = numpy.empty((2, 3), dtype=numpy.float32) self.check_deserialize(chainerx.asarray(y), 'y') @attr.chainerx @attr.gpu def test_deserialize_chainerx_non_native(self): y = numpy.empty((2, 3), dtype=numpy.float32) self.check_deserialize(chainerx.asarray(y, device='cuda:0'), 'y') def test_deserialize_cpu(self): y = numpy.empty((2, 3), dtype=numpy.float32) self.check_deserialize(y, 'y') def test_deserialize_by_passing_none_cpu(self): y = numpy.empty((2, 3), dtype=numpy.float32) self.check_deserialize_by_passing_none(y, 'y') @attr.gpu def test_deserialize_gpu(self): y = numpy.empty((2, 3), dtype=numpy.float32) self.check_deserialize(cuda.to_gpu(y), 'y') @attr.ideep def test_deserialize_ideep(self): y = numpy.empty((2, 3), dtype=numpy.float32) self.check_deserialize(intel64.mdarray(y), 'y') @attr.gpu def test_deserialize_by_passing_none_gpu(self): y = numpy.empty((2, 3), dtype=numpy.float32) self.check_deserialize_by_passing_none(cuda.to_gpu(y), 'y') def test_deserialize_cpu_strip_slashes(self): y = numpy.empty((2, 3), dtype=numpy.float32) self.check_deserialize(y, '/y') @attr.gpu def test_deserialize_gpu_strip_slashes(self): y = numpy.empty((2, 3), dtype=numpy.float32) self.check_deserialize(cuda.to_gpu(y), '/y') def test_deserialize_different_dtype_cpu(self): y =
numpy.empty((2, 3), dtype=numpy.float16)
numpy.empty
""" This module defines a simplified interface for generating ABINIT input files. Note that not all the features of Abinit are supported by BasicAbinitInput. For a more comprehensive implementation, use the AbinitInput object provided by AbiPy. """ import abc import copy import json import logging import os from collections import namedtuple from collections.abc import Mapping, MutableMapping from enum import Enum import numpy as np from monty.collections import AttrDict from monty.json import MSONable from monty.string import is_string, list_strings from pymatgen.core.structure import Structure from pymatgen.io.abinit import abiobjects as aobj from pymatgen.io.abinit.pseudos import Pseudo, PseudoTable from pymatgen.io.abinit.variable import InputVariable from pymatgen.util.serialization import pmg_serialize logger = logging.getLogger(__file__) # List of Abinit variables used to specify the structure. # This variables should not be passed to set_vars since # they will be generated with structure.to_abivars() GEOVARS = { "acell", "rprim", "rprimd", "angdeg", "xred", "xcart", "xangst", "znucl", "typat", "ntypat", "natom", } # Variables defining tolerances (used in pop_tolerances) _TOLVARS = { "toldfe", "tolvrs", "tolwfr", "tolrff", "toldff", "tolimg", "tolmxf", "tolrde", } # Variables defining tolerances for the SCF cycle that are mutally exclusive _TOLVARS_SCF = { "toldfe", "tolvrs", "tolwfr", "tolrff", "toldff", } # Variables determining if data files should be read in input _IRDVARS = { "irdbseig", "irdbsreso", "irdhaydock", "irdddk", "irdden", "ird1den", "irdqps", "irdkss", "irdscr", "irdsuscep", "irdvdw", "irdwfk", "irdwfkfine", "irdwfq", "ird1wf", } # Name of the (default) tolerance used by the runlevels. _runl2tolname = { "scf": "tolvrs", "nscf": "tolwfr", "dfpt": "toldfe", # ? "screening": "toldfe", # dummy "sigma": "toldfe", # dummy "bse": "toldfe", # ? "relax": "tolrff", } # Tolerances for the different levels of accuracy. T = namedtuple("T", "low normal high") _tolerances = { "toldfe": T(1.0e-7, 1.0e-8, 1.0e-9), "tolvrs": T(1.0e-7, 1.0e-8, 1.0e-9), "tolwfr": T(1.0e-15, 1.0e-17, 1.0e-19), "tolrff": T(0.04, 0.02, 0.01), } del T # Default values used if user does not specify them _DEFAULTS = dict( kppa=1000, ) def as_structure(obj): """ Convert obj into a Structure. Accepts: - Structure object. - Filename - Dictionaries (MSONable format or dictionaries with abinit variables). """ if isinstance(obj, Structure): return obj if is_string(obj): return Structure.from_file(obj) if isinstance(obj, Mapping): if "@module" in obj: return Structure.from_dict(obj) return aobj.structure_from_abivars(cls=None, **obj) raise TypeError(f"Don't know how to convert {type(obj)} into a structure") class ShiftMode(Enum): """ Class defining the mode to be used for the shifts. G: Gamma centered M: Monkhorst-Pack ((0.5, 0.5, 0.5)) S: Symmetric. Respects the chksymbreak with multiple shifts O: OneSymmetric. Respects the chksymbreak with a single shift (as in 'S' if a single shift is given, gamma centered otherwise. """ GammaCentered = "G" MonkhorstPack = "M" Symmetric = "S" OneSymmetric = "O" @classmethod def from_object(cls, obj): """ Returns an instance of ShiftMode based on the type of object passed. Converts strings to ShiftMode depending on the iniital letter of the string. G for GammaCenterd, M for MonkhorstPack, S for Symmetric, O for OneSymmetric. Case insensitive. """ if isinstance(obj, cls): return obj if is_string(obj): return cls(obj[0].upper()) raise TypeError(f"The object provided is not handled: type {type(obj)}") def _stopping_criterion(runlevel, accuracy): """Return the stopping criterion for this runlevel with the given accuracy.""" tolname = _runl2tolname[runlevel] return {tolname: getattr(_tolerances[tolname], accuracy)} def _find_ecut_pawecutdg(ecut, pawecutdg, pseudos, accuracy): """Return a |AttrDict| with the value of ``ecut`` and ``pawecutdg``.""" # Get ecut and pawecutdg from the pseudo hints. if ecut is None or (pawecutdg is None and any(p.ispaw for p in pseudos)): has_hints = all(p.has_hints for p in pseudos) if ecut is None: if has_hints: ecut = max(p.hint_for_accuracy(accuracy).ecut for p in pseudos) else: raise RuntimeError("ecut is None but pseudos do not provide hints for ecut") if pawecutdg is None and any(p.ispaw for p in pseudos): if has_hints: pawecutdg = max(p.hint_for_accuracy(accuracy).pawecutdg for p in pseudos) else: raise RuntimeError("pawecutdg is None but pseudos do not provide hints") return AttrDict(ecut=ecut, pawecutdg=pawecutdg) def _find_scf_nband(structure, pseudos, electrons, spinat=None): """Find the value of ``nband``.""" if electrons.nband is not None: return electrons.nband nsppol, smearing = electrons.nsppol, electrons.smearing # Number of valence electrons including possible extra charge nval = num_valence_electrons(structure, pseudos) nval -= electrons.charge # First guess (semiconductors) nband = nval // 2 # TODO: Find better algorithm # If nband is too small we may kill the job, increase nband and restart # but this change could cause problems in the other steps of the calculation # if the change is not propagated e.g. phonons in metals. if smearing: # metallic occupation nband = max(np.ceil(nband * 1.2), nband + 10) else: nband = max(
np.ceil(nband * 1.1)
numpy.ceil
""" GLFSet.py Author: <NAME> Affiliation: University of Colorado at Boulder Created on: Sat Oct 24 10:42:45 PDT 2015 Description: """ import re import ares import numpy as np from ..util import read_lit import matplotlib.pyplot as pl from .ModelSet import ModelSet from ..phenom.DustCorrection import DustCorrection from ..util.SetDefaultParameterValues import SetAllDefaults ln10 = np.log(10.) phi_of_M = lambda M, pstar, Mstar, alpha: 0.4 * ln10 * pstar \ * (10**(0.4 * (Mstar - M)*(1. + alpha))) \ * np.exp(-10**(0.4 * (Mstar - M))) class ModelSetLF(ModelSet): """ Basically a ModelSet instance with routines specific to the high-z galaxy luminosity function. """ @property def dc(self): if not hasattr(self, '_dc'): self._dc = DustCorrection() return self._dc def get_data(self, z): i = self.data['z'].index(z) return self.data['x'][i], self.data['y'][i], self.data['err'][i] def SFE(self, z, ax=None, fig=1, name='fstar', shade_by_like=False, like=0.685, scatter_kwargs={}, take_log=False, un_log=False, multiplier=1, skip=0, stop=None, **kwargs): if ax is None: gotax = False fig = pl.figure(fig) ax = fig.add_subplot(111) else: gotax = True if shade_by_like: q1 = 0.5 * 100 * (1. - like) q2 = 100 * like + q1 info = self.blob_info(name) ivars = self.blob_ivars[info[0]] # We assume that ivars are [redshift, magnitude] M = ivars[1] loc = np.argmax(self.logL[skip:stop]) sfe = [] for i, mass in enumerate(M): data, is_log = self.ExtractData(name, ivar=[z, mass], take_log=take_log, un_log=un_log, multiplier=multiplier) if not shade_by_like: sfe.append(data[name][skip:stop][loc]) else: lo, hi = np.percentile(data[name][skip:stop].compressed(), (q1, q2)) sfe.append((lo, hi)) if shade_by_like: sfe = np.array(sfe).T if take_log: sfe = 10**sfe else: zeros = np.argwhere(sfe == 0) for element in zeros: sfe[element[0],element[1]] = 1e-15 ax.fill_between(M, sfe[0], sfe[1], **kwargs) ax.set_xscale('log') ax.set_yscale('log') else: if take_log: sfe = 10**sfe ax.loglog(M, sfe, **kwargs) ax.set_xlabel(r'$M_h / M_{\odot}$') ax.set_ylabel(r'$f_{\ast}(M)$') ax.set_ylim(1e-4, 1) ax.set_xlim(1e7, 1e14) pl.draw() return ax def LuminosityFunction(self, z, ax=None, fig=1, compare_to=None, popid=0, name='galaxy_lf', shade_by_like=False, like=0.685, scatter_kwargs={}, Mlim=(-24, -10), N=1, take_log=False, un_log=False, multiplier=1, skip=0, stop=None, **kwargs): """ Plot the luminosity function used to train the SFE. """ if ax is None: gotax = False fig = pl.figure(fig) ax = fig.add_subplot(111) else: gotax = True if shade_by_like: q1 = 0.5 * 100 * (1. - like) q2 = 100 * like + q1 # Plot fits compared to observational data M = np.arange(Mlim[0], Mlim[1], 0.05) lit = read_lit(compare_to) if (compare_to is not None) and (z in lit.redshifts) and (not gotax): phi = np.array(lit.data['lf'][z]['phi']) err = np.array(lit.data['lf'][z]['err']) uplims = phi - err <= 0.0 ax.errorbar(lit.data['lf'][z]['M'], lit.data['lf'][z]['phi'], yerr=lit.data['lf'][z]['err'], fmt='o', zorder=10, uplims=uplims, **scatter_kwargs) info = self.blob_info(name) ivars = self.blob_ivars[info[0]] # We assume that ivars are [redshift, magnitude] mags_disk = ivars[1] # #if self.pf['pop_lf_dustcorr{%i}' % popid]: #mags_disk += self.dc.AUV(z, mags_disk) loc = np.argmax(self.logL[skip:stop]) phi = [] for i, mag in enumerate(mags_disk): data, is_log = self.ExtractData(name, ivar=[z, mags_disk[i]], take_log=take_log, un_log=un_log, multiplier=multiplier) if not shade_by_like: phi.append(data[name][skip:stop][loc]) else: lo, hi = np.percentile(data[name][skip:stop].compressed(), (q1, q2)) phi.append((lo, hi)) if shade_by_like: phi = np.array(phi).T if take_log: phi = 10**phi else: zeros = np.argwhere(phi == 0) for element in zeros: phi[element[0],element[1]] = 1e-15 ax.fill_between(mags_disk, phi[0], phi[1], **kwargs) ax.set_yscale('log') else: if take_log: phi = 10**phi ax.semilogy(mags_disk, phi, **kwargs) ax.set_xlabel(r'$M_{\mathrm{UV}}$') ax.set_ylabel(r'$\phi(M)$') ax.set_ylim(1e-8, 10) ax.set_xlim(-25, -10) pl.draw() return ax def FaintEndSlope(self, z, mag=None, ax=None, fig=1, N=100, name='alpha_lf', best_only=False, **kwargs): """ """ if ax is None: gotax = False fig = pl.figure(fig) ax = fig.add_subplot(111) else: gotax = True info = self.blob_info(name) ivars = self.blob_ivars[info[0]] i = list(ivars[0]).index(z) M = ivars[1] loc = np.argmax(self.logL) alpha = [] for i, mag in enumerate(M): data, is_log = self.ExtractData(name, ivar=[z, M[i]]) if best_only: alpha.append(data[name][loc]) else: alpha.append(data[name]) alpha =
np.array(alpha)
numpy.array
import os import json import numpy as np import osmnx as ox import pandas as pd import bmm from . import utils seed = 0 np.random.seed(seed) timestamps = 15 ffbsi_n_samps = int(1e3) fl_n_samps = np.array([50, 100, 150, 200]) lags = np.array([0, 3, 10]) max_rejections = 30 initial_truncation = None num_repeats = 20 max_speed = 35 proposal_dict = {'proposal': 'optimal', 'num_inter_cut_off': 10, 'resample_fails': False, 'd_max_fail_multiplier': 2.} setup_dict = {'seed': seed, 'ffbsi_n_samps': ffbsi_n_samps, 'fl_n_samps': fl_n_samps.tolist(), 'lags': lags.tolist(), 'max_rejections': max_rejections, 'initial_truncation': initial_truncation, 'num_repeats': num_repeats, 'num_inter_cut_off': proposal_dict['num_inter_cut_off'], 'max_speed': max_speed, 'resample_fails': proposal_dict['resample_fails'], 'd_max_fail_multiplier': proposal_dict['d_max_fail_multiplier']} print(setup_dict) porto_sim_dir = os.getcwd() graph_path = porto_sim_dir + '/portotaxi_graph_portugal-140101.osm._simple.graphml' graph = ox.load_graphml(graph_path) test_route_data_path = porto_sim_dir + '/test_route.csv' # Load long-lat polylines polyline_ll = np.array(json.loads(pd.read_csv(test_route_data_path)['POLYLINE'][0])) # Convert to utm polyline = bmm.long_lat_to_utm(polyline_ll, graph) save_dir = porto_sim_dir + '/tv_output/' # Create save_dir if not found if not os.path.exists(save_dir): os.makedirs(save_dir) # Save simulation parameters with open(save_dir + 'setup_dict', 'w+') as f: json.dump(setup_dict, f) # Setup map-matching model mm_model = bmm.ExponentialMapMatchingModel() mm_model.max_speed = max_speed # Run FFBSi ffbsi_route = bmm.offline_map_match(graph, polyline, ffbsi_n_samps, timestamps=timestamps, mm_model=mm_model, max_rejections=max_rejections, initial_d_truncate=initial_truncation, **proposal_dict) utils.clear_cache() fl_pf_routes = np.empty((num_repeats, len(fl_n_samps), len(lags)), dtype=object) fl_bsi_routes = np.empty((num_repeats, len(fl_n_samps), len(lags)), dtype=object) n_pf_failures = 0 n_bsi_failures = 0 for i in range(num_repeats): for j, n in enumerate(fl_n_samps): for k, lag in enumerate(lags): print(i, j, k) # try: fl_pf_routes[i, j, k] = bmm._offline_map_match_fl(graph, polyline, n, timestamps=timestamps, mm_model=mm_model, lag=lag, update='PF', max_rejections=max_rejections, initial_d_truncate=initial_truncation, **proposal_dict) print(f'FL PF {i} {j} {k}: {fl_pf_routes[i, j, k].time}') # except: # n_pf_failures += 1 print(f'FL PF failures: {n_pf_failures}') utils.clear_cache() if lag == 0 and fl_pf_routes[i, j, k] is not None: fl_bsi_routes[i, j, k] = fl_pf_routes[i, j, k].copy() print(f'FL BSi {i} {j} {k}:', fl_bsi_routes[i, j, k].time) else: # try: fl_bsi_routes[i, j, k] = bmm._offline_map_match_fl(graph, polyline, n, timestamps=timestamps, mm_model=mm_model, lag=lag, update='BSi', max_rejections=max_rejections, initial_d_truncate=initial_truncation, **proposal_dict) print(f'FL BSi {i} {j} {k}:', fl_bsi_routes[i, j, k].time) # except: # n_bsi_failures += 1 print(f'FL BSi failures: {n_bsi_failures}') utils.clear_cache() print(f'FL PF failures: {n_pf_failures}') print(f'FL BSi failures: {n_bsi_failures}') np.save(save_dir + 'fl_pf', fl_pf_routes)
np.save(save_dir + 'fl_bsi', fl_bsi_routes)
numpy.save
# -*- coding: utf-8 -*- import cv2 import os, sys sys.path.append('./') import numpy as np import glob import math """ Created on Thu Jan 10 10:48:00 2013 @author: <NAME> """ def read_YUV420(image_path, rows, cols, numfrm): """ 读取YUV文件,解析为Y, U, V图像 :param image_path: YUV图像路径 :param rows: 给定高 :param cols: 给定宽 :return: 列表,[Y, U, V] """ # create Y gray = np.zeros((rows, cols), np.uint8) # print(type(gray)) # print(gray.shape) # create U,V img_U = np.zeros((int(rows / 2), int(cols / 2)), np.uint8) # print(type(img_U)) # print(img_U.shape) img_V = np.zeros((int(rows / 2), int(cols / 2)), np.uint8) # print(type(img_V)) # print(img_V.shape) Y = [] U = [] V = [] reader=open(image_path,'rb') # with open(image_path, 'rb') as reader: for num in range(numfrm-1): Y_buf = reader.read(cols * rows) gray = np.reshape(
np.frombuffer(Y_buf, dtype=np.uint8)
numpy.frombuffer
"""Matrices associated to hypergraphs.""" from warnings import warn import numpy as np from scipy.sparse import csr_matrix, diags __all__ = [ "incidence_matrix", "adjacency_matrix", "intersection_profile", "degree_matrix", "laplacian", "multiorder_laplacian", "clique_motif_matrix", ] def incidence_matrix( H, order=None, sparse=True, index=False, weight=lambda node, edge, H: 1 ): """ A function to generate a weighted incidence matrix from a Hypergraph object, where the rows correspond to nodes and the columns correspond to edges. Parameters ---------- H: Hypergraph object The hypergraph of interest order: int, optional Order of interactions to use. If None (default), all orders are used. If int, must be >= 1. sparse: bool, default: True Specifies whether the output matrix is a scipy sparse matrix or a numpy matrix index: bool, default: False Specifies whether to output dictionaries mapping the node and edge IDs to indices weight: lambda function, default=lambda function outputting 1 A function specifying the weight, given a node and edge Returns ------- I: numpy.ndarray or scipy csr_matrix The incidence matrix, has dimension (n_nodes, n_edges) rowdict: dict The dictionary mapping indices to node IDs, if index is True coldict: dict The dictionary mapping indices to edge IDs, if index is True """ edge_ids = H.edges if order is not None: edge_ids = [id_ for id_, edge in H._edge.items() if len(edge) == order + 1] if not edge_ids: return (np.array([]), {}, {}) if index else np.array([]) node_ids = H.nodes num_edges = len(edge_ids) num_nodes = len(node_ids) node_dict = dict(zip(node_ids, range(num_nodes))) edge_dict = dict(zip(edge_ids, range(num_edges))) if node_dict and edge_dict: if index: rowdict = {v: k for k, v in node_dict.items()} coldict = {v: k for k, v in edge_dict.items()} if sparse: # Create csr sparse matrix rows = [] cols = [] data = [] for node in node_ids: memberships = H.nodes.memberships(node) # keep only those with right order memberships = [i for i in memberships if i in edge_ids] if len(memberships) > 0: for edge in memberships: data.append(weight(node, edge, H)) rows.append(node_dict[node]) cols.append(edge_dict[edge]) else: # include disconnected nodes for edge in edge_ids: data.append(0) rows.append(node_dict[node]) cols.append(edge_dict[edge]) I = csr_matrix((data, (rows, cols))) else: # Create an np.matrix I =
np.zeros((num_nodes, num_edges), dtype=int)
numpy.zeros
#!/usr/bin/env/ python3 """ vortex detection tool, by <NAME>, 2017-04\n This program load NetCDF files from DNS simulations or PIV experiments and detect the vortices and apply a fitting to them. """ import argparse import numpy as np import sys sys.path.insert(1, '../vortexfitting') import fitting # noqa: E402 # import schemes # noqa: E402 # import detection # noqa: E402 from classes import VelocityField # noqa: E402 if __name__ == '__main__': parser = argparse.ArgumentParser(description='Optional app description', formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-i', '--input', dest='infilename', default='../data/example_data_numerical_PIV.nc', help='input NetCDF file', metavar='FILE') args = parser.parse_args() print('Some tests for the Lamb-Oseen model') print(args.infilename) vfield = VelocityField(args.infilename, 0, '/', 'piv_netcdf') def test_oseen(core_radius, gamma, dist, xdrift, ydrift, u_advection, v_advection): print('core_radius:', core_radius, 'Gamma', gamma, 'xdrift', xdrift, 'ydrift', ydrift, 'u_advection', u_advection, 'v_advection', v_advection) model = [[], [], [], [], [], []] model[0] = core_radius model[1] = gamma core_radius_ori = model[0] gamma_ori = model[1] x_index = np.linspace(-1, 1, dist) y_index =
np.linspace(-1, 1, dist)
numpy.linspace
import pandas as pd # importing the Pandas library required for file reading and file importing into the code import numpy as np # mathematical library used for calling basic maths functions #----------------------------------------------------------------------------------------------------------------------------------------------- #BASIC FUNCTIONS REQUIRED def sigmoid(x) : #calculates the conditional probability of the prediction. denom = (1.0 + np.exp(-x)) #The greater the odds of a positive event occuring the greater the odds return 1.0/denom def V(X,w) : # Given an input feature vector. net = np.dot(X,w) return sigmoid(net) #this function returns the sigmoid of weighted sum(the input vector and the weight vectors are inclusive of the bias term for this code) def Error(X,w,y) : # Cost Function f1 = np.sum(np.dot(y.T,np.log(V(X,w)))) # This is the main function that gives the information about how far away the parameters are from their locallly optimized values. f2 = np.sum(np.dot((1-y).T,np.log(1-V(X,w)))) # Also known as negative log likelihood function. This is obtained since the outcomes are conditional probabilities for each class and each feature vector is independent of the others. return -(f1 + f2)/y.size # The main idea of this implementation is the minimization of this cost function to obtain optimized parameters. def gradError(X,w,y) : # The partial derivative of cost function w.r.t the Weights. prediction = V(X,w) X_trans = X.T # Transpose of feature vector return (np.dot(X_trans,(V(X,w) - y)))/(y.size) # Gradient of Cost Function, X: feature vector, w: weight matrix, y: function class to be learned, V(X,w): predicted class #----------------------------------------------------------------------------------------------------------------------------------------------- # FUNCTION REQUIRED FOR NORMALIZATION OF INPUT DATA def normalized(X): X_mean=X.mean(axis=0) # Calculates the mean value for the input data set X_std=X.std(axis=0) # Calculates the standard deviation for the input data set return (X-X_mean)/X_std # Returns the normalized data set # ----------------------------------------------------------------------------------------------------------------------------------------------- # DATA HANDLING PART OF THE CODE USING PANDAS LIBRARY # The pandas library function "read" takes as argument the local file path to where the data was stored on my computer during training # This needs to be essentially updated if the location of the data files is updated. data_train_features = pd.read_csv("/Users/vishalsharma/Documents/ELL409/Assignment1/dataset/train_data.csv", names=['x1','x2','x3','x4','x5','x6','x7','x8','x9','x10','x11','x12','x13','x14','x15','x16']) # Importing the training feature vectors and storing them in the corresponding variable data_test_features = pd.read_csv("/Users/vishalsharma/Documents/ELL409/Assignment1/dataset/test_data.csv", names=['x1','x2','x3','x4','x5','x6','x7','x8','x9','x10','x11','x12','x13','x14','x15','x16']) # Importing the test feature vectors and storing them in the corresponding variable data_train_features_matrix = data_train_features.as_matrix() # Creating a matrix of the obtained features for both the training and the test data sets. data_test_features_matrix = data_test_features.as_matrix() # Trainging/Test feature matrix shape = (number of training/test inputs, 16) # Exclusive of the bias term '1' data_train_labels = pd.read_csv("/Users/vishalsharma/Documents/ELL409/Assignment1/dataset/train_labels.csv", names=['y']) # Importing the training labels and storing them in the corresponding variable data_test_labels = pd.read_csv("/Users/vishalsharma/Documents/ELL409/Assignment1/dataset/test_labels.csv", names=['y']) # Importing the test labels and storing them in the corresponding variable #Y_df = pd.DataFrame(data_train_labels.y) #print(Y_df.head()) data_train_labels_matrix = data_train_labels.as_matrix() # Creating a matrix of the obtained labels for both the training and the test data sets. data_test_labels_matrix = data_test_labels.as_matrix() # Trainging/Test label matrix shape = (number of training/test inputs, 1) data_train_features_matrix[:,1:] = normalized(data_train_features_matrix[:,1:]) # Normalizing the training feature data set X_train = np.zeros((data_train_features_matrix.shape[0],17)) X_train[:,16] = 1.0 for i in range(16): X_train[:,i] = data_train_features_matrix[:,i] # Training feature matrix shape = (number of training inputs, 17) # Inclusive of the bias term '1' data_test_features_matrix[:,1:] = normalized(data_test_features_matrix[:,1:]) # Normalizing the test feature data set X_test = np.zeros((data_test_features_matrix.shape[0],17)) X_test[:,16] = 1.0 for i in range(16): X_test[:,i] = data_test_features_matrix[:,i] # Test feature matrix shape = (number of test inputs, 17) # Inclusive of the bias term '1' Y_train = np.zeros((data_train_labels_matrix.shape[0],10)) # In this step an output matrix for each of the training and test sets is created based on the value of label for that data point for i in range(10): Y_train[:,i] = np.where(data_train_labels_matrix[:,0]==i, 1,0) # The new matrix has the shape = (number of training/test labels , 10) Y_test = np.zeros((data_test_labels_matrix.shape[0],10)) # So, a new matrix is constructed having 10 coloumns with the coloumn number corresponding to the label value to be 1 and the rest to be zero. for j in range(10): Y_test[:,j] = np.where(data_test_labels_matrix[:,0]==j, 1,0) #------------------------------------------------------------------------------------------------------------------------------------------------ # MAIN LEARNING PART OF THE CODE. HERE I IMPLEMENT THE USUAL GRADIENT DESCENT ALGORITHM TO MAKE THE COST FUNCTION CONVERGE TO A LOCAL MINIMA W_opt= np.zeros((X_train.shape[1],10)) # The optimized weight matrix is stored in this variable. W_opt2= np.zeros((X_train.shape[1],10)) # Again, each coloumn of this matrix is a decision boundary separating that particular class from the rest of the classes. # The shape of the optimized W_opt matrix = (17,10) in this case with 16 dimensional feature vectors that are required to be classified into either of the 10 distinct classes def grad_desc(X, w, y, Tolerance, LearningRate) : error = Error(X, w, y) # Computing the value of the cost function right at the start of the gradient descent algorithm for the first step. iterations = 1 # Starting the counter for iterations with 1 error_diff = 2 # difference in error between two consecutive iterations(intially set to a random value greater than convergence) (important for loop termination), will be updated inside the loop while(error_diff > Tolerance): error_prev = error # assigns the value of the existing error to the variable error_prev w = w - (LearningRate * gradError(X, w, y)) # update the weights according to the equation (w(j+1) = w(j) - LearningRate(gradError)) # step towards parameter optimization error = Error(X, w, y) # new value of error will be equal to the newly calculated one with updated weights error_diff = error_prev - error # defintion of error_diff iterations+=1 # updating the iteration number print('Total Interations required for learning this decision boundary: ', iterations) return w for i in range(10): print('\nLearning the parameters for Class-{} versus the rest\n'.format(i)) W_opt2[:,i] = grad_desc(X_train, W_opt[:,i], Y_train[:,i], Tolerance=1e-6, LearningRate=.001) # I have selected the convergence/tolerance and the learning rate to values that give best efficiency, but the learning is slow with these hyperparameters. # Taking between 35,000 - 55,000 iterations for learning each class. We can change these values for a trade-off between training time and efficiency #------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ # VARIOUS SCORING METHODS TO TEST FOR THE EFFICIENCY OF THE LEARNED ALGORITHM def Prob_list(X,w,y): # A function that calculates the probability of a feature vector belonging to a given class h_prob_list = np.zeros(y.shape) # Simply by computing the sigmoid of the weighted sum over the input vector for CLASS in range(10): h_prob_list[:,CLASS]= V(X,w[:,CLASS]) return h_prob_list def Pred_list(X,w,y): # Converts the probability of the highest coloumn to 1 and the rest to zero. h_prob_list2 = Prob_list(X,w,y) # This is classification based on the maximum probability corresponding to a class. pred_list = np.zeros(y.shape) for Class in range(10): for i in range(y[:,[1]].shape[0]): if h_prob_list2[i,Class] == np.amax(h_prob_list2[i,:]): pred_list[i,Class] = 1 else: pred_list[i,Class] = 0 return pred_list # This function does the classification based on the probability distributions from the previous function def true_Pos(pred_list, y, Class): # As the name suggests, gives the total number of true Positives for a class in train/test data totalTruePos = 0 for i in range(y.shape[0]): if (pred_list[i,Class] == 1 and y[i] == 1): totalTruePos += 1 return totalTruePos def false_Pos(pred_list, y, Class): # As the name suggests, gives the total number of false Positives for a class in train/test data totalFalsePos = 0 for i in range(y.shape[0]): if (pred_list[i,Class] == 1 and y[i] == 0): totalFalsePos += 1 return totalFalsePos def false_Neg(pred_list, y, Class): # As the name suggests, gives the total number of false Negatives for a class in train/test data totalFalseNeg = 0 for i in range(y.shape[0]): if (pred_list[i,Class] == 0 and y[i] == 1): totalFalseNeg += 1 return totalFalseNeg def true_Neg(pred_list, y, Class): # As the name suggests, gives the total number of true Negatives for a class in train/test data totalTrueNeg = 0 for i in range(y.shape[0]): if (pred_list[i,Class] == 0 and y[i] == 0): totalTrueNeg += 1 return totalTrueNeg #--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # A FEW SCORING METHODS WITH THEIR MATHEMATICAL DEFINITIONS def accuracy(pred_list, y, Class): acc = (true_Pos(pred_list, y, Class) + true_Neg(pred_list, y, Class))/y.size return acc def precision(pred_list, y, Class): prec = true_Pos(pred_list, y,Class)/(false_Pos(pred_list, y, Class) + true_Pos(pred_list, y, Class)) return prec def recall(pred_list, y, Class): recall = true_Pos(pred_list, y, Class)/(true_Pos(pred_list, y,Class)+false_Neg(pred_list, y, Class)) return recall def f1_score(pred_list, y, Class): score = 2*recall(pred_list, y, Class)*precision(pred_list, y,Class)/(recall(pred_list, y,Class)+precision(pred_list, y,Class)) return score #--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # PART OF THE CODE THAT COMPUTES THE SCORES VIA AFOREMENTIONED METHODS FOR BOTH TRAINING AND TEST DATA. def scoringMethods(X,w,y): pred_list = Pred_list(X,w,y) ACCURACY = np.zeros(10) PRECISION = np.zeros(10) RECALL = np.zeros(10) F_SCORE = np.zeros(10) for Class in range(10): pos_TRUE = true_Pos(pred_list, y[:,Class],Class) pos_FALSE = false_Pos(pred_list, y[:,Class], Class) neg_FALSE = false_Neg(pred_list, y[:,Class], Class) neg_TRUE = true_Neg(pred_list, y[:,Class], Class) ACCURACY[Class] = accuracy(pred_list, y[:,Class],Class)*100 PRECISION[Class] = precision(pred_list, y[:,Class], Class) RECALL[Class] = recall(pred_list, y[:,Class], Class) F_SCORE[Class] = f1_score(pred_list, y[:,Class], Class) return ACCURACY, PRECISION, RECALL, F_SCORE ACCURACY_train = np.zeros(10) PRECISION_train = np.zeros(10) RECALL_train = np.zeros(10) F_SCORE_train = np.zeros(10) ACCURACY_test = np.zeros(10) PRECISION_test = np.zeros(10) RECALL_test =
np.zeros(10)
numpy.zeros
from __future__ import absolute_import,division __filetype__ = "base" #External Modules import logging, os, shutil, sys, time, uuid import numpy as np from astropy import units as u from astropy import wcs from astropy.io import fits from astropy.table import Table, Column from copy import deepcopy from photutils import CircularAperture, aperture_photometry from photutils.psf.models import GriddedPSFModel from scipy.ndimage.interpolation import zoom, rotate if sys.version_info[0] >= 3: from io import StringIO else: from cStringIO import StringIO #Local Modules from ..utilities import StipsEnvironment from ..utilities import OffsetPosition from ..utilities import overlapadd2 from ..utilities import overlapaddparallel from ..utilities import read_table from ..utilities import ImageData from ..utilities import Percenter from ..utilities import StipsDataTable from ..utilities import SelectParameter from ..errors import GetCrProbs, GetCrTemplate, MakeCosmicRay stips_version = StipsEnvironment.__stips__version__ class AstroImage(object): """ The AstroImage class represents a generic astronomical image. The image has the following data associated with it: _file : string of file name (including path) containing mem-mapped numpy array. data : mem-mapped numpy double-precision 2D array of image data, in counts scale : array of 2 double-precision floating point values, forming X and Y scale in arcseconds/pixel wcs : astropy WCS object containing image WCS information. header : key/value array. Contains FITS header information and metadata history : array of strings holding the FITS HISTORY section """ def __init__(self, **kwargs): """ Astronomical image. The __init__ function creates an empty image with all other data values set to zero. """ default = self.INSTRUMENT_DEFAULT if 'parent' in kwargs: self.parent = kwargs['parent'] self.logger = self.parent.logger self.out_path = self.parent.out_path self.prefix = self.parent.prefix self.seed = self.parent.seed self.telescope = self.parent.TELESCOPE.lower() self.instrument = self.parent.PSF_INSTRUMENT self.filter = self.parent.filter self.oversample = self.parent.oversample self.shape = np.array(self.parent.DETECTOR_SIZE)*self.oversample self._scale =
np.array(self.parent.SCALE)
numpy.array
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import numpy as np import torch import pycocotools.mask as mask_util from detectron2.utils.visualizer import ( ColorMode, Visualizer, _PanopticPrediction, ) from detectron2.utils.visualizer import Visualizer from detectron2.utils.colormap import random_color from detectron2.structures import Boxes, RotatedBoxes from lib.utils.visualizer import InteractionVisualizer, _create_text_labels class _DetectedInstance: """ Used to store data about detected objects in video frame, in order to transfer color to objects in the future frames. Attributes: label (int): bbox (tuple[float]): mask_rle (dict): color (tuple[float]): RGB colors in range (0, 1) ttl (int): time-to-live for the instance. For example, if ttl=2, the instance color can be transferred to objects in the next two frames. """ __slots__ = ["label", "bbox", "color", "ttl"] def __init__(self, label, bbox, color, ttl): self.label = label self.bbox = bbox self.color = color self.ttl = ttl class VideoVisualizer: def __init__(self, metadata, instance_mode=ColorMode.IMAGE): """ Args: metadata (MetadataCatalog): image metadata. """ self.metadata = metadata self._old_instances = [] assert instance_mode in [ ColorMode.IMAGE, ColorMode.IMAGE_BW, ], "Other mode not supported yet." self._instance_mode = instance_mode def draw_interaction_predictions(self, frame, predictions): """ Draw interaction prediction results on an image. Args: frame (ndarray): an RGB image of shape (H, W, C), in the range [0, 255]. predictions (Instances): the output of an interaction detection model. Following fields will be used to draw: "person_boxes", "object_boxes", "object_classes", "action_classes", "scores". Returns: output (VisImage): image object with visualizations. """ frame_visualizer = InteractionVisualizer(frame, self.metadata) thing_colors = self.metadata.get("thing_colors", "None") if thing_colors: thing_colors = [color for name, color in thing_colors.items()] num_instances = len(predictions) if num_instances == 0: return frame_visualizer.output person_boxes = self._convert_boxes(predictions.person_boxes) object_boxes = self._convert_boxes(predictions.object_boxes) object_classes = predictions.object_classes classes = predictions.pred_classes scores = predictions.scores # Take the unique person and object boxes. unique_person_boxes = np.asarray([list(x) for x in set(tuple(x) for x in person_boxes)]) unique_object_boxes = np.asarray([list(x) for x in set(tuple(x) for x in object_boxes)]) unique_object_classes = {tuple(x): -1 for x in unique_object_boxes} for box, c in zip(object_boxes, object_classes): unique_object_classes[tuple(box)] = c unique_object_colors = {tuple(x): None for x in unique_object_boxes} if thing_colors: for box, c in unique_object_classes.items(): unique_object_colors[box] = thing_colors[c] unique_object_colors = [color for _, color in unique_object_colors.items()] # Assign colors to person boxes and object boxes. object_detected = [ _DetectedInstance(unique_object_classes[tuple(box)], box, color=color, ttl=8) for box, color in zip(unique_object_boxes, unique_object_colors) ] object_colors = self._assign_colors(object_detected) assigned_person_colors = {tuple(x): 'w' for x in unique_person_boxes} assigned_object_colors = {tuple(x.bbox): x.color for x in object_detected} # Take all interaction associated with each unique person box # classes_to_contiguous_id = self.metadata.get("interaction_classes_to_contiguous_id", None) # contiguous_id_to_classes = {v: k for k, v in classes_to_contiguous_id.items()} \ # if classes_to_contiguous_id else None labels = _create_text_labels(classes, scores) interactions_to_draw = {tuple(x): [] for x in unique_person_boxes} labels_to_draw = {tuple(x): [] for x in unique_person_boxes} for i in range(num_instances): x = tuple(person_boxes[i]) interactions_to_draw[x].append(object_boxes[i]) if labels is not None: labels_to_draw[x].append( { "label": labels[i], "color": assigned_object_colors[tuple(object_boxes[i])] } ) if self._instance_mode == ColorMode.IMAGE_BW: # any() returns uint8 tensor frame_visualizer.output.img = frame_visualizer._create_grayscale_image( (masks.any(dim=0) > 0).numpy() if masks is not None else None ) alpha = 0.3 else: alpha = 0.5 frame_visualizer.overlay_interactions( unique_person_boxes=unique_person_boxes, unique_object_boxes=unique_object_boxes, interactions=interactions_to_draw, interaction_labels=labels_to_draw, assigned_person_colors=assigned_person_colors, assigned_object_colors=assigned_object_colors, alpha=0.5, ) return frame_visualizer.output def draw_instance_predictions(self, frame, predictions): """ Draw instance-level prediction results on an image. Args: frame (ndarray): an RGB image of shape (H, W, C), in the range [0, 255]. predictions (Instances): the output of an instance detection/segmentation model. Following fields will be used to draw: "pred_boxes", "pred_classes", "scores", "pred_masks" (or "pred_masks_rle"). Returns: output (VisImage): image object with visualizations. """ frame_visualizer = Visualizer(frame, self.metadata) num_instances = len(predictions) if num_instances == 0: return frame_visualizer.output boxes = predictions.pred_boxes.tensor.numpy() if predictions.has("pred_boxes") else None scores = predictions.scores if predictions.has("scores") else None classes = predictions.pred_classes.numpy() if predictions.has("pred_classes") else None detected = [ _DetectedInstance(classes[i], boxes[i], color=None, ttl=8) for i in range(num_instances) ] colors = self._assign_colors(detected) labels = _create_text_labels(classes, scores, self.metadata.get("thing_classes", None)) if self._instance_mode == ColorMode.IMAGE_BW: # any() returns uint8 tensor frame_visualizer.output.img = frame_visualizer._create_grayscale_image( (masks.any(dim=0) > 0).numpy() if masks is not None else None ) alpha = 0.3 else: alpha = 0.5 frame_visualizer.overlay_instances( boxes=boxes, labels=labels, assigned_colors=colors, alpha=alpha, ) return frame_visualizer.output def _assign_colors(self, instances): """ Naive tracking heuristics to assign same color to the same instance, will update the internal state of tracked instances. Returns: list[tuple[float]]: list of colors. """ # Compute iou with either boxes or masks: is_crowd = np.zeros((len(instances),), dtype=np.bool) boxes_old = [x.bbox for x in self._old_instances] boxes_new = [x.bbox for x in instances] ious = mask_util.iou(boxes_old, boxes_new, is_crowd) threshold = 0.6 if len(ious) == 0: ious = np.zeros((len(self._old_instances), len(instances)), dtype="float32") # Only allow matching instances of the same label: for old_idx, old in enumerate(self._old_instances): for new_idx, new in enumerate(instances): if old.label != new.label: ious[old_idx, new_idx] = 0 matched_new_per_old = np.asarray(ious).argmax(axis=1) max_iou_per_old = np.asarray(ious).max(axis=1) # Try to find match for each old instance: extra_instances = [] for idx, inst in enumerate(self._old_instances): if max_iou_per_old[idx] > threshold: newidx = matched_new_per_old[idx] if instances[newidx].color is None: instances[newidx].color = inst.color continue # If an old instance does not match any new instances, # keep it for the next frame in case it is just missed by the detector inst.ttl -= 1 if inst.ttl > 0: extra_instances.append(inst) # Assign random color to newly-detected instances: for inst in instances: if inst.color is None: inst.color = random_color(rgb=True, maximum=1) self._old_instances = instances[:] + extra_instances return [d.color for d in instances] def _convert_boxes(self, boxes): """ Convert different format of boxes to an NxB array, where B = 4 or 5 is the box dimension. """ if isinstance(boxes, Boxes) or isinstance(boxes, RotatedBoxes): return boxes.tensor.numpy() else: return np.asarray(boxes) def draw_proposals(self, frame, proposals, thresh): """ Draw interaction prediction results on an image. Args: predictions (Instances): the output of an interaction detection model. Following fields will be used to draw: "person_boxes", "object_boxes", "pred_classes", "scores" Returns: output (VisImage): image object with visualizations. """ _MAX_OBJECT_AREA = 60000 frame_visualizer = InteractionVisualizer(frame, self.metadata) num_instances = len(proposals) if num_instances == 0: return frame_visualizer.output proposal_boxes = self._convert_boxes(proposals.proposal_boxes) scores = np.asarray(proposals.interactness_logits) is_person =
np.asarray(proposals.is_person)
numpy.asarray
#!/usr/bin/env python # # Inspired by g_mmpbsa code. # # # Copyright (c) 2016-2019,<NAME>. # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of the molmolpy Developers nor the names of any # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import absolute_import, division, print_function from builtins import range from builtins import object import re import numpy as np import argparse import sys import os import math import time from copy import deepcopy import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import matplotlib.ticker as ticker import seaborn as sns import matplotlib.pylab as plt import numpy as np from matplotlib.colors import ListedColormap import mdtraj as md from molmolpy.utils.cluster_quality import * from molmolpy.utils import converters from molmolpy.utils import plot_tools from molmolpy.utils import pdb_tools from molmolpy.utils import folder_utils from molmolpy.utils import extra_tools from molmolpy.utils import pymol_tools from molmolpy.utils import protein_analysis class EnergyAnalysisObject(object): """ Usage Example >>> from molmolpy.moldyn import md_analysis >>> from molmolpy.g_mmpbsa import mmpbsa_analyzer >>> >>> import os >>> >>> # In[3]: >>> >>> folder_to_sim = '/media/Work/SimData/g_mmpbsa/HSL/HSL_1_backbone/Cluster1/' >>> >>> molmech = folder_to_sim + 'contrib_MM.dat' >>> polar = folder_to_sim + 'contrib_pol.dat' >>> apolar = folder_to_sim + 'contrib_apol.dat' >>> >>> LasR_energy_object = mmpbsa_analyzer.EnergyAnalysisObject(molmech, polar, apolar, >>> sim_num=3) >>> >>> LasR_energy_object.plot_bar_energy_residues() >>> LasR_energy_object.plot_most_contributions() >>> LasR_energy_object.plot_sorted_contributions() >>> >>> >>> centroid_file = '/media/Work/MEGA/Programming/docking_LasR/HSL_1_v8/centroid.pdb' >>> >>> >>> LasR_energy_object.add_centroid_pdb_file(centroid_file) >>> LasR_energy_object.save_mmpbsa_analysis_pickle('HSL_simulation_cluster3.pickle') >>> #LasR_energy_object.visualize_interactions_pymol() >>> >>> >>> test = 1 >>> # simulation_name = 'LasR_Ligand_simulation' >>> # Molecule object loading of pdb and pbdqt file formats. Then converts to pandas dataframe. Create MoleculeObject by parsing pdb or pdbqt file. 2 types of parsers can be used: 1.molmolpy 2. pybel Stores molecule information in pandas dataframe as well as numpy list. Read more in the :ref:`User Guide <MoleculeObject>`. Parameters ---------- filename : str, optional The maximum distance between two samples for them to be considered as in the same neighborhood. Attributes ---------- core_sample_indices_ : array, shape = [n_core_samples] Indices of core samples. components_ : array, shape = [n_core_samples, n_features] Copy of each core sample found by training. Notes ----- See examples/cluster/plot_dbscan.py for an example. This implementation bulk-computes all neighborhood queries, which increases the memory complexity to O(n.d) where d is the average number of neighbors, while original DBSCAN had memory complexity O(n). Sparse neighborhoods can be precomputed using :func:`NearestNeighbors.radius_neighbors_graph <sklearn.neighbors.NearestNeighbors.radius_neighbors_graph>` with ``mode='distance'``. References ---------- Convert gro to PDB so mdtraj recognises topology YEAH gmx editconf -f npt.gro -o npt.pdb """ # @profile def __init__(self, energymm_xvg, polar_xvg, apolar_xvg, molmech, polar, apolar, bootstrap=True, bootstrap_steps=5000, sim_num=1, receptor_name='LasR', molecule_name='HSL', meta_file=None ): self.receptor_name = receptor_name self.molecule_name = molecule_name self.sim_num = sim_num self.simulation_name = self.receptor_name + '_' + self.molecule_name + '_num:' + str(self.sim_num) self.meta_file = meta_file # molmech = folder_to_sim + 'contrib_MM.dat' # polar = folder_to_sim + 'contrib_pol.dat' # apolar = folder_to_sim + 'contrib_apol.dat' # Complex Energy c = [] if meta_file is not None: MmFile, PolFile, APolFile = ReadMetafile(meta_file) for i in range(len(MmFile)): cTmp = Complex(MmFile[i], PolFile[i], APolFile[i], K[i]) cTmp.CalcEnergy(args, frame_wise, i) c.append(cTmp) else: cTmp = Complex(energymm_xvg, polar_xvg, apolar_xvg) self.cTmp = cTmp self.full_copy_original = deepcopy(cTmp) self.full_copy_bootstrap = deepcopy(cTmp) # cTmp.CalcEnergy(frame_wise, 0, bootstrap=bootstrap, bootstrap_steps=bootstrap_steps) # c.append(cTmp) # Summary in output files => "--outsum" and "--outmeta" file options # TODO adapt to make able to use bootstrap as well, multiple analysis modes? self.c = c # summary_output_filename = self.simulation_name + '_binding_summary.log' # Summary_Output_File(c, summary_output_filename, meta_file) # # corr_outname = self.simulation_name + '_correllation_distance.log' # corr_plot = self.simulation_name + '_correllation_plot.png' test = 1 # This won't work it needs K, read paper again #FitCoef_all = PlotCorr(c, corr_outname, corr_plot, bootstrap_steps) #PlotEnrgy(c, FitCoef_all, args, args.enplot) # RESIDUE analysis part self.MMEnData, self.resnameA = ReadData_Residue_Parse(molmech) self.polEnData, self.resnameB = ReadData_Residue_Parse(polar) self.apolEnData, self.resnameC = ReadData_Residue_Parse(apolar) self.resname = CheckResname(self.resnameA, self.resnameB, self.resnameC) self.sim_num = sim_num Residues = [] data = [] columns_residue_energy = ['index', 'ResidueNum', 'Residue', 'TotalEnergy', 'TotalEnergySD'] for i in range(len(self.resname)): CheckEnData_residue(self.MMEnData[i], self.polEnData[i], self.apolEnData[i]) r = Residue() r.CalcEnergy(self.MMEnData[i], self.polEnData[i], self.apolEnData[i], bootstrap, bootstrap_steps) Residues.append(r) # print(' %8s %8.4f %8.4f' % (self.resname[i], r.TotalEn[0], r.TotalEn[1])) data.append([i, i + 1, self.resname[i], r.TotalEn[0], r.TotalEn[1]]) self.pandas_residue_energy_data = pd.DataFrame(data) self.pandas_residue_energy_data.columns = columns_residue_energy test = 1 self.most_contributions = self.pandas_residue_energy_data[:-1] self.most_contributions = self.most_contributions.sort_values(['TotalEnergy']) test = 1 def calculate_binding_energy_full(self, idx=0,jump_data=1, bootstrap=False, bootstrap_steps=5000): ''' Calculate full binding energy then analyze autocorrelation and partial correlation :param idx: from frame number :param bootstrap: for this one dont calculate bootstrap :param bootstrap_steps: :return: ''' # TODO CALCULATION OF BINDING ENERGY outfr = self.simulation_name + '_full.log' try: frame_wise = open(outfr, 'w') except: raise IOError('Could not open file {0} for writing. \n'.format(outfr)) frame_wise.write( '#Time E_VdW_mm(Protein)\tE_Elec_mm(Protein)\tE_Pol(Protein)\tE_Apol(Protein)\tE_VdW_mm(Ligand)\tE_Elec_mm(Ligand)\tE_Pol(Ligand)\tE_Apol(Ligand)\tE_VdW_mm(Complex)\tE_Elec_mm(Complex)\tE_Pol(Complex)\tE_Apol(Complex)\tDelta_E_mm\tDelta_E_Pol\tDelta_E_Apol\tDelta_E_binding\n') self.frame_wise_full = frame_wise self.c_full = [] self.full_copy_original.CalcEnergy(self.frame_wise_full, idx, jump_data=jump_data, bootstrap=bootstrap, bootstrap_steps=bootstrap_steps) self.c_full.append(self.full_copy_original) summary_output_filename = self.simulation_name + '_binding_summary_full.log' Summary_Output_File(self.c_full, summary_output_filename, self.meta_file) self.autocorr_analysis(self.c_full, 'full') def calculate_binding_energy_bootstrap(self, idx=0, bootstrap=True, bootstrap_steps=5000, bootstrap_jump=4): ''' Calculate bootstrap binding energy then analyze autocorrelation and partial correlation :param idx: from frame number :param bootstrap: for this one dont calculate bootstrap :param bootstrap_steps: :return: ''' # TODO CALCULATION OF BINDING ENERGY outfr = self.simulation_name + '_bootstrap.log' try: frame_wise = open(outfr, 'w') except: raise IOError('Could not open file {0} for writing. \n'.format(outfr)) frame_wise.write( '#Time E_VdW_mm(Protein)\tE_Elec_mm(Protein)\tE_Pol(Protein)\tE_Apol(Protein)\tE_VdW_mm(Ligand)\tE_Elec_mm(Ligand)\tE_Pol(Ligand)\tE_Apol(Ligand)\tE_VdW_mm(Complex)\tE_Elec_mm(Complex)\tE_Pol(Complex)\tE_Apol(Complex)\tDelta_E_mm\tDelta_E_Pol\tDelta_E_Apol\tDelta_E_binding\n') self.frame_wise_bootstrap = frame_wise self.c_bootstrap = [] self.full_copy_bootstrap.CalcEnergy(self.frame_wise_bootstrap, idx, bootstrap=bootstrap, bootstrap_steps=bootstrap_steps, bootstrap_jump=bootstrap_jump) self.c_bootstrap.append(self.full_copy_bootstrap) summary_output_filename = self.simulation_name + '_binding_summary_bootstrap.log' Summary_Output_File(self.c_bootstrap, summary_output_filename, self.meta_file) self.autocorr_analysis(self.c_bootstrap, 'bootstrap') def autocorr_analysis(self, energy_val, naming='full'): if naming =='full': total_en = energy_val[0].TotalEn time = energy_val[0].time else: total_en = energy_val[0].TotalEn_bootstrap time = energy_val[0].time_bootstrap # Old version :) # print('Mean autocorrelation ', np.mean(autocorr(total_en))) # plt.semilogx(time, autocorr(total_en)) # plt.xlabel('Time [ps]', size=16) # plt.ylabel('Binding Energy autocorrelation', size=16) # plt.show() from pandas import Series from matplotlib import pyplot from statsmodels.graphics.tsaplots import plot_acf series = Series.from_array(total_en, index=time) # https://machinelearningmastery.com/gentle-introduction-autocorrelation-partial-autocorrelation/ plot_acf(series, alpha=0.05) # pyplot.show() plt.savefig(self.simulation_name + '_autocorrelation_bindingEnergy_{0}.png'.format(naming), dpi=600) from statsmodels.graphics.tsaplots import plot_pacf # plot_pacf(series, lags=50) plot_pacf(series) plt.savefig(self.simulation_name +'_partial_autocorrelation_bindingEnergy_{0}.png'.format(naming), dpi=600) #pyplot.show() test = 1 def plot_binding_energy_full(self): bind_energy = self.full_copy_original.TotalEn time = self.full_copy_original.time dataframe = converters.convert_data_to_pandas(time, bind_energy, x_axis_name='time', y_axis_name='binding') import seaborn as sns sns.set(style="ticks") plt.clf() plt.plot(time, bind_energy) plt.savefig('test.png', dpi=600) # sns.lmplot(x="time", y="binding",data=dataframe, # ci=None, palette="muted", size=4, # scatter_kws={"s": 50, "alpha": 1}) # sns.tsplot(data=dataframe) test = 1 def add_centroid_pdb_file(self, filename, simplified_state=True): self.centroid_pdb_file = filename self.dssp_traj = md.load(self.centroid_pdb_file) self.dssp_data = md.compute_dssp(self.dssp_traj, simplified=simplified_state) # self.helixes = protein_analysis.find_helixes(self.dssp_data) self.helixes = protein_analysis.find_dssp_domain(self.dssp_data, type='H') self.strands = protein_analysis.find_dssp_domain(self.dssp_data, type='E') self.data_to_save = {self.sim_num: {'residueEnergyData': self.pandas_residue_energy_data[:-1], 'mostResidueContrib': self.most_contributions_plot, 'mostAllContrib': self.most_contributions_plot_all, 'centroidFile': self.centroid_pdb_file, 'dsspObject': self.dssp_data, 'dsspData': self.dssp_data, 'dsspStructures': {'helix': self.helixes, 'strands': self.strands}} } test = 1 def save_mmpbsa_analysis_pickle(self, filename): import pickle if filename is None: filename = self.simulation_name + '_pickleFile.pickle' # pickle.dump(self.cluster_models, open(filename, "wb")) pickle.dump(self.data_to_save, open(filename, "wb")) def plot_bar_energy_residues(self, custom_dpi=600, trasparent_alpha=False): # sns.set(style="white", context="talk") sns.set(style="ticks", context="paper") # Set up the matplotlib figure f, ax1 = plt.subplots(1, 1, figsize=(plot_tools.cm2inch(17, 10)), sharex=True) # Generate some sequential data to_plot_data = self.pandas_residue_energy_data[:-1] sns.barplot(to_plot_data['ResidueNum'], to_plot_data['TotalEnergy'], palette="BuGn_d", ax=ax1) ax1.set_ylabel("Contribution Energy (kJ/mol)") ax1.set_xlabel("Residue Number") last_index = to_plot_data['ResidueNum'].iloc[-1] # this is buggy x_label_key = [] # ax1.set_xticklabels(to_plot_data['ResidueNum']) # set new labels # # ax1.set_x # # for ind, label in enumerate(ax1.get_xticklabels()): # if ind+1 == last_index: # label.set_visible(True) # elif (ind+1) % 100 == 0: # every 100th label is kept # label.set_visible(True) # # label = round(sim_time[ind]) # # x_label_key.append(ind) # else: # label.set_visible(False) # x_label_key.append(ind) ax1.set_xlim(1, last_index) ax1.xaxis.set_major_locator(ticker.LinearLocator(3)) ax1.xaxis.set_minor_locator(ticker.LinearLocator(31)) labels = [item.get_text() for item in ax1.get_xticklabels()] test = 1 labels[0] = '1' labels[1] = str(last_index // 2) labels[2] = str(last_index) ax1.set_xticklabels(labels) # ax1.text(0.0, 0.1, "LinearLocator(numticks=3)", # fontsize=14, transform=ax1.transAxes) tick_labels = [] # for ind, tick in enumerate(ax1.get_xticklines()): # # tick part doesn't work # test = ind # # if ind+1 == last_index: # # tick.set_visible(True) # if (ind+1) % 10 == 0: # every 100th label is kept # tick.set_visible(True) # else: # tick.set_visible(False) # tick_labels.append(tick) # # ax1.set_xticklabels # for ind, label in enumerate(ax.get_yticklabels()): # if ind % 50 == 0: # every 100th label is kept # label.set_visible(True) # else: # label.set_visible(False) # # for ind, tick in enumerate(ax.get_yticklines()): # if ind % 50 == 0: # every 100th label is kept # tick.set_visible(True) # else: # tick.set_visible(False) # Finalize the plot sns.despine() # plt.setp(f.axes, yticks=[]) plt.tight_layout() # plt.tight_layout(h_pad=3) # sns.plt.show() f.savefig(self.simulation_name + '_residue_contribution_all.png', dpi=custom_dpi, transparent=trasparent_alpha) def plot_most_contributions(self, custom_dpi=600, trasparent_alpha=False): sns.set(style="white", context="talk") # Set up the matplotlib figure # f, ax1 = plt.subplots(1, 1, figsize=(plot_tools.cm2inch(17, 10)), sharex=True) # Generate some sequential data self.most_contributions_plot = self.most_contributions[self.most_contributions['TotalEnergy'] < -1.0] self.most_contributions_plot = self.most_contributions_plot[ np.isfinite(self.most_contributions_plot['TotalEnergy'])] # self.most_contributions_plot = self.most_contributions_plot.dropna(axis=1) test = 1 # sns.barplot(self.most_contributions_plot['Residue'], self.most_contributions_plot['TotalEnergy'], # palette="BuGn_d", ax=ax1) # cmap = sns.cubehelix_palette(n_colors=len(self.most_contributions_plot['TotalEnergy']), as_cmap=True) cmap = sns.dark_palette("palegreen", as_cmap=True) ax1 = self.most_contributions_plot.plot(x='Residue', y='TotalEnergy', yerr='TotalEnergySD', kind='bar', colormap='Blues', legend=False) # ax1 = self.most_contributions_plot['TotalEnergy'].plot(kind='bar') # ax1.bar(self.most_contributions_plot['ResidueNum'], self.most_contributions_plot['TotalEnergy'], # width=40, # yerr=self.most_contributions_plot['TotalEnergySD']) ax1.set_ylabel("Contribution Energy (kJ/mol)") # # # # Center the data to make it diverging # # y2 = y1 - 5 # # sns.barplot(x, y2, palette="RdBu_r", ax=ax2) # # ax2.set_ylabel("Diverging") # # # # # Randomly reorder the data to make it qualitative # # y3 = rs.choice(y1, 9, replace=False) # # sns.barplot(x, y3, palette="Set3", ax=ax3) # # ax3.set_ylabel("Qualitative") # # # Finalize the plot # labels = ax1.get_xticklabels() # get x labels # for i, l in enumerate(labels): # if (i % 2 == 0): labels[i] = '' # skip even labels ax1.set_xticklabels(self.most_contributions_plot['Residue'], rotation=50) # set new labels # plt.show() # # # sns.despine(bottom=True) # # plt.setp(f.axes, yticks=[]) plt.tight_layout() # # plt.tight_layout(h_pad=3) # # sns.plt.show() # plt.savefig(self.simulation_name + '_most_residue_contribution.png', dpi=custom_dpi, transparent=trasparent_alpha) def plot_sorted_contributions(self, custom_dpi=600, trasparent_alpha=False, lower_criteria=-0.5, upper_criteria=0.5 ): my_cmap = sns.light_palette("Navy", as_cmap=True) self.cmap_residue_energy = sns.cubehelix_palette(as_cmap=True) self.most_contributions_plot_all = self.most_contributions[ (self.most_contributions['TotalEnergy'] < lower_criteria) | (self.most_contributions['TotalEnergy'] > upper_criteria)] colors_sns = sns.cubehelix_palette(n_colors=len(self.most_contributions_plot_all), dark=0.5, light=0.92, reverse=True) # residue_color_data = converters.convert_seaborn_color_to_rgb(colors) self.all_residue_colors_to_rgb = converters.convert_values_to_rgba(self.most_contributions_plot_all['TotalEnergy'], cmap=self.cmap_residue_energy, type='seaborn') # colors = sns.cubehelix_palette(n_colors=len(self.most_contributions_plot_all), dark=0.5, light=0.92, reverse=True) # # residue_color_data = converters.convert_seaborn_color_to_rgb(colors) # sns.palplot(colors) # plot_tools.custom_palplot_vertical(colors) # sns.plt.show() test = 1 # self.most_contributions_plot_all.plot(x='Residue', y='TotalEnergy', yerr='TotalEnergySD', kind='bar', # colormap=self.cmap_residue_energy, # legend=False) # f, ax1 = plt.subplots(1, 1, figsize=(plot_tools.cm2inch(17 , 10)), sharex=True) sns.set(style="white", context="talk") self.most_contributions_plot_all.plot(x='Residue', y='TotalEnergy', yerr='TotalEnergySD', kind='bar', colors=colors_sns, legend=False) plt.ylabel("Contribution Energy (kJ/mol)") plt.xlabel("Residues") plt.tight_layout() # # plt.tight_layout(h_pad=3) # # sns.plt.show() # plt.savefig(self.simulation_name + '_sorted_residue_contribution.png', dpi=custom_dpi, transparent=trasparent_alpha) @hlp.timeit def visualize_interactions_pymol(self, show_energy=False): # self.clusters_centroids_mmpbsa_dict # self.filtered_neighbours test = 1 print('Start of Pymol MD MMPBSA residue show smethod ---> ') print('Visualising MMPBSA residue energy contribution') # To pass Values # self.cmap_residue_energy # self.most_contributions_plot_all # # self.all_residue_colors_to_rgba save_state_name = self.receptor_name + '_' + self.molecule_name + '_' + \ 'centroid:{0}_mdEnergyAnalyzer_pymolViz.pse'.format(self.sim_num) pymol_tools.generate_pymol_residue_energy_viz(self.centroid_pdb_file, self.dssp_data, self.most_contributions_plot_all, save_state_name, show_residue_energy=show_energy ) time.sleep(5) print('Finished Pymol method ---> verify yolo') # try: # fout = open(args.output, 'w') # except: # raise IOError('Could not open file {0} for writing. \n'.format(args.output)) # try: # fmap = open(args.outmap, 'w') # except: # raise IOError('Could not open file {0} for writing. \n'.format(args.outmap)) # fout.write( # '#Residues MM Energy(+/-)dev/error Polar Energy(+/-)dev/error APolar Energy(+/-)dev/error Total Energy(+/-)dev/error\n') # for i in range(len(resname)): # if (args.cutoff == 999): # fout.write("%-8s %4.4f %4.4f %4.4f %4.4f %4.4f %4.4f %4.4f %4.4f \n" % ( # resname[i], Residues[i].FinalMM[0], Residues[i].FinalMM[1], Residues[i].FinalPol[0], # Residues[i].FinalPol[1], Residues[i].FinalAPol[0], Residues[i].FinalAPol[1], Residues[i].TotalEn[0], # Residues[i].TotalEn[1])) # elif (args.cutoff <= Residues[i].TotalEn[0]) or ((-1 * args.cutoff) >= Residues[i].TotalEn[0]): # fout.write("%-8s %4.4f %4.4f %4.4f %4.4f %4.4f %4.4f %4.4f %4.4f \n" % ( # resname[i], Residues[i].FinalMM[0], Residues[i].FinalMM[1], Residues[i].FinalPol[0], # Residues[i].FinalPol[1], Residues[i].FinalAPol[0], Residues[i].FinalAPol[1], Residues[i].TotalEn[0], # Residues[i].TotalEn[1])) # # fmap.write("%-8d %4.4f \n" % ((i + 1), Residues[i].TotalEn[0])) # TODO Binding energy calculation def autocorr(x): "Compute an autocorrelation with numpy" x = x - np.mean(x) result = np.correlate(x, x, mode='full') result = result[result.size//2:] return result / result[0] def PlotEnrgy(c, FitCoef_all, args, fname): CompEn, CompEnErr, ExpEn, CI = [], [], [], [] for i in range(len(c)): CompEn.append(c[i].FinalAvgEnergy) ExpEn.append(c[i].freeEn) CompEnErr.append(c[i].StdErr) CI.append(c[i].CI) fig = plt.figure() plt.subplots_adjust(left=0.15, right=0.9, top=0.9, bottom=0.15) ax = fig.add_subplot(111) CI = np.array(CI).T # To plot data ax.errorbar(ExpEn, CompEn, yerr=CI, fmt='o', ecolor='k', color='k', zorder=20000) # To plot straight line having median correlation coefficiant fit = np.polyfit(ExpEn, CompEn, 1) fitCompEn = np.polyval(fit, ExpEn) ax.plot(ExpEn, fitCompEn, color='k', lw=3, zorder=20000) # To plot straight line having minimum correlation coefficiant # fitCompEn = np.polyval(FitCoef[1], ExpEn) # ax.plot(ExpEn,fitCompEn,color='g',lw=2) # To plot straight line having maximum correlation coefficiant # fitCompEn = np.polyval(FitCoef[2], ExpEn) # ax.plot(ExpEn,fitCompEn,color='r',lw=2) for i in range(len(FitCoef_all[0])): fitCompEn = np.polyval([FitCoef_all[0][i], FitCoef_all[1][i]], ExpEn) ax.plot(ExpEn, fitCompEn, color='#BDBDBD', lw=0.5, zorder=1) ax.set_xlabel('Experimental Free Energy (kJ/mol)', fontsize=24, fontname='Times new Roman') ax.set_ylabel('Computational Binding Energy (kJ/mol)', fontsize=24, fontname='Times new Roman') xtics = ax.get_xticks() plt.xticks(xtics, fontsize=24, fontname='Times new Roman') ytics = ax.get_yticks() plt.yticks(ytics, fontsize=24, fontname='Times new Roman') plt.savefig(fname, dpi=300, orientation='landscape') def PlotCorr(c, corr_outname, fname, bootstrap_nsteps): CompEn, ExpEn = [], [] for i in range(len(c)): CompEn.append(c[i].FinalAvgEnergy) ExpEn.append(c[i].freeEn) AvgEn = np.sort(c[i].AvgEnBS, kind='mergesort') n = len(AvgEn) div = int(n / 21) AvgEn = AvgEn[:n:div] c[i].AvgEnBS = AvgEn main_r = np.corrcoef([CompEn, ExpEn])[0][1] r, FitCoef = [], [] Id_0_FitCoef, Id_1_FitCoef = [], [] f_corrdist = open(corr_outname, 'w') # Bootstrap analysis for correlation coefficiant nbstep = bootstrap_nsteps for i in range(nbstep): temp_x, temp_y = [], [] energy_idx = np.random.randint(0, 22, size=len(c)) complex_idx = np.random.randint(0, len(c), size=len(c)) for j in range(len(complex_idx)): temp_y.append(c[complex_idx[j]].AvgEnBS[energy_idx[j]]) temp_x.append(c[complex_idx[j]].freeEn) rtmp = np.corrcoef([temp_x, temp_y])[0][1] temp_x = np.array(temp_x) temp_y = np.array(temp_y) r.append(rtmp) fit = np.polyfit(temp_x, temp_y, 1) FitCoef.append(fit) f_corrdist.write('{0}\n'.format(rtmp)) # Seprating Slope and intercept Id_0_FitCoef = np.transpose(FitCoef)[0] Id_1_FitCoef = np.transpose(FitCoef)[1] # Calculating mode of coorelation coefficiant density, r_hist = np.histogram(r, 25, normed=True) mode = (r_hist[np.argmax(density) + 1] + r_hist[np.argmax(density)]) / 2 # Calculating Confidence Interval r = np.sort(r) CI_min_idx = int(0.005 * nbstep) CI_max_idx = int(0.995 * nbstep) CI_min = mode - r[CI_min_idx] CI_max = r[CI_max_idx] - mode print("%5.3f %5.3f %5.3f %5.3f" % (main_r, mode, CI_min, CI_max)) # Plotting Correlation Coefficiant Distribution fig = plt.figure() plt.subplots_adjust(left=0.15, right=0.9, top=0.9, bottom=0.15) ax = fig.add_subplot(111) n, bins, patches = ax.hist(r, 40, normed=1, facecolor='#B2B2B2', alpha=0.75, lw=0.1) plt.title('Mode = {0:.3f}\nConf. Int. = -{1:.3f}/+{2:.3f}'.format(mode, CI_min, CI_max), fontsize=18, fontname='Times new Roman') bincenters = 0.5 * (bins[1:] + bins[:-1]) # y = mlab.normpdf( bincenters, mode, np.std(r)) # l = ax.plot(bincenters, y, 'k--', lw=1) ax.set_xlabel('Correlation Coefficient', fontsize=24, fontname='Times new Roman') ax.set_ylabel('Density', fontsize=24, fontname='Times new Roman') xtics = ax.get_xticks() plt.xticks(xtics, fontsize=24, fontname='Times new Roman') ytics = ax.get_yticks() plt.yticks(ytics, fontsize=24, fontname='Times new Roman') plt.savefig(fname, dpi=300, orientation='landscape') return [Id_0_FitCoef, Id_1_FitCoef] class Complex(object): def __init__(self, MmFile, PolFile, APolFile): self.frames = [] self.TotalEn = [] self.Vdw, self.Elec, self.Pol, self.Sas, self.Sav, self.Wca = [], [], [], [], [], [] self.MmFile = MmFile self.PolFile = PolFile self.APolFile = APolFile self.AvgEnBS = [] self.CI = [] self.FinalAvgEnergy = 0 self.StdErr = 0 def jump_data_conv(self, data, jump_data): temp_data = [] for tempus in data: new_temp = tempus[::jump_data] temp_data.append(new_temp) return temp_data def CalcEnergy(self, frame_wise, idx, jump_data=1, bootstrap=False, bootstrap_jump=4, bootstrap_steps=None): mmEn = ReadData(self.MmFile, n=7) mmEn = ReadData(self.MmFile, n=7) polEn = ReadData(self.PolFile, n=4) apolEn = ReadData(self.APolFile, n=10) if jump_data>1: mmEn = self.jump_data_conv( mmEn, jump_data) polEn = self.jump_data_conv(polEn, jump_data) apolEn = self.jump_data_conv(apolEn, jump_data) CheckEnData(mmEn, polEn, apolEn) time, MM, Vdw, Elec, Pol, Apol, Sas, Sav, Wca = [], [], [], [], [], [], [], [], [] for i in range(len(mmEn[0])): # Vacuum MM Energy = mmEn[5][i] + mmEn[6][i] - (mmEn[1][i] + mmEn[2][i] + mmEn[3][i] + mmEn[4][i]) MM.append(Energy) Energy = mmEn[5][i] - (mmEn[1][i] + mmEn[3][i]) Vdw.append(Energy) Energy = mmEn[6][i] - (mmEn[2][i] + mmEn[4][i]) Elec.append(Energy) # Polar Energy = polEn[3][i] - (polEn[1][i] + polEn[2][i]) Pol.append(Energy) # Non-polar Energy = apolEn[3][i] + apolEn[6][i] + apolEn[9][i] - ( apolEn[1][i] + apolEn[2][i] + apolEn[4][i] + apolEn[5][i] + apolEn[7][i] + apolEn[8][i]) Apol.append(Energy) Energy = apolEn[3][i] - (apolEn[1][i] + apolEn[2][i]) Sas.append(Energy) Energy = apolEn[6][i] - (apolEn[4][i] + apolEn[5][i]) Sav.append(Energy) Energy = apolEn[9][i] - (apolEn[7][i] + apolEn[8][i]) Wca.append(Energy) # Final Energy time.append(mmEn[0][i]) Energy = MM[i] + Pol[i] + Apol[i] self.TotalEn.append(Energy) # TODO HISTOGRAM NEED TO DO SOMETHING # TAKE A VERY CAREFUL LOOK # https://machinelearningmastery.com/calculate-bootstrap-confidence-intervals-machine-learning-results-python/ plt.clf() plt.hist(self.TotalEn) plt.show() plt.clf() self.time = time self.time_bootstrap = time[::bootstrap_jump] self.TotalEn_bootstrap = self.TotalEn[::bootstrap_jump] # Writing frame wise component energy to file frame_wise.write('\n#Complex %d\n' % ((idx + 1))) for i in range(len(time)): frame_wise.write('%15.3lf %15.3lf %15.3lf %15.3lf %15.3lf' % ( time[i], mmEn[1][i], mmEn[2][i], polEn[1][i], (apolEn[1][i] + apolEn[4][i] + apolEn[7][i]))) frame_wise.write('%15.3lf %15.3lf %15.3lf %15.3lf' % ( mmEn[3][i], mmEn[4][i], polEn[2][i], (apolEn[2][i] + apolEn[5][i] + apolEn[8][i]))) frame_wise.write('%15.3lf %15.3lf %15.3lf %15.3lf' % ( mmEn[5][i], mmEn[6][i], polEn[3][i], (apolEn[3][i] + apolEn[6][i] + apolEn[9][i]))) frame_wise.write('%15.3lf %15.3lf %15.3lf %15.3lf\n' % (MM[i], Pol[i], Apol[i], self.TotalEn[i])) # Bootstrap analysis energy components if bootstrap is True: bsteps = bootstrap_steps curr_Vdw = Vdw[::bootstrap_jump] avg_energy, error = BootStrap(curr_Vdw, bsteps) self.Vdw.append(avg_energy) self.Vdw.append(error) curr_Elec = Elec[::bootstrap_jump] avg_energy, error = BootStrap(curr_Elec, bsteps) self.Elec.append(avg_energy) self.Elec.append(error) curr_Pol = Pol[::bootstrap_jump] avg_energy, error = BootStrap(curr_Pol, bsteps) self.Pol.append(avg_energy) self.Pol.append(error) curr_Sas = Sas[::bootstrap_jump] avg_energy, error = BootStrap(curr_Sas, bsteps) self.Sas.append(avg_energy) self.Sas.append(error) curr_Sav = Sav[::bootstrap_jump] avg_energy, error = BootStrap(curr_Sav, bsteps) self.Sav.append(avg_energy) self.Sav.append(error) curr_Wca = Wca[::bootstrap_jump] avg_energy, error = BootStrap(curr_Wca, bsteps) self.Wca.append(avg_energy) self.Wca.append(error) # Bootstrap => Final Average Energy curr_TotalEn = self.TotalEn_bootstrap #from matplotlib import pyplot self.AvgEnBS, AvgEn, EnErr, CI = ComplexBootStrap(curr_TotalEn, bsteps) self.FinalAvgEnergy = AvgEn self.StdErr = EnErr self.CI = CI # If not bootstrap then average and standard deviation else: self.Vdw.append(np.mean(Vdw)) self.Vdw.append(np.std(Vdw)) self.Elec.append(
np.mean(Elec)
numpy.mean
# -*- coding: utf-8 -*- """ SOD 333 : filtrage bayésian @author: <NAME> <NAME> <NAME> """ # Import des bibliothéques import numpy as np # calcul numerique import numpy.random as rnd # fonctions pseudo-aleatoires import matplotlib.pyplot as plt # fonctions graphiques a la MATLAB import matplotlib.animation as anim # fonctions d'animation import scipy.io as io # fonctions pour l'ouverture des fichiers .mat de MATLAB from math import * from mpl_toolkits.mplot3d import Axes3D from scipy.interpolate import griddata # Initialisation des varibles du problemes: # Ils sont considéres comme des varibales globales X1MIN,X1MAX = -1e4, 1e4 X2MIN,X2MAX = -1e4, 1e4 r0 = (-6000,2000) v0 = (120,0) sigma_r0 = 100 sigma_v0 = 10 sigma_INS = 7 sigma_ALT = 10 sigma_BAR = 20 Delta = 1 T =100 # definition d'une fonction donnant les indices des ancetres dans la redistribution multinomiale def resampling_multi(w,N): u_tild = np.zeros((N)) expo = np.zeros((N)) alpha = np.zeros((N)) u_ord = np.zeros((N)) uu = np.zeros((N+1)) s = np.zeros((N)) # w = w/w.sum() s = np.cumsum(w) u_tild = rnd.uniform(0,1,N) # for i in range(N): alpha[i] = u_tild[i]**(1/float(i+1)) alpha = np.cumprod(alpha) u_ord = alpha[N-1]/alpha u = np.append(u_ord,float("inf")) # ancestor = np.zeros(N,dtype=int) offsprings = np.zeros(N,dtype=int) i = 0 for j in range(N): o = 0 while u[i]<=s[j]: ancestor[i] = j i = i+1 o = o+1 offsprings[j] = o return ancestor # fonction de simulation des algortithmes # c = coefficient de sensibilité de l'algorithme # T = la duree total des sequences # N = Nombre des particules a simuler # sim = varible binaire, s'il est True elle affiche l'évolution des particules sur un graphe. # evol = varible binaire, s'il est True elle affiche le déroulemnet de l'algo. # Elle retourne 3 variables : # RV : matrice contenant les valeurs de (r,v) estimée à chaque particule à chaque instant. # weights : les poids respectifs associé à chaque particule à chaque instant. # X_i :matrice contenat les particules (dr,dv) # h : Les altitudes associées à chaque compesant de RV. def Adaptive(c,T,N,sim=True,evol=True) : #### Création des matrices contenant tous les états pour toutes les particules X_i = np.zeros(shape=(T+1,N,4)) # Matrice des particules(les écarts : dr,dv) RV = np.zeros(shape=(T+1,N,4)) # Matrice des positions et des vitesses estimés (r_INS+dr,v_INS+dv) h = np.zeros(shape=(T+1,N)) # Matrice des altitudes des particules #### Tirage des premiers élements. for i in range(N): X_i[0,i,0:2] = rnd.normal(size=2,loc=0,scale=sigma_r0) X_i[0,i,2:4] = rnd.normal(size=2,loc=0,scale=sigma_v0) RV[0,:,0:2] = r0 + X_i[0,:,0:2] RV[0,:,2:4] = v0 + X_i[0,:,2:4] weights = np.zeros(shape=(T+1,N)) # Création de la matrice des poids #### Les poids initiaux # Determination des indices i_ind= (X2MAX - RV[0,:,1]) * N2 /(X2MAX-X2MIN) i_ind=np.ceil(i_ind) j_ind= (RV[0,:,0] - X1MIN) * N1 /(X1MAX-X1MIN) j_ind=np.ceil(j_ind) #On calcule le h0 h[0,:] = map[i_ind.astype(int),j_ind.astype(int)] weights[0,:]= vraisemblance(h=h_ALT[0], mu= h[0,:]) weights[0,:] = weights[0,:] / np.sum(weights[0,:]) #### La boucle du filtre for k in range(1,T+1): #On calcule N effective : Neff= 1 / (np.sum(weights[k-1,:]**2)) ### algorithme SIR if Neff <= c*N : if(evol==True): print(" instant ",k," : SIR avec Neff = ",Neff) ### Phase de tirage #indices = rnd.choice(range(0,N),size= #N,p=weights[k-1,:]) indices = resampling_multi(w=weights[k-1,:], N=N) Xi_hat = X_i[k-1,indices,:] ### Phase de prédiction w_INS = rnd.multivariate_normal(mean=[0,0],cov=[[sigma_INS,0],[0,sigma_INS]],size=N) X_i[k,:,0:2] = Xi_hat[:,0:2]+Delta*Xi_hat[:,2:4] X_i[k,:,2:4] = Xi_hat[:,2:4]-Delta*w_INS ### Phase de correction #On calcule r et v RV[k,:,0:2] = r_INS[:,k]+X_i[k,:,0:2] RV[k,:,2:4] = v_INS[:,k]+X_i[k,:,2:4] ### Calcul des poids # Determination des indices i_ind= (X2MAX - RV[k,:,1]) * N2 /(X2MAX-X2MIN) i_ind=np.clip(np.ceil(i_ind), 0,N2-1) j_ind= (RV[k,:,0] - X1MIN) * N1 /(X1MAX-X1MIN) j_ind=np.clip(np.ceil(j_ind),0,N1-1) ### On calcule le hk h[k,:] = map[i_ind.astype(int),j_ind.astype(int)] weights[k,:] = vraisemblance(h=h_ALT[k], mu= h[k,:]) weights[k,:] = weights[k,:] / np.sum(weights[k,:]) ### algorithme SIS : elif Neff > c*N : if(evol==True) : print(" instant ",k," : SIS avec Neff = ",Neff) ### Phase de prédiction w_INS = rnd.multivariate_normal(mean=[0,0],cov=[[sigma_INS,0],[0,sigma_INS]],size=N) X_i[k,:,0:2] = X_i[k-1,:,0:2]+Delta*X_i[k-1,:,2:4] X_i[k,:,2:4] = X_i[k-1,:,2:4]-Delta*w_INS ### Phase de correction #On calcule r et v RV[k,:,0:2] = r_INS[:,k]+X_i[k,:,0:2] RV[k,:,2:4] = v_INS[:,k]+X_i[k,:,2:4] ### Calcul des poids # Determination des indices i_ind= (X2MAX - RV[k,:,1]) * N2 /(X2MAX-X2MIN) i_ind=np.clip(np.ceil(i_ind),0,N2-1) j_ind= (RV[k,:,0] - X1MIN) * N1 /(X1MAX-X1MIN) j_ind=np.clip(
np.ceil(j_ind)
numpy.ceil
import numpy as np import xarray as xr import pandas as pd import os from collections import OrderedDict # from astropy.time import Time import logging import copy from typing import List, Dict, Union, Tuple import pysagereader class SAGEIILoaderV700(object): """ Class designed to load the v7.00 SAGE II spec and index files provided by NASA ADSC into python Data files must be accessible by the users machine, and can be downloaded from: https://eosweb.larc.nasa.gov/project/sage2/sage2_v7_table Parameters ---------- data_folder location of sage ii index and spec files. output_format format for the output data. If ``'xarray'`` the output is returned as an ``xarray.Dataset``. If None the output is returned as a dictionary of numpy arrays. **NOTE: the following options only apply to xarray output types** species Species to be returned in the output data. If None all species are returned. Options are ``aerosol``, ``ozone``, ``h2o``, and ``no2``. If more than one species is returned fields will be NaN-padded where data is not available. ``species`` is only used if ``'xarray'`` is set as the ``output_data`` format, otherwise it has no effect. cf_names If True then CF-1.7 naming conventions are used for the output_data when ``xarray`` is selected. filter_aerosol filter the aerosol using the cloud flag filter_ozone filter the ozone using the criteria recommended in the release notes * Exclusion of all data points with an uncertainty estimate of 300% or greater * Exclusion of all profiles with an uncertainty greater than 10% between 30 and 50 km * Exclusion of all data points at altitude and below the occurrence of an aerosol extinction value of greater than 0.006 km^-1 * Exclusion of all data points at altitude and below the occurrence of both the 525nm aerosol extinction value exceeding 0.001 km^-1 and the 525/1020 extinction ratio falling below 1.4 * Exclusion of all data points below 35km an 200% or larger uncertainty estimate enumerate_flags expand the index and species flags to their boolean values. normalize_percent_error give the species error as percent rather than percent * 100 return_separate_flags return the enumerated flags as a separate data array Example ------- >>> sage = SAGEIILoaderV700() >>> sage.data_folder = 'path/to/data' >>> data = sage.load_data('2004-1-1','2004-5-1') In addition to the sage ii fields reported in the files, two additional time fields are provided to allow for easier subsetting of the data. ``data['mjd']`` is a numpy array containing the modified julian dates of each scan ``date['time']`` is an pandas time series object containing the times of each scan """ def __init__(self, data_folder: str=None, output_format: str='xarray', species: List[str]=('aerosol', 'h2o', 'no2', 'ozone', 'background'), cf_names: bool=False, filter_aerosol: bool=False, filter_ozone: bool=False, enumerate_flags: bool=False, normalize_percent_error: bool=False, return_separate_flags: bool=False): if type(species) == str: species = [species] self.data_folder = data_folder # Type: str self.version = '7.00' self.index_file = 'SAGE_II_INDEX_' self.spec_file = 'SAGE_II_SPEC_' self.fill_value = np.nan self.spec_format = self.get_spec_format() self.index_format = self.get_index_format() self.output_format = output_format self.species = [s.lower() for s in species] self.cf_names = cf_names self.filter_aerosol = filter_aerosol self.filter_ozone = filter_ozone self.normalize_percent_error = normalize_percent_error self.enumerate_flags = enumerate_flags self.return_separate_flags = return_separate_flags @staticmethod def get_spec_format() -> Dict[str, Tuple[str, int]]: """ spec format taken from sg2_specinfo.pro provided in the v7.00 download used for reading the binary data format Returns ------- Dict Ordered dictionary of variables provided in the spec file. Each dictionary field contains a tuple with the information (data type, number of data points). Ordering is important as the sage ii binary files are read sequentially. """ spec = OrderedDict() spec['Tan_Alt'] = ('float32', 8) # Subtangent Altitudes(km) spec['Tan_Lat'] = ('float32', 8) # Subtangent Latitudes @ Tan_Alt(deg) spec['Tan_Lon'] = ('float32', 8) # Subtangent Longitudes @ Tan_Alt(deg) spec['NMC_Pres'] = ('float32', 140) # Gridded Pressure profile(mb) spec['NMC_Temp'] = ('float32', 140) # Gridded Temperature profile(K) spec['NMC_Dens'] = ('float32', 140) # Gridded Density profile(cm ^ (-3)) spec['NMC_Dens_Err'] = ('int16', 140) # Error in NMC_Dens( % * 1000) spec['Trop_Height'] = ('float32', 1) # NMC Tropopause Height(km) spec['Wavelength'] = ('float32', 7) # Wavelength of each channel(nm) spec['O3'] = ('float32', 140) # O3 Density profile 0 - 70 Km(cm ^ (-3)) spec['NO2'] = ('float32', 100) # NO2 Density profile 0 - 50 Km(cm ^ (-3)) spec['H2O'] = ('float32', 100) # H2O Volume Mixing Ratio 0 - 50 Km(ppp) spec['Ext386'] = ('float32', 80) # 386 nm Extinction 0 - 40 Km(1 / km) spec['Ext452'] = ('float32', 80) # 452 nm Extinction 0 - 40 Km(1 / km) spec['Ext525'] = ('float32', 80) # 525 nm Extinction 0 - 40 Km(1 / km) spec['Ext1020'] = ('float32', 80) # 1020 nm Extinction 0 - 40 Km(1 / km) spec['Density'] = ('float32', 140) # Calculated Density 0 - 70 Km(cm ^ (-3)) spec['SurfDen'] = ('float32', 80) # Aerosol surface area dens 0 - 40 km(um ^ 2 / cm ^ 3) spec['Radius'] = ('float32', 80) # Aerosol effective radius 0 - 40 km(um) spec['Dens_Mid_Atm'] = ('float32', 70) # Middle Atmosphere Density(cm ^ (-3)) spec['O3_Err'] = ('int16', 140) # Error in O3 density profile( % * 100) spec['NO2_Err'] = ('int16', 100) # Error in NO2 density profile( % * 100) spec['H2O_Err'] = ('int16', 100) # Error in H2O mixing ratio( % * 100) spec['Ext386_Err'] = ('int16', 80) # Error in 386 nm Extinction( % * 100) spec['Ext452_Err'] = ('int16', 80) # Error in 452 nm Extinction( % * 100) spec['Ext525_Err'] = ('int16', 80) # Error in 525 nm Extinction( % * 100) spec['Ext1020_Err'] = ('int16', 80) # Error in 1019 nm Extinction( % * 100) spec['Density_Err'] = ('int16', 140) # Error in Density( % * 100) spec['SurfDen_Err'] = ('int16', 80) # Error in surface area dens( % * 100) spec['Radius_Err'] = ('int16', 80) # Error in aerosol radius( % * 100) spec['Dens_Mid_Atm_Err'] = ('int16', 70) # Error in Middle Atm.Density( % * 100) spec['InfVec'] = ('uint16', 140) # Informational Bit flags return spec @staticmethod def get_index_format() -> Dict[str, Tuple[str, int]]: """ index format taken from sg2_indexinfo.pro provided in the v7.00 download used for reading the binary data format Returns ------- Dict an ordered dictionary of variables provided in the index file. Each dictionary field contains a tuple with the information (data type, length). Ordering is important as the sage ii binary files are read sequentially. """ info = OrderedDict() info['num_prof'] = ('uint32', 1) # Number of profiles in these files info['Met_Rev_Date'] = ('uint32', 1) # LaRC Met Model Revision Date(YYYYMMDD) info['Driver_Rev'] = ('S1', 8) # LaRC Driver Version(e.g. 6.20) info['Trans_Rev'] = ('S1', 8) # LaRC Transmission Version info['Inv_Rev'] = ('S1', 8) # LaRC Inversion Version info['Spec_Rev'] = ('S1', 8) # LaRC Inversion Version info['Eph_File_Name'] = ('S1', 32) # Ephemeris data file name info['Met_File_Name'] = ('S1', 32) # Meteorological data file name info['Ref_File_Name'] = ('S1', 32) # Refraction data file name info['Tran_File_Name'] = ('S1', 32) # Transmission data file name info['Spec_File_Name'] = ('S1', 32) # Species profile file name info['FillVal'] = ('float32', 1) # Fill value # Altitude grid and range info info['Grid_Size'] = ('float32', 1) # Altitude grid spacing(0.5 km) info['Alt_Grid'] = ('float32', 200) # Geometric altitudes(0.5, 1.0, ..., 100.0 km) info['Alt_Mid_Atm'] = ('float32', 70) # Middle atmosphere geometric altitudes info['Range_Trans'] = ('float32', 2) # Transmission min & max altitudes[0.5, 100.] info['Range_O3'] = ('float32', 2) # Ozone min & max altitudes[0.5, 70.0] info['Range_NO2'] = ('float32', 2) # NO2 min & max altitudes[0.5, 50.0] info['Range_H2O'] = ('float32', 2) # Water vapor min & max altitudes[0.5, 50.0] info['Range_Ext'] = ('float32', 2) # Aerosol extinction min & max altitudes[0.5, 40.0] info['Range_Dens'] = ('float32', 2) # Density min & max altitudes[0.5, 70.0] info['Spare'] = ('float32', 2) # # Event specific info useful for data subsetting info['YYYYMMDD'] = ('int32', 930) # Event date at 20km subtangent point info['Event_Num'] = ('int32', 930) # Event number info['HHMMSS'] = ('int32', 930) # Event time at 20km info['Day_Frac'] = ('float32', 930) # Time of year(DDD.frac) at 20 km info['Lat'] = ('float32', 930) # Subtangent latitude at 20 km(-90, +90) info['Lon'] = ('float32', 930) # Subtangent longitude at 20 km(-180, +180) info['Beta'] = ('float32', 930) # Spacecraft beta angle(deg) info['Duration'] = ('float32', 930) # Duration of event(sec) info['Type_Sat'] = ('int16', 930) # Event Type Instrument(0 = SR, 1 = SS) info['Type_Tan'] = ('int16', 930) # Event Type Local(0 = SR, 1 = SS) # Process tracking and flag info info['Dropped'] = ('int32', 930) # Dropped event flag info['InfVec'] = ('uint32', 930) # Bit flags relating to processing ( # NOTE: readme_sage2_v6.20.txt says InfVec is 16 bit but appears to actually be 32 (also in IDL software) # Record creation dates and times info['Eph_Cre_Date'] = ('int32', 930) # Record creation date(YYYYMMDD format) info['Eph_Cre_Time'] = ('int32', 930) # Record creation time(HHMMSS format) info['Met_Cre_Date'] = ('int32', 930) # Record creation date(YYYYMMDD format) info['Met_Cre_Time'] = ('int32', 930) # Record creation time(HHMMSS format) info['Ref_Cre_Date'] = ('int32', 930) # Record creation date(YYYYMMDD format) info['Ref_Cre_Time'] = ('int32', 930) # Record creation time(HHMMSS format) info['Tran_Cre_Date'] = ('int32', 930) # Record creation date(YYYYMMDD format) info['Tran_Cre_Time'] = ('int32', 930) # Record creation time(HHMMSS format) info['Spec_Cre_Date'] = ('int32', 930) # Record creation date(YYYYMMDD format) info['Spec_Cre_Time'] = ('int32', 930) # Record creation time(HHMMSS format) return info def get_spec_filename(self, year: int, month: int) -> str: """ Returns the spec filename given a year and month Parameters ---------- year year of the data that will be loaded month month of the data that will be loaded Returns ------- filename of the spec file where the data is stored """ file = os.path.join(self.data_folder, self.spec_file + str(int(year)) + str(int(month)).zfill(2) + '.' + self.version) if not os.path.isfile(file): file = None return file def get_index_filename(self, year: int, month: int) -> str: """ Returns the index filename given a year and month Parameters ---------- year year of the data that will be loaded month month of the data that will be loaded Returns ------- filename of the index file where the data is stored """ file = os.path.join(self.data_folder, self.index_file + str(int(year)) + str(int(month)).zfill(2) + '.' + self.version) if not os.path.isfile(file): file = None return file def read_spec_file(self, file: str, num_profiles: int) -> List[Dict]: """ Parameters ---------- file name of the spec file to be read num_profiles number of profiles to read from the spec file (usually determined from the index file) Returns ------- list of dictionaries containing the spec data. Each list is one event """ # load the file into the buffer file_format = self.spec_format with open(file, "rb") as f: buffer = f.read() # initialize the list of dictionaries data = [None] * num_profiles for p in range(num_profiles): data[p] = dict() # load the data from the buffer bidx = 0 for p in range(num_profiles): for key in file_format.keys(): nbytes = np.dtype(file_format[key][0]).itemsize * file_format[key][1] data[p][key] = copy.copy(np.frombuffer(buffer[bidx:bidx+nbytes], dtype=file_format[key][0])) bidx += nbytes return data def read_index_file(self, file: str) -> Dict: """ Read the binary file into a python data structure Parameters ---------- file filename to be read Returns ------- data from the file """ file_format = self.index_format with open(file, "rb") as f: buffer = f.read() data = dict() # load the data from file into a list bidx = 0 for key in file_format.keys(): nbytes = np.dtype(file_format[key][0]).itemsize * file_format[key][1] if file_format[key][0] == 'S1': data[key] = copy.copy(buffer[bidx:bidx + nbytes].decode('utf-8')) else: data[key] = copy.copy(np.frombuffer(buffer[bidx:bidx + nbytes], dtype=file_format[key][0])) if len(data[key]) == 1: data[key] = data[key][0] bidx += nbytes # make a more useable time field date_str = [] # If the time overflows by less than the scan time just set it to midnight data['HHMMSS'][(data['HHMMSS'] >= 240000) & (data['HHMMSS'] < (240000 + data['Duration']))] = 235959 # otherwise, set it as invalid data['HHMMSS'][data['HHMMSS'] >= 240000] = -999 for idx, (ymd, hms) in enumerate(zip(data['YYYYMMDD'], data['HHMMSS'])): if (ymd < 0) | (hms < 0): date_str.append('1970-1-1 00:00:00') # invalid sage ii date else: hours = int(hms/10000) mins = int((hms % 10000)/100) secs = hms % 100 date_str.append(str(ymd)[0:4] + '-' + str(ymd)[4:6].zfill(2) + '-' + str(ymd)[6::].zfill(2) + ' ' + str(hours).zfill(2) + ':' + str(mins).zfill(2) + ':' + str(secs).zfill(2)) # data['time'] = Time(date_str, format='iso') data['time'] = pd.to_datetime(date_str) data['mjd'] = np.array((data['time'] - pd.Timestamp('1858-11-17')) / pd.Timedelta(1, 'D')) data['mjd'][data['mjd'] < 40588] = -999 # get rid of invalid dates return data def load_data(self, min_date: str, max_date: str, min_lat: float=-90, max_lat: float=90, min_lon: float=-180, max_lon: float=360) -> Union[Dict, xr.Dataset]: """ Load the SAGE II data for the specified dates and locations. Parameters ---------- min_date start date where data will be loaded in iso format, eg: '2004-1-1' max_date end date where data will be loaded in iso format, eg: '2004-1-1' min_lat minimum latitude (optional) max_lat maximum latitude (optional) min_lon minimum longitude (optional) max_lon maximum longitude (optional) Returns ------- Variables are returned as numpy arrays (1 or 2 dimensional depending on the variable) """ min_time = pd.Timestamp(min_date) max_time = pd.Timestamp(max_date) data = dict() init = False # create a list of unique year/month combinations between the start/end dates uniq = OrderedDict() for year in [(t.date().year, t.date().month) for t in pd.date_range(min_time, max_time+pd.Timedelta(27, 'D'), freq='27D')]: uniq[year] = year # load in the data from the desired months for (year, month) in list(uniq.values()): logging.info('loading data for : ' + str(year) + '/' + str(month)) indx_file = self.get_index_filename(year, month) # if the file does not exist move on to the next month if indx_file is None: continue indx_data = self.read_index_file(indx_file) numprof = indx_data['num_prof'] spec_data = self.read_spec_file(self.get_spec_filename(year, month), numprof) # get rid of the duplicate names for InfVec for sp in spec_data: sp['ProfileInfVec'] = copy.copy(sp['InfVec']) del sp['InfVec'] for key in indx_data.keys(): # get rid of extraneous profiles in the index so index and spec are the same lengths if hasattr(indx_data[key], '__len__'): indx_data[key] = np.delete(indx_data[key], np.arange(numprof, 930)) # add the index values to the data set if key in data.keys(): # we dont want to replicate certain fields if (key[0:3] != 'Alt') & (key[0:5] != 'Range') & (key[0:7] != 'FillVal'): data[key] = np.append(data[key], indx_data[key]) else: if key == 'FillVal': data[key] = indx_data[key] else: data[key] = [indx_data[key]] # initialize the data dictionaries as lists if init is False: for key in spec_data[0].keys(): data[key] = [] init = True # add the spec values to the data set for key in spec_data[0].keys(): data[key].append(np.asarray([sp[key] for sp in spec_data])) # join all of our lists into an array - this could be done more elegantly with vstack to avoid # the temporary lists, but this is much faster for key in data.keys(): if key == 'FillVal': data[key] = float(data[key]) # make this a simple float rather than zero dimensional array elif len(data[key][0].shape) > 0: data[key] =
np.concatenate(data[key], axis=0)
numpy.concatenate
import numpy as np import matplotlib.cm def draw_person_limbs_2d_coco(axis, coords, vis=None, color=None, order='hw', with_face=True): """ Draws a 2d person stick figure in a matplotlib axis. """ import matplotlib.cm if order == 'uv': pass elif order == 'hw': coords = coords[:, ::-1] else: assert 0, "Unknown order." LIMBS_COCO = np.array([[1, 2], [2, 3], [3, 4], # right arm [1, 8], [8, 9], [9, 10], # right leg [1, 5], [5, 6], [6, 7], # left arm [1, 11], [11, 12], [12, 13], # left leg [1, 0], [2, 16], [0, 14], [14, 16], [0, 15], [15, 17], [5, 17]]) # head if type(color) == str: if color == 'sides': blue_c = np.array([[0.0, 0.0, 1.0]]) # side agnostic red_c = np.array([[1.0, 0.0, 0.0]]) # "left" green_c = np.array([[0.0, 1.0, 0.0]]) # "right" color = np.concatenate([np.tile(green_c, [6, 1]), np.tile(red_c, [6, 1]), np.tile(blue_c, [7, 1])], 0) if not with_face: color = color[:13, :] if not with_face: LIMBS_COCO = LIMBS_COCO[:13, :] if vis is None: vis = np.ones_like(coords[:, 0]) == 1.0 if color is None: color = matplotlib.cm.jet(np.linspace(0, 1, LIMBS_COCO.shape[0]))[:, :3] for lid, (p0, p1) in enumerate(LIMBS_COCO): if (vis[p0] == 1.0) and (vis[p1] == 1.0): if type(color) == str: axis.plot(coords[[p0, p1], 0], coords[[p0, p1], 1], color, linewidth=2) else: axis.plot(coords[[p0, p1], 0], coords[[p0, p1], 1], color=color[lid, :], linewidth=2) def draw_person_limbs_3d_coco(axis, coords, vis=None, color=None, orientation=None, orientation_val=None, with_face=True, rescale=True): """ Draws a 3d person stick figure in a matplotlib axis. """ import matplotlib.cm LIMBS_COCO = np.array([[1, 2], [1, 5], [2, 3], [3, 4], [5, 6], [6, 7], [1, 8], [8, 9], [9, 10], [1, 11], [11, 12], [12, 13], [1, 0], [2, 16], [0, 14], [14, 16], [0, 15], [15, 17], [5, 17]]) if not with_face: LIMBS_COCO = LIMBS_COCO[:13, :] if vis is None: vis = np.ones_like(coords[:, 0]) == 1.0 vis = vis == 1.0 if color is None: color = matplotlib.cm.jet(np.linspace(0, 1, LIMBS_COCO.shape[0]))[:, :3] for lid, (p0, p1) in enumerate(LIMBS_COCO): if (vis[p0] == 1.0) and (vis[p1] == 1.0): if type(color) == str: axis.plot(coords[[p0, p1], 0], coords[[p0, p1], 1], coords[[p0, p1], 2], color, linewidth=2) else: axis.plot(coords[[p0, p1], 0], coords[[p0, p1], 1], coords[[p0, p1], 2], color=color[lid, :], linewidth=2) if np.sum(vis) > 0 and rescale: min_v, max_v, mean_v = np.min(coords[vis, :], 0), np.max(coords[vis, :], 0), np.mean(coords[vis, :], 0) range = np.max(np.maximum(np.abs(max_v-mean_v), np.abs(mean_v-min_v))) axis.set_xlim([mean_v[0]-range, mean_v[0]+range]) axis.set_ylim([mean_v[1]-range, mean_v[1]+range]) axis.set_zlim([mean_v[2]-range, mean_v[2]+range]) axis.set_xlabel('x') axis.set_ylabel('y') axis.set_zlabel('z') axis.view_init(azim=-90., elev=-90.) def detect_hand_keypoints(scoremaps): """ Performs detection per scoremap for the hands keypoints. """ if len(scoremaps.shape) == 4: scoremaps = np.squeeze(scoremaps) s = scoremaps.shape assert len(s) == 3, "This function was only designed for 3D Scoremaps." assert (s[2] < s[1]) and (s[2] < s[0]), "Probably the input is not correct, because [H, W, C] is expected." keypoint_coords = np.zeros((s[2], 2)) for i in range(s[2]): v, u = np.unravel_index(
np.argmax(scoremaps[:, :, i])
numpy.argmax
import numpy as np import scipy.linalg from common_lab_utils import PerspectiveCamera class PrecalibratedCameraMeasurementsFixedWorld: """Measurements of fixed world points given in the normalised image plane""" def __init__(self, camera: PerspectiveCamera, u: np.ndarray, x_w: np.ndarray): """Constructs the 2D-3D measurement :param camera: A PerspectiveCamera representing the camera that performed the measurement. :param u: A 2xn matrix of n pixel observations. :param covs_u: A list of covariance matrices representing the uncertainty in each pixel observation. :param x_w: A 3xn matrix of the n corresponding world points. """ self.camera = camera self.x_w = x_w.T # Transform to the normalised image plane. self.xn = camera.pixel_to_normalised(u.T) self.num = self.xn.shape[1] class PrecalibratedMotionOnlyBAObjective: """Implements linearisation of motion-only BA objective function""" def __init__(self, measurement): """Constructs the objective :param measurement: A PrecalibratedCameraMeasurementsFixedWorld object. """ self.measurement = measurement @staticmethod def extract_measurement_jacobian(point_index, pose_state_c_w, measurement): """Computes the measurement Jacobian for a specific point and camera measurement. :param point_index: Index of current point. :param pose_state_c_w: Current pose state given as the pose of the world in the camera frame. :param measurement: The measurement :return: The measurement Jacobian """ A = measurement.camera.jac_project_world_to_normalised_wrt_pose_w_c(pose_state_c_w, measurement.x_w[:, [point_index]]) return A @staticmethod def extract_measurement_error(point_index, pose_state_c_w, measurement): """Computes the measurement error for a specific point and camera measurement. :param point_index: Index of current point. :param pose_state_c_w: Current pose state given as the pose of the world in the camera frame. :param measurement: The measurement :return: The measurement error """ b = measurement.camera.reprojection_error_normalised(pose_state_c_w * measurement.x_w[:, [point_index]], measurement.xn[:, [point_index]]) return b def linearise(self, pose_state_w_c): """Linearises the objective over all states and measurements :param pose_state_w_c: The current camera pose state in the world frame. :return: A - The full measurement Jacobian b - The full measurement error cost - The current cost """ num_points = self.measurement.num A = np.zeros((2 * num_points, 6)) b = np.zeros((2 * num_points, 1)) pose_state_c_w = pose_state_w_c.inverse() for j in range(num_points): rows = slice(j * 2, (j + 1) * 2) A[rows, :] = self.extract_measurement_jacobian(j, pose_state_c_w, self.measurement) b[rows, :] = self.extract_measurement_error(j, pose_state_c_w, self.measurement) return A, b, b.T.dot(b) def gauss_newton(x_init, model, cost_thresh=1e-9, delta_thresh=1e-9, max_num_it=20): """Implements nonlinear least squares using the Gauss-Newton algorithm :param x_init: The initial state :param model: Model with a function linearise() that returns A, b and the cost for the current state estimate. :param cost_thresh: Threshold for cost function :param delta_thresh: Threshold for update vector :param max_num_it: Maximum number of iterations :return: - x: State estimates at each iteration, the final state in x[-1] - cost: The cost at each iteration - A: The full measurement Jacobian at the final state - b: The full measurement error at the final state """ x = [None] * (max_num_it + 1) cost = np.zeros(max_num_it + 1) x[0] = x_init for it in range(max_num_it): A, b, cost[it] = model.linearise(x[it]) tau = np.linalg.lstsq(A, b, rcond=None)[0] x[it + 1] = x[it] + tau if cost[it] < cost_thresh or np.linalg.norm(tau) < delta_thresh: x = x[:it + 2] cost = cost[:it + 2] break A, b, cost[-1] = model.linearise(x[-1]) return x, cost, A, b def levenberg_marquardt(x_init, model, cost_thresh=1e-9, delta_thresh=1e-9, max_num_it=20): """Implements nonlinear least squares using the Levenberg-Marquardt algorithm :param x_init: The initial state :param model: Model with a function linearise() that returns A, b and the cost for the current state estimate. :param cost_thresh: Threshold for cost function :param delta_thresh: Threshold for update vector :param max_num_it: Maximum number of iterations :return: - x: State estimates at each iteration, the final state in x[-1] - cost: The cost at each iteration - A: The full measurement Jacobian at the final state - b: The full measurement error at the final state """ x = [None] * (max_num_it + 1) cost =
np.zeros(max_num_it + 1)
numpy.zeros
import json import os import numpy as np import pandas as pd from pathlib import Path import argparse from typing import Union import re import pickle as pkl def preprocess( data_name, node_feat: Union[None, int], node_feat_which='both', ): """ data_name: str, name of raw dataset (to be found in data folder) node_feat: {None, int}, number of node features in each row, None if no node features node_feat_which: {'source','destination','both'}, specify which node features are present in each row """ u_list, i_list, ts_list, label_list = [], [], [], [] feat_edge = [] feat_node = [] idx_list = [] with open(data_name) as f: s = next(f) for idx, line in enumerate(f): e = line.strip().split(',') u = int(e[0]) i = int(e[1]) ts = float(e[2]) label = float(e[3]) if node_feat: if node_feat_which=='both': feat_e = np.array([float(x) for x in e[4:-node_feat*2]]) feat_n_s = np.array([u, ts ] + [float(x) for x in e[-node_feat*2:-node_feat]]) feat_n_d = np.array([i, ts ] + [float(x) for x in e[-node_feat:]]) feat_n = [feat_n_s, feat_n_d] else: feat_e = np.array([float(x) for x in e[4:-node_feat]]) if node_feat_which=='source': feat_n = np.array([u, ts ] + [float(x) for x in e[-node_feat:]]) elif node_feat_which=='destination': feat_n = np.array([i, ts ] + [float(x) for x in e[-node_feat:]]) else: raise ValueError(f"Expected {{'source', 'destination', 'both'}} in 'node_feat_which' argument, got {node_feat_which}") else: feat_e = np.array([float(x) for x in e[4:]]) feat_n = [] u_list.append(u) i_list.append(i) ts_list.append(ts) label_list.append(label) idx_list.append(idx) feat_edge.append(feat_e) feat_node.append(feat_n) return pd.DataFrame({'u': u_list, 'i': i_list, 'ts': ts_list, 'label': label_list, 'idx': idx_list}),
np.array(feat_edge)
numpy.array
import os import pickle import cv2 import fastestimator as fe import numpy as np import tensorflow as tf from fastestimator.op.numpyop import Delete from fastestimator.op.numpyop.meta import Sometimes from fastestimator.op.tensorop.loss import CrossEntropy from fastestimator.op.tensorop.model import ModelOp, UpdateOp from fastestimator.trace.io import ModelSaver from tensorflow.python.keras import layers def zscore(data, epsilon=1e-7): mean = np.mean(data) std = np.std(data) data = (data - mean) / max(std, epsilon) return data def load_pickle(pickle_path): with open(pickle_path, "rb") as f: data = pickle.load(f) return data def pad_left_one(data): data_length = data.size if data_length < 300: data = np.pad(data, ((300 - data_length, 0), (0, 0)), mode='constant', constant_values=1.0) return data def pad_left_zero(data): data_length = data.size if data_length < 300: data = np.pad(data, ((300 - data_length, 0), (0, 0)), mode='constant', constant_values=0.0) return data class RemoveValLoss(fe.op.numpyop.NumpyOp): def forward(self, data, state): val_loss = data return np.zeros_like(val_loss) class MultipleClsBinaryCELoss(fe.op.tensorop.TensorOp): def __init__(self, inputs, outputs, pos_labels=[0, 2], neg_labels=[1], mode=None): self.pos_labels = pos_labels self.neg_labels = neg_labels self.all_labels = self.pos_labels + self.neg_labels self.missing_labels = list(set([0, 1, 2]) - set(self.all_labels)) if len(self.missing_labels) == 0: self.missing_labels = [-1] super().__init__(inputs=inputs, outputs=outputs, mode=mode) def forward(self, data, state): cls_pred, cls_label = data batch_size = cls_label.shape[0] binaryCEloss = 0.0 case_count = 0.0 for idx in range(batch_size): if cls_label[idx] != self.missing_labels[0]: abnormal_predict = tf.clip_by_value(tf.math.reduce_max([cls_pred[idx][p] for p in self.pos_labels]), 1e-4, 1.0 - 1e-4) if cls_label[idx] != self.neg_labels[0]: abnormal_label = 1.0 else: abnormal_label = 0.0 binaryCEloss -= (abnormal_label * tf.math.log(abnormal_predict) + (1.0 - abnormal_label) * tf.math.log(1.0 - abnormal_predict)) case_count += 1 return binaryCEloss / case_count class CombineLoss(fe.op.tensorop.TensorOp): def __init__(self, inputs, outputs, weights, mode=None): super().__init__(inputs=inputs, outputs=outputs, mode=mode) self.weights = weights def forward(self, data, state): return tf.reduce_sum([loss * weight for loss, weight in zip(data, self.weights)]) class CombineData(fe.op.numpyop.NumpyOp): def forward(self, data, state): x =
np.concatenate(data, axis=1)
numpy.concatenate
""" Crossover ratios The crossover ratio (CR) determines what percentage of parameters in the target vector are updated with difference vector selected from the population. In traditional differential evolution a CR value is chosen somewhere in [0, 1] at the start of the search and stays constant throughout. DREAM extends this by allowing multiple CRs at the same time with different probabilities. Adaptive crossover adjusts the relative weights of the CRs based on the average distance of the steps taken when that CR was used. This distance will be zero for unsuccessful metropolis steps, and so the relative weights on those CRs which generate many unsuccessful steps will be reduced. Usage ----- 1. Traditional differential evolution:: crossover = Crossover(CR=CR) 2. Weighted crossover ratios:: crossover = Crossover(CR=[CR1, CR2, ...], weight=[weight1, weight2, ...]) The weights are normalized to one, and default to equally weighted CRs. 3. Adaptive weighted crossover ratios:: crossover = AdaptiveCrossover(N) The CRs are set to *[1/N, 2/N, ... 1]*, and start out equally weighted. The weights are adapted during burn-in (10% of the runs) and fixed for the remainder of the analysis. Compatibility Notes ------------------- For *Extra.pCR == 'Update'* in the matlab interface use:: CR = AdaptiveCrossover(Ncr=MCMCPar.nCR) For *Extra.pCR != 'Update'* in the matlab interface use:: CR = Crossover(CR=[1./Ncr], pCR=[1]) """ from __future__ import division, print_function __all__ = ["Crossover", "AdaptiveCrossover", "LogAdaptiveCrossover"] from numpy import hstack, empty, ones, zeros, cumsum, arange, \ reshape, array, isscalar, asarray, std, sum, trunc, log10, logspace from . import util class Crossover(object): """ Fixed weight crossover ratios. *CR* is a scalar if there is a single crossover ratio, or a vector of numbers in (0, 1]. *weight* is the relative weighting of each CR, or None for equal weights. """ def __init__(self, CR, weight=None): if isscalar(CR): CR, weight = [CR], [1] CR, weight = [asarray(v, 'd') for v in (CR, weight)] self.CR, self.weight = CR, weight/sum(weight) def reset(self): pass def update(self, xold, xnew, used): """ Gather adaptation data on *xold*, *xnew* for each CR that was *used* in step *N*. """ pass def adapt(self): """ Update CR weights based on the available adaptation data. """ pass class BaseAdaptiveCrossover(object): """ Adapted weight crossover ratios. """ def _set_CRs(self, CR): self.CR = CR # Start with all CRs equally probable self.weight = ones(len(self.CR)) / len(self.CR) # No initial statistics for adaptation self._count = zeros(len(self.CR)) self._distance = zeros(len(self.CR)) self._generations = 0 def reset(self): # TODO: do we reset count and distance? pass def update(self, xold, xnew, used): """ Gather adaptation data on *xold*, *xnew* for each CR that was *used* in step *N*. """ # Calculate the standard deviation of each dimension of X r = std(xnew, ddof=1, axis=0) # Compute the Euclidean distance between new X and old X d = sum(((xold - xnew)/r)**2, axis=1) # Use this information to update sum_p2 to update N_CR count, total = distance_per_CR(self.CR, d, used) self._count += count self._distance += total self._generations += 1 self._Nchains = len(used) def adapt(self): """ Update CR weights based on the available adaptation data. """ # [PAK] make sure no count is zero by adding one to all counts self.weight = (self._distance/(self._count+1)) * (self._Nchains/sum(self._distance)) # [PAK] make sure no weight goes to zero self.weight += 0.1*sum(self.weight) self.weight /= sum(self.weight) class AdaptiveCrossover(BaseAdaptiveCrossover): """ Adapted weight crossover ratios. *N* is the number of CRs to use. CR is set to [1/N, 2/N, ..., 1], with initial weights [1/N, 1/N, ..., 1/N]. """ def __init__(self, N): if N < 2: raise ValueError("Need more than one CR for AdaptiveCrossover") self._set_CRs((arange(N)+1)/N) # Equally spaced CRs # [PAK] Add log spaced adaptive cross-over for high dimensional tightly # constrained problems. class LogAdaptiveCrossover(BaseAdaptiveCrossover): """ Adapted weight crossover ratios, log-spaced. *dim* is the number of dimensions in the problem. *N* is the number of CRs to use per decade. CR is set to [k/dim] where k is log-spaced from 1 to dim. The CRs start equally weighted as [1, ..., 1]/len(CR). *N* should be around 4.5. This gives good low end density, with 1, 2, 3, and 5 parameters changed at a time, and proceeds up to 60% and 100% of parameters each time. Lower values of *N* give too few high density CRs, and higher values give too many low density CRs. """ def __init__(self, dim, N=4.5): # Log spaced CR from 1/dim to dim/dim self._set_CRs(logspace(0, log10(dim), trunc(N*log10(dim)+1))/dim) def distance_per_CR(available_CRs, distances, used): """ Accumulate normalized Euclidean distance for each crossover value Returns the number of times each available CR was used and the total distance for that CR. """ # TODO: could use sparse array trick to evaluate totals by CR # Set distance[k] to coordinate (k, used[k]), then sum by columns # Note: currently setting unused CRs to -1, so this won't work total = array([sum(distances[used == p]) for p in available_CRs]) count = array([
sum(used == p)
numpy.sum
# -*- coding: utf-8 -*- """ computes the MFCCs from the magnitude spectrum (see Slaney) Args: X: spectrogram (dimension FFTLength X Observations) f_s: sample rate of audio data Returns: v_mfcc mel frequency cepstral coefficients """ import numpy as np from ToolMfccFb import ToolMfccFb def FeatureSpectralMfccs(X,f_s, iNumCoeffs = 13): # allocate memory v_mfcc = np.zeros ([iNumCoeffs, X.shape[1]]) # generate filter matrix H = ToolMfccFb(X.shape[0], f_s) T = generateDctMatrix (H.shape[0], iNumCoeffs) for n in range(0,X.shape[1]): # compute the mel spectrum X_Mel = np.log10(np.dot(H, X[:,n] + 1e-20)) # calculate the mfccs v_mfcc[:,n] = np.dot(T, X_Mel) return (v_mfcc) # see function mfcc.m from Slaneys Auditory Toolbox def generateDctMatrix (iNumBands, iNumCepstralCoeffs): T = np.cos(np.outer(np.arange(0,iNumCepstralCoeffs), (2*np.arange(0,iNumBands)+1)) * np.pi/2/iNumBands) T = T /
np.sqrt(iNumBands/2)
numpy.sqrt
# Copyright 2014-2018 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy from pyscf import lib import pyscf.pbc from pyscf import ao2mo, gto from pyscf.pbc import gto as pgto from pyscf.pbc import scf as pscf from pyscf.pbc.df import df, aug_etb, FFTDF #from mpi4pyscf.pbc.df import df pyscf.pbc.DEBUG = False def setUpModule(): global cell, mf0, kmdf, kpts L = 5. n = 11 cell = pgto.Cell() cell.a = numpy.diag([L,L,L]) cell.mesh = numpy.array([n,n,n]) cell.atom = '''He 3. 2. 3. He 1. 1. 1.''' cell.basis = 'ccpvdz' cell.verbose = 0 cell.max_memory = 1000 cell.build(0,0) mf0 = pscf.RHF(cell) mf0.exxdiv = 'vcut_sph' numpy.random.seed(1) kpts =
numpy.random.random((5,3))
numpy.random.random
import copy from pathlib import Path import numpy as np import pytest from argoverse.utils.json_utils import read_json_file from argoverse.utils.se2 import SE2 from argoverse.utils.sim2 import Sim2 TEST_DATA_ROOT = Path(__file__).resolve().parent / "test_data" def test_constructor() -> None: """Sim(2) to perform p_b = bSa * p_a""" bRa = np.eye(2) bta =
np.array([1, 2])
numpy.array
import argparse import random import collections import itertools from collections import deque from operator import itemgetter import os import cv2 import mmcv import numpy as np import torch import json from mmcv.parallel import collate, scatter from mmaction.apis import init_recognizer from mmaction.datasets.pipelines import Compose from mmaction.core import OutputHook from SoccerNet.utils import getListGames from SoccerNet.DataLoader import Frame, FrameCV FONTFACE = cv2.FONT_HERSHEY_COMPLEX_SMALL FONTSCALE = 1 FONTCOLOR = (255, 255, 255) # BGR, white MSGCOLOR = (128, 128, 128) # BGR, gray THICKNESS = 1 LINETYPE = 1 EXCLUED_STEPS = [ 'OpenCVInit', 'OpenCVDecode', 'DecordInit', 'DecordDecode', 'PyAVInit', 'PyAVDecode', 'RawFrameDecode', 'FrameSelector' ] class sliceable_deque(collections.deque): def __getitem__(self, index): if isinstance(index, slice): return type(self)(itertools.islice(self, index.start, index.stop, index.step)) return collections.deque.__getitem__(self, index) def parse_args(): parser = argparse.ArgumentParser( description='MMAction2 predict different labels in a long video demo') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file/url') parser.add_argument( '--device', type=str, default='cuda:0', help='CPU/CUDA device option') parser.add_argument( '--split', type=str, default="val", help='val/test') parser.add_argument( '--bias', type=int, default=1000, help='classify temporal bias') parser.add_argument( '--half', type=int, default=0, help='0: 1st part, 1: second part, 2:third part, 3:forth part') # 4 parts parser.add_argument( '--datapath', type=str, default="data/loveu_wide_val_2s_30fps/", help='loveu val data path') parser.add_argument( '--targetpath', type=str, default="data/valres/", help='target path') parser.add_argument( '--modelname', type=str, default="csn_4cls_2s_30fps", help='pth model name') parser.add_argument( '--fps', type=float, default=30.0, help=('fps')) parser.add_argument( '--stride', type=int, default=8, help='stride') args = parser.parse_args() return args def bmn_proposals(results, num_videos, max_avg_proposals=None, num_res = 1, thres=0.0, ): bmn_res = [] for result in results: #video_id = result['video_name'] num_proposals = 0 cur_video_proposals = [] for proposal in result: t_start, t_end = proposal['segment'] score = proposal['score'] if score < thres: continue cur_video_proposals.append([t_start, t_end, score]) num_proposals += 1 if len(cur_video_proposals)==0: bmn_res.append(np.array([-2021])) continue cur_video_proposals = np.array(cur_video_proposals) ratio = (max_avg_proposals * float(num_videos) / num_proposals) this_video_proposals = cur_video_proposals[:, :2] sort_idx = cur_video_proposals[:, 2].argsort()[::-1] this_video_proposals = this_video_proposals[sort_idx, :].astype(np.float32) if this_video_proposals.ndim != 2: this_video_proposals = np.expand_dims(this_video_proposals, axis=0) # For each video, compute temporal_iou scores among the retrieved proposals total_num_retrieved_proposals = 0 # Sort proposals by score num_retrieved_proposals = np.minimum( int(this_video_proposals.shape[0] * ratio), this_video_proposals.shape[0]) total_num_retrieved_proposals += num_retrieved_proposals this_video_proposals = this_video_proposals[:num_retrieved_proposals, :] #print(this_video_proposals) this_video_gebd_proposals = this_video_proposals.mean(axis=-1) num_res = min(num_res, len(this_video_gebd_proposals)) this_video_gebd_top_proposal = this_video_gebd_proposals[:num_res] bmn_res.append(this_video_gebd_top_proposal) return bmn_res def show_results(model, data, test, cn, args): frame_queue = sliceable_deque(maxlen=args.sample_length) result_queue = deque(maxlen=1) result_path = args.targetpath + test.split(".")[0] + "/" + args.modelname + "_score.npy" # save results with different scores result_bmn_path = args.targetpath + test.split(".")[0] + "/" + args.modelname + "_proposal.npy" result_bmn_path_3 = args.targetpath + test.split(".")[0] + "/" + args.modelname + "_proposal_0.3.npy" result_bmn_path_4 = args.targetpath + test.split(".")[0] + "/" + args.modelname + "_proposal_0.4.npy" result_bmn_path_5 = args.targetpath + test.split(".")[0] + "/" + args.modelname + "_proposal_0.5.npy" result_bmn_path_6 = args.targetpath + test.split(".")[0] + "/" + args.modelname + "_proposal_0.6.npy" result_bmn_path_7 = args.targetpath + test.split(".")[0] + "/" + args.modelname + "_proposal_0.7.npy" result_bmn_path_8 = args.targetpath + test.split(".")[0] + "/" + args.modelname + "_proposal_0.8.npy" result_bmn_path_9 = args.targetpath + test.split(".")[0] + "/" + args.modelname + "_proposal_0.9.npy" result_bmn_path_95 = args.targetpath + test.split(".")[0] + "/" + args.modelname + "_proposal_0.95.npy" videoLoader = FrameCV(args.datapath + '/' + test, FPS=args.fps, transform="resize256", start=None, duration=None) frames = videoLoader.frames[:, :, :, ::-1] print(cn, test, frames.shape) duration = videoLoader.time_second stride = args.stride pad_length = int(args.sample_length/2) frames_head = np.zeros((pad_length, frames.shape[1], frames.shape[2], frames.shape[3]), frames.dtype) frames_tail = np.zeros((pad_length, frames.shape[1], frames.shape[2], frames.shape[3]), frames.dtype) for i in range(pad_length): frames_head[i] = frames[0].copy() frames_tail[i] = frames[-1].copy() frames_padded = np.concatenate((frames_head, frames, frames_tail), 0) score_list = [] bmn_results = [] num_sub_videos = 0 for i in range(int(frames.shape[0]/stride)): num_sub_videos += 1 start_index = i * stride frame_queue = frames_padded[(start_index):(start_index + args.sample_length)][0::data['frame_interval']].copy() ret, scores, output_bmn = inference(model, data, args, frame_queue) score_list.append(scores) bmn_results.append(output_bmn) bmn_res = bmn_proposals(bmn_results, num_videos=1, max_avg_proposals=100, num_res = 10, thres=0.0, ) score_list = np.array(score_list) bmn_res = np.array(bmn_res) bmn_res3 = bmn_proposals(bmn_results, num_videos=1, max_avg_proposals=100, num_res = 10, thres=0.3, ) bmn_res3 = np.array(bmn_res3) bmn_res4 = bmn_proposals(bmn_results, num_videos=1, max_avg_proposals=100, num_res = 10, thres=0.4, ) bmn_res4 = np.array(bmn_res4) bmn_res5 = bmn_proposals(bmn_results, num_videos=1, max_avg_proposals=100, num_res = 10, thres=0.5, ) bmn_res5 = np.array(bmn_res5) bmn_res6 = bmn_proposals(bmn_results, num_videos=1, max_avg_proposals=100, num_res = 10, thres=0.6, ) bmn_res6 = np.array(bmn_res6) bmn_res7 = bmn_proposals(bmn_results, num_videos=1, max_avg_proposals=100, num_res = 10, thres=0.7, ) bmn_res7 = np.array(bmn_res7) bmn_res8 = bmn_proposals(bmn_results, num_videos=1, max_avg_proposals=100, num_res = 10, thres=0.8, ) bmn_res8 = np.array(bmn_res8) bmn_res9 = bmn_proposals(bmn_results, num_videos=1, max_avg_proposals=100, num_res = 10, thres=0.9, ) bmn_res9 = np.array(bmn_res9) bmn_res95 = bmn_proposals(bmn_results, num_videos=1, max_avg_proposals=100, num_res = 10, thres=0.95, ) bmn_res95 = np.array(bmn_res95) score_list = np.array(score_list) bmn_res = np.array(bmn_res) #print(cn, test, frames.shape, score_list.shape) np.save(result_path, score_list) np.save(result_bmn_path, bmn_res) np.save(result_bmn_path_3, bmn_res3) np.save(result_bmn_path_4, bmn_res4) np.save(result_bmn_path_5, bmn_res5)
np.save(result_bmn_path_6, bmn_res6)
numpy.save
import numpy as np import torch import yaml import matplotlib.pyplot as plt from dp_datagen import iter import matplotlib.pyplot as plt from matplotlib import animation from mpl_toolkits.mplot3d import Axes3D from matplotlib.animation import PillowWriter with open("dp_config.yaml", "r") as f: all_configs = yaml.safe_load(f) common_config = all_configs['COMMON'].copy() # Filling in models from model templates for instance in common_config['ALL_MODEL_CONFIGS']: template_name = instance[:instance.rfind('_')] training_points = int(instance[(instance.rfind('_')+1):]) template_config = all_configs[template_name].copy() template_config['num_datadriven'] = training_points template_config['model_name'] = template_name.lower() + '_' + str(training_points) all_configs[template_name + '_' + str(training_points)] = template_config # theta1 = float(input('Enter initial Theta 1: ')) # theta2 = float(input('Enter initial Theta 2: ')) # tsteps = int(input('Enter number of timesteps: ')) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # device = torch.device('cpu') active_data_config_name = 'SIMULATION_80_90' active_model_config_name = 'PIDNN_64000' noise = 0.1 active_data_config = all_configs[active_data_config_name].copy() active_data_config.update(common_config) active_model_config = all_configs[active_model_config_name].copy() active_model_config.update(active_data_config) config = active_model_config theta1 = ((config['TRAIN_THETA_START'] + config['TRAIN_THETA_END'])/2) * np.pi/180 theta2 = ((config['TRAIN_THETA_START'] + config['TRAIN_THETA_END'])/2) * np.pi/180 tsteps = 10000 config['t_range'] = np.arange(start=0.0, stop = config['TIMESTEP']*tsteps, step = config['TIMESTEP']) t = config['t_range'] solved_data = iter(theta1, theta2, t, config['g'], config['m1'], config['m2'], config['l1'], config['l2']) simulator_output = np.hstack([
np.reshape(t,(-1,1))
numpy.reshape
#!/usr/bin/env python """ @file features.py @brief provide functions to compute image features @author ChenglongChen """ import numpy as np from numpy import pi from skimage.io import imread from skimage import measure from skimage import morphology from skimage.feature import greycomatrix, greycoprops import warnings warnings.filterwarnings("ignore") import mahotas as mh from mahotas.features import surf from scipy.stats.mstats import mquantiles, kurtosis, skew def tryDivide(x, y): if y == 0: return 0.0 else: return x / y # find the largest nonzero region def getLargestRegion(props, labelmap, imagethres): regionmaxprop = None for regionprop in props: # check to see if the region is at least 50% nonzero if sum(imagethres[labelmap == regionprop.label])*1.0/regionprop.area < 0.50: continue if regionmaxprop is None: regionmaxprop = regionprop if regionmaxprop.filled_area < regionprop.filled_area: regionmaxprop = regionprop return regionmaxprop def estimateRotationAngle(image_file): image = imread(image_file, as_grey=True) image = image.copy() # Create the thresholded image to eliminate some of the background imagethr = np.where(image >
np.mean(image)
numpy.mean
# import standard plotting and animation import numpy as np import matplotlib.pyplot as plt from matplotlib import gridspec from matplotlib.ticker import FormatStrFormatter import matplotlib.animation as animation from mpl_toolkits.mplot3d import Axes3D from IPython.display import clear_output import matplotlib.ticker as ticker # import standard libraries import math import time import copy from inspect import signature class Visualizer: ''' animators for time series ''' #### animate moving average #### def animate_system(self,x,y,T,savepath,**kwargs): # produce figure fig = plt.figure(figsize = (9,4)) gs = gridspec.GridSpec(1, 3, width_ratios=[1,7,1]) ax = plt.subplot(gs[0]); ax.axis('off') ax1 = plt.subplot(gs[1]); ax2 = plt.subplot(gs[2]); ax2.axis('off') artist = fig # view limits xmin = -3 xmax = len(x) + 3 ymin = np.min(x) ymax = np.max(x) ygap = (ymax - ymin)*0.15 ymin -= ygap ymax += ygap # start animation num_frames = len(y) - T + 1 print ('starting animation rendering...') def animate(k): # clear panels ax1.cla() # print rendering update if np.mod(k+1,25) == 0: print ('rendering animation frame ' + str(k+1) + ' of ' + str(num_frames)) if k == num_frames - 1: print ('animation rendering complete!') time.sleep(1.5) clear_output() # plot x ax1.scatter(np.arange(1,x.size + 1),x,c = 'k',edgecolor = 'w',s = 40,linewidth = 1,zorder = 3); ax1.plot(np.arange(1,x.size + 1),x,alpha = 0.5,c = 'k',zorder = 3); # plot moving average - initial conditions if k == 1: # plot x ax1.scatter(np.arange(1,T + 1), y[:T],c = 'darkorange',edgecolor = 'w',s = 120,linewidth = 1,zorder = 2); ax1.plot(np.arange(1,T + 1), y[:T],alpha = 0.5,c = 'darkorange',zorder = 2); # make vertical visual guides ax1.axvline(x = 1, c='deepskyblue') ax1.axvline(x = T, c='deepskyblue') # plot moving average - everything after and including initial conditions if k > 1: j = k-1 # plot ax1.scatter(np.arange(1,T + j + 1),y[:T + j],c = 'darkorange',edgecolor = 'w',s = 120,linewidth = 1,zorder = 2); ax1.plot(np.arange(1,T + j + 1),y[:T + j],alpha = 0.5,c = 'darkorange',zorder = 2); # make vertical visual guides ax1.axvline(x = j, c='deepskyblue') ax1.axvline(x = j + T - 1, c='deepskyblue') # label axes ax1.set_xlim([xmin,xmax]) ax1.set_ylim([ymin,ymax]) return artist, anim = animation.FuncAnimation(fig, animate ,frames=num_frames, interval=num_frames, blit=True) # produce animation and save fps = 50 if 'fps' in kwargs: fps = kwargs['fps'] anim.save(savepath, fps=fps, extra_args=['-vcodec', 'libx264']) clear_output() #### animate range of moving average calculations #### def animate_system_range(self,x,func,params,savepath,**kwargs): playback = 1 if 'playback' in kwargs: playback = kwargs['playback'] # produce figure fig = plt.figure(figsize = (9,4)) gs = gridspec.GridSpec(1, 3, width_ratios=[1,7,1]) ax = plt.subplot(gs[0]); ax.axis('off') ax1 = plt.subplot(gs[1]); ax2 = plt.subplot(gs[2]); ax2.axis('off') artist = fig # view limits xmin = -3 xmax = len(x) + 3 ymin = np.min(x) ymax = np.max(x) ygap = (ymax - ymin)*0.15 ymin -= ygap ymax += ygap # start animation num_frames = len(params)+1 print ('starting animation rendering...') def animate(k): # clear panels ax1.cla() # print rendering update if np.mod(k+1,25) == 0: print ('rendering animation frame ' + str(k+1) + ' of ' + str(num_frames)) if k == num_frames - 1: print ('animation rendering complete!') time.sleep(1.5) clear_output() # plot x ax1.scatter(np.arange(1,x.size + 1),x,c = 'k',edgecolor = 'w',s = 40,linewidth = 1,zorder = 3); ax1.plot(np.arange(1,x.size + 1),x,alpha = 0.5,c = 'k',zorder = 3); # create y if k == 0: T = params[0] y = func(x,T) ax1.set_title(r'Original data') if k > 0: T = params[k-1] y = func(x,T) ax1.scatter(np.arange(1,y.size + 1),y,c = 'darkorange',edgecolor = 'w',s = 120,linewidth = 1,zorder = 2); ax1.plot(np.arange(1,y.size + 1),y,alpha = 0.5,c = 'darkorange',zorder = 2); ax1.set_title(r'$D = $ ' + str(T)) # label axes ax1.set_xlabel(r'$p$',fontsize = 13) ax1.set_xlim([xmin,xmax]) ax1.set_ylim([ymin,ymax]) return artist, anim = animation.FuncAnimation(fig, animate ,frames=num_frames, interval=num_frames, blit=True) # produce animation and save if 'fps' in kwargs: fps = kwargs['fps'] anim.save(savepath, fps=1, extra_args=['-vcodec', 'libx264']) clear_output() #### animate vector system with heatmap #### def animate_vector_system(self,x,D,model,func,savepath,**kwargs): x = np.array(x) h,old_bins = func([0]) bins = [] for i in range(len(old_bins)-1): b1 = old_bins[i] b2 = old_bins[i+1] n = (b1 + b2)/2 n = np.round(n,2) bins.append(n) y = model(x,D,func) num_windows = len(y) - 1 # produce figure fig = plt.figure(figsize = (11,10)) gs = gridspec.GridSpec(2, 3, width_ratios=[1,7,1],height_ratios=[0.75,1]) ax1 = plt.subplot(gs[0]); ax1.axis('off') ax2 = plt.subplot(gs[1]); ax3 = plt.subplot(gs[2]); ax3.axis('off') ax4 = plt.subplot(gs[3]); ax4.axis('off') ax5 = plt.subplot(gs[4]); ax6 = plt.subplot(gs[5]); ax6.axis('off') artist = fig # view limits xmin = -3 xmax = len(x) + 3 ymin = np.min(x) ymax = np.max(x) ygap = (ymax - ymin)*0.15 ymin -= ygap ymax += ygap # make colormap # a,b = np.meshgrid(np.arange(num_windows+1),np.arange(len(bins)-1)) # s = ax1.pcolormesh(a, b, np.array(y).T,cmap = 'hot',vmin = 0,vmax = 1) #,edgecolor = 'k') # hot, gist_heat, cubehelix # ax1.cla(); ax1.axis('off'); # fig.colorbar(s, ax=ax5) # start animation num_frames = len(x) - D + 2 print ('starting animation rendering...') def animate(k): # clear panels ax2.cla() ax5.cla() # print rendering update if np.mod(k+1,25) == 0: print ('rendering animation frame ' + str(k+1) + ' of ' + str(num_frames)) if k == num_frames - 1: print ('animation rendering complete!') time.sleep(1.5) clear_output() # plot x ax2.scatter(np.arange(1,x.size + 1),x,c = 'k',edgecolor = 'w',s = 80,linewidth = 1,zorder = 3); ax2.plot(np.arange(1,x.size + 1),x,alpha = 0.5,c = 'k',zorder = 3); # plot moving average - initial conditions if k == 0: # plot x ax2.scatter(np.arange(1,D + 1), x[:D],c = 'darkorange',edgecolor = 'w',s = 200,linewidth = 1,zorder = 2); ax2.plot(np.arange(1,D + 1), x[:D],alpha = 0.5,c = 'darkorange',zorder = 2); # make vertical visual guides ax2.axvline(x = 1, c='deepskyblue') ax2.axvline(x = D, c='deepskyblue') # plot histogram self.plot_heatmap(ax5,y[:2],bins,num_windows) # plot moving average - everything after and including initial conditions if k > 0: j = k # plot ax2.scatter(np.arange(j,D + j),x[j-1:D + j - 1],c = 'darkorange',edgecolor = 'w',s = 200,linewidth = 1,zorder = 2); ax2.plot(np.arange(j,D + j),x[j-1:D + j - 1],alpha = 0.5,c = 'darkorange',zorder = 2); # make vertical visual guides ax2.axvline(x = j, c='deepskyblue') ax2.axvline(x = j + D - 1, c='deepskyblue') # plot histogram self.plot_heatmap(ax5,y[:j+1],bins,num_windows) # label axes ax2.set_xlim([xmin,xmax]) ax2.set_ylim([ymin,ymax]) return artist, anim = animation.FuncAnimation(fig, animate ,frames=num_frames, interval=num_frames, blit=True) # produce animation and save fps = 50 if 'fps' in kwargs: fps = kwargs['fps'] anim.save(savepath, fps=fps, extra_args=['-vcodec', 'libx264']) clear_output() def plot_heatmap(self,ax,y,bins,num_windows): y=np.array(y).T ### plot ### num_chars,num_samples = y.shape num_chars += 1 a,b = np.meshgrid(np.arange(num_samples),np.arange(num_chars)) ### y-axis Customize minor tick labels ### # make custom labels num_bins = len(bins)+1 y_ticker_range = np.arange(0.5,num_bins,10).tolist() new_bins = [bins[v] for v in range(0,len(bins),10)] y_char_range = [str(s) for s in new_bins] # assign major or minor ticklabels? - chosen major by default ax.yaxis.set_major_locator(ticker.FixedLocator(y_ticker_range)) ax.yaxis.set_major_formatter(ticker.FixedFormatter(y_char_range)) ax.xaxis.set_ticks_position('bottom') # the rest is the same ax.set_xticks([],[]) ax.set_yticks([],[]) ax.set_ylabel('values',rotation = 90,fontsize=15) ax.set_xlabel('window',fontsize=15) # ax.set_title(title,fontsize = 15) cmap = 'hot_r' #cmap = 'RdPu' s = ax.pcolormesh(a, b, 4*y,cmap = cmap,vmin = 0,vmax = 1) #,edgecolor = 'k') # hot, gist_heat, cubehelix ax.set_ylim([-1,len(bins)]) ax.set_xlim([0,num_windows]) # for i in range(len(bins)): # ax.hlines(y=i, xmin=0, xmax=num_windows, linewidth=1, color='k',alpha = 0.75) #### animate vector system with heatmap #### def animate_vector_histogram(self,x,D,model,func,savepath,**kwargs): x = np.array(x) h,old_bins = func([0]) bins = [] for i in range(len(old_bins)-1): b1 = old_bins[i] b2 = old_bins[i+1] n = (b1 + b2)/2 n = np.round(n,2) bins.append(n) y = model(x,D,func) num_windows = len(y) - 1 # produce figure fig = plt.figure(figsize = (11,10)) gs = gridspec.GridSpec(3, 3, width_ratios=[1,7,1],height_ratios=[1,1,1.5]) ax1 = plt.subplot(gs[0]); ax1.axis('off') ax2 = plt.subplot(gs[1]); ax3 = plt.subplot(gs[2]); ax3.axis('off') axa = plt.subplot(gs[3]); axa.axis('off') axb = plt.subplot(gs[7]); axc = plt.subplot(gs[5]); axc.axis('off') ax4 = plt.subplot(gs[6]); ax4.axis('off') ax5 = plt.subplot(gs[4]); ax6 = plt.subplot(gs[8]); ax6.axis('off') artist = fig # view limits xmin = -3 xmax = len(x) + 3 ymin = np.min(x) ymax = np.max(x) ygap = (ymax - ymin)*0.15 ymin -= ygap ymax += ygap # start animation num_frames = len(x) - D + 2 print ('starting animation rendering...') def animate(k): # clear panels ax2.cla() ax5.cla() axb.cla() # print rendering update if np.mod(k+1,25) == 0: print ('rendering animation frame ' + str(k+1) + ' of ' + str(num_frames)) if k == num_frames - 1: print ('animation rendering complete!') time.sleep(1.5) clear_output() # plot x ax2.scatter(np.arange(1,x.size + 1),x,c = 'k',edgecolor = 'w',s = 80,linewidth = 1,zorder = 3); ax2.plot(np.arange(1,x.size + 1),x,alpha = 0.5,c = 'k',zorder = 3); # plot moving average - initial conditions if k == 0: # plot x ax2.scatter(np.arange(1,D + 1), x[:D],c = 'darkorange',edgecolor = 'w',s = 200,linewidth = 1,zorder = 2); ax2.plot(np.arange(1,D + 1), x[:D],alpha = 0.5,c = 'darkorange',zorder = 2); # make vertical visual guides ax2.axvline(x = 1, c='deepskyblue') ax2.axvline(x = D, c='deepskyblue') # plot histogram self.plot_histogram(ax5,y[0],bins) self.plot_heatmap(axb,y[:2],bins,num_windows) # plot moving average - everything after and including initial conditions if k > 0: j = k # plot ax2.scatter(np.arange(j,D + j),x[j-1:D + j - 1],c = 'darkorange',edgecolor = 'w',s = 200,linewidth = 1,zorder = 2); ax2.plot(np.arange(j,D + j),x[j-1:D + j - 1],alpha = 0.5,c = 'darkorange',zorder = 2); # make vertical visual guides ax2.axvline(x = j, c='deepskyblue') ax2.axvline(x = j + D - 1, c='deepskyblue') # plot histogram self.plot_histogram(ax5,y[j],bins) # plot histogram self.plot_heatmap(axb,y[:j+1],bins,num_windows) # label axes ax2.set_xlim([xmin,xmax]) ax2.set_ylim([ymin,ymax]) ax2.set_xlabel(r'$p$',fontsize=14) ax2.set_ylabel(r'$x_p$',rotation=0,fontsize=14) return artist, anim = animation.FuncAnimation(fig, animate ,frames=num_frames, interval=num_frames, blit=True) # produce animation and save fps = 50 if 'fps' in kwargs: fps = kwargs['fps'] anim.save(savepath, fps=fps, extra_args=['-vcodec', 'libx264']) clear_output() def plot_histogram(self,ax,h,bins,**kwargs): # plot hist ax.bar(bins,h,align='center',width=0.1,edgecolor='k',color='magenta',linewidth=1.5) # label axes ax.set_xlabel(r'$values$',fontsize = 13) ax.set_ylabel(r'count',fontsize = 13,rotation = 90,labelpad = 15) ymin = 0 xmin = min(bins) - 0.1 xmax = max(bins) + 0.1 ymax = 0.5 ax.set_xlim([xmin,xmax]) ax.set_ylim([ymin,ymax]) #### animate spectrogram construction #### def animate_dct_spectrogram(self,x,D,model,func,savepath,**kwargs): # produce heatmap y = model(x,D,func) num_windows = y.shape[1]-1 # produce figure fig = plt.figure(figsize = (12,8)) gs = gridspec.GridSpec(2, 3, width_ratios=[1,7,1],height_ratios=[1,1]) ax1 = plt.subplot(gs[0]); ax1.axis('off') ax2 = plt.subplot(gs[1]); ax3 = plt.subplot(gs[2]); ax3.axis('off') ax4 = plt.subplot(gs[3]); ax4.axis('off') ax5 = plt.subplot(gs[4]); ax5.set_yticks([],[]) ax5.axis('off') ax6 = plt.subplot(gs[5]); ax6.axis('off') artist = fig # view limits for top panel xmin = -3 xmax = len(x) + 3 ymin = np.min(x) ymax = np.max(x) ygap = (ymax - ymin)*0.15 ymin -= ygap ymax += ygap vmin = np.min(np.log(1 + y).flatten()) vmax = np.max(np.log(1 + y).flatten()) # start animation num_frames = len(x) - D + 2 print ('starting animation rendering...') def animate(k): # clear panels ax2.cla() ax5.cla() # print rendering update if np.mod(k+1,25) == 0: print ('rendering animation frame ' + str(k+1) + ' of ' + str(num_frames)) if k == num_frames - 1: print ('animation rendering complete!') time.sleep(1.5) clear_output() # plot signal ax2.plot(np.arange(1,x.size + 1),x,alpha = 0.5,c = 'k',zorder = 3); # plot moving average - initial conditions if k == 0: # plot x ax2.plot(np.arange(1,D + 1), x[:D],alpha = 0.5,c = 'magenta',zorder = 2,linewidth=8); # plot spectrogram ax5.imshow(np.log(1 + y[:,:1]),aspect='auto',cmap='jet',origin='lower',vmin = vmin, vmax = vmax) # plot moving average - everything after and including initial conditions if k > 0: j = k # plot ax2.plot(
np.arange(j,D + j)
numpy.arange
# coding=utf-8 # Copyright 2020, The RAG Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil import tempfile import unittest from unittest.mock import patch import numpy as np from transformers import BartTokenizer, T5Tokenizer from transformers.file_utils import cached_property, is_datasets_available, is_faiss_available, is_torch_available from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.tokenization_dpr import DPRQuestionEncoderTokenizer from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, require_torch_non_multi_gpu, slow, torch_device, ) from .test_modeling_bart import BartModelTester from .test_modeling_dpr import DPRModelTester from .test_modeling_t5 import T5ModelTester TOLERANCE = 1e-3 T5_SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model") if is_torch_available() and is_datasets_available() and is_faiss_available(): import torch from datasets import Dataset import faiss from transformers import ( AutoConfig, AutoModel, AutoModelForSeq2SeqLM, RagConfig, RagModel, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration, RagTokenizer, ) from transformers.modeling_outputs import BaseModelOutput def _assert_tensors_equal(a, b, atol=1e-12, prefix=""): """If tensors not close, or a and b arent both tensors, raise a nice Assertion error.""" if a is None and b is None: return True try: if torch.allclose(a, b, atol=atol): return True raise except Exception: msg = "{} != {}".format(a, b) if prefix: msg = prefix + ": " + msg raise AssertionError(msg) def require_retrieval(test_case): """ Decorator marking a test that requires a set of dependencies necessary for pefrorm retrieval with :class:`~transformers.RagRetriever`. These tests are skipped when respective libraries are not installed. """ if not (is_torch_available() and is_datasets_available() and is_faiss_available()): test_case = unittest.skip("test requires PyTorch, datasets and faiss")(test_case) return test_case @require_torch @require_retrieval @require_sentencepiece class RagTestMixin: all_model_classes = ( (RagModel, RagTokenForGeneration, RagSequenceForGeneration) if is_torch_available() and is_datasets_available() and is_faiss_available() else () ) retrieval_vector_size = 32 n_docs = 3 max_combined_length = 16 def setUp(self): self.tmpdirname = tempfile.mkdtemp() # DPR tok vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] dpr_tokenizer_path = os.path.join(self.tmpdirname, "dpr_tokenizer") os.makedirs(dpr_tokenizer_path, exist_ok=True) self.vocab_file = os.path.join(dpr_tokenizer_path, DPR_VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) # BART tok vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] self.special_tokens_map = {"unk_token": "<unk>"} bart_tokenizer_path = os.path.join(self.tmpdirname, "bart_tokenizer") os.makedirs(bart_tokenizer_path, exist_ok=True) self.vocab_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) t5_tokenizer = T5Tokenizer(T5_SAMPLE_VOCAB) t5_tokenizer_path = os.path.join(self.tmpdirname, "t5_tokenizer") t5_tokenizer.save_pretrained(t5_tokenizer_path) @cached_property def dpr_tokenizer(self) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer")) @cached_property def bart_tokenizer(self) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, "bart_tokenizer")) @cached_property def t5_tokenizer(self) -> BartTokenizer: return T5Tokenizer.from_pretrained(os.path.join(self.tmpdirname, "t5_tokenizer")) def tearDown(self): shutil.rmtree(self.tmpdirname) def get_retriever(self, config): dataset = Dataset.from_dict( { "id": ["0", "1", "3"], "text": ["foo", "bar", "qux"], "title": ["Foo", "Bar", "Qux"], "embeddings": [
np.ones(self.retrieval_vector_size)
numpy.ones
import unittest import numpy as np from dscribe.descriptors import SOAP from dscribe.kernels import REMatchKernel from dscribe.kernels import AverageKernel from ase.build import molecule class AverageKernelTests(unittest.TestCase): def test_difference(self): """Tests that the similarity is correct.""" # Create SOAP features for a system desc = SOAP( species=[1, 6, 7, 8], rcut=5.0, nmax=2, lmax=2, sigma=0.2, periodic=False, crossover=True, sparse=False, ) # Calculate that identical molecules are identical. a = molecule("H2O") a_features = desc.create(a) kernel = AverageKernel(metric="linear") K = kernel.create([a_features, a_features]) self.assertTrue(np.all(np.abs(K - 1) < 1e-3)) # Check that completely different molecules are completely different a = molecule("N2") b = molecule("H2O") a_features = desc.create(a) b_features = desc.create(b) K = kernel.create([a_features, b_features]) self.assertTrue(np.all(np.abs(K - np.eye(2)) < 1e-3)) # Check that somewhat similar molecules are somewhat similar a = molecule("H2O") b = molecule("H2O2") a_features = desc.create(a) b_features = desc.create(b) K = kernel.create([a_features, b_features]) self.assertTrue(K[0, 1] > 0.9) def test_metrics(self): """Tests that different metrics as defined by scikit-learn can be used.""" # Create SOAP features for a system desc = SOAP( species=[1, 8], rcut=5.0, nmax=2, lmax=2, sigma=0.2, periodic=False, crossover=True, sparse=False, ) a = molecule("H2O") a_features = desc.create(a) # Linear dot-product kernel kernel = AverageKernel(metric="linear") K = kernel.create([a_features, a_features]) # Gaussian kernel kernel = AverageKernel(metric="rbf", gamma=1) K = kernel.create([a_features, a_features]) # Laplacian kernel kernel = AverageKernel(metric="laplacian", gamma=1) K = kernel.create([a_features, a_features]) def test_xy(self): """Tests that the kernel can be also calculated between two different sets, which is necessary for making predictions with kernel-based methods. """ # Create SOAP features for a system desc = SOAP( species=[1, 8], rcut=5.0, nmax=2, lmax=2, sigma=0.2, periodic=False, crossover=True, sparse=False, ) a = molecule("H2O") b = molecule("O2") c = molecule("H2O2") a_feat = desc.create(a) b_feat = desc.create(b) c_feat = desc.create(c) # Linear dot-product kernel kernel = AverageKernel(metric="linear") K = kernel.create([a_feat, b_feat], [c_feat]) self.assertEqual(K.shape, (2, 1)) def test_sparse(self): """Tests that sparse features may also be used to construct the kernels.""" # Create SOAP features for a system desc = SOAP( species=[1, 8], rcut=5.0, nmax=2, lmax=2, sigma=0.2, periodic=False, crossover=True, sparse=True, ) a = molecule("H2O") a_feat = desc.create(a) kernel = AverageKernel(metric="linear") K = kernel.create([a_feat]) class REMatchKernelTests(unittest.TestCase): def test_difference(self): """Tests that the similarity is correct.""" # Create SOAP features for a system desc = SOAP( species=[1, 6, 7, 8], rcut=5.0, nmax=2, lmax=2, sigma=0.2, periodic=False, crossover=True, sparse=False, ) # Calculate that identical molecules are identical. a = molecule("H2O") a_features = desc.create(a) kernel = REMatchKernel(metric="linear", alpha=1, threshold=1e-6) K = kernel.create([a_features, a_features]) self.assertTrue(np.all(np.abs(K - 1) < 1e-3)) # Check that completely different molecules are completely different a = molecule("N2") b = molecule("H2O") a_features = desc.create(a) b_features = desc.create(b) K = kernel.create([a_features, b_features]) self.assertTrue(np.all(np.abs(K -
np.eye(2)
numpy.eye
""" <NAME> - November 2020 This program creates baryonic mass-selected group catalogs for ECO/RESOLVE-G3 using the new algorithm, described in the readme markdown. The outline of this code is: (1) Read in observational data from RESOLVE-B and ECO (the latter includes RESOLVE-A). (2) Prepare arrays of input parameters and for storing results. (3) Perform FoF only for giants in ECO, using an adaptive linking strategy. (a) Get the adaptive links for every ECO galaxy. (b) Fit those adaptive links for use in RESOLVE-B. (c) Perform giant-only FoF for ECO (d) Perform giant-only FoF for RESOLVE-B, by interpolating the fit to obtain separations for RESOLVE-B. (4) From giant-only groups, fit model for individual giant projected radii and peculiar velocites, to use for association. (5) Associate dwarf galaxies to giant-only FoF groups for ECO and RESOLVE-B (note different selection floors for dwarfs). (6) Based on giant+dwarf groups, calibrate boundaries (as function of giant+dwarf integrated baryonic mass) for iterative combination (7) Iterative combination on remaining ungrouped dwarf galaxies (8) halo mass assignment (9) Finalize arrays + output """ import virtools as vz import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import interp1d, UnivariateSpline from scipy.optimize import curve_fit from center_binned_stats import center_binned_stats import foftools as fof import iterativecombination as ic from smoothedbootstrap import smoothedbootstrap as sbs import sys from lss_dens import lss_dens_by_galaxy def giantmodel(x, a, b): return np.abs(a)*np.log(np.abs(b)*x+1) def exp(x, a, b, c): return np.abs(a)*np.exp(1*np.abs(b)*x + c) def sepmodel(x, a, b, c, d, e): #return np.abs(a)*np.exp(-1*np.abs(b)*x + c)+d #return a*(x**3)+b*(x**2)+c*x+d return a*(x**4)+b*(x**3)+c*(x**2)+(d*x)+e def sigmarange(x): q84, q16 = np.percentile(x, [84 ,16]) return (q84-q16)/2 if __name__=='__main__': #################################### # Step 1: Read in obs data #################################### ecodata = pd.read_csv("ECOdata_022521.csv") resolvedata = pd.read_csv("RESOLVEdata_022521.csv") resolvebdata = resolvedata[resolvedata.f_b==1] #################################### # Step 2: Prepare arrays #################################### ecosz = len(ecodata) econame = np.array(ecodata.name) ecoresname = np.array(ecodata.resname) ecoradeg = np.array(ecodata.radeg) ecodedeg = np.array(ecodata.dedeg) ecocz = np.array(ecodata.cz) ecologmstar = np.array(ecodata.logmstar) ecologmgas = np.array(ecodata.logmgas) ecologmbary = np.log10(10.**ecologmstar+10.**ecologmgas) ecourcolor = np.array(ecodata.modelu_rcorr) ecog3grp = np.full(ecosz, -99.) # id number of g3 group ecog3grpn =
np.full(ecosz, -99.)
numpy.full
"""UnbalancedFederatedDataset module.""" from abc import abstractmethod from typing import List import numpy as np from tqdm import trange from openfl.utilities.data_splitters.data_splitter import DataSplitter def get_label_count(labels, label): """Count samples with label `label` in `labels` array.""" return len(np.nonzero(labels == label)[0]) def one_hot(labels, classes): """Apply One-Hot encoding to labels.""" return np.eye(classes)[labels] class NumPyDataSplitter(DataSplitter): """Base class for splitting numpy arrays of data.""" @abstractmethod def split(self, data: np.ndarray, num_collaborators: int) -> List[List[int]]: """Split the data.""" raise NotImplementedError class EqualNumPyDataSplitter(NumPyDataSplitter): """Splits the data evenly.""" def __init__(self, shuffle=True): """Initialize. Args: shuffle(bool): Flag determining whether to shuffle the dataset before splitting. """ self.shuffle = shuffle def split(self, data, num_collaborators): """Split the data.""" idx = range(len(data)) if self.shuffle: idx = np.random.permutation(idx) slices = np.array_split(idx, num_collaborators) return slices class RandomNumPyDataSplitter(NumPyDataSplitter): """Splits the data randomly.""" def __init__(self, shuffle=True): """Initialize. Args: shuffle(bool): Flag determining whether to shuffle the dataset before splitting. """ self.shuffle = shuffle def split(self, data, num_collaborators): """Split the data.""" idx = range(len(data)) if self.shuffle: idx = np.random.permutation(idx) random_idx = np.sort(np.random.choice(len(data), num_collaborators - 1, replace=False)) return np.split(idx, random_idx) class LogNormalNumPyDataSplitter(NumPyDataSplitter): """Unbalanced (LogNormal) dataset split.""" def __init__(self, mu, sigma, num_classes, classes_per_col, min_samples_per_class): """Initialize. Args: mu(float): Distribution hyperparameter. sigma(float): Distribution hyperparameter. classes_per_col(int): Number of classes assigned to each collaborator. min_samples_per_class(int): Minimum number of collaborator samples of each class. """ self.mu = mu self.sigma = sigma self.num_classes = num_classes self.classes_per_col = classes_per_col self.min_samples_per_class = min_samples_per_class def split(self, data, num_collaborators): """Split the data.""" idx = [[] for _ in range(num_collaborators)] samples_per_col = self.classes_per_col * self.min_samples_per_class for col in range(num_collaborators): for c in range(self.classes_per_col): label = (col + c) % self.num_classes label_idx = np.nonzero(data == label)[0] slice_start = col // self.num_classes * samples_per_col slice_start += self.min_samples_per_class * c slice_end = slice_start + self.min_samples_per_class print(f'Assigning {slice_start}:{slice_end} of {label} class to {col} col...') idx[col] += list(label_idx[slice_start:slice_end]) assert all([len(i) == samples_per_col for i in idx]), f''' All collaborators should have {samples_per_col} elements but distribution is {[len(i) for i in idx]}''' props_shape = (self.num_classes, num_collaborators // 10, self.classes_per_col) props = np.random.lognormal(self.mu, self.sigma, props_shape) num_samples_per_class = [[[get_label_count(data, label) - self.min_samples_per_class]] for label in range(self.num_classes)] num_samples_per_class = np.array(num_samples_per_class) props = num_samples_per_class * props / np.sum(props, (1, 2), keepdims=True) for col in trange(num_collaborators): for j in range(self.classes_per_col): label = (col + j) % self.num_classes num_samples = int(props[label, col // 10, j]) print(f'Trying to append {num_samples} of {label} class to {col} col...') slice_start = np.count_nonzero(data[np.hstack(idx)] == label) slice_end = slice_start + num_samples if slice_end < get_label_count(data, label): label_subset = np.nonzero(data == (col + j) % self.num_classes)[0] idx_to_append = label_subset[slice_start:slice_end] print(f'Appending {idx_to_append} of {label} class to {col} col...') idx[col] =
np.append(idx[col], idx_to_append)
numpy.append
import numpy as np from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.pipeline import FeatureUnion from skits.feature_extraction import AutoregressiveTransformer, SeasonalTransformer from skits.pipeline import ForecasterPipeline, ClassifierPipeline from skits.preprocessing import ( ReversibleImputer, DifferenceTransformer, HorizonTransformer, ) SEED = 666 # \m/ class TestPipelines: steps = [ ("pre_differencer", DifferenceTransformer(period=1)), ("pre_imputer_1", ReversibleImputer()), ( "features", FeatureUnion( [ ("ar_transformer", AutoregressiveTransformer(num_lags=3)), ("seasonal_transformer", SeasonalTransformer(seasonal_period=4)), ] ), ), ("post_lag_imputer_2", ReversibleImputer()), ] dt = DifferenceTransformer(period=1) ri1 = ReversibleImputer() fe = FeatureUnion( [ ("ar_transformer", AutoregressiveTransformer(num_lags=3)), ("seasonal_transformer", SeasonalTransformer(seasonal_period=4)), ] ) ri2 = ReversibleImputer() def test_predict(self): # Let's just see if it works # TODO: Make this a real test np.random.seed(SEED) l = np.linspace(0, 1, 100) y = np.sin(2 * np.pi * 5 * l) + np.random.normal(0, 0.1, size=100) # Ignore the DifferenceTransformer. It's actually bad. steps = list(self.steps[1:]) steps.append(("regressor", LinearRegression(fit_intercept=False))) pipeline = ForecasterPipeline(steps) pipeline.fit(y[:, np.newaxis], y) y_pred = pipeline.predict(y[:, np.newaxis], to_scale=True, refit=True) assert np.mean((y_pred - y.squeeze()) ** 2) < 0.05 def test_forecast(self): # Let's just see if it works # TODO: Make this a real test l =
np.linspace(0, 1, 100)
numpy.linspace
import numpy as np import common as f import os.path class GetNetworksamples: def initialize(self, nPicos, picoProbability, repetitions, QoSthres, load=1): ISD = 500 VISD = np.sqrt(3) * ISD self.apothem = np.sqrt(3)/6 * ISD self.maxUEperSector = 2000 self.nInterferingMacros = 4 self.macroPos = np.array([[0, VISD/2], [ISD/2, 0], [ISD/2, VISD], [ISD, VISD/2]]) self.sectorCenter = self.macroPos[0] + np.array([ISD/3, 0]) dataDir = 'netdata/' if load == 0 or (not os.path.isfile(dataDir+str(nPicos))): picoPos = f.picoCellGeneration(self.apothem, nPicos, self.sectorCenter, self.macroPos) self.picoPos = picoPos file = open(dataDir+str(nPicos), "wb") np.save(file, picoPos) else: self.picoPos = np.load(dataDir+str(nPicos)) self.nPicos = nPicos self.probPico_0 = picoProbability self.fileLenghtBits = 8000 #Pico Values TR 36.887 self.macroPower = 10**((43 - 30)/10) # 43 dBm --> 13 dBW --> 20 W self.picoPower = 6.3 # 6.3 W self.nSubframes= 8 self.crsProportion = .1 self.subframeDuration = 1e-3 self.nUsedSubframes = 0 self.framesPerMin = 100 self.minPerHour = 60 self.hourPerDay = 24 self.lastPicoControl = np.ones(self.nPicos) F = 10**0.5 # noise figure = 5 dB T_O = 290 K_B = 1.3806504e-23 BW = 200000 N_O = F*T_O*K_B self.thermalNoise = N_O*BW # thermal noise at the receiver self.W = 10e6 # Channel bandwidth (10 MHz) self.repetitions = repetitions self.QoSthres = QoSthres def getSamples(self, point): consumptionSamples = np.zeros(self.repetitions) per5Samples = np.zeros(self.repetitions) meanThrSamples = np.zeros(self.repetitions) maxCellUsage = np.zeros(self.repetitions) percentQoS = np.zeros(self.repetitions) self.meanPicoUsage = np.zeros(point[1]) self.meanMacroUsage = 0 sortedActivationIndex = f.picoSelection(self) # print(point) print('o', end='', flush=True) for r in range(self.repetitions): traffic = point[0] nActivePicos = point[1] self.absRatio = point[2] self.creBias = point[3] self.nActivePicos = nActivePicos picoControl = np.zeros(self.nPicos) picoControl[sortedActivationIndex[:self.nActivePicos]] = 1 self.activePicosPos = self.picoPos[picoControl == 1, :] if sum(picoControl) == 0: self.probPico = 0 else: self.probPico = self.probPico_0 self.thrSamples = [] self.cellUsage = [[] for _ in range(self.nActivePicos+1)] self.meanConsumptionPerCell = np.zeros(self.nPicos+1) self.totalMeanConsumption = 0 self.UEpos = np.ones((self.maxUEperSector, 2)) * -1 self.UEdata = np.ones(self.maxUEperSector) self.UEposPico = [
np.ones((self.maxUEperSector, 2))
numpy.ones
import numpy as np import random as rn def calculate_crowding(scores): # Crowding is based on chrmosome scores (not chromosome binary values) # All scores are normalised between low and high # For any one score, all solutions are sorted in order low to high # Crowding for chromsome x for that score is the difference between th enext highest and next lowest score # Total crowding value sums all crowding for all scores population_size=len(scores[:,0]) number_of_scores=len(scores[0,:]) # create crowding matrix of population (row) and score (column) crowding_matrix=np.zeros((population_size,number_of_scores)) # normalise scores normed_scores = (scores-scores.min(0))/scores.ptp(0) # numpy ptp is range (max-min) # Calculate crowding for col in range(number_of_scores): # calculate crowding distance for each score in turn crowding=np.zeros(population_size) # One dimensional array crowding[0]=1 # end points have maximum crowding crowding[population_size-1]=1 # end points have maximum crowding sorted_scores=np.sort(normed_scores[:,col]) # sort scores sorted_scores_index=np.argsort(normed_scores[:,col]) # index of sorted scores crowding[1:population_size-1]=sorted_scores[2:population_size]-sorted_scores[0:population_size-2] # crowding distance re_sort_order=np.argsort(sorted_scores_index) # re-sort to original order step 1 sorted_crowding=crowding[re_sort_order] # re-sort to orginal order step 2 crowding_matrix[:,col]=sorted_crowding # record crowding distances crowding_distances=np.sum(crowding_matrix,axis=1) # Sum croding distances of all scores return crowding_distances def crowding_selection(population,scores,number_to_select): # This function selects a number of solutions based on tournament of crowding distances # Two members of the population ar epicked at random # The one with the higher croding dostance is always picked crowding_distances=calculate_crowding(scores) # crowding distances for each member of the population picked_population=np.zeros((number_to_select,len(population[0,:]))) # array of picked solutions (actual solution not ID) picked_scores=np.zeros((number_to_select,len(scores[0,:]))) # array of scores for picked solutions for i in range(number_to_select): population_size=len(population[:,0]) fighter1ID=rn.randint(0,population_size-1) # 1st random ID fighter2ID=rn.randint(0,population_size-1) # 2nd random ID if crowding_distances[fighter1ID]>=crowding_distances[fighter2ID]: # 1st solution picked picked_population[i,:]=population[fighter1ID,:] # add solution to picked solutions array picked_scores[i,:]=scores[fighter1ID,:] # add score to picked solutions array # remove selected solution from available solutions population=np.delete(population,(fighter1ID), axis=0) # remove picked solution - cannot be chosen again scores=np.delete(scores,(fighter1ID), axis=0) # remove picked score (as line above) crowding_distances=np.delete(crowding_distances,(fighter1ID), axis=0) # remove crowdong score (as line above) else: # solution 2 is better. Code as above for 1st solution winning picked_population[i,:]=population[fighter2ID,:] picked_scores[i,:]=scores[fighter2ID,:] population=np.delete(population,(fighter2ID), axis=0) scores=np.delete(scores,(fighter2ID), axis=0) crowding_distances=np.delete(crowding_distances,(fighter2ID), axis=0) return (picked_population,picked_scores) def generate_random_population(rows,cols): population=np.zeros((rows,cols)) # create array of zeros for i in range(rows): x=rn.randint(1,cols) # Number of 1s to add population[i,0:x]=1 # Add requires 1s np.random.shuffle(population[i]) # Shuffle the 1s randomly return population def pareto(scores): # In this method the array 'scores' is passed to the function. # Scores have been normalised so that higher values dominate lower values. # The function returns a Boolean array identifying which rows of the array 'scores' are non-dominated (the Pareto front) # Method based on assuming everything starts on Pareto front and then records dominated points pop_size=len(scores[:,0]) pareto_front=np.ones(pop_size,dtype=bool) for i in range(pop_size): for j in range(pop_size): if all (scores[j]>=scores[i]) and any (scores[j]>scores[i]): # j dominates i pareto_front[i]=0 break return pareto_front def normalise_score(score_matrix,norm_matrix): # normalise 'score matrix' with reference to 'norm matrix' which gives scores that produce zero or one norm_score=np.zeros(np.shape(score_matrix)) # create normlaises score matrix with same dimensions as original scores number_of_scores=len(score_matrix[0,:]) # number of different scores for col in range(number_of_scores): # normaise for each score in turn score_zero=norm_matrix[col,0] score_one=norm_matrix[col,1] score_range=score_one-score_zero norm_score[:,col]=(score_matrix[:,col]-score_zero)/score_range return norm_score def score(population,TARGET_ADMISSIONS,TRAVEL_MATRIX,NODE_ADMISSIONS,TOTAL_ADMISSIONS,pareto_include,CALC_ALL,nscore_parameters): #Only calculate the score that is needed by the pareto front, as determined by the array: pareto_include #Unless CALC_ALL=True (set for the last generation) as then print out all the parameter values CALC_ALL=True # MA reporting all # Score_matrix: # 0: Number of hospitals # 1: Average distance # 2: Maximum distance # 3: Maximum admissions to any one hopsital # 4: Minimum admissions to any one hopsital # 5: Max/Min Admissions ratio # 6: Proportion patients within target distance 1 # 7: Proportion patients within target distance 2 # 8: Proportion patients within target distance 3 # 9: Proportion patients attending unit with target admission numbers # 10: Proportion of patients meeting distance 1 (~30 min) and admissions target # 11: Proportion of patients meeting distance 2 (~45 min) and admissions target # 12: Proportion of patients meeting distance 3 (~60 min) and admissions target # 13: Clinical benefit, additional benefit per 100 treatable patients TARGET_DISTANCE_1=30 # straight line km, equivalent to 30 min TARGET_DISTANCE_2=45 # straight line km, equivalent to 45 min TARGET_DISTANCE_3=60 # straight line km, equivalent to 60 min pop_size=len(population[:,0]) # Count number of solutions to evaluate score_matrix=np.zeros((pop_size,nscore_parameters)) # Create an empty score matrix hospital_admissions_matrix=np.zeros((pop_size,len(TRAVEL_MATRIX[0,:])))#store teh hospital admissions, col = hospital, row = population for i in range(pop_size): # Loop through population of solutions node_results=np.zeros((len(NODE_ADMISSIONS),10)) # Node results stores results by patient node. These are used in the calculation of results # Node result smay be of use to export at later date (e.g. for detailed analysis of one scenario) # Col 0: Distance to closest hospital # Col 1: Patients within target distance 1 (boolean) # Col 2: Patients within target distance 2 (boolean) # Col 3: Patients within target distance 3 (boolean) # Col 4: Hospital ID # Col 5: Number of admissiosn to hospital ID # Col 6: Does hospital meet admissions target (boolean) # Col 7: Admissions and target distance 1 both met (boolean) # Col 8: Admissions and target distance 2 both met (boolean) # Col 9: Admissions and target distance 3 both met (boolean) # Count hospitals in each solution if 0 in pareto_include or CALC_ALL: score_matrix[i,0]=np.sum(population[i]) # Calculate average distance mask=np.array(population[i],dtype=bool) # hospital_list=np.where(mask) # list of hospitals in selection. Not currently used masked_distances=TRAVEL_MATRIX[:,mask] # Calculate results for each patient node node_results[:,0]=np.amin(masked_distances,axis=1) # distance to closest hospital node_results[:,1]=node_results[:,0]<=TARGET_DISTANCE_1 # =1 if target distance 1 met node_results[:,2]=node_results[:,0]<=TARGET_DISTANCE_2 # =1 if target distance 2 met node_results[:,3]=node_results[:,0]<=TARGET_DISTANCE_3 # =1 if target distance 3 met closest_hospital_ID=np.argmin(masked_distances,axis=1) # index of closest hospital. node_results[:,4]=closest_hospital_ID # stores hospital ID in case table needs to be exported later, but bincount below doesn't work when stored in NumPy array (which defaults to floating decimal) # Create matrix of number of admissions to each hospital hospital_admissions=np.bincount(closest_hospital_ID,weights=NODE_ADMISSIONS) # np.bincount with weights sums hospital_admissions_matrix[i,mask]=hospital_admissions#putting the hospital admissions into a matrix with column per hospital, row per solution. Used to output to sheet # record closest hospital (unused) node_results[:,5]=np.take(hospital_admissions,closest_hospital_ID) # Lookup admissions to hospital used node_results[:,6]=node_results[:,5]>TARGET_ADMISSIONS # =1 if admissions target met # Calculate average distance by multiplying node distance * admission numbers and divide by total admissions if 1 in pareto_include or CALC_ALL: weighted_distances=np.multiply(node_results[:,0],NODE_ADMISSIONS) average_distance=np.sum(weighted_distances)/TOTAL_ADMISSIONS score_matrix[i,1]=average_distance # Max distance for any one patient if 2 in pareto_include or CALC_ALL: score_matrix[i,2]=np.max(node_results[:,0]) # Max, min and max/min number of admissions to each hospital if 3 in pareto_include or CALC_ALL: score_matrix[i,3]=np.max(hospital_admissions) if 4 in pareto_include or CALC_ALL: score_matrix[i,4]=np.min(hospital_admissions) if 5 in pareto_include or CALC_ALL: score_matrix[i,5]=score_matrix[i,3]/score_matrix[i,4] # Calculate proportion patients within target distance/time if 6 in pareto_include or CALC_ALL: score_matrix[i,6]=np.sum(NODE_ADMISSIONS[node_results[:,0]<=TARGET_DISTANCE_1])/TOTAL_ADMISSIONS if 7 in pareto_include or CALC_ALL: score_matrix[i,7]=np.sum(NODE_ADMISSIONS[node_results[:,0]<=TARGET_DISTANCE_2])/TOTAL_ADMISSIONS if 8 in pareto_include or CALC_ALL: score_matrix[i,8]=np.sum(NODE_ADMISSIONS[node_results[:,0]<=TARGET_DISTANCE_3])/TOTAL_ADMISSIONS # Calculate proportion patients attending hospital with target admissions if 9 in pareto_include or CALC_ALL: score_matrix[i,9]=np.sum(hospital_admissions[hospital_admissions>=TARGET_ADMISSIONS])/TOTAL_ADMISSIONS if 10 in pareto_include or CALC_ALL: # Sum patients who meet distance taregts node_results[:,7]=(node_results[:,1]+node_results[:,6])==2 # true if admissions and target distance 1 both met sum_patients_addmissions_distance1_met=np.sum(NODE_ADMISSIONS[node_results[:,7]==1]) score_matrix[i,10]=sum_patients_addmissions_distance1_met/TOTAL_ADMISSIONS if 11 in pareto_include or CALC_ALL: # Sum patients who meet distance taregts node_results[:,8]=(node_results[:,2]+node_results[:,6])==2 # true if admissions and target distance 2 both met sum_patients_addmissions_distance2_met=np.sum(NODE_ADMISSIONS[node_results[:,8]==1]) score_matrix[i,11]=sum_patients_addmissions_distance2_met/TOTAL_ADMISSIONS if 12 in pareto_include or CALC_ALL: # Sum patients who meet distance taregts node_results[:,9]=(node_results[:,3]+node_results[:,6])==2 # true if admissions and target distance 3 both met sum_patients_addmissions_distance3_met=np.sum(NODE_ADMISSIONS[node_results[:,9]==1]) score_matrix[i,12]=sum_patients_addmissions_distance3_met/TOTAL_ADMISSIONS #Calculate clinical benefit: Emberson and Lee #Use 115 mins for the onset til travelling in ambulance (30 mins onset to call + 40 mins call to travel + 45 mins door to needle) + ? travel time (as deterined by the combination of hospital open) # if 13 in pareto_include or CALC_ALL: # onset_to_treatment_time = distancekm_to_timemin(node_results[:,0])+115 # #constant to be used in the equation # factor=(0.2948/(1 - 0.2948)) # #Calculate the adjusted odds ratio # clinical_benefit=np.array(factor*np.power(10, (0.326956 + (-0.00086211 * onset_to_treatment_time)))) # # Patients that exceed the licensed onset to treatment time, set to a zero clinical benefit # clinical_benefit[onset_to_treatment_time>270]=0 # #Probabilty of good outcome per node # clinical_benefit = (clinical_benefit / (1 + clinical_benefit)) - 0.2948 # #Number of patients with a good outcome per node # clinical_benefit = clinical_benefit*NODE_ADMISSIONS # score_matrix[i,13]=np.sum(clinical_benefit)/TOTAL_ADMISSIONS *100 #hospital_admissions_matrix[i,:]=np.transpose(hospital_admissions)#putting the column into a row in the matrix #np.savetxt('output/admissions_test.csv',hospital_admissions_matrix[i,:],delimiter=',',newline='\n') return (score_matrix,hospital_admissions_matrix) def unique_rows(a): # stolen off the interwebs a = np.ascontiguousarray(a) unique_a = np.unique(a.view([('', a.dtype)]*a.shape[1])) return unique_a.view(a.dtype).reshape((unique_a.shape[0], a.shape[1])) def fix_hospital_status(l_population,l_HOSPITAL_STATUS): #Takes the 5th column from the hospital.csv file and if "1" then open, "-1" then closed HOSPITAL_STATUS_POPULATION=np.repeat(l_HOSPITAL_STATUS,len(l_population[:,0]),axis=0)#repeat the row "len(child_population[:,0])" number of times, so have 1 per solution row (matching the size of the child_population matrix) l_population[HOSPITAL_STATUS_POPULATION==1]=1 # Fixes the open hospitals to have a value 1 l_population[HOSPITAL_STATUS_POPULATION==-1]=0 # Fixes the closed hospitals to have a value 0 return l_population def f_location_crossover(l_parent, l_MAXCROSSOVERPOINTS,l_CHROMOSOMELENGTH): number_crossover_points=rn.randint(1,l_MAXCROSSOVERPOINTS) # random, up to max crossover_points=rn.sample(range(1,l_CHROMOSOMELENGTH), number_crossover_points) # pick random crossover points in gene, avoid first position (zero position) crossover_points=np.append([0],np.sort(crossover_points)) # zero appended at front for calucation of interval to first crossover intervals=crossover_points[1:]-crossover_points[:-1] # this gives array of number of ones, zeros etc in each section. intervals=np.append([intervals],[l_CHROMOSOMELENGTH-np.amax(crossover_points)]) # adds in last interval of last cross-over to end of gene # Build boolean arrays for cross-overs current_bool=True # sub sections will be made up of repeats of boolean true or false, start with true # empty list required for append selection1=[] for interval in intervals: # interval is the interval between crossoevrs (stored in 'intervals') new_section=np.repeat(current_bool,interval) # create subsection of true or false current_bool=not current_bool # swap true to false and vice versa selection1=np.append([selection1],[new_section]) # add the new section to the existing array selection1=
np.array([selection1],dtype=bool)
numpy.array
import datetime import itertools from typing import Sequence, Any, Union, Optional, Tuple, Callable from warnings import warn import numpy as np import torch from torch import Tensor from torch.utils.data import TensorDataset, DataLoader, ConcatDataset, Dataset from torchcast.internals.utils import ragged_cat, true1d_idx class TimeSeriesDataset(TensorDataset): """ :class:`.TimeSeriesDataset` includes additional information about each of the Tensors' dimensions: the name for each group in the first dimension, the start (date)time (and optionally datetime-unit) for the second dimension, and the name of the measures for the third dimension. Note that unlike :class:`torch.utils.data.TensorDataset`, indexing a :class:`.TimeSeriesDataset` returns another :class:`.TimeSeriesDataset`, not a tuple of tensors. So when using :class:`.TimeSeriesDataset`, use :class:`.TimeSeriesDataLoader` (equivalent to ``DataLoader(collate_fn=TimeSeriesDataset.collate)``). """ _repr_attrs = ('sizes', 'measures') def __init__(self, *tensors: Tensor, group_names: Sequence[Any], start_times: Union[np.ndarray, Sequence], measures: Sequence[Sequence[str]], dt_unit: Optional[str]): if not isinstance(group_names, np.ndarray): group_names = np.array(group_names) assert len(group_names) == len(set(group_names)) assert len(group_names) == len(start_times) assert len(tensors) == len(measures) for i, (tensor, tensor_measures) in enumerate(zip(tensors, measures)): if len(tensor.shape) < 3: raise ValueError(f"Tensor {i} has < 3 dimensions") if tensor.shape[0] != len(group_names): raise ValueError(f"Tensor {i}'s first dimension has length != {len(group_names)}.") if tensor.shape[2] != len(tensor_measures): raise ValueError(f"Tensor {i}'s 3rd dimension has length != len({tensor_measures}).") self.measures = tuple(tuple(m) for m in measures) self.all_measures = tuple(itertools.chain.from_iterable(self.measures)) self.group_names = group_names self.dt_unit = None if dt_unit: if not isinstance(dt_unit, np.timedelta64): dt_unit = np.timedelta64(1, dt_unit) self.dt_unit = dt_unit start_times = np.asanyarray(start_times) if self.dt_unit: assert len(start_times.shape) == 1 if isinstance(start_times[0], (np.datetime64, datetime.datetime)): start_times = np.array(start_times, dtype='datetime64') else: raise ValueError("`dt_unit` is not None but `start_times` is not an array of datetimes") else: if not isinstance(start_times[0], int) and not float(start_times[0]).is_integer(): raise ValueError( f"`dt_unit` is None but `start_times` does not appear to be integers " f"(e.g. start_times[0] is {start_times[0]})." ) self.start_times = start_times super().__init__(*tensors) def to(self, *args, **kwargs) -> 'TimeSeriesDataset': new_tensors = [x.to(*args, **kwargs) for x in self.tensors] return self.with_new_tensors(*new_tensors) def __repr__(self) -> str: kwargs = [] for k in self._repr_attrs: v = getattr(self, k) if isinstance(v, Tensor): v = v.size() kwargs.append("{}={!r}".format(k, v)) return "{}({})".format(type(self).__name__, ", ".join(kwargs)) @property def sizes(self) -> Sequence: return [t.size() for t in self.tensors] # Subsetting ------------------------: @torch.no_grad() def train_val_split(self, train_frac: float = None, dt: Union[np.datetime64, dict] = None) -> Tuple['TimeSeriesDataset', 'TimeSeriesDataset']: """ :param train_frac: The proportion of the data to keep for training. This is calculated on a per-group basis, by taking the last observation for each group (i.e., the last observation that a non-nan value on any measure). If neither `train_frac` nor `dt` are passed, ``train_frac=.75`` is used. :param dt: A datetime to use in dividing train/validation (first datetime for validation), or a dictionary of group-names : date-times. :return: Two ``TimeSeriesDatasets``, one with data before the split, the other with >= the split. """ # get split times: if dt is None: if train_frac is None: train_frac = .75 assert 0 < train_frac < 1 # for each group, find the last non-nan, take `frac` of that to find the train/val split point: split_idx = np.array([int(idx * train_frac) for idx in self._last_measured_idx()], dtype='int') _times = self.times(0) split_times = np.array([_times[i, t] for i, t in enumerate(split_idx)]) else: if train_frac is not None: raise TypeError("Can pass only one of `train_frac`, `dt`.") if isinstance(dt, dict): split_times = np.array([dt[group_name] for group_name in self.group_names], dtype='datetime64[ns]' if self.dt_unit else 'int') else: if self.dt_unit: if hasattr(dt, 'to_datetime64'): dt = dt.to_datetime64() if not isinstance(dt, np.datetime64): dt = np.datetime64(dt, self.dt_unit) split_times = np.full(shape=len(self.group_names), fill_value=dt) # val: val_dataset = self.with_new_start_times(split_times) # train: train_tensors = [] for i, tens in enumerate(self.tensors): train = tens.clone() train[np.where(self.times(i) >= split_times[:, None])] = float('nan') if i == 0: not_all_nan = (~torch.isnan(train)).sum((0, 2)) last_good_idx = true1d_idx(not_all_nan).max() train = train[:, :(last_good_idx + 1), :] train_tensors.append(train) # TODO: replace padding nans for all but first tensor? # TODO: reduce width of 0> tensors based on width of 0 tensor? train_dataset = self.with_new_tensors(*train_tensors) return train_dataset, val_dataset def with_new_start_times(self, start_times: Union[np.ndarray, Sequence]) -> 'TimeSeriesDataset': """ Subset a :class:`.TimeSeriesDataset` so that some/all of the groups have later start times. :param start_times: An array/list of new datetimes. :return: A new :class:`.TimeSeriesDataset`. """ new_tensors = [] for i, tens in enumerate(self.tensors): times = self.times(i) new_tens = [] for g, (new_time, old_times) in enumerate(zip(start_times, times)): if (old_times <= new_time).all(): warn(f"{new_time} is later than all the times for group {self.group_names[g]}") new_tens.append(tens[[g], 0:0]) continue elif (old_times > new_time).all(): warn(f"{new_time} is earlier than all the times for group {self.group_names[g]}") new_tens.append(tens[[g], 0:0]) continue # drop if before new_time: g_tens = tens[g, true1d_idx(old_times >= new_time)] # drop if after last nan: all_nan, _ = torch.min(torch.isnan(g_tens), 1) if all_nan.all(): warn(f"Group '{self.group_names[g]}' (tensor {i}) has only `nans` after {new_time}") end_idx = 0 else: end_idx = true1d_idx(~all_nan).max() + 1 new_tens.append(g_tens[:end_idx].unsqueeze(0)) new_tens = ragged_cat(new_tens, ragged_dim=1, cat_dim=0) new_tensors.append(new_tens) return type(self)( *new_tensors, group_names=self.group_names, start_times=start_times, measures=self.measures, dt_unit=self.dt_unit ) def get_groups(self, groups: Sequence[Any]) -> 'TimeSeriesDataset': """ Get the subset of the batch corresponding to groups. Note that the ordering in the output will match the original ordering (not that of `group`), and that duplicates will be dropped. """ group_idx = true1d_idx(np.isin(self.group_names, groups)) return self[group_idx] def split_measures(self, *measure_groups, which: Optional[int] = None) -> 'TimeSeriesDataset': """ Take a dataset with one tensor, split it into a dataset with multiple tensors. :param measure_groups: Each argument should be be a list of measure-names, or an indexer (i.e. list of ints or a slice). :param which: If there are already multiple measure groups, the split will occur within one of them; must specify which. :return: A :class:`.TimeSeriesDataset`, now with multiple tensors for the measure-groups. """ if which is None: if len(self.measures) > 1: raise RuntimeError(f"Must pass `which` if there's more than one groups:\n{self.measures}") which = 0 self_tensor = self.tensors[which] self_measures = self.measures[which] idxs = [] for measure_group in measure_groups: if isinstance(measure_group, slice) or isinstance(measure_group[0], int): idxs.append(measure_group) else: idxs.append([self_measures.index(m) for m in measure_group]) self_measures = np.array(self_measures) return type(self)( *(self_tensor[:, :, idx].clone() for idx in idxs), start_times=self.start_times, group_names=self.group_names, measures=[tuple(self_measures[idx]) for idx in idxs], dt_unit=self.dt_unit ) def __getitem__(self, item: Union[int, Sequence, slice]) -> 'TimeSeriesDataset': if isinstance(item, int): item = [item] return type(self)( *super(TimeSeriesDataset, self).__getitem__(item), group_names=self.group_names[item], start_times=self.start_times[item], measures=self.measures, dt_unit=self.dt_unit ) # Creation/Transformation ------------------------: @classmethod def make_collate_fn(cls, pad_X: Optional[float] = 0.) -> Callable: def collate_fn(batch: Sequence['TimeSeriesDataset']) -> 'TimeSeriesDataset': to_concat = { 'tensors': [batch[0].tensors], 'group_names': [batch[0].group_names], 'start_times': [batch[0].start_times] } fixed = {'dt_unit': batch[0].dt_unit, 'measures': batch[0].measures} for i, ts_dataset in enumerate(batch[1:], 1): for attr, appendlist in to_concat.items(): to_concat[attr].append(getattr(ts_dataset, attr)) for attr, required_val in fixed.items(): new_val = getattr(ts_dataset, attr) if new_val != required_val: raise ValueError( f"Element {i} has `{attr}` = {new_val}, but for element 0 it's {required_val}." ) tensors = [] for i, t in enumerate(zip(*to_concat['tensors'])): tensors.append(ragged_cat(t, ragged_dim=1, padding=None if i == 0 else pad_X)) return cls( *tensors, group_names=np.concatenate(to_concat['group_names']), start_times=
np.concatenate(to_concat['start_times'])
numpy.concatenate
def run_mean(S, radius): """ Use: run_mean(S, radius) Computes the running average, using a method from https://stackoverflow.com/questions/14313510/how-to-calculate-moving-average-using-numpy Input: S: Signal to be averaged. ............ (N,) np array radius: Window size is 2*radius+1. ... int Output: """ import numpy as np window = 2*radius+1 rm =
np.cumsum(S, dtype=float)
numpy.cumsum
# -*- coding: utf-8 -*- # transformations.py # Copyright (c) 2006, <NAME> # Copyright (c) 2006-2009, The Regents of the University of California # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holders nor the names of any # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Homogeneous Transformation Matrices and Quaternions. A library for calculating 4x4 matrices for translating, rotating, reflecting, scaling, shearing, projecting, orthogonalizing, and superimposing arrays of 3D homogeneous coordinates as well as for converting between rotation matrices, Euler angles, and quaternions. Also includes an Arcball control object and functions to decompose transformation matrices. :Authors: `<NAME> <http://www.lfd.uci.edu/~gohlke/>`__, Laboratory for Fluorescence Dynamics, University of California, Irvine :Version: 20090418 Requirements ------------ * `Python 2.6 <http://www.python.org>`__ * `Numpy 1.3 <http://numpy.scipy.org>`__ * `transformations.c 20090418 <http://www.lfd.uci.edu/~gohlke/>`__ (optional implementation of some functions in C) Notes ----- Matrices (M) can be inverted using numpy.linalg.inv(M), concatenated using numpy.dot(M0, M1), or used to transform homogeneous coordinates (v) using numpy.dot(M, v) for shape (4, \*) "point of arrays", respectively numpy.dot(v, M.T) for shape (\*, 4) "array of points". Calculations are carried out with numpy.float64 precision. This Python implementation is not optimized for speed. Vector, point, quaternion, and matrix function arguments are expected to be "array like", i.e. tuple, list, or numpy arrays. Return types are numpy arrays unless specified otherwise. Angles are in radians unless specified otherwise. Quaternions ix+jy+kz+w are represented as [x, y, z, w]. Use the transpose of transformation matrices for OpenGL glMultMatrixd(). A triple of Euler angles can be applied/interpreted in 24 ways, which can be specified using a 4 character string or encoded 4-tuple: *Axes 4-string*: e.g. 'sxyz' or 'ryxy' - first character : rotations are applied to 's'tatic or 'r'otating frame - remaining characters : successive rotation axis 'x', 'y', or 'z' *Axes 4-tuple*: e.g. (0, 0, 0, 0) or (1, 1, 1, 1) - inner axis: code of axis ('x':0, 'y':1, 'z':2) of rightmost matrix. - parity : even (0) if inner axis 'x' is followed by 'y', 'y' is followed by 'z', or 'z' is followed by 'x'. Otherwise odd (1). - repetition : first and last axis are same (1) or different (0). - frame : rotations are applied to static (0) or rotating (1) frame. References ---------- (1) Matrices and transformations. <NAME>. In "Graphics Gems I", pp 472-475. <NAME>, 1990. (2) More matrices and transformations: shear and pseudo-perspective. <NAME>. In "Graphics Gems II", pp 320-323. <NAME>, 1991. (3) Decomposing a matrix into simple transformations. <NAME>. In "Graphics Gems II", pp 320-323. <NAME>, 1991. (4) Recovering the data from the transformation matrix. <NAME>. In "Graphics Gems II", pp 324-331. <NAME>, 1991. (5) Euler angle conversion. <NAME>. In "Graphics Gems IV", pp 222-229. <NAME>, 1994. (6) Arcball rotation control. <NAME>. In "Graphics Gems IV", pp 175-192. <NAME>, 1994. (7) Representing attitude: Euler angles, unit quaternions, and rotation vectors. <NAME>. 2006. (8) A discussion of the solution for the best rotation to relate two sets of vectors. <NAME>. Acta Cryst. 1978. A34, 827-828. (9) Closed-form solution of absolute orientation using unit quaternions. BKP Horn. J Opt Soc Am A. 1987. 4(4), 629-642. (10) Quaternions. <NAME>ake. http://www.sfu.ca/~jwa3/cmpt461/files/quatut.pdf (11) From quaternion to matrix and back. <NAME>. 2005. http://www.intel.com/cd/ids/developer/asmo-na/eng/293748.htm (12) Uniform random rotations. <NAME>. In "Graphics Gems III", pp 124-132. <NAME>, 1992. Examples -------- >>> alpha, beta, gamma = 0.123, -1.234, 2.345 >>> origin, xaxis, yaxis, zaxis = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) >>> I = identity_matrix() >>> Rx = rotation_matrix(alpha, xaxis) >>> Ry = rotation_matrix(beta, yaxis) >>> Rz = rotation_matrix(gamma, zaxis) >>> R = concatenate_matrices(Rx, Ry, Rz) >>> euler = euler_from_matrix(R, 'rxyz') >>> numpy.allclose([alpha, beta, gamma], euler) True >>> Re = euler_matrix(alpha, beta, gamma, 'rxyz') >>> is_same_transform(R, Re) True >>> al, be, ga = euler_from_matrix(Re, 'rxyz') >>> is_same_transform(Re, euler_matrix(al, be, ga, 'rxyz')) True >>> qx = quaternion_about_axis(alpha, xaxis) >>> qy = quaternion_about_axis(beta, yaxis) >>> qz = quaternion_about_axis(gamma, zaxis) >>> q = quaternion_multiply(qx, qy) >>> q = quaternion_multiply(q, qz) >>> Rq = quaternion_matrix(q) >>> is_same_transform(R, Rq) True >>> S = scale_matrix(1.23, origin) >>> T = translation_matrix((1, 2, 3)) >>> Z = shear_matrix(beta, xaxis, origin, zaxis) >>> R = random_rotation_matrix(numpy.random.rand(3)) >>> M = concatenate_matrices(T, R, Z, S) >>> scale, shear, angles, trans, persp = decompose_matrix(M) >>> numpy.allclose(scale, 1.23) True >>> numpy.allclose(trans, (1, 2, 3)) True >>> numpy.allclose(shear, (0, math.tan(beta), 0)) True >>> is_same_transform(R, euler_matrix(axes='sxyz', *angles)) True >>> M1 = compose_matrix(scale, shear, angles, trans, persp) >>> is_same_transform(M, M1) True """ from __future__ import division import warnings import math import numpy # Documentation in HTML format can be generated with Epydoc __docformat__ = "restructuredtext en" def skew(v): """Returns the skew-symmetric matrix of a vector cfo, 2015/08/13 """ return numpy.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]], dtype=numpy.float64) def unskew(R): """Returns the coordinates of a skew-symmetric matrix cfo, 2015/08/13 """ return numpy.array([R[2,1], R[0,2], R[1,0]], dtype=numpy.float64) def first_order_rotation(rotvec): """First order approximation of a rotation: I + skew(rotvec) cfo, 2015/08/13 """ R = numpy.zeros((3,3), dtype=numpy.float64) R[0,0] = 1.0 R[1,0] = rotvec[2] R[2,0] = -rotvec[1] R[0,1] = -rotvec[2] R[1,1] = 1.0 R[2,1] = rotvec[0] R[0,2] = rotvec[1] R[1,2] = -rotvec[0] R[2,2] = 1.0 return R def axis_angle(axis, theta): """Compute a rotation matrix from an axis and an angle. Returns 3x3 Matrix. Is the same as transformations.rotation_matrix(theta, axis). cfo, 2015/08/13 """ if theta*theta > _EPS: wx = axis[0]; wy = axis[1]; wz = axis[2] costheta = numpy.cos(theta); sintheta = numpy.sin(theta) c_1 = 1.0 - costheta wx_sintheta = wx * sintheta wy_sintheta = wy * sintheta wz_sintheta = wz * sintheta C00 = c_1 * wx * wx C01 = c_1 * wx * wy C02 = c_1 * wx * wz C11 = c_1 * wy * wy C12 = c_1 * wy * wz C22 = c_1 * wz * wz R = numpy.zeros((3,3), dtype=numpy.float64) R[0,0] = costheta + C00; R[1,0] = wz_sintheta + C01; R[2,0] = -wy_sintheta + C02; R[0,1] = -wz_sintheta + C01; R[1,1] = costheta + C11; R[2,1] = wx_sintheta + C12; R[0,2] = wy_sintheta + C02; R[1,2] = -wx_sintheta + C12; R[2,2] = costheta + C22; return R else: return first_order_rotation(axis*theta) def expmap_so3(rotvec): """Exponential map at identity. Create a rotation from canonical coordinates using Rodrigues' formula. cfo, 2015/08/13 """ theta = numpy.linalg.norm(rotvec) axis = rotvec/theta return axis_angle(axis, theta) def logmap_so3(R): """Logmap at the identity. Returns canonical coordinates of rotation. cfo, 2015/08/13 """ R11 = R[0, 0]; R12 = R[0, 1]; R13 = R[0, 2] R21 = R[1, 0]; R22 = R[1, 1]; R23 = R[1, 2] R31 = R[2, 0]; R32 = R[2, 1]; R33 = R[2, 2] tr = numpy.trace(R) omega = numpy.empty((3,), dtype=numpy.float64) # when trace == -1, i.e., when theta = +-pi, +-3pi, +-5pi, we do something # special if(numpy.abs(tr + 1.0) < 1e-10): if(numpy.abs(R33 + 1.0) > 1e-10): omega = (numpy.pi / numpy.sqrt(2.0 + 2.0 * R33)) * numpy.array([R13, R23, 1.0+R33]) elif(numpy.abs(R22 + 1.0) > 1e-10): omega = (numpy.pi / numpy.sqrt(2.0 + 2.0 * R22)) * numpy.array([R12, 1.0+R22, R32]) else: omega = (numpy.pi / numpy.sqrt(2.0 + 2.0 * R11)) * numpy.array([1.0+R11, R21, R31]) else: magnitude = 1.0 tr_3 = tr - 3.0 if tr_3 < -1e-7: theta = numpy.arccos((tr - 1.0) / 2.0) magnitude = theta / (2.0 * numpy.sin(theta)) else: # when theta near 0, +-2pi, +-4pi, etc. (trace near 3.0) # use Taylor expansion: theta \approx 1/2-(t-3)/12 + O((t-3)^2) magnitude = 0.5 - tr_3 * tr_3 / 12.0; omega = magnitude * numpy.array([R32 - R23, R13 - R31, R21 - R12]) return omega def right_jacobian_so3(rotvec): """Right Jacobian for Exponential map in SO(3) Equation (10.86) and following equations in <NAME>, "Stochastic Models, Information Theory, and Lie Groups", Volume 2, 2008. > expmap_so3(thetahat + omega) \approx expmap_so3(thetahat) * expmap_so3(Jr * omega) where Jr = right_jacobian_so3(thetahat); This maps a perturbation in the tangent space (omega) to a perturbation on the manifold (expmap_so3(Jr * omega)) cfo, 2015/08/13 """ theta2 = numpy.dot(rotvec, rotvec) if theta2 <= _EPS: return numpy.identity(3, dtype=numpy.float64) else: theta = numpy.sqrt(theta2) Y = skew(rotvec) / theta I_3x3 = numpy.identity(3, dtype=numpy.float64) J_r = I_3x3 - ((1.0 - numpy.cos(theta)) / theta) * Y + (1.0 - numpy.sin(theta) / theta) * numpy.dot(Y, Y) return J_r def S_inv_eulerZYX_body(euler_coordinates): """ Relates angular rates w to changes in eulerZYX coordinates. dot(euler) = S^-1(euler_coordinates) * omega Also called: rotation-rate matrix. (E in Lupton paper) cfo, 2015/08/13 """ y = euler_coordinates[1] z = euler_coordinates[2] E = numpy.zeros((3,3)) E[0,1] = numpy.sin(z)/numpy.cos(y) E[0,2] = numpy.cos(z)/numpy.cos(y) E[1,1] = numpy.cos(z) E[1,2] = -numpy.sin(z) E[2,0] = 1.0 E[2,1] = numpy.sin(z)*numpy.sin(y)/numpy.cos(y) E[2,2] = numpy.cos(z)*numpy.sin(y)/numpy.cos(y) return E def S_inv_eulerZYX_body_deriv(euler_coordinates, omega): """ Compute dE(euler_coordinates)*omega/deuler_coordinates cfo, 2015/08/13 """ y = euler_coordinates[1] z = euler_coordinates[2] """ w1 = omega[0]; w2 = omega[1]; w3 = omega[2] J = numpy.zeros((3,3)) J[0,0] = 0 J[0,1] = math.tan(y) / math.cos(y) * (math.sin(z) * w2 + math.cos(z) * w3) J[0,2] = w2/math.cos(y)*math.cos(z) - w3/math.cos(y)*math.sin(z) J[1,0] = 0 J[1,1] = 0 J[1,2] = -w2*math.sin(z) - w3*math.cos(z) J[2,0] = w1 J[2,1] = 1.0/math.cos(y)**2 * (w2 * math.sin(z) + w3 * math.cos(z)) J[2,2] = w2*math.tan(y)*math.cos(z) - w3*math.tan(y)*math.sin(z) """ #second version, x = psi, y = theta, z = phi # J_x = numpy.zeros((3,3)) J_y = numpy.zeros((3,3)) J_z = numpy.zeros((3,3)) # dE^-1/dtheta J_y[0,1] = math.tan(y)/math.cos(y)*math.sin(z) J_y[0,2] = math.tan(y)/math.cos(y)*math.cos(z) J_y[2,1] = math.sin(z)/(math.cos(y))**2 J_y[2,2] = math.cos(z)/(math.cos(y))**2 # dE^-1/dphi J_z[0,1] = math.cos(z)/math.cos(y) J_z[0,2] = -math.sin(z)/math.cos(y) J_z[1,1] = -math.sin(z) J_z[1,2] = -math.cos(z) J_z[2,1] = math.cos(z)*math.tan(y) J_z[2,2] = -math.sin(z)*math.tan(y) J = numpy.zeros((3,3)) J[:,1] = numpy.dot(J_y, omega) J[:,2] = numpy.dot(J_z, omega) return J def identity_matrix(): """Return 4x4 identity/unit matrix. >>> I = identity_matrix() >>> numpy.allclose(I, numpy.dot(I, I)) True >>> numpy.sum(I), numpy.trace(I) (4.0, 4.0) >>> numpy.allclose(I, numpy.identity(4, dtype=numpy.float64)) True """ return numpy.identity(4, dtype=numpy.float64) def translation_matrix(direction): """Return matrix to translate by direction vector. >>> v = numpy.random.random(3) - 0.5 >>> numpy.allclose(v, translation_matrix(v)[:3, 3]) True """ M = numpy.identity(4) M[:3, 3] = direction[:3] return M def translation_from_matrix(matrix): """Return translation vector from translation matrix. >>> v0 = numpy.random.random(3) - 0.5 >>> v1 = translation_from_matrix(translation_matrix(v0)) >>> numpy.allclose(v0, v1) True """ return numpy.array(matrix, copy=False)[:3, 3].copy() def convert_3x3_to_4x4(matrix_3x3): M = numpy.identity(4) M[:3,:3] = matrix_3x3 return M def reflection_matrix(point, normal): """Return matrix to mirror at plane defined by point and normal vector. >>> v0 = numpy.random.random(4) - 0.5 >>> v0[3] = 1.0 >>> v1 = numpy.random.random(3) - 0.5 >>> R = reflection_matrix(v0, v1) >>> numpy.allclose(2., numpy.trace(R)) True >>> numpy.allclose(v0, numpy.dot(R, v0)) True >>> v2 = v0.copy() >>> v2[:3] += v1 >>> v3 = v0.copy() >>> v2[:3] -= v1 >>> numpy.allclose(v2, numpy.dot(R, v3)) True """ normal = unit_vector(normal[:3]) M = numpy.identity(4) M[:3, :3] -= 2.0 * numpy.outer(normal, normal) M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal return M def reflection_from_matrix(matrix): """Return mirror plane point and normal vector from reflection matrix. >>> v0 = numpy.random.random(3) - 0.5 >>> v1 = numpy.random.random(3) - 0.5 >>> M0 = reflection_matrix(v0, v1) >>> point, normal = reflection_from_matrix(M0) >>> M1 = reflection_matrix(point, normal) >>> is_same_transform(M0, M1) True """ M = numpy.array(matrix, dtype=numpy.float64, copy=False) # normal: unit eigenvector corresponding to eigenvalue -1 l, V = numpy.linalg.eig(M[:3, :3]) i = numpy.where(abs(numpy.real(l) + 1.0) < 1e-8)[0] if not len(i): raise ValueError("no unit eigenvector corresponding to eigenvalue -1") normal = numpy.real(V[:, i[0]]).squeeze() # point: any unit eigenvector corresponding to eigenvalue 1 l, V = numpy.linalg.eig(M) i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0] if not len(i): raise ValueError("no unit eigenvector corresponding to eigenvalue 1") point = numpy.real(V[:, i[-1]]).squeeze() point /= point[3] return point, normal def rotation_matrix(angle, direction, point=None): """Return matrix to rotate about axis defined by point and direction. >>> angle = (random.random() - 0.5) * (2*math.pi) >>> direc = numpy.random.random(3) - 0.5 >>> point = numpy.random.random(3) - 0.5 >>> R0 = rotation_matrix(angle, direc, point) >>> R1 = rotation_matrix(angle-2*math.pi, direc, point) >>> is_same_transform(R0, R1) True >>> R0 = rotation_matrix(angle, direc, point) >>> R1 = rotation_matrix(-angle, -direc, point) >>> is_same_transform(R0, R1) True >>> I = numpy.identity(4, numpy.float64) >>> numpy.allclose(I, rotation_matrix(math.pi*2, direc)) True >>> numpy.allclose(2., numpy.trace(rotation_matrix(math.pi/2, ... direc, point))) True """ sina = math.sin(angle) cosa = math.cos(angle) direction = unit_vector(direction[:3]) # rotation matrix around unit vector R = numpy.array(((cosa, 0.0, 0.0), (0.0, cosa, 0.0), (0.0, 0.0, cosa)), dtype=numpy.float64) R += numpy.outer(direction, direction) * (1.0 - cosa) direction *= sina R += numpy.array((( 0.0, -direction[2], direction[1]), ( direction[2], 0.0, -direction[0]), (-direction[1], direction[0], 0.0)), dtype=numpy.float64) M = numpy.identity(4) M[:3, :3] = R if point is not None: # rotation not around origin point = numpy.array(point[:3], dtype=numpy.float64, copy=False) M[:3, 3] = point - numpy.dot(R, point) return M def rotation_from_matrix(matrix): """Return rotation angle and axis from rotation matrix. >>> angle = (random.random() - 0.5) * (2*math.pi) >>> direc = numpy.random.random(3) - 0.5 >>> point = numpy.random.random(3) - 0.5 >>> R0 = rotation_matrix(angle, direc, point) >>> angle, direc, point = rotation_from_matrix(R0) >>> R1 = rotation_matrix(angle, direc, point) >>> is_same_transform(R0, R1) True """ R = numpy.array(matrix, dtype=numpy.float64, copy=False) R33 = R[:3, :3] # direction: unit eigenvector of R33 corresponding to eigenvalue of 1 l, W = numpy.linalg.eig(R33.T) i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0] if not len(i): raise ValueError("no unit eigenvector corresponding to eigenvalue 1") direction = numpy.real(W[:, i[-1]]).squeeze() # point: unit eigenvector of R33 corresponding to eigenvalue of 1 l, Q = numpy.linalg.eig(R) i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0] if not len(i): raise ValueError("no unit eigenvector corresponding to eigenvalue 1") point = numpy.real(Q[:, i[-1]]).squeeze() point /= point[3] # rotation angle depending on direction cosa = (numpy.trace(R33) - 1.0) / 2.0 if abs(direction[2]) > 1e-8: sina = (R[1, 0] + (cosa-1.0)*direction[0]*direction[1]) / direction[2] elif abs(direction[1]) > 1e-8: sina = (R[0, 2] + (cosa-1.0)*direction[0]*direction[2]) / direction[1] else: sina = (R[2, 1] + (cosa-1.0)*direction[1]*direction[2]) / direction[0] angle = math.atan2(sina, cosa) return angle, direction, point def scale_matrix(factor, origin=None, direction=None): """Return matrix to scale by factor around origin in direction. Use factor -1 for point symmetry. >>> v = (numpy.random.rand(4, 5) - 0.5) * 20.0 >>> v[3] = 1.0 >>> S = scale_matrix(-1.234) >>> numpy.allclose(numpy.dot(S, v)[:3], -1.234*v[:3]) True >>> factor = random.random() * 10 - 5 >>> origin = numpy.random.random(3) - 0.5 >>> direct = numpy.random.random(3) - 0.5 >>> S = scale_matrix(factor, origin) >>> S = scale_matrix(factor, origin, direct) """ if direction is None: # uniform scaling M = numpy.array(((factor, 0.0, 0.0, 0.0), (0.0, factor, 0.0, 0.0), (0.0, 0.0, factor, 0.0), (0.0, 0.0, 0.0, 1.0)), dtype=numpy.float64) if origin is not None: M[:3, 3] = origin[:3] M[:3, 3] *= 1.0 - factor else: # nonuniform scaling direction = unit_vector(direction[:3]) factor = 1.0 - factor M = numpy.identity(4) M[:3, :3] -= factor * numpy.outer(direction, direction) if origin is not None: M[:3, 3] = (factor * numpy.dot(origin[:3], direction)) * direction return M def scale_from_matrix(matrix): """Return scaling factor, origin and direction from scaling matrix. >>> factor = random.random() * 10 - 5 >>> origin = numpy.random.random(3) - 0.5 >>> direct = numpy.random.random(3) - 0.5 >>> S0 = scale_matrix(factor, origin) >>> factor, origin, direction = scale_from_matrix(S0) >>> S1 = scale_matrix(factor, origin, direction) >>> is_same_transform(S0, S1) True >>> S0 = scale_matrix(factor, origin, direct) >>> factor, origin, direction = scale_from_matrix(S0) >>> S1 = scale_matrix(factor, origin, direction) >>> is_same_transform(S0, S1) True """ M = numpy.array(matrix, dtype=numpy.float64, copy=False) M33 = M[:3, :3] factor = numpy.trace(M33) - 2.0 try: # direction: unit eigenvector corresponding to eigenvalue factor l, V = numpy.linalg.eig(M33) i = numpy.where(abs(numpy.real(l) - factor) < 1e-8)[0][0] direction = numpy.real(V[:, i]).squeeze() direction /= vector_norm(direction) except IndexError: # uniform scaling factor = (factor + 2.0) / 3.0 direction = None # origin: any eigenvector corresponding to eigenvalue 1 l, V = numpy.linalg.eig(M) i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0] if not len(i): raise ValueError("no eigenvector corresponding to eigenvalue 1") origin = numpy.real(V[:, i[-1]]).squeeze() origin /= origin[3] return factor, origin, direction def projection_matrix(point, normal, direction=None, perspective=None, pseudo=False): """Return matrix to project onto plane defined by point and normal. Using either perspective point, projection direction, or none of both. If pseudo is True, perspective projections will preserve relative depth such that Perspective = dot(Orthogonal, PseudoPerspective). >>> P = projection_matrix((0, 0, 0), (1, 0, 0)) >>> numpy.allclose(P[1:, 1:], numpy.identity(4)[1:, 1:]) True >>> point = numpy.random.random(3) - 0.5 >>> normal = numpy.random.random(3) - 0.5 >>> direct = numpy.random.random(3) - 0.5 >>> persp = numpy.random.random(3) - 0.5 >>> P0 = projection_matrix(point, normal) >>> P1 = projection_matrix(point, normal, direction=direct) >>> P2 = projection_matrix(point, normal, perspective=persp) >>> P3 = projection_matrix(point, normal, perspective=persp, pseudo=True) >>> is_same_transform(P2, numpy.dot(P0, P3)) True >>> P = projection_matrix((3, 0, 0), (1, 1, 0), (1, 0, 0)) >>> v0 = (numpy.random.rand(4, 5) - 0.5) * 20.0 >>> v0[3] = 1.0 >>> v1 = numpy.dot(P, v0) >>> numpy.allclose(v1[1], v0[1]) True >>> numpy.allclose(v1[0], 3.0-v1[1]) True """ M = numpy.identity(4) point = numpy.array(point[:3], dtype=numpy.float64, copy=False) normal = unit_vector(normal[:3]) if perspective is not None: # perspective projection perspective = numpy.array(perspective[:3], dtype=numpy.float64, copy=False) M[0, 0] = M[1, 1] = M[2, 2] = numpy.dot(perspective-point, normal) M[:3, :3] -= numpy.outer(perspective, normal) if pseudo: # preserve relative depth M[:3, :3] -= numpy.outer(normal, normal) M[:3, 3] = numpy.dot(point, normal) * (perspective+normal) else: M[:3, 3] = numpy.dot(point, normal) * perspective M[3, :3] = -normal M[3, 3] = numpy.dot(perspective, normal) elif direction is not None: # parallel projection direction = numpy.array(direction[:3], dtype=numpy.float64, copy=False) scale = numpy.dot(direction, normal) M[:3, :3] -= numpy.outer(direction, normal) / scale M[:3, 3] = direction * (numpy.dot(point, normal) / scale) else: # orthogonal projection M[:3, :3] -= numpy.outer(normal, normal) M[:3, 3] = numpy.dot(point, normal) * normal return M def projection_from_matrix(matrix, pseudo=False): """Return projection plane and perspective point from projection matrix. Return values are same as arguments for projection_matrix function: point, normal, direction, perspective, and pseudo. >>> point = numpy.random.random(3) - 0.5 >>> normal = numpy.random.random(3) - 0.5 >>> direct = numpy.random.random(3) - 0.5 >>> persp = numpy.random.random(3) - 0.5 >>> P0 = projection_matrix(point, normal) >>> result = projection_from_matrix(P0) >>> P1 = projection_matrix(*result) >>> is_same_transform(P0, P1) True >>> P0 = projection_matrix(point, normal, direct) >>> result = projection_from_matrix(P0) >>> P1 = projection_matrix(*result) >>> is_same_transform(P0, P1) True >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=False) >>> result = projection_from_matrix(P0, pseudo=False) >>> P1 = projection_matrix(*result) >>> is_same_transform(P0, P1) True >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=True) >>> result = projection_from_matrix(P0, pseudo=True) >>> P1 = projection_matrix(*result) >>> is_same_transform(P0, P1) True """ M = numpy.array(matrix, dtype=numpy.float64, copy=False) M33 = M[:3, :3] l, V = numpy.linalg.eig(M) i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0] if not pseudo and len(i): # point: any eigenvector corresponding to eigenvalue 1 point = numpy.real(V[:, i[-1]]).squeeze() point /= point[3] # direction: unit eigenvector corresponding to eigenvalue 0 l, V = numpy.linalg.eig(M33) i = numpy.where(abs(numpy.real(l)) < 1e-8)[0] if not len(i): raise ValueError("no eigenvector corresponding to eigenvalue 0") direction = numpy.real(V[:, i[0]]).squeeze() direction /= vector_norm(direction) # normal: unit eigenvector of M33.T corresponding to eigenvalue 0 l, V = numpy.linalg.eig(M33.T) i = numpy.where(abs(numpy.real(l)) < 1e-8)[0] if len(i): # parallel projection normal = numpy.real(V[:, i[0]]).squeeze() normal /= vector_norm(normal) return point, normal, direction, None, False else: # orthogonal projection, where normal equals direction vector return point, direction, None, None, False else: # perspective projection i = numpy.where(abs(numpy.real(l)) > 1e-8)[0] if not len(i): raise ValueError( "no eigenvector not corresponding to eigenvalue 0") point = numpy.real(V[:, i[-1]]).squeeze() point /= point[3] normal = - M[3, :3] perspective = M[:3, 3] / numpy.dot(point[:3], normal) if pseudo: perspective -= normal return point, normal, None, perspective, pseudo def clip_matrix(left, right, bottom, top, near, far, perspective=False): """Return matrix to obtain normalized device coordinates from frustrum. The frustrum bounds are axis-aligned along x (left, right), y (bottom, top) and z (near, far). Normalized device coordinates are in range [-1, 1] if coordinates are inside the frustrum. If perspective is True the frustrum is a truncated pyramid with the perspective point at origin and direction along z axis, otherwise an orthographic canonical view volume (a box). Homogeneous coordinates transformed by the perspective clip matrix need to be dehomogenized (devided by w coordinate). >>> frustrum = numpy.random.rand(6) >>> frustrum[1] += frustrum[0] >>> frustrum[3] += frustrum[2] >>> frustrum[5] += frustrum[4] >>> M = clip_matrix(*frustrum, perspective=False) >>> numpy.dot(M, [frustrum[0], frustrum[2], frustrum[4], 1.0]) array([-1., -1., -1., 1.]) >>> numpy.dot(M, [frustrum[1], frustrum[3], frustrum[5], 1.0]) array([ 1., 1., 1., 1.]) >>> M = clip_matrix(*frustrum, perspective=True) >>> v = numpy.dot(M, [frustrum[0], frustrum[2], frustrum[4], 1.0]) >>> v / v[3] array([-1., -1., -1., 1.]) >>> v = numpy.dot(M, [frustrum[1], frustrum[3], frustrum[4], 1.0]) >>> v / v[3] array([ 1., 1., -1., 1.]) """ if left >= right or bottom >= top or near >= far: raise ValueError("invalid frustrum") if perspective: if near <= _EPS: raise ValueError("invalid frustrum: near <= 0") t = 2.0 * near M = ((-t/(right-left), 0.0, (right+left)/(right-left), 0.0), (0.0, -t/(top-bottom), (top+bottom)/(top-bottom), 0.0), (0.0, 0.0, -(far+near)/(far-near), t*far/(far-near)), (0.0, 0.0, -1.0, 0.0)) else: M = ((2.0/(right-left), 0.0, 0.0, (right+left)/(left-right)), (0.0, 2.0/(top-bottom), 0.0, (top+bottom)/(bottom-top)), (0.0, 0.0, 2.0/(far-near), (far+near)/(near-far)), (0.0, 0.0, 0.0, 1.0)) return numpy.array(M, dtype=numpy.float64) def shear_matrix(angle, direction, point, normal): """Return matrix to shear by angle along direction vector on shear plane. The shear plane is defined by a point and normal vector. The direction vector must be orthogonal to the plane's normal vector. A point P is transformed by the shear matrix into P" such that the vector P-P" is parallel to the direction vector and its extent is given by the angle of P-P'-P", where P' is the orthogonal projection of P onto the shear plane. >>> angle = (random.random() - 0.5) * 4*math.pi >>> direct = numpy.random.random(3) - 0.5 >>> point = numpy.random.random(3) - 0.5 >>> normal = numpy.cross(direct, numpy.random.random(3)) >>> S = shear_matrix(angle, direct, point, normal) >>> numpy.allclose(1.0, numpy.linalg.det(S)) True """ normal = unit_vector(normal[:3]) direction = unit_vector(direction[:3]) if abs(numpy.dot(normal, direction)) > 1e-6: raise ValueError("direction and normal vectors are not orthogonal") angle = math.tan(angle) M = numpy.identity(4) M[:3, :3] += angle * numpy.outer(direction, normal) M[:3, 3] = -angle * numpy.dot(point[:3], normal) * direction return M def shear_from_matrix(matrix): """Return shear angle, direction and plane from shear matrix. >>> angle = (random.random() - 0.5) * 4*math.pi >>> direct = numpy.random.random(3) - 0.5 >>> point = numpy.random.random(3) - 0.5 >>> normal = numpy.cross(direct, numpy.random.random(3)) >>> S0 = shear_matrix(angle, direct, point, normal) >>> angle, direct, point, normal = shear_from_matrix(S0) >>> S1 = shear_matrix(angle, direct, point, normal) >>> is_same_transform(S0, S1) True """ M = numpy.array(matrix, dtype=numpy.float64, copy=False) M33 = M[:3, :3] # normal: cross independent eigenvectors corresponding to the eigenvalue 1 l, V = numpy.linalg.eig(M33) i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-4)[0] if len(i) < 2: raise ValueError("No two linear independent eigenvectors found %s" % l) V = numpy.real(V[:, i]).squeeze().T lenorm = -1.0 for i0, i1 in ((0, 1), (0, 2), (1, 2)): n = numpy.cross(V[i0], V[i1]) l = vector_norm(n) if l > lenorm: lenorm = l normal = n normal /= lenorm # direction and angle direction = numpy.dot(M33 - numpy.identity(3), normal) angle = vector_norm(direction) direction /= angle angle = math.atan(angle) # point: eigenvector corresponding to eigenvalue 1 l, V = numpy.linalg.eig(M) i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0] if not len(i): raise ValueError("no eigenvector corresponding to eigenvalue 1") point = numpy.real(V[:, i[-1]]).squeeze() point /= point[3] return angle, direction, point, normal def decompose_matrix(matrix): """Return sequence of transformations from transformation matrix. matrix : array_like Non-degenerative homogeneous transformation matrix Return tuple of: scale : vector of 3 scaling factors shear : list of shear factors for x-y, x-z, y-z axes angles : list of Euler angles about static x, y, z axes translate : translation vector along x, y, z axes perspective : perspective partition of matrix Raise ValueError if matrix is of wrong type or degenerative. >>> T0 = translation_matrix((1, 2, 3)) >>> scale, shear, angles, trans, persp = decompose_matrix(T0) >>> T1 = translation_matrix(trans) >>> numpy.allclose(T0, T1) True >>> S = scale_matrix(0.123) >>> scale, shear, angles, trans, persp = decompose_matrix(S) >>> scale[0] 0.123 >>> R0 = euler_matrix(1, 2, 3) >>> scale, shear, angles, trans, persp = decompose_matrix(R0) >>> R1 = euler_matrix(*angles) >>> numpy.allclose(R0, R1) True """ M = numpy.array(matrix, dtype=numpy.float64, copy=True).T if abs(M[3, 3]) < _EPS: raise ValueError("M[3, 3] is zero") M /= M[3, 3] P = M.copy() P[:, 3] = 0, 0, 0, 1 if not numpy.linalg.det(P): raise ValueError("Matrix is singular") scale = numpy.zeros((3, ), dtype=numpy.float64) shear = [0, 0, 0] angles = [0, 0, 0] if any(abs(M[:3, 3]) > _EPS): perspective = numpy.dot(M[:, 3], numpy.linalg.inv(P.T)) M[:, 3] = 0, 0, 0, 1 else: perspective = numpy.array((0, 0, 0, 1), dtype=numpy.float64) translate = M[3, :3].copy() M[3, :3] = 0 row = M[:3, :3].copy() scale[0] = vector_norm(row[0]) row[0] /= scale[0] shear[0] = numpy.dot(row[0], row[1]) row[1] -= row[0] * shear[0] scale[1] = vector_norm(row[1]) row[1] /= scale[1] shear[0] /= scale[1] shear[1] = numpy.dot(row[0], row[2]) row[2] -= row[0] * shear[1] shear[2] = numpy.dot(row[1], row[2]) row[2] -= row[1] * shear[2] scale[2] = vector_norm(row[2]) row[2] /= scale[2] shear[1:] /= scale[2] if numpy.dot(row[0], numpy.cross(row[1], row[2])) < 0: scale *= -1 row *= -1 angles[1] = math.asin(-row[0, 2]) if math.cos(angles[1]): angles[0] = math.atan2(row[1, 2], row[2, 2]) angles[2] = math.atan2(row[0, 1], row[0, 0]) else: #angles[0] = math.atan2(row[1, 0], row[1, 1]) angles[0] = math.atan2(-row[2, 1], row[1, 1]) angles[2] = 0.0 return scale, shear, angles, translate, perspective def compose_matrix(scale=None, shear=None, angles=None, translate=None, perspective=None): """Return transformation matrix from sequence of transformations. This is the inverse of the decompose_matrix function. Sequence of transformations: scale : vector of 3 scaling factors shear : list of shear factors for x-y, x-z, y-z axes angles : list of Euler angles about static x, y, z axes translate : translation vector along x, y, z axes perspective : perspective partition of matrix >>> scale = numpy.random.random(3) - 0.5 >>> shear = numpy.random.random(3) - 0.5 >>> angles = (numpy.random.random(3) - 0.5) * (2*math.pi) >>> trans = numpy.random.random(3) - 0.5 >>> persp = numpy.random.random(4) - 0.5 >>> M0 = compose_matrix(scale, shear, angles, trans, persp) >>> result = decompose_matrix(M0) >>> M1 = compose_matrix(*result) >>> is_same_transform(M0, M1) True """ M = numpy.identity(4) if perspective is not None: P = numpy.identity(4) P[3, :] = perspective[:4] M = numpy.dot(M, P) if translate is not None: T = numpy.identity(4) T[:3, 3] = translate[:3] M = numpy.dot(M, T) if angles is not None: R = euler_matrix(angles[0], angles[1], angles[2], 'sxyz') M = numpy.dot(M, R) if shear is not None: Z = numpy.identity(4) Z[1, 2] = shear[2] Z[0, 2] = shear[1] Z[0, 1] = shear[0] M = numpy.dot(M, Z) if scale is not None: S = numpy.identity(4) S[0, 0] = scale[0] S[1, 1] = scale[1] S[2, 2] = scale[2] M = numpy.dot(M, S) M /= M[3, 3] return M def orthogonalization_matrix(lengths, angles): """Return orthogonalization matrix for crystallographic cell coordinates. Angles are expected in degrees. The de-orthogonalization matrix is the inverse. >>> O = orthogonalization_matrix((10., 10., 10.), (90., 90., 90.)) >>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10) True >>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7]) >>> numpy.allclose(numpy.sum(O), 43.063229) True """ a, b, c = lengths angles = numpy.radians(angles) sina, sinb, _ = numpy.sin(angles) cosa, cosb, cosg = numpy.cos(angles) co = (cosa * cosb - cosg) / (sina * sinb) return numpy.array(( ( a*sinb*math.sqrt(1.0-co*co), 0.0, 0.0, 0.0), (-a*sinb*co, b*sina, 0.0, 0.0), ( a*cosb, b*cosa, c, 0.0), ( 0.0, 0.0, 0.0, 1.0)), dtype=numpy.float64) def superimposition_matrix(v0, v1, scaling=False, usesvd=True): """Return matrix to transform given vector set into second vector set. v0 and v1 are shape (3, \*) or (4, \*) arrays of at least 3 vectors. If usesvd is True, the weighted sum of squared deviations (RMSD) is minimized according to the algorithm by <NAME> [8]. Otherwise the quaternion based algorithm by <NAME> [9] is used (slower when using this Python implementation). The returned matrix performs rotation, translation and uniform scaling (if specified). >>> v0 = numpy.random.rand(3, 10) >>> M = superimposition_matrix(v0, v0) >>> numpy.allclose(M, numpy.identity(4)) True >>> R = random_rotation_matrix(numpy.random.random(3)) >>> v0 = ((1,0,0), (0,1,0), (0,0,1), (1,1,1)) >>> v1 = numpy.dot(R, v0) >>> M = superimposition_matrix(v0, v1) >>> numpy.allclose(v1, numpy.dot(M, v0)) True >>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20.0 >>> v0[3] = 1.0 >>> v1 = numpy.dot(R, v0) >>> M = superimposition_matrix(v0, v1) >>> numpy.allclose(v1, numpy.dot(M, v0)) True >>> S = scale_matrix(random.random()) >>> T = translation_matrix(numpy.random.random(3)-0.5) >>> M = concatenate_matrices(T, R, S) >>> v1 = numpy.dot(M, v0) >>> v0[:3] += numpy.random.normal(0.0, 1e-9, 300).reshape(3, -1) >>> M = superimposition_matrix(v0, v1, scaling=True) >>> numpy.allclose(v1, numpy.dot(M, v0)) True >>> M = superimposition_matrix(v0, v1, scaling=True, usesvd=False) >>> numpy.allclose(v1, numpy.dot(M, v0)) True >>> v = numpy.empty((4, 100, 3), dtype=numpy.float64) >>> v[:, :, 0] = v0 >>> M = superimposition_matrix(v0, v1, scaling=True, usesvd=False) >>> numpy.allclose(v1, numpy.dot(M, v[:, :, 0])) True """ v0 = numpy.array(v0, dtype=numpy.float64, copy=False)[:3] v1 = numpy.array(v1, dtype=numpy.float64, copy=False)[:3] if v0.shape != v1.shape or v0.shape[1] < 3: raise ValueError("Vector sets are of wrong shape or type.") # move centroids to origin t0 = numpy.mean(v0, axis=1) t1 = numpy.mean(v1, axis=1) v0 = v0 - t0.reshape(3, 1) v1 = v1 - t1.reshape(3, 1) if usesvd: # Singular Value Decomposition of covariance matrix u, s, vh = numpy.linalg.svd(numpy.dot(v1, v0.T)) # rotation matrix from SVD orthonormal bases R = numpy.dot(u, vh) if numpy.linalg.det(R) < 0.0: # R does not constitute right handed system R -= numpy.outer(u[:, 2], vh[2, :]*2.0) s[-1] *= -1.0 # homogeneous transformation matrix M = numpy.identity(4) M[:3, :3] = R else: # compute symmetric matrix N xx, yy, zz = numpy.sum(v0 * v1, axis=1) xy, yz, zx = numpy.sum(v0 * numpy.roll(v1, -1, axis=0), axis=1) xz, yx, zy = numpy.sum(v0 * numpy.roll(v1, -2, axis=0), axis=1) N = ((xx+yy+zz, yz-zy, zx-xz, xy-yx), (yz-zy, xx-yy-zz, xy+yx, zx+xz), (zx-xz, xy+yx, -xx+yy-zz, yz+zy), (xy-yx, zx+xz, yz+zy, -xx-yy+zz)) # quaternion: eigenvector corresponding to most positive eigenvalue l, V = numpy.linalg.eig(N) q = V[:, numpy.argmax(l)] q /= vector_norm(q) # unit quaternion q = numpy.roll(q, -1) # move w component to end # homogeneous transformation matrix M = quaternion_matrix(q) # scale: ratio of rms deviations from centroid if scaling: v0 *= v0 v1 *= v1 M[:3, :3] *= math.sqrt(numpy.sum(v1) / numpy.sum(v0)) # translation M[:3, 3] = t1 T = numpy.identity(4) T[:3, 3] = -t0 M = numpy.dot(M, T) return M def euler_matrix(ai, aj, ak, axes='sxyz'): """Return homogeneous rotation matrix from Euler angles and axis sequence. ai, aj, ak : Euler's roll, pitch and yaw angles axes : One of 24 axis sequences as string or encoded tuple >>> R = euler_matrix(1, 2, 3, 'syxz') >>> numpy.allclose(numpy.sum(R[0]), -1.34786452) True >>> R = euler_matrix(1, 2, 3, (0, 1, 0, 1)) >>> numpy.allclose(numpy.sum(R[0]), -0.383436184) True >>> ai, aj, ak = (4.0*math.pi) * (numpy.random.random(3) - 0.5) >>> for axes in _AXES2TUPLE.keys(): ... R = euler_matrix(ai, aj, ak, axes) >>> for axes in _TUPLE2AXES.keys(): ... R = euler_matrix(ai, aj, ak, axes) """ try: firstaxis, parity, repetition, frame = _AXES2TUPLE[axes] except (AttributeError, KeyError): _ = _TUPLE2AXES[axes] firstaxis, parity, repetition, frame = axes i = firstaxis j = _NEXT_AXIS[i+parity] k = _NEXT_AXIS[i-parity+1] if frame: ai, ak = ak, ai if parity: ai, aj, ak = -ai, -aj, -ak si, sj, sk = math.sin(ai), math.sin(aj), math.sin(ak) ci, cj, ck = math.cos(ai), math.cos(aj), math.cos(ak) cc, cs = ci*ck, ci*sk sc, ss = si*ck, si*sk M = numpy.identity(4) if repetition: M[i, i] = cj M[i, j] = sj*si M[i, k] = sj*ci M[j, i] = sj*sk M[j, j] = -cj*ss+cc M[j, k] = -cj*cs-sc M[k, i] = -sj*ck M[k, j] = cj*sc+cs M[k, k] = cj*cc-ss else: M[i, i] = cj*ck M[i, j] = sj*sc-cs M[i, k] = sj*cc+ss M[j, i] = cj*sk M[j, j] = sj*ss+cc M[j, k] = sj*cs-sc M[k, i] = -sj M[k, j] = cj*si M[k, k] = cj*ci return M def euler_from_matrix(matrix, axes='sxyz'): """Return Euler angles from rotation matrix for specified axis sequence. axes : One of 24 axis sequences as string or encoded tuple Note that many Euler angle triplets can describe one matrix. >>> R0 = euler_matrix(1, 2, 3, 'syxz') >>> al, be, ga = euler_from_matrix(R0, 'syxz') >>> R1 = euler_matrix(al, be, ga, 'syxz') >>> numpy.allclose(R0, R1) True >>> angles = (4.0*math.pi) * (numpy.random.random(3) - 0.5) >>> for axes in _AXES2TUPLE.keys(): ... R0 = euler_matrix(axes=axes, *angles) ... R1 = euler_matrix(axes=axes, *euler_from_matrix(R0, axes)) ... if not numpy.allclose(R0, R1): print axes, "failed" """ try: firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()] except (AttributeError, KeyError): _ = _TUPLE2AXES[axes] firstaxis, parity, repetition, frame = axes i = firstaxis j = _NEXT_AXIS[i+parity] k = _NEXT_AXIS[i-parity+1] M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:3, :3] if repetition: sy = math.sqrt(M[i, j]*M[i, j] + M[i, k]*M[i, k]) if sy > _EPS: ax = math.atan2( M[i, j], M[i, k]) ay = math.atan2( sy, M[i, i]) az = math.atan2( M[j, i], -M[k, i]) else: ax = math.atan2(-M[j, k], M[j, j]) ay = math.atan2( sy, M[i, i]) az = 0.0 else: cy = math.sqrt(M[i, i]*M[i, i] + M[j, i]*M[j, i]) if cy > _EPS: ax = math.atan2( M[k, j], M[k, k]) ay = math.atan2(-M[k, i], cy) az = math.atan2( M[j, i], M[i, i]) else: ax = math.atan2(-M[j, k], M[j, j]) ay = math.atan2(-M[k, i], cy) az = 0.0 if parity: ax, ay, az = -ax, -ay, -az if frame: ax, az = az, ax return ax, ay, az def euler_from_quaternion(quaternion, axes='sxyz'): """Return Euler angles from quaternion for specified axis sequence. >>> angles = euler_from_quaternion([0.06146124, 0, 0, 0.99810947]) >>> numpy.allclose(angles, [0.123, 0, 0]) True """ return euler_from_matrix(quaternion_matrix(quaternion), axes) def quaternion_from_euler(ai, aj, ak, axes='sxyz'): """Return quaternion from Euler angles and axis sequence. ai, aj, ak : Euler's roll, pitch and yaw angles axes : One of 24 axis sequences as string or encoded tuple >>> q = quaternion_from_euler(1, 2, 3, 'ryxz') >>> numpy.allclose(q, [0.310622, -0.718287, 0.444435, 0.435953]) True """ try: firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()] except (AttributeError, KeyError): _ = _TUPLE2AXES[axes] firstaxis, parity, repetition, frame = axes i = firstaxis j = _NEXT_AXIS[i+parity] k = _NEXT_AXIS[i-parity+1] if frame: ai, ak = ak, ai if parity: aj = -aj ai /= 2.0 aj /= 2.0 ak /= 2.0 ci = math.cos(ai) si = math.sin(ai) cj = math.cos(aj) sj = math.sin(aj) ck = math.cos(ak) sk = math.sin(ak) cc = ci*ck cs = ci*sk sc = si*ck ss = si*sk quaternion = numpy.empty((4, ), dtype=numpy.float64) if repetition: quaternion[i] = cj*(cs + sc) quaternion[j] = sj*(cc + ss) quaternion[k] = sj*(cs - sc) quaternion[3] = cj*(cc - ss) else: quaternion[i] = cj*sc - sj*cs quaternion[j] = cj*ss + sj*cc quaternion[k] = cj*cs - sj*sc quaternion[3] = cj*cc + sj*ss if parity: quaternion[j] *= -1 return quaternion def quaternion_about_axis(angle, axis): """Return quaternion for rotation about axis. >>> q = quaternion_about_axis(0.123, (1, 0, 0)) >>> numpy.allclose(q, [0.06146124, 0, 0, 0.99810947]) True """ quaternion = numpy.zeros((4, ), dtype=numpy.float64) quaternion[:3] = axis[:3] qlen = vector_norm(quaternion) if qlen > _EPS: quaternion *= math.sin(angle/2.0) / qlen quaternion[3] = math.cos(angle/2.0) return quaternion def matrix_from_quaternion(quaternion): return quaternion_matrix(quaternion) def quaternion_matrix(quaternion): """Return homogeneous rotation matrix from quaternion. >>> R = quaternion_matrix([0.06146124, 0, 0, 0.99810947]) >>> numpy.allclose(R, rotation_matrix(0.123, (1, 0, 0))) True """ q = numpy.array(quaternion[:4], dtype=numpy.float64, copy=True) nq = numpy.dot(q, q) if nq < _EPS: return numpy.identity(4) q *= math.sqrt(2.0 / nq) q = numpy.outer(q, q) return numpy.array(( (1.0-q[1, 1]-q[2, 2], q[0, 1]-q[2, 3], q[0, 2]+q[1, 3], 0.0), ( q[0, 1]+q[2, 3], 1.0-q[0, 0]-q[2, 2], q[1, 2]-q[0, 3], 0.0), ( q[0, 2]-q[1, 3], q[1, 2]+q[0, 3], 1.0-q[0, 0]-q[1, 1], 0.0), ( 0.0, 0.0, 0.0, 1.0) ), dtype=numpy.float64) def quaternionJPL_matrix(quaternion): """Return homogeneous rotation matrix from quaternion in JPL notation. quaternion = [x y z w] """ q0 = quaternion[0] q1 = quaternion[1] q2 = quaternion[2] q3 = quaternion[3] return numpy.array([ [ q0**2 - q1**2 - q2**2 + q3**2, 2.0*q0*q1 + 2.0*q2*q3, 2.0*q0*q2 - 2.0*q1*q3, 0], [ 2.0*q0*q1 - 2.0*q2*q3, - q0**2 + q1**2 - q2**2 + q3**2, 2.0*q0*q3 + 2.0*q1*q2, 0], [ 2.0*q0*q2 + 2.0*q1*q3, 2.0*q1*q2 - 2.0*q0*q3, - q0**2 - q1**2 + q2**2 + q3**2, 0], [0, 0, 0, 1.0]], dtype=numpy.float64) def quaternion_from_matrix(matrix): """Return quaternion from rotation matrix. >>> R = rotation_matrix(0.123, (1, 2, 3)) >>> q = quaternion_from_matrix(R) >>> numpy.allclose(q, [0.0164262, 0.0328524, 0.0492786, 0.9981095]) True """ q = numpy.empty((4, ), dtype=numpy.float64) M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:4, :4] t = numpy.trace(M) if t > M[3, 3]: q[3] = t q[2] = M[1, 0] - M[0, 1] q[1] = M[0, 2] - M[2, 0] q[0] = M[2, 1] - M[1, 2] else: i, j, k = 0, 1, 2 if M[1, 1] > M[0, 0]: i, j, k = 1, 2, 0 if M[2, 2] > M[i, i]: i, j, k = 2, 0, 1 t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3] q[i] = t q[j] = M[i, j] + M[j, i] q[k] = M[k, i] + M[i, k] q[3] = M[k, j] - M[j, k] q *= 0.5 / math.sqrt(t * M[3, 3]) return q def quaternion_multiply(quaternion1, quaternion0): """Return multiplication of two quaternions. >>> q = quaternion_multiply([1, -2, 3, 4], [-5, 6, 7, 8]) >>> numpy.allclose(q, [-44, -14, 48, 28]) True """ x0, y0, z0, w0 = quaternion0 x1, y1, z1, w1 = quaternion1 return numpy.array(( x1*w0 + y1*z0 - z1*y0 + w1*x0, -x1*z0 + y1*w0 + z1*x0 + w1*y0, x1*y0 - y1*x0 + z1*w0 + w1*z0, -x1*x0 - y1*y0 - z1*z0 + w1*w0), dtype=numpy.float64) def quaternion_conjugate(quaternion): """Return conjugate of quaternion. >>> q0 = random_quaternion() >>> q1 = quaternion_conjugate(q0) >>> q1[3] == q0[3] and all(q1[:3] == -q0[:3]) True """ return numpy.array((-quaternion[0], -quaternion[1], -quaternion[2], quaternion[3]), dtype=numpy.float64) def quaternion_inverse(quaternion): """Return inverse of quaternion. >>> q0 = random_quaternion() >>> q1 = quaternion_inverse(q0) >>> numpy.allclose(quaternion_multiply(q0, q1), [0, 0, 0, 1]) True """ return quaternion_conjugate(quaternion) / numpy.dot(quaternion, quaternion) def quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True): """Return spherical linear interpolation between two quaternions. >>> q0 = random_quaternion() >>> q1 = random_quaternion() >>> q = quaternion_slerp(q0, q1, 0.0) >>> numpy.allclose(q, q0) True >>> q = quaternion_slerp(q0, q1, 1.0, 1) >>> numpy.allclose(q, q1) True >>> q = quaternion_slerp(q0, q1, 0.5) >>> angle = math.acos(numpy.dot(q0, q)) >>> numpy.allclose(2.0, math.acos(numpy.dot(q0, q1)) / angle) or \ numpy.allclose(2.0, math.acos(-numpy.dot(q0, q1)) / angle) True """ q0 = unit_vector(quat0[:4]) q1 = unit_vector(quat1[:4]) if fraction == 0.0: return q0 elif fraction == 1.0: return q1 d = numpy.dot(q0, q1) if abs(abs(d) - 1.0) < _EPS: return q0 if shortestpath and d < 0.0: # invert rotation d = -d q1 *= -1.0 angle = math.acos(d) + spin * math.pi if abs(angle) < _EPS: return q0 isin = 1.0 / math.sin(angle) q0 *= math.sin((1.0 - fraction) * angle) * isin q1 *= math.sin(fraction * angle) * isin q0 += q1 return q0 def random_quaternion(rand=None): """Return uniform random unit quaternion. rand: array like or None Three independent random variables that are uniformly distributed between 0 and 1. >>> q = random_quaternion() >>> numpy.allclose(1.0, vector_norm(q)) True >>> q = random_quaternion(numpy.random.random(3)) >>> q.shape (4,) """ if rand is None: rand = numpy.random.rand(3) else: assert len(rand) == 3 r1 = numpy.sqrt(1.0 - rand[0]) r2 = numpy.sqrt(rand[0]) pi2 = math.pi * 2.0 t1 = pi2 * rand[1] t2 = pi2 * rand[2] return numpy.array((numpy.sin(t1)*r1, numpy.cos(t1)*r1,
numpy.sin(t2)
numpy.sin
import logging import numpy as np import xarray as xr from datacube.model import Measurement from datacube_stats.statistics import Statistic from copy import copy from .fast import smad, emad, bcmad, geomedian LOG = logging.getLogger(__name__) def sizefmt(num, suffix="B"): for unit in ["", "K", "M", "G", "T", "P", "E", "Z"]: if abs(num) < 1024.0: return "%3.1f%s%s" % (num, unit, suffix) num /= 1024.0 return "%.1f%s%s" % (num, "Yi", suffix) class CosineDistanceMAD(Statistic): def __init__(self, num_threads=3): super().__init__() self.num_threads = num_threads LOG.info("num_threads: %i", num_threads) def compute(self, data: xr.Dataset) -> xr.Dataset: squashed = data.to_array().transpose("y", "x", "time", "variable") fdata = squashed.data.astype(np.float32) / 10000. fdata[(squashed.data == -999)] = np.nan fdata[(squashed.data == 0)] = np.nan del squashed LOG.info("Data array size: %s", sizefmt(fdata.nbytes)) mask = np.isnan(fdata).any(axis=2) ndepth = np.count_nonzero(mask, axis=-1) mindepth, mediandepth, maxdepth = np.min(ndepth), np.median(ndepth), np.max(ndepth) LOG.info("data mindepth: %s maxdepth: %s mediandepth: %s", mindepth, maxdepth, mediandepth) LOG.info("Computing geometric median mosaic") gm = geomedian(fdata, num_threads=self.num_threads) LOG.info("Computing spectral MAD mosaic") dev = smad(fdata, gm, num_threads=self.num_threads) da = xr.DataArray(dev, dims=("y", "x"), name="dev") return xr.Dataset(data_vars={"dev": da}) def measurements(self, m): mm = [Measurement(name="dev", dtype="float32", nodata=0, units="1")] LOG.debug("Returning measurements: %s", mm) return mm class EuclideanDistanceMAD(Statistic): def __init__(self, num_threads=3): super().__init__() self.num_threads = num_threads LOG.info("num_threads: %i", num_threads) def compute(self, data: xr.Dataset) -> xr.Dataset: squashed = data.to_array().transpose("y", "x", "time", "variable") fdata = squashed.data.astype(np.float32) / 10000. fdata[(squashed.data == -999)] = np.nan fdata[(squashed.data == 0)] = np.nan del squashed LOG.info("Data array size: %s", sizefmt(fdata.nbytes)) mask = np.isnan(fdata).any(axis=2) ndepth = np.count_nonzero(mask, axis=-1) mindepth, mediandepth, maxdepth =
np.min(ndepth)
numpy.min
import numpy as np from funcs_thermo import latent_heat, pd_c, pv_c, sd_c, sv_c, cpm_c, theta_rho_c from parameters import * def buoyancy_flux(shf, lhf, T_b, qt_b, alpha0_0): cp_ = cpm_c(qt_b) lv = latent_heat(T_b) return (g * alpha0_0 / cp_ / T_b * (shf + (eps_vi-1.0) * cp_ * T_b * lhf /lv)) def psi_m_unstable(zeta, zeta0): x = (1.0 - gamma_m * zeta)**0.25 x0 = (1.0 - gamma_m * zeta0)**0.25 psi_m = (2.0 * np.log((1.0 + x)/(1.0 + x0)) + np.log((1.0 + x*x)/(1.0 + x0 * x0)) -2.0 * np.arctan(x) + 2.0 * np.arctan(x0)) return psi_m def psi_h_unstable(zeta, zeta0): y = np.sqrt(1.0 - gamma_h * zeta ) y0 = np.sqrt(1.0 - gamma_h * zeta0 ) psi_h = 2.0 * np.log((1.0 + y)/(1.0 + y0)) return psi_h def psi_m_stable(zeta, zeta0): psi_m = -beta_m * (zeta - zeta0) return psi_m def psi_h_stable(zeta, zeta0): psi_h = -beta_h * (zeta - zeta0) return psi_h def entropy_flux(tflux,qtflux, p0_1, T_1, qt_1): cp_1 = cpm_c(qt_1) pd_1 = pd_c(p0_1, qt_1, qt_1) pv_1 = pv_c(p0_1, qt_1, qt_1) sd_1 = sd_c(pd_1, T_1) sv_1 = sv_c(pv_1, T_1) return cp_1*tflux/T_1 + qtflux*(sv_1-sd_1) def compute_ustar(windspeed, buoyancy_flux, z0, z1) : logz = np.log(z1 / z0) #use neutral condition as first guess ustar0 = windspeed * vkb / logz ustar = ustar0 if (np.abs(buoyancy_flux) > 1.0e-20): lmo = -ustar0 * ustar0 * ustar0 / (buoyancy_flux * vkb) zeta = z1 / lmo zeta0 = z0 / lmo if (zeta >= 0.0): f0 = windspeed - ustar0 / vkb * (logz - psi_m_stable(zeta, zeta0)) ustar1 = windspeed * vkb / (logz - psi_m_stable(zeta, zeta0)) lmo = -ustar1 * ustar1 * ustar1 / (buoyancy_flux * vkb) zeta = z1 / lmo zeta0 = z0 / lmo f1 = windspeed - ustar1 / vkb * (logz - psi_m_stable(zeta, zeta0)) ustar = ustar1 delta_ustar = ustar1 -ustar0 while np.abs(delta_ustar) > 1e-3: ustar_new = ustar1 - f1 * delta_ustar / (f1-f0) f0 = f1 ustar0 = ustar1 ustar1 = ustar_new lmo = -ustar1 * ustar1 * ustar1 / (buoyancy_flux * vkb) zeta = z1 / lmo zeta0 = z0 / lmo f1 = windspeed - ustar1 / vkb * (logz - psi_m_stable(zeta, zeta0)) delta_ustar = ustar1 -ustar0 else: # b_flux nonzero, zeta is negative f0 = windspeed - ustar0 / vkb * (logz - psi_m_unstable(zeta, zeta0)) ustar1 = windspeed * vkb / (logz - psi_m_unstable(zeta, zeta0)) lmo = -ustar1 * ustar1 * ustar1 / (buoyancy_flux * vkb) zeta = z1 / lmo zeta0 = z0 / lmo f1 = windspeed - ustar1 / vkb * (logz - psi_m_unstable(zeta, zeta0)) ustar = ustar1 delta_ustar = ustar1 - ustar0 while np.abs(delta_ustar) > 1e-3: ustar_new = ustar1 - f1 * delta_ustar / (f1 - f0) f0 = f1 ustar0 = ustar1 ustar1 = ustar_new lmo = -ustar1 * ustar1 * ustar1 / (buoyancy_flux * vkb) zeta = z1 / lmo zeta0 = z0 / lmo f1 = windspeed - ustar1 / vkb * (logz - psi_m_unstable(zeta, zeta0)) delta_ustar = ustar1 - ustar return ustar def exchange_coefficients_byun(Ri, zb, z0): logz =
np.log(zb/z0)
numpy.log
""" Test cases for the Comparisons class over the Chart elements """ from unittest import SkipTest, skipIf import numpy as np from holoviews.core import NdOverlay from holoviews.core.options import Store from holoviews.element import ( Area, BoxWhisker, Curve, Distribution, HSpan, Image, Points, Rectangles, RGB, Scatter, Segments, Violin, VSpan, Path, QuadMesh, Polygons ) from holoviews.element.comparison import ComparisonTestCase try: import datashader as ds except: ds = None try: import spatialpandas as spd except: spd = None try: import shapely except: shapely = None spd_available = skipIf(spd is None, "spatialpandas is not available") shapelib_available = skipIf(shapely is None and spd is None, 'Neither shapely nor spatialpandas are available') shapely_available = skipIf(shapely is None, 'shapely is not available') ds_available = skipIf(ds is None, 'datashader not available') class TestSelection1DExpr(ComparisonTestCase): def setUp(self): try: import holoviews.plotting.bokeh # noqa except: raise SkipTest("Bokeh selection tests require bokeh.") super().setUp() self._backend = Store.current_backend Store.set_current_backend('bokeh') def tearDown(self): Store.current_backend = self._backend def test_area_selection_numeric(self): area = Area([3, 2, 1, 3, 4]) expr, bbox, region = area._get_selection_expr_for_stream_value(bounds=(1, 0, 3, 2)) self.assertEqual(bbox, {'x': (1, 3)}) self.assertEqual(expr.apply(area), np.array([False, True, True, True, False])) self.assertEqual(region, NdOverlay({0: VSpan(1, 3)})) def test_area_selection_numeric_inverted(self): area = Area([3, 2, 1, 3, 4]).opts(invert_axes=True) expr, bbox, region = area._get_selection_expr_for_stream_value(bounds=(0, 1, 2, 3)) self.assertEqual(bbox, {'x': (1, 3)}) self.assertEqual(expr.apply(area), np.array([False, True, True, True, False])) self.assertEqual(region, NdOverlay({0: HSpan(1, 3)})) def test_area_selection_categorical(self): area = Area((['B', 'A', 'C', 'D', 'E'], [3, 2, 1, 3, 4])) expr, bbox, region = area._get_selection_expr_for_stream_value( bounds=(0, 1, 2, 3), x_selection=['B', 'A', 'C'] ) self.assertEqual(bbox, {'x': ['B', 'A', 'C']}) self.assertEqual(expr.apply(area), np.array([True, True, True, False, False])) self.assertEqual(region, NdOverlay({0: VSpan(0, 2)})) def test_area_selection_numeric_index_cols(self): area = Area([3, 2, 1, 3, 2]) expr, bbox, region = area._get_selection_expr_for_stream_value( bounds=(1, 0, 3, 2), index_cols=['y'] ) self.assertEqual(bbox, {'x': (1, 3)}) self.assertEqual(expr.apply(area), np.array([False, True, True, False, True])) self.assertEqual(region, None) def test_curve_selection_numeric(self): curve = Curve([3, 2, 1, 3, 4]) expr, bbox, region = curve._get_selection_expr_for_stream_value(bounds=(1, 0, 3, 2)) self.assertEqual(bbox, {'x': (1, 3)}) self.assertEqual(expr.apply(curve), np.array([False, True, True, True, False])) self.assertEqual(region, NdOverlay({0: VSpan(1, 3)})) def test_curve_selection_categorical(self): curve = Curve((['B', 'A', 'C', 'D', 'E'], [3, 2, 1, 3, 4])) expr, bbox, region = curve._get_selection_expr_for_stream_value( bounds=(0, 1, 2, 3), x_selection=['B', 'A', 'C'] ) self.assertEqual(bbox, {'x': ['B', 'A', 'C']}) self.assertEqual(expr.apply(curve), np.array([True, True, True, False, False])) self.assertEqual(region, NdOverlay({0: VSpan(0, 2)})) def test_curve_selection_numeric_index_cols(self): curve = Curve([3, 2, 1, 3, 2]) expr, bbox, region = curve._get_selection_expr_for_stream_value( bounds=(1, 0, 3, 2), index_cols=['y'] ) self.assertEqual(bbox, {'x': (1, 3)}) self.assertEqual(expr.apply(curve), np.array([False, True, True, False, True])) self.assertEqual(region, None) def test_box_whisker_single(self): box_whisker = BoxWhisker(list(range(10))) expr, bbox, region = box_whisker._get_selection_expr_for_stream_value( bounds=(0, 3, 1, 7) ) self.assertEqual(bbox, {'y': (3, 7)}) self.assertEqual(expr.apply(box_whisker), np.array([ False, False, False, True, True, True, True, True, False, False ])) self.assertEqual(region, NdOverlay({0: HSpan(3, 7)})) def test_box_whisker_single_inverted(self): box = BoxWhisker(list(range(10))).opts(invert_axes=True) expr, bbox, region = box._get_selection_expr_for_stream_value( bounds=(3, 0, 7, 1) ) self.assertEqual(bbox, {'y': (3, 7)}) self.assertEqual(expr.apply(box), np.array([ False, False, False, True, True, True, True, True, False, False ])) self.assertEqual(region, NdOverlay({0: VSpan(3, 7)})) def test_box_whisker_cats(self): box_whisker = BoxWhisker((['A', 'A', 'A', 'B', 'B', 'C', 'C', 'C', 'C', 'C'], list(range(10))), 'x', 'y') expr, bbox, region = box_whisker._get_selection_expr_for_stream_value( bounds=(0, 1, 2, 7), x_selection=['A', 'B'] ) self.assertEqual(bbox, {'y': (1, 7), 'x': ['A', 'B']}) self.assertEqual(expr.apply(box_whisker), np.array([ False, True, True, True, True, False, False, False, False, False ])) self.assertEqual(region, NdOverlay({0: HSpan(1, 7)})) def test_box_whisker_cats_index_cols(self): box_whisker = BoxWhisker((['A', 'A', 'A', 'B', 'B', 'C', 'C', 'C', 'C', 'C'], list(range(10))), 'x', 'y') expr, bbox, region = box_whisker._get_selection_expr_for_stream_value( bounds=(0, 1, 2, 7), x_selection=['A', 'B'], index_cols=['x'] ) self.assertEqual(bbox, {'y': (1, 7), 'x': ['A', 'B']}) self.assertEqual(expr.apply(box_whisker), np.array([ True, True, True, True, True, False, False, False, False, False ])) self.assertEqual(region, None) def test_violin_single(self): violin = Violin(list(range(10))) expr, bbox, region = violin._get_selection_expr_for_stream_value( bounds=(0, 3, 1, 7) ) self.assertEqual(bbox, {'y': (3, 7)}) self.assertEqual(expr.apply(violin), np.array([ False, False, False, True, True, True, True, True, False, False ])) self.assertEqual(region, NdOverlay({0: HSpan(3, 7)})) def test_violin_single_inverted(self): violin = Violin(list(range(10))).opts(invert_axes=True) expr, bbox, region = violin._get_selection_expr_for_stream_value( bounds=(3, 0, 7, 1) ) self.assertEqual(bbox, {'y': (3, 7)}) self.assertEqual(expr.apply(violin), np.array([ False, False, False, True, True, True, True, True, False, False ])) self.assertEqual(region, NdOverlay({0: VSpan(3, 7)})) def test_violin_cats(self): violin = Violin((['A', 'A', 'A', 'B', 'B', 'C', 'C', 'C', 'C', 'C'], list(range(10))), 'x', 'y') expr, bbox, region = violin._get_selection_expr_for_stream_value( bounds=(0, 1, 2, 7), x_selection=['A', 'B'] ) self.assertEqual(bbox, {'y': (1, 7), 'x': ['A', 'B']}) self.assertEqual(expr.apply(violin), np.array([ False, True, True, True, True, False, False, False, False, False ])) self.assertEqual(region, NdOverlay({0: HSpan(1, 7)})) def test_violin_cats_index_cols(self): violin = Violin((['A', 'A', 'A', 'B', 'B', 'C', 'C', 'C', 'C', 'C'], list(range(10))), 'x', 'y') expr, bbox, region = violin._get_selection_expr_for_stream_value( bounds=(0, 1, 2, 7), x_selection=['A', 'B'], index_cols=['x'] ) self.assertEqual(bbox, {'y': (1, 7), 'x': ['A', 'B']}) self.assertEqual(expr.apply(violin), np.array([ True, True, True, True, True, False, False, False, False, False ])) self.assertEqual(region, None) def test_distribution_single(self): dist = Distribution(list(range(10))) expr, bbox, region = dist._get_selection_expr_for_stream_value( bounds=(3, 0, 7, 1) ) self.assertEqual(bbox, {'Value': (3, 7)}) self.assertEqual(expr.apply(dist), np.array([ False, False, False, True, True, True, True, True, False, False ])) self.assertEqual(region, NdOverlay({0: VSpan(3, 7)})) def test_distribution_single_inverted(self): dist = Distribution(list(range(10))).opts(invert_axes=True) expr, bbox, region = dist._get_selection_expr_for_stream_value( bounds=(0, 3, 1, 7) ) self.assertEqual(bbox, {'Value': (3, 7)}) self.assertEqual(expr.apply(dist), np.array([ False, False, False, True, True, True, True, True, False, False ])) self.assertEqual(region, NdOverlay({0: HSpan(3, 7)})) class TestSelection2DExpr(ComparisonTestCase): def setUp(self): try: import holoviews.plotting.bokeh # noqa except: raise SkipTest("Bokeh selection tests require bokeh.") super().setUp() self._backend = Store.current_backend Store.set_current_backend('bokeh') def tearDown(self): Store.current_backend = self._backend def test_points_selection_numeric(self): points = Points([3, 2, 1, 3, 4]) expr, bbox, region = points._get_selection_expr_for_stream_value(bounds=(1, 0, 3, 2)) self.assertEqual(bbox, {'x': (1, 3), 'y': (0, 2)}) self.assertEqual(expr.apply(points), np.array([False, True, True, False, False])) self.assertEqual(region, Rectangles([(1, 0, 3, 2)]) * Path([])) def test_points_selection_numeric_inverted(self): points = Points([3, 2, 1, 3, 4]).opts(invert_axes=True) expr, bbox, region = points._get_selection_expr_for_stream_value(bounds=(0, 1, 2, 3)) self.assertEqual(bbox, {'x': (1, 3), 'y': (0, 2)}) self.assertEqual(expr.apply(points), np.array([False, True, True, False, False])) self.assertEqual(region, Rectangles([(0, 1, 2, 3)]) * Path([])) @shapelib_available def test_points_selection_geom(self): points = Points([3, 2, 1, 3, 4]) geom = np.array([(-0.1, -0.1), (1.4, 0), (1.4, 2.2), (-0.1, 2.2)]) expr, bbox, region = points._get_selection_expr_for_stream_value(geometry=geom) self.assertEqual(bbox, {'x': np.array([-0.1, 1.4, 1.4, -0.1]), 'y': np.array([-0.1, 0, 2.2, 2.2])}) self.assertEqual(expr.apply(points), np.array([False, True, False, False, False])) self.assertEqual(region, Rectangles([]) * Path([list(geom)+[(-0.1, -0.1)]])) @shapelib_available def test_points_selection_geom_inverted(self): points = Points([3, 2, 1, 3, 4]).opts(invert_axes=True) geom = np.array([(-0.1, -0.1), (1.4, 0), (1.4, 2.2), (-0.1, 2.2)]) expr, bbox, region = points._get_selection_expr_for_stream_value(geometry=geom) self.assertEqual(bbox, {'y': np.array([-0.1, 1.4, 1.4, -0.1]), 'x': np.array([-0.1, 0, 2.2, 2.2])}) self.assertEqual(expr.apply(points), np.array([False, False, True, False, False])) self.assertEqual(region, Rectangles([]) * Path([list(geom)+[(-0.1, -0.1)]])) def test_points_selection_categorical(self): points = Points((['B', 'A', 'C', 'D', 'E'], [3, 2, 1, 3, 4])) expr, bbox, region = points._get_selection_expr_for_stream_value( bounds=(0, 1, 2, 3), x_selection=['B', 'A', 'C'], y_selection=None ) self.assertEqual(bbox, {'x': ['B', 'A', 'C'], 'y': (1, 3)}) self.assertEqual(expr.apply(points), np.array([True, True, True, False, False])) self.assertEqual(region, Rectangles([(0, 1, 2, 3)]) * Path([])) def test_points_selection_numeric_index_cols(self): points = Points([3, 2, 1, 3, 2]) expr, bbox, region = points._get_selection_expr_for_stream_value( bounds=(1, 0, 3, 2), index_cols=['y'] ) self.assertEqual(bbox, {'x': (1, 3), 'y': (0, 2)}) self.assertEqual(expr.apply(points), np.array([False, False, True, False, False])) self.assertEqual(region, None) def test_scatter_selection_numeric(self): scatter = Scatter([3, 2, 1, 3, 4]) expr, bbox, region = scatter._get_selection_expr_for_stream_value(bounds=(1, 0, 3, 2)) self.assertEqual(bbox, {'x': (1, 3), 'y': (0, 2)}) self.assertEqual(expr.apply(scatter), np.array([False, True, True, False, False])) self.assertEqual(region, Rectangles([(1, 0, 3, 2)]) * Path([])) def test_scatter_selection_numeric_inverted(self): scatter = Scatter([3, 2, 1, 3, 4]).opts(invert_axes=True) expr, bbox, region = scatter._get_selection_expr_for_stream_value(bounds=(0, 1, 2, 3)) self.assertEqual(bbox, {'x': (1, 3), 'y': (0, 2)}) self.assertEqual(expr.apply(scatter), np.array([False, True, True, False, False])) self.assertEqual(region, Rectangles([(0, 1, 2, 3)]) * Path([])) def test_scatter_selection_categorical(self): scatter = Scatter((['B', 'A', 'C', 'D', 'E'], [3, 2, 1, 3, 4])) expr, bbox, region = scatter._get_selection_expr_for_stream_value( bounds=(0, 1, 2, 3), x_selection=['B', 'A', 'C'], y_selection=None ) self.assertEqual(bbox, {'x': ['B', 'A', 'C'], 'y': (1, 3)}) self.assertEqual(expr.apply(scatter), np.array([True, True, True, False, False])) self.assertEqual(region, Rectangles([(0, 1, 2, 3)]) * Path([])) def test_scatter_selection_numeric_index_cols(self): scatter = Scatter([3, 2, 1, 3, 2]) expr, bbox, region = scatter._get_selection_expr_for_stream_value( bounds=(1, 0, 3, 2), index_cols=['y'] ) self.assertEqual(bbox, {'x': (1, 3), 'y': (0, 2)}) self.assertEqual(expr.apply(scatter), np.array([False, False, True, False, False])) self.assertEqual(region, None) def test_image_selection_numeric(self): img = Image(([0, 1, 2], [0, 1, 2, 3], np.random.rand(4, 3))) expr, bbox, region = img._get_selection_expr_for_stream_value(bounds=(0.5, 1.5, 2.1, 3.1)) self.assertEqual(bbox, {'x': (0.5, 2.1), 'y': (1.5, 3.1)}) self.assertEqual(expr.apply(img, expanded=True, flat=False), np.array([ [False, False, False], [False, False, False], [False, True, True], [False, True, True] ])) self.assertEqual(region, Rectangles([(0.5, 1.5, 2.1, 3.1)]) * Path([])) def test_image_selection_numeric_inverted(self): img = Image(([0, 1, 2], [0, 1, 2, 3], np.random.rand(4, 3))).opts(invert_axes=True) expr, bbox, region = img._get_selection_expr_for_stream_value(bounds=(1.5, 0.5, 3.1, 2.1)) self.assertEqual(bbox, {'x': (0.5, 2.1), 'y': (1.5, 3.1)}) self.assertEqual(expr.apply(img, expanded=True, flat=False), np.array([ [False, False, False], [False, False, False], [False, True, True], [False, True, True] ])) self.assertEqual(region, Rectangles([(1.5, 0.5, 3.1, 2.1)]) * Path([])) @ds_available @spd_available def test_img_selection_geom(self): img = Image(([0, 1, 2], [0, 1, 2, 3], np.random.rand(4, 3))) geom = np.array([(-0.4, -0.1), (0.6, -0.1), (0.4, 1.7), (-0.1, 1.7)]) expr, bbox, region = img._get_selection_expr_for_stream_value(geometry=geom) self.assertEqual(bbox, {'x': np.array([-0.4, 0.6, 0.4, -0.1]), 'y': np.array([-0.1, -0.1, 1.7, 1.7])}) self.assertEqual(expr.apply(img, expanded=True, flat=False), np.array([ [ 1., np.nan, np.nan], [ 1., np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan] ])) self.assertEqual(region, Rectangles([]) * Path([list(geom)+[(-0.4, -0.1)]])) @ds_available def test_img_selection_geom_inverted(self): img = Image(([0, 1, 2], [0, 1, 2, 3], np.random.rand(4, 3))).opts(invert_axes=True) geom = np.array([(-0.4, -0.1), (0.6, -0.1), (0.4, 1.7), (-0.1, 1.7)]) expr, bbox, region = img._get_selection_expr_for_stream_value(geometry=geom) self.assertEqual(bbox, {'y':
np.array([-0.4, 0.6, 0.4, -0.1])
numpy.array
from django.contrib.auth.models import User from django_q.tasks import async_task from app.models import Document, Similarity from binfile.distance_measurement import cosine_sim, cosine_similarity, jaccard_similarity, dice_similarity, mahalanobis_distance, \ euclidean_distance, minkowski_distance, manhattan_distance, weighted_euclidean_distance, weighted_euclidean_distances from django.conf import settings import glob import re import os import json from math import * import numpy as np from django.core.files.base import ContentFile from django.core.files import File import asyncio, time from functools import wraps from concurrent import futures IGNORE = [ "env", ".local", ".git", ] _DEFAULT_POOL = futures.ThreadPoolExecutor(max_workers=4) def threadpool(f, executor=None): @wraps(f) def wrap(*args, **kwargs): asyncio.set_event_loop(asyncio.new_event_loop()) return asyncio.wrap_future((executor or _DEFAULT_POOL).submit(f, *args, **kwargs)) return wrap def process_time(id, type="PROCESS", start=None): if start: elapsed = time.time() - start msg = "FINISHED, {}, {}, {}".format(type, id, elapsed) with open(os.path.join(settings.MEDIA_ROOT, 'logging.csv'), 'a') as f: f.write(msg+'\n') print(msg) return elapsed, msg else: start = time.time() msg = "START, {}, {}, {}".format(type, id, start) # with open(os.path.join(settings.MEDIA_ROOT, 'logging.csv'), 'a') as f: # f.write(msg+'\n') print(msg) return start, msg # for datasets def process_path(path, username='admin'): if not path.endswith("/"): path = path + "/" if not path.endswith("**"): path = path + "**" import time start = time.time() for filename in glob.iglob(path, recursive=True): print("Checking", filename) will_ignore = False for ignore in IGNORE: if re.match(ignore, filename): print("IGNORING", filename) will_ignore = True break if not will_ignore: print("PROCESSING", filename) # async(process_file_by_path, filename) process_file_by_path(filename, username) print("=== Finished on ", time.time() - start) return path def projson(): from os import path pathh = path.join(settings.MEDIA_ROOT, 'export') if not pathh.endswith("/"): pathh = pathh + "/" if not pathh.endswith("**"): pathh = pathh + "**" import time start = time.time() arrai = [] for filename in glob.iglob(pathh, recursive=True): print("Checking", filename) will_ignore = False for ignore in IGNORE: if re.match(ignore, filename): print("IGNORING", filename) will_ignore = True break if path.isfile(filename) and not will_ignore and not filename.endswith('merged.json'): print("PROCESSING", filename) aa = [] with open(filename, 'r') as fa: aa = fa.read() aa = json.loads(aa) arrai = arrai + aa with open(path.join(settings.MEDIA_ROOT, 'export', 'merged.json'), 'w+') as ff: ff.write(json.dumps(arrai)) print("=== Finished on ", time.time() - start) return pathh @threadpool def process_file_by_path(path, username='admin'): _, ext = os.path.splitext(path) original_filename = os.path.basename(path) if ext not in [".pdf", ".docx", ".doc"]: return try: sf = Document.objects.get(content=path) # filename except Document.DoesNotExist: # If it does NOT have an entry, create one sf = Document() start, _ = process_time(sf.id.hex, type="DATASET FILE") if not os.path.isfile(path): print("NOT A FILE", path) return user = User.objects.get(username=username) # static sf.user = user with open(path, mode="rb") as file: sf.content.save(name=os.path.basename(path), content=file) sf.original_filename = original_filename sf.is_dataset = True sf.save() finishing_dataset(sf.id) process_time(sf.id.hex, type="DATASET FILE", start=start) os.remove(path) print("DELETE FILE ", path) return sf.id @threadpool def finishing_dataset(id): try: sf = Document.objects.get(id=id) except Document.DoesNotExist: return start, _ = process_time(sf.id.hex, type="DATASET FINISH") sf.extract_content() time.sleep(0.5) sf.translate() time.sleep(3) sf.fingerprinting(save=True, debug=True) sf.save() process_time(sf.id.hex, type="DATASET FINISH", start=start) return sf # for user document @threadpool def process_doc(id): try: sf = Document.objects.get(id=id) # filename except Document.DoesNotExist: print("NOT EXIST", id) return start, _ = process_time(sf.id.hex, type="PROCESS DOC") sf.extract_content() sf.translate() sf.fingerprinting(debug=True) sf.save() check_similarity(sf.id) process_time(sf.id.hex, type="PROCESS DOC", start=start) # should call from view def extract_n_process(name, username='admin'): from pyunpack import Archive dest = os.path.join(settings.MEDIA_ROOT, 'extract') src = os.path.join(settings.MEDIA_ROOT, name) Archive(src).extractall(dest, auto_create_dir=True) process_path(dest, username) import shutil try: shutil.rmtree(dest) os.unlink(src) except: pass # os.remove(src) print('Source Deleted') def translate_and_finish(): untranslated = Document.objects.filter(is_dataset=True) for unt in untranslated: # unt.extract_content() # unt.translate() # print("Translating ", unt.id) unt.fingerprinting(save=True, debug=True) print("Fingerprinting ", unt.id) # time.sleep(5) @threadpool def check_similarity(id): from sklearn.preprocessing import normalize from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import euclidean_distances, manhattan_distances from sklearn.preprocessing import normalize from scipy.spatial import distance mode = 1 try: sf = Document.objects.get(id=id) except Document.DoesNotExist: print("Document not Exist") return start, _ = process_time(sf.id.hex, type="SIMILARITY") sf.status = Document.Statuses.PROCESS sf.save() datasets = Document.objects.filter(is_dataset=True, status="finished") similarities = [] fingerprints = [] t_origin = sf.get_fingerprint()['fingerprint'] t_debug = sf.get_fingerprint()['debug'] fingerprints.append(t_origin) minlen = len(fingerprints[0]) maxlen = len(fingerprints[0]) bag = [] for d in datasets: reff = d.get_fingerprint() t_referer = reff['fingerprint'] if len(t_origin) <= 1 or len(t_referer) <= 1: print("Fingerprint not valid!", d.id) continue az = set.intersection(set(t_origin), set(t_referer)) asz = [str(d.id), d.filename] + [x[0] for x in reff['debug']['hashes'] if x[1] in az] bag.append(asz) text1, text2 = padd_to_max(t_origin, t_referer) if mode == 1 else trim_to_min(t_origin, t_referer) # cosine = cosine_sim(text1, text2) * 100 # jaccard = jaccard_similarity(text1, text2) * 100 # dice = dice_similarity(text1, text2) * 100 minlen = min(minlen, len(t_referer)) maxlen = max(maxlen, len(t_referer)) fingerprints.append(t_referer) # append as set similarities.append([ d # jaccard, # dice, # cosine, ]) # print((cosine, jaccard, dice, euclidean, manhattan, minkowski, weighted, mahalanobis), "=================") # fingerprints, _,_ = norm(fingerprints) if mode == 0: for i, m in enumerate(fingerprints): # trim length if len(m) > minlen: fingerprints[i] = m[:minlen] elif mode == 1: for i, m in enumerate(fingerprints): # padding if len(m) < maxlen: fingerprints[i] = m + [0.0 for a in range(0, maxlen - len(m))] matx = normalize(np.asarray(fingerprints, dtype=np.float)) with open(os.path.join(settings.MEDIA_ROOT, 'data', 'bag-'+sf.id.hex+'.json'), 'w') as fx: # fx.write(json.dumps(matx)) fx.write(json.dumps(bag)) # tcov = np.array(matx).T # # print(cov.shape) # ccov = np.cov(tcov) # iccov = np.linalg.inv(ccov) for i, n in enumerate(matx): if i == 0: continue cosine = round(distance.cosine(matx[0],matx[i]) , 8) # print("cossine: ", distance.cosine(matx[0],matx[1])) # jaccard = round(distance.jaccard(matx[0],matx[i]) , 8) jaccard = distance.cdist([matx[0]],[matx[i]], 'jaccard') # print("jaccard: ", distance.jaccard(matx[0],matx[1],5)) # dice = round(1-distance.dice(matx[0],matx[i]) , 8) dice = distance.cdist([matx[0]],[matx[i]], 'dice') # print("dice: ",i- distance.dice(matx[0],matx[i])) # weighted = distance.sqeuclidean(matx[0], matx[i]) weighted = distance.cdist([matx[0]],[matx[i]], 'wminkowski', p=2., w=n) # print("weig",weighted)cdist(XA, XB, 'euclidean') # euclidean = distance.euclidean(matx[0], matx[i]) euclidean = distance.cdist([matx[0]], [matx[i]], 'euclidean') # print("enclu", euclidean) manhattan = manhattan_distances([matx[0]], [matx[i]], sum_over_features=False) # print("manha",manhattan) manhattan =
np.max(manhattan)
numpy.max
# test.py # main testing script import os import json import argparse import torch from torch import nn from torch.utils.data import DataLoader from nuscenes.nuscenes import NuScenes from data import nuScenesDataset, CollateFn import matplotlib.pyplot as plt import numpy as np from skimage.draw import polygon def make_data_loader(cfg, args): if "train_on_all_sweeps" not in cfg: train_on_all_sweeps = False else: train_on_all_sweeps = cfg["train_on_all_sweeps"] dataset_kwargs = { "n_input": cfg["n_input"], "n_samples": args.n_samples, "n_output": cfg["n_output"], "train_on_all_sweeps": train_on_all_sweeps } data_loader_kwargs = { "pin_memory": False, # NOTE "shuffle": True, "batch_size": args.batch_size, "num_workers": args.num_workers } nusc = NuScenes(cfg["nusc_version"], cfg["nusc_root"]) data_loader = DataLoader(nuScenesDataset(nusc, args.test_split, dataset_kwargs), collate_fn=CollateFn, **data_loader_kwargs) return data_loader def mkdir_if_not_exists(d): if not os.path.exists(d): print(f"creating directory {d}") os.makedirs(d) def evaluate_box_coll(obj_boxes, trajectory, pc_range): xmin, ymin, _, xmax, ymax, _ = pc_range T, H, W = obj_boxes.shape collisions = np.full(T, False) for t in range(T): x, y, theta = trajectory[t] corners = np.array([ (-0.8, -1.5, 1), # back left corner (0.8, -1.5, 1), # back right corner (0.8, 2.5, 1), # front right corner (-0.8, 2.5, 1), # front left corner ]) tf = np.array([ [np.cos(theta), -np.sin(theta), x], [np.sin(theta), np.cos(theta), y], [0, 0, 1], ]) xx, yy = tf.dot(corners.T)[:2] yi = np.round((yy - ymin) / (ymax - ymin) * H).astype(int) xi = np.round((xx - xmin) / (xmax - xmin) * W).astype(int) rr, cc = polygon(yi, xi) I = np.logical_and( np.logical_and(rr >= 0, rr < H), np.logical_and(cc >= 0, cc < W), ) collisions[t] = np.any(obj_boxes[t, rr[I], cc[I]]) return collisions def voxelize_point_cloud(points): valid = (points[:, -1] == 0) x, y, z, t = points[valid].T x = ((x + 40.0) / 0.2).astype(int) y = ((y + 70.4) / 0.2).astype(int) mask = np.logical_and( np.logical_and(0 <= x, x < 400), np.logical_and(0 <= y, y < 704) ) voxel_map = np.zeros((704, 400), dtype=bool) voxel_map[y[mask], x[mask]] = True return voxel_map def make_cost_fig(cost_maps): cost_imgs = np.ones_like(cost_maps) T = len(cost_maps) for t in range(T): cost_map = cost_maps[t] cost_min, cost_max = cost_map.min(), cost_map.max() cost_img = (cost_map - cost_min) / (cost_max - cost_min) cost_imgs[t] = cost_img return cost_imgs def test(args): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") device_count = torch.cuda.device_count() if args.batch_size % device_count != 0: raise RuntimeError(f"Batch size ({args.batch_size}) cannot be divided by device count ({device_count})") model_dir = args.model_dir with open(f"{model_dir}/config.json", 'r') as f: cfg = json.load(f) # dataset data_loader = make_data_loader(cfg, args) # instantiate a model and a renderer _n_input, _n_output = cfg["n_input"], cfg["n_output"] _pc_range, _voxel_size = cfg["pc_range"], cfg["voxel_size"] model_type = cfg["model_type"] if model_type == "vanilla": from model import VanillaNeuralMotionPlanner model = VanillaNeuralMotionPlanner(_n_input, _n_output, _pc_range, _voxel_size) elif model_type == "vf_guided": from model import VFGuidedNeuralMotionPlanner model = VFGuidedNeuralMotionPlanner(_n_input, _n_output, _pc_range, _voxel_size) elif model_type == "obj_guided": from model import ObjGuidedNeuralMotionPlanner model = ObjGuidedNeuralMotionPlanner(_n_input, _n_output, _pc_range, _voxel_size) elif model_type == "obj_shadow_guided": from model import ObjShadowGuidedNeuralMotionPlanner model = ObjShadowGuidedNeuralMotionPlanner(_n_input, _n_output, _pc_range, _voxel_size) else: raise NotImplementedError(f"{model_type} not implemented yet.") model = model.to(device) # resume ckpt_path = f"{args.model_dir}/ckpts/model_epoch_{args.test_epoch}.pth" checkpoint = torch.load(ckpt_path, map_location=device) # NOTE: ignore renderer's parameters model.load_state_dict(checkpoint["model_state_dict"], strict=False) # data parallel model = nn.DataParallel(model) model.eval() # output vis_dir = os.path.join(model_dir, "visuals", f"{args.test_split}_epoch_{args.test_epoch}") mkdir_if_not_exists(vis_dir) # counts = np.zeros(cfg["n_output"], dtype=int) l2_dist_sum = np.zeros(cfg["n_output"], dtype=float) obj_coll_sum = np.zeros(cfg["n_output"], dtype=int) obj_box_coll_sum = np.zeros(cfg["n_output"], dtype=int) # obj_box_dir = f"{cfg['nusc_root']}/obj_boxes/{cfg['nusc_version']}" # np.set_printoptions(suppress=True, precision=2) num_batch = len(data_loader) for i, batch in enumerate(data_loader): sample_data_tokens = batch["sample_data_tokens"] bs = len(sample_data_tokens) if bs < device_count: print(f"Dropping the last batch of size {bs}") continue with torch.set_grad_enabled(False): results = model(batch, "test") best_plans = results["best_plans"].detach().cpu().numpy() sampled_plans = batch["sampled_trajectories"].detach().cpu().numpy() gt_plans = batch["gt_trajectories"].detach().cpu().numpy() plot_on = args.plot_on and (i % args.plot_every == 0) cache_on = args.cache_on and (i % args.cache_every == 0) if (cache_on or plot_on) and "cost" in results: costs = results["cost"].detach().cpu().numpy() else: costs = None for j, sample_data_token in enumerate(sample_data_tokens): # visualization: # - highlight the low cost regions (sub-zero) # - distinguish cost maps from different timestamps if plot_on: # tt = [2, 4, 6] tt = list(range(_n_output)) if costs is not None: cost =
np.concatenate(costs[j, tt], axis=-1)
numpy.concatenate
import numpy as np from modules.active_learning import Pool, DataPool, UnlabeledPool, LabeledPool class TestPool: def test_has_unlabeled(self): test_inputs = np.random.randn(50, 28, 28, 1) new_pool = Pool(test_inputs) assert new_pool.has_unlabeled() and not new_pool.has_labeled() def test_has_labeled(self): test_inputs = np.random.randn(50, 28, 28, 1) new_pool = Pool(test_inputs) new_pool.annotate([0], 1) inputs, targets = new_pool.get_labeled_data() assert new_pool.has_labeled() and targets == np.array([1]) def test_annotate(self): test_inputs = np.random.randn(50, 28, 28, 1) new_pool = Pool(test_inputs) indices = [0, 2, 5, 12] new_pool.annotate(indices, [1, 0, 1, 1]) inputs, targets = new_pool.get_labeled_data() assert len(inputs) == len(indices) def test_annotate_pseudo(self): test_inputs = np.random.randn(50) test_targets = np.random.choice([0, 1, 2], 50) new_pool = Pool(test_inputs,test_targets) indices = np.array([0, 2, 5, 12]) new_pool.annotate(indices) inputs, targets = new_pool.get_labeled_data() assert np.all(test_targets[indices] == targets) def test_annotate_shortcut(self): test_inputs = np.random.randn(50) new_pool = Pool(test_inputs) indices = [0, 2, 5, 12] targets = [2, 5, 1, 0] new_pool[indices] = targets inputs, targets = new_pool.get_labeled_data() assert len(inputs) == len(indices) def test_get_by(self): test_inputs = np.array([0, 2, 5, 12]) new_pool = Pool(test_inputs) indices = [0, 1] values = new_pool.get_inputs_by(indices) true_values = test_inputs[np.array(indices)] assert np.all(values == true_values) def test_get_length_unlabeled(self): test_inputs = np.random.randn(50) new_pool = Pool(test_inputs) assert new_pool.get_length_labeled() == 0 new_pool[1] = 0 assert new_pool.get_length_labeled() == 1 new_pool[[2, 5]] = [1, 0] assert new_pool.get_length_labeled() == 3 def test_get_length_labeled(self): test_inputs = np.random.randn(50) new_pool = Pool(test_inputs) assert new_pool.get_length_unlabeled() == len(test_inputs) new_pool[0] = 1 assert new_pool.get_length_unlabeled() != len(test_inputs) def test_get_labeld_data(self): test_inputs =
np.random.randn(50)
numpy.random.randn